Linux in a Nutshell

Everything you need to know about Linux is in this book. Written by people with years of active participation in the Linux community, *Linux in a Nutshell*, Sixth Edition, thoroughly covers programming tools, system and network administration tools, the shell, editors, and the GRUB boot loader.

This updated edition offers a tighter focus on Linux system essentials, as well as more coverage of new capabilities. It also highlights the most important options for using the vast number of Linux commands. You’ll find many helpful new tips and techniques in this reference, whether you’re new to this operating system or have been using it for years.

- Get the Linux commands for system administration and network management
- Learn hundreds of the most important shell commands available on Linux
- Understand the Bash shell command-line interpreter
- Search and process text with regular expressions
- Manage your servers via virtualization with Xen and VMware
- Use the Emacs text editor and development environment, as well as the vi, ex, and vim text-manipulation tools

O’REILLY®

oreilily.com

<table>
<thead>
<tr>
<th>US $49.99</th>
<th>CAN $62.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISBN: 978-0-596-15448-6</td>
<td></td>
</tr>
</tbody>
</table>

Safari® Free online edition for 45 days with purchase of this book. Details on last page.
Table of Contents

Preface ... xv

1. Introduction ... 1
 The Excitement of Linux 2
 Distribution and Support 3
 Commands on Linux 3
 What This Book Offers 4
 Sources and Licenses 6
 Beginner’s Guide 7
 Communication 7
 Comparisons 8
 File Management 8
 Media 9
 Printing 9
 Programming 9
 Program Maintenance 10
 Searching 10
 Shell Programming 11
 Storage 11
 System Status 11
 Text Processing 12
 Miscellaneous 13
2. **System and Network Administration Overview** 14

 Common Commands 14
 Clocks 14
 Daemons 14
 Hardware 15
 Host Information 15
 Installation 16
 Mail 16
 Managing Filesystems 16
 Managing the Kernel 17
 Networking 18
 Printing 18
 Security and System Integrity 18
 Starting and Stopping the System 19
 System Activity and Process Management 19
 Users 20
 Miscellaneous 20
 Overview of Networking 21
 TCP/IP Administration 21
 NFS and NIS Administration 22
 Overview of TCP/IP 22
 IP Addresses 23
 Gateways and Routing 25
 Name Service 26
 Configuring TCP/IP 27
 Troubleshooting TCP/IP 28
 Overview of Firewalls and Masquerading 28
 Overview of NFS 29
 Administering NFS 30
 Daemons 30
 Exporting Filesystems 30
 Mounting Filesystems 30
 Overview of NIS 31
 Servers 31
 Domains 31
 NIS Maps 31
 Map Manipulation Utilities 31
7. Pattern Matching ... 654
- Filenames Versus Patterns 654
- Metacharacters 655
 - Search Patterns 655
 - Replacement Patterns 656
- Metacharacters, Listed by Program 657
- Examples of Searching 658
 - Examples of Searching and Replacing 659

8. The Emacs Editor ... 661
- Conceptual Overview 661
 - Modes 661
 - Buffer and Window 662
 - Point and Mark 662
 - Kill and Yank 662
 - Notes on the Tables 662
 - Absolutely Essential Commands 663
- Command-Line Syntax 663
 - Summary of Commands by Group 663
 - File-Handling Commands 663
 - Cursor-Movement Commands 664
 - Deletion Commands 664
 - Paragraphs and Regions 665
 - Stopping and Undoing Commands 665
 - Transposition Commands 665
 - Search Commands 665
 - Capitalization Commands 666
 - Word-Abbreviation Commands 666
 - Buffer-Manipulation Commands 666
 - Window Commands 666
 - Special Shell Characters 667
 - Indentation Commands 667
 - Centering Commands 668
 - Macro Commands 668
 - Detail Information Help Commands 668
 - Help Commands 669
<table>
<thead>
<tr>
<th>9. The vi, ex, and vim Editors</th>
<th>677</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual Overview</td>
<td>677</td>
</tr>
<tr>
<td>Command-Line Syntax</td>
<td>678</td>
</tr>
<tr>
<td>Command-Line Options</td>
<td>678</td>
</tr>
<tr>
<td>Review of vi Operations</td>
<td>681</td>
</tr>
<tr>
<td>Command Mode</td>
<td>681</td>
</tr>
<tr>
<td>Insert Mode</td>
<td>681</td>
</tr>
<tr>
<td>Syntax of vi Commands</td>
<td>681</td>
</tr>
<tr>
<td>Status-Line Commands</td>
<td>683</td>
</tr>
<tr>
<td>vi Commands</td>
<td>683</td>
</tr>
<tr>
<td>Movement Commands</td>
<td>683</td>
</tr>
<tr>
<td>Insert Commands</td>
<td>686</td>
</tr>
<tr>
<td>Edit Commands</td>
<td>687</td>
</tr>
<tr>
<td>Saving and Exiting</td>
<td>688</td>
</tr>
<tr>
<td>Accessing Multiple Files</td>
<td>689</td>
</tr>
<tr>
<td>Window Commands</td>
<td>689</td>
</tr>
<tr>
<td>Interacting with the System</td>
<td>690</td>
</tr>
<tr>
<td>Macros</td>
<td>691</td>
</tr>
<tr>
<td>Miscellaneous Commands</td>
<td>691</td>
</tr>
<tr>
<td>vi Configuration</td>
<td>692</td>
</tr>
<tr>
<td>The :set Command</td>
<td>692</td>
</tr>
<tr>
<td>Options Used by :set</td>
<td>692</td>
</tr>
<tr>
<td>Sample .exrc File</td>
<td>696</td>
</tr>
<tr>
<td>ex Basics</td>
<td>696</td>
</tr>
<tr>
<td>Syntax of ex Commands</td>
<td>696</td>
</tr>
<tr>
<td>Addresses</td>
<td>696</td>
</tr>
<tr>
<td>Address Symbols</td>
<td>697</td>
</tr>
<tr>
<td>Options</td>
<td>697</td>
</tr>
<tr>
<td>Alphabetical Summary of ex Commands</td>
<td>697</td>
</tr>
</tbody>
</table>

Summary of Commands by Key 669
Control-Key Sequences 669
Meta-Key Sequences 671
Summary of Commands by Name 672
<table>
<thead>
<tr>
<th>10. The sed Editor</th>
<th>711</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual Overview</td>
<td>711</td>
</tr>
<tr>
<td>Typical Uses of sed</td>
<td>711</td>
</tr>
<tr>
<td>sed Operation</td>
<td>712</td>
</tr>
<tr>
<td>Command-Line Syntax</td>
<td>712</td>
</tr>
<tr>
<td>Standard Options</td>
<td>712</td>
</tr>
<tr>
<td>GNU sed Options</td>
<td>713</td>
</tr>
<tr>
<td>Syntax of sed Commands</td>
<td>713</td>
</tr>
<tr>
<td>Pattern Addressing</td>
<td>714</td>
</tr>
<tr>
<td>Pattern Addressing Examples</td>
<td>714</td>
</tr>
<tr>
<td>GNU sed Regular Expression Extensions</td>
<td>715</td>
</tr>
<tr>
<td>Group Summary of sed Commands</td>
<td>715</td>
</tr>
<tr>
<td>Basic Editing</td>
<td>716</td>
</tr>
<tr>
<td>Line Information</td>
<td>716</td>
</tr>
<tr>
<td>Input/Output Processing</td>
<td>716</td>
</tr>
<tr>
<td>Yanking and Putting</td>
<td>716</td>
</tr>
<tr>
<td>Branching Commands</td>
<td>717</td>
</tr>
<tr>
<td>Multiline Input Processing</td>
<td>717</td>
</tr>
<tr>
<td>Alphabetical Summary of sed Commands</td>
<td>717</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. The gawk Programming Language</th>
<th>726</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual Overview</td>
<td>726</td>
</tr>
<tr>
<td>Command-Line Syntax</td>
<td>727</td>
</tr>
<tr>
<td>Standard Options</td>
<td>728</td>
</tr>
<tr>
<td>Important gawk Options</td>
<td>728</td>
</tr>
<tr>
<td>Patterns and Procedures</td>
<td>729</td>
</tr>
<tr>
<td>Patterns</td>
<td>729</td>
</tr>
<tr>
<td>Procedures</td>
<td>730</td>
</tr>
<tr>
<td>Simple Pattern-Procedure Examples</td>
<td>730</td>
</tr>
<tr>
<td>Built-in Variables</td>
<td>731</td>
</tr>
<tr>
<td>Operators</td>
<td>732</td>
</tr>
<tr>
<td>Variable and Array Assignment</td>
<td>732</td>
</tr>
<tr>
<td>Escape sequences</td>
<td>733</td>
</tr>
<tr>
<td>Octal and Hexadecimal Constants in gawk</td>
<td>734</td>
</tr>
<tr>
<td>User-Defined Functions</td>
<td>734</td>
</tr>
</tbody>
</table>
gawk-Specific Features 735
Coprocesses and Sockets 735
Profiling 735
File Inclusion 736
Internationalization 736
Implementation Limits 737
Group Listing of awk Functions and Commands 737
Alphabetical Summary of awk Functions and Commands 738
Output Redirections 746
printf Formats 746

 Introduction and Terminology 749
 Usage Models 751
 Source Code Management Systems 752
 Other Source Code Management Systems 753

13. The Subversion Version Control System 755
 Conceptual Overview 755
 Basic Version-Control Operations 755
 Key Features 756
 Special File Properties 757
 Obtaining Subversion 759
 Using Subversion: A Quick Tour 759
 The Subversion Command Line Client: svn 761
 Common svn Options 761
 svn Subcommands 766
 Repository Administration: svnadmin 794
 Common svnadmin Options 794
 Common svnadmin Subcommands 795
 Examining the Repository: svnlook 799
 svnlook Options 799
 svnlook Subcommands 800
 Providing Remote Access: svnserve 803
 svnserve Options 804
14. **The Git Version Control System** .. 805
 Conceptual Overview ... 805
 Git Repository Format ... 806
 Referring to Commits .. 806
 Using Git: A Quick Tour .. 808
 Before You Start ... 808
 Example: The Linux Kernel Repository 809
 Creating and Sharing a New Repository 810
 The Git Command Line Client: git 811
 The git Command .. 811
 Accessing Git’s Online Help .. 812
 git Subcommands .. 812

15. **Virtualization Command-Line Tools** 837
 Conceptual Overview ... 838
 System Requirements ... 838
 Virtualization Technology ... 839
 Network Concepts .. 839
 libvirt Tools and Terminology ... 839
 Basic Virtualization Operations ... 840
 Creating Virtual Systems ... 840
 Managing Virtual Systems .. 841
 Graphic and Console Interfaces 842
 Configuring Networks ... 842
 MAC Addresses .. 844
 Making Changes to Virtual Machines 844
 Creating and Manipulating Disk Image Files 844
 Xen ... 845
 Paravirtualization and Architecture 846
 Xen Networking .. 846
 Xen Commands ... 846
 KVM ... 849
 QEMU .. 849
 Ubuntu Builder Scripts .. 850
This is a book about Linux, a freely available clone of the Unix operating system whose uses range from embedded systems and personal data assistants (PDAs) to corporate servers, web servers, and massive clusters that perform some of the world’s most difficult computations.

Whether you are using Linux for personal software projects, for a small office or home office (the so-called SOHO environment), to provide services to a small group of colleagues, or to administer a site responsible for millions of email and web connections each day, you need quick access to information on a wide range of tools. This book covers all aspects of administering and making effective use of Linux systems. Among its topics are booting, package management, and revision control. But foremost in Linux in a Nutshell are the immeasurable utilities and commands that make Linux one of the most powerful and flexible systems available.

In addition to the tools and features written specifically for it, Linux has inherited many from the Free Software Foundation’s GNU project, the Berkeley Software Distribution (BSD), the X Window System, and contributions from major corporations as well as the companies that created the major Linux distributions. More recent projects extend Linux in exciting ways, some through changes to the kernel and some through libraries and applications that radically change the user’s experience.

This book is a quick reference for the basic commands and features of the Linux operating system. As with other books in O’Reilly’s “In a Nutshell” series, this book is geared toward users who know what they want to do and have some idea how to do it, but can’t always remember the correct command or option. The sixth edition has been examined from start to end and checked against the most common Linux distributions (Debian, Ubuntu, Fedora, and SUSE) so that it reflects the most useful and popular commands.
Organization of This Book

This book is a reference to the most important commands and utilities available on Linux systems.

Chapter 1, Introduction, explains Linux’s strengths and the key aspects of working with Linux, and lays out the scope of this book.

Chapter 2, System and Network Administration Overview, introduces TCP/IP networking and the Linux commands used for system administration and network management.

Chapter 3, Linux Commands, is the core of the book, a reference listing of hundreds of the most important shell commands available on Linux.

Chapter 4, Boot Methods, covers the commands used to control booting on Linux, particularly LILO and GRUB.

Chapter 5, Package Management, explains the apt series of commands that manage updating and installation on Debian, and the RPM system and yum used by Red Hat/Fedora, Novell/SUSE, and several other distributions of Linux.

Chapter 6, The Bash Shell, documents Bash, the default command-line interpreter on Linux.

Chapter 7, Pattern Matching, introduces regular expressions and explains how different tools interpret these powerful tools for searching and text processing.

Chapter 8, The Emacs Editor, provides reference information on Emacs, a text editor and full-featured development environment.

Chapter 9, The vi, ex, and vim Editors, describes the classic vi editor that is the most popular text-manipulation tool on Linux.

Chapter 10, The sed Editor, describes this “stream editor” that is useful for processing files in standardized ways.

Chapter 11, The gawk Programming Language, documents another valuable tool for processing text files, the GNU version of awk that is the default on Linux systems.

Chapter 12, Source Code Management: An Overview, provides the background for understanding Subversion and Git, which are valuable tools for tracking changes to files and projects, and are discussed in the following two chapters.

Chapter 13, The Subversion Version Control System, provides a description of a popular source code management and version-control tool.

Chapter 14, The Git Version Control System, describes a distributed version control system with many advanced features including the ability to access project history even when not connected to a central server.

Chapter 15, Virtualization Command-Line Tools, describes virtualization on Linux, which allows multiple virtual servers to run on a single physical server. Tools covered include Xen, KVM, the libvirt API, and the VMware command-line interface.
Other Resources

This book doesn’t tell you how to install and get up to speed on a Linux system. For that, you’ll probably want O’Reilly’s *Running Linux*, by Matthias Kalle Dahlheimer and Matt Welsh, an in-depth guide suitable for all major distributions. For networking information, check out *Linux Network Administrator’s Guide* by Tony Bauts et al. (O’Reilly). If you’re new to Linux/Unix concepts, O’Reilly’s *Learning the Unix Operating System*, by Jerry Peek et al., provides introductory information. In addition to these and other Linux titles, O’Reilly’s wide range of Unix, X, web-related, and scripting and programming language titles may also be of interest.

Online Documentation

The Internet is full of information about Linux. One of the best resources is the Linux Documentation Project at http://www.tldp.org (or one of the dozens of mirror sites around the world), which has numerous short guides called HOWTOs, along with some full manuals. For online information about the GNU utilities covered in this book, consult http://www.gnu.org (also widely mirrored). The Free Software Foundation, which is in charge of the GNU project, publishes its documentation in a number of hardcopy and online books about various tools.

Each distribution maintains its own website, and contains documentation for the software it provides as well as guides to maintaining your system under that distribution.

Websites

As befits a hot phenomenon, Linux is the central subject of several websites and a frequent topic of discussion on others. Some sites offer original content; others just have links to articles posted elsewhere and threaded discussions (which can be a useful service). Among the sites frequented by Linux users are:

- http://lwn.net - Linux Weekly News, a site with weekly in-depth articles and frequent news updates
- http://www.linuxgazette.net - Linux Gazette, a site published monthly with articles and tips in many languages
- http://www.linuxquestions.org - A very popular source for technical guidance, including a growing wiki (site maintained by user contributions) at http://wiki.linuxquestions.org
- http://linuxsecurity.com - Linux Security, a collection of security-related news
- http://linuxinsider.com - Linux Insider, a news feed
- http://linuxtoday.com - Linux Today, another news feed
- http://slashdot.org - Slashdot, a famous discussion list
Linux Journal and Linux Magazine

Linux Journal and Linux Magazine are monthly magazines for the Linux community, written and published by a number of Linux activists. These magazines are two of the oldest among many monthly print and online magazines devoted to Linux. With both print editions and websites, they offer articles ranging from questions and answers for novices to kernel programming internals. Linux Journal, at http://www.linuxjournal.com, is the older magazine. Linux Magazine is at http://www.linux-mag.com.

Usenet Newsgroups

Most people can receive Usenet news at work or through their ISPs. While this communications technology has lost ground in the past several years to web-based threaded discussions, it is still a valuable source of help and community connections on many topics. The following Linux-related newsgroups are popular:

comp.os.linux.announce
A moderated newsgroup containing announcements of new software, distributions, bug reports, and goings-on in the Linux community. All Linux users should read this group. Submissions may be mailed to cola@stump.algebra.com.

comp.os.linux.development.apps
Guidance for using features of Linux for application development, and for understanding the effects of the operating system on user-space programs.

comp.os.linux.development.system
Discussions about developing the Linux kernel and the system itself.

comp.os.linux.networking
Discussions relating to networking with Linux.

comp.os.linux.x
Help on getting the X graphical window system to work. This list used to see some of the highest traffic of any Linux group back when distributions had more trouble setting up graphics automatically. This is no longer the case, thanks to the increasing sophistication of autodetection and configuration software.

There are also several newsgroups devoted to Linux in languages other than English, as well as newsgroups and online forums for the different distributions.

Online Linux Support

There are many ways of obtaining help online, where volunteers from around the world offer expertise and services to assist users with questions and problems.

The freenode IRC service is an Internet relay chat network devoted to so-called “peer-directed” projects, particularly those involving free software. Some of its channels are designed to provide online Linux support services.
Internet relay chat is a network service that allows you to talk interactively on the Internet to other users. IRC networks support multiple channels where different groups of people type their thoughts. Whatever you type in a channel is seen by all other users of that channel.

There are a number of active channels on the freenode IRC network, where you will find users 24 hours a day, 7 days a week who are willing and able to help you solve any Linux problems you may have, or just chat. You can use this service by installing an IRC client (some distributions install them by default), connecting to server name irc.freenode.org:6667, and joining a channel focusing on Linux, such as:

- `#linpeople`
 - General help and discussion
- `#debian`
 - Help for Debian distribution
- `#gentoo`
 - Help for Gentoo distribution
- `#redhat`
 - Help for Red Hat distribution
- `#suse`
 - Help for SUSE distribution

And so on. Please be sure to read up on the rules of chat etiquette before chatting. In particular, the participants in these groups tend to expect people to read documentation and do some experimentation before asking for help with a problem. Some IRC clients include Xchat, Konqueror, and KVirc. Note that these are all graphical programs and as such are not described in this book.

Linux User Groups

Many Linux User Groups around the world offer direct support to users. Typically, Linux User Groups engage in such activities as installation days, talks and seminars, demonstration nights, and purely social events. Linux User Groups are a great way of meeting other Linux users in your area. There are a number of published lists of Linux User Groups. Linux Online (http://www.linux.org) has a list of Linux user groups organized by country at http://www.linux.org/groups.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs and documentation. You do not need to contact O’Reilly for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples
from O'Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact the publisher at permissions@oreilly.com.

Conventions

This desktop quick reference follows certain typographic conventions:

Bold

Used for commands, programs, and options. All terms shown in bold are typed literally.

Italic

Used to show arguments and variables that should be replaced with user-supplied values. Italic is also used to introduce new terms, indicate filenames and directories, and to highlight comments in examples.

Constant width

Used to show the contents of files or the output from commands.

Constant width bold

Used in examples to show commands or other text that should be typed literally by the user.

Constant width italic

Used in examples to show text that should be replaced with user-supplied values.

\$ Used in some examples as the **bash** shell prompt ($).

\[\] Surround optional elements in a description of syntax. (The brackets themselves should never be typed.) Note that many commands show the argument [files]. If a filename is omitted, standard input (e.g., the keyboard) is assumed. End with an end-of-file character.

EOF Indicates the end-of-file character (normally Ctrl-D).

| Used in syntax descriptions to separate items for which only one alternative may be chosen at a time.
This icon indicates a note, which is an important aside to its nearby text.

This icon indicates a warning.

A final word about syntax. In many cases, the space between an option and its argument can be omitted. In other cases, the spacing (or lack of spacing) must be followed strictly. For example, `-wn` (no intervening space) might be interpreted differently from `-w n`. It’s important to notice the spacing used in option syntax.

How to Contact Us

We have tested and verified all of the information in this book to the best of our ability, but you may find that features have changed (or even that we have made mistakes!). Please let us know about any errors you find, as well as your suggestions for future editions, by writing:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You can access this page at:

http://www.oreilly.com/catalog/9780596154486

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly Network, see the O’Reilly website at:

http://www.oreilly.com

Safari® Books Online

Safari Books Online is an on-demand digital library that lets you easily search over 7,500 technology and creative reference books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online. Read books on your cell phone and mobile devices.
Access new titles before they are available for print, and get exclusive access to manuscripts in development and post feedback for the authors. Copy and paste code samples, organize your favorites, download chapters, bookmark key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital access to this book and others on similar topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments

This sixth edition of *Linux in a Nutshell* is the result of the cooperative efforts of many people. Many thanks to Avery Pennarun for writing the Git chapter. Thanks also to Simon St.Laurent and Andy Oram for their editorial skills. For technical review, thanks go to Greg Goddard, Leam Hall, Forrest Humphrey, Josh More, and Dave Pawson.
It is hard to chart the rise of Linux without risking the appearance of exaggeration and hyperbole. During the past few years alone, Linux has grown from a student/hacker playground to an upstart challenger in the server market to a well-respected system taking its rightful place in educational and corporate networks. Many serious analysts claim that its trajectory has just begun, and that it will eventually become the world’s most widespread operating system.

Linux was first developed by Linus Torvalds at the University of Helsinki in Finland. From his current location in Silicon Valley, Linus continues to centrally coordinate improvements. The Linux kernel continues to develop under the dedicated cultivation of a host of other programmers and hackers all over the world, joined by members of programming teams at major computer companies, all connected through the Internet.

By “kernel,” we mean the core of the operating system itself, not the applications (such as the compiler, shells, and so forth) that run on it. Today, the term “Linux” is often used to mean a software environment with a Linux kernel, along with a large set of applications and other software components. In this larger meaning, many people prefer the term GNU/Linux, which acknowledges the central role played by tools from the Free Software Foundation’s GNU project as complements to the development of the Linux kernel.

Linux systems cannot be technically referred to as a “version of Unix,” as they have not undergone the required tests and licensing. However, Linux offers all the common programming interfaces of standard Unix systems, and, as you can see from this book, all the common Unix utilities have been reimplemented on Linux. It is a powerful, robust, fully usable system.

* Before an operating system can be called “Unix,” it must be branded by The Open Group.
The historical impact of Linux goes beyond its role as a challenge to all versions of Unix as well as Microsoft Windows, particularly on servers. Linux’s success has also inspired countless other free software or open source (defined at http://opensource.org) projects, including Samba, GNOME, and a mind-boggling collection of innovative projects that you can browse at numerous sites like SourceForge (http://sourceforge.net) and Freshmeat (http://freshmeat.net). As both a platform for other developers and a development model, Linux gave a tremendous boost to the GNU project and has also become a popular platform for Java development. In short, Linux is a focal point in the most exciting and productive free-software movement ever seen.

If you haven’t obtained Linux yet, or have it but don’t know exactly how to get started using it, see “Other Resources” on page xvii.

The Excitement of Linux

Linux is, first of all, free software: anyone can download the source from the Internet or buy it on a low-cost CD-ROM. But Linux is becoming well known because it’s more than just free software—it’s unusually good software. You can get more from your hardware with Linux and be assured of fewer crashes; even its security is better than many commercial alternatives.

Linux first appeared in organizations as ad hoc installations by hackers running modest web servers or development systems at universities and research institutions, but it now extends deeply into corporations around the world. People deploying Linux for mission-critical systems tend to talk about its ample practical advantages, such as the ability to deliver a lot of bang for the buck and the ease of deploying other powerful tools on Linux, such as Apache, Samba, and Java environments. They also cite Linux’s ability to grow and sprout new features of interest to large numbers of users. But these advantages can be traced back to the concept of software freedom, which is the root of the broad wave of innovation driving Linux.

As free software, Linux revives the grand creativity and the community of sharing that Unix was long known for. The unprecedented flexibility and openness of Unix—which newcomers usually found confusing and frustrating, but eventually found they couldn’t live without—continually inspired extensions, new tools, and experiments in computer science that sometimes ended up in mainstream commercial computer systems.

Many programmers fondly remember the days when AT&T provided universities with Unix source code at no charge and the University of Berkeley started distributing its version in any manner that allowed people to get it. For these older hackers, Linux brings back the spirit of working together—all the more so because the Internet is now so widespread. And for the many who are too young to remember the first round of open systems or whose prior experience has been constricted by trying to explore and adapt proprietary operating systems, now is the time to discover the wonders of freely distributable source code and infinitely adaptable interfaces.
The economic power behind Linux’s popularity is its support for an enormous range of hardware. People who are accustomed to Microsoft Windows are often amazed at how much faster their hardware appears to work with Linux—it makes efficient use of its resources.

For the first several years after its appearance, users were attracted to Linux for a variety of financial and political reasons, but soon they discovered an unexpected benefit: Linux works better than many commercial systems. With the Samba file and print server, for instance, Linux provides stable Windows-based networking to a large number of end-user PCs. With the Apache web server, it provides more of the useful features web administrators want than competing products do. Embedded versions of the Linux kernel are growing in use because, although they are larger than the most stripped-down operating systems, they deliver a range of powerful features within a remarkably small footprint.

Opinions still differ on how suitable Linux is as a general-purpose desktop system. But the tremendous advances in usability and stability of the desktop software and its applications are undisputed. Soon (if not today), one will find Linux in many offices and other end-user environments. Meanwhile, the strides made by Linux in everyday computing tasks are reflected in the many new commands found in this edition.

Distribution and Support

Because of the vast number and variety of tools beyond the kernel required for a functional computing environment, building a Linux installation from scratch is quite complex. Over the years, therefore, commercial and noncommercial packages called *distributions* have emerged. The first distribution consisted of approximately 50 diskettes, at least one of which would usually turn out to be bad and have to be replaced. Since then, CD and DVD drives, as well as high-speed Internet connections, have become widespread and sharing Linux has become much easier.

After getting Linux, the average user is concerned next with support. While online newsgroups and forums offer quick responses and meet the needs of many intrepid users, you can also buy support from the vendors of the major distributions and a number of independent experts. Linux is supported at least as well as commercial software. When you buy a distribution from a vendor, you typically are entitled to a period of free support as well.

Intel’s x86 family and other compatible chips are still by far the most common hardware running Linux, but Linux is also now commercially available on a number of other hardware systems, notably the PowerPC, the Intel Itanium processor, and Sun Microsystems’ SPARC.

Commands on Linux

Linux commands are not the same as standard Unix ones. Most of the commands are provided by the GNU project run by the Free Software Foundation (FSF). GNU means “GNU’s Not Unix”—the first word of the phrase is expanded with infinite recursion.
Benefiting from years of experience with standard Unix utilities and advances in computer science, programmers on the GNU project have managed to create versions of standard tools that have more features, run faster and more efficiently, and lack the bugs and inconsistencies that persist in the original standard versions.

While GNU provided the programming utilities and standard commands such as `grep`, many of the system and network administration tools on Linux came from the Berkeley Software Distribution (BSD). In addition, some people wrote tools that specifically allow Linux to deal with special issues such as filesystems. This book documents the standard Unix commands that are commonly available on most Linux distributions.

The third type of software most commonly run on Linux is the X Window System, ported by the XFree86 and X.org projects to standard Intel chips. This book does not discuss the X Window System; see the O’Reilly book *Running Linux*, by Matthias Kalle Dalheimer and Matt Welsh, for an introduction to X.

What This Book Offers

Originally based on the classic O’Reilly quick reference, *Unix in a Nutshell*, this book has been expanded to include much information that is specific to Linux. These enhancements include chapters on:

- Package managers (which make it easy to install, update, and remove related software files)
- Boot methods
- The Subversion and Git version control systems
- Virtualization

The book also contains dozens of Linux-specific commands, along with tried-and-true Unix commands that have been supporting users for decades (though they continue to sprout new options).

This book does not cover the graphical tools contained in most distributions of Linux. Many of these, to be sure, are quite useful and can form the basis of everyday work. Examples of these tools include OpenOffice (Sun Microsystems’ free, open source version of the StarOffice suite), Evolution (a mail, calendar, and office productivity tool from Novell), Firefox and Thunderbird (a browser and mail program from Mozilla), and the GIMP (a graphic image-manipulation program and provider of a powerful library used by the GNOME project). But they are not Linux-specific, and their graphical models do not fit well into the format of this book.

While you probably log into one of the graphical desktop environments such as GNOME or KDE and do much of your work with the graphical applications, the core of Linux use is the text manipulation and administration done from the command line, within scripts, or using text editors such as `vi` and Emacs. Linux remains largely a command-driven system, and this book continues to focus on this level of usage; for many tasks, the command line is the most efficient and flexible tool. In your day-to-day work, you’ll likely find yourself moving back and forth between graphical programs and the commands listed in this book.
Every distribution of Linux is slightly different. There are variations in directory structure, choice of standard utilities, and software versions, but you’ll find that the commands we document are the ones you use most of the time, and that they work the same on all distributions. Note, though, that some commands are only available with certain devices or configurations, or have alternatives that may be preferred in your environment. Basic commands, programming utilities, system administration, and network administration are all covered. However, some areas were so big that we had to leave them out. The many applications that depend on the X Window System didn’t make the cut. Nor did the many useful programming languages—such as Java, Perl, and Python—with which users can vastly expand the capabilities of their systems. XML isn’t covered here, either. These subjects would stretch the book out of its binding.

Linux in a Nutshell doesn’t teach you Linux—it is, after all, a quick reference—but novices as well as highly experienced users will find it of great value. When you have some idea of what command you want but aren’t sure just how it works or what combinations of options give you the exact output required, this book is the place to turn. It can also be an eye-opener, making you aware of options that you never knew about before.

Once you’ve installed Linux, the first thing you need to do is get to know the common utilities run from the shell prompt. If you know absolutely nothing about Unix, we recommend you read a basic guide (introductory chapters in the O’Reilly books Learning Red Hat Enterprise Linux and Fedora, by Bill McCarty, and Running Linux, mentioned previously, can get you started). This chapter and Chapter 2 offer a context for understanding different kinds of commands (including commands for programming, system administration, and network administration). Chapter 3 is the central focus of the book, containing about one half its bulk.

The shorter chapters immediately following Chapter 3 help you get your system set up. Since most users do not want to completely abandon other operating systems (whether a Microsoft Windows system or some Unix flavor), many users opt for a dual-boot system, with Linux residing on the same computer as other operating systems. Users can then boot to the system they need for a particular job. Chapter 4 describes the commonly used booting options on Intel systems, including LILO (Linux Loader) and GRUB (the GRand Unified Bootloader). Chapter 5 covers the Red Hat package manager (rpm)—which is supported by many distributions, including Red Hat Enterprise Linux, Fedora, SUSE, and Mandriva—and the Debian package-management system, which is used by such distributions as Ubuntu, Knoppix, and Gnoppix. It also describes some of the frontend package-management tools that simplify package management and automatically resolve dependencies. These tools include yum for rpm-based systems and aptitude and synaptic for Debian-based systems. Package managers are useful for installing and updating software; they make sure you have all the files you need in the proper versions.

All commands are interpreted by the shell. The shell is simply a program that accepts commands from the user and executes them. Different shells sometimes use slightly different syntax to mean the same thing. Under Linux, the standard shell is bash. Others, such as the ksh Korn shell, the tcsh enhanced C shell, and
zsh, are available. Chapter 6 provides thorough coverage of bash; you may decide to read this chapter after you’ve used Linux for a while, because it mostly covers powerful, advanced features that you’ll want when you’re a steady user. Chapter 7 covers pattern matching, which is used by the Linux text-editing utilities for searching based on a pattern rather than an explicit string.

To get any real work done, you’ll have to learn some big, comprehensive utilities, notably an editor and some scripting tools. Two major editors are used on Linux: vi and Emacs. Emacs is covered in Chapter 8, and vi is discussed in Chapter 9. Chapter 9 also describes vim, an extended version of vi, commonly found on Linux systems. Chapters 10 and 11 cover two classic Unix tools for manipulating text files on a line-by-line basis: sed and gawk (the GNU version of the traditional awk). O’Reilly offers separate books about these topics that you may find valuable, as they are not known for being intuitive upon first use. (Emacs does have an excellent built-in tutorial, though; to invoke it, press Ctrl-h followed by t for “tutorial.”)

The Subversion and Git version control systems manage files so you can retrieve old versions and maintain different versions simultaneously. Originally used by programmers, who have complicated requirements for building and maintaining applications, these tools have turned out to be valuable for anyone who maintains files of any type, particularly when coordinating a team of people. Version control systems have become a distribution channel for thousands of free software projects. Chapter 12 offers a brief overview of version control, including basic terms and concepts. Chapter 13 presents Subversion commands, and Chapter 14 presents Git commands.

Chapter 15 covers virtualization and examines several virtualization systems such as Xen and VMWare and their command-line tools.

Our goal in producing this book is to provide convenience, and that means keeping the book (relatively) small. It certainly doesn’t have everything the manual pages have, but you’ll find that it has what you need 95 percent of the time. See the man command in Chapter 3 for information on reading the manpages. They can also be read with the info command, the GNU hypertext documentation reader, also documented in Chapter 3.

Sources and Licenses

Some distributions contain the source code for Linux; it is also easily available for download at http://www.kernel.org and elsewhere. Source code is similarly available for all the utilities on Linux (unless your vendor offers a commercial application or library as a special enhancement). You may never bother looking at the source code, but it’s key to Linux’s strength. Under the Linux license, the source code has to be provided or made available by the vendor, and it permits those who are competent at such things to fix bugs, provide advice about the system’s functioning, and submit improvements that benefit everyone. The license is the GNU project’s well-known General Public License, also known as the GPL or “copyleft,” invented and popularized by the Free Software Foundation (FSF).
The FSF, founded by Richard Stallman, is a phenomenon that many people might believe to be impossible if it did not exist. (The same goes for Linux, in fact—20 years ago, who would have imagined a robust operating system developed by collaborators over the Internet and made freely redistributable?) One of the most popular editors on Unix, GNU Emacs, comes from the FSF. So do gcc and g++ (C and C++ compilers), which for a while set the standard in the industry for optimization and the creation of fast code. One of the most ambitious projects within GNU is the GNOME desktop, which encompasses several useful general-purpose libraries and applications that use these libraries to provide consistent behavior and interoperability.

Dedicated to the sharing of software, the FSF provides all its code and documentation on the Internet and allows anyone with a whim for enhancements to alter the source code. One of its projects is the Debian distribution of Linux.

To prevent hoarding, the FSF requires that the source code for all enhancements be distributed under the same GPL that it uses. This encourages individuals or companies to make improvements and share them with others. The only thing someone cannot do is add enhancements, withhold the source code, and then sell the product as proprietary software. Doing so would be taking advantage of the FSF and users of the GPL. You can find the text of the GPL in any software covered by that license, or online at http://www.gnu.org/copyleft/gpl.html.

As we said earlier, many Linux tools come from BSD instead of GNU. BSD is also free software. The license is significantly different, but that probably doesn’t concern you as a user. The effect of the difference is that companies are permitted to incorporate the software into their proprietary products, a practice that is severely limited by the GNU license.

Beginner’s Guide

If you’re just beginning to work on a Linux system, the abundance of commands might prove daunting. To help orient you, the following lists present a sampling of commands on various topics.

Communication

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>dig</td>
<td>Query DNS server.</td>
</tr>
<tr>
<td>ftp</td>
<td>File Transfer Protocol.</td>
</tr>
<tr>
<td>login</td>
<td>Sign on.</td>
</tr>
<tr>
<td>rsync</td>
<td>Transfer files, particularly across a network.</td>
</tr>
<tr>
<td>scp</td>
<td>Securely copy files to remote system.</td>
</tr>
<tr>
<td>sftp</td>
<td>Secure file transfer program.</td>
</tr>
<tr>
<td>ssh</td>
<td>Run shell or single command on remote system (secure).</td>
</tr>
</tbody>
</table>
Comparisons

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmp</td>
<td>Compare two files, byte by byte.</td>
</tr>
<tr>
<td>comm</td>
<td>Compare items in two sorted files.</td>
</tr>
<tr>
<td>diff</td>
<td>Compare two files, line by line.</td>
</tr>
<tr>
<td>diff3</td>
<td>Compare three files.</td>
</tr>
<tr>
<td>sdiff</td>
<td>Compare and interactively merge two files.</td>
</tr>
</tbody>
</table>

File Management

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>Concatenate files or display them.</td>
</tr>
<tr>
<td>chattr</td>
<td>Change attributes on an ext2 file.</td>
</tr>
<tr>
<td>chgrp</td>
<td>Change group of files.</td>
</tr>
<tr>
<td>chmod</td>
<td>Change access modes on files.</td>
</tr>
<tr>
<td>chown</td>
<td>Change ownership of files.</td>
</tr>
<tr>
<td>chsh</td>
<td>Change login shell.</td>
</tr>
<tr>
<td>cp</td>
<td>Copy files.</td>
</tr>
<tr>
<td>csplit</td>
<td>Split a file into pieces with a specific size or at specific locations.</td>
</tr>
<tr>
<td>dd</td>
<td>Copy files in raw disk form.</td>
</tr>
<tr>
<td>file</td>
<td>Determine a file’s type.</td>
</tr>
<tr>
<td>head</td>
<td>Show the first few lines of a file.</td>
</tr>
<tr>
<td>hexdump</td>
<td>Display files in hexadecimal format.</td>
</tr>
<tr>
<td>less</td>
<td>Display files by screenful, forward and backward.</td>
</tr>
<tr>
<td>ln</td>
<td>Create filename aliases.</td>
</tr>
<tr>
<td>ls</td>
<td>List files and directories.</td>
</tr>
<tr>
<td>md5sum</td>
<td>Compute MD5 checksum.</td>
</tr>
<tr>
<td>merge</td>
<td>Merge changes from different files.</td>
</tr>
<tr>
<td>mkdir</td>
<td>Create a directory.</td>
</tr>
<tr>
<td>more</td>
<td>Display files by screenful, forward only.</td>
</tr>
<tr>
<td>mv</td>
<td>Move or rename files or directories.</td>
</tr>
<tr>
<td>newgrp</td>
<td>Change current group.</td>
</tr>
<tr>
<td>od</td>
<td>Display files in octal format.</td>
</tr>
<tr>
<td>pwd</td>
<td>Print working directory.</td>
</tr>
<tr>
<td>rm</td>
<td>Remove files.</td>
</tr>
<tr>
<td>rmdir</td>
<td>Remove directories.</td>
</tr>
<tr>
<td>sha1sum</td>
<td>Compute SHA1 checksum</td>
</tr>
<tr>
<td>shred</td>
<td>Securely delete files.</td>
</tr>
<tr>
<td>split</td>
<td>Split files evenly.</td>
</tr>
<tr>
<td>tac</td>
<td>Print lines of a file in reverse order.</td>
</tr>
</tbody>
</table>
Command Line Tools

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>tail</td>
<td>Show the last few lines of a file.</td>
</tr>
<tr>
<td>tailf</td>
<td>Follow the growth of a logfile.</td>
</tr>
<tr>
<td>touch</td>
<td>Update file timestamps and create the file if it doesn’t exist.</td>
</tr>
<tr>
<td>wc</td>
<td>Count lines, words, and characters.</td>
</tr>
</tbody>
</table>

Media

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdparanoia</td>
<td>Rip a CD while providing extra features.</td>
</tr>
<tr>
<td>cdrdao</td>
<td>Copy a CD.</td>
</tr>
<tr>
<td>eject</td>
<td>Eject a removable disk or tape.</td>
</tr>
<tr>
<td>genisoimage</td>
<td>Generate a binary image from a directory tree.</td>
</tr>
<tr>
<td>icedax</td>
<td>Rip a CD or DVD to create a computer-friendly WAV format.</td>
</tr>
<tr>
<td>readom</td>
<td>Read or write a data CD or DVD.</td>
</tr>
<tr>
<td>volname</td>
<td>Provide the volume name of a CD-ROM.</td>
</tr>
<tr>
<td>wodim</td>
<td>Record to a CD or DVD.</td>
</tr>
</tbody>
</table>

Printing

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>lpq</td>
<td>Show status of print jobs.</td>
</tr>
<tr>
<td>lpr</td>
<td>Send to the printer.</td>
</tr>
<tr>
<td>lprm</td>
<td>Remove print job.</td>
</tr>
<tr>
<td>lpstat</td>
<td>Get printer status.</td>
</tr>
<tr>
<td>pr</td>
<td>Format and paginate for printing.</td>
</tr>
</tbody>
</table>

Programming

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ar</td>
<td>Create and update library files.</td>
</tr>
<tr>
<td>as</td>
<td>Generate object file.</td>
</tr>
<tr>
<td>bison</td>
<td>Generate parsing tables.</td>
</tr>
<tr>
<td>cpp</td>
<td>Preprocess C code.</td>
</tr>
<tr>
<td>flex</td>
<td>Lexical analyzer.</td>
</tr>
<tr>
<td>g++</td>
<td>GNU C++ compiler.</td>
</tr>
<tr>
<td>gcc</td>
<td>GNU C compiler.</td>
</tr>
<tr>
<td>ld</td>
<td>Link editor.</td>
</tr>
<tr>
<td>ldd</td>
<td>Print shared library dependencies.</td>
</tr>
<tr>
<td>m4</td>
<td>Macro processor.</td>
</tr>
<tr>
<td>Command</td>
<td>Action</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>make</td>
<td>Create programs.</td>
</tr>
<tr>
<td>ranlib</td>
<td>Regenerate archive symbol table.</td>
</tr>
<tr>
<td>rpcgen</td>
<td>Translate RPC to C code.</td>
</tr>
<tr>
<td>yacc</td>
<td>Generate parsing tables.</td>
</tr>
</tbody>
</table>

Program Maintenance

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctags</td>
<td>Generate symbol list for use with the vi editor.</td>
</tr>
<tr>
<td>etags</td>
<td>Generate symbol list for use with the Emacs editor.</td>
</tr>
<tr>
<td>gdb</td>
<td>GNU debugger.</td>
</tr>
<tr>
<td>git</td>
<td>Scalable, distributed revision control system.</td>
</tr>
<tr>
<td>gprof</td>
<td>Display object file’s profile data.</td>
</tr>
<tr>
<td>make</td>
<td>Maintain, update, and regenerate related programs and files.</td>
</tr>
<tr>
<td>nm</td>
<td>Display object file’s symbol table.</td>
</tr>
<tr>
<td>objcopy</td>
<td>Copy and translate object files.</td>
</tr>
<tr>
<td>objdump</td>
<td>Display information about object files.</td>
</tr>
<tr>
<td>patch</td>
<td>Apply patches to source code.</td>
</tr>
<tr>
<td>pmap</td>
<td>Print the memory map of a process.</td>
</tr>
<tr>
<td>size</td>
<td>Print the size of an object file in bytes.</td>
</tr>
<tr>
<td>strace</td>
<td>Trace system calls and signals.</td>
</tr>
<tr>
<td>strip</td>
<td>Strip symbols from an object file.</td>
</tr>
<tr>
<td>svn</td>
<td>Subversion revision control system.</td>
</tr>
</tbody>
</table>

Searching

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>apropos</td>
<td>Search manpages for topic.</td>
</tr>
<tr>
<td>egrep</td>
<td>Extended version of grep.</td>
</tr>
<tr>
<td>fgrep</td>
<td>Search files for literal words.</td>
</tr>
<tr>
<td>find</td>
<td>Search the system for files by name and take a range of possible actions.</td>
</tr>
<tr>
<td>grep</td>
<td>Search files for text patterns.</td>
</tr>
<tr>
<td>locate</td>
<td>Search a preexisting database to show where files are on the system.</td>
</tr>
<tr>
<td>look</td>
<td>Search file for string at the beginning of lines.</td>
</tr>
<tr>
<td>strings</td>
<td>Search binary files for text patterns.</td>
</tr>
<tr>
<td>updatedb</td>
<td>Update the locate database.</td>
</tr>
<tr>
<td>whereis</td>
<td>Find command.</td>
</tr>
<tr>
<td>which</td>
<td>Print pathname of a command.</td>
</tr>
</tbody>
</table>
Shell Programming

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>basename</td>
<td>Remove leading directory components from a path.</td>
</tr>
<tr>
<td>echo</td>
<td>Repeat command-line arguments on the output.</td>
</tr>
<tr>
<td>envsubst</td>
<td>Substitute the value of environment variables into strings.</td>
</tr>
<tr>
<td>expr</td>
<td>Perform arithmetic and comparisons.</td>
</tr>
<tr>
<td>mkttemp</td>
<td>Generate temporary filename and create the file.</td>
</tr>
<tr>
<td>printf</td>
<td>Format and print command-line arguments.</td>
</tr>
<tr>
<td>sleep</td>
<td>Pause during processing.</td>
</tr>
<tr>
<td>test</td>
<td>Test a condition.</td>
</tr>
</tbody>
</table>

Storage

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>bunzip2</td>
<td>Expand compressed .bz2 files.</td>
</tr>
<tr>
<td>bzip2</td>
<td>Compress files to free up space.</td>
</tr>
<tr>
<td>cpio</td>
<td>Create and unpack file archives.</td>
</tr>
<tr>
<td>gunzip</td>
<td>Expand compressed (.gz and .Z) files.</td>
</tr>
<tr>
<td>gzip</td>
<td>Compress files to free up space.</td>
</tr>
<tr>
<td>tar</td>
<td>Copy files to or restore files from an archive medium.</td>
</tr>
<tr>
<td>zcat</td>
<td>Display contents of compressed files.</td>
</tr>
<tr>
<td>zforce</td>
<td>Force gzip files to have .gz extension.</td>
</tr>
</tbody>
</table>

System Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>at</td>
<td>Execute commands later.</td>
</tr>
<tr>
<td>atq</td>
<td>Show jobs queued by at.</td>
</tr>
<tr>
<td>atrm</td>
<td>Remove job queued by at.</td>
</tr>
<tr>
<td>crontab</td>
<td>Automate commands.</td>
</tr>
<tr>
<td>date</td>
<td>Display or set date.</td>
</tr>
<tr>
<td>df</td>
<td>Show free disk space.</td>
</tr>
<tr>
<td>du</td>
<td>Show disk usage.</td>
</tr>
<tr>
<td>env</td>
<td>Show environment variables.</td>
</tr>
<tr>
<td>finger</td>
<td>Display information about users.</td>
</tr>
<tr>
<td>free</td>
<td>Show free and used memory.</td>
</tr>
<tr>
<td>hostname</td>
<td>Display the system’s hostname.</td>
</tr>
<tr>
<td>kill</td>
<td>Terminate a running command.</td>
</tr>
<tr>
<td>printenv</td>
<td>Show environment variables.</td>
</tr>
<tr>
<td>Command</td>
<td>Action</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>ps</td>
<td>Show processes.</td>
</tr>
<tr>
<td>quota</td>
<td>Display disk usage and limits.</td>
</tr>
<tr>
<td>stat</td>
<td>Display file or filesystem status.</td>
</tr>
<tr>
<td>stty</td>
<td>Set or display terminal settings.</td>
</tr>
<tr>
<td>top</td>
<td>Display tasks currently running.</td>
</tr>
<tr>
<td>tty</td>
<td>Display filename of the terminal connected to standard input.</td>
</tr>
<tr>
<td>uname</td>
<td>Display system information.</td>
</tr>
<tr>
<td>uptime</td>
<td>Show how long the system has been running.</td>
</tr>
<tr>
<td>vmstat</td>
<td>Show virtual memory statistics.</td>
</tr>
<tr>
<td>who</td>
<td>Show who is logged in.</td>
</tr>
</tbody>
</table>

Text Processing

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>col</td>
<td>Process control characters.</td>
</tr>
<tr>
<td>cut</td>
<td>Select columns for display.</td>
</tr>
<tr>
<td>emacs</td>
<td>Work environment with powerful text-editing capabilities.</td>
</tr>
<tr>
<td>ex</td>
<td>Line editor underlying vi.</td>
</tr>
<tr>
<td>expand</td>
<td>Convert tabs to spaces.</td>
</tr>
<tr>
<td>fmt</td>
<td>Produce roughly uniform line lengths.</td>
</tr>
<tr>
<td>fold</td>
<td>Break lines.</td>
</tr>
<tr>
<td>gawk</td>
<td>Process lines or records one by one.</td>
</tr>
<tr>
<td>groff</td>
<td>Format troff input.</td>
</tr>
<tr>
<td>gs</td>
<td>Display PostScript or PDF file.</td>
</tr>
<tr>
<td>ispell</td>
<td>Interactively check spelling.</td>
</tr>
<tr>
<td>join</td>
<td>Merge different columns into a database.</td>
</tr>
<tr>
<td>paste</td>
<td>Merge columns or switch order.</td>
</tr>
<tr>
<td>rev</td>
<td>Print lines in reverse.</td>
</tr>
<tr>
<td>sed</td>
<td>Noninteractive text editor.</td>
</tr>
<tr>
<td>sort</td>
<td>Sort or merge files.</td>
</tr>
<tr>
<td>tr</td>
<td>Translate (redefine) characters.</td>
</tr>
<tr>
<td>unexpand</td>
<td>Convert spaces to tabs.</td>
</tr>
<tr>
<td>uniq</td>
<td>Find repeated or unique lines in a file.</td>
</tr>
<tr>
<td>vi</td>
<td>Visual text editor.</td>
</tr>
<tr>
<td>vim</td>
<td>Enhanced version of vi.</td>
</tr>
</tbody>
</table>
Miscellaneous

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>bc</td>
<td>Arbitrary precision calculator.</td>
</tr>
<tr>
<td>cal</td>
<td>Display calendar.</td>
</tr>
<tr>
<td>clear</td>
<td>Clear the screen.</td>
</tr>
<tr>
<td>info</td>
<td>Get command information from the GNU hypertext reader.</td>
</tr>
<tr>
<td>man</td>
<td>Get information on a command.</td>
</tr>
<tr>
<td>nice</td>
<td>Reduce a job’s priority.</td>
</tr>
<tr>
<td>nohup</td>
<td>Launch a command that will continue to run after logging out.</td>
</tr>
<tr>
<td>openvt</td>
<td>Run a program on the next available virtual terminal.</td>
</tr>
<tr>
<td>passwd</td>
<td>Set your login password.</td>
</tr>
<tr>
<td>script</td>
<td>Produce a transcript of your login session.</td>
</tr>
<tr>
<td>su</td>
<td>Become a different user, often the superuser.</td>
</tr>
<tr>
<td>sudo</td>
<td>Execute an authorized command as root or another user.</td>
</tr>
<tr>
<td>tee</td>
<td>Simultaneously store output in file and send to screen.</td>
</tr>
<tr>
<td>time</td>
<td>Time the execution of a command.</td>
</tr>
<tr>
<td>wall</td>
<td>Send a message to all terminals.</td>
</tr>
<tr>
<td>whoami</td>
<td>Print the current user id.</td>
</tr>
<tr>
<td>xargs</td>
<td>Process many arguments in manageable portions.</td>
</tr>
</tbody>
</table>
Common Commands

Following are lists of commonly used system administration commands.

Clocks

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>hwclock</td>
<td>Manage hardware clock.</td>
</tr>
<tr>
<td>rdate</td>
<td>Get time from network time server.</td>
</tr>
</tbody>
</table>

Daemons

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>apmd</td>
<td>Advanced Power Management daemon.</td>
</tr>
<tr>
<td>atd</td>
<td>Queue commands for later execution.</td>
</tr>
<tr>
<td>bootpd</td>
<td>Internet Boot Protocol daemon.</td>
</tr>
<tr>
<td>cupsd</td>
<td>Printer daemon.</td>
</tr>
<tr>
<td>ftpd</td>
<td>File Transfer Protocol daemon.</td>
</tr>
<tr>
<td>imapd</td>
<td>IMAP mailbox server daemon.</td>
</tr>
<tr>
<td>klogd</td>
<td>Manage syslogd.</td>
</tr>
<tr>
<td>mountd</td>
<td>NFS mount request server.</td>
</tr>
<tr>
<td>named</td>
<td>Internet domain nameserver.</td>
</tr>
<tr>
<td>nfsd</td>
<td>NFS daemon.</td>
</tr>
<tr>
<td>pppd</td>
<td>Maintain Point-to-Point Protocol (PPP) network connections.</td>
</tr>
<tr>
<td>Command</td>
<td>Action</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>rdistd</td>
<td>Remote file distribution server.</td>
</tr>
<tr>
<td>rexecd</td>
<td>Remote execution server.</td>
</tr>
<tr>
<td>rlogind</td>
<td>rlogin server.</td>
</tr>
<tr>
<td>routed</td>
<td>Routing daemon.</td>
</tr>
<tr>
<td>rpc.rusersd</td>
<td>Remote users server.</td>
</tr>
<tr>
<td>rpc.statd</td>
<td>NFS status daemon.</td>
</tr>
<tr>
<td>rshd</td>
<td>Remote shell server.</td>
</tr>
<tr>
<td>rsyslogd</td>
<td>Alternate system logging daemon.</td>
</tr>
<tr>
<td>rwhod</td>
<td>Remote who server.</td>
</tr>
<tr>
<td>sshd</td>
<td>Secure shell daemon.</td>
</tr>
<tr>
<td>syslogd</td>
<td>System logging daemon.</td>
</tr>
<tr>
<td>xinetd</td>
<td>Extended Internet services daemon.</td>
</tr>
<tr>
<td>ybind</td>
<td>NIS binder process.</td>
</tr>
<tr>
<td>yppasswdd</td>
<td>NIS password modification server.</td>
</tr>
<tr>
<td>yperv</td>
<td>NIS server process.</td>
</tr>
</tbody>
</table>

Hardware

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>agetty</td>
<td>Start user session at terminal.</td>
</tr>
<tr>
<td>arp</td>
<td>Manage the ARP cache.</td>
</tr>
<tr>
<td>fdisk</td>
<td>Maintain disk partitions.</td>
</tr>
<tr>
<td>hdparm</td>
<td>Get and set hard drive parameters.</td>
</tr>
<tr>
<td>kbdrate</td>
<td>Manage the keyboard's repeat rate.</td>
</tr>
<tr>
<td>ramsize</td>
<td>Print information about RAM disk.</td>
</tr>
<tr>
<td>setkeycodes</td>
<td>Change keyboard scancode-to-keycode mappings.</td>
</tr>
<tr>
<td>slattach</td>
<td>Attach serial lines as network interfaces.</td>
</tr>
</tbody>
</table>

Host Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>arch</td>
<td>Print machine architecture.</td>
</tr>
<tr>
<td>dig</td>
<td>Query Internet domain nameservers.</td>
</tr>
<tr>
<td>domainname</td>
<td>Print NIS domain name.</td>
</tr>
<tr>
<td>free</td>
<td>Print memory usage.</td>
</tr>
<tr>
<td>host</td>
<td>Print host and zone information.</td>
</tr>
<tr>
<td>hostname</td>
<td>Print or set hostname.</td>
</tr>
<tr>
<td>uname</td>
<td>Print host information.</td>
</tr>
</tbody>
</table>
Installation

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpio</td>
<td>Copy files to and from archives.</td>
</tr>
<tr>
<td>install</td>
<td>Copy files into locations providing user access and set permissions.</td>
</tr>
<tr>
<td>rdist</td>
<td>Distribute files to remote systems.</td>
</tr>
<tr>
<td>tar</td>
<td>Copy files to or restore files from an archive medium.</td>
</tr>
</tbody>
</table>

Mail

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>formail</td>
<td>Convert input to mail format.</td>
</tr>
<tr>
<td>mailq</td>
<td>Print a summary of the mail queue.</td>
</tr>
<tr>
<td>makeunixmap</td>
<td>Update sendmail's database maps.</td>
</tr>
<tr>
<td>newaliases</td>
<td>Rebuild sendmail's alias database.</td>
</tr>
<tr>
<td>rmail</td>
<td>Handle uucp mail.</td>
</tr>
<tr>
<td>sendmail</td>
<td>Send and receive mail.</td>
</tr>
</tbody>
</table>

Managing Filesystems

To Unix systems, a filesystem is a device (such as a partition) that is formatted to store files. Filesystems can be found on hard drives, floppies, CD-ROMs, USB drives, or other storage media that permit random access.

The exact format and means by which the files are stored are not important; the system provides a common interface for all filesystem types that it recognizes. By default, almost all modern distributions of Linux use a journaling filesystem. When the kernel interacts with a journaling filesystem, writes to disk are first written to a log or journal before they are written to disk. This slows down writes to the filesystem, but reduces the risk of data corruption in the event of a power outage. It also speeds up reboots after a system unexpectedly loses power.

Most current Linux distributions default to the Third Extended (ext3) Filesystem. The ext3 filesystem was developed primarily for Linux and supports 256-character filenames and 4-terabyte maximum filesystem size. This ext3 filesystem is essentially a Second Extended (ext2) filesystem with an added journal. Since it is in all other ways identical to the ext2 system, it is both forward- and backward-compatible with ext2—all ext2 utilities work with ext3 filesystems.

Although not covered in this edition of Linux in a Nutshell, Linux supports other open source journaling filesystems including: IBM’s Journalled Filesystem (JFS), SGI’s Extensible Filesystem (XFS), and the Naming System Venture’s Reiser Filesystem (ReiserFS). In some situations these can be faster than ext3. Some Linux distributions use these alternative filesystems by default. Other common filesystems include the FAT and VFAT filesystems, which allow files on partitions and floppies of Microsoft Windows systems to be accessed under Linux, and the ISO 9660 filesystem used by CD-ROMs.
<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>debugfs</td>
<td>Debug ext2 filesystem.</td>
</tr>
<tr>
<td>dosfsck</td>
<td>Check and repair a DOS or VFAT filesystem.</td>
</tr>
<tr>
<td>dump</td>
<td>Back up data from a filesystem.</td>
</tr>
<tr>
<td>dume2fs</td>
<td>Print information about superblock and blocks group.</td>
</tr>
<tr>
<td>e2fsck</td>
<td>Check and repair an ext2 filesystem.</td>
</tr>
<tr>
<td>e2image</td>
<td>Store disaster-recovery data for an ext2 filesystem.</td>
</tr>
<tr>
<td>e2label</td>
<td>Label an ext2 filesystem.</td>
</tr>
<tr>
<td>edquota</td>
<td>Edit filesystem quotas with Vim.</td>
</tr>
<tr>
<td>fdformat</td>
<td>Format floppy disk.</td>
</tr>
<tr>
<td>fsck</td>
<td>Another name for e2fsck.</td>
</tr>
<tr>
<td>fsck.ext2</td>
<td>Check and repair an ext2 filesystem.</td>
</tr>
<tr>
<td>mke2fs</td>
<td>Make a new ext2 filesystem.</td>
</tr>
<tr>
<td>mkfs</td>
<td>Make a new filesystem.</td>
</tr>
<tr>
<td>mkfs.ext2</td>
<td>Another name for mke2fs.</td>
</tr>
<tr>
<td>mkfs.ext3</td>
<td>Yet another name for mke2fs.</td>
</tr>
<tr>
<td>mklost+found</td>
<td>Make lost+found directory.</td>
</tr>
<tr>
<td>mkraid</td>
<td>Set up a RAID device.</td>
</tr>
<tr>
<td>mkswap</td>
<td>Designate swapspace.</td>
</tr>
<tr>
<td>mount</td>
<td>Mount a filesystem.</td>
</tr>
<tr>
<td>quotacheck</td>
<td>Audit stored quota information.</td>
</tr>
<tr>
<td>quotaon</td>
<td>Enforce quotas.</td>
</tr>
<tr>
<td>quotoff</td>
<td>Do not enforce quotas.</td>
</tr>
<tr>
<td>quotastats</td>
<td>Display kernel quota statistics.</td>
</tr>
<tr>
<td>rdev</td>
<td>Describe or change values for root filesystem.</td>
</tr>
<tr>
<td>repquota</td>
<td>Display quota summary.</td>
</tr>
<tr>
<td>resize2fs</td>
<td>Enlarge or shrink an ext2 filesystem.</td>
</tr>
<tr>
<td>restore</td>
<td>Restore data from a dump to a filesystem.</td>
</tr>
<tr>
<td>rootflags</td>
<td>List or set flags to use in mounting root filesystem.</td>
</tr>
<tr>
<td>setquota</td>
<td>Edit filesystem quotas.</td>
</tr>
<tr>
<td>showmount</td>
<td>List exported directories on a remote host.</td>
</tr>
<tr>
<td>swapoff</td>
<td>Cease using device for swapping.</td>
</tr>
<tr>
<td>swapon</td>
<td>Begin using device for swapping.</td>
</tr>
<tr>
<td>sync</td>
<td>Write filesystem buffers to disk.</td>
</tr>
<tr>
<td>tune2fs</td>
<td>Manage an ext2 filesystem.</td>
</tr>
<tr>
<td>umount</td>
<td>Unmount a filesystem.</td>
</tr>
<tr>
<td>warnquota</td>
<td>Mail disk usage warnings to users.</td>
</tr>
</tbody>
</table>

Managing the Kernel

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>depmod</td>
<td>Create module dependency listing.</td>
</tr>
<tr>
<td>lsmod</td>
<td>List kernel modules.</td>
</tr>
</tbody>
</table>
Networking

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>modinfo</td>
<td>Print kernel module information.</td>
</tr>
<tr>
<td>modprobe</td>
<td>Load and remove a module and its dependent modules.</td>
</tr>
<tr>
<td>sysctl</td>
<td>Examine or modify kernel parameters at runtime.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifconfig</td>
<td>Manage network interfaces.</td>
</tr>
<tr>
<td>iptables</td>
<td>Administer firewall facilities (2.4 kernel).</td>
</tr>
<tr>
<td>named</td>
<td>Translate between domain names and IP addresses.</td>
</tr>
<tr>
<td>nameif</td>
<td>Assign names to network devices.</td>
</tr>
<tr>
<td>netstat</td>
<td>Print network status.</td>
</tr>
<tr>
<td>nfsstat</td>
<td>Print statistics for NFS and RPC.</td>
</tr>
<tr>
<td>nsupdate</td>
<td>Submit dynamic DNS update requests.</td>
</tr>
<tr>
<td>portmap</td>
<td>Map daemons to ports (renamed <code>rpcbind</code>).</td>
</tr>
<tr>
<td>rarp</td>
<td>Manage RARP table.</td>
</tr>
<tr>
<td>rundc</td>
<td>Send commands to a BIND nameserver.</td>
</tr>
<tr>
<td>route</td>
<td>Manage routing tables.</td>
</tr>
<tr>
<td>routed</td>
<td>Dynamically keep routing tables up to date.</td>
</tr>
<tr>
<td>rpcbind</td>
<td>Map daemons to ports (replaces <code>portmap</code>).</td>
</tr>
<tr>
<td>rpcinfo</td>
<td>Report RPC information.</td>
</tr>
<tr>
<td>traceroute</td>
<td>Trace network route to remote host.</td>
</tr>
</tbody>
</table>

Printing

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>Tell printer daemon to accept jobs.</td>
</tr>
<tr>
<td>lpadmin</td>
<td>Configure printer and class queues.</td>
</tr>
<tr>
<td>lpinfo</td>
<td>Show available printers and drivers.</td>
</tr>
<tr>
<td>lpmove</td>
<td>Move a print job to a different queue.</td>
</tr>
<tr>
<td>reject</td>
<td>Tell printer daemon to reject jobs.</td>
</tr>
<tr>
<td>tunelp</td>
<td>Tune the printer parameters.</td>
</tr>
</tbody>
</table>

Security and System Integrity

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>badblocks</td>
<td>Search for bad blocks.</td>
</tr>
<tr>
<td>chroot</td>
<td>Change root directory.</td>
</tr>
</tbody>
</table>
Starting and Stopping the System

The job of booting and rebooting a machine falls to a special program called init. Init is responsible for finishing the boot process once the kernel is done loading, launching the services necessary to run the computer. Init is also responsible for stopping services when needed and for shutting down or rebooting the computer when instructed.

For decades, the software handling these duties was called SysVinit, or System V init. Modern Linux distributions have begun switching to a replacement called Upstart (a less common replacement, init-ng, we will not discuss). The traditional model, facilitated by SysVinit, divides potential system states into multiple runlevels, each with a distinct purpose. Runlevel 3, for example, indicates a standard booted system; runlevel 6 indicates a reboot. When entering a runlevel N, SysVinit runs all of the commands in the directory /etc/rcN.d. In this manner, the scripts in /etc/rc3.d handle a system’s booting while those in /etc/rc6.d handle a reboot. Various commands (see accompanying table) allow a system administrator to force the system into a given runlevel. The file /etc/inittab specifies what runlevel is entered on boot, as well as configuration for the system’s tty’s.

Upstart replaces this functionality with a more general mechanism for the stopping, starting, and monitoring of services. Upstart operates asynchronously and is a much more powerful system than SysVinit. Thankfully, however, it is backward compatible with SysVinit and most distributions use it in a way in which much of the preceding paragraph remains accurate. Indeed, most modern Linux distributions have moved to Upstart but still manage runlevels via SysVinit-style scripts in /etc/rcN.d.

The biggest change with Upstart is with configuration. Instead of an inittab, Upstart maintains a directory of configuration scripts, /etc/event.d. Files within this directory describe how Upstart should handle tty’s and SysVinit-style runlevels: /etc/event.d/ttyN configures ttyN while /etc/event.d/rcN configures runlevel N.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>chkconfig</td>
<td>Manage which services run in a runlevel.</td>
</tr>
<tr>
<td>ctrlaltdel</td>
<td>Shut down and then soft reboot system.</td>
</tr>
<tr>
<td>halt</td>
<td>Stop or shut down system.</td>
</tr>
<tr>
<td>initctl</td>
<td>Manage the Upstart init daemon.</td>
</tr>
<tr>
<td>reboot</td>
<td>Shut down and then hard reboot system.</td>
</tr>
<tr>
<td>runlevel</td>
<td>Print system runlevel.</td>
</tr>
<tr>
<td>shutdown</td>
<td>Shut down system.</td>
</tr>
<tr>
<td>telinit</td>
<td>Change the current runlevel.</td>
</tr>
<tr>
<td>uptime</td>
<td>Display uptimes of local machines.</td>
</tr>
</tbody>
</table>

System Activity and Process Management

A number of additional commands in Chapter 3 are particularly useful in controlling processes, including kill, killall, pidof, ps, and who.
<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuser</td>
<td>Identify processes using file or filesystem.</td>
</tr>
<tr>
<td>renice</td>
<td>Change the priority of running processes.</td>
</tr>
<tr>
<td>top</td>
<td>Show most CPU-intensive processes.</td>
</tr>
<tr>
<td>vmstat</td>
<td>Print virtual-memory statistics and process statistics.</td>
</tr>
</tbody>
</table>

Users

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>chpasswd</td>
<td>Change multiple passwords.</td>
</tr>
<tr>
<td>groupadd</td>
<td>Add a new group.</td>
</tr>
<tr>
<td>groupdel</td>
<td>Delete a group.</td>
</tr>
<tr>
<td>groupmod</td>
<td>Modify groups.</td>
</tr>
<tr>
<td>grpck</td>
<td>Check the integrity of group system files.</td>
</tr>
<tr>
<td>grpconv</td>
<td>Convert group file to shadow group file.</td>
</tr>
<tr>
<td>lastlog</td>
<td>Generate report of last user login times.</td>
</tr>
<tr>
<td>newusers</td>
<td>Add new users in a batch.</td>
</tr>
<tr>
<td>pck</td>
<td>Check the integrity of password system files.</td>
</tr>
<tr>
<td>pwconv</td>
<td>Convert password file to shadow passwords.</td>
</tr>
<tr>
<td>rusers</td>
<td>Print who-style information on remote machines.</td>
</tr>
<tr>
<td>w</td>
<td>List logged-in users.</td>
</tr>
<tr>
<td>wall</td>
<td>Write to all users.</td>
</tr>
<tr>
<td>whoami</td>
<td>Show how you are currently logged in.</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>anacron</td>
<td>Schedule commands for periodic execution.</td>
</tr>
<tr>
<td>atrun</td>
<td>Schedule commands for later execution.</td>
</tr>
<tr>
<td>cron</td>
<td>Schedule commands for specific times.</td>
</tr>
<tr>
<td>dmesg</td>
<td>Print bootup messages after the system is up.</td>
</tr>
<tr>
<td>idconfig</td>
<td>Update library links and do caching.</td>
</tr>
<tr>
<td>logger</td>
<td>Send messages to the system logger.</td>
</tr>
<tr>
<td>logrotate</td>
<td>Compress and rotate system logs.</td>
</tr>
<tr>
<td>run-parts</td>
<td>Run all scripts in a directory.</td>
</tr>
</tbody>
</table>
Overview of Networking

Networks connect computers so that the different systems can share information. For users and system administrators, Unix systems have traditionally provided a set of simple but valuable network services that let you check whether systems are running, refer to files residing on remote systems, communicate via electronic mail, and so on.

For most commands to work over a network, one system must be continuously running a server process in the background, silently waiting to handle the user’s request. This kind of process is called a daemon. Common examples, on which you rely for the most basic functions of your Linux system, are named (which translates between numeric IP addresses and more human-readable alphanumeric names), cupsd (which sends documents to a printer, possibly over a network).

Most Unix networking commands are based on Internet protocols, standardized ways of communicating across a network on hierarchical layers. The protocols range from addressing and packet routing at a relatively low layer to finding users and executing user commands at a higher layer.

The basic user commands that most systems support over Internet protocols are generally called TCP/IP commands, named after the two most common protocols. You can use all of these commands to communicate with other Unix systems in addition to Linux systems. Many can also be used to communicate with non-Unix systems, almost all systems support TCP/IP.

This section also covers NFS and NIS—which allow for transparent file and information sharing across networks—and sendmail.

TCP/IP Administration

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp</td>
<td>Manipulate address resolution protocol tables.</td>
</tr>
<tr>
<td>dig</td>
<td>Query domain nameservers.</td>
</tr>
<tr>
<td>ftphd</td>
<td>Server for file transfers.</td>
</tr>
<tr>
<td>host</td>
<td>Print host and zone information.</td>
</tr>
<tr>
<td>ip</td>
<td>Network configuration tool with Cisco IOS-like syntax. Replaces ifconfig, route, and arp on some systems.</td>
</tr>
<tr>
<td>ifconfig</td>
<td>Configure network interface parameters.</td>
</tr>
<tr>
<td>named</td>
<td>Translate between domain names and IP addresses.</td>
</tr>
<tr>
<td>netstat</td>
<td>Print network status.</td>
</tr>
<tr>
<td>ping</td>
<td>Check that a remote host is online and responding.</td>
</tr>
<tr>
<td>pppd</td>
<td>Create PPP serial connection.</td>
</tr>
<tr>
<td>quagga</td>
<td>Routing daemon.</td>
</tr>
<tr>
<td>rdate</td>
<td>Notify time server that date has changed.</td>
</tr>
<tr>
<td>route</td>
<td>Manage routing tables.</td>
</tr>
</tbody>
</table>
TCP/IP is a suite of communications protocols that define how different types of computers talk to one another. It’s named for its foundational protocols, the Transmission Control Protocol and the Internet Protocol. The Internet Protocol provides logical addressing as data moves between hosts: it splits data into packets, which are then forwarded to machines via the network. The Transmission Control Protocol ensures that the packets in a message are reassembled in the correct order at their final destination and that any missing datagrams are re-sent until they are correctly received. Other protocols provided as part of TCP/IP include:

Address Resolution Protocol (ARP)

 Translates between Internet and local hardware addresses (Ethernet, etc.).
Internet Control Message Protocol (ICMP)
Error-message and control protocol.

Point-to-Point Protocol (PPP)
Enables TCP/IP (and other protocols) to be carried across both synchronous and asynchronous point-to-point serial links.

Reverse Address Resolution Protocol (RARP)
Translates between local hardware and Internet addresses (opposite of ARP).

Simple Mail Transport Protocol (SMTP)
Used by sendmail to send mail via TCP/IP.

Simple Network Management Protocol (SNMP)
Performs distributed network management functions via TCP/IP.

User Datagram Protocol (UDP)
Transfers data without first making a persistent connection between two systems the way TCP does. Sometimes called unreliable transport.

TCP/IP is covered in depth in the three-volume set Internetworking with TCP/IP (Prentice Hall). The commands in this chapter and the next are described in more detail in TCP/IP Network Administration and Linux Network Administrator’s Guide, both published by O’Reilly.

In the architecture of TCP/IP protocols, data is passed down the stack (toward the Network Access Layer) when it is sent to the network, and up the stack when it is received from the network (see Figure 2-1).

![Figure 2-1. Layers in the TCP/IP protocol architecture](image)

IP Addresses

The IP (Internet protocol) address is a binary number that differentiates your machine from all others on the network. Each machine on the Internet must have a unique IP address. The most common form of IP address used currently (IPv4) uses a 32-bit binary address. An IPv4 address contains two parts: a network part and a host part. The number of address bits used to identify the network and host differ according to the class of the address. There are three main address classes: A, B, and C (see Figure 2-2). The leftmost bits indicate what class each address is.
A standard called Classless Inter-Domain Routing (CIDR, or supernetting) extends the class system’s idea of using initial bits to identify where packets should be routed. Under CIDR, a new domain can be created with any number of fixed leftmost bits (not just a multiple of eight). A CIDR address looks like a regular IPv4 address followed by a slash and a number indicating the number of network bits. For example: 192.168.32.1/24 or 128.66.128.1/17. Virtually all Internet gateway hosts now use CIDR.

IPv6, a newer standard, changes the method of addressing and increases the number of fields. An IPv6 address is 128 bits. Part of an IPv6 address is based on the Media Access Control (MAC) address of the network interface. The MAC address is unique for each network interface. When written, it is usually divided into eight 16-bit hexadecimal blocks separated by colons. For example:

FE80:0000:0000:0000:0202:B3FF:FE1E:8329

To shorten this, leading zeros may be skipped, and any one set of consecutive zeros can be replaced with double colons. For example, the above address can be reduced to:

FE80::202:B3FF:FE1E:8329
When IPv4 and IPv6 networks are mixed, the IPv4 address can be packed into the lower four bytes, yielding an address like 0:0:0:0:192.168.1.2, or ::192.168.1.2, or even ::C0A8:102.

Because improvements in IPv4, including CIDR, have relieved much of the pressure to migrate to IPv6, organizations have been slow to adopt IPv6. Some use it experimentally, but communication between organizations using IPv6 internally is still usually encapsulated inside IPv4 datagrams, and it will be a while before IPv6 becomes common.

If you wish to connect to the Internet, contact an Internet Service Provider (ISP). For most users, an ISP dynamically assigns an IP address to their systems. If you wish to always have the same address, have them assign you a static network address or range of addresses. If you are not connecting to an outside network, you can choose your own network address as long as it conforms to the IP address syntax. You should use the special reserved addresses provided in RFC 1597, which lists IP network numbers for private networks that don’t have to be registered with the IANA (Internet Assigned Numbers Authority). An IP address is different from an Ethernet address, which is assigned by the manufacturer of the physical Ethernet card.

Gateways and Routing

Gateways are hosts responsible for exchanging routing information and forwarding data from one network to another. Each portion of a network that is under a separate local administration is called an autonomous system (AS). Autonomous systems connect to each other via exterior gateways. An AS also may contain its own system of networks, linked via interior gateways.

Gateway protocols

Gateway protocols include:

- **EGP (Exterior Gateway Protocol)**
- **BGP (Border Gateway Protocol)**
 - Protocols for exterior gateways to exchange information
- **RIP (Routing Information Protocol)**
 - Interior gateway protocol; most popular for LANs
- **Hello Protocol**
- **OSPF (Open Shortest Path First)**
 - Interior gateway protocols

Routing daemons

While most networks will use a dedicated router as a gateway, routing daemons like quagga and GNU Zebra, can be run on a host to make it function as a gateway. These replace the older gated daemon. Only one of them can run on a host at any given time. They allow a host to function as both an exterior and interior gateway and simplify routing configuration by combining the protocols RIP, Hello, BGP, EGP, and OSPF into a single package. We do not cover quagga or GNU Zebra in this book.
routed, a network routing daemon that uses RIP, allows a host to function only as an interior gateway, and manages the Internet routing tables. For more details on routed, see Chapter 3.

Routing tables
Routing tables provide information needed to route packets to their destinations. This information includes destination network, gateway to use, route status, and number of packets transmitted. Routing tables can be displayed with the netstat command.

Name Service
Each host on a network has a name that points to information about that host. Hostnames can be assigned to any device that has an IP address. A name service translates the hostnames (which are easy for people to remember) to IP addresses (the numbers the computer deals with).

DNS and BIND
The Domain Name System (DNS) is a distributed database of information about hosts on a network. Its structure is similar to that of the Unix filesystem—an inverted tree, with the root at the top. The branches of the tree are called domains (or subdomains) and correspond to IP addresses. The most popular implementation of DNS is the BIND (Berkeley Internet Name Domain) software.

DNS works as a client/server application. The resolver is the client, the software that asks questions about host information. The nameserver is the process that answers the questions. The server side of BIND is the named daemon. You can interactively query nameservers for host information with the dig and host commands. See Chapter 3 for more details on named, dig, and host.

The nameserver of a domain is responsible for keeping (and providing on request) the names of the machines in its domain. Other nameservers on the network forward requests for these machines to this nameserver.

Domain names
The full domain name is the sequence of names from the current domain back to the root, with a period separating the names. For instance, oreilly.com indicates the domain oreilly (for O’Reilly Media, Inc.), which is under the domain com (for commercial). One machine under this domain is www.oreilly.com. Top-level domains include:

- aero
 - Air-transport industry
- biz
 - Commercial organizations
- com
 - Commercial organizations
- coop
 - Cooperatives
Countries also have their own two-letter top-level domains based on two-letter country codes. For example, the web server for the British Broadcasting System (BBC) in the United Kingdom has the following domain name: www.bbc.co.uk. Some domains (e.g., edu, gov, and mil) are sponsored by organizations that restrict their use; others (e.g., com, info, net, and org) are unrestricted. One special domain,arpa, is used for technical infrastructure purposes. The Internet Corporation for Assigned Names and Numbers (ICANN) oversees top-level domains and provides contact information for sponsored domains.

Configuring TCP/IP

Certain commands are normally run in the system’s startup files to enable a system to connect to a network. These commands can also be run interactively.

Network interfaces

The network interface represents the way that the networking software uses the hardware: the driver, the IP address, and so forth. To configure a network interface, use the `ip` command. This command replaces the older `ifconfig` command. It has a Cisco IOS-like command syntax that will be familiar to many network administrators. With `ip`, you can assign an address to a network interface, setting the netmask, broadcast address, and IP address at boot time. You can also set network interface parameters, including the use of ARP, the use of driver-dependent debugging code, the use of one-packet mode, and the address of the correspondent on the other end of a point-to-point link. For more information on `ip`, see Chapter 3.
Serial-line communication

There are two protocols for serial-line communication: Serial Line IP (SLIP) and Point-to-Point Protocol (PPP). These protocols let computers transfer information using the serial port instead of a network card, and a serial cable instead of an Ethernet cable. SLIP is rarely used anymore, having been replaced by PPP.

PPP was intended to remedy some of SLIP’s failings; it can hold packets from non-Internet protocols, it implements client authorization and error detection/correction, and it dynamically configures each network protocol that passes through it. Under Linux, PPP exists as a driver in the kernel and as the daemon pppd. For more information on pppd, see Chapter 3.

Troubleshooting TCP/IP

The following commands can be used to troubleshoot TCP/IP. For more details on these commands, see Chapter 3:

- **dig**
 - Query the DNS name service.

- **ifconfig**
 - Provide information about the basic configuration of the network interface.

- **ifup** and **ifdown**
 - On many systems used to start or stop a network interface.

- **iwconfig**, **iwlist**, and **wlancfg**
 - Tools commonly used to configure a wireless network interface.

- **nc**
 - Read and write data across a network connection.

- **netstat**
 - Display network status.

- **ping**
 - Indicate whether a remote host can be reached.

- **route**
 - Allows you to read and set default gateway information, as well as static routes.

- **tcpdump**
 - Dump network packet information to the screen or to file.

- **traceroute**
 - Trace route taken by packets to reach network host.

Overview of Firewalls and Masquerading

A firewall is a secure computer that sits between an internal network and an external network (i.e., the Internet). It is configured with a set of rules that it uses to determine what traffic is allowed to pass and what traffic is barred. While a firewall is generally intended to protect the network from malicious or even accidentally harmful traffic from the outside, it can also be configured to monitor traffic leaving the network. As the sole entry point into the system, the firewall makes it easier to construct defenses and monitor activity.
The firewall can also be set up to present a single IP address to the outside world, even though multiple IP addresses may be used internally. This is known as masquerading. Masquerading can act as additional protection, hiding the very existence of a network. It also saves the trouble and expense of obtaining multiple IP addresses.

IP firewalling and masquerading are implemented with netfilter, also known as iptables. The facilities provided by netfilter are designed to be extensible; if there is some function missing from the implementation, you can add it.

The packet filtering facilities provide built-in rule sets. Each network packet is checked against each rule in the rule set until the packet either matches a rule or is not matched by any rule. These sets of rules are called chains. These chains are organized into tables that separate filtering functions from masquerading and packet mangling functions. If a match is found, the counters on that rule are incremented and any target for that rule is applied. A target might accept, reject, or masquerade a packet, or even pass it along to another chain for processing. Details on the chains provided in iptables can be found in Chapter 3.

In addition to these chains, you can create your own user-defined chains. You might want a special chain for your PPP interfaces or for packets from a particular site. To call a user-defined chain, you just make it the target for a match.

It is possible to make it through a chain without matching any rules that have a target. If no rule matches the packet in a user-defined chain, control returns to the chain from which it was called, and the next rule in that chain is checked. If no rule matches the packet in a built-in chain, a default policy for that chain is used. The default policy can be any of the special targets that determine what is done with a packet. The valid targets are detailed in Chapter 3.

You use the iptables command to define the rules. Once you have the rules defined you can use iptables-save to create a file with all the rule definitions, and iptables-restore to restore those definitions when you reboot.

For more information on the kinds of decisions you need to make and the considerations that go into defining the rules, see a general book on firewalls such as Building Internet Firewalls (O’Reilly) by Elizabeth D. Zwicky et al. For more details on iptables, consult the Linux Network Administrator’s Guide (O’Reilly) by Tony Bauts et al., Linux iptables Pocket Reference (O’Reilly) by Gregor N. Purdy, or one of the relevant HOWTOs, such as the “Packet Filtering HOWTO.” These HOWTOs and a number of tutorials are available on the Netfilter website at http://www.netfilter.org/.

Overview of NFS

The Network File System (NFS) is a distributed filesystem that allows users to mount remote filesystems as if they were local. NFS uses a client/server model in which a server exports directories to be shared and clients mount the directories to access the files in them. NFS eliminates the need to keep copies of files on several machines by letting the clients all share a single copy of a file on the server. NFS is an RPC-based application-level protocol. For more information on the architecture of network protocols, see “Overview of TCP/IP” on page 22.
Administering NFS

To set up NFS clients and servers, you must start the NFS daemons on the servers, export filesystems from the NFS servers, and mount the filesystems on the clients. The `/etc/exports` file is the NFS server configuration file; it controls which files and directories are exported and which kinds of access are allowed. Names and addresses for clients that should be allowed or denied access to NFS are kept in the `/etc/hosts.allow` and `/etc/hosts.deny` files.

Daemons

NFS server daemons, called `nfsd daemons`, run on the server and accept RPC calls from clients. NFS servers also run the `mountd` daemon to handle mount requests. On the client, caching and buffering are handled by `biod`, the block I/O daemon. The `rpcbind` daemon maps RPC program numbers to the appropriate TCP/IP port numbers. If the `rpcbind` daemon is not running properly, NFS will not work either. On older systems `rpcbind` is named `portmap`.

Exporting Filesystems

To set up an NFS server, first check that all the hosts that will mount your filesystem can reach your host. Next, edit the `/etc/exports` file on the server. Each entry in this file indicates the name of a directory to be exported, domain names of machines that will have access to that particular mount point, and any options specific to that machine. A typical entry looks like:

```bash
/projects hostname1(rw) hostname2(ro)
```

If you are running `mountd`, the files will be exported as allowed by the permissions in `/etc/exports`. See the `exports` manpage for all available export options.

Mounting Filesystems

To enable an NFS client, mount a remote filesystem after NFS is started, either by using the `mount` command or by specifying default remote filesystems in `/etc/fstab`. For example:

```bash
# mount servername:/projects /mnt/nfs/projects
```

A `mount` request calls the server’s `mountd` daemon, which checks the access permissions of the client and returns a pointer to a filesystem. Once a directory is mounted, it remains attached to the local filesystem until it is unmounted with the `umount` command or until the local system is rebooted.

Usually, only a privileged user can mount filesystems with NFS. However, you can enable users to mount and unmount selected filesystems using the `mount` and `umount` commands if the `user` option is set in `/etc/fstab`. This can reduce traffic by having filesystems mounted only when needed. To enable user mounting, create an entry in `/etc/fstab` for each filesystem to be mounted. You can verify filesystems that have been mounted by using the `mount` or `showmount` commands. Or, you can read the contents of the `/etc/mtab` file.
Overview of NIS

The Network Information System (NIS) refers to the service formerly known as Sun Yellow Pages (YP). It is used to make configuration information consistent on all machines in a network. It does this by designating a single host as the master of all the system administration files and databases and distributing this information to all other hosts on the network. The information is compiled into databases called maps. NIS is built on the RPC protocol.

Another version of NIS, NIS+, adds encryption and strong authentication to NIS. NIS+ is a proprietary standard created by Sun Microsystems. This chapter discusses standard NIS, which is supported by most Linux systems. There are currently two NIS servers freely available for Linux, yps and ypserve. We describe ypserve in this book.

Servers

In NIS, there are two types of servers: master servers and slave servers. Master servers are responsible for maintaining the maps and distributing them to the slave servers. The files are then available locally to requesting processes.

Domains

An NIS domain is a group of hosts that use the same set of maps. The maps are contained in a subdirectory of /var/yp having the same name as the domain. The machines in a domain share password, host, and group file information. NIS domain names are set with the domainname command.

NIS Maps

NIS stores information in database files called maps. Each map consists of a pair of dbm database files, one containing a directory of keys (a bitmap of indices) and the other containing data values. The non-ASCII structure of dbm files necessitates using NIS tools such as yppush to move maps between machines.

The file /var/yp/YP_MAP_X_LATE contains a complete listing of active NIS maps, as well as NIS aliases for NIS maps. All maps must be listed in this file in order for NIS to serve them.

Map Manipulation Utilities

The following utilities are used to administer NIS maps:

makedbm

Make dbm files. Modify only ypserve’s map and any nondefault maps.

ypinit

Build and install NIS databases. Manipulate maps when NIS is being initialized. Should not be used when NIS is already running.

yppush

Transfer updated maps from the master server.
Administering NIS

NIS is enabled by setting up NIS servers and NIS clients. The descriptions given here describe NIS setup using `ypserv`, which does not support a master/slave server configuration. All NIS commands depend on the RPC `rpcbind` program, so make sure it is installed and running before setting up NIS.

Setting Up an NIS Server

Setting up an NIS server involves the following steps:

1. Set a domain name for NIS using `domainname`.
2. Edit the `ypMakefile`, which identifies which databases to build and what sources to use in building them.
3. Copy the `ypMakefile` to `/var/yp/Makefile`.
4. Run `make` from the `/var/yp` directory, which builds the databases and initializes the server.
5. Start `ypserv`, the NIS server daemon.

Setting Up an NIS Client

Setting up an NIS client involves only the following steps:

1. Set the domain name for NIS using `domainname`, which should be the same name used by the NIS server.
2. Run `ypbind`.

NIS User Accounts

NIS networks have two kinds of user accounts: distributed and local. Distributed accounts must be administered from the master machine; they provide information that is uniform on each machine in an NIS domain. Changes made to distributed accounts are distributed via NIS maps. Local accounts are administered from the local computer; they provide account information unique to a specific machine. They are not affected by NIS maps, and changes made to local accounts do not affect NIS. When NIS is installed, preexisting accounts default to local accounts.

RPC and XDR

RPC (remote procedure call) is the session protocol used by both NFS and NIS. It allows a host to make a procedure call that appears to be local but is really executed remotely on another machine on the network. RPC is implemented as a library of procedures, plus a network standard for ordering bytes and data structures called XDR (eXternal Data Representation).
This chapter presents the Linux user, programmer, and system administration commands. These are entered into a shell at the console or on a virtual terminal on a graphical desktop.

Each entry is labeled with the command name on the outer edge of the page. The syntax line is followed by a brief description and a list of available options. Many commands come with examples at the end of the entry. If you need only a quick reminder or suggestion about a command, you can skip directly to the examples.

Typographic conventions for describing command syntax are listed in the preface. For help in locating commands, see the index at the back of this book.

We’ve tried to be as thorough as possible in listing options. The basic command information and most options should be correct; however, there are many Linux distributions and many versions of commands. New options are added, and occasionally old options are dropped. You may, therefore, find some differences between the options you find described here and the ones on your system. When there seems to be a discrepancy, check the manpage. For most commands, you can also use the option --help to get a brief usage message. (Even when it isn’t a valid option, it will usually result in an “invalid option” error along with the usage message.)

Traditionally, commands take single-letter options preceded by a single hyphen, such as -d. A more recent convention allows long options preceded by two hyphens, such as --debug. Often, a feature can be invoked through either the old style or the new style of options.
Alphabetical Summary of Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| accept | System administration command. Instruct printing system to accept jobs for the specified print queue or queues. Depending on queue settings, the system may prompt for a password.
Option
- **-E** Force encrypted connection.
- **h host [port]** Connect to specified server.
- **-U username** Use alternate username when connecting to server. |
| access | Check whether a file is available for the action specified with the mode argument: r for read, w for write, x for execute. Used mostly in scripting, access works better than test because it uses a direct system call rather than looking at the file permissions, which can be misleading when a filesystem is mounted read-only.
Options
- **--help** Display help message, then quit.
- **--version** Display version, then quit. |
| aclocal | GNU autoconf tool. Place m4 macro definitions needed by autoconf into a single file. The aclocal command first scans for macro definitions in m4 files in its default directory (/usr/share/aclocal on some systems) and in the file acinclude.m4. It next scans for macros used in the configure.in file. It generates an aclocal.m4 file that contains definitions of all m4 macros required by autoconf.
Options
- **--acdir=dir** Look for macro files in directory dir instead of the default directory.
- **--help** Print help message, then exit.
- **-I dir** Additionally, search directory dir for m4 macro definitions.
- **--output=file** Save output to file instead of aclocal.m4. |
acpi

--print-ac-dir
Print the name of the directory to be searched for m4 files, then exit.

--verbose
Print names of files being processed.

--version
Print version number, then exit.

aconnect

aconnect [options] [sender] [receiver]
aconnect [options]

Like its GUI relativealsa-patch-bay, aconnect connects ports in
MIDI hardware and software to route events, similar to running
patch cables between different mixers and synthesizers in an all-
hardware audio system. aconnect is part of the ALSA (Advanced
Linux Sound Architecture) system.

Options

-d, --disconnect
Undo the connection described.

-e, --exclusive
The connection being created must be exclusive: the sender
and receiver ports may not connect to any other port.

-i, --input
List all input (sender) ports. This flag is used without any
other arguments or flags.

-o, --output
List all output (receiver) ports. This flag is used without any
other arguments or flags.

-r, --real queue-name
All events processed through this connection get new time-
stamps from the named real-time queue. The receiving port
must have access to, and use, the real-time queue.

-t, --tick queue-name
All events processed through this connection get new time-
stamps from the specified tick queue.

-x, --remove-all
Cancel all connections. This flag is used without any other
arguments or flags.

acpi

acpi [options]

Displays information about the ACPI (Advanced Configuration and
Power Interface) system, based on the /proc/acpi file. Most kernels
after 2.4 support ACPI hardware, and in both hardware and soft-
ware, ACPI is gradually replacing the older APM (Advanced Power
Management) system. Some operating systems, including SUSE, ship
a combined ACPI/APM power interface calledpowersaved. Most,
however, require either ACPI or APM software.
Note that some ACPI systems have special events that are not available on others. For example, some laptops have events related to their docking stations and keyboard lights that are not used on nondocking or unlighted laptops. On all systems, the /proc/acpi directory must be present for \texttt{acpi} commands to work.

Options

- \texttt{--ac-adapter}
 - Show whether the AC adapter is connected.

- \texttt{--without-ac-adapter}
 - Do not show information about the AC adapter.

- \texttt{--battery}
 - Display battery information.

- \texttt{--without-battery}
 - Do not display battery information.

- \texttt{--celsius}
 - Use degrees Celsius as the temperature unit. This is the default unit.

- \texttt{--directory path}
 - Use the specified path to ACPI information. The default is /proc/acpi.

- \texttt{--fahrenheit}
 - Use degrees Fahrenheit as the temperature unit.

- \texttt{--help}
 - Display help information.

- \texttt{--kelvin}
 - Use degrees Kelvin as the temperature unit.

- \texttt{--show-empty}
 - Display information even on devices that are not available or not installed, such as empty slots for extra batteries.

- \texttt{--hide-empty}
 - Do not display information on devices that are not operational or not installed.

- \texttt{--thermal}
 - Display temperature information.

- \texttt{--without-thermal}
 - Do not display temperature information.

- \texttt{--version}
 - Display version information.

- \texttt{--everything}
 - Show all information on every device.
replaces older APM (Advanced Power Management) hardware,
acpid replaces apmd. Like other daemons, this application is controlled
primarily through a configuration file that determines which events
merit action, and what those actions are.

Options

-`-c directory, --confdir=directory`
 Set the directory used for configuration files. The default
directory is `/etc/acpi/events`. All files in this directory, except
those beginning with a period (`.`), are parsed as configuration
files. Typically, a single file is used for each ACPI event to be
acted upon.

 In the configuration files, blank lines and those beginning with
are ignored. Other lines are expected to consist of a regular
expression and a command to be executed when an ACPI
event matches the expression.

-`-d, --debug`
 Debug mode: run the daemon in the foreground and send all
log output to stderr and stdout, rather than a logfile.

-`-e filename, --eventfile=filename`
 Set the file used to find events. Normally this is `/proc/acpi/
event`.

-`-g group, --socketgroup=group`
 Set the group ownership of the socket to which acpid
publishes events. This allows you to restrict which users on
the system can access ACPI event information.

-`-l filename, --logfile=filename`
 Set the logfile location. Normally, it is `/var/log/acpid`.

-`-m mode, --socketmode=mode`
 Set the permission mode of the socket. Normally, it is 666,
with the sticky bit off.

-`-s filename, --socketfile=filename`
 Set the file used to define the socket. Normally, this is `/var/
run/acpid.socket`.

-`-S, --nosocket`
 Tells acpid not to open a socket at all. Overrides all other
socket options.

-`-v, --version`
 Print version information and quit.

-`-h, --help`
 Print help message and quit.

addr2line

addr2line [options] [addresses]

Translate hexadecimal program addresses into filenames and line
numbers for the executable given with the `-e` option, or `a.out` if `-e` is
not specified. If `addresses` are given on the command line, display
the filename and line number for each address. Otherwise, read the
agetty

addresses from standard input and display the results on standard output (useful for use in a pipe). **addr2line** prints two question marks (??) if it cannot determine a filename, and 0 if it cannot determine the line number. **addr2line** is used for debugging.

Options

- **-h bfdname, --target=bfdname**
 Set the binary file format using its binary file descriptor name, *bfdname*. Use the **-h** option for a list of supported formats for your system.

- **-C, --demangle[=style]**
 Decode (demangle) low-level symbol names into usernames. See the **-h** help output for a list of styles supported by your compiler.

- **-e file, --exe=file**
 Specify the filename of the executable to use. The default filen- name is *a.out*.

- **-f, --functions**
 Display function names in addition to filenames and line numbers.

- **-h, --help**
 Display help information and exit.

- **-s, --basenames**
 Strip directories off filenames and show only the basenames.

agetty

agetty [options] port baudrate [term]

System administration command. **agetty** opens a tty port, prompts for login, and invokes the **login** command with the user’s name as an argument. While reading the name, **agetty** attempts to adapt the system to the speed and type of device being used. **agetty** is usually invoked by **init** using parameters specified in the `/etc/inittab` file, or in newer distributions of Linux by an **upstart** event using parameters given in `/etc/event.d/tty[1–6]` files. On some systems this command may also be invoked as **getty** or replaced by an alternative command like **mingetty**. (See discussion of **upstart** in Chapter 2.)

You must specify a port, which **agetty** will search for in the `/dev` directory. You may use -, in which case **agetty** reads from standard input. You must also specify baudrate, which may be a comma-separated list of rates through which **agetty** will step. Optionally, you may specify the term, which is used to override the TERM environment variable.

Options

- **-8** Disable parity detection and assume tty is 8-bit clean.

- **-f file**
 Specify the use of **file** instead of `/etc/issue` upon connection to terminal. It is overridden by **-i**.

- **-h** Specify hardware, not software, flow control.
alsactl

- **H hostname**

 Write login hostname into the utmp file. By default, no login host is specified.

- **I string**

 Specify string to be sent to the tty or modem.

- **i**

 Suppress printing of /etc/issue before printing the login prompt.

- **l program**

 Specify the use of program instead of /bin/login.

- **L**

 Do not require carrier detect; operate locally only. Use this when connecting terminals.

- **m**

 Attempt to guess the appropriate baud rate.

- **n**

 Don’t prompt for a login name.

- **t timeout**

 Specify that agetty should exit if the open on the line succeeds and there is no response to the login prompt in timeout seconds.

- **U**

 Enable uppercase-only terminal detection. This will turn on some upper- to lowercase conversions if the login name is given in all capitals.

- **w**

 Wait for carriage return or linefeed before sending login prompt. Use when sending an initialization string.

alsactl [options] [command] [card]

Control advanced configuration settings for sound cards using the ALSA (Advanced Linux Sound Architecture) system. Driver settings are written to and loaded from configuration files. The card can be specified as a card number, id, or device. If no card is specified, the configuration for all cards is saved or loaded. The default configuration file is /etc/asound.state.

Commands

- **init**

 Attempt to initialize all sound cards to a default state.

- **restore**

 Load the driver information from the configuration file.

- **store**

 Save the current driver information to the configuration file.

Options

- **-d, --debug**

 Debug mode: increased information output to the console.

- **-E var=value, --env var=value**

 Set an environment variable. Useful for init or to override ALSA_CONFIG_PATH.

- **-f file, --file=file**

 Specify the use of file instead of /etc/asound.state as a configuration file.
alsamixer

-F, --force
 Force the restoration of settings; used with restore. This is the
default.
-g, --ignore
 With store and restore, do not display errors and do not set
 error exit codes.
-h, --help
 Display help message and quit.
-i file, --initfile=file
 Specify the configuration file for init. The default is /usr/share/
 alsalib/alsa/init/00main.
-p, --pedantic
 Ignore mismatched control settings; used with restore.
-r file, --runstate=file
 Save restore and init errors to the specified file, appending
 new errors to the end of the file (unless -R is specified).
-R, --remove
 Remove the runstate file first, before running the restore or
 init.
-v, --version
 Display version information and quit.

alsamixer [options]
An ALSA mixer with an ncurses interface, for use with ALSA
soundcard drivers. alsamixer supports multiple sound cards with
multiple drivers. Use ESC or Alt-Q to exit.

Options
-c cardnum
 Specify the number or id of the soundcard to use, if there are
 multiple cards. Card numbers start from 0 (the default).
-D deviceid
 Specify the id of the mixer device to control.
-g
 Toggle use of color or monochrome in the alsamixer window.
-h, --help
 Display brief usage message and exit.
-s
 Minimize the mixer window.
-V mode
 Select the starting view mode. The possible modes are playback, capture, or all.

amidi [options]
Read and write raw MIDI files (.syx format, without timing information) to ALSA ports. For standard MIDI (.mid) files, use aplaymidi
and arecordmidi.
Options

-a, --active-sensing
 Record and send active-sensing (FEh) bytes in MIDI commands. By default, these bytes are ignored.

d, --dump
 Output received data directly to the screen as hexadecimal bytes.

-h, --help
 Display help information and quit.

-l, --list-devices
 List all hardware MIDI ports.

-L, --list-rawmidis
 List all RawMIDI definitions. Useful for debugging configuration files.

-p, --port=name
 Use the specified port. This overrides the port set in the configuration file. If neither this flag nor the configuration file sets a port, the default is port 0 on device 0, which may or may not exist.

-r, --receive=filename
 Write data from the port specified with the -p or --port flag to the file named here, which is a raw file, and should end in .syx. Unless you use the -a option, the data does not include Active Sensing (FEh) bytes.

-s, --send=filename
 Send the file to the port specified with the -p or --port flag. Use raw (.syx) MIDI files only.

-S, --send-hex="hex-numbers..."
 Send a string of hexadecimal numbers to the port specified with the -p or --port flag.

-t, --timeout=n
 Stop listening after n seconds of receiving no data.

-V, --version
 Display version information and quit.

amixer

Command-line ALSA mixer. For an ncurses interface, use alsamixer. amixer displays or changes the current mixer settings for the current sound card and sound device. To display all mixer settings, use with no flags or commands.

Commands
contents
 List card controls and their contents.
controls
Display a complete list of card controls. These controls can be set with the cset command, in contrast to simple mixer controls, which use set or sset.

cget [control]
Display the contents of the specified card control.

cset [control] [parameter]
Set the card control to the value specified in the parameter. Card controls may be identified by iface, name, index, device, subdevice, or numid. The parameter is normally a number or percentage value. For example, the command amixer -c 1 cset numid=16 50% sets the 16th element of the first sound card to 50%.

get, sget [control]
Display the current values for the specified simple mixer control.

help
Display help message and quit.

info
Display information about the current card or the card specified with the -c flag.

scontents
Display a complete list of simple mixer controls and their contents.

scontrols
Display a list of simple mixer controls. Simple mixer controls can be set with the set or sset commands, in contrast to card controls, which use the cset command.

set, sset [control] [parameter]
Set one of the controls listed by scontrols. You can specify the volume with a percentage from 0% to 100%, or a specific hardware value. Append + or – to the number to increase or decrease the volume by that amount. To set recording and muting values, use the parameters cap (meaning capture, or record), nocap, mute, unmute, or toggle. To specify individual channels, use the parameters front, rear, center, or woofer. For example, the command amixer -c 1 sset Line,0 100% unmute sets Line 0 on the first sound card to 100% and unmutes it.

Options
-c n
The number of the card to adjust.
-D devicename
Specify the name of the device. By default, the name is default.
-h
Display help information and quit.
-q
Quiet mode: do not show the results of changes made.
-s, --stdin
Read command lines from standard input and execute sequentially.

anacron

anacron [options] [job]
System administration command. Normally started in a system startup file. Execute commands periodically. By default, anacron reads a list of jobs from a configuration file, /etc/anacrontab. The file consists of shell variables to use when running commands, followed by a list of tasks to run. Each task specifies how often in days it should be run, a delay in minutes to wait before running the task, a unique job identifier used to store a timestamp, and the shell command to execute. Timestamps for the last run of each task are stored in the /var/spool/anacron file. For each task, anacron compares the stored timestamp against the current time. If the command has not been executed within the specified frequency, the command is run. Upon completion, anacron records the new date in the timestamp file. Limit anacron to a specified task by providing the task’s unique job identifier on the command line.
The anacron command is often used to support the cron daemon on systems that do not run continuously.

Options
-d Run in foreground rather than as a background process. Send messages to standard error.
-f Run tasks ignoring timestamps.
-h Print help message, then exit.
-n Run tasks now, ignoring delay specifications.
-q Suppress messages to standard error when using the -d option.
-s Execute tasks serially. Do not start new task until previous task is completed.
-S directory
Store timestamps in directory instead of /var/spool/anacron.
-t file
Read tasks from file instead of from /etc/anacrontab.
-T Test validity of configuration file. Can be used with -t.
-u Update timestamps for tasks, but don’t run them.
-V Print version number, then exit.

aplay

aplay [options] [file]
Play sound files using the ALSA sound system. The related arecord records sound files.

Options
-c, --channels=n
Use n channels: 1 for mono, 2 for stereo.
aplaymidi

d. --duration=n
 Set an interrupt for n seconds after playback begins.

-D. --device=devicename
 Select a PCM device by name.

-f. --format=format
 Specify the sample format. The sample formats available will depend on hardware. For CD and DAT output, use the cd and dat shortcuts, which set the sample rate, format, and channel numbers all at once.

-h. --help
 Print help message, then exit.

-l. --list-devices
 List available sound cards and digital audio devices.

-l. --list-pcms
 List all PCM (pulse-coded modulation, or digital audio) devices that have been defined. PCMs may be defined in the .asoundrc file.

-q. --quiet
 Run quietly. Do not display messages.

-r. --rate=n
 Set the sample rate in Hertz. The default is 8000 Hertz.

-s. --sleep-min=n
 Set the minimum number of ticks to sleep. The default is not to sleep.

-t. --file-type=type
 Name the file type used. Files may be voc, wav, raw, or au.

--version
 Print version and quit.

aplaymidi [options] [file]
Play MIDI files using the ALSA sound system; output is to ALSA sequencer ports.

Options
-d. --delay=n
 Delay n seconds at the end of a file to allow for reverberation of the final notes.

-h. --help
 Print help message, then exit.

-V. --version
 Print version and quit.

-l. --list
 List output ports available.

-p. --port=client:port
 Specify the port to which the MIDI file will be sent. If no port is specified, the file will be sent to port 0.
apmd

apmd [options]

System administration command. apmd handles events reported by the Advanced Power Management BIOS driver. The driver reports on battery level and requests to enter sleep or suspend mode. apmd will log any reports it gets via syslogd and take steps to make sure that basic sleep and suspend requests are handled gracefully. You can fine-tune the behavior of apmd by editing the apmd_proxy script, which apmd runs when it receives an event. Note that the APM hardware standard has been replaced by the ACPI (Advanced Configuration and Power Interface) standard, and apmd by acpid.

Options

-c n, --check n
Set the number of seconds to wait for an event before rechecking the power level. Default is to wait indefinitely. Setting this causes the battery levels to be checked more frequently.

-p n, --percentage n
Log information whenever the power changes by n percent. The default is 5. Values greater than 100 will disable logging of power changes.

-P command, --proxy command
Specify the apmd_proxy command to run when APM driver events are reported. This is generally a shell script. The command will be invoked with parameters indicating what kind of event was received. The parameters are listed in the next section.

-T [n], --proxy-timeout [n]
Set time-out for proxy to n seconds. Without this option apmd will wait indefinitely for the proxy to finish. Default value of n is 30 seconds.

-v, --verbose
Verbose mode; all events are logged.

-V, --version
Print version and exit.

-w n, --warn n
Log a warning at ALERT level when the battery charge drops below n percent. The default is 10. Negative values disable low-battery-level warnings.

-W, --wall
Use wall to alert all users of a low battery status.

-q, --quiet
Disable low-battery-level warnings.

-, --help
Print help summary and exit.
apropos

Parameters
The `apmd` proxy script is invoked with the following parameters:

- **start**
 Invoked when the daemon starts.

- **stop**
 Invoked when the daemon stops.

- **standby [system | user]**
 Invoked when the daemon receives a standby request. The second parameter indicates whether the request was made by the system or by the user. Standby mode powers off the monitor and disks, but the system continues to run and use power.

- **suspend [system | user]**
 Invoked when the daemon receives a suspend request. The second parameter indicates whether the request was made by the system or by the user. Suspend, also known as “hibernate,” effectively powers the system down but has a quicker recovery than a normal boot process.

- **resume [suspend | standby | critical]**
 Invoked when the system resumes normal operation. The second parameter indicates the mode the system was in before resuming. **critical** suspends indicate an emergency shutdown. After a **critical** suspend, the system may be unstable, and you can use the **resume** command to help you recover from the suspension.

- **change power**
 Invoked when system power is changed from AC to battery or from battery to AC.

- **change battery**
 Invoked when the APM BIOS driver reports that the battery is low.

- **change capability**
 Invoked when the APM BIOS driver reports that some hardware that affects its capability has been added or removed.

apropos

```
apropos string ...
```

Search the short manual page descriptions in the **whatis** database for occurrences of each **string** and display the result on standard output. Similar to **whatis**, except that it searches for strings instead of words. Equivalent to **man -k**.

apt

```
apt
```

The Advanced Package Tool, the Debian package management system. A freely available packaging system for software distribution and installation. For detailed information on **apt** and its commands, see Chapter 5.
Maintain a group of files that are combined into a file archive. Used most commonly to create and update static library files, as used by the link editor (ld). Compiler frontends often call ar automatically. Only one key letter may be used, but each can be combined with additional args (with no separations between). posname is the name of a file in archive. When moving or replacing files, you can specify that they be placed before or after posname. ar has largely been superseded by tar and bzip2.

Keys
- d: Delete files from archive.
- m: Move files to end of archive.
- p: Print files in archive.
- q: Append files to archive.
- r: Replace files in archive.
- t: List the contents of archive or list the named files.
- x: Extract contents from archive or only the named files.

Arguments
- a: Use with r or m key to place files in the archive after posname.
- b: Same as a, but before posname.
- c: Create archive silently.
- f: Truncate long filenames.
- i: Same as b.
- l: For backward compatibility; meaningless in Linux.
- N: Use count parameter. Where multiple entries with the same name are found, use the count instance.
- o: Preserve original timestamps.
- P: Use full pathname. Useful for non-POSIX-compliant archives.
- s: Force regeneration of archive symbol table (useful after running strip).
- S: Do not regenerate symbol table.
- u: Use with r to replace only files that have changed since being put in archive.
- v: Verbose; print a description of actions taken.
- V: Print version number.

Example
Replace mylib.a with object files from the current directory:
```
ar r mylib.a `ls *.o`
```
arch
Print machine architecture type to standard output. Equivalent to `uname -m`.

arecord [options] [filename]
Records sound using ALSA. Accepts the same arguments and options as `aplay`.

Options
- `-b`, `--bmp=n`
 Set the tempo value to n beats per minute. The default is 120.
- `-f`, `--fps=n`
 Set timing (SMPTE resolution) to n frames per second. The value is normally 24, 25, 29.97 (NTSC dropframe), or 30.
- `-h`, `--help`
 Display help message.
- `-i`, `--timesig=numerator:denominator`
 Set the time signature for the file and the metronome, specified as the numerator and the denominator separated by a colon. The denominator must be a power of 2. Defaults to 4:4.
- `-l`, `--list`
 List available ports.
- `-m`, `--metronome=client:port`
 Play a metronome signal on the specified sequencer port.
- `-p`, `--port=host:port`
 Set the sequencer host and port used. The default host is the local host, and the default port is port 0.
- `-s`, `--split-channels`
 For each channel of input, create a separate track in the MIDI output file.
- `-t`, `--ticks=n`
 Set the frequency with which timestamps, or ticks, are used in the file. For MIDI files using musical tempo, timestamps are set in ticks per beat (default 384), while those with SMPTE timing use ticks per frame (default 40).
- `-v`, `--version`
 Display version number.
arp

arp [options]

TCP/IP command. Clear, add to, or dump the kernel’s Address Resolution Protocol (ARP) cache (/proc/net/arp). ARP is used to translate protocol addresses to hardware interface addresses. Modifying your ARP cache can change which interfaces handle specific requests. ARP cache entries may be marked with the following flags: C (complete), M (permanent), and P (publish). While arp can create a proxy for a single system, subnet proxies are now handled by the arp kernel module, arp(7). See the “Linux Advanced Routing & Traffic Control HOWTO” for details.

Options

host option arguments may be given as either a hostname or an IP address. With the -D option, they may also be given as a hardware interface address (e.g., eth0, eth1).

-a [hosts], --all [hosts]
Display entries in alternate (BSD) style for hosts or, if none are specified, all entries.

-d host [pub], --delete host [pub]
Remove the specified host’s entry. To delete a proxy entry, add the pub argument and specify the interface associated with the proxy using -i.

-D, --use-device
Use the hardware address associated with the specified interface. This may be used with -s when creating a proxy entry.

-e
Display entries in default (Linux) style.

-f file, --file file
Read entries from file and add them.

-H type, --hw-type type, -t type
Search for type entries when examining the ARP cache. type is usually ether (Ethernet), which is the default, but may be ax25 (AX.25 packet radio), arcnet (ARCnet), pronet (PROnet), or netrom (NET/ROM).

-i interface, --device interface
Select an interface. If you are dumping the ARP cache, this option will cause the command to display only the entries using that interface. When setting entries, this will cause the interface to be associated with that entry. If you do not use this option when setting an entry, the kernel will guess.

-n, --numeric
Display host IP addresses instead of their domain names.

-s host hardware-address [netmask mask] [pub], --set host hardware-address [netmask mask] [pub]
Add a permanent entry for host at hardware-address. A hardware-address for type ether hardware is 6 hexadecimal bytes, colon-separated. The pub argument can be used to set the publish flag, creating a proxy entry.
-v, --verbose
 Verbose mode.

Examples
Display entry for host eris:

 arp -a eris

Set a permanent cache entry for host illuminati, whose hardware address you know:

 arp -s illuminati 00:05:23:73:e6:cf

Set an ARP proxy for host fnord using the eth0 interface’s hardware address:

 arp -Ds fnord eth0 pub

Remove the fnord ARP proxy:

 arp -i eth0 -d fnord pub

as [options] files

Generate an object file from each specified assembly-language source file. Object files have the same root name as source files but replace the .s suffix with .o. There may be some additional system-specific options.

Options

-- [| files]
 Read input files from standard input, or from files if the pipe is used.

-a[cdhlmns][=file]
 With only the -a option, list source code, assembler listing, and symbol table. The other options specify additional things to list or omit:

 -ac Omit false conditionals.
 -ad Omit debugging directives.
 -ah Include the high-level source code, if available.
 -al Include an assembly listing.
 -am Include macro expansions.
 -an Suppress forms processing.
 -as Include a symbol listing.

 =file
 Set the listing filename to file.

--defsym symbol=value
 Define the symbol to have the value value, which must be an integer.

-f Skip whitespace and comment preprocessing.

--fatal-warnings
 Treat warnings as errors.

--gstabs
 Generate debugging information in stabs format.
--gdwarf2
 Generate DWARF2 debugging information.
-o objfile
 Place output in object file objfile (default is file.o).
--statistics
 Print information on how much time and space assembler uses.
-v
 Display the version number of the assembler.
-I path
 Include path when searching for .include directives.
-J
 Don’t warn about signed overflow.
-R Combine both data and text in text section.
-W Don’t show warnings.
-Z Generate object file even if there are errors.

at [options] time [date]
Execute commands at a specified time and optional date. The commands are read from standard input or from a file. (See also batch.) End input with EOF. time can be formed either as a numeric hour (with optional minutes and modifiers) or as a keyword. It can contain an optional date, formed as a month and date, a day of the week, or a special keyword (today or tomorrow). An increment can also be specified.

The at command can always be issued by a privileged user. Other users must be listed in the file /etc/at.allow if it exists; otherwise, they must not be listed in /etc/at.deny. If neither file exists, only a privileged user can issue the command.

Options
-c job [job...]
 Display the specified jobs on the standard output. This option does not take a time specification.
-d job [job...]
 Delete the specified jobs. Same as atrm.
-f file
 Read job from file, not from standard input.
-l
 Report all jobs that are scheduled for the invoking user. Same as atq.
-m
 Mail user when job has completed, regardless of whether output was created.
-q letter
 Place job in queue denoted by letter, where letter is any single letter from a-z or A-Z. Default queue is a. (The batch queue defaults to b.) Higher-lettered queues run at a lower priority.
-V
 Display the version number.
Time

\textit{hh:mm} [\textit{modifiers}]

Hours can have one digit or two (a 24-hour clock is assumed by default); optional minutes can be given as one or two digits; the colon can be omitted if the format is \textit{h}, \textit{hh}, or \textit{hh:mm} (e.g., valid times are 5, 5:30, 0530, 19:45). If modifier \textit{am} or \textit{pm} is added, \textit{time} is based on a 12-hour clock.

\textit{midnight} | \textit{noon} | \textit{teatime} | \textit{now}

Use any one of these keywords in place of a numeric time. \textit{teatime} translates to 4:00 p.m.; \textit{now} must be followed by an \textit{increment} (described in a moment).

Date

\textit{month num[, year]}

\textit{month} is one of the 12 months, spelled out or abbreviated to its first three letters; \textit{num} is the calendar date of the month; \textit{year} is the four-digit year. If the given \textit{month} occurs before the current month, \texttt{at} schedules that month next year.

\textit{day}

One of the seven days of the week, spelled out or abbreviated to its first three letters.

\textit{today} | \textit{tomorrow}

Indicate the current day or the next day. If \textit{date} is omitted, \texttt{at} schedules \textit{today} when the specified \textit{time} occurs later than the current time; otherwise, \texttt{at} schedules \textit{tomorrow}.

Increment

Supply a numeric increment if you want to specify an execution time or day \textit{relative} to the current time. The number should precede any of the keywords \textit{minute}, \textit{hour}, \textit{day}, \textit{week}, \textit{month}, or \textit{year} (or their plural forms). The keyword \textit{next} can be used as a synonym of \texttt{+ 1}.

Examples

In typical usage, you run \texttt{at} and input commands that you want executed at a particular time, followed by EOF.

```bash
$ at 1:00 am tomorrow
at> ./total_up > output
at> mail joe < output
at> <EOF> Entered by pressing Ctrl-D
job 1 at 2003-03-19 01:00
```

The two commands could also be placed in a file and submitted as follows:

```bash
$ at 1:00 am tomorrow < scriptfile
```

More examples of syntax follow. Note that the first two commands here are equivalent:

```bash
$ at 1945 December 9
$ at 7:45pm Dec 9
$ at 3 am Saturday
$ at now + 5 hours
$ at noon next day
```
atd

atd options

System administration command. Normally started in a system startup file. Execute jobs queued by the *at* command.

Options

- `-b n`
 - Wait at least *n* seconds after beginning one job before beginning the next job. Default is 60.

- `-d`
 - Print error messages to standard error instead of using *syslog*.

- `-l average`
 - When system load average is higher than *average*, wait to begin a new job. Default is 0.8.

- `-n`
 - Don’t fork. Run in foreground.

- `-s`
 - Process queue once, then exit.

atq

atq [options]

List the user’s pending jobs, unless the user is a privileged user; in that case, list everybody’s jobs. Same as *at -l*, and related to *batch* and *atrm*.

Options

- `-q queue`
 - Query only the specified queue and ignore all other queues.

- `-V`
 - Print the version number.

atrm

atrm [option] job [job...]

Delete jobs that have been queued for future execution. Same as *at -d*.

Option

- `-V`
 - Print the version number and then exit.

autoconf

autoconf [options] [template_file]

Generate a configuration script from *m4* macros defined in *template_file*, if given, or in a *configure.ac* or *configure.in* file in the current working directory. The generated script is almost invariably called *configure*.

Options

- `-d`, `--debug`
 - Don’t remove temporary files.

- `-f`, `--force`
 - Replace files generated previously by *autoconf*.

- `-h`, `--help`
 - Print help message, then exit.
autoheader

-i, --initialization
 When tracing calls with the -t option, report calls made during
 initialization.
-o file, --output=file
 Save output to file.
-t macro, --trace=macro
 Report the list of calls to macro.
-v, --verbose
 Verbosely print information about the progress of autoconf.
-B dir, --prepend-include=dir
 Prepend directory dir to the search path.
-I dir, --include=dir
 Append directory dir to the search path.
-V, --version
 Print version number, then exit.
-W category, --warnings=category
 Print any warnings related to category. Accepted categories are:
 cross
 Cross compilation.
 obsolete
 Obsolete constructs.
 syntax
 Questionable syntax.
 all
 All warnings.
 no-category
 Turn off warnings for category.
 none
 Turn off all warnings.
 error
 Treat warnings as errors.

autoheader [options] [template_file]

GNU autoheader tool. Generate a template file of C #define state-
ments from m4 macros defined in template_file, if given, or in a
configure.ac or configure.in file in the current working directory.
The generated template file is almost invariably called config.h.in.

Options
-d, --debug
 Don’t remove temporary files.
-f, --force
 Replace files generated previously by autoheader.
-h, --help
 Print help message, then exit.
automake

-\(o \) file, \(--output=file\)
 Save output to file.

-\(v \), \(--verbose\)
 Verbosely print information about the progress of \texttt{autoheader}.

-\(B \ dir, \ --prepend-include=dir\)
 Prepend directory \texttt{dir} to the search path.

-\(I \ dir, \ --include=dir\)
 Append directory \texttt{dir} to the search path.

-\(V \), \(--version\)
 Print version number, then exit.

-\(W \ category, \ --warnings=category\)
 Print any warnings related to \texttt{category}. Accepted categories are:
 - obsolete
 Obsolete constructs.
 - all
 All warnings.
 - no-category
 Turn off warnings for \texttt{category}.
 - none
 Turn off all warnings.
 - error
 Treat warnings as errors.

\texttt{automake} [\texttt{options}] [\texttt{template_file}]

GNU \texttt{automake} tool. Create GNU standards-compliant \texttt{Makefile.in}
files from \texttt{Makefile.am} template files and can be used to ensure
that projects contain all the files and install options required to be
standards-compliant. Note that versions 1.4 and 1.6 differ enough
that many distributions include an \texttt{automake14} package for back-
ward compatibility.

\textbf{Options}

\(-a, \ --add-missing\)
 Add any missing files that \texttt{automake} requires to the directory
 by creating symbolic links to \texttt{automake}'s default versions.

\(-c, \ --copy\)
 Used with the \texttt{-a} option. Copy missing files instead of creating
 symbolic links.

\(--cygnus\)
 Specifies project has a Cygnus-style source tree.

\(-f, \ --force-missing\)
 Used with the \texttt{-a} option. Replace required files even if a local
 copy already exists.

\(--foreign\)
 Treat project as a non-GNU project. Check only for elements
 required for proper operation.
autoreconf

--gnu
 Treat project as a GNU project with the GNU project structure.

--gnits
 A stricter version of --gnu, performing more checks to comply with GNU project structure rules.

--help
 Print help message, then exit.

-i, --ignore-deps
 Disable automatic dependency tracking.

--libdir=dir
 Used with the -a option. Search in directory dir for default files.

--no-force
 Update only Makefile.in files that have updated dependents.

-v, --verbose
 List files being read or created by automake.

--version
 Print version number, then exit.

-Werror
 Treat warnings as errors.

autoreconf autoreconf [options]
GNU autoreconf tool. Update configure scripts by running autoconf, autoheader, aclocal, automake, and libtoolize in specified directories and subdirectories. This command is seldom invoked manually. It is usually called automatically from other autoconf tools.

Options
-d, --debug
 Don’t remove temporary files.

-f, --force
 Remake all configure scripts, even when newer than their template files.

-h, --help
 Print help message, then exit.

-i, --install
 Add any default files missing from package by copying versions included with autoconf and automake.

-s, --symlink
 Used with the -i option. Create symbolic links to default files instead of copying them.

-v, --verbose
 Verbosely print information about the progress of autoreconf.
autoscan

autoscan [options] [directory]

GNU autoscan tool. Create or maintain a preliminary configure.ac file named configure.scan based on source files in specified directory, or current directory if none given. If a configure.ac file already exists, autoconf will check it for completeness and print suggestions for correcting any problems it finds.

Options
- -d, --debug
 Don’t remove temporary files.
- -h, --help
 Print help message, then exit.
- -v, --verbose
 Verbosely print information about the progress of autoscan.
- I dir, --include=dir
 Search in directory dir for input files. Use multiple times to add multiple directories.
- B dir, --prepend-include=dir
 Search dir for input files before searching in other directories. Use multiple times to add multiple directories.
- V, --version
 Print version number, then exit.

- I dir, --include=dir
 Search in directory dir for input files.
- V, --version
 Print version number, then exit.
- W category, --warnings=category
 Print any warnings related to category. Accepted categories are:
 cross
 Cross compilation.
 obsolete
 Obsolete constructs.
 syntax
 Questionable syntax.
 all
 All warnings.
 no-category
 Turn off warnings for category.
 none
 Turn off all warnings.
 error
 Treat warnings as errors.
autoupdate

autoupdate [options] [file]

GNU autoupdate tool. Update the configure template file file, or configure.ac if no file is specified. This command is seldom invoked manually. It is usually called automatically from other autoconf tools.

Options
- `-d`, `--debug`
 Don’t remove temporary files.
- `-f`, `--force`
 Remake all configure scripts, even when newer than their template files.
- `-h`, `--help`
 Print help message, then exit.
- `-v`, `--verbose`
 Verbosely print information about the progress of autoupdate.
- `-I dir`, `--include=dir`
 Search in directory dir for input files.
- `-V`, `--version`
 Print version number, then exit.

badblocks

badblocks [options] device block-count

System administration command. Search device for bad blocks. You must specify the number of blocks on the device (block-count). e2fsck and mke2fs will invoke badblocks automatically when given the `-c` option.

Options
- `-b blocksize`
 Expect blocksize-byte blocks.
- `-c blocksize`
 Test blocksize-byte blocks at a time. Default is 16.
- `-e number`
 Abort test after finding specified number of blocks.
- `-f`
 Force a read/write or nondestructive write test on a mounted device. Use only when /etc/mtab incorrectly reports a device as mounted.
- `-i file`
 Skip test of known bad blocks listed in file.
- `-n`
 Perform a nondestructive test by writing to each block and then reading back from it while preserving data.
- `-o file`
 Direct output to file.
- `-p number`
 Repeat search of device until no new bad blocks have been found in number passes. Default is 0.
-s Show block numbers as they are checked.
- t pattern
 Test blocks by reading and writing the specified pattern. You may specify pattern as a positive integer or as the word random. If you specify multiple patterns, badblocks tests all blocks with one pattern, and then tests all blocks again with the next pattern. Read-only mode accepts only one pattern. It does not accept random.
-v Verbose mode.
-w Test by writing to each block and then reading back from it. This option will destroy data. Don’t use it on devices that contain filesystems.

base64
base64 [option] [file]
Use base64 encoding to encode or decode the specified file and print the results to standard output. With no file or with a dash (-), read the data from standard input.

Options
-d, --decode
 Decode the data.
--help
 Print help message and exit.
-i, --ignore-garbage
 When decoding, ignore nonalphabetic characters except newline.
--version
 Print version information and exit.
w cols, --wrap=cols
 When encoding, wrap lines after cols characters. The default is 76, while 0 disables line wrap.

basename
basename name [suffix]
basename option
Remove leading directory components from a path. If suffix is given, remove that also. The result is printed to standard output. This is useful mostly in a script when you need to work with a filename but can’t predict its full path in every instance.

Options
--help
 Print help message and then exit.
--version
 Print the version number and then exit.
bash

Examples

```
$ basename /usr/lib/libm.a
libm.a

$ basename /usr/lib/libm.a .a
libm
```

bash
```
bash [options] [file [arguments]]
```

sh
```
sh [options] [file [arguments]]
```

Standard Linux shell, a command interpreter into which all other commands are entered. For more information, see Chapter 6.

batch
```
batch
```

Execute commands entered on standard input. Commands are run when the system load permits (when the load average falls below 0.8). Very similar to at, but takes no parameters on the command line. See at for details.

bc
```
bc [options] [files]
```

bc is a language (and compiler) whose syntax resembles that of C, but with unlimited-precision arithmetic. bc consists of identifiers, keywords, and symbols, which are briefly described in the following entries. Examples are given at the end.

Interactively perform arbitrary-precision arithmetic or convert numbers from one base to another. Input can be taken from files or read from the standard input. To exit, type quit or EOF.

Options

- `-h`, `--help`

 Print help message and exit.

- `-i`, `--interactive`

 Interactive mode.

- `-l`, `--mathlib`

 Make functions from the math library available.

- `-s`, `--standard`

 Ignore all extensions, and process exactly as in POSIX.

- `-w`, `--warn`

 When extensions to POSIX bc are used, print a warning.

- `-q`, `--quiet`

 Do not display welcome message.

- `-v`, `--version`

 Print version number.

Identifiers

An identifier is a series of one or more characters. It must begin with a lowercase letter but may also contain digits and underscores. No uppercase letters are allowed. Identifiers are used as
names for variables, arrays, and functions. Variables normally store arbitrary-precision numbers. Within the same program you may name a variable, an array, and a function using the same letter. The following identifiers would not conflict:

\[x \quad \text{Variable } x. \]
\[x[i] \quad \text{Element } i \text{ of array } x. \text{ } i \text{ can range from 0 to 2047 and can also be an expression.} \]
\[x(y, z) \quad \text{Call function } x \text{ with parameters } y \text{ and } z. \]

Input-output keywords

- **ibase**, **obase**, **scale**, and **last** store a value. Typing them on a line by themselves displays their current value. You can also change their values through assignment. The letters A–F are treated as digits whose values are 10–15.

\[\text{ibase = } n \quad \text{Numbers that are input (e.g., typed) are read as base } n \text{ (default is 10).} \]
\[\text{obase = } n \quad \text{Numbers that are displayed are in base } n \text{ (default is 10). Note: once \text{ibase} has been changed from 10, use A to restore \text{ibase} or \text{obase} to decimal.} \]
\[\text{scale = } n \quad \text{Display computations using } n \text{ decimal places (default is 0, meaning that results are truncated to integers). \text{scale} is normally used only for base-10 computations.} \]
\[\text{last} \quad \text{Value of last printed number.} \]

Statement keywords

A semicolon or a newline separates one statement from another. Curly braces are needed when grouping multiple statements:

- **if** \((\text{rel-expr}) \text{ [statements]} \quad \text{[else [statements]]}\)

Do one or more statements if relational expression \(\text{rel-expr}\) is true. Otherwise, do nothing, or if else (an extension) is specified, do alternative statements. For example:

\[\text{if } (x = -y) \{ i = i + 1 \} \text{ else } \{ i = i - 1 \} \]

- **while** \((\text{rel-expr}) \text{ [statements]}\)

Repeat one or more statements while \(\text{rel-expr}\) is true. For example:

\[\text{while } (i>0) \{ p = p*n; q = a/b; i = i-1 \} \]

- **for** \((\text{expr1}; \text{rel-expr}; \text{expr2}) \text{ [statements]}\)

Similar to while. For example, to print the first 10 multiples of 5, you could type:

\[\text{for } (i=1; i<10; i++) \text{ i*5} \]
GNU bc does not require three arguments to for. A missing argument 1 or 3 means that those expressions will never be evaluated. A missing argument 2 evaluates to the value 1.

break
Terminate a while or for statement.

print list
GNU extension. It provides an alternate means of output. list consists of a series of comma-separated strings and expressions; print displays these entities in the order of the list. It does not print a newline when it terminates. Expressions are evaluated, printed, and assigned to the special variable last. Strings (which may contain special characters—i.e., characters beginning with \) are simply printed. Special characters can be:

- a Alert or bell
- b Backspace
- f Form feed
- n Newline
- r Carriage return
- q Double quote
- t Tab
- \ Backslash

continue
GNU extension. When within a for statement, jump to the next iteration.

halt
GNU extension. Cause the bc processor to quit when executed.

quit
GNU extension. Cause the bc processor to quit whether line is executed or not.

limits
GNU extension. Print the limits enforced by the local version of bc.

Function keywords
define f(args) {
Begin the definition of function f having the arguments args. The arguments are separated by commas. Statements follow on successive lines. End with }.

auto x, y
Set up x and y as variables local to a function definition, initialized to 0 and meaningless outside the function. Must appear first.

return(expr)
Pass the value of expression expr back to the program. Return 0 if (expr) is left off. Used in function definitions.
bc

\texttt{sqrt(expr)}

Compute the square root of expression \textit{expr}.

\texttt{length(expr)}

Compute how many significant digits are in \textit{expr}.

\texttt{scale(expr)}

Same as \texttt{length}, but count only digits to the right of the decimal point.

\texttt{read()}

GNU extension. Read a number from standard input. Return value is the number read, converted via the value of \texttt{ibase}.

\textbf{Math library functions}

These are available when \texttt{bc} is invoked with -l. Library functions set \texttt{scale} to 20:

\texttt{s(angle)}

Compute the sine of \textit{angle}, a constant or expression in radians.

\texttt{c(angle)}

Compute the cosine of \textit{angle}, a constant or expression in radians.

\texttt{a(n)}

Compute the arctangent of \textit{n}, returning an angle in radians.

\texttt{e(expr)}

Compute e to the power of \textit{expr}.

\texttt{l(expr)}

Compute the natural log of \textit{expr}.

\texttt{j(n, x)}

Compute the Bessel function of integer order \textit{n}.

\textbf{Operators}

These consist of operators and other symbols. Operators can be arithmetic, unary, assignment, or relational:

\textbf{arithmetic}

\begin{itemize}
 \item $+ \ - \ * \ / \ ^\%
\end{itemize}

\textbf{unary}

\begin{itemize}
 \item $- \ ++ \ --$
\end{itemize}

\textbf{assignment}

\begin{itemize}
 \item $= \ += \ -= \ /= \ %= \ ^=$
\end{itemize}

\textbf{relational}

\begin{itemize}
 \item $< \ <= \ > \ >= \ == \ !=$
\end{itemize}

\textbf{Other symbols}

\begin{itemize}
 \item $/ \ ^\$
\end{itemize}

Enclose comments.

\begin{itemize}
 \item $()$ Control the evaluation of expressions (change precedence). Can also be used around assignment statements to force the result to print.
\end{itemize}
bison

{} Use to group statements.
[,] Indicate array index.
"text" Use as a statement to print text.

Examples
Note in these examples that when you type some quantity (a number or expression), it is evaluated and printed, but assignment statements produce no display.

\begin{verbatim}
ibase = 8 Octal input
20 Evaluate this octal number
16 Terminal displays decimal value
obase = 2 Display output in base 2 instead of base 10
20 Octal input
10000 Terminal now displays binary value
ibase = A Restore base-10 input
scale = 3 Truncate results to 3 decimal places
8/7 Evaluate a division
1.001001000 Oops! Forgot to reset output base to 10
obase = 10 Input is decimal now, so A isn’t needed
8/7 1.142 Terminal displays result (truncated)
\end{verbatim}

The following lines show the use of functions:

\begin{verbatim}
define p(r,n){ Function p uses two arguments
 auto v v is a local variable
 v = r^n r raised to the n power
 return(v)} Value returned
scale = 5
x = p(2.5,2) x = 2.5 ^ 2
x Print value of x
6.25
length(x) Number of digits
3
scale(x) Number of places right of decimal point
2
\end{verbatim}

bison [options] file

Given a file containing context-free grammar, convert into tables for subsequent parsing while sending output to file.c. To a large extent, this utility is compatible with yacc, and is in fact named for it. All input files should use the suffix .y; output files will use the original prefix. All long options (those preceded by --) may instead be preceded by +.

Options
-\texttt{-b} prefix, --file-prefix=prefix
 Use prefix for all output files.
-\texttt{-d}, --defines
 Generate file.h, producing \texttt{#define} statements that relate bison’s token codes to the token names declared by the user.
bzip2

-r, --raw
Use bison token numbers, not yacc-compatible translations, in file.h.

-k, --token-table
Include token names and values of YYTOKENTS, YYNTS, YYNRULES, and YYNSTATES in file.c.

-l, --no-lines
Exclude #line constructs from code produced in file.c. (Use after debugging is complete.)

-n, --no-parser
Suppress parser code in output, allowing only declarations. Assemble all translations into a switch statement body and print it to file.act.

-o file, --output-file=file
Output to file.

-p prefix, --name-prefix=prefix
Substitute prefix for yy in all external symbols.

-t, --debug
Compile runtime debugging code.

-v, --verbose
Verbose mode. Print diagnostics and notes about parsing tables to file.output.

-V, --version
Display version number.

-y, --yacc, --fixed-output-files
Duplicate yacc's conventions for naming output files.

bzcmp
bzcmp [options] file1 file2
Apply cmp to the data from files in the bzip2 format without requiring on-disk decompression. See bzip2 and cmp for usage.

bzdiff
bzdiff [options] file1 file2
Apply diff to data from files in the bzip2 format without requiring on-disk decompression. See bzip2 and diff for usage.

bzgrep
bzgrep [options] pattern [file...]
Apply grep to data from files in the bzip2 format without requiring on-disk decompression. See bzip2 and grep for usage.

bzip2
bzip2 [options] filenames
bunzip2 [options] filenames
bzcat [option] filenames
bzzip2recover filename
File compression and decompression utility similar to gzip, but uses a different algorithm and encoding method to get better
bzip2 compression. **bzip2** replaces each file in *filenames* with a compressed version of the file and with a .bz2 extension appended. **bunzip2** decompresses each file compressed by **bzip2** (ignoring other files, except to print a warning). **bzcat** decompresses all specified files to standard output, and **bzip2recover** is used to try to recover data from damaged files.

Additional related commands include **bzcmp**, which compares the contents of bzipped files; **bzdiff**, which creates diff (difference) files from a pair of **bzip** files; **bzgrep**, to search them; and the **bzless** and **bzmore** commands, which apply the **more** and **less** commands to **bzip** output, as **bzcat** does with the **cat** command. See **cat**, **cmp**, **diff**, and **grep** for information on how to use those commands.

Options

- **--** End of options; treat all subsequent arguments as filenames.

- **-d**
 Set block size to $dig \times 100$ KB when compressing, where dig is a single digit from 1 to 9. For **gzip** compatibility, you can use **--fast** as an alias for **-1** and **--best** for **-9**, but they have little effect on the compression speed.

- **-c, --stdout**
 Compress or decompress to standard output.

- **-d, --decompress**
 Force decompression even if invoked by **bzip2** or **bzcat**.

- **-f, --force**
 Force overwrite of output files. Default is not to overwrite. Also forces breaking of hard links to files.

- **-k, --keep**
 Keep input files; don’t delete them.

- **-L, --license, -V, --version**
 Print license and version information, and exit.

- **-q, --quiet**
 Print only critical messages.

- **-s, --small**
 Use less memory, at the expense of speed.

- **-t, --test**
 Check the integrity of the files, but don’t actually compress them.

- **-v, --verbose**
 Verbose mode. Show the compression ratio for each file processed. Add more **-v**s to increase the verbosity.

- **-z, --compress**
 Force compression, even if invoked as **bunzip2** or **bzcat**.

Examples

To produce two files: *fileone.txt.bz2* and *filetwo.ppt.bz2*, while deleting the two original files:

```
  bzip2 fileone.txt filetwo.ppt
```
To produce a single compressed file, `output.bz2`, which can be decompressed to reconstitute the original `fileone.txt` and `filetwo.txt`:

```
 bzip2 -c fileone.txt filetwo.txt > output.bz2
```

The tar command, combined with the `-j` or `--bzip2` option, creates the output file `nutshell.tar.bz2`:

```
 tar -cjf nutshell.tar.bz2 /home/username/nutshell
```

bzless

`bzless [options] file`

Applies `less` to datafiles in the `bzip2` format without requiring on-disk decompression. See `bzip2` and `less` for usage.

bzmore

`bzmore [options] file`

Applies `more` to datafiles in the `bzip2` format without requiring on-disk decompression. See `bzip2` and `more` for usage.

c++

`c++ [options] files`

See `g++`.

c++filt

`c++filt [options] [symbol]`

Decode the specified C++ or Java function name `symbol`, or read and decode symbols from standard input if no symbol is given. This command reverses the name mangling used by C++ and Java compilers to support function overloading, multiple functions that share the same name.

Options

```
 --strip-underscores
 Remove initial underscores from symbol names.

 --help
 Print usage information, then exit.

 --java
 Print names using Java syntax.

 --no-strip-underscores
 Preserve initial underscores on symbol names.

 --format=format
 Expect symbols to have been coded in the specified format.
 Format may be one of the following:

 arm

 edg
 EDG (Intel) compiler.

 gnu
 Gnu compiler (the default).

 gnu-new-abi
 Gnu compiler with the new application binary interface
 (for gcc 3.x.)
```
cal

hp
HP compiler.
lucid
Lucid compiler.

--version
Print version number, then exit.

cal [options] [[day] month] year
Print a 12-month calendar (beginning with January) for the given year, or a one-month calendar of the given month and year. With a day specified as well, print the calendar for that month and year, with the day highlighted. month ranges from 1 to 12. year ranges from 1 to 9999. With no arguments, print a calendar for the current month.

Options
-3 Display the previous, current and next month.
-j Display Julian dates (days numbered 1 to 365, starting from January 1).
-m Display Monday as the first day of the week (the default is Sunday).
-y Display entire year.

Examples
 cal 12 2006
 cal 2006 > year_file

cat [options] [files]
Read (concatenate) one or more files and print them on standard output. Read standard input if no files are specified or if - is specified as one of the files; input ends with EOF. You can use the > operator to combine several files into a new file, or >> to append files to an existing file. When appending to an existing file, use Ctrl-D, the end-of-file symbol, to end the session.

Options
-A, --show-all
Same as -vET.
-b, --number-nonblank
Number all nonblank output lines, starting with 1.
-e Same as -vE.
-E, --show-ends
Print $ at the end of each line.
-m, --number
Number all output lines, starting with 1.
-s, --squeeze-blank
Squeeze down multiple blank lines to one blank line.
cdparanoia

-t Same as -vT.
-T, --show-tabs
 Print TAB characters as ^I.
-u Ignored; kept for Unix compatibility.
-v, --show-nonprinting
 Display control and nonprinting characters, with the exception of LINEFEED and TAB.

Examples

```
cat ch1
Display a file

cat ch1 ch2 ch3 > all
Combine files

cat note5 >> notes
Append to a file

cat > temp1
Create file at terminal. To exit, enter EOF Ctrl-D).

cat > temp2 << STOP
Create file at terminal. To exit, enter STOP.
```

cc

```
c [options] files
See gcc.
```

cdda2wav

```
cdda2wav [options] [files]
Convert Compact Disc Digital Audio (CDDA) to the WAV format.
This process is often called “ripping” a CD-ROM and is generally performed before using an encoder to convert the file to a compressed music format, such as OGG or MP3.
cdda2wav is now generally a symbolic link to icedax.
```

cdparanoia

```
cdparanoia [options] span [outfile]
   
   cdparanoia records Compact Disc audio files as WAV, AIFF, AIFF-C, or raw format files. It uses additional data-verification and sound-improvement algorithms to make the process more reliable and is used by a number of graphical recording programs as a backend. The output is written to outfile if specified; otherwise it is written to one of cdda.wav, cdda.aiff, or cdda.raw depending on the output-format option given.

   The command takes one argument, span, which describes how much of the CD to record. It uses numbers followed by bracketed times to designate track numbers and time within them. For example, the string 1[2:23]-2[5] indicates a recording from the two-minute and twenty-three-second mark of the first track up to the fifth second of the second track. The time format is demarcated by colons, hours:minutes:seconds:.sectors, with the last item, sectors, preceded by a decimal point (a sector is 1/75 of a second). It’s best to put this argument within quotes.

   If you use the -B option, the span argument is not required.
```
Options

-a, --output-aiff
 Output in AIFF-C format.

-A, --analyze-drive
 Analyze and log drive caching, timing and reading. Implies -vQL.

-B, --batch
 Split output into multiple files, one per track. Each file begins
 with the track number. This is the most commonly used flag
 for this command.

-C, --force-cdrom-big-endian
 Force cdparanoia to treat the drive as a big-endian device.

-c, --force-cdrom-little-endian
 Force cdparanoia to treat the drive as a little-endian device.

-d, --force-cdrom-device devicename
 Specify a device name to use instead of the first readable CD-ROM
 available.

-e, --stderr-progress
 Send all progress messages to standard error instead of standard
 output; used by wrapper scripts.

-f, --output-aiff
 Output in AIFF format. The default format is WAV.

-h, --help
 Display options and syntax.

-l, --log-summary [file]
 Write results to file if specified, otherwise to cdparanoia.log.

-L, --log-debug [file]
 Write device autosensing and debugging output to file if specified,
 otherwise to cdparanoia.log.

-p, --output-raw
 Output headerless raw data.

-R, --output-raw-big-endian
 Output raw data in big-endian byte order.

-r, --output-raw-little-endian
 Output raw data in little-endian byte order.

-Q, --query
 Display CD-ROM table of contents and quit.

-q, --quiet
 Quiet mode.

-S, --force-read-speed n
 Set the read speed to n on drives that support it. This is useful
 if you have a slow hard disk or not much RAM.

-s, --search-for-drive
 Search for a drive, even if /dev/cdrom exists.

-V, --version
 Print version information and quit.
-v, --verbose
Verbese mode.

-w, --output-wav
Output in WAV format. This is the default.

-X, --abort-on-skip
If a read fails and must be skipped, skip the entire track and
delete any partially completed output file.

-z, --never-skip[=retries]
If a read fails (for example, due to a scratch in the disc), keep
trying. If you specify a number, cdparanoia will try that
number of times. If you do not, cdparanoia will retry until it
succeeds. The default number of attempts is 20.

Progress symbols
The output during operation of cdparanoia includes both smiley
faces and more standard progress symbols. They are:

:-) Operation proceeding normally.
:-| Operation proceeding normally, but with jitter during reads.
:-/ Read drift.
8-| Repeated read problems in the same place.
>:O SCSI/ATAPI transport error (hardware problem not related to
the disc itself).
>:-(Scratch detected.
>:-(Unable to correct a problem.
8-X Aborted read due to uncorrectable error.
:^D Finished.
Blank space in the progress indicator means that no corrections
were necessary.
- Jitter correction was required.
+ Read errors.
! Errors even after correction; repeated read errors.
e Corrected transport errors.
V An uncorrected error or a skipped read.

cdtao

Write all content specified in description file toc-file to a CD-R disk
drive in one step. This is called disk-at-once (DAO) mode, as
opposed to the more commonly used track-at-once (TAO) mode.
DAO mode allows you to change the length of gaps between tracks
and define data to be written in these gaps (like hidden bonus
tracks or track intros). The toc file can be created by hand or gener-
ated from an existing CD using cdtao’s read-toc command. A cue
file, as generated by other audio programs, can be used instead of a
toc file. The file format for toc files is discussed at length in the
cdtao manpage.
cdrdao

Commands
The first argument must be a command. Note that not all options are available for all commands. Run cdrdao command -h to see the options that apply to a particular command.

blank
Blank a CD-RW. The default is to do minimal blanking; use --blank-mode to change to full blanking.

copy
Copy the CD. If you use a single drive, you will be prompted to insert a CD-R after reading. An image file is created unless you use the --on-the-fly flag and two CD drives.

discid
Display CDDB information.

disk-info
Display information about the CD-R currently in the drive.

drive-info
Display information about the drive.

msinfo
Display multisession information. Useful mostly for wrapper scripts.

read-cd
Read from a CD and create a disk image and toc file that will allow creation of duplicates. Use --datafile to specify a filename.

read-cddb
Check a CDDB server for data about the CD represented by a given toc file; then write that data to the toc file as CD-TEXT data.

read-test
Check the validity of the audio files described in the toc file.

read-toc
Create a toc file from an audio CD.

scanbus
Scan the system bus for devices.

show-data
Print out the data that will be written to the CD-R. Useful for checking byte order.

show-toc
Print a summary of the CD to be created.

simulate
A dry run: do everything except write the CD. Equivalent to write --simulate.

toc-info
Display a summary of the toc file.

toc-size
Display the total toc blocksize.
unlock
Unlock the recorder after a failure. Run this command if you cannot eject the CD after using cdrdao.

write
Write the CD.

Options
--blank-mode mode
Set the blanking mode to full or minimal. The default is minimal.

--buffers n
Set the number of buffers. Since each buffer holds 1 second of data, this is equivalent to setting the number of seconds of data to be buffered. The default is 32; set to a higher number if your read source is unreliable or is slower than the CD-R. The minimum is 10.

--cddb-servers server,server
Enter hosts for servers. Servers may include ports, paths, and proxies; you can list multiple servers separated by spaces or commas.

--cddb-timeout s
Set the timeout for CDDB server connections to s seconds.

--cddb-directory localpath
CDDB data that is fetched will be saved in the directory localpath.

--datafile filename
When used with the read-toc command, this option specifies the datafile placed in the toc file. When used with read-cd and copy, it specifies the name of the image file created.

--device bus,id,logicalunit
Set the SCSI address of the CD-R using the bus number, ID number, and logical-unit number.

--driver driver-id:option-flags
Force cdrdao to use the driver you choose with the driver options named, instead of the driver it autodetects.

--eject
Eject the disc when done.

--force
Override warnings and perform the action anyway.

--keep
On exit, keep any temporary WAV files created.

--keepimage
Keep the image file created during the copy process. Used only with the copy command.

--multi
Record as a multisession disc.
-n Do not wait 10 seconds before writing the disc.

--on-the-fly
Do not create an image file: pipe data directly from source to CD-R.

--overburn
If you are using a disc with more storage space than cdrdao detects, use this option to keep writing even when cdrdao thinks you’re out of space.

--paranoia-mode n
Specify the amount of error correction in the CD read, where n is a value from 0 to 3. 0 is none; 3 is full. Set error correction to a lower number to increase read speed. The default is 3.

--read-raw
Used only with the read-cd command. Write raw data to the image file.

--reload
Allow the drive to be opened before writing, without interrupting the process. Used with simulation runs.

--save
Save current options to the settings file $HOME/.cdrdao.

--session n
Used only with the read-toc and read-cd commands when working with multisession CDs. Specify the number of the session to be processed.

--source-device bus.id.logicalunit
Used only with the copy command and two drives. Set the SCSI address of the source device.

--source-driver driver-id:option-flags
Used only with the copy command. Set the source device driver and flags.

--speed value
Set the write speed to value. The default is the highest available speed; use a lower value if higher values give poor results.

--swap
Swap byte order for all samples.

-v verbose-level
Set the amount of information printed to the screen. 0, 1, and 2 are fine for most users; greater numbers are useful for debugging.

--with-cddb
Use CDDB to fetch information about the disc and save it as CD-TEXT data. Used with the copy, read-toc, and read-cd commands.

Examples
To find devices on the system:

 cdrdao scanbus
To copy from a CD device (at 1,1,0) to a CD-R device (at 1,0,0):
```
cdrecord copy --source 1,1,0 --device 1,0,0 --buffers 64
```

cdrecord
```
cdrecord [options] track1,track2...
```
Record data or audio compact discs. This program normally requires root access. `cdrecord` is now generally a symbolic link to `wodim`.

cfdisk
```
cfdisk [options] [device]
```
System administration command. Partition a hard disk using a full-screen display. Normally, `device` will be `/dev/hda`, `/dev/hdb`, `/dev/sda`, `/dev/sdb`, `/dev/hdc`, `/dev/hdd`, and so on; the default is the first device on the system. See also `fdisk`.

Options
- `-a` Use an arrow on the left side to highlight the currently selected partition, instead of reverse video.
- `-c cylinders` Specify the number of cylinders to use to format the specified device.
- `-g` Ignore driver-provided geometry; guess one instead.
- `-h heads` Specify the number of heads to use to format the specified device.
- `-s sectors` Specify the number of sectors per track to use to format the specified device.
- `-v` Print version number and exit.
- `-z` Do not read the partition table; partition from scratch.
- `-P format` Display the partition table in `format`, which must be `r` (raw data), `s` (sector order), or `t` (table format). See the manpage for the meaning of the fields in the raw format, which shows what will be written by `cfdisk` for each partition. The sector format shows information about the sectors used by each partition. The table format shows the starting and ending head, sector, and cylinder for each partition.

Commands
- `up arrow, down arrow` Move among partitions.
- `left arrow, right arrow` Move among commands at the bottom of the screen.
- `Enter key` Select currently highlighted command or value.
- `b` Toggle flag indicating whether selected partition is bootable.
chage

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Delete partition (allow other partitions to use its space).</td>
</tr>
<tr>
<td>g</td>
<td>Alter the disk’s geometry. Prompt for what to change: cylinders, heads, or sectors (c, h, or s, respectively).</td>
</tr>
<tr>
<td>h</td>
<td>Help.</td>
</tr>
<tr>
<td>m</td>
<td>Attempt to ensure maximum usage of disk space in the partition.</td>
</tr>
<tr>
<td>n</td>
<td>Create a new partition. Prompt for more information.</td>
</tr>
<tr>
<td>p</td>
<td>Print the partition table to the screen or a file. Possible formats are the same as for the -P option.</td>
</tr>
<tr>
<td>q</td>
<td>Quit without saving information.</td>
</tr>
<tr>
<td>t</td>
<td>Prompt for a new filesystem type, and change to that type.</td>
</tr>
<tr>
<td>u</td>
<td>Change the partition-size units. The choice of units rotates from megabytes to sectors to cylinders and back.</td>
</tr>
<tr>
<td>W</td>
<td>Save information. Must be uppercase, to prevent accidental writing.</td>
</tr>
</tbody>
</table>

chage [options] user

Change information about user password expirations. If run with no option flags, chage prompts for values to be entered; you may also use option flags to change or view information. Requires a shadow password file. An unprivileged user can only run chage with the -l option.

Options

- **-d lastday, --lastday=lastday**
 Date of last password change. This may be expressed as a date in YYYY-MM-DD format, or as the number of days between January 1, 1970 and the last password change.

- **-E expiratedate, --expiratedate=expiratedate**
 Set the date when the account will be locked. This is not a date for password expiration, but for account expiration. It may be expressed in YYYY-MM-DD format or as a number of days since January 1, 1970.

- **-I inactivedays, --inactive=inactivedays**
 If a password expires and the user does not log in for this number of days, the account will be locked and the user must contact a system administrator before logging in. Set to 0 to disable the feature.

- **-l, --list**
 This flag is used without any others and causes chage to display the current password expiration attributes for the user.

- **-m mindays, --mindays=mindays**
 Specify the minimum number of days between password changes. Default is zero, meaning that the user may change the password at any time.
chattr

chattr [options] mode files
Modify file attributes. Specific to Linux Second and Third Extended Filesystems (ext2 and ext3). Like symbolic chmod, chattr specifies attributes with +, - , and = but it operates on extended file attributes (see the upcoming section “Attributes”). mode is in the form opcode attribute. See also lsattr.

Options
- R Modify directories and their contents recursively.
- f Suppress most error messages.
- V Verbose; print modes of attributes after changing them.
- v version
 Set the file’s version.

Opcodes
+ Add attribute.
- Remove attribute.
= Assign attributes (removing unspecified attributes).

Attributes
A Don’t update access time on modify.
a Append only for writing. Can be set or cleared only by a privileged user.
c Compressed.
D Write changes synchronously to disk.
d No dump.
H The file’s blocks are stored in units of the filesystem block-size, not of sectors. The file is or was at one time larger than 2 TB.
I A directory is indexed using hashed trees.
i Immutable. Can be set or cleared only by a privileged user. A file marked as immutable cannot be deleted, renamed, modified, or linked to until the setting has been cleared.
j Journalled file. This is useful only in cases where you are using an ext3 filesystem mounted with the data="ordered" or data="writeback" attributes. The data="journal" option for the filesystem causes this operation to be performed for all files in the system and makes this option irrelevant.
S Synchronous updates.
Secure deletion. The contents are zeroed on deletion, and the file cannot be undeleted or recovered in any way.

Undeletable. This causes a file to be saved even after it has been deleted, so that a user can undelete it later.

Example

chattr +a myfile As superuser
chkconfig

chkconfig [options] [service [flag]]

System administration command. Manipulate symbolic links in the
/etc/rc.d/rc[0–6].d directories. chkconfig manages which services
will run in a specified runlevel. Valid flags are on, off, reset or
resetpriorities to reset the service to default on/off or priorities
given in its initialization script in /etc/rc.d/init.d. This command is
available in Fedora and RedHat-style distributions, including SUSE
and SUSE-based distributions. To specify defaults in a standard
initialization script, add a comment line to the script beginning
with chkconfig: followed by the runlevels in which the service
should run, and the start and kill priority numbers to assign—e.g.,
chkconfig: 2345 85 15. To override defaults specified in init files,
you can create a file with the same service name in /etc/chkconfig.d.
Place a chkconfig line in this override file. This allows you to safely
customize package maintained services.

Options

--add service
Create a start or kill symbolic link in every runlevel for the
specified service according to default behavior specified in
the service’s initialization script.

--del service
Remove entries for specified service from all runlevels.
chmod

--level numbers
Specify by number the runlevels to change. Provide numbers as a numeric string: e.g., 016 for levels 0, 1, and 6. Use this to override specified defaults.

--list [service]
Print whether the specified service is on or off in each level. If no service is specified, print runlevel information for all services managed by chkconfig.

--override service
If service is configured according to defaults in /etc/rc.d/init.d and an override file exists in /etc/chkconfig.d, reconfigure service to match the override settings.

chmod

chmod [options] mode files
chmod [options] --reference=filename files
Change the access mode (permissions) of one or more files. Only the owner of a file or a privileged user may change the mode. mode can be numeric or an expression in the form of who opcode permission. who is optional (if omitted, the default is a); choose only one opcode. Separate multiple modes by commas.

Options
-c, --changes
Print information about files that are changed.
-f, --silent, --quiet
Do not notify user of files that chmod cannot change.
--help
Print help message and then exit.
--no-preserve-root
Do not treat / as special. This is the default behavior.
--preserve-root
Do not operate recursively on /.
-R, --recursive
Traverse subdirectories recursively, applying changes.
--reference=filename
Change permissions to match those associated with filename.
-v, --verbose
Print information about each file, whether changed or not.
--version
Print version information and then exit.

Who
u User.
g Group.
o Other.
a All (default).
Opcode

- Add permission.
- Remove permission.
= Assign permission (and remove permission of the unspecified fields).

Permissions

r Read.
w Write.
x Execute.
X Execute if file is a directory or already has execute permission for some user.
s Set user (or group) ID.
t Sticky bit; used on directories to prevent removal of files by nonowners.
u User’s present permission.
g Group’s present permission.
o Other’s present permission.

Alternatively, specify permissions by a three-digit octal number. The first digit designates owner permission; the second, group permission; and the third, other’s permission. Permissions are calculated by adding the following octal values:

- 4 Read.
- 2 Write.
- 1 Execute.

Note that a fourth digit may precede this sequence. This digit assigns the following modes:

- 4 Set user ID on execution to grant permissions to process based on the file’s owner, not on permissions of the user who created the process.
- 2 Set group ID on execution to grant permissions to process based on the file’s group, not on permissions of the user who created the process.
- 1 Set sticky bit.

Examples

Add execute-by-user permission to file:

```
chmod u+x file
```

Either of the following assigns read/write/execute permission by owner (7), read/execute permission by group (5), and execute-only permission by others (1) to file:

```
chmod 751 file
chmod u=rwx,g=rx,o=x file
```
Any one of the following assigns read-only permission to file for everyone:

```
chmod =r file
chmod 444 file
chmod a-wx,a+r file
```

The following makes the executable setuid, assigns read/write/execute permission by owner, and assigns read/execute permission by group and others:

```
chmod 4755 file
```

chown

```
chown [options] newowner files
chown [options] --reference=filename files
```

Change the ownership of one or more files to newowner. newowner is either a user ID number or a login name located in /etc/passwd. **chown** also accepts users in the form newowner:newgroup or newowner.newgroup. The last two forms change the group ownership as well. If no owner is specified, the owner is unchanged. With a period or colon but no group, the group is changed to that of the new owner. Only the current owner of a file or a privileged user may change the owner.

Options

- `-c`, `--changes`
 Print information about files that are changed.

- `--dereference`
 Follow symbolic links.

- `-f`, `--silent`, `--quiet`
 Do not print error messages about files that cannot be changed.

- `--from=currown:currgroup`
 Only change owner and/or group if the current owner and group match those specified in `--from`. If `currown` or `currgroup` is omitted, a match is not required for that attribute.

- `-h`, `--no-dereference`
 Change the ownership of each symbolic link (on systems that allow it), rather than the referenced file.

- `-v`, `--verbose`
 Print information about all files that **chown** attempts to change, whether or not they are actually changed.

- `-R`, `--recursive`
 Traverse subdirectories recursively, applying changes.

- `-H` With `-R`, traverse symbolic link to a directory.

- `-L` With `-R`, traverse every symbolic link that leads to a directory.

- `-P` With `-R`, do not traverse any symbolic links. This is the default.
chrt

--reference=filename
Change owner to the owner of filename instead of specifying a new owner explicitly.

--help
Print help message and then exit.

--version
Print version information and then exit.

chpasswd

chpasswd [options]
System administration command. Change user passwords in a batch. chpasswd accepts input in the form of one username:password pair per line. Unless the -e option is specified, password is encrypted before being stored. This command doesn’t use PAM. It updates the /etc/passwd and /etc/shadow files.

Option
- -e, --encrypted
 Passwords given are already encrypted.
- -m, --md5
 Use MD5 Encryption

chroot

chroot newroot [command]
System administration command. Change root directory for command or, if none is specified, for a new copy of the user’s shell. This command or shell is executed relative to the new root. The meaning of any initial / in pathnames is changed to newroot for a command and any of its children. In addition, the initial working directory is newroot. This command is restricted to privileged users.

chrt

chrt [options] [prio] [pid | command ...]
Set or retrieve the real-time scheduling properties of a given process, or run a new process with the given real-time scheduling properties.

Options
- -b, --batch
 Use the batch scheduling policy.
- -f, --fifo
 Use the FIFO (first-in, first-out) scheduling policy.
- -h, --help
 Display usage information and then exit.
- -m, --max
 Show the minimum and maximum valid scheduling priorities.
- -o, --other
 Use the normal (called “other”) scheduling policy.
chsh

-p, --pid
Operate on the given, existing PID and do not execute a new command.

-r, --rr
Use the round-robin scheduling policy.

-v, --version
Display version information and then exit.

chsh [options] [username]
Change your login shell, either interactively or on the command line. Warn if shell does not exist in the file /etc/shells. Specify the full path to the shell. chsh prompts for your password. Only a privileged user can change another user’s shell.

Options
-l, --list-shells
Print valid shells, as listed in /etc/shells, and then exit.

-s shell, --shell shell
Specify new login shell.

-u, --help
Print help message and then exit.

-v, --version
Print version information and then exit.

Example
chsh -s /bin/tcsh

chvt

Switch to virtual terminal N (that is, switch to /dev/ttyN). If you have not created /dev/ttyN, it is created when you run this command. There are keyboard shortcuts for this functionality as well. From a graphical desktop, you can press Ctrl-Alt-F1 through F12 to switch to different virtual terminals. In text mode, you can skip the Ctrl key and just use Alt-F1 through F12. To switch back to graphical mode, use Alt-F7.

cksum [files]
Compute a cyclic redundancy check (CRC) checksum for all files; this is used to ensure that a file was not corrupted during transfer. Read from standard input if the character - is given or no files are given. Display the resulting checksum, the number of bytes in the file, and (unless reading from standard input) the filename. Also see md5sum and sha1sum.

clear
Clear the terminal display. Equivalent to pressing Ctrl-L.
cmp

cmp [options] file1 file2 [skip1 [skip2]]

Compare file1 with file2. Use standard input if file1 is - or missing.
This command is normally used for comparing binary files,
although files can be of any type. (See also diff.) skip1 and skip2 are
optional offsets in the files at which the comparison is to start.

Options

-1 num, --ignore-initial=num
 Ignore the first num bytes of input. num can be given as
 num1: num2 to skip a different number of bytes in file1 and
 file2.

-1 --verbose
 Print offsets and codes of all differing bytes.

-s --quiet, --silent
 Work silently; print nothing, return an exit code:
 0 Files are identical.
 1 Files are different.
 2 Files are inaccessible.

Example

Print a message if two files are the same (exit code is 0):

 cmp -s old new && echo 'no changes'

col

col [options]

A postprocessing filter that handles reverse linefeeds and escape
characters, allowing output from tbl or nroff to appear in reasonable
form on a terminal.

Options

-b Ignore backspace characters; helpful when printing manpages.
-f Process half-line vertical motions, but not reverse line motion.
 (Normally, half-line input motion is displayed on the next full
 line.)

-1 n
 Buffer at least n lines in memory. The default buffer size is 128
 lines.

-p Do not filter out unrecognized control sequences, but pass
 them through.

-x Normally, col saves printing time by converting sequences of
 spaces to tabs. Use -x to suppress this conversion.

Examples

Run myfile through tbl and nroff, then capture output on screen by
filtering through col and more:

 tbl myfile | nroff | col | more
colcrt

Save manpage output for the `ls` command in `out.print`, stripping out backspaces (which would otherwise appear as `^H`):

```
man ls | col -b > out.print
```

colcrt

```
colcrt [options] [files]
```

A postprocessing filter that handles reverse linefeeds and escape characters, allowing output from `tbl` or `nroff` to appear in reasonable form on a terminal. Put half-line characters (e.g., subscripts or superscripts) and underlining (changed to dashes) on a new line between output lines.

Options

- Do not underline.
-2 Double space by printing all half-lines to make subscripts and superscripts visible.

colrm

```
colrm [start] [stop]
```

Remove specified columns from a file, where a column is a single character in a line. Read from standard input and write to standard output. Columns are numbered starting with 1. Begin deleting columns at (including) the `start` column, and stop at (including) the `stop` column; if `stop` is not given, delete all columns to the end. Entering a tab increments the column count to the next multiple of either the `start` or `stop` column; entering a backspace decrements it by 1.

Example

```
colrm 3 5 < test1 > test2
```

column

```
column [options] [files]
```

Format input from one or more files into columns, filling rows first. Read from standard input if no files are specified.

Options

-c `num`

Format output into `num` columns.

-s `char`

Delimit table columns with `char`. Meaningful only with `-t`.

-t

Format input into a table. Delimit with whitespace, unless an alternate delimiter has been provided with `-s`.

-x

Fill columns before filling rows.

comm

```
comm [options] file1 file2
```

Compare lines common to the sorted files `file1` and `file2`. Output is in three columns, from left to right: lines unique to `file1`, lines unique to `file2`, and lines common to both files. `comm` is similar to `diff` in that both commands compare two files. But `comm` can also
be used like `uniq`; `comm` selects duplicate or unique lines between two sorted files, whereas `uniq` selects duplicate or unique lines within the same sorted file.

Options

- `-num`
 Suppress printing of column `num`. Multiple columns may be specified and should not be space-separated.

- `--help`
 Print help message and exit.

- `--version`
 Print version information and exit.

Example

Compare two lists of top-10 movies, and display items that appear in both lists:

```
comm -12 siskel_top10 ebert_top10
```

`cp`

```
cp [options] file1 file2
cp [options] files directory
```

Copy `file1` to `file2`, or copy one or more `files` to the same names under `directory`. If the destination is an existing file, the file is overwritten; if the destination is an existing directory, the file is copied into the directory (the directory is not overwritten).

Options

- `-a`, `--archive`
 Preserve attributes of original files where possible. The same as `-dpr`.

- `-b`, `--backup[=control]`
 Back up files to be overwritten. As `-b`, takes no argument. For `--backup`, control specifies the type of backup and can also be set with the environment variable `VERSION-CONTROL`. The default is `existing`. Valid arguments are:

 - `t, numbered`
 Always make numbered backups.

 - `nil, existing`
 Make numbered backups of files that already have them; otherwise, make simple backups.

 - `never, simple`
 Always make simple backups.

 - `none, off`
 Never make backups, even if `--backup` is specified.

- `-c`
 The same as `--preserve=context`.

- `--copy-contents`
 Copy contents of special files when recursive.

- `-d`
 The same as `--no-dereference --preserve=links`.
-f, --force
Remove an existing file in the destination if it can’t be opened.
See also --remove-destination.
-H --interactive
Follow command-line symbolic links in the source.
-i, --interactive
Prompt before overwriting destination files. On most systems,
this flag is turned off by default except for the root user, who
is normally prompted before overwriting files.
-l --link
Make hard links, not copies, of nondirectories.
-L, --dereference
Always follow symbolic links.
--no-preserve[=attrs]
Do not preserve the specified attributes. See --preserve for the
list of possible attributes.
-p The same as --preserve=mode,ownership,timestamps.
--preserve[=attrs]
Preserve the specified attributes. By default, preserve owner-
ship, permissions, and timestamps. Other possible attributes
include context, links, all.
-P, --no-dereference
Never follow symbolic links.
--parents
Preserve intermediate directories in source. The last argument
must be the name of an existing directory. For example, the
command:
 cp --parents jphekman/book/ch1 newdir
copies the file jphekman/book/ch1 to the file newdir/jphekman/
book/ch1, creating intermediate directories as necessary.
-r, -R, --recursive
Copy directories recursively.
--remove-destination
Remove existing destination files without attempting to open
them. See also --force.
--symbolic-link
Make symbolic links instead of copying. Source filenames
must be absolute.
-S backup-suffix, --suffix=backup-suffix
Set suffix to be appended to backup files. This may also be set
with the SIMPLE_BACKUP_SUFFIX environment variable.
The default is ~. You need to explicitly include a period if you
want one before the suffix (for example, specify .bak, not bak).
--sparse=[always|auto|never]
Handle files that have “holes” (are defined as a certain size but
have less data). always creates a sparse file, auto creates one if
the input file is sparse (the default), and never creates a non-
sparse file without holes.
--strip-trailing-slashes
 Remove trailing slashes from each source file argument.

-u, --update
 Do not copy a file to an existing destination with the same or
 newer modification time.

-v, --verbose
 Before copying, print the name of each file.

-x, --one-file-system
 Stay on the current filesystem.

Example
Copy the contents of the guest directory recursively into the /archives
/guest/ directory, and display a message for each file copied:

cd /archives && cp -av /home/guest guest
-a, --reset Access times of input files after reading them.
-A, --append
Append files to an existing archive, which must be a disk file.
Specify this archive with -O or -F.
-b, --swap
Swap bytes and half-words to convert between big-endian and
little-endian 32-bit integers.
-B Block input or output using 5120 bytes per record (default is
512 bytes per record).
--block-size=size
Set input or output size to size × 512 bytes.
-c Read or write header information as ASCII characters, which
is useful when source and destination machines are different
types.
-C n, --io-size=n
Like -B, but block size can be any positive integer n.
-d, --make-directories
Create directories as needed.
-E file, --pattern-file=file
Extract from the archives filenames that match patterns in file.
-f, --nonmatching
Reverse the sense of copying; copy all files except those that
match patterns.
-F file, --file=file
Use file as the archive, not stdin or stdout. file can reside on
another machine, if given in the form [user@]hostname:file
(where user@ is optional).
--force-local
Assume that file (provided by -F, -I, or -O) is a local file, even
if it contains a colon (:) indicating a remote file.
-H type, --format=type
Use type format. Default for copy-out is bin; default for copy-
in is autodetection of the format. Valid formats (all caps also
accepted) are:
bin
Binary.
oldc
Old (POSIX.1) portable format.
newc
New (SVR4) portable format.
crc
New (SVR4) portable format with checksum added.
tar
Tar.
Chapter 3: Linux Commands

cpio

ustar
 POSIX.1 tar (also recognizes GNU tar archives).

hpodc
 HP-UX portable format.

-I file
 Read file as an input archive. May be on a remote machine
 (see -F).

-k
 Ignored. For compatibility with other versions of cpio.

-l, --link
 Link files instead of copying.

-L, --dereference
 Follow symbolic links.

-m, --preserve-modification-time
 Retain previous file modification time.

-M msg, --message=msg
 Print msg when switching media, as a prompt before switching
to new media. Use variable %d in the message as a numeric ID
for the next medium. -M is valid only with -I or -O.

-n, --numeric-uid-gid
 When verbosely listing contents, show userID and group ID
 numerically.

--no-absolute-filenames
 Create all copied-in files relative to the current directory.

--no-preserve-owner
 Make all copied files owned by yourself, instead of the owner
 of the original. Can be used only if you are a privileged user.
 Valid in copy-in and pass-through modes.

-O file
 Archive the output to file, which may be a file on another
 machine (see -F).

--only-verify-crc
 For a CRC-format archive, verify the CRC of each file; don’t
 actually copy the files in.

--quiet
 Don’t print the number of blocks copied.

-r, --rename
 Rename files interactively.

-R [user][:group], --owner [user][:group]
 Reassign file ownership and group information to the user’s
 login ID (privileged users only).

--rsh-command=cmd
 Use the specified command to communicate with remote systems.

-s, --swap-bytes
 Swap bytes of each two-byte half-word.

-S, --swap-half-words
 Swap half-words of each four-byte word.
--sparse
For copy-out and copy-pass, write files that have large blocks of zeros as sparse files.

-t, --list
Print a table of contents of the input (create no files). When used with the -v option, resembles output of ls -l.

--to-stdout
In copy-in mode, extract files to standard output.

-u, --unconditional
Unconditional copy; old files can overwrite new ones.

-v, --verbose
Print a list of filenames processed.

-V, --dot
Print a dot for each file read or written (this shows cpio at work without cluttering the screen).

--version
Print version number and then exit.

Examples
Generate a list of files whose names end in .old using find; use the list as input to cpio:

```
find . -name "*.old" | cpio -ocBv > /dev/rst8
```

Restore from a tape drive all files whose names contain save (subdirectories are created if needed):

```
cpio -icdv "*save*" < /dev/rst8
```

Move a directory tree:

```
find . -depth | cpio -padm /mydir
```
-dN
Similar to -dD, but don’t print macro expansions.

-dI
Print #include directives in addition to other output.

-fpreprocessed
Treat file as already preprocessed. Skip most processing directives, remove all comments, and tokenize file.

-ftabstop=width
Set distance between tabstops so columns will be reported correctly in warnings and errors. Default is 8.

-fno-show-column
Omit column numbers in warnings and errors.

-gcc
Define __GNUC__, __GNUC_MINOR__, and __GNUC_PATCHLEVEL__ macros.

--help
Print usage message and exit.

-idirafter dir
Search dir for header files when a header file is not found in any of the included directories.

-imacros file
Process macros in file before processing main files.

-include file
Process file before main file.

-iprefix prefix
When adding directories with -iwithprefix, prepend prefix to the directory’s name.

-isystem dir
Search dir for header files after searching directories specified with -I but before searching standard system directories.

-iwithprefix dir
Append dir to the list of directories to be searched when a header file cannot be found in the main include path. If -iprefix has been set, prepend that prefix to the directory’s name.

-iwithprefixbefore dir
Insert dir at the beginning of the list of directories to be searched when a header file cannot be found in the main include path. If -iprefix has been set, prepend that prefix to the directory’s name.

-lang-c, -lang-c++, -lang-objc, -lang-objc++
Expect the source to be in C, C++, Objective C, or Objective C++, respectively.

-lint
Display all lint commands in comments as #pragma lint command.

-nostdinc
Search only specified, not standard, directories for header files.
cpp

- nostdinc++
 Suppress searching of directories believed to contain C++-
specific header files.

-o file
 Write output to file. (Same as specifying a second filename in
 the command line.)

-pedantic
 Warn verbosely.

-pedantic-errors
 Produce a fatal error in every case in which -pedantic would
 have produced a warning.

-std=standard
 Specify C standard of input file. Accepted values are:
 iso9899:1990, c89
 1990 ISO C standard.
 iso9899:199409
 1994 amendment to the 1990 ISO C standard.
 iso9899:1999, c99, iso9899:199x, c9x
 1999 revised ISO C standard.
 gnu89
 1990 C Standard with gnu extensions. The default value.
 gnu99, gnu9x
 1999 revised ISO C standard with gnu extensions.

-trigraphs
 Convert special three-letter sequences, meant to represent
 missing characters on some terminals, into the single character
 they represent.

-undef
 Suppress definition of all nonstandard macros.

-v
 Verbose mode.

-version
 Print version number, then process file.

--version
 Print version number, then exit.

-w
 Don’t print warnings.

-x language
 Specify the language of the input file. language may be c, c++,
 objective-c, or assembler-with-cpp. By default, language is
 deduced from the filename extension. If the extension
 is unrecognized, the default is c.

-A name[=def]
 Assert name with value def as if defined by #assert. To turn
 off standard assertions, use -A-.
-A name[=def]
 Cancel assertion name with value def.

-C
 Retain all comments except those found on cpp directive lines.
 By default, cpp strips C-style comments.

-D name[=def]
 Define name with value def as if by a #define. If no =def is
given, name is defined with value 1. -D has lower precedence
than -U.

-E
 Preprocess the source files, but do not compile. Print result to
standard output. This option is usually passed from gcc.

-H
 Print pathnames of included files, one per line, on standard
error.

-Idir
 Search in directory dir for #include files whose names do not
begin with / before looking in directories on standard list.
#include files whose names are enclosed in double quotes and
do not begin with / will be searched for first in the current
directory, then in directories named on -I options, and last in
directories on the standard list.

-I
 Split includes. Search directories specified by -I options
preceding this one for header files included with quotes
(#include "file.h") but not for header files included with angle
brackets (#include <file.h>). Search directories specified by -I
options following this one for all header files.

-M [-MG]
 Suppress normal output. Print a rule for make that describes
the main source file’s dependencies. If -MG is specified,
assume that missing header files are actually generated files,
and look for them in the source file’s directory.

-MF file
 Print rules generated by -M or -MM to file.

-MD file
 Similar to -M, but output to file; also compile the source.

-MM
 Similar to -M, but describe only those files included as a result
of #include "file".

-MMD file
 Similar to -MD, but describe only the user’s header files.

-MQ target
 Similar to -MT, but quote any characters that are special to
make.

-MT target
 Specify the target to use when generating a rule for make. By
default, the target is based on the name of the main input file.

-P
 Preprocess input without producing line-control information
used by next pass of the C compiler.
-Uname
Remove any initial definition of name, where name is a reserved symbol predefined by the preprocessor, or a name defined on a -D option. Names predefined by cpp are unix and i386 (for Intel systems).

-Wall
Warn both on nested comments and trigraphs.

-Wccomment, -Wcomments
Warn when encountering the beginning of a nested comment.

-Wtraditional
Warn when encountering constructs that are interpreted differently in ANSI than in traditional C.

-Wtrigraphs
Warn when encountering trigraphs, which are three-letter sequences meant to represent missing characters on some terminals.

Special names
cpp understands various special names, some of which are:

- _DATE_
 Current date (e.g., Jan 10 2003).
- _FILE_
 Current filename (as a C string).
- _LINE_
 Current source line number (as a decimal integer).
- _TIME_
 Current time (e.g., 12:00:00).

These special names can be used anywhere, including in macros, just like any other defined names. cpp’s understanding of the line number and filename may be changed using a #line directive.

Directives
All cpp directive lines start with # in column 1. Any number of blanks and tabs is allowed between the # and the directive. The directives are:

- #assert name (string)
 Define a question called name, with an answer of string. Assertions can be tested with #if directives. The predefined assertions for #system, #cpu, and #machine can be used for architecture-dependent changes.

- #unassert name
 Remove assertion for question name.

- #define name token-string
 Define a macro called name, with a value of token-string. Subsequent instances of name are replaced with token-string.
#define name(arg, ... , arg) token-string
This allows substitution of a macro with arguments. token-string will be substituted for name in the input file. Each call to name in the source file includes arguments that are plugged into the corresponding args in token-string.

#undef name
Remove definition of the macro name. No additional tokens are permitted on the directive line after name.

#define name string
Put string into the comment section of an object file.

#include "filename", #include<filename>
Include contents of filename at this point in the program. No additional tokens are permitted on the directive line after the final " or >.

#line integer-constant "filename"
Cause cpp to generate line-control information for the next pass of the C compiler. The compiler behaves as if integer-constant is the line number of the next line of source code and filename (if present) is the name of the input file. No additional tokens are permitted on the directive line after the optional filename.

#undef name
End a section of lines begun by a test directive (#if, #ifdef, or ifndef). No additional tokens are permitted on the directive line.

#define name
Lines following this directive and up to matching #endif or next #else or #elif will appear in the output if name is currently defined. No additional tokens are permitted on the directive line after name.

#define name
Lines following this directive and up to matching #endif or next #else or #elif will appear in the output if name is not currently defined. No additional tokens are permitted on the directive line after name.

#define name
Lines following this directive and up to matching #endif or next #else or #elif will appear in the output if constant-expression evaluates to nonzero.

#define name constant-expression
An arbitrary number of #elif directives are allowed between an #if, #ifdef, or ifndef directive and an #else or #endif directive. The lines following the #elif and up to the next #else, #elif, or #endif directive will appear in the output if the preceding test directive and all intervening #elif directives evaluate to zero, and the constant-expression evaluates to nonzero. If constant-expression evaluates to nonzero, all succeeding #elif and #else directives will be ignored.
#else
Lines following this directive and up to the matching #endif
will appear in the output if the preceding test directive evaluates
to zero, and all intervening #elif directives evaluate to
zero. No additional tokens are permitted on the directive line.

#error
Report fatal errors.

#warning
Report warnings, but then continue processing.

crond

System administration command. Normally started in a system
startup file. Execute commands at scheduled times, as specified in
users’ files in `/var/spool/cron`. Each file shares its name with the user
who owns it. The files are controlled via the command `crontab`

The `crond` command will also read commands from the `/etc/crontab`
file and from the `/etc/cron.d/` directory. See `anacron` for scheduling
events on systems that are frequently rebooted or powered off,
such as notebook computers.

Options

- `-m command`
 User `command` to send mail instead of `sendmail`.

- `-n`
 Run the command in the foreground.

- `-p`
 Remove security restrictions on crontab file permissions.

crontab

View, install, or uninstall your current `crontab` file. A privileged
user can run `crontab` for another user by supplying `-u user`. A
`crontab` file is a list of commands, one per line, that will execute
automatically at a given time. Numbers are supplied before each
command to specify the execution time. The numbers appear in
five fields, as follows:

- **Minute**: 0-59
- **Hour**: 0-23
- **Day of month**: 1-31
- **Month**: 1-12 (Jan, Feb, Mar, ...)
- **Day of week**: 0-6, with 0 = Sunday, 1 = Sun, 2 = Mon, ...

Use a comma between multiple values, a hyphen to indicate a
range, an asterisk to indicate all possible values, and a slash (/) to
indicate a repeating range. For example, assuming these `crontab`
entries:

```
59 3 * * 5               find / -print | backup_program
0 0 1,15 * *               echo "Timesheets due" | mail user
```
the first command backs up the system files every Friday at 3:59 a.m.,
and the second command mails a reminder on the 1st and 15th of
each month.

The superuser can always issue the `crontab` command. Other users
must be listed in the file `/etc/cron.allow` if it exists; otherwise, they
must not be listed in `/etc/cron.deny`. If neither file exists, only the
superuser can issue the command.

Options
The `-e`, `-l`, and `-r` options are not valid if any files are specified.

- `-e` Edit the user’s current `crontab` file (or create one).
- `-l` Display the user’s `crontab` file on standard output.
- `-r` Delete the user’s `crontab` file.
- `-u user`
 Indicate which user’s `crontab` file will be acted upon.

csplit

`csplit [options] file arguments`

Separate `file` into context-based sections and place sections in files
named `xx00` through `xxn` (`n < 100`), breaking `file` at each pattern
specified in `arguments`. The byte count for each section is written to
standard output. See also `split`.

Options

- `-` Read from standard input.
- `-b format, --suffix-format=format`
 Use sprintf format instead of `%02d` for the suffix.
- `-f prefix, --prefix=prefix`
 Name new files `prefix00` through `prefixn` (default is `xx00`
through `xxn`).
- `-k, --keep-files`
 Keep newly created files even when an error occurs (which
 would normally remove these files). This is useful when you
 need to specify an arbitrarily large repeat argument, `[n]`, and
 you don’t want an out-of-range error to cause removal of the
 new files.
- `-n num, --digits=num`
 Use output filenames with numbers `num` digits long. The
default is 2.
- `-s, -q, --silent, --quiet`
 Suppress display of character counts.
- `-z, --elide-empty-files`
 Do not create empty output files. However, number as if those
 files had been created.
ctags

Arguments

Any one or a combination of the following expressions may be specified as arguments. Arguments containing blanks or other special characters should be surrounded by single quotes.

\texttt{/expr[offset]}

Create file from the current line up to the line containing the regular expression \texttt{expr}. \texttt{offset} should be of the form \texttt{+n} or \texttt{-n}, where \texttt{n} is the number of lines below or above \texttt{expr}.

\texttt{%expr[offset]}

Same as \texttt{/expr}, except no file is created for lines before a line containing \texttt{expr}.

\texttt{num}

Create file from current line up to (but not including) line number \texttt{num}. When followed by a repeat count (number inside \{\}), put the next \texttt{num} lines of input into another output file.

\texttt{\{n\}}

Repeat argument \texttt{n} times. May follow any of the preceding arguments. Files are split at instances of \texttt{expr} or in blocks of \texttt{num} lines. If \texttt{*} is given instead of \texttt{n}, repeat argument until input is exhausted.

Examples

Create up to 20 chapter files from the file \texttt{novel}:

```
  csplit -k -f chap. novel '/CHAPTER/' '{20}'
```

Create up to 100 address files (xx00 through xx99), each four lines long, from a database named \texttt{address_list}:

```
  csplit -k address_list 4 {99}
```

ctags [options] files

Create a list of function and macro names defined in a programming source file. More than one file may be specified. ctags understands many programming languages, including C, C++, FORTRAN, Java, Perl, Python, flex, yacc, and bison. The output list (named \texttt{tags} by default) contains lines of the form:

\texttt{name file context}

where \texttt{name} is the function or macro name, \texttt{file} is the source file in which \texttt{name} is defined, and \texttt{context} is a search pattern that shows the line of code containing \texttt{name}. After the list of tags is created, you can invoke \texttt{vi} on any file and type:

```
  :set tags=tagsfile
  :tag name
```

This switches the \texttt{vi} editor to the source file associated with the \texttt{name} listed in \texttt{tagsfile} (which you specify with \texttt{-t}).

ctags produces an equivalent file for tags to be used with Emacs.
cupsd

Options
- Append tag output to existing list of tags.
- Create tag files for use with Emacs.
- Interpret files with filename extensions specified in extension-list as header files. The default list is ".h.H.hh.hpp.hxx.h++.inc.def". To indicate that files without extensions should be treated as header files, insert an additional period in the list before another period or at the end of the list, or use just a period by itself. To use this option multiple times and have the specified lists ANDed together, use a plus sign as the first character in the list. To restore the default, use the word "default".
- Use numeric EX commands to locate tags. Same as --excmd=number.
- Write to file.
- Include tag entries for members of structure-like constructs.
- Recursively read files in subdirectories of the directory given on the command line.
- Don't sort tag entries.
- Produce a tabular listing of each function, and its line number, source file, and context.
- Search for tags backward through files.
- Specify a list of tokens to be specially handled. If tokenlist is given as a file, use EX pattern commands to locate tags. Same as --excmd=pattern.
- Use EX pattern commands to locate tags. Same as --excmd=pattern.
- Ignore indentation
- Include tag entries for typedefs, structs, enums, unions, and C++ member functions.
- Print the version number and exit.

cupsd

System administration command. Start the print scheduler for the Common UNIX Printing System.
cut

Options
-**c file**
 Use specified configuration file instead of /etc/cups/cupsd.conf.
-**f**
 Run scheduler in foreground.
-**F**
 Run scheduler in foreground but detach it from the controlling terminal and current directory. Sometimes used when running `cupsd` from `init`.

cut

Cut out selected columns or fields from one or more files. With no file, or if file is -, read from standard input. In the following options, list is a sequence of integers. Use a comma between values, and a hyphen to specify a range (e.g., 1-10, 15, 20 or 50-). See also `paste` and `join`.

Options
-**-b list, --bytes list**
 Specify list of positions; only bytes in these positions will be printed.
-**-c list, --characters list**
 Cut the column positions identified in list. Column numbers start with 1.
-**-d c, --delimiter c**
 Use with -f to specify field delimiter as character c (default is tab); special characters (e.g., a space) must be quoted.
-**-f list, --fields list**
 Cut the fields identified in list.
-**-n**
 Don’t split multibyte characters. Use with -b.
-**-s, --only-delimited**
 Use with -f to suppress lines without delimiters.
-**--output-delimiter=string**
 Use string as the output delimiter. By default, the output delimiter is the same as the input delimiter.
-**--help**
 Print help message and exit.
-**--version**
 Print version information and exit.

Examples
Extract usernames and real names from /etc/passwd:

```
cut -d: -f1,5 /etc/passwd
```

Find out who is logged on, but list only login names:

```
who | cut -d " " -f1
```

Cut characters in the fourth column of file, and paste them back as the first column in the same file:

```
cut -c4 file | paste - file
```
date

date [options] [+format] [date]

Print the current date and time. You may specify a display format, which can consist of literal text strings (blanks must be quoted) as well as field descriptors, whose values are described in the following entries (the listing shows some logical groupings). A privileged user can change the system’s date and time.

Options

+format

Display current date in a nonstandard format. For example:

```
$ date +"%A %j %n%k %p"
Friday 051 23 PM
```

The default is `%a %b %e %T %Z %Y` (e.g., Fri Feb 20 22:59:43 EST 2009).

-d date, --date= date

Display date, which should be in quotes and may be in the format `d days` or `m months d days`, to print a date in the future. Specify `ago` to print a date in the past. You may include formatting (see the following section).

-f datefile, --file= datefile

Like `-d`, but printed once for each line of `datefile`.

-r file, --reference= file

Display the time `file` was last modified.

-R, --rfc-2822

Display the date and time in RFC 2822 format.

--rfc-3339=timespec

Display the date and time in RFC 339 format. The value of `timespec` can be one of `date`, `seconds`, or `ns` (nanoseconds) to get the desired degree of precision.

--help

Print help message and exit.

--version

Print version information and exit.

-s date, --set= date

Set the date.

-u, --utc, --universal

Set the date to Coordinated Universal Time, not local time.

Format

The exact result of many of these codes is locale-specific and depends upon your language setting, particularly the `LANG` environment variable. See `locale`.

%%

Literal `%`.

date

-(hyphen)
 Do not pad fields (default: pad fields with zeros).

_(underscore)
 Pad fields with space (default: zeros).

^ Use uppercase if possible.

Use the opposite case if possible.

%a Abbreviated weekday.

%A Full weekday.

%b Abbreviated month name.

%B Full month name.

%c Country-specific date and time format.

%C Century; like %Y but show only the two-digit century (e.g., show 20, not 2009).

%d Day of month (01–31).

%D Date in %m/%d/%y format.

%e Day of month padded with spaces.

%h Same as %b.

%H Hour in 24-hour format (00–23).

%H Hour in 12-hour format (01–12).

%j Julian day of year (001–366).

%k Hour in 24-hour format, without leading zeros (0–23).

%l Hour in 12-hour format, without leading zeros (1–12).

%m Month of year (01–12).

%M Minutes (00–59).

%n Insert a new line.

%N Nanoseconds (000000000–999999999).

%p String to indicate a.m. or p.m.

%p Like %p but lowercase.

%r Time in %I:%M:%S %p (12-hour) format.

%R Time in %H:%M (24-hour) format.

%S Seconds since “the Epoch,” which is 1970-01-01 00:00:00 UTC (a nonstandard extension).

%t Insert a tab.

%H:%M:%S format.

u Day of the week (1–7, Monday = 1).

%U Week number in year (00–53); start week on Sunday.

%V Week number in year (01–52); start week on Monday.

%w Day of week (0–6, Sunday = 0).

%W Week number in year (00–53); start week on Monday.

%X Country-specific date format.
Chapter 3: Linux Commands

dd

Make a copy of an input file (if) using the specified conditions, and send the results to the output file (or standard output if of is not specified). Any number of options can be supplied, although if and of are the most common and are usually specified first. Because dd can handle arbitrary block sizes, it is useful when converting between raw physical devices.

Options

bs=n

Set input (ibs) and output (obs) block size to n bytes; this option overrides ibs and obs set separately.

cbs=n

Set the size of the conversion buffer (logical record length) to n bytes. Use only if the conversion format is ascii, ebcDIC, ibm, block, or unblock.

Strings for setting date

Strings for setting the date may be numeric or nonnumeric. Numeric strings consist of time, day, and year in the format MMDDhhmm[[CC]YY][.ss]. Nonnumeric strings may include month strings, time zones, a.m., and p.m.

time

A two-digit hour and two-digit minute (hhmm); hh uses 24-hour format.

day

A two-digit month and two-digit day of month (MMDD); default is current day and month.

year

The year specified as either the full four-digit century and year or just the two-digit year; the default is the current year.

Examples

Set the date to July 1 (0701), 4 a.m. (0400), 2009 (09):

date 0701040009

The command:

date +"Hello%t Date is %D %n%t Time is %T"

produces a formatted date as follows:

Hello Date is 02/20/09
 Time is 17:53:39
conv= *format*
Convert the input according to one or more (comma-separated) *formats* listed next. The first five *formats* are mutually exclusive.

- **ascii**
 EBCDIC to ASCII.

- **ebcdic**
 ASCII to EBCDIC.

- **ibm**
 ASCII to EBCDIC with IBM conventions.

- **block**
 Variable-length records (i.e., those terminated by a newline) to fixed-length records.

- **unblock**
 Fixed-length records to variable-length records.

- **excl**
 Fail if the output file already exists.

- **fdatasync**
 Physically write the output file before finishing.

- **fsync**
 Physically write both the output file and the metadata before finishing.

- **lcase**
 Uppercase to lowercase.

- **nocreate**
 Do not create an output file.

- **noerror**
 Continue processing after read errors.

- **notrunc**
 Don’t truncate output file.

- **swab**
 Swap each pair of input bytes.

- **sync**
 Pad input blocks to *ibs* with trailing zeros.

- **ucase**
 Lowercase to uppercase.

count= *n*
Copy only *n* input blocks.

ibs= *n*
Set input block size to *n* bytes (default is 512).

if= *file*
Read input from *file* (default is standard input).

obs= *n*
Set output block size to *n* bytes (default is 512).

of= *file*
Write output to *file* (default is standard output).
debugfs

seek=n
 Skip n output-sized blocks from start of output file.

skip=n
 Skip n input-sized blocks from start of input file.

--help
 Print help message and then exit.

--version
 Print the version number and then exit.

You can multiply size values (n) by a factor of 1024, 512, or 2 by appending the letter k, b, or w, respectively. You can use the letter x as a multiplication operator between two numbers.

Examples
Convert an input file to all lowercase:

 dd if=caps_file of=small_file conv=lcase

Retrieve variable-length data and write it as fixed-length to out:

 [data_retrieval_cmd] | dd of=out conv=sync,block

deallocvt

devalocvt N
 Deallocate and destroy the unused virtual console /dev/ttyN. Multiple consoles may be named with additional spaces and integers: deallocvt 1 4 deallocates the /dev/tty1 and /dev/tty4 consoles. Consoles are considered unused if they are not in the foreground, have no open processes, and have no selected text. The command does not destroy consoles that are still active.

debugfs

devalocfs [[option] device]
 System administration command. Provide direct access to data structure of an ext2 or ext3 filesystem in order to debug problems with the device. device is the special file corresponding to the device containing the filesystem (e.g., /dev/hda3). debugfs may be used on a mounted filesystem device.

Option

-b blocksize
 Use the specified blocksize for the filesystem.

c Catastrophic mode. Open the filesystem in read-only mode; do not read the inode and group bitmaps initially.

-f file
 Read commands from file. Exit when done executing commands.

-i
 Specify filesystem device is an ext2 image file created by e2image.

-s block
 Read the superblock from the specified block.

-w
 Open the filesystem in read-write mode.
debugfs

-R request
 Execute the given request (see list below), then exit.
-V Print version number, then exit.

Requests
bmap file logicalblock
 Given the logicalblock of inode file, print the corresponding
 physical block.
cat file
 Dump the contents of an inode to standard output.
cd directory
 Change the current working directory to directory.
chroot directory
 Change the root directory to be the specified inode.
close
 Close the currently open filesystem.
crli file
 Clear the contents of the inode corresponding to file.
dump [-p] file out_file
 Dump the contents of inode file to out_file. Change ownership
 and permissions of out_file to match file if -p is specified.
expand_dir directory
 Expand directory.
feature [][-feature]
 Set filesystem feature listed on the command line, then print
 current feature settings. Use - to clear a feature.
find_free_block [[n] goal]
 Find and allocate first n free blocks starting from goal (if
 specified).
find_free_inode [dir [mode]]
 Find a free inode and allocate it.
freeb block [n]
 Free n blocks beginning from block. Default is 1 block.
freei file
 Free the inode corresponding to file.
help
 Print a list of commands understood by debugfs.
icheck block
 Do block-to-inode translation.
imap file
 Print the location of the inode data structure for file.
init_filesys device blocksize
 Create an ext2 filesystem on device.
kill_file file
 Remove file and deallocate its blocks.
Chapter 3: Linux Commands

debugfs

lcd directory
 Change current working directory on native filesystem.

ln source_file dest_file
 Create a link.

logdump [-acs] [-block] [-inode] [-journal_file] [out_file]
 Print the ext3 journal contents to screen or to the specified out_file. Prints the superblock journal by default. Specify other journal information by block or inode. You can also specify a journal_file containing journal data. Use -a to print the contents of descriptor blocks. Use -b to print records referring to a specified block. Use -c to print the hexadecimal and ASCII contents of blocks referenced by the logdump.

ls [-l] [-d] [-p] [pathname]
 Emulate the ls command. Use -l for verbose format and -d to list deleted entries. Use -p for output that can be more easily parsed by scripts.

modify_inode file
 Modify the contents of the inode corresponding to file.

mkdir directory
 Make directory.

mknod file [p|c|b] major minor]
 Create a special device file.

ncheck inode
 Do inode-to-name translation.

 Open a filesystem. The -f option forces the filesystem to open disregarding any unknown or incompatible features that would otherwise prevent it from opening. The -e option causes the filesystem to be opened in exclusive mode. The remaining options are identical to the command-line options for debugfs.

pwd
 Print the current working directory.

quit
 Quit debugfs.

rdump directory dest_directory
 Recursively dump directory and its contents to dest_directory on the native filesystem.

rm file
 Remove file.

rmdir directory
 Remove directory.

setb block [n]
 Mark n blocks as allocated, beginning from block. Default is 1 block.

set_block_group number field value
 Set descriptor field to value for the block group specified by number.
seti file
Mark in use the inode corresponding to file.

set_super_value [-l] field value
Set superblock field to value. Use -l to print a list of valid fields.

show_super_stats [-h]
List the contents of the superblock and block group descriptors. Use -h to list only the superblock contents.

stat file
Dump the contents of the inode corresponding to file.

testb block [n]
Print whether each of n blocks is in use, beginning with block. By default, just check the specified block.

testi file
Test whether the inode corresponding to file is marked as allocated.

undel <inode> [pathname]
Undelete (mark as used) the specified inode. You must include the angle brackets. Optionally link the recovered inode with pathname. If undeleting multiple inodes, linking may not be safe. Use a separate pass to link the pathname after all inodes have been undeleted. Always run e2fsck after undeleting inodes.

unlink file
Remove a link.

write source_file file
Create a file in the filesystem named file, and copy the contents of source_file into the destination file.

depmod

depmod [options] modules
System administration command. Create a dependency file for the modules given on the command line. This dependency file can be used by modprobe to automatically load the relevant modules. The normal use of depmod is to include the line /sbin/depmod -a in one of the files in /etc/rc.d so that the correct module dependencies will be available after booting the system.

Options

-a, --all
Create dependencies for all modules listed in /etc/modules.conf.

-A, --quick
Check timestamps and only update the dependency file if anything has changed.

-b dir, --basedir dir
Specify a base directory to use instead of /lib/modules.
devdump

- \texttt{C file, --config file}
 Use the specified configuration file instead of /etc/modules.dep.
 May also be set using the MODULECONF environment variable.

- \texttt{-e, --errsym}
 Print a list of all unresolved symbols.

- \texttt{-F file, --kernelsyms file}
 Use the specified kernel symbol file to build dependencies.
 Usually this is either a copy of a system’s System.map file or
 the output of /proc/ksyms.

- \texttt{-h, --help}
 Print help message, then exit.

- \texttt{-n, --dry-run, --show}
 Write dependency file to standard output instead of writing to
 module directory.

- \texttt{-q, --quiet}
 Don’t display error messages about missing symbols.

- \texttt{-r, --root}
 Allow root to load modules not owned by root.

- \texttt{-s, --syslog}
 Write error messages to the syslog daemon instead of to stan-
 dard error.

- \texttt{-v}
 Print a list of all processed modules.

- \texttt{-V, --version}
 Print version number.

Files

/etc/modules.dep, /etc/depmod.d
 Information about modules: which ones depend on others,
 and which directories correspond to particular types of modules.

/sbin/insmod, /sbin/rmmod
 Programs that depmod relies on.

\textbf{devdump} \texttt{isoinmage}

Interactively display the contents of the device or filesystem image
isoinmage. \texttt{devdump} displays the first 256 bytes of the first 2048-
byte sector and waits for commands. The prompt shows the extent
number (zone) and offset within the extent, and the contents
display at the top of the screen.

\textbf{Commands}

+ Search forward for the next instance of the search string.

a Search backward within the image.

b Search forward within the image.

f Prompt for a new search string.

g Prompt for a new starting block and go there.

q Exit.
df

df [options] [name]

Report the amount of free disk space available on all mounted filesystems or on the given *name*. (df cannot report on unmounted filesystems.) Disk space is shown in 1 KB blocks (default) or 512-byte blocks if the environment variable POSIXLY_CORRECT is set. *name* can be a device name (e.g., /dev/hd*), the directory name of a mounting point (e.g., /usr), or a directory name (in which case df reports on the entire filesystem in which that directory is mounted).

Options
- **-a, --all**
 Include empty filesystems (those with 0 blocks).
- **-B n, --block-size=n**
 Show space as *n*-byte blocks.
- **-h, --human-readable**
 Print sizes in a format friendly to human readers (e.g., 1.9 MB instead of 1967156).
- **-H, --si**
 Like -h, but show as power of 1000 rather than 1024.
- **-i, --inodes**
 Report free, used, and percent-used inodes.
- **-k**
 Print sizes in kilobytes.
- **-l, --local**
 Show local filesystems only.
- **-m, --megabytes**
 Print sizes in megabytes.
- **--no-sync**
 Show results without invoking *sync* first (i.e., without flushing the buffers). This is the default.
- **-P, --portability**
 Use POSIX output format (i.e., print information about each filesystem on exactly one line).
- **--sync**
 Invoke *sync* (flush buffers) before getting and showing sizes.
- **-t type, --type=type**
 Show only filesystems of the specified type.
- **-T, --print-type**
 Print the type of each filesystem in addition to the sizes.
- **-x type, --exclude-type=type**
 Show only filesystems that are not of type *type*.
- **--help**
 Print help message and then exit.
- **--version**
 Print the version and then exit.
diff

```
diff [options] file1 file2
```

Compare two text files. `diff` reports lines that differ between `file1` and `file2`. Output consists of lines of context from each file, with `file1` text flagged by a `<` symbol and `file2` text by a `>` symbol. Context lines are preceded by the `ed` command (a, c, or d) that would be used to convert `file1` to `file2`. If one of the files is -, standard input is read. If one of the files is a directory, `diff` locates the filename in that directory corresponding to the other argument (e.g., `diff my_dir junk` is the same as `diff my_dir/junk junk`). If both arguments are directories, `diff` reports lines that differ between all pairs of files having equivalent names (e.g., `olddir/program` and `newdir/program`); in addition, `diff` lists filenames unique to one directory, as well as subdirectories common to both. See also `cmp`.

Options

- `-n` For context and unified `diff`, print `n` lines of context. Same as specifying a number with `-C` or `-U`.
- `-a`, `--text` Treat all files as text files. Useful for checking to see if binary files are identical.
- `-b`, `--ignore-space-change` Ignore repeating blanks and end-of-line blanks; treat successive blanks as one.
- `-B`, `--ignore-blank-lines` Ignore blank lines in files.
- `-c` Context `diff`: print three lines surrounding each changed line.
- `-C n`, `--context=[n]` Context `diff`: print `n` lines surrounding each changed line. The default context is three lines.
- `-d`, `--minimal` Ignore segments of numerous changes and output a smaller set of changes.
- `-D symbol`, `--ifdef=symbol` When handling C files, create an output file that contains all the contents of both input files, including `#ifdef` and `#ifndef` directives that reflect the directives in both files.
- `-e`, `--ed` Produce a script of commands (a, c, d) to recreate `file2` from `file1` using the `ed` editor.
- `-F regexp`, `--show-function-line=[regexp]` For context and unified `diff`, show the most recent line containing `regexp` before each block of changed lines.
- `-H`, `--speed-large-files` Speed output of large files by scanning for scattered small changes; long stretches with many changes may not show up.
- `--help` Print brief usage message.
diff

--horizon-lines=n
In an attempt to find a more compact listing, keep n lines on both sides of the changed lines when performing the comparison.

-1, --ignore-case
Ignore case in text comparison. Uppercase and lowercase are considered the same.

-l regexp, --ignore-matching-lines=regexp
Ignore lines in files that match the regular expression regexp.

-l, --paginate
Paginate output by passing it to pr.

-l label, --label=label
For context and unified diff, print label in place of the filename being compared. The first such option applies to the first filename and the second option to the second filename.

--left-column
For two-column output (-y), show only left column of common lines.

-n, --rcs
Produce output in RCS diff format.

-N, --new-file
Treat nonexistent files as empty.

-p, --show-c-function
When handling files in C or C-like languages such as Java, show the function containing each block of changed lines. Assumes -c, but can also be used with a unified diff.

-P, --unidirectional-new-file
If two directories are being compared and the first lacks a file that is in the second, pretend that an empty file of that name exists in the first directory.

-q, --brief
Output only whether files differ.

-r, --recursive
Compare subdirectories recursively.

-s, --report-identical-files
Indicate when files do not differ.

-S filename, --starting-file=filename
For directory comparisons, begin with the file filename, skipping files that come earlier in the standard list order.

--suppress-common-lines
For two-column output (-y), do not show common lines.

-t, --expand-tabs
Produce output with tabs expanded to spaces.

-T, --initial-tab
Insert initial tabs into output to line up tabs properly.
diff3

```
diff3 [options] file1 file2 file3
```

Compare three files and report the differences. No more than one of the files may be given as - (indicating that it is to be read from standard input). The output is displayed with the following codes:

```
== == ==
All three files differ.
== == ==1
file1 is different.
== == ==2
file2 is different.
== == ==3
file3 is different.
```

diff3 is also designed to merge changes in two differing files based on a common ancestor file (i.e., when two people have made their own set of changes to the same file). **diff3** can find changes between the ancestor and one of the newer files and generate output that adds those differences to the other new file. Unmerged changes occur where both of the newer files differ from each other and at least one of them differs from the ancestor. Changes from the ancestor that are the same in both of the newer files are called **merged changes**. If all three files differ in the same place, it is called an **overlapping change**.

-u Unified **diff**: print old and new versions of lines in a single block, with 3 lines surrounding each block of changed lines.

-U n, --unified[=n]

Unified **diff**: print old and new versions of lines in a single block, with **n** lines surrounding each block of changed lines. The default context is 3 lines. With the **-U** form, **n** must be given.

-v, --version

Print version number of this version of **diff**.

-w, --ignore-all-space

Ignore all whitespace in files for comparisons.

-W n, --width=n

For two-column output (-y), produce columns with a maximum width of **n** characters. Default is 130.

-x regexp, --exclude=regexp

Do not compare files in a directory whose basenames match **regexp**.

-X filename, --exclude-from=filename

Do not compare files in a directory whose basenames match patterns described in the file **filename**.

-y, --side-by-side

Produce two-column output.
This scheme is used on the command line, with the ancestor being file2, the second filename. Comparison is made between file2 and file3, with those differences then applied to file1.

Options

- **-3, --easy-only**
 Create an ed script to incorporate into file1 unmerged, nonoverlapping differences between file1 and file3.

- **-a, --text**
 Treat files as text.

- **-A, --show-all**
 Create an ed script to incorporate all changes, showing conflicts in bracketed format.

- **-e, --ed**
 Create an ed script to incorporate into file1 all unmerged differences between file2 and file3.

- **-E, --show-overlap**
 Create an ed script to incorporate unmerged changes, showing conflicts in bracketed format.

- **--help**
 Print usage information and exit.

- **-i**
 Append the w (save) and q (quit) commands to ed script output.

- **-L label, --label=label**
 Use label to replace filename in output.

- **-m, --merge**
 Create file with changes merged (not an ed script).

- **-T, --initial-tab**
 To line tabs up properly in output, begin lines with a tab instead of two spaces.

- **-v, --version**
 Print version information and then exit.

- **-x, --overlap-only**
 Create an ed script to incorporate into file1 all differences where all three files differ (overlapping changes).

- **-X**
 Same as -x, but show only overlapping changes in bracketed format as with -E.

dig

dig [@server] [options] [name] [type] [class] [query-options]
dig @server name type
dig -h

TCP/IP command. The **dig** command is used to query DNS servers; it is more flexible than the deprecated **nslookup** command. When invoked with just the **-h** option, it displays a list of options.
for the command. If you use it without any options or arguments, it will search for the root server. The standard arguments are:

server

The server to query. If no server is supplied, **dig** will check the nameservers listed in `/etc/resolv.conf`. The address may be an IPv4 dotted address or an IPv6 colon-delimited address. It may also be a hostname, which **dig** will resolve (through the nameservers in `/etc/resolv.conf`).

name

The domain name to look up.

type

The type of query to perform, such as A, ANY, MX, SIG, and so forth. The default is A, but you may use any valid BIND9 query type.

Options

You may use the following option flags with **dig**:

- **-b address**
 - Set the source IP address for the query.

- **-c class**
 - Set the class of query. The default value is IN (internet), but you can choose HS for Hesiod or CH for CHAOSNET.

- **-f filename**
 - Operate in batch mode, performing the queries in the file you specify.

- **-k filename**
 - Specify a TSIG keyfile; used for signed transactions. You can also use the -y key, although this is less secure.

- **-p portnumber**
 - Choose the port number for the query. The default value is the standard DNS port, 53.

- **-q name**
 - Specify domain name to query. Sometimes this is needed to distinguish the domain name from other options.

- **-t type**
 - Set the type of query, as with the query argument. The default value is A, but you may use any valid BIND9 query.

- **-x addr**
 - Use the -x flag for reverse lookups, specifying an IPv4 or IPv6 address. You do not need the name, class, or type arguments if you use the -x flag.

- **-y keyname: keyvalue**
 - Enter the actual key name and value when conducting a signed transaction. Because the key and value can be seen in the output of **ps**, this is not recommended for use on multiuser systems; use -k instead.
Query options
There are a large number of query options for `dig`. Each query option is preceded by `+`, and many have an opposite version beginning with `no`. For example, the `tcp` flag is passed as `+tcp`, and negated with `+notcp`. Because there are so many options, only a few are discussed here. For greater detail, see the `dig` manpage.

`+tcp`, `+notcp`
Use (or do not use) the TCP protocol instead of the default UDP.

`+domain=searchdomain`
Perform a search in the domain specified; this is equivalent to using the `+search` option and having "searchdomain" as the sole entry in the search list or domain directive of `/etc/resolv.conf`.

`+search`, `+nosearch`
Use (or do not use) the search list provided in `/etc/resolv.conf`. The default is not to use the search list.

`+time=t`
Timeout for queries, in seconds. The default is 5, and the minimum is 1.

`+tries=n`
The number of times to retry UDP queries. The default is 3, and the minimum is 1.

Examples
Query the mail exchange record for example.com:
```bash
dig mx example.com
```
Ask a specific nameserver to resolve a domain:
```bash
dig @ns.example.com smtp.example.com
```
Perform a reverse look up on an IP address:
```bash
dig -x 208.201.239.37
```

`dir`
`dir [options] [file]`
List directory contents. `dir` is equivalent to the command `ls -C -b` (list files in columns, sorted vertically, special characters escaped), and it takes the same arguments as `ls`. This is an alternate invocation of the `ls` command and is provided for the convenience of those converting from Microsoft Windows and the DOS shell.

`dircolors`
`dircolors [options] [file]`
Set the color options for the `ls` command. `dircolors` outputs shell commands which, when evaluated, update the LS_COLORS environment variable. If you specify a file, `dircolors` reads it to determine which colors to use. Otherwise, it uses a default set of colors. If the shell is not specified, `dircolors` checks the SHELL environment variable.
Options
The program takes three options in addition to the standard --help and --version flags:

-b, --sh, --bourne-shell
Use the Bourne shell syntax when setting the LS_COLORS variable.

-c, --csh, --c-shell
Use csh (C shell) syntax when setting the LS_COLORS variable.

-p, --print-database
Display the default colors. You can copy this information into a file and change it to suit your preferences, and then run the program with the file as its argument to set the colors to your new values.

Example
Set LS_COLORS using the default color database:
```
  eval `dircolors`
```

dirname
dirname pathname
Print pathname, excluding the last level. Useful for stripping the actual filename from a pathname. If there are no slashes (no directory levels) in pathname, dirname prints . to indicate the current directory. See also basename.

dmesg
dmesg [options]
System administration command. Display the system control messages from the kernel ring buffer. This buffer stores all messages since the last system boot, or the most recent ones if the buffer has been filled.

Options
-c Clear buffer after printing messages.

level
 Set the level of system message that will display on console.

buffersize
 Specify buffersize of kernel ring buffer. This is useful if you have changed the kernel default.

doexec
doexec /path/to/command [argv[0]] ... [argv[n]]
Execute the specified command with the specified options and arguments. Differs from the normal exec command in that argv[0] may be completely arbitrary, and in that it passes all options to the executable being run.
domainname

domainname
`domainname [name]`
NFS/NIS command. Set or display name of current NIS domain. With no argument, **domainname** displays the name of the current NIS domain. Only a privileged user can set the domain name by giving an argument; this is usually done in a startup script.

dosfsck

dosfsck [options] device
`fsck.msdos [options] device`
System administration command. Similar to `fsck`, but specifically intended for MS-DOS filesystems. When checking an MS-DOS filesystem, `fsck` calls this command. Normally `dosfsck` stores all changes in memory, then writes them when checks are complete.

Options
- `a` Automatically repair the system; do not prompt the user.
- `d file`
 Drop the named file from the file allocation table. Force checking, even if kernel has already marked the filesystem as valid. `dosfsck` will normally exit without checking if the system appears to be clean.
- `f` Save unused cluster chains to files.
- `l` List pathnames of files being processed.
- `r` Repair the system, prompting user for advice.
- `t` Mark unreadable clusters as bad.
- `u file`
 Attempt to undelete the named file.
- `v` Verbose mode.
- `w` Write changes to disk immediately.
- `y` When queried, answer “yes.”
- `A` Filesystem is an Atari version of MS-DOS.
- `V` Repeat test to verify all errors have been corrected.

du

du [options] [directories]
Print disk usage (as the number of 1 KB blocks used by each named directory and its subdirectories; default is the current directory).

Options
- `0`, `--null`
 End output lines with null, not newline.
- `a`, `--all`
 Print disk usage for all files, not just subdirectories.
- `--apparent-size`
 Print the apparent sizes, not disk usage.
Chapter 3: Linux Commands

- **du**
- **-b**, **--bytes**
 Print sizes in bytes.
- **-B bytes**, **--block-size=bytes**
 Use the specified number of bytes for the blocksize.
- **-c**, **--total**
 In addition to normal output, print grand total of all arguments.
- **-D**, **--dereference-args**
 Follow symbolic links, but only if they are command-line arguments.
- **--exclude=pattern**
 Exclude files that match pattern.
- **-h**, **--human-readable**
 Print sizes in human-readable format.
- **-H**, **--si**
 Like -h, but show as power of 1000 rather than 1024. -H also produces a warning.
- **--help**
 Print help message and then exit.
- **-k**, **--kilobytes**
 Print sizes in kilobytes (this is the default).
- **-l**, **--count-links**
 Count the size of all files, whether or not they have already appeared (i.e., via a hard link).
- **-L**, **--dereference**
 Follow symbolic links.
- **-m**
 Print sizes in megabytes.
- **--max-depth=num**
 Report sizes for directories only down to num levels below the starting point (which is level 0).
- **-P**, **--no-dereference**
 Do not follow symbolic links (the default).
- **-s**, **--summarize**
 Print only the grand total for each named directory.
- **-S**, **--separate-dirs**
 Do not include the sizes of subdirectories when totaling the size of parent directories.
- **--time[=word]**
 Print the last-modification time. With word, show the time as one of the following, not as modification time: atime, access, use, ctime, or status.
- **--time-style=style**
 Show times using the specified style. Possible values are: full-iso, long-iso, iso, +format (interpreted as in date). Used with --time.
- **--version**
 Print the version and then exit.
dump

-x, --one-file-system
Display usage of files in current filesystem only.

-X file, --exclude-from=file
Exclude files that match any pattern in file.

dump [options] files
System administration command. This simple backup utility accesses ext2 and ext3 file devices directly, quickly backing up files without affecting file access times. files may be specified as a mount point or as a list of files and directories to back up. While you can use this on a mounted system, dump may write corrupted information to the backup when the kernel has written only part of its cached information. Dump maintains a record of which files it has saved in /etc/dumpdates, and will perform incremental backups after creating an initial full backup. Use the restore command to restore a dump backup.

Options

-a Write until end-of-media. Default behavior when writing to tape drives.
-A file Create a table of contents for the archive in the specified file.
-b blocksize Block size in kilobytes to use in dumped records. By default, it is 10, or 32 when dumping to a tape with a density greater than 6250 bpi.
-B blocks Specify number of blocks to write per volume.
-c Treat target as a 1700-foot-long cartridge tape drive with 8000 bpi. Override end-of-media detection.
-d density Specify tape density.
-D file Write dump information to file instead of /etc/dumpdates.
-E file Exclude inodes specified in file.
-f files Write backup volumes to the specified files or devices. Use - to write to standard output. Separate multiple files with a comma. Use host:file or user@host:file to write to a networked host using either the rmt program or the program specified by the RMT environment variable.
-F script Run script at the end of each volume other than the last. dump will pass the current device and volume number to the script. The script should return 0 to continue, 1 to prompt for a new tape, or any other exit value to abort the dump. The script will run with the processes real user and group ID.
dump

-`i inodes`
 Specify a comma-separated list of inodes to skip.

-`-I n`
 Ignore the first n read errors. `dump` ignores 32 read errors by default. Specify 0 to ignore all errors. You may need to do this when dumping a mounted filesystem.

-`-j[level]`
 Compress each block using the bzlib library at the specified compression level. By default `dump` uses level 2 compression.

-`-k`
 Use Kerberos authentication when writing to a remote system.

-`-L label`
 Write the specified volume label into the dump header.

-`-m`
 Save only metadata when backing up changed but not modified files.

-`-M`
 Create a multivolume backup. Treat any filename provided with `-f` as a prefix.

-`-n`
 Use `wall` to notify members of group `operator` when prompting for information.

-`-q`
 Abort the backup instead of prompting for information when operator input is required.

-`-Q file`
 Create Quick Access information in the specified file for use by `restore`.

-`-s n`
 Write only n feet of tape in a single volume. Prompt for a new tape upon reaching this limit.

-`-S`
 Calculate and print the amount of space required to perform the backup, then exit.

-`-T date`
 Only back up files changed or modified since date. This overrides the time given in `/etc/dumpdates`.

-`-u`
 Update `/etc/dumpdates` after completing the backup.

-`-v`
 Print verbose information about the dump.

-`-W`
 Generate a report on the backup status of all filesystems based on information in `/etc/dumpdates` and `/etc/fstab`.

-`-w`
 Generate a report of filesystems that need to be backed up. Only report on filesystems listed in `/etc/fstab` and `/etc/mtab` that need to be backed up.

-`-y`
 Compress each block using the lzo library.

-`-Z[level]`
 Compress each block using the zlib library. If provided, use the specified compression level. The default is 2.
dumpe2fs

dumpe2fs
`dumpe2fs device`

System administration command. Print ext2/ext3 information about `device`'s superblock and blocks group.

Options
- `-b` List blocks marked as bad.
- `-f` Force display of filesystems with unknown feature flags.
- `-h` Display superblock information only.
- `-i` Specify device is an image file created by **e2image**.
- `-o superblock=superblock`
 Specify location of the superblock.
- `-o blocksize=blocksize`
 Specify `blocksize` to use when examining filesystem.
- `-x` Print block numbers in hexadecimal.
- `-V` Print version number and exit.

dumpiso

dumpiso `[options] [file]`

Listen on selected channels and dump IEEE 1394 packets received into the specified file, or to standard output if `file` is not specified. The current number of packets is written to standard error.

Options
- `-c nums, --channels=nums`
 Set channels to listen to, as a single number or a range. Channel numbers can be from 0 to 63, and the option can be specified multiple times to add new channels each time. Without this option, **dumpiso** defaults to all channels.
- `-h, --help`
 Print usage information and exit.
- `-p port, --port=port`
 Specify the IEEE 1394 port to receive on; only required if there is more than one on your system. The default is 0.

dumpkeys

dumpkeys `[options]`

Print information about the keyboard driver’s translation tables to standard output. Further information is available in the manual pages under `keymaps(5)`.

Options
- `-l, --separate-lines`
 Print one line for each modifier/keycode pair, and prefix **plain** to each unmodified keycode.
- `-c charset, --charset=charset`
 Specify character set with which to interpret character code values. The default character set is `iso-8859-1`. Use --help for the list of valid character sets.
e2fsck

--compose-only
Print compose key combinations only. Requires compose key support in the kernel.

-f, --full-table
Output in canonical, not short, form: for each key, print a row with modifier combinations divided into columns.

--funcs-only
Print function-key string definitions only; do not print key bindings or string definitions.

-h, --help
Print help message and the version.

-i, --short-info
Print in short-info format, including information about acceptable keycode keywords in the keytable files; the number of actions that can be bound to a key; a list of the ranges of action codes (the values to the right of a key definition); and the number of function keys that the kernel supports.

--keys-only
Print key bindings only; do not print string definitions.

-l, --long-info
Print the same information as in --short-info, plus a list of the supported action symbols and their numeric values.

-n, --numeric
Print action code values in hexadecimal notation; do not attempt to convert them to symbolic notation.

dvdrecord
dvdrecord [options] track1,track2...
Record data to a DVD recorder. dvdrecord is generally a symbolic link to wodim. See wodim for more information.

e2fsck
e2fsck [options] device
fsck.ext2 [options] device
System administration command. Checks and repairs a disk, as does fsck, but specifically designed for ext2 (Linux Second Extended) and ext3 (Third Extended, a journaling version of ext2) filesystems. fsck actually uses this command when checking ext2 and ext3 filesystems. Most often used after a sudden shutdown, such as from a power outage, or when damage to the disk is suspected.

Options
-b superblock
Use superblock instead of the default superblock.

-B size
Expect to find the superblock at size; if it’s not there, exit.
e2image

-e Find bad blocks using the badblocks command. Specify this option twice to perform the scan with a nondestructive read-write test.
-C filedescriptor
Write completion information to the specified filedescriptor. If 0, print a completion bar.
-d Debugging mode.
-D Optimize directories by reindexing, sorting, and compressing them where possible.
-f Force checking, even if kernel has already marked the filesystem as valid. e2fsck will normally exit without checking if the system appears to be clean.
-F Flush buffer caches before checking.
-j file
Use the specified external journal file.
-k Preserve all previously marked bad blocks when using the -c option.
-l file
Consult file for a list of bad blocks, in addition to checking for others.
-L file
Consult file for list of bad blocks instead of checking filesystem for them.
-n Ensure that no changes are made to the filesystem. When queried, answer “no.”
-p “Preen.” Repair all bad blocks noninteractively.
-s Byte-swap the filesystem if necessary to standard (little-endian) byte-order.
-S Byte-swap the filesystem.
-t Display timing statistics.
-v Verbose.
-y When queried, answer “yes.”

e2image

e2image [option] device file

System administration command. Store disaster recovery data for ext2 filesystem on device to image file file. Weekly filesystem images can be an important part of a disaster recovery plan.

Option

- r Create a raw image file that can be checked and debugged using filesystem utilities such as e2fsck or debugfs. Raw images are created as sparse files. Either compress the image file before moving it, or use the --sparse=always option when copying it with cp.
- l Restore filesystem metadata in image to device. Note you will lose any changes to the filesystem since your image was created.
e2label

`e2label device [label]`

System administration command. Display the filesystem label on an ext2 filesystem `device`. Change filesystem label to `label` if specified.

echo

`echo [options] [string]`

Send (echo) the input `string` to standard output. This is the `/bin/echo` command. `echo` also exists as a command built into `bash`. You may have to specify the full path to run `/bin/echo` instead of the shell built-in command. The following character sequences have special meaning:

- \a Alert (bell).
- \b Backspace.
- \c Suppress trailing newline.
- \f Form feed.
- \n Newline.
- \r Carriage return.
- \t Horizontal tab.
- \v Vertical tab.
- \ The octal character whose ASCII code is `nnn`.

Options

- `-e` Enable character sequences with special meaning. (In some versions, this option is not required in order to make the sequences work.)
- `-E` Disable character sequences with special meaning.
- `-n` Suppress printing of newline after text.
- `--help`
 Print help message and exit.
- `--version`
 Print version information and exit.

Examples

```
/bin/echo "testing printer" | lp
/bin/echo "TITLE" > file ; cat doc1 doc2 >> file
/bin/echo "Warning: ringing bell \a"
```

edquota

`edquota [options] [name]`

System administration command. Edit filesystem quotas using a text editor. When edits are complete, `edquota` writes the new information to the binary quota files. Uses the editor specified in the `EDITOR` environment variable, or `vi` by default.
egrep

Options
-filesystem
 Only apply changes to the specified filesystem.
-Fformat
 Specify filesystem quota format to use. See quota for a list of accepted values.
-g
 Edit group quotas.
-prototype
 Apply the same settings as used for the specified user or group: prototype.
-r
 Edit quotas on remote systems.
-t
 Edit grace times for block and inode quotas.
-T
 Edit grace times for individual user or group name.
-u
 Edit user quotas. (This is the default.)

egrep [options] [regexp] [files]
Search one or more files for lines that match an extended regular expression regexp. egrep doesn’t support the regular expressions \(, \), \(<, \rangle, \{, \} \text{, or } \)., but it does support the other expressions, as well as the extended set +, ?, |, and (). Remember to enclose these characters in quotes. Regular expressions are described in Chapter 7. Exit status is 0 if any lines match, 1 if none match, and 2 for errors.

See grep for the list of available options. Also see fgrep.

Examples
Search for occurrences of Victor or Victoria in file:
 egrep 'Victor(ia)*' file
 egrep '(Victor|Victoria)' file
Find and print strings such as old.doc1 or new.doc2 in files, and include their line numbers:
 egrep -n '(old|new)\.doc?' files

eject

eject [options] [device]
Eject removable media such as a CD, DVD, floppy, or tape. You may name the device by its /dev or /mnt filename. The /dev and /mnt prefixes are optional for any items in the /dev and /mnt directories. If no device is named, it is assumed that “cdrom” should be ejected.

Options
The eject command takes the following option flags:
-a, --auto on|1|off|0
 Set the auto-eject mode to on or off (equivalent to 1 or 0, respectively). If auto-eject mode is on, the device is ejected when closed or unmounted.
-c slotnumber, --changerslot slotnumber
 If using a CD-ROM changer, select a CD from one of the slots.
 Slot numbers start with 0, and the CD-ROM drive must not be
 playing music or mounted to read data.

-d, --default
 List the default device name rather than doing anything.

-f, --floppy
 Use floppy commands to eject the drive. Normally, the system
 tries all methods (CD-ROM, SCSI, floppy, tape) to eject.

-h, --help
 Display help information.

-m, --no-unmount
 Do not try to unmount the device.

-n, --noop
 Do not perform any actions; merely display the actions that
 would be performed.

-p, --proc
 Use the mounted files listed in /proc/mounts rather than in /etc/
 mtab.

-q, --tape
 Use tape commands to eject the drive. Normally, the system
 tries all methods (CD-ROM, SCSI, floppy, tape) to eject.

-r, --cdrom
 Use CD-ROM commands to eject the drive. Normally, the
 system tries all methods (CD-ROM, SCSI, floppy, tape) to
 eject.

-s, --scsi
 Use SCSI commands to eject the drive. Normally, the system
 tries all methods (CD-ROM, SCSI, floppy, tape) to eject.

-t, --trayclose
 Close the CD-ROM drive. Not all drives respond to this
 option.

-T, --traytoggle
 Close the CD-ROM drive if it’s open and eject the CD if it’s
 closed. Not all drives respond to this option.

-v, --verbose
 Verbose mode: display additional information about actions.

-V, --version
 Display version information and exit.

-x speed, --cdspeed speed
 Set the speed multiplier for the CD-ROM to an integer,
 usually a power of 2. Not all devices support this option.
 Setting the speed to 0 indicates that the drive should operate
 at its maximum speed.

-X, --listspeed
 Detect and list all available speeds that can be specified with -x.
 Not all devices support this option.
elvtune

elvtune [options] devices

System administration command. Set the latency in the elevator algorithm used to schedule I/O activities for the specified block devices. If no options are given, print the current settings for devices.

Options
-\texttt{b} \textit{n}

Set the maximum coalescing factor allowed on writes when reads are pending to \textit{n}.

-\texttt{h}

Print help message, then exit.

-\texttt{r} \textit{n}

Set the maximum read latency (basically, the number of sectors to read before writes are allowed) to \textit{n}. The default is 8192.

-\texttt{v}

Print version number, then exit.

-\texttt{w} \textit{n}

Set the maximum write latency (sectors to write before allowing a read) to \textit{n}. The default is 16,384.

emacs

emacs [options] [files]

A text editor and all-purpose work environment. For more information, see Chapter 8.

enable

enable -E [destination]

Enable printers or printer classes. Part of the CUPS system. More often invoked as \texttt{accept}.

env

disp [option] [variable=value ...] [command]

Display the current environment or, if an environment variable is specified, set it to a new value and display the modified environment. If \texttt{command} is specified, execute it under the modified environment.

Options
-\texttt{-. -i, --ignore-environment}

Ignore current environment entirely.

-\texttt{u name, --unset name}

Unset the specified variable.

--help

Print help message and then exit.

--version

Print version information and then exit.
environ

envsubst [options] [shell-format]
Substitutes environment variables in a shell string or script. When
used with no options, copies stdin to stdout, replacing any environ-
ment variable string, such as $VARIABLE or $VAR{VABLE}, with
the appropriate environment variable value. So, “My editor is
EDITOR” would be converted to “My editor is /usr/bin/emacs.”
Specifying a shell format limits the substitutions to those variables
referenced in the shell format.

Options
-h, --help
Print help message and then exit.
-v, --variables
Display the variables referenced in the shell format, and then
exit.
-V, --version
Print version information and then exit.

etags

etags [options] files
Create a list of function and macro names defined in a program-
ing source file. etags generates tags for use by emacs. (ctags
produces an equivalent tags file for use with vi.) More than one file
may be specified. etags understands many programming languages,
including C, C++, FORTRAN, Java, Perl, Python, flex, yacc, and
bison. The output list (named TAGS by default) contains lines of
the form:

name file context

where name is the function or macro name, file is the source file in
which name is defined, and context is a search pattern that shows
the line of code containing name. After the list of tags is created,
you can invoke Emacs on any file and type:

M-x visit-tags-table

You will be prompted for the name of the tag table; the default is
TAGS. To switch to the source file associated with the name listed
in tagsfile, type:

M-x find-tag

You will be prompted for the tag you would like Emacs to search
for.

Options
-a, --append
 Append tag output to existing list of tags.
-d, --defines
 Include tag entries for C preprocessor definitions.
-i file, --include=file
 Add a note to the tags file that file should be consulted in
addition to the normal input file.
-l language, --language=language
Consider the files that follow this option to be written in language. Use the -h option for a list of languages and their default filename extensions.

-o file, --output=file
Write to file.

-r regexp, --regex=regexp
Include a tag for each line that matches regexp in the files following this option.

-C, --c++
Expect .c and .h files to contain C++, not C, code.

-D, --no-defines
Do not include tag entries for C preprocessor definitions.

-H, --help
Print usage information.

-R, --noregex
Do not include tags based on regular-expression matching for the files that follow this option.

-S, --ignore-indentation
Normally, etags uses indentation to parse the tag file; this option tells it to rely on it less.

-V, --version
Print the version number.

ex
An interactive command-based editor. For more information, see Chapter 9.

expand
Convert tabs in given files (or standard input, if the file is given as -) to the appropriate number of spaces; write results to standard output.

Options
--help
Print help message and then exit.

-i, --initial
Convert tabs only at the beginning of lines.

-t tabs, --tabs tabs
tabs is a comma-separated list of integers that specify tab stops. With one integer, the tab stops are set to every integer spaces. By default, tab stops are eight spaces apart. With -t and --tabs, the list may be separated by whitespace instead of commas.

--version
Print version information and then exit.
expr

```
expr arg1 operator arg2 [ operator arg3 ... ]
```

Evaluate arguments as expressions and print the results to standard output. Arguments and operators must be separated by spaces. In most cases, an argument is an integer, typed literally or represented by a shell variable. There are three types of operators: arithmetic, relational, and logical, as well as keyword expressions. Exit status for `expr` is 0 (expression is nonzero and nonnull), 1 (expression is 0 or null), 2 (expression is invalid), or 3 (an error occurred).

Arithmetic operators

Use these to produce mathematical expressions whose results are printed:

- `+` Add `arg2` to `arg1`.
- `-` Subtract `arg2` from `arg1`.
- `*` Multiply the arguments.
- `/` Divide `arg1` by `arg2`.
- `%` Take the remainder when `arg1` is divided by `arg2`.

Addition and subtraction are evaluated last, unless they are grouped inside parentheses. The symbols `*`, `(, and) have meaning to the shell, so they must be escaped (preceded by a backslash or enclosed in single quotes).

Relational operators

Use these to compare two arguments. Arguments can also be words, in which case comparisons are defined by the locale. If the comparison statement is true, the result is 1; if false, the result is 0. Symbols `>`, `>=`, `<`, and `<=` must be escaped.

- `=` Are the arguments equal?
- `!=` Are the arguments different?
- `>` Is `arg1` greater than `arg2`?
- `>=` Is `arg1` greater than or equal to `arg2`?
- `<` Is `arg1` less than `arg2`?
- `<=` Is `arg1` less than or equal to `arg2`?

Logical operators

Use these to compare two arguments. Depending on the values, the result can be `arg1` (or some portion of it), `arg2`, or 0. Symbols `|` and `&` must be escaped.

- `|` Logical OR; if `arg1` has a nonzero (and nonnull) value, the result is `arg1`; otherwise, the result is `arg2`.
- `&` Logical AND; if both `arg1` and `arg2` have a nonzero (and nonnull) value, the result is `arg1`; otherwise, the result is 0.
- `:` Like `grep`; `arg2` is a pattern to search for in `arg1`. `arg2` must be a regular expression. If part of the `arg2` pattern is enclosed in `()`
(escaped parentheses), the result is the portion of \textit{arg1} that matches; otherwise, the result is simply the number of characters that match. By default, a pattern match always applies to the beginning of the first argument (the search string implicitly begins with a ^). Start the search string with .* to match other parts of the string.

Keywords

- **index string character-list**
 Return the first position in \textit{string} that matches the first possible character listed in \textit{character-list}. Continue through \textit{character-list} until a match is found, or return 0.

- **length string**
 Return the length of \textit{string}.

- **match string regex**
 Same as \textit{string} : \textit{regex}.

- **+ token**
 Treat \textit{token} as a string, even if it would normally be a keyword or an operator.

- **substr string start length**
 Return a section of \textit{string}, beginning with \textit{start}, with a maximum length of \textit{length} characters. Return null when given a negative or nonnumeric \textit{start} or \textit{length}.

Examples

Division happens first; result is 10:

\begin{verbatim}
expr 5 + 10 / 2
\end{verbatim}

Addition happens first; result is 7 (truncated from 7.5):

\begin{verbatim}
expr \((5 + 10 \) / 2
\end{verbatim}

Add 1 to variable \textit{i}. This is how variables are incremented in shell scripts:

\begin{verbatim}
i=`expr \$i + 1`
\end{verbatim}

Print 1 (true) if variable \textit{a} is the string "hello":

\begin{verbatim}
expr \$a = hello
\end{verbatim}

Print 1 (true) if \textit{b} plus 5 equals 10 or more:

\begin{verbatim}
expr \$b + 5 \(\geq \) 10
\end{verbatim}

Find the 5th, 6th, and 7th letters of the word \textit{character}:

\begin{verbatim}
expr substr character 5 3
\end{verbatim}

In the examples that follow, variable \textit{p} is the string "version.100". This command prints the number of characters in \textit{p}:

\begin{verbatim}
expr \$p : '.*' \quad \text{Result is 11}
\end{verbatim}

Match all characters and print them:

\begin{verbatim}
expr \$p : '\(.*\)' \quad \text{Result is 'version.100'}
\end{verbatim}

Print the number of lowercase letters at the beginning of \textit{p}:

\begin{verbatim}
expr \$p : '[a-z]*' \quad \text{Result is 7}
\end{verbatim}
fc-cache

Match the lowercase letters at the beginning of p:

\texttt{expr \$p : '([^a-z]*)' \ Result is "version"}

Truncate x if it contains five or more characters; if not, just print x. (Logical OR uses the second argument when the first one is 0 or null, i.e., when the match fails.)

\texttt{expr $x : '(.......)' \| $x}

In a shell script, rename files to their first five letters:

\texttt{mv $x \ `expr $x : '(.......)' \| $x`}

(To avoid overwriting files with similar names, use \texttt{mv -i}.)

\textbf{factor}

\texttt{factor \ [options] \ n}

Calculate and display the prime factors of number \textit{n}, which must be a positive integer. If \textit{n} is not specified, numbers are read from standard input, separated by commas, spaces, or tabs.

\textbf{Options}

\texttt{--help}

Display help information.

\texttt{--version}

Display version information.

\textbf{Example:}

\texttt{user@systemname:~> factor 60}

\texttt{60: 2, 2, 3 5}

\textbf{false}

\texttt{false}

A null command that returns an unsuccessful (nonzero) exit status. Normally used in bash scripts. See also \texttt{true}.

\textbf{fc-cache}

\texttt{fc-cache \ [options] \ [dirs]}

Create font information caches for fontconfig system, enabling applications that use fontconfig to load fonts more rapidly. If no directory is specified, the current font configuration directories are used. Only fonts readable by FreeType are cached.

\textbf{Options}

\texttt{-f, --force}

Regenerate cache files, even if they seem to be up to date.

\texttt{-s, --system-only}

Scan directories of fonts for the whole system, not the fonts in the user’s home directory.

\texttt{-v, --verbose}

Verbose mode: display status information during operation.

\texttt{-V, --version}

Display version information.

\texttt{-?, --help}

Display help information.
fc-list

fc-list [options] [pattern] [element]

Part of the fontconfig system. Lists available fonts and font styles. The first argument limits listed fonts to those matching the pattern, and the second displays the listed font attribute or element. To set the element argument without setting a pattern, use the : character to match all fonts. For example, `fc-list : family` displays all available fonts, with their font family information.

Options

- `-v`, `--verbose`
 Verbose mode: display status information during operation.

- `?-`, `--help`
 Display help message

- `-V`, `--version`
 Display version information and quit.

fdisk

fdisk [options] [device]

System administration command. `fdisk` displays information about disk partitions, creates and deletes disk partitions, and changes the active partition. It is possible to assign a different operating system to each of the four possible primary partitions, though only one partition is active at any given time. You can also divide a physical partition into several logical partitions. The minimum recommended size for a Linux system partition is 40 MB. Normally, each device will be `/dev/hda`, `/dev/hdb`, `/dev/sda`, `/dev/sdb`, `/dev/hdc`, `/dev/hdd`, and so on. An interactive, menu-driven mode is also available. Note that this command can be destructive if used improperly.

Options

- `-b` `sectorsize`
 Set the size of individual disk sectors. May be 512, 1024, or 2048. Most systems now recognize sector sizes, so this is not necessary.

- `-l`
 List partition tables and exit.

- `-u`
 Report partition sizes in sectors instead of cylinders.

- `-s partition`
 Display the size of partition, unless it is a DOS partition.

- `-v`
 Print version number, then exit.

- `-C cylinders`
 Specify the number of cylinders on the disk.

- `-H heads`
 Specify the number of heads per cylinder.

- `-S sectors`
 Specify sectors per track for partitioning.
Commands

a Toggle a bootable flag on current partition.
b Edit disklabel of a BSD partition.
c Toggle DOS compatibility flag.
d Delete current partition.
l List all partition types.
m Main menu.
n Create a new partition; prompt for more information.
o Create an empty DOS partition table.
p Print a list of all partitions and information about each.
q Quit; do not save.
t Replace the type of the current partition.
u Modify the display/entry units, which must be cylinders or sectors.
v Verify: check for errors, and display a summary of the number of unallocated sectors.
w Save changes and exit.
x Switch to expert commands.

fgconsole

Print the number of the current virtual console. For example, if you are using `/dev/tty1`, the command would return 1.

fgrep

fgrep [options] string [files]

Search one or more files for lines that match the specified text string. Exit status is 0 if any lines match, 1 if not, and 2 for errors. fgrep is faster than normal grep searches, but less flexible: it can only find fixed text, not regular expressions.

See grep for the list of available options. Also see egrep.

Examples

Print lines in file that don’t contain any spaces:

```
fgrep -v ' ' file
```

Print lines in file that contain the words in the file spell_list:

```
fgrep -f spell_list file
```

file

file [options] files

Classify the named files according to the type of data they contain. file checks the magic file (usually `usr/share/magic`) to identify some file types. If the file type cannot be determined, it is shown as “data.” file does its best to identify the file type, but it is sometimes incorrect. See also the strings command to search for printable strings in non-text files.
Options

-b, --brief
Brief mode; do not prepend filenames to output lines.

-c, --checking-printout
Check the format of the magic file (the files argument is invalid with -c). Usually used with -m.

-f file, --files-from file
Read the names of files to be checked from file.

-h, --no-dereference
Do not follow symbolic links. The default unless the environment variable POSIXLY_CORRECT is defined.

--help
Print help message and exit.

-i, --mime
Print mime strings rather than the traditional strings.

-L, --dereference
Follow symbolic links. By default, symbolic links are not followed.

-m file, --magic-file file
Search for file types in file instead of /usr/share/magic, where file can be either a single file or a colon-separated list of files.

--mime-type, --mime-encoding
Like -i, but print only the mime type or the mime encoding.

-n, --no-buffer
Flush standard output after checking a file.

-N, --no-pad
Do not pad filenames to align in the output.

-s, --special-files
Check files that are block or character special files in addition to checking ordinary files.

-v, --version
Print the version.

-z, --uncompress
Attempt checking of compressed files.

Many file types are understood. The output lists each filename, followed by a brief classification such as:

* ascii text
* c program text
* c-shell commands
* data
* empty
* iAPX 386 executable
* directory
* [nt]roff, tbl, or eqn input text
* shell commands
* symbolic link to path
find
find [pathnames] [conditions]

An extremely useful command for finding particular groups of files (numerous examples follow this description). find descends the directory tree beginning at each pathname and locates files that meet the specified conditions. The default pathname is the current directory. The most useful conditions include -name and -type (for general use), -exec and -size (for advanced use), and -mtime and -user (for administrators).

Conditions may be grouped by enclosing them in \((\) (escaped parentheses), negated with \(!\), given as alternatives by separating them with -o, or repeated (adding restrictions to the match; usually only for -name, -type, or -perm). Note that "modification" refers to editing of a file’s contents, whereas "change" means a modification, or permission or ownership changes. In other words, -ctime is more inclusive than -atime or -mtime.

Conditions and actions

-amin \(+n \) \(-n \) \(n \)
Find files last accessed more than \(n \) (\(+n\)), less than \(n \) (\(-n\)), or exactly \(n \) minutes ago.

-ancw new file
Find files that were accessed after file was last modified. Affected by -H or -L when after them on the command line.

-atime \(+n \) \(-n \) \(n \)
Find files that were last accessed more than \(n \) (\(+n\)), less than \(n \) (\(-n\)), or exactly \(n \) days ago. Note that find changes the access time of directories supplied as pathnames.

-cmin \(+n \) \(-n \) \(n \)
Find files last changed more than \(n \) (\(+n\)), less than \(n \) (\(-n\)), or exactly \(n \) minutes ago.

-cnewer file
Find files that were changed after they were last modified. Affected by -H or -L when after them on the command line.

-ctime \(+n \) \(-n \) \(n \)
Find files that were changed more than \(n \) (\(+n\)), less than \(n \) (\(-n\)), or exactly \(n \) days ago. A change is anything that changes the directory entry for the file, such as a chmod.
-daystart
 Calculate times from the start of the day today, not 24 hours ago. Only affects tests that come after it on the command line.

-delete
 Delete files. Automatically turns on -depth.

-depth
 Descend the directory tree, skipping directories and working on actual files first, and then the parent directories. Useful when files reside in unwritable directories (e.g., when using find with cpio).

-empty
 Continue if file is empty. Applies to regular files and directories.

-exec command\{ \} ;
 Run the Linux command, from the starting directory on each file matched by find (provided command executes successfully on that file—i.e., returns a 0 exit status). When command runs, the argument \{ \} substitutes the current file. Follow the entire sequence with an escaped semicolon (;). In some shells, the braces may need to be escaped as well.

-false
 Return false for each file encountered.

-fstype type
 Match files only on type filesystems. Acceptable types include minix, ext, ext2, xia, msdos, umsdos, vfat, proc, nfs, iso9660, hpfs, sysv, smb, and ncpfs.

-gid num
 Find files with numeric group ID of num.

-group gname
 Find files belonging to group gname. gname can be a group name or a group ID number.

-lname pattern
 A case-insensitive version of -name.

-name pattern
 A case-insensitive version of -name.

-inum n
 Find files whose inode number is n.

-ipath pattern
 A case-insensitive version of -path.

-iregex pattern
 A case-insensitive version of -regex.

-links n
 Find files having n links.

-lname pattern
 Search for files that are symbolic links, pointing to files named pattern. pattern can include shell metacharacters and does not treat / or . specially. The match is case-insensitive.
find

-maxdepth num
 Do not descend more than num levels of directories.

-mindepth num
 Begin applying tests and actions only at levels deeper than
 num levels.

-mmin +n | -n | n
 Find files last modified more than n (+n), less than n (-n), or
 exactly n minutes ago.

-mount, -xdev
 Search only for files that reside on the same filesystem as path-
 name. -xdev is for compatibility with other versions of find.

-mtime +n | -n | n
 Find files that were last modified more than n (+n), less than n
 (-n), or exactly n days ago. A modification is a change to a
 file’s data.

-name pattern
 Find files whose names match pattern. Filename metacharac-
 ters may be used but should be escaped or quoted.

-newer file
 Find files that were modified more recently than file; similar to
 -mtime. With -H or -L, if file is a symbolic link, use the modi-
 fication time of the file the link points to.

-nogroup
 The file’s group ID does not correspond to any group.

-noleaf
 Normally, find assumes that each directory has at least two
 hard links that should be ignored (a hard link for its name and
 one for "."—i.e., two fewer "real" directories than its hard
 link count indicates). -noleaf turns off this assumption, a
 useful practice when find runs on non-Unix-style filesystems.
 This forces find to examine all entries, assuming that some
 might prove to be directories into which it must descend (a
 time-waster on Unix).

-nouser
 The file’s user ID does not correspond to any user.

-ok command { };
 Same as -exec, but prompts user to respond with y or Y before
 command is executed.

-path pattern
 Find files whose names match pattern. Expect full pathnames
 relative to the starting pathname (i.e., do not treat / or .
 specially).

-perm nnn
 Find files whose permission flags (e.g., rwx) match octal
 number nnn exactly (e.g., 664 matches -rw-rw-r--). Use a
 minus sign before nnn to make a "wildcard" match of any
 unspecified octal digit (e.g., -perm -600 matches -rw-******,
 where * can be any mode).
-print
Print the matching files and directories, using their full path-names. Return true. This is the default behavior.

-regex pattern
Like -path, but uses Emacs-style regular expressions instead of the shell-like globbing used in -name and -path.

-regextype pattern
Use an alternative regular expression syntax for -regex and -iregex. The possible types are Emacs (the default), posix-awk, posix-basic, posix-egrep, and posix-extended.

-size n[u]
Find files containing n blocks. If u, is specified, measure size in one of the following units: b (512-byte blocks), c (bytes), k (kilobytes), G (gigabytes), M (megabytes), or w (two-byte words).

-true
Return true for each file encountered.

type c
Find files whose type is c. c can be b (block special file), c (character special file), d (directory), p (fifo or named pipe), l (symbolic link), s (socket), or f (plain file).

-user user
Find files belonging to user (name or numeric ID).

Examples
List all files (and subdirectories) in your home directory:

 find $HOME -print

List all files named chapter1 in the /work directory:

 find /work -name chapter1

List all files beginning with memo owned by ann:

 find /work -name 'memo*' -user ann -print

Search the filesystem (begin at root) for manpage directories:

 find / -type d -name 'man*' -print

Search the current directory, look for filenames that don’t begin with a capital letter, and send them to the printer:

 find . \! -name '[A-Z]*' -exec lpr { }

Find and compress files whose names don’t end with .gz:

 gzip `find . \! -name '.**gz' -print`

Remove all empty files on the system (prompting first):

 find / -size 0 -ok rm { }

Search the system for files that were modified within the last two days (good candidates for backing up):

 find / -mtime -2 -print

Recursively grep for a pattern down a directory tree:

 find /book -print | xargs grep '^[Nn]utshell'
If the files kt1 and kt2 exist in the current directory, their names can be printed with the command:

```
$ find . -name 'kt[0-9]'
./kt1
./kt2
```

Since the command prints these names with an initial ./ path, you need to specify the ./ when using the `-path` option:

```
$ find . -path './kt[0-9]'
./kt1
./kt2
```

The `-regex` option uses a complete pathname, like `-path`, but treats the following argument as a regular expression rather than a glob pattern (although in this case the result is the same):

```
$ find . -regex './kt[0-9]'
./kt1
./kt2
```

flex

`flex [options] [file]`

`flex` (Fast Lexical Analyzer Generator) is a faster variant of `lex`. It generates a lexical analysis program (named `lex.yy.c`) based on the regular expressions and C statements contained in one or more input files. See also `bison`, `yacc`, and the O’Reilly book *lex & yacc*.

Options

- `-b` Generate backup information to `lex.backup`.
- `-d` Debug mode.
- `-f` Use a faster scanner. The result is larger but faster.
- `-h` Help summary.
- `-i` Scan case-insensitively.
- `-l` Maximum `lex` compatibility.
- `-o file` Write output to `file` instead of `lex.yy.c`.
- `-p` Print performance report.
- `-s` Exit if the scanner encounters input that does not match any of its rules.
- `-t` Print to standard output. (By default, `flex` prints to `lex.yy.c`.)
- `-v` Print a summary of statistics.
- `-w` Suppress warning messages.
- `-B` Generate batch (noninteractive) scanner.
- `-F` Use the fast scanner table representation. This option is usually as fast as `-f` and often generates smaller data (although for some data sets, it generates larger data).
- `-l` Generate an interactive scanner (default).
- `-L` Suppress `#line` directives in `lex.yy.c`.

`flex` (Fast Lexical Analyzer Generator) is a faster variant of `lex`. It generates a lexical analysis program (named `lex.yy.c`) based on the regular expressions and C statements contained in one or more input files. See also `bison`, `yacc`, and the O’Reilly book *lex & yacc*.

Options

- `-b` Generate backup information to `lex.backup`.
- `-d` Debug mode.
- `-f` Use a faster scanner. The result is larger but faster.
- `-h` Help summary.
- `-i` Scan case-insensitively.
- `-l` Maximum `lex` compatibility.
- `-o file` Write output to `file` instead of `lex.yy.c`.
- `-p` Print performance report.
- `-s` Exit if the scanner encounters input that does not match any of its rules.
- `-t` Print to standard output. (By default, `flex` prints to `lex.yy.c`.)
- `-v` Print a summary of statistics.
- `-w` Suppress warning messages.
- `-B` Generate batch (noninteractive) scanner.
- `-F` Use the fast scanner table representation. This option is usually as fast as `-f` and often generates smaller data (although for some data sets, it generates larger data).
- `-l` Generate an interactive scanner (default).
- `-L` Suppress `#line` directives in `lex.yy.c`.
fmt

-P prefix
 Change default yy prefix to prefix for all globally visible variable and function names.
-V Print version number.
-7 Generate a 7-bit scanner.
-8 Generate an 8-bit scanner (default).
+- Generate a C++ scanner class.
-C Compress scanner tables but do not use equivalence classes.
-Ca Align tables for memory access and computation. This creates larger tables but gives faster performance.
-Ce Construct equivalence classes. This creates smaller tables and sacrifices little performance (default).
-CF Generate full scanner tables, not compressed.
-CF Generate faster scanner tables, like -F.
-Cm Construct metaequivalence classes (default).
-Cr Bypass use of the standard I/O library; use read() system calls instead.

fmt [options] [files]
Convert text to specified width by filling lines and removing newlines. Concatenate files on the command line, or read text from standard input if - (or no file) is specified. By default, preserve blank lines, spacing, and indentation. fmt attempts to break lines at the end of sentences and to avoid breaking lines after a sentence’s first word or before its last.

Options
- -c, --crown-margin
 Crown margin mode. Do not change indentation of each paragraph’s first two lines. Use the second line’s indentation as the default for subsequent lines.
-p prefix, --prefix=prefix
 Format only lines beginning with prefix.
-s, --split-only
 Suppress line-joining.
-t, --tagged-paragraph
 Tagged paragraph mode. Same as crown mode when the indentations of the first and second lines differ. If the indentation is the same, treat the first line as its own separate paragraph.
formail

formail [options]
Filter standard input into mailbox format. Useful for splitting mail digests or passing the contents of a mail file to another program, such as a spam filter, for additional processing. If no sender is apparent, provide the sender foo@bar. By default, escape bogus From lines with >.

Options
+skip
Do not split first skip messages.

-total
Stop after splitting total messages.

-a headerfield
Append headerfield to header, unless it already exists. If headerfield is Message-ID or Resent-Message-ID with no contents, generate a unique message ID.

formail

fold

fold [option] [files]
Break the lines of the named files so that they are no wider than the specified width. fold breaks lines exactly at the specified width, even in the middle of a word. Reads from standard input when given - as a file. By default, fold cuts at 80 columns; tab counts as multiple columns, and a backspace as negative one.

Options
-b, --bytes
Count bytes instead of columns, making tab, backspace, and return characters count as one byte instead of altering the column count, as in the default behavior.

-c, --characters
Count characters, not columns. Similar to counting by bytes.

-s, --spaces
Break at spaces only, if possible.

-w, --width width, -width
Set the maximum line width to width. The flags -w 6, --width 6, and -6 all set the maximum width to six columns.

formail

formai
formail

-A headerfield
 Append headerfield whether or not it already exists.
-b Do not escape bogus From lines.
-B Assume that input is in BABYL rmail format.
-c When header fields are more than one line long, concatenate the lines.
-d Do not assume that input must be in strict mailbox format.
 This option disables recognition of the Content-Length field
 so you can split digests or use nonstandard mailbox formats.
-D maxlen idcache
 Remember old message IDs (in idcache, which will grow no
 larger than approximately maxlen). When splitting, refuse to output
duplicate messages. Otherwise, return true on discovering a duplicate.
 With -r, look at the sender’s mail address instead of the message ID.
-e Allow messages to begin one immediately after the other; do
 not require empty space between them.
-f Do not edit non-mailbox-format lines. By default, formail
 prepends From to such lines.
-i headerfield
 Like -A, but rename each existing headerfield to Old-header-
 field, unless it is empty.
-I headerfield
 Like -i, but also remove existing similar fields. If there is only a
 field name but no content, delete the field.
-k For use only with -r. Keep the body as well as the fields speci-
fied by -r.
-l folder
 Generate a log summary in procmail format. You can then use
 mailstat to summarize the logs.
-m minfields
 Require formail to find at least minfields consecutive headers
 before recognizing the beginning of a new message. Default is 2.
-n [max]
 Allow simultaneous formail processes to run. Specify max to set
 the number of simultaneous processes allowed.
-p prefix
 Set off quoted lines with prefix instead of >.
-q Do not display write errors, duplicate messages, or
 mismatched Content-Length fields. This is the default; use -q-
to turn it off and display the messages.
-r Throw away all existing fields, retaining only X-Loop, and
 generate autoreply header instead. You can preserve particular
 fields with the -i option.
fsck

```
-R oldfield newfield
Change all fields named oldfield to newfield.
-s [progname]
Must be the last option; everything following -s is assumed to be its arguments. Divide input to separate mail messages, and pipe them to the program specified or concatenate them to standard output (by default).
-t Assume sender’s return address to be valid. (By default, formail favors machine-generated addresses.)
-u headerfield
Delete all but the first occurrence of headerfield.
-U headerfield
Delete all but the last occurrence of headerfield.
-x headerfield
Display the contents of headerfield; to always display on a single line, use with -c.
-X headerfield
Like -x, but also display the field name.
-Y Format in traditional Berkeley style (i.e., ignore Content-Length fields).
-z When necessary, add a space between field names and contents. Remove (“zap”) empty fields.
```

free

```
free [options]
Display statistics about memory usage: total free, used, physical, swap, shared, and buffers used by the kernel.

Options
-b Calculate memory in bytes.
-k Default. Calculate memory in kilobytes.
-m Calculate memory in megabytes.
-o Do not display “buffer adjusted” line. The -o switch disables the display “-/+ buffers” line that shows buffer memory subtracted from the amount of memory used and added to the amount of free memory.
-s time
Check memory usage every time seconds.
-t Display all totals on one line at the bottom of output.
-V Display version information.
```

fsck

```
fsck [options] [filesystem] ...
System administration command. Call the filesystem checker for the appropriate system type to check and repair unmounted filesystems. If a filesystem is consistent, the number of files, number of blocks used, and number of blocks free are reported. If a filesystem
ftp

is inconsistent, **fsck** prompts before each correction is attempted. **fsck**’s exit code can be interpreted as the sum of all conditions that apply:

0  No errors found.
1  Errors were found and corrected.
2  Reboot suggested.
4  Errors were found but not corrected.
8  **fsck** encountered an operational error.
16  **fsck** was called incorrectly.
32  **fsck** canceled by user request.
128  A shared library error was detected.

**Options**

--  Pass all subsequent options to filesystem-specific checker. All options that **fsck** doesn’t recognize will also be passed.
-s  Serial mode. Check one filesystem at a time.
-t ftype  Specify the filesystem type. Do not check filesystems of any other type. Multiple filesystem types to check can be specified in a comma-separated list.
-A  Check all filesystems listed in /etc/fstab. The root filesystem is checked first.
-C [/d]  Display completion (progress) bar. Optionally specify a file-descriptor to receive the progress. (Useful for a GUI frontend.)
-M  Don’t check mounted filesystems. Returns a 0 exit code for mounted system.
-N  Suppress normal execution; just display what would be done.
-P  Meaningful only with -A: check root filesystem in parallel with other systems. This option is potentially dangerous.
-R  Meaningful only with -A: check all filesystems listed in /etc/fstab except the root filesystem.
-T  Suppress printing of title.
-V  Verbose mode.

**ftp**

ftp [options] [hostname]

Transfer files to and from remote network site **hostname**. **ftp** prompts the user for a command. The commands are listed after the options. Some of the commands are toggles, meaning they turn on a feature when it is off and vice versa. Note that some versions may have different options.

**Options**

-d  Enable debugging.
-g Disable filename globbing.
-i Turn off interactive prompting.
-n No autologin upon initial connection.
-v Verbose. Show all responses from remote server.

Commands

!\{command [args]\]
Invoke an interactive shell on the local machine. If arguments are given, the first is taken as a command to execute directly, with the rest of the arguments as that command’s arguments.

$\{macro-name [args]\]
Execute the macro macro-name that was defined with the \texttt{macdef} command. Arguments are passed to the macro unglobbed.

account [passwd]
Supply a supplemental password that will be required by a remote system for access to resources once a login has been successfully completed. If no argument is given, prompt the user for an account password in a nonechoing mode.

append local-file [remote-file]
Append a local file to a file on the remote machine. If remote-file is not given, the local filename is used after being altered by any \texttt{ntrans} or \texttt{nmap} setting. File transfer uses the current settings for \texttt{type}, \texttt{format}, \texttt{mode}, and \texttt{structure}.

ascii
Set the file transfer type to network ASCII (default).

bell
Sound a bell after each file transfer command is completed.

binary, image
Set file transfer type to support binary image transfer.

bye, quit
Terminate FTP session and then exit \texttt{ftp}.

case
Toggle remote-computer filename case mapping during \texttt{mget}. The default is off. When case is on, files on the remote machine with all-uppercase names are copied to the local machine with all-lowercase names.

cd remote-directory
Change working directory on remote machine to remote-directory.

cdup
Change working directory on remote machine to its parent directory.

chmod [mode] [remote-file]
Change file permissions of remote-file. If options are omitted, the command prompts for them.
close, disconnect
Terminates FTP session and return to command interpreter.

cr
Toggle carriage-return stripping during ASCII-type file retrieval.

delete remote-file
Delete file remote-file on remote machine.

debug [debug-value]
Toggle debugging mode. If debug-value is specified, it is used
to set the debugging level.

dir [remote-directory] [local-file]
Print a listing of the contents in the directory remote-directory
and, optionally, place the output in local-file. If no directory is
specified, the current working directory on the remote
machine is used. If no local file is specified or - is given instead
of the filename, output comes to the terminal.

form format
Set the file transfer form to format. Default format is file.

get remote-file [local-file], recv remote-file [local-file]
Retrieve remote-file and store it on the local machine. If local-file
is not specified, the file is given the same name as on the
remote machine, subject to alteration by the current case,
ntrans, and nmap settings. If local-file is -, the output comes
to the terminal.

glob
Toggle filename expansion for mdelete, mget, and mput. If
globbing is turned off, the filename arguments are taken liter-
ally and not expanded.

hash
Toggle hash sign (#) printing for each data block transferred.

help [command], ? [command]
Print help information for command. With no argument, ftp
prints a list of commands.

idle [seconds]
Get/set idle timer on remote machine. seconds specifies the
length of the idle timer; if omitted, the current idle timer is
displayed.

lcd [directory]
Change working directory on local machine. If directory is not
specified, the user’s home directory is used.

ls [remote-directory] [local-file]
Print listing of contents of directory on remote machine, in a
format chosen by the remote machine. If remote-directory is
not specified, current working directory is used.

macdef macro-name
Define a macro. Subsequent lines are stored as the macro
macro-name; a null line terminates macro input mode. When $i
is included in the macro, loop through arguments, substituting
the current argument for $i on each pass. Escape $ with \\.
**ftp**

- **mdelete** `remote-files`
  - Delete the `remote-files` on the remote machine.

- **mdir** `remote-files local-file`
  - Like `dir`, except multiple remote files may be specified.

- **mget** `remote-files`
  - Expand the wildcard expression `remote-files` on the remote machine and do a `get` for each filename thus produced.

- **mkdir** `directory-name`
  - Make a directory on the remote machine.

- **mls** `remote-files local-file`
  - Like `nlist`, except multiple remote files may be specified, and the local file must be specified.

- **mode** `[mode-name]`
  - Set file transfer mode to `mode-name`. Default mode is stream.

- **modtime** `file-name`
  - Show last modification time of the file on the remote machine.

- **mput** `local-files`
  - Expand wildcards in `local-files` given as arguments and do a `put` for each file in the resulting list.

- **newer** `remote-file [local-file]`
  - Get the remote file if it is newer than the local file.

- **nlist** `[remote-directory] [local-file]`
  - Print list of files in a directory on the remote machine to `local-file` (or to the screen if `local-file` is not specified). If `remote-directory` is unspecified, the current working directory is used.

- **nmap** `[inpattern outpattern]`
  - Set or unset the filename mapping mechanism. The mapping follows the pattern set by `inpattern`, a template for incoming filenames, and `outpattern`, which determines the resulting mapped filename. The sequences $1$ through $9$ are treated as variables; for example, the `inpattern` $\$1.\$2$, along with the input file `readme.txt`, would set $\$1$ to `readme` and $\$2$ to `txt`. An `outpattern` of `$1.data$` would result in an output file of `readme.data`. $\$0$ corresponds to the complete filename. `[string1, string2]` is replaced by `string1` unless that string is null, in which case it’s replaced by `string2`.

- **ntrans** `[inchars [outchars]]`
  - Set or unset filename character translation. Characters in a filename matching a character in `inchars` are replaced with the corresponding character in `outchars`. If no arguments are specified, the filename mapping mechanism is unset. If arguments are specified:
    - Characters in remote filenames are translated during `mput` and `put` commands issued without a specified remote target filename.
    - Characters in local filenames are translated during `mget` and `get` commands issued without a specified local target filename.
open host [port]
Establish a connection to the specified host FTP server. An optional port number may be supplied, in which case ftp attempts to contact an FTP server at that port.

prompt
Toggle interactive prompting.

proxy ftp-command
Execute an FTP command on a secondary control connection (i.e., send commands to two separate remote hosts simultaneously to allow the transfer of files between the two servers).

put local-file [remote-file], send local-file [remote-file]
Store a local file on the remote machine. If remote-file is not specified, the local filename is used after processing according to any ttrans or nmap settings in naming the remote file. File transfer uses the current settings for type, file, structure, and transfer mode.

pwd
Print name of the current working directory on the remote machine.

quote arg1 arg2...
Send the arguments specified, verbatim, to the remote FTP server.

reget remote-file [local-file]
Retrieve a file (like get), but restart at the end of local-file. Useful for restarting a dropped transfer.

remotethelp [command-name]
Request help from the remote FTP server. If command-name is specified, remote help for that command is returned.

remotestatus [filename]
Show status of the remote machine or, if filename is specified, of filename on remote machine.

rename [from] [to]
Rename file from on remote machine to to.

reset
Clear reply queue.

restart marker
Restart the transfer of a file from a particular byte count.

rmdir directory-name
Delete a directory on the remote machine.

runique
Toggle storing of files on the local system with unique filenames. When this option is on, rename files as .1 or .2, and so on, as appropriate, to preserve unique filenames, and report each such action. Default value is off.

sendport
Toggle the use of PORT commands.
site [command]
   Run a site-specific command on the remote machine.

size filename
   Return size of filename on remote machine.

status
   Show current status of ftp.

struct [struct-name]
   Set the file transfer structure to struct-name. By default, stream
   structure is used.

unique
   Toggle storing of files on remote machine under unique
   filenames.

system
   Show type of operating system running on remote machine.

tenex
   Set file transfer type to that needed to talk to TENEX machines.

trace
   Toggle packet tracing.

type [type-name]
   Set file transfer type to type-name. If no type is specified, the
   current type is printed. The default type is network ASCII.

umask [mask]
   Set user file-creation mode mask on the remote site. If mask is
   omitted, the current value of the mask is printed.

user username [password] [account]
   Identify yourself to the remote FTP server. ftp prompts the
   user for the password (if not specified and the server requires
   it) and the account field.

verbose
   Toggle verbose mode.

ftp

in.ftpd [options]
TCP/IP command. Internet File Transfer Protocol server. The server
uses the TCP protocol and listens at the port specified in the ftp
service specification. ftPD is usually started by xinetd and must
have an entry in xinetd’s configuration file, /etc/xinetd.conf. It can
also be run in standalone mode using the -p option. There are
several FTP daemons available. On many Linux distributions, the
default is the Kerberos-supporting DARPA version, which we docu-
ment here.

Options
-a   Require authentication via ftp AUTH. Allow anonymous users
      as well, if configured to do so.
-A   Require authentication via ftp AUTH, but allow only users
      who are authorized to connect without a password. Allow
      anonymous users as well, if configured to do so.
fuser

-C Require local credentials for nonanonymouse users. Prompt for a password unless the user forwards credentials during authentication.

-d, -v
Write debugging information to syslogd.

-l Log each FTP session in syslogd.

-p port
Use port as the FTP control port instead of reading the appropriate port from /etc/services. This option will launch ftpd in standalone mode.

-q Use PID files to record the process IDs of running daemons. This is the default. These files are needed to determine the current number of users.

-r file
Read Kerberos configuration from file instead of /etc/krb5.conf.

-s file
Read Kerberos V4 authentication information from file instead of /etc/srvtab.

-t n
Set default inactivity timeout period to n seconds. (The default is 15 minutes.)

-T n
Allow ftp clients to request a different timeout period of up to n seconds. (The default is 2 hours.)

-u umask
Set the default umask to umask.

-U file
Read the list of users denied remote access from file instead of /etc/ftpusers.

-w format
Specify the format for the remote hostname passed to login. Use one of the following formats:

ip
Pass the IP address.

n[no][striplocal]
Pass hostnames less than n characters in length, and IP addresses for longer hostnames. Set n to 0 to use the system default. The striplocal portion of the option determines whether or not to strip local domains from hostnames. The default is to strip them.

fuser fuser [options] [files | filesystems]
Identifies and outputs the process IDs of processes that are using the files or local filesystems. Each process ID is followed by a letter code: c if process is using file as the current directory; e if executable; f if an open file; F if open file for writing; m if a shared library;
and \texttt{r} if the root directory. Any user with permission to read \texttt{/dev/kmem} and \texttt{/dev/mem} can use \texttt{fuser}, but only a privileged user can terminate another user’s process. \texttt{fuser} does not work on remote (NFS) files.

If more than one group of files is specified, the options may be respecified for each additional group of files. A lone dash (-) cancels the options currently in force, and the new set of options applies to the next group of files. Like a number of other administrator commands, \texttt{fuser} is usually installed to the \texttt{/sbin} directory. You may need to add that directory to your path or execute the command as \texttt{/sbin/fuser}.

**Options**

- Return all options to defaults.
- \texttt{-signal}  
  Send \texttt{signal} instead of SIGKILL.
- \texttt{-a}  
  Display information on all specified files, even if they are not being accessed by any processes.
- \texttt{-i}  
  Request user confirmation to kill a process. Ignored if \texttt{-k} is not also specified.
- \texttt{-k}  
  Send SIGKILL signal to each process.
- \texttt{-l}  
  List signal names.
- \texttt{-m}  
  Expect \texttt{files} to exist on a mounted filesystem; include all files accessing that filesystem.
- \texttt{-n \text{space}}  
  Set the namespace checked for usage. Acceptable values are \texttt{file} for files, \texttt{udp} for local UPD ports, and \texttt{tcp} for local TCP ports.
- \texttt{-s}  
  Silent.
- \texttt{-u}  
  User login name, in parentheses, also follows process ID.
- \texttt{-v}  
  Verbose.
- \texttt{-V}  
  Display version information.

**g++**

\texttt{g++ [options] files}

Invoke \texttt{gcc} with the options necessary to make it recognize C++. \texttt{g++} recognizes all the file extensions \texttt{gcc} does, in addition to C++ source files (\texttt{.C}, \texttt{.cc}, or \texttt{.cxx} files) and C++ preprocessed files (\texttt{.ii} files). See also \texttt{gcc}.

**gawk**

\texttt{gawk [options] 'script' \text{\texttt{[\text{var=value\ldots}] [\text{files}]}}}

\texttt{gawk [options] -f scriptfile \text{\texttt{[\text{var=value\ldots}] [\text{files}]}}}

The GNU version of \texttt{awk}, a program that does pattern matching, record processing, and other forms of text manipulation. For more information, see Chapter 11.
The GNU Compiler Collection (GCC) is a set of compiler programs that can compile various programming languages, including C, C++, Objective-C, Ada, FORTRAN, and Java, into machine code. GCC compiles one or more programming source files, such as C source files (file.c), assembler source files (file.s), or preprocessed C source files (file.i). If the file suffix is not recognizable, it is assumed to be an object file or library.

GCC normally invokes the C preprocessor, compiles the process code to assemble language code, assembles it, and then links it with the link editor. This process can be stopped at one of these stages using the -c, -S, or -E option. The steps may also differ depending on the language being compiled. By default, output is placed in a.out. In some cases, GCC generates an object file having a .o suffix and a corresponding root name.

Preprocessor and linker options given on the GCC command line are passed on to these tools when they are run. These options are briefly described here, but some are more fully described under entries for cpp, as, and ld. The options that follow are divided into general, preprocessor, linker, and warning options.

**General options**

- `-a` Provide profile information for basic blocks.
- `-aux-info file` Print prototyped declarations and information on their origins to file.
- `-ansi` Enforce full ANSI conformance.
- `-b machine` Compile for use on machine type.
- `-c` Create linkable object file for each source file, but do not call linker.
- `-dumpmachine` Print compiler’s default target machine, then exit.
- `-dumpsdefs` Print built-in specification strings, then exit.
- `-dumpversion` Print version number, then exit.
- `-f` option

Set the specified compiler option. Many of these control debugging, optimization of code, and special language options. Use the `-help -v` options for a full listing.

```bash
gcc [options] files
```

GCC, formerly known as the GNU C Compiler, compiles multiple languages (C, C++, Objective-C, Ada, FORTRAN, and Java) to machine code. Here we document its use to compile C, C++, or Objective-C code. GCC compiles one or more programming source files; for example, C source files (file.c), assembler source files (file.s), or preprocessed C source files (file.i). If the file suffix is not recognizable, assume that the file is an object file or library. GCC normally invokes the C preprocessor, compiles the process code to assemble language code, assembles it, and then links it with the link editor. This process can be stopped at one of these stages using the -c, -S, or -E option. The steps may also differ depending on the language being compiled. By default, output is placed in a.out. In some cases, GCC generates an object file having a .o suffix and a corresponding root name.

Preprocessor and linker options given on the GCC command line are passed on to these tools when they are run. These options are briefly described here, but some are more fully described under entries for cpp, as, and ld. The options that follow are divided into general, preprocessor, linker, and warning options. GCC accepts many system-specific options not covered here.

GCC is the GNU form of cc; on most Linux systems, the command cc will invoke GCC. The command g++ will invoke GCC with the appropriate options for interpreting C++.
gcc

-\texttt{g} Include debugging information for use with \texttt{gdb}.

-\texttt{glevel}
  Provide the given \textit{level} of debugging information. \textit{level} must be 1, 2, or 3, with 1 providing the least amount of information. The default is 2.

-\texttt{--help}
  Print most common basic options, then exit. When used with option -v, print options for all of \texttt{gcc}'s subprocesses. For options specific to a target, use \texttt{--target-help}.

-\texttt{moption}
  Set the specified machine specific \textit{option}. Use the \texttt{--target-help} option for a full listing.

-\texttt{-o file}
  Specify output file as \textit{file}. Default is \texttt{a.out}.

-\texttt{-p}
  Provide profile information for use with \texttt{prof}.

-\texttt{--pass-exit-codes}
  On error, return highest error code as the exit code, instead of 1.

-\texttt{-pedantic}
  Warn verbosely.

-\texttt{-pedantic-errors}
  Generate an error in every case in which \texttt{-pedantic} would have produced a warning.

-\texttt{-Pg}
  Provide profile information for use with \texttt{gprof}.

-\texttt{-print-file-name=file}
  Print the full path to the library specified by filename \textit{file}, then exit. This is the library \texttt{gcc} would use for linking.

-\texttt{-print-search-dirs}
  Print installation directory and the default list of directories \texttt{gcc} will search to find programs and libraries, then exit.

-\texttt{-pipe}
  Transfer information between stages of compiler by pipes instead of temporary files.

-\texttt{-save-temps}
  Save temporary files in the current directory when compiling.

-\texttt{-std=standard}
  Specify C \textit{standard} of input file. Accepted values are:

  \texttt{iso9899:1990, c89}
  1990 ISO C standard (C89).

  \texttt{iso9899:199409}
  1994 amendment to the 1990 ISO C standard.

  \texttt{iso9899:1999, c99, iso9899:199x, c9x}
  1999 revised ISO C standard (C99).

  \texttt{gnu89}
  1990 C Standard with GNU extensions (the default value).
gnu99, gnu9x
1999 revised ISO C standard with GNU extensions.

c++98

gnu++98

-time
Print statistics on the execution of each subprocess.

-verbose
Verbose mode. Print subprocess commands to standard error as they are executed. Include gcc version number and preprocessor version number. To generate the same output without executing commands, use the option -###.

-Warning
Suppress warnings.

-language
Expect input file to be written in language, which may be c, objective-c, c-header, c++, ada, f77, ratfor, assembler, java, cpp-output, c++-cpp-output, objc-cpp-output, f77-cpp-output, assembler-with-cpp, or ada. If none is specified as language, guess the language by filename extension.

-B path
Specify the path directory in which the compiler files are located.

-E
Preprocess the source files, but do not compile. Print result to standard output. This option is useful to meaningfully pass some cpp options that would otherwise break gcc, such as -C, -M, or -P.

-I dir
Include dir in list of directories to search for include files. If dir is -, search those directories specified by -I before the -I-only when #include "file" is specified, not #include <file>.

-L dir
Search dir in addition to standard directories.

-O [level]
Optimize. level should be 1, 2, 3, or 0 (the default is 1). 0 turns off optimization; 3 optimizes the most.

-S
Compile source files into assembler code, but do not assemble.

-V version
Attempt to run gcc version version.

-Wa options
Pass options to the assembler. Multiple options are separated by commas.

-Wl options
Pass options to the linker. Multiple options are separated by commas.
-Wp.options
Pass options to the preprocessor. Multiple options are separated by commas.

-Xlinker options
Pass options to the linker. A linker option with an argument requires two -Xlinkers, the first specifying the option and the second specifying the argument. Similar to -Wl.

Preprocessor options
gcc will pass the following options to the preprocessor:
-$ Do not allow $ in identifiers.
-dD, -dl, -dM, -dN
Suppress normal output; print preprocessor instructions instead. See cpp for details.
-idirafter dir
Search dir for header files when a header file is not found in any of the included directories.
-imacros file
Process macros in file before processing main files.
-include file
Process file before main file.
-iprefix prefix
When adding directories with -iwithprefix, prepend prefix to the directory’s name.
-isystem dir
Search dir for header files after searching directories specified with -I but before searching standard system directories.
-iwithprefix dir
Append dir to the list of directories to be searched when a header file cannot be found in the main include path. If -iprefix has been set, prepend that prefix to the directory’s name.
-iwithprefixbefore dir
Insert dir at the beginning of the list of directories to be searched when a header file cannot be found in the main include path. If -iprefix has been set, prepend that prefix to the directory’s name.
-nostdinc
Search only specified, not standard, directories for header files.
-nostdinc++
Suppress searching of directories believed to contain C++-specific header files.
-trigraphs
Convert special three-letter sequences, meant to represent missing characters on some terminals, into the single character they represent.
-undef
Suppress definition of all nonstandard macros.
-A \textit{name}=def\)
   Assert \textit{name} with value \textit{def} as if defined by \texttt{#assert}. To turn off standard assertions, use -A-.

-\texttt{A name}=def\)
   Cancel assertion \textit{name} with value \textit{def}.

-C  Retain all comments except those found on \texttt{cpp} directive lines.
   By default, the preprocessor strips C-style comments.

-D\textit{name}=def\)
   Define \textit{name} with value \textit{def} as if by \texttt{#define}. If \textit{Name} is given, \textit{name} is defined with value 1. -D has lower precedence than -U.

-H  Print pathnames of included files, one per line, on standard error.

-M, -MG, -MF, -MD, -MMD, -MQ, -MT
   Suppress normal output and print \texttt{Makefile} rules describing file dependencies. Print a rule for \texttt{make} that describes the main source file’s dependencies. If -MG is specified, assume that missing header files are actually generated files, and look for them in the source file’s directory. Most of these options imply -E. See \texttt{cpp} for further details.

-U\textit{name}\)
   Remove definition of symbol \textit{name}.

\textbf{Linker options}
\texttt{gcc} will pass the following options to the linker:

-\texttt{lib}
   Link to \textit{lib}.

-\texttt{nostartfiles}
   Force linker to ignore standard system startup files.

-\texttt{nostdlib}
   Suppress linking to standard library files.

-s  Remove all symbol table and relocation information from the executable.

-\texttt{shared}
   Create a shareable object.

-\texttt{shared-libgcc}
   Link to a shared version of \texttt{libgcc} if available.

-\texttt{static}
   Suppress linking to shared libraries.

-\texttt{static-libgcc}
   Link to a static version of \texttt{libgcc} if available.

-u \texttt{symbol}\)
   Force the linker to search libraries for a definition of \textit{symbol} and to link to the libraries found.

\textbf{Warning options}
-\texttt{pedantic}\)
   Warn verbosely.
-pedantic-errors
   Produce a fatal error in every case in which -pedantic would
   have produced a warning.
-w      Don’t print warnings.
-W      Warn more verbosely than normal.
-Waggregate-return
   Warn if any functions that return structures or unions are
   defined or called.
-Wall
   Enable -W, -Wchar-subscripts, -Wcomment, -Wformat,
   -Wimplicit, -Wmain, -Wmissing-braces, -Wparentheses,
   -Wreturn-type, -Wsequence-point, -Wswitch, -Wtemplate-
   debugging, -Wtrigraphs, -Wuninitialized, -Wunknown-
   pragmas, -Wstrict-aliasing, and -Wunused.
-Wcast-align
   Warn when encountering instances in which pointers are cast
to types that increase the required alignment of the target from
its original definition.
-Wcast-qual
   Warn when encountering instances in which pointers are cast
to types that lack the type qualifier with which the pointer was
originally defined.
-Wchar-subscripts
   Warn when encountering arrays with subscripts of type char.
-Wcomment
   Warn when encountering the beginning of a nested comment.
-Wconversion
   Warn in particular cases of type conversions.
-Werror
   Exit at the first error.
-Wformat
   Warn about inappropriately formatted printfs and scanf.
-Wimplicit
   Warn when encountering implicit function or parameter
   declarations.
-Winline
   Warn about illegal inline functions.
-Wmain
   Warn about malformed main functions.
-Wmissing-braces
   Enable more verbose warnings about omitted braces.
-Wmissing-declarations
   Warn if a global function is defined without a previous
declaration.
-Wmissing-prototypes
   Warn when encountering global function definitions without
previous prototype declarations.
-Wnested-externs
Warn if an extern declaration is encountered within a function.

-Wno-import
Don’t warn about use of #import.

-Wparentheses
Enable more verbose warnings about omitted parentheses.

-Wpointer-arith
Warn when encountering code that attempts to determine the size of a function or void.

-Wredundant-decls
Warn if anything is declared more than once in the same scope.

-Wreturn-type
Warn about violations of sequence point rules defined in the C standard.

-Wreturn-type
Warn about functions defined without return types or with improper return types.

-Wshadow
Warn when a local variable shadows another local variable.

-Wstrict-prototypes
Insist that argument types be specified in function declarations and definitions.

-Wswitch
Warn about switches that skip the index for one of their enumerated types.

-Wtraditional
Warn when encountering code that produces different results in ANSI C and traditional C.

-Wtrigraphs
Warn when encountering trigraphs.

-Wuninitialized
Warn when encountering uninitialized automatic variables.

-Wundef
Warn when encountering a nonmacro identifier in an #if directive.

-Wunknown-pragmas
Warn when encountering a #pragma directive not understood by gcc.

-Wunused
Warn about unused variables, functions, labels, and parameters.

Pragma directives

#pragma interface [header-file]
Used in header files to force object files to provide definition information via references instead of including it locally in each file. C++-specific.
#pragma implementation [header-file]
Used in main input files to force generation of full output from
header-file (or, if it is not specified, from the header file with
the same basename as the file containing the pragma direc-
tive). This information will be globally visible. Normally the
specified header file contains a #pragma interface directive.

**gdb**

```bash
(gdb) [options] [program [core|pid]]
```

GDB (GNU DeBugger) allows you to step through the execution of
a program in order to find the point at which it breaks. It fully
supports C and C++, and provides partial support for FORTRAN,
Java, Chill, assembly, and Modula-2. The program to be debugged
is normally specified on the command line; you can also specify a
core or, if you want to investigate a running program, a process ID.

**Options**
- **-b bps**
  Set line speed of serial device used by GDB to bps.
- **-batch**
  Exit after executing all the commands specified in .gdbinit and
  -x files. Print no startup messages.
- **-c file, -core=file**
  Consult file for information provided by a core dump.
- **-cd=directory**
  Use directory as gdb’s working directory.
- **-d directory, -directory=directory**
  Include directory in path that is searched for source files.
- **-e file, -exec=file**
  Use file as an executable to be read in conjunction with source
code. May be used in conjunction with -s to read the symbol
table from the executable.
- **-f, -fullname**
  Show full filename and line number for each stack frame.
- **-h, -help**
  Print help message, then exit.
- **-n, -nx**
  Ignore .gdbinit file.
- **-q, -quiet**
  Suppress introductory and copyright messages.
- **-s file, -symbols=file**
  Consult file for symbol table. With -e, also uses file as the
  executables.
- **-tty=device**
  Set standard in and standard out to device.
- **-write**
  Allow gdb to write into executables and core files.
- **-x file, -command=file**
  Read gdb commands from file.
Common commands
These are just some of the more common `gdb` commands; there are too many to list them all.

bt
Print the current location within the program and a stack trace showing how the current location was reached. (where does the same thing.)

break
Set a breakpoint in the program.

cd
Change the current working directory.

clear
Delete the breakpoint where you just stopped.

commands
List commands to be executed when a breakpoint is hit.

c
Continue execution from a breakpoint.

delete
Delete a breakpoint or a watchpoint; also used in conjunction with other commands.

display
Cause variables or expressions to be displayed when program stops.

down
Move down one stack frame to make another function the current one.

frame
Select a frame for the next `continue` command.

info
Show a variety of information about the program. For instance, `info breakpoints` shows all outstanding breakpoints and watchpoints.

jump
Start execution at another point in the source file.

kill
Abort the process running under `gdb`'s control.

list
List the contents of the source file corresponding to the program being executed.

next
Execute the next source line, executing a function in its entirety.

print
Print the value of a variable or expression.

ptype
Show the contents of a datatype, such as a structure or C++ class.

pwd
Show the current working directory.
**genisoimage**

- **quit**
  
  Exit gdb.

- **reverse-search**
  
  Search backward for a regular expression in the source file.

- **run**
  
  Execute the program.

- **search**
  
  Search for a regular expression in the source file.

- **set variable**
  
  Assign a value to a variable.

- **signal**
  
  Send a signal to the running process.

- **step**
  
  Execute the next source line, stepping into a function if necessary.

- **undisplay**
  
  Reverse the effect of the **display** command; keep expressions from being displayed.

- **until**
  
  Finish the current loop.

- **up**
  
  Move up one stack frame to make another function the current one.

- **watch**
  
  Set a watchpoint (i.e., a data breakpoint) in the program.

- **whatis**
  
  Print the type of a variable or function.

**genisoimage**

```bash
genisoimage [options] [-o filename] pathspec...
```

Generate an ISO9660/Joliet/HFS hybrid filesystem for writing a CD with a program such as `wodim`. (HFS is the native Macintosh Hierarchical File System.) **genisoimage** takes a snapshot of a directory tree and generates a binary image that corresponds to an ISO9660 or HFS filesystem when it is written to a block device. Each specified pathspec describes the path of a directory tree to be copied into the ISO9660 filesystem; if multiple paths are specified, the files in all the paths are merged to form the image.

**Options**

- **-abstract file**
  
  Specify the abstract filename. Overrides an ABST=file entry in .genisoimagerc.

- **-allow-leading-dots, -idots**
  
  Allow ISO9660 filenames to start with a period instead of replacing it with an underscore. Violates the ISO9660 standard.
-allow-lowercase
Allow ISO9660 filenames to be lowercase. Violates the ISO9660 standard.

-allow-multidot
Allow more than one dot in ISO9660 filenames. Violates the ISO9660 standard.

-A id, -appid id
Specify a text string id that describes the application to be written into the volume header.

-b image
Specify the path and filename of the boot image to be used for making a bootable CD based on the El Torito specification.

-biblio file
Specify bibliographic filename. Overrides a BIBL=file entry in .genisoimagerc.

-boot-info-table
Specify that a 56-byte table with information on the CD layout is to be patched in at offset 8 of the boot file. If specified, the table is patched into the source boot file, so make a copy if the file isn’t recreatable.

-boot-load-seg addr
Specify the load segment address of the boot image for a no-emulation El Torito CD.

-boot-load-size size
Specify the number of virtual 512-byte sectors to load in no-emulation mode. The default is to load the entire boot file. The number may need to be a multiple of 4 to prevent problems with some BIOSes.

-c catalog
Specify the path, relative to the source pathspec, and the filename of the boot catalog for an El Torito bootable CD. Required for making an El Torito bootable CD.

-C last-start, next-start
Required for creating a CDExtra or a second or higher-level session for a multisession CD. last-start is the first sector number in the last session on the disk, and next-start is the first sector number for the new session. Use the command:

```bash
wodim -msinfo
```
to get the values. Use -C with -M to create an image that is a continuation of the previous session; without -M, create an image for a second session on a CDExtra (a multisession CD with audio data in the first session and an ISO9660 filesystem image in the second).

-[no-]cache-inodes
Cache [do not cache] inode and device numbers to find hard links to files. The default on Linux is to cache. Use -no-cache-inodes for filesystems that do not have unique inode numbers.
-check-oldnames
Check all filenames imported from old sessions for genisoimage compliance with ISO9660 file-naming rules. If not specified, check only those files with names longer than 31 characters.

-check-session file
Check all old sessions for genisoimage compliance with ISO9660 file-naming rules. This option is the equivalent of:

   -M file -C 0,0 -check-oldnames

where file is the pathname or SCSI device specifier that would be specified with -M.

copyright file
Specify the name of the file that contains the copyright information. Overrides a COPY=file entry in .genisoimagerc.

d
Omit trailing period from files that do not have one. Violates the ISO9660 standard, but works on many systems.

-D
Do not use deep directory relocation. Violates the ISO9660 standard, but works on many systems.

dir-mode mode
Specify the mode for directories used to create the image. Automatically enables the Rock Ridge extensions.

-eltorito-alt-boot
Start with a new set of El Torito boot parameters. Allows putting more than one El Torito boot image on a CD (maximum is 63).

-exclude-list file
Check filenames against the globs contained in the specified file and exclude any that match.

-f
Follow symbolic links when generating the filesystem.

-file-mode mode
Specify the mode for files used to create the image. Automatically enables the Rock Ridge extensions.

-force-rr
Do not use automatic Rock Ridge detection for the previous session.

-G image
Specify the path and filename of the generic boot image for making a generic bootable CD.

-gid gid
Set the group ID to gid for the source files. Automatically enables the Rock Ridge extensions.

- graft-points
Allow the use of graft points for filenames, which permits paths to be grafted at locations other than the root directory. - graft-points checks all filenames for graft points and divides the filename at the first unescaped equals sign (=).
genisoimage

-gui
Switch the behavior for a GUI. Currently, the only effect is to make the output more verbose.

-hard-disk-boot
Specify that the boot image to be used to create an El Torito bootable CD is a hard disk image that must begin with a master boot record containing a single partition.

-hidden glob
Set the hidden (existence) ISO9660 directory attribute for paths or filenames matching the shell-style pattern glob. To match a directory, the path must not end with a trailing /.. May be specified more than once.

-hidden-list file
Specify a file containing a list of globs that are to be hidden with -hidden.

-hide glob
Find paths or files that match the shell-style pattern glob and hide them from being seen on the ISO9660 or Rock Ridge directory. The files are still included in the image file. If the pattern matches a directory, the contents of the directory are hidden. To match a directory, the path must not end with a trailing /.. See also the -hide-joliet option and the file README.hide. May be specified more than once.

-hide-joliet glob
Hide paths or files that match the shell-style pattern glob so they will not be seen in the Joliet directory. If the pattern matches a directory, the contents of the directory are hidden. To match a directory, the path must not end with a trailing /.. Usually used with -hide. See also the README.hide file. May be specified more than once.

-hide-joliet-list file
Specify a file containing a list of globs to be hidden with -hide-joliet.

-hide-joliet-trans-tbl
Hide the TRANS.TBL files from the Joliet tree.

-hide-list file
Specify a file containing a list of globs to be hidden with -hide.

-hide-rr-moved
Rename the directory RR_MOVED to .rrMoved to hide it as much as possible from the Rock Ridge directory tree. Use the -D option to omit the file entirely.

-input-charset charset
Specify the character set for characters used in local filenames. Specify help in place of a charset for a list of valid character sets.

-iso-level level
Set the ISO9660 conformance level. Possible values are:

1  Filenames are restricted to 8.3 characters, and files may have only one section.
Files may have only one section.
No restrictions.

**genisoimage** maps level 4 to ISO-9660:1999 (ISO9660 version 2).

-J Generate Joliet directory records in addition to regular ISO9660 filenames.

-charset charset
  The equivalent of `-input-charset -J`.

-l Allow full 31-character filenames instead of restricting them to the MS-DOS-compatible 8.3 format.

-log-file file
  Send all messages to the specified logfile.

-m glob
  Exclude files matching the shell-style pattern `glob`. May be specified multiple times.

-M path, -dev device
  Specify the path to an existing ISO9660 image to be merged. `path` (or the device given with `-dev`) can also be a SCSI device specified in the same syntax as `wodim`’s `dev=` parameter. May be used only with `-C`.

-max-iso9660-filenames


-new-dir-mode mode
  Specify the four-digit `chmod`-style mode to use for new directories in the image. The default is 0555.

-nobak, -no-bak
  Do not include backup files on the ISO9660 filesystem.

-no-boot
  Mark the El Torito CD to be created as not bootable.

-no-emul-boot
  Specify that the boot image for creating an El Torito bootable CD is a no-emulation image.

-no-iso-translate
  Do not translate the # and ~ characters. Violates the ISO9660 standard.

-no-rr
  Do not use Rock Ridge attributes from previous sessions.

-o file
  Specify the filename of the output ISO9660 filesystem image.

-output-charset charset
  Specify the output character set for Rock Ridge filenames. The default is the input character set.
genisoimage

-p prepid
Specify a text string of up to 128 characters describing the preparer of the CD. Overrides a PREP= parameter set in the file .genisoimagerc.

-publisher pubid
Specify a text string of up to 128 characters describing the publisher of the CD to be written to the volume header. Overrides a PUBL= parameter set in .genisoimagerc.

-[no -]pad
Pad [do not pad] the ISO9660 filesystem by 150 sectors (300 KB). If used with -B, force the first boot partition to start on a sector number that is a multiple of 16. The default is -pad.

-path-list file
Specify a file that contains a list of pathspec directories and filenames to add to the ISO9660 filesystem. Note that at least one pathspec must be given on the command line. If file is -, read from standard input.

-print-size
Print estimated filesystem size and exit.

-quiet
Run in quiet mode; do not display progress output.

-r Like -R, but set UID and GID to zero, set all file read bits to write, and turn off all file write bits. If any execute bit is set for a file, set all execute bits; if any search bit is set for a directory, set all search bits; if any special mode bits are set, clear them.

-R Generate SUSP (System Use Sharing Protocol) and Rock Ridge records using the Rock Ridge protocol.

-relaxed-filenames
Allow ISO9660 filenames to include seven-digit ASCII characters except lowercase characters. Violates the ISO9660 standard.

-sort file
Sort file locations according to the rules in the specified file, which contains pairs of filenames and weights, with one space or tab between them. A higher weight puts the file closer to the beginning of the media.

-sysid id
Specify the system ID of up to 32 characters. Overrides a SYSI= parameter set in the file .genisoimagerc.

-T Generate the file TRANS.TBL in each directory for establishing the correct filenames on non-Rock Ridge-capable systems.

-table-name table
Use table as the translation table name instead of TRANS.TBL. Implies -T. For a multisession image, the table name must be the same as the previous session.

genisoimage

-ucs-level num
  Set the Unicode conformance level to the specified number, which can be between 1 and 3 (default is 3).

-use-fileversion
  Use file version numbers from the filesystem. The version number is a string from 1 to 32767. The default is to set a version of 1.

-v Run in verbose mode. Specify twice to run even more verbosely.

-V valid
  Specify the volume ID (volume name or label) of up to 32 characters to be written to the master block. Overrides a VOLL= parameter specified in the file .genisoimagemrc.

-volset id
  Specify the volume set ID of up to 128 characters. Overrides a VOLS= parameter specified in .genisoimagemrc.

-volset-seqno num
  Set the volume set sequence number to num. Must be specified after -volset-size.

-volset-size num
  Set the volume set size (the number of CDs in a set) to num. Must be specified before -volset-seqno.

HFS options

-apple
  Create an ISO9660 CD with Apple’s extensions.

-auto file
  Set file as the Autostart file to make the HFS CD use the QuickTime 2.0 Autostart feature. file must be the name of an application or document at the top level of the CD and must be less than 12 characters long.

-boot-hfs-file file
  Install file as the driver file that may make the CD bootable on a Macintosh.

-cluster-size size
  Specify the size in bytes of a cluster or allocation units of PC Exchange files. Implies --exchange (see --format on page 173).

-hfs
  Create a hybrid ISO9660/HFS CD. Use with -map, -magic, and/or the various --HFS options (see manpage).

-hfs-bless folder
  “Bless” the specified directory (folder), given as the full pathname as genisoimage sees it. This is usually the System Folder and is used in creating HFS bootable CDs. The pathname must be in quotes if it contains spaces.

-hfs-creator creator
  Set the four-character default creator for all files.
-hfs-type type
  Set the four-character default type for all files.

-hfs-unlock
  Leave the HFS volume unlocked so other applications can
  modify it. The default is to lock the volume.

-hfs-void id
  Specify the volume name for the HFS partition. This name is
  assigned to the CD on a Macintosh and replaces the ID set
  with the -V option.

-hide-hfs glob
  Hide files or directories matching the shell-style pattern glob
  from the HFS volume, although they still exist in the ISO9660
  and/or Joliet directory. May be specified multiple times.

-hide-hfs-list file
  The specified file contains a list of globs to be hidden.

-input-hfs-charset charset
  Specify the input character set used for HFS filenames when
  used with the -mac-name option. The default is cp10000 (Mac
  Roman).

-mac-name
  Use the HFS filename as the starting point for the ISO9660,
  Joliet, and Rock Ridge filenames.

-magic file
  Use the specified magic file to set a file’s creator and type
  information based on the file’s magic number, which is usually
  the first few bytes of the file. The magic file contains entries
  consisting of four tab-separated columns specifying the byte
  offset, type, test, and a message.

-map file
  Use the specified mapping file to set a file’s creator and type
  information based on the filename extension. Only files that
  are not known Apple or Unix file types need to be mapped.
  The mapping file consists of five-column entries specifying the
  extension, file translation, creator, type, and a comment.
  Creator and type are both four-letter strings.

-no-desktop
  Do not create empty Desktop files. The default is to create
  such files.

-output-hfs-charset charset
  Specify the output character set used for HFS filenames.
  Defaults to the input character set.

-part
  Generate an HFS partition table. The default is not to generate
  the table.

-probe
  Search the contents of files for known Apple or Unix file types.
--format
Look for Macintosh files of the specified file format type. The
valid formats are cap (Apple/Unix File System (AUFS) CAP
files), netatalk, double, ethershare, ushare, exchange, sgi,
xinet, machin, single, dave, sfn, osx-double, and osx-hfs.

getent
getent [options] database key
Search the specified database for the specified key. The database may
be any one of passwd, group, hosts, services, protocols, or networks.

Options
-s CONFIG, --service=CONFIG
Specify the service configuration to be used. See nsswitch.
conf(5) for information about name-service switching.
-?, --help
Display a help message.
--usage
Display a very short syntax synopsis.
-V, --version
Print version information and quit.

getkeycodes
getkeycodes
Print the kernel’s scancode-to-keycode mapping table.

gpasswd
gpasswd [options] group
Administer /etc/group and /etc/gshadow entries. May only be used
by an administrator. When used with a group name only, prompts
for new group password. Defaults such as minimum and maximum
group id values are specified in /etc/login.defs.

Options
-a Add a new group.
-A users
Add administrative members.
-d Delete a group.
-M users
Add group members.
-R Disable access to the group. Also prevent creation of a new
group with the same name.
-r Remove the password entirely.

gpg
gpg [options] command [options]
The GNU Privacy Guard application allows you to encrypt and
decrypt information, create public and private encryption keys,
and use or verify digital signatures. GPG is based on the use of a
pair of keys, one public and one private (or “secret”). Data encrypted with one key can only be decrypted with the other. To encrypt a message to you, someone would use your public key to create a message that could only be unlocked with your private key. To sign information, you would lock it with your private key, allowing anyone to verify that it came from you by unlocking it with your public key.

GPG has dozens of additional options that fine-tune its available options. For a complete list, plus a guide to careful use of encryption and a deeper explanation of how public-key encryption works, visit www.gnupg.org.

**Key commands**

--check-sigs [keyname]
Lists keys and signatures like --list-sigs, but also verifies the signatures.

--delete-key keyname
Delete the specified key from the keyring.

--delete-secret-key keyname
Delete the named secret key from the secret and public keyring.

--delete-secret-and-public-key keyname
Delete the secret (if any) and then the public key for the specified name.

--desig-revoke keyname
Create a revocation certificate for a key pair and designate authority to issue it to someone else. This allows the user to permit someone else to revoke the key, if necessary.

--edit-key [keyname]
Edit key options using a menu-driven tool. Key options are too numerous to list here, but include everything from trust settings to images attached to keys for user identification purposes.

--export [keyname]
Output the specified key or, if no key is named, the entire keyring. Use the --output flag to send the key information to a file, and --armor to make the key mailable as ASCII text.

--export-secret-keys [keyname]
Outputs the specified secret key or keys. Operation is the same as --export, except with secret keys. This is a security risk and should be used with caution.

--export-secret-subkeys [keyname]
Outputs the specified secret subkeys. Operation is the same as --export, except with secret keys. This is a security risk and should be used with caution.

--fingerprint [keyname]
List keys and their fingerprints for keys named, or all keys if no name is specified. If repeated, shows fingerprints of secondary keys.
--gen-key
Generate a new pair of keys, prompting for several preferences and a passphrase. For most purposes, the default answers to the questions about algorithm and key length are fine.

--gen-revoke keyname
Create a revocation certificate for a key pair. A revocation certificate is designed to assure all parties that the key pair is no longer valid and should be discarded.

--keyserver keyserver
Specifies the name of the keyserver holding the key.

--list-keys [keyname]
List keys with the specified name, or all keys if no name is specified.

--list-public-keys [keyname]
List public keys with the specified name, or all public keys if no name is specified.

--list-secret-keys [keyname]
List secret keys with the specified name, or all secret keys if no name is specified.

--list-sigs [keyname]
List keys as --list-keys does, but also list the signatures.

--gen-revoke keyname
Delete the secret key (if any) and then the public key for the specified name.

--import file
Read keys from a file and add them to your keyring. This is most often used with public keys that are sent by email, but can also be used to move private keys from one system to another. Combined with the --merge-only option, adds only new signatures, subkeys, and user IDs, not keys.

--lsign-key keyname
Sign a public key, but mark it as nonexportable.

--recv-keys [keyname]
Download and import keys from a keyserver. The key name here should be the key ID as known to the keyserver, and you must specify the server with the --keyserver option.

--refresh-keys [keyname]
Check the keyserver for updates to keys already in the keyring. You can specify which keys to check for updates using the key IDs known to the server, and you must specify the server with the --keyserver option.

--search-keys [keyname]
Search the names of keys on the keyserver. Specify the keyserver with --keyserver.

--send-keys [keyname]
Send one or more keys to a keyserver. Specify the keyserver with --keyserver.
--sign-key keyname
Sign a public key using your private key. Often used to send
the public key to a third party. This is the same as selecting
“sign” from the --edit-key menu.

Signature commands
- b. --detach-sign
Create a signature that is not attached to anything.

--clearsign
Create a signature in cleartext.

-s. --sign
Create a signature. May be combined with --encrypt and/or
--symmetric.

--verify [detached-signature] [signed-file]
Verify the signature attached to a file. If the signature and data
are in the same file, only one file needs to be specified. For
detached signatures, the first file should be the .sig or .asc
signature file, and the second the datafile. If you wish to use
stdin instead of a file for the nonattached data, you must
specify a single dash (-) as the second filename.

--verify-files [files]
Verify one or more files entered on the command line or to
stdin. Signatures must be part of the files submitted, and files
sent to stdin should be one file per line. This is designed to
check many files at once.

Encryption commands
- e. --encrypt
Encrypt data. May be used with --sign to create signed,
encrypted data.

--encrypt-files [files]
Encrypt files one after another, either at the command line or
sent to stdin one per line.

-c. --symmetric
Encrypt using a symmetric cipher. The cipher is encrypted
using the CAST5 algorithm unless you specify otherwise using
the --cipher-algo flag.

--store
Create a PGP message packet (RFC 1991). This does not
encrypt data; it just puts it into the right packet format.

Decryption commands
- d. --decrypt [file]
Decrypt a file. If no file is specified, stdin is decrypted.
Decrypted data is sent to stdout or to the file specified with the
--output flag. If the encrypted data is signed, the signature
is also verified.

--decrypt-files [files]
Decrypt files one after another, either at the command line or
sent to stdin one per line.
Other commands

--check-trustdb
Check the list of keys with defined trust levels to see if they have expired or been revoked.

--export-ownertrust
Create a backup of the trust values for keys.

--h, --help
Display a help message.

--import-ownertrust [file]
Import trust values from a file or stdin. Overwrites existing values.

--list-packets
Display packet sequence for an encrypted message. Used for debugging.

--update-trustdb
Update the database of trusted keys. For each key that has no defined level of trust, --update-trustdb prompts for an estimate of how much the key’s owner can be trusted to certify other keys. This builds a web of more-trusted and less-trusted keys by which the overall security of a given key can be estimated.

--version
Display version information and quit.

--warranty
Display warranty information. There is no warranty.

```
gpgsplit [options] [files]
```
Split an OpenPGP-format message into individual packets. If no file is specified, the message is read from stdin. The split packets are written as individual files.

Options

-h, -?, --help
Display a short help message.

--no-split
Write to stdout instead of splitting the packets into individual files.

-p string, --prefix string
Begin each filename with the specified string.

--secret-to-public
Convert any secret keys in the message to public keys.

--uncompress
Uncompress any compressed packets.

-v, --verbose
Verbose mode. More informative.
gpgv

```
gpgv [options] [detached-signature] [signed-files]
```

Check the signature of one or more OpenPGP-signed files. This is similar in operation to `gpg --verify` but uses a different keyring, `~/.gnupg/trustedkeys.gpg` by default. Also, `gpgv` assumes that the keyring is trusted, and it cannot edit or update it. By contrast, `gpg --verify` can go to a keyserver to verify signatures that are not in the local keyring, and offers various levels of trust. In both cases, you can use a detached signature file

**Options**

- `-h`, `-?`, `--help`
  Display a short help message.

- `--ignore-time-conflict`
  Use this flag to ignore incorrect dates on signatures. An incorrect date can be a sign of fraud, but is often just a result of an incorrectly set clock.

- `--keyring file`
  Use the specified file as a keyring, in addition to the default `~/.gnupg/trustedkeys.gpg`.

- `--homedir dir`
  Use the specified directory as the GPG home directory, instead of the default (set in the GNUPGHOME variable, or, if that is unset, `~/.gnupg`).

- `--logger-fd FD`
  Send log output to the specified file descriptor. By default, log output goes to stderr. Use of file descriptors is described in the DETAILS section of the GPG documentation.

- `-q`, `--quiet`
  Minimal output.

- `--status-fd FD`
  Send special status messages to the specified file descriptor.

- `-v`, `--verbose`
  Verbose mode. More informative.

---

gpm

```
gpm [options]
```

System administration command. Provide a mouse server and cut-and-paste utility for use on the Linux console. `gpm` acts like a daemon, responding to both mouse events and client input. If no clients are connected to the active console, `gpm` provides cut-and-paste services.

**Options**

- `-2`
  Force two buttons. If there is a middle button, it is treated as the right button.

- `-3`
  Force three buttons. With a three-button mouse, the left button makes a selection, the right button extends the selection, and the middle button pastes it. Using this option with a two-button mouse results in being unable to paste.
-a accel
  Set the acceleration for a single motion longer than the delta
  specified with the -d option.
-A [limit]
  Start up with pasting disabled for security. If specified, limit
  gives the time in seconds during which a selection can be
  pasted. If too much time has passed, the paste is not allowed.
-b baud
  Specify the baud rate.
-B seq
  Set a three-digit button sequence, mapping the left, middle,
  and right buttons to buttons 1, 2, and 3. The default is 123.
  The sequence 321 is useful if you are left-handed, or 132 for a
  two-button mouse.
-d delta
  Set the delta value for use with -a. When a mouse motion
  event is longer than the specified delta, use accel as a multi-
  plier. delta must be 2 or greater.
-D Debugging mode. When set, gpm does not put itself into the
  background, and it logs messages to standard error instead of
  syslog.
-g num
  For a glidepoint device, specify the button to be emulated by a
  tap. num must be 1, 2, or 3 and refers to the button number
  before any remapping is done by the -B option. Applies to
  mman and ps2 protocol decoding.
-h Print a help message and exit.
-i interval
  Specify the upper time limit, in milliseconds, between mouse
  clicks for the clicks to be considered a double or triple click.
-k Kill a running gpm. For use with a bus mouse to kill gpm
  before running X. See also -R.
-l charset
  Specify the inword() lookup table, which determines which
  characters can appear in a word. charset is a list of characters.
  The list can include only printable characters. Specify a range
  with -, and use \ to escape the following character or to specify
  an octal character.
-m filename
  Specify the mouse file to open. The default is /dev/mouse.
-M Enable the use of more than one mouse. Options appearing
  before -M apply to the first mouse; those appearing after it
  apply to the second mouse. Forces the use of -R.
-o extra-options
  Specify a comma-separated list of additional mouse-specific
  options. See the gpm info page for a description of the mouse
  types and the possible options.
gpm

-p  Keep the pointer visible while text is being selected. The
default is not to show the pointer.

-r num
   Specify the responsiveness. A higher number causes the cursor
to move faster.

-R name
   Act as a repeater and pass any mouse data received while in
   graphical mode to the fifo /dev/gpmdata in the protocol speci-
   fied by name (default is msc). In addition to certain protocol
types available with -t, you can specify raw to repeat the data
   with no protocol translation.

-s num
   Specify the sample rate for the mouse device.

-S [commands]
   Enable special-command processing (see the next section).
   Custom commands can be specified as a colon-separated list to
   associate commands with the left button, middle button, and
   right button. If a command is omitted, it defaults to sending a
   signal to init.

-t type
   Specify the mouse protocol type. Use -t help for a list of types;
   those marked with an asterisk (*) can be used with -R.

-v  Print version information and exit.

-V [increment]
   Make gpm more or less verbose by the specified increment.
   The default verbosity level is 5, and the default increment is 1.
   A larger value of increment causes more messages to be logged.
   The increment can be negative, but must be specified with no
   space (e.g., -V-3).

Special commands
Special commands, activated with the -S option, are associated
with each mouse button. You can also use -S to customize the
commands. To execute a special command, triple-click the left and
right buttons (hold down one of the buttons and triple-click the
other). A message appears on the console, and the speaker beeps
twice. At this point, release the buttons and press the desired
button within three seconds to activate the associated special
command. The default special commands are:

Left button
   Reboot by signaling init.

Middle button
   Shut down the system with /sbin/shutdown -h now.

Right button
   Reboot with /sbin/shutdown -r now.
gprof

Display the profile data for an object file. The file’s symbol table is compared with the call graph profile file `gmon.out` (previously created by compiling with `gcc -pg`). Many of `gprof`’s options take a symbol-specification argument, or `symspec`, to limit the option to specified files or functions. The `symspec` may be a filename, a function, or a line number. It can also be given as `filename:func` or `filename:linenum` to specify a function or line number in a specific file. `gprof` expects filenames to contain a period and functions to not contain a period.

Options

- `-a`, `--no-static`
  Do not display statically declared functions. Since their information might still be relevant, append it to the information about the functions loaded immediately before.

- `-b`, `--brief`
  Do not display information about each field in the profile.

- `-c`, `--static-call-graph`
  Consult the object file’s text area to attempt to determine the program’s static call graph. Display static-only parents and children with call counts of 0.

- `--demangle[=style]`, `--no-demangle`
  Specify whether C++ symbols should be demangled or not. They are demangled by default. If profiling a program built by a different compiler, you may need to specify the mangling style.

- `--function-ordering`
  Print suggested function order based on profiling data.

- `--file-ordering file`
  Print suggested link line order for `.o` files based on profiling data. Read function name to object file mappings from `file`. This file can be created using the `nm` command.

- `-i`, `--file-info`
  Print summary information on datafiles, then exit.

- `-k from to`
  Remove arcs between the routines from `from` and to `to`.

- `-m n`, `--min-count[=n]`
  Don’t print count statistics for symbols executed less than `n` times.

- `-n[symspec], --time[=symspec]`
  Propagate time statistics in call graph analysis.

- `-p[symspec], --flat-profile[=symspec]`
  Print profile statistics.

- `-q[symspec], --graph[=symspec]`
  Print call graph analysis.

- `-s`, `--sum`
  Summarize profile information in the file `gmon.sum`. 


grep

-v, --version
Print version and exit.

-w n, --width=n
Print function index formatted to width n.

-x, --all-lines
When printing annotated source, annotate every line in a basic block, not just the beginning.

-y, --separate-files
Print annotated-source output to separate files instead of standard output. The annotated source for each source file is printed to filename-ann.

-z, --display-unused-functions
Include zero-usage calls.

-A[symspec], --annotated-source[symspec]
Print annotated source code.

-C[symspec], --exec-counts[symspec]
Print statistics on the number of times each function is called. When used with option -l, count basic-block execution.

-F routine
Print only information about routine. Do not include time spent in other routines.

-I dirs, --directory-path=dirs
Set directory path to search for source files. The dirs argument may be given as a colon-separated list of directories.

-J[symspec], --no-annotated-source[symspec]
Don’t print annotated source code.

-L, --print-path
Print the path information when printing filenames.

-N[symspec], --no-time[symspec]
Don’t propagate time statistics in call graph analysis.

-P[symspec], --no-flat-profile[symspec]
Don’t print profile statistics.

-Q[symspec], --no-graph[symspec]
Don’t print call graph analysis.

-T, --traditional
Print output in BSD style.

-Z[symspec], --no-exec-counts[symspec]
Don’t print statistics on the number of times each function is called.

grep [options] pattern [files]
Search one or more files for lines that match a regular expression pattern. Regular expressions are described in Chapter 7. Exit status is 0 if any lines match, 1 if none match, and 2 for errors. See also egrep and fgrep.
Options

-a, --text
Don’t suppress output lines with binary data; treat as text.

-A num, --after-context=num
Print num lines of text that occur after the matching line.

-b, --byte-offset
Print the byte offset within the input file before each line of output.

-B num, --before-context=num
Print num lines of text that occur before the matching line.

-c, --count
Print only a count of matched lines. With -v or --revert-match, count nonmatching lines.

-C[num], --context=[num],-num
Print num lines of leading and trailing context. Default context is 2 lines.

-d action, --directories=action
Define an action for processing directories. Possible actions are:
read
Read directories like ordinary files (default).

skip
Skip directories.

recurse
Recursively read all files under each directory. Same as -r.

-D action, --directories=action
Define an action for processing an input file that is a device, FIFO, or socket. Possible actions are read (default) and skip, as in -d.

-e pattern, --regexp=pattern
Search for pattern. Same as specifying a pattern as an argument, but useful in protecting patterns beginning with -.

-E, --extended-regexp
Act like egrep, recognizing extended regular expressions such as (UN|POS)IX to find UNIX and POSIX.

-f file, --file=file
Take a list of patterns from file, one per line.

-F, --fixed-strings
Act like fgrep, recognizing only fixed strings instead of regular expressions. Useful when searching for characters that grep normally recognizes as metacharacters.

-G, --basic-regexp
 Expect the regular expressions traditionally recognized by grep (the default).
grep

-h, --no-filename
Print matched lines but not filenames (inverse of -l) when multiple files are searched.

-H, --with-filename
Display, before each line found, the name of the file containing the line. This is done by default if multiple files are submitted to a single grep command.

-i, --ignore-case
Ignore uppercase and lowercase distinctions.

-l, --files-with-matches
Print the names of files with matches but not individual matched lines. Scanning per file stops on the first match.

-L, --files-without-match
Print only the names of files with no matches. Scanning per file stops on the first match.

-m num, --max-count=num
Stop looking after num matches are found.

--mmap
Try to use memory mapping (mmap) to read input in order to save time.

-n, --line-number
Print lines and their line numbers.

-q, --quiet, --silent
Suppress normal output in favor of quiet mode; scanning stops on the first match.

-r, --recursive
Recursively read all files under each directory. Same as -d recurse.

-s, --no-messages
Suppress error messages about nonexistent or unreadable files.

-v, --invert-match
Print all lines that don’t match pattern.

-V, --version
Print the version number and then exit.

-w, --word-regexp
Match on whole words only. Words are divided by characters that are not letters, digits, or underscores.

-x, --line-regexp
Print lines only if pattern matches the entire line.

-Z, --null
When displaying filenames, follow each with a zero byte instead of a colon.

Examples
List the number of users who use tcsh:

grep -c /bin/tcsh /etc/passwd
List header files that have at least one `#include` directive:
```
grep -l '^#include' /usr/include/*
```
List files that don’t contain `pattern`:
```
grep -c pattern files | grep :0
```

```
groff [options] [files]
troff [options] [files]
```
Frontend to the `groff` document-formatting system, which normally runs `troff` along with a postprocessor appropriate for the selected output device. Options without arguments can be grouped after a single dash (`-`). A filename of `-` denotes standard input.

**Options**
- `a` Generate an ASCII approximation of the typeset output.
- `b` Print a backtrace.
- `C` Enable compatibility mode.
- `cs`, `dbname=s` Define the character `c` or string `name` to be the string `s`.
- `e` Preprocess with `eqn`, the equation formatter.
- `E` Don’t print any error messages.
- `fam` Use `fam` as the default font family.
- `dir` Search `dir` for subdirectories with DESC and font files before searching the default directory `/usr/lib/groff/font`.
- `h`, `--help` Print a help message.
- `i` Read standard input after all `files` have been processed.
- `l` Send the output to a print spooler (as specified by the print command in the device description file).
- `L arg` Pass `arg` to the spooler. Each argument should be passed with a separate `-L` option.
- `m name` Read the macro file `tmac.name`.
- `M dir` Search directory `dir` for macro files before searching the default directory `/usr/lib/groff/tmac`.
- `num` Set the first page number to `num`.
- `N` Don’t allow newlines with `eqn` delimiters; equivalent to `eqn`’s `-N` option.
- `olist` Output only pages specified in `list`, a comma-separated list of page ranges.
groff

-\p \hspace{1em} Preprocess with pic.

-\-p \hspace{1em} \textit{arg}

Pass \textit{arg} to the postprocessor. Each argument should be passed with a separate -P option.

-\-c, -\-name=n

Set the number register \textit{c} or \textit{name} to \textit{n}. \textit{c} is a single character, and \textit{n} is any troff numeric expression.

-\R \hspace{1em} Preprocess with refer.

-\s \hspace{1em} Preprocess with soelim.

-\S \hspace{1em} Use safer mode (that is, pass the -S option to pic and use the -msafer macros with troff).

-\t \hspace{1em} Preprocess with tbl.

-\-T \hspace{1em} \textit{dev}

Prepare output for device \textit{dev}; the default is ps.

-\v, --\version

Make groff and programs run by it print out their version numbers.

-\V \hspace{1em} Print the pipeline on stdout instead of executing it.

-\w \textit{name}

Enable warning \textit{name}. You can specify multiple -w options.

See the troff manpage for a list of warnings.

-\W \textit{name}

Disable warning \textit{name}. You can specify multiple -W options.

See the troff manpage for a list of warnings.

-\z \hspace{1em} Suppress troff output (except error messages).

-\Z \hspace{1em} Do not postprocess troff output. Normally groff automatically runs the appropriate postprocessor.

\textbf{Devices}

\texttt{ascii}

Typewriter-like device.

\texttt{dvi}

\TeX DVI format.

\texttt{html}

HTML output.

\texttt{latin1}

Typewriter-like devices using the ISO Latin-1 character set.

\texttt{lj4}

HP LaserJet4-compatible (or other PCL5-compatible) printer.

\texttt{ps}

PostScript.

\texttt{utf8}

Unicode (ISO 10646) character set with UTF-8 encoding.

\texttt{X75}

75-dpi X11 previewer.

\texttt{X100}

100-dpi X11 previewer.
Environment variables

GROFF_COMMAND_PREFIX
If set to X, groff runs Xtroff instead of troff.

GROFF_FONT_PATH
Colon-separated list of directories to search for the devname directory.

GROFF_TMAC_PATH
Colon-separated list of directories to search for the macro files.

GROFF_TMPDIR
If set, temporary files are created in this directory; otherwise, they are created in TMPDIR (if set) or /tmp (if TMPDIR is not set).

GROFF_TYPESETTER
Default device.

PATH
Search path for commands that groff executes.

groupadd

System administration command. Create a new user group.

Options

-\f, --force
This option is useful for scripts. When specified the command will exit without error if the group being added already exists. If a gid requested with -g already exists and the -o option has not been specified, assign a different gid as if -g had not been specified. This option is not available on all distributions.

-g gid, --gid gid
Assign numerical group ID. (By default, the first available number above 500 is used.) The value must be unique, unless the -o option is used.

-K key=value, --key key=value
Override defaults in /etc/login.defs.

-o
Accept a nonunique gid with the -g option.

-p string, --password string
Set the password for the group. string must already be encrypted appropriately for the system.

-r, --system
Add a system account. Assign the first available number lower than 499.

--usage
Display a very short list of acceptable options for the command.
groupdel

groupdel group
System administration command. Remove group from system account files. You may still need to find and change permissions on files that belong to the removed group.

groupmod

groupmod [options] group
System administration command. Modify group information for group.

Options
-g gid, --gid gid
Assign numerical group ID. (By default, the first available unreserved number is used. Many distributions reserve the first 500 IDs for system groups, some the first 1000.) The value must be unique, unless the -o option is used.
-n name
Change the group name to name.
-o Override. Accept a nonunique gid.
-p string, --password string
Set the initial password for the group. string must already be encrypted appropriately for the system.

groups

groups [options] [users]
Show the groups that each user belongs to (default user is the owner of the current group). Groups are listed in /etc/passwd and /etc/group.

Options
--help
Print help message.
--version
Print version information.

grpck

grpck [option] [files]
System administration command. Remove corrupt or duplicate entries in the /etc/group and /etc/gshadow files. Generate warnings for other errors found. grpck will prompt for a “yes” or “no” before deleting entries. If the user replies “no,” the program will exit. If run in a read-only mode, the reply to all prompts is “no.” Alternate group and gshadow files can be checked. If other errors are found, the user will be encouraged to run the groupmod command.

Option
-r Read-only mode.
-s Sort entries by GID.
Exit codes
0  Success.
1  Syntax error.
2  One or more bad group entries found.
3  Could not open group files.
4  Could not lock group files.
5  Could not write group files.

**grpconv**

System administration command. Like **pwconv**, the **grpconv** command creates a shadowed group file to keep your encrypted group passwords safe from password-cracking programs. **grpconv** creates the /etc/gshadow file based on your existing /etc/groups file and replaces your encrypted password entries with `x`. If you add new entries to the /etc/groups file, you can run **grpconv** again to transfer the new information to /etc/gshadow. It will ignore entries that already have a password of `x` and convert those that do not. **grpunconv** restores the encrypted passwords to your /etc/groups file and removes the /etc/gshadow file.

**gs**

GhostScript, an interpreter for Adobe Systems’ PostScript and PDF (Portable Document Format) languages. Used for document processing. With - in place of files, standard input is used.

**Options**

--filename arg1 ...

Take the next argument as a filename, but use all remaining arguments to define ARGUMENTS in userdict (not systemdict) as an array of those strings before running the file.

-Dname=token, -dname=token

Define a name in systemdict with the given definition. The token must be exactly one token (as defined by the token operator) and must not contain any whitespace.

-Dname, -dname

Define a name in systemdict with a null value.

-gnumber1 xnumber2

Specify width and height of device; intended for systems like the X Window System.

-directories

Add a list of directories at the head of the search path for library files.

-q Quiet startup.
gunzip

-\texttt{number}, -\texttt{number1}\texttt{xnumber2}
  Specify X and Y resolutions (for the benefit of devices, such as
  printers, that support multiple X and Y resolutions). If only
  one number is given, it is used for both X and Y resolutions.

-\texttt{Name}=\textit{string}, -\texttt{name}=\textit{string}
  Define a name in \texttt{systemdict} with a given \textit{string} as value.

\textbf{Special names}

-\texttt{dDISKFONTS}
  Cause individual character outlines to be loaded from the disk
  the first time they are encountered.

-\texttt{dNOBIND}
  Disable the \texttt{bind} operator. Useful only for debugging.

-\texttt{dNOCACHE}
  Disable character caching. Useful only for debugging.

-\texttt{dNODisplay}
  Suppress the normal initialization of the output device. May
  be useful when debugging.

-\texttt{dNOPAUSE}
  Disable the prompt and pause at the end of each page.

-\texttt{dNOPATFORMENTS}
  Disable the use of fonts supplied by the underlying platform
  (e.g., the X Window System).

-\texttt{dSAFER}
  Disable the \texttt{deletefile} and \texttt{renamefile} operators, and the ability
  to open files in any mode other than read-only.

-\texttt{dWRITESYSTEMDICT}
  Leave \texttt{systemdict} writable.

-\texttt{sDEVICE}=\textit{device}
  Select an alternate initial output device.

-\texttt{sOUTPUTFILE}=\textit{filename}
  Select an alternate output file (or pipe) for the initial output
  device.

\begin{verbatim}
\textbf{gunzip} \  \texttt{gunzip [options] [files]}
Uncompress files compressed by \texttt{gzip}. See \texttt{gzip} for a list of options.
\end{verbatim}

\begin{verbatim}
\textbf{gzexe} \  \texttt{gzexe [option] [files]}
Compress executables. When run, these files automatically uncompress,
thus trading time for space. \texttt{gzexe} creates backup files with a
tilde at the end (\textit{filename}~). These backup files can be deleted once
you are sure the compression has worked properly.

\textbf{Option}
-\texttt{d} \  Decompress files.
\end{verbatim}
gzip [options] [files]
gunzip [options] [files]
zcat [options] [files]

Compress specified files (or data read from standard input) with Lempel-Ziv coding (LZ77). Rename compressed file to filename.gz; keep ownership modes and access/modification times. Ignore symbolic links. Uncompress with gunzip, which takes all of gzip’s options except those specified. zcat is identical to gunzip -c and takes the options -fhLV, described here. Files compressed with the compress command can be decompressed using these commands.

Options
-n, --fast, --best
Regulate the speed of compression using the specified digit n, where -1 or --fast indicates the fastest compression method (less compression), and -9 or --best indicates the slowest compression method (most compression). The default compression level is -6.
-c, --stdout, --to-stdout
Print output to standard output, and do not change input files.
-d, --decompress, --uncompress
Same as gunzip.
-f, --force
Force compression. gzip normally prompts for permission to continue when the file has multiple links, its .gz version already exists, or it is reading compressed data to or from a terminal.
-h, --help
Display a help screen and then exit.
-L, --license
Display the gzip license and quit.
-n, --no-name
When compressing, do not save the original filename and timestamp by default. When decompressing, do not restore the original filename if present, and do not restore the original timestamp if present. This option is the default when decompressing.

Chapter 3: Linux Commands | 191
halt

-N, --name
Default. Save original name and timestamp. When decompressing, restore original name and timestamp.

-q, --quiet
Print no warnings.

-r, --recursive
When given a directory as an argument, recursively compress or decompress files within it.

-S suffix, --suffix suffix
Append `suffix`. Default is `gz`. A null suffix while decompressing causes `gunzip` to attempt to decompress all specified files, regardless of suffix.

-t, --test
Test compressed file integrity.

-v, --verbose
Print name and percent size reduction for each file.

-V, --version
Display the version number and compilation options.

hdparm

halt [options]
System administration command: turns off the computer. Inserts a note in the file `/var/log/wtmp`; if the system is in runlevel 0 or 6, stops all processes; otherwise, calls `shutdown -h`.

Options
- -d Suppress writing to `/var/log/wtmp`.
- -f Call `halt` even when `shutdown -nf` would normally be called (i.e., force a call to `halt`, even when not in runlevel 0 or 6).
- -h Place hard drives in standby mode before halt or power off.
- -i Shut down network interfaces before halt.
- -n No sync before reboot or halt.
- -p Perform power-off when halting system.

hdparm [options] [device]
System administration command. Read or set the hard drive parameters. This command can be used to tune hard drive performance. It is primarily used with IDE drives, but some can be used with SCSI drives as well.

Options
The `hdparm` command accepts many option flags, including some that can result in filesystem corruption if misused. Flags can be used to set or get a parameter. To get a parameter, just pass the flag without a value. To set a parameter, follow the flag with a space and the appropriate value.
hdparm

-a [n]
Get or set the number of sectors to read ahead in the disk. The default is 8 sectors (4 KB); a larger value is more efficient for large, sequential reads, and a smaller value is better for small, random reads. Many IDE drives include this functionality in the drive itself, so this feature is not always necessary.

-A Enable or disable the IDE read-ahead feature. Usually on by default.

-b [n]
Get or set the bus state for the drive.

-B Set the Advanced Power Management (APM) data if the drive supports it.

-c [n]
Get or set 32-bit I/O values for IDE drives. Acceptable values are 0 (32-bit support off), 1 (32-bit support on), and 3 (on, but only with a sync sequence).

-C Check the power status of the drive. This will tell you unknown, active/idle, standby, or sleeping. Use -S, -y, -Y, and -Z to set the power status.

-d [n]
Get or set the using_dma flag for the drive, which may be 0 (not using DMA) or 1 (using DMA).

-D Enable or disable defect-handling features that are controlled by the hard drive itself.

-E n
Set CD-ROM read speed to n times normal audio playback speed. Not normally necessary.

-f Flush and sync the buffer cache on exit.

-F Flush write cache buffer on drive.

-g Query and display drive size and geometry information, such as number of cylinders, heads, and sectors.

-h Display a short help message.

-i Display the drive identification information obtained at boot time. If the drive has changed since boot, this information may not be current.

-I Display more detailed identification information for the drive.

--Istdin
Read identify data from standard input.

--Istdout
Write identify data to standard output.

-k [n]
Get or set the keep_settings_over_reset variable. Valid settings are 0 and 1, and a value of 1 will keep the -dmu options when rebooting (soft reset only).
hdparm

-K [n]
Get or set the keep_features_over_reset variable. Valid settings are 0 and 1, and a value of 1 will keep settings for the flags -APSXWZ over a soft reset.

-L n
Set the door lock flag for the drive. Used for Syquest, ZIP, and JAZ drives.

-m [n]
Get or set the number of sectors used for multiple sector count reading. A value of 0 disables the feature, and values of 2, 4, 8, 16, and 32 are common. Drives that try to support this feature and fail may suffer corruption and data loss.

-M [n]
Get or set the level for Automatic Acousting Management (AAM) features. Newer drives support this feature, which can slow down head movements to reduce hard disk noise. Values range from 128 (quiet, but slow) to 254 (fast, but loud). Some drives support only 128 and 254, while others support multiple levels between the extremes. At the time of writing, this feature was still considered experimental and not recommended for production use.

-n [n]
Set to 0 or 1 to disable or enable, respectively, the “ignore write errors” flag. This can cause massive data loss if used incorrectly, and is for development purposes only.

-N [n]
Get or set visible number of sectors. Without a parameter this will display the current maximum sectors and the hardware limit for the disk. The invisible sectors form the Host Protected Area (HPA) commonly used to hold diagnostic software or the original copy of the operating system. Changing this value will usually result in data loss.

-p n
Tune the IDE interface to use PIO mode n, usually an integer between 0 and 5. Incorrect values can result in massive data loss. Support for the PIO mode-setting feature varies between IDE chips, so tuning it is not for the faint of heart.

-P n
Set the internal prefetch sector count. Not all drives support the feature.

-q
Suppress output for the flag after this one, unless it is the -i, -v, -t, or -T flag.

-Q [n]
Set the depth of tagged queues. 0 disables tagged queues. This is supported only on specific drives, and only for kernels 2.5.x and later.
-r [n]
Get or set the flag for read-only on the device. A value of 1 marks the device as read-only.

-R
This option should be used by experts only. It registers an IDE interface. See the -U option for further details.

-S n
Set the amount of time a disk is inactive before it spins down and goes into standby mode. Settings from 1 to 240 represent chunks of five seconds (for timeout values between 5 seconds and 20 minutes); values from 241 to 251 are increments of 30 minutes (for 30 minutes to 5.5 hours). A value of 252 sets the timeout to 21 minutes, 253 to the vendor default, and 255 to 20 minutes and 15 seconds.

-t
Time device reads to determine performance.

-T
Time cache reads to determine performance.

-u [n]
Get or set the interrupt-unmask value for the drive. A value of 1 lets the drive unmask other interrupts and can improve performance; when used with older kernels and hardware, it can cause data loss.

-U
Unregister an IDE interface. Use this feature and the -R feature only with hot-swappable hardware, such as very high-end servers and some laptops. It can damage or hang other systems, and should be used with caution.

-v
Display all appropriate settings for device except -i. This is the same as the default behavior with no flags.

-w
Reset the device. Use as a last resort only; may cause data loss.

-W
Enable or disable the write-cache feature for the drive. The default varies among drive manufacturers.

-x
Sets tristate. Use only for hot-swappable devices. See the -R and -U entries.

-X n
Set the IDE transfer mode. Possible values include 34 (multiword DMA mode2 transfers) and 66 (UltraDMA mode2 transfers), or any PIO mode number plus 8. This option is suggested for experts only, and is useful only with newer EIDE/IDE/ATA2 drives. Often used in combination with -d.

-y
Put the IDE drive into standby (spin-down) mode, saving power.

-Y
Put the IDE drive into sleep mode.

-z
Force the kernel to reread the partition table.

-Z
Disable automatic powersaving on some drives, which can prevent them from idling or spinning down at inconvenient moments. This will increase the electrical power consumption of your system.
head

head [options] [files]
Print the first few lines (default is 10) of one or more files to standard output. If files is missing or -, read from standard input. With more than one file, print a header for each file showing the filename.

Options
-c num[b|k|m], --bytes num[b|k|m]
Print first num bytes or, if num is followed by b, k, or m, first num 512-byte blocks, 1-kilobyte blocks, or 1-megabyte blocks.
--help
Display help and then exit.
-n num, --lines num, -num
Print first num lines. Default is 10.
-q, --quiet, --silent
Quiet mode; never print headers giving filenames.
-v, --verbose
Print filename headers, even for only one file.
--version
Output version information and then exit.

Examples
Display the first 20 lines of phone_list:
   head -20 phone_list
Display the first 10 phone numbers having a 202 area code:
   grep '(202)' phone_list | head

hexdump

hexdump [options] file
Display specified file or input in hexadecimal, octal, decimal, or ASCII format. Option flags are used to specify the display format.

Options
-b  Use a one-byte octal display; show the input offset in hexadecimal, followed by 16 three-column octal data bytes, filled with zeroes and separated by spaces.
-c  Use a one-byte character display; show the input offset in hexadecimal, followed by 16 three-column entries, filled with zeroes and separated by spaces.
-C  Canonical mode. Display hexadecimal offset, two sets of eight columns of hexadecimal bytes, then a | followed by the ASCII representation of those same bytes.
-d  Use a two-byte decimal display. The input offset is again in hexadecimal, but the display has only eight entries per line, of five columns each, containing two bytes of unsigned decimal format.
-e format_string
Choose a format string to be used to transform the output data. Format strings consist of:

Iteration count
The iteration count is optional. It determines the number of times to use the transformation string. The number is followed by a slash (/) to distinguish it from the byte count.

Byte count
The number of bytes to be interpreted by the conversion string, preceded by a slash character to distinguish it from the iteration count. The byte count is optional.

Format characters
The actual format characters are required. They are surrounded by quotation marks and are interpreted as fprintf (see printf) formatting strings, although the * and q options will not work as expected. Format string usage is discussed at greater length in the hexdump manpage.

-f filename
Choose a file that contains several format strings, separated by newlines; the # character marks a line as a comment.

-n length
Limit the number of bytes of input to be interpreted.

-o Two-byte octal display; show a hexadecimal offset followed by eight five-column data entries of two bytes each, in octal format.

-s offset
Skip to specified offset. The offset number is assumed to be decimal unless it starts with 0x or 0X (hexadecimal), or 0 (octal). Numbers may also be designated in megabytes, kilobytes, or half-kilobytes with the addition of m, k, or b at the end of the number.

-v Display all input data, even if it is the same as the previous line. Normally, a duplicate line is replaced by an asterisk (*).

-x Display data in a two-byte hexadecimal format. The offset is in hexadecimal, and is followed by eight space-separated entries, each of which contains four-column, two-byte chunks of data in hexadecimal format.

host
System administration command. Print information about hosts or zones in DNS. Hosts may be IP addresses or hostnames; host converts IP addresses to hostnames by default and appends the local domain to hosts without a trailing dot. Default servers are determined in /etc/resolv.conf. For more information about hosts and zones, read Chapters 1 and 2 of Paul Albitz’s and Cricket Liu’s DNS and BIND (O’Reilly).
Options
-a Same as -t ANY.
-c class
  Search for specified resource record class (IN, CH, CHAOS, HS, HESIOD, or ANY). Default is IN.
-d Verbose output. Same as -v.
-l List mode. This also performs a zone transfer for the named zone. Same as -t AXFR.
-r Do not ask contacted server to query other servers, but require only the information that it has cached.
-s Stop querying nameservers upon receiving a SERVFAIL response.
-t type
  Look for type entries in the resource record. type may be any recognized query type, such as A, AXFR, CNAME, NS, SOA, SIG, or ANY. If name is a hostname, host will look for A records by default. If name is an IPv4 or IPv6 address, it will look for PTR records.
-v Verbose. Include all fields from resource record, even time-to-live and class, as well as "additional information" and "authoritative nameservers" (provided by the remote nameserver).
-w Never give up on queried server.
-C Display SOA records from all authoritative nameservers for the specified zone.
-N n
  Consider names with fewer than n dots in them to be relative. Search for them in the domains listed in the search and domain directives of /etc/resolv.conf. The default is usually 1.
-R n
  Retry query a maximum of n times. The default is 1.
-T Use TCP instead of UDP to query nameserver. This is implied in queries that require TCP, such as AXFR requests.
-W n
  Wait a maximum of n seconds for reply.

hostid
Print the ID number in hexadecimal of the current host.

hostname
Set or display name of current host system. A privileged user can set the hostname with the nameofhost argument.
**hunspell**

Options
- **-a, --alias**
  Display the alias name of the host (if used).
- **-d, --domain**
  Display DNS domain name.
- **-f, --fqdn, --long**
  Display fully qualified domain name.
- **-F file, --file file**
  Consult file for hostname.
- **-h, --help**
  Display a help message and then exit.
- **-i, --ip-address**
  Display the IP address(es) of the host.
- **-s, --short**
  Trim domain information from the display output.
- **-v, --verbose**
  Verbose mode.
- **-V, --version**
  Display version information and then exit.
- **-y, --yp, --nis**
  Display the NIS domain name. A privileged user can set a new NIS domain name with `nameofhost`.

---

**htdigest**

`htdigest [-c] filename realm username`

Create or update user authentication files used by the Apache web server. The -c option is used if you wish to create the file, and will overwrite any existing files rather than update them. The three arguments are the file you wish to use as the authentication file, the realm name to which the user belongs, and the username you will update in the password file. You will be prompted for a password when you run the command.

The Apache manual contains information about authentication mechanisms, including more detail about using `htdigest` and the ways in which you can control access to the resources served by Apache.

---

**hunspell**

`hunspell [options] [files]`

A spell checker modeled after `ispell`. With no files specified, `hunspell` reads from standard input. See `ispell` for details of the available options and commands. Commands are single-character and case-insensitive; use them to tell `hunspell` what to do with a misspelled word.
hwclock

hwclock [option]
System administration command. Read or set the hardware clock. This command maintains change information in `/etc/adjtime`, which can be used to adjust the clock based on how much it drifts over time. `hwclock` replaces the `clock` command. The single-letter options are included for compatibility with the older command.

Options
You may specify only one of the following options:

- `a`, `--adjust`
  Adjust the hardware clock based on information in `/etc/adjtime` and set the system clock to the new time.

- `getepoch`
  Print the kernel’s hardware clock epoch value, then exit.

- `r`, `--show`
  Print the current time stored in the hardware clock.

- `s`, `--hctosys`
  Set the system time in accordance with the hardware clock.

- `setepoch`, `--epoch=year`
  Set the hardware clock’s epoch to `year`.

- `--set--date=date`
  Set the hardware clock to the specified `date`, a string appropriate for use with the `date` command.

- `v`, `--version`
  Print version and exit.

- `w`, `--systohc`
  Set the hardware clock in accordance with the system time.

The following may be used with the above options:

- `--debug`
  Print information about what `hwclock` is doing.

- `--localtime`
  The hardware clock is stored in local time.

- `--noadjfile`
  Disable `/etc/adjtime` facilities.

- `--test`
  Do not actually change anything. This is good for checking syntax.

- `u`, `--utc`
  The hardware clock is stored in Universal Coordinated Time.

icedax

icedax [options] [output.wav]
Retrieve audio tracks in CDDA (Compact Disc Digital Audio) format and convert to WAV format. `icedax` stands for InCrEdible Digital Audio eXtractor. The manpage has full details as well as hints on the options and on usage.
Options

Some of the following options use sectors as a unit of measurement. Each sector of data on a CD represents approximately 1/75 second of play time.

-a n, --divider n
Set the sample rate to a value equal to 44100/n samples per second. The -R option, used by itself, lists the possible values.

-A drivename, --auxdevice drivename
Specify a different drive for ioctl purposes.

-b n, --bits-per-sample n
Set the quality of samples to n bits per sample per channel. Possible values are 8, 12, and 16.

-B, --bulk, --alltracks
Copy each track into its own file. This is the most commonly used flag.

c channel, --channels channel
Set stereo instructions. Set channel to 1 for mono; 2 for stereo; or s for stereo, but swapped left-to-right. You can also use -s (--stereo) to record in stereo and -m (--mono) to record in mono.

-C byteorder, --cdrom-endianness byteorder
Set the byte order, or “endianness” of the input data. You may set the order to little, big, or guess. This is useful when your CD-ROM drive uses an unexpected or unusual byte order for your platform.

--cddbp-server=servername
Set the name of the CD lookup server used. The default server is freedb.freedb.org.

--cddbp-port=portnumber
Select the port on which to access the CD lookup server. The servers at freedb.org use cddbp on port 8880, and http on port 80.

-d duration, --duration
Set the number of seconds duration, or follow with f to set the duration in frames (sectors). Set duration to zero to record an entire track.

-D devicename, --device devicename
Specify the device. The device must work with the -I (--interface) settings.

-e, --echo
Copy output to an audio output device. Use -K (--sound-device) to set the device (usually /dev/dsp).

-E byteorder, --output-endianness byteorder
Set the byte order or “endianness” of the output data. As with -C, you may set the order to little, big, or guess.

-g, --gui
Format all text output for easy parsing by GUI frontends.
icedax

-h, --help
    Print usage information and exit.

-H, --no-infile
    Do not copy any info or CDDB files, only the audio files.

-i n, --index n
    Set the start index to n when recording.

-I ifname, --interface ifname
    Specify the type of interface, generic_scsi or cooked_ioctl. It’s usually safest to use generic_scsi.

-J, --info-only
    Use this option by itself to display information about the disc, but do nothing else.

-K device, --sound-device device
    Set the sound device to use with -e.

-l n, --buffers-in-ring n
    Use a ring of n buffers.

-L n, --cddb n
    icedax looks up CD information online, if possible. This option determines what happens when there are multiple entries identifying the CD. If the mode is 0, the user is prompted to select an entry. If the mode is 1, the application uses the first entry returned.

-M n, --md5 n
    Create MD5 checksums for the first n bytes of each track copied.

-n n, --sectors-per-request n
    Read n sectors in each request.

-N, --no-write
    For debugging purposes, this option suppresses writing an output file.

-o n, --offset n
    Start recording n sectors before the beginning of the first track.

-O format, --output-format=format
    Choose the output file format. Normal file options are wav, aiff, aifc, au, and sun. You can also use cdr and raw for header-less files dumped into recording devices.

-p n, --set-pitch n
    Adjust the pitch by n percent when copying data to an audio device.

-P n, --set-overlap n
    Use n sectors of overlap for jitter correction. Very fast systems with absolutely perfect drives and unscratched CDs can set this to 0.

--paranoia
    Read and interpret the CD using the paranoia library instead of the icedax code.
iconv

iconv [options] files

Convert the contents of one or more files from one character encoding to another and write the results to standard output. Use -l to print a list of possible encodings.

Options
-c  Omit invalid output characters.
-1 code1, --from-code=code1
   Convert input characters from the code1 encoding.
-?, --help
   Print help message and exit.
-l, --list
   Print a list of valid encodings to standard output.

-q, --quiet
Quiet mode; the program sends no data to the screen.

-r n, --rate n
Set the sample rate in samples per second. To get a list of possible values, use the -R option by itself.

-R, --dump-rates
Output a list of possible sample rates and dividers. This option is typically used with no other option flags or arguments.

-S n, --speed n
Specify the speed at which your system will read the CD-ROM. Set the value to the multiple of normal playback speed given as your CD-ROM drive speed (4, 16, 32, and so forth). Setting the speed lower than the maximum can prevent errors in some cases.

-t m [+n], --track m [+n]
Set start track to n. Optionally, use + and a second track number for the end track: 1+10 copies tracks one through ten.

-v list, --verbose-level list
Specify CD information to display in a comma-separated list. The options are: for no information, use disable; for all information, use all. Specify toc for the table of contents, summary for a summary of recording parameters, indices for index offsets, catalog for the media catalog number (MCN), trackid for track IDs, sectors for the table of contents in start sector notation, and titles for title information, if available.

--version
Display version and quit.

-w, --wait
Wait for a signal before recording anything.

-x, --max
Set recording quality (and amount of hard disk usage) to maximum.
id

-o file, --output=file
Write the converted output to file instead of standard output.
-s, --silent
Operate silently; don’t print warning messages.
-t code2, --to-code=code2
Convert input characters to the code2 encoding.
--usage
Print a brief usage message showing only the command syntax
and then exit.
-V, --version
Print version information and exit.
--verbose
Operate verbosely; print progress messages.

id
id [options] [username]
Display information about yourself or another user: user ID, group
ID, effective user ID and group ID if relevant, and additional group IDs.

Options
-g, --group
Print effective group ID only.
-G, --groups
Print supplementary groups only.
-n, --name
With -u, -g, or -G, print user or group name, not number.
-r, --real
With -u, -g, or -G, print real, not effective, user ID or group
ID.
-u, --user
Print user ID only.
-Z, --context
Print security context of the current user.
--help
Print help message and then exit.
--version
Print version information.

ifconfig
ifconfig [interface]
ifconfig [interface address_family parameters addresses]
TCP/IP command. Assign an address to a network interface and/or
configure network interface parameters. ifconfig is typically used at
boot time to define the network address of each interface on a
machine. It may be used at a later time to redefine an interface’s
address or other parameters. Without arguments, ifconfig displays
the current configuration for a network interface. With the single
option -a and no other arguments, it will display all current interfaces. Used with a single interface argument, ifconfig displays that particular interface's current configuration. Note that interfaces are usually numbered starting at zero: eth0, eth1, eth2, and so forth. Wireless network interfaces may begin with ath0 or wlan0. On some systems the ifconfig command is deprecated in favor of the ip command.

Arguments

interface
String of the form name unit: for example, en0.

address_family
Since an interface may receive transmissions in differing protocols, each of which may require separate naming schemes, you can specify the address_family to change the interpretation of the remaining parameters. You may specify inet (for TCP/IP, the default), ax25 (AX.25 Packet Radio), ddp (Appletalk Phase 2), or ipx (Novell).

parameters
The following parameters may be set with ifconfig:

add address/prefixlength
Add an IPv6 address and prefix length.

address address
Assign the specified IP address to the interface.

allmulti/-allmulti
Enable/disables sending of incoming frames to the kernel’s network layer.

arp/-arp
Enable/disable use of the Address Resolution Protocol in mapping between network-level addresses and link-level addresses.

broadcast/-broadcast [address] (inet only) Set or clear the address to use to represent broadcasts to the network. Default is the address with a host part of all ones (i.e., x.y.z.255 for a class C network).

del address/prefixlength
Delete an IPv6 address and prefix length.

down
Mark an interface “down” (unresponsive).

hw class address
Set the interface’s hardware class and address. class may be ether (Ethernet), ax25 (AX.25 Packet Radio), or ARCnet.

io_addr addr
I/O memory start address for device.
**ifconfig**

```plaintext
irq addr
 Set the device’s interrupt line.

metric n
 Set routing metric of the interface to n. Default is 0.

mem_start addr
 Shared memory start address for device.

media type
 Set media type. Common values are 10base2, 10baseT, and AUI. If auto is specified, ifconfig will attempt to autosense the media type.

mtu n
 Set the interface’s Maximum Transfer Unit (MTU).

multicast
 Set the multicast flag.

netmask mask
 (inet only) Specify how much of the address to reserve for subdividing networks into subnetworks. mask can be specified as a single hexadecimal number with a leading 0x, with a dot notation Internet address, or with a pseudo-network name listed in the network table /etc/networks.

pointopoint/-pointopoint [address]
 Enable/disable point-to-point interfacing, so that the connection between the two machines is dedicated.

promisc/-promisc
 Enable/disable promiscuous mode. Promiscuous mode allows the device to receive all packets on the network.

txqueue_len n
 Specify the transmit queue length.

tunnel addr
 Create an IPv6-in-IPv4 (SIT) device, tunneling to IPv4 address addr.

up
 Mark an interface “up” (ready to send and receive).

addresses
 Each address is either a hostname present in the hostname database (/etc/hosts), or an Internet address expressed in the Internet standard dot notation.

Examples
To list all interfaces:

 ifconfig -a

To add a second IP address to wlan0:

 ifconfig wlan0:1 192.168.2.41 netmask 255.255.255.0

To change the hardware address (MAC address) assigned to eth0 (useful when setting up a router for a DSL or cable modem):

 ifconfig eth0 hw ether 01:02:03:04:05:06
```
imapd  
imapd [options]
TCP/IP command. The Interactive Mail Access Protocol (IMAP) server daemon. imapd is often invoked by xinetd and listens on port 143 for requests from IMAP clients. IMAP allows mail programs to access remote mailboxes as if they were local. IMAP is a richer protocol than POP because it allows a client to retrieve message-level information from a server mailbox instead of the entire mailbox. IMAP can be used for online and offline reading. The popular Pine mail client contains support for IMAP. There are several versions of imapd available. Here we document the Cyrus IMAP server with its most common command options.

Options
-C file
   Read configuration options from file instead of /etc/imapd.conf.
-s
   Encrypt data using the Secure Socket Layer (SSL).
-T n
   Wait n seconds for a new connection before closing the process. The default is 60.
-U n
   Reuse process for new connections no more than n times.

inetd  
inetd [options] [configuration_file]
TCP/IP command. The Internet services daemon. This is an older daemon usually replaced with xinetd. See xinetd.

info  
info [options] [topics]
GNU hypertext reader. Display online documentation previously built from Texinfo input. Info files are arranged in a hierarchy and can contain menus for subtopics. When entered without options, the command displays the top-level info file (usually /usr/local/info/dir or /usr/share/info/dir). When topics are specified, find a subtopic by choosing the first topic from the menu in the top-level info file, the next topic from the new menu specified by the first topic, and so on. The initial display can also be controlled by the -f and -n options. If a specified topic has no info file but does have a manpage, info displays the manpage; if there is neither, the top-level info file is displayed.

Options
-d directories, --directory directories
   Search directories, a colon-separated list, for info files. If this option is not specified, use the INFOPATH environment variable or the default directory (usually /usr/local/info or /usr/share/info).
init

--dribble file
Store each keystroke in file, which can be used in a future session with the --restore option to return to this place in info.

-f file, --file file
Display specified info file.

--help
Display brief help message and exit.

--index-search string
Display node pointed to by index entry string.

-k string, --apropos string
Search all info topics for string and display the results.

-n node, --node node
Display specified node in the info file.

-o file, --output file
Copy output to file instead of displaying it on the screen.

-O, --show-options, --usage
Display the node with the command-line options.

--restore file
When starting, execute keystrokes stored in file.

--subnodes
Display subtopics.

--version
Display version.

--vi-keys
Use vi-like key bindings.

init
System administration command. The init daemon is the parent of all processes on Linux. Traditionally Linux has used a System V Unix style boot process (SysVinit) that calls this daemon at system startup. The SysVinit daemon starts or stops other programmings depending on run level. Newer Linux distributions use a more flexible process called Upstart, but for backward compatibility many still group processes into run levels. For a System V init process use the telinit program to change run levels. For Upstart use initctl to communicate with the init daemon. For more information, see the section “Starting and Stopping the System” on page 19.

initctl
initctl [options] command
System administration command. initctl sends commands to the Upstart init daemon. Use it to monitor jobs or events, call jobs directly, or send custom events to the daemon.
insmod

Options
--show-ids
  Show unique process id (pid) as well as the job id.
--by-id
  Parameter passed to command is a job id.
--no-wait
  When using start, stop, or emit, exit immediately instead of
  waiting for the request to finish.
--quiet
  Only show errors when running the given command.

Commands
These generally apply to upstart jobs. Jobs are usually defined in
files located in the /etc/event.d directory. Most commands will
accept multiple job names given in a space separated list.

emit event [arguments]
  Emit a custom event to which init should respond. Event arguments
  may be passed in a comma separated list. If any job status changes as
  a result of the event, print each change.

events
  Monitor system events.

list [pattern]
  Print a list of all known jobs. If an optional shell style matching
  pattern is given, only those jobs matching the pattern will be
  shown.

log-priority priority
  Change init message logging priority to one of debug, info,
  message, warn, error, or fatal.

start job...
  Start and print job status changes to screen.

status job...
  Print status. The job name, goal (to start or stop) and the
  current status of the job are shown, along with any associated
  pids.

stop job...
  Stop and print job status changes to screen.

jobs
  Monitor job changes, printing changes to the screen.

version
  Print version of running init daemon.

insmod filename [module-options]

  System administration command. Load the module filename into
  the kernel. Simpler but less flexible than the modprobe command.
  Error messages from insmod may be vague, because the kernel
  performs module operations internally and therefore sends error
  information to the kernel log instead of standard output; see dmesg.
install

install [options] [source] destination

System administration command. Used primarily in Makefiles to update files. install copies files into user-specified directories. Similar to cp, but attempts to set permission modes, owner, and group. The source may be a file or directory, or a list of files and directories. The destination should be a single file or directory.

Options

-b, --backup[=control]
Back up any existing files. When using the long version of the command, the optional control parameter controls the kind of backup. When no control is specified, install will attempt to read the control value from the VERSION_CONTROL environment variable. Accepted values are:

none, off
Never make backups.

numbered, t
Make numbered backups.

existing, nil
Match existing backups, numbered or simple.

simple, never
Always make simple backups.

-C
Do not overwrite file when the target exists and is identical to the new file. Preserve original timestamp.

-d, --directory
Create any missing directories.

-D
Create leading components of destination except the last, then copy source to destination.

-g group, --group group
Set group ID of new file to group (privileged users only).

--help
Print help information and exit.

-m mode, --mode mode
Set permissions of new file to mode (octal or symbolic). By default, the mode is 0755.

-o [owner], --owner[=owner]
Set ownership to owner or, if unspecified, to root (privileged users only).

-p, --preserve-timestamps
Preserve access and modification times on source files and directories.

-P, --preserve-context
Preserve SELinux security context.

-s, --strip
Strip symbol tables.
-S suffix, --suffix=suffix
  Use suffix instead of the default backup suffix, usually .
-t directory, --target-directory directory
  Copy SOURCE arguments into the specified directory.
-T, --no-target-directory
  Treat destination as a normal file.
-v, --verbose
  Print name of each directory as it is created.
--version
  Print version, then exit.

```
ionice

Set the I/O scheduling class and priority for a program. The three possible scheduling classes are idle, best effort, and real time. The default is best effort. With no arguments or just -p, query the current class and priority for the process. Without -p, the program is run with the specified parameters.

Options

-c n
 Set the scheduling class, where n is 1 for real time, 2 for best effort, and 3 for idle.
-h
 Print help information and exit.
-n n
 Define the scheduling class data for classes that accept it. For real time and best effort, n can be in the range 0–7.
-p pid
 Specify the process id of a running program to be changed.
```

```
ip

System administration command. Show and manipulate network devices and routing. This command is a part of the iproute2 utilities for controlling TCP and UDP IP networking and traffic control. It’s meant to replace the ifconfig, route, and arp commands among others. On some distributions these utilities may be deprecated in favor of ip.

ip’s subcommand syntax is very similar to the Cisco’s IOS syntax used on many Cisco routers and switches. The ip command can be used to configure tunnels, load balancing and other traffic shaping. For brevity, we won’t cover all of its features here. For more in-depth coverage, we recommend iproute2’s Linux Foundation web pages at: http://www.linuxfoundation.org/en/Net:Iproute2.
```
Options
- -s, --stats, --statistics
   Print statistics or time values. Use multiple times to increase
   the verbosity of output even more.

- -f protocol_family, --family protocol_family
   Specify the protocol_family to use for the commands given.
   This may be inet, inet6, or link. The protocol_family link
   may be used to indicate no protocol is involved. The ip command
   also accepts shortcut options of -4, -6, and -0 for families inet,
   inet6, and link.

- -o, --oneline
   Format output as one line, replacing linefeeds with the ‘\’
   character. This is useful when piping output of ip to another
   command.

- -r, --resolve
   Resolve IP addresses to host names. The default is to use IP
   addresses.

Commands
We will only cover commands for address, link, neighbor and route
objects, and the syntax of the help command. These are the
commands that replace ifconfig, arp, and route. (In IPv4 the
neighbor table is known as the arp table.) Most objects and
commands have a long name (or two) as well as one or more abbrevi-
ations. For example, the object address can be given as address,
addr, or a. The commands show and list are interchangeable and
can be abbreviated as sh, s, li, or l. Here we show the most
commonly used form in examples and documentation:

help
   List command syntax, including applicable arguments. The
   syntax is given in a form similar to BNF grammar notation.

add address[/netmask] [arguments]
   Add a new protocol address to a device. The format of the
   address depends on the protocol (inet or inet6). A netmask
   may be given in CIDR notation. If no netmask is given, a mask
   of /32 is assumed.

del address[/netmask] [arguments]
   Remove a protocol address.

show [arguments]
   Print current addresses.

set device_name [arguments]
   Define or change settings on a network device.

show [device_name]
   Print current settings for network devices.

add address [arguments]
   Add a new entry to the neighbor table for the IPv4 or IPv6
   address.
neigh chg address [arguments]
Change an existing entry in the neighbor table.

neigh del address [arguments]
Mark as invalid then remove an entry from the neighbor table when released from all clients.

neigh list [address] [arguments]
Add a new entry or change an existing one in the neighbor table.

neigh repl address [arguments]
Add a new entry or change an existing one in the neighbor table.

neigh flush arguments
Flush the specified entries from neighbors table. This command requires an argument, either an address, address prefix, dev, nud, or unused argument.

route add address [arguments]
Add a new entry to the routing table.

route chg address [arguments]
Change an existing entry in the routing table.

route del address [arguments]
Remove an entry from the routing.

route list [arguments]
Show current routing table entries. Use arguments to limit the entries shown.

route repl address [arguments]
Add a new entry or change an existing one in the routing table.

Common arguments
The following are common arguments for the above commands:

address address/netmask
Set a link layer address (i.e., MAC address) for a network device.

arp on, arp off
Set the arp flag of a network device on or off.

brd address
Set the broadcast address. Addresses for address objects may also be given as the symbols + or – meaning to set all the host bits of the broadcast address to 1 or 0. When used with a link object, this argument sets the link layer broadcast address instead.

dev name
The name of the network device to which the command applies (e.g., lo or eth0) For link object commands you can omit dev and just pass the name as the first argument.
ip
down, up
Change the state of a network device, disabling or enabling it (or limit shown devices to those with the specified state).
dynamic on, dynamic off
Set the dynamic flag of a network device on or off.
label name
Assign a label string of name to an address.
local address
The IPv4 or IPv6 address to use with addr object commands. For these commands you can omit local and just pass the address as the first argument.
lladdr address
Set a link layer address for a neighbors table entry.
mtu n
Set the maximum transfer unit (MTU) for a network device to n.
multicast on, multicast off
Set the multicast flag of a network device on or off.
nud state
Set the neighbor unreachability detection (nud) state of a neighbor entry. State values include:
noarp
Mark the entry as valid and not to be checked. It may be removed when it expires.
permanent
Like noarp, but a permanent entry can only be removed by an administrator.
reachable
Mark the entry as valid until its reachability timeout expires.
stale
Mark a new or changed entry as valid, but suspicious. The kernel will check stale entries at the first transmission.
promisc on, promisc off
Turn promiscuous mode on or off for a network device.
proto protocol
Set the routing protocol. The protocol identifies how a route was entered. If you are manually entering a route, the appropriate value for protocol should be static. If not specified the protocol defaults to boot.
scope value
Set the valid scope of an address or route entry. Valid values include global, site, link, and host. If used with the show command, only addresses of the given scope will be shown.
src address
The preferred IPv4 or IPv6 source address for a routing table entry.
to address
The IPv4 or IPv6 address or address prefix for a neighbor table or routing table entry. For neigh and route object commands you can omit the to and pass the address as the first argument. For route object commands you may also use the special address default, which is equivalent to an address of 0/0 or /0.

tos key
An 8-bit hexadecimal number or the IPv4 or IPv6 address or address prefix for a neighbor table or routing table entry. For neigh and route object commands you can omit the to and pass the address as the first argument.

txqlen n
Set the transmit queue length of a network device to n.

unused
When given with neigh show, show only unused entries.

via address
The address of the nexthop router (e.g., the IPv4 or IPv6 address of the gateway). Used with route commands.

Examples
Show all configured network cards:

```
ip link show
```

Bring down eth0:

```
ip link set eth0 down
```

Add an IP address to device eth0 and label it “internal”:

```
ip addr add 192.168.0.32/24 brd + dev eth0 label internal
```

Show current routing table entries for device eth1:

```
ip route list dev eth1
```

Add a router table entry for a private network on eth1 with gateway via 192.168.0.254:

```
ip route add 10.0.0.1/8 via 192.168.0.254 dev eth1
```

Put eth0 into promiscuous mode in order to sniff traffic:

```
ip link set eth0 promisc on
```

Add a permanent entry to the neighbors table (arp table) for eth1:

```
ip neigh add 10.0.0.5 lladdr 52:54:00:32:5e:20 dev eth1 nud permanent
```

ipcrm
System administration command. Remove interprocess communication (IPC) message queues, shared memory segments, or semaphore arrays. These may be specified either by numeric identifier or by key, using the following options.
**Options**

- **-m** *identifier*, **-M** *key*
  Remove specified shared memory segment and its associated data structures after the last detach is performed.

- **-q** *identifier*, **-Q** *key*
  Remove specified message queue and its associated data structures.

- **-s** *identifier*, **-S** *key*
  Remove specified semaphore array and its associated data structures.

---

**iptables**

System administration command. Configure Netfilter filtering rules for kernels 2.4 and later. Rules for **iptables** consist of some matching criteria and a target, a result to be applied if the packet matches the criteria. The rules are organized into chains. You can use these rules to build a firewall, masquerade your local area network, or just reject certain kinds of network connections.
There are three built-in tables for `iptables`: one for network filtering (`filter`), one for Network Address Translation (`nat`), and the last for specialized packet alterations (`mangle`). Firewall rules are organized into chains, ordered checklists of rules that the kernel works through looking for matches. The `filter` table has three built-in chains: INPUT, OUTPUT, and FORWARD. The INPUT and OUTPUT chains handle packets originating from or destined for the host system. The FORWARD chain handles packets just passing through the host system. The `nat` table also has three built-in chains: PREROUTING, POSTROUTING, and OUTPUT. `mangle` has only two chains: PREROUTING and OUTPUT.

`netfilter` checks packets entering the system. After applying any PREROUTING rules, it passes them to the INPUT chain, or to the FORWARD chain if the packet is just passing through. Upon leaving, the system packets are passed to the OUTPUT chain and then on to any POSTROUTING rules. Each of these chains has a default target (a policy) in case no match is found. User-defined chains can also be created and used as targets for packets but do not have default policies. If no match can be found in a user-defined chain, the packet is returned to the chain from which it was called and tested against the next rule in that chain.

`iptables` changes only the rules in the running kernel. When the system is powered off, all changes are lost. You can use the `iptables-save` command to make a script you can run with `iptables-restore` to restore your firewall settings. Such a script is often called at bootup. Many distributions have an `iptables` initialization script that uses the output from `iptables-save`.

Commands

`iptables` is almost always invoked with one of the following commands:

- `-A chain rules`, `--append chain rules`
  Append new rules to chain.

- `-D chain rules`, `--delete chain rules`
  Delete rules from chain. Rules can be specified by their ordinal number in the chain as well as by a general rule description.

- `-E old-chain new-chain`, `--rename-chain old-chain new-chain`
  Rename old-chain to new-chain.

- `-F [chain]`, `--flush [chain]`
  Remove all rules from chain, or from all chains if chain is not specified.

- `-I chain number rules`, `--insert chain number rules`
  Insert rules into chain at the ordinal position given by number.

- `-L [chain]`, `--list [chain]`
  List the rules in chain, or all chains if chain is not specified.

- `-N chain`, `--new-chain chain`
  Create a new chain. The chain’s name must be unique. This is how user-defined chains are created.
-P chain target, --policy chain target
  Set the default policy for a built-in chain; the target itself
cannot be a chain.

-R chain number rule, --replace chain number rule
  Replace a rule in chain. The rule to be replaced is specified by
  its ordinal number.

-X [chain], --delete-chain [chain]
  Delete the specified user-defined chain, or all user-defined
  chains if chain is not specified.

-Z [chain], --zero [chain]
  Zero the packet and byte counters in chain. If no chain is spec-
  ified, all chains will be reset. When used without specifying a
  chain and combined with the -L command, list the current
  counter values before they are reset.

Targets
A target may be the name of a chain or one of the following special
values:

ACCEPT
  Let the packet through.

DROP
  Drop the packet.

QUEUE
  Send packets to the user space for processing.

RETURN
  Stop traversing the current chain and return to the point in the
  previous chain from which this one was called. If RETURN is
  the target of a rule in a built-in chain, the built-in chain’s
  default policy is applied.

Rule specification parameters
These options are used to create rules for use with the preceding
commands. Rules consist of some matching criteria and usually a
target to jump to (-j) if the match is made. Many of the parameters
for these matching rules can be expressed as a negative with an
exclamation point (!) meaning “not.” Those rules will match every-
thing except the given parameter.

-c packets bytes, --set-counters packets bytes
  Initialize packet and byte counters to the specified values.

-d [!] address[/mask] [!] [port], --destination [!] address[/mask]
  [port]
  Match packets from the destination address. The address may
  be supplied as a hostname, a network name, or an IP address.
  The optional mask is the netmask to use and may be supplied
  either in the traditional form (e.g., /255.255.255.0) or in the
  modern form (e.g., /24).

[!] -f, [!] --fragment
  The rule applies only to the second or further fragments of a
  fragmented packet.
Chapter 3: Linux Commands

iptables

- [!] name[+], --in-interface name[+]
  Match packets being received from interface name. name is the network interface used by your system (e.g., eth0 or ppp0). A + can be used as a wildcard, so ppp+ would match any interface name beginning with ppp.

- [!] target, --jump target
  Jump to a special target or a user-defined chain. If this option is not specified for a rule, matching the rule only increases the rule’s counters, and the packet is tested against the next rule.

- [!] name[+], --out-interface name[+]
  Match packets being sent from interface name. See the description of -i for the syntax for name.

- [!] name, --protocol [!] name
  Match packets of protocol name. The value of name can be given as a name or number, as found in the file /etc/protocols. The most common values are tcp, udp, icmp, or the special value all. The number 0 is equivalent to all, and this is the default value when this option is not used. If there are extended matching rules associated with the specified protocol, they will be loaded automatically. You need not use the -m option to load them.

- [!] address[/mask] [!] [port], --source [!] address[/mask] [!] [port]
  Match packets with the source address. See the description of -d for the syntax of this option.

Options

- [h [icmp]], --help [icmp]
  Print help message. If icmp is specified, a list of valid ICMP type names will be printed. -h can also be used with the -m option to get help on an extension module.

--line-numbers
  Used with the -L command. Add the line number to the beginning of each rule in a listing, indicating its position in the chain.

- [m module], --match module
  Explicitly load matching rule extensions associated with module. See the next section.

--modprobe=command
  Use specified command to load any necessary kernel modules while adding or inserting rules into a chain.

- [n], --numeric
  Print all IP address and port numbers in numeric form. By default, text names are displayed when possible.

- [t name], --table name
  Apply rules to the specified table. Rules apply to the filter table by default.

- [v], --verbose
  Verbose mode.
-x, --exact
Expand all numbers in a listing (-L). Display the exact value of the packet and byte counters instead of rounded figures.

Match extensions
Several modules extend the matching capabilities of netfilter rules. Using the -p option will cause iptables to load associated modules implicitly. Others need to be loaded explicitly with the -m or --match options. Here we document those modules used most frequently.

icm
-icmp
Loaded when -p icmp is the only protocol specified:
--icmp-type [!] type
Match the specified ICMP type. type may be a numeric ICMP type or one of the ICMP type names shown by the command iptables -p icmp -h.

multiport
Loaded explicitly with the -m option. The multiport extensions match sets of source or destination ports. These rules can be used only in conjunction with -p tcp and -p udp. Up to 15 ports can be specified in a comma-separated list:
--source-port [ports]
Match the given source ports.
--destination-port [ports]
Match the given destination ports.
--port [ports]
Match if the packet has the same source and destination port and that port is one of the given ports.

state
Loaded explicitly with the -m option. This module matches the connection state of a packet:
--state states
Match the packet if it has one of the states in the comma-separated list states. Valid states are INVALID, ESTABLISHED, NEW, and RELATED.

tcp
Loaded when -p tcp is the only protocol specified:
--source-port [!] [port][:port], --sport [!] [port][:port]
Match the specified source ports. Using the colon specifies an inclusive range of services to match. If the first port is omitted, 0 is the default. If the second port is omitted, 65535 is the default. You can also use a dash instead of a colon to specify the range.
--destination-port [!] [port][:port], --dport [!] [port][:port]
Match the specified destination ports. The syntax is the same as for --source-port.
--mss n:[n]
Match if TCP SYN or SYN/ACK packets have the specified MSS value or fall within the specified range. Use this to control the maximum packet size for a connection.
Chapter 3: Linux Commands

iptables

[!] --syn
Match packets with the SYN bit set and the ACK and FIN bits cleared. These are packets that request TCP connections; blocking them prevents incoming connections. Shorthand for --tcp-flags SYN,RST,ACK SYN.

--tcp-flags [!] mask comp
Match the packets with the TCP flags specified by mask and comp. mask is a comma-separated list of flags that should be examined. comp is a comma-separated list of flags that must be set for the rule to match. Valid flags are SYN, ACK, FIN, RST, URG, PSH, ALL, and NONE.

--tcp-option [!] n
Match if TCP option is set.

udp
Loaded when -p udp is the only protocol specified:

--source-port [!] [port][:port], --sport [!] [port][:port]
Match the specified source ports. The syntax is the same as for the --source-port option of the TCP extension.

--destination-port [!] [port][:port], --dport [!] [port][:port]
Match the specified destination ports. The syntax is the same as for the --source-port option of the TCP extension.

Target extensions
Extension targets are optional additional targets supported by separate kernel modules. They have their own associated options. We cover the most frequently used target extensions below.

DNAT
Modify the destination address of the packet and all future packets in the current connection. DNAT is valid only as a part of the POSTROUTING chain in the nat table:

--to-destination address[-address][port-port]
Specify the new destination address or range of addresses. The arguments for this option are the same as the --to-source argument for the SNAT extension target.

LOG
Log the packet’s information in the system log:

--log-level level
Set the syslog level by name or number (as defined by syslog.conf).

--log-prefix prefix
Begin each log entry with the string prefix. The prefix string may be up to 30 characters long.

--log-tcp-sequence
Log the TCP sequence numbers. This is a security risk if your log is readable by users.

--log-tcp-options
Log options from the TCP packet header.

--log-ip-options
Log options from the IP packet header.
MASQUERADE
Masquerade the packet so it appears that it originated from the current system. Reverse packets from masqueraded connections are unmasqueraded automatically. This is a legal target only for chains in the nat table that handle incoming packets and should be used only with dynamic IP addresses (like dial-up.) For static addresses use DNAT:

```bash
--to-ports port[-port]
```
Specify the port or range of ports to use when masquerading. This option is valid only if a tcp or udp protocol has been specified with the -p option. If this option is not used, the masqueraded packet’s port will not be changed.

REJECT
Drop the packet and, if appropriate, send an ICMP message back to the sender indicating the packet was dropped. If the packet was an ICMP error message, an unknown ICMP type, or a nonhead fragment, or if too many ICMP messages have already been sent to this address, no message is sent:

```bash
--reject-with type
```
Send specified ICMP message type. Valid values are icmp-net-unreachable, icmp-host-unreachable, icmp-port-unreachable, or icmp-proto-unreachable. If the packet was an ICMP ping packet, type may also be echo-reply.

SNAT
Modify the source address of the packet and all future packets in the current connection. SNAT is valid only as a part of the POSTROUTING chain in the nat table:

```bash
--to-source address[-address][port-port]
```
Specify the new source address or range of addresses. If a tcp or udp protocol has been specified with the -p option, source ports may also be specified. If none is specified, map the new source to the same port if possible. If not, map ports below 512 to other ports below 512, those between 512 and 1024 to other ports below 1024, and ports above 1024 to other ports above 1024.

Examples
To reject all incoming ICMP traffic on eth0:

```bash
iptables -A INPUT -p ICMP -i eth0 -j REJECT
```

tables-restore
System administration command. Restore firewall rules from information provided on standard input. iptables-restore takes commands generated by iptables-save and uses them to restore the firewall rules for each chain. This is often used by initialization scripts to restore firewall settings on boot.
Options
-c, --counter
   Restore packet and byte counter values.
-n, --noflush
   Don’t delete previous table contents.

**iptables-save**

`iptables-save [options]`
System administration command. Print the IP firewall rules currently stored in the kernel to stdout. Output may be redirected to a file that can later be used by `iptables-restore` to restore the firewall.

Options
-c, --counter
   Save packet and byte counter values.
-t name, --table name
   Print data from the specified table only.

**isodump**
isodump
Interactively display the contents of the ISO9660 image `isoimage`. Used to verify the integrity of the directory inside the image. `isodump` displays the first portion of the root directory and waits for commands. The prompt shows the extent number (zone) and offset within the extent, and the contents display at the top of the screen.

Commands
+  Search forward for the next instance of the search string.
a  Search backward within the image.
b  Search forward within the image.
f  Prompt for a new search string.
g  Prompt for a new starting block and go there.
q  Exit.

**isoinfo**
isoinfo [options]
Display information about ISO9660 images. You can use `isoinfo` to list the contents of an image, extract a file, or generate a `find`-like file list. The `-i` option is required to specify the image to examine.

Options
-c  Print information from the primary volume descriptor (PVD) of the ISO9660 image, including information about Rock Ridge and Joliet extensions if they are present.
dev=target
   Set the SCSI target for the drive.
-f  Generate output similar to the output of a `find . -print` command. Do not use with `-l`.

-h  Print help information and exit.

-i  Specify the path for the ISO9660 image to examine.

-j  Convert any Joliet filenames to the specified character set.

-J  Extract filename information from any Joliet extensions.

-l  Generate output similar to the output of an `ls -lR` command. Do not use with `-f`.

-N sector  To help examine single-session CD files that are to be written to a multisession CD. Specify the sector number at which the ISO9660 image is to be written when sent to the CD writer.

-p  Display path table information.

-R  Extract permission, filename, and ownership information from any Rock Ridge extensions.

-T sector  To help examine multisession images that have already been burned to a multisession CD. Use the specified sector number as the start of the session to display.

-x  Extract the file at the specified path to standard output.

isosize

Display the length of an ISO9660 filesystem contained in the specified file. The image file can be a normal file or a block device such as `/dev/sr0`. With no options, the length is displayed in bytes. Only one of the two options can be specified.

Options

-d num  Display the size in bytes divided by `num`.

-x  Display the number of blocks and the block size (although the output refers to blocks as sectors).

isovfy

Verify the integrity of the specified ISO9660 image and write the results to standard output.

ispell

Compare the words of one or more named `files` with the system dictionary. Display unrecognized words at the top of the screen, accompanied by possible correct spellings, and allow editing via a series of single-character commands that are case-insensitive.
Options

- **b** Back up original file in *filename.bak*.

- **B** Count two correctly spelled words without a space between them as a spelling error.

- **C** Count two correctly spelled words without a space between them as a legitimate compound word.

- **d file**
  Search file instead of standard dictionary file.

- **H** File is in HTML/XML format.

- **L number**
  Show number lines of context.

- **m** Suggest combinations of known roots and affixes, even if the result is not known. For example, “generous” and “ly” are known, so “generously” would be suggested as a word, even if it were not in the dictionary.

- **M** List interactive commands at bottom of screen.

- **n** Expect nroff or troff input file.

- **N** Suppress printing of interactive commands.

- **p file**
  Search file instead of personal dictionary file.

- **P** Do not guess new words using known roots and affixes. The opposite of **-m**.

- **S** Sort suggested replacements by likelihood that they are correct.

- **t** Expect T_{E}X or L_{A}T_{E}X input file.

- **T type**
  Expect all files to be formatted by type.

- **V** Use hat notation (^L) to display control characters, and M- to display characters with the high bit set.

- **w chars**
  Consider chars to be legal, in addition to a–z and A–Z.

- **W n**
  Never consider words that are n characters or fewer to be misspelled.

- **x** Do not back up original file.

Interactive commands

- **?** Display help screen.

- **space**
  Accept the word in this instance.

- **number**
  Replace with suggested word that corresponds to number.

- **command**
  Invoke shell and execute command in it. Prompt before exiting.
a  Accept word as correctly spelled, but do not add it to personal
dictionary.

i  Accept word and add it (with any current capitalization) to
personal dictionary.

l  Search system dictionary for words.

q  Exit without saving.

r  Replace word.

u  Accept word and add lowercase version of it to personal
dictionary.

x  Skip to the next file, saving changes.

^L  Redraw screen.

^Z  Suspend ispell.

join  join [options] file1 file2
      Join lines of two sorted files by matching on a common field. If either
      file1 or file2 is -, read from standard input. Often used to merge data
      stored in text-based file formats such as comma-separated-value
      formatted spreadsheets.

Options

-1 fieldnum1
      The join field in file1 is fieldnum1. Default is the first field.

-2 fieldnum2
      The join field in file2 is fieldnum2. Default is the first field.

-a filename
      Print a line for each unpairable line in file filename, in addition
to the normal output.

--check-order, --nocheck-order
      Check or do not check that the files are correctly sorted on the
      join fields.

-e string
      Replace missing input fields with string.

-i, --ignore-case
      Ignore case differences when comparing fields.

-o fieldlist
      Order the output fields according to fieldlist, where each entry
      in the list is in the form filename:fieldnum. Entries are sepa-
      rated by commas or blanks.

-t char
      Specifies the field-separator character (default is whitespace).

-v filename
      Print only unpairable lines from file filename.

--help
      Print help message and then exit.

--version
      Print the version number and then exit.
**kbd_mode**

kbd_mode [option]

Print or set the current keyboard mode, which may be RAW, MEDIUMRAW, XLATE, or UNICODE.

**Options**

-a Set mode to XLATE (ASCII mode).

-k Set mode to MEDIUMRAW (keycode mode).

-s Set mode to RAW (scancode mode).

-u Set mode to UNICODE (UTF-8 mode).

**kbdrate**

kbdrate [options]

System administration command. Control the rate at which the keyboard repeats characters, as well as its delay time. Using this command without options sets a repeat rate of 10.9 characters per second; the default delay is 250 milliseconds. On boot, most Linux systems set the keyboard rate to 30 characters per second.

**Options**

-d delay

Specify the delay, which must be one of the following (in milliseconds): 250, 500, 750, or 1000.

-r rate

Specify the repeat rate, which must be one of the following numbers (all in characters per second): 2.0, 2.1, 2.3, 2.5, 2.7, 3.0, 3.3, 3.7, 4.0, 4.3, 4.6, 5.0, 5.5, 6.0, 6.7, 7.5, 8.0, 8.6, 9.2, 10.0, 10.9, 12.0, 13.3, 15.0, 16.0, 17.1, 18.5, 20.0, 21.8, 24.0, 26.7, or 30.0.

-s Suppress printing of messages.

-V Print version number and exit.

**kill**

kill [options] [pids]

Send a signal to terminate one or more process IDs. You must own the process or be a privileged user. If no signal is specified, TERM is sent.

This entry describes the /bin/kill command. There are also built-in shell commands of the same name; the bash version is described in Chapter 6.

In some Linux distributions, /bin/kill allows you to specify a command name, such as gcc or xpdf, instead of a process ID (PID). All processes running that command with the same UID as the process issuing /bin/kill are sent the signal.

If /bin/kill is issued with a *pid* of 0, it sends the signal to all processes of its own process group. If /bin/kill is issued with a *pid* of -1, it sends the signal to all processes except process 1 (the system’s init process).
killall

Options
- -a  Kill all processes of the given name (if privileges allow), not just processes with the same UID. To use this option, specify the full path (e.g., /bin/kill -a gcc).
- -l  List all signals.
- -p  Print the process ID of the named process, but don’t send it a signal. To use this option, specify the full path (e.g., /bin/kill -p).
- -s SIGNAL, -S SIGNAL
   The signal number (from /usr/include/sys/signal.h) or name (from kill -l). With a signal number of 9 (KILL), the kill cannot be caught by the process; use this to kill a process that a plain kill doesn’t terminate. The default signal is TERM. The letter flag itself is optional: both kill -9 1024 and kill -s 9 1024 terminate process 1024.

killall [options] names
Kill processes by command name. If more than one process is running the specified command, kill all of them. Treats command names that contain a / as files; kill all processes that are executing that file.

Options
- -e, --exact
   Require an exact match to kill very long names (i.e., longer than 15 characters). Normally, killall kills everything that matches within the first 15 characters. With -e, such entries are skipped. (Use -v to print a message for each skipped entry.)
- -g, --process-group
   Kill the process group to which the process belongs.
- -i, --interactive
   Prompt for confirmation before killing processes.
- -l, --ignore-case
   Ignore case when matching process names.
- -l, --list
   List known signal names.
- -q, --quiet
   Quiet; do not complain of processes not killed.
- -r, --regexp
   Interpret process name as an extended regular expression.
- -s signal, --signal signal
   Send signal to named processes. signal may be a name or a number. The most commonly used signal is 9, which terminates processes no matter what. The default signal is SIGTERM.
- -u user, --user user
   Kill only processes owned by the specified user.
klogd

-v, --verbose
   Verbose; after killing process, report success and process ID.

-V, --version
   Print version information.

-w, --wait
   Wait for all killed processes to die. Note that killall may wait forever if the signal was ignored or had no effect, or if the process stays in zombie state.

klogd [options]

System administration command. Control which kernel messages are displayed on the console, prioritize all messages, and log them through syslogd. On many operating systems, syslogd performs all the work of klogd, but on Linux the features are separated. Kernel messages are gleaned from the /proc filesystem and from system calls to syslogd. By default, no messages appear on the console. Messages are sorted into eight levels, 0–7, and the level number is prepended to each message.

Priority levels
0   Emergency situation (KERN_EMERG).
1   A crucial error has occurred (KERN_ALERT).
2   A serious error has occurred (KERN_CRIT).
3   An error has occurred (KERN_ERR).
4   A warning message (KERN_WARNING).
5   The situation is normal but should be checked (KERN_NOTICE).
6   Information only (KERN_INFO).
7   Debugging message (KERN_DEBUG).

Options
-c level
   Print all messages of a higher priority (lower number) than level to the console.
-d   Debugging mode.
-f file
   Print all messages to file; suppress normal logging.
-i   Signal executing daemon to reload kernel module symbols.
-l   Signal executing daemon to reload both static kernel symbols and kernel module symbols.
-k file
   Use file as source of kernel symbols.
-n   Avoid auto-backgrounding. This is needed when klogd is started from init.
-o   One-shot mode. Prioritize and log all current messages, then immediately exit.
last

- \( p \) Reload kernel-module symbol information whenever an Oops string is detected.
- \( P \) file
  Use file as the source for kernel messages instead of /proc/kmsg.
- \( s \) Suppress reading of messages from the /proc filesystem. Read from kernel message buffers instead.
- \( v \) Print version, then exit.
- \( x \) Don’t translate instruction pointers (EIP). klogd will not read the System.map file.
- \( 2 \) Print two lines for each symbol, one showing the symbol and the other showing its numerical value (address).

Files

/\texttt{usr/include/linux/kernel.h}, /\texttt{usr/include/sys/syslog.h}
  Sources for definitions of each logging level.
/\texttt{proc/kmsg}
  A file examined by klogd for messages.
/\texttt{var/run/klogd.pid}
  klogd’s process ID.

\textbf{last} \[ \texttt{options} \] \[ \texttt{username} \] \[ \texttt{ttynumber} \]
Display a list of the most recent logins, taken from the file \texttt{/var/log/wtmp} by default. If you specify a tty number or username, the output displays only the logins for that user or terminal.

\textbf{Options}

- \( a \) Display the hostname from which logins originated in the last column.
- \( d \) For remote logins, display both IP address and hostname.
- \( f \) filename
  Get the list of logins from filename. The default source is \texttt{/var/log/wtmp}.
- \( i \) Like \( d \), but display the IP address in numbers-and-dots notation.
- \( n \) number, \( -n \) number
  Choose how many lines of logins to display. Thus, \texttt{last -7} or \texttt{last -n 7} displays seven lines.
- \( R \) Do not show the hostname.
- \( x \) Display shutdown messages and runlevel messages.

\textbf{lastb} \[ \texttt{options} \] \[ \texttt{username} \] \[ \texttt{ttynumber} \]
Display a list of recent bad login attempts (from the \texttt{/var/log/btmp} file). Accepts the same option flags and arguments as \texttt{last}.
lastlog

System administration command. Print the last login times for system accounts. Login information is read from the file /var/log/lastlog.

Options
-tn, --time n
Print only logins more recent than n days ago.
-uusername, --user username
Print only login information for user username.

ld

Combine several objfiles, in the specified order, into a single executable object module (a.out by default). ld is the link editor and is often invoked automatically by compiler commands. ld accepts many options, the most common of which are listed here.

Options
-b format, --format=format
If ld is configured to accept more than one kind of object file, this option can be used to specify the input format. format should be a GNU Binary File Descriptor (BFD), as described in the BFD library. Use objdump -i to list available formats.
-call_shared
Link with dynamic libraries.
-d, -dc, -dp
Force the assignment of space to common symbols.
-defsym symbol=expression
Create the global symbol with the value expression.
-demangle=./style
Force demangling of symbol names. Optionally set the demangling style. Turn off demangling with -nodemangle.
-e symbol
Set symbol as the address of the output file’s entry point.
-f name
Set the DT_AUXILIARY field of ELF shared object to name.
-fini name
Set the DT_FINI field of ELF shared object to the address of function name. The default function is _fini.
-h name
Set the DT_SONAME field of ELF shared object to name.
--help
Print help message, then exit.
-i
Produce a linkable output file; attempt to set its magic number to OMAGIC.
-init name
   Set the DT_INIT field of ELF shared object to the address of
   function name. The default function is _init.

-larch, --library=archive
   Include the archive file arch in the list of files to link.

-m linker
   Emulate linker. List supported emulations with the -V option.

-n Make text read-only; attempt to set NMAGIC.

-o output
   Place output in output, instead of in a.out.

-oformat format
   Specify output format.

-q Retain relocation sections and contents in linked executables.

-r Produce a linkable output file; attempt to set its magic number
to OMAGIC.

-rpath dir
   Add directory dir to the runtime library search path. Ignore
   additional paths normally read from the LD_RUN_PATH
   environment variable.

-rpath-link dirs
   Specify path to search for shared libraries required by another
   shared library. The dirs argument can be a single directory, or
   multiple directories separated by colons. This overrides search
   paths specified in shared libraries themselves.

-s Do not include any symbol information in output.

-shared
   Create a shared library.

-static
   Do not link with shared libraries.

-sort-common
   Do not sort global common symbols by size.

-t Print each input file’s name as it is processed.

--target-help
   Print target-specific options, then exit.

-u symbol
   Force symbol to be undefined.

--version
   Show version number.

--verbose
   Print information about ld; print the names of input files while
   attempting to open them.

--warn-common
   Warn when encountering common symbols combined with
   other constructs.

--warn-once
   Provide only one warning per undefined symbol.
-x  With -s or -S, delete all local symbols. These generally begin with L.

-z keyword
Mark the object for special behavior specified by keyword. ld recognizes the following keywords:

combrelc
Object combines and sorts multiple relocation sections for dynamic symbol lookup caching.

defs
Disallow undefined symbols.

initfirst
Initialize object first at runtime.

execstack
Marks the object as requiring an executable stack.

interpose
Interpose object’s symbol table before all but the primary executable’s symbol table.

loadfltr
Process object’s filter immediately at runtime.

multidefs
Allow multiple definitions of a single symbol. Use the first definition.

nocombrelc
Disable combining multiple relocation sections.

copyreloc
Disable copy relocation.

nodefaultlib
Ignore default library search path when seeking dependencies for object.

nodelete
Do not unload object at runtime.

nodlopen
Object is not available to dlopen.

nodump
Object cannot be dumped by dldump.

now
Non-lazy runtime binding.

origin
Object may contain $ORIGIN.

relro
Create an ELF PT_GNU_RELRO segment header in the object.

-E, --export-dynamic
Add all symbols to dynamic symbol table, not just those referenced by linked objects.
ldconfig

-EB
Link big-endian objects.

-EL
Link little-endian objects.

-F name
Set DT_FILTER field of ELF shared object to name.

-L dir, --library-path=dir
Search directory dir before standard search directories (this option must precede the -l option that searches that directory).

-M
Display a link map on standard output.

-Map file
Print a link map to file.

-N
Allow reading of and writing to both data and text. Mark output if it supports Unix magic numbers. Do not page-align data.

-O level
Optimize. level should be 1, 2, 3, or 0. The default is 1. 0 turns off optimization; 3 optimizes the most.

-R file
Obtain symbol names and addresses from file, but suppress relocation of file and its inclusion in output.

-S
Do not include debugger symbol information in output.

-T file
Execute script file instead of the default linker script.

-Tbss address
Begin bss segment of output at address.

-Tdata address
Begin data segment of output at address.

-Ttext address
Begin text segment of output at address.

-Ur
Synonymous with -r except when linking C++ programs, where it resolves constructor references.

-X
With -s or -S, delete local symbols beginning with L.

-V
Show version number and emulation linkers for -m option.

ldconfig [options] directories
System administration command. Examine the libraries in the given directories, /etc/ld.so.conf.d, /usr/lib, and /lib; update links and cache where necessary. Usually run in startup files or after the installation of new shared libraries.

Options
-C filename
Use filename instead of /etc/ld.so.cache.
-f filename
   Use filename instead of /etc/ld.so.conf.
-l Library mode. Expect libraries as arguments, not directories.
   Manually link specified libraries.
-n Suppress examination of /usr/lib and /lib and reading of /etc/ld.
   so.conf; do not cache.
-N Do not cache; only link.
-p Print all directories and candidate libraries in the cache. Used
   without arguments.
-v Verbose mode. Include version number, and announce each
   directory as it is scanned and links as they are created.
-X Do not link; only rebuild cache.

Files
/lib/ld.so
   Linker and loader.
/etc/ld.so.conf
   List of directories that contain libraries.
/etc/ld.so.cache
   List of the libraries found in those libraries mentioned in /etc/
   ld.so.conf.

ldd
   ldd [options] programs
   Display a list of the shared libraries each program requires.

Options
   -d, --data-relocs
      Process data relocations. Report missing objects (for ELF objects
      only).
   -r, --function-relocs
      Process relocations for both data objects and functions.
      Report any that are missing (for ELF objects only).
   -v, --verbose
      Verbose mode. Display extra information, including symbol
      versions.
   --help
      Print help message, then exit.
   --version
      Display the linker's version, then exit.

less
   less [options] [filename]
   less is a program for paging through files or other output. It was
   written in reaction to the perceived primitiveness of more (hence its
   name) and allows backward as well as forward paging. Some
   commands may be preceded by a number.
Options

-z num, --window=num
Set number of lines to scroll to num. Default is one screenful. A negative num sets the number to num lines less than the current number.

+[...]command
Run command on startup. If command is a number, jump to that line. The option ++ applies this command to each file in the command-line list.

-?, --help
Print help screen.

-a, --search-skip-screen
When searching, begin after last line currently displayed. (Default is to search from second line displayed.)

-b buff, --buffers=buff
Specify the amount of buffer space to use for each file in 1 KB units. (Default is to use 64 KB per file.)

-B, --auto-buffers
Do not automatically allocate buffer space to hold all data read from a pipe. If -b is specified, allocate that amount of space, or default to 64 KB. If necessary, allow information from previous screens to be lost.

-c, --clear-screen
Redraw screen from top, not bottom.

-f, --force
Force opening of directories and devices; do not print warning when opening binaries.

-F, --quit-if-one-screen
Exit without displaying anything if first file can fit on a single screen.

-g, --hilite-search
Highlight only string found by past search command, not all matching strings.

-G, --HILITE-SEARCH
Never highlight matching search strings.

-h num, --max-back-scroll=num
Never scroll backward more than num lines at once.

-i, --ignore-case
Make searches case-insensitive, unless the search string contains uppercase letters.

-I, --IGNORE-CASE
Make searches case-insensitive, even when the search string contains uppercase letters.

-j num, --jump-target=num
Position target line on line num of screen. Target line can be the result of a search or a jump. Count lines beginning from 1 (top line). A negative num is counted back from bottom of screen.
-k file, --lesskey-file=file
Read file to define special key bindings. See lesskey for more information.

-K, --quit-on-intr
Exit immediately on interrupt (usually ^C).

-m, --long-prompt
Display more-like prompt, including percent of file read.

-M, --LONG-PROMPT
Prompt more verbosely than with -m, including percentage, line number, and total lines.

-n, --line-numbers
Do not calculate line numbers. Affects -m and -M options and = and v commands (disables passing of line number to editor).

-N, --LINE-NUMBERS
Print line number before each line.

-o file, --log-file=file
When input is from a pipe, copy output to file as well as to screen. (Prompt for overwrite authority if file exists.)

-O file, --LOG-FILE=file
Similar to -o, but do not prompt when overwriting file.

-p pattern, --pattern=pattern
At startup, search for first occurrence of pattern.

-P|m|M=prompt
Set the prompt displayed by less at the bottom of each screen to prompt. The m sets the prompt invoked by the -m option, the M sets the prompt invoked by the -M option, and the = sets the prompt invoked by the = command. Special characters (described in the less manpage), can be used to print statistics and other information in these prompts.

-q, --quiet, --silent
Disable ringing of bell on attempts to scroll past EOF or before beginning of file. Attempt to use visual bell instead.

-Q, --QUIET, --SILENT
Never ring terminal bell.

-r, --raw-control-chars
Display “raw” control characters instead of using ^x notation. This sometimes leads to display problems, which might be fixed by using -R instead.

-R, --RAW-CONTROL-CHARS
Like r, but only output “raw” ANSI color escape characters.

-s, --squeeze-blank-lines
Print successive blank lines as one line.

-S, --chop-long-lines
Cut, do not fold, long lines.

-t tag, --tag=tag
Edit file containing tag. Consult .tags (constructed by ctags).
-T file, --tag-file=file
With the -t option or :t command, read file instead of .tags.

-u, --underline-special
Treat backspaces and carriage returns as printable input characters.

-U, --UNDERLINE-SPECIAL
Treat backspaces, tabs and carriage returns as control characters.

-V, --version
Display version and exit.

-w, --hilite-unread
Show the line to which a movement command has skipped, phrases displayed by a search command, or the first unread line during a normal scroll by highlighting text in reverse video.

-W, --HILITE-UNREAD
Show phrases displayed by a search command, or the first unread line of any forward movement that is more than one line, by highlighting text in reverse video.

-x n..., --tabs=n...
Set tab stops to every n characters. Default is 8. If multiple values are given for n in a comma-separated list, set the tab stops to those values.

-X, --no-init
Do not send initialization and deinitialization strings from termcap to terminal.

-y n, --max-forw-scroll=n
Never scroll forward more than n lines at once.

Commands
Many commands can be preceded by a numeric argument, referred to as number in the command descriptions.

SPACE, ^V, f, ^F
Scroll forward the specified number of lines (default one windowful).

ESC-SPACE
Like SPACE, but scroll forward a complete screenful.

z
Similar to SPACE, but if number is specified, reset the default to that number.

RETURN, ^N, e, ^E, j, ^J
Scroll forward. Default is one line. Display all lines, even if the default is more lines than the screen size.

d, ^D, PageDown
Scroll forward. Default is one-half the screen size. The number of lines may be specified, in which case the default is reset.

b, ^B, ESC-v
Scroll backward, but if number is specified, scroll back that number of lines. Default is one windowful.
Chapter 3: Linux Commands

less

w
Like b, but if number is specified, reset the default to that number.

y, ^Y, ^P, k, ^K
Scroll backward. Default is one line. Display all lines, even if the default is more lines than the screen size.

u, ^U, PageUp
Scroll backward. Default is one-half the screen size. The number of lines may be specified, in which case the default is reset.

r, ^R, ^L
Redraw screen.

R
Like r, but discard buffered input.

F
Scroll forward. On EOF, continue trying to find more output, behaving similarly to tail -f.

g, <, ESC-<
Skip to a line. Default is 1.

G, >, ESC->
Skip to a line. Default is the last line.

p, %
Skip to a position number percent of the way into the file.

{ If the top line on the screen includes a {, find its matching }. If the top line contains multiple {s, use number to determine which one to use in finding a match.

} If the bottom line on the screen includes a }, find its matching {. If the bottom line contains multiple }s, use number to determine which one to use in finding a match.

( If the top line on the screen includes a (, find its matching ). If the top line contains multiple (s, use number to determine which one to use in finding a match.

) If the bottom line on the screen includes a ), find its matching (. If the bottom line contains multiple )s, use number to determine which one to use in finding a match.

[ If the top line on the screen includes a [, find its matching ]. If the top line contains multiple ]s, use number to determine which one to use in finding a match.

] If the bottom line on the screen includes a ], find its matching [. If the bottom line contains multiple ]s, use number to determine which one to use in finding a match.

ESC-^F char1 char2
Behave like { but substitute char1 and char2 for { and } in the search.

ESC-^B char1 char2
Behave like } but substitute char1 and char2 for { and } in the search.

m let
Use the specified lowercase letter to mark the current position.
' (single apostrophe) let
Use the specified lowercase letter and to return to the position
marked by that letter. With a second apostrophe, return to the
previous position where the last “large” movement began.
With ^, return to the beginning of the file; with $, return to
the end of the file.

^X^X
Same as ‘.

/pattern
Find next occurrence of pattern, starting at second line
displayed. Some special characters can be entered before
pattern:
!, ^N
Find lines that do not contain pattern.
*, ^E
If current file does not contain pattern, continue through
the rest of the files in the command-line list.
@, ^F
Search from the first line in the first file specified on the
command line, no matter what the screen currently
displays.

^K
Highlight matching text on the current screen, but do
not move there.

^R
Use text comparison; do not interpret regular expressions.

?pattern
Search backward, beginning at the line before the top line. The
use of special characters is the same as for /pattern.

ESC-/pattern
Same as /'.

ESC-?pattern
Same as '?'.

n Repeat last pattern search.

N Repeat last pattern search in the reverse direction.

ESC-n
Repeat previous search command, but as though it were pref-
aced by *.

ESC-N
Repeat previous search command, but as though it were pref-
aced by * and in the reverse direction.

ESC-u
Toggle search highlighting.

&pattern
Display only lines that match the pattern. With ^N or !,
display lines that do not match; with ^R, do not interpret
regular expressions.
Chapter 3: Linux Commands

less

:d  Remove the current file from the list of files.
:e [filename]
   Read in filename and insert it into the command-line list of filenames. Without filename, reread the current file. Replace a percent sign (%) in the filename with the name of the current file; replace a hash mark (#), with the name of the previous file.

^X^V, E
   Same as :e.
:n  Read in next file in command-line list or the file indicated by number, if specified.
:p  Read in previous file in command-line list or the file indicated by number, if specified.
:x  Read in first file in command-line list or the file indicated by number, if specified.

s filename
   If input is a pipe, save to the specified file.

b Go to the next tag. See the -t option.
B Go to the previous tag. See the -T option.

:f, =, ^G
   Print filename, position in command-line list, line number on top of window, total lines, byte number, and total bytes.

- (single dash)
   Expects to be followed by a command-line option letter. Toggle the value of that option or, if appropriate, prompt for its new value.

-- Like -, but takes a long option name.
+- Expects to be followed by a command-line option letter. Reset that option to its default.
--+ Like +- , but takes a long option name.

_ (underscore)
   Expects to be followed by a command-line option letter. Display that option’s current setting.

__ Like _, but takes a long option name.

+command
   Execute command each time a new file is read in.

q, :q, :Q, ZZ
   Exit.

v  Not valid for all versions. Invoke editor specified by $VISUAL or $EDITOR, or vi if neither is set.

! [command]
   Not valid for all versions. Invoke $SHELL or sh. If command is given, run it and then exit. Replace % with the name of the current file, # with the name of the previous file, and !! with the last shell command.
| mark-letter command |
Not valid for all versions. Pipe fragment of file (from first line on screen to mark-letter) to command. mark-letter may be ^ for the beginning of the file, $ for the end of the file, or . or newline to pipe the current screen.

Prompts
The prompt interprets certain sequences specially. Those beginning with % are always evaluated. Those beginning with ? are evaluated if certain conditions are true. Some prompts determine the position of particular lines on the screen. These sequences require that a method of determining that line be specified. See the -P option and the manpage for more information.

```
lesskey lesskey [-o output-file | --output-output-file] [input-file]
```
Configure keybindings for the less command using a configuration file. The input file defaults to ~/.lesskey and the output file to ~/.less unless you specify otherwise.

Configuration file format
The configuration file for lesskey has one to three sections. These are marked by a line containing a # symbol and the name of the section: #command, #line-edit, and #env.

The #command section
The command section determines the keys used for actions within less. Each line should contain the key or key combination you wish to define, a space or tab, and the name of the action to perform. You may also add an extra string at the end, which will be performed at the end of the first action.

Keys you define should be entered as you plan to type them, with the following exceptions:

- Backspace: \b
- Backslash: \\
- Caret: ^
- Escape: \e
- Newline: \n
```
Return: \r
Tab: \t
Up arrow: \ku
Down arrow: \kd
Right arrow: \kr
Left arrow: \kl
Page up: \kU
Page down: \kD
Home: \kh
End: \ke
Delete: \kx
```

```
The actions that can be defined are:
invalid (creates error)
noaction
forw-line
back-line
forw-line-force
forw-scroll
back-scroll
forw-screen
back-screen
forw-window
back-window
forw-screen-force
forw-forever
repaint-flush
repaint
undo-hilite
go-to-line
percent
left-scroll
right-scroll
forw-bracket
back-bracket
go-to-end
status
forw-search
back-search
repeat-search
repeat-search-all
reverse-search
reverse-search-all
filter
set-mark
go-to-mark
examine
next-file
index-file
prev-file
next-tag
previous-tag
remove-file
toggle-option
display-option
pipe
visual
shell
firstcmd
help
version (display version)
digit (display number)
quit
The **#line-edit section**

The line editing section lets you choose keys for the line-editing capabilities of **less** in a similar manner to the **#command section**, although without the “extra” string after the command. The line editing actions that can be defined are:

- forw-complete
- back-complete
- expand
- literal
- right
- left
- word-left
- word-right
- insert
- delete
- word-delete
- word-backspace
- home
- end
- up
- down

The **#env section**

The third section, like the second, is optional, and you can use it to override environment variables that affect **less**. Each line consists of a variable, the equals sign (=), and the value to which you wish to set the variable. The most important ones are **LESS**, which allows you to select additional flags to pass to **less** when you run it, and **LESSCHARSET**, which lets you choose a character set. See the **less** manpage for a complete list of environment variables that affect the program.

lftp

`lftp [options] [url]`

File transfer program with more features than **ftp**. The **lftp** command allows FTP and HTTP protocol transfers, plus other protocols including FISH (SSH based), FTPS, and HTTPS. It uses a shell-like command interface and offers job control in a manner similar to **bash**. **lftp** has two important reliability features: it resumes failed or interrupted transactions, and it goes into the background automatically if it is quit in the middle of a file transfer.

Options

- `-d` Run in debug mode.

- `-e commands`

 Start, execute the specified commands, and then wait for further instructions.

- `-p portnumber`

 Connect to the specified port number.
-u user[,pass]
Login to the server with the username (and, optionally, password) you specify.

-l scriptfile
Run the specified script file of lftp commands, then exit.

-c commands
Run the commands specified, then exit.

Commands
The lftp commands are similar to those for ftp. However, lftp lacks or uses different mechanisms for a number of commands, including $, ascii, binary, case, and macdef. It also adds the following:

alias [name [value]]
Create an alias for a command. For example, you could set dir to be an alias for ls -1f.

anon
Set the username to anonymous. This is the default username.

at
Execute a command at a given time, as with the at command in an actual shell.

bookmark [arguments]
The lftp bookmark command used with the following arguments will add, delete, edit, import, or list bookmarks, respectively:
- add name url
- del name
- edit
- import type
- list

cache
Work with the local memory cache. This command should be followed by the arguments:

stat
Display the status for the cache.

on|off
Turn caching on or off.

flush
Empty the cache.

size n
Set the maximum size for the cache. Setting it to -1 means unlimited.

expire nu
Set the cache to expire after n units of time. You can set the unit (u) to seconds (s), minutes (m), hours (h), or days (d). For example, for a cache that expires after an hour, use the syntax cache expire 1h.
close
Close idle connections with the current server. This differs from ftp, which closes all connections. If you have connections to multiple servers and wish to close all idle connections, add the -a flag.

command cmd args
Execute the specified lftp command, with the specified arguments, ignoring any aliases created with the alias command.

mirror [options] [remotedir [localdir]]
Copy a directory exactly. The mirror command accepts the following arguments:

-c, --continue
If mirroring was interrupted, resume it.

-e, --delete
Delete local files that are not present at the remote site.

-s, --allow-suid
Keep the suid/sgid bits as set on the remote site.

-n, --only-newer
Get only those files from the remote site that have more recent dates than the files on the local system. Cannot be used with the -e argument.

-r, --no-recursion
Do not get any subdirectories.

--no-umask
Do not use umask when getting file modes. See umask for more information about file modes.

-R, --reverse
Mirror files from the local system to the remote system. With this argument, make sure that you specify the local directory first and the remote directory second. If you do not specify both directories, the second is assumed to be the same as the first. If you choose neither, the operation occurs in the current working directories.

-L, --dereference
When mirroring a link, download the file the link points to rather than just the link.

-N filename, --newer-than filename
Get all files newer than the file filename.

-P n, --parallel[=n]
Download n files in parallel.

-i regex, --include regex
Get only the files whose names match the regular expression regex. See Chapter 7 for information about regular expressions.

-x regex, --exclude regex
Do not get the files whose names match regex. See Chapter 7 for information about regular expressions.
-v n, --verbose=n
Set the verbose level. You can set n from 0 (no output) to 3 (full output) using a number or by repeating the v. For example, -vvv is level 3 verbose mode.

--use-cache
Use the cache to get directory listings.

--remove-source-files
Move, rather than copy, files when mirroring.

set [variable | value]
Set a preference variable for lftp. With no arguments, list the variables that have been changed; with no arguments and with the -a or -d flags, list all values or default values, respectively. See the lftp manpage for a complete list of preference variables that can be set.

wait [n | all]
Wait for the job or jobs you specify by number, or all jobs, to terminate.

lftpget
lftpget [options] url
Uses the lftp program to fetch the specified URL, which may be HTTP, FTP, or any of the protocols supported by lftp.

Options
-c Continue or restart a paused transaction.
-d Display debugging output.
-v Verbose mode; display more information about transactions.

link
link file1 file2
Create a link between two files. This is the same as the ln command, but it has no error checking because it uses the link() system call directly.

ln
ln [options] sourcename [destname]
ln [options] sourcenames destdirectory
Create pseudonyms (links) for files, allowing them to be accessed by different names. Links may be “hard” or “soft.” A hard link creates two names for the same file, and a soft, or symbolic, link creates a second file which acts as a shortcut to the first. The default is to create hard links; use -s or --symbolic to create symbolic links.

The first form links sourcename to destname, where destname is usually either a new filename or (by default) a file in the current directory with the same name as sourcename. If destname is an existing file, it is overwritten; if destname is an existing directory, a link named sourcename is created in that directory. The second form creates links in destdirectory, each link having the same name as the file specified.
Options

- **-b, --backup**[=control]
 Back up any existing files. With the long version of the command, the optional control parameter controls the kind of backup. When no control is specified, ln attempts to read the control value from the VERSION_CONTROL environment variable. Accepted values are:

 none, off
 Never make backups.

 numbered, t
 Make numbered backups.

 existing, nil
 Match existing backups, numbered or simple.

 simple, never
 Always make simple backups.

- **-d, -F, --directory**
 Allow hard links to directories. Available to privileged users.

- **-f, --force**
 Force the link (don’t prompt for overwrite permission).

- **--help**
 Print a help message and then exit.

- **-i, --interactive**
 Prompt for permission before removing files.

- **-n, --no-dereference**
 Replace symbolic links to directories instead of dereferencing them. --force is useful with this option.

- **-s, --symbolic**
 Create a symbolic link. This lets you link across filesystems, and also see the name of the link when you run ls -l (otherwise, there’s no way to know the name that a file is linked to).

- **-S suffix, --suffix=suffix**
 Append suffix to files when making backups, instead of the default ~.

- **-t directory, --target-directory=directory**
 Create links in the specified directory.

- **-v, --verbose**
 Verbose mode.

- **--version**
 Print version information and then exit.

loadkeys

loadkeys [options] [filename]

Load a keymap from a specified file, usually one of the keymaps stored in /lib/kbd/keymaps. If you create your own keymap file, the related commands showkey, keymaps, and dumpkeys will be useful as well. Note that loadkeys applies only to virtual consoles; to
change your X keyboard configuration, use `xmodmap` or `setxkbmap`, or the graphical keyboard-layout switching tools that are included with your desktop environment.

Options
- `-c`, `--clearcompose`
 Clear the compose, or accent, table in the kernel.
- `-d`, `--default`
 Load the default keymap. The same as running `loadkeys defkeymap`.
- `-h`, `--help`
 Display help and usage information.
- `-m`, `--mktable`
 Instead of loading the table, output maps as C language declarations.
- `-s`, `--clearstrings`
 Clear the string table in the kernel.
- `-v`, `--verbose`
 Operate verbosely. For extra effect, repeat.

```bash
locale [options] [names]
```

Print report on current locale settings. Locales determine the country-specific settings for a system, including character encodings, the formatting of dates, honorifics, diagnostic messages, currency, printer-paper sizes, and default measurements. Locale settings are essentially a dictionary of settings specified by keyword. The keywords are grouped together into related categories whose names begin with `LC_`. Each category has a related environment variable of the same name from which it reads its locale setting. Supply keyword or category names as `names` to examine their values. You can also use the special keyword `charmap` to see the current character mapping. When executed with no arguments, `locale` prints the value of all locale-related environment variables.

Options
- `-a`, `--all-locales`
 Print all available locale settings installed on the system.
- `-c`, `--category-name`
 Print the category related to each `name` argument.
- `-k`, `--keyword-name`
 Print keywords along with their settings for each `name` argument.
- `-m`, `--charmaps`
 Print all available character maps.

Environment variables

- `LANG`
 The default value for unset internationalization variables. If not set, the system’s default value is used.
locate

LC_ADDRESS
Postal settings, country, and language names and abbreviation.

LC_COLLATE
String and character sorting and comparison settings.

LCCTYPE
Character attributes, including case conversion mappings, and
categories of characters (whitespace, digit, lower, upper, punctuation, etc.).

LC_IDENTIFICATION
Information related to the current locale definition, including
its title, source, revision, and contact information for its
author.

LC_MEASUREMENT
Measurement units, metric or other.

LC_MESSAGES
Settings for yes/no prompts and other informative and diagnostic messages.

LC_MONETARY
Currency formats and symbols.

LC_NAME
Formats for names and honorifics.

LC_NUMERIC
Nonmonetary number formats.

LC_PAPER
Default paper sizes for printing and pagination.

LC_TELEPHONE
Telephone number formats.

LC_TIME
Date and time formats.

LC_ALL
When set, overrides the values of all other internationalization variables.

Examples
Print the category name and all keywords for date and time settings:

 locale -ck LC_TIME

Print the strings used for days of the week and months of the year:

 locale day mon

locate [options] pattern

Search database(s) of filenames and print matches. Matches
include all files that contain pattern unless pattern includes meta-
characters, in which case locate requires an exact match.* ?, [, and
] are treated specially; / and . are not. Searches are conducted
against a database of system contents that is updated periodically.
To update the database, use the updatedb command.
Options
- `-b, --basename`
 Look only at the basename when searching for matches.
- `-c, --count`
 List only the match count, not the individual filenames.
- `-d path, --database=path`
 Search databases in path. path must be a colon-separated list.
- `-h, --help`
 Print a help message and then exit.
- `-i, --ignore-case`
 Ignore case when performing matches.
- `-q, --quiet`
 Run quietly, printing no error messages.
- `-r regexp, --regexp regexp`
 Search for a basic regular expression, with no patterns allowed.
 May be issued more than once.
- `--regex`
 Treat all patterns as extended regular expressions.
- `-S, --statistics`
 Print statistics about each database and then exit.
- `-V, --version`
 Print version information and then exit.
- `-w, --wholename`
 Look at the entire pathname when searching for matches (the default).

lockfile [options] filenames
Create semaphore file(s), used to limit access to a file. When `lockfile` fails to create some of the specified files, it pauses for eight seconds and retries the last one on which it failed. The command processes flags as they are encountered (i.e., a flag that is specified after a file will not affect that file). This command is most often used by scripts and applications as a way to avoid multiple users changing the same file at once.

Options
- `-sleeptime`
 Number of seconds `lockfile` waits before retrying after a failed creation attempt. Default is 8.
- `!`
 Invert return value. Useful in shell scripts.
- `-l lockout_time`
 Time (in seconds) after a lockfile was last modified at which it will be removed by force. See also `-s`.
- `-ml, -mu`
 If the permissions on the system mail spool directory allow it or if `lockfile` is suitably setgd, `lockfile` can lock and unlock your system mailbox with the options `-ml` and `-mu`, respectively.
logger

- \texttt{-r} retries
 Stop trying to create files after this many retries. The default is -1 (never stop trying). When giving up, remove all created files.

- \texttt{-s} suspend_time
 After a lockfile has been removed by force (see \texttt{-l}), a suspension of 16 seconds takes place by default. (This is intended to prevent the inadvertent immediate removal of any lockfile newly created by another program.) Use \texttt{-s} to change the default suspend time.

\texttt{logger [options] [message...]}
TCP/IP command. Add entries to the system log (via \texttt{syslogd}). If no message is given on the command line, standard input is logged.

\textbf{Options}

- \texttt{-d} When writing to a socket with \texttt{-s}, use a datagram instead of a stream.

- \texttt{-f file}
 Read message from file.

- \texttt{-i}
 Include the process ID of the \texttt{logger} process.

- \texttt{-p pri}
 Enter message with the specified priority \textit{pri}. Default is \texttt{user}. \texttt{notice}.

- \texttt{-s}
 Log message to standard error as well as to the system log.

- \texttt{-t tag}
 Mark every line in the log with the specified \textit{tag}.

- \texttt{-u socket}
 Write log to \textit{socket} instead of to the syslog.

- -- Accept no further options. Consider whatever is to the right of the hyphens as the message to be logged.

\texttt{login [name | option]}

Log into the system. \texttt{login} asks for a username (\textit{name} can be supplied on the command line) and password (if appropriate).

If successful, \texttt{login} updates accounting files, sets various environment variables, notifies users if they have mail, and executes startup shell files.

Only the root user can log in when /etc/nologin exists. That file is displayed before the connection is terminated. Furthermore, root may connect only on a try that is listed in /etc/securetty. If ~/.hushlogin exists, execute a quiet login. If /var/adm/lastlog exists, print the time of the last login.

\textbf{Options}

- \texttt{-f}
 Suppress second login authentication.
logrotate

- **h host**
 Specify name of remote host. Normally used by servers, not humans; may be used only by root.

- **p**
 Preserve previous environment.

logrotate

logrotate [options] config_files

System administration command. Manipulate logfiles according to commands given in config files.

Options

- **-d**, **--debug**
 Debug mode. No changes will be made to logfiles.

- **-f**, **--force**
 Force rotation of logfiles.

- **-h**, **--help**
 Describe options.

- **-m command, --mail command**
 Use the specified command to mail logfiles. The default command is `/bin/mail -s`.

- **-s file, --state file**
 Save state information in file. The default is `/var/lib/logrotate.status`.

- **--usage**
 Show syntax and options.

- **-v**, **--verbose**
 Describe what is being done and what logfiles are affected.

Configuration commands

Logrotate directives may appear on their own or as part of logfile definitions—instructions for specific logfiles. You may use wildcards to specify those files. Enclose directives for logfile definitions in a beginning and ending curly brace. For example:

```bash
compress
/var/log/messages {
  rotate 5
  weekly
}
```

compress

Compress old versions of logfiles with **gzip**.

compresscmd command

Use command to compress logfiles. Default is **gzip**.

compressext extension

Append filename extension to compressed files instead of the **compress** command’s default.

compressoptions options

Specify options to pass to the **compress** command. Default for **gzip** is `-9` for maximum compression.
logrotate

- **copy**
 Copy logfile, but do not change the original.

- **copytruncate**
 Copy logfile, then truncate it in place. For use with programs whose logging cannot be temporarily halted.

- **create [permissions] [owner] [group]**
 After rotation, re-create logfile with the specified permissions, owner, and group. permissions must be in octal. If any of these parameters is missing, the logfile’s original attributes will be used.

- **daily**
 Rotate logfiles every day.

- **delaycompress**
 Don’t compress logfile until the next rotation.

- **endscript**
 End a postrotate or prerotate script.

- **extension extension**
 Give rotated logfiles the specified extension. Any compression extension will be appended to this.

- **firstaction**
 May only be used as part of a logfile definition. Begin a shell script to execute once if any files match. The script ends when the endscript directive is read.

- **ifempty**
 Rotate logfile even if it is empty. Overrides the default notifempty option.

- **include file**
 Read the file into current file. If file is a directory, read all files in that directory into the current file.

- **lastaction**
 May only be used as part of a logfile definition. Begin a shell script to execute once after rotating all matching files and running any postrotate script. The script ends when the endscript directive is read.

- **mail address**
 Mail any deleted logs to address.

- **mailfirst**
 When using the mail command, mail the newly rotated log instead of the one being deleted.

- **maillast**
 When using the mail command, mail the log that is about to expire. This is the default behavior.

- **missingok**
 Skip missing logfiles. Do not generate an error.

- **monthly**
 Rotate logfiles only the first time logrotate is run in a month.
logrotate

nocompress
 Override compress.
nocopy
 Override copy.
nocopytruncate
 Override copytruncate.
nocreate
 Override create.
nodelaycompress
 Override delaycompress.
nomail
 Override mail.
nomissingok
 Override missingok.
noolddir
 Override olddir.
nosharedscripts
 Override sharedscripts. Run prerotate and postrotate scripts for each log rotated. This is the default.
notifempty
 Override ifempty.
olddir directory
 Move logs into directory for rotation. directory must be on the same physical device as the original logfiles.
postrotate
 May only be used as part of a logfile definition. Begin a shell script to apply after the log file is rotated. The script ends when the endscript directive is read.
prerotate
 May only be used as part of a logfile definition. Begin a shell script to apply before a log file is rotated. The script ends when the endscript directive is read.
rotate number
 The number of times to rotate a log file before removing it.
size n[k|M]
 Rotate log file when it is greater than n bytes. n can optionally be followed by k for kilobytes or M for megabytes.
sharedscripts
 Run prescript and postscript only once for the session.
start n
 Use n as the starting number for rotated logs. Default is 0.
tabooext [+] extlist
 Replace taboo extension list with the given extlist. If + is specified, add to existing list. The default list is .rpmorig .rpmnew .v .swp .rpmnew ~.
weekly
 Rotate logfiles if more than a week has passed since their last rotation.

uncompresscmd command
 Use command to uncompress logfiles. Default is gunzip.

look
 look [options] string [file]
 Search for lines in file (/usr/dict/words by default) that begin with string.

 Options
 -a Use alternate dictionary, /usr/dict/web2.
 -d Compare only alphanumeric characters.
 -f Search is not case-sensitive.
 -t character
 Stop checking after the first occurrence of character.

losetup
 losetup [options] loopdevice [file]
 System administration command. Set up and control loop devices. Attach a loop device to a regular file or block device, detach a loop device, or query a loop device. A loop device can be used to mount an image file as if it were a normal device.

 Options
 -d Detach specified loopdevice.
 -e encryption, -E number
 Use specified kernel encryption module when performing writes and reads. (Usually NONE, DES, and XOR.) You may also specify the encryption module by number. When using DES encryption, you will be prompted for an initialization passphrase.
 -o offset
 Start reading data at offset bytes from the beginning of file.
 -p fd
 Read the passphrase from file descriptor fd.

lpadmin
 lpadmin [options]
 System administration command. Configure CUPS printer queues. The command requires one of the following options: -d, -p, or -x. When a queue is configured to require a password, the lpadmin command will prompt for one.

 Options
 -d queue
 Set the default destination for CUPS commands like lp and lpr to the specified queue.
-E Always use encryption when connecting to the server.

-h server
Apply configuration commands remotely to the specified CUPS server.

-p printer print-options
Apply print-options (documented below) to the specified printer.

-x queue
Delete the specified queue. Abort any current print job and discard any pending print jobs.

Print options
Use these additional options with the -p option just listed:

-c class
Add printer to the specified class. Create class if it does not already exist.

-D description
Set the text description of the printer.

-E Enable printer.

-l location
Set the printer location text.

-i script
Use the specified System V-style interface script.

-m filename
Use the specified System V interface script or PPD file found in the model directory.

-o name=value
Set the value of PPD or server option name. For a list of available PPD options, use the `lpoptions` command.

-P filename
Use the PPD specified by filename. This option overrides the -i printer option.

-r class
Remove printer from the specified class. Remove class if it has no printer entries.

-u allow: [@]name, -u deny: [@]name
Set user level access control. To specify a group instead of a user name, prefix the name with @. You may also use the special names all and none.

-v uri
Set the device universal resource indicator, uri. If given as a filename, the command will automatically convert it to a file URI.
lpinfo

\texttt{lpinfo \textit{options}}

System administration command. Print information on available printer devices and drivers.

\textbf{Options}

\begin{itemize}
 \item \texttt{-E} Force the use of encryption connecting to the server.
 \item \texttt{-l} Show a long, or verbose, listing.
 \item \texttt{-m} List available printer drivers.
 \item \texttt{-v} List available printer devices.
\end{itemize}

lpmove

\texttt{lpmove [\textit{option}] \textit{jobdestination}}

System administration command. Move the specified print job to a new destination.

\textbf{Option}

\begin{itemize}
 \item \texttt{-E} Force the use of encryption connecting to the server.
\end{itemize}

lpq

\texttt{lpq [\textit{options}] [+\textit{interval}]}\texttt{\[+\textit{interval}\]}

Check the print spool queue for status of print jobs. For each job, display username, rank in the queue, filenames, job number, and total file size (in bytes). We document the CUPS printing system here; other versions will vary slightly.

\textbf{Options}

\begin{itemize}
 \item \texttt{-a} Report on all printers listed in the server’s printcap database.
 \item \texttt{-E} Use encryption when connecting to a print server.
 \item \texttt{-h \textit{server}[\textit{port}]} Specify an alternate server and optional port.
 \item \texttt{-l} Verbose mode. Print information about each file composing a job. Use \texttt{-l} multiple times to increase the information provided.
 \item \texttt{-P \textit{printer}} Specify which printer to query. Without this option, \texttt{lpq} uses the default printer, normally set through \texttt{lpadmin}.
 \item \texttt{-U \textit{username}} Specify an alternate username.
 \item \texttt{+\textit{interval}} Check the queue every \textit{interval} seconds until it is empty. For example, \texttt{+10} reloads the queue every ten seconds.
\end{itemize}

lpr

\texttt{lpr [\textit{options}] [\textit{files}]}

Send files to be printed. If no files are given, accept standard input. We document the CUPS printing system here; the older LPRng and BSD systems will vary slightly. CUPS \texttt{lpr}, for example, does not accept the options \texttt{c, d, f, g, i, m, n, t, v}, or \texttt{w}, used by LPRng.
Options

- **# copies**
 - Set the number of copies to print, from 1 to 100.

- **C, J, T name**
 - Set a name for the print job.

- **E**
 - Use encryption when connecting to a print server.

- **H server[:port]**
 - Specify an alternate server and optional port.

- **I**
 - Expect a binary or literal file on which minimal processing should be done. The same as `-o raw`.

- **m**
 - Send email when printing is complete.

- **o option[=value]**
 - Set printer-specific options. These vary by printer, but may include paper type and orientation, paper-tray selection, output order, and so forth. Check the complete CUPS user manual and your printer’s PPD file for the full list.

- **p**
 - Pretty-print a text document. Provides a shaded header containing page numbers, the job name, and the time and date of printing. Equivalent to `-o prettyprint`.

- **P printername**
 - Print to the specified printer. If no printer is given, prints to the default printer, usually set with `lpadmin`.

- **q**
 - Hold job for printing.

- **r**
 - Delete files after printing them.

- **U username**
 - Specify an alternate username.

Example

Print a simple file:

```
Lpr filename.txt
```

lprm

```
lprm [options] [jobid]
```

Cancel print jobs. Job IDs can be obtained from `lpq`; if no job is specified, cancels the current job on the default printer.

Options

- Remove all jobs available to the user. Same as specifying `jobid` as `ALL`.

- **E**
 - Use encryption.

- **H server[:port]**
 - Specify an alternate server and optional port.

- **P printer**
 - Specify printer queue. If no printer is specified, the default printer is used.

- **U username**
 - Specify an alternate username.
lpstat

`lpstat [options] [queues]`

Show the status of the print queue or queues. With options that take a list argument, omitting the list produces all information for that option. list can be separated by commas or, if enclosed in double quotes, by spaces. For the LPRng print service, `lpstat` is a frontend to the `lpq` program. With no arguments, `lpstat` shows jobs queued by the current user.

Options

- `-a [list]`
 Show whether the list of printer or class names is accepting requests.

- `-c [list]`
 Show information about printer classes named in list.

- `-d`
 Show the default printer destination.

- `-E`
 Use encryption when connecting to the print server.

- `-l`
 When showing printers, classes, or jobs, print a long listing.

- `-o [list]`
 Show the status of output requests. list contains printer names, class names, or request IDs.

- `-p [list]`
 Show the status of printers named in list.

- `-r`
 Show whether the print scheduler is on or off.

- `-s`
 Summarize the print status (show almost everything).

- `-t`
 Show all status information (report everything).

- `-u [list]`
 Show request status for users on list. Use all to show information on all users.

- `-U username`
 Specify an alternate username.

- `-v [list]`
 Show printers and the devices they are attached to.

ls

`ls [options] [names]`

List contents of directories. If no names are given, list the files in the current directory. With one or more names, list files contained in a directory name or that match a file name. names can include filename metacharacters. The options let you display a variety of information in different formats. The most useful options include `-F`, `-R`, `-l`, and `-s`. Some options don’t make sense together (e.g., `-u` and `-c`).

Options

- `-l`, `--format=single-column`
 Print one entry per line of output.
-a, --all
List all files, including the normally hidden files whose names begin with a period.

-A, --almost-all
List all files, including the normally hidden files whose names begin with a period. Does not include the . and .. directories.

-b, --escape
Display nonprinting characters in octal and alphabetic format.

-B, --ignore-backups
Do not list files ending in ~ unless given as arguments.

-c, --time=ctime, --time=status
List files by status change time (ctime), not creation/modification time. With -l, show ctime and sort by filename; with -lt, show and sort by ctime; otherwise, sort by ctime.

-C, --format=vertical
List files in columns (the default format).

--color=[when]
Colorize the names of files depending on the type of file. Accepted values for when are never, always, or auto.

-d, --directory
Report only on the directory, not its contents; do not dereference symbolic links.

-D, --dired
List in a format suitable for Emacs dired mode.

-f
Print directory contents in order, without attempting to sort them.

-F, --classify, --indicator-style=classify
Flag filenames by appending / to directories, * to executable files, @ to symbolic links, | to FIFOs, and = to sockets.

--full-time
List times in full, rather than using the standard abbreviations.

-g
Long listing like -l, but don’t show file owners.

-G, --no-group
In long format, do not display group name.

--group-directories-first
Display directories before files.

-h, --human-readable
Print sizes in kilobytes and megabytes.

-H, --dereference-command-line
When symbolic links are given on the command line, follow the link and list information from the actual file.

--help
Print a help message and then exit.

-i, --inode
List the inode for each file.
-I, --ignore pattern
Do not list files whose names match the shell pattern pattern, unless they are given on the command line.

--indicator-style=none
Display filenames without the flags assigned by -p or -f (default).

-k If file sizes are being listed, print them in kilobytes. This option overrides the environment variable POSIXLY_CORRECT.

-I, --format=long, --format=verbose
Long format listing (includes permissions, owner, size, modification time, etc.).

-L, --dereference
List the file or directory referenced by a symbolic link rather than the link itself.

-m, --format=commas
Merge the list into a comma-separated series of names.

-n, --numeric-uid-gid
Like -l, but use group ID and user ID numbers instead of owner and group names.

-N, --literal
Display special graphic characters that appear in filenames.

-o Long listing like -l, but don’t show group information.

-p, --indicator-style=slash
Mark directories by appending / to them.

-q, --hide-control-chars
Show nonprinting characters as ? (default for display to a terminal).

-0, --quote-name
Quote filenames with “”; quote nongraphic characters.

-r, --reverse
List files in reverse order (by name or by time).

-R, --recursive
List directories and their contents recursively.

-s, --size
Print file size in blocks.

-S, --sort=size
Sort by file size, largest to smallest.

--show-control-chars
Show nonprinting characters verbatim (default for printing to a file).

--si Similar to -h, but uses powers of 1000 instead of 1024.

-t, --sort=time
Sort files according to modification time (newest first).
Chapter 3: Linux Commands

- **lspci**
 System administration command. List all Peripheral Component Interconnect (PCI) devices. This command has many options that are useful for debugging device drivers. Here we document some of the more common options:

 Options
 - `-b` Show IRQ and addresses as seen by the cards instead of the kernel.
 - `-t` Print a tree showing connections between devices.
 - `-m` Print information with quoted strings suitable for use by scripts.
 - `-n` Print vendor and device codes as numbers.
 - `-v`, `-vv` List devices verbosely. Use the second form for very verbose listings.

- **lsattr**
 Print attributes of files on a Linux Second Extended File System. See also `chattr`.

 Options
 - `-a` List all files in specified directories.
 - `-d` List attributes of directories, not of contents.
 - `-R` List directories and their contents recursively.
 - `-v` List version of files.
 - `-V` List version of `lsattr` and then exit.
lsmod

System administration command. List all loaded modules: name, size (in 4 KB units), and, if appropriate, a list of referring modules. The same information is available in `/proc/modules` if the `/proc` directory is enabled on the system.

lsusb

System administration command. List all Universal Serial Bus (USB) devices. This command has many options of use for debugging device drivers. Here we document some of the more common options.

Options

- **-b** Show IRQ and addresses as seen by the cards instead of the kernel.
- **-D device** Only show information about the specified device. This should be given as a file in the `/proc/bus/usb` directory—e.g., `/proc/bus/usb/001/001`.
- **-t** Print a tree showing connections between devices.
- **-v, -vv** List devices verbosely. Use the second form for very verbose listings.

m4

Macro processor for C and other files.

Options

- **-e, --interactive** Operate interactively, unbuffered, ignoring interrupts.
- **-d flags, --debug=flags** Specify flag-level debugging.
- **--help** Print help message, then exit.
- **-l n, --arglength=n** Specify the length of debugging output.
- **-o file, --error-output=file** Place output in file. Despite the name, print error messages on standard error.
- **-P, --prefix-built-ins** Prepend m4_ to all built-in macro names.
- **-s, --synclines** Insert `#line` directives for the C preprocessor.
- **-t name, --trace=name** Insert name into symbol table as undefined. Trace macro from the point it is defined.
mailq

--version
Print version, then exit.
-Bn
Set the size of the pushback and argument collection buffers to n (default is 4096).
-D name[=value], --define=name[=value]
Define name as value or if value is not specified, define name as null.
-E, --fatal-warnings
Consider all warnings to be fatal, and exit after the first of them.
-F file, --freeze-state=file
Record m4’s frozen state in file for later reloading.
-G, --traditional
Behave like traditional m4, ignoring GNU extensions.
-Hn, --hashsize=n
Set symbol-table hash array to n (default is 509).
-I directory, --include=directory
Search directory for include files.
-Ln, --nesting-limit=n
Change artificial nesting limit to n.
-Q, --quiet, --silent
Suppress warning messages.
-R file, --reload-state=file
Load state from file before starting execution.
-U name, --undefine=name
Undefine name.

mail

mail [options] [users]
Read mail or send mail to other users. mail is now generally a symbolic link to mailx.

mailq

mailq [options]
List all messages in the sendmail mail queue. Equivalent to sendmail -bp.

Options
-Ac
Show queue specified in /etc/mail/submit.cf instead of queue specified in /etc/mail/sendmail.cf.
-q [!] Substring
Show items in mail queue with queue ids containing substring.
In this, and in similar options below, invert the match when ! is specified.
-q L
Show lost items in mail queue.
mailstats

- `qQ`
 Show quarantined items in the mail queue.

- `q[!]*Substring`
 Show quarantined messages with quarantine reasons containing `substring`.

- `q[!]*Recipient`
 Show items in mail queue with recipients containing `substring`.

- `q[!]*Sender`
 Show items in mail queue with senders containing `substring`.

- `v`
 Verbose mode.

mailstats

`mailstats [options]`

System administration command. Display a formatted report of the current **sendmail** mail statistics.

Options

- `-c` Use configuration in `/etc/mail/submit.cf` instead of `/etc/mail/sendmail.cf`.

- `-C file`
 Use `sendmail` configuration file `file` instead of the default `sendmail.cf` file.

- `-f file`
 Use `sendmail` statistics file `file` instead of the file specified in the `sendmail` configuration file.

- `-o` Don’t show the name of the mailer in the report.

- `-p` Print stats without headers or separators. Output suitable for use by other programs. Reset statistics.

- `-P` Print stats without headers or separators. Output suitable for use by other programs. Do not reset statistics.

mailx

`mailx [options] [users]`

Read mail or send mail to other users. **mailx** is based on the traditional **mail** command, extended to provide support for MIME, IMAP, POP3, SMTP, and S/MIME. The **mailx** command allows you to compose, send, receive, forward, and reply to mail. **mailx** has two main modes: compose mode, in which you create a message, and command mode, in which you manage your mail.

mailx is most commonly seen nowadays in scripts. Most Linux distributions include several utilities that are richer in features and easier to use: mailers built into browsers such as Mozilla and Firefox, graphical mail programs distributed with GNOME (Evolution) and KDE (Kmail), and the terminal-based, full-screen utilities **pine** and **elm**. The GNU Emacs editor can also send and receive mail.

To get you started, here are two of the most basic commands.
To enter interactive mail-reading mode, type:

```
mailx
```

To begin writing a message to user, type:

```
mailx user
```

Enter the text of the message, one line at a time, pressing Enter at the end of each line. To end the message, enter a single period (.) in the first column of a new line and press Enter.

You can also provide much of the information on the command line, as shown in the following example:

```
mailx james -s "System Log" </var/log/messages
```

This command sends a message to the user james, with a subject line of System Log, and the text of the message read from the system logfile, /var/log/messages.

`mailx` has many more options and commands than we can describe here. For complete details, as well as a full description of managing and using the command, see the manpage.

Command-line options

- Allow tilde escapes even when not in interactive mode.
- Attach the specified file to the message.
- Run the `account` command for the specified email account after the startup files have been read.
- Set blind-carbon-copy field to comma-separated list.
- Set carbon-copy field to comma-separated list.
- Start disconnected.
- Check for presence of mail in the system mailbox, but do not read. Returns exit status of 0 if there is mail, otherwise returns nonzero.
- Discard an outgoing message with no text in its first or only part.
- Process contents of file instead of /var/spool/mail/$user. If file is omitted, process mbox in the user’s home directory.
- Print message header summaries and exit.
- Do not respond to tty interrupt signals.
- Show Newsgroup: or Article-Id: fields in the header summary; used with -f.
- Do not consult /etc/mail.rc when starting up.
- When printing a mail message or entering a mail folder, do not display message headers.
mailx

-q file
 In compose mode, insert the contents of file at the beginning
 of the message.
-R
 Open folders read-only.
-s subject
 Set subject to subject. Use quotes around subjects that contain
 spaces.
-S var[=value]
 Set the internal option var. If var is a string variable, assign the
 given value to it.
-t
 Expect the message to contain To:, Cc:, and/or Bcc: fields to
 identify recipients and ignore any set on the command line.
-user
 Process contents of /var/spool/mail/$user for the specified user.
-v
 Verbose; print information about mail delivery to standard
 output.

Compose-mode commands
The following commands are known as tilde escapes and are only
recognized at the beginning of a line in the message:
~!command
 Execute a shell escape from compose mode and run the specified
 command.
~<!command
 Execute a shell escape and run the specified command, then
 insert its standard output into the message.
~?
 List tilde escapes.
~| command
 Pipe message through command.
~: mailx-command
 Execute mailx-command.
~~string
 Insert string in text of message, prefaced by a single tilde (~). If
 string contains a ~, it must be escaped with a \.
~b names
 Add names to or edit the Bcc: header.
~c names
 Add names to or edit the Cc: header.
~d
 Read in the dead.letter file.
~e
 Invoke text editor.
~f messages
 Insert messages into message being composed. Only the first
 printable part of a MIME multipart message is inserted.
~F messages
 Similar to ~f, but include message headers and all MIME parts.
~h Add to or change To:, Cc:, Bcc:, and Subject: headers interactively.
~H Like ~h but edit From:, Reply-To:, Sender:, and Organization: headers.
~m messages
 Similar to ~f, but indent with a tab.
~M messages
 Similar to ~m, but include message headers and all MIME parts.
~p Print message header fields, message being sent, and attachment list.
~q Abort current message composition, and save to dead.letters file.
~r filename
 Include file in current message.
~s string
 Change Subject: header to string.
~t names
 Add names to or edit the To: list.
~v Invoke editor specified with the VISUAL environment variable.
~w filename
 Write the message to the named file, appending it if the file already exists.
~x Like ~q, but don’t save the message to dead.letters file.

Command-mode commands
?
 List summary of commands (help screen).
!
 Execute a shell command.
- [num]
 Print numth previous message; defaults to immediately previous.
account (ac)
 Create, select, or list an email account.
alias (a)
 Print or create alias lists.
alternates (alt)
 Specify remote accounts on remote machines that are yours.
 Tell mailx not to reply to them.
cache
 For IMAP mailboxes only, read specified messages into the IMAP cache.
chdir (c)
 cd to home or specified directory.
classify
 Check contents of messages for junk mail, using Bayesian filtering, and mark as junk.

copy (co)
 Similar to save, but do not mark message for deletion.

delete (d)
 Delete message.

dp (dt)
 Delete current message and display next one.

edit (e)
 Edit message.

exit (ex, x)
 Exit mailx without updating folder or user’s system mailbox.

file (fi)
 Switch folders.

folder (fold)
 Read messages saved in a file. If no file is specified, display the name of the current file. In addition to filenames, the following are allowed:

 # Previous file
 % System mailbox
 %user
 user’s system mailbox
 & mbox
 +folder
 File in folder directory.

folders
 List folders, and subfolders with an existing folder as argument.

forward (fwd)
 Forward a message to a recipient.

from (f)
 Print headers for messages.

good (go)
 Mark messages as good (not junk mail).

headers (h)
 List message headers in groups of 18 at current prompt.

headers+ (h+)
 Move forward one window of headers.

headers- (h-)
 Move back one window of headers.

help
 Same as ?.

hold (ho)
 Hold messages in system mailbox.
ignore
Append list of fields to ignored fields. With no arguments, list currently ignored fields.

imap
Send commands to the current IMAP server.

junk (j)
Mark messages as junk mail.

list
Print list of available commands.

mail user (m)
Compose message to user.

mbox
Move specified messages to mbox on exiting (the default).

move (mv)
Like copy, but mark messages for deletion after the move.

next (n)
Type next message or next message that matches argument.

pipe (pi)
Pipe messages through a shell command.

preserve (pre)
Synonym for hold.

print [list] (p)
Display each message in list. For MIME multipart messages, display parts that are labeled “text” or “message”.

Print [list] (P)
Similar to print, but include ignored header fields and all parts of MIME multipart messages.

quit (q)
Exit mailx and update folder.

remove (rem)
Remove named folders.

rename (ren)
Rename an existing folder.

reply (r)
Send mail to all on distribution list.

Reply (R)
Send mail to author only.

replyall
Reply to all recipients.

respond
Same as reply.

retain
Always include this list of header fields when printing messages. With no arguments, list retained fields.
mailx

save (s)
Save message to folder.
saveignore
Remove ignored fields when saving.
saveretain
Override saveignore to retain specified fields.
seen
Mark list of messages as read.
set (se)
Set or print mailx options.
shell (sh)
Enter a new shell.
show (Sh)
Like print, but show raw message text, with no decoding, for MIME or encrypted messages.
size
Print size of each specified message.
source
Read commands from specified file.
thread (th)
Show current folder in threaded format.
top
Print first few lines of each specified message.
touch
Mark messages to be saved in mbox.
type (t)
Same as print.
Type (T)
Same as Print.
unalias
Discard previously defined aliases.
unanswered
Mark specified messages as unanswered.
uncollapse (unc)
Uncollapse threaded messages so the messages and replies are visible in header summaries again.
undelete (u)
Restore specified deleted messages.
ungood
Undo the effect of an earlier good command.
unjunk
Undo the effect of an earlier junk command.
unread (U)
Mark specified messages as unread.
_unset (uns)
 Unset mailx options.

_verify (verif)
 Verify that specified messages are S/MIME signed messages.

_visual (v)
 Edit message with editor specified by the VISUAL environment variable.

_write (w)
 Write message, without headers, to file.

_exit (x)
 Same as exit.

_z
 Move mailx's attention to next windowful of text. Use z- to move it back.

Configuration options

These options are set inside the user's .mailrc configuration file. The syntax is set option or unset option. The system default configuration is in /etc/mail.rc.

append
 Append (do not prepend) messages to mbox.

ask, asksub
 Prompt for subject.

askattach
 Prompt at end of message for attachments.

askbcc
 Prompt for blind-carbon-copy recipients.

askcc
 Prompt for carbon-copy recipients.

asksign
 Ask if message is to be signed.

autobcc list
 Specify recipients who are always to receive a blind carbon copy.

autoce list
 Specify recipients who are always to receive a carbon copy.

autoprint
 Print next message after a delete.

autothread
 Always enter threaded mode when a folder is opened.

cmd command
 Specify the default command for a pipe.

crt num
 Use the default pager to display a message of more than num lines. Defaults to the height of the terminal screen.
debug
 Same as -d on command line.

dot
 Interpret a solitary . as an EOF.

encoding value
 The default MIME encoding to use for outgoing messages. Possible values are 8bit (the default) or quoted-printable.

escape char
 Specify escape character to use instead of a tilde (~).

folder dir
 Define directory to hold mail folders.

from addr
 The default address to put in the From: field.

hold
 Keep message in system mailbox upon quitting.

ignore
 Ignore interrupt signals from terminal. Print them as @.

ignoreeof
 Do not treat ^D as an EOF.

indentprefix string
 Use the specified string with ~m as the prefix for indented messages.

junkdb addr
 Location of the junk mail database.

keep
 Do not delete user’s system mailbox when empty.

metoo
 Do not remove sender from groups when mailing to them.

noheader
 Same as -N on command line.

nosave
 Do not save aborted letters to dead.letter.

pop3-use-apop
 If set, connection to POP3 server uses APOP authentication.

quiet
 Do not print version at startup.

record file
 Use file as the path to record outgoing mail. If not set, outgoing mail is not saved.

Replyall
 Switch roles of Reply and reply.

replyto list
 Specify addresses for the Reply-To: field.
searchheaders
When given the specifier /x:y, expand all messages that contain the string y in the x header field.

sender addr
Specify the address to put into the Sender: field.

showlast
Start at the last message, not the first, when folder is opened.

toplines num
Print num lines of message with the top command. Default value is 5.

verbose
Same as -v on command line.

make
make [options] [targets] [macro definitions]
Update one or more targets according to dependency instructions in a description file in the current directory. By default, this file is called makefile or Makefile. Options, targets, and macro definitions can be in any order. Macro definitions are typed as:

name=string
For more information on make, see Robert Mecklenburg’s Managing Projects with GNU Make (O’Reilly).

Options
-d, --debug
Print detailed debugging information.

-e, --environment-overrides
Override Makefile macro definitions with environment variables.

-f Makefile, --file=Makefile, --makefile=Makefile
Use Makefile as the description file; a filename of - denotes standard input.

-h, --help
Print options to make command.

-i, --ignore-errors
Ignore command error codes (same as .IGNORE).

-j [jobs], --jobs [=jobs]
Attempt to execute this many jobs simultaneously or, if no number is specified, as many jobs as possible.

-k, --keep-going
Abandon the current target when it fails, but keep working with unrelated targets.

-l [load], --load-average [=load], --max-load [=load]
Attempt to keep load below load, which should be a floating-point number. Used with -j.

-n, --just-print, --dry-run, --recon
Print commands but don’t execute (used for testing).
make

-o file, --old-file=file, --assume-old=file
 Never remake file or cause other files to be remade on account of it.

-p, --print-data-base
 Print rules and variables in addition to normal execution.

-q, --question
 Query; return 0 if file is up to date, nonzero otherwise.

-r, --no-built-in-rules
 Do not use default rules.

-s, --silent, --quiet
 Do not display command lines (same as .SILENT).

-t, --touch
 Touch the target files without remaking them.

-v, --version
 Show version of make.

-w, --print-directory
 Display the current working directory before and after execution.

--warn-undefined-variables
 Print warning if a macro is used without being defined.

-C directory, --directory directory
 cd to directory before beginning make operations. A subsequent
 -C directive will cause make to attempt to cd into a directory
 relative to the current working directory.

-I directory, --include-dir directory
 Include directory in list of directories containing included files.

-S, --no-keep-going, --stop
 Cancel previous -k options. Useful in recursive makes.

-W file, --what-if file, --new-file file, --assume-new file
 Behave as though file has been recently updated.

Description-file lines
Instructions in the description file are interpreted as single lines. If
an instruction must span more than one input line, use a backslash
(\) at the end of the line so that the next line is considered a contin-
uation. The description file may contain any of the following types
of lines:

Blank lines
 Blank lines are ignored.

Comment lines
 A pound sign (#) can be used at the beginning of a line or
 anywhere in the middle. make ignores everything after the #.

Dependency lines
 Depending on one or more targets, certain commands that
 follow will be executed. Possible formats include:

 targets : dependencies
 targets : dependencies ; command
make

Subsequent commands are executed if dependency files (the names of which may contain wildcards) do not exist or are newer than a target. If no prerequisites are supplied, then subsequent commands are always executed (whenever any of the targets are specified). No tab should precede any targets.

Conditionals

Conditionals are evaluated when the Makefile is first read and determine what make sees—i.e., which parts of the Makefile are obeyed and which parts are ignored. The general syntax for a conditional is:

```
Conditional
Text if true
Else
Text if false
endif
```

ifeq *(arg1, arg2)*, **ifeq** "arg1" "arg2"

True if the two arguments are identical. The arguments should either be placed in parentheses and separated by a comma—(arg1, arg2)—or individually quoted with either single or double quotes.

ifneq *(arg1, arg2)*, **ifneq** "arg1" "arg2"

True if the two arguments are not identical. The arguments should either be placed in parentheses and separated by a comma, or individually quoted with either single or double quotes.

ifdef variable

True if variable has a nonempty value.

ifndef variable

True if variable has an empty value.

Suffix rules

These specify that files ending with the first suffix can be prerequisites for files ending with the second suffix (assuming the root filenames are the same). Either of these formats can be used:

```
.suffix.suffix:
suffix:
```

The second form means that the root filename depends on the filename with the corresponding suffix.

Commands

Commands are grouped below the dependency line and are typed on lines that begin with a tab. If a command is preceded by a hyphen (-), make ignores any error returned. If a command is preceded by an at sign (@), the command line won’t echo on the display (unless make is called with -n).

Macro definitions

These have the following form:

```
name =string
```
or:

```
define name
  string
endef
```

Blank space is optional around the =.

Include statements
Similar to the C include directive, these have the form:
```
include files
```

Internal macros

$? The list of prerequisites that have been changed more recently than the current target. Can be used only in normal description-file entries, not in suffix rules.

$@ The name of the current target, except in description-file entries for making libraries, where it becomes the library name. Can be used both in normal description-file entries and in suffix rules.

$< The name of the current prerequisite that has been modified more recently than the current target.

$' The name (without the suffix) of the current prerequisite that has been modified more recently than the current target. Can be used only in suffix rules.

$% The name of the corresponding .o file when the current target is a library module. Can be used both in normal description-file entries and in suffix rules.

$^ A space-separated list of all dependencies with no duplications.

$+ A space-separated list of all dependencies, which includes duplications.

Pattern rules
These are a more general application of the idea behind suffix rules. If a target and a dependency both contain %, GNU make will substitute any part of an existing filename. For instance, the standard suffix rule:
```
$(cc) -o $@ $<
```
can be written as the following pattern rule:
```
%.o : %.c
  $(cc) -o $@ $<
```

Macro modifiers

D The directory portion of any internal macro name except $?.
Valid uses are:
```
$(D) $(@D) $(?D) $(<D)
```

F The file portion of any internal macro name except $?.
Valid uses are:
```
$(F) $(@F) $(?F) $(<F)
```
functions

$(subst \textit{from}, \textit{to}, \textit{string})
Replace all occurrences of \textit{from} with \textit{to} in \textit{string}.

$(patsubst \textit{pattern}, \textit{to}, \textit{string})
Similar to \textit{subst}, but treat \texttt{%} as a wildcard within \textit{pattern}. Substitute \textit{to} for any word in \textit{string} that matches \textit{pattern}.

$(strip \textit{string})
Remove all extraneous whitespace.

$(findstring \textit{substring}, \textit{mainstring})
Return \textit{substring} if it exists within \textit{mainstring}; otherwise, return null.

$(filter \textit{pattern}, \textit{string})
Return those words in \textit{string} that match at least one word in \textit{pattern}. \textit{pattern} may include the wildcard \texttt{%}.

$(filter-out \textit{pattern}, \textit{string})
Remove those words in \textit{string} that match at least one word in \textit{pattern}. \textit{pattern} may include the wildcard \texttt{%}.

$(sort \textit{list})
Return \textit{list}, sorted in lexical order.

$(dir \textit{list})
Return the directory part (everything up to the last slash) of each filename in \textit{list}.

$(notdir \textit{list})
Return the nondirectory part (everything after the last slash) of each filename in \textit{list}.

$(suffix \textit{list})
Return the suffix part (everything after the last period) of each filename in \textit{list}.

$(basename \textit{list})
Return everything but the suffix part (everything up to the last period) of each filename in \textit{list}.

$(addsuffix \textit{suffix}, \textit{list})
Return each filename given in \textit{list} with \textit{suffix} appended.

$(addprefix \textit{prefix}, \textit{list})
Return each filename given in \textit{list} with \textit{prefix} prepended.

$(join \textit{list1}, \textit{list2})
Return a list formed by concatenating the two arguments word by word (e.g., $\textit{(join a b .c .o)}$ becomes \texttt{a.c b.o}).

$(word \textit{n}, \textit{string})
Return the \textit{n}th word of \textit{string}.

$(wordlist \textit{start}, \textit{end}, \textit{string})
Return words in \textit{string} between word \textit{start} and word \textit{end}, inclusive.

$(words \textit{string})
Return the number of words in \textit{string}.
$\text{firstword } list$
- Return the first word in the list $list$.

wildcard pattern
- Return a list of existing files in the current directory that match $pattern$.

$\text{foreach variable, list, string}$
- For each whitespace-separated word in $list$, expand its value and assign it to $variable$; then expand $string$, which usually contains a function referencing $variable$. Return the list of results.

$\text{if condition, then-string, else-string}$
- Expand string $condition$ if it expands to a nonempty string, then expand the $then-string$. If $condition$ expands to an empty string, return the empty string or, if specified, expand and return the $else-string$.

$\text{call variable, parameters}$
- Expand each item in comma-separated list $parameters$ and assign it to a temporary variable, (n), where n is an incremented number beginning with 0. Then expand $variable$, a string referencing these temporary variables, and return the result.

origin variable
- Return one of the following strings that describes how $variable$ was defined: undefined, default, environment, environment override, file, command line, override, or automatic.

shell command
- Return the results of $command$. Any newlines in the result are converted to spaces. This function works similarly to backquotes in most shells.

error string
- When evaluated, generate a fatal error with the message $string$.

warning string
- When evaluated, generate a warning with the message $string$.

Macro string substitution

macro: s1=s2
- Evaluates to the current definition of macro, after substituting the string $s2$ for every occurrence of $s1$ that occurs either immediately before a blank or tab, or at the end of the macro definition.

Special target names

.DEFAULT:
- Commands associated with this target are executed if make can’t find any description-file entries or suffix rules with which to build a requested target.

.DELETE_ON_ERROR:
- If this target exists in a Makefile, delete the target of any rule whose commands return a nonzero exit status.
makedbm

makedbm [options] infile outfile
makedbm [option]

NFS/NIS command. Create or dump an NIS dbm file. makedbm will take a text infile and convert it to a gdbm database file named outfile. This file is suitable for use with ypbserv. Each line of the input file is converted to a single record. All characters up to the first TAB or SPACE form the key, and the rest of the line is the data. If a line ends with \n, the data for that record is continued onto the next line. The # character is given no special treatment. infile can be -, in which case the standard input is read.

makedbm generates two special keys: the YP_M`ER_NAME key, which is the value of the current host (unless another name is specified with -m), and the YP_L`_MODIFIED key, which is the date of infile (or the current time if infile is -).

Options
- a Add support for mail aliases.
- b Insert YP_INTERDOMAIN key into map. This indicates that ypbserv should fall back to DNS lookups when a host’s address is not found in NIS.
-c Send a YPPROC_CLEAR signal to ypser, causing it to clear all cached entries.

-i file_name
 Create a YP_INPUT_NAME key with the value file_name.

-l Convert keys of the given map to lowercase.

-m master_name
 Specify the value of the YP_MASTER_NAME key. The default value is the current hostname.

--no-limit-check
 Don’t enforce NIS size limits for keys or data.

-o file_name
 Create a YP_OUTPUT_NAME key with the value file_name.

-r Treat lines beginning with # as comments. Do not include them in the datafile.

-s Add the key YP_SECURE, indicating that ypser should accept connections to the database only from secure NIS networks.

-u filename
 Undo a gdbm file: print out a dbm file, one entry per line, with a single space separating keys from values.

Example
It’s easy to write shell scripts to convert standard files such as /etc/passwd to the key-value form used by makedbm. For example, the awk program:

```
BEGIN { FS =":";OFS = "\t";}{ print $1, $0}
```

takes the /etc/passwd file and converts it to a form that can be read by makedbm to make the NIS file passwd.byname. That is, the key is a username and the value is the remaining line in the /etc/passwd file.
--C file
 Look up TrustedUser in the specified sendmail configuration file.
-d Allow duplicate entries. Valid only with btree type maps.
-D x
 Treat x as the comment marker instead of #.
-e Allow empty value data fields.
-f Suppress conversion of uppercase to lowercase.
-l List supported map types.
-N Append the zero-byte string terminator specified in sendmail's configuration file to mapped entries.
-o Append to existing file instead of replacing it.
-r If some keys already exist, replace them. (By default, makemap will exit when encountering a duplicated key.)
-s Ignore safety checks.
-t delimiter
 Use delimiter instead of whitespace.
-u Undo a map: print out the specified database file, one entry per line.
-v Verbose mode.

man

man [options] [section] [title]
Display information from the online reference manuals. man locates and prints the named title from the designated reference section.

Traditionally, manpages are divided into nine sections, where section 1 consists of user commands, section 2 contains system calls, and so forth (see “Section names,” coming up, for the full list). By default, all sections are consulted, so the section option serves to bypass the most common entry and find an entry of the same name in a different section (e.g., man 2 nice).

Numerous other utilities—such as info, xman, and the Konqueror browser—can also display manpages.

Options
-a Show all pages matching title.
-B Specify the browser to use on HTML files. Overrides the BROWSER environment variable. The default is /usr/bin/less -is.
-c Reformat output even if there is a current cat file.
-C file
 Specify a configuration file to use. Default is /etc/man.config.
-d Display debugging information but not the manpage.
-D Display debugging information and also display the manpage.
-f Same as whatis command.
-F, --preformat
Format the manpage but do not display it.

-h, --help
Print a help message and exit.

-H command
Specify a command to render HTML files as text. Overrides the
HTMLPAGER environment variable. The default is /bin/cat.

-k
Same as apropos command.

-K directory
A kind of super-k option. Search for a term in all manpages
and display the name of each page, along with a prompt asking
whether you want to view the page. This can be very slow.

-m systems
Search manual pages on the specified system or systems.
systems should be a comma-separated list.

-M path
Search for manual pages in path. Ignore -m option.

-p preprocessors
Preprocess manual pages with preprocessors before turning
them over to nroff, troff, or groff. Always runs soelim first to
read in files to be included in the one currently being
processed. preprocessors can be any combination of e for eqn,
g for grap, p for pic, r for refer, t for tbl, and v for vgrind.

-P pager
Specify the pager to use. Overrides the MANPAGE environ-
ment variable. The default is /usr/bin/less -is.

-S sections
Colon-separated list of sections to look in for an entry.

-t Format the manual page with /usr/bin/groff -Tgv -mandoc.

-w, -W, --path
Print only the pathnames of entries on standard output, one
per line.

Section names
Manual pages are divided into sections for various audiences:
1 Executable programs or shell commands.
2 System calls (functions provided by the kernel).
3 Library calls (functions within system libraries).
4 Special files (usually found in /dev).
5 File formats and conventions (e.g., /etc/passwd).
6 Games.
7 Macro packages and conventions.
8 System administration commands (usually only for a privileged
user).
9 Kernel routines (nonstandard).
md5sum

manpath

```bash
manpath [options]
```

Attempt to determine path to manual pages. Check $MANPATH first; if that is not set, consult /etc/man.conf, user environment variables, and the current working directory. The `manpath` command is a symbolic link to `man` and is equivalent to `man --path`. Most of the options are ignored for `manpath`.

Options

- `-d`, `--debug`

 Print debugging information.

- `-h`

 Print help message and then exit.

md5sum

```bash
md5sum [option] [files]
md5sum [option] --check [file]
```

Compute or check 128-bit MD5 checksums. Used to verify that no change has been made to a file. With no files or `-` specified, read from standard input. The exit status is 0 for success and nonzero for failure.

Options

- `-b`, `--binary`

 Read the files in binary mode.

- `-c`, `--check`

 Check the MD5 sum and file information in the file argument (or standard input) against the corresponding files and verify that they are consistent. The input must have been generated by an earlier `md5sum` command.

- `--help`

 Print usage information and exit.

- `--status`

 Don’t generate output messages; the exit code indicates success or failure. Used only with `--check`.

- `--string=string`

 Compute the MD5 sum for the specified string. This option does not take a file argument. Put quotes around the string if it contains spaces.

- `-t`, `--text`

 Read files in text mode. The default.

- `--version`

 Print version information and exit.

- `-w`, `--warn`

 Warn about improperly formatted checksum lines. Used only with `--check`.
merge

merge [options] file1 file2 file3

Perform a three-way file merge, putting the result in file1. The effect is easiest to understand if file2 is considered the original version of a file, file3 an altered version of file2, and file1 a later altered version of file2.

After the merge, file1 contains both the changes from file2 to file1 and the changes from file2 to file3. In other words, file1 keeps its changes and incorporates the changes in file3 as well. merge does not change file2 or file3.

If a line from file2 was changed in different ways in both file1 and file3, merge recognizes a conflict. By default, the command outputs a warning and puts brackets around the conflict, with lines preceded by <<<<<<<< and >>>>>>>>. A typical conflict looks like this:

```
<<<<<< file1
relevant lines from file1
=======
relevant lines from file3
>>>>>> file3
```

If there are conflicts, the user should edit the result and delete one of the alternatives.

Options

- `-A` Output conflicts using the -A style of diff3. This merges all changes leading from file2 to file3 into file1 and generates the most verbose output.
- `-e` Don’t warn about conflicts.
- `-E` Output conflict information in a less verbose style than -A; this is the default.
- `-L label` Specify up to three labels to be used in place of the corresponding filenames in conflict reports. That is:

```
merge -L x -L y -L z file_a file_b file_c
```

generates output that looks as if it came from x, y, and z instead of from file_a, file_b, and file_c.

- `-p` Send results to standard output instead of overwriting file1.
- `-q` Quiet; do not warn about conflicts.
- `-V` Print version number.

mesg

mesg [option]

Change the ability of other users to send write messages to your terminal. With no options, display the permission status.

Options

- `n` Forbid write messages.
- `y` Allow write messages (the default).
mkdir

`mkdir [options] directories`

Create one or more directories. You must have write permission in the parent directory in order to create a directory. See also `rmdir`. The default mode of the new directory is 0777, modified by the system or user’s `umask`.

Options

- `-m mode, --mode mode`

 Set the access mode for new directories. See `chmod` for an explanation of acceptable formats for `mode`.

- `-p, --parents`

 Create intervening parent directories if they don’t exist.

- `-v, --verbose`

 Print a message for each directory created.

- `--help`

 Print help message and then exit.

- `--version`

 Print version number and then exit.

- `-Z context, --context=context`

 Set security context in SELinux.

Examples

Create a read-only directory named `personal`:

```
mkdir -m 444 personal
```

The following sequence:

```
mkdir work; cd work
mkdir junk; cd junk
mkdir questions; cd ..../
```

can be accomplished by typing this:

```
mkdir -p work/junk/questions
```

mkdosfs

`mkdosfs [options] device [blocks]`

`mkfs.msdos [options] device [blocks]`

System administration command. Format `device` as an MS-DOS filesystem. You may specify the number of blocks on the device or allow `mkdosfs` to guess.

Options

- `-A`
 Create an Atari MS-DOS filesystem.

- `-b backup-sector`

 Specify sector for backup boot sector. The default value depends on the number of reserved sectors, but is usually sector 6.

- `-c`
 Scan `device` for bad blocks before execution.
mke2fs

-C Create and format a file suitable for use on a floppy disk. The device given on the command line should be a filename, and the number of blocks must also be specified.

-f n Specify number of File Allocation Tables (FATs) to create (either 1 or 2).

-F fat-size Create File Allocation Tables (FATs) of size fat-size. By default this will be between 12 and 16 bits. Set to 32 to create a FAT32 filesystem.

-i volume-id Use the specified 32-bit hexadecimal volume-id instead of calculating a number based on the time of creation.

-I Force installation to a device without partitions. This is useful when formatting magneto-optical disks.

-l file Read list of bad blocks from file.

-m message-file Set the message to be used when the filesystem is booted without an installed operating system to the contents of the file message-file. The message may be up to 418 bytes in size. If filename is a hyphen, read text from standard input.

-n label Set volume name for filesystem to label. The volume name may be up to 11 characters long.

-r maximum-entries Set the maximum-entries allowed in the root directory. The default is 112 or 224 for floppies, and 512 for hard disks.

-R reserved-sectors Create the specified number of reserved-sectors. The default depends on the size of the File Allocation Table (FAT). For 32-bit FAT, the default is 32; for all other sizes, the default is 1.

-s sectors Set the number of disk sectors per cluster. The number must be a power of 2.

-S sector-size Create logical sectors of sector-size bytes. Size must be a power of 2 and at least 512 bytes.

-v Print verbose information about progress.

mke2fs mke2fs [options] device [blocks]
mkfs.ext2 [options] device [blocks]

System administration command. Format device as a Linux Second Extended Filesystem. You may specify the number of blocks on the device or allow mke2fs to guess.
mke2fs

Options

- **b block-size**
 Specify block size in bytes.

- **c**
 Scan device for bad blocks before execution.

- **E featurelist**
 Specify extended features. This option’s parameters may be given in a comma-separated list:
 - **stride=size**
 Configure filesystem for a RAID array. Set stride size to size blocks per stripe.
 - **resize=blocks**
 Reserve descriptor table space to grow filesystem to the specified number of blocks.

- **f fragment-size**
 Specify fragment size in bytes.

- **F**
 Force mke2fs to run even if filesystem is mounted or device is not a block special device. This option is probably best avoided.

- **i bytes-per_inode**
 Create an inode for each bytes-per_inode of space. bytes-per_inode must be 1024 or greater; it is 4096 by default.

- **j**
 Create an ext3 journal. This is the same as invoking mke2fs.ext3.

- **j parameterlist**
 Use specified parameterlist to create an ext3 journal. The following two parameters may be given in a comma-separated list:
 - **size=journal-size**
 Create a journal of journal-size megabytes. The size may be between 1024 filesystem blocks and 102,400 filesystem blocks in size (e.g., 1–100 megabytes if using 1K blocks, 4–400 megabytes if using 4K blocks).
 - **device=journal-device**
 Use an external journal-device to hold the filesystem journal. The journal-device can be specified by name, by volume label, or by UUID.

- **l filename**
 Consult filename for a list of bad blocks.

- **L label**
 Set volume label for filesystem.

- **m percentage**
 Reserve percentage percent of the blocks for use by privileged users.

- **M directory**
 Set the last mounted directory for filesystem to directory.

- **n**
 Don’t create the filesystem; just show what would happen if it were run. This option is overridden by -F.
mke2fs

-N inodes
 Specify number of inodes to reserve for filesystem. By default, this number is calculated from the number of blocks and the inode size.

-o os
 Set filesystem operating system type to os. The default value is usually Linux.

-O featurelist
 Use specified featurelist to create filesystem. The sparse_super and filetype features are used by default on kernels 2.2 and later. The following parameters may be given in a comma-separated list:

 dir_index
 Use hashed B-trees to index directories.

 filetype
 Store file type information in directory entries.

 has_journal
 Create an ext3 journal. Same as using the -j option.

 journal_dev
 Prepare an external journaling device by creating an ext3 journal on device instead of formatting it.

 sparse_super
 Save space on a large filesystem by creating fewer super-block backup copies.

-q Quiet mode.

-r revision
 Set filesystem revision number to revision.

-S Write only superblock and group descriptors; suppress writing of inode table and block and inode bitmaps. Useful only when attempting to salvage damaged systems.

-T use
 Set bytes-per_inode based on the intended use of the filesystem. Supported filesystem usage types are defined in /etc/mke2fs.conf. Common types include:

 news
 Four kilobytes per inode.

 largefile
 One megabyte per inode.

 largefile4
 Four megabytes per inode.

-v Verbose mode.

-V Print version number, then exit.
mkfifo

`mkfifo [option] names`

Make one or more named pipes (FIFOs) with the specified names.

Options

- `-m mode, --mode=mode`

 Set permission mode. Default is 666, with the bits in the umask subtracted.

- `--help`

 Print help information and exit.

- `--version`

 Print version information and exit.

mkfs

`mkfs [options] [fs-options] filesys [blocks]`

System administration command. Construct a filesystem on a device (such as a hard disk partition). `filesys` is either the name of the device or the mountpoint. `mkfs` is actually a frontend that invokes the appropriate version of `mkfs` according to a filesystem type specified by the `-t` option. For example, a Linux Second Extended Filesystem uses `mkfs.ext2` (which is the same as `mke2fs`); MS-DOS filesystems use `mkfs.msdos`. `fs-options` are options specific to the filesystem type. `blocks` is the size of the filesystem in 1024-byte blocks.

Options

- `-V`

 Produce verbose output, including all commands executed to create the specific filesystem.

- `-t fs-type`

 Tells `mkfs` what type of filesystem to construct.

Filesystem-specific options

These options must follow generic options and cannot be combined with them. Most filesystem builders support these three options:

- `-c`

 Check for bad blocks on the device before building the filesystem.

- `-l file`

 Read the file `file` for the list of bad blocks on the device.

- `-v`

 Produce verbose output.

mkfs.ext3

`mkfs.ext3 [options] devicesize`

Create a journaling ext3 filesystem. Options are identical to `mke2fs`. See `mkfs`.
mkisofs

```
mkisofs [options] -o pathspecs
```

Generate an ISO9660/Joliet/HFS filesystem for writing to a CD. (HFS is the native Macintosh Hierarchical File System.) mkisofs takes a snapshot of a directory tree and generates a binary image that corresponds to an ISO9660 or HFS filesystem when it is written to a block device. Each specified pathspec describes the path of a directory tree to be copied into the ISO9660 filesystem; if multiple paths are specified, the files in all the paths are merged to form the image.

mkisofs is now generally a symbolic link to genisoimage.

mklost+found

```
mklost+found
```

System administration command. Create a lost+found directory in the current working directory. Intended for Linux Second Extended Filesystems.

mknod

```
mknod [options] name type [major minor]
```

Create a special file (a file that can send or receive data). Special files can be character files (read one character at a time), block files (read several characters at a time), or FIFO pipes (see mkfifo). To choose which type of device to create, use one of the following arguments:

- **p** Create a FIFO file (named pipe). You do not need to specify the major and minor device numbers.
- **b** Create a block file. You must specify the major and minor device numbers the file represents.
- **c** or **u**
 Create a character file. You must specify the major and minor device numbers the file represents.

Linux’s /dev/MAKEDEV utility is useful for creating one or more devices of a given type in a single command.

Options

- **--help**
 Print usage information and exit.

- **-m mode, --mode=mode**
 Set the file mode of the device, as with chmod. The default mode is a=rw unless you have chosen other settings via umask.

- **--version**
 Print version information and exit.
mkswap

`mkswap [options] device`

System administration command. Prepare swapspace on `device`: a disk partition or a prepared file. This command can create old and new style swap areas. The older style provides backward compatibility with 2.2 kernels, but is less efficient and more limited in size. The `mkswap` command has some dangerous options we have omitted here. They provide backward compatibility and solutions to problems with older libraries, but can destroy a disk if specified incorrectly.

Options
- `-c` Check for bad blocks before creating the swapspace.
- `-L label`
 Create a label for use with `swapon`.
- `-v0` Create an old style swap area.
- `-v1` Create a new style swap area. (The default behavior on newer kernels.)

mktemp

`mktemp [options] [template]`

Generate a unique temporary filename for use in a script. The filename is based on the specified template, which may be any filename with at least six Xs appended (e.g., `/tmp/mytemp.XXXXXXXXX`). `mktemp` replaces the Xs with the current process number and/or a unique letter combination. The file is created with mode 0600 (unless `-u` is specified), and the filename is written to standard output. With no template specified, the default file `/tmp.XXXXXXXXX` is created.

Options
- `-d`, `--directory`
 Make a directory, not a file.
- `--help`
 Print usage information and exit.
- `-q`, `--quiet`
 Fail silently in case of error. Useful to prevent error output from being sent to standard error.
- `-u`, `--dryrun`
 Operate in “unsafe” mode and unlink the temporary file before `mktemp` exits. Use of this option is not recommended.
- `-V`, `--version`
 Print version information and exit.
modinfo

```
modinfo [options] object-file
```
System administration command. Print information about kernel module `object-file`. Information is read from tag names in the modinfo section of the module file. By default, it will print the module’s filename, description, author, license, and parameters.

Options

- `-0`, `--null`
 Separate fields with the null character instead of newlines.

- `Ffieldname`, `--field fieldname`
 Print only the value of the specified `fieldname` (e.g., author, license, depends, etc.).

- `-h`, `--help`
 Print usage message, then exit.

- `-k kernel`
 Specify kernel to use (e.g., a kernel other than the running kernel).

- `-V`, `--version`
 Print version number of the module.

modprobe

```
modprobe [options] [modules] [moduleoptions]
```
System administration command. With no options, attempt to load the specified module, as well as all modules on which it depends. If more than one module is specified, attempt to load further modules only if the previous module failed to load. When specifying a module, use only its name without its path or trailing `.o`. `modprobe` will pass to the kernel any options following the module name.

Options

- `-a`, `--all`
 Load all modules matching the given wildcard.

- `-c`, `--showconfig`
 Print `modprobe`’s current configuration.

- `-C file`, `--config file`
 Read additional configuration from `file` instead of `/etc/modules.conf`.

- `-f`, `--force`
 Ignore all versioning information during module insertion. Even if the module does not match the running kernel, `modprobe` will try to insert it anyway.

- `--force-modversion`
 Ignore module versioning mismatches.

- `--force-vermagic`
 Ignore kernel versioning mismatches.

- `--first-time`
 Return failure if told to insert a module that is already present or remove a module that is not loaded. Normally, `modprobe` will return success if asked to perform an unnecessary action.
more

more [options] [files]
Display the named files on a terminal, one screenful at a time. See less for an alternative to more.

Options
+num
Begin displaying at line number num.
-num number
Set screen size to number lines.
+pattern
Search for pattern and begin displaying at that point.
-c
Repaint screen from top instead of scrolling.
-d
Display the prompt “[Press space to continue, ‘q’ to quit]” instead of ringing the bell. Also display “[Press ‘h’ for instructions]” in response to illegal commands.
-f
Count logical rather than screen lines. Useful when long lines wrap past the width of the screen.
-l
Ignore form-feed (Ctrl-L) characters.
-p
Page through the file by clearing each window instead of scrolling. This is sometimes faster.
-s
Squeeze; display multiple blank lines as one.
-u
Suppress underline characters.

-i, --ignore-install, --ignore-remove
Ignore any install and remove directives in the configuration file.
-l, --list
List modules matching the given wildcard (or “*” if no wildcard is given).
-n, --dry-run
Perform all of the actions except actually inserting or removing the module.
-q, --quiet
Suppress warnings during failure to load a module and continue processing other modules.
-r, --remove
Remove the specified modules, as well as the modules on which they depend.
-s, --syslog
Send error messages to syslogd instead of to standard error.
type, --type type
Load only a specific type of module.
-v, --verbose
Print commands as they are executed.
-V, --version
Print version, then exit.
Commands

All commands in `more` are based on \texttt{vi} commands. You can specify a number before many commands to have them executed multiple times. For instance, \texttt{3:p} causes `more` to skip back three files, the same as issuing \texttt{p} three times. The optional number is indicated by \texttt{num} in the following list:

SPACE
- Display next screen of text.

z
- Display next \textit{num} lines of text, and redefine a screenful to \textit{num} lines. Default is one screenful.

RETURN
- Display next \textit{num} lines of text, and redefine a screenful to \textit{num} lines. Default is one line.

d, ^D
- Scroll \textit{num} lines of text, and redefine scroll size to \textit{num} lines. Default is one line.

q, Q, INTERRUPT
- Quit.

s
- Skip next \textit{num} lines of text. Default is one line.

f
- Skip forward \textit{num} screens of text. Default is one screen.

b, ^B
- Skip backward \textit{num} screens of text. Default is one screen. Does not work on pipes.

'
- Return to point where previous search began.

='
- Print number of current line.

/pattern
- Search for \textit{pattern}, skipping to \textit{num}th occurrence if an argument is specified.

?, h
- Display a summary of commands.

n
- Repeat last search, skipping to \textit{num}th occurrence if an argument is specified.

!cmd, :!cmd
- Invoke shell and execute \textit{cmd} in it.

v
- Invoke an editor on the file at the current line. Use the editor in the environment variable \texttt{VISUAL} if defined, or \texttt{EDITOR} if that is defined; otherwise, default to \texttt{vi}.

^L
- Redraw screen.

:n
- Skip to next file, or \textit{num}th file if an argument is specified.

:p
- Skip to previous file, or \textit{num}th previous if an argument is specified.

:f
- Print current filename and line number.

:
- Reexecute previous command.
mount

System administration command. Mount a file structure. The file structure on device is mounted on directory. If no device is specified, mount looks for an entry in /etc/fstab to find out what device is associated with the given directory. The directory, which must already exist and should be empty, becomes the name of the root of the newly mounted file structure. If mount is invoked with no arguments, it displays the name of each mounted device, the directory on which it is mounted, its filesystem type, and any mount options associated with the device.

Options
- Mount all filesystems listed in /etc/fstab. Use -t to limit this to all filesystems of a particular type.
--bind olddirectory newdirectory
Bind a mounted subtree to a new location. The tree will be available from both the old and new directory. This binding does not include any volumes mounted below the specified directory.
-f Fake mount. Go through the motions of checking the device and directory, but do not actually mount the filesystem.
-F When used with -a, fork a new process to mount each system.
-h Print help message, then exit.
-l When reporting on mounted filesystems, show filesystem labels for filesystems that have them.
-L label
Mount filesystem with the specified label.
--move olddirectory newdirectory
Move a mounted device to a new location. Maintains options and submounts.
-n Do not record the mount in /etc/mtab.
-o option
Qualify the mount with a mount option. Many filesystem types have their own options. The following are common to most filesystems:
async
Read input and output to the device asynchronously.
mount

atime
Update inode access time for each access. This is the default behavior.

auto
Allow mounting with the -a option.

defaults
Use all options’ default values (async, auto, dev, exec, nouser, rw, suid).

dev
Interpret any special devices that exist on the filesystem.

dirsync
Perform all directory updates to the filesystem synchronously.

exec
Allow binaries to be executed.

_netdev
Filesystem is a network device requiring network access.

noatime
Do not update inode access time for each access.

noauto
Do not allow mounting via the -a option.

nodev
Do not interpret any special devices that exist on the filesystem.

noexec
Do not allow the execution of binaries on the filesystem.

nofail
Do not report errors if device doesn’t exist.

nosuid
Do not acknowledge any suid or sgid bits.

nouser
Only privileged users will have access to the filesystem.

remount
Expect the filesystem to have already been mounted, and remount it.

ro
Allow read-only access to the filesystem.

rw
Allow read/write access to the filesystem.

suid
Acknowledge suid and sgid bits.

sync
Read input and output to the device synchronously.
user

Allow unprivileged users to mount or unmount the filesystem. The defaults on such a system will be nodev, noexec, and nosuid, unless otherwise specified.

users

Allow any user to mount or unmount the filesystem. The defaults on such a system will be nodev, noexec, and nosuid, unless otherwise specified.

-O option

Limit systems mounted with -a by -O’s filesystem options (as used with -o). Use a comma-separated list to specify more than one option, and prefix an option with no to exclude filesystems with that option. Options -t and -O are cumulative.

-r

Mount filesystem read-only.

--bind olddirectory newdirectory

Bind a mounted subtree to a new location. The tree will be available from both the old and new directory. Include any volumes mounted below the specified directory.

-s

Where possible, ignore mount options specified by -o that are not supported by the filesystem.

-t type

Specify the filesystem type. Possible values include adfs, affs, autofs, coda, cramfs, devpts, efs, ext2, ext3, hfs, hpfs, iso9660, jfs, minix, msdos, ncpfs, nfs, nfs4, ntfs, proc, qnx4, reiserfs, romfs, smbfs, sysv, tmpfs, udf, ufs, umsdos, vfat, xfs, and xiafs. The default type is iso9660. The type auto may also be used to set mount to autodetect the filesystem. When used with -a, this option can limit the types mounted. Use a comma-separated list to specify more than one type to mount. Prefix a list (or type) with no to exclude those types.

-U uuid

Mount filesystem with the specified uuid.

-v

Display mount information verbosely.

-V

Print version, then exit.

-w

Mount filesystem read/write. This is the default.

Files

/etc/fstab

List of filesystems to be mounted and options to use when mounting them.

/etc/mtab

List of filesystems currently mounted and the options with which they were mounted.

/proc/partitions

Used to find filesystems by label and uuid.
mountd

rpc.mountd [options]

NFS/NIS command. NFS mount request server. mountd reads the
file /etc/exports to determine which filesystems are available for
mounting by which machines. It also provides information about
which filesystems are mounted by which clients. See also nfsd.

Options
-d kind, --debug kind
 Specify debugging facility. Accepted values for kind are
general, call, auth, parse, and all.
-F file, --exports-file file
 Read the export permissions from file instead of /etc/exports.
-F, --foreground
 Run mountd in the foreground.
-h, --help
 Print help message, then exit.
-n, --no-tcp
 Use UDP for mounts.
-N n, --no-nfs-version n
 Do not offer NFS version n.
-o n, --descriptors n
 Allow no more than n open file descriptors. The default is 256.
-p n, --port n
 Bind to specified port instead of accepting a port from
 portmapper.
-r, --reverse-lookup
 Perform a reverse lookup on ip address when requested to
 report mounting hosts (a DUMP request).
-v, --version
 Print the version number, then exit.
-V n, --nfs-version n
 Explicity offer NFS version n.

Files
/etc/exports
 Information about mount permissions.
/var/lib/nfs/rmtab
 List of filesystems currently mounted by clients.

mt

mt [option] operation [count | arguments]

Control a magnetic tape drive used to back up or restore system
data. The version of the mt command documented here is the
GNU version of mt. The operation argument determines what
action will be taken, and, unless the -f or -t option is used, the
action is applied to the default tape drive named in the TAPE environment variable. The count argument determines how many times the operation is to be repeated. If not specified, it defaults to 1. Some operations take one or more arguments other than a count, as noted in the descriptions below.

Options

- `-f device`, `-t device`
 Name the tape device to use. This may be a local device, a character special file (see `mknod`), or a remote device, named in the format `host:/path/to/drive` or `user@host:/path/to/drive`.

- `--help`
 Print usage message and exit.

- `-V`, `--version`
 Print version number and exit. Also tells you if you are running the GNU version of `mt` or the `mt-st` version.

Operations

`mt` can perform the following operations on tape drives. Unique abbreviations are allowed.

- `asf n`
 Move to file number n on the tape. This is the same as rewinding the tape and moving forward n files with `fsf`.

- `bsf n`
 Move backward n files, positioning the tape at the last block of the previous file.

- `bsfm n`
 Move backward n file marks, to a position on the side of the file mark closer to the beginning of the tape.

- `bsr n`
 Move backward n records.

- `eof, weof n`
 Write n end-of-file (EOF) notations at the current location on the tape.

- `erase`
 Erase the tape.

- `fsf n`
 Move forward n files, positioning the tape at the first block of the next file.

- `fsfm n`
 Move forward n file marks, to a position on the side of the file mark closer to the beginning of the tape.

- `fsr n`
 Move forward n records.

- `offline, rewoffl`
 Rewind and unload the tape (if drive supports unload).
mv

retension
Used when the tape has become loosely wound, usually because it has been dropped, shaken, or transported. Rewinds the tape, moves forward to the end of the tape, then rewinds again.

rewind
Return to the beginning of the tape.

seek \textit{n}
Seek to block \textit{n} on the tape.

status
Display the status of the tape drive.

\textbf{mv} \texttt{[option] sources target}
Move or rename files and directories. The source (first column) and target (second column) determine the result (third column).

\begin{center}
\begin{tabular}{|l|l|l|}
\hline
Source & Target & Result \\
\hline
File & \textit{name} (nonexistent) & Rename file to \textit{name}. \\
File & Existing file & Overwrite existing file with source file. \\
Directory & \textit{name} (nonexistent) & Rename directory to \textit{name}. \\
Directory & Existing directory & Move directory to be a subdirectory of existing directory. \\
One or more files & Existing directory & Move files to directory. \\
\hline
\end{tabular}
\end{center}

The \texttt{mv} command is often aliased as \texttt{mv -i} in the \texttt{.bashrc} file, especially for the root account, to prevent inadvertently overwriting files.

\textbf{Options}
\texttt{-b} \quad Back up existing files before removing.
\texttt{--backup[=type]}
Like \texttt{-b}, but can take an argument specifying the type of version-control file to use for the backup. The value of \texttt{type} overrides the VERSION_CONTROL environment variable, which determines the type of backups made. The acceptable values for version control are:

\texttt{t, numbered}
Always make numbered backups.

\texttt{nil, existing}
Make numbered backups of files that already have them, and make simple backups of the others. This is the default.

\texttt{never, simple}
Always make simple backups.

\texttt{none, off}
Never make backups.
-f, --force
 Force the move, even if target file exists; suppress messages about restricted access modes. Same as --reply=yes.

--help
 Print a help message and then exit.

-i, --interactive
 Query user before removing files. Same as --reply=query.

--reply=prompt
 Specify how to handle prompt if the destination exists already. Possible values are yes, no, and query.

--strip-trailing-slashes
 Remove trailing slashes from source paths.

-S suffix, --suffix=suffix
 Override the SIMPLE_BACKUP_SUFFIX environment variable, which determines the suffix used for making simple backup files. If the suffix is not set either way, the default is a tilde (~).

-T, --no-target-directory
 Treat the destination as a file.

--target-directory=dir
 Move all source files and directories into the specified directory.

-u, --update
 Do not remove a file or link if its modification date is the same as or newer than that of its replacement.

-v, --verbose
 Print the name of each file before moving it.

--version
 Print version information and then exit.

named
 named [options]
TCP/IP command. Internet domain nameserver. named is used by resolver libraries to provide access to the Internet distributed naming database. With no arguments, named reads /etc/named.conf for any initial data and listens for queries on a privileged port. See RFC 1034 and RFC 1035 for more details.

There are several named binaries available at different Linux archives, displaying various behaviors. Here we describe named as provided by Internet Software Consortium’s Berkeley Internet Name Domain (BIND) version 9.2.x.

Options
-c file
 Read configuration information from file instead of /etc/named.conf.
-d debuglevel
 Print debugging information. debuglevel is a number indicating the level of messages printed.
-f Run named in the foreground.
-g Run named in the foreground and send all log messages to standard error.
-n n
 Specify the number of processors in a multiprocessor system. Normally named can autodetect the number of CPUs.
-p port
 Use port as the port number. Default is 53.
-t dir
 Change root to specified directory after reading command arguments but before reading the configuration file. Useful only when running with option -u.
-u user
 Set the user ID to user after completing any privileged operations.
-v
 Print version, then exit.

File

/etc/named.conf
 Read when named starts up.

namei

 namei [options] pathname [pathname . . .]

Follow a pathname until a terminal point is found (e.g., a file, directory, char device, etc.). If namei finds a symbolic link, it shows the link and starts following it, indenting the output to show the context. namei prints an informative message when the maximum number of symbolic links has been exceeded, making it helpful for resolving errors resulting from too many levels of links.

Options

 -m Show mode bits of each file type in the style of ls (e.g., "rwxr-xr-x").
 -x Show mountpoint directories with a D rather than a d.

File-type characters

 For each line of output, namei prints the following characters to identify the file types found:
 - A regular file.
 ? An error of some kind.
 b A block device.
 c A character device.
 d A directory.
 f: The pathname namei is currently trying to resolve.
nc

A symbolic link (both the link and its contents are output).

p A FIFO (named pipe).

s A socket.

nameif

System administration command. Assign an interface name to a network device specified by macaddress, the unique serial number that identifies a network card. If no name and macaddress are given, nameif will attempt to read addresses from the configuration file /etc/mactab. Each line of the configuration file should contain either a comment beginning with # or an interface name and MAC address.

Options

-c filename
Read interface names and MAC addresses from filename instead of /etc/mactab.

-s Send any error messages to syslog.

nc

TCP/IP command. nc (also known as netcat) is a versatile networking utility that reads and writes data across network connections using TCP or UDP. It’s a simple tool that has many uses. Unlike telnet, you can easily script nc. It can also be used to listen for as well as make connections.

Options

-C Send CRLF as line ending.

-i seconds
Send and read data one line at a time with a delay of the specified interval in seconds. By default netcat reads and writes in 8 KB blocks.

-k Listen for further connections when a current connection ends. Used with -l.

-l Listen for an incoming connection on the specified port or ports.

-n Don’t perform any DNS lookups.

-o file
Hex-dump data sent and received to file.

-p [port]
Read from the specified source port.

-r Choose ports randomly.

-s [address]
Read from the specified source IP address.

-u Use UDP instead of the default TCP.

-U Use Unix Domain Sockets instead of the default TCP.
netstat

-v Verbose output. Use multiple times to increase verbosity. If not using -n, include reports on forward/reverse DNS mismatches.

-w seconds
 Set the inactivity timeout for a connection. Silently close a connection if idle for more than the specified seconds.

-x address[:port]
 Use the proxy found at the specified IP address and port. If no port is specified, the well-known port for the protocol is used.

-X protocol
 Use the specified proxy protocol. Valid values are 4 (SOCKS v. 4), 5 (SOCKS v. 5) and connect (HTTPS proxy). The default value is 5.

-z Scan for listening daemons. With this option port can be given as a port range or sets of ranges.

Examples
Connect to an SMTP port reporting connection information and timing out after 2 seconds of inactivity:

 $ nc -w 2 -v remotehost 25

Copy a directory over the network, preserving permissions. On the receiving server, use this:

 $ nc -l -p 1234 | tar xzfp -

On the server sending the directory files, use this:

 $ tar czfp - /dir/ | nc -w 3 remotehost 1234

Perform a simple port scan:

 $ nc -w 1 -z remotehost 20-80 400-500

netstat

netstat [options] [delay]
TCP/IP command. Show network status. Print information on active sockets, routing tables, interfaces, masquerade connections, or multicast memberships. By default, netstat lists open sockets. When a delay is specified, netstat will print new information every delay seconds.

Options
The first five options (-g, -i, -M, -r, and -s) determine what kind of information netstat should display.

-g, --groups
 Show multicast group memberships.

-i, --interface [=name]
 Show all network interfaces, or just the interface specified by name.

-M, --masquerade
 Show masqueraded connections.
-r, --route
Show kernel routing tables.

-s, --statistics
Show statistics for each protocol.

-a, --all
Show all entries.

-A family, --protocol=family
Show connections only for the specified address family. Accepted values are inet, unix, ipx, ax25, netrom, and ddp. Specify multiple families in a comma-separated list.

-c, --continuous
Display information continuously, refreshing once every second.

-C
Print routing information from the route cache.

-e, --extend
Increase level of detail in reports. Use twice for maximum detail.

-F
Print routing information from the forward information database (FIB). This is the default.

-l, --listening
Show only listening sockets.

-n, --numeric
Show network addresses, ports, and users as numbers.

--numeric-hosts
Show host addresses as numbers, but resolve others.

--numeric-ports
Show ports as numbers, but resolve others.

--numeric-users
Show user ID numbers for users, but resolve others.

-N, --symbolic
Where possible, print symbolic host, port, or usernames instead of numerical representations. This is the default behavior.

-o, --timers
Include information on network timers.

-p, --program
Show the process ID and name of the program owning the socket.

-t, --tcp
Limit report to information on TCP sockets.

-u, --udp
Limit report to information on UDP sockets.

-v, --verbose
Verbose mode.

-w, --raw
Limit report to information on raw sockets.
newaliases

newaliases
Rebuild the mail aliases database, /etc/aliases, after a change. Return 0 on success, or a number greater than 0 if there was an error. newaliases must be run whenever /etc/aliases has been changed for the change to take effect. newaliases is a sendmail command and is identical to sendmail -bi.

newgrp

newgrp [-] [group]
Change user’s current group ID to the specified group. If no group is specified, change to the user’s login group. The new group is then used for checking permissions. If - is specified, also reinitialize the user’s environment.

newusers

newusers file
System administration command. Create or update system users from entries in file. Each line in file has the same format as an entry in /etc/passwd, except that passwords are unencrypted and group IDs can be given as a name or number. During an update, the password age field is ignored if the user already exists in the /etc/shadow password file. If a group name or ID does not already exist, it will be created. If a home directory does not exist, it will be created.

nfsd

rpc.nfsd [options] n
System administration command. Launch n kernel threads for the Network File System (NFS) kernel module. The threads will handle client filesystem requests. By default, only one thread is launched. Most systems require eight or more, depending on the number of NFS clients using the system. Use nfsstat to check NFS performance.

Option
-H hostname, --host hostname
Specify the hostname or address that will accept NFS requests. The default is to accept on all addresses.
-N version, --no-nfs-version version
Do not provide support for the specified NFS version. By default support is provided for versions 2, 3, and 4.
-p port, --port hostname
Listen for NFS requests on port instead of the default port 2049.
-T, --no-tcp
Do not accept TCP requests.
-U, --no-udp
Do not accept UDP requests.
nice

nice [option] [command [arguments]]

Execute a command (with its arguments) with lower priority (i.e., be “nice” to other users). With no command, nice prints the current scheduling priority (niceness). If nice is a child process, it prints the parent process’s scheduling priority. Niceness has a range of -20 (highest priority) to 19 (lowest priority).

Options
--help
Print a help message and then exit.

-o adjustment, -adjustment, --adjustment=adjustment
Run command with niceness incremented by adjustment (1–19); default is 10. A privileged user can raise the priority by specifying a negative adjustment (e.g., -5).

--version
Print version information and then exit.

nfsstat

nfsstat [options]

System administration command. Print statistics on NFS and remote procedure call (RPC) activity for both clients and server.

Options
-2, -3, -4
 Shows server statistics for version 2, 3, or 4.
-c
 Display only client-side statistics.
-m, --mounts
 Show statistics for mounted filesystems.
-n
 Display only NFS statistics.
-o facility
 Only display statistics for the specified facility. The following are valid values for facility:
 all All of the following facilities.
 fh Server file handle cache.
 net Network layer statistics.
 nfs Same as -n.
 rc Server request reply cache.
 rpc Same as -r.
-r
 Display only RPC statistics.
-s
 Display only server-side statistics.
-z
 Reset statistics to zero. Use with above options to zero out specific sets of statistics (e.g., -zr to reset the RPC statistics).
-Z, --sleep
 Take a snapshot of current stats then sleep until receiving a SIGINT signal (e.g., Ctrl-C) then take another snapshot and display a diff of the two.
nm

nm [options] [objfiles]
Print the symbol table in alphabetical order from one or more object
files. If no object files are specified, perform operations on a.out.
Output includes each symbol’s value, type, size, name, and so on. A
key letter categorizing the symbol can also be displayed.

Options
-a, --debug-syms
 Print debugger symbols.
--defined-only
 Display only defined symbols.
-f format, --format=format
 Specify output format (bsd, sysv, or posix). Default is bsd.
-g, --extern-only
 Print external symbols only.
--help
 Print help message, then exit.
-l, --line-numbers
 Print source filenames and line numbers for each symbol from
 available debugging information.
-n, -v, --numeric-sort
 Sort the external symbols by address.
-p, --no-sort
 Don’t sort the symbols at all.
-r, --reverse-sort
 Sort in reverse, alphabetically or numerically.
-s, --print-armap
 Include mappings stored by ar and ranlib when printing
 archive symbols.
--size-sort
 Sort by size.
-t radix, --radix=radix
 Use the specified radix for printing symbol values. Accepted
 values are d for decimal, o for octal, and x for hexadecimal.
--target=format
 Specify an object code format other than the system default.
-u, --undefined-only
 Report only the undefined symbols.
-A, -o, --print-file-name
 Print input filenames before each symbol.
-B
 Same as --format=bsd.
-C, --demangle[=style]
 Translate low-level symbol names into readable versions. You
 may specify a style to use when demangling symbol names
 from a foreign compiler.
nsupdate

-D, --dynamic
Print dynamic, not normal, symbols. Useful only when working with dynamic objects (some kinds of shared libraries, for example).

-P, --portability
Same as -f posix.

-S, --print-size
Print the size of defined symbols.

-V, --version
Print nm’s version number on standard error.

nohup

nohup command [arguments]

nohup option
Run the named command with its optional command arguments, continuing to run it even after you log out (make command immune to hangups—i.e., no hangup). Terminal output is appended to the file nohup.out by default, or $HOME/nohup.out if nohup.out can’t be written to. Modern shells preserve background commands by default; this command is necessary only in the original Bourne shell.

Options

--help
Print usage information and exit.

--version
Print version information and exit.

nslookup

nslookup
TCP/IP command. Query Internet domain nameservers. nslookup is deprecated; its functionality is replaced by the dig and host commands. nslookup may not be included in some distributions.

nsupdate

nsupdate [options] [filename]
System administration command. Interactively submit dynamic DNS update requests to a nameserver. Use nsupdate to add or remove records from a zone without manually editing the zone file. Commands may be entered interactively or read from filename. An update message is built from multiple commands, some establishing prerequisites, some adding or deleting resource records. Messages are executed as a single transaction. A blank line or the send command will send the current message. Lines beginning with a semicolon are treated as comments. For additional information on dynamic DNS updates, see RFC 2136.
nsupdate

Options
- `d` Print additional tracing information usable for debugging.
- `-k keyfile`
 Read encrypted transaction signature key from `keyfile`. The key should be encrypted using the HMAC-MD5 algorithm. Keyfiles are generated by the `dnssec-keygen` command.
- `-r n`
 Retry UDP `n` times. Default is 3.
- `-t seconds`
 Set request timeout. Default is 300 seconds. 0 disables timeout.
- `-u seconds`
 Set UDP retry interval. Default is 3 seconds. If 0, then interval is computed from the time out and retry values.
- `-v`
 Use TCP instead of UDP to send update requests.
- `-y keyname:secret`
 Generate transaction signature from specified `keyname` and `secret`.

Interactive commands
- `answer`
 Print answer.
- `class classname`
 Set default class to `classname` instead of the normal default `IN`.
- `key keyname secret`
 Generate transaction signature from specified `keyname` and `secret`. This command overrides command-line options `-k` or `-y`.
- `local address [port]`
 Use local `address` and, if specified, `port` to send updates.
- `prereq criteria`
 Specify prerequisites for updating a domain. Provide the criteria in one of the following forms:
 - `nxdomain domain-name`
 Perform updates only if there are no preexisting records with the name `domain-name`.
 - `nxrrset domain-name [class] type`
 Perform updates only if there is no preexisting record of the specified `type` and `class` for `domain-name`. When no `class` is given, `IN` is assumed.
 - `yxdomain domain-name`
 Perform updates only if there is a preexisting record with the name `domain-name`.
 - `yxrrset domain-name [class] type [data]`
 Perform updates only if there is a preexisting record of the specified `type` and `class` for `domain-name`. If `data` is given, the RDATA of the specified resource must match it exactly. When no `class` is given, `IN` is assumed.
- `send`
 Send the current message. Same as entering a blank line.
server `servername [port]`
Update records on DNS server `servername` instead of the master server listed in the MNAME field of the appropriate zone’s SOA record.

show
Print all commands in current message.

update `command`
Update the records according to one of the following commands:
- `add domain-name [ttl] [class] type data`
 Add a resource record with the specified values.
- `delete domain-name [ttl] [class] [type [data]]`
 Delete resource records for `domain-name`. The `ttl` field is always ignored, but if other fields are given, only delete records that match all criteria.

zone `zonename`
Apply updates to the specified `zonename`. If no `zone` command is given, `nsupdate` attempts to determine the correct zone based on other input.

objcopy

`objcopy [options] infile [outfile]`
Copy the contents of the input object file to another file, optionally changing the file format in the process (but not the endianness). If `outfile` is not specified, `objcopy` creates a temporary file and renames it to `infile` when the copy is complete, destroying the original input file. The GNU Binary File Descriptor (BFD) library is used to read and write the object files.

Options
- `--add-section section=file`
 Add a new section to the output object file with the specified section name and the contents taken from the specified file. Available only for formats that allow arbitrarily named sections.
- `--alt-machine-code=n`
 If the output architecture has alternate machine codes, use the `n`th code instead of the default.
- `-b n, --byte=n`
 Copy only every `n`th byte. Header data is not affected. The value of `n` can be from 0 to `interleave-1`, where `interleave` is specified by `-i` (default is 4). This option is useful for creating files to program ROM and is typically used with `srec` as the output format.
- `-B bfdarch, --binary-architecture=bfdarch`
 Set the output architecture to `bfdarch` (e.g., i386) for transforming a raw binary file into an object file. Otherwise, this option is ignored. After the conversion, your program can access data inside the created object file by referencing the special symbols `_binary_objfile_start`, `_binary_objfile_end`, and `_binary_objfile_size`.
--change-addresses=incr, **--adjust-vma=incr**

Change the VMA and LMA addresses of all sections, plus the start address, by adding `incr`. Changing section addresses is not supported by all object formats. Sections are not relocated.

--change-leading-char

For object formats that use a special character (such as an underscore) to begin symbols, change the leading character when converting between formats. If the character is the same in both formats, the option has no effect. Otherwise, it adds, removes, or changes the leading character as appropriate for the output format.

--change-section-address section{=|+|-}val,

--adjust-section-vma section{=|+|-}val

Set or change the VMA and LMA addresses of the specified section. With `=`, set the section address to the specified value; otherwise, add or subtract the value to get the new address.

--change-section-lma section{=|+|-}val

Set or change the LMA address of the specified section. With `=`, set the section address to the specified value; otherwise, add or subtract the value to get the new address.

--change-section-vma section{=|+|-}val

Set or change the VMA address of the specified section. With `=`, set the section address to the specified value; otherwise, add or subtract the value to get the new address.

--change-start incr, **--adjust-start incr**

Add `incr` to the start address to get a new start address. Not supported by all object formats.

--change-warnings, **--adjust-warnings**

Issue a warning if the section that is specified in one of the options **--change-section-address**, **--change-section-lma**, or **--change-section-vma** does not exist.

--debugging

Convert debugging information if possible.

-F bfdname, --target=bfdname

Set the binary format for both input and output files to the binary file descriptor name `bfdname`. No format translation is done. Use the `-h` option for a list of supported formats for your system.

-g, --strip-debug

Do not copy debugging information.

-G symbol, --keep-global-symbol=symbol

Copy only the specified global symbol, making all other symbols local to the file. May be specified multiple times.

--gap-fill=val

Fill gaps between sections with the specified value; applies to the load address (LMA) of the sections.
objcopy

-h, --help
 Print help information, including a list of supported target object formats, then exit.

-i interleave, --interleave=interleave
 Copy one out of every interleave bytes. Use -b to set the byte to copy (default is 4). This option is ignored if -b is not specified.

-I bfdname, --input-target=bfdname
 Set the binary file format of the input file using its binary file descriptor name, bfdname.

-j section, --only-section=section
 Copy only the specified section. May be specified multiple times.

-K symbol, --keep-symbol=symbol
 Copy only the specified symbol from the source file. May be specified multiple times.

--keep-global-symbols=filename
 Apply the option --keep-global-symbol to each symbol listed in the specified file. The file should have one symbol per line, with comments beginning with a hash mark (#). May be specified multiple times.

--keep-symbols=filename
 Apply the option --keep-symbol to each symbol listed in the specified file. The file should have one symbol per line, with comments beginning with a hash mark (#). May be specified multiple times.

-L symbol, --localize-symbol=symbol
 Make the specified symbol local. May be specified multiple times.

--localize-symbols=filename
 Apply the option --localize-symbol to each symbol listed in the specified file. The file should have one symbol per line, with comments beginning with a hash mark (#). May be specified multiple times.

-N symbol, --strip-symbol=symbol
 Do not copy the specified symbol. May be specified multiple times.

--no-change-warnings, --no-adjust-warnings
 Do not issue a warning even if the section specified in one of the options --change-section-address, --change-section-lma, or --change-section-vma does not exist.

-O bfdname, --output-target=bfdname
 Set the binary file format of the output file using its binary file descriptor name, bfdname. The format srec generates S-records (printable ASCII versions of object files), and binary generates a raw binary file. Use -h for other available formats.
objcopy

-p, --preserve-dates
 Preserve the input file’s access and modification dates in the output file.

--pad-to=addr
 Pad the output file up to the load address. Use the fill value specified by --gap-fill (default is 0).

-R section, --remove-section=section
 Do not copy any section with the specified name. May be specified multiple times.

--redefine-sym old=new
 Change the name of the symbol old to new.

--remove-leading-char
 If the first character of a global symbol is a special character (such as an underscore) used by the input object file format, remove it. Unlike --change-leading-char, this option always changes the symbol name when appropriate, regardless of the output object format.

--rename-section oldname=newname[,flags]
 Rename a section from oldname to newname, optionally also changing the flags to flags.

-S, --strip-all
 Do not copy relocation and symbol information.

--set-section-flags section=flags
 Set flags for the specified section as a comma-separated string of flag names. Not all flags are meaningful for all object formats. The possible flags are alloc, code, contents, data, debug, load, noload, readonly, rom, and share.

--set-start=val
 Set the start address of the new file to the specified value. Not supported by all object formats.

--srec-forceS3
 Force all srec output records to be type S3 records.

--srec-len=ival
 Set the maximum length of srec output records to the specified value. The length includes the address, data, and crc fields.

--strip-symbols=filename
 Apply the option --strip-symbol to each symbol listed in the specified file. The file should have one symbol per line, with comments beginning with a hash mark (#). May be specified multiple times.

--strip-unneeded
 Strip all symbols not needed for relocation processing.

-v, --verbose
 Run in verbose mode, listing all object files modified; for archives, list all archive members.
-V, --version
Print version information and exit.

-W symbol, --weaken-symbol=symbol
Make the specified symbol weak. May be specified multiple times.

--weaken
Make all global symbols weak.

--weaken-symbols=filename
Apply the option --weaken-symbol to each symbol listed in
the specified file. The file should have one symbol per line,
with comments beginning with a hash mark (#). May be spec-
ified multiple times.

-x, --discard-all
Do not copy nonglobal symbols.

-X, --discard-locals
Do not copy compiler-generated local symbols (usually those
starting with L or ..).

objdump

objdump [options] objfiles

Display information about one or more object files. If an archive is
specified, **objdump** displays information on each object file in the
archive. At least one of the options -a, -d, -D, -f, -g, -H, -p, -r,
-S, -t, -T, -V, or -x must be given to tell **objdump** what information
to show.

Options

-a, --archive-header
If any input files are archives, display the archive header infor-
mation. The output includes the object file format of each
archive member.

--adjust-vma=offset
Add offset to all section headers before dumping information.
Useful if the section addresses do not correspond to the
symbol table.

-b bfdname, --target=bfdname
Set the binary file format using its binary file descriptor name,
bfdname. Use the -h option for a list of supported formats for
your system.

-C [style], --demangle=[style]
Decode (demangle) low-level symbol names into user-level
names, optionally specifying a mangling style. Removes any
initial underscores and makes C++ function names readable.

-d, --disassemble
Display assembler mnemonic names for the machine instruc-
tions. Disassemble only sections that are expected to contain
instructions.
-D, --disassemble-all
 Disassemble all sections, not just those expected to contain instructions.

-EB, --endian=big
-EL, --endian=little
 Specify whether the object files are big- or little-endian, for disassembling. Useful for disassembling formats such as S-records (printable ASCII versions of object files) that do not include that information.

-f, --file-header
 Display overall header summary information.

--file-start-context
 When using -S and displaying source code from a file that hasn’t been displayed yet, include context from the start of the file.

-g, --debugging
 Display debugging information.

-G, --stabs
 Display any stabs (debugging symbol table entries) information, in addition to the contents of any sections requested.

-h, --section-header, --header
 Display section-header summary information.

-H, --help
 Display help information and exit.

-i, --info
 Display the architectures and object formats available on your system for use with -b or -m.

-j name, --section=name
 Display information for section name.

-l, --line-numbers
 Label the display with filename and source code line numbers corresponding to the object code or relocation entries shown. Use with -d, -D, or -r.

-m arch, --architecture=arch
 Specify the architecture for disassembling object files. Useful when disassembling files such as S-records that do not include this information.

-M options, --disassembler-options=options
 Pass target-specific information to the disassembler. Supported only on some targets.

--no-show-raw-instr
 Do not show instructions in hexadecimal when disassembling. This is the default with --prefix-addresses.

-p, --private-headers
 Display information specific to the object format. For some formats, no additional information is displayed.
od

od [options] [files]
od --traditional [file] [[+]{offset [[+]}label]]

Dump the specified files to standard output. The default is to dump in octal format, but other formats can be specified. With multiple files, concatenate them in the specified order. If no files are specified or file is -, read from standard input. With the second form, using the --traditional option, only one file can be specified.
Options
For the following options, see the upcoming “Arguments” section for an explanation of the arguments bytes, size, and type. If no options are specified, the default is -A o -t d2 -w 16.

-a Print as named characters. Same as -t a.
-A radix, --address-radix=radix
 Specify the radix (base) for the file offsets printed at the beginning of each output line. The possible values are:
 d Decimal.
 n None; do not print an offset.
 o Octal; the default.
 x Hexadecimal.
-b Print as octal bytes. Same as -t o1.
-c Print as ASCII characters or backslash escapes. Same as -t c.
-d Print as unsigned decimal shorts. Same as -t u2.
-f Print as floating-point. Same as -t fF.
--help
 Display a usage message and exit.
-i Print as decimal integers. Same as -t dI.
-j bytes, --skip-bytes=bytes
 Skip the specified number of input bytes before starting.
-l Print as decimal longs. Same as -t dL.
-N bytes, --read-bytes=bytes
 Format and print only the specified number of input bytes.
-o Print as octal shorts. Same as -t o2.
-s Print as decimal shorts. Same as -t d2.
-S bytes, --strings[=bytes]
 Output strings that are at least bytes ASCII graphic characters long (default is 3 if bytes is not specified for --strings).
-t type, --format=type
 Format the output according to type, where type is a string of one or more of the characters listed in the “Arguments” section. If more than one type is specified, each output line is written once in each specified format. If a trailing z is appended to type, od appends any printable characters to the end of each output line.
--traditional
 Accept arguments in the traditional form, which takes a single file specification with an optional offset and label, as shown in the second form of the command. offset is an octal number indicating how many input bytes to skip over. label specifies an initial pseudo-address, which is printed in parentheses after any normal address. Both the offset and the label can begin with an optional plus sign (+), and can have a trailing decimal point
od

(.) to force the offset to be interpreted as a decimal number
and/or a trailing b to multiply the number of bytes skipped by
offset by 512.

-v, --output-duplicates
Print all lines, including duplicates. By default, only the first of
a series of identical lines is printed, and an asterisk is printed
at the beginning of the following line to indicate that there
were duplicates.

--version
Display version information and exit.

-w bytes, --width[=bytes]
Dump bytes input bytes to each output line. Defaults to 16 if
this option is omitted. If --width is specified but bytes is
omitted, the default is 32.

-x Print as hexadecimal shorts. Same as -t x2.

Arguments

bytes
Specify a number of bytes. Treated as hexadecimal if it begins
with 0x or 0X, as octal if it begins with 0, or as decimal other-
wise. Append b to multiply by 512, k to multiply by 1024, or
m to multiply by 10,248,576.

size
Specified as part of type to indicate how many bytes to use in
interpreting each number. Types a and c do not take a size.
For other types, size is a number. For type f, size can also be
one of the following:
D Double.
F Float.
L Long double.

For the remaining types (d, o, u, x), size can be one of the
following in addition to a number:
C Character.
I Integer.
L Long.
S Short.

type
Specify the format type. The possible types are:
a Named character.
c ASCII character or backslash escape.
d size
Signed decimal, with size bytes per integer.
fs size
Floating point, with size bytes per integer.
openvt

- o
 Octal, with size bytes per integer.
- u
 Unsigned decimal, with size bytes per integer.
- x
 Hexadecimal, with size bytes per integer.

openvt openvt [options] [--] [command] [arguments]

Locate the first available virtual terminal (VT) and run command with any arguments given. If no command is specified, the shell $SHELL is started.

Options
- -- Indicates the end of openvt options. Required before the command name to pass options to the command.
 -c vt
 Use the specified VT number instead of the first available. You must have write access to vt.
 -e
 Execute command without forking. For use in /etc/inittab, rather than on the command line.
 -l
 Run the command as a login shell, prepending a dash (-) to the command name.
 -s
 Switch to the new VT when the command is started and make it the current VT.
 -u
 Determine the owner of the current VT, and log in as that user. You must be root to use this option, which is also suitable for calling by init. Don’t use with -l.
 -v
 Verbose mode.
 -w
 Wait for the command to complete. If used with -s, switch back to the controlling terminal when the command is done.

passwd

passwd [options] [user]

Create or change a password associated with a user name. Only the owner or a privileged user may change a password. Owners need not specify their user name. Users can change their own passwords. For all other operations, you must be root.

Options
- -d, --delete
 Delete the password for the user’s account.
- -f, --force
 Force the operation. Overrides -u.
- ?, --help
 Display a help message describing the options. See also --usage.
- i days, --inactive=days
 Set the number of days after a password has expired before the account is disabled.
-k, --keep-tokens
Keep passwords (authentication tokens) that have not expired.

-l, --lock
Lock the user’s account.

-n days, --minimum=days
Set the minimum number of days that the password is valid.

-S, --status
Print the status of the user’s password.

--stdin
Read new passwords from standard input.

-u, --unlock
Unlock the user’s account

--usage
Display a brief usage message. See also --help.

-w days, --warning=days
Set the number of days of warning users will get before their password expires.

-x days, --maximum=days
Set the maximum number of days that the password is valid.

Paste

paste [options] files
Merge corresponding lines of one or more files into tab-separated vertical columns and write to standard output. Use - to read from standard input, instead of specifying a file. See also cut, join, and pr.

Options

-d char, --delimiters=char
Separate columns with char instead of a tab. You can separate columns with different characters by supplying more than one char.

--help
Print a help message and then exit.

-s, --serial
Merge lines from one file at a time.

--version
Print version information and then exit.

Examples

Create a three-column file from files x, y, and z:

```
paste x y z > file
```

List users in two columns:

```
who | paste - -
```

Merge each pair of lines into one line:

```
paste -s -d"\t\n" list
```
patch

patch [options] [original [patchfile]]

Apply the patches specified in patchfile to original. Replace the original with the new, patched version; move the original to original.org or original~. The patch file is a difference listing produced by the diff command.

Options
- b, --backup
 Back up the original file.
-B prefix, --prefix=prefix
 Prepend prefix to the backup filename.
--backup-if-mismatch, --no-backup-if-mismatch
 When not backing up all original files, these options control whether a backup should be made when a patch does not match the original file. The default is to make backups unless --posix is specified.
-c, --context
 Interpret patchfile as a context diff.
-d dir, --directory=dir
 cd to directory dir before beginning patch operations.
-D string, --ifdef=string
 Mark all changes with:
 #ifdef
 string
 #endif
--dry-run
 Print results of applying a patch, but don’t change any files.
-e, --ed
 Treat the contents of patchfile as ed commands.
-E, --remove-empty-files
 If patch creates any empty files, delete them.
-f, --force
 Force all changes, even those that look incorrect. Skip patches if the original file does not exist; force patches for files with the wrong version specified; assume patches are never reversed.
-F num, --fuzz=num
 Specify the maximum number of lines that may be ignored (fuzzed over) when deciding where to install a hunk of code.
 The default is 2. Meaningful only with context diffs.
-g num, --get num
 Specify whether to check the original file out of source control if it is missing or read-only. If num is a positive number, get the file. If it is negative, prompt the user. If it is 0, do not check files out of source control. The default is negative or the value of the PATCH_GET environment variable when set, unless the --posix option is given. In that case, the default is 0.
--help
Print help message, then exit.

-i file, --input=file
Read patch from file instead of stdin.

-l, --ignore-whitespace
Ignore whitespace while pattern matching.

-n, --normal
Interpret patch file as a normal diff.

-N, --forward
Ignore patches that appear to be reversed or to have already
been applied.

-o file, --output=file
Print output to file.

-p num, --strip=num
Specify how much of preceding pathname to strip. A num of 0
strips everything, leaving just the filename. 1 strips the leading
/. Each higher number after that strips another directory from
the left.

--posix
Conform more strictly to the POSIX standard.

--quoting-style=style
Set the quoting style used when printing names. The default
style is shell, unless set by the environment variable
QUOTING_STYLE. style may be one of the following:

- c Quote as a C language string.
- escape Like c, but without surrounding double-quote characters.
- literal Print without quoting.
- shell Quote for use in shell when needed.
- shell-always Quote for use in shell even if not needed.

-r file, --reject-file=file
Place rejects (hunks of the patch file that patch fails to place
within the original file) in file. Default is original.rej.

-R, --reverse
Do a reverse patch: attempt to undo the damage done by
patching with the old and new files reversed.

-s, --silent, --quiet
Suppress commentary.

-t, --batch
Force changes as with -f but make different decisions. Skip
patches if headers don’t contain filenames; skip patches for
files with the wrong version specified; assume patches are
reversed if they look like they are. Also see -Z.
-T, --set-time
 When original file timestamps match the times given in the
 patch header, set timestamps for patched files according to the
 context diff headers. Use option -f to force date changes. Assume timestamps are in local time.
-u, --unified
 Interpret patch file as a unified context diff.
-v, --version
 Print version number and exit.
-V method, --version-control=method
 Specify method for creating backup files (overridden by -B):
 t, numbered
 Make numbered backups.
 nil, existing
 Back up files according to preexisting backup schemes, with simple backups as the default. This is patch’s default behavior.
 never, simple
 Make simple backups.
--verbose
 Verbose mode.
-Y prefix, --basename-prefix=prefix
 Use the specified prefix with a file’s basename to create backup filenames. Useful for specifying a directory.
-z suffix, --suffix=suffix
 Back up the original file in original.suffix.
-Z, --set-utc
 When original file timestamps match the times given in the patch header, set timestamps for patched files according to the context diff headers. Use option -f to force date changes. Assume timestamps are in Coordinated Universal Time (UTC). Also see -T.

pathchk
 pathchk [options] filenames
 Determine validity and portability of filenames. Specifically, determine if all directories within the path are searchable and if the length of the filenames is acceptable.

Options
 --help
 Print a help message and then exit.
 -p Check for most POSIX systems.
 -P Check for empty names and names that start with -.
 --portability
 Check portability for all POSIX systems. Equivalent to -p -P.
 --version
 Print version information and then exit.
pccardctl

pccardctl command

System administration command. Monitor and control PCMCIA sockets. Commands operate on a named card socket number, or all sockets if no number is given.

Commands

- **config [socket]**
 - Display current socket configuration.

- **eject [socket]**
 - Prepare the system for the card(s) to be ejected.

- **ident [socket]**
 - Display card identification information.

- **info [socket]**
 - Display card identification information as Bourne shell variable definitions for use in scripts.

- **insert [socket]**
 - Notify system that a card has been inserted.

- **resume [socket]**
 - Restore power to socket and reconfigure for use.

- **status [socket]**
 - Display current socket status.

- **suspend [socket]**
 - Shut down device and cut power to socket.

pidof

pidof [options] programs

Display the process IDs of the listed program or programs. *pidof* is actually a symbolic link to *killall*.

Options

- `-c` Return only processes running in the same root directory. Ignored for nonroot users.
- `-o pid`
 - Omit all processes with the specified process ID. Can be specified more than once to omit multiple IDs.
- `-s` Return a single process ID.
- `-x` Also return process IDs of shells running the named scripts.

ping

p ping [options] host

System administration command. Confirm that a remote host is online and responding. *ping* is intended for use in network testing, measurement, and management. Because of the load it can impose on the network, it is unwise to use *ping* during normal operations or from automated scripts.
Options

- **-a** Make `ping` audible. Beep each time response is received.
- **-A** Adapt to return interval of packets. Like `-f ping`, sends packets at approximately the rate at which they are received. This option may be used by an unprivileged user.
- **-b** Ping a broadcast address.
- **-B** Bind to original source address and do not change.
- **-c count** Stop after sending (and receiving) `count ECHO RESPONSE` packets.
- **-f** Flood `ping`-output packets as fast as they come back or 100 times per second, whichever is greater. This can be very hard on a network and should be used with caution. Only a privileged user may use this option.
- **-i wait** Wait `wait` seconds between sending each packet. Default is to wait one second between each packet. This option is incompatible with the `-f` option.
- **-I name** Set source address to interface `name`. `name` may also be specified as an IP address.
- **-l preload** Send `preload` number of packets as fast as possible before falling into normal mode of behavior.
- **-L** If destination is a multicast address, suppress loopback.
- **-M hint** Specify Path MTU Discovery strategy. Accepted values are `do`, `want`, or `dont`.
- **-n** Numeric output only. No attempt will be made to look up symbolic names for host addresses.
- **-p digits** Specify up to 16 pad bytes to fill out packet sent. This is useful for diagnosing data-dependent problems in a network. `digits` are in hex. For example, `-p ff` will cause the sent packet to be filled with all 1s.
- **-q** Quiet output—nothing is displayed except the summary lines at startup time and when finished.
- **-Q tos** Set Quality of Service on ICMP datagrams.
- **-r** Bypass the normal routing tables and send directly to a host on an attached network.
- **-R** Set the IP record route option, which will store the route of the packet inside the IP header. The contents of the record route will be printed if the `-v` option is given, and will be set on return packets if the target host preserves the record route option across echoes or if the `-l` option is given.
portmap

-s packetsize
Specify number of data bytes to be sent. Default is 56, which translates into 64 ICMP data bytes when combined with the 8 bytes of ICMP header data.

-S size
Set send buffer (SNDBUF) size. The default is the size of one packet.

-t n
Set the IP Time to Live to n seconds.

-T option
Set IP timestamp options. Accepted option values are:

tsonly
Timestamps only.
tsandaddr
Timestamps and addresses.
tsprespec hosts
Timestamps with prespecified hops of one or more hosts.

-U Use older ping behavior and print full user-to-user latency instead of network round-trip time.

-v Verbose; list ICMP packets received other than ECHO_RESPONSE.

-V Print version, then exit.

-w n
Exit ping after n seconds.

-W n
When waiting for a response, time out after n seconds.

pmap

dmap [options] pids
Display the memory maps of a process.

Options
-d Display the offset and device number of each mapping.
-q Be more quiet. Displays less header and footer information.
-x Provide a more detailed and verbose display.

portmap

rpc.portmap [options]
NFS/NIS command. RPC program number to IP port mapper. portmap is a server that converts RPC program numbers to IP port numbers. It must be running in order to make RPC calls. When an RPC server is started, it tells portmap which port number it is listening to and which RPC program numbers it is prepared to serve. When a client wishes to make an RPC call to a given program number, it first contacts portmap on the server machine to determine the port number where RPC packets should be sent. portmap must be the first RPC server started. On newer systems portmap is deprecated. Use rpcbind instead.
poweroff

Options
-\(d\) Run portmap in debugging mode. Does not allow portmap to run as a daemon.
-\(l\) Bind to loopback device. This only works from the localhost.
-\(v\) Verbose mode.

poweroff poweroff \[options\]
System administration command. Close out filesystems, shut down the system, and power off. Because this command immediately stops all processes, it should be run only in single-user mode. If the system is not in runlevel 0 or 6, poweroff calls shutdown -h, then performs a poweroff.

Options
-\(d\) Suppress writing to /var/log/wtmp.
-\(f\) Call reboot or halt and not shutdown, even when shutdown would normally be called. This option is used to force a hard halt or reboot.
-\(h\) Place hard drives in standby mode before halt or poweroff.
-\(i\) Shut down network interfaces before reboot.
-\(n\) Suppress normal call to sync.
-\(w\) Suppress normal execution; simply write to /var/log/wtmp.

pppd pppd \[tty\] \[speed\] \[options\]
System administration command. PPP stands for the Point-to-Point Protocol; it allows datagram transmission over a serial connection. pppd attempts to configure tty for PPP (searching in /dev) or, by default, the controlling terminal. You can also specify a baud rate of speed. pppd accepts many options. Only the most common options are listed here.

Options
\[local_IP_address]\:[remote_IP_address]\nSpecify the local and/or remote interface IP addresses, as hostnames or numeric addresses.

asyncmap map
Specify which control characters cannot pass over the line. map should be a 32-bit hex number, where each bit represents a character to escape. For example, bit 00000001 represents the character 0x00; bit 80000000 represents the character 0x1f or _. You may specify multiple characters.

auth
Require self-authentication by peers before allowing packets to move.
call file
Read options from file in /etc/ppp/peers/. Unlike the file option, call file may contain privileged options, even when pppd is not run by root.

connect command
Connect as specified by command, which may be a binary or shell command.

crtscts
Use hardware flow control.

debug
Log contents of control packets to syslogd.

defaultroute
Add a new default route in which the peer is the gateway. When the connection shuts down, remove the route.

nodetach
Operate in the foreground. By default, pppd forks and operates in the background.

disconnect command
Close the connection as specified by command, which may be a binary or shell command.

escape character-list
Escape all characters in character-list, which should be a comma-separated list of hex numbers. You cannot escape 0x20-0x3f or 0x5e.

file file
Consult file for options.

init script
Run specified command or shell script to initialize the serial line.

lock
Allow only pppd to access the device.

mru bytes
Refuse packets of more than bytes bytes.

mtu bytes
Do not send packets of more than bytes bytes.

passive, -p
Do not exit if peer does not respond to attempts to initiate a connection. Instead, wait for a valid packet from the peer.

silent
Send no packets until after receiving one.

Files
/var/run/pppn.pid
pppd’s process ID. The n in pppn.pid is the number of the PPP interface unit corresponding to this pppd process.
/etc/ppp/ip-up
 Binary or script to be executed when the PPP link becomes active.

/etc/ppp/ip-down
 Binary or script to be executed when the PPP link goes down.

/etc/ppp/pap-secrets
 Contains usernames, passwords, and IP addresses for use in PAP authentication.

/etc/ppp/options
 System defaults. Options in this file are set before the command-line options.

~/.ppprc
 The user’s default options. These are read before command-line options but after the system defaults.

/etc/ppp/options.ttyname
 Name of the default serial port.

pr [options] [files]
Convert a text file or files to a paginated or columned version, with headers, suitable for printing. If - is provided as the filename, read from standard input.

Options
 +beg_pag[:end-pag], --pages=beg_pag[:end-pag]
 Begin printing on page beg_pag and end on end-pag if specified.

 -num_cols, --columns=num_cols
 Set the number of columns to print, balancing the number of lines in the columns on each page. Print vertical columns, except with -a.

 -a, --across
 Print columns horizontally, not vertically.

 -c, --show-control-chars
 Convert control characters to hat notation (such as ^C), and other unprintable characters to octal backslash format.

 -d, --double-space
 Double space.

 -D format, --date-format=format
 Format the header date using format. See the date command for the possible formats.

 -e[tab-char][width], --expand-tabs=[tab-char][width]
 Convert tabs (or tab-chars) to spaces. If width is specified, convert tabs to width characters (default is 8).

 -f, -F, --form-feed
 Separate pages with form feeds, not newlines. With -F, print a three-line page header; otherwise, print a five-line header and trailer.
-h header, --header=header
 Use header for the header instead of the filename. The header is centered.

--help
 Print a help message and then exit.

-i[tab=width]]
--output-tabs[=tab=width]]
 Replace spaces with tabs on output. You can specify an alternative tab character (default is tab) and width (default is 8).

-J, --join-lines
 Merge full lines; ignore -W if set.

-l lines, --length=lines
 Set page length to lines (default is 66). If lines is less than 10, omit headers and footers. Thus the default number of lines of text (i.e., not header or trailer) is 56, or 63 with -F.

-m, --merge
 Print all files, one per column.

-n[delimiter=digits], --number-lines[=delimiter=digits]]
 Number columns, or, with the -m option, number lines. Append delimiter to each number (default is a tab) and limit the size of numbers to digits (default is 5).

-N num, --first-line-number=num
 Start counting with num at the first line of the first page printed. Also see +beg_page.

-o width, --indent=width
 Indent left margin to width. Does not affect the page width set with -w or -W.

-r, --no-file-warnings
 Continue silently when unable to open an input file.

-s[delimiter], --separator[=delimiter]
 Separate columns with the single-character delimiter (default is a tab) instead of spaces.

-S[string], --sep-string[=string]
 Separate columns with string. Default is a tab with -J and a space otherwise.

-t, --omit-header
 Suppress headers, footers, and fills at end of pages.

-T, --omit-pagination
 Like -t but also suppress form feeds.

-v, --show-non-printing
 Convert unprintable characters to octal backslash format.

-w page_width, --width=page_width
 Set the page width to page_width characters for multicolumn output. Default is 72.
praliases

- \texttt{W page_width}, \texttt{--page-width=page_width}
 Set the page width to always be \texttt{page_width} characters. Lines longer than the specified width are truncated unless \texttt{-J} is also specified. Default is 72.

\texttt{--version}
 Print version information and then exit.

praliases

\texttt{praliases [options] [keys]}
System administration command. \texttt{praliases} prints the current \texttt{sendmail} mail aliases. (Usually defined in the \texttt{/etc/aliases} or \texttt{/etc/aliases.db} file.) Limit output to the specified \texttt{keys} when given.

\textbf{Options}

- \texttt{-f file}
 Read the aliases from the specified file instead of \texttt{sendmail}'s default alias files.

- \texttt{-C file}
 Read \texttt{sendmail} configuration from the specified file instead of from \texttt{/etc/mail/sendmail.cf}.

printenv

\texttt{printenv [variables]}
\texttt{printenv option}
Print values of all environment variables or, optionally, only the specified \texttt{variables}.

\textbf{Options}

- \texttt{--help}
 Print usage information and exit.

- \texttt{--version}
 Print version information and exit.

printf

\texttt{printf formats [strings]}
\texttt{printf option}
Print \texttt{strings} using the specified \texttt{formats}. \texttt{formats} can be ordinary text characters, \texttt{C}-language escape characters, \texttt{C} format specifications ending with one of the letters \texttt{diouxXfeEgGcs} or, more commonly, a set of conversion arguments listed here.

\textbf{Options}

- \texttt{--help}
 Print usage information and exit.

- \texttt{--version}
 Print version information and exit.

\textbf{Arguments}

\texttt{%%}
Print a single \%

\texttt{\%b}
Print \texttt{string} with \texttt{\} escapes interpreted.
%s Print the next string.
%tn%s Print the nth string.
%[-][m].n%s Print the next string, using a field that is m characters wide.
Optionally, limit the field to print only the first n characters of
string. Strings are right-adjusted unless the left-adjustment
flag, -, is specified.

Examples
printf '%s %s\n' "My files are in" $HOME
printf '%-25.15s %s\n' "My files are in" $HOME

ps [options]
Report on active processes. ps has three types of options. GNU
long options start with two hyphens, which are required. BSD
options may be grouped and do not start with a hyphen, while
Unix98 options may be grouped and require an initial hyphen. The
meaning of the short options can vary depending on whether or
not there is a hyphen. In options, list arguments should either be
comma-separated or space-separated and placed inside double
quotes. In comparing the amount of output produced, note that e
prints more than a and I prints more than f for each entry.

Options
nums, p nums, -p nums, --pid=nums
Include only specified processes, which are given in a space-
delimited list.
-num, -s nums, --sid=nums
Include only specified session IDs, which are given in a space-
delimited list.
[-]a
As a, list all processes on a terminal. As -a, list all processes
except session leaders and processes not associated with a
terminal.
[-]e
As -e, show different scheduler information with -I. As e, show
the true command name.
-C cmds
Select by command name.
--cols=cols, --columns=cols
Set the output width (the number of columns to display).
-d Select all processes except session leaders.
-e, -A
Select all processes.
e Include environment information after the command.
ps

-\[f\], --forest
 As -f, display full listing. As f or --forest, display “forest” family tree format, with ASCII art showing the relationships.

-F Set extra-full format; implies -f.

-\[g\] list, -G list, --group=groups, --Group=groups
 For -g, select by session leader if list contains numbers, or by group if it contains group names. For -G, select by the group IDs in list. --group selects by effective group and --Group selects by real group, where groups can be either group names or group IDs.

\[h\], --no-headers
 Suppress header. If you select a BSD personality by setting the environment variable PS_PERSONALITY to bsd, then h prints a header on each page.

-H Display “forest” family tree format, but without ASCII art.

H Display threads as if they were processes.

--headers
 Repeat headers on every output page.

--help
 Display help information and exit.

--info
 Print debugging information.

\[j\]
 Jobs format. j prints more information than -j.

k spec, --sort spec
 Specify sort order. Syntax for the specification is:
 \[\ [+|-]key[, [\ [+|-]key\ldots]]\]
 The default direction is +, for increasing numerical or alphabetic order. See “Format and sort specifiers” on page 338 for possible keys.

\[l\]
 Produce a long listing. -l prints more information than l and is often used with -y.

L Print list of field specifiers that can be used for output formatting or for sorting.

-L Show threads, possibly with LWP and NLWP columns.

--lines=num, --rows=num
 Set the screen height to num lines. If --headers is also set, the headers repeat every num lines.

\[m\]
 Show threads after processes.

n Print user IDs and WCHAN numerically.

-n file, N file
 Specify the System.map file for ps to use as a namelist file. The map file must correspond to the Linux kernel—e.g., /boot/System.map-2.6.27.5-117.fc10.x86_64.
-N, --deselect
Negate the selection, selecting all processes that do not meet
the specified conditions.

[-]o fields, --format=fields
Specify user-defined format with a list of fields to display.

[-]O fields
As -O, this option is like -o, but some common fields are
predefined. As O, this option can be either the same as -O in
specifying fields to display, or can specify single-letter fields
for sorting. For sorting, each field specified as a key can
optionally have a leading + (return to default sort direction on
key) or - (reverse the default direction).

--ppid=nums
Select by parent process IDs.

r Show only processes that are currently running.

s Display signal format.

S, --cumulative
Include some dead child process data in parent total.

[-]t ttys, --tty=ttys
Display processes running on the specified terminals. t with
no terminal list displays processes for the terminal associated
with ps. Specify - to select processes not associated with any
terminal.

T Display all processes on this terminal. Like t with no argument.

-T Display threads, possibly with SPID column,

[-]u [users], U users, --user=users
As u with no argument, display user-oriented output. As -u, U,
or --user, display by effective user ID (and also support names),
showing results for users. With no argument, -u displays
results for the current user.

-U users, --User=users
Display processes for users by real user ID (and also support
names).

v Display virtual memory format.

[-]V, --version
Display version information and then exit.

[-]w Wide format. Don’t truncate long lines. Use twice to set an
unlimited width.

--width=cols
Set screen width.

x Display processes without an associated terminal.

-y Do not show flags; show rss instead of addr. Requires -l.
Format and sort specifiers
The following are the keywords for formatting and for sorting with
--sort, followed by a description and the output column header in
parentheses:

%cpu, pcpu
Percent of CPU time used recently. (%CPU)

%mem, pmem
Percent of memory used. (%MEM)

args, cmd, command
The command the process is running with all its arguments.
(CMD for cmd; otherwise COMMAND)

blocked, sig_block, sigmask
Mask, in hexadecimal, of blocked signals. (BLOCKED)

bsdstart
Command start time. (START)

bsdtime
Accumulated CPU time for user plus system. (TIME)

c
Integer value of %cpu. (C)

caught, sig_catch, sigcatch
Mask, in hexadecimal, of caught signals. (CAUGHT)

class, cls, policy
Scheduling class. (POL for policy, otherwise CLS). Possible
values are:
- Unreported
? Unknown value
FF SCHED_FIFO (first in, first out)
RR SCHED_RR (round robin)
TS SCHED_OTHER (standard time-sharing)

comm, ucmd, ucomm
Name of the command executable. (CMD for ucmd; otherwise, COMMAND)

cp
Per-mill CPU usage, where mill is 1000. Equivalent to %cpu
with no decimal point. (CP)

cputime, time
Cumulative CPU time. (TIME)

egid, gid
Effective group ID number in decimal. (EGID or GID, respectively)

egroup, group
Effective group ID; as text value if it is available and if it fits,
otherwise shown as decimal value. (EGROUP or GROUP, respectively)

eip
Effective instruction pointer. (EIP)
esp
Effective stack pointer. (ESP)

etime
Elapsed time since the start of the process. (ELAPSED)

euid, uid
Effective user ID. (EUID or UID, respectively)

euser, uname, user
Effective username; as text value if it is available and if it fits, otherwise shown as decimal value. (EUSER for euser; otherwise, USER)

f, flag, flags
Process flags. Can be summed. (F) Possible values are 1 (the process forked but didn’t exec) and 4 (the process used super-user privileges).

fgid, fsgid
Filesystem access group ID. (FGID)

group, fsgroup
Filesystem access group ID; as text if available and if it fits, otherwise as a decimal number. (FGROUP)

fname
First eight bytes of the executable’s basename. (COMMAND)

fuid, fsuid
Filesystem access user ID. (FUID)
fuser
Filesystem access user ID; as text if available and if it fits, otherwise as a decimal number. (USER)

ignored, sig_ignore, sigignore
Mask of ignored signals in hexadecimal format. (IGNORED)
lstart
Command start time. (STARTED)
lwp, spid, tid
Light-weight process, or thread, ID. (LWP, SPID, TID, respectively)
ni, nice
The nice value of the process. A higher number indicates less CPU time. (NI)
nlwp, thcount
Number of LWPs, or threads, in the process. (NLWP or THCNT, respectively)
nwchan
Address of kernel function where process is sleeping. See also wchan to get the function by name. (WCHAN)
pending, sig, sig_pend
Mask of pending signals. Use with the m or -m option to see both signals pending on the process and on individual threads. (PENDING)
ps

- **pgid, pgrp**
 Process group ID or ID of process group leader, which are equivalent. (PGID or PGRP, respectively)

- **pid**
 Process ID. (PID)

- **ppid**
 Parent process ID. (PPID)

- **pri**
 Process’s scheduling priority. A higher number indicates lower priority. (PRI)

- **psr**
 Current processor that the process is running on. (PSR)

- **rgid**
 Real group ID. (RGID)

- **rgroup**
 Real group name; as text if available and it fits, otherwise as a decimal number. (RGROUP)

- **rss, rssize, rsz**
 Resident set size (the amount of physical memory), in kilobytes. (RSZ for rsz; otherwise RSS)

- **rtprio**
 Real-time priority. (RTPRIO)

- **ruid**
 Real user ID number. (RUID)

- **ruser**
 Real user ID; as text if available and it fits, otherwise as a decimal number. (RUSER)

- **s, state**
 A single-character state display. See stat for the possible characters or for a multicharacter display. (S)

- **sched**
 Scheduling policy. Also see class. (SCH) Possible values are:

 - 0 SCHED_OTHER
 - 1 SCHED_FIFO
 - 2 SCHED_RR

- **sess, session, sid**
 Session ID, or the process ID of the session leader, which is equivalent. (SID for sid; otherwise SESS)

- **sgi_p**
 Processor on which the process is currently running, or "*" if the process is not running. (P)

- **sgid, svgid**
 Saved group ID. (SGID or SVGID, respectively)

- **sgroup**
 Saved group name; as text if available and it fits, otherwise as a decimal number.
size
Size of virtual image. Provides a rough estimate of the
swapspace required to swap the process out. Note that sz uses
the same column header, but has a different meaning. (SZ)

stackp
Address of the stack bottom (start of the stack). (STACKP)

start
Start time of the command. (STARTED)

start_time
Starting time or date of the process. (START)

stat
Status. Multiple status characters can appear. See also s to
display a single character. (STAT)
+ Part of foreground process group.
< High priority (not “nice”).
D Asleep and not interruptible.
I Multithreaded.
L Pages locked into memory.
N Low priority (“nice”).
R Running or runnable.
s Session leader.
S Asleep.
T Stopped.
Z Zombie.
suid, svuid
Saved user ID. (SUID or SVUID, respectively)
suser, svuser
Saved username; as text if it is available and it fits, otherwise
as a decimal number. (SUSER or SVUSER, respectively)
sz
Physical page size of the core image of the process, including
text, data and stack space. (SZ)

tpgid
ID of the foreground process group on the associated terminal
for the process, or -1 if not connected to a terminal. (TPGID)
tt, tty, tname
Associated (controlling) terminal. (TTY for tname; otherwise
TT)

vsz, vsize
Virtual memory size, in kilobytes of the entire process. (VSZ)
wchan
Kernel function in which process is sleeping, or ";" if running,
or "*" if multithreaded process and ps is not displaying
threads. (WCHAN)
ptx

`ptx [options] [infiles]`

`ptx -G [options] [infile [outfile]]`

Create a permuted index, including context, from the contents of the specified input files. If the input files are omitted, or are -, read from standard input. The results are written to standard output. In the second form, with the `-G` option, `ptx` behaves like the System V version rather than the GNU version; you specify only one input file, and you can also specify an output file. Because they show words in context, permuted indexes are often used in such places as bibliographic or medical databases, thesauruses, or websites to aid in locating entries of interest.

Options

- `-A`, `--auto-reference`
 Produce automatically generated references, consisting of the filename and line number, separated by a colon, and print them at the beginning of each line.

- `-b file`, `--break-file=file`
 The specified file contains word-break characters—characters that are not part of words, but separate them.

- `-f`, `--ignore-case`
 Ignore case when sorting, by folding lowercase into uppercase.

- `-F string`, `--flag-truncation=string`
 Use `string` to flag line truncations.

- `-g num`, `--gap-size=num`
 Specify the number of spaces between output columns.

- `-G`, `--traditional`
 Behave like System V `ptx`; don’t use the GNU extensions. If an output file is specified, any existing contents are lost.

- `--help`
 Display a help message and exit.

- `-i file`, `--ignore-file=file`
 Read the list of words that are not to be used as keywords in the concordance output from `file`.

- `-M string`, `--macro-name=string`
 Select a string for use when generating output suitable for `nroff`, `troff` or `TeX`. The default is `xx`.

- `-o file`, `--only-file=file`
 Specify the “only” file, which contains a list of words to be used in the concordance output. Any words not in `file` are ignored. If both an only file and an ignore file are specified, a word must appear in the only file and not appear in the ignore file to be used as a keyword.

- `-O [roff]`, `--format=roff`
 Format the output as `roff` directives suitable to be used as input to `nroff` or `troff`. Use `-T` for `TEX` output.
pwck

Options

-\(\texttt{-r} \), --references
 Use the first field of each line as a reference to identify the line in the permuted index.

-\(\texttt{-R} \), --right-side-refs
 Put references on the right, instead of the left. Used with \(\texttt{-r} \) and \(\texttt{-A} \). The space taken up by the references is not taken into account by \(\texttt{-w} \), even if \(\texttt{-R} \) is specified without \(\texttt{-r} \) or \(\texttt{-A} \).

-\(\texttt{-S} \) \(\texttt{regexp} \), --sentence-regexp=regexp
 Specify a regular expression to identify the end of a line or a sentence. Without \(\texttt{-G} \) and without \(\texttt{-r} \), the end of a sentence is used. With \(\texttt{-G} \), or with \(\texttt{-r} \), the end of a line is used. An empty \(\texttt{regexp} \) disables end-of-line or end-of-sentence recognition.

-\(\texttt{-T} \) \(\texttt{[tex]} \), --format=tex
 Format the output as TEX directives suitable to be used as TEX input. Use \(\texttt{-O} \) for roff output.

--version
 Print version information and exit.

-\(\texttt{-w} \) \(\texttt{num} \), --width=\(\texttt{num} \)
 Select the maximum output-line width (excluding the width of any reference if \(\texttt{-R} \) is specified).

-\(\texttt{-W} \) \(\texttt{regexp} \), --word-regexp=regexp
 Use the specified regular expression to match each keyword.

pwck [options] [files]

System administration command. Remove corrupt or duplicate entries in the /etc/passwd and /etc/shadow files. **pwck** will prompt for a “yes” or “no” before deleting entries. If the user replies “no,” the program will exit. Alternate passwd and shadow files can be checked. If correctable errors are found, the user will be encouraged to run the **usermod** command.

Option

-\(\texttt{-q} \)
 Run in quiet mode. Only report serious problems.

-\(\texttt{-r} \)
 Run in noninteractive read-only mode, answering all questions no.

-\(\texttt{-s} \)
 Don’t check integrity, just sort entries by UID.

Exit status

0 Success.
1 Syntax error.
2 One or more bad password entries found.
3 Could not open password files.
4 Could not lock password files.
5 Could not write password files.
pwconv

pwconv

System administration command. Convert unshadowed entries in /etc/passwd into shadowed entries in /etc/shadow. Replace the encrypted password in /etc/password with an x. Shadowing passwords keeps them safer from password-cracking programs. pwconv creates additional expiration information for the /etc/shadow file from entries in your /etc/login.defs file. If you add new entries to the /etc/passwd file, you can run pwconv again to transfer the new information to /etc/shadow. Already shadowed entries are ignored. pwunconv restores the encrypted passwords to your /etc/passwd file and removes the /etc/shadow file. Some expiration information is lost in the conversion. See also grpconv and grpunconv.

pwd

Print the full pathname of the current working directory. See also the dirs shell command built into bash.

quota

quota [options] [user|group]

Display disk usage and total space allowed for a designated user or group. With no argument, the quota for the current user is displayed. Most users can display only their own quota information, but the superuser can display information for any user. This command reports quotas for all filesystems listed in /etc/mtab. For NFS-mounted filesystems, quota calls rpc.rquotad on the server machine for the information.

Options

-A, --all-nfs
 Report quotas for all NFS filesystems.
-F format, --format=format
 Check quota files for the specified format.
-g, --group
 Given with a user argument, display the quotas for the groups of which the user is a member, instead of the user’s quotas. With no argument, shows group quotas for the current user.
-i, --no-autofs
 Ignore mountpoints that are mounted by the automounter.
-l, --local-only
 Only report quotas on local filesystems.
-p, --raw-grace
 When user is in a grace period, print a timestamp (seconds since epoch) marking when the grace period expires.
-q, --quiet
 Display information only for filesystems in which the user is over quota.
quotacheck

- `--quiet-refuse`
 For NFS-mounted filesystems, do not print an error message if the connection to `rpc.rquotad` is refused (usually because it is not running on the server).

- `--human-readable`
 Try to choose units for displaying limits, space used, and inodes used.

- `--user`
 The default behavior. When used with `-g`, display both user and group quota information.

- `--verbose`
 Display quotas for filesystems even if no storage is currently allocated.

- `--no-wrap`
 Do not wrap line for long device names.

** Formats**

- `rpc`
 Quota over NFS.

- `vfsold`
 Version 1 quota.

- `vfsv0`
 Version 2 quota.

- `xfs`
 Quota on XFS filesystem.

`quotacheck [options] [filesystems]`

System administration command. Audit and correct quota information by building a table of current disk usage and comparing it to the recorded usage in both the kernel and the quota files. `quotacheck` will update quota information when possible and prompt the user if it requires input. Most systems that support quotas run this command at system startup. To prevent damage to filesystems or loss of quota data, turn off quotas with `quotoff` and unmount the system. `quotacheck` will attempt to remount any mounted filesystem as read-only before scanning.

** Options**

- `-a, --all`
 Check all non-NFS filesystems in `/etc/mtab`.

- `-b, --backup`
 Back up quota files before writing new data to them.

- `-c, --create-files`
 Skip reading existing quota information; just write new files.

- `-f, --force`
 Force checking on filesystems with quotas currently enabled.
quotaon

-F format, --format=format
Check quota files for the specified format. (See quota for valid formats.)
-g, --group
Only check group quotas.
-i, --interactive
Prompt user for input upon finding errors.
-m, --no-remount
Don’t try to remount mounted filesystems.
-M, --try-remount
Force check to run in read-write mode if it cannot successfully remount the filesystem in read-only mode.
-n, --use-first-dquot
If multiple entries for a user or group are found in a corrupt quota file, use the first entry found.
-R, --exclude-root
Don’t check the root filesystem when using the -a option.
-u, --user
Only check user quotas. This is the default.
-v, --verbose
Print information on the progress of the command.

quotaon [options] [filesystems]
System administration command. Turn on enforcement of file-system quotas. To work, the filesystems must have a gpquota, quota, or usrquota option listed in the /etc/fstab file. On most file-systems, user and group quota files must also exist. XFS filesystems store quota information as metadata instead of as files. Use edquota or setquota to create the appropriate quota information.

Options
-a, --all
Turn on quotas for all autoloading filesystems in /etc/fstab that support them.
-f, --off
Invoke quotaoff instead of quotaon.
-F format, --format=format
Check quota files for the specified format. (See quota for valid formats.)
-g, --group
Turn group quotas on.
-p, --print-state
Print current quota status, then exit.
-u, --user
Turn user quotas on.
-v, --verbose
Print a message for each filesystem affected by the command.
quotaoff

quotaoff [options] [filesystems]

System administration command. Turn off enforcement of filesystem quotas. This command is a synonym for `quotaon -f`.

Options
- **-a, --all**
 - Turn off quotas for all filesystems in `/etc/fstab`.
- **-F format, --format=format**
 - Check quota files for the specified format. (See `quota` for valid formats.)
- **-g, --group**
 - Turn group quotas off.
- **-p, --print-status**
 - Print current quota status, then exit.
- **-u, --user**
 - Turn user quotas off.
- **-v, --verbose**
 - Print a message for each filesystem affected by the command.
- **-x command, -xfs-command command**
 - On an XFS system, perform one of the following commands:
 - **delete**
 - Remove quota metadata from the XFS filesystem.
 - **enforcement**
 - Turn off limit enforcement on an XFS filesystem.

quotastats

quotastats

System administration command. Print a report of quota system statistics gathered from the kernel.

ranlib

ranlib filename

ranlib option

Generate an index for archive file `filename`. This is equivalent to running `ar -s`.

Option
- **-v, -V, --version**
 - Print version information and exit.

rcp

rcp [options] file1 file2

rcp [options] file ... directory

Copy files between two machines. Each `file` or `directory` is either a remote filename of the form `rname@rhost:path`, or a local filename. Files can be copied between two remote machines, where neither `file1` nor `file2` is on the local machine. Use of `rcp` has generally been replaced by `scp`, which offers better security.
rdate

Options

-p Preserve modification times and modes of the source files.
-r If any of the source files are directories, descend into each
directory and recursively copy all files and directories within
it. The destination must be a directory.

rdate rdate [options] [host...]
TCP/IP command. Retrieve the date and time from a host or hosts
on the network and optionally set the local system time.

Options

-l Send errors and output to syslogd.
-p Print the retrieved dates.
-s Set the local system time from the host; must be specified by
root.
-t n Timeout each retrieval attempt after n seconds.
-u Use UDP instead of TCP.

rdist rdist [options] [names]
System administration command. Remote file distribution client
program. rdist maintains identical copies of files over multiple
hosts. It reads commands from a file named distfile to direct the
updating of files and/or directories. An alternative distfile can be
specified with the -f option or the -c option.

Options

-a num
 Do not update filesystems with fewer than num bytes free.
-A num
 Specify the minimum number of inodes that rdist requires.
-c name [login@]host[:dest]
 Interpret the arguments as a small distfile, where login is the
user to log in as, host is the destination host, name is the local
file to transfer, and dest is the remote name where the file
should be installed.
-d var=value
 Define var to have value. This option defines or overrides vari-
able definitions in the distfile. Set the variable var to value.
-D Debugging mode.
-f file
 Read input from file (by default, distfile). If file is -, read from
standard input.
-F Execute all commands sequentially, without forking.
-l options
 Specify logging options on the local machine.
-L options
 Specify logging options on the remote machine.

-m machine
 Update only machine. May be specified multiple times for multiple machines.

-M num
 Do not allow more than num child rdist processes to run simultaneously. Default is 4.

-n
 Suppress normal execution. Instead, print the commands that would have been executed.

-o options
 Specify one or more options, which must be comma-separated.

 chknfs
 Suppress operations on files that reside on NFS filesystems.

 chkreadonly
 Check filesystem to be sure it is not read-only before attempting to perform updates.

 chksym
 Do not update files that exist on the local host but are symbolic links on the remote host.

 compare
 Compare files; use this comparison rather than age as the criteria for determining which files should be updated.

 follow
 Interpret symbolic links, copying the file to which the link points instead of creating a link on the remote machine.

 ignlnks
 Ignore links that appear to be unresolved.

 nochkgroup
 Do not update a file’s group ownership unless the entire file needs updating.

 nochkmode
 Do not update file mode unless the entire file needs updating.

 nochkowner
 Do not update file ownership unless the entire file needs updating.

 nodescend
 Suppress recursive descent into directories.

 noexec
 Suppress rdist of executables that are in a.out format.

 numchkgroup
 Check group ownership by group ID instead of by name.

 numchkowner
 Check file ownership by user ID instead of by name.
rdistd

quiet
Quiet mode; do not print commands as they execute.

remove
Remove files that exist on the remote host but not the local host.

savetargets
Save updated files in `name.old`.

sparse
Check for sparse files—for example, ndbm files.

verify
Print a list of all files on the remote machine that are out of date, but do not update them.

whole
Preserve directory structure by creating subdirectories on the remote machine. For example, if you `rdist` the file `/foo/bar` into the directory `/baz`, it would produce the file `/baz/foo/bar` instead of the default `/baz/bar`.

younger
Do not update files that are younger than the master files.

`-p path`
Specify the path to search for `rdistd` on the remote machine.

`-P path`
Specify path to the transport command to use on the local machine. This is normally `rsh`, but may also be `ssh`. The `path` argument may also be specified as a colon-separated list of acceptable transports to use in order of preference.

`-t seconds`
Specify the timeout period (default 900 seconds) after which `rdist` will sever the connection if the remote server has not yet responded.

`-V` Display version, then exit.

rdist

System administration command. Start the `rdist` server. Note that you **must** specify the `-S` option unless you are simply querying for version information with `-V`.

Options

-D Debugging mode.

-S Start the server.

-V Display the version number and exit.

readcd

`readcd dev=device [options]`
Read or write compact discs. `readcd` is now generally a link to `readom`.

350 | Chapter 3: Linux Commands
readelf

readelf *option[...] elffiles*

Display information about one or more ELF (Executable and Linking Format) object files. At least one option is required to specify the information to be displayed for each file.

Options

- **-a, --all**
 Display all. Equivalent to **-A -d -h -I -l -r -s -S -V**.

- **-A, --arch-specific**
 Display architecture-specific information, if any.

- **-d, --dynamic**
 Display the dynamic section.

- **-D, --use-dynamic**
 When displaying symbols, use the symbol table in the dynamic section, not the symbols section.

- **-e, --headers**
 Display all headers. Equivalent to **-h -l -s**.

- **-h, --file-header**
 Display the ELF header at the beginning of the file.

- **-H, --help**
 Display help information and exit.

- **-I, --histogram**
 Display a histogram of bucket bit lengths when displaying the symbol tables.

- **-l, --program-headers, --segments**
 Display the segment headers, if any.

- **-n, --notes**
 Display the NOTE segment, if any.

- **-r, --relocs**
 Display the relocation segment, if any.

- **-s, --symbols, --syms**
 Display entries in symbol table sections, if any.

- **-S, --section-headers, --sections**
 Display the section headers, if any.

- **-u, --unwind**
 Display the unwind section, if any (currently applies only to IA64 ELF files).

- **-v, --version**
 Display version information and exit.

- **-V, --version-info**
 Display the version sections, if any.

- **-w[option], --debug-dump[=option]**
 Display the debug sections. If specified with an option, display only that section. The options shown here in parentheses are for -w; the words preceding them are for --debug-dump. The options are **abbrev (a)**, **frames (f)**, **frames-interp (F)**, **info (i)**, **line (l)**, **loc (o)**, **macro (m)**, **pub-names (p)**, **ranges (r)**, and **str (s)**.
readlink

-W, --wide
Don’t break output lines at 80 columns. The default is to break them. Useful for wide terminals.

-x num, --hex-dump=num
Display a hexadecimal dump of the section number.

readlink

readlink file
readlink option

Print the contents of the symbolic link file—that is, the name of the file to which the link points.

Options

-f, --canonicalize
Canonicalize by recursively following symbolic links.

--help
Print usage information and exit.

-n, --no-newline
Do not output a trailing newline.

-q, --quiet, -s, --silent
Suppress most error messages.

-v, --verbose
Print all error messages.

--version
Print version information and exit.

readom

readom dev=device [options]

Read or write compact discs. The device is usually specified as
dev=scsibus/target/lun or dev=target/lun if the device is on
the default SCSI bus. The default SCSI bus is bus 0, the target is the ID number, and the lun is the logical unit number.

Options

-c2scan
Do a C2 error scan. If any C2 errors are found, specifying the speed= option to reduce the speed may help.

-clone
Read all data and the table of contents, and put the table-of-contents data into a file with the same filename as specified with f= but with a .toc extension.

-d, debug=num
Increment the debugging level by 1 with -d or set the level to
num with debug. Specifying -dd is the equivalent of debug=2.

dev=target
Set the SCSI target.
readom

f=filename
Specify the file from which input should be read, or to which output should be written. If the filename is given as -, use standard input or standard output, respectively.

-factor
Print the speed factor for the meshpoints= option, based on the current medium’s single speed. Works only if readom can determine the current medium type.

-fulltoc
Read the full table of contents from the current CD and display it in hexadecimal.

kd=num, kdebug=num
Modify the kernel debugging level while SCSI commands are running, to do kernel debugging.

meshpoints=num
Print the read speed at num locations, and produce a list of values suitable for plotting. The output is written to standard output.

-nocorr
Ignore read errors, doing no error correction. Switches the drive into a mode to ignore the errors; if readom completes, it switches the drive back to the previous mode.

-noerror
Do not abort if an uncorrectable error is found in the data stream.

-notrunc
Do not truncate the output file on open.

-overhead
Measure SCSI command overhead. The measurement is done by running several commands 1000 times and printing the total time used for each.

retries=num
Set the retry count to num. The default is 128.

-s, -silent
Do not print a status report for SCSI command failures.

-scanbus
Scan all SCSI devices on all SCSI buses, print the results, and exit. Useful for finding the SCSI addresses of devices.

sectors=range
Specify the range of sectors to read.

speed=num
Set the reading and writing speed, as an integer value. Useful only for MMC-compliant drives. Defaults to maximum speed.

timeout=num
Set the default SCSI command timeout to num seconds. Defaults to 40 seconds.
reboot

`ts=num`
Set the maximum transfer size for a single SCSI command to `num`. Defaults to 256 KB.

`-v, -verbose`
Increment the general verbosity level by 1. Useful for displaying progress.

`-V, -Verbose`
Increment the verbosity level for SCSI command transport by 1. Useful for debugging. Specifying `-VV` adds data-buffer content to the output.

`-version`
Print version information and exit.

`-w`
Switch to write mode. The default is to read from the device.

reboot
System administration command. Close out filesystems, shut down the system, then reboot. Because this command immediately stops all processes, it should be run only in single-user mode. If the system is not in runlevel 0 or 6, **reboot** calls **shutdown** -r.

Options

- `-f`
 Call **reboot** even when **shutdown** would normally be called.

- `-i`
 Shut down network interfaces before reboot.

- `-n`
 Suppress normal call to **sync**.

- `-w`
 Suppress normal execution; simply write to `/var/log/wtmp`.

reject
System administration command. Instruct printing system to reject jobs for the specified print queue `destinations`. Depending on queue settings, the system may prompt for a password. Also invoked as **cupsreject**.

Options

- `-E`
 Require encryption when connecting.

- `-h server`
 Apply command remotely to the specified CUPS server.

- `-r reason`
 Reject with the specified `reason` instead of the default “Reason Unknown.”

rename
Rename files by replacing the first occurrence of `from` in each filename with `to`.

Example

Rename files that start with `test` so they start with `mytest`:

```
$ rename test mytest test*
```
renice

`renice [priority] [options] [target]`

Control the scheduling priority of running processes. May be applied to a process, process group, or user (target). A privileged user may alter the priority of other users’ processes. `priority` must, for ordinary users, lie between 0 and the environment variable `PRIO_MAX` (normally 20), with a higher number indicating increased niceness. A higher niceness value means that the process will run at a lower priority. A privileged user may set a negative priority, as low as `PRIO_MIN` (normally –20), to speed up processes. See the `nice` command for setting the scheduling priority for processes when they are initially run.

Options

`+num`

Specify number by which to increase current priority of process, rather than an absolute priority number.

`-num`

Specify number by which to decrease current priority of process, rather than an absolute priority number.

`-g`, `--pgrp`

Interpret `target` parameters as process group IDs.

`-p`, `--pid`

Interpret `target` parameters as process IDs (default).

`-u`, `--user`

Interpret `target` parameters as usernames.

repquota

`repquota [options] [filesystem]`

System administration command. Generate a report on disk usage and quotas for the specified `filesystem`.

Options

`-a`, `--all`

Generate report for all filesystems in `/etc/mtab` that support quotas.

`-c`, `--batch-translation`

Translate UIDs and GIDs in batches. (Faster for `/etc/passwd`.)

`-C`, `--no-batch-translation`

Translate UIDs and GIDs individually. (Faster for database lookups.)

`-F format`, `--format=format`

Report on quotas for the specified format. (See `quota` for valid formats.)

`-g`, `--group`

Report group quotas.

`-i`, `--no-autofs`

Ignore automount mount points.
reset

-\texttt{-n, --no-names}
 Use UIDs and GIDs instead of names. (Generates faster reports.)

-\texttt{-p, --raw-grace}
 When user is in a grace period, print a timestamp (seconds since epoch) marking when the grace period expires.

-\texttt{-s, --human-readable}
 Report sizes in more human-readable units.

-\texttt{-t, --truncate-names}
 Truncate user and group names to nine characters.

-\texttt{-u, --user}
 Report user quotas. (This is the default.)

\texttt{reset [options] [terminal]}
Clear screen (reset terminal). If \textit{terminal} is specified on the command line, the value is used as the terminal type. \texttt{reset} is a symbolic link to the \texttt{tset} command. Invoking the command as \texttt{reset} is useful for clearing your terminal when a program dies and leaves the terminal in an abnormal state. You may have to run the command with a linefeed character (usually Ctrl-J) before and after it:

\texttt{Ctrl-J reset Ctrl-J}

See the \texttt{tset} command for the available options.

\texttt{resize2fs [options] device [size]}

System administration command. Enlarge or shrink an ext2 filesystem on \textit{device} so it has \textit{size} blocks. The filesystem size cannot be larger than the underlying partition. This command changes only the filesystem size, not the underlying partition. To change the partition, use \texttt{fdisk}.

\textbf{Options}

-\texttt{-d flags}
 Print debugging information on resize activity. The value of the \textit{flags} parameter determines what activity is reported. Compute its value by summing the numbers of the items you wish to debug:

 - 2 Block relocations.
 - 4 Inode relocations.
 - 8 Inode table movement.

-\texttt{-f}
 Force resize, overriding safety checks.

-\texttt{-M}
 Shrink filesystem to minimum size.

-\texttt{-p}
 Print progress information for each resize task.

-\texttt{-P}
 Print maximum filesystem size then exit.
restore

```
restore flag [options] [files]
```

System administration command. Restore backed-up files from a `dump` archive. Execute this command with one of the following flags.

Flags

- `-C` Compare files on disk to files in the backup and print report.
- `-i` Restore files interactively. This will open a shell-like interface that accepts the following commands.

 add [name]
 Add the current working directory, or the specified file or directory name to the list of files to extract.

 cd directory
 Change the current working directory.

 delete [name]
 Remove the current working directory or the specified file or directory name from the list of files to extract.

 extract
 Extract selected files. This will prompt for the volume on which the files to be extracted can be found. Once the files are extracted, the system will prompt if you want to change the ownership and mode of the current directory (the one to which you extracted the files) to match the settings on the dump's original base directory.

 help
 Print a command summary.

 ls [name]
 Like the shell command, list files in the current working directory, or the specified file or directory name. A `*` before a name indicates items marked for extraction. In verbose mode, the listing will include each item's inode.

 pwd
 Like the shell command, print the working directory.

 quit
 Exit the command.

 setmodes
 Set ownership and mode of the directory to which you extract the files to match the settings on the dump's original base directory.

 quit
 Exit the command.

 verbose
 Verbose mode. Print inodes along with file and directory names when using `ls`.
-P filename
Create a Quick File Access file suitable for use with the -Q option.
-r Fully restore the backup to a clean, newly created ext2 filesystem. Execute this command in the root directory of the new filesystem.
-R Prompt for the tape volume to fully restore.
-t Print files if they exist in the archive or an error if they do not. If no files are specified, list all files in the archive.
-x Recursively extract files if they exist in the archive. Restore owner, modification times, and modes. If no files are specified, restore the entire backup.

Options
-a Read all volumes to find the files to extract, beginning with volume 1. This will skip any volume prompts.
-A file
Read the table of contents from the specified archive file.
-b blocksize
Specify the block size in kilobytes used for a block in the archive. Restore can usually determine this when reading the dump media.
-c Read dumps made prior to version 4.4.
-d Print debugging information.
-D filesystem
When using the -C flag, compare the dump to files on the specified filesystem.
-f file
Read the backup from the specified file: a device file, an ordinary file, or - to read from standard input. Use host:file or user@host:file to read from a networked host using either the rmt program or the program specified by the RMT environment variable.
-F script
Run the specified script at the beginning of each volume.
restore will pass the current device and volume number to the script. The script should return 0 to continue, 1 to prompt for a new tape, or any other exit value to abort the restore. The script will run with the process’s real user and group ID.
-h Do not recursively restore directory. Only restore the specified directory.
-k Use Kerberos authentication when connecting to a remote server.
-l Treat file as a regular file instead of a tape device. Use this option when restoring from remote compressed files.
-L n
Used with the -C flag. Abort the comparison after encountering n errors.
rexec

-rexec [options] rhost command

Execute commands remotely. This client program connects to a remote host running rexecd, and passes it command. It uses a login name and password for authentication. These can be passed on the command line using the options below, provided through the $HOME/.netrc file or the environment variables REXEC_USER and REXEC_PASS. If it cannot determine the username and password, rexec prompts the user for the information. Note that because rexec sends passwords to the remote system in cleartext, you should use it only on a secure network. See ssh for a more secure alternative.

Options
-a Send both error messages and output to standard output.
-b When received locally, only echo signals SIGINT, SIGQUIT and SIGTERM to the remote process.
-c Leave remote standard input open when the local input closes.
-d Debugging mode. Echo commands sent locally.
-l username
 Specify a different username for the remote login. Default is the same as your local username.

rev

-rev [files]

Reverse the order of characters on each line of the specified files and print the results on standard output. If no files are specified, rev reads from standard input.
rexecd

-n Prompt user for name and password even if otherwise provided.
-p password
 Specify the password for the remote account.
-s Do not echo any signals to the remote process.

rexecd command-line
TCP/IP command. Server for the rexec routine, providing remote execution facilities with authentication based on usernames and passwords. rexedc is started by inetd and must have an entry in inetd's configuration file, /etc/inetd.conf.

Option
-D Disable reverse DNS lookup; use IP addresses in logs.

rlogin rlogin [options] rhost
Remote login. rlogin connects the terminal on the current local host to the remote host rhost. The remote terminal type is the same as your local terminal type. The terminal or window size is also copied to the remote system if the server supports it. Use of rlogin has generally been replaced with ssh, which offers better security.

Options
-8 Allow an 8-bit input data path at all times.
-d Debugging mode.
-e Specify escape character c (default is ~).
-E Do not interpret any character as an escape character.
-l username
 Specify a different username for the remote login. Default is the same as your local username.
-L Allow rlogin session to be run without any output postprocessing (i.e., run in litout mode).

rlogind in.rlogind [options]
TCP/IP command. Server for the rlogin program, providing a remote login facility, with authentication based on privileged port numbers from trusted hosts. rlogind is invoked by inetd when a remote login connection is requested. The login process propagates the client terminal’s baud rate and terminal type as found in the TERM environment variable.

Options
-a Verify hostname.
-h Permit superuser .rhosts files to be used. Ignored if pluggable authentication module (PAM) support is enabled. Control through /etc/pam.conf instead.
rm

Delete one or more files. To remove a file, you must have write permission in the directory that contains the file, but you need not have permission on the file itself. If you do not have write permission on the file, you will be prompted (y or n) to override. rm is often aliased to rm -i, especially for the root user, to protect against inadvertently deleting files.

Options
- **-d, --directory**
 Remove directories, even if they are not empty. Available only to a privileged user.
- **-f, --force**
 Remove write-protected files without prompting.
- **--help**
 Print a help message and then exit.
- **-i**
 Prompt for y (remove the file) or n (do not remove the file) for each file.
- **--interactive[=when]**
 Specify when to prompt. The possible values for when are never, no, none, once, always, yes.
- **-I**
 Prompt only once before deleting recursively or before deleting more than three files.
- **--no-preserve-root**
 Do not treat root (/) specially. This is the default.
- **--one-file-system**
 When removing recursively, only remove files on the same file-system as files.
- **--preserve-root**
 Do not remove root (/).
- **-r, -R, --recursive**
 If file is a directory, remove the entire directory and all its contents, including subdirectories. Be forewarned: use of this option can be dangerous.
- **-v, --verbose**
 Verbose mode (print the name of each file before removing it).
rmail

--version
Print version information and then exit.
-- Mark the end of options. Use this when you need to supply a filename beginning with -.

rmail rmail [options] users
TCP/IP command. Handle remote mail received via uucp. rmail transforms trace information from mail in UUCP format to the equivalent RFC 822 format, then forwards messages to sendmail.

Options
-D domain
Use domain instead of UUCP as the UUCP hostname in From fields.
-T Print debugging information.

rmmod

rmmod [options] modules
System administration command. Unload a module or list of modules from the kernel. This command is successful only if the specified modules are not in use and no other modules are dependent on them. This simplified program provides some backward compatibility. In general, use modprobe -r instead.

Options
-s, --syslog
Write messages to syslogd instead of to the terminal.
-v, --verbose
Verb mode.
-V, --version
Print version number, then exit.

-w, --wait
If module is in use, disable it so no new processes can use it.
Remove the module when it is no longer in use.

```
rndc [options] [command]
TCP/IP command. Send commands to a BIND DNS server via a
TCP connection (see the named command.) This command reads
authentication and connection information from the file /etc/rndc.
conf, and its authentication key from /etc/rndc.key. If entered
without a command, display a help message listing the available
commands.

Options
-c file
Read configuration information from file instead of /etc/rndc.conf.

-k file
Perform command on the routing cache instead of the
forwarding information base (FIB) routing table.

-p port
Connect to the specified port instead of the default control
channel port, 953.

-s server
Send command to the specified server. There must be an entry
for server in the configuration file.

-V Use verbose log messages.

-y keyname
Specify the key to use by keyname. There must be a key entry
for keyname in the /etc/rndc.conf file.

Commands
You can send the following commands to a BIND nameserver:

dumpdb
Dump current cache to the dump file (specified in /etc/named.
conf), or to named_dump.db when not specified.

flush [view]
Flush all server caches, or only the cache for the specified
view.

halt
Stop server immediately.

querylog
Toggle query logging.

reconfig
Reload the configuration file and any new zones.

reload [zone [class [view]]]
Reload configuration file and zones. When specified, limit the
reload to the given zone, class, or view.
route

refresh zone
    Refresh database information for zone.
stats
    Write statistics to the statistics file (specified in /etc/named.conf).
status
    Display server status.
stop
    Save any recent dynamic zone transfer updates (IXFR) to the master files, then stop the server.
trace [debuglevel], notrace
    Increase the server’s debug level by 1, or set it to the specified debuglevel. Use the notrace command to set the level to 1.

route [options] [command]
TCP/IP command. Add or remove entries in the routing tables maintained by routed. route accepts two commands: add, to add a route, and del, to delete a route. The two commands have the following syntax:

    add [-net | -host] address [modifiers]
    del [-net | -host] address [modifiers]

address is treated as a plain route, unless -net is specified or address is found in /etc/networks. -host can be used to specify that address is a plain route whether or not it is found in /etc/networks. Using route modifiers, you can specify the gateway through which to route packets headed for that address, its netmask, TCP mss, or the device with which to associate the route; you can also mask certain routes. Only a privileged user may modify the routing tables.

If no command is specified, route prints the routing tables.

Options

-A, --family
    Specify an address family to use with an add or del command. family may be inet, inet6, ax25, netrom, ipx, ddp, or x25.
-C, --cache
    Perform command on the routing cache instead of the forwarding information base (FIB) routing table.
-e, --extend
    Use netstat -r format to print routing table. Use twice to print extended information. Same as netstat -ree.
-F, --fib
    Perform command on the forwarding information base (FIB) routing table. This is the default behavior.
-h, --help
    Print help message, then exit.
-n, --numeric
    Show numerical addresses; do not look up hostnames. (Useful if DNS is not functioning properly.)
**Chapter 3: Linux Commands**

**rpcbind**

- `v`, `--verbose`
  Verbose mode.

- `V`, `--version`
  Print version and configuration options, then exit.

**Route modifiers**

[dev] interface
  Associate route with specified device. When the interface is given as the last argument on a command line, the word dev is optional.

netmask mask
  Use netmask mask.

gw gateway
  Route packets through gateway.

metric n
  Set routing metric to n.

mss bytes
  Set maximum segment size for connections over this route.

reject
  Cause route lookup for target to fail. Used to mask out networks from a default route.

**Example**

Add a default gateway for interface eth0:

```
rout add default gw 192.168.0.1 dev eth0
```

---

**rpcbind**

NFS/NIS command. portmap is renamed rpcbind in newer Linux systems. It maps RPC program numbers into universal addresses. This server must be running in order to make RPC calls. RPC servers run on a host register their program number with rpcbind. Clients wishing to make an RPC call first check with rpcbind to find the address for a given program number.

- `a`
  Abort on errors if debugging (-d).

- `d`
  Run in debug mode. Do not fork.

- `h [address]`
  Bind to the specified IP address for UDP requests. This option may be given multiple times. You need not specify the local-host. When using this option rpcbind automatically binds to 127.0.0.1 and ::1 (if using IPv6) as well.

- `i`
  Insecure mode. Allow calls to SET and UNSET from any host.

- `l`
  Enable libwrap connection logging (tcp wrappers).

- `s`
  Change to user daemon sooner. Bind to nonprivileged ports for outgoing connections, refuse connections to privileged ports from nonprivileged clients.

- `w`
  Warm start. Read stat from a previous rpcbind.
**rpcgen**  
\texttt{rpcgen} [\textit{options}] \textit{file}  
Parse \textit{file}, which should be written in the RPC (Remote Procedural Call) language, and produce a program written in C that implements the RPC code. Place header code generated from \textit{file}. \textit{x} in \textit{file}. \textit{h}, XDR routines in \textit{file}.\textit{xdrc}, server code in \textit{file}.\textit{svc}.c, and client code in \textit{file}.\textit{clnt}.c. Lines preceded by \% are not parsed. By default, \texttt{rpcgen} produces Sun OS 4.1–compatible code.  
- \texttt{-a} Produce all files (client and server).  
- \texttt{-b} Produce SunOS 4.1–compatible code. This is the default.  
- \texttt{-s} Produce SVR4-compatible code.  
- \texttt{-c} Create XDR routines. Cannot be used with other options.  
- \texttt{-C} Produce ANSI C code (the default).  
- \texttt{-k} Produce K&R C code.  
- \texttt{-D name[=value]} Define the symbol \textit{name}, and set it equal to \textit{value} or 1.  
- \texttt{-h} Produce a header file. With \texttt{-T}, make the file support RPC dispatch tables. Cannot be used with other options.  
- \texttt{-l} Produce client code. Cannot be used with other options.  
- \texttt{-m} Produce server code only, suppressing creation of a “main” routine. Cannot be used with other options.  
- \texttt{-N} New style. Allow multiple arguments for procedures. Not necessarily backward-compatible.  
- \texttt{-o [file]} Print output to \textit{file} or standard output.  
- \texttt{-Sc} Print sample client code to standard output.  
- \texttt{-Ss} Create skeleton server code only.  
- \texttt{-t} Create RPC dispatch table. Cannot be used with other options.  
- \texttt{-T} Include support for RPC dispatch tables.

**rpcinfo**  
\texttt{rpcinfo} [\textit{options}] [\textit{host}] [\textit{program}] [\textit{version}]  
NFS/NIS command. Report RPC information. \textit{program} can be either a name or a number. If a \textit{version} is specified, \texttt{rpcinfo} attempts to call that version of the specified \textit{program}. Otherwise, it attempts to find all the registered version numbers for the specified \textit{program} by calling version 0, and then attempts to call each registered version.  
\textbf{Options}  
- \texttt{-b} Make an RPC broadcast to the specified \textit{program} and \textit{version} using UDP, and report all hosts that respond.
**rshd**

- **d**  Delete the specified version of program’s registration. Can be executed only by the user who added the registration or by a privileged user.

- **n portnum**  Use portnum as the port number for the -t and -u options, instead of the port number given by the portmapper.

- **p**  Probe the portmapper on host and print a list of all registered RPC programs. If host is not specified, it defaults to the value returned by hostname.

- **t**  Make an RPC call to program on the specified host using TCP, and report whether a response was received.

- **u**  Make an RPC call to program on the specified host using UDP, and report whether a response was received.

---

**rpm**

```
rpm [options]
```

The Red Hat Package Manager. A freely available packaging system for software distribution and installation. RPM packages are built, installed, and queried with the rpm and rpmbuild commands. For detailed information on RPM, see Chapter 5.

---

**rsh**

```
rsh [options] host [command]
```

Execute command on remote host, or, if no command is specified, begin an interactive shell on the remote host using rlogin. The options can be specified before or after host. Use of rsh has generally been replaced with ssh, which offers better security.

**Options**

- **d**  Enable socket debugging.

- **l username**  Attempt to log in as username. By default, the name of the user executing rsh is used.

- **n**  Redirect the input to rsh from the special device /dev/null. (This should be done when backgrounding rsh from a shell prompt, to direct the input away from the terminal.)

---

**rshd**

```
rshd [options]
```

TCP/IP command. Remote shell server for programs such as rcmd and rcp, which need to execute a noninteractive shell on remote machines. rshd is started by inetd and must have an entry in inetd’s configuration file, /etc/inetd.conf.

All options are exactly the same as those in rlogind, except for -l, which is unique to rshd.

**Option**

- **-L**  Log all successful connections and failed attempts via syslogd.
rsync

rsync [options] sources dest

Transfer files; used frequently for updating files across a network. File transfer with rsync is fast and efficient because it checks local files against remote files in small chunks, or blocks, and transfers only the blocks that differ between the files. sources and the final dest are in the form of:

    user@host:port/filename

If the file is on the local host, a plain filename can be specified. If the file is on a remote host, the host must also be specified. user can optionally be specified to log in as a different user on the remote site (in which case a password prompt might appear) and port can optionally be specified with a remote host to make rsync use a TCP port other than its default, 873.

Relative filenames (names without initial slashes) are handled relative to the user’s home directory. If a source directory is listed with a trailing slash, the whole directory is transferred and will appear under the destination directory; if the directory is listed without the slash, its files and subdirectories will appear directly under the destination directory. Normally, regular directories and files are transferred, but not symbolic links or other special files such as sockets and FIFOs.

Two other formats for sources and dest, which refer to files on an rsync server (rsyncd), are:

    user@host::filename
    rsync://user@host:port/filename

rsync servers are beyond the scope of this book.

Options

-0, --from0
    Specify that the file specified in options such as --files-from is formatted with null characters to separate the filenames; when this option is not used, the file must include each filename on a separate line.

-4, --ipv4, --ipv6
    Opt for IPv4 or IPv6 when creating sockets.

-8, --8-bit-output
    Leave high-bit characters unescaped in output.

-a, --archive
    Transfer recursively, reproducing most characteristics of the files and directories being transferred, such as modification times, symbolic links, ownership, and permissions. Equivalent to -rlptgoD. With --files-from, transfer is not recursive.

--address=addr
    Specify the IP address of an rsync server to connect to; useful when multiple servers are running on the same host.

--append
    Append new data to the end of an existing file. Implies --inplace.
--append-verify
Like --append, but include existing data in full-file checksum verification.

-b, --backup
Preserve existing files at the destination by appending a suffix such as ~ while transferring new versions of those files.

-B n, --block-size=n
Change block size used for transfers.

--backup-dir
Specify where files created by the --backup option are stored.

--blocking-io
Use blocking I/O when starting the remote shell used for transfer.

--bwlimit=n
Set a limit to the speed of transfer, specified in kilobytes per second.

-c, --checksum
Perform a full checksum on each file transferred.

-C, --cvs-exclude
Don’t transfer files that are normally considered temporary or otherwise uninteresting; obeys the same rules for ignoring files as CVS (Concurrent Versions Systems).

--compare-dest=dir
Compare source files to files of the same name in dir as well as the destination directory.

--compress-level=num
Set the compression level to num. If nonzero, -z/--compress is implied.

--config=configfile
When running as server, take configuration from configfile instead of /etc/rsyncd.conf.

--contimeout=n
Set time in seconds to wait for a connection to an rsync daemon.

--copy-unsafe-links
If files to which symbolic links point are being transferred, copy even those files that exist outside the directories being transferred.

-d, --dirs
Transfer directories with no recursion unless the directory name is . or ends in a trailing slash (/).

-D
Equivalent to --devices --specials.

--daemon
Run rsync as server.

--devices
Transfer device (/dev) files; requires superuser permission on both systems.
--delete-after
   After transferring files from a source directory, delete any files
   from the destination directory that do not exist in the source
   directory.

--delete
   Before transferring files from a source directory, delete any
   files from the destination directory that do not exist in the
   source directory.

--delete-excluded
   Invoke --delete, and additionally delete from the destination
   directory any files that match exclude options.

-e shell, --rsh=shell
   Use shell (which can be a complete command with arguments,
   enclosed in quotes) to create the connection between two
   systems for file transfer. rsync uses rsh by default. Nowadays,
   most users prefer the secure shell ssh. This can be made the
   default by setting the environment variable RSYNC_RSH=ssh.

--exclude=glob-pattern
   Don’t transfer files whose names match glob-pattern. Rules for
   glob-pattern are complex and are described in the manpage. In
   general, filenames can include the shell globbing characters *
   to match everything, ? to match a single character, and [] to
   enclose a set of matching characters. Furthermore, to specify
   the beginning of a filename, start the name with a / character
   (it does not mean the file has to be an absolute pathname).

--exclude-from=file
   Like --exclude, but globbing patterns are taken from file; each
   pattern on a separate line.

--existing, --ignore-non-existing
   Transfer only files that already exist on the destination host.

--files-from=file
   Take names of files to transfer from file.

--force
   Allow a file to replace a nonempty directory of the same name.

-g, --group
   Set the group (normally identified by name, not number) of the
   destination file to match that of the source file, instead of
   using the group running the rsync program.

-H, --hard-links
   Set hard links on destination system to match source system.

--help
   Display command syntax and options, then exit.

-h, --human-readable
   Output numbers in a more easily read format, using larger
   units with a K, M, or G suffix.
--ignore-errors
   Delete files even when there are I/O errors.

--ignore-existing
   Do not transfer files to replace existing files of the same name.

-l, --ignore-times
   Consider files for transfer even if they have the same size and
timestamp as destination files.

--include=glob-pattern
   Specify files to be transferred even if further exclude options
   would cause them to be ignored. rsync processes the include
   and exclude options in the order they appear on the command
   line, so earlier include options override later exclude options.

--include-from=file
   Like --include, but take globbing patterns from file, which has
   each pattern listed on a separate line.

--inplace
   Update files in place instead of creating a new copy and then
   moving it.

-l, --links
   Set symbolic links on destination system to match source
   system.

-L, --copy-links
   Transfer the files to which symbolic links are made instead of
   just the pointer information in the links.

--log-file=file
   Write log data to the specified file.

--log-format=format
   Display information about each file transferred in a format
   specified by % sequences; see rsyncd.conf manpage for formats.
   Used with --log-file.

--max-delete=n
   Delete at most n files when deleting from destination host.

--max-size=n, --min-size=n
   Don’t transfer files that are larger than or smaller than the
   specified size.

-n, --dry-run
   Display the names of files that would be transferred and statis-
tics related to a transfer, without performing a transfer.

--no-blocking-io
   Do not use blocking I/O when starting the remote shell used
   for transfer.

--no-detach
   When running as a daemon, do not restart as a background
   process.
rsync

--no-implied-dirs
When preserving directory structures with --relative, do not force the creation of new directories or symbolic links if the destination host is set up differently from the source host.

--no-relative
Transfer only the plain files without preserving the entire directory structure of files whose names include directories; otherwise, --files-from would create the entire directory structure to contain the file.

--no-whole-file
Use rsync’s block checks to transfer parts of files where possible.

--numeric-ids
Set user and group IDs on destination files by number rather than name.

-o, --owner
Set the user (normally identified by name, not number) of the destination file to match that of the source file, instead of setting it to the user running the rsync program.

-O, --omit-dir-times
When using --times to preserve modification times, don’t preserve directory times.

-p, --perms
Set the permissions of the destination file to match that of the source file, instead of using the existing file’s permissions or the default umask of the destination user.

-P Combination of --partial and --progress.

--partial
Preserve partial files transferred if rsync is interrupted. The default is to delete them.

--partial-dir=dir
Specify a directory for keeping partial files instead of using --partial. Useful for speeding up the resumption of the transfer later. The file is deleted from dir once the transfer is complete.

--password-file=file
Take password for accessing a remote rsync server from file.

--port=n
Use port n instead of default rsync port.

--progress
Display ongoing statistics about the progress of the transfer of each file.

-q, --quiet
Do not display statistics or server error messages.

-r, --recursive
Copy directories with all their contents.
-R, --relative
  Preserve the entire path of a specified source file or directory, instead of creating the file directly under the destination directory. That is, if project/tmp/main.c is specified, create project/tmp/main.c instead of just main.c. Create intermediate directories if needed.

--read-batch=file
  Apply all changes stored in the specified file, written by a preceding --write-batch.

--remove-source-files
  After files have been successfully transferred, remove them from the source system. Directories are not removed.

--rsync-path=file
  Use the rsync binary located in file on the destination system.

--safe-links
  Don’t copy links that point to absolute paths or to files outside the directories being transferred.

-s, --protect-args
  Protect arguments sent to the remote system from interpretation by the remote shell.

-S, --sparse
  Perform special optimizations on sparse files (files that contain holes and actually contain less data than their sizes indicate).

--size-only
  Skip files that have the same size on the source and destination hosts, even if their timestamps differ; usually, this check is based on both size and timestamp.

--specials
  Transfer special files such as named sockets and FIFOs.

--stats
  Like -v, but also prints a number of statistics about each file transferred, such as the number of bytes actually transferred and the number transferred to compare the files on the two hosts.

--suffix=string
  Set the suffix placed on backup files to string. Default is a tilde (~).

-t, --times
  Set the timestamps of the destination file to match those of the source file, instead of using the time of transfer (that is, reflecting the existence of a new file on the destination host).

-T dir, --temp-dir=dir
  Use dir as rsync’s temporary directory instead of the destination directory.

--timeout=n
  Stop rsync if n seconds pass with no data being transferred.
rsync

- **u**, **--update**
  Don’t change a destination file if it is newer than the source file.

- **version**
  Display rsync’s version and compiled-in features, then exit.

- **v**, **--verbose**
  Display the names of files transferred and statistics related to the transfer.

- **W**, **--whole-file**
  Transfer the entire files, instead of using rsync’s block checks to transfer just parts of files where possible.

- **write-batch=prefix**
  Prepare to synchronize systems by writing files, whose names start with prefix, that describe the transfers to take place.

- **x**, **--one-file-system**
  When traversing directories, do not transfer files on directories that are mounted on other filesystems.

- **z**, **--compress**
  Use compression during transmission.

**Examples**

Transfer the entire directory proj to the /planning directory on remote host ourhub:

```
$ rsync -r proj/ ourhub:/planning
```

Transfer the files and subdirectories under proj to the /planning directory on remote host ourhub:

```
$ rsync -r proj ourhub:/planning
```

Return files from local directory active to the /tmp/active directory on remote host ourhub. Files to be transferred are listed in active/current_work.txt:

```
$ cat active/current_work.txt
workplan.doc
workplan.sxw
$ rsync -v --files-from=active/current_work.txt active \
ourhub:/tmp/active
building file list ... done
workplan.doc
workplan.sxw
...
```

Copy the source directory’s OpenOffice.org (.sxw) files and Kim’s status report, but exclude the other status reports.

```
$ ls proj
conclusion.sxw Status_joem Status_leigh
incentives.sxw Status_kim unified.sxw
$ rsync -rv --include=*kim --exclude=/proj/Status* proj \
ourhub:/tmp
building file list ... done
proj/Status_kim
```
rsyslogd

System administration command. rsyslogd provides local and remote logging functions. It is based on sysklogd and on some systems replaces that program. It adds support for logging over TCP, SSL, TLS, logging to databases and more. By default rsyslogd is command-line compatible with sysklogd and can be used as a drop-in replacement. In native mode, some of the old command line options have been moved to the configuration file. rsyslogd will log warnings for these deprecated commands. Its compatibility mode can be changed with the -c3 option.

rsyslogd logs system messages into a set of files described by the configuration file /etc/rsyslog.conf. Each message is one line. A message can contain a priority code, marked by a number in angle brackets at the beginning of the line.

Options
-4 Listen on IPV4 addresses only.
-6 Listen on IPV6 addresses only.
-A If there are multiple paths to a UDP target, send to all paths.
-c mode
   Set compatibility mode. Values for mode are 0, for sysklogd and 3 to enable native rsyslogd options. The default value is 0 though this also generates a warning that you are not using native mode.
-d Turn on debugging. Don’t fork.
-f configfile
   Specify alternate configuration file.
-i pidfile
   Specify alternate pid file.
-l hostlist
   Specify hostnames that should be logged with just the hostname, not the fully qualified domain name (fqdn). Multiple hosts should be separated by a colon (:\).
-n Avoid auto-backgrounding. This is needed when starting syslogd from init.
-p socket
   Send log to socket instead of /dev/log.
-q If DNS is not available when determining which systems are AllowedSenders (from the configuration file), use the hostname instead of the hosts IP address.
-Q Don’t resolve hostnames to IP addresses when determining AllowedSenders.
runlevel

- **-s domainlist**
  Strip off domain names specified in domainlist before logging.
  Multiple domain names should be separated by a colon (:).
- **-v**
  Print version number, then exit.
- **-w**
  Don’t warn when receiving messages from systems not in the AllowedSender list.
- **-x**
  Don’t perform DNS lookups for remote hosts sending logs.

runlevel 

System administration command. Display the previous and current system runlevels as reported in the utmp file. The default utmp file is /var/run/utmp. See “Starting and Stopping the System” on page 19.

sane-find-scanner

sane-find-scanner [options]

Locate SCSI and USB scanners and print their device files, to be sure the scanners can be detected by SANE (Scanner Access Now Easy) backends.

**Options**

- **devname**
  Check only the specified device for a scanner.
- **-f**
  Force the opening of any SCSI and USB devices specified with devname, in case the command is wrong in determining the device type.
- **-h, -?**
  Print a usage message and exit.
- **-p**
  Test for parallel-port scanners. Note that most parallel-port scanners won’t be detected, even with this option.
- **-q**
  Run quietly, printing only the devices.
- **-v**
  Run verbosely. When specified as -v, show every device name and test result; as -vv, also print SCSI inquiry information and USB device descriptors.

scanimage

scanimage [options]

Read images from devices such as scanners and cameras, writing the images to standard output in one of the PNM (Portable aNyMap) formats. scanimage uses the SANE interface to access the scanner and can support any device for which there is a SANE backend.

**Formats**

- **PBM**
  Black-and-white
- **PGM**
  Grayscale
**scanimage**

**PPM**
- Color

**TIFF**
- Black-and-white, grayscale, or color

**Options**

--accept-md5-only
- Only accept MD5 authorization requests.

-b [format], --batch[=format]
- Work in batch mode, using a document feeder. Each page is written to a file, as specified by format, using a printf-type string. The default format is out%d.pnm for the PNM formats and out%d.tif for TIFF.

-B, --buffersize
- Change the buffersize from the default 32 KB to 1 MB.

--batch-count=\textit{num}
- The number of pages to scan in batch mode. Use this option for scanners that do not signal when they are empty; the default is to continue scanning until such a signal is received.

--batch-double
- Increment the page number by 2 in batch mode. Used for scanning two-sided originals on a single-sided scanner.

--batch-increment=\textit{num}
- Increment the number in the filename by \textit{num} in batch mode.

--batch-prompt
- In batch mode, prompt the user to press Return before scanning a page. Useful for manually feeding multiple pages.

--batch-start=\textit{num}
- Specify the page number in batch mode to use in the first filename. The default is 0.

-d \textit{device}, --device-name=\textit{device}
- Specify the scanner device to use. See -L to show the available devices.

-f \textit{format}, --formatted-device-list=\textit{format}
- Show the available scanner devices, as with -L, but also format the output. Possible format specifications are:
  - %d Device name
  - %i Index number
  - %m Model
  - %t Scanner type
  - %v Vendor

--format=\textit{format}
- Specify the file format of the output file. The possible values are pnm (default) and tiff.
-h, --help
Print a help message and exit. You can get device-specific help
by running scanimage as follows:

scanimage -h -d device

-i profile, --icc-profile=profile
Include the specified ICC profile in the TIFF output file.

-L, --list-devices
Display a list of available devices. The list may not be
complete, particularly when accessing scanners across the
network. Only scanners listed in a configuration file (typically
in the directory /etc/sane.d) are displayed. A scanner with no
configuration file entry must be accessed by its full device
name.

-n, --dont-scan
Set the specified options, but don’t actually scan anything.

-p, --progress
Print progress information.

-T, --test
Run some sanity tests to be sure the backend works as defined
by the SANE API.

-v, --verbose
Run in verbose mode, providing additional messages.

-V, --version
Print version information and exit.

scp

scp [options] file1 [...] file2
Securely copy files between hosts on a network, using ssh. Part of
the OpenSSH suite of network tools. scp requests a password or
passphrase if required. The transfer can be between two remote
hosts. If more than one file is specified for file1, file2 should be a
directory; otherwise, only the last file in the list is copied. file1 and
file2 can be specified in any of the following ways:

file
host:file
user@host:file

The first format is used for a local file; a remote file can be speci-
fied in either of the other two formats.

Options
-1 Force the use of SSH protocol 1.
-2 Force the use of SSH protocol 2
-4 Use IPv4 addresses.
-6 Use IPv6 addresses.
-B Run in batch mode. Don’t ask for passwords or passphrases.
-c cipher
Specify the cipher to be used for encrypting the data.
-C Enable ssh compression.

-F config
   Specify an ssh user configuration file (default is $HOME/.ssh/config).

-i file
   Specify the file that contains the identity (private key) for RSA authentication.

-l limit
   Limit bandwidth used to limit, specified in kilobits/second.

-o option
   Specify an option to pass to ssh.

-p port
   Connect to port on the remote host.

-q Don’t display the progress meter or messages.

-r Copy directories recursively.

-S program
   Specify the program to use for the encrypted connection. The program must understand ssh options.

-v Verbose mode.

Example
Copy the local file user.server1.pub to the remote system server2, putting it in james’s home directory:

   $ scp user.server1.pub james@server2:/home/james/

screen
   screen [options] [command [args]]

   Provide ANSI/VT100 terminal emulation, making it possible to run multiple full-screen pseudo-terminals from one real terminal, and letting you manipulate and save your screen input and output, copy and paste between windows, etc. screen allows you to detach from a running session without interrupting the processing, and reattach to it later.

   Options
   -a Include all capabilities in each window’s termcap.
   -A Adapt all windows to the size of the current terminal. Default is to try to use the previous window size.
   -c file
      Use file as the configuration file instead of the default $HOME/screenrc.
   -d [pid.tty.host]
      Detach session running elsewhere. With -r, reattach to this terminal. With -R, reattach to this terminal or create it if it doesn’t already exist. With -RR, use the first session when reattaching if more than one session is available.
-D [pid.tty.host]
  Detach session running elsewhere, logging out before detaching.
  With -r, reattach to this terminal. With -R, reattach to this
  terminal or create it if it doesn’t already exist. With -RR, do
  whatever is necessary to create a new session.

-e xy
  Change command characters. Specify x as the command char-
  acter (default Ctrl-a) and y as the character that generates a
  literal command character (default a). Specify in caret nota-
  tion (e.g., -e ^Pp to set Ctrl-p as the command character,
  which is useful for emacs-mode shell).

-f, -fn, -fa
  Turn flow control on, off, or to automatic-switching mode.

-h num
  Specify the size of the history scrollback buffer.

-i
  Cause the interrupt key (usually Ctrl-c) to interrupt the display
  immediately when flow control is on. Use of this option is
discouraged.

-l, -ln
  Turn login mode on or off for /etc/utmp updating.

-ls, -list
  Print list of pid.tty.host strings identifying screen
  sessions.

-L
  Turn on automatic output logging.

-m
  Ignore the $STY environment variable and create a new
  session. With -d, start session in detached mode; useful for
  scripts. With -D, start session in detached mode but don’t fork
  a new process; the command exits if the session terminates.

-O
  Use optimal output mode for terminal rather than true VT100
  emulation.

-p window
  Preselect the specified window by number or name if it exists.

-q
  Suppress error message printing on startup. Exit with nonzero
  return code if unsuccessful.

-r [pid.tty.host]
  Resume detached session. No other options except -d or -D
  can be specified. With sessionowner, resume another user’s
  detached session; requires super user.

-R
  Attempt to resume the first session found, or start a new
  session with the specified options. Set by default if screen
  is run as a login shell.

-s shell
  Set the default shell, overriding the $SHELL environment
  variable.

-S name
  Specify a name for the session being started, for use with the
  -list and -r options.
-t name
  Set the window’s title.

-T term
  Set $TERM to term instead of “screen”.

-U Run in UTF-8 mode and set the default for new windows to utf8.

-v Print version information and exit.

-wipe [match]
  Like -l, but remove destroyed sessions instead of marking them dead. If a match is specified, it should be in the same form as the argument to the -r option.

-x Attach to a session that is not detached. Requires multi-display mode.

-X Run specified command in specified session. Requires multi-display mode, and session must not be password-protected.

Key bindings

screen commands consist of a command character (Ctrl-a by default) followed by another character. For many of the commands, you can also specify the character as Ctrl-character—e.g., Ctrl-a Ctrl-d as well as Ctrl-a d. The default key bindings are listed here. You can change the bindings for yourself in the $HOME/.screenrc configuration file, or for all users in /etc/screenrc. The term in parentheses that follows the description is the equivalent configuration-file command for changing the key binding.

Ctrl-a '
  Prompt for window name or number to switch to. (select)

Ctrl-a "
  List all windows for selection. (windowlist -b)

Ctrl-a num
  Switch to window num, where num is a digit in the range 0–9 or - (the blank window). (select num)

Ctrl-a Tab
  Switch input focus to next region. (focus)

Ctrl-a Ctrl-a
  Toggle to previously displayed window. (other)

Ctrl-a a
  Send the command character (Ctrl-a) to the window. (meta)

Ctrl-a A
  Prompt user to enter a name for the current window. (title)

Ctrl-a b
  Send a break to the window. (break)

Ctrl-a B
  Reopen the terminal line and send a break. (pow-break)

Ctrl-a c
  Create a new window with a shell and switch to it. (screen)
Ctrl-a C  
Clear the screen. (clear)

Ctrl-a d  
Detach screen from this terminal. (detach)

Ctrl-a D D  
Detach and log out. (pow-detach)

Ctrl-a f  
Toggle flow control between on, off, and auto. (flow)

Ctrl-a F  
Resize window to current region size. (fit)

Ctrl-a Ctrl-g  
Toggle visual bell mode. (vbell)

Ctrl-a h  
Write contents of the current window to the file hardcopy.n. (hardcopy)

Ctrl-a H  
Begin/end logging of the current window to the file screenlog.n. (log)

Ctrl-a i  
Show information about this window. (info)

Ctrl-a k  
Kill current window. (kill)

Ctrl-a l  
Refresh current window. (redisplay)

Ctrl-a L  
Toggle window’s login slot. Requires that screen be configured to update the utmp database. (login)

Ctrl-a m  
Redisplay last message. (lastmsg)

Ctrl-a M  
Toggle monitoring of the current window. (monitor)

Ctrl-a Space  
Switch to next window. (next)

Ctrl-a N  
Show number and title of current window. (number)

Ctrl-a Backspace  
Switch to previous window. (prev)

Ctrl-a q  
Send a start signal (associated with Ctrl-q by terminals) to current window. (xon)

Ctrl-a Q  
Delete all regions except the current one. (only)
Ctrl-a r
   Toggle current window’s line-wrap setting. (wrap)

Ctrl-a s
   Send a stop signal (associated with Ctrl-s by terminals) to
current window. (xoff)

Ctrl-a S
   Split current region into two new regions. (split)

Ctrl-a t
   Show system information, including time and date. (time)

Ctrl-a v
   Display version information. (version)

Ctrl-a Ctrl-v
   Enter digraph for entering characters that can’t normally be
entered. (digraph)

Ctrl-a w
   List all windows. (windows)

Ctrl-a W
   Toggle 80/132 columns. (width)

Ctrl-a x
   Lock terminal. (lockscreen)

Ctrl-a X
   Kill the current region. (remove)

Ctrl-a z
   Suspend screen. (suspend)

Ctrl-a Z
   Reset virtual terminal to its “power-on” values. (reset)

Ctrl-a .
   Write out a .termcap file. (dumptermcap)

Ctrl-a ?
   Show all key bindings. (help)

Ctrl-a Ctrl-
   Kill all windows and terminate screen. (quit)

Ctrl-a :
   Enter command-line mode. (colon)

Ctrl-a [   
Ctrl-a Esc
   Enter copy/scrollback mode. (copy)

Ctrl-a ]
   Write contents of the paste buffer to the standard input queue
of the current window. (paste)

Ctrl-a {   
Ctrl-a }
   Copy and paste a previous line. (history)

Ctrl-a >
   Write paste buffer to a file. (writebuf)
script

Ctrl-a <
Read screen-exchange file into paste buffer. (readbuf)

Ctrl-a =
Remove file used by Ctrl-a < and Ctrl-a >. (removebuf)

Ctrl-a ,
Show where screen comes from, where it went to, and why you can use it. (license)

Ctrl-a _
Start/stop monitoring the current window for inactivity. (silence)

Ctrl-a *
List all currently attached displays. (displays)

script [option] [file]
Fork the current shell and make a typescript of a terminal session. The typescript is written to file. If no file is given, the typescript is saved in the file typescript. The script ends when the forked shell exits, usually with Ctrl-D or exit.

Options
-a Append to file or typescript instead of overwriting the previous contents.
-c command Run the specified command instead of an interactive shell.
-f Flush output after each write. Useful if another person is monitoring the output file.
-q Operate in quiet mode.
-t Write timing data to standard error. Each entry has two fields: the first is the elapsed time since the last output, and the second is the number of characters in the current output.

sdiff

sdiff –o outfile [options] from to
Find differences between the two files from and to and merge interactively, writing the results to outfile.

Options
-- Treat remaining options as filenames, even if they begin with -.
-a, --text Treat all files as text and compare line by line.
-b, --ignore-space-change Ignore differences in whitespace.
-B, --ignore-blank-lines Ignore added or missing blank lines.
-d, --minimal Use a different algorithm to find fewer changes. This option causes sdiff to run more slowly.
-H, --speed-large-files
Heuristically speed comparison of large files with many small scattered changes.

-i, --ignore-case
Ignore case changes.

-I regexp, --ignore-matching-lines=regexp
Ignore any changes that insert or delete lines matching the regular expression regexp.

--ignore-all-space
Ignore whitespace when comparing lines.

-l, --left-column
Print only the left column of common lines.

-o file, --output=file
Write merged output to the specified file.

-s, --suppress-common-lines
Suppress common lines.

-t, --expand-tabs
Convert tabs to spaces in the output to preserve alignment.

-v, --version
Print version information and exit.

-w cols, --width=cols
Set the output to cols columns wide.

-W Ignore horizontal whitespace when comparing lines.

**sed**

`sed [options] [command] [files]`
Stream editor. Edit one or more files without user interaction. See Chapter 10 for more information.

**sendmail**

`sendmail [flags] [address...]`
System administration command. sendmail is a mail transfer agent (MTA) or, more simply, a mail router. It accepts mail from a user's mail program, interprets the mail address, rewrites the address into the proper form for the delivery program, and routes the mail to the correct delivery program.

**Command-line flags**

- End of options marker. Only addresses should follow this option.

-`Ac`
Use local submission configuration file `/etc/mail/submit.cf`, even when no mail is sent from the command line.

-`Am`
Use configuration file `/etc/mail/sendmail.cf`, even when mail is sent from the command line.
sendmail

-**B**type
  Set message body type. Accepted values are **7BIT** and **8BITMIME**.

-**-bx**
  Set operation mode to x. Operation modes are:
  a  Run in ARPAnet mode.
  d  Run as a daemon.
  D  Run as a daemon, but remain in the foreground.
  h  Print persistent host status information.
  H  Purge expired entries from persistent host status information.
  i  Initialize the alias database.
  m  Deliver mail (the default).
  p  Print the mail queue.
  s  Speak SMTP on input side.
  t  Run in test mode.
  v  Verify addresses; do not collect or deliver.

-**-C** file
  Use configuration file file.

-**-d** level
  Set debugging level.

-**-D** file
  Send debugging output to file instead of stdout.

-**-f** name
  Sender’s name is name.

-**-F** name
  Set full name of user to name.

-**-G**
  Relay message submission. Used by rmail.

-**-h** cnt
  Set hop count (number of times message has been processed by sendmail) to cnt.

-**-i**
  Do not interpret dots on a line by themselves as a message terminator.

-**-L** identifier
  Use the specified log identifier for messages sent to syslogd.

-**-N** conditions
  Specify conditions for delivery status notification (DSN) as a comma-separated list. Accepted values are never, delay, failure, and success.

-**-n**
  Do not alias or forward.

-**-oXvalue**
  Set an option specified by its short name X. Options are described in the next section.
-O option=value
   Set an option specified by its long name. Options are described in the next section.

-p protocol
   Receive messages via the protocol protocol.

-q[time]
   Process queued messages immediately, or at intervals indicated by time (for example, -q30m for every half hour).

-qf Process saved messages in the queue using the foreground process.

-qG group
   Process saved messages in the named queue group.

-q![substring]
   Process jobs for named queues containing substring. Use ! to process mail for all queues not containing substring.

-qp[time]
   Same as -q, but create a persistent process to handle the queue instead of initiating a new process at each time interval.

-q![substring]
   Process quarantined messages containing substring. Use ! to process mail for recipients not containing substring.

-q![substring]
   Process jobs with recipients containing substring. Use ! to process mail for recipients not containing substring.

-q![substring]
   Process jobs from senders containing substring. Use ! to process mail from senders not containing substring.

-Q[reason]
   Quarantine messages for the given reason. Use query options above to specify the message to quarantine.

-R portion
   When bouncing messages, return only the specified portion of the bounced message. portion may be hdrs for headers, or full for the full message.

-t Read header for To:, Cc:, and Bcc: lines, and send to everyone on those lists.

-v Verbose mode.

-V envid
   Use envid as the original envelope ID.

-X file
   Log all traffic to file. Not to be used for normal logging.

Configuration options
Command-line configuration options are the same options normally set with an O in the sendmail configuration file. On the command line, they are set using -O and the option’s long name. Many of these options have short-name variations that are used
with the -o option. Here, we document items most likely to be useful on the command line, providing both their short- and long-name forms. Many of the commands call for timeout values. These should be given as a number followed by a letter indicating the interval: s for seconds, m for minutes, h for hours, or d for days. For example, 30s is 30 seconds, 10m is 10 minutes, and 3d is 3 days. The default is minutes when no letter is given.

**Aliasfile=file, Afile**
- Use alternate alias file.

**AliasWait=\texttt{min, amin}**
- If the D option is set, wait \texttt{min} minutes for the aliases file to be rebuilt before returning an alias database out-of-date warning.

**BlankSub=\texttt{char, Bchar}**
- Set unquoted space replacement character.

**CheckAliases, n**
- When running \texttt{newaliases}, validate the right side of aliases.

**CheckpointInterval=\texttt{num, Cnum}**
- Checkpoint the queue when mailing to multiple recipients. \texttt{sendmail} will rewrite the list of recipients after each group of \texttt{num} recipients has been processed.

**ClassFactor=\texttt{factor, zfactor}**
- Multiplier for priority increments. This determines how much weight to give to a message’s precedence header. \texttt{sendmail}’s default is 1800.

**ConnectionCacheSize=\texttt{num, knum}**
- Specify the maximum number of open connections to cache.

**ConnectionCacheTimeout=\texttt{timeout, Ktimeout}**
- Time out connections after \texttt{timeout}.

**ConnectionRateThrottle=\texttt{num}**
- Restrict SMTP connections per second to \texttt{num}.

**DefaultUser=\texttt{uid:gid}, uuid:gid**
- Use user ID and group ID for mailers instead of 1:1. If no group ID is specified, the user’s default group is used.

**DefaultCharSet=\texttt{label}**
- Use the specified label for 8-bit data.

**DeliveryMode=x, dx**
- Set the delivery mode to x. Delivery modes are d for deferred delivery, i for interactive (synchronous) delivery, b for background (asynchronous) delivery, and q for queue only (i.e., deliver the next time the queue is run).

**DialDelay=seconds**
- Specify the number of seconds to wait before redialing after a connection fails.

**DontPruneRoutes, R**
- Don’t prune route addresses.
EightBitMode=mode, 8mode
Specify how to handle 8-bit input. Accepted values for mode are mimefy (convert to 7-bit), pass (send as is), or strict (bounce the message).

ErrorHeader=text, Etext
Set error-message header. text is either text to add to an error message, or the name of a file. A filename must include its full path and begin with a /.

ErrorMode=x, ex
Set error processing to mode x. Valid modes are m to mail back the error message, w to write back the error message, p to print the errors on the terminal (default), q to throw away error messages, and e to do special processing for the BerkNet.

FallbackMXhost=host, Vhost
Set fallback MX host. host should be the fully qualified domain name of the fallback host.

ForkEachJob, Y
Deliver each job that is run from the queue in a separate process. This helps limit the size of running processes on systems with very low amounts of memory.

ForwardPath=path, Jpath
Set an alternative .forward search path.

HelpFile=file, H/file
Specify SMTP help file to use instead of /etc/mail/helpfile.

HoldExpensive, c
On mailers that are considered “expensive” to connect to, don’t initiate immediate connection.

IgnoreDots, i
Do not take dots on a line by themselves as a message terminator.

LogLevel=n, Ln
Specify log level. Default is 9.

MatchGECOS, G
Compare local mail names to the GECOS section in the password file.

MaxDaemonChildren=num
Restrict incoming SMTP daemon to no more than num child processes.

MaxHopCount=num, hnum
Allow a maximum of num hops per message.

MeToo, m
Also send to me (the sender) if I am in an alias expansion.

MinFreeBlocks=minblocks, bminblocks
Require at least minblocks on the filesystem to be free.

MinQueueAge=timeout
Wait the specified time before processing a new job in the queue.
**NoRecipientAction=** *action*
Specify what headers, if any, to add to a message without recipient headers. Accepted values are **none**, **add-to**, **add-apparently-to**, **add-bcc**, and **add-to-undisclosed**.

**OldStyleHeaders, o**
If set, this message may have old-style headers. If not set, this message is guaranteed to have new-style headers (i.e., commas instead of spaces between addresses).

**PostmasterCopy=** *user, Puser*
Send copies of all failed mail to *user* (usually postmaster).

**PrivacyOptions=** *optionlist, poptionlist*
Adjust the privacy of the SMTP daemon. The *optionlist* argument should be a comma-separated list of the following values:

- **public**
  Make SMTP fully public (the default).
- **needmailhelo**
  Require site to send HELO or ELHO before sending mail.
- **needexpnhelo**
  Require site to send HELO or ELHO before answering an address expansion request.
- **needvrfyhelo**
  Like preceding argument, but for verification requests.
- **noetrn**
  Deny requests to reverse the connection using extended TURN.
- **noexpn**
  Deny all expansion requests.
- **noverb**
  Deny requests for verbose mode.
- **novrfy**
  Deny all verification requests.
- **authwarnings**
  Insert special headers in mail messages advising recipients that the message may not be authentic.
- **goaway**
  Set all of the previous arguments (except **public**).
- **nobodyreturn**
  Don’t return message body with a delivery status notification.
- **noreceipts**
  Turn off delivery status notification on success.
- **restrictexpand**
  Deny untrusted users access to aliases, forwards, or include files. Restrict **sendmail -bv** and disallow -v.
restrictmailq
Allow only users of the same group as the owner of the queue directory to examine the mail queue.

restrictqrun
Limit queue processing to root and the owner of the queue directory.

QueueDirectory=dir, Qdir
Select the directory in which to queue messages.

QueueFactor=factor, qfactor
Multiplier (factor) for high-load queuing. Default is 600000.

QueueLA=load, xload
Queue messages when load level is higher than load.

QueueTimeout=timeout, Timeout
Set the timeout on undelivered messages in the queue to the specified time (overridden by Timeout.queuereturn).

RecipientFactor=factor, yfactor
Penalize large recipient lists by factor.

RefuseLA=load, Xload
Refuse SMTP connections when load is higher than load.

ResolverOptions=arg, Iarg
Use DNS lookups and tune them. Queue messages on connection refused. The arg arguments are identical to resolver flags without the RES_ prefix. Each flag can be preceded by a plus or minus sign to enable or disable the corresponding nameserver option. There must be whitespace between the I and the first flag.

RetryFactor=inc, Zinc
Increment priority of items remaining in queue by inc after each job is processed. sendmail uses 90000 by default.

SaveFromLine, f
Save Unix-style From lines at the front of messages.

SendMimeErrors, j
Use MIME format for error messages.

SevenBitInput, 7
Format all incoming messages in 7 bits.

StatusFile=file, Sfile
Save statistics in the named file.

SuperSafe, s
Always instantiate the queue file, even when it is not strictly necessary.

TempFileMode=mode, Fmode
Set default file permissions for temporary files. If this option is missing, default permissions are 0600.

Timeout.queuereturn=timeout
Return undelivered mail that has been in the queue longer than the specified timeout. The default is 5d (five days).
**TimeZoneSpec**=timezone, timezone
   Set name of the time zone.

**UseErrorsTo**, `-l`
   Do not ignore `Errors-To` header.

**UserDatabaseSpec**=database, Udatabase
   Consult the user database for forwarding information.

**Verbose**, `-v`
   Run in verbose mode.

**sendmail support files**

/usr/lib/sendmail
   Traditional location of sendmail binary.

/usr/bin/newaliases
   Link to /usr/lib/sendmail; rebuilds the alias database from information in /etc/aliases.

/usr/bin/mailq
   Prints a listing of the mail queue.

/etc/mail/sendmail.cf
   Configuration file, in text form.

/etc/mail/submit.cf
   Configuration file used for local message submissions.

/etc/mail/helpfile
   SMTP help file.

/etc/mail/statistics
   Statistics file.

/etc/aliases
   Alias file, in text form.

/etc/aliases.db
   Alias file in dbm format. Created by newaliases.

/var/spool/mqueue
   Directory in which the mail queue and temporary files reside.

**sensors**

Display current readings of all sensor chips and set limits (with `-s`) as specified in the configuration file. The default configuration file is /etc/sensors.conf.

**Options**

-A  Omit adapter and algorithm for each chipset.

--bus-list
   Generate bus statements for use in the configuration file. If multiple chips share an address on different buses of the same type, this lets you refer to each bus by name, not number.

-c config-file
   Specify a configuration file to use in place of the default.

-f  Print temperatures in Fahrenheit, not Celsius.
setleds

-h Display help information and exit.
-s Evaluate all set statements in the configuration file. Requires superuser privileges.
-u Produce raw output. Used for testing and debugging.
-v Display version information and exit.

seq

seq [options] [first [increment]] last
Print the numbers from first through last by increment. The default is to print one number per line to standard output. Both first and increment can be omitted and default to 1, but if first is omitted then increment must also be omitted. In other words, if only two numbers are specified, they are taken to be the first and last numbers. The numbers are treated as floating-point.

Options

-"format, --format=format
Write the output using the specified printf floating-point format, which can be one of %e, %f, or %g (the default).

--help
Print help message and exit.

-s string, --separator=string
Use string to separate numbers in the output. Default is newline.

-w, --equal-width
Equalize the width of the numbers by padding with leading zeros. (Use -f for other types of padding.)

--version
Print version information and exit.

setkeycodes

setkeycodes scancode keycode
System administration command. Assign a keycode event to the specified keyboard scancode. The kernel matches these to its own keycodes. Scancodes in the range of 1–88 are hardwired in the kernel, but the remaining scancodes can be assigned to keycodes in the range of 1–127. Use getkeycodes to see current assignments. Use showkey to discover what scancode a key is sending.

setleds

setleds [options]
Display or change the LED flag settings (NumLock, CapsLock, and ScrollLock) for the current virtual terminal. With no options, display the current settings for all three flags. Can be used in a startup script to set the initial state of the LEDs.

Options

+num, -num
Set or clear NumLock.
setmetamode

+caps, -caps
    Set or clear CapsLock
+scroll, -scroll
    Set or clear ScrollLock.
-D    Change both the current and the default flag settings. Useful
    for always having NumLock set, for example.
-F    Only change the flags (and their settings may be reflected by
    the keyboard LEDs). The default behavior.
-L    Change the LEDs but not the flags, so the leds no longer
    reflect the virtual terminal (VT) flags. Run setleds -L with no
    other options to restore the default behavior.
-v    Report the settings before and after the change.

setmetamode

Display or set Meta key handling for the current virtual terminal.
With no option, print the current Meta key mode. Otherwise, set
the mode and display the setting before and after the change.

Options
esc, prefix, escprefix
    Set the Meta key to send an escape sequence.
meta, bit, metabit
    Set the Meta key to set the high-order bit of the character.

setquota

System administration command. Set quotas from the command
line. Provide limits in the format soft-block-limit hard-block-limit
soft_inode-limit hard_inode-limit. To disable a quota, set it to 0. See
also edquota, a vi editor interface for editing and setting quotas.

Options
-a, --all
    Apply settings to all filesystems listed in /etc/mtab that support
    quotas.
-b, --batch
    Read new settings from standard input. Provide as a list, each
    line in the form of "name limits."
-F format, --format=format
    Specify filesystem quota format to use. See quota for a list of
    accepted values.
-g, --group
    Set group quotas instead of users.
-p prototype, --prototype=prototype
    Apply the same settings as used for the specified user or
    group: prototype.
setterm

-t blockgrace inodegrace, --edit_period blockgrace inodegrace
Specify overall grace times in seconds for block and inode quotas.

-T name blockgrace inodegrace, --edit-times name blockgrace inodegrace
Specify grace times in seconds for individual user or group name. Use the string unset to remove existing grace times.

-u, --user
Set user quotas. (This is the default.)

setsid

setsid command [arguments]
System administration command. Execute the named command and optional command arguments in a new session.

setterm

setterm [options]
Set terminal attributes by writing a character string to standard output to invoke the specified attributes.

Options
For Boolean options, the default value is on. Where 8-color is specified, the possible colors are black, red, green, yellow, blue, magenta, cyan, and white. Where 16-color is specified, the possible colors include the 8-color colors, plus grey, bright red, bright green, bright yellow, bright blue, bright magenta, bright cyan, and bright white.

-appcursorkeys [on|off]
Set cursor key application mode on or off. Virtual consoles only. Can cause problems with vi.

-append [num]
Write a snapshot of virtual console num to the file specified with the -file option, appending the snapshot to any existing contents. With no argument, write a snapshot of the current virtual terminal. Overridden by -dump.

-background 8-color|default
Set background color. Virtual consoles only.

-bfreq [freq]
Set the bell frequency in Hz (default 0).

-blank [min]
Set the delay before the screen blanks to the specified number of minutes. Virtual consoles only.

-blend [millisec]
Set the bell duration in milliseconds (default 0). Possible values are 0–2000.

-blink [on|off]
Turn blinking mode on or off. If the terminal is not a virtual console, -blink off also turns off bold, half-bright, and reverse modes.
setterm

- **bold [on|off]**
  Turn bold on or off. If the terminal is not a virtual console, `-bold off` also turns off blink, half-bright, and reverse modes.

- **clear [all]**
  Clear the screen.

- **clear rest**
  Clear from the current cursor position to the end of the screen.

- **clrtabs [tab1...tabn]**
  With no arguments, clear all tab stops. Otherwise, clear the specified tab stops. Virtual consoles only.

- **cursor [on|off]**
  Turn the cursor on or off.

- **default**
  Set rendering options to defaults.

- **dump [num]**
  Write a snapshot of virtual console `num` to the file specified with the `-file` option, overwriting any existing contents. With no argument, dump the current virtual console. Overrides `-append`.

- **file file**
  Write output from the `-dump` or `-append` option to the specified file. If no filename is specified, write to the file `screen.dump` in the current directory.

- **foreground 8-color|default**
  Set foreground color. Virtual consoles only.

- **half-bright [on|off]**
  Turn half-bright (dim) mode on or off. If the terminal is not a virtual console, `-half-bright off` also turns off bold, blink, and reverse modes.

- **hbcolor 16-color**
  Set color for half-bright characters. Virtual consoles only.

- **initialize**
  Display the terminal initialization string to reset the rendering options and other attributes to their defaults.

- **inversescreen [on|off]**
  Invert the screen colors, swapping foreground and background, and underline and half-bright. Virtual consoles only.

- **linewrap [on|off]**
  Turn line-wrapping on or off. Virtual consoles only.

- **msg [on|off]**
  Enable or disable the sending of kernel `printk()` messages to the console. Virtual consoles only.

- **msglevel [num]**
  Set the console logging level for kernel `printk()` messages. The value of `num` can be in the range 0–8. Messages more important than the specified number are printed, with 8 printing all kernel messages, and 0 equivalent to `-msg on`. Virtual consoles only.
setterm

-setterm -powerdown [min]
Set the VESA powerdown interval to the specified number of minutes, from 0–60. If no value is specified for min, defaults to 0, disabling powerdown.

-setterm -powersave [mode]
Put the monitor in the specified VESA powersave mode. Specifying no mode is equivalent to off. The possible values of mode are:

on, vsync
vsynch suspend mode.

hsync
hsync suspend mode.

powerdown
Powerdown mode.
	off
Turn off VESA powersaving features.

-setterm -regtabs [num]
Clear all existing tab stops and set a regular tab stop pattern at every num number (default is 8). num is a number in the range 1–160. Virtual consoles only.

-setterm -repeat [on|off]
Turn keyboard repeat on or off. Virtual consoles only.

-setterm -reset
Display the terminal reset string to reset the terminal to its power-on state.

-setterm -reverse [on|off]
Turns reverse-video mode on or off. If the terminal is not a virtual console, -reverse off also turns off bold, half-bright, and blink modes.

-setterm -store
Store the current rendering options as the defaults. Virtual consoles only.

-setterm -tabs [tab1...tabn]
Set tab stops at the specified cursor positions, which can range from 1 to 160. Virtual consoles only.

-setterm -term term
Replace the value of the TERM environment variable with term.

-setterm -ulcolor 16-color
Set color for underlining. Virtual consoles only.

-setterm -underline [on|off]
Turn underlining on or off.
sftp

sftp [options] host

An interactive file transfer program, similar to ftp except that it uses ssh to perform file transfers securely. sftp connects to host and logs in, prompting for a password if required. The host can be specified in the following ways:

Host
[ user@host[:file [file] ...]]
[ user@host[:dir[/]]]

If user is specified, that username is used for the login. If any files are specified, the sftp client automatically retrieves them after the user has been authenticated, and then exits. If a directory dir is specified, the client starts in that directory on the remote host. sftp is part of the OpenSSH suite of network tools.

Options
-1 Use SSH1. The default is to use SSH2, which offers stronger security.
-b file Run in batch mode, taking commands from the specified file. Requires the use of a noninteractive authentication mechanism.
-B bytes Specify the size of the buffer sftp uses for file transfers. Default is 32768 bytes.
-C Enable compression (uses ssh -C).
-F file Use file as the ssh configuration file instead of the default system configuration file. The systemwide file is usually /etc/ssh/ssh_config, and per-user files are $HOME/.ssh/config.
-o option Pass an option to ssh. The passed option is in the format used by ssh_config(5) (e.g., -o PORT=nn, where nn is the port number). -o can appear more than once to pass multiple options to ssh. This option is useful for passing options that don’t have an equivalent sftp command-line option.
-P server_path Connect directly to the local sftp server specified in server_path. Useful for debugging.
-R num Specify the number of requests that may be outstanding at any time (default 64).
-s subsys|server_path Specify the SSH2 subsystem or path to the sftp server on the remote system. Specifying the path is useful for using sftp via SSH1 or if the remote sshd does not have an sftp subsystem configured.
**showkey**

- **S program**
  Specify the name of a program that understands **ssh** options
  and that you want to use for the encrypted connection.

- **v**
  Raise the logging level.

**sh**

```
sh [options] [file [arguments]]
```

The standard Unix shell, a command interpreter into which all
other commands are entered. On modern versions of Linux, this is
just another name for the **bash** shell. For more information, see
Chapter 6. For legacy Linux versions and other Unix flavors, be
careful not to rely on **sh** and **bash** being equivalent.

**sha1sum**

```
sha1sum [option] [files]
```

Compute or check 160-bit SHA1 checksums to verify file integrity.
If the file is not specified, or specified as -, read from standard
input.

**Options**

- **-b, --binary**
  Read files in binary mode.

- **-c, --check**
  Read and check the SHA1 sums in the files (or standard input)
  and verify that they are consistent. The input must have been
  generated by an earlier **sha1sum** command.

- **--help**
  Print usage information and exit.

- **--status**
  Don’t generate output messages; the exit code indicates
  success or failure. Used only with **--check**.

- **-t, --text**
  Read files in text mode. The default.

- **--version**
  Print version information and exit.

- **-w, --warn**
  Warn about improperly formatted checksum lines. Used only
  with **--check**.

**showkey**

```
showkey [options]
```

Print keycodes, scan codes, or ASCII codes of keys pressed on the
keyboard. The default is to show keycodes. In keycode and scan-
code mode, the program terminates 10 seconds after the last key is
pressed. In ASCII mode, press **Ctrl-D** to exit. This command may
not function properly under the X Window System, which also
reads from the console device.
showmount

Options
-a, --ascii
Print the ASCII character, decimal, octal, and hexadecimal values of keys pressed.
-h, --help
Print version number and help message, then exit.
-k, --keycodes
Print keycodes associated with key-press events. This is the default mode.
-s, --scancodes
Print the keyboard scancodes associated with key-press events.

showmount [options] [host]
NFS/NIS command. Show information about an NFS server. This information is maintained by the mountd server on host. The default value for host is the value returned by hostname. With no options, show the clients that have mounted directories from the host. showmount is usually found in /usr/sbin, which is not in the default search path.

Options
-a, --all
Print all remote mounts in the format hostname:directory, where hostname is the name of the client and directory is the root of the filesystem that has been mounted.
-d, --directories
List directories that have been remotely mounted by clients.
-e, --exports
Print the list of exported filesystems.
-h, --help
Provide a short help summary.
--no-headers
Do not print headers.
-v, --version
Report the current version of the program.

shred [options] files
Overwrite a file to make the contents unrecoverable, and delete the file afterward if requested.

Options
- Shred standard output.
-f, --force
Force permissions to allow writing to files.
-h, --help
Print help message and exit.
--iterations=num
Overwrite files num times (default is 25).
shutdown

--random-source=\texttt{file}
Use \texttt{file} as the source of random bytes for overwriting. Default is /dev/urandom.

-\texttt{num}, --\texttt{size}=\texttt{num}
Shred \texttt{num} bytes. \texttt{num} can be expressed with suffixes (e.g., K, M, or G).

-u, --\texttt{remove}
Remove file after overwriting. \texttt{shred} does not remove the file unless this option is specified.

-v, --\texttt{verbose}
Verbose mode.

--\texttt{version}
Print version information and exit.

-x, --\texttt{exact}
Shred the exact file size; do not round up to the next full block.

-z, --\texttt{zero}
On the final pass, overwrite with zeros to hide the shredding.

\texttt{shutdown}\ [\texttt{options}] when [\texttt{message}]

System administration command. Terminate all processing, when may be a specific time (in \texttt{hh:mm} format), a number of minutes to wait (in \texttt{+m} format), or \texttt{now}. A broadcast \texttt{message} notifies all users to log off the system. Processes are signaled with \texttt{SIGTERM} to allow them to exit gracefully. \texttt{/etc/init} is called to perform the actual shutdown, which consists of placing the system in runlevel 1. Only privileged users can execute the \texttt{shutdown} command, although \texttt{init} may call \texttt{shutdown} with root privileges when the Ctrl-Alt-Del key combination is pressed from the console keyboard. Broadcast messages, default or defined, are displayed at regular intervals during the grace period; the closer the shutdown time, the more frequent the message.

\textbf{Options}

-\texttt{a}  When called from \texttt{init}, shut down only if one of the users listed in the file \texttt{/etc/shutdown.allow} is currently logged in.

-\texttt{c}  Cancel a shutdown that is in progress.

-\texttt{f}  Reboot fast, by suppressing the normal call to \texttt{fsck} when rebooting.

-\texttt{F}  Force a filesystem check (\texttt{fsck}) on reboot.

-\texttt{h}  Halt or power off the system when shutdown is complete. Which it does depends on system hardware/BIOS.

-\texttt{H}  Halt the system when shutdown is complete.

-\texttt{k}  Print the warning message, but suppress actual shutdown.

-\texttt{P}  Power off the system when shutdown is complete.

-\texttt{r}  Reboot the system when shutdown is complete.
**size**

```
size [options] [objfile...]
```

Print the number of bytes of each section of `objfile` and its total size. If `objfile` is not specified, `a.out` is used.

**Options**

- `-d` Display the size in decimal and hexadecimal.
- `--format=format`
  Imitate the `size` command from either System V (`--format sysv`) or BSD (`--format berkeley`).
- `--help`
  Print help message, then exit.
- `-o`
  Display the size in octal and hexadecimal.
- `--radix=num`
  Specify how to display the size: in hexadecimal and decimal (if `num` is 10 or 16) or hexadecimal and octal (if `num` is 8).
- `-t`, `--totals`
  Show object totals. Works only with Berkeley format listings.
- `--target=bfdname`
  Specify object format by binary file descriptor name. Use `-h` for a list of supported object formats.
- `-x`
  Display the size in hexadecimal and decimal.
- `-A`
  Imitate System V’s `size` command.
- `-B`
  Imitate BSD’s `size` command.
- `-V`, `--version`
  Print version, then exit.

**slabtop**

```
slabtop [options]
```

Display kernel slab cache information in real time. `slabtop` displays a listing of the top caches as sorted by a given sort criteria.

**Options**

- `-d n`, `--delay=n`
  Refresh the display every `n` seconds. By default, the display is refreshed every three seconds.
- `-S`, `--sort=\text{S}`
  Sort by `S`, where `S` is one of the following sort criteria:
  - `a` Sort by the number of active objects in each cache.
  - `b` Sort by the number of objects per slab.
  - `c` Sort by cache size.
  - `l` Sort by the number of slabs in each cache.
  - `n` Sort by the name of each cache.
  - `o` Sort by the number of objects in each cache (this is the default).
  - `p` Sort by the number of pages per slab.
**sleep**

`sleep amount [units]`

`sleep option`

Wait a specified `amount` of time before executing another command. `units` may be `s` (seconds), `m` (minutes), `h` (hours), or `d` (days). The default for `units` is `s`.

**Options**

`--help`

Print usage information and exit.

`--version`

Print version information and exit.

**slattach**

`slattach [options] [tty]`

TCP/IP command. Attach serial lines as network interfaces, thereby preparing them for use as point-to-point connections. Only a privileged user may attach or detach a network interface.

**Options**

`-c command`

Run `command` when the connection is severed.

`-d` Debugging mode.

`-e` Exit immediately after initializing the line.

`-h` Exit when the connection is severed.

`-l` Create UUCP-style lockfile in `/var/spool/uucp`.

`-L` Enable three-wire operation.

`-m` Suppress initialization of the line to 8-bit raw mode.

`-n` Similar to `mesg -n`.

`-p protocol`

Specify `protocol`, which may be `slip`, `adaptive`, `ppp`, or `kiss`.

`-q` Quiet mode; suppress messages.

`-s speed`

Specify line speed.
sort

sort [options] [files]
Sort the lines of the named files. Compare specified fields for each pair of lines; if no fields are specified, compare them by byte, in machine-collating sequence. If no files are specified or if the file is -, the input is taken from standard input. See also uniq, comm, and join.

Options

-b, --ignore-leading-blanks
  Ignore leading spaces and tabs.
-c, --check
  Check whether files are already sorted and, if so, produce no output.
-C, --check=quiet, --check=silent
  Like -c, but do not report the first bad line.
-d, --dictionary-order
  Sort in dictionary order.
-f, --ignore-case
  Fold; ignore uppercase/lowercase differences.
-g, --general-numeric-sort
  Sort in general numeric order.
--help
  Print a help message and then exit.
-i, --ignore-nonprinting
  Ignore nonprinting characters (those outside ASCII range 040–176).
-k n[,m], --key=n[,m]
  Skip n–1 fields and stop at m–1 fields (i.e., start sorting at the nth field, where the fields are numbered beginning with 1). If m is omitted, stop at the end of the line.
-m, --merge
  Merge already sorted input files.
-M, --month-sort
  Attempt to treat the first three characters as a month designation (JAN, FEB, etc.). In comparisons, treat JAN < FEB and any invalid name for a month as less than a valid month.
-n, --numeric-sort
  Sort in arithmetic order.
-o file, --output=file
  Put output in file.
-r, --reverse
  Reverse the order of the sort.
-s, --stable
  Stabilize sort by disabling last-resort comparison.
-S size, --buffer-size=size
  Set the size of the main memory buffer to size, which may include a suffix—e.g., K (1024, the default) or M.
-tc, --field-separator="c"
Separate fields with \"c\" instead of nonblank to blank transition.

-Tdir, --temporary-directory=dir
Specify the directory pathname to be used for temporary files instead of $TMPDIR or /tmp. May be given more than once for multiple directories.

-u, --unique
Identical lines in input file appear only one time in output.
With -c, check for strict ordering.

--version
Print version information and then exit.

-z, --zero-terminated
End lines with zero byte, not with newline.

Examples
List files by decreasing number of lines:
wc -l * | sort -r

Alphabetize a list of words, remove duplicates, and print the frequency of each word:
sort -fd wordlist | uniq -c

Sort the password file numerically by the third field (user ID):
sort -nk3,4 -t: /etc/passwd

split
split [options] [infile [prefix]]
Split infile into equal-sized segments. infile remains unchanged, and the results are written to prefixaa, prefixab, and so on. The default prefix is x, giving the output files xaa, xab, etc. If infile is - or missing, standard input is read. See also csplit.

Options
-a n, --suffix-length=n
Use suffixes of length n (default is 2).

-b [b|k|m], --bytes=[b|k|m]
Split infile into n-byte segments. Alternate block sizes may be specified:
b 512 bytes.
 k 1 kilobyte.
 m 1 megabyte.

-C bytes[b|k|m], --line-bytes=bytes[b|k|m]
Put a maximum of bytes into file; insist on adding complete lines.

-d, --numeric-suffixes
Use numeric suffixes instead of alphabetic suffixes for the output filenames.

-n, -l n, --lines=n
Split infile into n-line segments (default is 1000).
ssh

--help
Print a help message and then exit.

--verbose
Print a message for each output file.

--version
Print version information and then exit.

Examples
Break bigfile into 1000-line segments:

    split bigfile

Concatenate four files, then split them into 10-line files named new.aa, new.ab, and so on. Note that without the -, new would be treated as a nonexistent input file:


ssh [options] hostname [command]

Securely log a user into a remote system and run commands on that system. The version of ssh described here is the OpenSSH client. ssh can use either version 1 (SSH1) or version 2 (SSH2) of the SSH protocol. SSH2 is preferable, as it provides stronger encryption methods and greater connection integrity. The hostname can be specified either as hostname or as user@hostname. If a command is specified, the user is authenticated, the command is executed, and the connection is closed. Otherwise, a terminal session is opened on the remote system. See “Escape characters,” later in this command, for functions that can be supported through an escape character. The default escape character is a tilde (~). The exit status returned from ssh is the exit status from the remote system, or 255 if there was an error.

Commonly, authentication is handled with standard username/password credentials, but it can also be useful to authenticate with a key exchange. This is done by generating a key on the client with ssh-keygen and populating the authorized_keys file on the remote host.

Options
-1 Try only SSH1.
-2 Try only SSH2.
-4 Use only IPv4 addresses.
-6 Use only IPv6 addresses.
-a Disable forwarding of the authentication agent connection.
-A Allow forwarding of the authentication agent connection. Can also be specified on a per-host basis in a configuration file.
-b bind_address
Specify the interface to transmit from when there are multiple available interfaces or aliased addresses.
-c blowfish|3des|des|ciphers
Select the cipher for encrypting the session. The default is 3des. For SSH2, a comma-separated list of ciphers can also be specified, with the ciphers listed in order of preference. des is supported only for legacy SSH1 compatibility and otherwise should not be used.

-C
Enable compression. Useful mainly for slow connections. The default compression level can be set on a per-host basis in the configuration file with the CompressionLevel option.

-D [bind_address]:port
Enable dynamic application-level port forwarding using port on the local side. Can be specified in the configuration file. Only root can forward privileged ports. For IPv6, an alternative syntax is [bind_address]/port or the address can be enclosed in square brackets.

-e char|^char|none
Set the escape character (default ~). The escape character must be the first character on a line. If none is specified, disable the use of an escape character.

-f
Run interactively for user authentication, then go into background mode for command execution. Implies -n.

-F configfile
Specify a per-user configuration file (default is $HOME/.ssh/config).

-g
Allow remote hosts to connect to local forwarded ports.

-i idfile
Use idfile to read identity (private key) for RSA or DSA authentication. Default is $HOME/.ssh/id_rsa or $HOME/.ssh/id_dsa for SSH2, or $HOME/.ssh/identity for SSH1. You can specify more than one -i option on the command line or in the configuration file.

-I device
Specify a smartcard device from which to get the user’s private RSA key.

-k
Disable forwarding of GSSAPI (Generic Security Service Application Programming Interface) credentials to the server. Can be set on a per-host basis in the configuration file.

-K
Enable forwarding of GSSAPI credentials to the server.

-l user
Log in as user on the remote system. Can be specified on a per-host basis in the configuration file.

-L [bind_address]:port:host:hostport
Forward port on the local host to the specified remote host and port. Can be specified in the configuration file. Only root can forward privileged ports. For IPv6, an alternative syntax is [bind_address]/port/host/hostport or the address can be enclosed in square brackets.
-m macspec
   For SSH2, the contents of macspec specify message authentication code (MAC) algorithms to use. macspec is a comma-separated list of algorithms in order of preference.

-M Put the ssh client into master mode for connection sharing.

-n Get standard input as a redirection from /dev/null. Used to prevent reading from standard input, which is required when running ssh in the background. Useful for running X programs on a remote host.

-N Do not execute a remote command. Useful with SSH2 for port forwarding.

-o option
   Specify options in configuration-file format. Useful for specifying options that have no command-line equivalent. For details on the options, see the manpage for ssh_config(5).

-p port
   Specify the port on the remote host to which ssh is to connect. Can be specified on a per-host basis in the configuration file.

-q Run quietly, suppressing warnings and error messages.

-R [bind_address]:port:host:hostport
   Forward port on the remote host to the local host:hostport. Can be specified in the configuration file. You can forward privileged ports only if you are logged in as root on the remote host. For IPv6, an alternative syntax is [bind_address]/port/host/hostport or the address can be enclosed in square brackets.

-s For SSH2, request invocation of a subsystem on the remote host to be used for another application, such as sftp. The desired subsystem is specified as the remote command.

-S ctl
   Specify the location of a control socket for connection sharing.

-t Force pseudo-tty allocation. Multiple -t options can be specified to force tty allocation even when ssh has no local tty.

-T Disable pseudo-tty allocation.

-v Verbose mode. Useful for debugging. Specify multiple -v options to increase verbosity.

-V Display version information and exit.

-w local[:remote]
   Request tunnel device forwarding with the specified local (client) and remote (server) tunnel devices.

-x Disable X11 forwarding.

-X Enable X11 forwarding. Can be specified on a per-host basis in the configuration file.

-Y Enable trusted X11 forwarding.
**Escape characters**

`.`  Disconnect.

`~.`  Send a single `.`.

`~#`  List forwarded connections.

`~&`  Run `ssh` in the background at logout, while waiting for a forwarded connection or X11 sessions to terminate.

`~?`  Display the available escape characters.

`~B`  Send a BREAK to the remote system. Only for SSH2 and if the remote system supports it.

`~C`  Open a command line. Useful for adding port forwardings when using the `-L` and `-R` options.

`~R`  Request rekeying of the connection. Useful only for SSH2 and if the peer supports it.

`~^Z`  Run in the background.

---

**ssh-add**

```
ssh-add [options] [files]
```

Add RSA or DSA identities to the authentication agent (see `ssh-agent`), which must be running and must be an ancestor of the current process. `ssh-add` reads the files created by `ssh-keygen` for private keys. It reads the information in these private keys to obtain RSA or DSA identities. With no arguments specified, `ssh-add` adds the files `$HOME/.ssh/id_rsa`, `$HOME/.ssh/id_dsa`, and `$HOME/.ssh/identity`. If any files are specified, it adds those instead, prompting for a passphrase if required.

**Options**

- `-c`  Confirm identities being added, by running the program specified in the SSH_ASKPASS environment variable. A 0 exit status from the program indicates successful confirmation.

- `-d`  Remove an identity from the agent instead of adding one.

- `-D`  Delete all identities from the agent.

- `-e reader`  Remove key in specified smartcard reader.

- `-l`  List fingerprints of all identities known to the agent.

- `-L`  List public key parameters of all identities known to the agent.

- `-s reader`  Add key in smartcard reader.

- `-t life`  Set maximum lifetime when adding identities to an agent. The value of `life` can be in seconds or another time format specified in `sshd_config(5)`.

- `-x`  Lock the agent with a password.

- `-X`  Unlock the agent.
ssh-agent

**ssh-agent**  
`ssh-agent [options] [command [arguments]]`

Hold private keys used for public key authentication. **ssh-agent** is usually executed at the beginning of an X or login session; then all other windows or programs given as command are run as clients of **ssh-agent**. When a command is specified, the command and any arguments are executed. The agent dies when the command completes. Use **ssh-add** to add keys (identities) to the agent. Operations that require a private key are performed by the agent, which returns the results to the requestor.

**Options**

- `-a bind_addr`
  Bind the agent to the socket `bind_addr` (default is `/tmp/ssh-nnnnnnnn/agent`, where `nnnnnnnn` is a generated number).

- `-c`
  Write **csh** commands to standard output. This is the default if the environment variable SHELL looks like a **csh**-type shell.

- `-d`
  Debug mode.

- `-k`
  Kill the current agent.

- `-s`
  Write Bourne shell commands to standard output. This is the default if the environment variable SHELL does not look like a **csh**-type shell.

- `-t life`
  Set a default value for maximum identity lifetime for added identities. May be specified in seconds or in a format specified in **sshd**(8). This value can be overridden by a lifetime specified for an identity with **ssh-add**. The default maximum lifetime is forever.

ssh-keygen

**ssh-keygen**  
`ssh-keygen [options]`

Generate, manage, and convert authentication keys for **ssh**. When using **ssh-keygen** to create a key, the `-t` option must be specified to identify the type of key to create.

**Options**

- `-b bits`
  Specify the number of bits in the key. For RSA keys, the minimum is 512, and the default is 2048. DSA keys must be exactly 1024 bits.

- `-B`
  Show the bubblebabble digest (a digest represented as a string that looks like real words) for the private or public keyfile specified with `-f`.

- `-c`
  Change the comment in the private and public keyfiles (for RSA1 keys only).

- `-C comment`
  Specify a new comment.

- `-D reader`
  Download the RSA public key from the smartcard in `reader`. 
ssh-keyscan

- `ssh-keyscan` is used to gather public and private host keys from a number of hosts. It can be used in scripts.

**Options**

- `-4` Use IPv4 addresses only.
- `-6` Use IPv6 addresses only.
- `-f file` Read hostnames or `addlist namelist` pairs from `file`. If `-` is specified instead of a filename, read hosts or `addlist namelist` pairs from standard input.
- `-H` Hash hostnames and addresses in the output.

**Example Usage**

```
ssh-keyscan [-4 -6 -f file] [-H] [-v] [options]
```

- `-e` Read an OpenSSH private or public keyfile and write it in SECSH Public Key File Format to standard output for exporting to a commercial SSH.
- `-f file` Specify the filename of the keyfile.
- `-F hostname` List occurrences of the specified hostname found in a `known_hosts` file. Useful with `-H` to print keys that were found in a hashed format.
- `-H` Hash a `known_hosts` file.
- `-i` Read an SSH2-compatible unencrypted private or public keyfile and write an OpenSSH-compatible key to standard output. Used to import keys from a commercial SSH.
- `-l` Show fingerprint of public or private RSA1 keyfile specified with `-f`. With `-v`, also displays an ASCII art representation of the key.
- `-N passphrase` Specify the new passphrase.
- `-p` Change the passphrase for a private keyfile. Prompt for the file, the old passphrase, and twice for the new passphrase.
- `-P passphrase` Specify the old passphrase.
- `-q` Operate in quiet mode.
- `-t type` Specify the type of key to create. Possible values of `type` are `rsa1` for SSH1, and `rsa` or `dsa` for SSH2.
- `-U reader` Upload an existing RSA private key to the smartcard in `reader`.
- `-v` Verbose mode; print debugging messages. Use multiple `-v` options for greater verbosity.
- `-y` Read a private OpenSSH-format file and print a public key to standard output.
sshd

-**p** *port*
  Specify the port to connect to on the remote host.

-**t** *type*
  Specify the type of key to get from the scanned hosts. Possible values are `rsa1` for SSH1 (default), or `rsa` or `dsa` for SSH2. Specify multiple values in a comma-separated list.

-**T** *timeout*
  Specify the timeout for attempting a connection, in seconds. Default is 5 seconds.

-**v**  Verbose mode.

**sshd**

TCP/IP command. Server for the **ssh** program, providing a secure remote-login and remote-execution facility equivalent to **rlogin** and **rsh**. Normally started at boot, **sshd** listens for incoming connections, forking a new daemon when one is detected. The forked daemon handles authentication, command execution, and encryption. Most implementations of **sshd** support both SSH protocols 1 and 2. The following options are those used by OpenSSH, OpenBSD’s Secure Shell implementation.

**Options**

-**d**  Use only IPv4 addresses.

-**6**  Use only IPv6 addresses.

-**b** *bits*
  Use the specified number of *bits* in the server key. Default is 768.

-**d**  Run **sshd** in the foreground and send verbose debug information to the system log. Process only one connection. Use the specified number of *bits* in the server key. This option may be specified from one to three times. Each additional `-d` increases the level of information sent to the system log.

-**D**  Do not detach from the foreground process.

-**e**  Send output to standard error instead of the system log.

-**f** *file*
  Read configuration information from *file* instead of the default configuration file `/etc/ssh/sshd_config`.

-**g** *seconds*
  Set the grace time a client has to authenticate itself before the server disconnects and exits. The default is 600 seconds. A value of 0 means there is no limit.

-**h** *keyfile*
  Read the host’s cryptographic key from the specified *keyfile* instead of from the default file `/etc/ssh/ssh_host_key` for SSH protocol 1, and the default files `/etc/ssh/ssh_host_rsa_key` and `/etc/ssh/ssh_host_dsa_key` for SSH protocol 2. The `-h` option may be given more than once to specify multiple keyfiles.
-i  Use when running `sshd` from `inetd`.

-k seconds
Set how often the version 1 server key should be regenerated.
Default value is 3600 seconds. If set to 0 seconds, the key will
never be regenerated.

-o setting
Pass a configuration file setting as an option.

-p port
Listen for connections on `port`. The default is 22. More than
one `-p` option may be specified. This option overrides ports
specified in a configuration file.

-q  Send no messages to the system log.

-t  Test configuration files and keys, then exit.

-u namelength
Specify the length of the remote hostname field in the UTMP
structure as specified in `utmp.h`. A namelength of 0 will cause
`sshd` to write dotted decimal values instead of hostnames to
the `utmp` file and prevent DNS requests unless required by the
authentication mechanism.

---

**stat**

```
stat [options] files
```

Print out the contents of an inode as they appear to the `stat` system
call in a human-readable format. The error messages “Can’t stat
file” and “Can’t lstat file” usually mean the file doesn’t exist.
“Can’t readlink file” generally indicates that something is wrong
with a symbolic link.

**Options**

- `-c format`, `--format=format`
  Display the output as specified by `format`.

- `-f`, `--filesystem`
  Display information about the filesystem where the file is
  located, not about the file itself.

- `--help`
  Display help information and exit.

- `-L`, `--dereference`
  Follow links and display information about the files found.

- `-t`, `--terse`
  Print the output tersely, in a form suitable for parsing by other
  programs.

- `--version`
  Print version information and exit.

**Output**

`stat` and `stat -L` display the following:

- Device number
- Inode number
stat

- Access rights
- Number of hard links
- Owner’s user ID and name, if available
- Owner’s group ID and name, if available
- Device type for inode device
- Total size, in bytes
- Number of blocks allocated
- I/O block size
- Last access time
- Last modification time
- Last change time
- Security context for SELinux

If `-f` is specified, `stat` displays the following information about the filesystem:

- Filesystem type
- Filesystem block size
- Total blocks in the filesystem
- Number of free blocks
- Number of free blocks for nonroot users
- Total number of inodes
- Number of free inodes
- Maximum filename length

**Format**

The `printf(3)` flag characters `#`, `0`, `-`, `+`, and space can be used in `format`. In addition, the field width and precision options can be used.

If `-c format` is specified, the following sequences can be used for `format`:

- `%a` Access rights in octal.
- `%A` Access rights in human-readable form.
- `%b` Number of blocks allocated.
- `%B` Size in bytes of each block reported by `%b`.
- `%d` Device number in decimal.
- `%D` Device number in hex.
- `%f` Raw mode in hex.
- `%F` File type.
- `%g` Owner’s group ID.
- `%G` Owner’s group name.
- `%h` Number of hard links.
- `%i` Inode number.
stat

%n Filename.
%N Quoted filename. If file is a symbolic link, include path to original.
%o I/O block size.
%s Total size, in bytes.
%t Major device type in hex.
%T Minor device type in hex.
%u Owner’s user ID.
%U Owner’s username.
%x Last access time.
%X Last access time as seconds since the Epoch.
%y Last modification time (modification of the file contents).
%Y Last modification time as seconds since the Epoch.
%z Time of last change (modification of the inode).
%Z Time of last change as seconds since the Epoch.

If both -c format and -f are specified, the following sequences can be used for format:

%a Free blocks available to nonroot user.
%b Total data blocks in filesystem.
%c Total file nodes in filesystem.
%d Free file nodes in filesystem.
%f Free blocks in filesystem.
%i Filesystem ID, in hex.
%I Maximum filename length.
%n Filename.
%s Optimal transfer block size.
%S Fundamental block size (for block counts).
%t Type in hex.
%T Type in human-readable form.

Examples

Sample output from the command stat /

    stat /
    File: "/"
    Size: 4096   Blocks: 8             10 Block: 4096
    Directory
    Device: 303h/771d   Inode: 2         Links: 19
    Access: (0755/drwxr-xr-x)  Uid: ( 0/ root)  Gid: ( 0/ root)
statd

Sample output with -f, displaying information about the filesystem:

```
stat -f /
File: "/
ID: 0 0 Namelen: 255 Type: ext2/ext3
Blocks: Total: 2612475 Free: 1869472 Available:
1736735 Size: 4096
Inodes: Total: 1329696 Free: 1150253
```

statd  rpc.statd [options]
System administration command. The NFS status server, statd, reports server status to clients like the rup command.

Options
- `d` Debugging mode; log verbose information to standard error.
- `F` Run statd in the foreground.
- `n hostname, --name hostname`
  Specify a name to use for the local hostname. By default, this is read using the gethostname function.
- `o port, --outgoing-port port`
  Specify the port that statd should use for its outgoing requests to other servers. When not specified, a port is assigned by portmap.
- `p port, --port port`
  Specify the incoming port that statd should listen on. When not specified, a port is assigned by portmap.
- `P directory, --state-directory-path directory`
  Store state information in directory instead of the default, /var/lib/nfs.
- `V` Print version information, then exit.
- `?` Print help message, then exit.

strace  strace [options] command [arguments]
Trace the system calls and signals for command with optional arguments. strace shows you how data is passed between the program and the kernel. With no options, strace prints a line for each system call. It shows the call name, given arguments, return value, and any generated error messages. A signal is printed with both its signal symbol and a descriptive string. As it shows the data transfer between user and kernel-space, strace is very useful as both a diagnostic utility for system administrators and a debugging tool for programmers. By default, the output is written to standard error.

Options
- `a n` Align the return values in column n. The default is 40.
- `c` Count system calls, errors, signals, and time and provide a summary report when the program has ended.
strace

-d Debug mode. Print debugging information for strace on stderr.

-\e [keyword=][!][values]
   Pass an expression to strace to limit the types of calls or
   signals that are traced or to change how they are displayed. If
   no keyword is given, trace is assumed. The values can be given
   as a comma-separated list. Preceding the list with an exclama-
   tion point (!) negates the list. The special values all and none
   are valid, as are the values listed with the following keywords:

  abbrev=names
       Abbreviate output from large structures for system calls
       listed in names.

   read=descriptors
       Print all data read from the given file descriptors.

   signal=symbols
       Trace the listed signal symbols (for example,
       signal=SIGIO,SIGHUP).

   trace=sets
       sets may be a list of system call names or one of the
       following:

       desc       File descriptor related calls.

       file       Calls that take a filename as an argument.

       ipc        Interprocess communication.

       network    Network-related.

       process    Process management.

       signal     Signal-related.

   raw=names
       Print arguments for the given system calls in hexadecimal.

   verbose=names
       Unabbreviate structures for the given system calls.
       Default is none.

   write=descriptors
       Print all data written to the given file descriptors.

-f Trace forked processes.

-ff Write system calls for forked processes to separate files named
    filename.pid when using the -o option.

-h Print help and exit.

-i Print the current instruction pointer with each system call.
-o filename
   Write output to filename instead of stderr. If filename starts
   with the pipe symbol |, treat the rest of the name as a
   command to which output should be piped.

-O n
   Override strace’s built-in timing estimates, and just subtract n
   microseconds from the timing of each system call to adjust for
   the time it takes to measure the call.

-p pid
   Attach to the given process ID and begin tracking. strace can
   track more than one process if more than one option -p is
   given. Type Ctrl-C to end the trace.

-q
   Quiet mode. Suppress attach and detach messages from
   strace.

-r
   Relative timestamp. Print time in microseconds between
   system calls.

-s n
   Print only the first n characters of a string. Default value is 32.

-S value
   Sort output of -c option by the given value. value may be calls,
   name, time, or nothing. Default is time.

-t
   Print time of day on each line of output.

-tt
   Print time of day with microseconds on each line of output.

-qtt
   Print timestamp on each line as the number of seconds and
   microseconds since the Epoch.

-T
   Print time spent in each system call.

-u username
   Run command as username. Needed when tracing setuid and
   setgid programs.

-V
   Print version and exit.

-v
   Verbose. Do not abbreviate structure information.

-x
   Print all non-ASCII strings in hexadecimal.

-xx
   Print all strings in hexadecimal.

strings [options] files
Search each file specified and print any printable character strings
found that are at least four characters long and followed by an
unprintable character. Often used to find human-readable content
within binary files.

Options

@/file
   Read command-line options as a whitespace-separated list of
   options from file.
-a, --all
Scan entire object files; default is to scan only the initialized and loaded sections for object files.

-e encoding, --encoding=encoding
Specify the character encoding of the strings to be found. Possible values are:

- b 16-bit big-endian
- B 32-bit big-endian
- l 16-bit little-endian
- L 32-bit little-endian
- s Single-7-bit-byte characters, such as ASCII, ISO-8859, etc. (the default)
- S Single-8-bit-byte characters.

-f, --print-file-name
Print the name of the file before each string.

-min-len, -n min-len, --bytes=min-len
Print only strings that are at least min-len characters.

-o The same as -t o.

-t base, --radix=base
Print the offset within the file before each string, in the format specified by base:

- d Decimal
- o Octal
- x Hexadecimal

-T format, --target=format
Specify an alternative object code format to the system default. See strings --help for a list of valid target formats.

--help
Print help message and then exit. The help message includes a list of valid targets.

-v, --version
Print version information and then exit.

strip
strip [options] files
Remove symbols from object files, thereby reducing file sizes and freeing disk space.

Options

-F bfdname, --target=bfdname
Specify object format for both input and output by binary file descriptor name bfdname. Use option -h to see a list of supported formats.

-I bfdname, --input-target=bfdname
Expect object format bfdname for input.
stty

--help
Print help message, then exit.
-K symbol, --keep-symbol=symbol
Delete all symbols except the specified symbol. This option
may be used more than once.
-N symbol, --strip-symbol=symbol
Remove symbol from the source file.
-O bfdname, --output-target=bfdname
Use object format bfdname for output.
-o file
Write stripped object to file instead of replacing the original.
Only one object file at a time may be stripped when using this
option.
-p, --preserve-dates
Preserve access and modification times.
-R section, --remove-section=section
Delete section.
-S, -g, -d, --strip-debug
Strip debugging symbols.
-s, --strip-all
Strip all symbols.
--strip-unneeded
Remove symbols not needed for relocation processing.
-V, --version
Print version and exit.
-v, --verbose
Verbose mode.
-X, --discard-locals
Strip local symbols that were generated by the compiler.
-x, --discard-all
Strip nonglobal symbols.

stty

stty [options] [modes]
Set terminal I/O options for the current standard input device.
Without options, stty reports the terminal settings that differ from
those set by running stty sane, where ^ indicates the Ctrl key and
^` indicates a null value. Most modes can be negated using an
optional - (shown in brackets). The corresponding description is
also shown in brackets. Some arguments use non-POSIX exten-
sions; these are marked with ".

Options
-a, --all
Report all option settings.
-F dev, --device=dev
Open the specified device and use it instead of standard input.
-g, --save
   Report settings in stty-readable form (i.e., hex).

--help
   Print help message and exit.

--version
   Print version information and exit.

Control modes
[-]clocal
   [Enable] disable modem control.
[-]cread
   [Disable] enable the receiver.
[-]crtsets*
   [Disable] enable RTS/CTS handshaking.

_csbits
   Set character size to bits, which must be 5, 6, 7, or 8.
[-]cstopb
   [1] 2 stop bits per character.

[-]hup, [-]hupcl
   [Do not] hang up connection on last close.
[-]parenb
   [Disable] enable parity generation and detection.
[-]parodd
   Use [even] odd parity.

Input modes
[-]brkint
   [Do not] signal INTR on break.
[-]icrnl
   [Do not] map CR to NL on input.
[-]ignbrk
   [Do not] ignore break on input.
[-]igncr
   [Do not] ignore CR on input.
[-]ignpar
   [Do not] ignore parity errors.
[-]imaxbel*
   When input buffer is too full to accept a new character, [flush
   the input buffer] beep without flushing the input buffer.
[-]inlcr
   [Do not] map NL to CR on input.
[-]inpck
   [Disable] enable input parity checking.
[-]istrip
   [Do not] strip input characters to 7 bits.
stty

-|iuclce
   [Do not] map uppercase to lowercase on input.
-|iuutf8
   [Do not] assume input characters are UTF-8 encoded.
-|ixany
   Allow [only XON] any character to restart output.
-|ixoff, -|tandem
   [Enable] disable sending of START/STOP characters.
-|ixon
   [Disable] enable XON/XOFF flow control.
-|parmrk
   [Do not] mark parity errors.

Output modes
bs
   Select style of delay for backspaces (0 or 1).


cr
   Select style of delay for carriage returns (0–3).


ff
   Select style of delay for formfeeds (0 or 1).


nl
   Select style of delay for linefeeds (0 or 1).


tabn, -|tabs
   Select style of delay for horizontal tabs (0–3). tabs is the same as tab0 and -|tabs is the same as tab3.


vt
   Select style of delay for vertical tabs (0 or 1).

-|ocrnl
   [Do not] map CR to NL on output.

-|ofdel
   Set fill character to [NULL] DEL.

-|ofill
   Delay output with [timing] fill characters.

-|olcuc
   [Do not] map lowercase to uppercase on output.

-|onlcr
   [Do not] map NL to CR-NL on output.

-|onret
   On the terminal, NL performs [does not perform] the CR function.

-|onocr
   Do not [do] output CRs at column 0.

-|opost
   [Do not] postprocess output.
Local modes

[-]echo
  [Do not] echo every character typed.

[-]echoe, [-]ctterase
  [Do not] echo ERASE character as BS-space-BS string.

[-]echok
  [Do not] echo NL after KILL character.

[-]echonl
  [Do not] echo NL.

[-]icanon
  [Disable] enable canonical input (ERASE, KILL, WERASE, and RPRNT processing).

[-]iexten
  [Disable] enable extended functions for input data.

[-]isig
  [Disable] enable checking of characters against INTR, SUSPEND, and QUIT.

[-]noflsh
  [Enable] disable flush after INTR or QUIT.

[-]tostop'
  [Do not] send SIGTTOU when background processes write to the terminal.

[-]xcase'
  [Do not] change case on local output.

[-]echoprt, [-]prterase'
  When erasing characters, echo them backward, enclosed in \ and /.

[-]echoctl, [-]ctlecho'
  Do not echo control characters literally. Use hat notation (e.g., ^Z).

[-]echoke, [-]ctrkil'
  Erase characters as specified by the echoprt and echoe settings
  (default is echoctl and echok settings).

Combination modes

[-]cooked
  Same as [raw]-raw.

[-]evenp, [-]parity
  Same as [-]parenb and cs[8]7.

[ek
  Reset ERASE and KILL characters to Ctrl-h and Ctrl-u, their defaults.

[-]lcase, [-]LCASE
  [Unset] set xcase, iuclc, and olcuc.
stty

[ ] nl
[Unset] set icrnl and onlcr. -nl also unsets inlcr, igncr, ocrnl, and onlret.

[ ] oddp
Same as [ ] parenb, [ ] parodd, and cs[8]7.

[ ] raw
[Disable] enable raw input and output (no ERASE, KILL, INTR, QUIT, EOT, SWITCH, or output postprocessing).

sane
Reset all modes to reasonable values.

[ ] cbreak
Same as [icanon]-icanon.

[ ] pass8

[ ] litout

[ ] decctlq*
Same as [ ] ixany.

crt
Same as echo echoctl echo.

dec
Same as echo echoctl echo -ixany. Additionally, set INTERRUPT to Ctrl-C, ERASE to Del, and KILL to Ctrl-U.

Control assignments

ctrl-char c
Set control character to c. ctrl-char is dsusp (flush input and then send stop), eof, eol, eol2 (alternate end-of-line), erase, intr, lnnext (treat next character literally), kill, rprnt (redraw line), quit, start, stop, susp, swtch, or werase (erase previous word). c can be a literal control character, a character in hat notation (e.g., ^Z), in hex (must begin with 0x), in octal (must begin with 0), or in decimal. Disable the control character with values of ^- or undef.

Special settings

n  Set terminal baud rate to n (e.g., 2400).

ispeed speed
Specify input speed.

line i*
Set line discipline to i (1–126).

min n
Set the minimum number of characters that will satisfy a read until the time value has expired when -icanon is set.

ospeed speed
Specify output speed.

rows rows*
Specify number of rows.
su

su [option] [user] [shell_args]
Create a shell with the effective user ID user. If no user is specified, create a shell for a privileged user (i.e., become a superuser). Enter EOF to terminate. You can run the shell with particular options by passing them as shell_args (e.g., if the shell runs bash, you can specify -c command to execute command via bash, or -r to create a restricted shell).

Options
- -, --login
   Go through the entire login sequence (i.e., change to user’s environment).
-c command, --command=command
   Execute command in the new shell and then exit immediately. If command is more than one word, it should be enclosed in quotes. For example:
   su -c 'find / -name ".c" -print' nobody
-f, --fast
   Start the shell with the -f option, which suppresses the reading of the .cshrc or .tcshrc file. Applies to csh and tcsh.
-m, -p, --preserve-environment
   Do not reset environment variables.
-s shell, --shell=shell
   Execute shell, not the shell specified in /etc/passwd, unless shell is restricted.
--help
   Print a help message and then exit.
--version
   Print version information and then exit.

Examples
Become root and obtain all of root’s user environment:
   $ su -
Become root long enough to restart the Apache httpd web server, then revert to the current user:
   $ su -c /etc/rc.d/init.d/httpd restart
**sudo**

```
sudo [options] [command]
sudoedit [options] files
```

If you are allowed, execute `command` as the superuser. Authorized users of `sudo` and the commands they are permitted to execute are listed in the `sudo` configuration file, `/etc/sudoers`. If an unauthorized user attempts to run a command, `sudo` informs an administrator via email. By default, it sends the message to the root account. Users attempting to run commands are prompted for their password. Once authenticated, `sudo` sets a timestamp for the user. For five minutes from the timestamp, the user may execute further commands without being prompted for her password. This grace period may be overridden by settings in the `/etc/sudoers` file. Also see `/etc/sudoers` for configuration examples. The `sudoedit` form of `sudo` is equivalent to running `sudo -e`.

**Options**

- `-b` Execute `command` in the background.
- `-e` Edit one or more files instead of running a command, running the editor specified by the VISUAL or EDITOR environment variable. If a specified file does not exist, it is created.
- `-h` Print help message, then exit.
- `-H` Set the HOME environment variable to the home directory of the target user (default is root).
- `-i` Run the shell specified in `/etc/passwd` for the user `sudo` is being run as.
- `-k` Revoke user's `sudo` permissions. Similar to `-K`, but changes user's timestamp to the Epoch instead of revoking it.
- `-K` Remove user's timestamp.
- `-l` List all allowed and forbidden commands for the user on the current host, then exit.
- `-L` List parameters that may be set as defaults for a user in the `/etc/sudoers` file.
- `-p` `promptstring`

Use the specified `promptstring` to prompt for a password. The string may contain the following escape codes, which are replaced with the current user’s login name and local hostname.

- `%h` Local hostname without the domain name.
- `%H` Local hostname with the domain name.
- `%u` Current user’s login name
- `%U` Login name of the user the command will run under. The default is root.
- `%%` A single percent (%) character.
- `-P` Preserve invoking user’s group membership.
- `-s` Run the shell specified in the SHELL environment variable, or the default shell specified in `/etc/passwd`. If a command is given, it should be a shell script and not a binary file.
swapon

-S  Read password from standard input instead of from the console.
-u user  Run command as the specified user instead of the root user. This may also be specified as a user ID number using #uid.
-v  Update timestamp for user to extend the timeout. Prompt for password if necessary. No command is run.
-V  Print version number, then exit. When run by the root user, print sudo’s defaults and the local network address as well.
--  Stop reading command-line arguments. Useful with -s.

sum  sum [options] files
Calculate and print a checksum and the number of (1 KB) blocks for file. If no files are specified, or file is -, read from standard input. Useful for verifying data transmission.

Options
-r  The default setting. Use the BSD checksum algorithm.
-s, --sysv  Use alternate checksum algorithm as used on System V. The block size is 512 bytes.
--help  Print a help message and then exit.
--version  Print the version number and then exit.

swapoff  swapoff [options] [devicelist]
System administration command. Stop making devices and files specified in devicelist available for swapping and paging.

Option
-a  Consult /etc/fstab for devices marked sw. Use those in place of the device argument.
-h  Print help message and then exit.
-V  Display version number and then exit.

swapon  swapon [options] devices
System administration command. Make the listed devices available for swapping and paging.

Options
-a  Consult /etc/fstab for devices marked sw. Use those in place of the devices argument.
-e  Used with -a. Don’t complain about missing devices.
-h  Print help message, then exit.
sync

-p priority
  Specify a priority for the swap area. Higher priority areas will
  be used up before lower priority areas are used.
-s
  Print swap usage summaries, then exit.
-V
  Print version information, then exit.

sync

System administration command. Write filesystem buffers to disk.
sync executes the sync() system call. If the system is to be stopped,
sync must be called to ensure filesystem integrity. Note that shutdown
automatically calls sync before shutting down the system.
sync may take several seconds to complete, so the system should be
told to sleep briefly if you are about to manually call halt or reboot.
Note that shutdown is the preferred way to halt or reboot
your system, as it takes care of sync-ing and other housekeeping for
you.

sysctl

sysctl [options] [key]

System administration command. Examine or modify kernel parameters
at runtime using the /proc/sys filesystem. While many of
these kernel keys can be altered by other utilities, sysctl provides a
single interface to kernel settings.

Options
-a, -A
  Display all available values.
-e
  Ignore requests for unknown keys.
-n
  Print values only, no keynames.
-N
  Print keynames only.
-p [file]
  Reset keys from information specified in /etc/sysctl.conf, or the
  specified file.
-q
  When setting values, don’t print the values to stdout.
-w key=value
  Write a new value to the specified key.

sysklogd

sysklogd [options]

System administration command. sysklogd provides both syslogd
and klogd functionality. By default, it is meant to behave exactly
like the BSD version of syslogd. While the difference should be
completely transparent to the user, sysklogd supports an extended
syntax. It is invoked as syslogd.

sysklogd logs system messages into a set of files described by the
configuration file /etc/syslog.conf. Each message is one line. A
message can contain a priority code, marked by a number in angle
brackets at the beginning of the line. Priorities are defined in <sys/
syslog.h>. syslogd reads from an Internet domain socket specified
in /etc/services. To bring syslogd down, send it a terminate signal. See also klogd. On some newer systems sysklogd is replaced by rsyslogd.

**Options**

-a socket
Add socket to the list of sockets syslogd listens to.

-d Turn on debugging.

-f configfile
Specify alternate configuration file.

-h Forward messages from remote hosts to forwarding hosts.

-l hostlist
Specify hostnames that should be logged with just the hostname, not the fully qualified domain name. Multiple hosts should be separated by a colon (:).

-m markinterval
Select number of minutes between mark messages.

-n Avoid auto-backgrounding. This is needed when starting syslogd from init.

-p socket
Send log to socket instead of /dev/log.

-r Receive messages from the network using an internet domain socket with the syslog service.

-s domainlist
Strip off domain names specified in domainlist before logging. Multiple domain names should be separated by a colon (:).

-u user
Drop root privileges and run with the privileges of user while logging. While it will initially open logfiles as root, upon receiving a SIGHUP it will reopen them as user. This will fail if the logfiles are not writable by user.

-v Print version number, then exit.

**syslogd**

syslogd
System administration command. See sysklogd.

**tac**

tac [options] [file]
Named for the common command cat, tac prints files in reverse to standard output. Without a filename or with -, it reads from standard input. By default, tac reverses the order of the lines, printing the last line first.

**Options**

-b, --before
Print separator (by default a newline) before the string it delimits.
tail

- `--regex`  
  Expect separator to be a regular expression.
- `string, --separator=string`  
  Specify alternate separator (default is newline).
- `--help`  
  Print a help message and then exit.
- `--version`  
  Print version information and then exit.

**Options**

- `-c num, --bytes num`  
  Print the last `num` bytes.
- `-f, --follow[=name/descriptor]`  
  Don’t quit at the end of file; “follow” file as it grows and end when the user presses Ctrl-C. Following by file descriptor is the default, so `-f, --follow`, and `--follow=descriptor` are equivalent. Use `--follow=name` to track the actual name of a file even if the file is renamed, as with a rotated logfile.
- `--max-unchanged-stats=num`  
  Used with `--follow=name` to reopen a file whose size hasn’t changed after `num` iterations (default 5), to see if it has been unlinked or renamed (as with rotated logfiles).
- `--pid=pid`  
  Used with `-f` to end when process ID `pid` dies.
- `--quiet, --silent`  
  Suppress filename headers.
Chapter 3: Linux Commands

**tar**

--retry
Keep trying to open a file even if it isn’t accessible when **tail**
starts or if it becomes inaccessible later. Useful with
--follow=name.

-s sec, --sleep-interval=sec
With -f, sleep approximately sec seconds between iterations.
Default is 1 second.

-v, --verbose
With multiple files, always output the filename headers.

--version
Print version information and then exit.

**Examples**
Show the last 20 lines containing instances of .Ah:

```
grep '\.Ah' file | tail -20
```

Show the last 10 characters of variable **name**:

```
echo "$name" | tail -c
```

Print the last two blocks of **bigfile**:

```
tail -2b bigfile
```

**tailf**

```
tailf file
```
Print the last 10 lines of a file, then wait for the file to grow. **tailf**
is similar to **tail -f**, but it does nothing when the file is not growing.
Useful for following a logfile, particularly on a laptop when you
want to conserve the battery power.

**talk**

```
talk person [ttyname]
```
Talk to another user. **person** is either the login name of someone on
your own machine or **user@host** on another host. To talk to a user
who is logged in more than once, use **ttyname** to indicate the
appropriate terminal name. Once communication has been established,
the two parties may type simultaneously, with their output
appearing in separate windows. To redraw the screen, type Ctrl-L.
To exit, type your interrupt character; **talk** then moves the cursor
to the bottom of the screen and restores the terminal.

**tar**

```
tar [options] [tarfile] [other-files]
```
Copy files to or restore files from an archive medium. If any **files** are
directories, **tar** acts on the entire subtree. **tar** was originally used to
create tape archives and still has options related to that use.
However, here we document the options commonly used today.
Options need not be preceded by - (though they may be). The
exception to this rule is when you are using a long-style option
(such as --touch). In that case, the exact syntax is:

```
tar --long-option -function-options files
```
For example:

```
tar --touch -xvf tarfile.tar
```
Function options
You must use exactly one of these, and it must come before any
other options:

-A, --concatenate
Concatenate a second tar file to the end of the first.
-c, --create
Create a new archive.
-dl, --diff, --compare
Compare the files stored in tarfile with other-files. Report any
differences: missing files, different sizes, different file
attributes (such as permissions or modification time).
--delete
Delete from the archive. This option cannot be used with
magnetic tape.
-r, --append
Append other-files to the end of an existing archive.
-t, --list
Print the names of other-files if they are stored in the archive
(if other-files are not specified, print names of all archived
files).
-u, --update
Add files if not in the archive or if modified.
-x, --extract, --get
Extract other-files from an archive (if other-files are not speci-
fied, extract all files).

Options
--anchored
Exclude patterns must match the start of the filename (the
default).
--atime-preserve
Preserve original access time on extracted files.
-b n, --blocking-factor=n
Set block size to n × 512 bytes. By default, n=20.
-B, --read-full-records
Reblock while reading; used for reading from 4.2BSD pipes.
--backup=[type]
Back up files rather than deleting them. If no backup type is
specified, a simple backup is made with ~ as the suffix. (See
also --suffix.) The possible values of type are:

  t, numbered
  Make numbered backups.

  nil, existing
  Make numbered backups if there are already numbered
  backups; otherwise, make simple backups.

  never, simple
  Always make simple backups.
-C directory, --directory=directory
   cd to directory before beginning tar operation.

--checkpoint
   List directory names encountered.

--exclude=pattern
   Remove files matching pattern from any list of files.

-f file, --file=file
   Store files in or extract files from archive file. Note that file may take the form hostname:filename.

-F script, --info-script=script, --new-volume-script=script
   Implies -M (multiple archive files). Run script at the end of each file.

--force-local
   Interpret filenames in the form hostname:filename as local files.

-g file, --listed-incremental=file
   Create, list, or extract new-style incremental backup.

-G, --incremental
   Create, list, or extract old-style incremental backup.

--group=group
   Use group as the group for files added to the archive.

-h, --dereference
   Dereference symbolic links, and archive the files they point to rather than the symbolic link.

--help
   Print help message and exit.

-i, --ignore-zeros
   Ignore blocks of zeros (i.e., EOFs).

--ignore-case
   Ignore case when excluding files.

--ignore-failed-read
   Ignore unreadable files to be archived. Default behavior is to exit when encountering these.

--index-file=file
   With -v, send output to file.

-j, --bzip2
   Compress files with bzip2 before archiving them, or uncompress them with bunzip2 before extracting them.

-k, --keep-old-files
   When extracting files, do not overwrite files with similar names. Instead, print an error message.

-K file, --starting-file=file
   Begin tar operation at file in archive.

--keep-newer-files
   When extracting files, do not overwrite files that are newer than the archive files.
tar

-m, --touch
Do not restore file modification times; update them to the
time of extraction.

-M, --multivolume
Expect archive to be multivolume. With -c, create such an archive.

--mode=permissions
Use permissions when adding files to an archive. The permiss-
sions are specified the same way as for the chmod command.

-N date, --newer=date, --after-date=date
Ignore files older than date.

--newer-mtime=date
Add only files whose contents have changed since date to the
archive.

--no-anchored
Exclude patterns may match anything following a slash.

--no-ignore-case
Do not ignore case when excluding files.

--no-same-permissions
Do not extract permissions information when extracting files
from the archive. This is the default for users, and therefore
affects only the superuser.

--no-recursion
Do not move recursively through directories.

--no-wildcards
Don’t use wildcards when excluding files; treat patterns as
strings.

--no-wildcards-match-slash
Wildcards do not match / when excluding files.

--null
Allow filenames to be null-terminated with -T. Override -C.

--numeric-owner
Use the numeric owner and group IDs rather than the names.

-o, --no-same-owner
When extracting, create files with yourself as owner.

-O, --to-stdout
Print extracted files to standard output.

--occurrence=[n]
Process only the nth occurrence of each file (default is 1). Use
with --delete, --diff, --extract, or --list.

--one-file-system
Do not archive files from other filesystems.

--overwrite
Overwrite existing files and directory metadata when extracting
from archive.

--overwrite-dir
Overwrite existing directory metadata when extracting from
archive.
tar

```
--owner=owner
 Set owner as the owner of extracted files instead of the original owner. owner is first assumed to be a username, then, if there is no match, a numeric user ID.

-p, --same-permissions, --preserve-permissions
 Keep permissions of extracted files the same as the originals.

-P, --absolute-names
 Do not remove initial slashes (/) from input filenames.

--posix
 Create a POSIX-compliant archive.

--preserve
 Equivalent to invoking both the -p and -s options.

-R, --block-number
 Display archive's block number in messages.

--record-size=size
 Treat each record as having size bytes, where size is a multiple of 512.

--recursion
 Move recursively through directories.

--recursive-unlink
 Remove existing directory hierarchies before extracting directories with the same name.

--remove-files
 Remove originals after inclusion in archive.

--rsh-command=command
 Do not connect to remote host with rsh; instead, use command.

-s, --same-order, --preserve-order
 When extracting, sort filenames to correspond to the order in the archive.

-S, --sparse
 Treat sparse files more efficiently when adding to archive.

--same-owner
 When extracting, create files with the same ownership as the originals.

--show-defaults
 Display the default tar options.

--show-omitted-dirs
 List directories being omitted when operating on an archive.

--strip-components=num, --strip-path=num
 Strip the specified number of leading components from filenames before extracting. Use --strip-components for tar versions beginning with tar-1.14.90. Earlier versions of tar-1.14 use --strip-path.

--suffix=suffix
 Use suffix instead of the default ~ when creating a backup file.
```
tar

- `T file, --files-from=file`
  Consult file for files to extract or create.

--totals
  Print byte totals.

-U, --unlink-first
  Remove each existing file from the filesystem before extracting
  from the archive.

--use-compress-program=program
  Compress archived files with program, or uncompress extracted
  files with program.

--utc
  Display file modification dates in UTC format.

-v, --verbose
  Verbose. Print filenames as they are added or extracted.

-V name, --label=name
  Name this volume name.

--version
  Print version information and exit.

--volno-file=file
  Use/update the volume number in file.

-w, --interactive, --confirmation
  Wait for user confirmation (y) before taking any actions.

-W, --verify
  Check archive for corruption after creation.

--wildcards
  Use wildcards when excluding files.

--wildcards-match-slash
  Wildcards match / when excluding files.

-X file, --exclude-from file
  Consult file for list of files to exclude.

-z, --gzip, --gunzip, --ungzip
  Compress files with gzip before archiving them, or uncompress
  them with gunzip before extracting them.

-Z, --compress, --uncompress
  Compress files with compress before archiving them, or
  uncompress them with uncompress before extracting them.

Examples

Create an archive of book chapter files (*.c), show the command
working (v), and store the results in Chapters.tar:

```
tar cvf Chapters.tar chapter*
```

List the archive’s contents in a format like ls -l:

```
tar tvf Chapters.tar
```

Extract Chapter 1:

```
tar xvf Chapters.tar chapter1
```
Create an archive of the current directory and store it in a file `backup.tar`:

```
tar cvf - `find . -print` > backup.tar
```

(The - tells tar to store the archive on standard output, which is then redirected.)

Create an archive and filter it through `bzip2` to compress it:

```
tar cvfj Chapters.tar.bz2 chapter*
```

Filter an existing archive through `gzip`, extracting the contents but leaving the original file compressed:

```
tar xvfz chapters.tar.gz
```

### taskset

```
taskset [options] [mask | list] [pid | command [args]]
```

`taskset` is used to retrieve or set the processor affinity mask of either an existing process, given its PID, or to run a new a process, given its command name, with a specified affinity mask. The Linux scheduler will then honor the given affinity mask, ensuring that the process in question runs only on allowed processors.

#### Options

- `-c`, `--cpu-list`
  
  The affinity mask is provided in list form, for example, “0,2,5-6,” not as a bitmask.

- `-p`, `--pid`
  
  Set or retrieve the mask of the given PID. Do not start a new process.

- `-h`, `--help`
  
  Display usage information and then exit.

- `-V`, `--version`
  
  Display version information and then exit.

### tcpdump

```
tcpdump [options] [expression]
```

System administration command. Dump headers and packets of network traffic that match `expression`. The command continues to capture packets until it receives a SIGTERM or SIGINT signal (usually generated by typing the interrupt character `control-C`). When finished, it will generate a report on traffic captured, received, or dropped by the kernel.

#### Expressions

Create matching expressions using the following primitives followed by an ID or name.

**direction**

A qualifier indicating whether to match source or destination information. Accepted values are `src`, `dst`, `src or dst`, and `src` and `dst`. When not specified, the expression will match either source or destination traffic.
**protocol**
A qualifier restricting matches to a particular kind of packet. Accepted values are: ether, fddi, tr, wlan, ip, ip6, arp, rarp, decnet, tcp, and udp. If not specified, the match defaults to any appropriate protocol matching type.

**type**
A qualifier indicating what kind of thing the ID or name references, such as a part of a hostname (host), IP address (net) or port (port). When not specified, the match defaults to host.

**Options**

- **-A** Print packets in ASCII text.
- **-c n** Exit after receiving n packets.
- **-C n** When saving to a file, do not write files larger than n million bytes. Open a new file with the same basename appended by a number. Start with the number 1.
- **-d, -dd, -ddd** Compile and dump the packet-matching code for the given expression, then exit. Use the second form to dump it as a C programming fragment. Use the third form to dump the code in decimal.
- **-D** Print a list of the available interfaces, then exit.
- **-e** Print the link-level header on each line.
- **-F file** Read expression from the specified file.
- **-i interface** Listen on the specified interface. If not specified, tcpdump will listen on the lowest-numbered interface available, other than the loopback interface. Use any to listen to all available interfaces.
- **-l** Line buffer standard out.
- **-L** Print the data link types for an interface, then exit.
- **-n, -nn** Print IP addresses instead of converting them to hostnames. Use the second form to leave protocols and port numbers in numeric form, as well.
- **-N** Print hostnames instead of fully qualified domain names.
- **-p** Don’t put the interface into promiscuous mode.
- **-q** Abbreviate output, printing less protocol information.
- **-r file** Read packets from the specified file. (You can create such a file with the -w option.)
- **-s n** Read n bytes of data from each packet. (The default is 68.)
-S  Print absolute TCP sequence numbers.
-T n  
    Read n bytes of data from each packet. (The default is 68.)
-t, -tt, -ttt, -tttt  
    Change display of timestamp. Use the first form to omit the timestamp from each line. Use the second form to print an unformatted timestamp. Use the third form to print the time in seconds between the current and the previous dump line. The final form prints the date before the timestamp on each dump line.
-u  Print undecoded NFS handles.
-v, -vv, -vvv  
    Increase the verbosity of the printout. Each additional v increases the detail of the information printed.
-w file  
    Write the raw packet information to file without parsing or printing it. Specify - to write to standard output.
-W n  
    Wrap files creating a rotating buffer. Used with -C, this will set a limit on the number of files created. Upon reaching the limit, tcpdump will begin overwriting earlier files.
-x, -xx  
    Print packets in hex. Use the second form to print the packet’s link level header in hex as well.
-X, -XX  
    Print packets in hex and ASCII text. Use the second form to print the packet’s link level header in hex and ASCII as well.
-Z user  
    Drop root privileges and change to the specified user. Use the primary group of the specified user.

Examples
Place full packets into a file named tcpdump.cap for later analysis:
```
tcpdump -v -w tcpdump.cap -xX -s 0
```
Read all packet headers received on the eth0 interface, except for arp and SSH packets:
```
tcpdump -i eth0 not arp and not port ssh
```

```
tcpslice [options] [start [end]] files
```
System administration command. Reads and manipulates packet capture files created by tcpdump -w. Based on timestamps, extract portions of or merge together files. Display all packets between the given start and end times. tcpslice understands most time and date formats. tcpslice also understands a relative time format specified as a unit of time—e.g., +1h10m to specify the first hour and ten minutes of packets in the specified files. This format is named
tee

ymdhmsu after the letters it uses to denote units of time: years, months, days, hours, minutes, seconds, and microseconds. If no constraining dates are specified, the command will print out all packets contained in files.

Options
-d  Print the start and end time of the specified range, then exit.
-D  When merging files, don’t discard duplicate packets.
-l  Merge packets based on the time relative to the start of the file. The default is to merge based on the absolute timestamp.
-r  Print the time and date of the first and last packet in each file, then exit.
-R  Print the raw timestamp of the first and last packet in each file, then exit.
-t  Print times associated with the first and last packet in each file in ymdhmsu format.
-w  Write output to file instead of standard output.

Example
ls -l | tee savefile  View listing and save for later

telinit

telinit [option] [runlevel]
System administration command. Signal init to change the system’s runlevel. telinit is actually just a link to init, the ancestor of all processes.

Option
-t  seconds
    Send SIGKILL seconds after SIGTERM. Default is 20.
Runlevels
The default runlevels vary from distribution to distribution, but these are standard:
0       Halt the system.
1, s, S Single user.
6       Reboot the system.
a, b, c Process only entries in /etc/inittab that are marked with runlevel a, b, or c.
q, Q    Reread /etc/inittab.

Check the /etc/inittab file for runlevels on your system.

telnet  telnet [options] [host [port]]
Access remote systems. telnet is the user interface that communicates with another host using the Telnet protocol. If telnet is invoked without host, it enters command mode, indicated by its prompt, telnet>, and accepts and executes commands. Type ? at the command prompt to see the available commands. If invoked with arguments, telnet performs an open command (shown in the following list) with those arguments. host indicates the host’s official name, alias, or Internet address. port indicates a port number (default is the Telnet port).
The Telnet protocol is often criticized because it uses no encryption and makes it easy for snoopers to pick up user passwords. Most sites now use ssh instead.

Options
-7      Request 7-bit operation.
-8      Request 8-bit operation.
-a      Automatic login to the remote system.
-b hostalias
       Use bind to bind the local socket to an aliased address or the address of an interface other than the one that would be chosen by connect.
-c      Disable reading of the user’s .telnetrc file.
-d      Turn on socket-level debugging.
-e [escape_char]
       Set initial telnet escape character to escape_char. If escape_char is omitted, no escape character is predefined.
-E      Disable the escape character functionality.
-f      With Kerberos V5 authentication, allow forwarding of the local credentials to the remote system.
telnetd

-F With Kerberos V5 authentication, allow local credentials to be forwarded to the remote system, including any that were already forwarded to the local environment.

-k realm
With Kerberos authentication, obtain tickets for the remote host in realm, instead of in the remote host’s realm.

-K Do not allow automatic login to the remote system.

-l user
When connecting to remote system and if remote system understands ENVIRON, send user to the remote system as the value for variable USER. Implies the -a option.

-L Specify an 8-bit data path on output.

-n tracefile
Open tracefile for recording the trace information.

-r Emulate rlogin. The default escape character for this mode is a tilde (~); an escape character followed by a dot causes telnet to disconnect from the remote host; a ^Z instead of a dot suspends telnet; and a ^] (the default telnet escape character) generates a normal telnet prompt. These codes are accepted only at the beginning of a line.

-x Turn on data-stream encryption if possible.

-X atype
Disable the atype type of authentication.

telnetd telnetd [options]
TCP/IP command. Telnet protocol server. telnetd is invoked by the Internet server for requests to connect to the Telnet port (port 23 by default). telnetd allocates a pseudo-terminal device for a client, thereby creating a login process that has the slave side of the pseudo-terminal serving as stdin, stdout, and stderr. telnetd manipulates the master side of the pseudo-terminal by implementing the Telnet protocol and by passing characters between the remote client and the login process.

The Telnet protocol is often criticized because it uses no encryption and makes it easy for snoopers to pick up user passwords. Most sites now use ssh instead.

Options

-a type
When compiled with authentication support, this option sets the authentication type. Accepted values are:

debug
Debug authentication code.

none
No authentication required, but accept it if offered. Use login for any further verification needed to access an account.
test

off
   Disable authentication.
user
   Allow only authenticated remote users with permission to access their accounts without giving a password.
valid
   Allow only authenticated remote users. Use `login` for any additional verification needed to access an account.

-debug [port]
   Start `telnetd` manually instead of through `inetd`. `port` may be specified as an alternate TCP port number on which to run `telnetd`.

-D modifier(s)
   Debugging mode. This allows `telnet` to print out debugging information to the connection, enabling the user to see what `telnet` is doing. Several modifiers are available for the debugging mode:
   netdata
      Display data stream received by `telnetd`.
   options
      Print information about the negotiation of the Telnet options.
   ptydata
      Display data written to the pseudo-terminal device.
   report
      Print `options` information, as well as some additional information about what processing is going on.

-edebug
   When compiled with support for encryption, enable encryption debugging code.

-h
   Don’t print host-specific information until after login is complete.

-L path
   Specify path to alternative login program. By default `telnetd` uses `/bin/login`.

-n
   Disable checking for lost connections with TCP keep-alives.

-U
   Refuse connections from IP addresses with no reverse DNS information.

-X type
   Disable authentication type.

test

test expression

[expression]

Evaluate an expression and, if its value is true, return a zero exit status; otherwise, return a nonzero exit status. In shell scripts, you can use the alternate form `[expression]`. This command is generally used with conditional constructs in shell programs. Also exists as a built-in in most shells.
File testers
The syntax for all of these options is `test option file`. If the specified file does not exist, they return false. Otherwise, they test the file as specified in the option description.

- **-b**  Is the file block special?
- **-c**  Is the file character special?
- **-d**  Is the file a directory?
- **-e**  Does the file exist?
- **-f**  Is the file a regular file?
- **-g**  Does the file have the set-group-ID bit set?
- **-G**  Is the file owned by the process’s effective group ID?
- **-k**  Does the file have the sticky bit set?
- **-l, -h**  Is the file a symbolic link?
- **-O**  Is the file owned by the process’s effective user ID?
- **-p**  Is the file a named pipe?
- **-r**  Is the file readable by the current user?
- **-s**  Is the file nonempty?
- **-S**  Is the file a socket?
- **-t [file-descriptor]**  Is the file associated with `file-descriptor` (or 1, standard output, by default) connected to a terminal?
- **-u**  Does the file have the set-user-ID bit set?
- **-w**  Is the file writable by the current user?
- **-x**  Is the file executable?

File comparisons
The syntax for file comparisons is `test file1 option file2`. A string by itself, without options, returns true if it’s at least one character long.

- **-ef**  Do the files have identical device and inode numbers?
- **-nt**  Is `file1` newer than `file2`? Check modification date, not creation date.
- **-ot**  Is `file1` older than `file2`? Check modification date, not creation date.

String tests
The syntax for string tests is `test option string` or `test string1 [!]= string2`.

- **-n**  Is the string at least 1 character long?
- **-z**  Is the string 0 characters long?

`string1 = string2`
Are the two strings equal?

`string1 != string2`
Are the strings unequal?
**Expression tests**

Note that an expression can consist of any of the previous tests.

(expression)

Is the expression true?

! expression

Is the expression false?

expression -a expression

Are the expressions both true?

expression -o expression

Is either expression true?

**Integer tests**

The syntax for integer tests is `test integer1 option integer2`. You may substitute `-l string` for an integer; this evaluates to `string`'s length.

- `<eq>` Are the two integers equal?
- `<ge>` Is `integer1` greater than or equal to `integer2`?
- `<gt>` Is `integer1` greater than `integer2`?
- `<le>` Is `integer1` less than or equal to `integer2`?
- `<lt>` Is `integer1` less than `integer2`?
- `<ne>` Are the two integers unequal?

---

**time**

`time [options] command [arguments]`

Run the specified command, passing it any arguments, and time the execution. Note that there is also a shell `time` command, so you might need to specify the full path, usually `/usr/bin/time`, to run this version of `time`. `time` displays its results on standard error. The output includes elapsed time, user CPU time, system CPU time, and other information such as memory used and number of I/O operations. The output can be formatted using `printf` format strings specified with the `-f` option or the TIME environment variable.

**Options**

-- The end of the options. Anything after the -- is treated as the command or one of its arguments.

-a, --append

Used with -o to append the output to file instead of overwriting it.

-f format, --format=format

Specify the output format. Overrides any format specified in the TIME environment variable.

--help

Print help message and exit.

-o file, --output=file

Send the output from `time` to the specified file instead of to standard error. If file exists, it is overwritten.
time

-p, --portability
    Use portable output format (POSIX).

-v, --verbose
    Give verbose output, providing all available information.

-V, --version
    Print version information and exit.

Resources
The following resources can be specified in format strings:
c    Number of involuntary context switches because of time slice expiring.
C    Name and arguments of command being timed.
D    Average size of unshared data area, in kilobytes.
e    Elapsed real time, in seconds.
E    Elapsed real time as \textit{hours:minutes:seconds}.
F    Number of major (I/O-requiring) page faults.
I    Number of filesystem inputs.
k    Number of signals delivered to the process.
K    Average total (data+stack+text) memory use, in kilobytes.
M    Maximum resident set size, in kilobytes.
O    Number of filesystem outputs.
p    Average unshared stack size, in kilobytes.
P    Percent of CPU used.
r    Number of socket messages received.
R    Number of minor (recoverable) page faults.
s    Number of socket messages sent.
S    Total CPU seconds used by the system on behalf of the process.
t    Average resident set size, in kilobytes.
U    Total CPU seconds used directly by the process.
w    Number of voluntary context switches.
W    Number of times the process was swapped out of main memory.
x    Exit status of the command.
X    Average shared text size, in kilobytes.
Z    System page size, in bytes.

Example
Time the execution of the command \texttt{ls -l} and display the user time, system time, and exit status of the command:

\texttt{/usr/bin/time -f "\%U user,\%S system,\%x status" ls -F s}
**tload**

tload [options] [tty]

Display system load average in graph format. If tty is specified, print it to that terminal.

**Options**

- **-d** delay
  - Specify the delay, in seconds, between updates.
- **-s** scale
  - Specify scale (number of characters between each graph tick).
  - A smaller number results in a larger scale.
- **-V**
  - Print version information and exit.

**tmpwatch**

tmpwatch [options] hours directory

System administration command. Recursively remove regular files and directories in directory with access times older than hours. Specify the directory as an absolute path. This command is usually invoked by cron to remove old files in the /tmp directory.

**Options**

- **-a**, **--all**
  - Remove all file types.
- **-c**, **--ctime**
  - Make decision on last inode change time for files and modification time for directories instead of access time.
- **-d**, **--nodirs**
  - Do not remove directories.
- **-f**, **--force**
  - Force removal of read-only files (similar to rm -f).
- **-l**, **--nosymlinks**
  - Don’t remove symbolic links.
- **-m**, **--mtime**
  - Make decision on last modification time instead of access time.
- **-M**, **--dirmtime**
  - Make directory deletion decisions based on modification time.
- **-q**, **--quiet**
  - Report only fatal errors.
- **-s**, **--fuser**
  - Before deleting, attempt to use fuser to see if a file is in use.
- **-t**, **--test**
  - Verbosely test command, but don’t actually remove files.
- **-u**, **--atime**
  - Make decision on access time. (This is the default.)
- **-U** user, **--exclude-user** user
  - Don’t delete files owned by user, specified by name or user ID.
top

-v, --verbose
Print more details. Use two times to further increase the detail of the output.

-x, --exclude=path
Skip the specified path, the absolute path of a directory or file.

top [options]
Provide information (frequently refreshed) about the most CPU-intensive processes currently running. You do not need to include a - before options. See ps for explanations of the field descriptors.

Options
-b Run in batch mode; don’t accept command-line input. Useful for sending output to another command or to a file.
-c Show command line or program name in display. -c is a toggle; top starts with the last remembered setting.
-d delay
Specify delay between refreshes. Specify as ss.tt (seconds and tenths).
-f Add or remove fields or columns.
-h Print a help message and exit.
-H Display either all individual threads or a summary of all threads in process. -H is a toggle; top starts with the last remembered setting.
-i Suppress display of idle and zombie processes. -i is a toggle; top starts with the last remembered setting.
-n num
Update display num times, then exit.
-p pids
Monitor only processes with the specified process IDs.
-s Secure mode. Disable some (dangerous) interactive commands.
-S Cumulative mode toggle. Print total CPU time of each process, including dead child processes when on. top starts with the last remembered setting.
-u user
Monitor only processes with the specified effective UID or username.
-U user
Monitor only processes with the specified UID or username, matching real, effective, saved, and filesystem ids.
-v Print version information and exit.

Interactive commands
= Remove restrictions on which tasks are shown. Reverses the effect of an active i or n command.
space, Enter
  Update display immediately.

<, >
  Move the sort field. Use < to move one column left and > to move one column to the right.

A
  Toggle alternate display mode between a single window or multiple windows. See the following section, “Alternate display mode commands,” for the commands that work with A.

b
  Toggle between bold and reverse display. Only works with x and/or y.

B
  Globally toggle bold display.

c
  Toggle display of program name or full command line.

d, s
  Change delay between refreshes. Prompt for new delay time, which should be in seconds. Suppressed in secure mode.

f
  Prompt to add fields to or remove fields from the display.

F, O
  Select sort field.

G
  Select another field group and make it current, or change by selecting a number from the following list:
  1  Def
  2  Job
  3  Mem
  4  Usr

h, ?
  Display help about commands and the status of secure and cumulative modes.

H
  Toggle between displaying all individual threads and a summary of all threads in process.

I, 1
  Toggle SMP view. Use I to toggle IRIX/Solaris mode (divide CPU usage by number of CPUs), 1 to toggle single/separate states.

k
  Prompt for process ID to kill, and signal to send (default is SIGTERM) to kill it.

i
  Toggle suppression of idle and zombie processes.

l
  Toggle display of load-average and uptime information.

m
  Toggle display of memory information.

n, #
  Prompt for maximum number of processes to show. If 0 is entered, show as many as will fit on the screen (default).

o
  Prompt to change order of displayed fields.

q
  Exit.
r  Apply `renice` to a process. Prompt for PID and `renice` value. Suppressed in secure mode.

R  Toggle normal or reverse sort.

S  Toggle cumulative mode. (See the `-S` option.)

t  Toggle display of `processes` and `CPU states` lines.

u  Prompt for user to show; matches on effective UID.

U  Prompt for user to show; matches on real, effective, saved, and filesystem UID.

W  Write current setup to `~/.toprc`. This is the recommended way to write a `top` configuration file.

x  Toggle highlighting for sort field.

y  Toggle highlights for running tasks.

z  Toggle between color and mono display.

Z  Globally change color mappings.

Alternate display mode commands

=  Rebalance tasks in the current window.

+  Rebalance tasks in every window.

-  Show or hide the current window.

_  Show all invisible windows or hide all visible windows.

a  Cycle forward through all four windows.

g  Change the name of the current window or group.

w  Cycle backward through all four windows.

Field descriptions

The first five entries in the following list describe the lines that appear at the top of the `top` display. The rest are the fields that can be displayed for each task (sizes are in kilobytes). Use the interactive `f` command to add or remove fields.

top

Display the time the system has been up, the number of users, and three load averages consisting of the average number of processes ready to run in the last 1, 5, and 15 minutes.

Tasks

The total number of processes running when the last update was taken, shown as the number of running, sleeping, stopped, or undead tasks.

Cpu(s)

The percentage of CPU time spent in user mode, in system mode, on tasks with a negative nice value, and idle.

Mem

Memory statistics, including total available memory, free memory, memory used, shared memory, and memory used for buffers.
Swap
Swapspace statistics, including total, available, used, and
 cached.

PID
Process ID.

PPID
Parent process ID.

UID
Effective user ID of task’s owner.

USER
Effective username of task’s owner.

RUSER
Real username of task’s owner.

GROUP
The effective group name of task’s owner.

PR
Priority.

NI
Nice value.

nFLT
Page fault count.

CODE
Code size.

DATA
Data plus stack size.

RES
Resident task size.

SWAP
Size of swapped-out portion of task.

VIRT
The total amount of virtual memory used by the task.

nDRT
Number of pages marked dirty.

#C
Last-used processor, for multiprocessor systems.

SHR
Amount of shared memory used.

S
State of the task. Values are S (sleeping), D (uninterruptible
sleep), R (running), Z (zombies), or T (stopped or traced).

WCHAN
Address or name of the kernel function in which the task is
currently sleeping.

TIME
Total CPU time used by task and any children.
**touch**

**TIME+**
Like **TIME**, but shows the time down to hundredths of a second.

**%CPU**
Share of CPU time since last update, as percentage of total CPU time.

**%MEM**
Share of physical memory.

**TTY**
Controlling tty.

**COMMAND**
Command line (truncated if too long) or name of program depending on the state of the **C** toggle. Processes with no command line are shown in parentheses.

**FLAGS**
Task flags.

---

**touch** `[options] files`

For one or more files, update the access time and modification time (and dates) to the current time and date. **touch** is useful in forcing other commands to handle files a certain way; for example, the operation of **make**, and sometimes **find**, relies on a file's access and modification time. If a file doesn't exist, **touch** creates it with a file size of 0.

**Options**

- `-a`, `--time=atime`, `--time=access`, `--time=use`
  Update only the access time.

- `-c`, `--no-create`
  Do not create any file that doesn’t already exist.

- `-d time`, `--date=time`
  Change the time value to the specified time instead of the current time. **time** can use several formats and may contain month names, time zones, a.m. and p.m. strings, etc.

- `-m`, `--time=mtime`, `--time=modify`
  Update only the modification time.

- `-r file`, `--reference=file`
  Changes times to be the same as those of the specified file, instead of the current time.

- `-t time`
  Use the time specified in **time** instead of the current time. This argument must be of the format `[[cc]yy][mm][dd][hh][mm][.ss]`, indicating optional century and year, month, date, hours, minutes, and optional seconds.

- `--help`
  Print help message and then exit.

- `--version`
  Print the version number and then exit.
**tr**

```
tr [options] [string1 [string2]]
```

Translate characters. Copy standard input to standard output, substituting characters from `string1` to `string2`, or deleting characters in `string1`.

**Options**

- `-c`, `-C`, `--complement`
  Complement characters in `string1` with respect to ASCII 001-377.

- `-d`, `--delete`
  Delete characters in `string1` from output.

- `-s`, `--squeeze-repeats`
  Squeeze out repeated output characters in `string2`.

- `-t`, `--truncate-set1`
  Truncate `string1` to the length of `string2` before translating.

- `--help`
  Print help message and then exit.

- `--version`
  Print the version number and then exit.

**Special characters**

Include brackets ([ ] ) where shown.

```
\a Ctrl-G (bell)
\b Ctrl-H (backspace)
\f Ctrl-L (form feed)
\n Ctrl-J (newline)
\r Ctrl-M (carriage return)
\t Ctrl-I (tab)
\v Ctrl-K (vertical tab)
\nnnn
 Character with octal value nnn
\ Literal backslash
char1-char2
 All characters in the range char1 through char2. If char1 does not sort before char2, produce an error.
[char]
 In string2, expand char to the length of string1.
[char\number]
 Expand char to number occurrences. [x\4] expands to xxxx, for instance.
[class:]
 Expand to all characters in class, where class can be:
 alnum Letters and digits
 alpha Letters
```
tracepath

blank
  Whitespace

cntrl
  Control characters
digit
  Digits
graph
  Printable characters except space
lower
  Lowercase letters
print
  Printable characters
punct
  Punctuation
space
  Whitespace (horizontal or vertical)
upper
  Uppercase letters
xdigit
  Hexadecimal digits

[=char=]
  The class of characters to which char belongs.

Examples

Change uppercase to lowercase in a file:
  cat file | tr 'A-Z' 'a-z'

Turn spaces into newlines (ASCII code 012):
  tr ' ' '\012' < file

Strip blank lines from file and save in new.file:
  cat file | tr -s '' '\012' > new.file

Delete colons from file and save result in new.file:
  tr -d ':' < file > new.file

tracepath [options] host [port]

TCP/IP command. Trace path to host and report the Maximum Transmission Unit (MTU). A simplified version of traceroute without options meant for use by unprivileged users. If specified, it will use port to send UDP probe packets. host is the destination hostname or the IP number of the host to reach.

Options

-1n  Use alternative packet length of n. The default is 65536 for IPv4 and 128000 for IPv6.

-n   Don’t look up host names, just print IP addresses.
traceroute

traceroute [options] host [packetsize]

TCP/IP command. Trace route taken by packets to reach network host. traceroute attempts tracing by launching UDP probe packets with a small TTL (time-to-live), then listening for an ICMP “time exceeded” reply from a gateway. host is the destination hostname or the IP number of the host to reach. packetsize is the packet size in bytes of the probe datagram. Default is 40 bytes.

Options

-4, -6
Force IPv4 or IPv6 tracerouting.

-A
Perform AS path lookups.

-d
Turn on socket-level debugging.

-e
Show ICMP extensions.

-f n
Set the initial time-to-live to n hops.

-F
Set the “don’t fragment” bit.

-g addr
Enable the IP LSRR (Loose Source Record Route) option in addition to the TTL tests, to ask how someone at IP address addr can reach a particular target.

-i interface
Specify the network interface for getting the source IP address for outgoing probe packets. Useful with a multihomed host. Also see the -s option.

-I
Use ICMP ECHO requests instead of UDP datagrams.

-m max_ttl
Set maximum time-to-live used in outgoing probe packets to max-ttl hops. Default is 30.

-n
Show numerical addresses; do not look up hostnames. (Useful if DNS is not functioning properly.)

-N n
Send n probe packets simultaneously. The default is 16.

-p port
Set base UDP port number used for probe packets to port. Default is (decimal) 33434.

-q n
Set number of probe packets per hop to the value n. Default is 3.

-r
Bypass normal routing tables and send directly to a host on an attached network.

-s src_addr
Use src_addr as the IP address that will serve as the source address in outgoing probe packets.
troff

-t tos
  Set the type-of-service in probe packets to tos (default is 0). The value must be a decimal integer in the range 0 to 255.

-T
  Use TCP SYN packets instead. This may help bypass some firewall rules.

-v
  Verbose; received ICMP packets (other than TIME_ EXCEEDED and PORT_UNREACHABLE) will be listed.

-w wait
  Set time to wait for a response to an outgoing probe packet to wait seconds (default is 5).

-x
  Toggle IP checksums, usually to turn them off. IP checksums are always calculated if -I is specified.

-z msecs
  Set the delay between probes, in milliseconds. The default is 0.

troff
  See groff.

true
  A null command that returns a successful (0) exit status. See also false.

tset
  tset [options] [terminal]
  reset [options] [terminal]
  Initialize a terminal. The terminal to be initialized is whichever is found first from the value of terminal, the value of the TERM environment variable, or the default terminal type. See also the reset command.

  Options
  -c
    Set control characters.
  -e char
    Set the erase character to char.
  -i char
    Set the interrupt character to char.
  -I
    Do not send terminal or tab initialization strings to the terminal.
  -k char
    Set line-kill character to char.
  -m arg
    Specify a mapping from a port type to a terminal, where arg looks like this:
    [port_type][operator][baud_rate][:]terminal_type
    operator can be any combination of < (less than), > (greater than), @ (equal), and ! (not). The terminal type is a string (e.g., vt100 or xterm).
tune2fs

- q  Print the terminal type on standard output but do not initialize the terminal.
- Q  Don’t display values for the erase, interrupt, and line kill characters.
- r  Print the terminal type to standard error.
- s  Print the shell commands that initialize the TERM environment variable on standard output.
- V  Print the version of ncurses used for this program and exit.

tsort
tsort [option] [file]
Perform a topological sort on partially ordered strings in the specified file. If no file is specified or is -, read standard input. Multiple strings on a line are separated by spaces, where each line indicates a partial ordering. The fully ordered results are written to standard output. See the tsort info page for an example of the use of tsort for sorting lists of functions into the order they are called.

Options
--help
Print help information and exit.
--version
Print version information and exit.

tty
tty [options]
Print the filename of the terminal connected to standard input.

Options
--help
Print help message and exit.
-s, --silent, --quiet
Print nothing to standard output, but return an exit status.
--version
Display version information and exit.

tune2fs
tune2fs [options] device
System administration command. Tune the parameters of a Linux Second Extended Filesystem by adjusting various parameters. You must specify the device on which the filesystem resides; it must not be mounted read/write when you change its parameters.

Options
-c max-mount-counts
Specify the maximum number of mount counts between two checks on the filesystem.
tune2fs

- \texttt{behavior}
  Specify the kernel’s behavior when encountering errors. \texttt{behavior} must be one of:

  \texttt{continue}
  Continue as usual.

  \texttt{remount-ro}
  Remount the offending filesystem in read-only mode.

  \texttt{panic}
  Cause a kernel panic.

- \texttt{f}
  Force completion even if there are errors.

- \texttt{g group}
  Allow \texttt{group} (a group ID or name) to use reserved blocks.

- \texttt{j}
  Add an ext3 journal to the filesystem. If specified without \texttt{-J}, use the default journal parameters.

- \texttt{-J jrnl-options}
  Specify ext3 journal parameters as a comma-separated list of \texttt{option=value} pairs. The specified options override the default values. Only one size or device option can be specified for a filesystem. Possible options are:

  \texttt{device=ext-jrnl}
  Attach to the journal block device on \texttt{ext-jrnl}, which must exist and must have the same block size as the filesystem to be journaled. \texttt{ext-jrnl} can be specified by its device name, by the volume label (\texttt{LABEL=label}), or by the Universal Unique Identifier (UUID) stored in the journal’s ext2 superblock (\texttt{UUID=uuid}; see \texttt{uuidgen}). Create the external journal with:

  \texttt{mke2fs –O jrnl-devext-jrnl}

  \texttt{size=jrnl-size}
  The size of the journal in megabytes. The size must be at least equivalent to 1024 blocks and not more than 102,400 blocks.

- \texttt{l}
  Display a list of the superblock’s contents.

- \texttt{L label}
  Specify the volume label of filesystem. The label must be no more than 16 characters.

- \texttt{m percentage}
  Specify the percentage of blocks that will be reserved for use by privileged users.

- \texttt{M dir}
  Specify the filesystem’s last-mounted directory.

- \texttt{-o mount-options}
  Set or clear the specified default \texttt{mount-options}. Mount options specified in \texttt{/etc/fstab} or on the command line for \texttt{mount} will override these defaults. Specify multiple options as
a comma-separated list. Prefixing an option with a caret (^) clears the option. No prefix or a plus sign (+) causes the option to be set. The following options can be cleared or set:

`acl`
   Enable Posix Acess Control Lists.

`bsdgroups`
   Assign new files the group-id of the directory in which they are created instead of the group-id of the process creating them.

`debug`
   Enable debugging code.

`journal_data`
   When journaling, commit all data to journal before writing to the filesystem.

`journal_data_ordered`
   When journaling, force data to the filesystem before committing metadata to the journal.

`journal_data_writeback`
   When journaling, force data to the filesystem after committing metadata to the journal.

`-O option`
   Set or clear the specified filesystem options in the filesystem’s superblock. Specify multiple options as a comma-separated list. Prefixing an option with a caret (^) clears the option. No prefix or a plus sign (+) causes the option to be set. Run `e2fsck` after changing `filetype` or `sparse_super`. The following options can be cleared or set:

`dir_index`
   Use B-trees to speed up lookups on large directories.

`filetype`
   Save file type information in directory entries.

`has_journal`
   Create an ext3 journal. Same as the `-j` option.

`sparse_super`
   Save space on large filesystems by limiting the number of backup superblocks. Same as `-s`.

`-r num`
   Specify the number of blocks that will be reserved for use by privileged users.

`-s [0|1]`
   Turn the sparse superblock feature on or off. Run `e2fsck` after changing this feature.

`-u user`
   Allow user (a user ID or name) to use reserved blocks.
tunelp

- **U uuid**
  Set the UUID of the filesystem to a UUID generated by
  **uuidgen** or to one of the following:
  **clear**
  Clear the existing UUID.
  **random**
  Randomly generate a new UUID.
  **time**
  Generate a new time-based UUID.

**tunelp device [options]**
System administration command. Control a line printer’s device
parameters. Without options, print information about device(s).

**Options**
-a [on|off]
  Specify whether or not to abort if the printer encounters an
  error. By default, do not abort.
-c n
  Retry device n times if it refuses a character. (Default is 250.)
  After exhausting n, sleep before retrying.
-i irq
  Use irq for specified parallel port. Ignore -t and -c. If 0, restore
  noninterrupt-driven (polling) action.
-o [on|off]
  Specify whether to abort if device is not online or is out of
  paper.
-q [on|off]
  Specify whether to print current IRQ setting.
-r
  Reset port.
-s
  Display printer’s current status.
-t time
  Specify a delay of time in jiffies to sleep before resending a
  refused character to the device. A jiffy is defined as either one
  tick of the system clock or one AC cycle time; it should be
  approximately 1/100 of a second.
-w time
  Specify a delay of time in jiffies to sleep before resending a
  strobe signal.

**ul [options] [filenames]**
Translate underscores to underlining. The process will vary by
terminal type. Some terminals are unable to handle underlining.
uname

Options

- i  When on a separate line, translate - to underline instead of translating underscores.
- t  terminal-type
     Specify terminal type. By default, TERM is consulted.

umount

umount [options] [directory]

System administration command. Unmount filesystem specified by directory. You may also specify the filesystem by device name. umount announces to the system that the removable file structure previously mounted on the specified directory is to be removed. Any pending I/O for the filesystem is completed, and the file structure is flagged as clean. A busy filesystem cannot be unmounted.

Options

- a  Unmount all filesystems listed in /etc/mtab other than /proc.
- d  If the unmounted device was a loop device, free the loop device too. See also the lssetup command.
- f  Force the unmount. This option requires kernel 2.1.116 or later.
- h  Print help message and exit.
- i  Don’t execute /sbin/umount.<filesystem> helper programs.
- l  Lazy unmount. Detach the filesystem from the hierarchy immediately, but don’t clean up references until it is no longer busy. Requires kernel 2.4.11 or later.
- n  Unmount, but do not record changes in /etc/mtab.
- O options
     Unmount only filesystems with the specified options in /etc/ fstab. Specify multiple options as a comma-separated list. Add no as a prefix to an option to indicate filesystems that should not be unmounted.
- r  If unmounting fails, try to remount read-only.
- t type
     Unmount only filesystems of type type. Multiple types can be specified as a comma-separated list, and any type can be prefixed with no to specify that filesystems of that type should not be unmounted.
- v  Verbose mode.
- V  Print version information and exit.
unexpand

Options
-a, --all
   Combine all the system information from the other options.
-i, --hardware-platform
   Print the system’s hardware platform.
-m, --machine
   Print the name of the hardware that the system is running on.
-n, --nodename
   Print the machine’s hostname.
-o, --operating-system
   Print the operating system name.
-p, --processor
   Print the type of processor.
-r, --kernel-release
   Print the release number of the kernel.
-s, --kernel-name
   Print the name of the kernel (Linux). This is the default action.
-v, --kernel-version
   Print build information about the kernel.
--help
   Display a help message and then exit.
--version
   Print version information and then exit.

unexpand [options] [files]
Convert strings of initial whitespace, consisting of at least two spaces and/or tabs, to tabs. Read from standard input if given no file or a file named -.

Options
-a, --all
   Convert all, not just leading, strings of spaces and tabs.
--first-only
   Convert only leading spaces and tabs. Overrides -a.
-t nums, --tabs nums
   nums is a comma-separated list of integers that specify the placement of tab stops. If a single integer is provided, the tab stops are set to every integer spaces. By default, tab stops are eight spaces apart. This option implies -a.
--help
   Display a help message and then exit.
--version
   Print the version number and then exit.
uniq

uniq [options] [file1 [file2]]
Remove duplicate adjacent lines from sorted file1 or from standard input, sending one copy of each line to file2 (or to standard output). Often used as a filter. Specify only one of -d or -u. See also comm and sort.

Options
-c, --count
Print each line once, prefixing number of instances.
-d, --repeated
Print duplicate lines once but no unique lines.
-D, --all-repeated [=method]
Print all duplicate lines. -D takes no delimiter method. The delimiter method method takes one of the following values: none (default), prepend, or separate. Blank lines are used as the delimiter.
-f n, --skip-fields=n
Ignore first n fields of a line. Fields are separated by spaces or by tabs.
-i, --ignore-case
Ignore case differences when checking for duplicates.
-s n, --skip-chars=n
Ignore first n characters of a field.
-u, --unique
Print only unique lines (no copy of duplicate entries is kept).
-w n, --check-chars=n
Compare only first n characters per line (beginning after skipped fields and characters).
--help
Print a help message and then exit.
--version
Print version information and then exit.

Examples
Send one copy of each line from list to output file list.new:
    uniq list list.new
Show which names appear more than once:
    sort names | uniq -d
unlink

unlink filename
unlink option
Remove the specified file using the system **unlink** function.

**Options**

--help
Print help information and exit.

--version
Print version information and exit.

uptime

uptime [option]
Print the current time, how long the system has been running, the number of users currently logged in (which may include the same user multiple times), and system load averages. This output is also produced by the first line of **w** command output.

**Option**

-V Print version information and exit.

useradd

useradd [options] [user]
System administration command. Create new user accounts or update default account information. Unless invoked with the -D option, **user** must be given. **useradd** will create new entries in system files. Home directories and initial files may also be created as needed.

**Options**

-b dir, --base-dir dir
Specify base dir for home directories. The default is **/home**.

-c comment, --comment comment
Comment field.

-d dir, --home dir
Home directory. The default is to use **user** as the directory name under the **home** directory specified with the -D option.

-D [options]
Set or display defaults. If **options** are specified, set them. If no options are specified, display current defaults. The options are:

-b dir, --base-dir dir
Home directory prefix to be used in creating home directories. If the -d option is not used when creating an account, the user name is appended to dir.

-c date, --expiratedate date
Expire date. Requires the use of shadow passwords.

-f days, --inactive days
Number of days after a password expires to disable an account. Requires the use of shadow passwords.
useradd

- **g** group, **--gid** group
  Initial group name or ID number.

- **s** shell, **--shell** shell
  Default login shell.

- **e** date, **--expiredate** date
  Account expiration date. Use the format MM/DD/YYYY. Two-digit year fields are also accepted. The value is stored as the number of days since January 1, 1970. This option requires the use of shadow passwords.

- **f** days, **--inactive** days
  Permanently disable account this many days after the password has expired. A value of -1 disables this feature. This option requires the use of shadow passwords.

- **g** group, **--gid** group
  Initial group name or ID number. If a different default group has not been specified using the -D option, the default group is 1.

- **G** groups, **--groups** groups
  Supplementary groups given by name or number in a comma-separated list with no whitespace.

- **k** [dir], **--skel** [dir]
  Copy default files to the user’s home directory. Meaningful only when used with the -m option. Default files are copied from /etc/skel/ unless an alternate dir is specified.

- **K** key=value, **--key** key=value
  Override /etc/login.defs defaults. This option can be given multiple times.

- **l**
  Keep old entries for user in lastlog and faillog databases. By default old user data in these are reset.

- **m**, **--create-home**
  Make user’s home directory if it does not exist. The default is not to make the home directory.

- **M**
  Do not create a home directory for the user, even if the system default in /etc/login.defs is to create one.

- **o**, **--non-unique**
  Override. Accept a nonunique uid with the -u option. (Probably a bad idea.)

- **p** passwd, **--password** passwd
  The encrypted password, as returned by crypt(3).

- **r**, **--system**
  Red Hat-specific option. Create a system account with a non-expiring password and a UID lower than the minimum defined in /etc/login.defs. Do not create a home directory for the account unless -m is also specified.

- **s** shell, **--shell** shell
  Login shell.
userdel

-\texttt{u \textit{uid}, --uid \textit{uid}}
  
  Numerical user ID. The value must be unique unless the -\texttt{o}
  option is used. The default value is the smallest ID value
  greater than 99 and greater than every other \textit{uid}.

\textbf{userdel} \hspace{1em} userdel \texttt{[\textit{option}] \textit{user}}

System administration command. Delete all entries for \textit{user} in
system account files.

\textbf{Option}

-\texttt{f, --force}
  
  Remove the \textit{user} even if they are currently logged in. Remove
  home directory and mail spool even if they are used by
  another user. Remove group too, if USERGROUPS\_ENAB is
  set to yes in /etc/login.defs.

-\texttt{r, --remove}
  
  Remove the home directory of \textit{user} and any files contained in it.

\textbf{usermod} \hspace{1em} usermod \texttt{[\textit{options}] \textit{user}}

System administration command. Modify \textit{user} account information.

\textbf{Options}

-\texttt{a, --append}
  
  Used with the -\texttt{G} option. Add \textit{user} to the specified \textit{groups}, but
  don’t remove \textit{user} from groups not in the current list.

-\texttt{c \textit{comment}, --comment \textit{comment}}
  
  Comment field.

-\texttt{d \textit{dir}, --home \textit{dir}}
  
  Home directory.

-\texttt{e \textit{date}, --expiredate \textit{date}}
  
  Account expiration \textit{date}. \textit{date} is in the format MM/DD/YYYY;
  two-digit year fields are also accepted. The value is stored as
  the number of days since January 1, 1970. This option requires
  the use of shadow passwords.

-\texttt{f \textit{days}, --inactive \textit{days}}
  
  Permanently disable account this many \textit{days} after the pass-
  word has expired. A value of -1 disables this feature. This option
  requires the use of shadow passwords.

-\texttt{g \textit{group}, --gid \textit{group}}
  
  Initial \textit{group} name or number.

-\texttt{G \textit{groups}, --groups \textit{groups}}
  
  Supplementary \textit{groups} given by name or number in a comma-
  separated list with no whitespace. \textit{user} will be removed from
  any \textit{groups} to which it currently belongs that are not included
  in \textit{groups}. 
-I name, --login name
  Login name. This cannot be changed while the user is logged in.
-L, --lock
  Lock user’s password by putting a ! in front of it. This option cannot be used with -p or -U.
-o, --non-unique
  Override. Accept a nonunique uid with the -u option.
-p pw, --password pw
  Encrypted password, as returned from crypt(3).
-s shell, --shell shell
  Login shell.
-u uid, --uid uid
  Numerical user ID. The value must be unique unless the -o option is used. Any files owned by user in the user’s home directory will have their user ID changed automatically. Files outside of the home directory will not be changed. user should not be executing any processes while this is changed.
-U, --unlock
  Unlock the user’s password by removing the ! that -L put in front of it. This option cannot be used with -p or -L.

users
users [file]
users option
  Print a space-separated list of each login session on the host. Note that this may include the same user multiple times. Consult file or, by default, /var/log/utmp or /var/log/wtmp.

Options
  --help
    Print usage information and exit.
  --version
    Print version information and exit.

usleep
usleep [microseconds]
usleep [option]
  Sleep some number of microseconds (default is 1).

Options
  -?, --help
    Print help information and then exit.
  --usage
    Print brief usage message and then exit.
  -v, --version
    Print version information.
**uuidgen**

`uuidgen [option]`

Create a new Universal Unique Identifier (UUID) and print it to standard output. The generated UUID consists of five hyphen-separated groups of hex digits (e.g., 3cdf61d-87d3-41b5-ba50-32870b33dc67). The default is to generate a random-based UUID, but this requires that a high-quality random-number generator be available on the system.

**Options**

- `-r` Generate a random-based UUID.
- `-t` Generate a time-based UUID.

---

**vdir**

`vdir [options] [files]`

Verbosely list directory contents. Equivalent to `ls -lb`. By default, list the current directory. Directory entries are sorted alphabetically unless overridden by an option. `vdir` takes the same options as `ls`.

**vi**

`vi [options] [files]`

A screen-oriented text editor based on `ex`. `vi` is bi-modal, with a command mode and an insert mode. For more information on `vi`, see Chapter 9.

---

**vidmode**

`vidmode [option] image [mode [offset]]`

System administration command. Set the video mode for a kernel image. If no arguments are specified, print current `mode` value. `mode` is a 1-byte value located at offset 506 in a kernel image. You may change the `mode` by specifying the kernel image to change, the new `mode`, and the byte offset at which to place the new information (the default is 506). Note that `rdev -v` is a synonym for `vidmode`. If LILO is used, `vidmode` is not needed. The video mode can be set from the LILO prompt during a boot.

**Modes**

- `-3` Prompt
- `-2` Extended VGA
- `-1` Normal VGA
- `0` Same as entering 0 at the prompt
- `1` Same as entering 1 at the prompt
- `2` Same as entering 2 at the prompt
- `3` Same as entering 3 at the prompt
- `n` Same as entering n at the prompt

**Option**

- `-o offset`
  
  Same as specifying an `offset` as an argument.
vim

An enhanced version of the vi screen editor. Both vi and vim are covered in Chapter 9.

vmstat

System administration command. Print report on virtual memory statistics, including information on processes, memory, paging block I/O, traps, system and CPU usage. vmstat initially reports average values since the last system reboot. If given a sampling period interval in seconds, it prints additional statistics for each interval. If specified, vmstat exits when it has completed count reports. Otherwise, it continues until it receives a Ctrl-C, printing a new header line each time it fills the screen.

Options

-a Display active and inactive memory.
-d Display disk statistics.
-f Display the number of forks since the system was booted.
-m Display the names and sizes of various kernel objects stored in a cache known as the slab layer. Also see the slabtop command.
-n Don’t print new header lines when the screen is full.
-p partition
    Display detailed statistics for the specified partition.
-s Display various event counters and memory statistics.
-S units
    Switch the output units. Possible values are k, K, m, or M.
-t Add a timestamp to output.
-V Print version number, then exit.

VM mode fields

procs
    r Processes waiting for runtime.
    b Uninterruptible sleeping processes.

memory
    swpd
        Virtual memory used, in kilobytes.
    free
        Idle memory, in kilobytes.
    buff
        Memory used as buffers, in kilobytes.
    cache
        Cache memory, in kilobytes.
vmstat

inactive
  Inactive memory, in kilobytes, displayed with -a.
active
  Active memory, in kilobytes; displayed with -a.
swap
  si Memory swapped in from disk each second, in kilobytes.
  so Memory swapped out to disk each second, in kilobytes.
io
  bi Blocks received from block devices each second.
  bo Blocks sent to block devices each second.
system
  in Interrupts per second, including clock interrupts.
  cs Context switches per second.
cpu
  us Percentage of CPU time consumed by user processes.
  sy Percentage of CPU time consumed by system processes.
  id Percentage of CPU time spent idle.
  wa Percentage of CPU time spent waiting for I/O.

Disk mode fields
Reads and Writes
  total
    Total reads or writes completed successfully.
  merged
    Reads or writes grouped into one I/O.
  sectors
    Sectors read or written successfully.
  ms
    Milliseconds spent reading or writing.
IO
  cur I/O in progress
  s Seconds spent doing I/O.

Disk partition mode fields
reads
  Total reads issued to this partition.
read sectors
  Total sectors read for this partition.
writes
  Total writes issued to this partition.
requested writes
  Total write requests for this partition.
### Slab mode fields

- **cache**
  - Cache name.
- **num**
  - Number of currently active objects.
- **total**
  - Total number of available objects.
- **size**
  - Size of each object.
- **pages**
  - Number of pages with at least one active object.
- **totpages**
  - Total number of allocated pages.
- **pslab**
  - Number of pages per slab.

### volname

```bash
volname [devfile]
```

Return the volume name for a device such as a CD-ROM that was formatted with an ISO-9660 filesystem. The default device file `devfile` is `/dev/cdrom`.

### w

```bash
w [options] [user]
```

Print summaries of system usage, currently logged-in users, and what those users are doing. `w` is essentially a combination of `uptime`, `who`, and `ps -a`. Display output for one user by specifying `user`.

**Options**

- `-f` Toggle printing the from (remote hostname) field.
- `-h` Suppress heading and `uptime` information.
- `-s` Use the short format.
- `-u` Ignore the username while figuring out the current process and CPU times.
- `-V` Display version information.

**File**

`/var/run/utmp`

List of users currently logged in.

### wall

```bash
wall [file]
w all [-n] [message]
```

Write to all users. Depending on your Linux distribution, `wall` uses one of the two syntaxes shown. In both versions, the default is for `wall` to read a message from standard input and send the message to all users currently logged in, preceded by “Broadcast Message from…. “ With the first syntax, which comes with Debian-based systems, for example, if `file` is specified, `wall` reads
warnquota

input from that file rather than from standard input, and only the
superuser can write to a terminal if the user has disallowed
messages. With the second syntax, distributed with Red Hat-based
systems, for example, the text of the message can be included on
the command line, and the message is limited to 20 lines. In this
form, if `-n` is specified, the default banner message is replaced with
“Remote broadcast message.” `-n` can only be specified by the super-
user, and only if `wall` was installed set-group-id.

**Example**

Send the message contained in the file `message.txt` to all users:

```
$ wall < message.txt
```

---

**warnquota**

`warnquota [options] [filesystem]`

System administration command. Mail warning messages to users
that have exceeded their soft limit.

**Options**

- `-a file`, `--admins-file=file`
  Read group administrator information from `file` instead of `/etc/
  quotagrpadmins`.

- `-c file`, `--config=file`
  Read configuration information from `file` instead of `/etc/
  warnquota.conf`.

- `-d`, `--no-details`
  Send messages without attaching quota reports.

- `-F format`, `--format=format`
  Read quota information of the specified format. (See `quota` for
  valid formats.)

- `-g`, `--group`
  Send messages for group quotas. Send the message to the user
  specified in `/etc/quotagrpadmins`.

- `-i`, `--no-autofs`
  Ignore automount mount points.

- `-q file`, `--quota-tab=file`
  Read device description strings from `file` instead of `/etc/
  quotagrpadmins`.

- `-s`, `--human-readable`
  Report sizes in more human-readable units.

- `-u`, `--user`
  Send messages for user quotas. (This is the default.)

---

**watch**

`watch [options] command [cmd_options]`

Run the specified command repeatedly (by default, every two
seconds) and display the output so you can watch it change over
time. The command and any options are passed to `sh -c`, so you
may need to use quotes to get correct results.
Options

-d, --differences[=cumulative]
Highlight changes between iterations. If cumulative is specified,
the highlighting remains on the screen throughout, giving a
cumulative picture of the changes.

-h, --help
Display help message and exit.

-n secs, --interval=secs
Run the command every secs seconds.

-t, --no-title
Do not display the header or the blank line following the
header.

-v, --version
Print version information and exit.

Examples

Count the number of users logged in:

    who | wc -l

Count the words in three essay files:

    wc -w essay.[123]

Count lines in the file named by variable $file (don’t display
filename):

    wc -l < $file
wget

**wget**

`wget [options] [urls]`

Perform noninteractive file downloads from the Web. `wget` works in the background and can be used to set up and run a download without the user having to remain logged on. `wget` supports HTTP, HTTPS, and FTP, as well as downloads through HTTP proxies. `wget` uses a global startup file that you may find at `/etc/wgetrc` or `/usr/local/etc/wgetrc`. In addition, users can define their own `$HOME/.wgetrc` files.

**Options**

- `-4`, `--inet4-only`
  Force connection to IPv4 hosts only.

- `-6`, `--inet6-only`
  Force connection to IPv6 hosts only.

- `a logfile`, `--append-output=logfile`
  Append output messages to `logfile`, instead of overwriting the contents as `-o` does. If `logfile` doesn’t exist, create it.

- `A aclist`, `--accept=aclist`
  Specify a comma-separated list of filename suffixes or patterns to accept.

- `-b`, `--background`
  Go into the background immediately after startup, writing output to the file specified with `-o` or to `wget-log`.

- `B url`, `--base=url`
  Used with `-F` to prepend the specified URL to relative links in the input file specified with `-i`.

- `--bind-address=address`
  When making client TCP/IP connections, `bind()` to the specified local address, which can be specified as a hostname or IP address. Useful if your system is bound to multiple IP addresses.

- `-c`, `--continue`
  Continue getting a partially downloaded file. Affects the restarting of downloads from an earlier invocation of `wget`. Works only with FTP servers and HTTP servers that support the Range header.

- `--connect-timeout=seconds`
  Set the timeout for a connection to be established in seconds. The default is never to time out, unless a timeout is implemented by system libraries.

- `--cut-dirs=num`
  Ignore the specified number of directory components when creating the local directory structure.

- `-d`, `--debug`
  Turn on debugging. `wget` must have been compiled with debug support.
-D domainlist, --domains=domainlist
Specify a comma-separated list of domains to be followed.
Does not turn on -H.

--delete-after
Delete each retrieved file from the local machine after downloading it. Useful for prefetching pages through a proxy. -k is ignored if specified with --delete-after.

--dns-timeout=seconds
Set the DNS lookup timeout to seconds. The default is to never time out.

-e command, --execute=command
Execute the specified command after the commands in .wgetrc, overriding any .wgetrc commands. Can be included multiple times, once for each command to execute.

-E, --html-extension
Append the suffix .html to the filenames of downloaded files where the URL does not include it (for example, an .asp file).

--exclude-domains=domainlist
Specify a comma-separated list of names that are never to be followed.

-F, --force-html
When reading input from a file, force the file to be treated as an HTML file.

--follow-ftp
Follow FTP links from HTML documents. The default is to ignore FTP links.

--follow-tags=list
Specify a comma-separated list of tags to be considered, overriding the internal table that wget normally uses during a recursive retrieval.

--ftp-user=, --http-password=password
Specify the username and password on an FTP server.

-h, --help
Display usage information and exit.

-H, --span-hosts
Enable spanning across hosts when doing recursive retrieval.

--header=
Add an additional header to be passed to the HTTP server. The header must include a colon (:) preceded by at least one nonblank character, and with no newline characters. Can be specified multiple times. If header is an empty string, all user-defined headers are cleared.

--http-user=, --http-password=password
Specify the username and password on an HTTP server.

-i file, --input-file=file
Read URLs from the specified file. URLs specified on the command line are accessed before URLs in the file. If file is given as -, read from standard input.
-l list, --include-directories=list
   Specify a comma-separated list of directories to follow when downloading. The list elements may contain wildcards.

--ignore-case

--ignore-length
   Ignore the “Content-Length” header on the HTTP server.

--ignore-tags=list
   Specify a comma-separated list of tags to be ignored for recursive retrievals.

-k, --convert-links
   Convert document links after the download is complete so they work locally.

-K, --backup-converted
   When converting a file, back up the original and add an .orig suffix. Affects the behavior of -N.

--keep-session-cookies
   Causes --save-cookies to also save session cookies.

-l depth, --level=depth
   For recursive retrievals, specify the maximum recursion depth. The default depth is 5.

-L, --relative
   Follow relative links only.

--limit-rate=rate
   Set the maximum download speed, The default is to specify the rate in bytes, or add a k suffix for kilobytes or m for megabytes.

--load-cookies=file
   Load cookies from the specified file before the first HTTP retrieval.

-m, --mirror
   Turn on options suitable for mirroring a remote site. Equivalent to -r -N -l inf --no-remove-listing.

--max-redirect=num
   Set the maximum number of redirections to follow (default is 20).

-N, --timestamping
   Turn on timestamping.

-nc, --no-clobber
   Do not download a file if there is already a copy on the disk. The default is to preserve the original copy and rename successive downloads, adding .1, .2, etc. to their name. May not be specified with -N.

-nd, --no-directories
   Do not create a directory hierarchy when doing recursive retrievals.
-nH, --no-host-directories
Disable creation of directories prefixed by the name of the host. The default is to include the hostname.

--no-cache
Disable server-side cache for an HTTP retrieval. The default is for caching to be on.

--no-cookies
Disable the use of cookies.

--no-dns-cache
Disable caching of DNS lookups; look up hostname again for each new connection.

--no-glob
Turn off FTP globbing to prevent the use of wildcards for multiple file retrievals.

--no-http-keep-alive
Turn off the keep-alive feature for HTTP retrievals.

--np, --no-parent
In recursive retrievals, do not ever go up to the parent directory.

--no-passive-ftp
Do not allow use of passive FTP transfer mode.

--no-proxy
Do not use proxies.

--no-remove-listing
Do not remove the temporary .listing files generated by FTP retrievals.

-nv, --non-verbose
Turn off verbose mode, but don’t run completely quietly. Displays error messages and basic information.

-o logfile, --output-file=logfile
Log output messages to logfile, instead of the default standard error.

-O file, --output-document=file
Concatenate all documents into the specified file. If the file exists, it is overwritten. Specify the file as - to write to standard output.

-p, --page-requisites
Download all files necessary to display an HTML page.

-P prefix, --directory-prefix=prefix
Set the directory prefix to the specified value.

--post-data=string, --post-file=file
Use POST as the method for HTTP requests and send the specified data in the request body. Use --post-data to send string as data and --post-file to send the file contents.

--prefer-family=family
Connect to the addresses of the specified family first when there is a choice. The possible values for family are IPv4 (the default), IPv6, and none.
--progress=type[;style]
Set the progress indicator to type. Valid types are dot and bar; the default is bar. With --progress=dot, you can also set a style. The default style is for each dot to represent 1 KB, with 10 dots in a cluster and 50 dots per line. Alternatives are binary, with each dot representing 8 KB, 16-dot clusters, and 48 dots per line; mega, for downloading very large files, with each dot representing 64 KB, 8 dots per cluster, and 48 dots per line; and giga, with each dot representing 1 MB, 8 dots per cluster, and 4 clusters per line.

--protocol-directories
Use the protocol name as part of the local filename.

--proxy-user=user, --proxy-passwd=password
Specify the username and password for authentication on a proxy server.

-q, --quiet
Run quietly; don’t produce output.

-Q quota, --quota=quota
Specify download quota for automatic retrievals. The default value is in bytes; add k suffix for kilobytes, or m for megabytes.

-r, --recursive
Turn on recursive retrieving.

-R reqlist, --reject=reqlist
Specify a comma-separated list of filename suffixes or patterns to reject.

--random-wait
Set a random wait time to prevent being identified by websites that look for patterns in time between requests so they can block access.

--read-timeout=seconds
Set the read (and write) timeout to the specified number of seconds. The default is 900 seconds.

--referer=url
Include a “Referer: url” header in an HTTP request.

--restrict-file-names=mode[,nocontrol]
Restrict the characters found in remote URLs from appearing in local filenames. The value of mode is the operating system—e.g., unix or windows (use unix for Linux). Such characters are escaped with a percent sign (%). The default is to escape characters not valid on your operating system. Appending ,nocontrol turns off escaping of control characters.

--retr-symlinks
When retrieving FTP directories recursively, follow symbolic links and retrieve the linked-to files.

--retry-conrefused
Retry after getting a “connection refused” error. Useful for mirroring unreliable sites whose servers are likely to go down briefly.
wget

-S, --server-response
Print HTTP server headers and FTP server responses.

--save-cookies=file
Save cookies in the specified file before exiting. Does not save expired cookies, and only saves session cookies if --keep-session-cookies is also specified.

--save-headers
Save the headers sent by an HTTP server to the file, preceding the contents and separated by a blank line.

--spider
Behave like a web spider, checking that pages exist but not downloading them.

--strict-comments
Turn on strict parsing of HTML comments, instead of terminating comments at the first occurrence of -->.

t num, --tries=num
Set the number of retries to the specified value of num. Set num to 0 or inf to keep trying forever (infinitely) (default is 20 retries), unless there is a fatal error such as “connection refused.”

-T seconds, --timeout=seconds
Set network timeout to the specified number of seconds. Equivalent to specifying all of --dns-timeout, --connect-timeout, and --read-timeout.

--user=user, --password=password
Specify the username and password for both FTP and HTTP file retrieval.

-U agent, --user-agent=agent
Specify an agent string to the HTTP server to replace the default identification of Wget/version, where version is the current wget version. This string is used in the User-Agent header field.

-v, --verbose
Turn on verbose output, printing all available data. This is the default.

-V, --version
Display version information and exit.

-w seconds, --wait=seconds
Specify the wait in seconds between retrievals. Used to lighten server load. Use the suffix m to specify the wait in minutes, h for hours, or d for days.

--waitretry=seconds
Specify the number of seconds to wait between retries if the download fails. The default in the global configuration file is not to wait.

-x, --force-directories
Create a hierarchy of directories even if one wouldn’t otherwise be created.
\textbf{whatis}

-\texttt{X list, --exclude-directories=list}
  Specify a comma-separated list of directories to exclude from download. List elements may contain wildcards.

\textbf{whatis} \texttt{keywords}

Search the short manual page descriptions in the \texttt{whatis} database for each \texttt{keyword} and print a one-line description to standard output for each match. Like \texttt{apropos}, except that it searches only for complete words. Equivalent to \texttt{man -f}.

\textbf{whereis} \texttt{[options] files}

Locate the binary, source, and manual page files for specified commands/files. The supplied filenames are first stripped of leading pathname components and any (single) trailing extension of the form \texttt{.ext} (for example, \texttt{.c}). Prefixes of \texttt{s} resulting from use of source code control are also dealt with. \texttt{whereis} then attempts to locate the desired program in a list of standard Linux directories (\texttt{/bin, /etc, /usr/bin, /usr/local/bin, etc.}).

\textbf{Options}

-\texttt{b} Search only for binaries.
-\texttt{B directories} Change or otherwise limit the directories to search for binaries.
-\texttt{f} Terminate the last directory list and signal the start of filenames. Required when the \texttt{-B, -M, or -S} option is used.
-\texttt{m} Search only for manual sections.
-\texttt{M directory} Change or otherwise limit the directories to search for manual sections.
-\texttt{s} Search only for sources.
-\texttt{S directory} Change or otherwise limit the directories to search for sources.
-\texttt{u} Search for unusual entries—that is, files that do not have one entry of each requested type. Thus, the command \texttt{whereis -m -u *} asks for those files in the current directory that have no documentation.

\textbf{Example}

Find all files in \texttt{/usr/bin} that are not documented in \texttt{/usr/share/man/man1} but that have source in \texttt{/usr/src}:

\begin{verbatim}
$ cd /usr/bin
$ whereis -u -M /usr/share/man/man1 -S /usr/src -f *
\end{verbatim}
which

which [options] [--] [commands]

List the full pathnames of the files that would be executed if the named commands had been run. which searches the user’s $PATH environment variable.

Options

-a, --all
   Print all matches, not just the first.

-i, --read-alias
   Read aliases from standard input and write matches to standard output. Useful for using an alias for which.

--read-functions
   Read shell functions from standard input and report matches to standard output. Useful for also using a shell function for which itself.

--skip-alias
   Ignore --read-alias if present. Useful for finding normal binaries while using --read-alias in an alias for which.

--show-dot
   If a matching command is found in a directory that starts with a dot, print ./cmdname instead of the full pathname.

--show-tilde
   Print a tilde (~) to indicate the user’s home directory. Ignored if the user is root.

--skip-dot
   Skip directories that start with a dot.

--skip-functions
   Ignore --read-functions if present. Useful when searching for normal binaries while using --read-functions in an alias or function for which.

--skip-tilde
   Skip directories that start with a tilde (~) and executables in $HOME.

--tty-only
   Stop processing options on the right if not on a terminal.

-v, -V, --version
   Print version information and then exit.

--help
   Print help information and then exit.

Example

  $ which cc ls
  /usr/bin/cc
  ls: aliased to ls -sFC
who

who [options] [file]
who am i

Show who is logged into the system. With no options, list the names of users currently logged in, their terminal, the time they have been logged in, and the name of the host from which they have logged in. An optional system file (default is /etc/utmp) can be supplied to give additional information.

Options
-a, --all  
Equivalent to -b -d --login -p -r -t -T -u.

am i
Print information for the invoking user.

-b, --boot  
Print time of last system boot.

-d, --dead  
Print a list of dead processes.

-H, --heading  
Print column headings.

--help  
Print a help message and then exit.

-l, --login  
Print list of system login processes.

--lookup  
Attempt to include canonical hostnames via DNS.

-m  Same as who am i.

-p, --process  
Print active processes spawned by init.

-q, --count  
“Quick.” Display all usernames and the total number of users.

-r, --runlevel  
Print the current runlevel.

-s, --short  
Print only name, line, and time. This is the default behavior.

-t, --time  
Print the last system clock change.

-u, --users  
Print a list of the users who are logged in.

--version  
Print version information and then exit.

-w, -T, --mesg, --message, --writable  
Include user’s message status in the output:
+ mesg y (write messages allowed)
- mesg n (write messages refused)
? Cannot find terminal device
whois

Example
This sample output was produced at 8 a.m. on April 17:

```
$ who -uh
NAME LINE TIME IDLE PID COMMENTS
Earvin ttyp3 Apr 16 08:14 16:25 2240
Larry ttyp0 Apr 17 07:33 . 15182
```

Since Earvin has been idle since yesterday afternoon (16 hours), it appears that he isn’t at work yet. He simply left himself logged in. Larry’s terminal is currently in use.

whoami

Print current user ID. Equivalent to `id -un`.

whois

Search a whois database for a domain name, IP address, or NIC name. The information returned varies, but usually contains administrative and technical contacts so that you can find a person to handle problems at that domain. By default, the command returns information on `.com`, `.net`, and `.edu` domains, but other hosts can be queried for other domains using `host` or the `-h` option.

Options
-- Indicate the end of whois options. A subsequent string that begins with a hyphen on the command line is taken as a query string.

-a, --raw
Do not rewrite query according to configuration before sending to server.

-c file, --config=file
Specify a configuration file to use instead of the default `/etc/jwhois.conf`.

-d, --disable-cache
Disable reading and writing to the cache.

-f, --force-lookup
Force the lookup query to go to the host, even if it is available from the cache.

-h host, --host=host
Query the whois server on the specified host. Same as `host` on the command line. By default, queries the server in the environment variable NICNAMESERVER or WHOISSERVER if either is set; otherwise queries whois.internic.net.

--help
Print help message and exit.

-i, --display-redirections
Display every step in a redirection. The default is to display only the last step.
-n, --no-redirect
    Disable redirection from one server to the next.

-p port, --port=port
    Connect to the specified port. Same as port on the command line. Default is 43.

-r, --rwhois
    Force use of the rwhois protocol, instead of HTTP or whois.

--rwhois-display=display
    Request receiving rwhois servers to display the results in the specified display instead of the default.

--rwhois-limit=limit
    Request receiving rwhois servers to limit the number of matches to the specified limit.

-s, --no-whoisservers
    Disable built-in support for whois-servers.net.

-v, --version
    Verboser. Print debugging information while running. Specify -vv to increase verbosity.

Print version information and exit.
unclose
Unclose the last session.

unreserve
Unreserve a track previously marked as reserved.

-checkdrive
Check to see if there are valid drivers for the current drive. Returns 0 if the drive is valid.

-d, debug=n
Set the debug level to an integer (greater numbers are more verbose), or use multiple -d flags as with the -v and -V flags.

-dao, -sao
Disk-at-once (session-at-once) mode. Works only with MMC drives that support nonraw session-at-once modes.

dev=target
Set the SCSI target for the CD/DVD recorder. May be specified as a device name or as three comma-separated integers representing bus, target, and logical unit. To check the options that are available, use the -scanbus option. By default wodim looks in the CDR DEVICE environment variable.

driver=name
Lets you specify a driver for your system. Suggested for experts only. The special drivers cdr_simul and dvd_simul are used for simulation and profiling tests if your drive does not support the -dummy option.

driveropts=optlist
Specify a comma-separated list of driver options. To get a list of valid options, use driveropts=help together with -checkdrive.

-dummy
Perform a dry run, doing all the steps of recording with the laser turned off. This will let you know whether the process is going to work.

-eject
Eject disc after recording. Some hardware may need to eject a disc after a dummy recording and before the actual recording.

-fix
Close ("fixate") the session, preventing future multisession recordings and allowing the disc to be played in standard audio CD players (some can also play a disc that has not been closed).

-force
Override errors if possible. May allow you to blank an otherwise broken CD-RW.

fs=n
Set the FIFO buffer size to n, in bytes. You may use k, m, s, or f to specify kilobytes, megabytes, or units of 2048 and 2352 bytes, respectively. The default is 4 MB.
gracetime=
Set the number of seconds of grace time before writing. The value of \( n \) should be at least 2 (default is 4 seconds).

kdebug=n, kd=n
Set the kernel’s debug notification value to \( n \) during SCSI command execution. Works through the usal-driver.

mcn=n
Set the Media Catalog Number to \( n \).

msifile=file
Like `-msinfo`, but also saves the information in the specified file.

-mlInfo
Get multisession information from the CD. Used only with multisession discs onto which you can still record more sessions.

-multi
Set to record in multisession mode. Must be present on all sessions but the last one for a multisession disc.

-nofix
Do not close the disc after writing.

-reset
Attempt to reset the SCSI bus. Does not work on all systems.

-s, -silent
Silent mode. Do not print any SCSI command errors.

speed=n
Set the speed to \( n \), a multiple of the audio speed. Normally, `wodim` gets the speed from `/etc/wodim.conf` or the CDR_SPEED environment variable. If your drive has trouble with higher numbers, try 0 as a value.

timeout=n
Set the SCSI command timeout to \( n \) seconds. Defaults to 40.

-tao
Track-at-once (TAO) write mode. Most drives require TAO mode for multisession recording.

-toc
Display the table of contents for the CD currently in the drive. Works for CD-ROM, as well as CD-R and CD-RW drives.

ts=n
Set the maximum transfer size for a single SCSI command to \( n \). Defaults to 63 KB.

-scanbus
Scan SCSI devices. Useful for finding the SCSI address of the drive.

-useinfo
Use .inf files to override audio options set elsewhere.

-v
Verbose mode. Use one \( v \) for each level of verbosity. \(-vv\) would be very verbose, and \(-vvv\) would be even more so.
-V  A verbose mode counter that applies only to SCSI transport messages. This slows the application but can be useful for debugging.

-version
   Print version information and exit.

-wait
   Wait for input on standard input before opening the SCSI driver. Useful for letting wodim read input from a pipe while writing additional sessions to a multisession disk.

Track options and arguments
Track options may be mixed with track arguments, and normally apply to the track immediately after them or to all tracks after them. The track arguments themselves should be the files that you will be writing to the CD. Options are:

-audio
   Write all tracks after this track in digital audio format (playable by standard CD players). If you do not use this flag or the -data flag, wodim assumes that .au and .wav files are to be recorded as raw audio and that all other files are data.

-cdi
   Write subsequent tracks in CDI format. Use with XA disks only.

-data
   Record subsequent tracks as CD-ROM data. If you do not use this flag or the -audio flag, all files except for those that end in .wav or .au are assumed to be data.

-index=a,b,c
   Set the index list for the next track. The values should be increasing comma-separated integers, starting with index 1 and counting in sectors (75ths of a second). For example, you could set three indices in a track with index=0,750,7500 and they would occur at the beginning of the track, after 10 seconds, and after 100 seconds.

-isosize
   The size of the next track should match the size of the ISO-9660 filesystem. This is used when duplicating CDs or copying from raw-data filesystems.

-isdrc=n
   Set the International Standard Recording Number for the track argument following this option.

-mode2
   Write all subsequent tracks in CD-ROM mode 2 format.

-nopad
   Do not insert blank data between data tracks following this flag. This is the default behavior.
**write**

- **-pad**  
  Insert 15 sectors of blank data padding between data tracks.  
  Applies to all subsequent tracks or until you use the **-nopad**  
  argument, and is overridden by the **padsize=n** argument.

- **padsize=n**  
  Insert n sectors of blank data padding after the next track.  
  Applies only to the track immediately after it.

- **-swab**  
  Declare that your data is in byte-swapped (little-endian) byte  
  order. This is not normally necessary.

- **tsize=n**  
  Set the size of the next track. Useful only if you are recording  
  from a raw disk for which wodim cannot determine the file  
  size. If you are recording from an ISO 9660 filesystem, use the  
  **-isosize** flag instead.

- **-xa, -xa1, -xa2**  
  Write subsequent tracks in CD-ROM XA mode 2 format. **-xa1**  
  writes in mode 2 form 1 format, and subheaders must be  
  supplied by the application providing the data. **-xa** and **-xa2**  
  write in mode 2 form 1 and mode 2 form 2, respectively, and  
  subheaders are created by the drive.

---

**write**  
write user [tty]
messagex

Initiate or respond to an interactive conversation with user. A **write**  
session is terminated with EOF. If the user is logged into more than  
one terminal, specify a **tty** number. See also **talk**; use **mesg** to keep  
other users from writing to your terminal.

---

**xargs**  
xargs [options] [command]

Execute **command** (with any initial arguments), but read remaining  
arguments from standard input instead of specifying them directly.  
**xargs** passes these arguments in several bundles to the command,  
allowing it to process more arguments than it could normally  
handle at once. The arguments are typically a long list of filenames  
(generated by **ls** or **find**, for example) that get passed to **xargs** via a  
pipe. The default command is **/bin/echo**.

**Options**

- **-0, --null**  
  Expect filenames to be terminated by NULL instead of white-  
  space. Do not treat quotes or backslashes specially.

- **-a file, --arg-file=file**  
  Read arguments from **file**, not standard input.

- **-E string**  
  Set EOF to **string**. Default is no EOF string.
xargs

--help
Print usage information and then exit.

-1 string
Replace all occurrences of string in the initial arguments with
names read from standard input. Unquoted blanks are not
considered argument terminators; newline character is used.
Implies -x and -L 1.

-L lines
Allow no more than lines nonblank input lines on the
command line (default is 1). Implies -x.

-n args, --max-args=args
Allow no more than args arguments on the command line.
Overridden by the maximum number of characters set with -s.

-p, --interactive
Prompt for confirmation (y or Y) before running each command
line. Implies -t.

-P max, --max-procs=max
Allow no more than max processes to run at once. The default
is 1. A maximum of 0 allows as many as possible to run at once.

-r, --no-run-if-empty
Do not run command if standard input contains only blanks.

-s max, --max-chars=max
Allow no more than max characters per command line.

--show-limits
Display upper and lower limits on command-line length
(based on system limits, xarg buffer size, and -s if specified)
before running the command.

-t, --verbose
Verbose mode. Print command line on standard error before
executing.

-x, --exit
If the maximum size (as specified by -s) is exceeded, exit.

--version
Print the version number of xargs and then exit.

Examples
grep for pattern in all files on the system:
find / | xargs grep pattern > out &
Run diff on file pairs (e.g., f1.a and f1.b, f2.a and f2.b, etc.):

echo $* | xargs -n2 diff
The previous line would be invoked as a shell script, specifying
filenames as arguments. Display file, one word per line (same as
deroff -w):
cat file | xargs -n1
Move files in olddir to newdir, showing each command:
lsooldir | xargs -i -t mv olddir/{ } newdir/{ }
xinetd

xinetd [options]
TCP/IP command. The extended Internet services daemon. xinetd saves system resources by listening to multiple sockets on the behalf of other server programs, invoking necessary programs as requests are made for their services. Beyond this, xinetd provides better logging facilities, including remote user ID, access times, and server-specific information. It also provides access-control facilities. Not limited to system administration use, it can launch services that are not listed in /etc/services. Unprivileged users can use this tool to start their own servers.

Options

-cc num
   Perform an internal-state consistency check every num seconds.
-d
   Turn on debugging support.
-dontfork
   Execute in the foreground. This option automatically sets the -stayalive option.
-f file
   Read configuration from the specified file instead of /etc/xinetd.conf.
-filelog file
   Write log messages to the specified file. Cannot be combined with -syslog or -d.
-inetd_compat
   Read the /etc/inetd.conf file after reading /etc/xinetd.conf.
-limit num
   Start no more than num concurrent processes.
-logprocs num
   Limit processes used to look up remote user IDs to num.
-pidfile file
   Write xinetd’s process ID to file.
-stayalive
   Keep running even when no services have been specified.
-syslog facility
   Log messages to the specified syslogd facility. Accepted values are daemon, auth, user, and localn, where n can range from 0 to 7. Cannot be combined with -syslog or -d. The default behavior is to write messages to syslogd using the daemon facility.
-version
   Print version information, then exit.

Configuration files

By default xinetd reads its configuration information from file /etc/xinetd.conf. Lines in this file beginning with # are treated as
comments. The entries for each service differ completely from /etc/inetd entries. *xinetd* configuration entries for services follow the pattern:

```bash
service servicename
{
 attribute1 = valueset1
 attribute2 = valueset2
}
```

Some attributes allow assignment operators other than =. Other operators are +=, to add to a value set, and -=, to remove a value from a value set. There are many attributes available to control services. The following are the most common:

**cps**
Limit incoming connection rate. Accepts two numeric arguments: the number of connections per second to allow and the number of seconds to wait to accept a new connection when the rate is exceeded. The default is 50 incoming connections and a 10-second wait.

**disable**
Accept a Boolean yes or no. When disabled, *xinetd* will ignore the entry.

**flags**
Accept a set of the following values defining *xinetd*’s behavior:

- **IDONLY**
  Accept only connections when the remote user’s ID can be verified by an identification server. Cannot be used with USERID logging.

- **INTERCEPT**
  Intercept packets to ensure they are coming from allowed locations. Cannot be used with internal or multithreaded services.

- **IPv4**
  Service is an IPv4 service.

- **IPv6**
  Service is an IPv6 service.

- **KEEPALIVE**
  Set flag on socket, enabling periodic checks to determine if the line is still receiving data.

- **NAMEINARGS**
  Expect the first argument for the server_args attribute to be the command to run. This flag is necessary to wrap services with *tcpd*.

- **NODELAY**
  Set socket’s NODELAY flag.

- **NOLIBWRAP**
  Don’t use *xinetd*’s internal TCP wrapping facilities.
NORETRY
If service fails to fork, don’t try to fork again.

SENSOR
Instead of launching a service, add IP addresses that attempt to access this service to a list of denied addresses for a time specified by the deny_time attribute.

group
Specify a group ID for the server process. This may be used only when xinetd runs as root.
nice
Set service priority. This attribute accepts the same values as the renice command.
id
Specify a unique identifier for the service. Useful when creating multiple entries with the servicename. For example, two versions of the echo service, one supporting UDP and the other TCP, might be given the identifiers echo-stream and echo-dgram.

log_on_failure
Specify values to log when a server cannot be started. Accepted values are HOST, USERID, or just ATTEMPT.

log_on_success
Specify values to log when a server is started. Accepted values are PID, HOST, USERID, EXIT, and DURATION.

no_access
Specify hosts that should not be allowed access to a service. May be given as an IP address, a netmask, a hostname, a network name from /etc/networks, or a group of IP addresses like so: 192.168.1.{10,11,12,15,32}.

only_from
Restrict access to the service to the specified hosts. This attribute accepts the same values as no_access.

per_source
Specify the maximum number of instances allowed to a single source IP address. The default is “UNLIMITED”.

port
Specify the service port to listen to. This attribute is required for non-RPC services not listed in /etc/services. If the service is listed, the value of port cannot differ from what is listed.

protocol
Specify protocol to use, usually tcp or udp. The protocol must be listed in /etc/protocols. This attribute is required for RPC services, as well as services not found in /etc/services.

rpc_version
The RPC version used by the service. This can be a single number or a range of numbers from x-y. This attribute is required for RPC services.
rpc_number
  Specify RPC ID number. This is required only for services not
  listed in /etc/rpc; otherwise it’s ignored.

server
  The program to execute for the service. When using tcpd to
  wrap a service, also set the NAMEINARGS flag and use the
  server’s program name as the first argument for server_args.
  This attribute is required for all noninternal services.

server_args
  Arguments to pass to the server program.

socket_type
  Specify the socket type to create. Accepted values are stream,
  dgram, raw, and seqpacket.

type
  Describe the type of service. Accepted values are RPC,
  INTERNAL, and UNLISTED.

user
  Specify a user ID for the server process. This may be used only
  when xinetd runs as root.

wait
  Determine whether services should be treated as single-
  threaded (yes) and xinetd should wait until the server exits to
  resume listening for new connections, or multithreaded (no)
  and xinetd should not wait to resume listening. This attribute
  is required for all services.

Files
/etc/xinetd.conf
  Default configuration file.
/etc/xinetd.d
  Common directory containing configuration files included
  from /etc/xinetd.conf.

yacc
  yacc [options] file
  Given a file containing context-free grammar, convert file
  into tables for subsequent parsing, and send output to y.tab.c. This
  command name stands for yet another compiler-compiler. See also
  flex, bison, and the book lex & yacc (O’Reilly).

Options
  -b prefix
    Prepend prefix, instead of y, to the output file.
  -d
    Generate y.tab.h, producing #define statements that relate
    yacc’s token codes to the token names declared by the user.
  -g
    Generate a VCG description.
  -l
    Exclude #line constructs from code produced in y.tab.c. (Use
    after debugging is complete.)
-o outfile
   Write generated code to outfile instead of the default y.tab.c.

-p prefix
   Change the symbol yacc uses for symbols it generates from the default yy to prefix.

-t Compile runtime debugging code.

-v Generate y.output, a file containing diagnostics and notes about the parsing tables.

---

yes 

yes [strings]

yes [option]
Print the command-line arguments, separated by spaces and followed by a newline, until killed. If no arguments are given, print y followed by a newline until killed. Useful in scripts and in the background; its output can be piped to a program that issues prompts.

Options
--help
   Print a help message and then exit.

--version
   Print version information and then exit.

---

ypbind 

ypbind [options]
NFS/NIS command. NIS binder process. ypbind is a daemon process typically activated at system startup time. Its function is to remember information that lets client processes on a single node communicate with some ypserv process. The information ypbind remembers is called a binding—the association of a domain name with the Internet address of the NIS server and the port on that host at which the ypserv process is listening for service requests. This information is cached in the file /var/yp/binding/domainname.version.

Options
-broadcast
   Ignore configuration information in /etc/yp.conf and directly request configuration information from a remote system using ypset.

-broken-server
   Allow connections to servers using normally illegal port numbers. Sometimes needed for compatibility with other versions of ypserv.

-c Check configuration file for syntax errors, then exit.

-debug
   Run in the foreground process instead of detaching and running as a daemon.
ypinit

-\texttt{f \textit{file}}
   Read configuration information from \textit{file} instead of \texttt{/etc/yp.conf}.

-\texttt{-no-ping}
   Don’t ping remote servers to make sure they are alive.

-\texttt{--version}
   Print version information, then exit.

-\texttt{ypset}
   Allow remote machine to change the local server’s bindings.
   This option is very dangerous and should be used only for debugging the network from a remote machine.

-\texttt{ypsetme}
   \texttt{ypset} requests may be issued from this machine only. Security is based on IP address checking, which can be defeated on networks on which untrusted individuals may inject packets. This option is not recommended.

\textbf{ypcat}

\texttt{ypcat [options] map}
NFS/NIS command. Print values in an NIS database specified by \textit{map} name or nickname.

\textbf{Options}

-\texttt{-d \textit{domain}}
   Specify \textit{domain} other than the default domain.

-\texttt{-h \textit{host}}
   Specify a \texttt{ypbind \textit{host}} other than the default.

-\texttt{-k}
   Display keys for maps in which values are null or key is not part of value.

-\texttt{-t}
   Do not translate \textit{mname} to map name.

-\texttt{-x}
   Display map nickname table listing the nicknames (\textit{mnames}) known and map name associated with each nickname. Do not require an \textit{mname} argument.

\textbf{ypinit}

\texttt{ypinit [options]}
NFS/NIS command. Build and install an NIS database on an NIS server. \texttt{ypinit} can be used to set up a master server, slave server, or slave copier. Only a privileged user can run \texttt{ypinit}.

\textbf{Options}

-\texttt{-m}
   Indicate that the local host is to be the NIS master server.

-\texttt{-s \textit{master\_name}}
   Set up a slave server database. \textit{master\_name} should be the hostname of an NIS server, either the master server for all the maps, or a server on which the database is up to date and stable.
ypmatch

ypmatch [options] key... mname
NFS/NIS command. Print value of one or more keys from an NIS map specified by mname. mname may be either a map name or a map nickname.

Options
-d domain
   Specify domain other than default domain.
-k
   Before printing value of a key, print the key itself, followed by a colon (:).
-t
   Do not translate nickname to map name.
-x
   Display map nickname table listing the nicknames (mnames) known, and the map name associated with each nickname. Do not require an mname argument.

yppasswd

yppasswd [options] [name]
NFS/NIS command. Change login password in Network Information Service. Create or change your password, and distribute the new password over NIS. The superuser can change the password for any user. This command may also be invoked as ypchfn and ypchsh.

Options
-f
  Update the password information field (the GECOS field). Using this option is the same as ypchfn.
-l
  Update the login shell. Using this option is the same as ypchsh.
-p
  Update the password. This is the default behavior for yppasswd.

yppasswdd

rpc.yppasswdd [options]
NFS/NIS command. Server for modifying the NIS password file. yppasswdd handles password-change requests from yppasswd. It changes a password entry only if the password represented by yppasswd matches the encrypted password of that entry and if the user ID and group ID match those in the server’s /etc/passwd file. Then it updates /etc/passwd and the password maps on the local server. If the server was compiled with the CHECKROOT=1 option, the password is also checked against the root password.

Options
-D dir
   Specify a directory that contains the passwd and shadow files for rpc.yppasswdd to use instead of /etc/passwd and /etc/shadow. Useful to prevent all users in the NIS database from automatically gaining access to the NIS server.
-e [chsh|chfn]
   Permit users to change the shell or user information in the GECOS field of their passwd entry. By default, rpc.yppasswdd does not permit users to change these fields.
**yppush**

- **E program**
  Specify a program to edit the passwd and shadow files instead of **rpc.yppasswdd**. The program should return 0 for successful completion; 1 for successful completion, but the **pwupdate** program should not be run to update the NIS server’s maps; and anything else if the change failed.

- **p pofile**
  Specify an alternative passwd file to /etc/passwd, to prevent all users in the NIS database from automatically gaining access to the NIS server.

- **--port num**
  Specify a port that **rpc.yppasswdd** will try to register itself, allowing a router to filter packets to the NIS ports.

- **s shadowfile**
  Use shadowfile instead of /etc/passwd for shadow password support.

- **v**
  Print version information and whether the package was compiled with CHECKROOT.

- **x program**
  Modify files using the specified program instead of using internal default functions. **rpc.yppasswdd** passes information to program in the following format:

  username o:oldpassword p:password s:shell g:gecos

  Any of the fields p, s, or g may be missing.

---

**yppoll**

yppoll [options] map

NFS/NIS command. Determine version of NIS map at NIS server. **yppoll** asks a **ypserv** process for the order number and the hostname of the master NIS server for the **map**.

**Options**

- **h host**
  Ask the **ypserv** process at host about the map parameters. If host is not specified, the hostname of the NIS server for the local host (the one returned by **ypwhich**) is used.

- **d domain**
  Use domain instead of the default domain.

---

**yppush**

yppush [options] mapnames

NFS/NIS command. Force propagation of changed NIS map. **yppush** copies a new version of an NIS map, mapname, from the master NIS server to the slave NIS servers. It first constructs a list of NIS server hosts by reading the NIS map **ypservers** with the **-d** option’s domain argument. Keys within this map are the ASCII names of the machines on which the NIS servers run. A map transfer request is sent to the NIS server at each host, along with the information needed by the transfer agent to call back to
ypserv

**yppush.** When the attempt has been completed and the transfer agent has sent **yppush** a status message, the results may be printed to standard error. Normally invoked by `/var/yp/Makefile` after commenting out the `NOPUSH=true` line.

**Options**

- `-d domain`
  Specify a domain.

- `-h host`
  Specify one or a group of systems to which a map should be transferred instead of using the list of servers in the **ypservers** map. Multiple `-h` options can be specified to create a list of hosts.

- `-p count, --parallel count`
  Send maps to `count` NIS slaves simultaneously (in parallel). By default, **yppush** sends maps to one server at a time (serially).

- `--port num`
  Specify a port to listen on for callbacks. This will not work when sending maps in parallel. By default, the command chooses a random port.

- `-t secs`
  Specify a timeout value in seconds. The timeout determines how long **yppush** will wait for a response from a slave server before sending a map transfer request to the next server. The default timeout is 90 seconds, but for big maps a longer timeout may be needed.

- `-v` Verbose; print message when each server is called and for each response. Specify twice to make **yppush** even more verbose.

---

**ypserv**

NFS/NIS command. NIS server process. **ypserv** is a daemon process typically activated at system startup time. It runs only on NIS server machines with a complete NIS database. Its primary function is to look up information in its local database of NIS maps. The operations performed by **ypserv** are defined for the implementor by the NIS protocol specification, and for the programmer by the header file `<rpcsvc/yp_prot.h>`. Communication to and from **ypserv** is by means of RPC calls. On startup or when receiving the signal SIGHUP, **ypserv** parses the file `/etc/ypserv.conf`. **ypserv** supports **securenets**, which can be used to restrict access to a given set of hosts.

**Options**

- `-d [path], --debug [path]`
  Run in debugging mode without going into background mode, and print extra status messages to standard error for each request. If `path` is specified, use it instead of `/var/yp`.

- `-i interface, --iface interface`
  Only provide service on the specified network `interface`. 

---
ypset

ypset [options] server
NFS/NIS command. Point ypbind at a particular server. ypset tells ypbind to get NIS services for the specified domain from the ypserv process running on server. server indicates the NIS server to bind to and can be specified as a name or an IP address.

Options
-\d domain
  Use domain instead of the default domain.

-h host
  Set ypbind's binding on host instead of the local host. host can be specified as a name or an IP address.

yptest

yptest [options]
NFS/NIS command. Check configuration of NIS services by calling various NIS functions. Without arguments, yptest queries the NIS server for the local machine.

Options
-\d domainname
  Use domainname instead of the current host's default domain. This option may cause some tests to fail.

-h host
  Test ypserv on the specified host instead of the current host. This option may cause some tests to fail.

-m map
  Use the specified map instead of the default map.

-q
  Quiet mode. Print no messages.

-u user
  Run tests as user instead of as nobody.
ypwhich

ypwhich [options] [host]
NFS/NIS command. Return hostname of NIS server or map master. Without arguments, ypwhich cites the NIS server for the local machine. If host is specified, that machine is queried to find out which NIS master it is using.

Options
-d domain
Use domain instead of the default domain.
-m [map]
Find master NIS server for a map. No host can be specified with -m. map may be a map name or a nickname for a map. If no map is specified, display a list of available maps.
-t mapname
Inhibit nickname translation.
-Vv
Version of ypbind (default is v2).
-x
Display map nickname table. Do not allow any other options.

ypxfr

ypxfr [options] mapname
NFS/NIS command. Transfer an NIS map from the server to the local host by making use of normal NIS services. ypxfr creates a temporary map in the directory /var/yp/domain (where domain is the default domain for the local host), fills it by enumerating the map’s entries, and fetches the map parameters and loads them. If run interactively, ypxfr writes its output to the terminal. However, if it is invoked without a controlling terminal, its output is sent to syslogd.

Options
-c
Do not send a “Clear current map” request to the local ypserv process.
-C tid prog ipadd port
This option is for use only by ypserv. When ypserv invokes ypxfr, it specifies that ypxfr should call back a yppush process at the host with IP address ipadd, registered as program number prog, listening on port port, and waiting for a response to transaction tid.
-d domain
Specify a domain other than the default domain.
-f
Force the transfer to occur even if the version on the master server is older than the local version.
-h host
Get the map from host instead of querying NIS for the map’s master server. host may be specified by name or IP address.
-p dir
  Use dir as the path to the NIS map directory instead of /var/yp.

-s domain
  Specify a source domain from which to transfer a map that should be the same across domains (such as the services.bynames map).

ypxfrd
  rpc.ypxfrd [options]
  NFS/NIS command. This server is used to copy a master’s NIS map using an RPC based file transfer program instead of building a local map the way ypfxfr would. This will speed up the transfer of large maps.

  Options
  --debug
    Debug mode. Do not fork.
  -d dir
    Use dir instead of /var/yp.
  -p port
    Bind to the specified port.
  -v, --version
    Print version information and exit.

zcat
  zcat [options] [files]
  Read one or more files that have been compressed with gzip or compress and write them to standard output. Read standard input if no files are specified or if - is specified as one of the files; end input with EOF. zcat is identical to gunzip -c and takes the options described for gzip/gunzip.

zcmp
  zcmp [options] files
  Read compressed files and pass them uncompressed to the cmp command, along with any command-line options. If a second file is not specified for comparison, look for a file called file.gz.

zdiff
  zdiff [options] files
  Read compressed files and pass them, uncompressed, to the diff command, along with any command-line options. If a second file is not specified for comparison, look for a file called file.gz.

zforce
  zforce [names]
  Rename all gzipped files to filename.gz, unless file already has a .gz extension.
zgrep

zgrep [options] [files]
Uncompress files and pass to grep, along with any command-line arguments. If no files are provided, read from (and attempt to uncompress) standard input. May be invoked as zgrep or zgrep and will in those cases invoke egrep or fgrep.

zless

zless files
Uncompress files and allow paging through them. Equivalent to running zmore with the environment variable PAGER set to less. See zmore for the available commands.

zmore

zmore [files]
Similar to more. Uncompress files and print them one screenful at a time. Works on files compressed with compress, gzip, or pack, and with uncompressed files. The argument i in the following zmore commands is an optional integer argument.

Commands

space
Print next screenful.
ispace
Print next i lines.
Return
Print one more line.
idi, id
Print next i, or 11, lines.
iz
Print next i lines or a screenful. If i is specified, treat it as the new window size for the rest of the current file, then revert to the default.
is
Skip i lines, then print the next screenful.
if
Skip i screens, then print the next screenful.
q, Q, :q, :Q
Go to next file or, if current file is the last, exit zmore.
e, q
Exit zmore when the prompt “--More-- (Next file: file)” is displayed.
s
Skip next file and continue when the prompt “--More-- (Next file: file)” is displayed.
=
Print line number.
i/expr
Search forward for ith occurrence (in all files) of expr, which should be a regular expression. Display occurrence, including the two previous lines of context.
in
Search forward for the ith occurrence of the last regular expression searched for.
!command
   Execute command in shell. If command is not specified, execute last shell command. To invoke a shell without passing it a command, enter \!.
   . Repeat the previous command.

znew
   znew [options] [files]
   Uncompress .Z files and recompress them in .gz format.

Options
-9   Optimal (and slowest) compression method.
-f   Recompress even if filename.gz already exists.
-K   If the original .Z file is smaller than the .gz file, keep it.
-P   Pipe data to conversion program. This saves disk space.
-t   Test new .gz files before removing .Z files.
-v   Verbose mode.
This chapter describes techniques for booting your Linux system. Depending on your hardware and whether you want to run any other operating systems, you can configure the system to automatically boot Linux or to provide a choice between several operating systems. Choosing between operating systems is generally referred to as dual booting, although you can select between more than two. We talk more about dual booting in the section “Dual-Booting Linux and Windows 2000/XP/Vista” on page 536.

An alternative to dual booting is virtualization, where you run one or more virtual operating systems inside a real operating system. The real system is known as the host, and the virtual systems are known as guests. Virtualization makes it easy to switch between systems without having to reboot. Two ways to run virtual systems are to make Linux the host system with another operating system running in a virtual machine. See Chapter 15 for an overview of virtualization concepts and for information on how to run guest systems under Linux. You can also run Linux as a guest with another operating system such as Windows as the host. Two ways to do this are with Microsoft’s Virtual PC and VMware server. Both are free downloads and are available at www.microsoft.com and www.vmware.com, respectively.

Once your Linux system is installed, rebooting the system is generally straightforward. There are several possibilities for configuring your boot process. The most common choices are:

- Boot Linux from a bootable disk, most likely a CD or an installation CD/DVD, leaving another operating system to boot from the hard drive.
- Use the Linux Loader, LILO. This used to be the traditional method of booting and lets you boot both Linux and other operating systems.
- Use GRUB (GRand Unified Bootloader), the GNU graphical boot loader and command shell. Like LILO, GRUB lets you boot both Linux and other operating systems. GRUB, which has additional functionality not found in LILO, is now the de facto Linux boot loader.
Whatever method you choose for booting, be sure to have a working boot disk available for emergency use. In particular, don’t experiment with the files and options in this chapter unless you have a boot disk, because any error could leave you unable to boot from the hard disk. Note, though, that one of the advantages of using GRUB is that if there is a problem booting from the menu, it drops you down to the command-line interface so you can enter commands directly and try to recover. In addition, your distribution CD or DVD undoubtedly has a recovery option on it. Or you can boot from a live Linux CD such as Knoppix.

The Boot Process

On an x86-based PC, the first sector of every hard disk is known as the boot sector and contains the partition table for that disk and possibly also code for booting an operating system. The boot sector of the first hard disk is known as the master boot record (MBR), because when you boot the system, the BIOS transfers control to a program that lives on that sector along with the partition table. That code is the boot loader, the code that initiates an operating system. When you add Linux to the system, you need to modify the boot loader, replace it, or boot from a floppy or CD to start Linux.

In Linux, each disk and each partition on the disk is treated as a device. For example, the entire first hard disk is known as /dev/hda, and the entire second hard disk is /dev/hdb. The first partition of the first hard drive is /dev/hda1, and the second partition is /dev/hda2. The first partition of the second hard drive is /dev/hdb1, and so on. If your drives are SCSI or SATA instead of IDE, the naming works the same way, except that the devices are /dev/sda, /dev/sda1, and so on. Thus, if you want to specify that the Linux partition is the second partition of the first hard drive (as in the examples in this chapter), you refer to it as /dev/hda2.

Note that GRUB has its own disk naming convention, described later in this chapter in “GRUB: The Grand Unified Bootloader” on page 516.

Once you’ve made the decision to install LILO or GRUB, you still need to decide how it should be configured. Most Linux distributions will automatically set up the booting environment for you, whether you are installing Linux as the primary operating system or into a dual-booting environment (or in a virtual guest system where the real MBR is not modified). If for some reason your distribution doesn’t do it for you, or you want to do it manually, the rest of this chapter will help you. If your distribution does set up the boot environment for you, you might still want to read the sections on LILO or GRUB to find out how the customize your boot loader.

If you want your system to dual-boot Linux and Windows, you need to know that Windows has its own loader installed on the MBR, and it expects that loader to be in charge. The standard solution described in this chapter is to add Linux as an option in the Windows loader and install LILO or GRUB in the Linux partition as a secondary boot loader. The result is that the Windows loader transfers control to the secondary loader, which then boots Linux. See “Dual-Booting Linux and Windows 2000/XP/Vista” on page 536 for more information. You can also install one of the Linux boot loaders in the MBR and use it to boot Windows. (See the “Linux+WinNT” and the “Multiboot with GRUB” mini-HOWTOs at the Linux Documentation Project [www.tldp.org] if you’re interested in doing that.)
When you install the boot loader (either LILO or GRUB) on the MBR, it replaces the Windows boot loader. If you have problems with your installation or you simply want to restore the original boot loader, you can do one of the following:

- If you’re running LILO, you can boot Linux from a boot disk (CD or floppy) and restore the boot sector, which LILO automatically backs up:
  ```
 $ /sbin/lilo -u
  ```
- For Windows 2000, XP, and Vista, boot your computer from the Windows CD. When you see “Welcome to Setup,” press R (for repair) and, in Windows 2000, then press C. Select your Windows installation from the numbered list that is displayed (there may be only one entry) and enter the administrator password at the prompt. Enter the command `fixmbr` at the command-line prompt and confirm it with `y`. After the MBR has been restored, type `exit` to reboot.

The common element in both methods is that they replace the boot loader on the MBR with the original Microsoft boot loader.

Whatever boot loader is on the MBR is the one that will be used to boot the system. This means that if you want to switch from LILO to GRUB, say, or from GRUB to LILO, you don’t need to uninstall the old loader; simply install the new one.

The rest of this chapter describes the various techniques for booting Linux and the options that you can specify to configure both the boot loader and the Linux kernel. Whether you use GRUB or LILO, you can pass options to the loader and specify options for the kernel.

**LILO: The Linux Loader**

In addition to booting Linux, LILO can boot other operating systems, such as Windows or any of the BSD systems. During installation, some Linux distributions provide the opportunity to install LILO (most now install GRUB by default). LILO can also be installed later if necessary. LILO can be installed on the MBR of your hard drive or as a secondary boot loader on the Linux partition. LILO consists of several pieces, including the boot loader itself, a configuration file (`/etc/lilo.conf`), a map file (`/boot/map`) containing the location of the kernel, and the `lilo` command (`/sbin/lilo`), which reads the configuration file and uses the information to create or update the map file and to install the files LILO needs.

One thing to remember about LILO is that it has two aspects: the boot loader and the `lilo` command. The `lilo` command configures and installs the boot loader and updates it as necessary. The boot loader is the code that executes at system boot time and boots Linux or another operating system.

You can make a rescue CD for LILO with the LILO command `mkrescue --iso` to make an image that can be burned to CD. Use `mkrescue` by itself or with other options to make a rescue floppy disk. See the `mkrescue` manpage for more information.
The LILO Configuration File

The `lilo` command reads the LILO configuration file, `/etc/lilo.conf`, to get the information it needs to install LILO. Among other things, it builds a map file containing the locations of all disk sectors needed for booting.

Note that any time you change `/etc/lilo.conf` or rebuild or move a kernel image, you need to rerun `lilo` to rebuild the map file and update LILO.

The configuration file starts with a section of global options, described in the next section. Global options are those that apply to every system boot, regardless of the operating system you are booting. Here is an example of a global section (a hash sign, `#`, begins a comment):

```
boot=/dev/hda # The boot device is /dev/hda
map=/boot/map # Save the map file as /boot/map
install=/boot/boot.b # The file to install as the new boot sector
prompt # Always display the boot prompt
timeout=30 # Set a 3-second (30 tenths of a second) timeout
```

Following the global section, there is one section of options for each Linux kernel and for each non-Linux operating system that you want LILO to be able to boot. Each of these sections is referred to as an `image` section because each boots a different kernel image (shorthand for a binary file containing a kernel) or another operating system. Each Linux image section begins with an `image=` line.

```
image=/boot/vmlinuz # Linux image file
label=linux # Label that appears at the boot prompt
root=/dev/hda2 # Location of the root filesystem
vga=ask # Always prompt the user for VGA mode
read-only # Mount read-only to run fsck for a filesystem check
```

The equivalent section for a non-Linux operating system begins with `other=` instead of `image=`. For example:

```
other=/dev/hda1 # Location of the partition
label=winxp
```

Put LILO configuration options that apply to all images into the global section of `/etc/lilo.conf`, and options that apply to a particular image into the section for that image. If an option is specified in both the global section and an image section, the setting in the image section overrides the global setting for that image.

Here is an example of a complete `/etc/lilo.conf` file for a system that has the Linux partition on `/dev/hda2`:

```
Global section
boot=/dev/hda2
map=/boot/map
delay=30
timeout=50
prompt
vga=ask
```
## Image section: For regular Linux
image=/boot/vmlinuz
   label=linux
   root=/dev/hda2
   install=/boot/boot.b
   map=/boot/map
   read-only

## Image section: For testing a new Linux kernel
image=/testvmlinuz
   label=testlinux
   root=/dev/hda2
   install=/boot/boot.b
   map=/boot/map
   read-only
   optional # Omit image if not available when map is built

## Image section: For booting Windows XP
other=/dev/hda1
   label=winxp
   loader=/boot/chain.b
   table=/dev/hda # The current partition table

### Global options

In addition to the options listed here, the kernel options **append**, **read-only**, **read-write**, **root**, and **vga** (described later in “Kernel options” on page 513) can also be set as global options.

**backup=backup-file**
Copy the original boot sector to `backup-file` instead of to `/boot/boot.nnnn`, where `nnnn` is a number that depends on the disk device type.

**boot=boot-device**
Set the name of the device that contains the boot sector. **boot** defaults to the device currently mounted as root, such as `/dev/hda2`. Specifying a device such as `/dev/hda` (without a number) indicates that LILO should be installed in the master boot record; the alternative is to set it up on a particular partition, such as `/dev/hda2`.

**change-rules**
Begin a section that redefines partition types at boot time for hiding and unhiding partitions. See the LILO User’s Guide, which comes with the LILO distribution, for detailed information on using this option and creating a new rule set.

**compact**
Merge read requests for adjacent disk sectors to speed up booting. Use of **compact** is particularly recommended when booting from a floppy disk. Use of **compact** may conflict with **linear**.

**default=name**
Use the image `name` as the default boot image. If **default** is omitted, the first image specified in the configuration file is used.
delay=tsecs
Specify, in tenths of a second, how long the boot loader should wait before booting the default image. If serial is set, delay is set to a minimum of 20. The default is not to wait. See “Boot-Time Kernel Options” on page 539 for ways to get the boot prompt if no delay is set.

disk=device-name
Define parameters for the disk specified by device-name if LILO can’t figure them out. Normally, LILO can determine the disk parameters itself, and this option isn’t needed. When disk is specified, it is followed by one or more parameter lines, such as:

\[
\text{disk=}/dev/sda \\
\text{bios}=0x80 \quad \# \text{First disk is usually 0x80, second is usually 0x81} \\
\text{sectors}=... \\
\text{heads}=...
\]

Note that this option is not the same as the disk geometry parameters you can specify with the \text{hd} boot command-line option. With disk, the information is given to LILO; with \text{hd}, it is passed to the kernel. Note also that if either heads or sectors is specified, they must both be specified. The parameters that can be specified with disk are listed briefly here; they are described in detail in the LILO User’s Guide.

\text{bios=bios-device-code}
The number the BIOS uses to refer to the device. See the previous example.

\text{cylinders=cylinders}
The number of cylinders on the disk.

\text{heads=heads}
The number of heads on the disk.

\text{inaccessible}
Tell LILO that the BIOS can’t read the disk; used to prevent the system from becoming unbootable if LILO thinks the BIOS can read it. If this parameter is specified, it must be the only parameter.

\text{partition=partition-device}
Start a new section for a partition. The section contains one variable, \text{start=partition-offset}, which specifies the zero-based number of the first sector of the partition:

\[
\text{partition=}/dev/sda1 \\
\text{start}=2048
\]

\text{sectors=sectors}
The number of sectors per track.

disktab=disktab-file
This option has been superseded by the disk= option.

\text{fix-table}
If set, allow \text{lilo} to adjust 3-D addresses (addresses specified as sector/head/cylinder) in partition tables. This is sometimes necessary if a partition isn’t track-aligned and another operating system is on the same disk. See the \text{lilo.conf} manpage for details.
**force-backup** = *backup-file*

Like *backup*, but overwrite an old backup copy if one exists.

**ignore-table**

Tell lilo to ignore corrupt partition tables.

**install** = *boot-sector*

Install the specified file as the new boot sector. If *install* is omitted, the boot sector defaults to */boot/boot.b*.

**lba32**

Generate 32-bit Logical Block Addresses instead of sector/head/cylinder addresses, allowing booting from any partition on hard disks greater than 8.4 GB (i.e., remove the 1024-cylinder limit). Requires BIOS support for the EDD packet call interface* and at least LILO version 21–4.

**linear**

Generate linear sector addresses, which do not depend on disk geometry, instead of 3-D (sector/head/cylinder) addresses. If LILO can’t determine your disk’s geometry itself, you can try using *linear*; if that doesn’t work, then you need to specify the geometry with *disk*=. Note, however, that *linear* sometimes doesn’t work with floppy disks, and it may conflict with *compact*.

**lock**

Tell LILO to record the boot command line and use it as the default for future boots until it is overridden by a new boot command line. *lock* is useful if there are kernel options that you need to enter on the boot command line every time you boot the system.

**map** = *map-file*

Specify the location of the map file. Defaults to */boot/map*. The map file records the location of the kernel(s) used on the system.

**message** = *message-file*

Specify a file containing a message to be displayed before the boot prompt. The message can include a formfeed character (*Ctrl-L*) to clear the screen. The map file must be rebuilt by rerunning the lilo command if the message file is changed or moved. The maximum length of the file is 65,535 bytes.

**nowarn**

Disable warning messages.

**optional**

Specify that any image that is not available when the map is created should be omitted and not offered as an option at the boot prompt. Like the per-image option *optional*, but applies to all images.

**password** = *password*

Specify a password that the user is prompted to enter when trying to load an image. The password is not encrypted in the configuration file, so if passwords are used, permissions should be set so that only the superuser is able to read the file. This option is like the per-image version, except that all images are password-protected and they all have the same password.

* As long as your BIOS is dated after 1998, it should include EDD packet call interface support.
**prompt**
Automatically display the boot prompt without waiting for the user to press the Shift, Alt, or Scroll Lock key. Note that setting **prompt** without also setting **timeout** prevents unattended reboots.

**restricted**
Can be used with **password** to indicate that a password needs to be entered only if the user specifies parameters on the command line. Like the per-image **restricted** option, but applies to all images.

**serial=parameters**
Allow the boot loader to accept input from a serial line as well as from the keyboard. Sending a break on the serial line corresponds to pressing a Shift key on the console to get the boot loader’s attention. All boot images should be password-protected if serial access is insecure (e.g., if the line is connected to a modem). Setting **serial** automatically raises the value of **delay** to 20 (i.e., two seconds) if it is less than that. The parameter string **parameters** has the following syntax:

```
port[,bps[parity[bits]]]
```

For example, to initialize COM1 with the default parameters:

```
serial=0,2400n8
```

The parameters are:

**port**
The port number of the serial port. The default is 0, which corresponds to COM1 (/dev/ttyS0). The value can be one of 0 through 3, for the four possible COM ports.

**bps**
The baud rate of the serial port. Possible values of **bps** are 110, 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200. The default is 2400 bps.

**parity**
The parity used on the serial line. Parity is specified as **n** or **N** for no parity, **e** or **E** for even parity, and **o** or **O** for odd parity. However, the boot loader ignores input parity and strips the 8th bit.

**bits**
Specify whether a character contains 7 or 8 bits. Default is 8 with no parity and 7 otherwise.

**timeout=tsecs**
Set a timeout (specified in tenths of a second) for keyboard input. If no key has been pressed after the specified time, the default image is booted automatically. **timeout** is also used to determine when to stop waiting for password input. The default timeout is infinite.

**verbose=level**
Turn on verbose output, where higher values of **level** produce more output. If -v is also specified on the **lilo** command line, the level is incremented by 1 for each occurrence of -v. The maximum verbosity level is 5.
Image options

The following options are specified in the image section for a particular boot image. The image can be a Linux kernel or a non-Linux operating system.

**alias**=name

Provide an alternate name for the image that can be used instead of the name specified with the *label* option.

**image**=pathname

Specify the file or device containing the boot image of a bootable Linux kernel. Each per-image section that specifies a bootable Linux kernel starts with an *image* option. See also the *range* option.

**label**=name

Specify the name that is used for the image at the boot prompt. Defaults to the filename of the image file (without the path).

**loader**=chainloader

For a non-Linux operating system, specify the chain loader to which LILO should pass control for booting that operating system. The default is /boot/chain.b. If the system will be booted from a drive that is neither the first hard disk nor a floppy or CD, the chainloader must be specified.

**lock**

Like *lock*, as described in the previous global options section; it can also be specified in an image section.

**optional**

Specify that the image should be omitted if it is not available when the map is created by the *lilo* command. Useful for specifying test kernels that are not always present.

**other**=pathname

Specify the path to a file that boots a non-Linux system. Each per-image section that specifies a bootable non-Linux system starts with an *other* option.

**password**=password

Specify that the image is password-protected and provide the password that the user is prompted for when booting. The password is not encrypted in the configuration file, so if passwords are used, permissions should be set so only the superuser can read the file.

**range**=sectors

Used with the *image* option, when the image is specified as a device (e.g., *image*/dev/fd0), to indicate the range of sectors to be mapped into the map file. *sectors* can be given as the range start-end or as start+number, where start and end are zero-based sector numbers and number is the increment beyond start to include. If only start is specified, only that one sector is mapped. For example:

```
image=/dev/fd0
range=1+512 # take 512 sectors, starting with sector 1
```

**restricted**

Specify that a password is required for booting the image only if boot parameters are specified on the command line.
table=\texttt{device}  
Specify, for a non-Linux operating system, the device that contains the partition table. If \texttt{table} is omitted, the boot loader does not pass partition information to the operating system being booted. Note that \texttt{/sbin/lilo} must be rerun if the partition table is modified. This option cannot be used with \texttt{unsafe}.

\texttt{unsafe}  
Can be used in the per-image section for a non-Linux operating system to indicate that the boot sector should not be accessed when the map is created. If \texttt{unsafe} is specified, then some checking isn’t done, but the option can be useful for running the \texttt{lilo} command without having to insert a floppy disk when the boot sector is on a fixed-format floppy disk device. This option cannot be used with \texttt{table}.

\textbf{Kernel options}  
The following kernel options can be specified in \texttt{/etc/lilo.conf} as well as on the boot command line:

\texttt{append=string}  
Append the options specified in \texttt{string} to the parameter line passed to the kernel. This typically is used to specify certain hardware parameters. For example, while BIOSes on modern systems can recognize more than 64 MB of memory, BIOSes on older systems were limited to 64 MB. If you are running Linux on such a system, you can use \texttt{append}:

\begin{verbatim}
append="mem=128M"
\end{verbatim}

\texttt{initrd=filename}  
Specify the file to load into \texttt{/dev/initrd} when booting with a RAM disk. See also the options \texttt{load\_ramdisk} (in “Boot-Time Kernel Options” on page 539) and \texttt{prompt\_ramdisk}, \texttt{ramdisk\_size}, and \texttt{ramdisk\_start} in this section.

\texttt{literal=string}  
Like \texttt{append}, but replace all other kernel boot options.

\texttt{noinitrd}  
Preserve the contents of \texttt{/dev/initrd} so they can be read after the kernel is booted.

\texttt{prompt\_ramdisk=n}  
Specify whether the kernel should prompt you to insert the floppy disk that contains the RAM disk image, for use during Linux installation. Values of \texttt{n} are:

\begin{itemize}
\item \texttt{0}  Don’t prompt. Usually used for an installation in which the kernel and the RAM disk image both fit on one floppy.
\item \texttt{1}  Prompt. This is the default.
\end{itemize}

\texttt{ramdisk\_size=n}  
Specify the amount of memory, in kilobytes, to be allocated for the RAM disk. The default is 4096, which allocates 4 MB.

\texttt{ramdisk\_start=offset}  
Used for a Linux installation in which both the kernel and the RAM disk image are on the same floppy. \texttt{offset} indicates the offset on the floppy where the RAM disk image begins; it is specified in kilobytes.
read-only
Specify that the root filesystem should be mounted read-only for filesystem checking (`fsck`), after which it is typically remounted read/write.

read-write
Specify that the root filesystem should be mounted read/write.

`root=root-device`
Specify the device that should be mounted as root. If the special name `current` is used as the value, the root device is set to the device on which the root filesystem currently is mounted. Defaults to the root-device setting contained in the kernel image.

`vga=mode`
Specify the VGA text mode that should be selected when booting. The mode defaults to the VGA mode setting in the kernel image. The values are case-insensitive. They are:

- **ask**
  Prompt the user for the text mode. Pressing Enter in response to the prompt displays a list of the available modes.

- **extended** (or `ext`)
  Select 80×50 text mode.

- **normal**
  Select normal 80×25 text mode.

- **number**
  Use the text mode that corresponds to `number`. A list of available modes for your video card can be obtained by booting with `vga=ask` and pressing Enter.

The lilo Command

You need to run the `lilo` command to install the LILO boot loader and to update it whenever the kernel changes or to reflect changes to `/etc/lilo.conf`. Note that if you replace your kernel image without rerunning `lilo`, your system may be unable to boot.

The path to the `lilo` command is usually `/sbin/lilo`. The syntax of the command is:

```
lilo [options]
```

Some of the options correspond to `/etc/lilo.conf` keywords:

<table>
<thead>
<tr>
<th>Configuration keyword</th>
<th>Command option</th>
</tr>
</thead>
<tbody>
<tr>
<td>boot=bootdev</td>
<td>-b bootdev</td>
</tr>
<tr>
<td>compact</td>
<td>-c</td>
</tr>
<tr>
<td>delay=secs</td>
<td>-d secs</td>
</tr>
<tr>
<td>default=label</td>
<td>-D label</td>
</tr>
<tr>
<td>disktab=file</td>
<td>-f file</td>
</tr>
<tr>
<td>install=bootsector</td>
<td>-i bootsector</td>
</tr>
<tr>
<td>lba32</td>
<td>-L</td>
</tr>
</tbody>
</table>
These options should be put in the configuration file whenever possible; putting them on the `lilo` command line instead of in `/etc/lilo.conf` is deprecated. The next section describes those options that can be given only on the `lilo` command line; the others were described earlier.

**lilo Command Options**

The following list describes `lilo` command options that are available only on the command line. Multiple options are given separately; for example:

```
$ lilo -q -v
```

- `-C config-file`
  Specify an alternative to the default configuration file (`/etc/lilo.conf`). `lilo` uses the configuration file to determine which files to map when it installs LILO.

- `-I label`
  Print the path to the kernel specified by `label` to standard output, or an error message if no matching label is found. For example:

  ```
 $ lilo -I linux
 /boot/vmlinuz-2.0.34-0.6
  ```

- `-q`
  List the currently mapped files. `lilo` maintains a file (`/boot/map` by default) containing the name and location of the kernel(s) to boot. Running `lilo` with this option prints the names of the files in the map file to standard output, as in this example (the asterisk indicates that `linux` is the default):

  ```
 $ lilo -q
 linux *
 test
  ```

- `-r root-directory`
  Specify that before doing anything else, `lilo` should `chroot` to the indicated directory. Used for repairing a setup from a boot CD or floppy; you can boot from that disk but have `lilo` use the boot files from the hard drive. For example, if you issue the following commands, `lilo` will get the files it needs from the hard drive:

  ```
 $ mount /dev/hda2 /mnt
 $ lilo -r /mnt
  ```

- `-R command-line`
  Set the default command for the boot loader the next time it executes. The command executes once and then is removed by the boot loader. This option typically is used in reboot scripts, just before calling `shutdown -r`. 

---

<table>
<thead>
<tr>
<th>Configuration keyword</th>
<th>Command option</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>linear</code></td>
<td><code>-l</code></td>
</tr>
<tr>
<td><code>map=mapfile</code></td>
<td><code>-m mapfile</code></td>
</tr>
<tr>
<td><code>fix-table</code></td>
<td><code>-P fix</code></td>
</tr>
<tr>
<td><code>ignore-table</code></td>
<td><code>-P ignore</code></td>
</tr>
<tr>
<td><code>backup=file</code></td>
<td><code>-s file</code></td>
</tr>
<tr>
<td><code>force-backup=file</code></td>
<td><code>-S file</code></td>
</tr>
<tr>
<td><code>verbose=level</code></td>
<td><code>-v</code></td>
</tr>
</tbody>
</table>
-t  Indicate that this is a test—do not really write a new boot sector or map file. Can be used with -v to find out what lilo would do during a normal run.

-\texttt{u device-name}
  Uninstall lilo by restoring the saved boot sector from /boot/boot.nnnn, after validating it against a timestamp. device-name is the name of the device on which LILO is installed, such as /dev/hda2.

-\texttt{U device-name}
  Like -u, but do not check the timestamp.

-\texttt{V}
  Print the lilo version number.

\textbf{LILO Boot Errors}

As LILO loads itself, it displays the letters of the word LILO, one at a time as it proceeds. Once LILO is correctly loaded, you’ll see the full word printed on the screen. If nothing prints, then LILO has not been loaded at all; most likely LILO isn’t installed or it is installed, but on a partition that is not active. If LILO started loading, but there was a problem, you can see how far it got by how many letters printed:

\texttt{L}
  The first stage boot loader is loaded and running, but it can’t load the second stage. There should be an error code indicating the type of problem; usually the problem is a media failure or bad disk parameters. See the LILO User’s Guide for the meaning of the error codes.

\texttt{LI}
  The first stage boot loader loaded the second stage but was not able to run it. The problem is most likely bad disk parameters or the file /boot/boot.b (the boot sector) was moved but the lilo command wasn’t run.

\texttt{LIL}
  The second stage boot loader was run, but it couldn’t load the descriptor table from the map file. This is usually caused by a media failure or bad disk parameters.

\texttt{LIL?}
  The second stage boot loader was loaded at an incorrect address, probably because of bad disk parameters or by moving /boot/boot.b without running lilo.

\texttt{LIL-}
  The descriptor table is corrupt. The problem is probably bad disk parameters or moving /boot/map without running lilo.

\texttt{LILO}
  LILO was successfully loaded.

\textbf{GRUB: The Grand Unified Bootloader}

Like LILO, the GRUB boot loader can load other operating systems in addition to Linux. GRUB has become the default bootloader for most Linux variants. It was written by Erich Boleyn to boot operating systems on PC-based hardware and is now developed and maintained by the GNU project. GRUB was intended to boot operating systems that conform to the Multiboot Specification, which was
designed to create one booting method that would work on any conforming PC-based operating system. In addition to multiboot-conforming systems, GRUB can boot directly into Linux, FreeBSD, OpenBSD, and NetBSD. It can also boot other operating systems such as Microsoft Windows indirectly, through the use of a chainloader. The chainloader loads an intermediate file, and that file loads the operating system’s boot loader.

GRUB provides a graphical menu interface. It also provides a command interface that is accessible both while the system is booting (the native command environment) and from the command line once Linux is running.

While LILO works perfectly well, especially if you usually boot the default image, GRUB has some advantages. The graphical menu interface shows you exactly what your choices are for booting, so you don’t have to remember them. It also lets you easily edit an entry on the fly, or drop down into the command interface. In addition, if you are using the menu interface and something goes wrong, GRUB automatically puts you into the command interface so you can attempt to recover and boot manually. Another advantage of GRUB is that if you install a new kernel or update the configuration file, that’s all you have to do; with LILO, you also have to remember to rerun the `lilo` command to reinstall the boot loader. On the other hand, if you are used to LILO, don’t need to see the prompts often, and have a stable system, LILO is quick and convenient.

A GRUB installation consists of at least two and sometimes three executables, known as stages. The stages are:

**Stage 1**
Stage 1 is the piece of GRUB that resides in the MBR or the boot sector of another partition or drive. Since the main portion of GRUB is too large to fit into the 512 bytes of a boot sector, Stage 1 is used to transfer control to the next stage, either Stage 1.5 or Stage 2.

**Stage 1.5**
Stage 1.5 is loaded by Stage 1 only if the hardware requires it. Stage 1.5 is filesystem-specific; that is, there is a different version for each filesystem that GRUB can load. The name of the filesystem is part of the filename (e2fs_stage1_5, fat_stage1_5, etc.). Stage 1.5 loads Stage 2.

**Stage 2**
Stage 2 runs the main body of the GRUB code. It displays the menu, lets you select the operating system to be run, and starts the system you’ve chosen.

If it was compiled with netboot support, GRUB can also be used to boot over a network. We don’t describe that process here; see the file `netboot/README`. `netboot` in the GRUB source directory for detailed information.

One of the first things to understand about GRUB is that it uses its own naming conventions. Drives are numbered starting from 0; thus, the first hard drive is hd0, the second hard drive is hd1, the first floppy drive is fd0, and so on. Partitions are also numbered from 0, and the entire name is put in parentheses. For example, the first partition of the first drive, `/dev/hda1`, is known as (hd0,0) to GRUB, and the third partition of the second drive is (hd1,2). GRUB makes no distinction between drive types; thus the first drive is hd0 regardless of whether it is IDE, SCSI, or SATA.
Files are specified either by the filename or by blocklist, which is used to specify files such as chainloaders that aren’t part of a filesystem. A filename looks like a standard Unix path specification with the GRUB device name prepended; for example:

```
(hd0,0)/grub/grub.conf
```

If the device name is omitted, the GRUB root device is assumed. The GRUB root device is the disk or partition where the kernel image is stored, set with the root command. See “GRUB Commands” on page 525 for the command descriptions.

When you use blocklist notation, you tell GRUB which blocks on the disk contain the file you want. Each section of a file is specified as the offset on the partition where the block begins plus the number of blocks in the section. The offset starts at 0 for the first block on the partition. The syntax for blocklist notation is:

```
[device][offset]+length[,offset]+length...
```

In this case, too, the device name is optional for a file on the root device. With blocklist notation, you can also omit the offset if it is 0. A typical use of blocklist notation is when using a chainloader to boot Windows. If GRUB is installed in the MBR, you can chainload Windows by setting the root device to the partition that has the Windows boot loader, making it the active partition, and then using the `chainloader` command to read the Windows boot sector:

```
rootnodevify (hd0,0)
makactive
chainloader +1
```

In this example, the blocklist notation (+1) does not include either the device name or the offset because we set the root device to the Windows partition, and the Windows loader begins at offset 0 of that partition.

GRUB also includes a device map. The device map is an ASCII file, usually /boot/grub/device.map. Since the operating system isn’t loaded yet when you use GRUB to boot Linux (or any other operating system), GRUB knows only the BIOS drive names. The purpose of the device map is to map the BIOS drives to Linux devices. For example:

```
(fd0) /dev/fd0
(hd0) /dev/hda
```

### Installing GRUB

Installing GRUB involves two stages. First, you install the GRUB files on your system, either by compiling and installing the source tarball or from a package. That puts the GRUB files in the correct locations on your system. The second step is to install the GRUB software as your boot manager. This is the step we describe in this section.

If you installed GRUB as part of your Linux installation, the distribution’s installation program took care of both stages of installing GRUB, and you’ll see the GRUB menu when you boot Linux. If you didn’t install GRUB as part of your Linux installation, you have two choices. The easiest way to install GRUB is with the `grub-install` shell script that comes with GRUB. If `grub-install` doesn’t work,
or if you want to do the installation manually, you can run the `grub` command and issue the installation commands yourself.

The following sections describe how to create a GRUB boot CD, a GRUB boot floppy, and how to install GRUB. You can create a GRUB boot disk for everyday use or to have for an emergency.

**Creating a GRUB boot CD**

The following instructions make a CD that boots to GRUB:

1. Make a directory that will hold the GRUB iso image to be written to CD:
   ```bash
 $ mkdir -p grubiso/boot/grub
 # make parent dirs if needed
   ```

2. Copy the file `stage2_eltorito` to the new directory from the directory where GRUB was installed (in this example `/usr/lib/grub/x86_64-pc`):
   ```bash
 $ cp /usr/lib/grub/x86_64-pc grubiso/boot/grub
   ```
   You can move other files to the directory as well, such as `menu.lst` to display the menu when you boot.

3. Run `genisoimage` to make an ISO9660 image file, `grub.iso`:
   ```bash
 $ genisoimage -R -b boot/grub/stage2_eltorito -no-emul-boot
 -boot-load-size 4 -boot-info-table -o grub.iso grubiso
   ```
   This command takes the contents of `grubiso/boot/grub` (only the top of the directory tree needs to be specified) and makes the image file `grub.iso`. See the `genisoimage` command in Chapter 3 for information on the options.

4. The image file can now be burned onto a CD (or DVD) with the burning software of your choice.

**Creating a GRUB boot floppy**

The following instructions make a floppy that boots to the GRUB command line:

1. From the directory where GRUB was installed (e.g., `/usr/share/grub/i386-pc`), use the `dd` command to write the file `stage1` to the floppy:
   ```bash
 $ dd if=stage1 of=/dev/fd0 bs=512 count=1
   ```
   This command writes one block, with a block size of 512, from the input file `stage1` to the floppy device `/dev/fd0`.

2. Now write the file `stage2` to the floppy, skipping over the first block (`seek=1`) so you don’t overwrite `stage1`:
   ```bash
 $ dd if=stage2 of=/dev/fd0 bs=512 seek=1
   ```
   Put together, the process looks like this:
   ```bash
 $ dd if=stage1 of=/dev/fd0 bs=512 count=1
 1+0 records in
 1+0 records out
 $ dd if=stage2 of=/dev/fd0 bs=512 seek=1
 254+1 records in
 254+1 records out
   ```

* El Torito is a specification that lets you create a bootable CD.
The boot floppy is now ready to boot to the GRUB command line.

You can also make a boot floppy that boots to the GRUB menu:

1. Create a GRUB configuration file (/boot/grub/menu.lst) if you don’t already have one. The configuration file is described later in “The GRUB Configuration File” on page 521.
2. Create a filesystem on your floppy disk. For example:

   $ mke2fs /dev/fd0

3. Mount the floppy drive and create the directory /boot/grub:

   $ mount /mnt
   $ mkdir /mnt/boot
   $ mkdir /mnt/boot/grub

4. Copy the stage1, stage2, and grub.conf GRUB images from /boot/grub on your Linux partition to /mnt/boot/grub.

5. Run the grub command. This example assumes the command is in /sbin/grub, but it might be in /usr/sbin/grub on your system:

   $ /sbin/grub --batch <<EOT
   root (fd0)
   setup (fd0)
   quit
   EOT

You should now be able to boot to the GRUB menu from the floppy disk you just created.

**Using grub-install**

GRUB comes with a shell script, **grub-install**, which uses the GRUB shell to automate the installation. The command syntax is:

```
grub-install options install-device
```

where **install-device** is the name of the device on which you want to install GRUB, specified as either the GRUB device name (e.g., (hd0)) or the system device (e.g., /dev/hda). For example, you might issue the following command (as root):

```
$ grub-install /dev/hda
```

This command installs GRUB into the MBR of the first hard drive. The **grub-install** options are:

- **--force-lba**
  
  Force GRUB to use LBA mode, to allow booting from partitions beyond cylinder 1024.

- **--grub-shell=** *file*
  
  Specify that *file* is to be used as the GRUB shell. You might want to use this option to append options to **grub**. For example:

  ```
 $ grub-install --grub-shell="grub --read-only" /dev/fd0
  ```

- **-h, --help**

  Print a help message on standard output and exit.
--recheck

Force probing of a device map. You should run grub-install with this option if you add or remove a disk from your system. The device map is found at /boot/grub/device.map.

--root-directory=dir

Install GRUB images in the directory dir instead of the GRUB root directory.

-v, --version

Print the GRUB version number to standard output and exit.

Installing from the GRUB command line

To install GRUB from the native command environment, make a GRUB boot disk as described previously. You will use that disk to boot to the GRUB command line to do the installation. If you know which partition holds the GRUB files, you're all set. Otherwise, you can find the partition with the find command:

```
grub> find /boot/grub/stage1
(hd0,0)
```

Here, the files are on (hd0,0). Use that information to set the GRUB root device:

```
grub> root (hd0,0)
```

Run the setup command to install GRUB. To install GRUB on the MBR, run setup as follows:

```
grub> setup (hd0)
```

If you are going to chainload Linux and want to install GRUB on the boot sector of the Linux partition, run setup like this:

```
grub> setup (hd0,0)
```

The GRUB Configuration File

GRUB uses a configuration file that sets up the menu interface. The configuration file is called menu.lst and is found with the other GRUB files in the /boot/grub directory. In some distributions (e.g., Fedora and Red Hat) the configuration file is called grub.conf, which is a symbolic link to menu.lst.

The configuration file begins with a section containing global commands that apply to all boot entries, followed by an entry for each Linux image or other operating system that you want to be able to boot. Here is an example of a global section (a hash sign, #, begins a comment):

```
default=0 # default to the first entry
timeout=20 # set the timeout to 20 seconds
splashimage=(hd0,0)/grub/splash.xpm.gz # the splash image displayed with
 # the menu
```

Certain GRUB commands are available only in the global section of the configuration file, for use with the GRUB menu. These commands are described in the following list. All other commands can be used either in the configuration file or on the command line and are described later in “GRUB Commands” on page 525.
default num
Set the default menu entry to num. The default entry is started if the user
does not make a selection before the timeout time. Menu entries are
numbered from 0. If no default is specified, the first entry (0) is used as the
default.

fallback num
Specify the entry to be used if for any reason the default entry has errors. If
this command is specified and the default doesn’t work, GRUB boots the fall-
back entry automatically instead of waiting for user input.

hiddenmenu
Specify that the menu is not to be displayed. The user can press Esc before
the end of the timeout period to have the menu displayed; otherwise, the
default entry is booted at the end of the timeout.

timeout time
Specify the timeout period, in seconds. The timeout is the amount of time
GRUB waits for user input before booting the default entry.

title name
Start a new boot entry with specified name.

Following the global section, the configuration file includes an entry for each boot
image. An entry begins with a title command that specifies the text that will
appear on the menu for that entry when the system boots. A typical boot entry
might look like this:

title Linux 2.6.28
root (hd0,1)
kernel /vmlinuz-2.6.28 ro root=LABEL=/
initrd /initrd-2.6.28

This entry provides the information GRUB needs to boot to Linux. When the
menu is displayed, it will include an entry that says:

Linux 2.6.28

The GRUB root is on the second partition of the first hard drive (hd0,1). The kernel command specifies which Linux kernel to run and passes some parameters
to the kernel, and the initrd command sets up an initial RAM disk.

The configuration file also provides some security features, such as the ability to
set passwords and to lock certain entries so only the root user can boot them. The
configuration file can be set up so that a password is required to run interactively
(i.e., for editing menu entries or using the command interface) or simply to
protect certain menu entries while leaving other entries available to all users. See
the explanation of the password and lock commands in “GRUB Commands” on
page 525.

In addition to providing a password feature, GRUB provides the command
md5crypt to encrypt passwords in MD5 format, and a corresponding Linux
command, grub-md5-crypt. grub-md5-crypt is a shell script that acts as a
frontend to the grub shell, calling md5crypt. Passwords encrypted either directly
with md5crypt or with grub-md5-crypt can be used with the password command
to set up a GRUB password. grub-md5-crypt has three possible options:
--help
Print help message and exit.

--grub-shell=file
Specify that file is to be used as the GRUB shell.

--version
Print version information and exit.

Using the Menu Interface

The most common way to use GRUB is with the menu interface. The Stage 2 loader reads the configuration file menu.lst and displays the menu. If a timeout is set in the configuration file, GRUB displays a countdown at the bottom of the window showing how much time is left before it boots to the default entry. Move the cursor to an entry and press Enter to boot; or, press e to edit the command line for that entry, a to modify the kernel arguments, or c to go to the command-line interface to issue commands manually.

If you go to the command line, you can return to the menu at any time by pressing Esc. Selecting a and e are similar, except that a displays only the kernel command line and lets you append options to it, while e displays the entire boot entry for you to edit. In either case, the available editing commands are similar to those available on the shell command line. When you are through editing, press Esc to return to the main menu. Your changes take effect for this session only; the configuration file is not permanently changed.

One common use for editing a kernel command is to boot to single-user mode. To do that, select a from the menu and append the word “single” to the end of the kernel command. Then press Esc to return to the menu and select the entry.

The GRUB Shell

In addition to using the command line from within the GRUB menu interface (or booting directly to the command line), you can run a GRUB shell directly from the Linux command line with the grub command. For the most part, using the grub shell is the same as running in the native command-line environment. The major difference is that the shell uses operating system calls to emulate the BIOS calls that the native environment uses. That can lead to some differences in behavior.

The syntax of the grub command is:

grub [options]

For example:

$ grub --no-floppy

The grub command-line options are:

--batch
Turn on batch mode for noninteractive use. Equivalent to grub --no-config-file --no-curses --no-pager.
--boot-drive=drive
Use drive as the Stage 2 boot drive, specified as a decimal, hexadecimal, or octal integer. The default is hexadecimal 0x0.

--config-file=file
Use file as the GRUB configuration file. The default is /boot/grub/menu.lst.

--device-map=file
Use file for the device map. The value of file is usually /boot/grub/device.map.

--help
Display a help message to standard output and exit.

--hold
Wait for a debugger to attach before starting grub.

--install-partition=partition
Use partition as the Stage 2 installation partition, specified as a decimal, hexadecimal, or octal number. The default is hexadecimal 0x20000.

--no-config-file
Run without reading the configuration file.

--no-curses
Don’t use the curses interface for managing the cursor on the screen.

--no-floppy
Don’t probe for a floppy drive. This option is ignored if --device-map is also specified.

--no-pager
Don’t use the internal pager.

--preset-menu
Use a preset menu, for example if your system has no console and you need to get a serial terminal set up to see messages. To use this option, compile GRUB with the --enable-preset-menu=file option and create a menu file. See the GRUB documentation for more information.

--probe-second-floppy
Probe the second floppy drive (which is not probed by default). This option is ignored if --device-map is also specified.

--read-only
Do not write to any disk drives.

--verbose
Print verbose messages.

--version
Print version information and exit.

When you run grub, you will see something like this:

    GRUB  version 0.94  (640K lower / 3072K upper memory)
    [ Minimal BASH-like line editing is supported. For the first word, TAB lists possible command completions. Anywhere else TAB lists the possible completions of a device/filename. ]
    grub>
You can now enter commands at the \texttt{grub>} prompt. Press Tab to get a brief help message, listing all the commands:

\begin{verbatim}
grub>
Possible commands are: blocklist boot cat chainloader cmp color configfile
debg device displayapm displaymem dump embed find fstest geometry halt help
hide impsprobe initrd install ioprobe kernel lock makeactive map md5crypt
module modulenounzip pager partnew parttype password pause quit read reboot
root rootnoverify savedefault serial setkey setup terminal testload testvbe
unhide uppermem vbeprobe
\end{verbatim}

Using Tab is a quick way to remind yourself of the commands, but it can be confusing to see them all run together and wrapping across lines. You can also run the \texttt{help} command, which lists the most frequently used commands and their syntax:

\begin{verbatim}
grub> help
blocklist FILE                      boot
  chainloader [--force] FILE
  (FILE)
cat FILE                           configfile FILE
  displayapm
  find FILENAME
  geometry DRIVE [CYLINDER HEAD SECTOR]
  halt [-no-apm]
  help [-all] [PATTERN ...]
  kernel [-no-mem-option] [-type=TYPE]
  map TO_DRIVE FROM_DRIVE
  module FILE [ARG ...]
  pager [FLAG]
  partnew PART TYPE START LEN
  parttype PART TYPE
  reboot
  root [DEVICE [HDBIAS]]
  rootnoverify [DEVICE [HDBIAS]]
  serial [-unit=UNIT] [-port=PORT] [-setkey [TO KEY FROM KEY]
  setup [-prefix=DIR] [-stage2=STAGE2]
  testvbe MODE
  uppermem KBYTES
  vbeprobe [MODE]
\end{verbatim}

You can add the \texttt{--all} option to see all the commands.

To get help for a specific command, add the command name (e.g., \texttt{help read}). \texttt{help} treats the text you enter as a pattern; therefore, if you enter \texttt{help find}, you’ll get help for the \texttt{find} command, but if you enter \texttt{help module}, you’ll get help for both \texttt{module} and \texttt{modulenounzip}.

**GRUB Commands**

The following sections describe two sets of commands. Both can be used at the GRUB command line. In addition, the first set can be used in the global section of the menu, and the second can be used in individual menu entries. A few commands can be used only on the GRUB shell command line; this is noted in the command entry. The commands \texttt{default}, \texttt{fallback}, \texttt{hiddenmenu}, \texttt{timeout}, and \texttt{title} are available only in the configuration file, for use with the menu interface. They are described in “The GRUB Configuration File” on page 521.
When running commands, if you find that you aren’t sure how to complete a pathname, you can use the Tab key to find the possible completions. For example:

```
grub> blocklist (hd0,1)/grub/ [tab]
Possible files are: grub.conf splash.xpm.gz menu.lst device.map stage1
stage2 e2fs stage1_5 fat_stage1_5 ffs_stage1_5 jfs_stage1_5 minix_stage1_5
reiserfs_stage1_5 vstafs_stage1_5 xfs_stage1_5
grub> blocklist (hd0,1)/grub/stage2
(hd0,1)33306+24,33332+231
```

**Command-Line and Global Menu Commands**

The commands available at the command line and in the global section of the configuration file are as follows.

---

**bootp**

```
bootp [--with-configfile]
```

Initialize a network device via the Bootstrap Protocol (BOOTP). This command is available only if GRUB was compiled with netboot support. If `--with-configfile` is specified, GRUB automatically loads a configuration file specified by your BOOTP server.

**color**

```
color normal [highlight]
```

Specify colors for the menu. `normal` represents the color used for normal menu text, while `highlight` represents the color used to highlight the line the cursor is on. Both `normal` and `highlight` are specified as two symbolic color names, for foreground and background color, separated by a slash. For example:

```
color light-gray/blue cyan/black
```

You can prefix the foreground color with `blink-` (e.g., `blink-cyan/red`) to get a blinking foreground. The colors `black`, `blue`, `green`, `cyan`, `red`, `magenta`, `brown`, and `light-gray` can be specified for foreground or background. Additional colors that can be used only for the foreground are `dark-gray`, `light-blue`, `light-green`, `light-cyan`, `light-red`, `light-magenta`, `yellow`, and `white`.

**device**

```
device drive file
```

Specify a file to be used as a BIOS drive. This command is useful for creating a disk image and/or for fixing the drives when GRUB fails to determine them correctly. The `device` command is available only from within the `grub` shell, not from the native command line. For example:

```
grub> device (fd0) /floppy-image
grub> device (hd0) /dev/sd0
```
### dhcp

dhc

Initialize a network device via the DHCP protocol. Currently, this command is just an alias for `bootp` and is available only if GRUB was compiled with netboot support. If specified with `--with-config-file`, GRUB will fetch and load a configuration file specified by your DHCP server.

### hide

hide partition

Hide the specified partition. This is useful when you are booting Windows and there are multiple primary partitions on one disk. Hide all but the one you want to boot. Also see `unhide`.

### ifconfig

ifconfig [--server=server] [--gateway=gateway] [--mask=mask] [--address=address]

Configure a network device manually. If no options are specified, displays the current network configuration. With the server address, gateway, netmask, and IP address specified, `ifconfig` configures the device. The addresses must be in dotted decimal format (e.g., 192.168.0.4), and the options can be specified in any order.

### pager

pager [flag]

Enable or disable the internal pager by setting flag to `on` (enable) or `off` (disable).

### partnew

partnew part type from to

Make a new primary partition, part, specified in GRUB syntax. type is the partition type, specified as a number in the range 0-0xff. from and to are the starting and ending sectors, specified as absolute numbers. Some of the common partition types are:

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>FAT 16, lt 32M</td>
<td>4</td>
</tr>
<tr>
<td>FAT 16, gt 32M</td>
<td>6</td>
</tr>
<tr>
<td>FAT 32</td>
<td>0xb</td>
</tr>
<tr>
<td>FAT 32, with LBA</td>
<td>0xc</td>
</tr>
<tr>
<td>WIN 95, extended</td>
<td>0xf</td>
</tr>
<tr>
<td>EXT2FS</td>
<td>0x83</td>
</tr>
<tr>
<td>Linux extended</td>
<td>0x85</td>
</tr>
<tr>
<td>Linux RAID</td>
<td>0xfd</td>
</tr>
<tr>
<td>FreeBSD</td>
<td>0xa5</td>
</tr>
<tr>
<td>OpenBSD</td>
<td>0xa6</td>
</tr>
<tr>
<td>NetBSD</td>
<td>0xfd</td>
</tr>
</tbody>
</table>
parttype

Change the type of partition *part* to *type*. The type must be a number in the range 0-0xff. See `partnew` for a list of partition types.

password

Set a password for the menu interface. If used in the global section of the configuration file, outside the menu entries, GRUB prompts for a password before processing an a, e, or c entered by the user. Once the password `passwd` has been entered, if no file was specified, GRUB allows the user to proceed. Otherwise, GRUB loads the file as a new configuration file and restarts Stage 2. If `password` appears in an individual menu entry, GRUB prompts for the password before continuing. Specify `--md5` to tell GRUB that the password was encrypted with the `md5crypt` command.

rarp

Initialize a network device via the Reverse Address Resolution Protocol (RARP). This command is available only if GRUB was compiled with netboot support. The use of RARP is deprecated.

serial

Initialize a serial device. The serial port is not used for communication unless `terminal` is also specified. This command is available only if GRUB was compiled with serial support.

Options

--device=device
    Specify the tty device to be used in the host operating system. This option can be used only in the `grub` shell.

--parity=parity
    Specify the parity. The possible values are no, odd, and even; the default is no.

--port=port
    Specify the I/O port. The value of `port` overrides any value specified for `--unit`.

--speed=speed
    Specify the transmission speed (default is 9600).

--stop=num
    Specify the number of stop bits. The value of `num` is either 1 or 2 (default is 1).

--unit=num
    Specify the serial port to use. The value of `num` is a number in the range 0–3; the default is 0, corresponding to COM1.
--word=num

Specify the number of data bits. The value of num is a number in the range 5–8 (default is 8).

setkey

setkey [to-key from-key]

Configure the keyboard map for GRUB by mapping the key from-key to the key to-key. With no mappings specified, reset the keyboard map. setkey is useful for setting up international keyboards. Possible key values are letters; digits; one of the strings alt, backspace, capslock, control, delete, enter, escape, Fn (where n is one of the function key numbers), shift, tab; or one of the strings in the “Key value” columns of the following table.

<table>
<thead>
<tr>
<th>Key value</th>
<th>Character</th>
<th>Key value</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>ampersand</td>
<td>&amp;</td>
<td>asterisk</td>
<td>*</td>
</tr>
<tr>
<td>at</td>
<td>@</td>
<td>backquote</td>
<td>‘</td>
</tr>
<tr>
<td>backslash</td>
<td>\</td>
<td>bar</td>
<td></td>
</tr>
<tr>
<td>braceleft</td>
<td>{</td>
<td>braceright</td>
<td>}</td>
</tr>
<tr>
<td>bracketleft</td>
<td>[</td>
<td>bracketright</td>
<td>]</td>
</tr>
<tr>
<td>caret</td>
<td>^</td>
<td>colon</td>
<td>:</td>
</tr>
<tr>
<td>comma</td>
<td>,</td>
<td>dollar</td>
<td>$</td>
</tr>
<tr>
<td>doublequote</td>
<td>&quot;</td>
<td>equal</td>
<td>=</td>
</tr>
<tr>
<td>exclamation</td>
<td>!</td>
<td>greater</td>
<td>&gt;</td>
</tr>
<tr>
<td>less</td>
<td>&lt;</td>
<td>minus</td>
<td>-</td>
</tr>
<tr>
<td>numbersign</td>
<td>#</td>
<td>parenleft</td>
<td>(</td>
</tr>
<tr>
<td>parenright</td>
<td>}</td>
<td>percent</td>
<td>%</td>
</tr>
<tr>
<td>period</td>
<td>.</td>
<td>plus</td>
<td>+</td>
</tr>
<tr>
<td>question</td>
<td>?</td>
<td>quote</td>
<td>‘</td>
</tr>
<tr>
<td>semicolon</td>
<td>;</td>
<td>slash</td>
<td>/</td>
</tr>
<tr>
<td>space</td>
<td></td>
<td>tilde</td>
<td>~</td>
</tr>
<tr>
<td>underscore</td>
<td>_</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

splashimage

splashimage file

Use the image in file as the background (splash) image. The file should be a gzipped .xpm (X pixmap) file, created with a 14-color palette at 640 × 480 resolution and specified with standard GRUB device syntax:

splashimage=(hd0,0)/grub/splash.xpm.gz

Programs that you can use to create .xpm files include the GIMP, xv, and xpaint.

terminal

terminal [options] [console] [serial]

Specify a terminal for user interaction. This command is available only if GRUB was compiled with serial support. If both console
and **serial** are specified, GRUB uses the first terminal where a key is pressed, or the first after the timeout has expired. If neither is specified, GRUB displays the current setting.

**Options**

--- **dumb**

The terminal is a dumb terminal; if this option is not specified, the terminal is assumed to be VT100-compatible.

--- **lines=num**

The terminal has `num` lines. The default is 24.

--- **silent**

Suppress the prompt to hit any key (useful if your system does not have a terminal).

--- **timeout=secs**

Specify the timeout in seconds.

--- **tftpserver ipaddress**

Specify a TFTP server, overriding the address returned by a BOOTP, DHCP, or RARP server. The IP address must be specified in dotted decimal format. This command is available only if GRUB was compiled with netboot support. This command is deprecated; use `ifconfig` instead.

--- **unhide partition**

Unhide the specified partition. This is useful when booting DOS or Windows when there are multiple primary partitions on one disk. You can **unhide** the partition you want to boot and **hide** the others.

--- **blocklist file**

Print the specified file in blocklist notation, where `file` is an absolute pathname or a blocklist. For example:

```
grub> blocklist (hd0,1)/grub/grub.conf
(hd0,1)33746+2
```
cat  
\texttt{cat \ file}
Display the contents of the specified file.

chainloader  
\texttt{chainloader \ [-force] \ file}
Load \texttt{file} as a chainloader. You can use blocklist notation to specify the first sector of the current partition with +1. If \texttt{--force} is specified, the file is loaded forcibly.

cmp  
\texttt{cmp \ file1 \ file2}
Compare the two files \texttt{file1} and \texttt{file2}. Report differences by printing nothing if the files are identical, the sizes if they are different, or the bytes at an offset if they differ at that offset.

configfile  
\texttt{configfile \ file}
Load \texttt{file} as the configuration file.

dump  
\texttt{dump \ from \ to}
Dump the contents of one file into another. The file you're dumping \texttt{from} is a GRUB file, and the file you're dumping \texttt{to} is an operating system file.
**embed**

```plaintext
embed stage1.5 device
```

Embed the specified Stage 1.5 file in the sectors following the MBR if `device` is a drive, or in the boot loader area if it is an FFS (Berkeley Fast File System) partition (or, in the future, a ReiserFS partition). If successful, print the number of sectors the Stage 1.5 file occupies. You don’t usually need to run this command directly.

**find**

```plaintext
find file
```

Search all partitions for the specified file and print the list of devices where it was found. The filename specified should be an absolute filename, such as `/boot/grub/stage1`, or a blocklist.

**fptest**

```plaintext
fptest
```

Toggle the filesystem test mode, which prints data for device reads and the values being sent to the low-level routines. The `install` and `testload` commands turn off filesystem test mode. The test output is in the following format:

- `<partition-offset-sector, byte-offset, byte-length>`
  for high-level reads in a partition, and:
  - `[disk-offset-sector]`
  for low-level sector requests from the disk.

**geometry**

```plaintext
geometry drive [cylinder head sector [total_sector]]
```

Print geometry information for `drive`. From the GRUB shell, you can specify the number of cylinders, heads, sectors, and total sectors to set the drive’s geometry. If `total_sector` is omitted, it is calculated from the other values.

**halt**

```plaintext
halt [--no-apm]
```

Shut down the computer. The computer is halted with an APM BIOS call unless the option `--no-apm` is specified.

**help**

```plaintext
help [--all] [patterns]
```

Provide help for built-in commands. With no options, show the command and any options or parameters for the most common commands. With `--all`, show the same information for all possible commands. If you specify a pattern (i.e., a partial command name) or a full command name, a more complete description of the command or commands matching the pattern is displayed.

**impsprobe**

```plaintext
impsprobe
```

Probe the Intel Multiprocessor Specification 1.1 or 1.4 configuration table and boot the CPUs that are found into a tight loop. This command can be used only in Stage 2.
**initrd**

`initrd file [args]`

Load an initial ramdisk file and pass any arguments.

**install**

`install [options] stage1_file [d] dest_dev stage2_file [addr] [p] [config_file] [real_config_file]`

Perform a full GRUB install. See also the `setup` command, which acts as a frontend to `install` and is easier to use. The Stage 2 or Stage 1.5 file (both referred to as `stage2_file` here because they are loaded the same way) must be in its final install location (e.g., in the `/boot/grub` directory). `install` loads and validates `stage1_file`, installs a blacklist in the Stage 1 file for loading `stage2_file` as Stage 2 or Stage 1.5, and writes the completed Stage 1 file to the first block of the device `dest_dev`.

**Options**

--force-lba

If the BIOS has LBA support but might return the incorrect LBA bitmap (which sometimes happens), `--force-lba` forces `install` to ignore the incorrect bitmap.

--stage2= `os_stage2_file`

This option is required to specify the operating system name of the Stage 2 file if the filesystem where it is located cannot be unmounted.

**Parameters**

`addr`

Specify the address at which Stage 1 is to load Stage 2 or Stage 1.5. The possible values are 0x8000 for Stage 2 and 0x2000 for Stage 1.5. If omitted, GRUB determines the address automatically.

`config_file`

Specify the location of the configuration file for Stage 2.

`d`

Tell Stage 1 to look for the actual disk on which `stage2_file` was installed if it’s not on the boot drive.

`dest_dev`

Specify the destination device. The final Stage 1 file is written to this device.

`p`

If present, the partition where `stage2_file` is located is written into the first block of Stage 2.

`real_config_file`

If `stage2_file` is really a Stage 1.5 file, `real_config_file` specifies the real configuration filename and is written into the Stage 2 configuration file.

`stage1_file`

Specify the Stage 1 file to be written.

`stage2_file`

Specify the file that Stage 1 is to load for Stage 2.
ioprobe  

Probes the I/O ports used for drive and writes the results to standard output.

kernel  

```shell
kernel [--non-mem-option] file [...]
```

Load the kernel image from file. Any text following file is passed on as the kernel command line. After running this command, you must reload any modules. The option --type specifies the kernel type and is required only for loading a NetBSD ELF kernel; GRUB automatically determines other types. The possible values of type are linux, biglinux, freebsd, multiboot, netbsd, and openbsd. For Linux, --no-mem-option tells GRUB not to pass the `mem=` option to the kernel.

lock  

Lock the entry until a valid password is entered. This is used in a menu entry immediately after title to prevent nonroot users from executing the entry. This command is most useful in conjunction with the password command.

makeactive  

```
makeactive
```

Set the active partition on the root disk to GRUB’s root device. Use only on primary PC hard disk partitions.

map  

```
map to from
```

Map the from drive to the to drive. You need to do this when chain-loading an operating system such as Windows, if it is not on the first drive. For example, if Windows is on (hd1):

```bash
grub> map (hd0) (hd1)
grub> map (hd1) (hd0)
```

This swaps the mappings of the first and second hard drives, tricking Windows into thinking it’s on the first drive so it can boot.

md5crypt  

Prompt for a password and encrypt it in MD5 format for use with the password command.

module  

```
module file [...]
```

Load the boot module file for a multiboot format boot image. Anything after the filename is passed as the module command line.

modulenounzip  

```
modulenounzip files
```

Like module, except that automatic decompression is disabled.
pause
Print the specified message and wait for a key to be pressed before continuing.

quit
Used only from within the grub shell to exit from the shell. In the native command environment, use reboot instead to reboot the computer.

read
Read a 32-bit value from memory at the specified address and display it in hex.

reboot
Reboot the system.

root
Set the root device to the specified device and attempt to mount it to get the partition size (and some additional information for booting BSD kernels). If you are booting a BSD kernel, you can specify hdbias to tell the kernel how many BIOS drive numbers are before the current one.

rootnoverify
Similar to root, but don’t attempt to mount the partition. Used when you are booting a non-GRUB-readable partition such as Windows.

savedefault
Save the current menu entry as the default. GRUB will default to that entry the next time you boot the system.

setup
Set up installation of GRUB and run the install command to actually install GRUB onto the device install_device. Find the GRUB images on image_device if it is specified; otherwise use the current root device as set by the root command. If install_device is a hard disk, embed a Stage 1.5 file in the disk if possible.

Options
--force-lba
Force install to use LBA mode. Specify this option if your BIOS supports LBA mode but you find that GRUB isn’t working in LBA mode without it.
--prefix=dir
Specify the directory where the GRUB images are located. If not specified, GRUB searches for them in /boot/grub and /grub.

--stage2=os_stage2_file
Passed to install to tell GRUB the operating system name of the Stage 2 file.

testload testload file
Read the contents of a file in different ways and compare the results to test the filesystem code. If no errors are reported and the final output reports an equal value for the reported variables i and filepos, then the filesystem is consistent and you can try loading a kernel.

testvbe testvbe mode
For a VBE (VESA BIOS Extension) BIOS, test the specified VESA BIOS extension mode. You should see an animation loop, which you can cancel by pressing any key.

uppermem uppermem kbytes
Tell GRUB to assume that only the specified number of kilobytes of upper memory are installed. You should need to use this command only for old systems, where not all the memory may be recognized.

vbeprobe vbeprobe [mode]
For a VBE BIOS, probe VESA BIOS extension information. If mode is specified, the output shows only information for that mode; otherwise, all available VBE modes are listed.

Dual-Booting Linux and Windows 2000/XP/Vista

As mentioned earlier, when you run Windows, its boot loader expects to be the one in charge; therefore, the standard way to dual-boot Windows and Linux is to add Linux as an option on the Windows boot menu. This section describes how to do that. The information provided here applies to Windows 2000 and Windows XP, which use the Windows NT loader ntldr (so called because it was developed for Windows NT). Windows Vista uses a different boot loader. If you want to set up Vista to dual-boot Linux, you can use the free download EasyBCD by Neosmart Technologies (neosmart.net).

Note again that you do not need the information in this section if your Linux installation software set up the dual-booting for you, which it probably did.

To set up dual booting with the NT loader manually, you need to provide the loader with a copy of the Linux boot sector. We’ll describe how to do that on a
computer running Windows with an NTFS filesystem (note that Windows should be installed on your system already). See the “Linux+NT-loader” mini-HOWTO for more information and other alternatives.

You should have a Linux boot floppy or CD available so that if necessary you can boot Linux before the Windows boot loader has been modified. You should also have a DOS-formatted floppy to transfer the boot sector to the Windows partition. If you are running LILO and it is already installed, you may need to modify /etc/lilo.conf as described later. Otherwise, install LILO or GRUB to the boot sector of the Linux partition; once the Linux boot manager is installed and you have a configuration file, you can set up the system for dual booting.

The following instructions assume your Linux partition is on /dev/hda2. If Linux is on another partition in your system, be sure to replace /dev/hda2 in the following examples with the correct partition. The instructions also assume that you have a floppy drive to make a diskette for transferring the boot sector to your NTFS filesystem. If you don’t have a floppy drive, you will have to use some other means of doing the transfer. If you have a floppy drive, you can mount that on Linux and transfer the file there. Other possibilities include putting it on a CD, transferring it over a network to another system while you reboot to Windows, or even emailing it to yourself and reading it from the Windows side.

1. If you are running LILO, specify the Linux root partition as your boot device in /etc/lilo.conf. If you are editing /etc/lilo.conf manually, your entry will look like this:
   ```
 boot=/dev/hda2
   ```
   and will be the same as the root= entry.

   If you are running GRUB, make sure your configuration file, /boot/grub/menu.lst, includes a menu entry for booting Linux. The exact values of the entries in the menu depend on the filename of the kernel image that you wish to boot. For example:
   ```
 title Linux 2.6.28
 root (hd0,1)
 kernel /vmlinuz-2.6.28 ro root=LABEL=/
 initrd /initrd-2.6.28
   ```
   You can then skip to Step 3.

2. Run the lilo command to install LILO on the Linux root partition.

3. At this point, if you need to reboot Linux, you’ll have to use a boot floppy or CD because the NT loader hasn’t been set up yet to boot Linux.

4. From Linux, run the dd command to make a copy of the Linux boot sector:
   ```
 $ dd if=/dev/hda2 of=/bootsect.lnx bs=512 count=1
   ```
   This command copies one block, with a block size of 512 bytes, from the input file /dev/hda2 to the output file /bootsect.lnx. Note that if you are running GRUB, the boot sector is actually the stage1 file. (The output filename can be whatever makes sense to you; it doesn’t have to be bootsect.lnx.)
5. Copy `bootsect.lnx` to a DOS-formatted floppy disk if that is how you are going to transfer it to Windows:

```
$ mount -t msdos /dev/fd0 /mnt
$ cp /bootsect.lnx /mnt
$ umount /mnt
```

6. Reboot the system to Windows and copy the boot sector from the floppy disk to the hard disk. You can drag and drop the file to the hard drive, or use the command line to copy the file, as in the following example:

```
C:> copy a:\bootsect.lnx c:\bootsect.lnx
```

It doesn’t matter where on the hard drive you put the file because you’ll tell the NT loader where to find it in step 8.

7. Modify the attributes of the file `boot.ini` to remove the system and read-only attributes so you can edit it:

```
C:> attrib -s -r c:\boot.ini
```

8. Edit `boot.ini` with a text editor to add the line:

```
C:\bootsect.lnx="Linux"
```

This line adds Linux to the boot menu and tells the NT boot loader where to find the Linux boot sector. You can insert the line anywhere in the `[operating systems]` section of the file. Its position in the file determines where it will show up on the boot menu when you reboot your computer. Adding it at the end, for example, results in a `boot.ini` file that looks something like this (the second `multi(0)` entry is wrapped to fit the margins of this page):

```
[boot loader]
timeout=30
default=multi(0)disk(0)rdisk(0)partition(1)\WINNT
[operating systems]
multi(0)disk(0)rdisk(0)partition(1)\WINNT=“Windows NT Server Version 4.00"
multi(0)disk(0)rdisk(0)partition(1)\WINNT=“Windows NT Server Version 4.00 [VGA mode]” /basevideo /sos
C:\bootsect.lnx=“Linux”
```

If you want Linux to be the default operating system, modify the `default=` line:

```
default=C:\bootsect.lnx
```

9. Rerun `attrib` to restore the system and read-only attributes:

```
C:> attrib +s +r c:\boot.ini
```

Now you can shut down Windows and reboot. Windows will prompt you with a menu that looks something like this:

```
OS Loader V4.00
Please select the operating system to start:
Windows NT Workstation Version 4.00
Windows NT Workstation Version 4.00 [VGA mode]
Linux
```

`boot.ini` is the Windows counterpart to `/etc/lilo.conf`. It defines which operating systems the Windows loader can boot.

---

538 | Chapter 4: Boot Methods
Select Linux, and the NT loader will read the Linux boot sector and transfer control to LILO or GRUB on the Linux partition.

If you are using LILO and you later modify `/etc/lilo.conf` or rebuild the kernel, you need to rerun the `lilo` command, create a new `bootsect.lnx` file, and replace the version of `bootsect.lnx` on the Windows partition with the new version. In other words, you need to rerun steps 2–6.

If you have any problems or you simply want to remove LILO or GRUB later, you can reverse the installation procedure: boot to Windows, change the system and read-only attributes on `boot.ini`, re-edit `boot.ini` to remove the Linux entry, save the file, restore the system and read-only attributes, and remove the Linux boot sector from the Windows partition.

**Boot-Time Kernel Options**

The earlier sections of this chapter described some of the options you can specify when you boot Linux. There are many more options that can be specified. This section touches on the ways to pass options to the kernel and then describes some of the kinds of parameters you might want to use. The parameters in this section affect the kernel and therefore apply regardless of which boot loader you use.

If LILO is your boot loader, you can add to or override the parameters specified in `/etc/lilo.conf` during the boot process as follows:

- If `prompt` is set in `/etc/lilo.conf`, LILO always presents the boot prompt and waits for input. At the prompt, you can choose the operating system to be booted. If you choose Linux, you can also specify parameters.
- If `prompt` isn’t set, press Ctrl, Shift, or Alt when the word “LILO” appears. The boot prompt will then appear. You also can press the Scroll Lock key before LILO is printed and not have to wait poised over the keyboard for the right moment.
- At the boot prompt, specify the system you want to boot, or press Tab to get a list of the available choices. You then can enter the name of the image to boot. For example:

```
LILO boot: <press Tab>
linux test winxp
boot: linux
```

You also can add boot command options:

```
boot: linux single
```

- If you don’t provide any input, LILO waits the amount of time specified in the `delay` parameter and then boots the default operating system with the default parameters, as set in `/etc/lilo.conf`.

If you are using GRUB, you can pass parameters to the kernel on the `kernel` command line, either in the configuration file or from the command-line interface. If you are booting from the GRUB menu, you can edit or add parameters by entering `e` or `a` when the menu appears.
Some of the boot parameters have been mentioned earlier. Many of the others are hardware-specific and are too numerous to mention here. For a complete list of parameters and a discussion of the booting process, see the “BootPrompt HOWTO.” Some of the parameters not shown earlier that you might find useful are listed next; many more are covered in the HOWTO. Most of the following parameters are used to provide information or instructions to the kernel, rather than to LILO or GRUB:

- **acpi=off**
  Disable ACPI (Advanced Configuration and Power Interface) if it was to be enabled. This is useful for debugging possible hardware problems.

- **debug**
  Print all kernel messages to the console.

- **hd=cyinders,heads,sectors**
  Specify the hard drive geometry to the kernel. Useful if Linux has trouble recognizing the geometry of your drive, especially if it’s an IDE drive with more than 1024 cylinders.

- **load_ramdisk=n**
  Tell the kernel whether to load a RAM disk image for use during Linux installation. Values of n are:
  - 0  Don’t try to load the image. This is the default.
  - 1  Load the image from a floppy disk to the RAM disk.

- **mem=size**
  Specify the amount of system memory installed. Useful if your BIOS reports memory only up to 64 MB and your system has more memory installed. Specify as a number with M or k (case-insensitive) appended:
  
  ```
 mem=128M
  ```
  
  Because mem would have to be included on the command line for every boot, it often is specified on a command line saved with lock or with append to be added to the parameters passed to the kernel.

- **noinitrd**
  When set, disable the two-stage boot and preserve the contents of /dev/initrd so the data is available after the kernel has booted. /dev/initrd can be read only once, and then its contents are returned to the system.

- **number**
  Start Linux at the runlevel specified by number. A runlevel is an operating state that the system can be booted to, such as a multiuser system or a system configuration running the X Window System. A runlevel is generally one of the numbers from 1 to 6; the default is usually 3. On modern distributions using Upstart, the runlevels and their corresponding states are defined in the ttyN files in the directory /etc/event.d. On older systems using SysVinit, the runlevels are defined in the file /etc/inittab. See Chapter 2 for a discussion of the init process.


**Mount the root filesystem read-only. Used for doing system maintenance, such as checking the filesystem integrity, when you don’t want anything written to the filesystem.**

**Mount the root filesystem read/write. If neither ro nor rw is specified, the default value (usually rw) stored in the kernel image is used.**

**Start Linux in single-user mode. This option is used for system administration and recovery. It gives you a root prompt as soon as the system boots, with minimal initialization. No other logins are allowed.**

---

### initrd: Using a RAM Disk

Modern Linux distributions use a modular kernel, which allows modules to be added without requiring that the kernel be rebuilt. If your root filesystem is on a device whose driver is a module (as is frequently true of SCSI disks), you can use the **initrd** facility, which provides a two-stage boot process, to first set up a temporary root filesystem in a RAM disk containing the modules you need to add (e.g., the SCSI driver) and then load the modules and mount the real root filesystem. The RAM disk containing the temporary filesystem is the special device file /dev/initrd.

Similarly, you need to use a RAM disk if your root partition uses the ext3 filesystem and ext3 was not compiled into the kernel image. In that case, the ext3 module must be loaded with **initrd**.

Before you can use **initrd**, both RAM disk support (CONFIG_BLK_DEV_RAM=y) and initial RAM disk support (CONFIG_BLK_DEV_INITRD=y) must be compiled into the Linux kernel. Then you need to prepare the normal root filesystem and create the RAM disk image. Your Linux distribution may have utilities to do some of the setup for you; for example, the Red Hat distribution comes with the `mkinitrd` command, which builds the **initrd** image. For detailed information, see the `initrd` manpage and the file `initrd.txt` (the path may vary, but it is usually something like `/usr/src/linux/Documentation/initrd.txt`).

Once your Linux system has been set up for **initrd**, you can do one of the following, depending on which boot loader you are using:

- If you are using LILO, add the **initrd** option to the appropriate image section:
  ```
 image=/vmlinuz
 initrd=/boot/initrd # The file to load as the contents of /dev/initrd
  ```

- Run the `/sbin/lilo` command, and you can reboot with **initrd**.

- If you are using GRUB, add the **initrd** option to the kernel line of the configuration-file boot entry, or to the `kernel` command if you are booting from the command-line interface:
  ```
 kernel /vmlinuz-2.6.28 ro root=LABEL=/
 initrd /initrd-2.6.28
  ```
This chapter describes the two major Linux packaging systems: the Red Hat Package Manager (RPM) and the Debian GNU/Linux Package Manager. It also describes the major frontend applications designed to simplify and automate package management: yum for RPM-based systems, and apt, aptitude, and synaptic for Debian-based systems (apt is now also available for RPM-based systems).

When you install applications on your Linux system, most often you'll find a binary or a source package containing the application you want, instead of (or in addition to) a .tar.gz file. A package is a file containing the files necessary to install an application. However, while the package contains the files you need for installation, the application might require the presence of other files or packages that are not included, such as particular libraries (and even specific versions of the libraries), to actually be able to run. Such requirements are known as dependencies.

Package-management systems offer many benefits. As a user, you may want to query the package database to find out what packages are installed on the system and their versions. As a system administrator, you need tools to install and manage the packages on your system. And if you are a developer, you need to know how to build a package for distribution.

Among other things, package managers do the following:

- Provide tools for installing, updating, removing, and managing the software on your system.
- Allow you to install new or upgraded software directly across a network.
- Tell you what software package a particular file belongs to or what files a package contains.
- Maintain a database of packages on the system and their status, so you can determine what packages or versions are installed on your system.
- Provide dependency checking, so you don’t mess up your system with incompatible software.
- Provide GPG, PGP, MD5, or other signature-verification tools.
- Provide tools for building packages.

Any user can list or query packages. However, installing, upgrading, or removing packages generally requires root privileges. This is because the packages normally are installed in system-wide directories that are writable only by root. Sometimes you can specify an alternate directory to install a package into your home directory or into a project directory where you have write permission, if you aren’t running as root.

Signature verification is an important feature of package-management systems that helps maintain the security of your system. An MD5 checksum is used to check the integrity of a package, making sure, for example, that it was downloaded correctly and that it was not tampered with by a malicious user. GPG (and PGP) encrypt a digital signature into the package, which is used to verify the identity of the package creator.

Most often you’ll install a binary package, in which the source code has been compiled and the software is ready to run once it is installed. You may also want or need to install source packages, which provide the source code and instructions for compiling and installing it. Source code packages do not contain executable files. Packages follow certain naming conventions, and you can tell from the name whether it is a binary or source package. RPM and Debian package names contain the same information, but they are expressed slightly differently. An RPM package has the form:

```
package-version-release.architecture.rpm
```

A Debian package has the form:

```
package_version-revision_architecture.deb
```

In both cases, `package` is the name of the package, `version` is the version number of the software, `release` (RPM) and `revision` (Debian) indicate the revision number of the package for that version, and `architecture` shows what system architecture the software was packaged for (e.g., `i386` or `amd64`). The value of `architecture` may also be `noarch` for a package that is not hardware-specific or `src` for an RPM source package (Debian source packages come as `tarred`, `gzipped` files).

All the package managers check for dependencies when you install a package. In the case of RPM, if there are missing dependencies, it prints an error and terminates without installing the package. To proceed, you need to first install the missing package (or packages). This can become an involved process if the missing package has its own dependencies. A major advantage of the high-level package managers described in this chapter (i.e., `yum`, `apt`, `aptitude`, and `synaptic`) is that they automatically resolve dependencies and install missing packages for you. Another advantage is that they locate and download the package automatically, based on information in configuration files specifying where to look for packages. With RPM, you first have to locate the package, then download it, and only then can you run RPM to do the install. On the other hand, if you already have the package file on your system or on a CD, RPM is quick and easy to run.
Both RPM and the apt system back up old files before installing an updated package. Not only does this let you go back if there is a problem, but it also ensures that you don’t lose your changes (to configuration files, for example).

The following list shows the package-management programs described in the rest of this chapter. Which program to use is very much a matter of personal preference, and you can use more than one at different times. However, it’s best to pick the program you prefer and use it consistently, so all your packages are maintained in a single database that you can query.

**The Advanced Package Tool (APT)**
APT is a modern, user-friendly package-management tool that consists of a number of commands. The most frequently used of these commands is apt-get, which is used to download and install a Debian package. apt-get can be run from the command line or selected as a method from dselect.

Note that there are versions of the apt commands that can be used on an RPM-based system. If you plan to do that, it’s best to install the version of apt that comes with your Linux distribution.

**aptitude**
High-level text-based interface to APT. Runs either from the command line or in a visual mode inside a terminal window such as an xterm.

**dpkg**
The original Debian packaging tool. Used to install or uninstall packages, or as a frontend to dpkg-deb. Getting and installing packages is usually done with apt-get, but dpkg is still commonly used to install a package that is already on your system. In fact, apt-get calls dpkg to do the installation once it’s gotten the package.

**dpkg-deb**
Lower-level packaging tool. Used to create and manage the Debian package archives. Accepts and executes commands from dpkg or can be called directly.

**dselect**
An interactive frontend to dpkg. With the advent of the newer tools and the increased number of packages, the use of dselect is deprecated.

**synaptic**
A graphical frontend to APT.

**RPM**
The original command-line system for installing and managing RPM packages. RPM has two commands: rpm for installing and managing packages, and rpmbuild for creating packages.

**yum**
A frontend to RPM that runs from the command line.

Another RPM-based package manager, up2date, used to be the default for Red Hat Enterprise Linux systems. Red Hat has since switched to yum as the default, but up2date is still available if you prefer it. up2date has both command line and graphical interfaces, and like yum, it resolves dependencies as needed.
If you want to update your system regularly, to keep it current and to be sure you have the latest security fixes, you can set up a command that you can reissue at some regular interval (say, every day or once a week), or you can set it up as a cron job to run overnight daily or weekly. (See the descriptions of the cron and crontab commands in Chapter 3 for more information on setting up a cron job.)

You can set up your cron job to automatically download and install updated packages, but a safer approach is to have your job download the updates and email you a summary, leaving it up to you when and how to do the installation. This is particularly true in a production environment where you want to test changes thoroughly before incorporating them into your system.

**Yum: Yellowdog Updater Modified**

Yum is a system for managing RPM packages, including installing, updating, removing, and maintaining packages; it automatically handles dependencies between packages. Yum is derived from yup, an updating system written for Yellow Dog Linux, an RPM-based PowerPC distribution. Yum downloads the information in the package headers to a directory on your system, which it then uses to make decisions about what it needs to do. Yum obtains both the headers and the RPMs themselves from a collection of packages on a server, known as a repository.

A repository consists of a set of RPM packages and the package headers, which are on a server that can be accessed via FTP or HTTP, from an NFS server, or from a local filesystem. A single server can contain one or multiple repositories; repositories are often mirrored on many servers, and you can configure yum to use multiple repositories. When they are downloaded to your system, the header and package files are maintained in /var/cache/yum.

The configuration file, /etc/yum.conf, is where you customize yum. It consists of two section types. The first section, [main], sets configuration defaults for yum operation. This section is followed by [server] sections, where each server is named according to the repository it specifies. For example, for Fedora, you might have [base] for the base Fedora repository and [development] for the development repository.

The server sections can also be stored, one to a file, in /etc/yum.repos.d. yum comes with a default yum.conf file, which you can use as is or as a starting point from which to add additional repositories.

**The yum Command**

The yum command is an automated system for updating rpm-based packages, particularly on Fedora and Red Hat Enterprise Linux. Yum can automatically install, upgrade, and remove packages. In addition to individual packages or a list of packages, yum can operate on an entire group of packages at a time.

When you run yum, it first updates the cache (unless you tell it not to with the -C option); then it proceeds to perform the requested operation.
The format of the `yum` command is:

```
yum [options] [command] [package ...]
```

Any general options are specified first, followed by a command telling `yum` what you want it to do, usually followed by a list of one or more packages. The `command` is always required, except with the `--help`, `-h`, and `--version` options.

Package names can be specified in various combinations of name, architecture, version, and release. For example, you could refer to the `bash` package as `bash`, `bash.x86_64`, `bash-3.2`, `bash-3.2-30`, or `bash-3.2-30.fc10.x86_64`.

**General options**

The following general options can be set on the command line. For those that can also be set in the `[main]` section of the `yum.conf` configuration file, the name of the configuration option is given.

- `-c [config-file]`
  Specify the location of the `yum` configuration file. The file can be specified as a path to a local file or as an HTTP or FTP URL. The default is `/etc/yum.conf`.

- `-C`
  Run entirely from the local cache. Don’t download or update headers unless required to complete the requested action.

- `-d [num]`
  Set the debug level to `num`, which is generally a number between 0 and 10, to specify how much debugging information to print. The configuration option is `debuglevel`.

--`disableexcludes=option`
  Disable the excludes defined in `yum.conf`. The possible options are `all` to disable all excludes, `main` to disable only the excludes defined in `[main]` in `yum.conf`, or `repoid` to disable any excludes defined for the specified repository.

--`disableplugin=plugin`
  Run with the specified plugins disabled, where `plugin` is a comma-separated list of plugins.

--`disablerepo=repoid`
  Disable the repository specified by `repoid` so `yum` won’t use it for this operation. The configuration option is `enabled`.

- `-e [num]`
  Set the error level to `num`, where `num` is a number, generally between 0 and 10. If the value is 0, print only critical errors. If it is 1, print all errors. Values greater than 1 mean print more errors, if there are any. The configuration option is `errorlevel`.

--`enablerepo=repoid`
  Enable the specified repository that is marked as disabled (`enable=0`) in the configuration file. This allows the repository to be used for this operation. The configuration option is `enabled`.

- `-h [command], --help [command]`
  Display a help message and exit. With a command, display help for that command.
--installroot=\texttt{root}
Specify an alternative root for package installation. All packages will be installed relative to \texttt{root}. The configuration option is \texttt{installroot}.

--nogpgcheck
Disable GPG signature checking. The configuration option is \texttt{gpgcheck}.

--noplugins
Disable all plugins. The configuration option is \texttt{plugins}.

--obsoletes
Enable obsoletes processing logic, taking into consideration packages that are obsoleted by other packages in the repository. Meaningful only with the \texttt{yum update} command. The configuration option is \texttt{obsoletes}.

-q, --quiet
Run without producing output. See also -y.

-R \texttt{[minutes]}
Set the maximum amount of time in minutes that \texttt{yum} will wait before performing a command.

--showduplicates
For the \texttt{info}, \texttt{list}, and \texttt{search} commands, show all matching packages, not just the latest versions.

--skipbroken
If \texttt{yum} finds dependency problems in a transaction, resolve them by removing the packages causing problems. The configuration option is \texttt{skip\_broken}.

-t, --tolerant
Currently does nothing. This option was originally intended to allow \texttt{yum} to keep going (be tolerant) in spite of any package errors on the command line. The configuration option is \texttt{tolerant}.

-v, --verbose
Display debugging information.

--version
Display the version of \texttt{yum} and exit.

-x \texttt{[package]}, --exclude=\texttt{package}
Exclude the specified package from updates on all repositories. \texttt{package} can be given as a name or a glob. The configuration option is \texttt{exclude}.

-y Assume that the answer to any question is yes. The configuration option is \texttt{assumeyes}.

\textbf{yum Command Summary}

The individual \texttt{yum} commands are listed here.

\begin{tabular}{|l|l|}
\hline
\texttt{check-update} & \texttt{check-update} \\
\multicolumn{2}{|p{10cm}|}{Determine if updates are available, without running \texttt{yum} interactively. If any package updates are available, returns an exit value of} \\
\hline
\end{tabular}
100 and a list of packages. If there are no updates, returns 0. Returns 1 on error.

---

**clean**

`clean [options]`

Clean up the `yum` cache directory.

**Options**

**all**

Clean everything: headers, packages, metadata, and the cache.

**dbcache**

Clean up the `sqlite` database cache, forcing `yum` to recreate it the next time it runs.

**headers**

Remove all header files, forcing `yum` to download new headers the next time it runs.

**metadata**

Remove the metadata files, which maintain information about the packages such as package name, file size, description, dependencies, etc. The metadata will be downloaded again the next time `yum` is run.

**packages**

Remove cached packages from the system.

---

**deplist**

`deplist packages`

Generate a list of dependencies for the specified packages, including what packages satisfy the dependencies.

---

**groupinfo**

`groupinfo groups`

Like `info`, but operates on package groups instead of individual packages.

---

**groupinstall**

`groupinstall groups`

`groupupdate groups`

Like `install`, but operates on package groups instead of individual packages.

---

**grouplist**

`grouplist`

Generate a list of installed and available groups to standard output. You can use these groups as input parameters to the other `group` commands, with their names in quotes (" ").

---

**groupremove**

`groupremove groups`

Like `remove`, but operates on package groups instead of individual packages.
<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>help [command]</td>
<td>Display help information for the specified command, or if no command is given, for all commands.</td>
</tr>
<tr>
<td>info</td>
<td>info [options] [packages]</td>
<td>Display version information, a summary, and a description for each package, or for all packages if none is specified. See the list command for a description of the options.</td>
</tr>
<tr>
<td>install</td>
<td>install packages</td>
<td>Install the latest version of a package or packages, ensuring that all dependencies are met. If no package matches the name as specified, the name is treated as a shell glob and any matches are installed.</td>
</tr>
<tr>
<td>list</td>
<td>list [options] [packages]</td>
<td>Display a list of packages that match the packages specification and that are installed or available for installation.</td>
</tr>
<tr>
<td></td>
<td><strong>Options</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>List all installed or available packages.</td>
</tr>
<tr>
<td></td>
<td>available</td>
<td>List packages on the repository that are available for installation.</td>
</tr>
<tr>
<td></td>
<td>extras</td>
<td>List packages on the system that are not available on any repository specified in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>installed</td>
<td>List installed packages.</td>
</tr>
<tr>
<td></td>
<td>obsoletes</td>
<td>List installed packages that are made obsolete by any packages in any repository in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>recent</td>
<td>List packages that have been recently added to any repository in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>updates</td>
<td>List packages that have updates available for installation.</td>
</tr>
<tr>
<td>localinstall</td>
<td>localinstall packages</td>
<td>Install the specified packages, which reside on the local system, rather than downloading them from a repository.</td>
</tr>
</tbody>
</table>
localupdate

localupdate packages
Update the specified packages, which reside on the local system, rather than downloading them from a repository.

makecache

makecache
Download and cache the metadata files from the repository. Once the cache has been built, you can use the -C option to run the commands that use the metadata (check-update, info, list, provides, and search) directly from the cache.

provides

provides feature1 [feature2 ...]
whatprovides feature1 [feature2 ...]
List packages that are available or installed that provide the specified features. The features can be specified as a name or as a wildcard in file-glob syntax format, and Perl or Python regular expressions can be used.

reinstall

reinstall package1 [package2 ...]
Reinstall the specified packages. The packages must already exist on the system.

remove

remove package1 [package2 ...]
erase package1 [package2 ...]
Remove the specified packages from the system. Also remove any packages that depend on the specified packages.

repolist

repolist [option]
Generate a list of configured repositories. With no option or if the option is all, list all repositories. The other options are disabled to list disabled repositories, and enabled to list enabled repositories.

resolvedep

resolvedep dep1 [dep2 ...]
List the packages that provide the specified dependencies.

search

search string1 [string2 ...]
Find packages matching the specified string or strings in the description, summary, packager, or package name fields. Perl or Python regular expressions can be used for the strings. Useful for finding a package if you don’t know the name.

shell

shell [filename]
Run an interactive yum shell, allowing multiple commands to be run within one yum execution. A filename can be specified that contains the commands to be run.
**update**

update [packages]

With no packages specified, update all installed packages. Otherwise, update the specified packages. In either case, `yum` makes sure that all dependencies are satisfied. If no package matches, the names specified are assumed to be shell globs, and any matches are installed.

With the `--obsoletes` option, `yum` includes package obsoletes in its calculations.

**upgrade**

upgrade [packages]

Equivalent to `update --obsoletes`.

---

**Plugins and yum-utils**

You can install plugins to extend the capabilities of `yum`. Plugins are Python programs that are installed in a directory specified with the `pluginpath` option in `/etc/yum.conf`. In addition, to enable plugins, set the `plugins` option in `/etc/yum.conf` to 1.

One set of such plugins is `yum-utils`, a collection of tools for managing packages and repositories. The following list briefly describes each tool. For more information on a tool, run it with the `-h` or `--help` option.

- **debuginfo-install**
  - Install `debuginfo` packages, which contain debugging information for programs.

- **package-cleanup**
  - Clean up packages, handling duplicates, orphaned packages, and dependency problems.

- **repoclosure**
  - Read the metadata of one or more repositories, check dependencies, and display a list of any unresolved dependencies.

- **repodiff**
  - Compare two or more repositories and display a list of added, removed, or changed packages.

- **repo-graph**
  - Display a full package dependency list in dot format.

- **repomanage**
  - Manage a directory of `rpm` packages, returning a list of the newest or oldest packages in a directory.

- **repoquery**
  - Query `yum` repositories for additional information.

- **repo-rss**
  - Generate an RSS feed from one or more repositories.
reposync
Synchronize a remote repository to a local directory, using yum to retrieve packages.

repotrack
Keep track of packages and their dependencies, and download them.

yum-builddep
Install missing dependencies to build specified packages.

yum-complete-transaction
Find incomplete or aborted transactions and try to complete them.

yumdownloader
Download binary and source packages from yum repositories for specified packages.

The Red Hat Package Manager

The Red Hat Package Manager (RPM) is a freely available packaging system for software distribution and installation. In addition to the Red Hat Enterprise Linux and Fedora distributions, both SUSE and Mandriva are among the Linux distributions that use RPM.

Using RPM is straightforward. A single command, rpm, has options to perform all package-management functions except building packages.* For example, to find out if the Emacs editor is installed on your system, you could enter:

```
$ rpm -q emacs
emacs-22.2-5.fc9.x86_64
```

This command prints the full package name, confirming its presence.

The rpmbuild command is used to build both binary and source packages.

RPM Package Concepts

This section provides an overview of some of the parts of an RPM package. Much of the information is of primary use to developers, but because some of the terms are referenced in the RPM command descriptions, they are explained briefly here.

An RPM package has three primary components. The header contains all the information about the package, such as its name and version, a description, a list of included files, the copyright terms, and where the source file can be found. The signature contains information used to verify the integrity and authenticity of the package. The archive contains the actual files that make up the package.

When a package is being built, one of the requirements for its developers is to create a spec file. If you download the source rpm for a package, you can look at the spec file; it has a filename of package.spec (e.g., yum.spec for the yum spec file). The spec file contains all the information required to build a package,

* In older versions of RPM, the build options were part of the rpm command.
including a description of the software, instructions telling the **rpmbuild**
command how to build the package, and a list of the files included and where
they get installed. Some other features of spec files include the following:

**Macros**

Macros are sequences of commands stored together and executed by
invoking the macro name. The RPM build process provides two standard
macros: `%setup` to unpack the original sources and `%patch` to apply patches.
Other macros appear later in this chapter in the command descriptions and
are described there.

**Scripts**

Scripts are used to control the build process. Some of the scripts RPM uses
include `%prep` to begin the build process, `%build` primarily to run `make`
and perhaps do some configuration, `%install` to do a `make install` and `%clean`
to clean up afterward. Four additional scripts may be created to run when a
package is actually installed on a system. These scripts are `%pre` for scripts
run before package installation, `%post` for scripts run after package installa-
tion, `%preun` for scripts run before a package is uninstalled, and `%postun` for
scripts run after a package is uninstalled.

**Trigger scriptlets**

Trigger scriptlets are extensions of the normal install and uninstall scripts.
They provide for interaction between packages. A trigger scriptlet provided
with one package will be triggered to run by the installation or removal of
some other package. For example, a newly installed RPM package may cause
an existing application to run or restart once installation is complete. In many
cases, a newly installed package requires services to be restarted.

**The rpm Command**

RPM packages are built, installed, and queried with the **rpm** command. RPM
package filenames usually end with a `.rpm` extension. **rpm** has a set of modes,
each with its own options. The format of the **rpm** command is:

```
rpm [options] [packages]
```

With a few exceptions, as noted in the lists of options that follow, the first option
specifies the **rpm** mode (install, query, update, etc.), and any remaining options
affect that mode.

Options that refer to packages are sometimes specified as `package-name` and
sometimes as `package-file`. The package name is the name of the program or
application, such as `xpdf`. The package file is the name of the RPM file, such as
`xpdf-3.00-10.1.i386.rpm`.

RPM provides a configuration file for specifying frequently used options. The
default global configuration file is usually `/usr/lib/rpm/rpmrc`, the local system
configuration file is `/etc/rpmrc`, and users can set up their own `$HOME/rpmrc`
files. You can use the `--showrc` option to show the values RPM will use by default
for all the options that may be set in an `rpmrc` file:

```
rpm --showrc
```
The `rpm` command includes FTP and HTTP clients, so you can specify an `ftp://` or `http://` URL to install or query a package across the Internet. You can use an FTP or HTTP URL wherever `package-file` is specified in the commands presented here. Be careful, however, when downloading packages from the Internet. Always verify package contents by checking MD5 hashes and signatures. Whenever possible, install from trusted sites.

Any user can query the RPM database. Most of the other functions, such as installing and removing packages, require superuser privileges.

**General options**

The following options can be used with all modes:

- `-d [dbpath]`  
  Use `dbpath` as the path to the RPM database instead of the default `/var/lib/rpm`.

- `--help, -?`  
  Print a long usage message (run `rpm` with no options for a shorter usage message).

- `--pipe [command]`  
  Pipe the query output to the specified command.

- `--quiet`  
  Display only error messages.

- `--rcfile [filelist]`  
  Get configuration from the files in the colon-separated `filelist`. If `--rcfile` is specified, the list must contain at least one file and that file must exist. `filelist` defaults to `/usr/lib/rpm/rpmrc:/usr/lib/rpm/redhat/rpmrc:/etc/rpmrc:~/.rpmrc`. Use with `--showrc` to see what options will be used if alternate configuration files are specified.

- `--root [dir]`  
  Perform all operations within the directory tree rooted at `dir`.

- `-v`  
  Verbose. Print progress messages.

- `--version`  
  Print the `rpm` version number.

- `--vv`  
  Print debugging information.

**Install, upgrade, and freshen options**

Use the `install` command to install or upgrade an RPM package. Upgrading with `install` leaves any existing versions on the system. The `install` syntax is:

```
rpm -i [install-options] package_file ...
rpm --install [install-options] package_file ...
```

To install a new version of a package and remove an existing version at the same time, use the `upgrade` command instead:

```
rpm -U [install-options] package_file ...
rpm --upgrade [install-options] package_file ...
```
If the package doesn’t already exist on the system, `-U` acts like `-i` and installs it. To prevent that behavior, you can `freshen` a package instead; in that case, `rpm` upgrades the package only if an earlier version is already installed. The `freshen` syntax is:

```
rpm -F [install-options] package_file ...
rpm --freshen [install-options] package_file ...
```

For all forms, `package-file` can be specified as an FTP or HTTP URL to download the file before installing it. See “FTP/HTTP options” on page 563.

The installation and upgrade options are:

`--aid`
- If `rpm` suggests additional packages, add them to the list of package files.

`--allfiles`
- Install or upgrade all files.

`--badreloc`
- Used with `--relocate` to force relocation even if the package is not relocatable.

`--excludedocs`
- Don’t install any documentation files.

`--excludepath path`
- Don’t install any file whose filename begins with `path`.

`--force`
- Force the installation. Equivalent to `--replacepkgs` `--replacefiles` `--oldpackage`.

`-h`, `--hash`
- Print 50 hash marks as the package archive is unpacked. Use this option with `-v` or `--verbose` for a nicer display.

`--ignorearch`
- Install even if the binary package is intended for a different architecture.

`--ignoreos`
- Install binary package even if the operating systems don’t match.

`--ignoresize`
- Don’t check disk space availability before installing.

`--includedocs`
- Install documentation files. This is needed only if `excludedocs: 1` is specified in an `rpmrc` file.

`--justdb`
- Update the database only; don’t change any files.

`--nodeps`
- Don’t check whether this package depends on the presence of other packages.

`--nodigest`
- Don’t verify package or header digests.

`--nomanifest`
- Don’t process nonpackage files as manifests.

`--noorder`
- Don’t reorder packages to satisfy dependencies before installing.
--nopost
    Don’t execute any post-install script.

--nopostun
    Don’t execute any post-uninstall script.

--nopre
    Don’t execute any pre-install script.

--nopreun
    Don’t execute any pre-uninstall script.

--noscripts
    Don’t execute any pre-install or post-install scripts. Equivalent to specifying
    --nopre --nopost --nopreun --nopostun.

--nosignature
    Don’t verify package or header signatures.

--nosuggest
    Don’t suggest packages that provide a missing dependency.

--notriggerin
    Don’t execute any install trigger scriptlet.

--notriggerun
    Don’t execute any uninstall trigger scriptlet.

--notriggerpostun
    Don’t execute any post-uninstall trigger scriptlet.

--notriggers
    Don’t execute any scripts triggered by package installation. Equivalent to specifying
    --notriggerin --notriggerun --notriggerpostun.

--oldpackage
    Allow an upgrade to replace a newer package with an older one.

--percent
    Print percent-completion messages as files are unpacked. Useful for running
    rpm from other tools.

--prefix path
    Set the installation prefix to path for relocatable binary packages.

--relocate oldpath=newpath
    For relocatable binary files, change all file paths from oldpath to newpath.
    Can be specified more than once to relocate multiple paths.

--replacefiles
    Install the packages even if they replace files from other installed packages.

--replacepkgs
    Install the packages even if some of them are already installed.

--test
    Go through the installation to see what it would do, but don’t actually install
    the package. This option lets you test for problems before doing the installation.
Query options

The syntax for the `query` command is:

```
rpm -q [package-selection-options] [package-query-options]
rpm --query [package-selection-options] [package-query-options]
```

There are two subsets of query options. *Package-selection options* determine which packages to query, and *package-query options* determine which information to provide.

**Package-selection options**

- `package_name`
  - Query the installed package `package_name`.

- `-a`, `--all`
  - Query all installed packages.

- `-f file`, `--file file`
  - Find out which package owns `file`.

- `--fileid md5`
  - Query package with the specified MD5 digest.

- `--flag group`, `--group group`
  - Find out which packages have group `group`.

- `--hdrid sha1`
  - Query package with the specified SHA1 digest in the package header.

- `-p package_file`, `--package package_file`
  - Query the uninstalled package `package_file`, which can be a URL. If `package_file` is not a binary package, it is treated as a text file containing a package manifest, with each line of the manifest containing a path or one or more whitespace-separated glob expressions to be expanded to paths. These paths are then used instead of `package_file` as the query arguments. The manifest can contain comments that begin with a hash mark (`#`).

- `--pkgid md5`
  - Query the package with a package identifier that is the given MD5 digest of the combined header and contents.

- `--querybynumber num`
  - Query the `num`th database entry. Useful for debugging.

- `-qf`, `--queryformat string`
  - Specify the format for displaying the query output, using tags to represent different types of data (e.g., `NAME`, `FILENAME`, `DISTRIBUTION`). The format specification is a variation of the standard `printf` formatting, with the type specifier omitted and replaced by the name of the header tag inclosed in brackets (`{}`). For example:

```
%{NAME}
```
The tag names are case-insensitive. Use \texttt{--querytags} (see “Miscellaneous options” on page 563) to view a list of available tags. The tag can be followed by \texttt{:type} to get a different output format type. The possible types are:

\texttt{:armor}

Wrap a public key in ASCII armor.

\texttt{:arraysize}

Display number of elements in array tags.

\texttt{:base64}

Encode binary data as base64.

\texttt{:date}

Use \texttt{%e} format as in \texttt{strftime(3)} to display the preferred date and time format for this locale.

\texttt{:day}

Use \texttt{%a %b %d %Y} format as in the function \texttt{strftime(3)}. This format displays the day, the month, the month as a decimal number, and the four-digit year.

\texttt{:depflags}

Format dependency flags.

\texttt{:fflags}

Format file flags.

\texttt{:hex}

Use hexadecimal format.

\texttt{:octal}

Use octal format.

\texttt{:perms}

Format file permissions.

\texttt{:pgpsig}

Display the PGP signature and time.

\texttt{:shescape}

Escape single quotes for use in a script.

\texttt{:triggertype}

Display trigger suffix (i.e., \texttt{in}, \texttt{un}, or \texttt{postun}, indicating whether it’s an install, uninstall, or post-uninstall trigger).

\texttt{:xml}

Wrap data in simple XML markup.

\texttt{--specfile specfile}

Query \texttt{specfile} as if it were a package. Useful for extracting information from a spec file.

\texttt{--tid tid}

List packages with the specified transaction identifier (\texttt{tid}), which is a Unix timestamp. All packages installed or erased in a single transaction have the same \texttt{tid}.
--triggeredby pkg
   List packages containing triggers that are run when the installation status of package pkg changes. For example:

   $ rpm -q --triggeredby glibc
   redhat-1sb-3.2-2.fc10.x86_64

   In this example, the package redhat-1sb-3.2-2.fc10.x86_64 contains a triggerpostun scriptlet that runs after glibc is uninstalled.

--whatrequires capability
   List packages that require the given capability to function. For example:

   $ rpm -q --whatrequires popt
   popt-devel-1.13-4.fc10.x86_64
   logrotate-3.7.7-1.fc10.x86_64
   nash-6.0.71-2.fc10.x86_64
   initscripts-8.86-1.x86_64
   rpm-4.6.0-0.fc1.7.x86_6

--whatprovides capability
   List packages that provide the given capability. For example:

   $ rpm -q --whatprovides popt
   popt-1.13-4.fc10.x86_64

Package-query options

-c, --configfiles
   List configuration files in the package. Implies -l.

--changelog
   Display the log of change information for the package.

-d, --docfiles
   List documentation files in the package. Implies -l.

--dump
   Dump information for each file in the package. The output includes the following information in this order:
   path size mtime md5sum mode owner group isconfig isdoc rdev symlink

--filesbypkg
   List all files in each package.

-i, --info
   Display package information, including the name, version, and description. The results are formatted according to --queryformat if specified.

-l, --list
   List all files in the package.

--last
   List packages by install time, with the latest packages listed first.

--provides
   List the capabilities this package provides.

-R, --requires
   List any packages this package depends on.
-s, --state
List each file in the package and its state. The possible states are normal, not installed, or replaced. Implies -l.

--scripts
List any package-specific shell scripts used during installation and uninstallation of the package.

--triggers, --triggerscript
Display any trigger scripts in the package.

**Uninstall options**

The syntax for `erase`, the uninstall command, is:

```
rpm -e [uninstall-options] package_name ...
```

```
rpm --erase [uninstall-options] package_name ...
```

The uninstall options are:

--allmatches
Remove all versions of the package. Only one package should be specified; otherwise, an error results.

--nodeps
Don’t check dependencies before uninstalling the package.

--nopostun
Don’t run any post-uninstall scripts.

--nopreun
Don’t run any pre-uninstall scripts.

--noscripts
Don’t execute any pre-uninstall or post-uninstall scripts. This option is equivalent to --nopreun --nopostun.

--notriggerpostun
Don’t execute any post-uninstall scripts triggered by the removal of this package.

--notriggers
Don’t execute any scripts triggered by the removal of this package. Equivalent to --notriggerun --notriggerpostun.

--notriggerun
Don’t execute any uninstall scripts triggered by the removal of this package.

--test
Don’t really uninstall anything; just go through the motions. Use with -vv for debugging.

**Verify options**

The syntax for the `verify` command is:

```
 rpm -V | --verify [package-selection-options] [verify-options]
```

Verify mode compares information about the installed files in a package with information about the files that came in the original package and displays any
discrepancies. The information compared includes the size, MD5 sum, permissions, type, owner, and group of each file. Uninstalled files are ignored.

The package selection options include those available for query mode. In addition, the following verify options are available:

--nodeps
  Ignore package dependencies.
--nodigest
  Ignore package or header digests.
--nofiles
  Ignore attributes of package files.
--nogroup
  Ignore group ownership errors.
--nolinkto
  Ignore symbolic-link errors.
--nomd5
  Ignore MD5 checksum errors.
--nomode
  Ignore file mode (permissions) errors.
--nordev
  Ignore major and minor device number errors.
--nomtime
  Ignore modification time errors.
--noscripts
  Ignore any verify script.
--nosignature
  Ignore package or header signatures.
--nosize
  Ignore file size errors.
--nouser
  Ignore user ownership errors.

The output is formatted as an eight-character string, possibly followed by an attribute marker, and then the filename. Each of the eight characters in the string represents the result of comparing one file attribute to the value of that attribute from the RPM database. A period (.) indicates that the file passed that test. The following characters indicate failure of the corresponding test:

-  MD5 sum
-  Device
-  Group
-  Symlink
-  Mode (includes permissions and file type)
-  File size
-  Mtime
-  User
The possible attribute markers are:
c  Configuration file
d  Documentation file
g  Ghost file (contents not included in package)
l  License file
r  Readme file

**Database rebuild options**
The syntax of the command to rebuild the RPM database is:

```bash
rpm --rebuilddb [options]
```

You also can build a new database:

```bash
rpm --initdb [options]
```

The options available with the database rebuild mode are the **--dbpath**, **--root**, and **-v** options described earlier under “General options” on page 546.

**Signature-check options**
RPM packages may have a GPG signature built into them. There are three types of digital signature options: you can check signatures, add signatures to packages, and import signatures.

The syntax of the signature check mode is:

```bash
rpm --checksig [options] package_file...
rpm -K [options] package_file...
```

The signature-checking options **-K** and **--checksig** check the digests and signatures contained in the specified packages to insure the integrity and origin of the packages. Note that RPM now automatically checks the signature of any package when it is read; these options are still useful, however, for checking all headers and signatures associated with a package.

The **--nosignature** and **--nodigest** options described earlier, under “Verify options” on page 560, are available for use with signature check mode.

The syntax for adding signatures to binary packages is:

```bash
rpm --addsign binary-pkgfile...
rpm --resign binary-pkgfile...
```

Both **--addsign** and **--resign** generate and insert new signatures, replacing any that already exist in the specified binary packages.*

The syntax for importing signatures is:

```bash
rpm --import public-key
```

* In older versions of RPM, **--addsign** was used to add new signatures without replacing existing ones, but currently both options work the same way and replace any existing signatures.
The `--import` option is used to import an ASCII public key to the RPM database so that digital signatures for packages using that key can be verified. Imported public keys are carried in headers, and keys are kept in a ring, which can be queried and managed like any package file.

**Miscellaneous options**

Several additional `rpm` options are available:

- **--querytags**
  Print the tags available for use with the `--queryformat` option in query mode.

- **--setperms packages**
  Set file permissions of the specified packages to those in the database.

- **--setugids packages**
  Set file owner and group of the specified packages to those in the database.

- **--showrc**
  Show the values `rpm` will use for all options that can be set in an `rpmrc` file.

**FTP/HTTP options**

The following options are available for use with FTP and HTTP URLs in install, update, and query modes.

- **--ftpport port**
  Use `port` for making an FTP connection on the proxy FTP server instead of the default port. Same as specifying the macro `%_ftpport`.

- **--ftpproxy host**
  Use `host` as the proxy server for FTP transfers through a firewall that uses a proxy. Same as specifying the macro `%_ftpproxy`.

- **--httpport port**
  Use `port` for making an HTTP connection on the proxy HTTP server instead of the default port. Same as specifying the macro `%_httpport`.

- **--httpproxy host**
  Use `host` as the proxy server for HTTP transfers. Same as specifying the macro `%_httpproxy`.

**RPM Examples**

Query the RPM database to find Emacs-related packages:

```
$ rpm -q -a | grep emacs
```

Query an uninstalled package, printing information about the package and listing the files it contains:

```
$ rpm -qpl ~/downloads/bash-3.2-29.fc10.x86_64.rpm
```

Install a package (assumes superuser privileges):

```
$ rpm -i sudo-1.6.9p17-2.fc10.x86_64.rpm
```

Do the same thing, but report on the progress of the installation:

```
$ rpm -ivh sudo-1.6.9p17-2.fc10.x86_64.rpm
```
The **rpmbuild** Command

The **rpmbuild** command is used to build RPM packages. The syntax for **rpmbuild** is:

```
rpmbuild -[b|t] stage [build-options] spec-file ...
```

Specify **-b** to build a package directly from a spec file, or **-t** to open a tarred, gzip ped file and use its spec file.

Both forms take the following single-character **stage** arguments, which specify the stages, or steps, required to build a package. The stages are listed in the order they would be performed:

- **p** Perform the prep stage, unpacking source files and applying patches.
- **l** Do a list check, expanding macros in the files section of the spec file and verifying that each file exists.
- **c** Perform the prep and build stages; generally equivalent to doing a **make**.
- **i** Perform the prep, build, and install stages; generally equivalent to doing a **make install**.
- **b** Perform the prep, build, and install stages, then build a binary package.
- **s** Build a source package.
- **a** Perform the prep, build, and install stages, then build both binary and source packages.

The difference between the build stage, which is one of the early steps, and building a binary package in **b** or **a** is the difference between building a working binary for the software and putting all the pieces together into a final **rpm** package.

**rpmbuild options**

The general **rpm** options described under “General options” on page 546 can be used with **rpmbuild**.

The following additional options can also be used when building an **rpm** file with **rpmbuild**:

- **--buildroot dir**  
  Override the **BuildRoot** tag with **dir** when building the package.

- **--clean**  
  Clean up (remove) the build files after the package has been made.

- **--nobuild**  
  Go through the motions, but don’t execute any build stages. Used for testing spec files.

- **--rmsource**  
  Remove the source files when the build is done. Can be used as a standalone option to clean up files separately from creating the packages.

- **--rmspec**  
  Remove the spec file when the build is done. Can be used as a standalone option.
--short-circuit
   Can be used with -bc and -bi to skip previous stages that already ran successfully. With --short-circuit, -bc starts directly at the build stage and -bi starts with the install stage.

--sign
   Add a GPG signature to the package for verifying its integrity and origin.

--target platform
   When building the package, set the macros %_target, %_target_arch, and %_target_os to the value indicated by platform.

Two other options can be used standalone with rpmbuild to recompile or rebuild a package:

--rebuild source-pkgfile...
   Like --recompile, but also build a new binary package. Remove the build directory, the source files, and the spec file once the build is complete.

--recompile source-pkgfile...
   Install the named source package, and prep, compile, and install the package.

Finally, the --showrc option is used to show the current rpmbuild configuration:

   rpmbuild --showrc

This option shows the values that will be used for all options that can be set in rpmrc and macros files.

The Debian Package Manager

Debian GNU/Linux provides several package-management tools, primarily intended to facilitate the building, installation, and management of binary packages. In addition, the tools described here also work on other Debian-based systems such as Ubuntu, Xandros, Knoppix, and numerous others.

Debian package names generally end in .deb. The Debian package-management tools we describe include the apt commands, aptitude, dpkg, dpkg-deb, dselect, and synaptic. Each of these tools is described in detail in “Debian Package Manager Command Summary” on page 569.

Files

Some important files used by the Debian package-management tools are described briefly here:

ccontrol
   Comes with each package. Documents dependencies; contains the name and version of the package, a description, maintainer, installed size, the package priority, etc.

conf files
   Comes with each package. Contains a list of the configuration files associated with the package.
Scripts developers can include in a package to be run before installation, after installation, before removal, or after removal of the package.

/var/lib/dpkg/available
Contains information about packages available on the system.

/var/lib/dpkg/status
Contains information about the status of packages available on the system.

/etc/apt/sources.list
A list for APT of package sources, used to locate packages. The sources are listed one per line, in order of preference.

/etc/apt/apt.conf
The main APT configuration file.

/etc/apt/preferences
A preferences file that controls various aspects of APT, such as letting a user select the version or release of a package to install.

/etc/dpkg/dpkg.cfg
A configuration file containing default options for dpkg.

For a user, the important file is /etc/apt/sources.list. This file is where you set up the paths to the package archives, telling apt where to go to find packages. apt is installed with a default file. You aren’t required to modify the sources in the file, but you’ll probably want to change some sources or add additional ones at some point. You might also want to change some of the options in the configuration files apt.conf, preferences, and dpkg.config if you aren’t satisfied with the defaults. The control, conf, files, and the pre- and post-install and removal script files are created by the package developers and used internally by the package-management system.

Package Priorities

Every Debian package has a priority associated with it, indicating how important the package is to the system. The priorities are:

required
The package is essential to the proper functioning of the system.

important
The package provides important functionality that enables the system to run well.

standard
The package is included in a standard system installation.

optional
The package is one that you might want to install, but you can omit it if you are short on disk space, for example.

extra
The package either conflicts with other packages that have a higher priority, has specialized requirements, or is one that you would want to install only if you need it.
The control file for `dpkg`, for example, shows that `dpkg` itself has a priority of **required**: `dpkg-dev` (which provides tools for building Debian packages) has a priority of **standard**, and `dpkg-doc` is **optional**.

**Package and Selection States**

The possible states that a package can be in are:

- **config-files**: Only the configuration files for the package are present on the system.
- **half-configured**: The package is unpacked, and configuration was started but not completed.
- **half-installed**: Installation was started but not completed.
- **installed**: The package is unpacked and configured.
- **not-installed**: The package is not installed.
- **unpacked**: The package is unpacked but not configured.

The possible package selection states are:

- **deinstall**: The package has been selected for deinstallation (i.e., for removal of everything but the configuration files).
- **install**: The package has been selected for installation.
- **purge**: The package has been selected to be purged (i.e., for removal of everything including the configuration files).

**Package Flags**

Two possible package flags can be set for a package:

- **hold**: The package should not be handled by `dpkg` unless forced with the `-force-hold` option. Holding a package keeps it at the current version, preventing it from being updated. You might hold a package, for example, if the latest version is broken and you want to stay with the version you have until a newer one is released.
- **reinst-required**: The package is broken and needs to be reinstalled. Such a package cannot be removed unless forced with the `-force-reinstreq` option.
Scripts

In addition to the commands described in the next section, a number of shell and Perl scripts are included with the package manager for use in managing and building packages:

**apt-file**
Search for packages, specifying an action and a pattern to search for. (Perl script)

**apt-rdepends**
Recursively list dependencies. (Perl script)

**dpkg-architecture**
Determine and set the build and host architecture for package building. (Perl script)

**dpkg-checkbuilddeps**
Check installed packages against the build dependencies and build conflicts listed in the control file. (Perl script)

**dpkg-buildpackage**
A control script to help automate package building. (Shell script)

**dpkg-distaddfile**
Add an entry for a file to `debian/files`. (Perl script)

**dpkg-divert**
Create and manage the list of diversions, used to override the default location for installing files. (Perl script)

**dpkg-genchanges**
Generate an upload control file from the information in an unpacked, built source tree and the files it has generated. (Perl script)

**dpkg-gencontrol**
Read information from an unpacked source tree, generate a binary package control file (by default, `debian/tmp/DEBIAN/control`), and add an entry for the binary file to `debian/files`. (Perl script)

**dpkg-name**
Rename Debian packages to their full package names. (Shell script)

**dpkg-parsechangelog**
Read and parse the changelog from an unpacked source tree and write the information to standard output in machine-readable form. (Perl script)

**dpkg-preconfigure**
Let packages ask questions prior to installation. (Perl script)

**dpkg-reconfigure**
Reconfigure a package that is already installed. (Perl script)

**dpkg-scanpackages**
Create a `Packages` file from a tree of binary packages. The `Packages` file is used by `dselect` to provide a list of packages available for installation. (Perl script)

**dpkg-shlibdeps**
Calculate shared library dependencies for named executables. (Perl script)
**dpkg-source**
Pack and unpack Debian source archives. (Perl script)

**dpkg-statoverride**
Manage the list of stat overrides, which let `dpkg` override file ownership and mode when a package is installed. (Perl script)

---

**Debian Package Manager Command Summary**

For the `apt-` commands, options can be specified on the command line or set in the configuration file. Boolean options set in the configuration file can be overridden on the command line in a number of different ways, such as `-no-opt` and `-opt=no`, where `opt` is the single-character or full name of the option.

### apt-cache

`apt-cache [options] command`
Perform low-level operations on the APT binary cache, including the ability to perform searches and produce output reports from package metadata.

**Commands**

**add files**
Add the specified package index files to the source cache. Useful for debugging.

**depends pkgs**
For each specified package, show a list of dependencies and packages that can fulfill them.

**dotty pkgs**
Graph the relationships between the specified packages. The default is to trace out all dependent packages; turn this behavior off by setting the `APT::Cache::GivenOnly` configuration option.

**dump**
List every package in the cache. Used for debugging.

**dumpavail**
Print a list of available packages to standard output, suitable for use with `dpkg`.

**gencaches**
Build source and package caches from the sources in `sources.list` and from `/var/lib/dpkg/status`. Equivalent to running `apt-get check`.

**madison [pkgs]**
Display a table showing the available versions of each specified package. Similar to `madison`, a Debian tool that checks for package versions and reports their status. This option works locally and doesn’t require access to the Debian project’s internal archive.
pkgnames [prefix]
   Print a list of packages in the system. If prefix is specified,
   print only packages whose names begin with that prefix. Most
   useful with the --generate option.

policy [pkgs]
   Print detailed information about the priority selection of each
   specified package. With no arguments, print the priorities of
   all sources. Useful for debugging issues related to the preferences file.

rdepends [pkgs]
   Show a list of reverse dependencies for each specified package—
   i.e., list any packages that depend on the specified packages.

search regex
   Search package names and descriptions of all available
   package files for the specified regular expression and print
   the name and short description of each matching package.
   With --full, the output is identical to that from the show
   command. With --names-only, only the package name is
   searched. Multiple regular expressions can be specified.
   Useful for finding packages when you don’t know the actual
   package name.

show pkgs
   Display the package records for each specified package. See
   the -a option for more details.

showpkg pkgs
   Display information about the specified packages. For each
   package, the output includes the available versions, packages
   that depend on this package, and packages that this package
   depends on.

showsrc pkgs
   Display source package records for each specified package.

stats
   Display statistics about the cache.

unmet
   Display the unmet dependencies in the package cache.

Options
-a, --all-versions
   Print full records for all available versions. For use with the show
   command. The default is to show all versions; use with --no-all-
   versions to display only the version that would be installed. The
   configuration option is APT::Cache::AllVersions.

--all-names
   Cause pkgnames to print all names, including virtual packages and missing dependencies. The configuration option is APT::Cache::AllNames.
-c file, --config-file=file
  Specify a configuration file to be read after the default configuration file.

-f, --full
  Print full package records when searching. The configuration option is APT::Cache::ShowFull.

-g, --generate
  Automatically regenerate the package cache rather than using the current cache. Default is to regenerate; turn it off with --no-generate. The configuration option is APT::Cache::Generate.

-h, --help
  Print usage information and exit.

-i, --important
  Print only important dependencies (Depends and Pre-Depends relations). For use with unmet. The configuration option is APT::Cache::Important.

--installed
  Only produce output for currently installed packages. For use with depends and rdepends. The configuration option is APT::Cache::Installed.

-n, --names-only
  Search only on package names, not long descriptions. The configuration option is APT::Cache::NamesOnly.

-o, --option
  Set a configuration option. Syntax is -o group::tool=option.

-p file, --pkg-cache=file
  Use the specified file for the package cache, the primary cache used by all operations. The configuration option is Dir::Cache::pkgcache.

-q, --quiet
  Operate quietly, producing output for logging but no progress indicators. Use -qq for even quieter operation. The configuration option is quiet.

--recurse
  Run depends or rdepends recursively, so all specified packages are printed once. The configuration option is APT::Cache::RecurseDepends.

-s file, --src-cache=file
  Specify the source cache file used by gencaches. The configuration option is Dir::Cache::srcpkgcache.

-v, --version
  Print version information and exit.

**apt-cdrom**

apt-cdrom [options] command

Add a new CD or DVD to apt’s list of available sources. The database of CD-ROM IDs that apt maintains is /var/lib/apt/cdroms.list.
Commands
add
   Add a disk to the source list.
ident
   Print the identity of the current disk and the stored filename.
   Used for debugging.

Options
-a, --thorough
   Do a thorough package scan. May be needed with some old
   Debian CDs to find all package locations.
-c file, --config-file=file
   Specify a configuration file to be read after the default configu-
   ration file.
-d mount-point, --cdrom=mount-point
   Specify the CD-ROM mount point, which must be listed in /etc/
   /fstab. The configuration option is Acquire::cdrom::mount.
-f, --fast
   Do a fast copy, assuming the files are valid and don’t all need
   checking. Specify this only if the disk has been run before
   without error. The configuration option is APT::CDROM::Fast.
-h, --help
   Print help message and exit.
-m, --no-mount
   Don’t mount or unmount the mount point. The configuration
   option is APT::CDROM::NoMount.
-n, --just-print, --recon, --no-act
   Check everything, but don’t actually make any changes. The
   configuration option is APT::CDROM::NoAct.
-o, --option
   Set a configuration option. Syntax is -o group::tool=option.
-r, --rename
   Prompt for a new label and rename the disk to the new value.
   The configuration option is APT::CDROM::Rename.
-v, --version
   Print the version information and exit.

apt-config
apt-config [options] shell args
apt-config [options] dump
An internal program for querying configuration information,
accessing the main configuration file /etc/apt/apt.conf.

Commands
dump
   Display the contents of the configuration space.
Access the configuration information from a shell script. The arguments are in pairs, specifying the name of a shell variable and a configuration value to query. The value may be post-fixed with /x, where x is one of the following letters:

- b Return true or false.
- d Return directories.
- f Return filenames.
- i Return an integer.

Options

- `-c file, --config-file=file`
  Specify a configuration file to be read after the default configuration file.

- `-h, --help`
  Print help message and exit.

- `-o, --option`
  Set a configuration option. Syntax is `-o group::tool=option`.

- `-v, --version`
  Print the version information and exit.

apt-extracttemplates [options] files

Extract configuration scripts and templates from the specified Debian package files. For each specified file, a line of output is generated with the following information:

```
package version template-file config-script
```

and the template files and configuration scripts are written to the directory specified with `-t` or `--temp-dir`, or by the configuration option `APT::ExtractTemplates::TempDir`. The filenames are in the form `package.template.xxxx` and `package.config.xxxx`.

Options

- `-c file, --config-file=file`
  Specify a configuration file to be read after the default configuration file.

- `-h, --help`
  Print help message and exit.

- `-o, --option`
  Set a configuration option. Syntax is `-o group::tool=option`.

- `-t dir, --temp-dir=dir`
  Write the extracted template files and configuration scripts to the specified directory. The configuration option is `APT::ExtractTemplates::TempDir`.

- `-v, --version`
  Print the version information and exit.
apt-ftparchive

apt-ftparchive [options] command

Generate package and other index files used to access a distribution source. The files should be generated on the source’s origin site.

**Commands**

**clean config-file**
Clean the databases used by the specified configuration file by removing obsolete records.

**contents path**
Search the specified directory tree recursively to generate a contents file. For each .deb file found, read the file list, sort the files by package, and write the results to standard output. Use with --db to specify a binary caching database.

**generate config-file sections**
Build indexes according to the specified configuration file.

**packages path [override [pathprefix]]**
Generate a package file from the specified directory tree. The optional override file contains information describing how the package fits into the distribution, and the optional path prefix is a string prepended to the filename fields. Similar to dpkg-scanchangelists, use with --db to specify a binary caching database.

**release path**
Generate a release file from the specified directory tree.

**sources paths [override [pathprefix]]**
Generate a source index file from the specified directory tree. The optional override file contains information used to set priorities in the index file and to modify maintainer information. The optional path prefix is a string prepended to the directory field in the generated source index. Use --source-override to specify a different source override file. Similar to dpkg-scansources.

**Options**

-c file, --config-file=file
Specify a configuration file to be read after the default configuration file.

--contents
Perform contents generation. If set and if package indexes are being generated with a cache database, the file listing is extracted and stored in the database. If used with generate, allows the creation of any contents files. The default is on. The configuration option is APT::FTPArchive::Contents.

-d, --db
Use a binary caching database. This option has no effect on generate. The configuration option is APT::FTPArchive::DB.
apt-get [options] command [package...]  
A command-line tool for handling packages. Also serves as a backend to other APT tools such as dselect, synaptic, and aptitude (all described later in this section).

Commands

autoclean  
Like clean, but remove only package files that can no longer be downloaded. Set the configuration option APT::Clean-Installed to off to prevent installed packages from being erased.

autoremove  
Remove packages that were automatically installed to satisfy a dependency and are no longer needed.

build-dep  
Install or remove packages to satisfy the build dependencies for a source package.

clean  
Clear the local repository of retrieved package files. Useful for freeing up disk space.

check  
Update the package cache and check for broken dependencies.
dist-upgrade
Like upgrade, but also handle changing dependencies for new package versions intelligently. See the -f option for more information.

dselect-upgrade
Used with dselect. Track the changes made by dselect to the Status field of available packages and take actions necessary to realize that status.

install packages
Install one or more packages. Specify the package name, not the full filename. Other required packages are also retrieved and installed. With a hyphen appended to the package name, the package is removed if it is already installed. Select a version to install by appending an equals sign and the version. Select a distribution to install by appending a slash and the distribution.

purge packages
Like remove, but also purge the specified packages from the system.

remove packages
Remove one or more packages. Specify the package name, not the full filename. With a plus sign appended to the name, the package is installed.

source packages
Find source packages and download them into the current directory. If specified with --compile, the source packages are compiled into binary packages. With --download-only, the source packages are not unpacked. Select a specific version by appending an equals sign and the version.

update
Resynchronize the package overview files from their sources. Must be done before an upgrade or dist-upgrade.

upgrade
Install the latest versions of all packages currently installed. Run update first.

Options
--arch-only
Process only architecture-dependent build dependencies. Configuration option is APT::Get::Arch-Only.

--auto-remove
With install or remove, remove unused dependencies; like running the autoremove command. Configuration option is APT::Get::AutomaticRemove.

-b, --compile, --build
Compile source packages after download. The configuration option is APT::Get::Compile.

-c file, --config-file=file
Specify a configuration file to read after the default.
-d, --download-only
Retrieve package files, but don’t unpack or install them. The configuration option is APT::Get::Download-only.

--diff-only
Download only the diff file from a source archive. The configuration option is APT::Get::Diff-Only.

--dsc-only
Download only the dsc file from a source archive. The configuration option is APT::Get::Dsc-Only.

-f, --fix-broken
Try to fix a system with broken dependencies. Can be used alone or with a command. Run with the install command if you have problems installing packages. You can run the sequence:

```
apt-get -f install
apt-get dist-upgrade
```

several times to clean up interlocking dependency problems. The configuration option is APT::Get::Fix-Broken.

--force-yes
Force yes. Cause apt to continue without prompting even if it is doing something that could damage your system. Use with great caution and only if absolutely necessary. The configuration option is APT::Get::force-yes.

-h, --help
Display a help message and exit.

--ignore-hold
Ignore a hold placed on a package, which would normally prevent the package from being upgraded. Use with dist-upgrade to override many undesired holds. The configuration option is APT::Get::Ignore-Hold.

--list-cleanup
Erase obsolete files from /var/lib/apt/lists. The default is on; use --no-list-cleanup to turn it off, which you would normally do only if you frequently modify your list of sources. The configuration option is APT::Get::List-Cleanup.

-m, --ignore-missing, --fix-missing
Ignore missing or corrupted packages or packages that cannot be retrieved. Can cause problems when used with -f. The configuration option is APT::Get::Fix-Missing.

--no-download
Disable package downloading; use with --ignore-missing to force APT to use only the packages that have already been downloaded. The configuration option is APT::Get::Download.

--no-remove
Do not remove any packages; instead, abort without prompting. The configuration option is APT::Get::Remove.
--no-upgrade
Do not upgrade packages. Use with install to prevent upgrade of packages that are already installed. The configuration option is APT::Get::Upgrade.

-o, --option
Set a configuration option. Syntax is -o group::tool=option.

--only-source
Do not map the names specified with the source or build-dep commands through the binary table. With this option, only source package names can be specified. The configuration option is APT::Get::Only-Source.

--print-uris
Print Uniform Resource Indicators (URIs) of files instead of fetching them. Prints path, destination filename, size, and expected MD5 hash. The configuration option is APT::Get::Print-URIs.

--purge
Tell dpkg to do a purge instead of a remove for items that would be removed. Purging removes packages completely, including any configuration files. The configuration option is APT::Get::Purge.

-q, --quiet
Quiet mode. Omit progress indicators and produce only logging output. Use -qq to make even quieter. The configuration option is quiet.

--reinstall
Reinstall packages that are already installed, upgrading them to the latest version. The configuration option is APT::Get::ReInstall.

-s, --simulate, --just-print, --dry-run, --recon, --no-act
Go through the motions, but don’t actually make any changes to the system. The configuration option is APT::Get::Simulate.

-t rel, --target-release=rel, --default-release=rel
Retrieve packages only from the specified release. The value of rel can be a release number or a value such as “unstable.” The configuration option is APT::Default-Release.

--tar-only
Download only the tar file from a source archive. The configuration option is APT::Get::Tar-Only.

--trivial-only
Perform only operations that are considered trivial—i.e., ones that won’t harm your system, by, say, removing needed files. Unlike --assume-yes, which always answers “yes” to any prompts, --trivial-only always answers “no.” The configuration option is APT::Get::Trivial-Only.

-u, --show-upgraded
Print a list of all packages to be upgraded. The configuration option is APT::Get::Show-Upgraded.
-v, --version
Display the version and exit.

-V, --verbose-versions
Show full versions for upgraded and installed packages. The configuration option is APT::Get::Show-Versions.

-y, --yes, --assume-yes
Automatically reply “yes” to prompts and run noninteractively. Abort if there is an error. The configuration option is APT::Get::Assume-Yes.

apt-sortpkgs apt-sortpkgs [options] indexfiles
Sort the records in a source or package index file by package name and write the results to standard output. apt-sortpkgs also sorts the internal fields of each record.

Options
- c file, --config-file=file
Specify a configuration file to read after the default.

-h, --help
Display a help message and exit.

-o, --option
Set a configuration option. Syntax is -o group::tool=option.

-s, --source
Order by source index field. The configuration option is APT::SortPkgs::Source.

-v, --version
Display the version and exit.

aptitude aptitude [options] [action [arguments]]
A text-based frontend to apt, which can be run either directly from the command line or from a visual mode that runs in a terminal window.

Actions
The following actions are supported. Running aptitude with no action invokes the visual mode. Package names can be entered individually or as search patterns. A search pattern consists of terms starting with a tilde (~), followed by a character indicating the type of term, followed by the text to be searched for. The most common usage is to use ~n to search for a package name (e.g., ~nemacs, to search for packages that have emacs in their name). You can find the full list of term types in the Aptitude User’s Manual. The manual can be found in /usr/share/doc/aptitude/README on a Debian-based system. On an RPM-based system with aptitude installed, the README file may be in /usr/share/doc/aptitude or /usr/share/doc/aptitude.
autoclean
Clean out the cache by removing only packages that can no longer be downloaded.

changelog package[=version | /archive] ...
Download and display the Debian changelog for each specified package.

clean
Clean out the cache by removing all previously downloaded .deb files.

download package[=version | /archive] ...
Download the .deb file for each specified package to the current directory. With a version, install that version; with an archive, install the version from that archive.

forbid-version package[=version] ...
Don’t allow aptitude to upgrade the package to a particular version. If no version is specified, it is assumed to be the version that would normally be used. To override later, use the install action.

forget-new
Remove internal information about what packages are “new.”

full-upgrade
Upgrade as many installed packages as possible, installing and removing packages as needed to satisfy dependencies. Formerly called dist-upgrade, which is now deprecated.

help
Display help information and exit.

hold packages
Place a hold on each specified package.

install [package[=version | /archive] ...
Install the specified packages. With a version, install that version. With an archive, install the version in that archive. With no arguments, install any stored or pending actions. You can also use install to perform different actions on multiple packages with a single command. Append - to the package name to remove, + to install, _ to purge, = to hold a package, or : to leave the package at the current version.

keep packages
Cancel any scheduled action on the specified packages.

keep-all
Cancel all scheduled actions on all packages.

markauto packages
Mark the specified packages as automatically installed.

purge [package[=version] ...]
Remove the specified packages and their configuration files.

remove [package[=version] ...]
Remove the specified packages.
safe-upgrade
   Upgrade as many packages as possible; if a package has dependency problems, avoid upgrading that package (but don’t remove it).

search patterns
   Search for packages matching each of the specified patterns and display a list of matches. The full list of search terms can be found in the Aptitude User’s Manual.

show patterns
   Search for packages matching each of the specified patterns and display detailed information for every match found.

unhold packages
   Remove the hold on each specified package.

unmarkauto packages
   Mark the specified packages as manually installed.

update
   Update the list of available packages by downloading the names of new and upgradeable packages.

why, why-not packages
   Display reasons why the specified packages can or cannot be installed.

Options
Most of the aptitude options have corresponding configuration options that can be set in the configuration file.

-d, --download-only
   Download packages to the cache but do not install them. Configuration option is Aptitude::CmdLine::Download-Only.

-D, --show-deps
   Show summaries of why packages will be automatically installed or removed. Configuration option is Aptitude::CmdLine::Show-Deps.

-f
   Attempt to fix dependencies of broken packages. Configuration option is Aptitude::CmdLine::Fix-Broken.

-F format, --display-format format
   Specify the output format for search. See the Aptitude User’s Manual for details on specifying the format. Configuration option is Aptitude::CmdLine::Package-Display-Format.

-h, --help
   Print help message and exit.

-O order, --sort order
   Specify the sort order for search output. See the Aptitude User’s Manual for details.

-P, --prompt
   Always display a prompt even for actions that were explicitly requested. The corresponding configuration option is Aptitude::CmdLine::Always-Prompt.
--purge-unused
Purge packages that are no longer required by any installed package.

-q[n], --quiet[n]
Run in quiet mode, suppressing progress indicators. Use multiple q to run even quieter, or specify a number n to indicate directly the degree of quietness.

-r, --with-recommends
Treat recommendations as dependencies when installing new packages. The corresponding configuration option is Aptitude::CmdLine::Recommends-Important.

-R, --without-recommends
Do not treat recommendations as dependencies when installing new packages. The corresponding configuration option is Aptitude::CmdLine::Recommends-Important.

-s, --simulate
Go through the motions, but do not actually perform the actions. Print the actions that would be performed. Configuration option is Aptitude::Simulate.

--schedule-only
Schedule actions to be performed later, but don’t perform them now. Works with actions that modify package states; to run them later, use aptitude install with no arguments.

-t release, --target-release release
Specify the release to use for installing packages. Equivalent to adding /release to package names for the changelog, download, and show actions. The corresponding configuration option is Aptitude::CmdLine::Default-Release.

-v, --verbose
Operate verbosely, displaying additional information. Specify multiple times to get even more information displayed. The corresponding configuration option is Aptitude::CmdLine::Verbose.

-V, --show-versions
Display the version for packages being installed. Configuration option is Aptitude::CmdLine::Show-Versions.

--version
Display the version information for aptitude and exit.

--visual-preview
Start the visual interface and display the preview screen.

-w width, --width width
Specify the output display width for search. The default is the terminal width. The corresponding configuration option is Aptitude::CmdLine::Package-Display-Width.

-y, --assume-yes
Assume a yes response to a yes/no prompt and don’t display the prompt. Prompts for dangerous actions are still shown. This option overrides -P. The corresponding configuration option is Aptitude::CmdLine::Assume-Yes.
-Z  Display the disk space that will be used or freed by the packages being acted upon. The corresponding configuration option is **Aptitude::CmdLine::Show-Size-Changes**.

**Internal options**

The following options are used internally for **aptitude**’s visual mode. You shouldn’t need to issue them directly.

- **i**  Display a download preview when the program starts. Cannot be used with **-u**.

- **S filename**  Load extended state information from the specified file, not the default state file.

- **u**  Begin updating the package lists when the program starts. Cannot be used with **-i**.

---

dpkg  
dpkg [options] action

A tool for installing, managing, and building packages. Also serves as a frontend to **dpkg-deb** and **dpkg-query**.

**dpkg actions**

These actions are carried out by **dpkg** itself:

- **A pkgfile,** --record-avail pkgfile  Update the record of available files kept in /var/lib/dpkg/available with information from pkgfile. This information is used by **dpkg** and **dselect** to determine which packages are available. With **-R** or **--recursive**, pkgfile must be a directory.

- **C,** --audit  Search for partially installed packages and suggest how to get them working.

- **clear-avail**  Remove existing information about which packages are available.

- **clear-selections**  Set the state of every nonessential package to **deinstall** to deselect them before running **dpkg --set-selections**.

- **command-fd n**  Accept commands passed on the file descriptor given by n.  Note that any additional options set through this file descriptor or on the command line are not reset, but remain for other commands issued during the same session.

- **compare-versions ver1 op ver2**  Perform a binary comparison of two version numbers. The operators **lt** le eq ne ge gt** treat a missing version as earlier.  The operators **lt-nl** le-nl ge-nl gt-nl treat a missing version as later (where **nl** is “not later”). A third set of operators (**<<** <= == >> >) is provided for compatibility with control-file syntax. **dpkg** returns zero for success (i.e., the condition is satisfied) and nonzero otherwise.
--configure [packages | -a | --pending]
Reconfigure one or more unpacked packages. If -a or --pending is given instead of packages, configure all packages that are unpacked but not configured. Configuring a package involves unpacking the configuration files, backing up the old configuration files, and running the postinst script if one is present.

-Dh, --debug=help
Print debugging help message and exit.

--force-help
Print help message about the --force-list options and exit. See the --force-list option description for the possible values of list.

--forget-old-unavail
Forget about uninstalled, unavailable packages.

--get-selections [pattern]
Get list of package selections and write to standard output. With pattern specified, write selections that match the pattern.

--help
Print help message and exit.

-i pkgfile, --install pkgfile
Install the package specified as pkgfile. With -R or --recursive, pkgfile must be a directory.

--license, --licence
Print dpkg license information and exit.

--print-architecture
Print the target architecture.

--print-installation-architecture
Print the host architecture for installation.

-r, --remove [packages | -a | --pending]
-P, --purge [packages | -a | --pending]
Remove or purge one or more installed packages. Removal gets rid of everything except the configuration files listed in debian/conffiles; purging also removes the configuration files. If -a or --pending is given instead of packages, dpkg removes or purges all packages that are unpacked and marked (in /var/lib/dpkg/status) for removing or purging.

--set-selections
Set package selections based on input file read from standard input.

--unpack pkgfile
Unpack the package, but don’t configure it. When used with -R or --recursive, pkgfile must be a directory.

--update-avail pkgs-file
--merge-avail pkgs-file
Update the record of available files kept in /var/lib/dpkg/available. This information is used by dpkg and dselect to determine what packages are available. Update replaces the information with the contents of the pkgs-file, distributed as
Packages. Merge combines the information from Packages with the existing information. You can also use `dselect update` to do the same thing.

`--version`
Print `dpkg` version information and exit.

`--yet-to-unpack`
Search for uninstalled packages that have been selected for installation.

dpkg-deb actions
The following actions can be specified for `dpkg` and are passed to `dpkg-deb` for execution. Also see `dpkg-deb`.

- `b dir [archive], --build dir [archive]`
  Build a package.
- `c archive, --contents archive`
  List the contents of a package.
- `e archive [dir], --control archive [dir]`
  Extract control information from a package.
- `f archive [control-fields], --field archive [control-fields]`
  Display the control field or fields of a package.
- `l archive [control-files], --info archive [control-files]`
  Show information about a package.
- `fsys-tarfile archive`
  Write the filesystem tree contained in a package to standard output in `tar` format.
- `x archive dir, --extract archive dir`
  Extract the files from a package.
- `X archive dir, --vextract archive dir`
  Extract the files and display the filenames from a package.

dpkg-query actions
The following actions can be specified for `dpkg` and are passed to `dpkg-query` for execution. Also see `dpkg-query`.

- `l, --list [pkg-name-pattern]`
  List all packages whose names match the specified pattern.
  With no pattern, list all packages in `/var/lib/dpkg/available`.
- `L packages, --listfiles packages`
  List installed files that came from the specified package or packages.
- `p, --print-avail package`
  Print the details about `package` from `/var/lib/dpkg/available`.
- `s packages, --status packages`
  Report the status of one or more packages.
- `S filename-pattern, --search filename-pattern`
  Search installed packages for a filename.
Options
dpkg options can be specified on the command line or set in the configuration file. Each line in the configuration file contains a single option, specified without the leading dash (-).

--abort-after=num
Abort processing after num errors. Default is 50.

--admindir=dir, --instdir=dir, --root=dir
Change default directories. admindir contains administrative files with status and other information about packages; it defaults to /var/lib/dpkg. instdir is the directory into which packages are installed; it defaults to /. Changing the root directory to dir automatically changes instdir to dir and admindir to /dir/var/lib/dpkg.

-B, --auto-deconfigure
When a package is removed, automatically deconfigure any other package that depended on it.

-D octal, --debug=octal
Turn on debugging, with the octal value specifying the desired level of debugging information. Use -Dh or --debug=help to display the possible values. You can OR the values to get the desired output.

-E, --skip-same-version
Don’t install the package if this version is already installed.

--force-list, --no-force-list, --refuse-list
Force or refuse to force an operation. list is specified as a comma-separated list of options. With --force, a warning is printed, but processing continues. --refuse and --no-force cause processing to stop with an error. Use --force-help to display a message describing the options. The force/refuse options are:

all
Turn all force options on or off.

architecture
Process even if intended for a different architecture.

bad-path
Some programs are missing from the path.

bad-verify
Install package even if it fails to verify.

confdef
Always choose the default action for modified configuration files. If there is no default and confnew or confold is also specified, use that to decide; otherwise, ask the user.

configure-any
Configure any unpacked but unconfigured package that the package depends on.
conflicts
Permit installation of conflicting packages. Can result in problems from files being overwritten.

confmiss
Always install a missing configuration file. Be careful using this option, since it means overriding the removal of the file.

confnew
Always install the new version of a modified configuration file, unless confdef is also specified. In that case, use the default action if there is one.

confold
Keep the old version of a modified configuration file, unless confdef is also specified. In that case, use the default action if there is one.

depends
Turn dependency problems into warnings.

depends-version
Warn of version problems when checking dependencies, but otherwise ignore.

downgrade
Install even if a newer version is already installed. Forced by default. Note that no dependency checking is done, so use of this option can cause serious system problems.

hold
Process packages even if they are marked to be held.

not-root
Try to install or remove even when not logged on as root.

overwrite
Overwrite a file from one package with the same file from another package.

overwrite-dir
Overwrite one package’s directory with a file from another package.

overwrite-diverted
Overwrite a diverted file with an undiverted version.

remove-essential
Remove a package even if it is essential. Note that this can cause your system to stop working.

remove-reinstreq
Remove a package even if it is broken and is marked to require reinstallation.

-G, --refuse-downgrade
Don’t install a package if a newer version is already installed.

--ignore-depends=PKGLIST
Dependency problems result only in a warning for the packages in PKGLIST.
--log=filename
Log status updates and actions to the specified file instead of
the default /var/log/dpkg.log.

--new
New binary package format. This is a dpkg-deb option.

--no-act, --dry-run, --simulate
Go through the motions, but don’t actually write any changes.
Used for testing. Be sure to specify before the action; otherwise,
changes might be written.

--nocheck
Ignore the contents of the control file when building a package.
This is a dpkg-deb option.

--no-debsig
Do not verify package signatures.

-O, --selected-only
Process only packages that are marked as selected for
installation.

--old
Old binary package format. This is a dpkg-deb option.

-R, --recursive
Recursively handle .deb files found in the directories and
their subdirectories specified with -A, -i, --install, --unpack,
and --avail.

--status-fd n
Send the package status information to the specified file
descriptor. Can be given more than once.

dpkg-deb dpkg-deb action [options]
Backend command for building and managing Debian package
archives. Also see dpkg; you’ll often want to use dpkg to pass
commands through to dpkg-deb, rather than call dpkg-deb
directly.

Actions
-b dir [archive], --build dir [archive]
Create an archive from the filesystem tree starting with direc-
tory dir. The directory must have a DEBIAN subdirectory
containing the control file and any other control information.
If archive is specified and is a filename, the package is written
to that file; if no archive is specified, the package is written to
dir.deb. If the archive already exists, it is replaced. If archive is
the name of a directory, dpkg-deb looks in the control file for
the information it needs to generate the package name. (Note
that for this reason, you cannot use --nocheck with a direc-
tory name.)

-c archive, --contents archive
List the filesystem-tree portion of archive.
-e archive [dir], --control archive [dir]
Extract control information from archive into the directory dir, which is created if it doesn’t exist. If dir is omitted, a DEBIAN subdirectory in the current directory is used.

-f archive [control-fields], --field archive [control-fields]
Extract information about one or more fields in the control file for archive. If no fields are provided, print the entire control file.

-h, --help
Print help information and exit.

-i archive [control-files], --info archive [control-files]
Write information about binary package archive to standard output. If no control files are provided, print a summary of the package contents; otherwise, print the control files in the order they were specified. An error message is printed to standard error for any missing components.

--fsys-tarfile archive
Extract the filesystem tree from archive, and send it to standard output in tar format. Can be used with tar to extract individual files from an archive.

--license, --licence
Print the license information and exit.

--version
Print the version number and exit.

-W archive, --show archive
Show information about the specified archive. Display package name and version on one line or customize with the --show-format option.

-x archive dir, --extract archive dir
-X archive dir, --vextract archive dir
Extract the filesystem tree from archive into the specified directory, creating dir if it doesn’t already exist. -x (--extract) works silently, while -X (--vextract) lists the files as it extracts them. Do not use this action to install packages; use dpkg instead.

Options
-D, --debug
Turn on debugging.

--new
Build a new-style archive format (this is the default).

--nocheck
Don’t check the control file before building an archive. This lets you build a broken archive.

--old
Build an old-style archive format; obsolete.
--showformat=\texttt{format}
Specify the output format for \texttt{-W/show}. The format can include the standard escape sequences \texttt{\textbackslash n} (newline), \texttt{\textbackslash r} (carriage return), or \texttt{\textbackslash} (backslash). Specify package fields with the syntax \$\{\texttt{var};width\}. Fields are right-aligned by default, or left-aligned if \texttt{width} is negative.

\texttt{-z#}
Set the compression level to the value specified by \# when building an archive.

\texttt{-Z type}
Set the type of compression to use when building an archive. Possible values are \texttt{gzip}, \texttt{bzip2}, and \texttt{none}.

dpkg-query
dpkg-query [option] command
Display information about packages listed in the \texttt{dpkg} database. You can also use \texttt{dpkg-query} as a backend for \texttt{dpkg}, instead of calling \texttt{dpkg-query} directly.

\textbf{Commands}

\texttt{--help}
Print help information and exit.

\texttt{-l [patterns], --list [patterns]}
List packages whose names match any of the specified patterns. With no pattern specified, list all packages in \texttt{/var/lib/dpkg/status}. The pattern may need to be in quotes to avoid expansion by the shell.

\texttt{-L packages, --listfiles packages}
List files installed on your system from each of the specified packages. This command does not list files created by package-specific installation scripts.

\texttt{--license, --licence}
Print the license information and exit.

\texttt{-p package, --print-avail package}
Display details for the specified package, as found in \texttt{/var/lib/dpkg/available}.

\texttt{-s package, --status package}

\texttt{-S patterns, --search patterns}
Search the installed packages for filenames matching one of the specified patterns. At least one pattern must be specified.

\texttt{-W [patterns], --show [patterns]}
Like \texttt{-l}, but the output can be customized with the \texttt{--showformat} option.

\texttt{--version}
Print version information and exit.
Options
--admindir=dir
Use dir as the location of the dpkg database. The default is /var/lib/dpkg.

-f format, --showformat=format
Specify the output format for -W|--show. The format can include the standard escape sequences \n (newline), \r (carriage return), or \ (backslash). Specify package fields with the syntax ${var:[width]}. Fields are right-aligned by default, or left-aligned if width is negative.

dpkg-split

dpkg-split [action] [options]
Split a binary package into smaller pieces and reassemble the pieces, either manually or in automatic mode. The automatic mode maintains a queue of parts for reassembling.

Actions
-a -o output part, --auto -o output part
Add part to the queue for automatic reassembly, and if all the parts are available, reassemble the package as output. Requires the use of the -o (or --output) option, as shown.

-d [packages], --discard [packages]
Discard parts from the automatic-assembly queue. If any packages are specified, discard only parts from those packages. Otherwise, empty the queue.

-l parts, --info parts
Print information about the specified part file or files to standard output.

-j parts, --join parts
Join the parts of a package file together from the parts specified. The default output file is package-version.deb.

-l, --listq
List the contents of the queue of parts waiting for reassembly, giving the package name, the parts that are on the queue, and the number of bytes.

-s full-package [prefix], --split full-package [prefix]
Split the package full-package into parts N of M, named prefix-NofM.deb. The prefix defaults to the full-package name without the .deb extension.

-h, --help
Print help message and exit.

--license, --licence
Print license information and exit.

--version
Print version information and exit.
Options
--depotdir dir
    Specify an alternate directory dir for the queue of parts waiting
    for reassembly. Default is /var/lib/dpkg.

--msdos
    Force --split output filenames to be MS-DOS-compatible.

-Q, --npquiet
    Do not print an error message for a part that doesn’t belong to
    a binary package when doing automatic queuing or reassembly.

-o output, --output output
    Use output as the filename for a reassembled package.

-S num, --partsize num
    When splitting, specify the maximum part size (num) in kilo-
    bytes. Default is 450 KB.

dselect [options] [action]
    A screen-oriented user frontend to dpkg, used to install and
    manage packages. See dpkg and dpkg-deb for information on
    building packages.

Actions
    If dselect is run with no action specified on the command line, it
displays the following menu:
    * 0. [A]ccess  Choose the access method to use.
    1. [U]pdate  Update list of available packages, if
                 possible.
    2. [S]elect  Request which packages you want on your
                system.
    3. [I]nstall Install and upgrade wanted packages.
    4. [C]onfig Configure any packages that are
           unconfigured.
    5. [R]emove Remove unwanted software.
    6. [Q]uit Quit dselect.

    The asterisk (on the first line) shows the currently selected option.
    Any of the menu items can be specified directly on the command line as
    an action (access, update, select, install, config, remove, quit) to
go directly to the desired activity. For example:
    $ dselect access

    If you enter quit on the command line, dselect exits immediately
    without doing anything. An additional command-line action is
    menu, which displays the menu and is equivalent to running
dselect with no action.

Options
    Options can be specified both on the command line and in the
dselect configuration file, /etc/dpkg/dselect.cfg.
---admindir dir
Change the directory that holds internal datafiles to dir. Default is /var/lib/dpkg.

--color colorspec, --colour colorspec
Set colors for different parts of the screen, as specified by colorspec as follows:

\[ screenpart: [fgcolor], [bgcolor], [attr+attr+...], \]

This option can be specified multiple times, to override the default colors for different screenparts. Rather than having to specify the colors on the command line each time you run dselect, you might prefer to set them in the configuration file.
The possible screen parts (going from the top of the screen to the bottom) are:

**title**
The screen title.

**listhead**
The header line above the package list.

**list**
The scrolling list of packages and some help text.

**listsel**
The selected item in the list.

**pkgstate**
The text showing the current state of each package.

**pkgstatesel**
The text showing the current state of the selected package.

**infohead**
The header line showing the state of the selected package.

**infodesc**
The short description of the package.

**info**
The text that displays information such as the package description.

**infofoot**
The last line of the screen when selecting packages.

**query**
Query lines.

**helpscreen**
The color of help screens.

Either the foreground color, the background color, or both can be specified for each screen part. The colors are given as the standard curses colors. After the color specification, you can specify a list of attributes separated by plus signs (+). The possible attributes are normal, standout, underline, reverse, blink, bright, dim, and bold. Not all attributes work on all terminals.
--expert
  Run in expert mode; don’t print help messages.
-D [file], --debug [file]
  Turn on debugging. Send output to file if specified.
--help
  Print help message and exit.
--license, licence
  Print license information and exit.
--version
  Print version information and exit.

synaptic
  synaptic [options]
Graphical frontend for APT. Use in place of apt-get to install, upgrade, or remove packages from your system. With synaptic, you can view a list of all available packages, or you can break the list down in various ways to make it more manageable. From the synaptic window, you can select from a list of categories. The categories are section (e.g., view only development-related packages), package status, origin, search history, or filter.

If you choose to display by filter, there is a set of predefined filters, or you can define your own. The predefined filters include ones to display all packages, packages marked for a status change, packages that can be configured with debconf (Debian systems only), packages with broken dependencies, and packages that can be upgraded to a later version. You can edit the existing filters or define your own, by selecting Filters from the Settings menu.

Once you’ve used the selection criteria to find the list of packages, you can select a single package, or you can select multiple packages by holding down the Shift or Ctrl key. Like apt-get, first do an update to update the package lists, then you can do an install or upgrade.

To start synaptic from Gnome, select Administration → Synaptic Package Manager from the System menu. From the KDE menu, select System → Synaptic Package Manager. You can also start the graphical interface from the command line, with the command:

    synaptic [options]

Options
In addition to the following options, synaptic accepts the standard GTK+ toolkit command-line options.

-f filename, --filter-file=filename
  Use the specified file as an alternative filter settings file.
-h, --help
  Print help message and exit.
-i num, --initial-filter=num
  Start up with the filter numbered num as the initial filter.
--non-interactive
Run without prompting for user input.

-o option, --option=option
Set an internal option. Don’t use this option unless you are sure you know what you are doing.

-r Open with the file repository window displayed. This window lists the repositories and shows which are active.
The shell is a program that acts as a buffer between you and the operating system. In its role as a command interpreter, it should (for the most part) act invisibly. There are three main uses for the shell: interactive use; customizing your Linux session by defining variables and startup files; and programming, by writing and executing shell scripts.

The original Bourne shell became the standard shell for writing shell scripts. The Bourne shell is still found in /bin/sh on Linux systems but is now usually a symbolic link to Bash. Because the Berkeley C shell (csh and later tcsh) offered better features for interactive use, such as command history and job control, for a long time the standard practice was to use the Bourne shell for programming and the C shell for daily use. David Korn at Bell Labs enhanced the Bourne shell by adding csh-like features; his shell is known as the Korn shell (ksh).

The Free Software Foundation developed a clone of the Bourne shell, written from scratch, named “Bash,” the Bourne-Again SHell. Over time, Bash has become a POSIX-compliant version of the shell, incorporating many popular features from other shells, such as csh, tcsh, and ksh. Bash is the primary shell for Linux.

Another popular shell is the Z Shell, zsh, which is similar to ksh but with many extensions. zsh differs from Bash both in being based on ksh and because it does not attempt to be POSIX-compliant the way Bash does.

This chapter covers Bash. All references are to Bash version 4, which among numerous other changes includes new features such as associative arrays and coprocesses. The following topics are presented:

- Overview of features
- Invoking the shell
- Syntax
- Functions
- Variables
• Arithmetic expressions
• Command history
• Job control
• Command execution
• Restricted shells
• Built-in commands

http://www.gnu.org/software/bash/bash.html provides information about the Bash shell, as does http://tiswww.case.edu/php/chet/bash/bashtop.html. See also Classic Shell Scripting and Learning the bash Shell (both from O'Reilly).

Overview of Features

The Bash shell provides the following features:
• Input/output redirection
• Wildcard characters (metacharacters) for filename abbreviation
• Shell variables and options for customizing your environment
• A built-in command set for writing shell programs
• Shell functions, for modularizing tasks within a shell program
• Job control
• Command-line editing (using the command syntax of either vi or emacs)
• Access to previous commands (command history)
• Integer arithmetic
• Arrays and arithmetic expressions
• Command-name abbreviation (aliasing)
• Upward compliance with POSIX
• Internationalization facilities
• An arithmetic for loop
• More ways to substitute variables

Invoking the Shell

The command interpreter for the Bash shell (bash) can be invoked as follows:

bash [options] [arguments]

Bash can execute commands from a terminal, from a file (when the first argument is an executable script), or from standard input (if no arguments remain or if -s is specified). Bash automatically prints prompts if standard input is a terminal, or if -i is given on the command line.

On Linux systems, /bin/sh is generally a link to Bash. When invoked as sh, Bash acts more like the traditional Bourne shell: Login shells read /etc/profile and ~/.profile, and regular shells read $ENV, if it’s set. Full details are available on the bash manpage.
Options

If both single- and multi-character options appear on the command line, the multi-character options must appear first.

- `--`
  End option processing.
- `-c str`
  Read commands from string `str`.
- `-D, --dump-strings`
  Print all `$"..."` strings in the program.
- `--debugger`
  Read the debugging profile at startup, turn on the `extdebug` option to `shopt`, and enable function tracing. For use by the Bash debugger.
- `--dump-po-strings`
  Same as `-D`, but output in GNU `gettext` po (portable object) format.
- `--help`
  Print a usage message and exit successfully
- `-i`
  Create an interactive shell (prompt for input).
- `--init-file file, --rcfile file`
  Use `file` as the startup file instead of `~/.bashrc` for interactive shells.
- `--login`
  Shell is a login shell.
- `--noediting`
  Do not use the `readline` library for input, even in an interactive shell.
- `--norecprofile`
  Do not read `/etc/profile` or any of the personal startup files.
- `--norc`
  Do not read `~/.bashrc`. Enabled automatically when invoked as `sh`.
- `-O option`
  Enable the `shopt` built-in command option `option`.
- `-p`
  Start up as a privileged user. Don’t read `$ENV` or `$BASH_ENV`, don’t import functions from the environment, and ignore the value of `$SHELLOPTS`.
- `--posix`
  Turn on POSIX mode.
- `-r, --restricted`
  Create a restricted shell.
- `-s`
  Read commands from standard input; output from built-in commands goes to file descriptor 1 (standard output); all other shell output goes to file descriptor 2 (standard error).
- `--verbose`
  Same as `set -v`; the shell prints lines as it reads them.
- `--version`
  Print a version message and exit.

The remaining options to Bash are listed under the `set` built-in command.
Arguments

Arguments are assigned in order to the positional parameters $1$, $2$, etc. If the first argument is an executable script, commands are read from it, and the remaining arguments are assigned to $1$, $2$, etc. The name of the script is available as $0$.

Syntax

This section describes the many symbols peculiar to the Bash shell. The topics are arranged as follows:

- Special files
- Filename metacharacters
- Quoting
- Command forms
- Redirection forms
- Coprocesses

Special Files

Bash reads one or more startup files. Some of the files are read only when a shell is a login shell.

The startup files are, in the order they are read:

1. `/etc/profile`. Executed automatically at login.
2. The first file found from this list: `~/.bash_profile`, `~/.bash_login`, or `~/.profile`. Executed automatically at login.
3. `~/.bashrc` is read by every shell, after the login files. However, if invoked as `sh`, Bash instead reads `$ENV`.

The `getpwnam()` and `getpwuid()` functions are the sources of home directories for `~name` abbreviations. (On single-user systems, the user database is stored in `/etc/passwd`. However on networked systems, this information may come from NIS, NIS+, or LDAP—not your workstation password file.)

Filename Metacharacters

<table>
<thead>
<tr>
<th>Characters</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Match any string of zero or more characters.</td>
</tr>
<tr>
<td>?</td>
<td>Match any single character.</td>
</tr>
<tr>
<td>[abc...]</td>
<td>Match any one of the enclosed characters; a hyphen can specify a range (e.g., a-z, A-Z, 0-9).</td>
</tr>
<tr>
<td>[^abc...]</td>
<td>Match any character not enclosed as above.</td>
</tr>
<tr>
<td>~</td>
<td>Home directory of the current user.</td>
</tr>
<tr>
<td>~name</td>
<td>Home directory of user <code>name</code>.</td>
</tr>
<tr>
<td>~+</td>
<td>Current working directory (SPWD).</td>
</tr>
<tr>
<td>~--</td>
<td>Previous working directory (SOLDPWD).</td>
</tr>
</tbody>
</table>
With the `extglob` option on:

<table>
<thead>
<tr>
<th>Characters</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>?(pattern)</td>
<td>Match zero or one instance of pattern.</td>
</tr>
<tr>
<td>*(pattern)</td>
<td>Match zero or more instances of pattern.</td>
</tr>
<tr>
<td>+(pattern)</td>
<td>Match one or more instances of pattern.</td>
</tr>
<tr>
<td>@(pattern)</td>
<td>Match exactly one instance of pattern.</td>
</tr>
<tr>
<td>!(pattern)</td>
<td>Match any strings that don’t match pattern.</td>
</tr>
</tbody>
</table>

This pattern can be a sequence of patterns separated by |, meaning that the match applies to any of the patterns. This extended syntax resembles that available in `egrep` and `awk`.

Bash supports the POSIX `[[=]]` notation for matching characters that have the same weight, and `[[.]]` for specifying collating sequences. In addition, character classes, of the form `[[:class:]]`, allow you to match the following classes of characters.

<table>
<thead>
<tr>
<th>Class</th>
<th>Characters matched</th>
<th>Class</th>
<th>Characters matched</th>
</tr>
</thead>
<tbody>
<tr>
<td>alnum</td>
<td>Alphanumeric characters</td>
<td>graph</td>
<td>Nonspace characters</td>
</tr>
<tr>
<td>alpha</td>
<td>Alphabetic characters</td>
<td>print</td>
<td>Printable characters</td>
</tr>
<tr>
<td>blank</td>
<td>Space or tab</td>
<td>punct</td>
<td>Punctuation characters</td>
</tr>
<tr>
<td>ctrl</td>
<td>Control characters</td>
<td>space</td>
<td>Whitespace characters</td>
</tr>
<tr>
<td>digit</td>
<td>Decimal digits</td>
<td>upper</td>
<td>Uppercase characters</td>
</tr>
<tr>
<td>lower</td>
<td>Lowercase characters</td>
<td>xdigit</td>
<td>Hexadecimal digits</td>
</tr>
</tbody>
</table>

Bash also accepts the `[:word:]` character class, which is not in POSIX. `[[:word:]]` is equivalent to `[[:alnum:]]`.

**Examples**

```
$ ls new*
List new and new.1
$ cat ch?
Match ch9 but not ch10
$ vi [D-R]*
Match files that begin with uppercase D through R
$ pr !(*.o|core) | lp
Print files that are not object files or core dumps
```

On modern systems, ranges such as `[D-R]` are not portable; the system’s locale may include more than just the uppercase letters from D to R in the range.

**Quoting**

Quoting disables a character’s special meaning and allows it to be used literally, as itself. The following table displays characters that have special meaning to the Bash shell.

---

600 | Chapter 6: The Bash Shell
These characters can be used for quoting:

- " " Everything between " and " is taken literally, except for the following characters that keep their special meaning:
  - $ Variable (or command and arithmetic) substitution will occur.
  - ' Command substitution will occur.
  - " This marks the end of the double quote.

- ' ' Everything between ' and ' is taken literally except for another '. You cannot embed another ' within such a quoted string.

- \ The character following a \ is taken literally. Use within " " to escape ", $, and '. Often used to escape itself, spaces, or newlines.

- $" " Just like " ", except that locale translation is done.

- "$ Similar to ", but the quoted text is processed for the following escape sequences.

<table>
<thead>
<tr>
<th>Character</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>;</td>
<td>Command separator</td>
</tr>
<tr>
<td>&amp;</td>
<td>Background execution</td>
</tr>
<tr>
<td>()</td>
<td>Command grouping</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;&gt; &amp;</td>
<td>Redirection symbols</td>
</tr>
<tr>
<td>* ? {} ~ + - @ !</td>
<td>Filename metacharacters</td>
</tr>
<tr>
<td>&quot; &quot;</td>
<td>Variable substitution (or command or arithmetic substitution)</td>
</tr>
<tr>
<td>' '</td>
<td>Word separators</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>\a</td>
<td>Alert</td>
</tr>
<tr>
<td>\b</td>
<td>Backspace</td>
</tr>
<tr>
<td>\t</td>
<td>Tab</td>
</tr>
<tr>
<td>\v</td>
<td>Vertical tab</td>
</tr>
<tr>
<td>\x</td>
<td>Control character X</td>
</tr>
<tr>
<td>\n</td>
<td>Newline</td>
</tr>
<tr>
<td>\r</td>
<td>Carriage return</td>
</tr>
<tr>
<td>\c</td>
<td>Escape</td>
</tr>
<tr>
<td>\e</td>
<td>Escape</td>
</tr>
<tr>
<td>\f</td>
<td>Form feed</td>
</tr>
<tr>
<td>\h</td>
<td>Hexadecimal value nnn</td>
</tr>
<tr>
<td>\l</td>
<td>Escape</td>
</tr>
<tr>
<td>\m</td>
<td>Escape</td>
</tr>
<tr>
<td>\n</td>
<td>Newline</td>
</tr>
<tr>
<td>\p</td>
<td>Newline</td>
</tr>
<tr>
<td>\r</td>
<td>Backslash</td>
</tr>
</tbody>
</table>

Examples

```bash
$ echo 'Single quotes "protect" double quotes'
Single quotes "protect" double quotes
$ echo "Well, isn't that \"special\"?"
Well, isn't that "special"?
```
$ echo "You have `ls | wc -l` files in `pwd`"
You have 43 files in /home/bob
$ echo "The value of \$x is \$x"
The value of $x is 100

**Command Forms**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmd &amp;</td>
<td>Execute cmd in background.</td>
</tr>
<tr>
<td>cmd1;cmd2</td>
<td>Command sequence; execute multiple cmds on the same line.</td>
</tr>
<tr>
<td>{ cmd1;cmd2;}</td>
<td>Execute commands as a group in the current shell.</td>
</tr>
<tr>
<td>(cmd1;cmd2)</td>
<td>Execute commands as a group in a subshell.</td>
</tr>
<tr>
<td>cmd1<code>cmd2</code></td>
<td>Pipe; use output from cmd1 as input to cmd2.</td>
</tr>
<tr>
<td>cmd1 ${cmd2}</td>
<td>Command substitution; use cmd2 output as arguments to cmd1.</td>
</tr>
<tr>
<td>cmd ${expression}</td>
<td>POSIX shell command substitution; use the result of expression as argument to cmd.</td>
</tr>
<tr>
<td>cmd1 &amp;&amp; cmd2</td>
<td>AND; execute cmd1 and then (if cmd1 succeeds) cmd2. This is a &quot;short-circuit&quot; operation; cmd2 is never executed if cmd1 fails.</td>
</tr>
<tr>
<td>cmd1</td>
<td></td>
</tr>
<tr>
<td>! cmd</td>
<td>NOT; execute cmd, and produce a zero exit status if cmd exits with a nonzero status. Otherwise, produce a nonzero status when cmd exits with a zero status.</td>
</tr>
</tbody>
</table>

**Examples**

```
$ nroff file > file.txt & # Format in the background
$ cd; ls # Execute sequentially
$ (date; who; pwd) > logfile # All output is redirected
$ sort file | pr -3 | lp # Sort file, page output, then print
$ vi `grep -l ifdef *.c` # Edit files found by grep
$ egrep '(yes|no)' `cat list` # Specify a list of files to search
$ egrep '(yes|no)' $(cat list) # POSIX version of previous
$ egrep '(yes|no)' $(< list) # Faster, not in POSIX
$ grep XX file &\& lp file # Print file if it contains the pattern;
$ grep XX file || echo "XX not found" # Otherwise, echo an error message
```

**Redirection Forms**

<table>
<thead>
<tr>
<th>File descriptor</th>
<th>Name</th>
<th>Common abbreviation</th>
<th>Typical default</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Standard input</td>
<td>stdin</td>
<td>Keyboard</td>
</tr>
<tr>
<td>1</td>
<td>Standard output</td>
<td>stdout</td>
<td>Screen</td>
</tr>
<tr>
<td>2</td>
<td>Standard error</td>
<td>stderr</td>
<td>Screen</td>
</tr>
</tbody>
</table>

The usual input source or output destination can be changed, as seen in the following sections.
**Simple redirection**

\[ \textit{cmd} > \textit{file} \]
Send output of \textit{cmd} to \textit{file} (overwrite).

\[ \textit{cmd} >> \textit{file} \]
Send output of \textit{cmd} to \textit{file} (append).

\[ \textit{cmd} < \textit{file} \]
Take input for \textit{cmd} from \textit{file}.

\[ \textit{cmd} << \textit{text} \]
The contents of the shell script up to a line identical to \textit{text} become the standard input for \textit{cmd} (\textit{text} can be stored in a shell variable). This command form is sometimes called a *Here document*. Input is usually typed at the keyboard or in the shell program. Commands that typically use this syntax include \texttt{cat}, \texttt{ex}, and \texttt{sed}. (If \texttt{<<} is used, leading tabs are stripped from the contents of the here document, and the tabs are ignored when comparing input with the end-of-input \textit{text} marker.) If any part of \textit{text} is quoted, the input is passed through verbatim. Otherwise, the contents are processed for variable, command, and arithmetic substitutions.

\[ \textit{cmd} <<< \textit{word} \]
Supply text of \textit{word}, with trailing newline, as input to \textit{cmd}. (This is known as a *here string*, from the free version of the \texttt{rc} shell.)

\[ \textit{cmd} < \textit{file} \]
Open \textit{file} for reading **and** writing on the standard input. The contents are not destroyed.*

\[ \textit{cmd} >| \textit{file} \]
Send output of \textit{cmd} to \textit{file} (overwrite), even if the shell’s \texttt{noclobber} option is set.

**Redirection using file descriptors**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{cmd} &gt;&amp;\textit{n}</td>
<td>Send \textit{cmd} output to file descriptor \textit{n}.</td>
</tr>
<tr>
<td>\textit{cmd} m&gt;&amp;\textit{n}</td>
<td>Same, except that output that would normally go to file descriptor \textit{m} is sent to file descriptor \textit{n} instead.</td>
</tr>
<tr>
<td>\textit{cmd} &gt;&amp;-</td>
<td>Close standard output.</td>
</tr>
<tr>
<td>\textit{cmd} &lt;&amp;\textit{n}</td>
<td>Take input for \textit{cmd} from file descriptor \textit{n}.</td>
</tr>
<tr>
<td>\textit{cmd} m&lt;&amp;\textit{n}</td>
<td>Same, except that input that would normally come from file descriptor \textit{m} comes from file descriptor \textit{n} instead.</td>
</tr>
<tr>
<td>\textit{cmd} &gt;&amp;-</td>
<td>Close standard input.</td>
</tr>
<tr>
<td>\textit{cmd} &lt;&amp;&gt;-</td>
<td>Move input file descriptor \textit{n} instead of duplicating it.</td>
</tr>
<tr>
<td>\textit{cmd} &gt;&amp;-</td>
<td>Move output file descriptor \textit{n} instead of duplicating it.</td>
</tr>
</tbody>
</table>

* With \texttt{<}, the file is opened read-only, and writes on the file descriptor will fail. With \texttt{<>}, the file is opened read-write; it is up to the application to actually take advantage of this.
Multiple redirection

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cmd 2&gt;file</code></td>
<td>Send standard error to file; standard output remains the same (e.g., the screen).</td>
</tr>
<tr>
<td><code>cmd &gt; file 2&gt;&amp;1</code></td>
<td>Send both standard error and standard output to file.</td>
</tr>
<tr>
<td><code>cmd &amp;&gt;file</code></td>
<td>Append both standard error and standard output to file.</td>
</tr>
<tr>
<td><code>cmd &amp;&gt; file</code></td>
<td>Same. Preferred form.</td>
</tr>
<tr>
<td><code>cmd &gt;f1 2&gt;f2</code></td>
<td>Send standard output to file f1, standard error to file f2.</td>
</tr>
<tr>
<td>`cmd</td>
<td>tee files`</td>
</tr>
<tr>
<td>`cmd 2&gt;&amp;1</td>
<td>tee files`</td>
</tr>
<tr>
<td>`cmd</td>
<td>&amp;`</td>
</tr>
</tbody>
</table>

No space should appear between file descriptors and a redirection symbol; spacing is optional in the other cases.

Examples

```
$ cat part1 > book
$ cat part2 part3 >> book
$ mail tim < report
$ sed 's/^/XX /g' << END_ARCHIVE
 > This is often how a shell archive is "wrapped",
 > bundling text for distribution. You would normally
 > run sed from a shell program, not from the command line.
 > END_ARCHIVE
XX This is often how a shell archive is "wrapped",
XX bundling text for distribution. You would normally
XX run sed from a shell program, not from the command line.
```

To redirect standard output to standard error:

```
$ echo "Usage error: see administrator" 1>&2
```

The following command sends output (files found) to filelist and error messages (inaccessible files) to file no_access:

```
$ find / -print > filelist 2>no_access
```

Coprocesses

A coprocess is a shell command that runs asynchronously in a subshell, connected to the originating shell by a two-way pipe. Set up a coprocess with the `coproc` reserved word:

```
coproc [NAME] command [redirections]
```

The reserved word `coproc` sets up the pipe to communicate with `command` and runs `command` in the background. `NAME` is the name of the coprocess (COPROC by default). If `command` is a complex command, `NAME` is optional; with a simple
command, NAME must not be given and the default is used. If any redirections are specified, they are set up after the pipe has been set up.

The coprocess establishes an array with two values: NAME[0] contains the file descriptor for command output and NAME[1] contains the file descriptor for command input. The variable NAME_PID contains the process id of the coprocess. The return status is the exit status of command. You can use the wait built-in command to wait for the output of command.

Functions

A shell function is a grouping of commands within a shell script. Shell functions let you modularize your program by dividing it up into separate tasks. This way the code for each task need not be repeated every time you need to perform the task. The POSIX shell syntax for defining a function follows the Bourne shell:

```bash
name () {
 function body's code come here
}
```

Functions are invoked just as are regular shell built-in commands or external commands. The command line parameters $1, $2, and so on receive the function’s arguments, temporarily hiding the global values of $1, etc. For example:

```bash
fatal --- print an error message and die:
fatal () { # defining function fatal
 echo "$0: fatal error:" "$@" >&2 # messages to standard error
 exit 1
}
...
if [$# = 0] # not enough arguments
 then
 fatal "not enough arguments" # call function with message
fi
```

A function may use the return command to return an exit value to the calling shell program. Be careful not to use exit from within a function unless you really wish to terminate the entire program.

Bash allows you to define functions using an additional keyword, function, as follows:

```bash
function fatal {
 echo "$0: fatal error:" "$@" >&2 # messages to standard error
 exit 1
}
```

All functions share traps with the “parent” shell (except the DEBUG trap, if function tracing has been turned on). With the errtrace option enabled (either set -E or set -o errtrace), functions also inherit the ERR trap. If function tracing has been enabled, functions inherit the RETURN trap. Functions may have local variables, and they may be recursive. The syntax used to define a function is irrelevant.
Variables

This section describes the following:

- Variable substitution
- Built-in shell variables
- Other shell variables
- Arrays
- Special prompt strings

Variable Substitution

No spaces should be used in the following expressions. The colon (:) is optional; if it’s included, \texttt{var} must be nonnull, as well as set.

<table>
<thead>
<tr>
<th>Variable expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{var=value ...}</td>
<td>Set each variable \texttt{var} to a value.</td>
</tr>
<tr>
<td>\texttt{$(var)}</td>
<td>Use value of \texttt{var}; braces are optional if \texttt{var} is separated from the following text. They are required for array variables.</td>
</tr>
<tr>
<td>\texttt{$(var=value)}</td>
<td>Use \texttt{var} if set; otherwise, use value.</td>
</tr>
<tr>
<td>\texttt{$(var?=value)}</td>
<td>Use \texttt{var} if set; otherwise, use value and assign value to \texttt{var}.</td>
</tr>
<tr>
<td>\texttt{$(var+=value)}</td>
<td>Use \texttt{var} if set; otherwise, print the phrase “parameter null or not set.”</td>
</tr>
<tr>
<td>\texttt{$(var+=value)}</td>
<td>Use value if \texttt{var} is set; otherwise, use nothing.</td>
</tr>
<tr>
<td>\texttt{$(#!)}</td>
<td>Use the length of \texttt{var}.</td>
</tr>
<tr>
<td>\texttt{$(!prefix*)}, \texttt{$(!prefix@)}</td>
<td>List of variables whose names begin with \texttt{prefix}.</td>
</tr>
<tr>
<td>\texttt{$(var=pos)}</td>
<td>Starting at position \texttt{pos} (0-based) in variable \texttt{var}, extract \texttt{len} characters, or rest of string if \texttt{no: \texttt{pos} and \texttt{len} may be arithmetic expressions.}</td>
</tr>
<tr>
<td>\texttt{$(var=pat/repl)}</td>
<td>Use value of \texttt{var}, with first match of \texttt{pat} replaced with \texttt{repl}.</td>
</tr>
<tr>
<td>\texttt{$(var=pat)}</td>
<td>Use value of \texttt{var}, with first match of \texttt{pat} deleted.</td>
</tr>
<tr>
<td>\texttt{$(var=pat/repl)}</td>
<td>Use value of \texttt{var}, with every match of \texttt{pat} replaced with \texttt{repl}.</td>
</tr>
<tr>
<td>\texttt{$(var#/pat/repl)}</td>
<td>Use value of \texttt{var}, with match of \texttt{pat} replaced with \texttt{repl}. Match must occur at beginning of the value.</td>
</tr>
<tr>
<td>\texttt{$(var%/pat/repl)}</td>
<td>Use value of \texttt{var}, with match of \texttt{pat} replaced with \texttt{repl}. Match must occur at end of the value.</td>
</tr>
</tbody>
</table>

You can indirectly reference a variable by “aliasing” one variable name to affect the value of the other:

\begin{verbatim}
$ greet="hello, world"
$ friendly_message=greet
$ echo ${{!friendly_message}}
hello, world
\end{verbatim}

Create initial variable

Aliasing variable

Use the alias
Examples

$ u=up d=down blank=
Assign values to three variables (last is null)

$ echo ${u}root
Braces are needed here

$ echo ${u-$d}
Display value of u or d; since u is set, it's printed

$ echo ${tmp-`date`}
If tmp is not set, the date command is executed

Thu May 7 02:09:09 EDT 2009

$ echo ${blank="no data"}  
blank is set but null, so the string is printed

no data

$ echo ${blank:="no data"}
blank now has a new value

$ tail=${PWD##*/}
Take the current directory name and remove the longest character string ending with /, which removes the leading pathname and leaves the tail

Built-in Shell Variables

Built-in variables are automatically set by the shell and are typically used inside shell scripts. Built-in variables can make use of the variable substitution patterns shown previously. Note that the $ is not actually part of the variable name, although the variable is always referenced this way.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$#</td>
<td>Number of command-line arguments.</td>
</tr>
<tr>
<td>$-</td>
<td>Options currently in effect (arguments supplied on command line or to set).</td>
</tr>
<tr>
<td>$?</td>
<td>Exit value of last executed command.</td>
</tr>
<tr>
<td>$$</td>
<td>Process number of current process.</td>
</tr>
<tr>
<td>$!</td>
<td>Process number of last background command.</td>
</tr>
<tr>
<td>$0</td>
<td>First word; that is, command name. This will have the full pathname if it was found via a PATH search.</td>
</tr>
<tr>
<td>$n</td>
<td>Individual arguments on command line (positional parameters). If n is greater than 9, it must be specified as ${n}.</td>
</tr>
<tr>
<td>$*, @$</td>
<td>All arguments on command line ($1 $2 ...).</td>
</tr>
<tr>
<td>&quot;$*&quot;</td>
<td>All arguments on command line as one string (&quot;$1 $2 ...&quot;). The values are separated by the first character in the IFS special variable.</td>
</tr>
<tr>
<td>&quot;$@&quot;</td>
<td>All arguments on command line, individually quoted (&quot;$1&quot; &quot;$2&quot; ...).</td>
</tr>
<tr>
<td>$._</td>
<td>Temporary variable; initialized to pathname of script or program being executed. Later, stores the last argument of previous command. Also stores name of matching MAIL file during mail checks.</td>
</tr>
<tr>
<td>HISTCMD</td>
<td>The history number of the current command.</td>
</tr>
<tr>
<td>LINENO</td>
<td>Current line number within the script or function.</td>
</tr>
<tr>
<td>OLDPWD</td>
<td>Previous working directory (set by cd).</td>
</tr>
<tr>
<td>OPTARG</td>
<td>Name of last option processed by getopts.</td>
</tr>
<tr>
<td>OPTIND</td>
<td>Numerical index of OPTARG.</td>
</tr>
<tr>
<td>PPID</td>
<td>Process number of this shell’s parent.</td>
</tr>
<tr>
<td>PWD</td>
<td>Current working directory (set by cd).</td>
</tr>
</tbody>
</table>
In addition, Bash sets the following variables. Many of these variables are for use by the Bash debugger (see http://bashdb.sourceforge.net) or for providing programmable completion (see the section “Programmable Completion” on page 615).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANDOM[n]</td>
<td>Generate a new random number with each reference; start with integer n, if given.</td>
</tr>
<tr>
<td>REPLY</td>
<td>Default reply, used by select and read.</td>
</tr>
<tr>
<td>SECONDS[n]</td>
<td>Number of seconds since the shell was started, or, if n is given, number of seconds + n since the shell started.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASH</td>
<td>The full pathname used to invoke this instance of Bash.</td>
</tr>
<tr>
<td>BASH_ARGC</td>
<td>Array variable. Each element holds the number of arguments for the corresponding function or dot-script invocation. Set only in extended debug mode, with <code>shopt -s extdebug</code>.</td>
</tr>
<tr>
<td>BASH_ARGV</td>
<td>An array variable similar to BASH_ARGC. Each element is one of the arguments passed to a function or dot-script. It functions as a stack, with values being pushed on at each call. Thus, the last element is the last argument to the most recent function or script invocation. Set only in extended debug mode, with <code>shopt -s extdebug</code>.</td>
</tr>
<tr>
<td>BASH_COMMAND</td>
<td>The command currently executing or about to be executed. Inside a trap handler, it is the command running when the trap was invoked.</td>
</tr>
<tr>
<td>BASH_EXECUTION_STRING</td>
<td>The string argument passed to the -c option.</td>
</tr>
<tr>
<td>BASH_LINENO</td>
<td>Array variable, corresponding to BASH_SOURCE and FUNCNAME. For any given function number i (starting at 0), {${FUNCNAME[i]}} was invoked in file {${BASH_SOURCE[i]}} on line {${BASH_LINENO[i]}}. The information is stored with the most recent function invocation first.</td>
</tr>
<tr>
<td>BASH_REMATCH</td>
<td>Array variable, assigned by the =~ operator of the [[ ]] construct. Index 0 is the text that matched the entire pattern. The other indices are the text matched by parenthesized subexpressions. This variable is read-only.</td>
</tr>
<tr>
<td>BASH_SOURCE</td>
<td>Array variable, containing source filenames. Each element corresponds with those in FUNCNAME and BASH_LINENO.</td>
</tr>
<tr>
<td>BASH_SUBSHELL</td>
<td>This variable is incremented by one each time a subshell or subshell environment is created.</td>
</tr>
<tr>
<td>BASH_VERSION</td>
<td>The string describing the version of Bash.</td>
</tr>
<tr>
<td>BASH_VERSIONINFO[0]</td>
<td>The major version number, or release, of Bash.</td>
</tr>
<tr>
<td>BASH_VERSIONINFO[5]</td>
<td>The machine type; same value as in MARCHTYPE.</td>
</tr>
<tr>
<td>COMP_CWORD</td>
<td>For programmable completion. Index into COMP_WORDS, indicating the current cursor position.</td>
</tr>
<tr>
<td>COMP_LINE</td>
<td>For programmable completion. The current command line.</td>
</tr>
<tr>
<td>COMP_POINT</td>
<td>For programmable completion. The position of the cursor as a character index in COMP_LINE.</td>
</tr>
<tr>
<td>COMP_WORDBREAKS</td>
<td>For programmable completion. The characters that the readline library treats as word separators when doing word completion.</td>
</tr>
<tr>
<td>COMP_WORDS</td>
<td>For programmable completion. Array variable containing the individual words on the command line.</td>
</tr>
</tbody>
</table>
Other Shell Variables

The following variables are not automatically set by the shell, although many of them can influence the shell’s behavior. They are typically used in your .profile file, where you can define them to suit your needs. Variables can be assigned values by issuing commands of the form:

```
variable=value
```

This list includes the type of value expected when defining these variables.

<table>
<thead>
<tr>
<th>Variable expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPATH=dirs</td>
<td>Directories searched by cd; allows shortcuts in changing directories; unset by default.</td>
</tr>
<tr>
<td>COLUMNS=n</td>
<td>Screen’s column width; used in line edit modes and select lists.</td>
</tr>
<tr>
<td>COMPREPLY=(words ...)</td>
<td>Array variable from which Bash reads the possible completions generated by a completion function.</td>
</tr>
<tr>
<td>EDITOR=file</td>
<td>Pathname of line-edit mode to turn on (can end in emacs or vi); used when VISUAL is not set.</td>
</tr>
<tr>
<td>EMACS</td>
<td>If the value starts with t, Bash assumes it’s running in an Emacs buffer and disables line editing.</td>
</tr>
<tr>
<td>ENV=file</td>
<td>Name of script that gets executed at startup; useful for storing alias and function definitions. For example, ENV=$HOME/.bashrc.</td>
</tr>
<tr>
<td>FCEDIT=file</td>
<td>Editor used by fc command (default is /bin/ed).</td>
</tr>
<tr>
<td>FIGNORE=pattern</td>
<td>Colon-separated list of patterns describing filenames to ignore when doing file-name completion.</td>
</tr>
<tr>
<td>GLOBIGNORE=patlist</td>
<td>Colon-separated list of patterns describing the set of filenames to ignore during pattern matching.</td>
</tr>
<tr>
<td>Variable expression</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HISTCONTROL=list</td>
<td>Colon-separated list of values controlling how commands are saved in the history file. Recognized values are: ignoredups, ignorespaces, ignoreboth, and erasedups.</td>
</tr>
<tr>
<td>HISTFILE=file</td>
<td>File in which to store command history. Default is ~/.bash_history.</td>
</tr>
<tr>
<td>HISTFILESIZE=n</td>
<td>Number of lines to be kept in the history file. This may be different than the number of commands.</td>
</tr>
<tr>
<td>HISTIGNORE=list</td>
<td>A colon-separated list of patterns that must match the entire command line. Matching lines are not saved in the history file. An unescaped &amp; in a pattern matches the previous history line.</td>
</tr>
<tr>
<td>HISTSIZE=n</td>
<td>Number of history commands to be kept in the history file.</td>
</tr>
<tr>
<td>HISTTIMEFORMAT=string</td>
<td>A format string for strftime(3) to use for printing timestamps along with commands from the history command. If set (even if null), Bash saves timestamps in the history file along with the commands.</td>
</tr>
<tr>
<td>HOME=dir</td>
<td>Home directory; set by login (from /etc/passwd file).</td>
</tr>
<tr>
<td>HOSTFILE=file</td>
<td>Name of a file in the same format as /etc/hosts that Bash should use to find hostnames for hostname completion.</td>
</tr>
<tr>
<td>IFS='chars'</td>
<td>Input field separators; default is space, tab, and newline.</td>
</tr>
<tr>
<td>IGNOREEOF=n</td>
<td>Numeric value indicating how many successive EOF characters must be typed before Bash exits. If null or nonnumeric value, default is 10.</td>
</tr>
<tr>
<td>INPUTRC=file</td>
<td>Initialization file for the readline library. This overrides the default value of ~/.inputrc.</td>
</tr>
<tr>
<td>LANG=dir</td>
<td>Default value for locale, used if no LC_* variables are set.</td>
</tr>
<tr>
<td>LC_ALL=locale</td>
<td>Current locale; overrides LANG and the other LC_* variables.</td>
</tr>
<tr>
<td>LC_COLLATE=locale</td>
<td>Locale to use for character collation (sorting order).</td>
</tr>
<tr>
<td>LC_CTYPE=locale</td>
<td>Locale to use for character class functions.</td>
</tr>
<tr>
<td>LC_MESSAGES=locale</td>
<td>Locale to use for translating &quot;$...&quot; strings.</td>
</tr>
<tr>
<td>LC_NUMERIC=locale</td>
<td>Locale to use for the decimal-point character.</td>
</tr>
<tr>
<td>LINES=n</td>
<td>Screen's height; used for select lists.</td>
</tr>
<tr>
<td>MAIL=file</td>
<td>Default file to check for incoming mail; set by login.</td>
</tr>
<tr>
<td>MAILCHECK=n</td>
<td>Number of seconds between mail checks; default is 600 (10 minutes).</td>
</tr>
<tr>
<td>MAILPATH=files</td>
<td>One or more files, delimited by a colon, to check for incoming mail. Along with each file, you may supply an optional message that the shell prints when the file increases in size. Messages are separated from the filename by a ? character, and the default message is You have mail in $<em>. $</em> is replaced with the name of the file. For example, you might have: MAILPATH=<del>/Mail?Ring! Candygram!:</del>/etc/motd?New Login Message</td>
</tr>
<tr>
<td>OPTERR=n</td>
<td>When set to 1 (the default value), Bash prints error messages from the built-in getopt command.</td>
</tr>
<tr>
<td>PATH=dirlist</td>
<td>One or more pathnames, delimited by colons, in which to search for commands to execute.</td>
</tr>
<tr>
<td>POSSIXLY_CORRECT=string</td>
<td>When set at startup or while running, Bash enters POSIX mode, disabling behavior and modifying features that conflict with the POSIX standard.</td>
</tr>
<tr>
<td>PROMPT_COMMAND=command</td>
<td>If set, Bash executes this command each time before printing the primary prompt.</td>
</tr>
<tr>
<td>PS1=string</td>
<td>Primary prompt string; default is $.</td>
</tr>
<tr>
<td>PS2=string</td>
<td>Secondary prompt (used in multiline commands); default is &gt;.</td>
</tr>
</tbody>
</table>
| PS3=string              | Prompt string in select loops; default is ?.
Arrays

Bash supports one-dimensional arrays. Elements are referenced by an index; the first element is numbered 0 and there is no upper limit on the number of elements. Arrays are initialized with a special form of assignment:

```bash
message=(hi there how are you today)
```

where each value (in this example, each word) becomes an element of the array.

Elements may also be assigned individually:

```bash
message[0]=hi
message[1]=there
message[2]=how
message[3]=are
message[4]=you
message[5]=today
```

Declaring arrays is not required. Any valid reference to a subscripted variable can create an array.

Bash also provides associative arrays, where the indices are strings instead of numbers. In this case, [ and ] act like double quotes. Associative arrays are created with `declare -A arrayname`. Unlike indexed arrays, when assigning a value to an associative array, a subscript is always required.

When referencing arrays, use the `${ ... }` syntax. This isn’t needed when referencing arrays inside `(( ))` (the form of `let` that does automatic quoting). Note that [ and ] are typed literally (i.e., they don’t stand for optional syntax).

### Syntax

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>${name[i]}</code></td>
<td>Use element <code>i</code> of array <code>name</code>. <code>i</code> can be any arithmetic expression as described under <code>let</code>.</td>
</tr>
<tr>
<td><code>${name[0]}</code></td>
<td>Use element 0 of indexed array <code>name</code>.</td>
</tr>
<tr>
<td><code>${name[@]}</code></td>
<td>Use all elements of array <code>name</code>.</td>
</tr>
<tr>
<td><code>${#name[@]}</code></td>
<td>Use the number of elements in array <code>name</code>.</td>
</tr>
</tbody>
</table>

---

**Variables**

<table>
<thead>
<tr>
<th>Variable expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS4</td>
<td>Prompt string for execution trace (bash -x or set -x); default is +.</td>
</tr>
<tr>
<td>SHELL</td>
<td>Name of default shell (e.g., /bin/bash). Bash sets this if it’s not in the environment at startup.</td>
</tr>
<tr>
<td>TERM</td>
<td>Terminal type.</td>
</tr>
<tr>
<td>TIMEFORMAT</td>
<td>A format string for the output for the time keyword.</td>
</tr>
<tr>
<td>TMOUT</td>
<td>If no command is typed after <code>n</code> seconds, exit the shell. Also affects the read command and the select loop.</td>
</tr>
<tr>
<td>VISUAL</td>
<td>Same as EDITOR, but VISUAL is checked first.</td>
</tr>
<tr>
<td>auto_resume</td>
<td>Enables the use of simple strings for resuming stopped jobs. With a value of exact, the string must match a command name exactly. With a value of substring, it can match a substring of the command name.</td>
</tr>
<tr>
<td>histchars</td>
<td>Two or three characters that control history expansion. The first character signals a history event. The second is the “quick substitution” character, and the third indicates the start of a comment. The default value is <code>!^#</code>.</td>
</tr>
</tbody>
</table>

---

**The Bash Shell**
The built-in commands `declare`, `local`, and `readonly` accept the `-a` option for an indexed array and the `-A` option for an associative array. Use the `unset` built-in to remove arrays or array elements. The built-ins are described in detail later in this chapter.

### Special Prompt Strings

Bash processes the values of the built-in shell variables `PS1`, `PS2`, and `PS4` for the following special escape sequences:

<table>
<thead>
<tr>
<th>Escape sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\a</td>
<td>An ASCII BEL character (octal 07).</td>
</tr>
<tr>
<td>\A</td>
<td>The current time in 24-hour HH:MM format.</td>
</tr>
<tr>
<td>\d</td>
<td>The date in &quot;weekday month day&quot; format.</td>
</tr>
<tr>
<td>\D{format}</td>
<td>The date as specified by the strftime(3) format. The braces are required.</td>
</tr>
<tr>
<td>\e</td>
<td>An ASCII Escape character (octal 033).</td>
</tr>
<tr>
<td>\h</td>
<td>The hostname, up to the first period.</td>
</tr>
<tr>
<td>\H</td>
<td>The full hostname.</td>
</tr>
<tr>
<td>\j</td>
<td>The current number of jobs.</td>
</tr>
<tr>
<td>\l</td>
<td>The basename of the shell's terminal device.</td>
</tr>
<tr>
<td>\n</td>
<td>A newline character.</td>
</tr>
<tr>
<td>\r</td>
<td>A carriage-return character.</td>
</tr>
<tr>
<td>\s</td>
<td>The name of the shell (basename of $0).</td>
</tr>
<tr>
<td>\t</td>
<td>The current time in 24-hour HH:MM:SS format.</td>
</tr>
<tr>
<td>\T</td>
<td>The current time in 12-hour HH:MM:SS format.</td>
</tr>
<tr>
<td>\u</td>
<td>The current user's username.</td>
</tr>
<tr>
<td>\v</td>
<td>The version of Bash.</td>
</tr>
<tr>
<td>\V</td>
<td>The release (version plus patch level) of Bash.</td>
</tr>
<tr>
<td>\w</td>
<td>The current directory, with $HOME abbreviated as ~.</td>
</tr>
<tr>
<td>\W</td>
<td>The basename of the current directory, with $HOME abbreviated as ~.</td>
</tr>
<tr>
<td>!</td>
<td>The history number of this command.</td>
</tr>
<tr>
<td>#</td>
<td>The command number of this command.</td>
</tr>
<tr>
<td>$</td>
<td>If the effective UID is 0, a #; otherwise a $.</td>
</tr>
<tr>
<td>@</td>
<td>The current time in 12-hour a.m./p.m. format.</td>
</tr>
<tr>
<td>\nnn</td>
<td>The character represented by octal value nnn.</td>
</tr>
<tr>
<td>\</td>
<td>A literal backslash.</td>
</tr>
<tr>
<td>\l</td>
<td>Start a sequence of nonprinting characters, such as for highlighting or changing colors on a terminal.</td>
</tr>
<tr>
<td>]</td>
<td>End a sequence of nonprinting characters.</td>
</tr>
</tbody>
</table>

In Bash, the escape sequences are processed first. After that, variable, command, and arithmetic substitutions are performed if the `promptvars` shell option is enabled via the `shopt` command (the default).
**Arithmetic Expressions**

The `let` built-in command performs integer arithmetic. You can substitute arithmetic values (for use as command arguments or in variables); base conversion is also possible.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>$(( expr ))</code></td>
<td>Use the value of the enclosed arithmetic expression.</td>
</tr>
<tr>
<td><code>B#n</code></td>
<td>Interpret integer ( n ) in numeric base ( B ). For example, <code>8#100</code> specifies the octal equivalent of decimal 64.</td>
</tr>
</tbody>
</table>

**Operators**

The shell uses arithmetic operators from the C programming language; the following table lists the operators in decreasing order of precedence.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>++</code> <code>-=</code></td>
<td>Auto-increment and auto-decrement, both prefix and postfix.</td>
</tr>
<tr>
<td><code>+-</code> <code>!</code> <code>~</code></td>
<td>Unary plus and minus, logical negation and binary inversion (one's complement).</td>
</tr>
<tr>
<td><code>**</code></td>
<td>Exponentiation.</td>
</tr>
<tr>
<td><code>/</code> <code>%</code></td>
<td>Multiplication; division; modulus (remainder).</td>
</tr>
<tr>
<td><code>+</code> <code>-</code></td>
<td>Addition; subtraction.</td>
</tr>
<tr>
<td><code>&lt;&lt;</code> <code>&gt;&gt;</code></td>
<td>Bitwise left shift; bitwise right shift.</td>
</tr>
<tr>
<td><code>&lt; &lt;= &gt; &gt;=</code></td>
<td>Less than; less than or equal to; greater than; greater than or equal to.</td>
</tr>
<tr>
<td><code>==</code> `!='</td>
<td>Equality; inequality (both evaluated left to right).</td>
</tr>
<tr>
<td><code>&amp;</code></td>
<td>Bitwise AND.</td>
</tr>
<tr>
<td><code>^</code></td>
<td>Bitwise exclusive OR.</td>
</tr>
<tr>
<td>`</td>
<td>`</td>
</tr>
<tr>
<td><code>&amp;&amp;</code></td>
<td>Logical AND (short-circuit).</td>
</tr>
<tr>
<td>`</td>
<td></td>
</tr>
<tr>
<td><code>? :</code></td>
<td>Inline conditional evaluation.</td>
</tr>
<tr>
<td><code>+=</code> <code>-=</code> <code>*=</code> <code>/=</code> <code>%=</code></td>
<td>Assignment.</td>
</tr>
<tr>
<td><code>&lt;=</code></td>
<td>Sequential expression evaluation.</td>
</tr>
</tbody>
</table>

**Examples**

See the `let` command for more information and examples:

```bash
let "count=0" "i = i + 1"
let "num % 2"
((percent >= 0 && percent <= 100))
```

Assign `i` and `count`
Test for an even number
Test the range of a value
Command History

Bash lets you display or modify previous commands. Commands in the history list can be modified using:

- Line-edit mode
- The `fc` and `hist` commands

Bash also supports a command-history mechanism very similar to that of the C shell. This mechanism uses a history expansion character (! by default) to select a line from the history. Portions of the line are then selected to be included in the current line. Because the interactive line-editing features are considerably superior we do not cover those features here. See the Bash manpage for more information.

Line-Edit Mode

Line-edit mode emulates many features of the `vi` and `emacs` editors. The history list is treated like a file. When the editor is invoked, you type editing keystrokes to move to the command line you want to execute. You can also change the line before executing it. When you’re ready to issue the command, press the Enter key.

Select an editor with either `set -o vi` or `set -o emacs`; assignment to the VISUAL or EDITOR variables has no effect. Note that `vi` starts in input mode; to type a `vi` command, press the Escape key first.

Common editing keystrokes

<table>
<thead>
<tr>
<th>vi</th>
<th>emacs</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>Ctrl-P</td>
<td>Get previous command.</td>
</tr>
<tr>
<td>j</td>
<td>Ctrl-N</td>
<td>Get next command.</td>
</tr>
<tr>
<td>/string</td>
<td>Ctrl-R string</td>
<td>Get previous command containing string.</td>
</tr>
<tr>
<td>h</td>
<td>Ctrl-B</td>
<td>Move back one character.</td>
</tr>
<tr>
<td>l</td>
<td>Ctrl-F</td>
<td>Move forward one character.</td>
</tr>
<tr>
<td>b</td>
<td>ESC-B</td>
<td>Move back one word.</td>
</tr>
<tr>
<td>w</td>
<td>ESC-F</td>
<td>Move forward one word.</td>
</tr>
<tr>
<td>X</td>
<td>DEL</td>
<td>Delete previous character.</td>
</tr>
<tr>
<td>x</td>
<td>Ctrl-D</td>
<td>Delete character under cursor.</td>
</tr>
<tr>
<td>dw</td>
<td>ESC-D</td>
<td>Delete word forward.</td>
</tr>
<tr>
<td>db</td>
<td>ESC-H</td>
<td>Delete word backward.</td>
</tr>
<tr>
<td>xp</td>
<td>Ctrl-R</td>
<td>Transpose two characters.</td>
</tr>
</tbody>
</table>

The `fc` Command

`fc` stands for either “find command” or “fix command,” since it does both jobs. Use `fc -l` to list history commands and `fc -e` to edit them. See the `fc` entry in the section “Built-in Commands” on page 619 for more information.
Examples

- `history` List the last 16 commands
- `fc -l 20 30` List commands 20 through 30
- `fc -l -5` List the last five commands
- `fc -l cat` List all commands since the last command beginning with cat
- `fc -l 50` List all commands since command 50
- `fc -ln 5 > doit` Save command 5 to file doit
- `fc -e vi 5 20` Edit commands 5 through 20 using vi
- `fc -e emacs` Edit previous command using emacs

Interactive line editing is easier to use than `fc`, since you can move up and down in the saved command history using your favorite editor commands (as long as your favorite editor is either vi or Emacs!). You can also use the Up and Down arrow keys to traverse the command history and the right and left arrow keys to move around in the command line.

Programmable Completion

Bash and the readline library provide completion facilities, whereby you can type part of a command name, press the Tab key, and have Bash fill in part or all of the rest of the command or filename. Programmable completion lets you, as a shell programmer, write code to customize the list of possible completions that Bash will present for a particular, partially entered word. This is accomplished through the combination of several facilities:

- The `complete` command allows you to provide a completion specification, or compspec, for individual commands. You specify, via various options, how to tailor the list of possible completions for the particular command. This is simple, but adequate for many needs. (See the `complete` entry in the section “Built-in Commands” on page 619.)

- For more flexibility, you may use `complete -F funcname command`. This tells Bash to call `funcname` to provide the list of completions for `command`. You write the `funcname` function.

- Within the code for a `complete -F` function, the COMP* shell variables provide information about the current command line. COMPREPLY is an array into which the function places the final list of completion results.

- Also within the code for a `complete -F` function, you may use the `compgen` command to generate a list of results, such as “usernames that begin with a” or “all set variables.” The intent is that such results would be used with an array assignment:

  ```
 ...
 COMPREPLY=($(compgen options arguments))
 ...
  ```

Compspecs may be associated with either a full pathname for a command or, more commonly, with an unadorned command name `/usr/bin/man` versus plain `man`). In the list that follows, completions are attempted based on the options provided to the `complete` command.
1. Bash first identifies the command. If a pathname is used, Bash looks to see if a compspec exists for the full pathname. Otherwise, it sets the command name to the last component of the pathname, and searches for a compspec for the command name.

2. If a compspec exists, Bash uses it. If not, Bash falls back to the default built-in completions.

3. Bash performs the action indicated by the compspec to generate a list of possible matches. Of this list, only those that have the word being completed as a prefix are used for the list of possible completions. For the \texttt{-d} and \texttt{-f} options, the variable \texttt{FIGORE} is used to filter out undesirable matches.

4. Bash generates filenames as specified by the \texttt{-G} option. \texttt{GLOBIGNORE} is not used to filter the results, but \texttt{FIGORE} is.

5. Bash processes the argument string provided to \texttt{-W}. The string is split using the characters in \texttt{SIFS}. The resulting list provides the candidates for completion. This is often used to provide a list of options that a command accepts.

6. Bash runs functions and commands as specified by the \texttt{-F} and \texttt{-C} options. For both, Bash sets \texttt{COMP\_LINE} and \texttt{COMP\_POINT} as described previously. For a shell function, \texttt{COMP\_WORDS} and \texttt{COMP\_CWORD} are also set. Also for both, \texttt{S1} is the name of the command whose arguments are being completed, \texttt{S2} is the word being completed, and \texttt{S3} is the word in front of the word being completed. Bash does \textit{not} filter the results of the command or function.
   
   a. Functions named with \texttt{-F} are run first. The function should set the \texttt{COMPREPLY} array to the list of possible completions. Bash retrieves the list from there.
   
   b. Commands provided with \texttt{-C} are run next, in an environment equivalent to command substitution. The command should print the list of possible completions, one per line. An embedded newline should be escaped with a backslash.

7. Once the list is generated, Bash filters the results according to the \texttt{-X} option. The argument to \texttt{-X} is a pattern specifying files to exclude. By prefixing the pattern with a \texttt{!}, the sense is reversed, and the pattern instead specifies that only matching files should be retained in the list.

   An \texttt{&} in the pattern is replaced with the text of the word being completed. Use \texttt{\&} to produce a literal \texttt{&}.

8. Finally, Bash prepends or appends any prefixes or suffixes supplied with \texttt{-P} or \texttt{-S} options.

9. In the case that no matches were generated, if \texttt{-o dirnames} was used, Bash attempts directory name completion.

10. On the other hand, if \texttt{-o plusdirs} was provided, Bash adds the result of directory completion to the previously generated list.

11. Normally, when a compspec is provided, Bash’s default completions are not attempted, nor are the \textit{readline} library’s default filename completions.

   a. If the compspec produces no results and \texttt{-o bashdefault} was provided, then Bash attempts its default completions.
b. If neither the compspspec, nor the Bash default completions with `-o bash-
default` produced any results, and `-o default` was provided, then Bash has the readline library attempt its filename completions.

Ian Macdonald has collected a large set of useful compspspecs, often distributed as the file `/etc/bash_completions`.

Examples

Restrict files for the C compiler to C, C++ and assembler source files, and relocatable object files:

```
complete -f -X '!*[Ccos]' gcc cc
```

For the `man` command, restrict expansions to things that have manpages:

```sh
Simple example of programmable completion for manual pages.
A more elaborate example appears in the bash_completion file.
Assumes man [num] command command syntax.
shopt -s extglob
_enable extended pattern matching
曼 () {
 local dir mandir=/usr/share/man
 # Clear reply list
 COMPREPLY=
 if [[${COMP_WORDS[1]} = +([0-9])]]
 then
 # section provided: man 3 foo
 dir=$mandir/man${COMP_WORDS[COMP_CWORD-1]}
 Look in that directory
 else
 # no section, default to commands
 dir=$mandir/'man[18]'
 Look in command directories
 fi
 COMPREPLY=($(find $dir -type f |
 Generate raw file list
 sed 's;..*/;;' |
 Remove leading directories
 sed 's/\.[0-9]*/\$/' |
 Remove trailing suffixes
 grep "^${COMP_WORDS[$COMP_CWORD]}" |
 Keep those that match given prefix
 sort |
 Sort final list
))
}
```

`complete -F _man man`  
`Associate function with command`

Job Control

Job control lets you place foreground jobs in the background, bring background jobs to the foreground, or suspend (temporarily stop) running jobs. Many job-control commands take a `jobID` as an argument. This argument can be specified as follows:

`%n` Job number `n`.

`%s` Job whose command line starts with string `s`.
%?s
   Job whose command line contains string s.
%%
   Current job.
%+
   Current job (same as above).
%-:
   Previous job.

The following job-control commands are described more completely in the
section "Built-in Commands" on page 619.

bg  Put a job in the background.
fg  Put a job in the foreground.
jobs List active jobs.
kill Terminate a job.
stty tostop
   Stop background jobs if they try to send output to the terminal. (Note that
   stty is not a built-in command.)
suspend
   Suspend a job-control shell (such as one created by su).
wait
   Wait for background jobs to finish.
Ctrl-Z
   Suspend a foreground job. Then use bg or fg. (Your terminal may use some-
   thing other than Ctrl-Z as the suspend character.)

Command Execution

When you type a command to Bash, it looks in the following places until it finds
a match:

1. Keywords such as if and for.
2. Aliases. You can’t define an alias whose name is a shell keyword, but you can
define an alias that expands to a keyword, e.g., alias aslongas=while. (In non-
POSIX mode, Bash does allow you to define an alias for a shell keyword.)
3. Special built-ins like break and continue. The list of POSIX special built-ins is
   . (dot), :, break, continue, eval, exec, exit, export, readonly, return, set,
   shift, source, times, trap, and unset.
4. Functions. When in non-POSIX mode, Bash finds functions before built-in
commands.
6. Scripts and executable programs, for which the shell searches in the directo-
   ries listed in the PATH environment variable.
The distinction between “special” built-in commands and nonspecial ones comes from POSIX. This distinction, combined with the `command` command, makes it possible to write functions that override shell built-ins, such as `cd`. For example:

```bash
cd () {
 command cd "$@" # Use real cd to change directory
 echo now in $PWD # Other stuff we want to do
}
```

### Restricted Shells

A restricted shell is one that disallows certain actions, such as changing directory, setting `PATH`, or running commands whose names contain a `/` character. See the Bash manpage for the full list of restrictions.

To run a restricted shell, enter the command `bash -r`. Depending on your Linux distribution, you may also be able to enter the command as `rbash`.

You can still run shell scripts, since in that case the restricted shell calls the unrestricted version of the shell to run the script after it reads `/etc/profile`, `$HOME/.profile`, and other startup files.

Restricted shells are not used much in practice, as they are difficult to set up correctly.

### Built-in Commands

Examples to be entered as a command line are shown with the `$` prompt. Otherwise, examples should be treated as code fragments that might be included in a shell script. For convenience, some of the reserved words used by multiline commands are also included.

---

! pipeline

Negate the sense of a pipeline. Returns an exit status of 0 if the pipeline exited nonzero, and an exit status of 1 if the pipeline exited zero. Typically used in `if` and `while` statements.

**Example**

This code prints a message if user `jane` is not logged on:

```bash
if ! who | grep jane > /dev/null
then
 echo jane is not currently logged on
fi
```

---

# Ignore all text that follows on the same line. # is used in shell scripts as the comment character and is not really a command.
#!shell

Used as the first line of a script to invoke the named shell. Anything given on the rest of the line is passed as a single argument to the named shell. This feature is typically implemented by the kernel, but may not be supported on some older systems. Some systems have a limit of approximately 32 characters on the maximum length of shell. For example:

```
#!/bin/sh
```

: : Null command. Returns an exit status of 0. The line is still processed for side effects, such as variable and command substitutions, or I/O redirection. See the following Example and the Example under case.

**Example**
Check whether someone is logged in:

```
if who | grep $1 > /dev/null
then : # Do nothing if user is found
else echo "User $1 is not logged in"
fi
```

. file [arguments]
Read and execute lines in file. file does not have to be executable, but must reside in a directory searched by PATH. The arguments are stored in the positional parameters. If Bash is not in POSIX mode and file is not found in PATH, Bash looks in the current directory for the file.

[[ expression ]]
Same as test expression or [ expression ], except that [[ ]] allows additional operators. Word splitting and filename expansion are disabled. Note that the brackets ([ ]) are typed literally and that they must be surrounded by whitespace.

**Additional operators**
&;& Logical AND of test expressions (short circuit).
|| Logical OR of test expressions (short circuit).
< First string is lexically “less than” the second.
> First string is lexically “greater than” the second.

alias alias [option] [name='cmd'...] Assign a shorthand name as a synonym for cmd. If =cmd is omitted, print the alias for name; if name is also omitted, print all aliases. By itself or with -p, alias prints one alias per line on standard output as
alias name=value. If the value contains a trailing space, the next word on the command line also becomes a candidate for alias expansion. See also unalias.

Option
-p Print the word alias before each alias.

Example
alias dir='echo ${PWD##*/}'

bind

bind [-m map] [options]
bind [-m map] [-q function] [-r sequence] [-u function]
bind [-m map] -f file
bind [-m map] -x sequence:command
bind [-m map] sequence:function
bind readline-command

Manage the readline library. Nonoption arguments have the same form as in an .inputrc file.

Options
-4 file
   Read key bindings from file.
-l List the names of all the readline functions.
-m map
   Use map as the keymap. Available keymaps are: emacs, emacs-standard, emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and vi-insert. vi is the same as vi-command, and emacs is the same emacs-standard.
-p Print the current readline bindings such that they can be reread from a .inputrc file.
-P Print the current readline bindings.
-q function
   Query which keys invoke the readline function function.
-r sequence
   Remove the binding for key sequence sequence.
-s Print the current readline key sequence and macro bindings such that they can be reread from a .inputrc file.
-S Print the current readline key sequence and macro bindings.
-u function
   Unbind all keys that invoke the readline function function.
-v Print the current readline variables such that they can be reread from a .inputrc file.
-V  Print the current readline variables.
-x sequence:command
    Execute the shell command command whenever sequence is entered.

break  break [n]
    Exit from a for, while, select, or until loop (or break out of n loops).

builtin  builtin command [ arguments ... ]
    Run the shell built-in command command with the given arguments. This allows you to bypass any functions that redefine a built-in command’s name. The command command is more portable.

Example
    This function lets you do your own tasks when you change directory:
    cd () {
        builtin cd "$@
        pwd
    }

caller  caller [expression]
    Print the line number and source filename of the current function call or dot file. With nonzero expression, prints that element from the call stack. The most recent is zero. This command is for use by the Bash debugger.

case  case value in
        pattern1) cmd1; ;
        pattern2) cmd2; ;
        .
        .
        .
        esac
    Execute the first set of commands (cmd1) if value matches pattern1, execute the second set of commands (cmd2) if value matches pattern2, etc. The last command in each set ends with ;; and no further matches are attempted. If the set ends in ;& instead, execution continues with the commands for the next set of patterns; if it ends in ;&&, the next set of the in the list is tested. value is typically a positional parameter or other shell variable. cmd is typically Linux commands, shell programming commands, or variable assignments. Patterns can use file-generation metacharacters. Multiple patterns (separated by |) can be specified on the same line; in this case, the associated cmd are executed whenever value
matches any of these patterns. See the Examples here and under eval.
A pattern may be preceded by an optional open parenthesis, as in (pattern), necessary for balancing parentheses inside a $() construct.

**Examples**

Check first command-line argument and take appropriate action:
```bash
 case $1 in
 no|yes) response=1;;
 -[tT]) table=TRUE;;
 *) echo "unknown option"; exit 1;;
 esac
```

Read user-supplied lines until user exits:
```bash
 while : # Null command; always true
do
 printf "Type . to finish ==> "
 read line
 case "$line" in
 .) echo "Message done"
 break ;;
 *) echo "$line" >> $message ;;
 esac
 done
```

**cd**

```bash
 cd [-LP] [dir]
 cd [-LP] [-]
```

With no arguments, change to the user’s home directory. Otherwise, change the working directory to `dir`. If `dir` is a relative pathname but is not in the current directory, the CDPATH variable is searched. A directory of - stands for the previous directory.

**Options**

- **-L** Use the logical path (what the user typed, including any symbolic links) for `cd ..` and the value of PWD. This is the default.
- **-P** Use the actual filesystem physical path for `cd ..` and the value of PWD.

**command**

```bash
 command [-pvV] name [arg ...]
```

Without -v or -V, execute `name` with given arguments. This command bypasses any aliases or functions that may be defined for `name`. When used with a special built-in, it prevents the built-in from exiting the script if it fails.

**Options**

- **-p** Use a predefined, default search path, not the current value of PATH.
- **-v** Print a description of how the shell interprets `name`. 
-V  Print a more verbose description of how the shell interprets name.

Example
Create an alias for rm that gets the system’s version, and runs it with the -i option:

```
$ alias 'rm=command -p rm -i'
```

`compgen`

`compgen [options] [string]`
Generate possible completions for string according to the options and write to standard output. Options are those accepted by complete, except for -p and -r. For more information, see the entry for complete.

`complete`

`complete [options] command ...`
Specify the way to complete arguments for each command. See “Programmable Completion” on page 615 for more discussion.

**Options**

- **-A type**
  Use type to specify a list of possible completions. The type may be one of the following. Options in parentheses are alternative specifications for -A type.
  - **alias (-a)**
   _alias names.
  - **arrayvar**
    Array variable names.
  - **binding**
    Bindings from the readline library.
  - **builtin (-b)**
    Shell built-in command names.
  - **command (-c)**
    Command names.
  - **directory (-d)**
    Directory names.
  - **disabled**
    Names of disabled shell built-in commands.
  - **enabled**
    Names of enabled shell built-in commands.
  - **export (-e)**
    Names of exported shell variables.
  - **file (-f)**
    Filenames.
  - **function**
    Names of shell functions.
group (-g)
  Group names.

help topic
  Help topics as allowed by the help built-in command.

host name
  Hostnames, as found in the file named by $HOSTFILE.

job (-j)
  Job names.

keyword (-k)
  Shell reserved keywords.

running
  Names of running jobs.

service (-s)
  Service names (from /etc/services).

set opt
  Valid arguments for set -o.

shopt
  Valid option names for the shopt built-in command.

signal
  Signal names.

stopped
  Names of stopped jobs.

user (-u)
  Usernames.

variable (-v)
  Shell variable names.

-C command
  Run command in a subshell and use its output as the list of completions.

-E Remaining options and actions apply to completion attempts on a blank line.

-F function
  Run shell function function in the current shell. Upon its return, retrieve the list of completions from the COMPREPLY array.

-G pattern
  Expand pattern to generate completions.

-o option
  Control the behavior of the completion specification. The value for option is one of the following:

bash default
  Fall back to the normal Bash completions if no matches are produced.

default
  Use the default readline completions if no matches are produced.
dirnames
Do directory name completion if no matches are produced.

filenames
Inform the readline library that the intended output is filenames, so that the library can do any filename-specific processing, such as adding a trailing slash for directories or removing trailing spaces.

nospaces
Inform the readline library that it should not append a space to words completed at the end of a line.

plusdirs
Attempt directory completion and add any results to the list of completions already generated.

-p With no commands, print all completion settings in a way that can be reread.

-P prefix
The prefix is added to each resulting string as a prefix after all the other options have been applied.

-r Remove the completion settings for the given commands, or all settings if no commands.

-S suffix
The suffix is added to each resulting string as a suffix after all the other options have been applied.

-W wordlist
Split wordlist (a single shell word) using $IFS. The generated list contains the members of the split list that matched the word being completed. Each member is expanded using brace expansion, tilde expansion, parameter and variable expansion, command substitution, and arithmetic expansion. Shell quoting is respected.

-X pattern
Exclude filenames matching pattern from the filename completion list. With a leading ! in the pattern, the sense is reversed, and only filenames matching pattern are retained.

continue continue [n]
Skip remaining commands in a for, while, select, or until loop, resuming with the next iteration of the loop (or skipping n loops).

declare declare [options] [name[=value]]
typeset [options] [name[=value]]
Declare variables and manage their attributes. In function bodies, variables are local, as if declared with the local command.

Options
-a Each name is an indexed array variable.
-A Each name is an associative array variable.
-f Each name is a function.
-F For functions, print just the function name and attributes, not the function definition (body). Implies -f.

-i Each variable is an integer; in an assignment, the value is evaluated as an arithmetic expression.

-l Assign all values as lowercase only; convert uppercase to lowercase.

-p With no names, print all variables and their values. With names, print the names, attributes, and values of the given variables. Used with -f, print all function names and attributes. This option causes all other options to be ignored.

-r Mark names as read-only. Subsequent assignments will fail.

-t Apply the trace attribute to each name. Traced functions inherit the DEBUG and RETURN traps from the shell. This attribute has no meaning for variables.

-u Assign all values as uppercase only; convert lowercase to uppercase.

-x Mark names for export into the environment of child processes.

With a + instead of a -, the given attribute is disabled. With no variable names, all variables having the given attribute(s) are printed in a form that can be reread as input to the shell.

Examples

```
$ declare -i val
Make val an integer
$ val=4+7
Evaluate value
$ echo $val
Show result
11

$ declare -r z=42
Make z read-only
$ z=31
Try to assign to it
bash: z: readonly variable
Assignment fails
$ echo $z
42

$ declare -p val z
Show attributes and values
declare -i val="11"
declare -r z="42"
```

`dirs` dirs [-clpv] [+n] [-n]

Print the directory stack, which is managed with `pushd` and `popd`.

Options

+n Print the nth entry from the left; first entry is zero.

-n Print the nth entry from the right; first entry is zero.

-c Remove all entries from (clear) the directory stack.

-l Produce a longer listing, one that does not replace $HOME with ~.

-p Print the directory stack, one entry per line.
-v  Print the directory stack, one entry per line, with each entry preceded by its index in the stack.

disown

disown [-ahr] [job ...]
Remove job from the list of jobs managed by Bash.

Options
-a  Remove all jobs. With -h, mark all jobs.
-h  Instead of removing jobs from the list of known jobs, mark them to not receive SIGHUP when Bash exits.
-r  With no jobs, remove (or mark) only running jobs.

do
do
Reserved word that precedes the command sequence in a for, while, until, or select statement.

done
done
Reserved word that ends a for, while, until, or select statement.

echo

echo [-eEn] [string]
Write string to standard output. (See also echo in Chapter 3.)

Options
-e  Enable interpretation of the following escape sequences, which must be quoted (or escaped with a \) to prevent interpretation by the shell:
   \a  Alert (ASCII BEL).
   \b  Backspace.
   \c  Suppress the terminating newline (same as -n).
   \e  ASCII Escape character.
   \f  Formfeed.
   \n  Newline.
   \r  Carriage return.
   \t  Tab character.
   \v  Vertical-tab character.
   \  Backslash.
   \00nnn  ASCII character represented by octal number nnn, where nnn is zero, one, two, or three digits and is preceded by a 0.
   \nnn  ASCII character represented by octal number nnn, where nnn is one, two, or three digits.
The Bash Shell

ASCII character represented by hexadecimal number \xHH, where HH is one or two hexadecimal digits.

-E  Do not interpret escape sequences, even on systems where the default behavior of the built-in echo is to interpret them.

-n  Do not print the terminating newline.

Examples

$ echo "testing printer" | lp
$ echo "Warning: ringing bell \a"

enable

enable [-adnps] [-f file] [command ...]
Enable or disable shell built-in commands. Disabling a built-in lets you use an external version of a command that would otherwise use a built-in version, such as echo or test.

Options

-a  For use with -p, print information about all built-in commands, disabled and enabled.
-d  Remove (delete) a built-in previously loaded with -f.
-f file  Load a new built-in command command from the shared library file file.
-n  Disable the named built-in commands.
-p  Print a list of enabled built-in commands.
-s  Print only the POSIX special built-in commands. When combined with -f, the new built-in command becomes a POSIX special built-in.

esac

Reserved word that ends a case statement.

eval

eval args
Typically, eval is used in shell scripts, and args is a line of code that contains shell variables. eval forces variable expansion to happen first and then runs the resulting command. This “double-scanning” is useful any time shell variables contain input/output redirection symbols, aliases, or other shell variables. (For example, redirection normally happens before variable expansion, so a variable containing redirection symbols must be expanded first using eval; otherwise, the redirection symbols remain uninterpreted.)

Example

This fragment of a shell script shows how eval constructs a command that is interpreted in the right order:

for option
do
case "$option" in
  save) out=' > $newfile' ;;
  show) out=' | more' ;;
esac
done

eval sort $file $out

**exec**

```
exec [-a name] [-cl] [command args ...]
```

Execute command in place of the current process (instead of creating a new process). exec is also useful for opening, closing, or copying file descriptors.

**Options**

- `-a name`  
  Use name for the value of argv[0].
- `-c`  
  Clear the environment before executing the program.
- `-l`  
  Place a minus sign at the front of argv[0], just as login(1) does.

**Examples**

```
trap 'exec 2>&-' 0
Close standard error when shell script exits (signal 0)

$ exec /bin/csh
Replace shell with C shell

$ exec < infile
Reassign standard input to infile
```

**exit**

```
exit [n]
```

Exit a shell script with status n (e.g., exit 1). n can be 0 (success) or nonzero (failure). If n is not given, exit status is that of the most recent command. exit can be issued at the command line to close a window (log out). Exit statuses can range in value from 0 to 255.

**Example**

```
if [$# -eq 0]
then
 echo "Usage: $0 [-c] [-d] file(s)" 1>&2
 exit 1 # Error status
fi
```

**export**

```
export [-fn] [name=[value] ...]
export -p
```

Pass (export) the value of one or more shell variables, specified by name, giving them global meaning (they are local by default). For example, a variable defined in one shell script must be exported if its value is used in other programs called by the script. If a value is specified, the variable is set to that value. If no names are given, or with -p, export lists the variables exported by the current shell.
Options
- Name refers to functions; the functions are exported in the environment.
- Remove the named variables or functions from the environment.
- Print names and values of exported variables.

Example
In the original Bourne shell, you would type:

```
TERM=vt100
export TERM
```

In Bash, type this instead:

```
export TERM=vt100
```

false

Built-in command that exits with a false return value.

fc

```
f[-lnr] [-e editor] [first [last]]
f -s [old-new] [command]
```

Display or edit commands in the history list. first and last are numbers or strings specifying the range of commands to display or edit. If last is omitted, fc applies to a single command (specified by first). If both first and last are omitted, fc edits the previous command or lists the last 16. The second form of fc takes a history command, replaces old with new, and executes the modified command. If no strings are specified, command is just reexecuted. If no command is given either, the previous command is reexecuted. command is a number or string like first. See the examples in the earlier section “Command History” on page 614.

Options
Use only one of -e, -l or -s.
- e editor
  Invoke editor to edit the specified history commands. If no editor is specified, Bash defaults first to the value of FEDIT, then to the value of EDITOR, then to vi.
- l List the specified command or range of commands, or list the last 16.
- n Suppress command numbering from the -l listing.
- r Reverse the order of the -l listing.
- s [old=new]
  Replace the string old with new in the specified command and execute the modified command.

fg

```
fg [jobIDs]
```

Bring current job or jobIDs to the foreground. See the section “Job Control” on page 617.
Reserved word that ends an if statement. (Don’t forget to use it!)

For variable $x$ (in optional list of values) do commands. If in list is omitted, "$@" (the positional parameters) is assumed.

**Examples**

Paginate files specified on the command line; save each result:

```bash
for file; do
 pr $file > $file.tmp
done
```

Search chapters for a list of words (like `fgrep -f`):

```bash
for item in `cat program_list`
 do
 echo "Checking chapters for"
 echo "references to program $item..."
 grep -c "$item.[co]" chap*
 done
```

Extract a one-word title from each file and use as new filename:

```bash
for file
 do
 name=`sed -n 's/NAME: //p' $file`
 mv $file $name
 done
```

**Example**

Search for a phrase in each odd chapter:

```bash
for ((x=1; x <= 20; x += 2))
 do
 grep $1 chap$x
 done
```
function

[function] name () { commands; }

function name () { commands; }

Define name as a shell function. See the description of semantic issues in the section “Functions” on page 605. If the reserved word function is given, the parentheses following name are optional.

Example

Define a function to count files:

```
$ function fcount {
 > ls | wc -l
 >}
```

getopts

getopts string name [args]

Process command-line arguments (or args, if specified) and check for legal options. `getopts` is used in shell-script loops and is intended to ensure standard syntax for command-line options. Standard syntax dictates that command-line options begin with `-`. Options can be stacked: i.e., consecutive letters can follow a single `-`. End processing of options by specifying `--` on the command line. `string` contains the option letters to be recognized by `getopts` when running the shell script. Valid options are processed in turn and stored in the shell variable `name`. If an option is followed by a colon, the option must be followed by one or more arguments. (Multiple arguments must be given to the command as one shell word. This is done by quoting the arguments or separating them with commas. The application must be written to expect multiple arguments in this format.) `getopts` uses the shell variables `OPTARG`, `OPTIND`, and `OPTERR`.

hash

hash [-dirt] [-p file] [commands]

As the shell finds commands along the search path (`$PATH`), it remembers the found location in an internal hash table. The next time you enter a command, the shell uses the value stored in its hash table.

With no arguments, `hash` lists the current hashed commands. The display shows hits (the number of times the command is called by the shell) and the command name.

With `commands`, the shell adds those commands to the hash table.

Options

- `-d` Remove (delete) just the specified commands from the hash table.
- `-l` Produce output in a format that can be reread to rebuild the hash table.
- `-p file` Associate file, assumed to be the full pathname, with command in the hash table rather than searching `$PATH`.
-r  Remove all commands from the hash table.
-t  With one name, print the full pathname of the command.
    With more than one name, print the command name and the
    full path, in two columns.

Besides the -r option, the hash table is also cleared when PATH is
assigned. Use PATH=$PATH to clear the hash table without
affecting your search path. This is most useful if you have installed
a new version of a command in a directory that is earlier in $PATH
than the current version of the command.

help
help [-s] [pattern]
Print usage information on standard output for each Bash
command that matches pattern. The information includes descrip-
tions of each command’s options. With the -s option, print only
brief usage information.

Examples
$ help -s cd
  Short help
  cd: cd [-L|-P] [dir]

$ help true
  Full help
  true: true
  Return a successful result.

  Exit Status:
  Always succeeds.

history
history [count]
history [options]
Print commands in the history list or manage the history file. With
no options or arguments, display the history list with command
numbers. With a count argument, print only that number of the
most recent commands.

Options
-a  Append new history lines (those executed since the beginning
    of the session) to the history file.
-c  Clear the history list (remove all entries).
-d position
    Delete the history item at position position.
-n  Read unread history lines from the history file into the history
    list.
-p argument ...
    Perform history substitution on each argument, printing the
    results to standard output. The results are not saved in the
    history list. Each argument must be quoted.
-r  Read the history file and replace the history list with its
    contents.
-s argument ...
  Store the arguments in the history list as a single entry.
-w  Write the current history list to the history file, overwriting the file.

if
  if condition1
  then commands1
  [ elif condition2
    then commands2 ]
  .
  .
  [ else commands3 ]
fi
If condition1 is met, do commands1; otherwise, if condition2 is met, do commands2; if neither is met, do commands3. Conditions are often specified with the test and [[]] commands. See test and [[]] for a full list of conditions, and see additional Examples under : and exit.

Examples
Insert a 0 before numbers less than 10:
  if [ $counter -lt 10 ]
  then number=0$counter
  else number=$counter
  fi
Make a directory if it doesn’t exist:
  if [ ! -d $dir ]; then
    mkdir $dir
    chmod 775 $dir
  fi

jobs [options] [jobIDs]
List all running or stopped jobs, or list those specified by jobIDs. For example, you can check whether a long compilation or text format is still running. Also useful before logging out. See the section “Job Control” on page 617.

Options
-1 List job IDs and process group IDs.
-n List only jobs whose status changed since last notification.
-p List process group IDs only.
-r List running jobs only.
-s List stopped jobs only.
-x cmd
  Replace each job ID found in cmd with the associated process ID and then execute cmd.
**kill**

`kill [options] [IDs]`

Terminate each specified process ID or job ID. You must own the process or be a privileged user. This built-in command is similar to `/usr/bin/kill`, described in Chapter 3. See the section "Job Control" on page 617.

**Options**

- `-l` List the signal names and numbers. (Used by itself.)
- `-n num`
  Send the given signal number.
- `-s name`
  Send the given signal name.
- `-signal`
  The signal number or name (from `kill -l` or `/usr/include/sys/signal.h`). With a signal number of 9, the kill is absolute.

**let**

`let expressions`

Perform arithmetic as specified by one or more expressions. Expressions consist of numbers, operators, and shell variables (which don’t need a preceding `$`). Expressions must be quoted if they contain spaces or other special characters. The `()` form does the quoting for you. For more information and examples, see "Arithmetic Expressions" on page 613. See also `expr` in Chapter 3.

**Examples**

Each of these examples adds 1 to variable `i`:

```bash
i=`expr $i + 1`
let i=i+1
let "i = i + 1"
((i = i + 1))
((i += 1))
((i++))
```

**local**

`local [option] [name[=value]]`

Declares local variables for use inside functions. The `option` can be any option accepted by `declare`; see `declare` for the full list. It is an error to use `local` outside a function body.

**logout**

`logout`

Exit a login shell. The command fails if the current shell is not a login shell.
mapfile
mapfile [options] [array]
readarray [options] [array]
Populate an array by reading lines from standard input and placing them into the specified array. The default array is MAPFILE. Without the -O option, mapfile clears the array before assigning entries to it.

Options
-c count
   Used with -C to specify the number of lines read between callback calls.
-C callback
   Evaluate the callback code every time count lines are read, where count is specified by -c (default is 5000).
-n num
   Read in at most num lines, or all lines if num is 0.
-O origin
   Begin assigning entries to the array at index origin (default index is 0).
-s count
   Discard the first count lines read.
-t
   Remove a trailing line from each input line.
-u fd
   Read from the given file descriptor instead of standard input.

name()
[function] name () {commands; }
Define name as a function. POSIX syntax. The reserved word function is optional. The function definition can be written on one line or across many. See “Functions” on page 605 for more detailed information.

Example
$ count () {
   > ls | wc -l
   > }
When issued at the command line, count displays the number of files in the current directory.

popd
popd [-n] [+count] [-count]
Pop the top directory off the directory stack (as shown by the dirs command), and change to the new top directory, or manage the directory stack.

Options
-n
   Don’t change to the new top directory; just manipulate the stack.
+count
   Remove the item count entries from the left, as shown by dirs. Counting starts at zero. No directory change occurs.

-count
   Remove the item count entries from the right, as shown by dirs. Counting starts at zero. No directory change occurs.

printf
   printf [-v var] format [val ...]
   Format the specified values according to the format format and write them to standard output. The possible format character strings are those of the ANSI C printf function plus several additional strings.

Option
   -v var
   Write output to the variable var instead of standard output.

Additional format strings
   %b Expand escape sequences in strings (e.g., \t to tab, and so on).
   %q Print a quoted string that can be reread later on.

Example
   $ date
   Fri May 15 15:39:42 EDT 2009
   $ printf "%(It is now %m/%d/%Y %H:%M:%S)\n" "$(date)"
   It is now 05/15/2009 15:40:10

pushd
   pushd [-n] [directory]
   pushd [-n] [+count] [-count]
   Add directory to the directory stack, or rotate the directory stack. With no arguments, swap the top two entries on the stack, and change to the new top entry.

Options
   -n Don’t change to the new top directory, just manipulate the stack.
   +count
      Rotate the stack so that the count’th item from the left, as shown by dirs, is the new top of the stack. Counting starts at zero. The new top becomes the current directory.
   -count
      Rotate the stack so that the count’th item from the right, as shown by dirs, is the new top of the stack. Counting starts at zero. The new top becomes the current directory.

pwd
   pwd [-LP]
   Print your present working directory on standard output.
Options
Options give control over the use of logical versus physical treatment of the printed path. See also the entry for `cd`, earlier in this section.

- L Use logical path (what the user typed, including any symbolic links) and the value of PWD for the current directory. This is the default.
- P Use the actual filesystem physical path for the current directory with no symbolic links.

read [options] [variable1] [variable2 ...]
Read one line of standard input and assign each word to the corresponding variable, with all leftover words assigned to the last variable. If only one variable is specified, the entire line is assigned to that variable. See the examples here and under `case`. The return status is 0 unless EOF is reached. If no variables are given, input is stored in the REPLY variable.

Options
- a array
  Read into indexed array array.
- d delim
  Read up to first occurrence of delim, instead of newline.
- e
  Use the readline library if reading from a terminal.
- i text
  If readline is being used, put text into the editing buffer.
- n count
  Read at most count bytes.
- p prompt
  Print prompt before reading input.
- r
  Raw mode; ignore \ as a line-continuation character.
- s
  Read silently; do not echo characters.
- t timeout
  When reading from a terminal or pipe, if no data is entered after timeout seconds, return 1. This prevents an application from hanging forever, waiting for user input.
- u [n]
  Read input from file descriptor n (default is 0).

Example
Read three variables:
```
$ read first last address
Sarah Caldwell 123 Main Street
```
```
$ echo "$last, $first\n$address"
Caldwell, Sarah
123 Main Street
```
**readonly**

```bash
readonly [-afp] [variable [=value] ...]
```

Prevent the specified shell variables from being assigned new values. An initial value may be supplied using the assignment syntax, but that value may not be changed subsequently. If no variables are specified, `readonly` displays a list of variables marked read-only.

**Options**

- `-a` Each `variable` must refer to an indexed array.
- `-A` Each `variable` must refer to an associative array.
- `-f` Each `variable` must refer to a function.
- `-p` Display the output in a format that allows the list of read-only variables to be saved for re-reading later.

**return**

```bash
return [n]
```

Use inside a function definition. Exit the function with status `n` or with the exit status of the previously executed command.

**select**

```bash
select x [in list]
do
 commands
done
```

Display a list of menu items on standard error, numbered in the order they are specified in `list`. If no `in list` is given, items are taken from the command line (via "$@”). Following the menu is a prompt string (set by the variable `PS3`). At the prompt, the user selects a menu item by typing its line number, or redisplays the menu by pressing the Enter key. User input is stored in the shell variable `REPLY` and the value selected is stored in `x`. If a valid item number is typed, the `commands` associated with the value in `x` are executed and the prompt is redisplayed for the user to select a new value. Typing `EOF` terminates the loop.

**Example**

```bash
PS3="Select the item number: ">
select event in Format Page View Exit
do
 case "$event" in
 Format) nroff $file | lp;;
 Page) pr $file | lp;;
 View) more $file;;
 Exit) exit 0;;
 *) echo "Invalid selection";;
esac
done
```
The output of this script looks like this:

1. Format
2. Page
3. View
4. Exit

Select the item number:

```
set
set [options arg1 arg2 ...]
```

With no arguments, `set` prints the values of all variables known to the current shell. Options can be enabled (`-option`) or disabled (`+option`). Options can also be set when the shell is invoked. (See the section "Invoking the Shell" on page 597.) Arguments are assigned in order to `$1`, `$2`, etc.

**Options**

- `-a` From now on, automatically mark variables for export after defining or changing them.
- `-b` Print job completion messages as soon as jobs terminate; don’t wait until the next prompt.
- `-B` Enable brace expansion. On by default.
- `-C` Prevent overwriting via `>` redirection; use `>` to overwrite files.
- `-e` Exit if a command yields a nonzero exit status. The `ERR` trap executes before the shell exits.
- `-E` Cause shell functions, command substitutions, and subshells to inherit the `ERR` trap.
- `-f` Ignore filename metacharacters (e.g., `* ? [ ]`).
- `-h` Locate and remember commands as they are defined. On by default.
- `-H` Enable `csh`-style (`!`-style) history substitution. On by default.
- `-k` Assignment of environment variables (`var=value`) takes effect regardless of where they appear on the command line. Normally, assignments must precede the command name.
- `-m` Enable job control; background jobs execute in a separate process group. `-m` is usually on by default.
- `-n` Read commands but don’t execute; useful for checking syntax. Ignored if the shell is interactive.
- `+o [mode]`
  With `mode`, disable the given shell option. Plain `set +o` prints the settings of all the current options in a form that can be reread by the shell later.
- `-o [mode]`
  List shell modes, or turn on mode `mode`. Many modes can be set by other options. Modes are:

  **allexport**
  Same as `-a`.  

braceexpand
   Same as -B.
emacs
   Set command-line editor to emacs.
errexit
   Same as -e.
errtrace
   Same as -E.
functrace
   Same as -T.
hashall
   Same as -h.
histexpand
   Same as -H.
history
   Enable command history. On by default.
ignoreeof
   Don’t process EOF signals. To exit the shell, type exit.
keyword
   Same as -k.
monitor
   Same as -m.
noclobber
   Same as -C.
noexec
   Same as -n.
noglob
   Same as -f.
notify
   Same as -b.
nounset
   Same as -u.
onecmd
   Same as -t.
physical
   Same as -P.
pipefail
   Change pipeline exit status to be that of the rightmost command that failed, or zero if all exited successfully.
posix
   Change to POSIX mode.
privileged
   Same as -p.
verbose
   Same as -v.
vi  Set command-line editor to vi.

xtrace
   Same as -x.

+p  Reset effective UID to real UID.

-p  Start up as a privileged user. Don’t read $ENV or $BASH_ENV, don’t import functions from the environment, and ignore the value of $SHELLOPTS.

-P  Always use physical paths for cd and pwd; do not follow symbolic links.

-t  Exit after one command is executed.

-T  Cause shell functions, command substitutions, and subshells to inherit any DEBUG and RETURN traps.

-u  In substitutions, treat unset variables as errors.

-v  Show each shell command line when read.

-x  Show commands and arguments when executed, preceded by the value of PS4. This provides step-by-step tracing of shell scripts.

-  Turn off -v and -x, and turn off option processing. Included for compatibility with older versions of the Bourne shell.

--  Used as the last option; -- turns off option processing so that arguments beginning with - are not misinterpreted as options. (For example, you can set $1 to -1.) If no arguments are given after --, unset the positional parameters.

Examples
   set -- "$num" -20 -30  Set $1 to $num, $2 to -20, $3 to -30
   set -vx               Read each command line; show it; execute it; show it again (with arguments)
   set +x               Stop command tracing
   set -o noclobber      Prevent file overwriting
   set +o noclobber      Allow file overwriting again

shift
   shift [n]
   Shift positional arguments (e.g., $2 becomes $1). If n is given, shift to the left n places; otherwise n is assumed to be 1. Used in while loops to iterate through command-line arguments.

shopt
   shopt [-opqsu] [options]
   Set or unset shell options. With no options or just -p, print the option names and whether they are set or not.

Options
   -o  Each option must be one of the shell option names for set -o, instead of the options listed in the next section.

   -p  Print the option settings as shopt commands that can be reread later.
-q Quiet mode. The exit status is zero if the given option is set, nonzero otherwise. With multiple options, all of them must be set for a zero exit status.

-s Set the given options. With no options, print only those that are set.

-u Unset the given options. With no options, print only those that are unset.

Settable shell options
The following list describes the behavior when set. Options marked with an asterisk (*) are enabled by default.

autocd
Attempt to cd to a directory that is given as a command name. Allowed in interactive shells only.

cdable_vars
Treat a nondirectory argument to cd as a variable whose value is the directory to go to.

cdspell
Attempt spelling correction on each directory component of an argument to cd. Allowed in interactive shells only.

checkhash
Check that commands found in the hash table still exist before attempting to use them. If not, perform a normal PATH search.

checkjobs
Display the status of any running or stopped jobs before exiting an interactive shell.

checkwinsize
Check the window size after each command and update LINES and COLUMNS if the size has changed.

cmdhist *
Save all lines of a multiline command in one history entry. This permits easy reediting of multiline commands.

compat31
Behave like version 3.1 with respect to quoted arguments to the conditional command’s =~ operator.

dirspell
During filename completion, attempt to correct the spelling of directory names if the name as given is not found.

dotglob
Include filenames starting with a period in the results of filename expansion.

execfail
Do not exit a noninteractive shell if the command given to exec cannot be executed. Interactive shells do not exit in such a case, no matter the setting of this option.
expand_aliases *
   Expand aliases created with alias. Disabled in noninteractive shells.

extdebug
   Enable behavior needed for debuggers:
   * declare -F displays the source filename and line number for each function name argument.
   * When a command run by the DEBUG trap fails, the next command is skipped.
   * When a command run by the DEBUG trap inside a shell function or script sourced with . (dot) or source returns with an exit status of 2, the shell simulates a call to return.
   * BASH_ARGC and BASH_ARGV are set as described earlier.
   * Function tracing is enabled. Command substitutions, shell functions, and subshells invoked via (...) inherit the DEBUG and RETURN traps.
   * Error tracing is enabled. Command substitutions, shell functions, and subshells invoked via (...) inherit the ERROR trap.

extglob
   Enable extended pattern-matching facilities such as +(...).

extquote *
   Allow $'...' and $"..." within ${variable} expansions inside double quotes.

failglob
   Cause patterns that do not match filenames to produce an error.

force_fignore *
   When doing completion, ignore words matching the list of suffixes in FIGNORE, even if such words are the only possible completions.

globstar
   During filename expansion, the pattern ** matches all directories and subdirectories, and filenames in directories, recursively. Only directories and subdirectories match if the pattern ends in /.

gnu_errfmt
   Print error messages in the standard GNU format.

histappend
   Append the history list to the file named by HISTFILE upon exit, instead of overwriting the file.

histreedit
   Allow a user to reedit a failed history substitution with the readline library.
histverify
Place the results of history substitution into the readline library’s editing buffer, in case the user wishes to modify it further, instead of executing it directly.

hostcomplete *
If using readline, attempt hostname completion when a word containing an @ is being completed.

huponexit
Send a SIGHUP to all running jobs upon exiting an interactive shell.

interactive_comments *
Allow words beginning with # to start a comment in an interactive shell.

lithist
If cmdhist is also set, save multiline commands to the history file with newlines instead of semicolons.

login_shell
Set by the shell when it is a login shell. This is a read-only option.

mailwarn
Print the message “The mail in mailfile has been read” when a file being checked for mail has been accessed since the last time Bash checked it.

no_empty_cmd_completion
If using readline, do not search $PATH when a completion is attempted on an empty line.

nocaseglob
Ignore letter case when doing filename matching.

nocasematch
Ignore case when pattern-matching in case or [[ ]] conditional commands.

nullglob
Expand patterns that do not match any files to the null string, instead of using the literal pattern as an argument.

procomp *
Enable programmable completion.

promptvars *
Perform variable, command, and arithmetic substitution on the values of PS1, PS2 and PS4.

restricted_shell
Set by the shell when it is a restricted shell. This is a read-only option.

shift_verbose
Causes shift to print an error message when the shift count is greater than the number of positional parameters.
sourcepath *
Causes the . (dot) and source commands to search $PATH in order to find the file to read and execute.

xpg_echo
Causes echo to expand escape sequences, even without the -e or -E options.

source
source file [arguments]
Identical to the . (dot) command; see that entry.

suspend
suspend [-f]
Suspend the current shell. Often used to stop an su command.

Option
-f Force the suspension, even if the shell is a login shell.

test
test condition
or
[ condition ]
or
[[ condition ]]
Evaluate a condition and, if its value is true, return a zero exit status; otherwise, return a nonzero exit status. An alternate form of the command uses [ ] rather than the word test. An additional alternate form uses [[ ]], in which case word splitting and pathname expansion are not done. (See the [[ ]] entry.) condition is constructed using the following expressions. Conditions are true if the description holds true.

File conditions
-a file, -e file
file exists.
-b file
file exists and is a block special file.
-c file
file exists and is a character special file.
-d file
file exists and is a directory.
-f file
file exists and is a regular file.
-g file
file exists, and its set-group-id bit is set.
-G file
file exists, and its group is the effective group ID.
-h file, -L file
file exists and is a symbolic link.
-k file
  file exists, and its sticky bit is set.
-N file
  file exists and was modified after it was last read.
-O file
  file exists, and its owner is the effective user ID.
-p file
  file exists and is a named pipe (FIFO).
-r file
  file exists and is readable.
-s file
  file exists and has a size greater than zero.
-S file
  file exists and is a socket.
-t [n]
  The open file descriptor n is associated with a terminal device;
  default n is 1.
-u file
  file exists, and its set-user-id bit is set.
-w file
  file exists and is writable.
-x file
  file exists and is executable.

f1 -ef f2
  Files f1 and f2 are linked (refer to same file).

f1 -nt f2
  File f1 is newer than f2.

f1 -ot f2
  File f1 is older than f2.

String conditions

string
  string is not null.

-n s1
  String s1 has nonzero length.

-z s1
  String s1 has zero length.

s1 = s2
  Strings s1 and s2 are identical. s2 can be a wildcard pattern.
  Quote s2 to treat it literally. Preferred over =.

s1 != s2
  Strings s1 and s2 are not identical. s2 can be a wildcard pattern.
  Quote s2 to treat it literally.
The Bash Shell

String \(s1\) matches extended regular expression \(s2\). Quote \(s2\) to keep the shell from expanding embedded shell metacharacters. Strings matched by parenthesized subexpressions are placed into elements of the `BASH_REMATCH` array. See the description of `BASH_REMATCH` earlier in this chapter.

\(s1 = s2\)
String \(s1\) matches \(s2\).

\(s1 < s2\)
ASCII value of \(s1\) precedes that of \(s2\). (Valid only within `[[ ]]` construct.)

\(s1 > s2\)
ASCII value of \(s1\) follows that of \(s2\). (Valid only within `[[ ]]` construct.)

**Internal shell conditions**

- `o opt`

  Shell option `opt` for `set -o` is on.

**Integer comparisons**

- `n1 -eq n2`
  \(n1\) equals \(n2\).

- `n1 -ge n2`
  \(n1\) is greater than or equal to \(n2\).

- `n1 -gt n2`
  \(n1\) is greater than \(n2\).

- `n1 -le n2`
  \(n1\) is less than or equal to \(n2\).

- `n1 -lt n2`
  \(n1\) is less than \(n2\).

- `n1 -ne n2`
  \(n1\) does not equal \(n2\).

**Combined forms**

- `(condition)`
  True if `condition` is true (used for grouping). For `test` and `[]`, the `()`s should be quoted by a \\.` The form using `[[ ]]` doesn’t require quoting the parentheses.

- `! condition`
  True if `condition` is false.

- `condition1 -a condition2`
  True if both conditions are true.

- `condition1 && condition2`
  True if both conditions are true. (Valid only within `[[ ]]` construct.)

- `condition1 -o condition2`
  True if either condition is true.

- `condition1 || condition2`
  True if either condition is true. (Valid only within `[[ ]]` construct.)
Examples
The following examples show the first line of various statements that might use a test condition:

```
while test $# -gt 0
 While there are arguments...
while [-n "$1"]
 While there are nonempty arguments..
if [$count -lt 10]
 If $count is less than 10...
if [-d RCS]
 If the RCS directory exists...
if ["$answer" != "y"]
 If the answer is not y...
if [! -r "$1" -o ! -f "$1"]
 If the first argument is not a readable
 file or a regular file...
```

**time**

```
time command
```

Execute command and print the total elapsed time, user time, and system time (in seconds). Same as the Linux command `time` (see Chapter 3), except that the built-in version can also time other built-in commands as well as all commands in a pipeline.

**times**

```
times
```

Print accumulated process times for user and system.

**trap**

```
trap [options] [[commands] signals]
```

Execute commands if any signals are received. Common signals include `EXIT` (0), `HUP` (1), `INT` (2), and `TERM` (15). Multiple commands must be quoted as a group and separated by semicolons internally. If the command is the null string (i.e., `trap "" signals`), the signals are ignored by the shell. If the commands are omitted entirely, processing of the specified signals is reset to the default action. If the command is `-`, the signals are reset to their initial defaults.

If both `commands` and `signals` are omitted, list current trap assignments. See the Examples here and in `exec`.

**Options**

- `-l` List all signals and their numbers, like `kill -l`.
- `-p` Print the current trap settings in a form suitable for rereading later.

**Signals**

A list of signal names, numbers, and meanings were given earlier in the `kill` entry; see the listing there. The shell allows you to use either the signal number or the signal name (without the `SIG` prefix). In addition, the shell supports “pseudo-signals,” signal names or numbers that aren’t real operating system signals but which direct the shell to perform a specific action. These signals are:

**DEBUG**

Execution of any command.

**ERR**

Nonzero exit status.
EXIT
Exit from shell (usually when shell script finishes).

0
Same as EXIT, for historical compatibility with the Bourne shell.

RETURN
A return is executed, or a script run with . (dot) or source finishes.

Examples
trap "\" INT
      Ignore interrupts (signal 2)
trap INT
      Obey interrupts again

Remove a $tmp file when the shell program exits, or if the user logs out, presses Ctrl-C, or does a kill:

trap "rm -f $tmp; exit" EXIT HUP INT TERM POSIX style
trap "rm -f $tmp; exit" 0 1 2 15 Pre-POSIX Bourne shell style

Print a "clean up" message when the shell program receives signals SIGHUP, SIGINT, or SIGTERM:

trap 'echo Interrupt! Cleaning up...\n      Cleaning up...\n' HUP INT TERM

true
Built-in command that exits with a true return value.

type [-afpPt] command
Show whether each command name is a Linux command, a built-in command, an alias, a shell keyword, or a defined shell function.

Options

-a  Print all locations in $PATH that include command, including aliases and functions. Use -p together with -a to suppress aliases and functions.
-f  Suppress function lookup, as with command.
-p  If type -t would print file for a given command, this option prints the full pathname for the executable files. Otherwise, it prints nothing.
-P  Like -p, but force a PATH search, even if type -t would not print file.
-t  Print a word describing each command. The word is one of alias, builtin, file, function, or keyword, depending upon the type of each command.

Example

$ type mv read if
mv is /bin/mv
read is a shell builtin
if is a shell keyword
ulimit

Print the value of one or more resource limits, or, if n is specified, set a resource limit to n. Resource limits can be either hard (-H) or soft (-S). By default, ulimit sets both limits or prints the soft limit. The options determine which resource is acted on.

Options
-H Hard limit. Anyone can lower a hard limit; only privileged users can raise it.
-S Soft limit. Anyone can raise a soft limit up to the value of the hard limit.
-a Print all limits.
-b Maximum socket buffer size.
-c Maximum size of core files.
-d Maximum kilobytes of data segment or heap.
-e Maximum scheduling priority (“nice”).
-f Maximum size of files (the default option).
-i Maximum number of pending signals.
-l Maximum size of address space that can be locked in memory.
-m Maximum kilobytes of physical memory. (Not effective on all Linux systems.)
-n Maximum number of file descriptors.
-p Maximum size of pipe buffers in 512-byte blocks. (May not be set.)
-q Maximum number of bytes in POSIX message queues.
-r Maximum real-time scheduling priority.
-s Maximum stack size.
-t Maximum CPU seconds.
-T Maximum number of threads.
-u Maximum number of processes a single user can have.
-v Maximum kilobytes of virtual memory.
-x Maximum number of file locks

umask

Display or set file creation mask. If mask begins with a digit, it is treated as an octal number; otherwise it is treated as a symbolic mask. The file creation mask determines which permission bits are turned off (e.g., umask 002 produces rw-rw-r--). The mask is similar to that accepted by the chmod command.

Options
-p Output is in a form that can be reread later by the shell.
-S Print the current mask using symbolic notation.
unalias

unalias names
unalias -a

Remove names from the alias list. See also alias.

Option
-a Remove all aliases.

unset

unset [options] names

Erase definitions of functions or variables listed in names.

Options
-f Unset functions names.
-v Unset shell variables names (default).

until

until condition
do
commands
done

Until condition is met, do commands. condition is often specified with the test command. See the Examples under case and test.

wait

wait [ID]

Pause in execution until all background jobs complete (exit status 0 is returned), or pause until the specified background process ID or job ID completes (exit status of ID is returned). Note that the shell variable $! contains the process ID of the most recent background process.

Example

wait $!

Wait for most recent background process to finish

while

while condition
do
commands
done

While condition is met, do commands. condition is often specified with the test command. See the Examples under case and test.
A number of Linux text-processing utilities let you search for, and in some cases change, text patterns rather than fixed strings. These utilities include the editing programs ed, ex, vi, and sed; the gawk programming language; and the commands grep and egrep. Text patterns (called regular expressions in computer science literature) contain normal characters mixed with special characters (called metacharacters).

Perl’s regular expression support is so rich that it does not fit into this book; you can find a description in the O’Reilly books Mastering Regular Expressions by Jeffrey E.F. Friedl, Regular Expression Pocket Reference by Tony Stubblebine, Perl in a Nutshell by Nathan Patwardhan et al., or Perl 5 Pocket Reference by Johan Vromans. The Emacs editor also provides regular expressions similar to those shown in this chapter. See the O’Reilly books Learning GNU Emacs by Debra Cameron et al., or GNU Emacs Pocket Reference, also by Debra Cameron, for details.

This chapter presents the following topics:
- Filenames versus patterns
- Description of metacharacters
- List of metacharacters available to each program
- Examples

For more information on regular expressions, see the aforementioned O’Reilly book Mastering Regular Expressions.

Filenames Versus Patterns

Metacharacters used in pattern matching are different from metacharacters used for filename expansion (see Chapter 6). However, several metacharacters have meaning for both regular expressions and for filename expansion. This can lead to
a problem: the shell sees the command line first, and can potentially interpret an unquoted regular expression metacharacter as a filename expansion. For example, the command:

```bash
$ grep [A-Z]* chap[12]
```
could be transformed by the shell into:

```bash
$ grep Array.c Bug.c Comp.c chap1 chap2
```
and `grep` would then try to find the pattern `Array.c` in files `Bug.c`, `Comp.c`, `chap1`, and `chap2`. To bypass the shell and pass the special characters to `grep`, use quotes as follows:

```bash
$ grep "[A-Z]*" chap[12]
```
Double quotes suffice in most cases, but single quotes are the safest bet, since the shell does absolutely no expansions on single-quoted text.

Note also that in pattern matching, `?` matches zero or one instance of a regular expression; in filename expansion, `?` matches a single character.

## Metacharacters

Different metacharacters have different meanings, depending upon where they are used. In particular, regular expressions used for searching through text (matching) have one set of metacharacters, while the metacharacters used when processing replacement text (such as in a text editor) have a different set. These sets also vary somewhat per program. This section covers the metacharacters used for searching and replacing, with descriptions of the variants in the different utilities.

### Search Patterns

The characters in the following table have special meaning only in search patterns.

<table>
<thead>
<tr>
<th>Character</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Match any number (or none) of the single character that immediately precedes it. The preceding character can also be a regular expression. For example, since . (dot) means any character, “.” means “match any number of any character.”</td>
</tr>
<tr>
<td>^</td>
<td>Match the following regular expression at the beginning of the line or string.</td>
</tr>
<tr>
<td>$</td>
<td>Match the preceding regular expression at the end of the line or string.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Match any one of the enclosed characters. A hyphen (-) indicates a range of consecutive characters. A circumflex (^) as the first character in the brackets reverses the sense: it matches any one character not in the list. A hyphen or close bracket (]) as the first character is treated as a member of the list. All other metacharacters are treated as members of the list (i.e., literally).</td>
</tr>
<tr>
<td>(n,m)</td>
<td>Match a range of occurrences of the single character that immediately precedes it. The preceding character can also be a regular expression. ((n)) matches exactly (n) occurrences, ((n,)) matches at least (n) occurrences, and ((n,m)) matches any number of occurrences between (n) and (m). (n) and (m) must be between 0 and 255, inclusive. (The GNU programs on Linux allow a range of 0 to 32767.)</td>
</tr>
<tr>
<td>(n,m)</td>
<td>Just like ((n,m)), earlier, but with backslashes in front of the braces.</td>
</tr>
<tr>
<td>\</td>
<td>Turn off the special meaning of the following character.</td>
</tr>
</tbody>
</table>
Linux allows the use of POSIX “character classes” within the square brackets that enclose a group of characters. They are typed enclosed in [: and :]. For example, \[[:alnum:]] matches a single alphanumeric character.

<table>
<thead>
<tr>
<th>Character</th>
<th>Pattern</th>
</tr>
</thead>
</table>
| \( \)    | Save the subpattern enclosed between \( \) and \( \) into a special holding space. Up to nine subpatterns can be saved on a single line. The text matched by the subpatterns can be “replayed” in substitutions by the escape sequences \1 to \9.
| \( n \)   | Replay the nth subpattern enclosed in \( \) and \( \) into the pattern at this point. n is a number from 1 to 9, with 1 starting on the left. See the following Examples.
| \( < \)\( > \) | Match characters at beginning \( < \) or end \( > \) of a word.
| +          | Match one or more instances of preceding regular expression.
| ?          | Match zero or one instances of preceding regular expression.
| |          | Match one or the other of the regular expressions specified before and after the vertical bar. (This is known as alternation.)
| \( )      | Apply a match to the enclosed group of regular expressions.

<table>
<thead>
<tr>
<th>Class</th>
<th>Characters matched</th>
<th>Class</th>
<th>Characters matched</th>
</tr>
</thead>
<tbody>
<tr>
<td>alnum</td>
<td>Alphanumeric characters</td>
<td>lower</td>
<td>Lowercase characters</td>
</tr>
<tr>
<td>alpha</td>
<td>Alphabetic characters</td>
<td>print</td>
<td>Printable characters</td>
</tr>
<tr>
<td>blank</td>
<td>Space or Tab</td>
<td>punct</td>
<td>Punctuation characters</td>
</tr>
<tr>
<td>cntrl</td>
<td>Control characters</td>
<td>space</td>
<td>Whitespace characters</td>
</tr>
<tr>
<td>digit</td>
<td>Decimal digits</td>
<td>upper</td>
<td>Uppercase characters</td>
</tr>
<tr>
<td>graph</td>
<td>Non-space characters</td>
<td>xdigit</td>
<td>Hexadecimal digits</td>
</tr>
</tbody>
</table>

Finally, the GNU utilities on Linux accept additional escape sequences that act like metacharacters. (Because \b can also be interpreted as the sequence for the ASCII Backspace character, different utilities treat it differently. Check each utility’s documentation.)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>\b</td>
<td>Word boundary, either beginning or end of a word, as for the ( &lt; ) and ( &gt; ) metacharacters described earlier.</td>
</tr>
<tr>
<td>\B</td>
<td>Interword match; matches between two word-constituent characters.</td>
</tr>
<tr>
<td>\w</td>
<td>Matches any word-constituent character; equivalent to [[:alnum:].].</td>
</tr>
<tr>
<td>\W</td>
<td>Matches any non-word-constituent character; equivalent to [^[:alnum:].].</td>
</tr>
<tr>
<td>\v</td>
<td>Beginning of an Emacs buffer. Used by most other GNU utilities to mean unambiguously “beginning of string.”</td>
</tr>
<tr>
<td>\V</td>
<td>End of an Emacs buffer. Used by most other GNU utilities to mean unambiguously “end of string.”</td>
</tr>
</tbody>
</table>

**Replacement Patterns**

The characters in the following table have special meaning only in replacement patterns, used for example in editing, when searching for and replacing text.
Some metacharacters are valid for one program but not for another. Those that are available are marked by a bullet (•) in the following table. Items marked with a “P” are specified by POSIX. Full descriptions were provided in the previous section.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>ed</th>
<th>ex</th>
<th>vi</th>
<th>sed</th>
<th>gawk</th>
<th>grep</th>
<th>egrep</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Match any character.</td>
</tr>
<tr>
<td>*</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Match zero or more preceding characters.</td>
</tr>
<tr>
<td>^</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Match beginning of line/string.</td>
</tr>
<tr>
<td>$</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Match end of line/string.</td>
</tr>
<tr>
<td>\</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Escape following character.</td>
</tr>
<tr>
<td>[ ]</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Match one from a set.</td>
</tr>
<tr>
<td>{ }</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Store pattern for later replay.(^a)</td>
</tr>
<tr>
<td>(</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Replay subpattern in match.</td>
</tr>
<tr>
<td>{</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Match a range of instances.</td>
</tr>
<tr>
<td>}</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Match a range of instances.</td>
</tr>
<tr>
<td>&lt; &gt;</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Match word’s beginning or end.</td>
</tr>
<tr>
<td>+</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Match one or more preceding characters.</td>
</tr>
<tr>
<td>?</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Match zero or one preceding characters.</td>
</tr>
<tr>
<td>[ ]</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Separate choices to match.</td>
</tr>
<tr>
<td>( )</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Group expressions to match.</td>
</tr>
</tbody>
</table>

\(^a\) Stored subpatterns can be “replayed” during matching. See the following table.
Note that in ed, ex, vi, and sed, you specify both a search pattern (on the left) and a replacement pattern (on the right). The metacharacters listed above are meaningful only in a search pattern.

In ed, ex, vi, and sed, the metacharacters in the following table are valid only in a replacement pattern.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>ex</th>
<th>vi</th>
<th>sed</th>
<th>ed</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>\</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Escape following character.</td>
</tr>
<tr>
<td>\n</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Text matching pattern stored in ( ) .</td>
</tr>
<tr>
<td>&amp;</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Text matching search pattern.</td>
</tr>
<tr>
<td>~</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Reuse previous replacement pattern.</td>
</tr>
<tr>
<td>%</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Reuse previous replacement pattern.</td>
</tr>
<tr>
<td>\u \U</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td>Change character(s) to uppercase.</td>
</tr>
<tr>
<td>\l \L</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td>Change character(s) to lowercase.</td>
</tr>
<tr>
<td>\e</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td>Turn off previous \u or \l .</td>
</tr>
<tr>
<td>\E</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td>Turn off previous \U or \L .</td>
</tr>
</tbody>
</table>

**Examples of Searching**

When used with grep or egrep, regular expressions should be surrounded by quotes. (If the pattern contains a $, you must use single quotes; e.g., 'pattern'.) When used with ed, ex, sed, and gawk, regular expressions are usually surrounded by /, although (except for gawk) any delimiter works. The following tables show some sample patterns.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>What does it match?</th>
</tr>
</thead>
<tbody>
<tr>
<td>bag</td>
<td>The string bag.</td>
</tr>
<tr>
<td>^bag</td>
<td>bag at the beginning of the line.</td>
</tr>
<tr>
<td>bag$</td>
<td>bag at the end of the line.</td>
</tr>
<tr>
<td>^bag$</td>
<td>bag as the only word on the line.</td>
</tr>
<tr>
<td>[Bb]ag</td>
<td>Bag or bag.</td>
</tr>
<tr>
<td>b[aeiou]g</td>
<td>Second letter is a vowel.</td>
</tr>
<tr>
<td>b[^aeiou]g</td>
<td>Second letter is a consonant (or uppercase or symbol).</td>
</tr>
<tr>
<td>b.g</td>
<td>Second letter is any character.</td>
</tr>
<tr>
<td>^...$</td>
<td>Any line containing exactly three characters.</td>
</tr>
<tr>
<td>^\</td>
<td>Any line that begins with a dot.</td>
</tr>
<tr>
<td>^{2}</td>
<td>Same, followed by two lowercase letters (e.g., troff requests).</td>
</tr>
<tr>
<td>^{2}</td>
<td>Same as previous; ed, grep, and sed only.</td>
</tr>
<tr>
<td>^[^]</td>
<td>Any line that doesn’t begin with a dot.</td>
</tr>
<tr>
<td>bugs*</td>
<td>bug, bugs, bugs, etc.</td>
</tr>
<tr>
<td>“word”</td>
<td>A word in quotes.</td>
</tr>
<tr>
<td>“<em>word</em>*”</td>
<td>A word, with or without quotes.</td>
</tr>
<tr>
<td>[A-Z][A-Z]+</td>
<td>One or more uppercase letters.</td>
</tr>
<tr>
<td>[A-Z]+</td>
<td>Same; egrep or gawk only.</td>
</tr>
</tbody>
</table>

658 | Chapter 7: Pattern Matching
Examples of Searching and Replacing

The examples in the following table show the metacharacters available to `sed` or `ex`. Note that `ex` commands begin with a colon. A space is marked by a `▃`, a tab is marked by a `▁`.

<table>
<thead>
<tr>
<th>Command</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>s/.*/( &amp; )/</code></td>
<td>Redo the entire line, but add spaces and parentheses.</td>
</tr>
<tr>
<td><code>s/.*/mv &amp; &amp;.old/</code></td>
<td>Change a wordlist (one word per line) into <code>mv</code> commands.</td>
</tr>
<tr>
<td><code>/\$&amp;/d</code></td>
<td>Delete blank lines.</td>
</tr>
<tr>
<td><code>:p/s/&gt;/\\d</code></td>
<td>Same as previous, in <code>ex</code> editor.</td>
</tr>
<tr>
<td><code>/[^\x00-\x20]*\$/d</code></td>
<td>Delete blank lines, plus lines containing only spaces or tabs.</td>
</tr>
<tr>
<td><code>:p/[^\x00-\x20]*\$/d</code></td>
<td>Same as previous, in <code>ex</code> editor.</td>
</tr>
<tr>
<td><code>:%s/\x00\x00/\x00/</code></td>
<td>Turn one or more spaces into one space.</td>
</tr>
<tr>
<td><code>:%s/\x00\x00/\x00/</code></td>
<td>Same as previous, in <code>ex</code> editor.</td>
</tr>
<tr>
<td><code>:%s/Item &amp;/</code></td>
<td>Turn a number into an item label (on the current line).</td>
</tr>
<tr>
<td><code>:s</code></td>
<td>Repeat the substitution on the first occurrence.</td>
</tr>
<tr>
<td><code>:&amp;</code></td>
<td>Same as previous.</td>
</tr>
<tr>
<td><code>:g</code></td>
<td>Same as previous, but for all occurrences on the line.</td>
</tr>
<tr>
<td><code>:&amp;g</code></td>
<td>Same as previous.</td>
</tr>
<tr>
<td><code>:%&amp;g</code></td>
<td>Repeat the substitution globally (i.e., on all lines).</td>
</tr>
</tbody>
</table>

Examples of Searching and Replacing

The examples in the following table show the metacharacters available to `sed` or `ex`. Note that `ex` commands begin with a colon. A space is marked by a `▃`, a tab is marked by a `▁`.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>What does it match?</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>[:upper:]*</code></td>
<td>Same as previous, <code>egrep</code> or <code>gawk</code>.</td>
</tr>
<tr>
<td><code>[A-Z]</code></td>
<td>An uppercase letter, followed by zero or more characters.</td>
</tr>
<tr>
<td><code>[A-Z]</code></td>
<td>Zero or more uppercase letters.</td>
</tr>
<tr>
<td><code>a-zA-Z</code></td>
<td>Any letter, either lower- or uppercase.</td>
</tr>
<tr>
<td><code>[^0-9A-Za-z]</code></td>
<td>Any symbol or space (not a letter or a number).</td>
</tr>
<tr>
<td><code>[^[:alnum:]]</code></td>
<td>Same, using POSIX character class.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>egrep or gawk pattern</th>
<th>What does it match?</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>[567]</code></td>
<td>One of the numbers 5, 6, or 7.</td>
</tr>
<tr>
<td>`five</td>
<td>six</td>
</tr>
<tr>
<td><code>80[2-4]86</code></td>
<td><code>8086</code>, <code>80286</code>, <code>80386</code>, or <code>80486</code>.</td>
</tr>
<tr>
<td>`compan(y</td>
<td>ies)`</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ex or vi pattern</th>
<th>What does it match?</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>\&lt;the</code></td>
<td>Words like <code>theater</code> or <code>the</code>.</td>
</tr>
<tr>
<td><code>\&lt;the\&gt;</code></td>
<td>Words like <code>breathe</code> or <code>the</code>.</td>
</tr>
<tr>
<td><code>\&lt;the\&gt;</code></td>
<td>The word <code>the</code>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ed, sed, or grep pattern</th>
<th>What does it match?</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>0{5,}</code></td>
<td>Five or more zeros in a row.</td>
</tr>
<tr>
<td><code>[0-9](\d)*-\d{4}</code></td>
<td>U.S. Social Security number (<code>nnn-nn-nnnn</code>).</td>
</tr>
<tr>
<td><code>\(why\).*\1</code></td>
<td>A line with two occurrences of <code>why</code>.</td>
</tr>
<tr>
<td><code>\([^[:alpha:]-_][[:alnum:.]]\)* = \1;</code></td>
<td>C/C++ simple assignment statements.</td>
</tr>
</tbody>
</table>
Finally, some `sed` examples for transposing words. A simple transposition of two words might look like this:

```
s/die or do/do or die/ # Transpose words
```

The real trick is to use hold buffers to transpose variable patterns. For example:

```
s/([Dd]ie\1) or ([Dd]o)\2 or \1/ # Transpose, using hold buffers
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>:..$s/&amp;/ \U &amp;/g</td>
<td>On current line to last line, change word to uppercase.</td>
</tr>
<tr>
<td>:..$s/(F)(ORTRAN)\1\1\2/g</td>
<td>On current line to last line, change spelling of &quot;FORTRAN&quot; to correct, modern usage.</td>
</tr>
<tr>
<td>:%s/.*/&amp;/</td>
<td>Lowercase entire file.</td>
</tr>
<tr>
<td>:s/&lt;.../&gt;&amp;/g</td>
<td>Uppercase first letter of each word on current line. (Useful for titles.)</td>
</tr>
<tr>
<td>:%s/yes/No/g</td>
<td>Globally change a word to No.</td>
</tr>
<tr>
<td>:%s/Yes/~/g</td>
<td>Globally change a different word to No (previous replacement).</td>
</tr>
</tbody>
</table>
The Emacs editor is found on many Unix systems, including Linux, because it is a popular alternative to vi. Many versions are available, but this book documents the most popular one, GNU Emacs (version 22.3), which is available from the Free Software Foundation (http://www.gnu.org/software/emacs).

Emacs is much more than “just an editor”—in fact, it provides a fully integrated user environment. From within Emacs, you can issue individual shell commands or open a window where you can work in the shell, read and send mail, read news, access the Internet, write and test programs, and maintain a calendar. To fully describe Emacs would require more space than we have available. In this chapter, therefore, we focus on the editing capabilities of Emacs.

This chapter presents the following topics:

- Conceptual overview
- Command-line syntax
- Summary of `emacs` commands by group
- Summary of `emacs` commands by key
- Summary of `emacs` commands by name

For more information about Emacs, see Learning GNU Emacs, by Debra Cameron et al. (O’Reilly).

**Conceptual Overview**

This section describes some Emacs terminology that may be unfamiliar if you haven’t used Emacs before.

**Modes**

One of the features that makes Emacs popular is its editing modes. The modes set up an environment designed for the type of editing you are doing, with features
such as having appropriate key bindings available and automatically indenting according to standard conventions for that type of document. There are two types of modes: major and minor. The major modes include modes for various programming languages such as C or Perl, for text processing (e.g., XML, or even straight text), and many more. One particularly useful major mode is Dired (Directory Editor), which has commands that let you manage directories. Minor modes set or unset features that are independent of the major mode, such as auto-fill (which controls word wrapping), insert versus overwrite, and auto-save. For a full discussion of modes, see Learning GNU Emacs (O’Reilly) or the Emacs Info documentation system (C-h i).

**Buffer and Window**

When you open a file in Emacs, the file is put into a buffer so you can edit it. If you open another file, that file goes into another buffer. The view of the buffer contents that you have at any point in time is called a window. For a small file, the window might show the entire file; for a large file, it shows only a portion of a file. Emacs allows multiple windows to be open at the same time, to display the contents of different buffers or different portions of a single buffer.

**Point and Mark**

When you are editing in Emacs, the position of the cursor is known as point. You can set a mark at another place in the text to operate on the region between point and mark. This is a very useful feature for such operations as deleting or moving an area of text.

**Kill and Yank**

Emacs uses the terms kill and yank for the concepts more commonly known today as cut and paste. You cut text in Emacs by killing it, and paste it by yanking it back. If you do multiple kills in a row, you can yank them back all at once.

**Notes on the Tables**

Emacs commands use the Ctrl key and the Meta key (Meta is usually the Alt key or the Escape key). In this chapter, the notation C- indicates that the Ctrl key is pressed at the same time as the character that follows. Similarly, M- indicates the use of the Meta key. When using Escape for Meta, press and release the Escape key, then type the next key. If you use Alt (or Option on the Mac) for Meta, it is just like Ctrl or Shift, and you should press it simultaneously with the other key(s).

In the command tables that follow, the first column lists the keystroke and the last column describes it. When there is a middle column, it lists the command name. If there are no keystrokes for a given command, you’ll see (none) in the first column. Access these commands by typing **M-x** followed by the command name. If you’re unsure of the name, you can type a tab or a carriage return, and Emacs lists possible completions of what you’ve typed so far.

Because Emacs is such a comprehensive editor, containing literally thousands of commands, some commands must be omitted for the sake of preserving a “quick”
reference. You can browse the command set from within Emacs by typing `C-h` (for help) or `M-x Tab` (for command names).

Absolutely Essential Commands

If you’re just getting started with Emacs, here’s a short list of the most important commands.

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-h</td>
<td>Enter the online help system.</td>
</tr>
<tr>
<td>C-x C-s</td>
<td>Save the file.</td>
</tr>
<tr>
<td>C-x C-c</td>
<td>Exit Emacs.</td>
</tr>
<tr>
<td>C-x u</td>
<td>Undo last edit (can be repeated).</td>
</tr>
<tr>
<td>C-g</td>
<td>Get out of current command operation.</td>
</tr>
<tr>
<td>C-p</td>
<td>Move up to the previous line.</td>
</tr>
<tr>
<td>C-n</td>
<td>Move down to the next line.</td>
</tr>
<tr>
<td>C-f</td>
<td>Move forward one character.</td>
</tr>
<tr>
<td>C-b</td>
<td>Move backward one character.</td>
</tr>
<tr>
<td>C-v</td>
<td>Move forward by one screen.</td>
</tr>
<tr>
<td>M-v</td>
<td>Move backward by one screen</td>
</tr>
<tr>
<td>C-s</td>
<td>Search forward for characters.</td>
</tr>
<tr>
<td>C-r</td>
<td>Search backward for characters.</td>
</tr>
<tr>
<td>C-d</td>
<td>Delete the current character.</td>
</tr>
<tr>
<td>Del</td>
<td>Delete the previous character.</td>
</tr>
</tbody>
</table>

Command-Line Syntax

To start an Emacs editing session, type:

```
emacs [file]
```

Summary of Commands by Group

Reminder: `C-` indicates the Ctrl key; `M-` indicates the Meta key.

File-Handling Commands

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-x C-f</td>
<td>find-file</td>
<td>Find file and read it.</td>
</tr>
<tr>
<td>C-x C-v</td>
<td>find-alternate-file</td>
<td>Read another file; replace the one read with <code>C-x C-f</code>.</td>
</tr>
<tr>
<td>C-x i</td>
<td>insert-file</td>
<td>Insert file at cursor position.</td>
</tr>
<tr>
<td>C-x C-s</td>
<td>save-buffer</td>
<td>Save file (may hang terminal; use C-q to restart).</td>
</tr>
<tr>
<td>C-x C-w</td>
<td>write-file</td>
<td>Write buffer contents to file.</td>
</tr>
<tr>
<td>C-x C-c</td>
<td>save-buffers-kill-emacs</td>
<td>Exit Emacs.</td>
</tr>
<tr>
<td>C-z</td>
<td>suspend-emacs</td>
<td>Suspend Emacs (use <code>exit</code> or <code>fg</code> to restart).</td>
</tr>
</tbody>
</table>
### Cursor-Movement Commands

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-f</td>
<td>forward-char</td>
<td>Move forward one character (right).</td>
</tr>
<tr>
<td>C-b</td>
<td>backward-char</td>
<td>Move backward one character (left).</td>
</tr>
<tr>
<td>C-p</td>
<td>previous-line</td>
<td>Move to previous line (up).</td>
</tr>
<tr>
<td>C-n</td>
<td>next-line</td>
<td>Move to next line (down).</td>
</tr>
<tr>
<td>M-f</td>
<td>forward-line</td>
<td>Move one line forward.</td>
</tr>
<tr>
<td>M-b</td>
<td>backward-line</td>
<td>Move one line backward.</td>
</tr>
<tr>
<td>C-a</td>
<td>beginning-line</td>
<td>Move to beginning of line.</td>
</tr>
<tr>
<td>C-e</td>
<td>end-line</td>
<td>Move to end of line.</td>
</tr>
<tr>
<td>M-a</td>
<td>backward-sentence</td>
<td>Move backward one sentence.</td>
</tr>
<tr>
<td>M-e</td>
<td>forward-sentence</td>
<td>Move forward one sentence.</td>
</tr>
<tr>
<td>M-{</td>
<td>backward-paragraph</td>
<td>Move backward one paragraph.</td>
</tr>
<tr>
<td>M-}</td>
<td>forward-paragraph</td>
<td>Move forward one paragraph.</td>
</tr>
<tr>
<td>C-v</td>
<td>scroll-up</td>
<td>Move forward one screen.</td>
</tr>
<tr>
<td>M-v</td>
<td>scroll-down</td>
<td>Move backward one screen.</td>
</tr>
<tr>
<td>C-x {</td>
<td>backward-page</td>
<td>Move backward one page.</td>
</tr>
<tr>
<td>C-x }</td>
<td>forward-page</td>
<td>Move forward one page.</td>
</tr>
<tr>
<td>M-&gt;</td>
<td>end-of-buffer</td>
<td>Move to end of file.</td>
</tr>
<tr>
<td>M-&lt;</td>
<td>beginning-of-buffer</td>
<td>Move to beginning of file.</td>
</tr>
<tr>
<td>M-g n or M-g M-g</td>
<td>goto-line</td>
<td>Go to line n of file.</td>
</tr>
<tr>
<td>(none)</td>
<td>goto-char</td>
<td>Go to character n of file.</td>
</tr>
<tr>
<td>C-l</td>
<td>recenter</td>
<td>Redraw screen with current line in the center.</td>
</tr>
<tr>
<td>M-n</td>
<td>digit-argument</td>
<td>Repeat the next command n times.</td>
</tr>
<tr>
<td>C-u n</td>
<td>universal-argument</td>
<td>Repeat the next command n times.</td>
</tr>
</tbody>
</table>

### Deletion Commands

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Del</td>
<td>backward-delete-char</td>
<td>Delete previous character.</td>
</tr>
<tr>
<td>C-d</td>
<td>delete-char</td>
<td>Delete character under cursor.</td>
</tr>
<tr>
<td>M-Del</td>
<td>backward-kill-word</td>
<td>Delete previous word.</td>
</tr>
<tr>
<td>M-d</td>
<td>kill-word</td>
<td>Delete the word the cursor is on.</td>
</tr>
<tr>
<td>C-k</td>
<td>kill-line</td>
<td>Delete from cursor to end of line.</td>
</tr>
<tr>
<td>M-k</td>
<td>kill-sentence</td>
<td>Delete sentence the cursor is on.</td>
</tr>
<tr>
<td>C-x Del</td>
<td>backward-kill-sentence</td>
<td>Delete previous sentence.</td>
</tr>
<tr>
<td>C-y</td>
<td>yank</td>
<td>Restore what you’ve deleted.</td>
</tr>
<tr>
<td>C-w</td>
<td>kill-region</td>
<td>Delete a marked region (see next section).</td>
</tr>
<tr>
<td>(none)</td>
<td>backward-kill-paragraph</td>
<td>Delete previous paragraph.</td>
</tr>
<tr>
<td>(none)</td>
<td>kill-paragraph</td>
<td>Delete from the cursor to the end of the paragraph.</td>
</tr>
</tbody>
</table>
### Paragraphs and Regions

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-@</td>
<td>set-mark-command</td>
<td>Mark the beginning (or end) of a region.</td>
</tr>
<tr>
<td>C-Space</td>
<td>(same as above)</td>
<td>(same as above)</td>
</tr>
<tr>
<td>C-x C-p</td>
<td>mark-page</td>
<td>Mark page.</td>
</tr>
<tr>
<td>C-x C-x</td>
<td>exchange-point-and-mark</td>
<td>Exchange location of cursor and mark.</td>
</tr>
<tr>
<td>C-x h</td>
<td>mark-whole-buffer</td>
<td>Mark buffer.</td>
</tr>
<tr>
<td>M-q</td>
<td>fill-paragraph</td>
<td>Reformat paragraph.</td>
</tr>
<tr>
<td>(none)</td>
<td>fill-region</td>
<td>Reformat individual paragraphs within a region.</td>
</tr>
<tr>
<td>M-h</td>
<td>mark-paragraph</td>
<td>Mark paragraph.</td>
</tr>
</tbody>
</table>

### Stopping and Undoing Commands

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-g</td>
<td>keyboard-quit</td>
<td>Abort current command.</td>
</tr>
<tr>
<td>C-x u</td>
<td>advertised-undo</td>
<td>Undo last edit (can be done repeatedly).</td>
</tr>
<tr>
<td>(none)</td>
<td>revert-buffer</td>
<td>Restore buffer to the state it was in when the file was last saved (or auto-saved).</td>
</tr>
</tbody>
</table>

### Transposition Commands

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-t</td>
<td>transpose-chars</td>
<td>Transpose two letters.</td>
</tr>
<tr>
<td>M-t</td>
<td>transpose-words</td>
<td>Transpose two words.</td>
</tr>
<tr>
<td>C-x C-t</td>
<td>transpose-lines</td>
<td>Transpose two lines.</td>
</tr>
<tr>
<td>(none)</td>
<td>transpose-sentences</td>
<td>Transpose two sentences.</td>
</tr>
<tr>
<td>(none)</td>
<td>transpose-paragraphs</td>
<td>Transpose two paragraphs.</td>
</tr>
</tbody>
</table>

### Search Commands

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-s</td>
<td>isearch-forward</td>
<td>Incremental search forward.</td>
</tr>
<tr>
<td>C-r</td>
<td>isearch-backward</td>
<td>Incremental search backward</td>
</tr>
<tr>
<td>M-%</td>
<td>query-replace</td>
<td>Search and replace.</td>
</tr>
<tr>
<td>C-M-s Enter</td>
<td>re-search-forward</td>
<td>Regular expression search forward.</td>
</tr>
<tr>
<td>C-M-r Enter</td>
<td>re-search-backward</td>
<td>Regular expression search backward</td>
</tr>
</tbody>
</table>
## Capitalization Commands

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-c</td>
<td>capitalize-word</td>
<td>Capitalize first letter of word.</td>
</tr>
<tr>
<td>M-u</td>
<td>upcase-word</td>
<td>Uppercase word.</td>
</tr>
<tr>
<td>M-l</td>
<td>downcase-word</td>
<td>Lowercase word.</td>
</tr>
<tr>
<td>M-- M-c</td>
<td>negative-argument; capitalize-word</td>
<td>Capitalize previous word.</td>
</tr>
<tr>
<td>M-- M-u</td>
<td>negative-argument; upcase-word</td>
<td>Uppercase previous word.</td>
</tr>
<tr>
<td>M-- M-l</td>
<td>negative-argument; downcase-word</td>
<td>Lowercase previous word.</td>
</tr>
<tr>
<td>(none)</td>
<td>capitalize-region</td>
<td>Capitalize region.</td>
</tr>
<tr>
<td>C-x C-u</td>
<td>upcase-region</td>
<td>Uppercase region</td>
</tr>
<tr>
<td>C-x C-l</td>
<td>downcase-region</td>
<td>Lowercase region.</td>
</tr>
</tbody>
</table>

## Word-Abbreviation Commands

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(none)</td>
<td>abbrev-mode</td>
<td>Enter (or exit) word abbreviation mode.</td>
</tr>
<tr>
<td>C-x a i g</td>
<td>inverse-add-global-abbrev</td>
<td>Type global abbreviation, then definition.</td>
</tr>
<tr>
<td>C-x a i l</td>
<td>inverse-add-local-abbrev</td>
<td>Type local abbreviation, then definition.</td>
</tr>
<tr>
<td>(none)</td>
<td>unexpand-abbrev</td>
<td>Undo the last word abbreviation.</td>
</tr>
<tr>
<td>(none)</td>
<td>write-abbrev-file</td>
<td>Write the word abbreviation file.</td>
</tr>
<tr>
<td>(none)</td>
<td>edit-abbrevs</td>
<td>Edit the word abbreviations.</td>
</tr>
<tr>
<td>(none)</td>
<td>list-abbrevs</td>
<td>View the word abbreviations.</td>
</tr>
<tr>
<td>(none)</td>
<td>kill-all-abbrevs</td>
<td>Kill abbreviations for this session.</td>
</tr>
</tbody>
</table>

## Buffer-Manipulation Commands

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-x b</td>
<td>switch-to-buffer</td>
<td>Move to specified buffer.</td>
</tr>
<tr>
<td>C-x C-b</td>
<td>list-buffers</td>
<td>Display buffer list.</td>
</tr>
<tr>
<td>C-x k</td>
<td>kill-buffer</td>
<td>Delete specified buffer.</td>
</tr>
<tr>
<td>(none)</td>
<td>kill-some-buffers</td>
<td>Ask about deleting each buffer.</td>
</tr>
<tr>
<td>(none)</td>
<td>rename-buffer</td>
<td>Change buffer name to specified name.</td>
</tr>
<tr>
<td>C-x s</td>
<td>save-some-buffers</td>
<td>Ask whether to save each modified buffer.</td>
</tr>
</tbody>
</table>

## Window Commands

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-x 2</td>
<td>split-window-vertically</td>
<td>Divide the current window into two, one on top of the other.</td>
</tr>
<tr>
<td>C-x 3</td>
<td>split-window-horizontally</td>
<td>Divide the current window into two, side by side.</td>
</tr>
<tr>
<td>C-x &gt;</td>
<td>scroll-right</td>
<td>Scroll the window right.</td>
</tr>
</tbody>
</table>
## Special Shell Characters

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-!</td>
<td>shell-command</td>
<td>Run a shell command and display the results.</td>
</tr>
<tr>
<td>(none)</td>
<td>shell</td>
<td>Start a shell buffer.</td>
</tr>
<tr>
<td>C-c C-c</td>
<td>comint-interrupt-subjob</td>
<td>Terminate the current job.</td>
</tr>
<tr>
<td>C-c C-d</td>
<td>comint-send-eof</td>
<td>End of file character.</td>
</tr>
<tr>
<td>C-c C-u</td>
<td>comint-kill-input</td>
<td>Erase current line.</td>
</tr>
<tr>
<td>C-c C-w</td>
<td>backward-kill-word</td>
<td>Erase the previous word.</td>
</tr>
<tr>
<td>C-c C-z</td>
<td>comint-stop-subjob</td>
<td>Suspend the current job.</td>
</tr>
</tbody>
</table>

## Indentation Commands

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-x .</td>
<td>set-fill-prefix</td>
<td>Use characters from the beginning of the line up to the cursor column as the “fill prefix.” This prefix is prepended to each line in the paragraph. Cancel the prefix by typing this command in column 1.</td>
</tr>
<tr>
<td>(none)</td>
<td>indented-text-mode</td>
<td>Major mode: each tab defines a new indent for subsequent lines.</td>
</tr>
<tr>
<td>(none)</td>
<td>text-mode</td>
<td>Exit indented text mode; return to text mode.</td>
</tr>
<tr>
<td>C-M-\</td>
<td>indent-region</td>
<td>Indent a region to match first line in region.</td>
</tr>
<tr>
<td>M-m</td>
<td>back-to-indentation</td>
<td>Move cursor to first nonblank character on line.</td>
</tr>
<tr>
<td>M-^</td>
<td>delete-indentation</td>
<td>Join this line to the previous one.</td>
</tr>
<tr>
<td>C-M-o</td>
<td>split-line</td>
<td>Split line at cursor; indent to column of cursor.</td>
</tr>
<tr>
<td>(none)</td>
<td>fill-individual-paragraphs</td>
<td>Reformat indented paragraphs, keeping indentation.</td>
</tr>
</tbody>
</table>
## Centering Commands

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-s</td>
<td>center-line</td>
<td>Center line that cursor is on.</td>
</tr>
<tr>
<td>M-S</td>
<td>center-paragraph</td>
<td>Center paragraph that cursor is on.</td>
</tr>
<tr>
<td>(none)</td>
<td>center-region</td>
<td>Center currently defined region.</td>
</tr>
</tbody>
</table>

## Macro Commands

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-x ( or F3 key)</td>
<td>start-kbd-macro</td>
<td>Start macro definition.</td>
</tr>
<tr>
<td>C-x e or F4 key</td>
<td>call-last-kbd-macro</td>
<td>Execute last macro defined.</td>
</tr>
<tr>
<td>M-n C-x e</td>
<td>digit-argument and call-last-kbd-macro</td>
<td>Execute last macro defined n times.</td>
</tr>
<tr>
<td>C-u C-x (</td>
<td>universal-argument and start-kbd-macro</td>
<td>Execute last macro defined, then add keystrokes.</td>
</tr>
<tr>
<td>(none)</td>
<td>name-last-kbd-macro</td>
<td>Name last macro you created (before saving it).</td>
</tr>
<tr>
<td>(none)</td>
<td>insert-kbd-macro</td>
<td>Insert the macro you named into a file.</td>
</tr>
<tr>
<td>(none)</td>
<td>load-file</td>
<td>Load macro files you’ve saved and loaded.</td>
</tr>
<tr>
<td>(none)</td>
<td>macro-name</td>
<td>Execute a keyboard macro you’ve saved.</td>
</tr>
<tr>
<td>C-x q</td>
<td>kbd-macro-query</td>
<td>Insert a query in a macro definition.</td>
</tr>
<tr>
<td>C-u C-x q</td>
<td>(none)</td>
<td>Insert a recursive edit in a macro definition.</td>
</tr>
<tr>
<td>C-M-c</td>
<td>exit-recursive-edit</td>
<td>Exit a recursive edit.</td>
</tr>
</tbody>
</table>

## Detail Information Help Commands

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-h a</td>
<td>command-apropos</td>
<td>What commands involve this concept?</td>
</tr>
<tr>
<td>C-h d</td>
<td>apropos</td>
<td>What functions and variables involve this concept?</td>
</tr>
<tr>
<td>C-h c</td>
<td>describe-key-briefly</td>
<td>What command does this keystroke sequence run?</td>
</tr>
<tr>
<td>C-h b</td>
<td>describe-bindings</td>
<td>What are all the key bindings for this buffer?</td>
</tr>
<tr>
<td>C-h k</td>
<td>describe-key</td>
<td>What command does this keystroke sequence run, and what does it do?</td>
</tr>
<tr>
<td>C-h l</td>
<td>view-lossage</td>
<td>What are the last 100 characters I typed?</td>
</tr>
<tr>
<td>C-h e</td>
<td>view-echo-area-messages</td>
<td>Display the “Messages” buffer.</td>
</tr>
<tr>
<td>C-h w</td>
<td>where-is</td>
<td>What is the key binding for this command?</td>
</tr>
<tr>
<td>C-h f</td>
<td>describe-function</td>
<td>What does this function do?</td>
</tr>
<tr>
<td>C-h v</td>
<td>describe-variable</td>
<td>What does this variable mean, and what is its value?</td>
</tr>
<tr>
<td>C-h m</td>
<td>describe-mode</td>
<td>Tell me about the mode the current buffer is in.</td>
</tr>
<tr>
<td>C-h s</td>
<td>describe-syntax</td>
<td>What is the syntax table for this buffer?</td>
</tr>
</tbody>
</table>
Help Commands

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-h t</td>
<td>help-with-tutorial</td>
<td>Run the Emacs tutorial.</td>
</tr>
<tr>
<td>C-h i</td>
<td>info</td>
<td>Start the Info documentation reader.</td>
</tr>
<tr>
<td>C-h r</td>
<td>info-emacs-command</td>
<td>View the Emacs documentation in the Info reader.</td>
</tr>
<tr>
<td>C-h n</td>
<td>view-emacs-news</td>
<td>View news about updates to Emacs.</td>
</tr>
<tr>
<td>C-h C-c</td>
<td>describe-copying</td>
<td>View the Emacs General Public License.</td>
</tr>
<tr>
<td>C-h C-d</td>
<td>describe-distribution</td>
<td>View information on ordering Emacs from the FSF.</td>
</tr>
<tr>
<td>C-h C-w</td>
<td>describe-no-warranty</td>
<td>View the (non)warranty for Emacs.</td>
</tr>
</tbody>
</table>

Summary of Commands by Key

Emacs commands are presented below in two alphabetical lists. Reminder: C- indicates the Ctrl key; M- indicates the Meta key.

Control-Key Sequences

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-@</td>
<td>set-mark-command</td>
<td>Mark the beginning (or end) of a region.</td>
</tr>
<tr>
<td>C-Space</td>
<td>(same as previous)</td>
<td>Exit recursive edit and exit query-replace.</td>
</tr>
<tr>
<td>C-]</td>
<td>(none)</td>
<td>Exit recursive edit and exit query-replace.</td>
</tr>
<tr>
<td>C-a</td>
<td>beginning-of-line</td>
<td>Move to beginning of line.</td>
</tr>
<tr>
<td>C-b</td>
<td>backward-char</td>
<td>Move backward one character (left).</td>
</tr>
<tr>
<td>C-c C-c</td>
<td>comint-interrupt-subjob</td>
<td>Terminate the current job.</td>
</tr>
<tr>
<td>C-c C-d</td>
<td>comint-send-eof</td>
<td>End-of-file character.</td>
</tr>
<tr>
<td>C-c C-u</td>
<td>comint-kill-input</td>
<td>Erase current line.</td>
</tr>
<tr>
<td>C-c C-w</td>
<td>backward-kill-word</td>
<td>Erase the previous word.</td>
</tr>
<tr>
<td>C-c C-z</td>
<td>comint-stop-subjob</td>
<td>Suspend the current job.</td>
</tr>
<tr>
<td>C-d</td>
<td>delete-char</td>
<td>Delete character under cursor.</td>
</tr>
<tr>
<td>C-e</td>
<td>end-of-line</td>
<td>Move to end of line.</td>
</tr>
<tr>
<td>C-f</td>
<td>forward-char</td>
<td>Move forward one character (right).</td>
</tr>
<tr>
<td>C-g</td>
<td>keyboard-quit</td>
<td>Abort current command.</td>
</tr>
<tr>
<td>C-h</td>
<td>help-command</td>
<td>Enter the online help system.</td>
</tr>
<tr>
<td>C-h a</td>
<td>command-apropos</td>
<td>What commands involve this concept?</td>
</tr>
<tr>
<td>C-h b</td>
<td>describe-bindings</td>
<td>What are all the key bindings for this buffer?</td>
</tr>
<tr>
<td>C-h C-c</td>
<td>describe-copying</td>
<td>View the Emacs General Public License.</td>
</tr>
<tr>
<td>C-h C-d</td>
<td>describe-distribution</td>
<td>View information on ordering Emacs from FSF.</td>
</tr>
<tr>
<td>C-h C-w</td>
<td>describe-no-warranty</td>
<td>View the (non)warranty for Emacs.</td>
</tr>
<tr>
<td>C-h C</td>
<td>describe-key-briefly</td>
<td>What command does this keystroke sequence run?</td>
</tr>
<tr>
<td>C-h d</td>
<td>apropos</td>
<td>What functions and variables involve this concept?</td>
</tr>
<tr>
<td>C-h e</td>
<td>view-echo-area-messages</td>
<td>Display the “Messages” buffer.</td>
</tr>
<tr>
<td>C-h f</td>
<td>describe-function</td>
<td>What does this function do?</td>
</tr>
<tr>
<td>Keystrokes</td>
<td>Command name</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>C-h i</td>
<td>info</td>
<td>Start the Info documentation reader.</td>
</tr>
<tr>
<td>C-h k</td>
<td>describe-key</td>
<td>What command does this keystroke sequence run, and what does it do?</td>
</tr>
<tr>
<td>C-h l</td>
<td>view-lossage</td>
<td>What are the last 100 characters I typed?</td>
</tr>
<tr>
<td>C-h m</td>
<td>describe-mode</td>
<td>Tell me about the mode the current buffer is in.</td>
</tr>
<tr>
<td>C-h n</td>
<td>view-emacs-news</td>
<td>View news about updates to Emacs.</td>
</tr>
<tr>
<td>C-h r</td>
<td>info-emacs-manual</td>
<td>View the Emacs documentation in the Info reader.</td>
</tr>
<tr>
<td>C-h s</td>
<td>describe-syntax</td>
<td>What is the syntax table for this buffer?</td>
</tr>
<tr>
<td>C-h t</td>
<td>help-with-tutorial</td>
<td>Run the Emacs tutorial.</td>
</tr>
<tr>
<td>C-h v</td>
<td>describe-variable</td>
<td>What does this variable mean, and what is its value?</td>
</tr>
<tr>
<td>C-h w</td>
<td>where-is</td>
<td>What is the key binding for this command?</td>
</tr>
<tr>
<td>C-k</td>
<td>kill-line</td>
<td>Delete from cursor to end of line.</td>
</tr>
<tr>
<td>C-l</td>
<td>recentor</td>
<td>Redraw screen with current line in the center.</td>
</tr>
<tr>
<td>C-M-\</td>
<td>indent-region</td>
<td>Indent a region to match first line in region.</td>
</tr>
<tr>
<td>C-M-c</td>
<td>exit-recursive-edit</td>
<td>Exit a recursive edit.</td>
</tr>
<tr>
<td>C-M-o</td>
<td>split-line</td>
<td>Split line at cursor; indent to column of cursor.</td>
</tr>
<tr>
<td>C-M-v</td>
<td>scroll-other-window</td>
<td>Scroll other window.</td>
</tr>
<tr>
<td>C-n</td>
<td>next-line</td>
<td>Move to next line (down).</td>
</tr>
<tr>
<td>C-p</td>
<td>previous-line</td>
<td>Move to previous line (up).</td>
</tr>
<tr>
<td>C-r</td>
<td>isearch-backward</td>
<td>Start incremental search backward.</td>
</tr>
<tr>
<td>C-s</td>
<td>isearch-forward</td>
<td>Start incremental search forward.</td>
</tr>
<tr>
<td>C-t</td>
<td>transpose-chars</td>
<td>Transpose two letters.</td>
</tr>
<tr>
<td>C-u n</td>
<td>universal-argument</td>
<td>Repeat the next command n times.</td>
</tr>
<tr>
<td>C-u C-x (</td>
<td>universal-argument and start-kbd-macro</td>
<td>Execute last macro defined, then add keystrokes.</td>
</tr>
<tr>
<td>C-u C-x q</td>
<td>(none)</td>
<td>Insert recursive edit in a macro definition.</td>
</tr>
<tr>
<td>C-v</td>
<td>scroll-up</td>
<td>Move forward one screen.</td>
</tr>
<tr>
<td>C-w</td>
<td>kill-region</td>
<td>Delete a marked region.</td>
</tr>
<tr>
<td>C-x (</td>
<td>start-kbd-macro</td>
<td>Start macro definition.</td>
</tr>
<tr>
<td>C-x )</td>
<td>end-kbd-macro</td>
<td>End macro definition.</td>
</tr>
<tr>
<td>C-x {</td>
<td>backward-page</td>
<td>Move backward one page.</td>
</tr>
<tr>
<td>C-x }</td>
<td>forward-page</td>
<td>Move forward one page.</td>
</tr>
<tr>
<td>C-x ^</td>
<td>enlarge-window</td>
<td>Make window taller.</td>
</tr>
<tr>
<td>C-x (</td>
<td>shrink-window-horizontaly</td>
<td>Make window narrower.</td>
</tr>
<tr>
<td>C-x )</td>
<td>enlarge-window-horizontaly</td>
<td>Make window wider.</td>
</tr>
<tr>
<td>C-x &lt;</td>
<td>scroll-left</td>
<td>Scroll the window left.</td>
</tr>
<tr>
<td>C-x &gt;</td>
<td>scroll-right</td>
<td>Scroll the window right.</td>
</tr>
<tr>
<td>C-x .</td>
<td>set-fill-prefix</td>
<td>Use characters from the beginning of the line up to the cursor column as the “fill prefix.” This prefix is prepended to each line in the paragraph. Cancel the prefix by typing this command in column 1.</td>
</tr>
<tr>
<td>C-x 0</td>
<td>delete-window</td>
<td>Delete current window.</td>
</tr>
<tr>
<td>C-x 1</td>
<td>delete-other-windows</td>
<td>Delete all windows but this one.</td>
</tr>
<tr>
<td>Keystrokes</td>
<td>Command name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>C-x 2</td>
<td>split-window-vertically</td>
<td>Divide the current window into two, one on top of the other.</td>
</tr>
<tr>
<td>C-x 3</td>
<td>split-window-horizontally</td>
<td>Divide the current window into two, side by side.</td>
</tr>
<tr>
<td>C-x 4 b</td>
<td>switch-to-buffer-other-window</td>
<td>Select a buffer in the other window.</td>
</tr>
<tr>
<td>C-x 4 f</td>
<td>find-file-other-window</td>
<td>Find a file in the other window.</td>
</tr>
<tr>
<td>C-x 5 b</td>
<td>switch-to-buffer-other-frame</td>
<td>Select a buffer in another frame.</td>
</tr>
<tr>
<td>C-x 5 f</td>
<td>find-file-other-frame</td>
<td>Find a file in a new frame.</td>
</tr>
<tr>
<td>C-x C-b</td>
<td>list-buffers</td>
<td>Display the buffer list.</td>
</tr>
<tr>
<td>C-x C-c</td>
<td>save-buffers-kill-emacs</td>
<td>Exit Emacs.</td>
</tr>
<tr>
<td>C-x C-f</td>
<td>find-file</td>
<td>Find file and read it.</td>
</tr>
<tr>
<td>C-x C-l</td>
<td>downcase-region</td>
<td>Lowercase region.</td>
</tr>
<tr>
<td>C-x C-p</td>
<td>mark-page</td>
<td>Mark page.</td>
</tr>
<tr>
<td>C-x C-q</td>
<td>(none)</td>
<td>Toggle read-only status of buffer.</td>
</tr>
<tr>
<td>C-x C-s</td>
<td>save-buffer</td>
<td>Save file (may hang terminal; use C-q to restart).</td>
</tr>
<tr>
<td>C-x C-t</td>
<td>transpose-lines</td>
<td>Transpose two lines.</td>
</tr>
<tr>
<td>C-x C-u</td>
<td>upcase-region</td>
<td>Uppercase region.</td>
</tr>
<tr>
<td>C-x C-v</td>
<td>find-alternate-file</td>
<td>Read an alternate file, replacing the one read with C-x C-f.</td>
</tr>
<tr>
<td>C-x C-w</td>
<td>write-file</td>
<td>Write buffer contents to file.</td>
</tr>
<tr>
<td>C-x C-x</td>
<td>exchange-point-and-mark</td>
<td>Exchange location of cursor and mark.</td>
</tr>
<tr>
<td>C-x DEL</td>
<td>backward-kill-sentence</td>
<td>Delete previous sentence.</td>
</tr>
<tr>
<td>C-x a i g</td>
<td>inverse-add-global-abbrev</td>
<td>Type global abbreviation, then definition.</td>
</tr>
<tr>
<td>C-x a i l</td>
<td>inverse-add-local-abbrev</td>
<td>Type local abbreviation, then definition.</td>
</tr>
<tr>
<td>C-x b</td>
<td>switch-to-buffer</td>
<td>Move to the buffer specified.</td>
</tr>
<tr>
<td>C-x e</td>
<td>call-last-kbd-macro</td>
<td>Execute last macro defined.</td>
</tr>
<tr>
<td>C-x h</td>
<td>mark-whole-buffer</td>
<td>Mark buffer.</td>
</tr>
<tr>
<td>C-x i</td>
<td>insert-file</td>
<td>Insert file at cursor position.</td>
</tr>
<tr>
<td>C-x k</td>
<td>kill-buffer</td>
<td>Delete the buffer specified.</td>
</tr>
<tr>
<td>C-x o</td>
<td>other-window</td>
<td>Move to the other window.</td>
</tr>
<tr>
<td>C-x q</td>
<td>kbd-macro-query</td>
<td>Insert a query in a macro definition.</td>
</tr>
<tr>
<td>C-x s</td>
<td>save-some-buffers</td>
<td>Ask whether to save each modified buffer.</td>
</tr>
<tr>
<td>C-x u</td>
<td>advertised-undo</td>
<td>Undo last edit (can be done repeatedly).</td>
</tr>
<tr>
<td>C-y</td>
<td>yank</td>
<td>Restore what you’ve deleted.</td>
</tr>
<tr>
<td>C-z</td>
<td>suspend-emacs</td>
<td>Suspend Emacs (use exit or fg to restart).</td>
</tr>
</tbody>
</table>

### Meta-Key Sequences

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Command name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meta</td>
<td>(none)</td>
<td>Exit a query-replace or successful search.</td>
</tr>
<tr>
<td>M - M-c</td>
<td>negative-argument; capitalize-word</td>
<td>Capitalize previous word.</td>
</tr>
<tr>
<td>M - M-l</td>
<td>negative-argument; downcase-word</td>
<td>Lowercase previous word.</td>
</tr>
<tr>
<td>M - M-u</td>
<td>negative-argument; upcase-word</td>
<td>Uppercase previous word.</td>
</tr>
<tr>
<td>Keystrokes</td>
<td>Command name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>M-S</td>
<td>spell-word</td>
<td>Check spelling of word after cursor.</td>
</tr>
<tr>
<td>M-&lt;</td>
<td>beginning-of-buffer</td>
<td>Move to beginning of file.</td>
</tr>
<tr>
<td>M-&gt;</td>
<td>end-of-buffer</td>
<td>Move to end of file.</td>
</tr>
<tr>
<td>M-{</td>
<td>backward-paragraph</td>
<td>Move backward one paragraph.</td>
</tr>
<tr>
<td>M-}</td>
<td>forward-paragraph</td>
<td>Move forward one paragraph.</td>
</tr>
<tr>
<td>M-^</td>
<td>delete-indentation</td>
<td>Join this line to the previous one.</td>
</tr>
<tr>
<td>M-n</td>
<td>digit-argument</td>
<td>Repeat the next command n times.</td>
</tr>
<tr>
<td>M-n C-x e</td>
<td>digit-argument and call-last-kbd-macro</td>
<td>Execute the last defined macro n times.</td>
</tr>
<tr>
<td>M-a</td>
<td>backward-sentence</td>
<td>Move backward one sentence.</td>
</tr>
<tr>
<td>M-b</td>
<td>backward-word</td>
<td>Move one word backward.</td>
</tr>
<tr>
<td>M-c</td>
<td>capitalize-word</td>
<td>Capitalize first letter of word.</td>
</tr>
<tr>
<td>M-d</td>
<td>kill-word</td>
<td>Delete word that cursor is on.</td>
</tr>
<tr>
<td>M-DEL</td>
<td>backward-kill-word</td>
<td>Delete previous word.</td>
</tr>
<tr>
<td>M-e</td>
<td>forward-sentence</td>
<td>Move forward one sentence.</td>
</tr>
<tr>
<td>M-f</td>
<td>forward-word</td>
<td>Move one word forward.</td>
</tr>
<tr>
<td>M-g g or M-g M-g</td>
<td>goto-line</td>
<td>Go to line n of file.</td>
</tr>
<tr>
<td>M-h</td>
<td>mark-paragraph</td>
<td>Mark paragraph.</td>
</tr>
<tr>
<td>M-k</td>
<td>kill-sentence</td>
<td>Delete sentence the cursor is on.</td>
</tr>
<tr>
<td>M-l</td>
<td>downcase-word</td>
<td>Lowercase word.</td>
</tr>
<tr>
<td>M-m</td>
<td>back-to-indentation</td>
<td>Move cursor to first nonblank character on line.</td>
</tr>
<tr>
<td>M-q</td>
<td>fill-paragraph</td>
<td>Reformat paragraph.</td>
</tr>
<tr>
<td>M-s</td>
<td>center-line</td>
<td>Center line that cursor is on.</td>
</tr>
<tr>
<td>M-S</td>
<td>center-paragraph</td>
<td>Center paragraph that cursor is on.</td>
</tr>
<tr>
<td>M-t</td>
<td>transpose-words</td>
<td>Transpose two words.</td>
</tr>
<tr>
<td>M-u</td>
<td>upcase-word</td>
<td>Uppercase word.</td>
</tr>
<tr>
<td>M-v</td>
<td>scroll-down</td>
<td>Move backward one screen.</td>
</tr>
<tr>
<td>M-x</td>
<td>(none)</td>
<td>Access command by command name.</td>
</tr>
</tbody>
</table>

### Summary of Commands by Name

The Emacs commands below are presented alphabetically by command name. Use M-x to access the command name. Reminder: C- indicates the Ctrl key; M- indicates the Meta key.

<table>
<thead>
<tr>
<th>Command name</th>
<th>Keystrokes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>macroname</code></td>
<td>(none)</td>
<td>Execute a keyboard macro you’ve saved.</td>
</tr>
<tr>
<td>abbrev-mode</td>
<td>(none)</td>
<td>Enter (or exit) word abbreviation mode.</td>
</tr>
<tr>
<td>advertised-undo</td>
<td>C-x u</td>
<td>Undo last edit (can be done repeatedly).</td>
</tr>
<tr>
<td>apropos</td>
<td>(none)</td>
<td>What functions and variables involve this concept?</td>
</tr>
<tr>
<td>back-to-indentation</td>
<td>M-m</td>
<td>Move cursor to first nonblank character on line.</td>
</tr>
<tr>
<td>backward-char</td>
<td>C-b</td>
<td>Move backward one character (left).</td>
</tr>
<tr>
<td>backward-delete-char</td>
<td>Del</td>
<td>Delete previous character.</td>
</tr>
<tr>
<td>Command name</td>
<td>Keystrokes</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>backward-kill-paragraph</td>
<td>(none)</td>
<td>Delete previous paragraph.</td>
</tr>
<tr>
<td>backward-kill-sentence</td>
<td>C-x Del</td>
<td>Delete previous sentence.</td>
</tr>
<tr>
<td>backward-kill-word</td>
<td>C-c C-w</td>
<td>Erase previous word.</td>
</tr>
<tr>
<td>backward-page</td>
<td>C-x {</td>
<td>Move backward one page.</td>
</tr>
<tr>
<td>backward-paragraph</td>
<td>M-{</td>
<td>Move backward one paragraph.</td>
</tr>
<tr>
<td>backward-sentence</td>
<td>M-a</td>
<td>Move backward one sentence.</td>
</tr>
<tr>
<td>backward-word</td>
<td>M-b</td>
<td>Move backward one word.</td>
</tr>
<tr>
<td>beginning-of-buffer</td>
<td>M-&lt;</td>
<td>Move to beginning of file.</td>
</tr>
<tr>
<td>beginning-of-line</td>
<td>C-a</td>
<td>Move to beginning of line.</td>
</tr>
<tr>
<td>call-last-kbd-macro</td>
<td>C-x e</td>
<td>Execute last macro defined.</td>
</tr>
<tr>
<td>capitalize-region</td>
<td>(none)</td>
<td>Capitalize region.</td>
</tr>
<tr>
<td>capitalize-word</td>
<td>M-c</td>
<td>Capitalize first letter of word.</td>
</tr>
<tr>
<td>center-line</td>
<td>M-s</td>
<td>Center line that cursor is on.</td>
</tr>
<tr>
<td>center-paragraph</td>
<td>M-S</td>
<td>Center paragraph that cursor is on.</td>
</tr>
<tr>
<td>center-region</td>
<td>(none)</td>
<td>Center currently defined region.</td>
</tr>
<tr>
<td>comint-interrupt-subjob</td>
<td>C-c C-c</td>
<td>Terminate the current job.</td>
</tr>
<tr>
<td>comint-kill-input</td>
<td>C-c C-u</td>
<td>Erase current line.</td>
</tr>
<tr>
<td>comint-send-eof</td>
<td>C-c C-d</td>
<td>End of file character.</td>
</tr>
<tr>
<td>comint-stop-subjob</td>
<td>C-c C-z</td>
<td>Suspend current job.</td>
</tr>
<tr>
<td>command-apropos</td>
<td>C-h a</td>
<td>What commands involve this concept?</td>
</tr>
<tr>
<td>compare-windows</td>
<td>(none)</td>
<td>Compare two buffers; show first difference.</td>
</tr>
<tr>
<td>delete-char</td>
<td>C-d</td>
<td>Delete character under cursor.</td>
</tr>
<tr>
<td>delete-indentation</td>
<td>M-^</td>
<td>Join this line to previous one.</td>
</tr>
<tr>
<td>delete-other-windows</td>
<td>C-x 1</td>
<td>Delete all windows but this one.</td>
</tr>
<tr>
<td>delete-window</td>
<td>C-x 0</td>
<td>Delete current window.</td>
</tr>
<tr>
<td>delete-windows-on</td>
<td>(none)</td>
<td>Delete all windows on a given buffer.</td>
</tr>
<tr>
<td>describe-bindings</td>
<td>C-h b</td>
<td>What are all the key bindings for in this buffer?</td>
</tr>
<tr>
<td>describe-copying</td>
<td>C-h C-c</td>
<td>View the Emacs General Public License.</td>
</tr>
<tr>
<td>describe-distribution</td>
<td>C-h C-d</td>
<td>View information on ordering Emacs from the FSF.</td>
</tr>
<tr>
<td>describe-function</td>
<td>C-h f</td>
<td>What does this function do?</td>
</tr>
<tr>
<td>describe-key</td>
<td>C-h k</td>
<td>What command does this keystroke sequence run, and what does it do?</td>
</tr>
<tr>
<td>describe-key-briefly</td>
<td>C-h c</td>
<td>What command does this keystroke sequence run?</td>
</tr>
<tr>
<td>describe-mode</td>
<td>C-h m</td>
<td>Tell me about the mode the current buffer is in.</td>
</tr>
<tr>
<td>describe-no-warranty</td>
<td>C-h C-w</td>
<td>View the (non)warranty for Emacs.</td>
</tr>
<tr>
<td>describe-syntax</td>
<td>C-h s</td>
<td>What is the syntax table for this buffer?</td>
</tr>
<tr>
<td>describe-variable</td>
<td>C-h v</td>
<td>What does this variable mean, and what is its value?</td>
</tr>
<tr>
<td>digit-argument and call-last-kbd-macro</td>
<td>M-&lt; C-x e</td>
<td>Execute the last defined macro n times.</td>
</tr>
<tr>
<td>digit-argument</td>
<td>M-n</td>
<td>Repeat next command n times.</td>
</tr>
<tr>
<td>downcase-region</td>
<td>C-x C-l</td>
<td>Lowercase region.</td>
</tr>
<tr>
<td>Command name</td>
<td>Keystrokes</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>downcase-word</td>
<td>M-l</td>
<td>Lowercase word.</td>
</tr>
<tr>
<td>edit-abbrevs</td>
<td>(none)</td>
<td>Edit word abbreviations.</td>
</tr>
<tr>
<td>end-kbd-macro</td>
<td>C-x or F4 key</td>
<td>End macro definition.</td>
</tr>
<tr>
<td>end-of-buffer</td>
<td>M-/&gt;</td>
<td>Move to end of file.</td>
</tr>
<tr>
<td>end-of-line</td>
<td>C-e</td>
<td>Move to end of line.</td>
</tr>
<tr>
<td>enlarge-window</td>
<td>C-x ^</td>
<td>Make window taller.</td>
</tr>
<tr>
<td>enlarge-window-horizontally</td>
<td>C-x }</td>
<td>Make window wider.</td>
</tr>
<tr>
<td>exchange-point-and-mark</td>
<td>C-x C-x</td>
<td>Exchange location of cursor and mark.</td>
</tr>
<tr>
<td>exit-recursive-edit</td>
<td>C-M-c</td>
<td>Exit a recursive edit.</td>
</tr>
<tr>
<td>fill-individual-paragraphs</td>
<td>(none)</td>
<td>Reformat indented paragraphs, keeping indentation.</td>
</tr>
<tr>
<td>fill-paragraph</td>
<td>M-q</td>
<td>Reformat paragraph.</td>
</tr>
<tr>
<td>fill-region</td>
<td>(none)</td>
<td>Reformat individual paragraphs within a region.</td>
</tr>
<tr>
<td>find-alternate-file</td>
<td>C-x C-v</td>
<td>Read an alternate file, replacing the one read with C-x C-f.</td>
</tr>
<tr>
<td>find-file</td>
<td>C-x C-f</td>
<td>Find file and read it.</td>
</tr>
<tr>
<td>find-file-other-frame</td>
<td>C-x 5 f</td>
<td>Find a file in a new frame.</td>
</tr>
<tr>
<td>find-file-other-window</td>
<td>C-x 4 f</td>
<td>Find a file in the other window.</td>
</tr>
<tr>
<td>forward-char</td>
<td>C-f</td>
<td>Move forward one character (right).</td>
</tr>
<tr>
<td>forward-page</td>
<td>C-x ]</td>
<td>Move forward one page.</td>
</tr>
<tr>
<td>forward-paragraph</td>
<td>M-)</td>
<td>Move forward one paragraph.</td>
</tr>
<tr>
<td>forward-sentence</td>
<td>M-e</td>
<td>Move forward one sentence.</td>
</tr>
<tr>
<td>forward-word</td>
<td>M-f</td>
<td>Move forward one word.</td>
</tr>
<tr>
<td>goto-char</td>
<td>(none)</td>
<td>Go to character n of file.</td>
</tr>
<tr>
<td>goto-line</td>
<td>M-g g or M-g M-g</td>
<td>Go to line n of file.</td>
</tr>
<tr>
<td>help-command</td>
<td>C-h</td>
<td>Enter the online help system.</td>
</tr>
<tr>
<td>help-with-tutorial</td>
<td>C-h t</td>
<td>Run the Emacs tutorial.</td>
</tr>
<tr>
<td>indent-region</td>
<td>C-M-\</td>
<td>Indent a region to match first line in region.</td>
</tr>
<tr>
<td>indented-text-mode</td>
<td>(none)</td>
<td>Major mode: each tab defines a new indent for subsequent lines.</td>
</tr>
<tr>
<td>info</td>
<td>C-h i</td>
<td>Start the Info documentation reader.</td>
</tr>
<tr>
<td>info-emacs-manual</td>
<td>C-h r</td>
<td>View the Emacs documentation in the Info reader.</td>
</tr>
<tr>
<td>insert-file</td>
<td>C-x i</td>
<td>Insert file at cursor position.</td>
</tr>
<tr>
<td>insert-kbd-macro</td>
<td>(none)</td>
<td>Insert the macro you named into a file.</td>
</tr>
<tr>
<td>inverse-add-global-abbrev</td>
<td>C-x a i g</td>
<td>Type global abbreviation, then definition.</td>
</tr>
<tr>
<td>inverse-add-local-abbrev</td>
<td>C-x a i l</td>
<td>Type local abbreviation, then definition.</td>
</tr>
<tr>
<td>isearch-backward</td>
<td>C-&lt;</td>
<td>Start incremental search backward.</td>
</tr>
<tr>
<td>isearch-backward-regexp</td>
<td>C-r</td>
<td>Same, but search for regular expression.</td>
</tr>
<tr>
<td>isearch-forward</td>
<td>C-s</td>
<td>Start incremental search forward.</td>
</tr>
<tr>
<td>isearch-forward-regexp</td>
<td>C-r</td>
<td>Same, but search for regular expression.</td>
</tr>
<tr>
<td>kbd-macro-query</td>
<td>C-x q</td>
<td>Insert a query in a macro definition.</td>
</tr>
<tr>
<td>keyboard-quit</td>
<td>C-g</td>
<td>Abort current command.</td>
</tr>
<tr>
<td>kill-all-abbrevs</td>
<td>(none)</td>
<td>Kill abbreviations for this session.</td>
</tr>
<tr>
<td>kill-buffer</td>
<td>C-x k</td>
<td>Delete the buffer specified.</td>
</tr>
<tr>
<td>Command name</td>
<td>Keystrokes</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>kill-line</td>
<td>C-k</td>
<td>Delete from cursor to end of line.</td>
</tr>
<tr>
<td>kill-paragraph</td>
<td>(none)</td>
<td>Delete from cursor to end of paragraph.</td>
</tr>
<tr>
<td>kill-region</td>
<td>C-w</td>
<td>Delete a marked region.</td>
</tr>
<tr>
<td>kill-sentence</td>
<td>M-k</td>
<td>Delete sentence the cursor is on.</td>
</tr>
<tr>
<td>kill-some-buffers</td>
<td>(none)</td>
<td>Ask about deleting each buffer.</td>
</tr>
<tr>
<td>kill-word</td>
<td>M-d</td>
<td>Delete word the cursor is on.</td>
</tr>
<tr>
<td>list-abbrevs</td>
<td>(none)</td>
<td>View word abbreviations.</td>
</tr>
<tr>
<td>list-buffers</td>
<td>C-x C-b</td>
<td>Display buffer list.</td>
</tr>
<tr>
<td>load-file</td>
<td>(none)</td>
<td>Load macro files you've saved.</td>
</tr>
<tr>
<td>mark-page</td>
<td>C-x C-p</td>
<td>Mark page.</td>
</tr>
<tr>
<td>mark-paragraph</td>
<td>M-h</td>
<td>Mark paragraph.</td>
</tr>
<tr>
<td>mark-whole-buffer</td>
<td>C-x h</td>
<td>Mark buffer.</td>
</tr>
<tr>
<td>name-last-kbd-macro</td>
<td>(none)</td>
<td>Name last macro you created (before saving it).</td>
</tr>
<tr>
<td>negative-argument;</td>
<td>M- - M-c</td>
<td>Capitalize previous word.</td>
</tr>
<tr>
<td>capitalize-word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>negative-argument;</td>
<td>M- - M-l</td>
<td>Lowercase previous word.</td>
</tr>
<tr>
<td>downcase-word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>negative-argument;</td>
<td>M- - M-u</td>
<td>Uppercase previous word.</td>
</tr>
<tr>
<td>upcase-word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>next-line</td>
<td>C-n</td>
<td>Move to next line (down).</td>
</tr>
<tr>
<td>other-window</td>
<td>C-x o</td>
<td>Move to the other window.</td>
</tr>
<tr>
<td>previous-line</td>
<td>C-p</td>
<td>Move to previous line (up).</td>
</tr>
<tr>
<td>query-replace</td>
<td>M- %</td>
<td>Search and replace.</td>
</tr>
<tr>
<td>query-replace-regexp</td>
<td>C-% Meta</td>
<td>Query-replace a regular expression.</td>
</tr>
<tr>
<td>recenter</td>
<td>C-l</td>
<td>Redraw screen, with current line in center.</td>
</tr>
<tr>
<td>rename-buffer</td>
<td>(none)</td>
<td>Change buffer name to specified name.</td>
</tr>
<tr>
<td>replace-regexp</td>
<td>(none)</td>
<td>Replace a regular expression unconditionally.</td>
</tr>
<tr>
<td>re-search-backward</td>
<td>(none)</td>
<td>Simple regular expression search backward.</td>
</tr>
<tr>
<td>re-search-forward</td>
<td>(none)</td>
<td>Simple regular expression search forward.</td>
</tr>
<tr>
<td>revert-buffer</td>
<td>(none)</td>
<td>Restore buffer to the state it was in when the file was last saved (or auto-saved).</td>
</tr>
<tr>
<td>save-buffer</td>
<td>C-x C-s</td>
<td>Save file (may hang terminal; use C-q to restart).</td>
</tr>
<tr>
<td>save-buffers-kill-emacs</td>
<td>C-x C-c</td>
<td>Exit Emacs.</td>
</tr>
<tr>
<td>save-some-buffers</td>
<td>C-x s</td>
<td>Ask whether to save each modified buffer.</td>
</tr>
<tr>
<td>scroll-down</td>
<td>M-v</td>
<td>Move backward one screen.</td>
</tr>
<tr>
<td>scroll-left</td>
<td>C-x &lt;</td>
<td>Scroll the window left.</td>
</tr>
<tr>
<td>scroll-other-window</td>
<td>C-M-v</td>
<td>Scroll other window.</td>
</tr>
<tr>
<td>scroll-right</td>
<td>C-x &gt;</td>
<td>Scroll the window right.</td>
</tr>
<tr>
<td>scroll-up</td>
<td>C-v</td>
<td>Move forward one screen.</td>
</tr>
<tr>
<td>set-fill-prefix</td>
<td>C-x .</td>
<td>Use characters from the beginning of the line up to the cursor column as the &quot;fill prefix.&quot; This prefix is prepended to each line in the paragraph. Cancel the prefix by typing this command in column 1.</td>
</tr>
<tr>
<td>set-mark-command</td>
<td>C-@ or C-Space</td>
<td>Mark the beginning (or end) of a region.</td>
</tr>
<tr>
<td>Command name</td>
<td>Keystrokes</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>shell</td>
<td>(none)</td>
<td>Start a shell buffer.</td>
</tr>
<tr>
<td>shell-command</td>
<td>M-!</td>
<td>Run a shell command and display the results.</td>
</tr>
<tr>
<td>shrink-window</td>
<td>(none)</td>
<td>Make window shorter.</td>
</tr>
<tr>
<td>shrink-window-horizontally</td>
<td>C-x {</td>
<td>Make window narrower.</td>
</tr>
<tr>
<td>spell-buffer</td>
<td>(none)</td>
<td>Check spelling of current buffer.</td>
</tr>
<tr>
<td>spell-region</td>
<td>(none)</td>
<td>Check spelling of current region.</td>
</tr>
<tr>
<td>spell-string</td>
<td>(none)</td>
<td>Check spelling of string typed in minibuffer.</td>
</tr>
<tr>
<td>spell-word</td>
<td>M-$</td>
<td>Check spelling of word after cursor.</td>
</tr>
<tr>
<td>split-line</td>
<td>C-M-o</td>
<td>Split line at cursor; indent to column of cursor.</td>
</tr>
<tr>
<td>split-window-vertically</td>
<td>C-x 2</td>
<td>Divide the current window into two, one on top of the other.</td>
</tr>
<tr>
<td>split-window-horizontally</td>
<td>C-x 3</td>
<td>Divide the current window into two, side by side.</td>
</tr>
<tr>
<td>start-kbd-macro</td>
<td>C-x ( or F3 key</td>
<td>Start macro definition.</td>
</tr>
<tr>
<td>suspend-emacs</td>
<td>C-z</td>
<td>Suspend Emacs (use exit or fg to restart).</td>
</tr>
<tr>
<td>switch-to-buffer</td>
<td>C-x b</td>
<td>Move to the buffer specified.</td>
</tr>
<tr>
<td>switch-to-buffer-other-frame</td>
<td>C-x 5 b</td>
<td>Select a buffer in another frame.</td>
</tr>
<tr>
<td>switch-to-buffer-other-window</td>
<td>C-x 4 b</td>
<td>Select a buffer in the other window.</td>
</tr>
<tr>
<td>text-mode</td>
<td>(none)</td>
<td>Exit indented text mode; return to text mode.</td>
</tr>
<tr>
<td>transpose-chars</td>
<td>C-t</td>
<td>Transpose two letters.</td>
</tr>
<tr>
<td>transpose-lines</td>
<td>C-x C-t</td>
<td>Transpose two lines.</td>
</tr>
<tr>
<td>transpose-paragraphs</td>
<td>(none)</td>
<td>Transpose two paragraphs.</td>
</tr>
<tr>
<td>transpose-sentences</td>
<td>(none)</td>
<td>Transpose two sentences.</td>
</tr>
<tr>
<td>transpose-words</td>
<td>M-t</td>
<td>Transpose two words.</td>
</tr>
<tr>
<td>unexpand-abbrev</td>
<td>(none)</td>
<td>Undo the last word abbreviation.</td>
</tr>
<tr>
<td>universal-argument</td>
<td>C-u n</td>
<td>Repeat the next command n times.</td>
</tr>
<tr>
<td>universal-argument and start-kbd-macro</td>
<td>C-u C-x (</td>
<td>Execute last macro defined, then add keystrokes to it.</td>
</tr>
<tr>
<td>upcase-region</td>
<td>C-x C-u</td>
<td>Uppercase region.</td>
</tr>
<tr>
<td>upcase-word</td>
<td>M-u</td>
<td>Uppercase word.</td>
</tr>
<tr>
<td>view-emacs-news</td>
<td>C-h n</td>
<td>View news about updates to Emacs.</td>
</tr>
<tr>
<td>view-lossage</td>
<td>C-h l</td>
<td>What are the last 100 characters I typed?</td>
</tr>
<tr>
<td>where-is</td>
<td>C-h w</td>
<td>What is the key binding for this command?</td>
</tr>
<tr>
<td>write-abbrev-file</td>
<td>(none)</td>
<td>Write the word abbreviation file.</td>
</tr>
<tr>
<td>write-file</td>
<td>C-x C-w</td>
<td>Write buffer contents to file.</td>
</tr>
<tr>
<td>yank</td>
<td>C-y</td>
<td>Restore what you’ve deleted.</td>
</tr>
</tbody>
</table>
The `vi` and `ex` editors are the “standard” editors on Unix systems. You can count on there being some version of them, no matter what Unix flavor you are using. The two editors are in fact the same program; based on how it was invoked, the editor enters full-screen mode or line mode.

`vim` is a popular extended version of `vi`. On some Linux distributions, the `vi` command invokes `vim` in a `vi`-compatible mode.

This chapter presents the following topics:

- Conceptual overview
- Command-line syntax
- Review of `vi` operations
- Alphabetical list of keys in command mode
- `vi` commands
- `vi` configuration
- `ex` basics
- Alphabetical summary of `ex` commands

`vi` is pronounced “vee eye.”

Besides the original Unix `vi`, there are a number of freely available `vi` clones (including `vim`). Both the original `vi` and the clones are covered in *Learning the `vi` and `Vim` Editors* by Arnold Robbins et al. (O’Reilly).

**Conceptual Overview**

`vi` is the classic screen-editing program for Unix. A number of enhanced versions exist, including `nvi`, `vim`, `vile`, and `elvis`. On GNU/Linux systems, the `vi` command is usually one of these programs (either a copy or a link). The Emacs
editor, covered in Chapter 8, has several vi modes that allow you to use many of the same commands covered in this chapter.

The vi editor operates in two modes: command mode and insert mode. The dual modes make vi an attractive editor for users who separate text entry from editing. For users who edit as they type, the modeless editing of Emacs can be more comfortable. However, vim supports both ways of editing, through the insert-mode option.

vi is based on an older line editor called ex. (ex, in turn, was developed by Bill Joy at the University of California, Berkeley, from the primordial Unix line editor, ed.) A user can invoke powerful editing capabilities within vi by typing a colon (:) and pressing the Enter key. Furthermore, you can place ex commands in a startup file called ~/.exrc, which vi reads at the beginning of your editing session. Because ex commands are such an important part of vi, they are also described in this chapter.

One of the most common versions of vi found on Linux systems is Bram Moolenaar’s Vi IMproved, or vim. On some Linux distributions, vim is the default version of vi and runs when you invoke vi. vim offers many extra features, and optionally changes some of the basic features of vi, most notoriously changing the undo key to support multiple levels of undo.

Fully documenting vim is beyond the scope of this chapter, but we do cover some of its most commonly used options and features. Beyond what we cover here, vim offers enhanced support to programmers through an integrated build and debugging process, syntax highlighting, extended ctags support, and support for Perl and Python, as well as GUI fonts and menus, function-key mapping, independent mapping for each mode, and more. Fortunately, vim comes with a powerful internal help system that you can use to learn more about the things we just couldn’t fit into this chapter. See http://www.vim.org for more information.

Command-Line Syntax

The three most common ways of starting a vi session are:

```bash
vi [options] file
vi [options] +num file
vi [options] +/-pattern file
```

You can open file for editing, optionally at line num or at the first line matching pattern. If no file is specified, vi opens with an empty buffer.

Command-Line Options

Because vi and ex are the same program, they share the same options. However, some options only make sense for one version of the program. Options specific to vim are so marked.

+[num]

Start editing at line number num, or the last line of the file if num is omitted.
+/pattern
Start editing at the first line matching pattern. (For ex, fails if nowrapscan is set in your .exrc startup file, since ex starts editing at the last line of a file.)

-b Edit the file in binary mode. {vim}

-c command
Run the given ex command upon startup. Only one -c option is permitted for vi; vim accepts up to 10. An older form of this option, +command, is still supported.

--cmd command
Like -c, but execute the command before any resource files are read. {vim}

-C vim: Start the editor in vi-compatible mode.

-d Run in diff mode. Can also be invoked by running the command vimdiff. {vim}

-D Debugging mode for use with scripts. {vim}

-e Run as ex (line editing rather than full-screen mode).

-h Print help message, then exit. {vim}

-i file
Use the specified file instead of the default (~/.viminfo) to save or restore vim’s state. {vim}

-l Enter Lisp mode for running Lisp programs (not supported in all versions).

-L List files that were saved due to an aborted editor session or system crash (not supported in all versions). For vim, this option is the same as -r.

-m Start the editor with the write option turned off so the user cannot write to files. {vim}

-M Do not allow text in files to be modified. {vim}

-n Do not use a swapfile; record changes in memory only. {vim}

--noplugin
Do not load any plug-ins. {vim}

-N Run vim in a non-vi-compatible mode. {vim}

-o[num]
Start vim with num open windows. The default is to open one window for each file. {vim}

-O[num]
Start vim with num open windows arranged horizontally (split vertically) on the screen. {vim}

-r [file]
Recovery mode; recover and resume editing on file after an aborted editor session or system crash. Without file, list files available for recovery.

-R Edit files read-only.

-s Silent; do not display prompts. Useful when running a script. This behavior also can be set through the older - option. For vim, only applies when used together with -e.
-s scriptfile
Read and execute commands given in the specified scriptfile as if they were typed in from the keyboard. {vim}

-S commandfile
Read and execute commands given in commandfile after loading any files for editing specified on the command line. Shorthand for the option vim -c 'source commandfile'. {vim}

-t tag
Edit the file containing tag and position the cursor at its definition. (See ctags in Chapter 3 for more information.)

-T type
Set the terminal type. This value overrides the $TERM environment variable. {vim}

-u file
Read configuration information from the specified resource file instead of default .vimrc resource file. If the file argument is NONE, vim will read no resource files, load no plug-ins, and run in compatible mode. If the argument is NORC, it will read no resource files, but it will load plug-ins. {vim}

-v Run in full-screen mode (default for vi).

--version
Print version information, then exit. {vim}

-V[num]
Verbose mode; print messages about what options are being set and what files are being read or written. You can set a level of verbosity to increase or decrease the number of messages received. The default value is 10 for high verbosity. {vim}

-w rows
Set the window size so rows lines at a time are displayed; useful when editing over a slow dial-up line (or long distance Internet connection). Older versions of vi do not permit a space between the option and its argument. vim does not support this option.

-W scriptfile
Write all typed commands from the current session to the specified scriptfile. The file created can be used with the -s command. {vim}

-x Prompt for a key that will be used to try to encrypt or decrypt a file using crypt (not supported in all versions).*

-y Modeless vi; run vim in insert mode only, without a command mode. {vim}

-Z Start vim in restricted mode. Do not allow shell commands or suspension of the editor. {vim}

While most people know ex commands only by their use within vi, the editor also exists as a separate program and can be invoked from the shell (for instance, to edit files as part of a script). Within ex, you can enter the vi or visual command to start vi. Similarly, within vi, you can enter Q to quit the vi editor and enter ex.

* The crypt command’s encryption is weak. Don’t use it for serious secrets.
You can exit `ex` in several ways:

- `:x` Exit (save changes and quit).
- `:q!` Quit without saving changes.
- `:vi` Enter the vi editor.

### Review of vi Operations

This section provides a review of the following:

- vi modes
- Syntax of vi commands
- Status-line commands

#### Command Mode

Once the file is opened, you are in command mode. From command mode, you can:

- Invoke insert mode
- Issue editing commands
- Move the cursor to a different position in the file
- Invoke ex commands
- Invoke a Unix shell
- Save the current version of the file
- Exit vi

#### Insert Mode

In insert mode, you can enter new text in the file. You normally enter insert mode with the `i` command. Press the Escape key to exit insert mode and return to command mode. The full list of commands that enter insert mode is provided later, in the section “Insert Commands” on page 686.

### Syntax of vi Commands

In vi, editing commands have the following general form:

```
[n] operator [m] motion
```

The basic editing operators are:

- `c` Begin a change.
- `d` Begin a deletion.
- `y` Begin a yank (or copy).

If the current line is the object of the operation, the `motion` is the same as the operator: `cc`, `dd`, `yy`. Otherwise, the editing operators act on objects specified by cursor-movement commands or pattern-matching commands. (For example, `cf.`
changes up to the next period.) $n$ and $m$ are the number of times the operation is performed, or the number of objects the operation is performed on. If both $n$ and $m$ are specified, the effect is $n \times m$.

An object of operation can be any of the following text blocks:

- **word**
  Includes characters up to a whitespace character (space or tab) or punctuation mark. A capitalized object is a variant form that recognizes only whitespace.

- **sentence**
  Is up to ., !, or ?, followed by two spaces.

- **paragraph**
  Is up to the next blank line or paragraph macro defined by the `para=` option.

- **section**
  Is up to the next 
  \texttt{nroff/troff} section heading defined by the `sect=` option.

- **motion**
  Is up to the character or other text object as specified by a motion specifier, including pattern searches.

**Examples**

- `2cw` Change the next two words.
- `d)` Delete up to next paragraph.
- `d^` Delete back to beginning of line.
- `5yy` Copy the next five lines.
- `yII` Copy up to the next section.
- `cG` Change to the end of the edit buffer.

More commands and examples may be found in the section “Changing and deleting text” on page 687.

**Visual mode (vim only)**

vim provides an additional facility, “visual mode.” This allows you to highlight blocks of text which then become the object of edit commands such as deletion or saving (yanking). Graphical versions of vim allow you to use the mouse to highlight text in a similar fashion. See the vim help file `visual.txt` for the full story.

- `v` Select text in visual mode one character at a time.
- `V` Select text in visual mode one line at a time.
- `Ctrl-V` Select text in visual mode in blocks.
Status-Line Commands

Most commands are not echoed on the screen as you input them. However, the status line at the bottom of the screen is used to edit these commands:

/  Search forward for a pattern.
?  Search backward for a pattern.
:  Invoke an ex command.
!  Invoke a Unix command that takes as its input an object in the buffer and replaces it with output from the command. You type a motion command after the ! to describe what should be passed to the Unix command. The command itself is entered on the status line.

Commands that are entered on the status line must be entered by pressing the Enter key. In addition, error messages and output from the Ctrl-G command are displayed on the status line.

vi Commands

vi supplies a large set of single-key commands when in command mode. vim supplies additional multi-key commands.

Movement Commands

Some versions of vi do not recognize extended keyboard keys (e.g., arrow keys, Page Up, Page Down, Home, Insert, and Delete); some do. All, however, recognize the keys in this section. Many users of vi prefer to use these keys, as it helps them keep their fingers on the home row of the keyboard. A number preceding a command repeats the movement. Movement commands are also used after an operator. The operator works on the text that is moved.

Character

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>h, j, k, l</td>
<td>Left, down, up, right (←, ↓, ↑, →)</td>
</tr>
<tr>
<td>Space</td>
<td>Right</td>
</tr>
<tr>
<td>Backspace</td>
<td>Left</td>
</tr>
<tr>
<td>Ctrl-H</td>
<td>Left</td>
</tr>
</tbody>
</table>

Text

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>w, b</td>
<td>Forward, backward by “word” (letters, numbers, and underscore make up words).</td>
</tr>
<tr>
<td>W, B</td>
<td>Forward, backward by “WORD” (only whitespace separates items).</td>
</tr>
<tr>
<td>e</td>
<td>End of word.</td>
</tr>
<tr>
<td>E</td>
<td>End of WORD.</td>
</tr>
<tr>
<td>ge</td>
<td>End of previous word. (vim)</td>
</tr>
</tbody>
</table>
Long lines in a file may show up on the screen as multiple lines. (They wrap around from one screen line to the next.) While most commands work on the lines as defined in the file, a few commands work on lines as they appear on the screen. The vim option wrap allows you to control how long lines are displayed.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>gE</code></td>
<td>End of previous WORD. (vim)</td>
</tr>
<tr>
<td>`), (</td>
<td>Beginning of next, current sentence.</td>
</tr>
<tr>
<td>`), {</td>
<td>Beginning of next, current paragraph.</td>
</tr>
<tr>
<td>`]}, [</td>
<td>Beginning of next, current section.</td>
</tr>
<tr>
<td>`]], [</td>
<td>End of next, current section. (vim)</td>
</tr>
</tbody>
</table>

### Lines

**Screen Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>0, $</code></td>
<td>First, last position of current line.</td>
</tr>
<tr>
<td><code>^, _</code></td>
<td>First nonblank character of current line.</td>
</tr>
<tr>
<td><code>+, -</code></td>
<td>First nonblank character of next, previous line.</td>
</tr>
<tr>
<td><code>Enter</code></td>
<td>First nonblank character of next line.</td>
</tr>
<tr>
<td><code>num]</code></td>
<td>Column num of current line.</td>
</tr>
<tr>
<td><code>g0, g$</code></td>
<td>First, last position of screen line. (vim)</td>
</tr>
<tr>
<td><code>g^</code></td>
<td>First nonblank character of screen line. (vim)</td>
</tr>
<tr>
<td><code>gm</code></td>
<td>Middle of screen line. (vim)</td>
</tr>
<tr>
<td><code>gk, gj</code></td>
<td>Move up, down one screen line. (vim)</td>
</tr>
<tr>
<td><code>H</code></td>
<td>Top line of screen (Home position).</td>
</tr>
<tr>
<td><code>M</code></td>
<td>Middle line of screen.</td>
</tr>
<tr>
<td><code>L</code></td>
<td>Last line of screen.</td>
</tr>
<tr>
<td><code>numH</code></td>
<td>num lines after top line.</td>
</tr>
<tr>
<td><code>numL</code></td>
<td>num lines before last line.</td>
</tr>
</tbody>
</table>

### Screens

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-F, Ctrl-B</td>
<td>Scroll forward, backward one screen.</td>
</tr>
<tr>
<td>Ctrl-D, Ctrl-U</td>
<td>Scroll down, up one-half screen.</td>
</tr>
<tr>
<td>Ctrl-E, Ctrl-Y</td>
<td>Show one more line at bottom, top of screen.</td>
</tr>
<tr>
<td><code>z Enter</code></td>
<td>Reposition line with cursor to top of screen.</td>
</tr>
<tr>
<td><code>z</code></td>
<td>Reposition line with cursor to middle of screen.</td>
</tr>
<tr>
<td><code>z-</code></td>
<td>Reposition line with cursor to bottom of screen.</td>
</tr>
<tr>
<td>Ctrl-L</td>
<td>Redraw screen (without scrolling).</td>
</tr>
<tr>
<td>Ctrl-R</td>
<td>vi: Redraw screen (without scrolling).</td>
</tr>
</tbody>
</table>
## Searches

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>/pattern</td>
<td>Search forward for pattern. End with Enter.</td>
</tr>
<tr>
<td>/pattern+/num</td>
<td>Go to line num after pattern.</td>
</tr>
<tr>
<td>?pattern</td>
<td>Search backward for pattern. End with Enter.</td>
</tr>
<tr>
<td>?pattern?-num</td>
<td>Go to line num before pattern.</td>
</tr>
<tr>
<td>:noh</td>
<td>Suspend search highlighting until next search. (vim).</td>
</tr>
<tr>
<td>n</td>
<td>Repeat previous search.</td>
</tr>
<tr>
<td>N</td>
<td>Repeat search in opposite direction.</td>
</tr>
<tr>
<td>/</td>
<td>Repeat previous search forward.</td>
</tr>
<tr>
<td>?</td>
<td>Repeat previous search backward.</td>
</tr>
<tr>
<td>*</td>
<td>Search forward for word under cursor.</td>
</tr>
<tr>
<td>#</td>
<td>Search backward for word under cursor.</td>
</tr>
<tr>
<td>g*</td>
<td>Search backward for word under cursor.</td>
</tr>
<tr>
<td>g#</td>
<td>Search backward for word under cursor.</td>
</tr>
<tr>
<td>%</td>
<td>Find match of current parenthesis, brace, or bracket.</td>
</tr>
<tr>
<td>fx</td>
<td>Move cursor forward to x on current line.</td>
</tr>
<tr>
<td>Fx</td>
<td>Move cursor backward to x on current line.</td>
</tr>
<tr>
<td>tx</td>
<td>Move cursor forward to character before x in current line.</td>
</tr>
<tr>
<td>Tx</td>
<td>Move cursor backward to character after x in current line.</td>
</tr>
<tr>
<td>,</td>
<td>Reverse search direction of last f, F, t, or T.</td>
</tr>
<tr>
<td>;</td>
<td>Repeat last f, F, t, or T.</td>
</tr>
</tbody>
</table>

## Line numbering

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-G</td>
<td>Display current line number.</td>
</tr>
<tr>
<td>gg</td>
<td>Move to first line in file. (vim)</td>
</tr>
<tr>
<td>numG</td>
<td>Move to line number num.</td>
</tr>
<tr>
<td>G</td>
<td>Move to last line in file.</td>
</tr>
<tr>
<td>:num</td>
<td>Move to line number num.</td>
</tr>
</tbody>
</table>

## Marks

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>mx</td>
<td>Place mark x at current position.</td>
</tr>
<tr>
<td>`x</td>
<td>(backquote) Move cursor to mark x.</td>
</tr>
<tr>
<td>’x</td>
<td>(apostrophe) Move to start of line containing x.</td>
</tr>
<tr>
<td>&quot;&quot;</td>
<td>(backquotes) Return to position before most recent jump.</td>
</tr>
<tr>
<td>&quot;</td>
<td>(apostrophes) Like preceding, but return to start of line.</td>
</tr>
<tr>
<td>&quot;&quot;&quot;</td>
<td>(apostrophe quote) Move to position when last editing the file. (vim)</td>
</tr>
</tbody>
</table>
### Insert Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>['</code></td>
<td>(backquote bracket) Move to beginning/end of previous text operation. (vim)</td>
</tr>
<tr>
<td><code>']</code></td>
<td>(apostrophe bracket) Like preceding, but return to start of line where operation occurred. (vim)</td>
</tr>
<tr>
<td><code>'</code></td>
<td>(backquote period) Move to last change in file. (vim)</td>
</tr>
<tr>
<td><code>.'</code></td>
<td>(apostrophe period) Like preceding, but return to start of line. (vim)</td>
</tr>
<tr>
<td><code>.0</code></td>
<td>Position where you last exited vim. (vim)</td>
</tr>
<tr>
<td><code>:marks</code></td>
<td>List active marks. (vim)</td>
</tr>
</tbody>
</table>

### Insert Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Append after cursor.</td>
</tr>
<tr>
<td>A</td>
<td>Append to end of line.</td>
</tr>
<tr>
<td>c</td>
<td>Begin change operation.</td>
</tr>
<tr>
<td>C</td>
<td>Change to end of line.</td>
</tr>
<tr>
<td>gi</td>
<td>Insert at beginning of line. (vim)</td>
</tr>
<tr>
<td>i</td>
<td>Insert before cursor.</td>
</tr>
<tr>
<td>I</td>
<td>Insert at beginning of line.</td>
</tr>
<tr>
<td>o</td>
<td>Open a line below cursor.</td>
</tr>
<tr>
<td>0</td>
<td>Open a line above cursor.</td>
</tr>
<tr>
<td>R</td>
<td>Begin overwriting text.</td>
</tr>
<tr>
<td>s</td>
<td>Substitute a character.</td>
</tr>
<tr>
<td>S</td>
<td>Substitute entire line.</td>
</tr>
<tr>
<td>ESC</td>
<td>Terminate insert mode.</td>
</tr>
</tbody>
</table>

The following commands work in insert mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backspace</td>
<td>Delete previous character.</td>
</tr>
<tr>
<td>Delete</td>
<td>Delete current character.</td>
</tr>
<tr>
<td>Tab</td>
<td>Insert a tab.</td>
</tr>
<tr>
<td>Ctrl-A</td>
<td>Repeat last insertion. (vim)</td>
</tr>
<tr>
<td>Ctrl-D</td>
<td>Shift line left to previous shift width. (vim)</td>
</tr>
<tr>
<td>Ctrl-E</td>
<td>Insert character found just below cursor. (vim)</td>
</tr>
<tr>
<td>Ctrl-H</td>
<td>Delete previous character (same as Backspace).</td>
</tr>
<tr>
<td>Ctrl-I</td>
<td>Insert a tab.</td>
</tr>
<tr>
<td>Ctrl-K</td>
<td>Begin insertion of multi-keystroke character.</td>
</tr>
<tr>
<td>Ctrl-N</td>
<td>Insert next completion of the pattern to the left of the cursor. (vim)</td>
</tr>
<tr>
<td>Ctrl-P</td>
<td>Insert previous completion of the pattern to the left of the cursor. (vim)</td>
</tr>
<tr>
<td>Ctrl-T</td>
<td>Shift line right to next shift width. (vim)</td>
</tr>
<tr>
<td>Ctrl-U</td>
<td>Delete current line.</td>
</tr>
<tr>
<td>Ctrl-V</td>
<td>Insert next character verbatim.</td>
</tr>
</tbody>
</table>
Some of the control characters listed in the previous table are set by `stty`. Your terminal settings may differ.

**Edit Commands**

Recall that `c`, `d`, and `y` are the basic editing operators.

**Changing and deleting text**

The following table is not exhaustive, but it illustrates the most common operations.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>cw</td>
<td>Change word.</td>
</tr>
<tr>
<td>cc</td>
<td>Change line.</td>
</tr>
<tr>
<td>c$</td>
<td>Change text from current position to end of line.</td>
</tr>
<tr>
<td>C</td>
<td>Same as c$.</td>
</tr>
<tr>
<td>dd</td>
<td>Delete current line.</td>
</tr>
<tr>
<td>numdd</td>
<td>Delete num lines.</td>
</tr>
<tr>
<td>d$</td>
<td>Delete text from current position to end of line.</td>
</tr>
<tr>
<td>D</td>
<td>Same as d$.</td>
</tr>
<tr>
<td>dw</td>
<td>Delete a word.</td>
</tr>
<tr>
<td>d}</td>
<td>Delete up to next paragraph.</td>
</tr>
<tr>
<td>d^</td>
<td>Delete back to beginning of line.</td>
</tr>
<tr>
<td>d/pat</td>
<td>Delete up to first occurrence of pattern.</td>
</tr>
<tr>
<td>dn</td>
<td>Delete up to next occurrence of pattern.</td>
</tr>
<tr>
<td>df/a</td>
<td>Delete up to and including a on current line.</td>
</tr>
<tr>
<td>dt/a</td>
<td>Delete up to (but not including) a on current line.</td>
</tr>
<tr>
<td>dL</td>
<td>Delete up to last line on screen.</td>
</tr>
<tr>
<td>dG</td>
<td>Delete to end of file.</td>
</tr>
<tr>
<td>gqap</td>
<td>Reformat current paragraph to <code>textwidth</code>. (vim)</td>
</tr>
<tr>
<td>g~w</td>
<td>Switch case of word. (vim)</td>
</tr>
<tr>
<td>guw</td>
<td>Change word to lowercase. (vim)</td>
</tr>
<tr>
<td>guW</td>
<td>Change word to uppercase. (vim)</td>
</tr>
<tr>
<td>p</td>
<td>Insert last deleted or yanked text after cursor.</td>
</tr>
<tr>
<td>gp</td>
<td>Same as p, but leave cursor at end of inserted text. (vim)</td>
</tr>
<tr>
<td>]p</td>
<td>Same as p, but match current indentation. (vim)</td>
</tr>
<tr>
<td>[p</td>
<td>Same as P, but match current indentation. (vim)</td>
</tr>
<tr>
<td>P</td>
<td>Insert last deleted or yanked text before cursor.</td>
</tr>
<tr>
<td>gP</td>
<td>Same as P, but leave cursor at end of inserted text. (vim)</td>
</tr>
</tbody>
</table>
Copying and moving

Register names are the letters a–z. Uppercase names append text to the corresponding register.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>rx</td>
<td>Replace character with x.</td>
</tr>
<tr>
<td>Rtext</td>
<td>Replace with new text (overwrite), beginning at cursor. Escape ends replace mode.</td>
</tr>
<tr>
<td>s</td>
<td>Substitute character.</td>
</tr>
<tr>
<td>4s</td>
<td>Substitute four characters.</td>
</tr>
<tr>
<td>S</td>
<td>Substitute entire line.</td>
</tr>
<tr>
<td>u</td>
<td>Undo last change.</td>
</tr>
<tr>
<td>Ctrl-R</td>
<td>Redo last change. {vim}</td>
</tr>
<tr>
<td>U</td>
<td>Restore current line.</td>
</tr>
<tr>
<td>x</td>
<td>Delete current cursor position.</td>
</tr>
<tr>
<td>X</td>
<td>Delete previous five characters.</td>
</tr>
<tr>
<td>.</td>
<td>Repeat last change.</td>
</tr>
<tr>
<td>~</td>
<td>Reverse case and move cursor right.</td>
</tr>
<tr>
<td>Ctrl-A</td>
<td>Increment number under cursor. {vim}</td>
</tr>
<tr>
<td>Ctrl-X</td>
<td>Decrement number under cursor. {vim}</td>
</tr>
</tbody>
</table>

Saving and Exiting

Writing a file means overwriting the file with the current text.
### Accessing Multiple Files

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>:e file</td>
<td>Edit another file; current file becomes alternate.</td>
</tr>
<tr>
<td>:e!</td>
<td>Return to version of current file at time of last write.</td>
</tr>
<tr>
<td>:e + file</td>
<td>Begin editing at end of file.</td>
</tr>
<tr>
<td>:e +num file</td>
<td>Open file at line num.</td>
</tr>
<tr>
<td>:e #</td>
<td>Open to previous position in alternate file.</td>
</tr>
<tr>
<td>:ta tag</td>
<td>Edit file at location tag.</td>
</tr>
<tr>
<td>:n</td>
<td>Edit next file in the list of files.</td>
</tr>
<tr>
<td>:n!</td>
<td>Force next file.</td>
</tr>
<tr>
<td>:n files</td>
<td>Specify new list of files.</td>
</tr>
<tr>
<td>:rewind</td>
<td>Edit first file in the list.</td>
</tr>
<tr>
<td>Ctrl-G</td>
<td>Show current file and line number.</td>
</tr>
<tr>
<td>:args</td>
<td>Display list of files to be edited.</td>
</tr>
<tr>
<td>:prev</td>
<td>Edit previous file in the list of files.</td>
</tr>
</tbody>
</table>

### Window Commands

The following table lists common commands for controlling windows in vim. See also the `split`, `vsplit`, and `resize` commands in the “Alphabetical Summary of ex Commands” on page 697. For brevity, control characters are marked in the following list by `^`.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ</td>
<td>Quit vi, writing the file only if changes were made.</td>
</tr>
<tr>
<td>:x</td>
<td>Same as ZZ.</td>
</tr>
<tr>
<td>:wq</td>
<td>Write file and quit.</td>
</tr>
<tr>
<td>:w</td>
<td>Write file.</td>
</tr>
<tr>
<td>:w file</td>
<td>Save copy to file.</td>
</tr>
<tr>
<td>:n,mw file</td>
<td>Write lines n to m to new file.</td>
</tr>
<tr>
<td>:n,mw &gt;&gt; file</td>
<td>Append lines n to m to existing file.</td>
</tr>
<tr>
<td>:w!</td>
<td>Write file (overriding protection).</td>
</tr>
<tr>
<td>:wl file</td>
<td>Overwrite file with current text.</td>
</tr>
<tr>
<td>:w %new</td>
<td>Write current buffer named file as file.new.</td>
</tr>
<tr>
<td>:q</td>
<td>Quit vi (fails if changes were made).</td>
</tr>
<tr>
<td>:q!</td>
<td>Quit vi (discarding edits).</td>
</tr>
<tr>
<td>Q</td>
<td>Quit vi and invoke ex.</td>
</tr>
<tr>
<td>:vi</td>
<td>Return to vi after Q command.</td>
</tr>
<tr>
<td>%</td>
<td>Replaced with current filename in editing commands.</td>
</tr>
<tr>
<td>#</td>
<td>Replaced with alternate filename in editing commands.</td>
</tr>
<tr>
<td>Command</td>
<td>Action</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>:new</td>
<td>Open a new window.</td>
</tr>
<tr>
<td>:new file</td>
<td>Open file in a new window.</td>
</tr>
<tr>
<td>:sp [file]</td>
<td>Split the current window. With file, edit that file in the new window.</td>
</tr>
<tr>
<td>:sv [file]</td>
<td>Same as :sp, but make new window read-only.</td>
</tr>
<tr>
<td>:vsp [file]</td>
<td>Like :sp, but split vertically instead of horizontally.</td>
</tr>
<tr>
<td>:clo</td>
<td>Close current window.</td>
</tr>
<tr>
<td>:hid</td>
<td>Hide current window, unless it is the only visible window.</td>
</tr>
<tr>
<td>:on</td>
<td>Make current window the only visible one.</td>
</tr>
<tr>
<td>:res num</td>
<td>Resize window to num lines.</td>
</tr>
<tr>
<td>:wa</td>
<td>Write all changed buffers to file.</td>
</tr>
<tr>
<td>:qa</td>
<td>Close all buffers and exit.</td>
</tr>
<tr>
<td>^W s</td>
<td>Same as :sp.</td>
</tr>
<tr>
<td>^W n</td>
<td>Same as :new.</td>
</tr>
<tr>
<td>^W ^</td>
<td>Open new window with alternate (previously edited) file.</td>
</tr>
<tr>
<td>^W c</td>
<td>Same as :clo.</td>
</tr>
<tr>
<td>^W o</td>
<td>Same as :only.</td>
</tr>
<tr>
<td>^W j, ^W k</td>
<td>Move cursor to next/previous window.</td>
</tr>
<tr>
<td>^W p</td>
<td>Move cursor to previous window.</td>
</tr>
<tr>
<td>^W h, ^W l</td>
<td>Move cursor to window on left/right.</td>
</tr>
<tr>
<td>^W t, ^W b</td>
<td>Move cursor to window on top/bottom of screen.</td>
</tr>
<tr>
<td>^W K, ^W B</td>
<td>Move current window to top/bottom of screen.</td>
</tr>
<tr>
<td>^W H, ^W L</td>
<td>Move current window to far left/right of screen.</td>
</tr>
<tr>
<td>^W r, ^W R</td>
<td>Rotate windows down/up.</td>
</tr>
<tr>
<td>^W +, ^W -</td>
<td>Increase/decrease current window size.</td>
</tr>
<tr>
<td>^W =</td>
<td>Make all windows same height.</td>
</tr>
</tbody>
</table>

### Interacting with the System

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>:r file</td>
<td>Read in contents of file after cursor.</td>
</tr>
<tr>
<td>:r command</td>
<td>Read in output from command after current line.</td>
</tr>
<tr>
<td>:rnum rcommand</td>
<td>Like above, but place after line num (0 for top of file).</td>
</tr>
<tr>
<td>:rcommand</td>
<td>Run command, then return.</td>
</tr>
<tr>
<td>!motion command</td>
<td>Send the text covered by motion to Unix command; replace with output.</td>
</tr>
<tr>
<td>!n,m command</td>
<td>Send lines n-m to command; replace with output.</td>
</tr>
<tr>
<td>num!command</td>
<td>Send num lines to Unix command; replace with output.</td>
</tr>
<tr>
<td>:!</td>
<td>Repeat last system command.</td>
</tr>
<tr>
<td>:sh</td>
<td>Create subshell; return to file with EOF.</td>
</tr>
<tr>
<td>Ctrl-Z</td>
<td>Suspend editor, resume with fg.</td>
</tr>
<tr>
<td>:so file</td>
<td>Read and execute ex commands from file.</td>
</tr>
</tbody>
</table>
Macros

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>:ab in out</td>
<td>Use in as abbreviation for out in insert mode.</td>
</tr>
<tr>
<td>:unab in</td>
<td>Remove abbreviation for in.</td>
</tr>
<tr>
<td>:ab</td>
<td>List abbreviations.</td>
</tr>
<tr>
<td>:map string sequence</td>
<td>Map characters string as sequence of commands.</td>
</tr>
<tr>
<td>:unmap string</td>
<td>Remove map for characters string.</td>
</tr>
<tr>
<td>:map</td>
<td>List character strings that are mapped.</td>
</tr>
<tr>
<td>:map! string sequence</td>
<td>Map characters string to input mode sequence.</td>
</tr>
<tr>
<td>:unmap! string</td>
<td>Remove input mode map (you may need to quote the character with Ctrl-V).</td>
</tr>
<tr>
<td>:map!</td>
<td>List character strings that are mapped for input mode.</td>
</tr>
<tr>
<td>qx</td>
<td>Record typed characters into register specified by letter x. If letter is uppercase, append to register. (vim)</td>
</tr>
<tr>
<td>q</td>
<td>Stop recording. (vim)</td>
</tr>
<tr>
<td>@x</td>
<td>Execute the register specified by letter x. Use @@ to repeat the last @ command.</td>
</tr>
</tbody>
</table>

In `vi`, the following characters are unused in command mode and can be mapped as user-defined commands:

**Letters**

`g K q V v`

**Control keys**

`^A ^K ^O ^W ^X ^_ ^\`

**Symbols**

`_ * \ = #`

The `=` is used by `vi` if Lisp mode is set. Different versions of `vi` may use some of these characters, so test them before using.

`vim` does not use `^K, ^_`, or `\.`

**Miscellaneous Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;</code></td>
<td>Shift text described by following motion command left by one shiftwidth. (vim)</td>
</tr>
<tr>
<td><code>&gt;</code></td>
<td>Shift text described by following motion command right by one shiftwidth. (vim)</td>
</tr>
<tr>
<td><code>&lt;&lt;</code></td>
<td>Shift line left one shift width (default is eight spaces).</td>
</tr>
<tr>
<td><code>&gt;&gt;</code></td>
<td>Shift line right one shift width (default is eight spaces).</td>
</tr>
<tr>
<td><code>]&gt;</code></td>
<td>Shift right to end of paragraph.</td>
</tr>
<tr>
<td><code>&lt;%</code></td>
<td>Shift left until matching parenthesis, brace, or bracket. (Cursor must be on the matching symbol.)</td>
</tr>
<tr>
<td><code>==</code></td>
<td>Indent line in C-style, or using program specified in equalprg option. (vim)</td>
</tr>
</tbody>
</table>
### vi Configuration

This section describes the following:

- The `:set` command
- Options available with `:set`
- Sample `.exrc` file

#### The :set Command

The `:set` command allows you to specify options that change characteristics of your editing environment. Options may be put in the `~/.exrc` file or set during a `vi` session.

The colon does not need to be typed if the command is put in `.exrc`:

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>:set x</code></td>
<td>Enable Boolean option <code>x</code>, show value of other options.</td>
</tr>
<tr>
<td><code>:set nox</code></td>
<td>Disable option <code>x</code>.</td>
</tr>
<tr>
<td><code>:set x=value</code></td>
<td>Give value to option <code>x</code>.</td>
</tr>
<tr>
<td><code>:set</code></td>
<td>Show changed options.</td>
</tr>
<tr>
<td><code>:set all</code></td>
<td>Show all options.</td>
</tr>
<tr>
<td><code>:set x?</code></td>
<td>Show value of option <code>x</code>.</td>
</tr>
</tbody>
</table>

#### Options Used by :set

Table 9-1 contains brief descriptions of the important `set` command options. In the first column, options are listed in alphabetical order; if the option can be abbreviated, that abbreviation is shown in parentheses. The second column shows the default setting. The last column describes what the option does, when enabled.

This table lists `set` options for `vi`, with the addition of important `vim` options. Other versions of `vi` may have more or fewer or different options. See your local documentation, or use `:set all` to see the full list. Options that receive a value are marked with an `=`. 

---

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>g</code></td>
<td>Start many multiple character commands in <code>vim</code>.</td>
</tr>
<tr>
<td><code>K</code></td>
<td>Look up word under cursor in manpages (or program defined in <code>keywordprg</code>). (vim)</td>
</tr>
<tr>
<td><code>^O</code></td>
<td>Return to previous jump. (vim)</td>
</tr>
<tr>
<td><code>q</code></td>
<td>Record keystrokes. (vim)</td>
</tr>
<tr>
<td><code>^Q</code></td>
<td>Same as <code>^V</code>. (vim) On some terminals, resume data flow.</td>
</tr>
<tr>
<td><code>^T</code></td>
<td>Return to the previous location in the tag stack. (vim)</td>
</tr>
<tr>
<td><code>\</code></td>
<td>Perform a tag lookup on the text under the cursor.</td>
</tr>
<tr>
<td><code>^\</code></td>
<td>Enter <code>ex</code> line-editing mode.</td>
</tr>
<tr>
<td><code>^^</code></td>
<td>(Caret key with Ctrl key pressed) Return to previously edited file.</td>
</tr>
</tbody>
</table>
Table 9-1. :set options

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>autoindent (ai)</td>
<td>noai</td>
<td>In insert mode, indent each line to the same level as the line above or below. Use with the <code>shiftwidth</code> option.</td>
</tr>
<tr>
<td>autoprint (ap)</td>
<td>ap</td>
<td>Display changes after each editor command. (For global replacement, display last replacement.)</td>
</tr>
<tr>
<td>autowrite (aw)</td>
<td>noaw</td>
<td>Automatically write (save) the file if changed before opening another file with a command such as :w, or before giving Unix command with :!</td>
</tr>
<tr>
<td>background (bg)</td>
<td></td>
<td>Describe the background so the editor can choose appropriate highlighting colors. Default value of dark or light depends on the environment in which the editor is invoked. (vim)</td>
</tr>
<tr>
<td>backup (bk)</td>
<td>nobackup</td>
<td>Create a backup file when overwriting an existing file. (vim)</td>
</tr>
<tr>
<td>backupdir= (bdir)</td>
<td><del>/tmp,</del></td>
<td>Name directories in which to store backup files if possible. The list of directories is comma-separated and in order of preference. (vim)</td>
</tr>
<tr>
<td>beautify (bf)</td>
<td>nobf</td>
<td>Ignore all control characters during input (except tab, newline, or formfeed).</td>
</tr>
<tr>
<td>backupext= (bex)</td>
<td>~</td>
<td>String to append to filenames for backup files. (vim)</td>
</tr>
<tr>
<td>cindent (cin)</td>
<td>nocindent</td>
<td>In insert mode, indent each line relative to the one above it, as is appropriate for C or C++ code. (vim)</td>
</tr>
<tr>
<td>compatible (cp)</td>
<td>cp</td>
<td>Make vim behave more like vi. Default is nocp when a ~/.vimrc file is found. (vim)</td>
</tr>
<tr>
<td>directory (dir)</td>
<td>/tmp</td>
<td>Name of directory in which ex/vi stores buffer files. (Directory must be writable.) This can be a comma-separated list for vim.</td>
</tr>
<tr>
<td>edcompatible</td>
<td>noedcompatible</td>
<td>Remember the flags used with the most recent substitute command (global, confirming) and use them for the next substitute command. Despite the name, no version of ed actually does this.</td>
</tr>
<tr>
<td>equalprg= (ep)</td>
<td></td>
<td>Use the specified program for the <code>=</code> command. When the option is blank (the default), the key invokes the internal C indentation function or the value of the <code>indentexpr</code> option. (vim)</td>
</tr>
<tr>
<td>errorbells (eb)</td>
<td>errorbells</td>
<td>Sound bell when an error occurs.</td>
</tr>
<tr>
<td>exrc (ex)</td>
<td>noexrc</td>
<td>Allow the execution of .exrc files that reside outside the user’s home directory.</td>
</tr>
<tr>
<td>formatprg= (fp)</td>
<td></td>
<td>The gg command will invoke the named external program to format text. It will call internal formatting functions when this option is empty (the default). (vim)</td>
</tr>
<tr>
<td>gdefault (gd)</td>
<td>nogdefault</td>
<td>Set the <code>g</code> flag on for substitutions by default. (vim)</td>
</tr>
<tr>
<td>hardtabs= (bt)</td>
<td>8</td>
<td>Define boundaries for terminal hardware tabs.</td>
</tr>
<tr>
<td>hidden (hid)</td>
<td>nohidden</td>
<td>Hide buffers rather than unload them when they are abandoned. (vim)</td>
</tr>
<tr>
<td>hlsearch (hls)</td>
<td>hlsearch</td>
<td>Highlight all matches of most recent search pattern. Use <code>:nohlsearch</code> to remove highlighting. (vim)</td>
</tr>
<tr>
<td>history= (hi)</td>
<td>20</td>
<td>Number of <code>ex</code> commands to store in the history table. (vim)</td>
</tr>
<tr>
<td>ignorecase (ic)</td>
<td>noic</td>
<td>Disregard case during a search.</td>
</tr>
</tbody>
</table>
Table 9-1. :set options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>incsearch (is)</td>
<td>noincsearch</td>
<td>Highlight matches to a search pattern as it is typed. (vim)</td>
</tr>
<tr>
<td>lisp</td>
<td>nolisp</td>
<td>Insert indents in appropriate Lisp format. ( ), ( ), [ ] and ] are modified to have meaning for Lisp.</td>
</tr>
<tr>
<td>list</td>
<td>nolist</td>
<td>Print tabs as ^I; mark ends of lines with $. (Use list to tell if end character is a tab or a space.)</td>
</tr>
<tr>
<td>magic</td>
<td>magic</td>
<td>Wildcard characters; . (dot), * (asterisk), and ] (brackets) have special meaning in patterns.</td>
</tr>
<tr>
<td>mesg</td>
<td>mesg</td>
<td>Permit system messages to display on terminal while editing in vi.</td>
</tr>
<tr>
<td>mousehide (mh)</td>
<td>mousehide</td>
<td>When characters are typed, hide the mouse pointer. (vim)</td>
</tr>
<tr>
<td>novice</td>
<td>nonovice</td>
<td>Require the use of long ex command names, such as copy or read.</td>
</tr>
<tr>
<td>number (nu)</td>
<td>nonu</td>
<td>Display line numbers on left of screen during editing session.</td>
</tr>
<tr>
<td>open</td>
<td>open</td>
<td>Allow entry to open or visual mode from ex. Although not in vim, this option has traditionally been in vi, and may be in your version of vi.</td>
</tr>
<tr>
<td>optimize (opt)</td>
<td>noopt</td>
<td>Abolish carriage returns at the end of lines when printing multiple lines; speed output on dumb terminals when printing lines with leading whitespace (spaces or tabs).</td>
</tr>
<tr>
<td>paragraphs (para)</td>
<td>IPLPPPQPPLippipnppb</td>
<td>Define paragraph delimiters for movement by { or }. The pairs of characters in the value are the names of troff macros that begin paragraphs.</td>
</tr>
<tr>
<td>paste</td>
<td>nopaste</td>
<td>Change the defaults of various options to make pasting text into a terminal window work better. All options are returned to their original value when the paste option is reset. (vim)</td>
</tr>
<tr>
<td>prompt</td>
<td>prompt</td>
<td>Display the ex prompt ( ; ) when vi’s Q command is given.</td>
</tr>
<tr>
<td>readonly (ro)</td>
<td>noro</td>
<td>Any writes (saves) of a file fail unless you use ! after the write (works with w, ZZ, or autowrite).</td>
</tr>
<tr>
<td>redraw (re)</td>
<td>noro</td>
<td>vi redraws the screen whenever edits are made. noredraw is useful at slow speeds on a dumb terminal: the screen isn’t fully updated until you press Escape. Default depends on line speed and terminal type.</td>
</tr>
<tr>
<td>remap</td>
<td>remap</td>
<td>Allow nested map sequences.</td>
</tr>
<tr>
<td>report=</td>
<td>5</td>
<td>Display a message on the status line whenever you make an edit that affects at least a certain number of lines. For example, 6dd reports the message &quot;6 lines deleted.&quot;</td>
</tr>
<tr>
<td>ruler (ru)</td>
<td>ruler</td>
<td>Show line and column numbers for the current cursor position. (vim)</td>
</tr>
<tr>
<td>scroll=</td>
<td>[1/2 window]</td>
<td>Number of lines to scroll with ^D and ^U commands.</td>
</tr>
<tr>
<td>sections=</td>
<td>SHNHH HUnhsh+c</td>
<td>Define section delimiters for [ and ] movement. The pairs of characters in the value are the names of troff macros that begin sections.</td>
</tr>
<tr>
<td>shell= (sh)</td>
<td>/bin/sh</td>
<td>Pathname of shell used for shell escape ($) and shell command (sh). Default value is derived from shell environment, which varies on different systems.</td>
</tr>
<tr>
<td>shiftwidth=</td>
<td>8</td>
<td>Define number of spaces used when the indent is increased or decreased.</td>
</tr>
</tbody>
</table>
### Table 9-1. :set options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>showmatch (sm)</code></td>
<td><code>nosm</code></td>
<td>In vi, when <code>)</code> or <code>)</code> is entered, cursor moves briefly to matching <code>(</code> or <code>)</code>. If no match, rings the error message bell. Very useful for programming.</td>
</tr>
<tr>
<td><code>showmode</code></td>
<td><code>noshowmode</code></td>
<td>In insert mode, display a message on the prompt line indicating the type of insert you are making. For example, &quot;OPEN MODE&quot; or &quot;APPEND MODE.&quot;</td>
</tr>
<tr>
<td><code>slowopen (slow)</code></td>
<td></td>
<td>Hold off display during insert. Default depends on line speed and terminal type.</td>
</tr>
<tr>
<td><code>smartcase (ss)</code></td>
<td><code>nosmartcase</code></td>
<td>Override the <code>ignorecase</code> option when a search pattern contains uppercase characters. (vim)</td>
</tr>
<tr>
<td><code>tabstop=</code></td>
<td><code>8</code></td>
<td>Define number of spaces a tab indents during editing session. (Printer still uses system tab of 8.)</td>
</tr>
<tr>
<td><code>taglength=</code></td>
<td><code>0</code></td>
<td>Define number of characters that are significant for tags. Default (zero) means that all characters are significant.</td>
</tr>
<tr>
<td><code>tags=</code></td>
<td><code>tags /usr/lib/tags</code></td>
<td>Define pathname of files containing tags. (See the Unix <code>ctags</code> command.) (By default, vi searches the file <code>tags</code> in the current directory and <code>/usr/lib/tags</code>.)</td>
</tr>
<tr>
<td><code>tagstack</code></td>
<td><code>tagstack</code></td>
<td>Enable stacking of tag locations on a stack. (Solaris vi and vim.)</td>
</tr>
<tr>
<td><code>term=</code></td>
<td></td>
<td>Set terminal type.</td>
</tr>
<tr>
<td><code>terse</code></td>
<td><code>noterse</code></td>
<td>Display shorter error messages.</td>
</tr>
<tr>
<td><code>textwidth=</code></td>
<td><code>0</code></td>
<td>The maximum width of text to be inserted; longer lines are broken after whitespace. Default (zero) disables this feature, in which case <code>wrapmargin</code> is used. (vim)</td>
</tr>
<tr>
<td><code>timeout (to)</code></td>
<td><code>timeout</code></td>
<td>Keyboard maps timeout after 1 second.</td>
</tr>
<tr>
<td><code>timeoutlen=</code></td>
<td><code>1000</code></td>
<td>Number of milliseconds after which keyboard maps timeout. Default value of 1000 provides traditional vi behavior. (vim)</td>
</tr>
<tr>
<td><code>ttytype=</code></td>
<td></td>
<td>Set terminal type. This is just another name for <code>term</code>.</td>
</tr>
<tr>
<td><code>undolevels=</code></td>
<td><code>1000</code></td>
<td>Number of changes that can be undone. (vim)</td>
</tr>
<tr>
<td><code>warn</code></td>
<td><code>warn</code></td>
<td>Display the warning message, &quot;No write since last change.&quot;</td>
</tr>
<tr>
<td><code>window (w)</code></td>
<td></td>
<td>Show a certain number of lines of the file on the screen. Default depends on line speed and terminal type.</td>
</tr>
<tr>
<td><code>wrap</code></td>
<td></td>
<td>When on, long lines wrap on the screen. When off, only the first part of the line is displayed. (vim)</td>
</tr>
<tr>
<td><code>wrapmargin (wm)</code></td>
<td><code>0</code></td>
<td>Define right margin. If greater than zero, vi automatically inserts carriage returns to break lines.</td>
</tr>
<tr>
<td><code>wrapscan (ws)</code></td>
<td><code>ws</code></td>
<td>Searches wrap around either end of file.</td>
</tr>
<tr>
<td><code>writeany (wa)</code></td>
<td></td>
<td>Allow saving to any file.</td>
</tr>
<tr>
<td><code>writebackup (wb)</code></td>
<td><code>wb</code></td>
<td>Back up files before attempting to overwrite them. Remove the backup when the file has been successfully written, unless the <code>backup</code> option is set. (vim)</td>
</tr>
</tbody>
</table>

---

3 When you have mappings of several keys (for example, `:map zzz 3dw`), you probably want to use `notimeout`. Otherwise, you need to type `zzz` within 1 second. When you have an insert mode mapping for a cursor key (for example, `:map! ^[OB ^[ja`), you should use `timeout`. Otherwise, vi won’t react to Escape until you type another key.
Sample .exrc File

The following lines of code are an example of a customized .exrc file:

```
set nowrapscan " Searches don't wrap at end of file
set wrapmargin=7 " Wrap text at 7 columns from right margin
set sections=SaeAh8ChDh nomesg " Set troff macros, disallow message
map q :w^M:n^M " Alias to move to next file
map v dwElp " Move a word
ab ORA O'Reilly Media, Inc. " Input shortcut
```

The `q` alias isn’t needed for vim, which has the :wn command. The
`v` alias would hide the vim command v, which enters character-at-a-
time visual-mode operation.

ex Basics

The ex line editor serves as the foundation for the screen editor vi. Commands in ex work on the current line or on a range of lines in a file. Most often, you use ex from within vi. In vi, ex commands are preceded by a colon and entered by pressing Enter.

You can also invoke ex on its own—from the command line—just as you would invoke vi. (You could execute an ex script this way.) You can also use the vi command Q to quit the vi editor and enter ex.

Syntax of ex Commands

To enter an ex command from vi, type:

```
: [address] command [options]
```

An initial : indicates an ex command. As you type the command, it is echoed on the status line. Execute the command by pressing the Enter key. address is the line number or range of lines that are the object of command. options and addresses are described below. ex commands are described in the next section “Alphabetical Summary of ex Commands” on page 697.

You can exit ex in several ways:

```
:x Exit (save changes and quit).
:xq! Quit without saving changes.
:vi Switch to the vi editor on the current file.
```

Addresses

If no address is given, the current line is the object of the command. If the address specifies a range of lines, the format is:

```
x,y
```

where x and y are the first and last addressed lines (x must precede y in the buffer). x and y may each be a line number or a symbol. Using ; instead of , sets the current line to x before interpreting y. The notation 1,$ addresses all lines in the file, as does %.
Address Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,$</td>
<td>All lines in the file.</td>
</tr>
<tr>
<td>xy</td>
<td>Lines x through y.</td>
</tr>
<tr>
<td>xy</td>
<td>Lines x through y, with current line reset to x.</td>
</tr>
<tr>
<td>0</td>
<td>Top of file.</td>
</tr>
<tr>
<td>.</td>
<td>Current line.</td>
</tr>
<tr>
<td>num</td>
<td>Absolute line number num.</td>
</tr>
<tr>
<td>$</td>
<td>Last line.</td>
</tr>
<tr>
<td>%</td>
<td>All lines; same as 1,$.</td>
</tr>
<tr>
<td>x-n</td>
<td>n lines before x.</td>
</tr>
<tr>
<td>x+n</td>
<td>n lines after x.</td>
</tr>
<tr>
<td>-(num)</td>
<td>One or num lines previous.</td>
</tr>
<tr>
<td>+(num)</td>
<td>One or num lines ahead.</td>
</tr>
<tr>
<td>'x</td>
<td>Line marked with x.</td>
</tr>
<tr>
<td>&quot;</td>
<td>Previous mark.</td>
</tr>
<tr>
<td>/pattern/</td>
<td>Forward to line matching pattern.</td>
</tr>
<tr>
<td>?pattern?</td>
<td>Backward to line matching pattern.</td>
</tr>
</tbody>
</table>

See Chapter 7 for more information on using patterns.

Options

! Indicates a variant form of the command, overriding the normal behavior. The ! must come immediately after the command.

count The number of times the command is to be repeated. Unlike in vi commands, count cannot precede the command, because a number preceding an ex command is treated as a line address. For example, d3 deletes three lines beginning with the current line; 3d deletes line 3.

count The number of times the command is to be repeated. Unlike in vi commands, count cannot precede the command, because a number preceding an ex command is treated as a line address. For example, d3 deletes three lines beginning with the current line; 3d deletes line 3.

file The name of a file that is affected by the command. % stands for the current file; # stands for the previous file.

Alphabetical Summary of ex Commands

ex commands can be entered by specifying any unique abbreviation. In this listing, the full name appears in the margin, and the shortest possible abbreviation is used in the syntax line. Examples are assumed to be typed from vi, so they include the : prompt.

<table>
<thead>
<tr>
<th>Abbreviate</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>abbreviate ab</td>
<td>Define string when typed to be translated into text. If string and text are not specified, list all current abbreviations.</td>
</tr>
</tbody>
</table>
Examples
Note: ^M appears when you type ^V followed by Enter.
:ab ora O'Reilly Media, Inc.
:ab id Name:^MRank:^MPhone:

**append**

[address] a[!]
text
.
Append new text at specified address, or at present address if none is specified. Add a ! to toggle the autoindent setting that is used during input. That is, if autoindent was enabled, ! disables it. Enter new text after entering the command. Terminate input of new text by entering a line consisting of just a period.

**Example**

:a                     Begin appending to current line.
  Append this line    
  and this line too.  
  .                   Terminate input of text to append.

**args**

ar
args file ...
Print the members of the argument list (files named on the command line), with the current argument printed in brackets ([ ]). The second syntax is for vim, which allows you to reset the list of files to be edited.

**bdelete**

[num] bd[!] [num]
Unload buffer num and remove it from the buffer list. Add a ! to force removal of an unsaved buffer. The buffer may also be specified by filename. If no buffer is specified, remove the current buffer. {vim}

**buffer**

[num] b[!] [num]
Begin editing buffer num in the buffer list. Add a ! to force a switch from an unsaved buffer. The buffer may also be specified by filename. If no buffer is specified, continue editing the current buffer. {vim}

**buffers**

buffers[!]
Print the members of the buffer list. Some buffers (e.g., deleted buffers) will not be listed. Add ! to show unlisted buffers. ls is another abbreviation for this command. {vim}

**cd**

  cd dir
  chdir dir
Change current directory within the editor to dir.
center

[address] ce [width]
Center line within the specified width. If width is not specified, use textwidth. {vim}

change

[address] c[!]
text

Replace the specified lines with text. Add a ! to switch the autoindent setting during input of text. Terminate input by entering a line consisting of just a period.

close

clo[!]
Close current window unless it is the last window. If buffer in window is not open in another window, unload it from memory. This command will not close a buffer with unsaved changes, but you may add ! to hide it instead. {vim}

copy

[address] co destination
Copy the lines included in address to the specified destination address. The command t (short for “to”) is a synonym for copy.

Example

:1,10 co 50 Copy first 10 lines to just after line 50

dele

[address] d [register]
Delete the lines included in address. If register is specified, save or append the text to the named register. Register names are the lowercase letters a–z. Uppercase names append text to the corresponding register.

Examples

:/Part I/,/Part II/-1d Delete to line above “Part II”
:/main/+d Delete line below “main”
:.,$/d x Delete from this line to last line into register x

edit

e[!] [+num] [filename]
Begin editing on filename. If no filename is given, start over with a copy of the current file. Add a ! to edit the new file even if the current file has not been saved since the last change. With the +num argument, begin editing on line num. Or num may be a pattern, of the form /pattern.

Examples

:e file Edit file in current editing buffer
:e +/-Index # Edit alternate file at pattern match
:e! Start over again on current file
file

`f [filename]`

Change the filename for the current buffer to `filename`. The next time the buffer is written, it will be written to file `filename`. When the name is changed, the buffer’s “not edited” flag is set, to indicate you are not editing an existing file. If the new filename is the same as a file that already exists on the disk, you will need to use `:w!` to overwrite the existing file. When specifying a filename, the `%` character can be used to indicate the current filename. A `#` can be used to indicate the alternate filename. If no `filename` is specified, print the current name and status of the buffer.

**Example**

`:f%.new`

fold

`address fo`

Fold the lines specified by `address`. A fold collapses several lines on the screen into one line, which later can be unfolded. It doesn’t affect the text of the file. `{vim}`

foldclose

`[address] foldc[]!`

Close folds in specified `address`, or at present address if none is specified. Add a `!` to close more than one level of folds. `{vim}`

foldopen

`[address] foldo[]!`

Open folds in specified `address`, or at present address if none is specified. Add a `!` to open more than one level of folds. `{vim}`

global

`[address] g[]/pattern[[commands]]`

Execute `commands` on all lines which contain `pattern` or, if `address` is specified, on all lines within that range. If `commands` are not specified, print all such lines. Add a `!` to execute `commands` on all lines *not* containing `pattern`. See also `v`.

**Examples**

`:g/Unix/p`  
Print all lines containing “Unix.”

`:g/Name:/s/tom/Tom/`  
Change “tom” to “Tom” on all lines containing “Name:”

hide

`hid`

Close current window unless it is the last window, but do not remove the buffer from memory. This is a safe command to use on an unsaved buffer. `{vim}`
**insert**

```
[address] i[!]
text
```

Insert text at line before the specified address, or at present address if none is specified. Add a ! to switch the autoindent setting during input of text. Terminate input of new text by entering a line consisting of just a period.

**join**

```
[address] j[!][count]
```

Place the text in the specified range on one line, with whitespace adjusted to provide two space characters after a period (.), no space characters before a ), and one space character otherwise. Add a ! to prevent whitespace adjustment.

**Example**

```
:1,5]! Join first five lines, preserving whitespace
```

**jumps**

```
ju
```

Print jump list used with Ctrl-I and Ctrl-O commands. The jump list is a record of most movement commands that skip over multiple lines. It records the position of the cursor before each jump. {vim}

**k**

```
[address] k char
```

Same as mark; see mark, later in this list.

**left**

```
[address] le [count]
```

Left-align lines specified by address, or current line if no address is specified. Indent lines by count spaces. {vim}

**list**

```
[address] l [count]
```

Print the specified lines so that tabs display as ^I, and the ends of lines display as $l. l is like a temporary version of :set list.

**map**

```
map[!] [string commands]
```

Define a keyboard macro named string as the specified sequence of commands. string is usually a single character, or the sequence #num, representing a function key on the keyboard. Use a ! to create a macro for input mode. With no arguments, list the currently defined macros.

**Examples**

```
:map K dwwP Transpose two words
:map q :w^M:n^M Write current file; go to next
:map! + ^[bi(^ea) Enclose previous word in parentheses
```
vim has K and q commands, which the above aliases would hide.

mark  [address] ma char
Mark the specified line with char, a single lowercase letter. Return later to the line with ‘x (where x is the same as char). vim also uses uppercase and numeric characters for marks. Lowercase letters work the same as in vi. Uppercase letters are associated with filenames and can be used between multiple files. Numbered marks, however, are maintained in a special viminfo file and cannot be set using this command. Same as k.

marks  marks [chars]
Print list of marks specified by chars, or all current marks if no chars specified. {vim}

Example
:marks abc  Print marks a, b and c.

mkexrc  mk[!] file
Create an .exrc file containing set commands for changed ex options and key mappings. This saves the current option settings, allowing you to restore them later.

move  [address] m destination
Move the lines specified by address to the destination address.

Example
:.,/Note/m /END/  Move text block to after line containing 'END'

new  [count] new
Create a new window count lines high with an empty buffer. {vim}

next  num[!] [[+num] filelist]
Edit the next file from the command-line argument list. Use args to list these files. If filelist is provided, replace the current argument list with filelist and begin editing on the first file. With the +num argument, begin editing on line num. Or num may be a pattern, of the form /pattern.

Example
:n chap*  Start editing all "chapter" files
nohlsearch
noh
Temporarily stop highlighting all matches to a search when using the hlsearch option. Highlighting is resumed with the next search. {vim}

number
[address] nu [count]
Print each line specified by address, preceded by its buffer line number. Use # as an alternate abbreviation for number. count specifies the number of lines to show, starting with address.

only
on [!]
Make the current window be the only one on the screen. Windows open on modified buffers are not removed from the screen (hidden), unless you also use the ! character. {vim}

open
[address] o [/pattern/]
Enter open mode (vi) at the lines specified by address, or at the lines matching pattern. Exit open mode with Q. Open mode lets you use the regular vi commands, but only one line at a time. It can be useful on slow dial-up lines (or on very distant Internet ssh connections).

preserve
pre
Save the current editor buffer as though the system were about to crash.

previous
prev[!]
Edit the previous file from the command-line argument list. {vim}

print
[address] p [count]
Print the lines specified by address. count specifies the number of lines to print, starting with address. P is another abbreviation.

Example
:100;+5p Show line 100 and the next five lines

put
[address] pu [char]
Restore previously deleted or yanked lines from named register specified by char, to the line specified by address. If char is not specified, the last deleted or yanked text is restored.

qall
qa[!]
Close all windows and terminate current editing session. Use ! to discard changes made since the last save. {vim}
quit

q[!]
Terminate current editing session. Use ! to discard changes made since the last save. If the editing session includes additional files in the argument list that were never accessed, quit by typing q! or by typing q twice. vim only closes the editing window if there are still other windows open on the screen.

read

[address] r filename
Copy the text of filename after the line specified by address. If filename is not specified, the current filename is used.

Example
:or $HOME/data   Read file in at top of current file

read

[address] r !command
Read the output of shell command into the text after the line specified by address.

Example
:$r !spell %   Place results of spell checking at end of file

recover

rec [file]
Recover file from the system save area.

redo

red
Restore last undone change. Same as Ctrl-R. {vim}

resize

res [[±]num]
Resize current window to be num lines high. If + or - is specified, increase or decrease the current window height by num lines. {vim}

rewind

rew[!]
Rewind argument list and begin editing the first file in the list. Add a ! to rewind even if the current file has not been saved since the last change.

right

[address] ri [width]
Right-align lines specified by address, or current line if no address is specified, to column width. Use textwidth option if no width is specified. {vim}
**sbnext**

[count] sbn [count]
Split the current window and begin editing the count’th next buffer from the buffer list. If no count is specified, edit the next buffer in the buffer list. {vim}

**sbuffer**

[num] sb [num]
Split the current window and begin editing buffer num from the buffer list in the new window. The buffer to be edited may also be specified by filename. If no buffer is specified, open the current buffer in the new window. {vim}

**set**

se parameter1 parameter2 ...
Set a value to an option with each parameter, or, if no parameter is supplied, print all options that have been changed from their defaults. For Boolean options, each parameter can be phrased as option or no option; other options can be assigned with the syntax option=value. Specify all to list current settings. The form set option? displays the value of option. See the list of set options in the section “The :set Command” on page 692.

Examples

:set nows wm=10
:set all

**shell**

sh
Create a new shell. Resume editing when the shell terminates.

**snext**

[count] sn [[+num] filelist]
Split the current window and begin editing the next file from the command-line argument list. If count is provided, edit the count’th next file. If filelist is provided, replace the current argument list with filelist and begin editing the first file. With the +n argument, begin editing on line num. Alternately, num may be a pattern of the form /pattern. {vim}

**source**

so file
Read (source) and execute ex commands from file.

Example

:so $HOME/.exrc

**split**

[count] sp [+num] [filename]
Split the current window and load filename in the new window, or the same buffer in both windows if no file is specified. Make the new window count lines high, or, if count is not specified, split the window into equal parts. With the +n argument, begin editing on line num. num may also be a pattern of the form /pattern. {vim}
sprevious [count] spr [+num]
Split the current window and begin editing the previous file from the
command-line argument list in the new window. If count is speci-
figed, edit the count’th previous file. With the +num argument, begin
editing on line num. num may also be a pattern of the form /pattern.
{vim}

stop st
Suspend the editing session. Same as Ctrl-Z. Use the shell fg
command to resume the session.

substitute [address] s [/pattern/replacement/] [options] [count]
Replace the first instance of pattern on each of the specified lines
with replacement. If pattern and replacement are omitted, repeat last
substitution. count specifies the number of lines on which to substi-
tute, starting with address. See additional examples in Chapter 7.

Options
c Prompt for confirmation before each change.
g Substitute all instances of pattern on each line (global).
p Print the last line on which a substitution was made.

Examples
:1,10s/yes/no/g Substitute on first 10 lines
:%s/[Hh]ello/Hi/gc Confirm global substitutions
:s/Fortran/\U&/ 3 Uppercase "Fortran" on next three lines
:g/*[0-9][0-9]*/s//Line &:/ For every line beginning with
one or more digits, add "Line" and a colon

suspend su
Suspend the editing session. Same as Ctrl-Z. Use the shell fg
command to resume the session.

tsview [count] sv [+num] [filename]
Same as the split command, but set the readonly option for the
new buffer. {vim}

t [address] t destination
Copy the lines included in address to the specified destination
address. t is equivalent to copy.

Example
:%t$ Copy the file and add it to the end
tag  [address] ta tag
In the tags file, locate the file and line matching tag, and start editing there.

Example
Run ctags, then switch to the file containing myfunction:
   :!ctags *.c
   :tag myfunction

tags
Print list of tags in the tag stack. {vim}

unabbreviate una word
Remove word from the list of abbreviations.

undo u
Reverse the changes made by the last editing command. In vi, the undo command will undo itself, redoing what you undid. vim supports multiple levels of undo. Use redo to redo an undone change in vim.

unhide [count] unh
Split screen to show one window for each active buffer in the buffer list. If specified, limit the number of windows to count. {vim}

unmap unm[!] string
Remove string from the list of keyboard macros. Use ! to remove a macro for input mode.

v  [address] v/pattern/[command]
Execute command on all lines not containing pattern. If command is not specified, print all such lines. v is equivalent to g!. See global.

Example
   :v/#include/d  Delete all lines except '#include' lines

version ve
Print the editor’s current version number and date of last change.

view vie[[+num] filename]
Same as edit, but set file to readonly. When executed in ex mode, return to normal or visual mode. {vim}
visual

[address] vi [type] [count]
Enter visual mode (vi) at the line specified by address. Return to ex mode with Q. type can be one of -, ^, or . (see the z command). count specifies an initial window size.

visual

vi [+num]file
Begin editing file in visual mode (vi), optionally at line num.

vsplit

[count] vs [+num] [filename]
Same as the split command, but split the screen vertically. The count argument can be used to specify a width for the new window. {vim}

wall

wa[!]
Write all changed buffers with filenames. Add ! to force writing of any buffers marked readonly. {vim}

wnext

[count] wn[!] [[+num] filename]
Write current buffer and open next file from argument list, or the count’th next file if specified. If filename is specified, edit it next. With the +num argument, begin editing on line num. num may also be a pattern of the form /pattern. {vim}

write

[address] w[!] [[>>] file]
Write lines specified by address to file, or write full contents of buffer if address is not specified. If file is also omitted, save the contents of the buffer to the current filename. If >> file is used, append lines to the end of the specified file. Add a ! to force the editor to write over any current contents of file.

Examples:
:1,10w name_list Copy first 10 lines to file name_list
:50w >> name_list Now append line 50

write

[address] w !command
Write lines specified by address to command.

Example:
:1,66w !pr -h myfile | lp Print first page of file

wq

wq[!]
Write and quit the file in one movement. The file is always written. The ! flag forces the editor to write over any current contents of file.
wqall

Write all changed buffers and quit the editor. Add ! to force writing of any buffers marked readonly. xall is another alias for this command. {vim}

X

Prompt for an encryption key. This command can be preferable to :set key, as typing the key is not echoed to the console. To remove an encryption key, just reset the key option to an empty value. {vim}

xit

Write the file if it was changed since the last write, then quit.

yank

[address] y [char] [count]

Place lines specified by address in named register char. Register names are the lowercase letters a-z. Uppercase names append text to the corresponding register. If no char is given, place lines in general register. count specifies the number of lines to yank, starting with address.

Example

:101,200 ya a Copy lines 100–200 to register "a"

z

[address] z [type] [count]

Print a window of text with the line specified by address at the top. count specifies the number of lines to be displayed.

Type

+ Place specified line at the top of the window (default).
- Place specified line at the bottom of the window.
. Place specified line in the center of the window.
^ Print the previous window.
= Place specified line in the center of the window and leave the current line at this line.

!

[address] !command

Execute Unix command in a shell. If address is specified, use the lines contained in address as standard input to command, and replace the lines with the output and error output. (This is called filtering the text through the command.)

Examples

:ls List files in the current directory
:11,20!sort -f Sort lines 11–20 of current file
=  
[address] =  
Print the line number of the line indicated by address. Default is line number of the last line.

< >  
[address] < [count]  
[address] > [count]  
Shift lines specified by address either left (<) or right (>). Only leading spaces and tabs are added or removed when shifting lines. count specifies the number of lines to shift, starting with address. The shiftwidth option controls the number of columns that are shifted. Repeating the < or > increases the shift amount. For example, :>>> shifts three times as much as :>.

address  
[address]  
Print the lines specified in address.

Enter  
Print the next line in the file. (For ex only; not from the : prompt in vi.)

@  
[address] @ [char]  
Execute contents of register specified by char. If address is given, move cursor to the specified address first. If char is @, repeat the last @ command.

&  
[address] & [options] [count]  
Repeat the previous substitute (s) command. count specifies the number of lines on which to substitute, starting with address. options are the same as for the substitute command.

Examples
: s/Overdue/Paid/  Substitute once on current line
: g/Status/&  Redo substitution on all "Status" lines

~  
[address] ~ [count]  
Replace the last-used regular expression (even if from a search, and not from an s command) with the replacement pattern from the most recent s (substitute) command. This is rather obscure; see Chapter 6 of Learning the vi and Vim Editors by Arnold Robbins et al. (O’Reilly) for details.
Chapter 10

The sed Editor

The sed “stream editor” is one of the most prominent text-processing tools on Unix and Linux. It is most often used for performing simple substitutions on data streams going through pipelines, but sed scripts can be written to do much more.

This chapter presents the following topics:

• Conceptual overview of sed
• Command-line syntax
• Syntax of sed commands
• Group summary of sed commands
• Alphabatical summary of sed commands

The version of sed provided with Linux systems is the GNU version written by the Free Software Foundation; its home page is http://www.gnu.org/software/sed/sed.html. For more information on sed, see Dale Dougherty and Arnold Robbins’s sed & awk (O’Reilly).

Conceptual Overview

The stream editor, sed, is a noninteractive editor. It interprets a script and performs the actions in the script. sed is stream-oriented because, like many Unix programs, input flows through the program and is directed to standard output. For example, sort is stream-oriented; vi is not. sed’s input typically comes from a file or pipe, but it can also be taken from the keyboard. Output goes to the screen by default, but it can also be captured in a file or sent through a pipe instead. GNU sed can edit files that use multibyte character sets.

Typical Uses of sed

• Editing one or more files automatically.
• Simplifying repetitive edits to multiple files.
• Writing conversion programs.
**sed Operation**

sed operates as follows:

- Each line of input is copied into a *pattern space*, an internal buffer where editing operations are performed.
- All editing commands in a sed script are applied, in order, to each line of input.
- Editing commands are applied to all lines (globally) unless line addressing restricts the lines affected.
- If a command changes the input, subsequent commands and address tests are applied to the current line in the pattern space, not the original input line.
- The original input file is unchanged because the editing commands modify an in-memory copy of each original input line. The copy is sent to standard output (but can be redirected to a file).
- sed also maintains the *hold space*, a separate buffer that can be used to save data for later retrieval.

**Command-Line Syntax**

The syntax for invoking sed has two forms:

```
sed [-n] [-e] 'command' file(s)
sed [-n] -f scriptfile file(s)
```

The first form allows you to specify an editing command on the command line, surrounded by single quotes. The second form allows you to specify a *scriptfile*, a file containing sed commands. Both forms may be used together, and they may be used multiple times. If no *file(s)* is specified, sed reads from standard input.

**Standard Options**

The following options are recognized:

- `-n` Suppress the default output; sed displays only those lines specified with the `p` command or with the `p` flag of the `s` command.
- `-e cmd`
  Next argument is an editing command. Necessary if multiple scripts or commands are specified.
- `-f file`
  Next argument is a file containing editing commands.

If the first line of the script is `${n}`, sed behaves as if `-n` had been specified.

Multiple `-e` and `-f` options may be provided, and they may be mixed. The final script consists of the concatenation of all the *script* and *file* arguments.
GNU sed Options

GNU sed accepts a number of additional command-line options, as well as long-option equivalents for the standard options. The GNU sed options are:

- `-e cmd`, `--expression cmd`
  Use `cmd` as editing commands.

- `-f file`, `--file file`
  Obtain editing commands from `file`.

- `--help`
  Print a usage message and exit.

- `-i[ suffix]`, `--in-place=[ suffix]`
  Edit files in place, overwriting the original file. If optional `suffix` is supplied, use it for renaming the original file as a backup file. See the GNU sed online Info documentation for the details.

- `-l len`, `--line-length len`
  Set the line length for the `l` command to `len` characters.

- `-n`, `--quiet`, `--silent`
  Suppress the default output; sed displays only those lines specified with the `p` command or with the `p` flag of the `s` command.

- `--posix`
  Disable all GNU extensions. Setting POSIXLY_CORRECT in the environment merely disables those extensions that are incompatible with the POSIX standard.

- `-r`, `--regex-extended`
  Use Extended Regular Expressions instead of Basic Regular Expressions. See Chapter 7 for more information.

- `-s`, `--separate`
  Instead of considering the input to be one long stream consisting of the concatenation of all the input files, treat each file separately. Line numbers start over with each file, the address $ refers to the last line of each file, files read by the `R` command are rewound, and range addresses (/x/y/) may not cross file boundaries.

- `-u`, `--unbuffered`
  Buffer input and output as little as possible. Useful for editing the output of `tail -f` when you don’t want to wait for the output.

- `--version`
  Print the version of GNU sed and a copyright notice, and then exit.

Syntax of sed Commands

sed commands have the general form:

```
[address[,address]][!]command [arguments]
```

`commands` consist of a single letter or symbol; they are described later, by group and alphabetically. `arguments` include the label supplied to `b` or `t`, the filename supplied to `r` or `w`, and the substitution flags for `s`. `addresses` are described next.
Pattern Addressing

A `sed` command can specify zero, one, or two addresses. In POSIX `sed`, an address has one of the forms in the following table. Regular expressions are described in Chapter 7. Additionally, `\n` can be used to match any newline in the pattern space (resulting from the `N` command), but not the newline at the end of the pattern space.

<table>
<thead>
<tr>
<th>Address</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/pattern/</code></td>
<td>Lines that match <code>pattern</code>.</td>
</tr>
<tr>
<td><code>\pattern;</code></td>
<td>Like previous, but use semicolon as the delimiter instead of slash. Any character may be used. This is useful if <code>pattern</code> contains multiple slash characters.</td>
</tr>
<tr>
<td><code>n</code></td>
<td>Line number <code>n</code>.</td>
</tr>
<tr>
<td><code>$</code></td>
<td>The last input line.</td>
</tr>
</tbody>
</table>

If the command specifies: Then the command is applied to:

<table>
<thead>
<tr>
<th>Address</th>
<th>Action performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>No address</td>
<td>Each input line.</td>
</tr>
<tr>
<td>One address</td>
<td>Any line matching the address. Some commands accept only one address: <code>a</code>, <code>i</code>, <code>r</code>, <code>q</code>, and <code>=</code>.</td>
</tr>
<tr>
<td>Two comma-separated addresses</td>
<td>First matching line and all succeeding lines up to and including a line matching the second address.</td>
</tr>
<tr>
<td>An address followed by <code>!</code></td>
<td>All lines that do not match the address.</td>
</tr>
</tbody>
</table>

**GNU sed** allows additional address forms:

<table>
<thead>
<tr>
<th>Address</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/pattern/</code></td>
<td>Match pattern, ignoring case. <code>I</code> may be used instead of <code>i</code>.</td>
</tr>
<tr>
<td><code>/pattern/m</code></td>
<td>Match pattern, allowing <code>^</code> and <code>$</code> to match around an embedded newline. <code>M</code> may be used instead of <code>m</code>.</td>
</tr>
<tr>
<td><code>[0,]pattern/</code></td>
<td>Similar to <code>/pattern/</code>, but if line 1 matches <code>pattern</code>, it will end the range.</td>
</tr>
<tr>
<td><code>address,+n</code></td>
<td>Matches line matching address, and the <code>n</code> following lines.</td>
</tr>
<tr>
<td><code>address~incr</code></td>
<td>Matches line matching address and every <code>incr</code> lines after it. For example, <code>42~3</code> matches 42, 45, 48, and so on.</td>
</tr>
</tbody>
</table>

Pattern Addressing Examples

<table>
<thead>
<tr>
<th>Command</th>
<th>Action performed</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>s/xx/yy/g</code></td>
<td>Substitute on all lines (all occurrences).</td>
</tr>
<tr>
<td><code>/BSD/d</code></td>
<td>Delete lines containing BSD.</td>
</tr>
<tr>
<td><code>/^BEGIN/,.^END/p</code></td>
<td>Print between <code>BEGIN</code> and <code>END</code>, inclusive.</td>
</tr>
<tr>
<td><code>/SAVE/d</code></td>
<td>Delete any line that doesn’t contain <code>SAVE</code>.</td>
</tr>
<tr>
<td><code>/BEGIN/,.END/s/xx/yy/g</code></td>
<td>Substitute on all lines, except between <code>BEGIN</code> and <code>END</code>.</td>
</tr>
</tbody>
</table>

Braces ({}), are used in `sed` to nest one address inside another or to apply multiple commands at a single matched address:

```
[/pattern/{...}]
 command1
 command2
```

The opening curly brace must end its line, and the closing curly brace must be on a line by itself. Be sure there are no spaces after the braces.

**GNU sed Regular Expression Extensions**

With the `-r` option, GNU sed uses Extended Regular Expressions instead of Basic Regular expressions. (See Chapter 7 for more information.) However, even without `-r`, you can use additional escape sequences for more powerful text matching. The following escape sequences are valid only in regular expressions:

- `\b` Matches on a word boundary, where of the two surrounding characters (`xy`, `yx`) one is a word-constituent character and the other is not.
- `\B` Matches on a nonword boundary, where both of the two surrounding characters (`xy`, `yx`) are either word-constituent or not word-constituent.
- `\w` Matches any word-constituent character (i.e., a letter, digit, or underscore).
- `\W` Matches any nonword-constituent character (i.e., anything that is *not* a letter, digit, or underscore).
- `\` Matches the beginning of the pattern space. This is different from ^ when the `m` modifier is used for a pattern or the `s` command.
- `\` Matches the end of the pattern space. This is different from $ when the `m` modifier is used for a pattern or the `s` command.

The following escape sequences may be used anywhere:

- `\a` The ASCII BEL character.
- `\f` The ASCII formfeed character.
- `\n` The ASCII newline character.
- `\r` The ASCII carriage-return character.
- `\v` The ASCII vertical tab character.
- `\dnn` The character whose ASCII decimal value is `nn`.
- `\onn` The character whose ASCII octal value is `nn`.
- `\xnn` The character whose ASCII hexadecimal value is `nn`.

**Group Summary of sed Commands**

In the lists that follow, the sed commands are grouped by function and are described tersely. Full descriptions, including syntax and examples, can be found afterward in the “Alphabetical Summary of sed Commands” on page 717. Commands marked with a † are specific to GNU sed.
## Basic Editing

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>a\</td>
<td>Append text after a line.</td>
</tr>
<tr>
<td>c\</td>
<td>Replace text (usually a text block).</td>
</tr>
<tr>
<td>i\</td>
<td>Insert text before a line.</td>
</tr>
<tr>
<td>d\</td>
<td>Delete lines.</td>
</tr>
<tr>
<td>s\</td>
<td>Make substitutions.</td>
</tr>
<tr>
<td>y\</td>
<td>Translate characters (like Unix <code>tr</code>).</td>
</tr>
</tbody>
</table>

## Line Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>==</td>
<td>Display line number of a line.</td>
</tr>
<tr>
<td>l</td>
<td>Display control characters in ASCII.</td>
</tr>
<tr>
<td>p</td>
<td>Display the line.</td>
</tr>
</tbody>
</table>

## Input/Output Processing

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>e contrario</td>
<td>Execute commands.</td>
</tr>
<tr>
<td>n</td>
<td>Skip current line and go to the next line.</td>
</tr>
<tr>
<td>r</td>
<td>Read another file’s contents into the output stream.</td>
</tr>
<tr>
<td>R contrario</td>
<td>Read one line from a file into the output.</td>
</tr>
<tr>
<td>w</td>
<td>Write input lines to another file.</td>
</tr>
<tr>
<td>W contrario</td>
<td>Write first line in pattern space to another file.</td>
</tr>
<tr>
<td>q</td>
<td>Quit the <code>sed</code> script (no further output).</td>
</tr>
<tr>
<td>Q contrario</td>
<td>Quit without printing the pattern space.</td>
</tr>
<tr>
<td>v contrario</td>
<td>Require a specific version of GNU <code>sed</code> to run the script.</td>
</tr>
</tbody>
</table>

## Yanking and Putting

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Copy into hold space; wipe out what’s there.</td>
</tr>
<tr>
<td>H</td>
<td>Copy into hold space; append to what’s there.</td>
</tr>
<tr>
<td>g</td>
<td>Get the hold space back; wipe out the destination line.</td>
</tr>
<tr>
<td>G</td>
<td>Get the hold space back; append to the pattern space.</td>
</tr>
<tr>
<td>x</td>
<td>Exchange contents of the hold and pattern spaces.</td>
</tr>
</tbody>
</table>
**Branching Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Branch to label or to end of script.</td>
</tr>
<tr>
<td>t</td>
<td>Same as b, but branch only after substitution.</td>
</tr>
<tr>
<td>T †</td>
<td>Same as t, but branch only if no successful substitutions.</td>
</tr>
<tr>
<td>:label</td>
<td>Label branched to by t or b.</td>
</tr>
</tbody>
</table>

**Multiline Input Processing**

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Read another line of input (creates embedded newline).</td>
</tr>
<tr>
<td>D</td>
<td>Delete up to the embedded newline.</td>
</tr>
<tr>
<td>P</td>
<td>Print up to the embedded newline.</td>
</tr>
</tbody>
</table>

**Alphabetical Summary of sed Commands**

GNU sed lets you use the filenames `/dev/stdin`, `/dev/stdout` and `/dev/stderr` to refer to standard input, output, and error, respectively, for the `r`, `R`, `w`, and `W` commands and the `w` flag to the `s` command.

GNU-specific commands or extensions are noted with `{G}` in the command synopsis. When the GNU version allows a command to have two addresses, the command is performed for each input line within the range.

```sed
Begin a comment in a sed script. Valid only as the first character of the first line. (Some versions, including GNU sed, allow comments anywhere, but it is better not to rely on this.) If the first line of the script is `#n`, sed behaves as if `-n` had been specified.

: label
Label a line in the script for the transfer of control by b or t. According to POSIX, sed must support labels that are unique in the first eight characters. GNU sed has no limit, but some older versions support up to only seven characters.

= [/pattern[/]= [address1[,address2]]={G}
Write to standard output the line number of each line addressed by pattern.```
Append text following each line matched by address. If text goes over more than one line, newlines must be “hidden” by preceding them with a backslash. The text is terminated by the first newline that is not hidden in this way. The text is not available in the pattern space, and subsequent commands cannot be applied to it. The results of this command are sent to standard output when the list of editing commands is finished, regardless of what happens to the current line in the pattern space.

The GNU version accepts two addresses and allows you to put the first line of text on the same line as the a command.

Example

```
$ a\1
This goes after the last line in the file\1
(marked by $). This text is escaped at the\1
end of each line, except for the last one.
```

Unconditionally transfer control to :label elsewhere in script. That is, the command following the label is the next command applied to the current line. If no label is specified, control falls through to the end of the script, so no more commands are applied to the current line.

Example

```
# Ignore HTML tables; resume script after </table>: 
/<table/\,<</table/>b
```

Replace (change) the lines selected by the address(es) with text. (See a for details on text.) When a range of lines is specified, all lines are replaced as a group by a single copy of text. The contents of the pattern space are, in effect, deleted, and no subsequent editing commands can be applied to the pattern space (or to text).

Example

```
# Replace first 100 lines in a file: 
1,100c\1
\ 
<First 100 names to be supplied>
```
d
\[address1[,address2]]d
Delete the addressed line (or lines) from the pattern space. Thus, the line is not passed to standard output. A new line of input is read, and editing resumes with the first command in the script.

Example
Delete all empty lines, including lines with just whitespace:
/^[#tab]*$/d

D
\[address1[,address2]]D
Delete the first part (up to embedded newline) of a multiline pattern space created by the N command, and resume editing with the first command in the script. If this command empties the pattern space, then a new line of input is read, as if the d command had been executed.

Example
Strip multiple blank lines, leaving only one:
/^$/{
N
/^\n$/D
}

e
\[address1[,address2]]e [command][G]
With command, execute the command and send the result to standard output. Without command, execute the contents of the pattern space as a command, and replace the pattern space with the results.

G
\[address1[,address2]]G
Same as g, except that a newline and the hold space are pasted to the end of the pattern space instead of overwriting it. The Example shows a simple way to "cut and paste" lines.
Example
This script collects all lines containing the word Item: and moves them after a place marker later in the file. The original Item: lines are deleted.

```sh
/Item:/{
    H
d
}
/Summary of items:/G
```

h

```
[address1[,address2]]h
```
Copy the pattern space into the hold space, a special temporary buffer. The previous contents of the hold space are obliterated. You can use h to save a line before editing it.

Example

```sh
# Edit a line; print the change; replay the original
/linux/{
    h
    s/.*/Linux \/(.*) .*/\1:/
    P
    x
}
```
Sample input:

This describes the Linux ls command.
This describes the Linux cp command.

Sample output:

```
ls:
This describes the Linux ls command.
cp:
This describes the Linux cp command.
```

H

```
[address1[,address2]]H
```
Append a newline and then the contents of the pattern space to the contents of the hold space. Even if the hold space is empty, H still appends a newline. H is like an incremental copy. See Examples under g and G.

i

```
[address]i\text
[address1[,address2]]i \ {G}
text
```
Insert text before each line matched by address. (See a for details on text.)
The GNU version accepts two addresses and allows you to put the first line of text on the same line as the i command.
Example

/Item 1/i\n
The five items are listed below:

I

[address1,address2]]
[address1,address2]]l [len]{G}

List the contents of the pattern space, showing nonprinting characters as ASCII codes. Long lines are wrapped. With GNU sed, len is the character position at which to wrap long lines. A value of 0 means to never break lines.

n

[address1,address2]]n

Read the next line of input into pattern space. The current line is sent to standard output, and the next line becomes the current line. Control passes to the command following n instead of resuming at the top of the script.

Example

In DocBook/XML, titles follow section tags. Suppose you are using a convention where each opening section tag is on a line by itself, with the title on the following line. To print all the section titles, invoke this script with sed -n:

```
/<sect[1-4]/{
  n
  p
}
```

N

[address1,address2]]N

Append the next input line to contents of pattern space; the new line is separated from the previous contents of the pattern space by a newline. (This command is designed to allow pattern matches across two lines.) By using \n to match the embedded newline, you can match patterns across multiple lines. See the Example under D.

Examples

Like the Example in n, but print the section tag line as well as header title:

```
/<sect[1-4]/{
  N
  p
}
```

Join two lines (replace newline with space):

```
/<sect[1-4]/{
  N
  s/\n/ /p
}
```
P \([address1[, address2]]p\)

Print the addressed line(s). Note that this can result in duplicate output unless default output is suppressed by using \#n or the -n command-line option. Typically used before commands that change control flow \(d, n, b\), which might prevent the current line from being output. See the Examples under h, n, and N.

P \([address1[, address2]]P\)

Print first part (up to embedded newline) of multiline pattern space created by N command. Same as p if N has not been applied to a line.

Example

Suppose you have function references in two formats:

\[
\begin{align*}
&\text{function(arg1, arg2)} \\
&\text{function(arg1, arg2)}
\end{align*}
\]

The following script changes argument arg2, regardless of whether it appears on the same line as the function name:

\[
\begin{align*}
&s/\text{function(arg1, arg2)}/\text{function(arg1, XX)}/ \\
&/\text{function(}+/ \\
&N \\
&s/\text{arg2}/XX/ \\
&P \\
&D
\end{align*}
\]

Q \([address]q\)

Quit when address is encountered. The addressed line is first written to the output (if default output is not suppressed), along with any text appended to it by previous a or r commands. GNU sed allows you to provide value, which is used as the exit status.

Examples

Delete everything after the addressed line:

\[
/Garbled text follows:/q
\]

Print only the first 50 lines of a file:

\[
50q
\]

Q \([address]Q [value]\{G\}\)

Quits processing, but without printing the pattern space. If value is provided, it is used as sed’s exit status.
R

```
[address1[,address2]]R file{G}
```

Read one line of file and append to the output after the contents of the pattern space. Successive R commands read successive lines from file.

s

```
[address1[,address2]]s//pattern//replacement//flags
```

Substitute replacement for pattern on each addressed line. If pattern addresses are used, the pattern $ represents the last pattern address specified. Any delimiter may be used. Use \ within pattern or replacement to escape the delimiter. The following flags can be specified (those marked with a † are specific to GNU sed):

- **n**: Replace nth instance of pattern on each addressed line. n is any number in the range 1 to 512, and the default is 1.
- **e†**: If the substitution was made, execute the contents of the pattern space as a shell command and replaces the pattern space with the results.
- **g**: Replace all instances of pattern on each addressed line, not just the first instance.
- **i or I†**: Do a case-insensitive regular expression match.
- **m or M†**: Allow ^ and $ to match around a newline embedded in the pattern space.
- **p**: Print the line if the substitution is successful. If several successful substitutions are successful, sed prints multiple copies of the line.
- **w file**: Write the line to file if a replacement was done. In the traditional Unix sed, a maximum of 10 different files can be opened.

GNU sed allows you to use the special filenames /dev/stdout and /dev/stderr to write to standard output or standard error, respectively.

Within the replacement, GNU sed accepts special escape sequences, with the following meanings:

- **\L**: Lowercase the replacement text until a terminating \E or \U.
- **\l**: Lowercase the following character only.
\U Uppercase the replacement text until a terminating \E or \L.
\u Uppercase the following character only.
\E Terminate case conversion from \L or \U.

Examples
Here are some short, commented scripts:

Change third and fourth quote to (and):
/function/{
s/"/)/4
s/"/(/3
}

Remove all quotes on a given line:
/Title/s//g

Remove first colon and all quotes; print resulting lines:
s://p
s//gp

Change first "if" but leave "ifdef" alone:
 ifdef/s/\s/\s/ if/

\t [address1,[address2]]t [label]
Test if successful substitutions have been made on addressed lines, and if so, branch to the line marked by :label. (See \b and :) If label
is not specified, control branches to the bottom of the script. The t
command is like a case statement in the C programming language
or the various shell programming languages. You test each case;
when it’s true, you exit the construct.

Example
Suppose you want to fill empty fields of a database. You have this:

ID: 1 Name: greg Rate: 45
ID: 2 Name: dale
ID: 3

You want this:

ID: 1 Name: greg Rate: 45 Phone: ??
ID: 2 Name: dale Rate: ?? Phone: ??
ID: 3 Name: ???? Rate: ?? Phone: ??

You need to test the number of fields already there. Here's the
script (fields are tab-separated):

#n
/ID/{
s/ID: .* Name: .* Rate: .*/& Phone: ??/p
 \t s/ID: .* Name: .* Rate: .*/& Phone: ??/p
 \t s/ID: .* Name: ???? Rate: ?? Phone: ??/p
}

Like \texttt{t}, but only branches to \texttt{label} if there \texttt{not} any successful substitutions. (see \texttt{b, t, and :}). If \texttt{label} is not specified, control branches to the bottom of the script.

This command doesn’t do anything. You use it to require GNU \texttt{sed} for your script. This works, because non-GNU versions of \texttt{sed} don’t implement the command at all, and will therefore fail. If you supply a specific \texttt{version}, GNU \texttt{sed} fails if the required version is newer than the one executing the script.

Append contents of pattern space to \texttt{file}. This action occurs when the command is encountered rather than when the pattern space is output. Exactly one space must separate the \texttt{w} and the filename. This command will create the file if it does not exist; if the file exists, its contents will be overwritten each time the script is executed. Multiple write commands that direct output to the same file append to the end of the file.

GNU \texttt{sed} allows you to use the special filenames \texttt{/dev/stdout} and \texttt{/dev/stderr} to write to standard output or standard error, respectively.

\begin{quote}
Example
\begin{verbatim}
Store HTML tables in a file
</table>/</div>/w tables.html
\end{verbatim}
\end{quote}

Like \texttt{w}, but only writes the contents of the first line in the pattern space to the file.

Exchange the contents of the pattern space with the contents of the hold space. See \texttt{h} for an example.

\begin{quote}
Example
\begin{verbatim}
Change item 1, 2, 3 to Item A, B, C ...
/^item \[1-9]/y/i123456789/IABCDEFGHI/
\end{verbatim}
\end{quote}
The gawk Programming Language

gawk is the GNU version of **awk**, a powerful utility often used for text and string manipulation within shell scripts, particularly when input data may be viewed as records and fields. **awk** is also an elegant and capable programming language that allows you to accomplish a lot with very little work.

This chapter presents the following topics:

- Conceptual overview
- Command-line syntax
- Patterns and procedures
- Built-in variables
- Operators
- Variables and array assignment
- User-defined functions
- **gawk**-specific facilities
- Implementation limits
- Group listing of **awk** functions and commands
- Alphabetical summary of **awk** functions and commands
- Source code

Conceptual Overview

awk is a pattern-matching program for processing files, especially when each line has a simple field-oriented layout. Linux provides the GNU version of **awk**, called **gawk**, which provides a number of additional features. This utility can be invoked either through the standard name **awk** or through **gawk**.
This chapter describes functionality that is found in **gawk**. Most of this discussion applies to all versions of **awk**, but items marked “gawk-specific” or as an “extension” may not apply to versions of **awk** other than GNU’s. If portability to older, non-Linux systems is important, do not use gawk-specific features.

With **gawk**, you can:

- Think of a text file as made up of records and fields in a textual database.
- Perform arithmetic and string operations.
- Use programming constructs, such as loops and conditionals.
- Produce formatted reports.
- Define your own functions.
- Execute Unix commands from a script.
- Process the results of Unix commands.
- Process command-line arguments gracefully.
- Work easily with multiple input streams.
- Flush open output files and pipes.
- Sort arrays.
- Retrieve and format system time values.
- Do bit manipulation.
- Internationalize your **gawk** programs, allowing strings to be translated into a local language at runtime.
- Perform two-way I/O to a coprocess.
- Open a two-way TCP/IP connection to a socket.
- Dynamically add built-in functions.
- Profile your **gawk** programs.

Command-Line Syntax

The syntax for invoking **awk** has two forms:

```
awk [options] 'script' var=value file(s)
awk [options] -f scriptfile var=value file(s)
```

You can specify a script directly on the command line, or you can store a script in a scriptfile and specify it with `-f`. **gawk** allows multiple `-f` scripts. Variables can be assigned a value on the command line. The value can be a string or numeric constant, a shell variable (`$name`), or a command substitution (`'cmd'`), but the value is available only after the **BEGIN** statement is executed.

awk operates on one or more files. If none are specified (or if `-` is specified), **awk** reads from standard input.
Standard Options

The standard options are:

-Fs
 Set the field separator to fs. This is the same as setting the built-in variable FS. gawk allows fs to be a regular expression. Each input line, or record, is divided into fields by whitespace (spaces or tabs) or by some other user-definable field separator. Fields are referred to by the variables $1, $2, ..., $n. $0 refers to the entire record.

-v var=value
 Assign a value to variable var. This allows assignment before the script begins execution.

For example, to print the first three (colon-separated) fields of each record on separate lines:

 awk -F: '{ print $1; print $2; print $3 }' /etc/passwd

Numerous examples are shown in “Simple Pattern-Procedure Examples” on page 730.

Important gawk Options

Besides the standard command line options, gawk has a large number of additional options. This section lists those of most value in day-to-day use. Any unique abbreviation of these options is acceptable.

--dump-variables=[=file]
 When the program has finished running, print a sorted list of global variables, their types, and their final values to file. The default file is awkvars.out.

--gen-po
 Read the awk program and print all strings marked as translatable to standard output in the form of a GNU gettext Portable Object file. See the section “Internationalization” on page 736 for more information.

--help
 Print a usage message to standard error and exit.

--lint=[fatal]
 Enable checking of nonportable or dubious constructs, both when the program is read and as it runs. With an argument of fatal, lint warnings become fatal errors.

--non-decimal-data
 Allow octal and hexadecimal data in the input to be recognized as such. This option is not recommended; use strtonum() in your program, instead.

--profile=[=file]
 With gawk, put a “prettyprinted” version of the program in file. Default is awkprof.out. With pgawk (see “Profiling” on page 735), put the profiled listing of the program in file.
Patterns and Procedures

awk scripts consist of patterns and procedures:

```
pattern  { procedure }
```

Both `pattern` and `{ procedure }` are optional. If `pattern` is missing, `{ procedure }` is applied to all lines. If `{ procedure }` is missing, the matched line is printed.

Patterns

A pattern can be any of the following:

- `general expression`
- `/regular expression/`
- `relational expression`
- `pattern-matching expression`
- `BEGIN`
- `END`

- General expressions can be composed of quoted strings, numbers, operators, function calls, user-defined variables, or any of the predefined variables described in “Built-in Variables” on page 731.
- Regular expressions use the extended set of metacharacters, as described in Chapter 7.
- The `^` and `$` metacharacters refer to the beginning and end of a string (such as the fields), respectively, rather than the beginning and end of a line. In particular, these metacharacters will *not* match at a newline embedded in the middle of a string.
- Relational expressions use the relational operators listed in “Operators” on page 732. For example, `$2 > $1` selects lines for which the second field is greater than the first. Comparisons can be either string or numeric. Thus, depending upon the types of data in `$1` and `$2`, **awk** will do either a numeric or a string comparison. This can change from one record to the next.
- Pattern-matching expressions use the operators `~` (match) and `!~` (don’t match). See “Operators” on page 732.
• The **BEGIN** pattern lets you specify procedures that will take place before the first input line is processed. (Generally, you process the command line and set global variables here.)

• The **END** pattern lets you specify procedures that will take place after the last input record is read.

• **BEGIN** and **END** patterns may appear multiple times. The procedures are merged as if there had been one large procedure.

Except for **BEGIN** and **END**, patterns can be combined with the Boolean operators || (or), && (and), and ! (not). A range of lines can also be specified using comma-separated patterns:

```
pattern, pattern
```

Procedures

Procedures consist of one or more commands, function calls, or variable assignments, separated by newlines or semicolons, and are contained within curly braces. Commands fall into five groups:

• Variable or array assignments
• Input/Output commands
• Built-in functions
• Control-flow commands
• User-defined functions

Simple Pattern-Procedure Examples

Print first field of each line:

```
{ print $1 }
```

Print all lines that contain **pattern**:

```
/pattern/
```

Print first field of lines that contain **pattern**:

```
/pattern/ { print $1 }
```

Select records containing more than two fields:

```
NF > 2
```

Interpret input records as a group of lines up to a blank line. Each line is a single field:

```
BEGIN { FS = "\n"; RS = "" }
```

Print fields 2 and 3 in switched order, but only on lines whose first field matches the string **URGENT**:

```
$1 ~/URGENT/ { print $3, $2 }
```

Count and print the number of **pattern** found:

```
/pattern/ { ++x }
END { print x }
```
Add numbers in second column and print the total:

```gawk
{ total += $2 }
END { print "column total is", total }
```

Print lines that contain less than 20 characters:

```gawk
length($0) < 20
```

Print each line that begins with `Name:` and that contains exactly seven fields:

```gawk
NF = 7 && /^Name:/
```

Print the fields of each record in reverse order, one per line:

```gawk
{
    for (i = NF; i >= 1; i--)
        print $i
}
```

Built-in Variables

All `awk` variables are included in `gawk`.

<table>
<thead>
<tr>
<th>Version</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>awk</code></td>
<td><code>ARGC</code></td>
<td>Number of arguments on the command line.</td>
</tr>
<tr>
<td></td>
<td><code>ARGV</code></td>
<td>An array containing the command-line arguments, indexed from 0 to <code>ARGC - 1</code>.</td>
</tr>
<tr>
<td></td>
<td><code>ENVIRON</code></td>
<td>An associative array of environment variables.</td>
</tr>
<tr>
<td></td>
<td><code>FILENAME</code></td>
<td>Current filename.</td>
</tr>
<tr>
<td></td>
<td><code>FNFR</code></td>
<td>Like <code>NR</code>, but relative to the current file.</td>
</tr>
<tr>
<td></td>
<td><code>FS</code></td>
<td>Field separator (a space).</td>
</tr>
<tr>
<td></td>
<td><code>NF</code></td>
<td>Number of fields in current record.</td>
</tr>
<tr>
<td></td>
<td><code>NR</code></td>
<td>Number of the current record.</td>
</tr>
<tr>
<td></td>
<td><code>OFMT</code></td>
<td>Output format for numbers ("%.6g").</td>
</tr>
<tr>
<td></td>
<td><code>OFS</code></td>
<td>Output field separator (a space).</td>
</tr>
<tr>
<td></td>
<td><code>ORS</code></td>
<td>Output record separator (a newline).</td>
</tr>
<tr>
<td></td>
<td><code>RLENGTH</code></td>
<td>Length of the string matched by <code>match()</code> function.</td>
</tr>
<tr>
<td></td>
<td><code>RS</code></td>
<td>Record separator (a newline).</td>
</tr>
<tr>
<td></td>
<td><code>RSTART</code></td>
<td>First position in the string matched by <code>match()</code> function.</td>
</tr>
<tr>
<td></td>
<td><code>SUBSEP</code></td>
<td>Separator character for array subscripts ("\034").</td>
</tr>
<tr>
<td></td>
<td><code>$0</code></td>
<td>Entire input record.</td>
</tr>
<tr>
<td></td>
<td><code>$n</code></td>
<td>nth field in current record; fields are separated by <code>FS</code>.</td>
</tr>
<tr>
<td><code>gawk</code></td>
<td><code>ARGIND</code></td>
<td>Index in <code>ARGV</code> of current input file.</td>
</tr>
<tr>
<td></td>
<td><code>BINMODE</code></td>
<td>Controls binary I/O for input and output files. Use values of 1, 2, or 3 for input, output, or both kinds of files, respectively. Set it on the command line to affect standard input, standard output, and standard error.</td>
</tr>
<tr>
<td></td>
<td><code>ERRNO</code></td>
<td>A string indicating the error when a redirection fails for <code>getline</code> or if <code>close()</code> fails.</td>
</tr>
</tbody>
</table>
Operators

The following table lists the operators, in order of increasing precedence, that are available in awk.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>= += -= *= /= %= ^= **=</td>
<td>Assignment.</td>
</tr>
<tr>
<td>?:</td>
<td>C conditional expression.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>&&</td>
<td>Logical AND (short-circuit).</td>
</tr>
<tr>
<td>in</td>
<td>Array membership.</td>
</tr>
<tr>
<td>~ !</td>
<td>Match regular expression and negation.</td>
</tr>
<tr>
<td>< <= > >= != ==</td>
<td>Relational operators.</td>
</tr>
<tr>
<td>blank</td>
<td>Concatenation.</td>
</tr>
<tr>
<td>+ -</td>
<td>Addition, subtraction.</td>
</tr>
<tr>
<td>* / %</td>
<td>Multiplication, division, and modulus (remainder).</td>
</tr>
<tr>
<td>+ - !</td>
<td>Unary plus and minus, and logical negation.</td>
</tr>
<tr>
<td>^ **</td>
<td>Exponentiation.</td>
</tr>
<tr>
<td>++ --</td>
<td>Increment and decrement, either prefix or postfix.</td>
</tr>
<tr>
<td>$</td>
<td>Field reference.</td>
</tr>
</tbody>
</table>

While ** and **= are common extensions, they are not part of POSIX awk.

Variable and Array Assignment

Variables can be assigned a value with an equals sign. For example:

```awk
FS = "", *
```

Expressions using the operators +, -, /, and % (modulo) can be assigned to variables.
Arrays can be created with the `split()` function (described later), or they can simply be named in an assignment statement. Array elements can be subscripted with numbers (`array[1]`, `..., `array[n]`) or with strings. Arrays subscripted by strings are called *associative arrays.* For example, to count the number of widgets you have, you could use the following script:

```gawk
/\sport/ { count["\sport"]++ }  # Count widgets
ND { print count["\sport"] }   # Print the count
```

You can use the special `for` loop to read all the elements of an associative array:

```gawk
for (item in array)  
    process array[item]
```

The index of the array is available as `item`, while the value of an element of the array can be referenced as `array[item]`.

You can use the operator `in` to test that an element exists by testing to see if its index exists. For example:

```gawk
if (index in array)  
    ...
```

tests that `array[index]` exists, but you cannot use it to test the value of the element referenced by `array[index]`.

You can also delete individual elements of the array using the `delete` statement. (See also the `delete` entry in “Alphabetical Summary of awk Functions and Commands” on page 738.)

Escape sequences

Within string and regular-expression constants, the following escape sequences may be used.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Meaning</th>
<th>Sequence</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>\a</td>
<td>Alert (bell)</td>
<td>\v</td>
<td>Vertical tab</td>
</tr>
<tr>
<td>\b</td>
<td>Backspace</td>
<td>\l</td>
<td>Literal backslash</td>
</tr>
<tr>
<td>\f</td>
<td>Form feed</td>
<td>\nnnn</td>
<td>Octal value nnn</td>
</tr>
<tr>
<td>\n</td>
<td>Newline</td>
<td>\xn</td>
<td>Hexadecimal value nn</td>
</tr>
<tr>
<td>\r</td>
<td>Carriage return</td>
<td>"</td>
<td>Literal double quote (in strings)</td>
</tr>
<tr>
<td>\t</td>
<td>Tab</td>
<td>\v</td>
<td>Literal slash (in regular expressions)</td>
</tr>
</tbody>
</table>

The `\x` escape sequence is a common extension; it is not part of POSIX awk.

* In fact, all arrays in awk are associative; numeric subscripts are converted to strings before being used as array subscripts. Associative arrays are one of awk’s most powerful features.
Octal and Hexadecimal Constants in gawk

gawk allows you to use octal and hexadecimal constants in your program source code. The form is as in C: octal constants start with a leading 0, and hexadecimal constants start with a leading 0x or 0X. The hexadecimal digits a–f may be in either uppercase or lowercase.

```
$ gawk 'BEGIN { print 042, 42, 0x42 }'
34 42 66
```

Use the `strtonum()` function to convert octal or hexadecimal input data into numerical values.

User-Defined Functions

gawk allows you to define your own functions. This makes it easy to encapsulate sequences of steps that need to be repeated into a single place and reuse the code from anywhere in your program.

The following function capitalizes each word in a string. It has one parameter, named `input`, and five local variables, which are written as extra parameters:

```
# capitalize each word in a string
function capitalize(input, result, words, n, i, w)
{
    result = ""
    n = split(input, words, " ")
    for (i = 1; i <= n; i++) {
        w = words[i]
        w = toupper(substr(w, 1, 1)) substr(w, 2)
        if (i > 1)
            result = result " 
        result = result w
    }
    return result
}
```

```
# main program, for testing
{ print capitalize($0) }
```

With this input data:

```
A test line with words and numbers like 12 on it.
```

This program produces:

```
A Test Line With Words And Numbers Like 12 On It.
```

For user-defined functions, no space is allowed between the function name and the left parenthesis when the function is called.
gawk-Specific Features

This section describes features unique to gawk.

Coprocesses and Sockets

gawk allows you to open a two-way pipe to another process, called a coprocess. This is done with the |& operator used with getline and print or printf.

\[
\text{print database command} |\& \"\text{"db_server}\" |\& \text{getline response}
\]

If the command used with |& is a filename beginning with /inet/, gawk opens a TCP/IP connection. The filename should be of the following form:

\[
/\text{inet/protocol/lport/hostname/rport}
\]

The parts of the filename are:

- protocol
 One of tcp, udp or raw, for TCP, UDP, or raw IP sockets, respectively. Note: raw is currently reserved but unsupported.

- lport
 The local TCP or UPD port number to use. Use 0 to let the operating system pick a port.

- hostname
 The name or IP address of the remote host to connect to.

- rport
 The port (application) on the remote host to connect to. A service name (e.g., tftp) is looked up using the C getservbyname() function.

Profiling

When gawk is built and installed, a separate program named pgawk (profiling gawk) is built and installed with it. The two programs behave identically; however, pgawk runs more slowly because it keeps execution counts for each statement as it runs. When it is done, it automatically places an execution profile of your program in a file named awkprof.out. (You can change the filename with the --profile option.)

The execution profile is a “prettyprinted” version of your program, with execution counts listed in the left margin. For example, after running this program:

\[
\$ \text{pgawk } '/\text{bash$/ \{ nusers++ } \\
> \text{\} END } \{ \text{print nusers, } "\text{nusers use Bash.}" \} /\text{etc/passwd}
\]

16 users use Bash.

the execution profile looks like this:

\[
\% gawk profile, created Mon Nov 1 14:34:38 2004
\]

Rule(s)
If sent $SIGUSR1$, `pgawk` prints the profile and an `awk` function call stack trace, and then keeps going. Multiple $SIGUSR1$ signals may be sent; the profile and trace will be printed each time. This facility is useful if your `awk` program appears to be looping and you want to see if something unexpected is being executed.

If sent $SIGHUP$, `pgawk` prints the profile and stack trace, and then exits.

File Inclusion

The `igawk` program provides a file-inclusion facility for `gawk`. You invoke it the same way you do `gawk`: it passes all command line arguments on to `gawk`. However, `igawk` processes source files and command-line programs for special statements of the form:

```
@include file.awk
```

Such files are searched for along the list of directories specified by the AWKPATH environment variable. When found, the `@include` line is replaced with the text of the corresponding file. Included files may themselves include other files with `@include`.

The combination of the AWKPATH environment variable and `igawk` makes it easy to have and use libraries of `awk` functions.

Internationalization

You can internationalize your programs if you use `gawk`. This consists of choosing a text domain for your program, marking strings that are to be translated, and, if necessary, using the `bindtextdomain()`, `dcgettext()`, and `dcngettext()` functions.

Localizing your program consists of extracting the marked strings, creating translations, and compiling and installing the translations in the proper place. Full details are given in *sed & awk* by Dale Dougherty and Arnold Robbins (O'Reilly).

The internationalization features in `gawk` use GNU `gettext`. You may need to install the GNU `gettext` tools to create translations if your system doesn’t already have them. Here is a very brief outline of the steps involved:

1. Set `TEXTDOMAIN` to your text domain in a `BEGIN` block:
   ```
   BEGIN { TEXTDOMAIN = "whizprog" }
   ```

2. Mark all strings to be translated by prepending a leading underscore:
   ```
   printf(\"whizprog: can't open /dev/telepath (%s)\n\",
   dcgettext(ERRNO)) > "/dev/stderr"
   ```

3. Extract the strings with the `--gen-po` option:
   ```
   $ gawk --gen-po -f whizprog.awk > whizprog.pot
   ```
4. Copy the file for translating, and make the translations:

```
$ cp whizprog.pot esperanto.po
$ ed esperanto.po
```

5. Use the `msgfmt` program from GNU `gettext` to compile the translations. The binary format allows fast lookup of the translations at runtime. The default output is a file named `messages`:

```
$ msgfmt esperanto.po
$ mv messages esperanto.mo
```

6. Install the file in the standard location. This is usually done at program installation. The location can vary from system to system.

That’s it! `gawk` will automatically find and use the translated messages, if they exist.

Implementation Limits

Many versions of `awk` have various implementation limits, on things such as:

- Number of fields per record
- Number of characters per input record
- Number of characters per output record
- Number of characters per field
- Number of characters per `printf` string
- Number of characters in literal string
- Number of characters in character class
- Number of files open
- Number of pipes open
- The ability to handle 8-bit characters and characters that are all zero (ASCII NUL)

`gawk` does not have limits on any of the above items, other than those imposed by the machine architecture and/or the operating system.

Group Listing of awk Functions and Commands

The following table classifies `awk` functions and commands.

<table>
<thead>
<tr>
<th>Function type</th>
<th>Functions or commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>atan2, cos, exp, int, log</td>
</tr>
<tr>
<td></td>
<td>rand, sin, sqrt, srand</td>
</tr>
<tr>
<td>String</td>
<td>asort¹, asortia², gensub³, gsub, index</td>
</tr>
<tr>
<td></td>
<td>length, match, split, sprintf, strtonum⁴</td>
</tr>
<tr>
<td></td>
<td>sub, substr, tolower, toupper</td>
</tr>
<tr>
<td>Control flow</td>
<td>break, continue, do/while, exit, for</td>
</tr>
<tr>
<td></td>
<td>if/else, return, while</td>
</tr>
</tbody>
</table>

If you are using a different version of `awk`, you may need to adjust these limits to suit your system.
The following functions are specific to `gawk`.

<table>
<thead>
<tr>
<th>Function type</th>
<th>Functions or commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O</td>
<td>close, print, flush</td>
</tr>
<tr>
<td></td>
<td>getline, next, nextfile</td>
</tr>
<tr>
<td>Programming</td>
<td>extension, delete</td>
</tr>
<tr>
<td></td>
<td>function, system</td>
</tr>
</tbody>
</table>

a Available in `gawk`.

b Available in Bell Labs `awk` and `gawk`.

The following alphabetical list of keywords and functions includes all that are available in POSIX `awk` and `gawk`. Extensions that aren’t part of POSIX `awk` but that are in both `gawk` and the Bell Laboratories `awk` are marked as {E}. Cases where `gawk` has extensions are marked as {G}. Items that aren’t marked with a symbol are available in all versions.

Ignore all text that follows on the same line. # is used in `awk` scripts as the comment character and is not really a command.

and and(expr1, expr2) {G}
Return the bitwise AND of `expr1` and `expr2`, which should be values that fit in a `C unsigned long`.

asort asort(src [,dest]) {G}
Sort the array `src` based on the element values, destructively replacing the indices with values from one to the number of elements in the array. If `dest` is supplied, copy `src` to `dest` and sort `dest`, leaving `src` unchanged. Returns the number of elements in `src`.

asorti asorti(src [,dest]) {G}
Like `asort()`, but the sorting is done based on the indices in the array, not based on the element values. For `gawk` 3.1.2 and later.
atan2\((y, x) \)
Return the arctangent of \(y/x \) in radians.

bindtextdomain\(\) \(\text{bindtextdomain}(\text{dir} [, \text{domain}]) \{G\} \)
Look in directory \textit{dir} for message translation files for text domain \textit{domain} (default: value of TEXTDOMAIN). Returns the directory where \textit{domain} is bound.

break\(\)
\text{break}
Exit from a \textit{while}, \textit{for}, or \textit{do} loop.

close\(\)
\text{close}(\text{expr})
\text{close}(\text{expr}, \text{how}) \{G\}
In most implementations of \textit{awk}, you can only have up to ten files and one pipe open simultaneously. Therefore, POSIX \textit{awk} provides a \text{close()} function that allows you to close a file or a pipe. It takes the same expression that opened the pipe or file as an argument. This expression must be identical, character by character, to the one that opened the file or pipe—even whitespace is significant.
In the second form, close one end of either a TCP/IP socket or a two-way pipe to a coprocess. \textit{how} is a string, either \textit{"from"} or \textit{"to"}. Case does not matter.

compl\(\)
\text{compl}(\text{expr}) \{G\}
Return the bitwise complement of \textit{expr}, which should be a value that fits in a C \texttt{unsigned long}.

continue\(\)
\text{continue}
Begin next iteration of \textit{while}, \textit{for}, or \textit{do} loop.

cos\(\)
\text{cos}(x)
Return the cosine of \(x \), an angle in radians.

dcgettext\(\)
\text{dcgettext}(\text{str} [, \text{dom} [, \text{cat}]]) \{G\}
Return the translation of \textit{str} for the text domain \textit{dom} in message category \textit{cat}. Default text domain is value of TEXTDOMAIN. Default category is \"LC_MESSAGES\".

dcngettext\(\)
\text{dcngettext}(\text{str1, str2}, \text{num} [, \text{dom} [, \text{cat}]]) \{G\}
If \textit{num} is one, return the translation of \textit{str1} for the text domain \textit{dom} in message category \textit{cat}. Otherwise, return the translation of \textit{str2}. Default text domain is value of TEXTDOMAIN. Default category is \"LC_MESSAGES\". For \textit{gawk} 3.1.1 and later.
delete
delete array[element]
delete array {E}
Delete element from array. The brackets are typed literally. The second form is a common extension, which deletes all elements of the array in one shot.

do
do
statement
while (expr)
Looping statement. Execute statement, then evaluate expr and if true, execute statement again. A series of statements must be put within braces.

exit
exit [expr]
Exit from script, reading no new input. The END procedure, if it exists, will be executed. An optional expr becomes awk’s return value.

exp
exp(x)
Return exponential of x (ex).

extension
extension(lib, init) {G}
Dynamically load the shared object file lib, calling the function init to initialize it. Return the value returned by the init function. This function allows you to add new built-in functions to gawk. See Arnold Robbins’s Effective awk Programming (O’Reilly) for the details.

fflush
fflush([output-expr]) {E}
Flush any buffers associated with open output file or pipe output-expr. gawk extends this function. If no output-expr is supplied, it flushes standard output. If output-expr is the null string (**), it flushes all open files and pipes.

for
for (init-expr; test-expr; incr-expr)
statement
C-style looping construct. init-expr assigns the initial value of a counter variable. test-expr is a relational expression that is evaluated each time before executing the statement. When test-expr is false, the loop is exited. incr-expr is used to increment the counter variable after each pass. All of the expressions are optional. A missing test-expr is considered to be true. A series of statements must be put within braces.
for (item in array)
 statement

Special loop designed for reading associative arrays. For each element of the array, the statement is executed; the element can be referenced by array[item]. A series of statements must be put within braces.

function name(parameter-list) {
 statements
}

Create name as a user-defined function consisting of awk statements that apply to the specified list of parameters. No space is allowed between name and the left parenthesis when the function is called.

gensub(regex, str [, how [, target]])

General substitution function. Substitute str for matches of the regular expression regex in the string target. If how is a number, replace the howth match. If it is "g" or "G", substitute globally. If target is not supplied, $0 is used. Return the new string value. The original target is not modified. (Compare with gsub and sub.) Use &r in the replacement string to stand for the text matched by the pattern.

ggetline

ggetline [var] [< file]
 command | getline [var]
 command | & getline [var] {G}

Read next line of input.

The second form reads input from file, and the third form reads the output of command. All forms read one record at a time, and each time the statement is executed, it gets the next record of input. The record is assigned to $0 and is parsed into fields, setting NF, NR and FNR. If var is specified, the result is assigned to var and $0 and NF are not changed. Thus, if the result is assigned to a variable, the current record does not change. getline is actually a function, and it returns 1 if it reads a record successfully, 0 if end-of-file is encountered, and -1 if for some reason it is otherwise unsuccessful.

The fourth form reads the output from coprocess command. See the section "Coprocesses and Sockets" on page 735 for more information.

gsub(regex, str [, target])

Globally substitute str for each match of the regular expression regex in the string target. If target is not supplied, defaults to $0. Return the number of substitutions. Use & in the replacement string to stand for the text matched by the pattern.
if (condition)
 statement1
[else
 statement2]

If condition is true, do statement1; otherwise do statement2 in optional else clause. The condition can be an expression using any of the relational operators <, <=, =, !=, >=, or >, as well as the array membership operator in, and the pattern-matching operators ~ and !~ (e.g., if ($1 ~ /[Aa]/)). A series of statements must be put within braces. Another if can directly follow an else in order to produce a chain of tests or decisions.

index (str, substr)

Return the position (starting at 1) of substr in str, or zero if substr is not present in str.

int (x)

Return integer value of x by truncating any fractional part.

length ([arg])

Return length of arg, or the length of $0 if no argument.

log (x)

Return the natural logarithm (base e) of x.

lshift (expr, count) {G}

Return the result of shifting expr left by count bits. Both expr and count should be values that fit in a C unsigned long.

match (str, regex)

Function that matches the pattern, specified by the regular expression regex, in the string str and returns either the position in str where the match begins, or 0 if no occurrences are found. Sets the values of RSTART and RLENGTH to the start and length of the match, respectively.

If array is provided, gawk puts the text that matched the entire regular expression in array[0], the text that matched the first parenthesized subexpression in array[1], the second in array[2], and so on.

mktime (timespec) {G}

Turns timespec (a string of the form YYYY MM DD HH MM SS[DST] representing a local time) into a time-of-day value in seconds since midnight, January 1, 1970, UTC.
next
next
Read next input line and start new cycle through pattern/procedures statements.

nextfile
nextfile {E}
Stop processing the current input file and start new cycle through pattern/procedures statements, beginning with the first record of the next file.

or
or(expr1, expr2) {G}
Return the bitwise OR of expr1 and expr2, which should be values that fit in a C unsigned long.

print
print [output-expr[, ...]] [dest-expr]
Evaluate the output-expr and direct it to standard output followed by the value of ORS. Each comma-separated output-expr is separated in the output by the value of OFS. With no output-expr, print $0. The output may be redirected to a file or pipe via the dest-expr, which is described in “Output Redirections” on page 746.

printf
printf(format [, expr-list]) [dest-expr]
An alternative output statement borrowed from the C language. It has the ability to produce formatted output. It can also be used to output data without automatically producing a newline. format is a string of format specifications and constants. expr-list is a list of arguments corresponding to format specifiers. As for print, output may be redirected to a file or pipe. See “printf Formats” on page 746 for a description of allowed format specifiers.

Like any string, format can also contain embedded escape sequences: \n (newline) or \t (tab) being the most common. Spaces and literal text can be placed in the format argument by quoting the entire argument. If there are multiple expressions to be printed, there should be multiple formats specified.

Examples
Using the script:
```
{ printf("The sum on line %d is %.0f.\n", NR, $1+$2) }
```
The following input line:
```
5   5
```
produces this output, followed by a newline:
The sum on line 1 is 10.

rand
rnd()
Generate a random number between 0 and 1. This function returns the same series of numbers each time the script is executed, unless the random number generator is seeded using srand().
return

```
return [expr]
```

Used within a user-defined function to exit the function, returning the value of `expr`. The return value of a function is undefined if `expr` is not provided.

rshift

```
rshift(expr, count) {G}
```

Return the result of shifting `expr` right by `count` bits. Both `expr` and `count` should be values that fit in a C `unsigned long`.

sin

```
sin(x)
```

Return the sine of `x`, an angle in radians.

split

```
split(string, array [, sep])
```

Split `string` into elements of array `array[1],...,array[n]`. Return the number of array elements created. The string is split at each occurrence of separator `sep`. If `sep` is not specified, `FS` is used.

sprintf

```
sprintf(format [, expressions])
```

Return the formatted value of one or more `expressions`, using the specified `format`. Data is formatted but not printed. See “printf Formats” on page 746 for a description of allowed format specifiers.

sqrt

```
sqrt(arg)
```

Return the square root of `arg`.

srand

```
srand([expr])
```

Use optional `expr` to set a new seed for the random number generator. Default is the time of day. Return value is the old seed.

strftime

```
strftime([format [, timestamp]]) {G}
```

Format `timestamp` according to `format`. Return the formatted string. The `timestamp` is a time-of-day value in seconds since midnight, January 1, 1970, UTC. The `format` string is similar to that of `strftime`. If `timestamp` is omitted, it defaults to the current time. If `format` is omitted, it defaults to a value that produces output similar to that of the Unix `date` command. See the `date` entry in Chapter 3 for a list.

strtonum

```
strtonum(expr) {G}
```

Return the numeric value of `expr`, which is a string representing an octal, decimal, or hexadecimal number in the usual C notations. Use this function for processing nondecimal input data.
sub

```c
sub(regex, str [, target])
```

Substitute str for first match of the regular expression regex in the string target. If target is not supplied, defaults to `$0`. Returns 1 if successful, 0 otherwise. Use `&` in the replacement string to stand for the text matched by the pattern.

substr

```c
substr(string, beg [, len])
```

Return substring of string at beginning position beg (counting from 1), and the characters that follow to maximum specified length len. If no length is given, use the rest of the string.

system

```c
system(command)
```

Function that executes the specified command and returns its exit status. The status of the executed command typically indicates success or failure. A value of 0 means that the command executed successfully. A nonzero value indicates a failure of some sort. The documentation for the command will give you the details.

awk does not make the output of the command available for processing within the *awk* script. Use `command | getline` to read the output of a command into the script.

systime

```c
systime() {G}
```

Return a time-of-day value in seconds since midnight, January 1, 1970, UTC.

Examples

Log the start and end times of a data-processing program:

```c
BEGIN {
    now = systime()
    mesg = strftime("Started at %m/%d/%Y %H:%M:%S", now)
    print mesg
}
```

```c
process data ...
```

```c
END {
    now = systime()
    mesg = strftime("Ended at %m/%d/%Y %H:%M:%S", now)
    print mesg
}
```

tolower

```c
tolower(str)
```

Translate all uppercase characters in str to lowercase and return the new string.

* Very early versions of *nawk* don’t support tolower() and toupper(). However, they are now part of the POSIX specification for *awk*.
toupper

toupper\((str) \)
Translate all lowercase characters in \(str \) to uppercase and return the new string.

while

while (condition)
statement
Do statement while \(condition \) is true (see if for a description of allowable conditions). A series of statements must be put within braces.

xor

xor\((expr1, expr2) \) \{g\}
Return the bitwise XOR of \(expr1 \) and \(expr2 \), which should be values that fit in a C unsigned long.

Output Redirections

For **print** and **printf**, \(dest-expr \) is an optional expression that directs the output to a file or pipe.

\(> \) file
Direct the output to a file, overwriting its previous contents.

\(>> \) file
Append the output to a file, preserving its previous contents. In both this case and the \(> \) file case, the file will be created if it does not already exist.

\(| \) command
Direct the output as the input to a system command.

\(|& \) command
Direct the output as the input to a coprocess. **gawk** only.

Be careful not to mix \(> \) and \(>> \) for the same file. Once a file has been opened with \(> \), subsequent output statements continue to append to the file until it is closed. Remember to call **close()** when you have finished with a file, pipe, or coprocess. If you don’t, eventually you will hit the system limit on the number of simultaneously open files.

printf Formats

Format specifiers for **printf** and **sprintf** have the following form:

\%[posn][flag][width][.precision]letter
The control letter is required. The format-conversion control letters are given in the following table.

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>ASCII character.</td>
</tr>
<tr>
<td>d</td>
<td>Decimal integer.</td>
</tr>
<tr>
<td>i</td>
<td>Decimal integer (added in POSIX).</td>
</tr>
<tr>
<td>e</td>
<td>Floating-point format ([-]d.\text{precision}[+-]d).</td>
</tr>
<tr>
<td>E</td>
<td>Floating-point format ([-]d.\text{precision}\E[+-]d).</td>
</tr>
<tr>
<td>f</td>
<td>Floating-point format ([-]d\text{precision}\e[+-]d).</td>
</tr>
<tr>
<td>g</td>
<td>e or f conversion, whichever is shortest, with trailing zeros removed.</td>
</tr>
<tr>
<td>G</td>
<td>E or f conversion, whichever is shortest, with trailing zeros removed.</td>
</tr>
<tr>
<td>o</td>
<td>Unsigned octal value.</td>
</tr>
<tr>
<td>s</td>
<td>String.</td>
</tr>
<tr>
<td>u</td>
<td>Unsigned decimal value.</td>
</tr>
<tr>
<td>x</td>
<td>Unsigned hexadecimal number. Uses a-f for 10 to 15.</td>
</tr>
<tr>
<td>X</td>
<td>Unsigned hexadecimal number. Uses A-F for 10 to 15.</td>
</tr>
<tr>
<td>%</td>
<td>Literal %.</td>
</tr>
</tbody>
</table>

\texttt{gawk} allows you to provide a \textit{positional specifier} after the \% (posn$). A positional specifier is an integer count followed by a $$. The count indicates which argument to use at that point. Counts start at one and don’t include the format string. This feature is primarily for use in producing translations of format strings. For example:

\begin{verbatim}
$ gawk 'BEGIN { printf "%2$s, %1$s\n", "world", "hello" }'
hello, world
\end{verbatim}

The optional \texttt{flag} is one of the following.

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Left-justify the formatted value within the field.</td>
</tr>
<tr>
<td>space</td>
<td>Prefix positive values with a space and negative values with a minus.</td>
</tr>
<tr>
<td>+</td>
<td>Always prefix numeric values with a sign, even if the value is positive.</td>
</tr>
<tr>
<td>#</td>
<td>Use an alternate form; %o has a preceding 0; %x and %X are prefixed with 0x and 0X, respectively; %e, %E and %f always have a decimal point in the result; and %g and %G do not have trailing zeros removed.</td>
</tr>
<tr>
<td>0</td>
<td>Pad output with zeros, not spaces. This only happens when the field width is wider than the converted result. This flag applies to all output formats, even nonnumeric ones.</td>
</tr>
<tr>
<td>*</td>
<td>\texttt{gawk 3.1.4} and later only. For numeric formats, in locales that support it, supply a thousands-separator character.</td>
</tr>
</tbody>
</table>

The optional \texttt{width} is the minimum number of characters to output. The result will be padded to this size if it is smaller. The 0 flag causes padding with zeros; otherwise, padding is with spaces.
The *precision* is optional. Its meaning varies by control letter, as shown in the following table.

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Precision means</th>
</tr>
</thead>
<tbody>
<tr>
<td>%d, %i, %o, %u, %x, %X</td>
<td>The minimum number of digits to print.</td>
</tr>
<tr>
<td>%e, %E, %f</td>
<td>The number of digits to the right of the decimal point.</td>
</tr>
<tr>
<td>%g, %G</td>
<td>The maximum number of significant digits.</td>
</tr>
<tr>
<td>%s</td>
<td>The maximum number of characters to print.</td>
</tr>
</tbody>
</table>
Chapters 13 and 14 describe two popular source code management systems for Linux: Subversion (SVN) and Git. This chapter introduces the major concepts involved with using these systems for users who may never have used one. If you’re already familiar with source code management, feel free to skip ahead to the particular software suite that interests you.

This chapter covers the following topics:
- Introduction and terminology
- Usage models
- Source code management systems
- Other source code management systems

Introduction and Terminology

Source code management systems let you store and retrieve multiple versions of a file. While originally designed for program source code, they can be used for any kind of file: source code, documentation, configuration files, and so on. Modern systems allow you to store binary files as well, such as image or audio data.

Source code management systems let you compare different versions of a file, as well as do “parallel development.” In other words, you can work on two different versions of a file at the same time, with the source code management system storing both versions. You can then merge changes from two versions into a third version. This will become more clear shortly. We’ll start by defining some terms:

Repository

A repository is where the source code management system stores its copy of your file. Usually one file in the source code management system is used to hold all the different versions of a source file. Each source code management system uses its own format to allow it to retrieve different versions easily and to track who made what changes, and when.
Sandbox

A sandbox is your personal, so-called “working copy” of the program or set of documents under development. You edit your private copy of the file in your own sandbox, returning changes to the source code management system when you’re satisfied with the new version.

Check in, check out

You “check out” files from the repository, edit them, and then “check them in” when you’re satisfied with your changes. Other developers working against the same repository will not see your changes until after you check them back in. Another term used for check-in is commit.

Log message

Every time you check in a file, you are prompted for a message describing the changes you made. You should do so in a concise fashion. If your software development practices include the use of a bug tracking system, you might also wish to include the bug number or problem report (PR) number that your change resolves.

Keyword substitutions

When you checkout a file, the source code management system can replace special keywords with values representing such things as the file’s version number, the name of the user who made the most recent change, the date and time the file was last changed, the file’s name, and so on. Each of the systems described in this book uses an overlapping set of keywords. Some systems always do keyword substitution, while others require that you explicitly enable the feature for each file.

Branch

A branch is a separate development path. For example, once you’ve released version 1.0 of whizprog, you will wish to proceed with the development for version 2.0. The main line of development is often called the trunk.

Now consider what happens when you wish to make a bug-fix release to whizprog 1.0, to be named version 1.1. You create a separate branch, based on the original 1.0 code, in a new sandbox. You perform all your development there, without disturbing the development being done for the 2.0 release.

Tag

A tag is a name you give to a whole group of files at once, at whatever version each individual file may be, in order to identify those files as being part of a particular group. For example, you might create tags WHIZPROG-1_0-ALPHA, WHIZPROG-1_0-BETA, WHIZPROG-1_0-RELEASE and so on.

This is a powerful facility that should be used well, since it allows you to retrieve a “snapshot” of your entire development tree as it existed at different points in time.

Merging

Most typically, when development along a branch is completed, it becomes necessary to merge the changes from that branch back into the main line of development. In our hypothetical example, all the bugs fixed in whizprog 1.0 to create version 1.1 should also be fixed in the ongoing 2.0 development. Source code management systems can help you automate the process of merging.
Conflict

A conflict occurs when two developers make inconsistent changes to the same part of a source file. Modern source code management systems detect the conflict, usually marking the conflicting parts of the file in your working copy using special markers. You first discuss the conflict with the other developer, in order to arrive at a correct resolution of the conflict. Once that’s done, you then resolve the conflict manually (by making the appropriate changes) and check in the new version of the file.

Client/Server

As with other “client/server” networking models, the idea here is that the repository is stored on one machine, the server, and that different developers may access the repository from multiple client systems. This powerful feature facilitates distributed development, allowing developers to work easily on their local systems, with the repository kept in a central place where it can be easily accessed and administered.

Usage Models

Different systems have different conceptual “models” as to how they’re used.

Older systems such as SCCS and RCS use a “check out with locking” model. These systems were developed before client/server computing, when software development was done on centralized minicomputers and mainframes. In this model, the repository is a central directory on the same machine where the developers work, and each developer checks out a private copy into their own sandbox. In order to avoid two developers making conflicting changes to a file, the file must be locked when it’s checked out. Only one user may lock a particular version of a file at a time. When that user has checked in their changes, they unlock the file so that the next user can check in changes. If necessary, the second user may “break” the first user’s lock, in which case the first user is notified via electronic mail.

This model works well for small projects where developers are co-located and can communicate easily. As long as one developer locks a file when she checks it out, another developer wishing to work with the file will know that he can’t until the first one is done. The drawback is that such locking can slow down development significantly.

Newer systems, such as CVS and Subversion, use a “copy, modify, merge” model. In practice, when two developers wish to work on the same file, they usually end up changing different, unrelated parts of the file. Most of the time, each developer can make changes without adversely affecting the other. Thus, files are not locked upon checkout into a sandbox. Instead, the source code management system detects conflicts and disallows a check-in when conflicts exist.

For example, consider two developers, dangermouse and penfold, who are both working on whizprog.c. They each start with version 1.4 of the file. dangermouse commits his changes, creating version 1.5. Before penfold can commit his changes, the source code management system notices that the file has changed in the repository. penfold must first merge dangermouse’s changes into his working copy.
If there are no conflicts, he can then commit his changes, creating version 1.6. On the other hand, if there are conflicts, he must first resolve them (they’ll be marked in the working copy), and only then may he commit his version.

The combination of the “copy, modify, merge” model with a networked client/server facility creates a powerful environment for doing distributed development. Developers no longer have to worry about file locks. Because the source code management system enforces serialization (making sure that new changes are based on the latest version in the repository), development can move more smoothly, with little danger of miscommunication or that successive changes will be lost.

Source Code Management Systems

There are several source code management systems used in the Unix community:

SCCS

The Source Code Control System. SCCS is the original Unix source code management system. It was developed in the late 1970s for the Programmer’s Workbench (FWB) Unix systems within Bell Labs. It is still in use at a few large longtime Unix sites. However, for a long time it was not available as a standard part of most commercial or BSD Unix systems, and it did not achieve the widespread popularity of other, later systems. (It is still available with Solaris.) SCCS uses a file storage format that allows it to retrieve any version of a source file in constant time.

RCS

The Revision Control System. RCS was developed in the early 1980s at Purdue University by Walter F. Tichy. It became popular in the Unix world when it was shipped with 4.2 BSD in 1983. At the time, Berkeley Unix was the most widely used Unix variant, even though to get it, a site had to have a Unix license from AT&T.

RCS is easier to use than SCCS. Although it has a number of related commands, only three or four are needed for day-to-day use, and they are quickly mastered. A central repository is easy to use: you first create a directory for the sandbox. In the sandbox, you make a symbolic link to the repository named RCS, and then all the developers can share the repository.

RCS uses a file format that is optimized for retrieving the most recent version of a file.

CVS

The Concurrent Versions System. CVS was initially built as a series of shell scripts sitting atop RCS. Later it was rewritten in C for robustness, although still using RCS commands to manage the storage of files. However, for quite some time, CVS has had the RCS functionality built into it, and it no longer requires that RCS be available. The file format continues to be the same. CVS was the first distributed source code management system and was until recently the standard one for Unix systems—in particular for collaborative, distributed, free and open source development projects.
The repository is named when you create a sandbox and is then stored in the files in the sandbox, so that it need not be provided every time you run a CVS command. Unlike SCCS and RCS, which provide multiple commands, CVS has one main command (named `cvs`), which you use for just about every operation.

Subversion

With increasing use, it became clear that CVS lacked some fundamental capabilities. The Subversion project was started by several longtime CVS users and developers with the explicit goal to “build a better CVS,” not necessarily to explore uncharted territory in source code management systems. Subversion is thus intentionally easy to learn for CVS users. Subversion uses its own format for data storage, based on the Berkeley DB in-process data library. Distributed use was designed in from day one, providing useful facilities that leverage the capabilities of the well-known Apache HTTP server.

Git

Git is a source control system originally developed by Linus Torvalds as the source control system to manage the Linux kernel. Today, it is maintained by a community of developers and used for many diverse projects. Unlike the previous source control systems, Git is distributed. A distributed system differs from a centralized one such as CVS in several ways. The most notable is that in distributed systems, individual check outs of the source tree, called clones in distributed systems, are themselves complete and fully functioning repositories. Instead of submitting changes to a centralized server, changes are pushed and pulled among repositories.

RCS, CVS, and Subversion represent a progression, each one building on the features of its predecessors. For example, all three share a large subset of the same keyword substitutions, and command names are similar or identical in all three. They also demonstrate the progression from locking-based development to conflict-resolution-based development. Git is a radical departure from the centralized model.

Other Source Code Management Systems

Besides the source code management systems covered in this book, several other systems are worth knowing about. The following list, though, is by no means exhaustive:

Arch

GNU Arch is a distributed source code management system similar to CVS and Subversion. One of its significant strengths is that you can do offline development with it, working on multiple versions even on systems that are not connected to the Internet and that cannot communicate with the central repository. For more information, see http://www.gnu.org/software/gnu-arch/.

Codeville

Codeville is a distributed version-control system in the early stages of development. It is written in Python, is easy to set up and use, and shows a lot of promise. For more information, see http://codeville.org/.
CSSC
CSSC is a free clone of SCCS. It intends to provide full compatibility with SCCS, including file format, command names and options, and “bug for bug” compatible behavior. If you have an existing SCCS repository, you should be able to drop CSSC into your environment, in place of SCCS. CSSC can be used to migrate from a commercial Unix system to a freely available clone, such as GNU/Linux or a BSD system. For more information, see http://directory.fsf.org/project/cssc.

Monotone
The web page for monotone describes it well:

monotone is a free distributed version control system. It provides a simple, single-file transactional version store, with fully disconnected operation and an efficient peer-to-peer synchronization protocol. It understands history-sensitive merging, lightweight branches, integrated code review, and third party testing. It uses cryptographic version naming and client-side RSA certificates. It has good internationalization support, has no external dependencies, runs on [Linux, Solaris, Mac OS X, NetBSD, and Windows], and is licensed under the GNU GPL.

For more information, see http://monotone.ca.
The Subversion version control system is a powerful, open source system for management of file and directory versions. Designed from the ground up to support distributed development, it offers many leading-edge features.

This chapter covers the following topics:

- Conceptual overview
- Using Subversion: a quick tour
- The Subversion command line client: `svn`
- Repository administration: `svnadmin`
- Examining the repository: `svnlook`
- Providing remote access: `sveserve`

Version control was introduced in Chapter 12, which contains a comparison of Subversion, GIT, and other popular systems. The material in the current chapter is adapted from *Version Control with Subversion*, Second Edition, by C. Michael Pilato et al. (O’Reilly). See that book for much more information on Subversion.

Conceptual Overview

Subversion is a version-control system. It lets you track changes to an entire project directory tree. Every change made to the tree is recorded and can be retrieved.

Basic Version-Control Operations

Project data is kept in a *repository*, a set of directories and files managed by Subversion. Users use the `svn` client program to access the repository and make changes to it.
Subversion uses the *copy-modify-merge* development model. You make a private copy of a given project in a *sandbox*. (This is often called *checking out* a copy.) This private copy is not locked in the repository. You then make all the changes you like to the copy within the sandbox, without having to worry about what other developers are doing. As you work, you can compare your changes to the version you started with, as well as the version currently in the repository. Once you’re satisfied with the changes, you *commit* them, sometimes referred to as a *check-in*.

In the event that another developer has modified part of a file that you were working on and checked it in, when you commit your changes, Subversion notices and indicates that a *conflict* exists. Conflicts are marked as such in the file, and Subversion creates pristine copies of the file as it exists in the repository and of the file as you modified it, so that you can do full comparisons. Once you have resolved the conflict, you tell Subversion about it, and then commit the final version.

Subversion lets you create a development *branch*, a separate stream of development versions. You can periodically merge changes from the main development stream (the *trunk*) into your branch, and also merge changes from your branch back into the trunk.

Finally, you can *tag* a particular copy of the project. For instance, when a project is ready for a release, you can create a snapshot of the project and give it a descriptive tag that allows you to re-create the project tree exactly as it was for the release. This is particularly valuable when you need to produce a bug fix for an older version of the project, or when you have to attempt to retrofit a fix or feature from current development into an older version.

Key Features

Directory versioning

Subversion implements a virtual versioned filesystem that tracks changes to whole directory trees over time. Files *and* directories are versioned. Because it tracks the history of the directory tree rather than just the files, you can add, delete, copy, and rename both files and directories. Every newly added file begins with a fresh, clean history all its own, even if the filename was previously used.

Atomic commits

A collection of modifications either goes into the repository completely, or not at all. This allows developers to construct and commit changes as logical chunks, and prevents problems that can occur when only a portion of a set of changes is successfully sent to the repository.

Versioned metadata

Each file and directory has a set of properties—keys and their values—associated with it. You can create and store any arbitrary key/value pairs. Properties are versioned over time, just like file contents.

Choice of network layers

Subversion has an abstracted notion of repository access, making it easy for people to implement new network mechanisms. Subversion can plug into the
Apache HTTP Server as an extension module. A more lightweight, stand-alone Subversion server process is also available. This server speaks a custom protocol that can be easily tunneled over SSH.

Consistent data handling

Subversion expresses file differences using a binary differencing algorithm, which works identically on both text (human-readable) and binary (human-unreadable) files. Both types of files are stored equally compressed in the repository, and only the differences are transmitted in both directions across the network.

Efficient branching and tagging

The cost of branching and tagging need not be proportional to the project size. Subversion creates branches and tags by simply copying the project, using a mechanism similar to a hard link. Thus these operations take only a very small, constant amount of time.

Hackability

Subversion is implemented as a collection of shared C libraries with well-defined APIs. This makes Subversion extremely maintainable and usable by other applications and languages. Subversion is an open source project as well. You can contribute to its development.

Special File Properties

Subversion allows you to associate **properties** with files or directories. A property is just a keyword/value pair associated with the file. Subversion reserves property names starting with `svn:` for its own use. The special properties in Subversion 1.5.4 are:

- **svn:author**
 The username of the person who committed a particular revision.

- **svn:date**
 The server time when the transaction for a revision was created.

- **svn:eol-style**
 Different operating systems use different conventions to mark the end of lines in text files. It should be set to one of the following values:
 - **CR** Clients should always use carriage return (CR) line terminators, no matter what the native format is.
 - **CRLF** Clients should always use carriage return and line feed (CR-LF) line terminators, no matter what the native format is.
 - **LF** Clients should always use linefeed (LF) line terminators, no matter what the native format is.
 - **native** Clients should use the native format when checking out files.

 Subversion always stores files in normalized, LF-only format in the repository.

- **svn:executable**
 Valid only for files. It indicates that the file should be made executable when it’s checked out or updated from the repository. It has no effect on filesystems, such as FAT-32 or NTFS, that don’t have the concept of an execute bit.
svn:externals

This property, when set on a directory under version control, allows you to specify other, external repositories to use for particular local subdirectories. You set this property with `svn propset` or `svn propeedit` (see “svn Subcommands” on page 766). The value is a multiline table of directories and fully qualified Subversion URLs. For example:

```
$ svn propget svn:externals calc
third-party/sounds             http://sounds.red-bean.com/repos
third-party/skins http://skins.red-bean.com/repositories/skinproj
third-party/skins/toolkit -r21 http://svn.red-bean.com/repos/skin-maker
```

Once set, anyone else who checks out a working copy will also get the third party files checked out automatically.

svn:ignore

Used to tell Subversion to not place certain file types under version control. This property is set on a directory and should contain a list of file patterns that certain Subversion operations (like `svn status`, `svn add`, and `svn import`) will ignore.

svn:keywords

A list of keywords for which Subversion should perform *keyword expansion* when checking out the file. The valid keywords are listed below.

svn:log

The log message associated with the commit of a particular revision.

svn:mime-type

An indication of the type of data stored in the file. This prevents an attempt to perform a “merge” on data that can’t be merged. This property also influences how the Subversion Apache module sets the HTTP `Content-type:` header. In general, if it does not begin with `text/`, Subversion assumes that the file contains binary data. For updates, this causes Subversion to rename a modified working copy of the file with a `.orig` extension and replace the file with the current version from the repository.

svn:realmstring

A specialized property that describes the “authentication realm” for a file in Subversion’s cached copy of the authentication credentials. See Chapter 6 of *Version Control with Subversion* for more information.

Valid subversion keywords

Subversion defines the list of keywords available for substitution. That list contains the following five keywords, some of which have shorter aliases that you can also use:

Date

This keyword describes the last time the file was changed in the repository and looks like `$Date: 2009-02-23 02:42:37 -0700 (Mon, 23 Feb 2009)` $ It may also be given as `LastChangedDate`.
Revision
This keyword describes the last revision in which this file changed in the repository and looks like $Revision$. It may also be given as LastChanged-Revision or abbreviated as Rev.

Author
This keyword describes the last user to change this file in the repository, and looks like $Author$. It may be given as LastChangedBy.

HeadURL
This keyword describes the full URL to the latest version of the file in the repository. It looks like $HeadURL: http://svn.collab.net/repos/trunk/README $. It may be abbreviated as URL.

Id
This keyword is a compressed combination of the other keywords. Its substitution looks like Id:ch14.xml,v 1.52005/08/1221:21:32 sallyExpsally$, and is interpreted to mean that the file calc.c was last changed in revision 148 on the evening of July 28, 2005 by the user sally.

Obtaining Subversion
The Subversion project website is http://subversion.tigris.org. It contains links to project documentation, Frequently Asked Questions (FAQs), and project source code.

Most GNU/Linux systems come with Subversion available on the installation CDs. Thus, you may be able to install a prebuilt binary for your system or use a package manager to download and install it.

Using Subversion: A Quick Tour
This section provides a very quick tour of using Subversion for version control. We start with the initial version of a project for importing into Subversion:

```
$ find /tmp/hello -print
/tmp/hello
/tmp/hello/branches   Directory for branch development
/tmp/hello/tags        Directory for tagged releases
/tmp/hello/trunk
/tmp/hello/trunk/hello.c Mainline development is done on the trunk
/tmp/hello/trunk/Makefile
/tmp/hello/trunk/README
```

The next steps are to create the repository and then to import the project into it:

```
$ svnadmin create /path/to/svnrepos
$ svn import /tmp/hello file:///path/to/svnrepos -m "initial import"
Adding /tmp/hello/trunk
Adding /tmp/hello/trunk/hello.c
Adding /tmp/hello/trunk/Makefile
Adding /tmp/hello/trunk/README
Adding /tmp/hello/branches
Adding /tmp/hello/tags
```

Committed revision 1.
Now that the project exists in Subversion, we check out a working copy into a sandbox underneath our home directory and start making changes:

```
$ cd
Move to home directory
$ svn checkout file:///path/to/svnrepos hello
Check out working copy
A  hello/trunk
A  hello/trunk/hello.c
A  hello/trunk/README
A  hello/trunk/Makefile
A  hello/branches
A  hello/tags
Checked out revision 1.

$ cd hello/trunk
Change to sandbox
$ vi message.c hello.c Makefile
3 files to edit

$ cat message.c
const char message[ ] = "hello, world!";
$ make
Compile program and test it
cc    -c -o hello.o hello.c
cc    -c -o message.o message.c
cc -O hello.o message.o -o hello
$ hello
hello, world!
```

One of the most common operations is to compare the changed copy with the original. The result is in unified diff format, the equivalent of the regular `diff -u` command:

```
$ svn diff hello.c
Index: hello.c
===================================================================
--- hello.c     (revision 1)
+++ hello.c     (working copy)
@@ -1,7 +1,9 @@
#include <stdio.h>
+extern const char message[ ];
+int main(void)
+{
-       printf("hello, world!\n");
+       printf("%s\n", message);
       return 0;
+
}
```

Now that we’re comfortable with the changes, we schedule the new file, `message.c`, for addition to the repository, and then we actually commit our changes:

```
$ svn add message.c
Schedule message.c for addition
A  message.c
$ svn commit
Commit all the changes
Sending trunk/Makefile
Sending trunk/hello.c
```
Adding trunk/message.c
Transmitting file data ...
Committed revision 2.

Finally, we can view all our changes relative to the initial revision:

```bash
$ svn diff -r 1
Index: hello.c
===================================================================
--- hello.c     (revision 1)
+++ hello.c     (working copy)
@@ -1,7 +1,9 @@
 #include <stdio.h>
 
+extern const char message[ ];
+#include <stdio.h>
+
+int main(void)
+{
+    printf("%s\n", message);
+    return 0;
+}

Index: Makefile
===================================================================
==
--- Makefile    (revision 1)
+++ Makefile    (working copy)
@@ -1,2 +1,2 @@
-hello: hello.c
-     $(CC) -O $< -o $@
+hello: hello.o message.o
+     $(CC) -O hello.o message.o -o $@

Index: message.c
===================================================================
==
--- message.c   (revision 0)
+++ message.c   (revision 2)
@@ -0,0 +1 @@
+const char message[ ] = "hello, world!";
```

The Subversion Command Line Client: svn

The syntax for the Subversion command line client, `svn`, consists of options and a subcommand. `svn`'s options and subcommand may be provided in any order.

Common svn Options

While Subversion subcommands have different valid options, all options mean the same thing regardless of the subcommand you use it with. For example, `--verbose` (`-v`) always means verbose output, regardless of the subcommand you use it with.
--accept arg
 Specify action for automatic conflict resolution. Possible actions are postpone, base, mine-full, theirs-full, edit, and launch.

--auto-props
 Automatically set properties on newly added or imported files, overriding the enable-auto-props directive in the config file. By default this is disabled.

--change arg, -c arg
 Apply subcommand to specified change (a.k.a. revision.) This can be used as shorthand for "-T arg-1:arg".

--changelist name, -cl name
 Limit subcommand to files belonging to changelist name. You use the changelist subcommand to name the set of files to which you are making changes. A file can only belong to one changelist at a time. Changelists are local and are not saved in the repository. The name is usually discarded after committing. This option can be repeated to include more than one set of files.

--config-dir dir
 Read configuration information from the specified directory instead of the default location (.subversion in the user’s home directory).

--depth arg
 Control the tree-depth to which the subcommand should be recursively applied. When used with the checkout command this will set the depth property of the checked out files as well, affecting what you receive and what future commands will affect in the repository. To change this “ambient depth” use the --set-depth option. This option replaces the --recursive and --non-recursive options. arg may be one of the following:
 empty
 Apply to specified target only.
 files
 Apply to the immediate file children of the target.
 immediates
 Apply to the immediate file and directory children of target.
 infinity
 Apply recursively to all file and directory children of target.

--diff-cmd cmd
 Use cmd as the external program to show differences between files instead of Subversion’s internal diff engine. (Use --extensions to pass options to the external diff program.)

--diff3-cmd cmd
 Use cmd as the external program to merge files.

--dry-run
 Run a command, but make no actual changes—either on disk or in the repository.
--editor-cmd cmd
 Use cmd as the program for editing a log message or a property value. If not set, Subversion checks the environment variable SVN_EDITOR, the runtime configuration (usually ~/.subversion/config), then environment variables VISUAL and EDITOR for the name of the editor to use.

--encoding enc
 Use enc as the encoding for the commit message. The default encoding is your operating system’s native locale, and you should specify the encoding if your commit message is in any other encoding.

--extensions args, -x args
 Pass args to an external diff command when providing differences between files. To pass multiple arguments, enclose all of them in quotes (for example, svn diff --diff-cmd /usr/bin/diff -x "-b -E"). This option can be used only if you also pass the --diff-cmd option.

--file filename, -F filename
 Use the contents of filename for the specified subcommand. How it’s used depends on the subcommand.

--force
 Force a particular command or operation to run. There are some operations that Subversion prevents you from doing in normal usage, but you can pass this option to tell Subversion that you know what you’re doing, as well as the possible repercussions of doing it, so do it anyway. Use with caution.

--force-log
 Force a suspicious parameter passed to the --message (-m) or --file (-F) options to be accepted as valid. This can be used to pass a versioned file as the source for the commit log message, something Subversion would usually consider a mistake and reject.

--help, -h, -?
 If used with one or more subcommands, show the built-in help text for each subcommand. If used alone, display the general client help text.

--ignore-ancestry
 Ignore ancestry when calculating differences (i.e., rely on path contents alone).

--ignore-externals
 Ignore external definitions and external working copies managed by them.

--incremental
 Print output in a format suitable for concatenation.

--keep-changelists
 Don’t delete the changelist association after committing.

--keep-local
 Keep the local copy of a file when using the delete subcommand to remove a file from the repository.

--limit num, -1 num
 Only show the first num log messages.
--message message, -m message
 Use message as the commit message. For example:
 $ svn commit -m "They don't make Sunday."

--native-eol format
 Used with the export subcommand sets the end of line marker to use for all
 files with the svn:eol-style property set to native. You can specify LR, CR or
 CRLF for format.

--new arg
 Use arg as the newer target when producing a diff.

--no-auth-cache
 Do not cache authentication information (e.g., username and password) in
 the Subversion administrative directories.

--no-auto-props
 Disable auto-props, overriding the enable-auto-props directive in the config
 file.

--no-diff-deleted
 Do not print differences for deleted files. The default behavior when you
 remove a file is for svn diff to print the same differences that you would see if
 you had left the file but removed all the content.

--no-ignore
 Show files in the status listing that would normally be omitted because they
 match a pattern in the svn:ignore property.

--no-unlock
 Do not unlock files on commit.

--non-interactive
 In the case of an authentication failure, or insufficient credentials, do not
 prompt for credentials (e.g., username or password). This is useful if you’re
 running Subversion inside of an automated script where it’s better to have
 Subversion fail instead of trying to prompt for more information.

--non-recursive, -N
 Stop a subcommand from recursing into subdirectories. Most subcommands
 recurse by default, but some subcommands—usually those that have the
 potential to remove or undo your local modifications—do not. This
 command is deprecated. You should use --depth instead.

--notice-ancestry
 Pay attention to ancestry when calculating differences.

--old arg
 Use arg as the older target when producing a diff.

--parents
 Create and add nonversioned parent directories to the working copy or the
 repository. Useful for creating directories on commit.

--password pass
 Use pass as the password for authentication on the command line; otherwise,
 if it is needed, Subversion prompts you for it.

--quiet, -q
 Print only essential information while performing an operation.
--record-only
Mark a revision as merged.

--reintegrate
Used with the `svn merge` subcommand, merges changes in a specified source URL into the working copy. This can be used to merge changes from a branch back into its original line.

--recursive, -R
Make a subcommand recurse into subdirectories. Most subcommands recurse by default. This option is deprecated. Use `--depth` instead.

--relocate from to [path ...]
Used with the `svn switch` subcommand to change the location of the repository that your working copy references. This is useful if the location of your repository changes and you have an existing working copy that you’d like to continue to use. See `svn switch` in “svn Subcommands” on page 766 for an example.

--revision rev, -r rev
Use `rev` as the revision (or range of revisions) for a particular operation. You can provide revision numbers, revision keywords, or dates (in curly braces) as arguments to the revision option. To provide a range of revisions, provide two revisions separated by a colon. For example:

```
$ svn log -r 1729
$ svn log -r 1729:HEAD
$ svn log -r 1729:1744
$ svn log -r {2001-12-04}:{2002-02-17}
$ svn log -r 1729:{2002-02-17}
```

The acceptable revision keywords for `--revision` are:

BASE
The original, unmodified version of the working copy. This keyword cannot refer to a URL.

COMMITTED
The last revision, before or at **BASE**, at which an item actually changed. This keyword cannot refer to a URL.

HEAD
The most recent revision in the repository.

PREV
The revision just before that at which an item changed. Equivalent to **COMMITTED** - 1. This keyword cannot refer to a URL.

Revision Date
A date specification enclosed in curly braces, { and }, such as [2002-02-17], [15:30], "[2002-02-17 15:30]", [2002-02-17T15:30], or [20020217T1530-0500]. See Version Control with Subversion for full details.

--revprop
Operate on a revision property instead of a Subversion property specific to a file or directory. This option requires that you also pass a revision with the `--revision (-r)` option.
--set-depth arg
Use arg as the new recursive depth for the target. This accepts the same values as the --depth command.

--show-revs arg
Used with svn mergeinfo, specifies which collection of merge information to display. arg may be either merged or eligible.

--show-updates, -u
Display information about which files in your working copy are out of date. This doesn’t actually update any of your files; it just shows you which files will be updated if you run svn update.

--stop-on-copy
Cause a Subversion subcommand that is traversing the history of a versioned resource to stop harvesting that historical information when it encounters a copy—that is, a location in history where that resource was copied from another location in the repository.

--strict
Use strict semantics. See Version Control with Subversion for more information.

--summarize
Use with diff to get a summary of changes without a list of the changes themselves.

--targets filename
Retrieve the list of files to operate on from filename instead of listing all the files on the command line.

--username name
Use name as the username for authentication; otherwise, if it is needed, Subversion prompts you for it.

--verbose, -v
Print out as much information as possible while running any subcommand. This may result in Subversion printing out additional fields, detailed information about every file, or additional information regarding its actions.

--version
Print the client version info. This information not only includes the version number of the client, but also a listing of all repository access modules that the client can use to access a Subversion repository.

--with-revprop property
Set a revision property when writing to the repository (specify in NAME=VALUE format). When used with svn log --xml, display the value of the specified property name in the log output.

--xml
Prints output in XML format.

svn Subcommands

The svn command is the main user interface to Subversion. It works by accepting subcommands with arguments. Five of the previous options are global in version 1.5.
All subcommands will accept --config-dir, --no-auth-cache, --non-interactive, --password, and --username. Even commands for which these are meaningless will accept these options without fail. This is intended to make scripting easier. Because all subcommands accept these, we don’t list them in options the below.

The general form of a subcommand is:

```
svn subcommand [options] arguments
```

add

```
svn add path ...
```

Add files and directories to your working copy and schedule them for addition to the repository. They will be uploaded and added to the repository on your next commit. If you add something and change your mind before committing, you can unschedule the addition using `svn revert`.

Alternate names: none

Changes: working copy

Accesses repository: no

Options

--auto-props
--depth arg
--no-auto-props
--no-ignore
--no-parents
--non-recursive (-N)
--quiet (-q)
--targets filename

Examples

To add a file to your working copy:

```
$ svn add foo.c
A         foo.c
```

You can add a directory without adding its contents:

```
$ svn add -depth empty otherdir
A         otherdir
```

blame

```
svn blame target ...
```

Show author and revision information inline for the specified files or URLs. Each line of text is annotated at the beginning with the author (username) and the revision number for the last change to that line.

Alternate names: praise, annotate, ann

Changes: nothing

Accesses repository: yes

Options
--extensions args, -x args
--force
--incremental
--revision rev, -r rev
--use-merge-history, -g
--verbose, -v
--xml

cat
svn cat target ...
Output the contents of the specified files or URLs. For listing the contents of directories, see svn list.
Alternate names: none
Changes: nothing
Accesses repository: yes

Options
--revision rev, -r rev

Examples
To view readme.txt in your repository without checking it out:

$ svn cat http://svn.red-bean.com/repos/test/readme.txt
This is a README file.
You should read this.

If your working copy is out of date (or if you have local modifications) and you want to see the HEAD revision of a file in your working copy, svn cat automatically fetches the HEAD revision when you give it a path.

$ cat foo.c
This file is in my local working copy
and has changes that I’ve made.

$ svn cat foo.c
Latest revision fresh from the repository!

changelist
svn changelist name target...
svn changelist --remove name target...
Group files for operations into named collections. This makes it easier to work on multiple groups of files.
Alternate names: cl
Changes: working copy
Accesses repository: no
Options
--changelist name, -cl name
--depth arg
--quiet (-q)
--remove
--targets filename

Examples
Edit three files, add them to a changelist, then commit only files in that changelist:

```
$ svn changelist issue1729 foo.c bar.c baz.c
Path "foo.c" is now a member of changelist 'issue1729'.
Path "bar.c" is now a member of changelist 'issue1729'.
Path "baz.c" is now a member of changelist 'issue1729'.
```

```
$ svn status
A  someotherfile.c
A  test/sometest.c
--Changelist 'issue1729':
A  foo.c
A  bar.c
A  baz.c
```

```
$ svn commit --changelist issue1729 -m "Fixing Issue 1729"
Adding        foo.c
Adding        bar.c
Adding        baz.c
Transmitting file data...
Committed revision 2
```

```
$ svn status
A  someotherfile.c
A  test/sometest.c
```

checkout

`svn checkout URL ... [path]`

Check out a working copy from a repository. If *path* is omitted, the basename of the URL is used as the destination. If multiple URLs are given, each one is checked out into a subdirectory of *path*, with the name of the subdirectory being the basename of the URL.

Alternate names: *co*

Changes: creates a working copy

Accesses repository: yes

Options
--depth arg
--force
--ignore-externals
--quiet (-q)
--revision rev, -r rev
Examples
Check out a working copy into a directory called mine:

```
$ svn checkout file:///tmp/repos/test mine
A  mine/a
A  mine/b
Checked out revision 2.
$ ls
mine
```

If you interrupt a checkout (or something else interrupts your checkout, such as loss of connectivity, etc.), you can restart it either by issuing the identical checkout command again or by updating the incomplete working copy:

```
$ svn checkout file:///tmp/repos/test test
A  test/a
A  test/b
^C
svn: The operation was interrupted
svn: caught SIGINT

$ svn checkout file:///tmp/repos/test test
A  test/c
A  test/d
^C
svn: The operation was interrupted
svn: caught SIGINT

$ cd test
$ svn update
A  test/e
A  test/f
Updated to revision 3.
```

cleanup
svn cleanup [path ...]
Recursively clean up the working copy, removing locks and resuming unfinished operations. If you ever get a working-copy-locked error, run this command to remove stale locks and get your working copy into a usable state again.

If, for some reason, an `svn update` fails due to a problem running an external `diff` program (e.g., user input or network failure), pass the `--diff3-cmd` option to allow cleanup to complete any merging with your external `diff` program. You can also specify any configuration directory with the `--config-dir` option, but you should need these options extremely infrequently.

Alternate names: none

Changes: working copy
Accesses repository: no

Options:

`--diff3-cmd cmd`
commit
svn commit [path ...]

Send changes from your working copy to the repository. If you do not supply a log message with your commit by using either the --file or --message option, svn starts your editor for you to compose a commit message.

If you begin a commit and Subversion starts your editor to compose the commit message, you can still abort without committing your changes. To cancel your commit, just quit your editor without saving your commit message and Subversion prompts you to abort the commit, continue with no message, or edit the message again.

Alternate names: ci (short for check in—not co, which is short for checkout)

Changes: working copy, repository

Accesses repository: yes

Options

--changelist name, -cl name
--depth arg
--editor-cmd cmd
--encoding enc
--file file, -F file
--force-log
--keep-changelists
--message text, -m text
--no-unlock
--quiet (-q)
--targets filename
--with-revprop property

Examples

Commit a simple modification to a file with the commit message on the command line and an implicit target of your current directory (.):

```bash
$ svn commit -m "added howto section."
Sending a
Transmitting file data.
Committed revision 3.
```

To commit a file scheduled for deletion:

```bash
$ svn commit -m "removed file 'c'."
Deleting c
Committed revision 7.
```
copy

`svn copy src dst`

Copy a file in a working copy or in the repository. *src* and *dst* can each be either a working-copy (WC) path or a URL:

- WC→WC
 - Copy and schedule an item for addition (with history).
- WC→URL
 - Immediately commit a copy of WC to URL.
- URL→WC
 - Check out URL into WC, and schedule it for addition.
- URL→URL
 - Complete server-side copy. This is usually used to branch and tag.

You can only copy files within a single repository. Subversion does not support cross-repository copying.

Alternate names: `cp`

Changes: repository if destination is a URL; working copy if destination is a WC path.

Accesses repository: if source or destination is in the repository, or if needed to look up the source revision number.

Options

- `--editor-cmd editor`
- `--encoding enc`
- `--file file` or `-F file`
- `--force-log`
- `--message text` or `-m text`
- `--parents`
- `--quiet` or `-q`
- `--revision rev` or `-r rev`
- `--with-revprop property`

Examples

Copy an item within your working copy (just schedules the copy; nothing goes into the repository until you commit):

```bash
$ svn copy foo.txt bar.txt
A       bar.txt
```

Copy an item from the repository to your working copy (just schedules the copy; nothing goes into the repository until you commit):

```bash
$ svn status
A + bar.txt
```
$ svn copy file:///tmp/repos/test/far-away near-here
A near-here

This is the recommended way to resurrect a dead file in your repository!

And finally, copying between two URLs:

$ svn copy file:///tmp/repos/test/far-away \ > file:///tmp/repos/test/over-there -m "remote copy."
Committed revision 9.

This is the easiest way to tag a revision in your repository; just svn copy that revision (usually HEAD) into your tags directory.

$ svn copy file:///tmp/repos/test/trunk \ > file:///tmp/repos/test/tags/0.6.32-prerelease \ > -m "tag tree"
Committed revision 12.

delete

svn delete path ...
svn delete URL ...

Items specified by path are scheduled for deletion upon the next commit. Files (and directories that have not been committed) are immediately removed from the working copy. The command will not remove any unversioned or modified items; use the --force option to override this behavior.

Items specified by URL are deleted from the repository via an immediate commit. Multiple URLs are committed atomically.

Alternate names: del, remove, rm

Options

--editor-cmd editor
--encoding enc
--file file, -F file
--force
--force-log
--keep-local
--message text, -m text
--quiet (-q)
--targets filename
--with-revprop property
diff

`svn diff [-r N[:M]] [--old old-tgt] [--new new-tgt] [path ...]`

`svn diff -r N:M URL`

`svn diff [-r N[:M]] URL1[@N] URL2[@M]`

Display the differences between two paths. The three different ways you can use `svn diff` are:

`svn diff [-r N[:M]] [--old old-tgt] [--new new-tgt] [path ...]`

Display the differences between `old-tgt` and `new-tgt`. If `paths` are given, they are treated as relative to `old-tgt` and `new-tgt`, and the output is restricted to differences in only those paths. `old-tgt` and `new-tgt` may be working copy paths or URL[@rev]. `old-tgt` defaults to the current working directory, and `new-tgt` defaults to `old-tgt`. `N` defaults to `BASE` or, if `old-tgt` is a URL, to `HEAD`. `M` defaults to the current working version or, if `new-tgt` is a URL, to `HEAD`. `svn diff -r N` sets the revision of `old-tgt` to `N`, whereas `svn diff -r N:M` also sets the revision of `new-tgt` to `M`.

`svn diff -r N:M URL`

A shorthand for `svn diff -r N:M --old=URL --new=URL`.

`svn diff [-r N[:M]] URL1[@N] URL2[@M]`

A shorthand for `svn diff [-r N[:M]] --old=URL1 --new=URL2`.

If `target` is a URL, then revisions `N` and `M` can be given either via the `--revision` option or by using `@` notation as described earlier.

If `target` is a working copy path, then the `--revision` option means:

`--revision N:M`

The server compares `target@N` and `target@M`.

`--revision N`

The client compares `target@N` against the working copy.

No `--revision` option

The client compares the base and working copies of `target`.

If the alternate syntax is used, the server compares `URL1` and `URL2` at revisions `N` and `M` respectively. If either `N` or `M` are omitted, a value of `HEAD` is assumed.

By default, `svn diff` ignores the ancestry of files and merely compares the contents of the two files being compared. If you use `--notice-ancestry`, the ancestry of the paths in question is taken into consideration when comparing revisions. (That is, if you run `svn diff` on two files with identical contents but different ancestry you will see the entire contents of the file as having been removed and added again.)

Alternate names: `di`

Changes: nothing

Accesses repository: for obtaining differences against anything but the `BASE` revision in your working copy.
Options

--change args, -c args
--changelist name, -cl name
--depth arg
--diff-cmd cmd
--extensions args, -x args
--force
--new new-target
--no-diff-deleted
--notice-ancestry
--old old-target
--revision rev, -r rev
--summarize
--xml

Examples

Compare BASE and your working copy:

```
$ svn diff COMMITTERS
Index: COMMITTERS
===================================================================
--- COMMITTERS  (revision 4404)
+++ COMMITTERS  (working copy)
...  
...  
...  
```

See how your working copy’s modifications compare against an older revision:

```
$ svn diff -r 3900 COMMITTERS
Index: COMMITTERS
===================================================================
--- COMMITTERS  (revision 3900)
+++ COMMITTERS  (working copy)
...  
```

Use --diff-cmd cmd and -x to pass arguments directly to the external diff program:

```
$ svn diff --diff-cmd /usr/bin/diff -x “-i -b” COMMITTERS
Index: COMMITTERS
===================================================================
0a1,2
> This is a test
>  
```

export

```
svn export [-r rev] URL [path]
svn export path1 path2
```

The first form exports a clean directory tree into path from the repository specified by URL, at revision rev if it is given—otherwise at HEAD. If path is omitted, the last component of the URL is used for the local directory name.
The second form exports a clean directory tree from the working
copy specified by path1 into path2. All local changes are preserved,
but files not under version control are not copied.
This command will also take the unique --native-eol option.
Alternate names: none
Changes: local disk
Accesses repository: only if exporting from a URL

Options
- --depth arg
- --force
- --ignore-externals
- --native-eol format
- --quiet (-q)
- --revision rev, -r rev

help
svn help [subcommand ...]
Provide a quick usage summary. With subcommand, provide inform-
ation about the given subcommand.
Alternate names: ?, h
Changes: nothing
Accesses repository: no

import
svn import [path] URL
Recursively commit a copy of path to URL. If path is omitted, . is
assumed. Parent directories are created in the repository as
necessary.
Alternate names: none
Changes: repository
Accesses repository: yes

Options
- --auto-props
- --depth arg
- --editor-cmd editor
- --encoding enc
- --file file, -F file
- --force
- --force-log
- --message text, -m text
- --no-auto-props
- --no-ignore

Examples
Import the local directory myproj into the root of your repository:

```
$ svn import -m "New import" myproj \
> http://svn.red-bean.com/repos/test
```
Adding myproj/sample.txt
...
Transmitting file data
Committed revision 16.

Import the local directory myproj into trunk/vendors in your repository. The directory trunk/vendors need not exist before you import into it; `svn import` will recursively create directories for you:

```
$ svn import -m "New import" myproj \
> http://svn.red-bean.com/repos/test/trunk/vendors/myproj
Adding myproj/sample.txt
...
Transmitting file data ..........
Committed revision 16.
```

After importing data, note that the original tree is not under version control. To start working, you still need to `svn checkout` a fresh working copy of the tree.

```
info
svn info [path ...]
svn info URL
Print information about paths in your working copy or specified URLs, including:
• Path
• Name
• URL
• Repository root
• Repository UUID
• Revision
• Node kind
• Last changed author
• Last changed revision
• Last changed date
• Last token
• Lock owner
• Lock created (date)
• Lock expires (date)
• Schedule
• Copied from URL
• Copied from rev
• Text last updated
• Properties last updated
• Checksum
Alternate names: none
Changes: nothing
Accesses repository: no
```
Options

--changelist name, -cl name
--depth arg
--incremental
--revision rev, -r rev
--targets filename
--xml

list

`svn list [target ...]`

List each target file and the contents of each target directory as they exist in the repository. If target is a working copy path, the corresponding repository URL is used. The default target is ., meaning the repository URL of the current working-copy directory.

With --verbose, the following fields show the status of the item:

- Revision number of the last commit
- Author of the last commit
- Size (in bytes)
- Date and time of the last commit

Alternate names: `ls`

Changes: nothing
Accesses repository: yes

Options

--depth arg
--incremental
--revision rev, -r rev
--verbose (-v)
--xml

Examples

To see what files a repository has without downloading a working copy:

```bash
$ svn list http://svn.red-bean.com/repos/test/support
README.txt
INSTALL
examples/
...
```

Pass the --verbose option for additional information:

```bash
$ svn list --verbose file:///tmp/repos
  16 sally         28361 Jan 16 23:18 README.txt
  27 sally             0 Jan 18 15:27 INSTALL
  24 harry               Jan 18 11:27 examples/
```
lock

svn lock path ...
svn lock URL

Set a lock token on a specified file to prevent other users or even the same user on another system from updating the file. Only the system with the lock token may commit changes. Locks are useful when working on binary files that cannot be merged. By default, Subversion’s locks are not strict, however. Locks can be broken or taken over by other users by using the --force option.

Alternate names: none
Changes: working copy; repository
Accesses repository: yes

Options

--encoding enc
--file file, -F file
--force
--force-log
--message text, -m text
--targets filename

log

svn log [path]
svn log URL [path ...]

The default target is the path of your current directory. If no arguments are supplied, svn log shows the log messages for all files and directories inside of (and including) the current working directory of your working copy. You can refine the results by specifying a path, one or more revisions, or any combination of the two. The default revision range for a local path is BASE:1.

If you specify a URL alone, the command prints log messages for everything that the URL contains. If you add paths past the URL, only messages for those paths under that URL are printed. The default revision range for a URL is HEAD:1.

With --verbose, svn log also prints all affected paths with each log message. With --quiet, svn log does not print the log message body itself (this is compatible with --verbose).

Each log message is printed just once, even if more than one of the affected paths for that revision were explicitly requested. Logs follow copy history by default. Use --stop-on-copy to disable this behavior, which can be useful for determining branch points.

Alternate names: none
Changes: nothing
Accesses repository: yes
Options

- `--change arg, -c arg`
- `--incremental`
- `--limit num, -l num`
- `--quiet (-q)`
- `--revision rev, -r rev`
- `--stop-on-copy`
- `--targets filename`
- `--use-merge-history, -g`
- `--verbose (-v)`
- `--with-all-revprops`
- `--with-revprop property`
- `--xml`

Examples

To see the log messages for all the paths that changed in your working copy, run `svn log` from the top:

```bash
$ svn log
---------------------------------------------
--------------
r20 | harry | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003) 1 line
| 1 line
Tweak.
---------------------------------------------
--------------
| 2 lines
...
```

If you don’t have a working copy handy, you can log a URL:

```bash
$ svn log http://svn.red-bean.com/repos/test/foo.c
---------------------------------------------
--------------
r32 | sally | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) 1 line
| 1 line
Added defines.
---------------------------------------------
--------------
| 3 lines
...
```

If you run `svn log` on a specific path and provide a specific revision and get no output at all:

```bash
$ svn log -r 20 http://svn.red-bean.com/untouched.txt
---------------------------------------------
--------------
```

That just means that the path was not modified in that revision. If you log from the top of the repository, or know the file that changed in that revision, you can specify it explicitly:
$ svn log -r 20 touched.txt

r20 | sally | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003)
| 1 line

Made a change.

merge

svn merge sourceURL1[@N] sourceURL2[@M] [wcpath]
svn merge sourceWCPATH1[@N] sourceWCPATH2[@M] [wcpath]
svn merge -r N:M source [path]

In the first form, the source URLs are specified at revisions N and M. These are the two sources to be compared. The revisions default to HEAD if omitted.

In the second form, the URLs corresponding to the source working copy paths define the sources to be compared. The revisions must be specified.

In the third form, source can be a URL or working-copy item, in which case the corresponding URL is used. This URL, at revisions N and M, defines the two sources to be compared.

wcpath is the working-copy path that will receive the changes. If wcpath is omitted, a default value of "." is assumed, unless the sources have identical basenames that match a file within ".", in which case, the differences are applied to that file.

Unlike svn diff, this command takes the ancestry of a file into consideration when performing a merge operation. This is very important when you’re merging changes from one branch into another and you’ve renamed a file on one branch but not the other.

Alternate names: none

Changes: working copy

Accesses repository: only if working with URLs

Options

--accept arg
--change arg, -c arg
--depth arg
--diff3-cmd cmd
--dry-run
--extensions args, -x args
--force
--ignore-ancestry
--quiet (-q)
--record-only
--reintegrate
--revision rev, -r rev
Examples

Merge a branch back into the trunk (assuming that you have a working copy of the trunk and that the branch was created in revision 250):

```bash
$ svn merge -r 250:HEAD > http://svn.red-bean.com/repos/branches/my-branch
U myproj/tiny.txt
U myproj/thhgttg.txt
U myproj/win.txt
U myproj/flo.txt
```

If you branched at revision 23, and you want to merge changes from the trunk into your branch, you could do this from inside the working copy of your branch:

```bash
$ svn merge -r 23:30 file:///tmp/repos/trunk/vendors
U myproj/thhgttg.txt
...
```

To merge changes to a single file:

```bash
$ cd myproj
$ svn merge -r 30:31 thhgttg.txt
U thhgttg.txt
```

mergeinfo

```
svn mergeinfo sourceURL[@rev] [target ...]
```

Query information about merges or potential merges between sourceURL and target. By default it shows merged information. The option --show-revs can be used to get information about eligible merges.

Alternate names: none

Changes: nothing

Accesses repository: yes

Options

```
--revision rev, -r rev
--show-revs arg
```

Examples

Find out which changesets your trunk directory has already received as well as what changesets it’s still eligible to receive:

```
$ svn mergeinfo branches/test
Path: branches/test
Source path: /trunk
Merged ranges: r2:13
Eligible ranges: r13:15
```

mkdir

```
svn mkdir path ...
svn mkdir URL ...
```

Create a directory with a name given by the final component of the path or URL. A directory specified by a working copy path is scheduled for addition in the working copy. A directory specified by a
URL is created in the repository via an immediate commit. Multiple directory URLs are committed atomically. In both cases, all the intermediate directories must already exist.

Alternate names: none

Changes: working copy; repository if operating on a URL

Accesses repository: only if operating on a URL

Options

- --editor-cmd editor
- --encoding enc
- --file file, -F file
- --force-log
- --message text, -m text
- --parents
- --quiet (-q)
- --with-revprop property

move

svn move src dst

This command moves (renames) a file or directory in your working copy or in the repository.

This command is equivalent to an svn copy followed by svn delete.

WC → WC

Move and schedule a file or directory for addition (with history).

URL → URL

Complete server-side rename.

Subversion does not support moving between working copies and URLs. In addition, you can move files only within a single repository; Subversion does not support cross-repository moving.

Alternate names: mv, rename, ren

Changes: working copy; repository if operating on a URL

Accesses repository: only if operating on a URL

Options

- --editor-cmd editor
- --encoding enc
- --file file, -F file
- --force
- --force-log
- --message text, -m text
- --revision rev, -r rev
- --revprop
- --with-revprop property
propdel
svn propdel propname [path ...]
svn propdel propname --revprop -r rev [URL]

This removes properties from files, directories, or revisions. The first form removes versioned properties in your working copy, while the second removes unversioned remote properties on a repository revision.

Alternate names: pdel, pd

Changes: working copy; repository only if operating on a URL
Accesses repository: only if operating on a URL

Options
--changelist name, -cl name
--depth arg
--quiet (-q)
--revision rev, -r rev
--revprop

Examples
Delete a property from a file in your working copy:

$ svn propdel svn:mime-type some-script
property 'svn:mime-type' deleted from 'some-script'.

Delete a revision property:

$ svn propdel --revprop -r 26 release-date
property 'release-date' deleted from repository revision '26'

propedit
svn propedit propname path ...
svn propedit propname --revprop -r rev [URL]

Edit one or more properties using your favorite editor. The first form edits versioned properties in your working copy, while the second edits unversioned remote properties on a repository revision.

Alternate names: pedit, pe

Changes: working copy; repository only if operating on a URL
Accesses repository: only if operating on a URL

Options
--editor-cmd editor
--encoding enc
--force
--force-log
--password pass
--revision rev, -r rev
--revprop
--with-revprop property
propget

svn propget propname [path ...]
svn propget propname --revprop -r rev [URL]

Print the value of a property on files, directories, or revisions. The first form prints the versioned property of an item or items in your working copy, while the second prints the unversioned remote property on a repository revision.

Alternate names: pget, pg

Changes: working copy; repository only if operating on a URL
Accesses repository: only if operating on a URL

Options

--changelist name, -cl name
--depth arg
--revision rev, -r rev
--revprop
--strict
--xml

proplist

svn proplist [path ...]
svn proplist --revprop -r rev [URL]

List all properties on files, directories, or revisions. The first form lists versioned properties in your working copy, while the second lists unversioned remote properties on a repository revision.

Alternate names: plist, pl

Changes: working copy; repository only if operating on a URL
Accesses repository: only if operating on a URL

Options

--changelist name, -cl name
--depth arg
--quiet (-q)
--revision rev, -r rev
--revprop
--verbose (-v)
--xml

Examples

You can use svn proplist to see the properties on an item in your working copy:

$ svn proplist foo.c
Properties on 'foo.c':
 svn:mime-type
 svn:keywords
 owner
But with the --verbose flag, `svn proplist` is extremely handy, as it also shows you the values for the properties:

```bash
$ svn proplist --verbose foo.c
Properties on 'foo.c':
  svn:mime-type : text/plain
  svn:keywords : Author Date Rev
  owner : sally
```

propset

```
svn propset propname [propval] path ...
svn propset propname --revprop -r rev [propval] [URL]
```

Set `propname` to `propval` on files, directories, or revisions. The first example creates a versioned, local property change in the working copy, and the second creates an unversioned, remote property change on a repository revision. The new property value, `propval`, may be provided literally, or using the `-F valfile` option.

Alternate names: `pset`, `ps`

Changes: working copy; repository only if operating on a URL

Accesses repository: only if operating on a URL

Options

- `--changelist name`, `-cl name`
- `--depth arg`
- `--encoding enc`
- `--file file`, `-F file`
- `--force`
- `--quiet (-q)`
- `--revision rev`, `-r rev`
- `--revprop`
- `--targets filename`

Examples

Set the mimetype on a file:

```bash
$ svn propset svn:mime-type image/jpeg foo.jpg
property 'svn:mime-type' set on 'foo.jpg'
```

On a Unix system, if you want a file to have the executable permission set:

```bash
$ svn propset svn:executable ON somescript
property 'svn:executable' set on 'somescript'
```

By default, you cannot modify revision properties in a Subversion repository. Your repository administrator must explicitly enable revision property modifications by creating a hook named `pre-revprop-change`.
resolve
svn resolve path ...
Remove the conflicted state on working-copy files or directories. This command does not semantically resolve conflict markers; instead it replaces path and then removes conflict-related artifact files. Use the --accept argument to specify what version to use when replacing path. This command allows path to be committed again by telling Subversion that the conflicts have been resolved. Use it after you have resolved the conflict in the file. You can pass the following arguments to the --accept option:
Alternate names: none
Changes: working copy
Accesses repository: no

Options

--accept arg
--depth arg
--quiet (-q)
--recursive, -R
--targets filename

Example

If you get a conflict on an update, your working copy will contain three additional files:

```
$ svn update  
Conflict discovered in 'foo.c'.  
Select: (p) postpone, (df) diff-full, (e) edit,  
(h) help for more options: p  
C    foo.c  
Updated to revision 31  
$ svn resolve --accept mine-full foo.c  
Resolved conflicted state of 'foo.c'
```

You can just remove the conflict files and commit, but `svn resolve` fixes up some bookkeeping data in the working-copy administrative area in addition to removing the conflict files, so you should use this command.

resolved
svn resolved path ...
Deprecated. Remove the conflicted state on working-copy files or directories. Symantically it is the same as `svn resolve --accept working path`, which you should now use instead.
Alternate names: none
Changes: working copy
Accesses repository: no
Options
--depth arg
--quiet (-q)
--recursive (-R)
--targets filename

revert
svn revert path ...
Revert any local changes to a file or directory, and resolve any
conflicted states. svn revert reverts not only the contents of an item
in your working copy, but also any property changes. Finally, you
can use it to undo any scheduling operations that you may have
done (e.g., files scheduled for addition or deletion can be unscheduled).
Alternate names: none
Changes: working copy
Accesses repository: no

Options
--changelist name, -cl name
--depth arg
--quiet (-q)
--recursive (-R)
--targets filename

Examples
Discard changes to a file:
$ svn revert foo.c
Reverted foo.c

If you want to revert a whole directory of files, use the
--depth=infinity flag:
$ svn revert --depth=infinity .
Reverted newdir/afile
Reverted foo.c
Reverted bar.txt

If you provide no targets to svn revert, it does nothing; to
protect you from accidentally losing changes in your
working copy, svn revert requires you to provide at least
one target.

status
svn status [path ...]
Print the status of working-copy files and directories. With no
arguments, it prints only locally modified items (no repository
access). With --show-updates, add working revision and server
out-of-date information. With --verbose, print full revision infor-
mation on every item.
The first five columns in the output are each one character wide, and each column gives you information about different aspects of each working-copy item.

The first column indicates that an item was added, deleted, or otherwise changed:

| space | No modifications. | A | Item is scheduled for addition. | D | Item is scheduled for deletion. | M | Item has been modified. | R | Item has been replaced in your working copy. This means the file was scheduled for deletion, and then a new file with the same name was scheduled for addition in its place. | C | The contents of the item conflicts with updates received from the repository. | X | Item is related to an externals definition. | I | Item is being ignored (e.g., with the `svn:ignore` property). | ? | Item is not under version control. | ! | Item is missing (e.g., you moved or deleted it without using `svn`). This also indicates that a directory is incomplete (a checkout or update was interrupted). | ~ | Item is versioned as a directory but has been replaced by a file, or vice versa. |

The second column tells the status of a file’s or directory’s properties:

| space | No modifications. | M | Properties for this item have been modified. | C | Properties for this item are in conflict with property updates received from the repository. |

The third column is populated only if the working copy directory is locked:

| space | Item is not locked. | L | Item is locked. |

The fourth column is populated only if the item is scheduled for addition-with-history:

| space | No history scheduled with commit. | + | History scheduled with commit. |

The fifth column is populated only if the item is switched relative to its parent:

| space | Item is a child of its parent directory. | S | Item is switched. |
The sixth column is populated with lock information:

- **space**
 - When **--show-updates** is used, the file is not locked. Otherwise, it merely means that the file is not locked in this working copy.

- **K** File is locked in this working copy.

- **O** File is locked by another user or in another working copy. This will only appear when **--show-updates** is used.

- **T** File is locked in this working copy, but the lock has been stolen and is invalid. The file is locked in the repository. This will only appear when **--show-updates** is used.

- **B** File is locked in this working copy, but the lock has been broken and is invalid. The file is no longer locked. This will only appear when **--show-updates** is used.

If you pass the **--show-updates** option, then out-of-date information appears in the seventh column:

- **space**
 - The item in your working copy is up to date.
 - A newer revision of the item exists on the server.

The remaining fields are variable width and delimited by spaces. The working revision is the next field if the **--show-updates** or **--verbose** options are passed.

If the **--verbose** option is passed, the last committed revision and last committed author are displayed next.

The working-copy path is always the final field, so it can include spaces.

Alternate names: stat, st

Changes: nothing

Accesses repository: only if using **--show-updates**

Options

- **--changelist name, -cl name**
- **--depth arg**
- **--ignore-externals**
- **--incremental**
- **--no-ignore**
- **--non-recursive (-N)**
- **--quiet (-q)**
- **--show-updates (-u)**
- **--no-ignore**
- **--xml**

Examples

To find out what changes you have made to your working copy:

```bash
$ svn status wc
M     wc/bar.c
A  +   wc/qax.c
```
To find out what files in your working copy are out of date, pass the \texttt{--show-updates} option (this does not make any changes to your working copy). Here you can see that \texttt{wc/foo.c} has changed in the repository since we last updated our working copy:

\begin{verbatim}
$ svn status --show-updates wc
M 965 wc/bar.c
* 965 wc/foo.c
A + 965 wc/qax.c
Status against revision: 981
\end{verbatim}

\texttt{--show-updates} places an asterisk only next to items that are out of date (that is, items that will be updated from the repository if you run \texttt{svn update}). \texttt{--show-updates} does not cause the status listing to reflect the repository's version of the item.

And finally, the most information you can get out of the status subcommand:

\begin{verbatim}
$ svn status --show-updates --verbose wc
M 965 938 sally wc/bar.c
* 965 922 harry wc/foo.c
A + 965 687 harry wc/qax.c
 965 687 harry wc/zig.c
Head revision: 981
\end{verbatim}

\textbf{switch}

\texttt{svn switch URL [path]}

This subcommand updates your working copy to mirror a new URL—usually a URL that shares a common ancestor with your working copy, although not necessarily. This is the Subversion way to move a working copy to a new branch.

As with most subcommands, you can limit the scope of the switch operation to a particular tree depth using the \texttt{--depth} option. Alternatively, you can use the \texttt{--set-depth} option to set a new “sticky” working copy depth on the switch target. Currently, the depth of a working copy directory can only be increased (telescoped more deeply); you cannot make a directory more shallow.

Alternate names: \texttt{sw}

Changes: working copy

Accesses repository: yes

\textbf{Options}

\begin{itemize}
 \item \texttt{--accept arg}
 \item \texttt{--depth arg}
 \item \texttt{--diff3-cmd cmd}
 \item \texttt{--force}
 \item \texttt{--ignore-externals}
 \item \texttt{--quiet (-q)}
 \item \texttt{--relocate}
 \item \texttt{--revision rev., -r rev}
 \item \texttt{--set-depth arg}
\end{itemize}
Examples

If you're currently inside the directory vendors, which was branched to vendors-with-fix, and you'd like to switch your working copy to that branch:

```bash
$ svn switch http://svn.red-bean.com/repos/branches/ \
    > vendors-with-fix .
U myproj/foo.txt
U myproj/bar.txt
U myproj/baz.c
U myproj/qux.c
Updated to revision 31.
```

And to switch back, just provide the URL to the location in the repository from which you originally checked out your working copy:

```bash
U myproj/foo.txt
U myproj/bar.txt
U myproj/baz.c
U myproj/qux.c
Updated to revision 31.
```

You can just switch part of your working copy to a branch if you don't want to switch your entire working copy.

Sometimes an administrator might change the “base location” of your repository; in other words, the contents of the repository don’t change, but the main URL used to reach the root of the repository does. For example, the hostname may change, or the URL schema, or perhaps just the path that leads to the repository. Rather than checking out a new working copy, you can have the `svn switch` command “rewrite” the beginnings of all the URLs in your working copy. Use the `--relocate` command to do the substitution. No file contents are changed, nor is the repository contacted. It’s similar to running a `sed` script over your working copy `.svn/` directories, which runs `s/OldRoot/NewRoot/`:

```bash
$ cd /tmp
$ svn checkout file:///tmp/repos test
A test/a
A test/b
...

$ mv repos newlocation
$ cd test/

$ svn update
svn: Unable to open an ra_local session to URL
svn: Unable to open repository 'file:///tmp/repos'
```
$ svn switch --relocate file:///tmp/repos file:///tmp/newlocation .
$ svn update
At revision 3.

unlock
svn unlock path ...
svn unlock URL
Remove the lock token from the specified files. This command will
print a warning if the target is locked by another user or no lock
token exists, but will continue to unlock files it can unlock. Use the
--force option to break a lock belonging to another user or working
copy.
Alternate names: none
Changes: working copy; repository
Accesses repository: yes

Options
 --force
 --targets filename

update
svn update [PATH ...]
svn update brings changes from the repository into your working
copy. If no revision is given, it brings your working copy up to date
with the HEAD revision. Otherwise, it synchronizes the working
copy to the revision given by the --revision option.
For each updated item Subversion prints a line starting with a
specific character reporting the action taken. These characters have
the following meaning:
A Added
B Broken lock (third column only)
D Deleted
U Updated
C Conflicted
G Merged
E Existed
A character in the first column signifies an update to the actual file,
while updates to the file’s properties are shown in the second
column. Lock information is printed in the third column.

If you want to examine an older revision of a single file,
you may want to use svn cat.

Alternate names: up
Changes: working copy
Accesses repository: yes
Options

--accept arg
--changelist name, -cl name
--depth arg
--diff3-cmd cmd
--editor-cmd editor
--force
--ignore-externals
--quiet (-q)
--revision rev, -r rev
--set-depth arg

Repository Administration: svnadmin

svnadmin is the administrative tool for monitoring and repairing your Subversion repository.

Common svnadmin Options

--bdb-log-keep
 (Berkeley DB specific) Disable automatic log removal of database logfiles.

--bdb-txn-nosync
 (Berkeley DB specific) Disable use of fsync() when committing database transactions.

--bypass-hooks
 Bypass the repository hook system.

--clean-logs
 Remove unused Berkeley DB logs.

--force-uuid
 By default, when loading data into a repository that already contains revisions, svnadmin ignores the UUID from the dump stream. This option causes the repository’s UUID to be set to the UUID from the stream.

--ignore-uuid
 By default, when loading an empty repository, svnadmin uses the UUID from the dump stream. This option causes that UUID to be ignored.

--incremental
 Dump a revision only as a diff against the previous revision, instead of the usual full text.

--parent-dir dir
 When loading a dumpfile, root paths at dir instead of /.

--quiet
 Do not show normal progress; show only errors.

--revision rev, -r rev
 Specify a particular revision to operate on.
Common svnadmin Subcommands

The `svnadmin` command creates and administers the repository. As such, it always operates on local paths, not on URLs.

create

`svnadmin create repos_path`

Create a new, empty repository at the path provided. If the provided directory does not exist, it is created for you.

Options

--bdb-log-keep
--bdb-txn-nosync

Example

Creating a new repository is just this easy:

```
$ svnadmin create /usr/local/svn/repos
```

deltify

`svnadmin deltify [-r lower[:upper]] repos_path`

`svnadmin deltify` only exists in 1.0.x due to historical reasons. This command is deprecated and no longer needed. It dates from a time when Subversion offered administrators greater control over compression strategies in the repository. This turned out to be a lot of complexity for very little gain, and the feature was deprecated.

Options

--quiet
--revision rev, -r rev

dump

`svnadmin dump repos_path [-r lower[:upper]] [--incremental]`

Dump the contents of filesystem to standard output in a dumpfile portable format, sending feedback to standard error. Dump revisions lower rev through upper rev. If no revisions are given, dump all revision trees. If only lower is given, dump that one revision tree.

Options

--incremental
--quiet
--revision rev, -r rev

Examples

Dump your whole repository:

```
$ svnadmin dump /usr/local/svn/repos
SVN-fs-dump-format-version: 1
Revision-number: 0
* Dumped revision 0.
Prop-content-length: 56
Content-length: 56
...
Incrementally dump a single transaction from your repository:

```
$ svnadmin dump /usr/local/svn/repos -r 21 --incremental
* Dumped revision 21.
SVN-fs-dump-format-version: 1
Revision-number: 21
Prop-content-length: 101
Content-length: 101
...
```

**help**

```
svnadmin help [subcommand ...]
```

Provide a quick usage summary. With *subcommand*, provide information about the given subcommand.

Alternate names: ?, h

**hotcopy**

```
svnadmin hotcopy old_repos_path new_repos_path
```

This subcommand makes a full hot backup of your repository, including all hooks, configuration files, and, of course, database files. If you pass the --clean-logs option, *svnadmin* performs a hotcopy of your repository, and then removes unused Berkeley DB logs from the original repository. You can run this command at any time and make a safe copy of the repository, regardless of whether other processes are using the repository.

**Option**

```
--clean-logs
```

**list-dblogs**

```
svnadmin list-dblogs repos_path
```

List Berkeley DB logfiles. Berkeley DB creates logs of all changes to the repository, which allow it to recover in the face of catastrophe. Unless you enable DB_LOGS_AUTOREMOVE, the logfiles accumulate, although most are no longer used and can be deleted to reclaim disk space.

**list-unused-dblogs**

```
svnadmin list-unused-dblogs repos_path
```

List unused Berkeley DB logfiles (see *svnlook list-dblogs*).

**Example**

Remove all unused logfiles from a repository:

```
$ svnadmin list-unused-dblogs /path/to/repos | xargs rm
disk space reclaimed!
```

**load**

```
svnadmin load repos_path
```

Read a dumpfile-formatted stream from standard input, committing new revisions into the repository’s filesystem. Send progress feedback to standard output.
Options

--force-uuid
--ignore-uuid
--parent-dir
--quiet (-q)

Examples

This shows the beginning of loading a repository from a backup file (made, of course, with `svn dump`):

```
$ svnadmin load /usr/local/svn/restored < repos-backup
<<< Started new txn, based on original revision 1
 * adding path : test ... done.
 * adding path : test/a ... done.
...
```

Or, to load into a subdirectory:

```
$ svnadmin load --parent-dir new/subdir/for/project /usr/local/svn/restored < repos-backup
<<< Started new txn, based on original revision 1
 * adding path : test ... done.
 * adding path : test/a ... done.
...
```

lslocks

`svnadmin lslocks repos_path [path]`

Print descriptions of all locks in repository `repos_path` underneath `path`. If `path` isn’t given it defaults to the root directory of the repository.

lstxns

`svnadmin lstxns repos_path`

Print the names of all uncommitted transactions.

recover

`svnadmin recover repos_path`

Run this command if you get an error indicating that your repository needs to be recovered. This command requires a database lock. Normally failure to obtain a lock will cause an error. Use the `--wait` option to cause the command to wait indefinitely for a database lock.

Options

--wait

rmlocks

`svnadmin rmlocks repos_path locked_path...`

Unconditionally remove locks from each locked path.

rmtxns

`svnadmin rmtxns repos_path txn_name ...`

Delete outstanding transactions from a repository.
Options
--quiet (-q)

Examples
Remove all uncommitted transactions from your repository, using `svn lstxns` to provide the list of transactions to remove:

```
$ svnadmin rmtxns /usr/local/svn/repos/ \
> `svnadmin lstxns /usr/local/svn/repos/`
```

**setlog**

svnadmin setlog repos_path -r revision file
Set the log message on revision revision to the contents of file.

This is similar to using `svn propset --revprop` to set the `svn:log` property on a revision, except that you can also use the option --bypass-hooks to avoid running any pre- or post-commit hooks, which is useful if the modification of revision properties has not been enabled in the pre-revprop-change hook.

Revision properties are not under version control, so this command permanently overwrites the previous log message.

Options
--bypass-hooks
--revision rev, -r rev

Example
Set the log message for revision 19 to the contents of the file msg:

```
$ svnadmin setlog /usr/local/svn/repos/ -r 19 msg
```

**setrevprop**

svnadmin setrevprop repos_path -r revision name file
Set the property name on revision revision to the contents of file.

Options
--revision rev, -r rev

Example
Set the revision property repository-photo to the contents of the file repo.png:

```
$ svnadmin setrevprop /var/svn/repos/ -r 0 repository-photo repo.png
```

**setuuid**

svnadmin setuuid repos_path [new_uuid]
Reset the repository UUID to new_uuid. If no new uuid is given generate a new one.
**Examining the Repository: `svnlook`**

`svnlook` is a command-line utility for examining different aspects of a Subversion repository. It does not make any changes to the repository. `svnlook` is typically used by the repository hooks, but a repository administrator might find it useful for diagnostic purposes.

Since `svnlook` works via direct repository access (and thus can only be used on the machine that holds the repository), it refers to the repository with a path, not a URL.

If no revision or transaction is specified, `svnlook` defaults to the youngest (most recent) revision of the repository.

**svnlook Options**

Options in `svnlook` are global, just as in `svn` and `svnadmin`; however, most options apply to only one subcommand because the functionality of `svnlook` is (intentionally) limited in scope.

- **--copy-info**
  Used with the `changed` command to show detailed copy source information.

- **--no-diff-deleted**
  Do not print differences for deleted files. The default behavior when a file is deleted in a transaction/revision is to print the same differences that you would see if you had left the file but removed all the content.

- **--no-diff-added**
  Do not print differences for added files. The default behavior is to print the same differences that you would see if you added the entire contents of an existing but empty file.

- **--revision rev, -r rev**
  Examine revision number `rev`.

- **--revprop**
  Operate on a revision property rather than the property of a file or directory. You must also specify a revision using `--revision` when using this option.

- **--show-ids**
  Show the filesystem node revision IDs for each path in the filesystem tree.

- **--transaction tid, -t tid**
  Examine transaction ID `tid`.

---

**verify**

```
svnadmin verify repos_path
```

Run this command to verify the integrity of your repository. This iterates through all revisions in the repository by internally dumping all revisions and discarding the output.
### svnlook Subcommands

**author**

`svnlook author repos_path`

Print the author of a revision or transaction in the repository.

**Options**

- `--revision rev, -r rev`
- `--transaction tid, -t tid`

**cat**

`svnlook cat repos_path path_in_repos`

Print the contents of a file.

**Options**

- `--revision rev, -r rev`
- `--transaction tid, -t tid`

**changed**

`svnlook changed repos_path`

Print the paths that were changed in a particular revision or transaction, as well as an `svn update`-style status letter in the first column: A for added, D for deleted, and U for updated (modified).

**Options**

- `--copy-info`
- `--revision rev, -r rev`
- `--transaction tid, -t tid`

**Example**

Show a list of all the changed files in revision 39 of a test repository:

```
$ svnlook changed -r 39 /usr/local/svn/repos
A trunk/vendors/deli/
A trunk/vendors/deli/chips.txt
A trunk/vendors/deli/sandwich.txt
A trunk/vendors/deli/pickle.txt
```

**date**

`svnlook date repos_path`

Print the datestamp of a revision or transaction in a repository.

**Options**

- `--revision rev, -r rev`
- `--transaction tid, -t tid`

**diff**

`svnlook diff repos_path`

Print GNU-style differences of changed files and properties in a repository. If a file has a nontextual `svn:mime-type` property, the differences are explicitly not shown.
Options
--no-diff-added
--no-diff-deleted
--revision rev, -r rev
--transaction tid, -t tid

dirs-changed
svnlook dirs-changed repos_path
Print the directories that were themselves changed (property edits) or whose file children were changed.

Options
--revision rev, -r rev
--transaction tid, -t tid

help
svnlook help [subcommand]
svnlook -h [subcommand]
svnlook -? [subcommand]
Provide a quick usage summary. With subcommand, provide information about the given subcommand.
Alternate names: ?, h

history
svnlook history repos_path [path_in_repos]
Print information about the history of a path in the repository (or the root directory if no path is supplied).

Options
--limit num, -l num
--revision rev, -r rev
--show-ids

Example
This shows the history output for the path /tags/1.0, as of revision 20 in our sample repository.

$ svnlook history -r 20 /usr/local/svn/repos /tags/1.0 \
> --show-ids
> REVISION PATH <ID>
> -------- ---------
> 19 /tags/1.0 <1.2.12>
> 17 /branches/1.0-rc2 <1.1.10>
> 16 /branches/1.0-rc2 <1.1.x>
> 14 /trunk <1.0.q>
> ...

info
svnlook info repos_path
Print the author, datestamp, log message size, and log message.

Options
--revision rev, -r rev
--transaction tid, -t tid
lock

svnlook lock repos_path path_in_repos
Print available information about existing lock for path_in_repos.
If no lock exists, print nothing.

log

svnlook log repos_path
Print the log message.

Options
--revision rev, -r rev
--transaction tid, -t tid

propget

svnlook propget repos_path propname path_in_repos
List the value of a property on a path in the repository.
Alternate names: pg, pget

Options
--revision rev, -r rev
--transaction tid, -t tid

Example
Show the value of the seasonings property on the file /trunk/sandwich in the HEAD revision:
$ svnlook pg /usr/local/svn/repos seasonings /trunk/sandwich
mustard

proplist

svnlook proplist repos_path path_in_repos
List the properties of a path in the repository. With --verbose, show the property values too.
Alternate names: pl, plist

Options
--revision rev, -r rev
--revprop
--transaction tid, -t tid
--verbose (-v)

Examples
Show the names of properties set on the file /trunk/README in the HEAD revision:
$ svnlook proplist /usr/local/svn/repos /trunk/README
original-author
svn:mime-type

This is the same command as in the previous example, but this time it shows the property values as well:
Providing Remote Access: svnserve

svnserve allows access to Subversion repositories using the svn network protocol. You can run svnserve either as a standalone server process, or by having another process—such as inetd, xinetd, or sshd—start it for you.

Once the client has selected a repository by transmitting its URL, svnserve reads a file named conf/svnserve.conf in the repository directory to determine repository-specific settings, such as what authentication database to use and what authorization policies to apply. The details are provided in Version Control with Subversion.

```bash
$ svnlook proplist --verbose /usr/local/svn/repos \\
 > /trunk/README
original-author : fitz
svn:mime-type : text/plain
```

tree

```
svnlook tree repos_path [path_in_repos]
```

Print the tree, starting at path_in_repos (if supplied; at the root of the tree otherwise), optionally showing node revision IDs.

**Options**

- `--full-paths`
- `--non-recursive`, `-N`
- `--revision rev`, `-r rev`
- `--show-ids`
- `--transaction tid`, `-t tid`

**Example**

This shows the tree output (with node IDs) for revision 40 in our sample repository:

```bash
$ svnlook tree -r 40 /usr/local/svn/repos --show-ids
<0.0.2j> trunk/ <p.0.2j> vendors/ <q.0.2j> deli/ <1g.0.2j> egg.txt <1i.e.2j> soda.txt <1k.0.2j> sandwich.txt <1j.0.2j>
```

uuid

```
svnlook uuid repos_path
```

Print the UUID for the repository. The UUID is the repository’s Universal Unique IDentifier. The Subversion client uses this identifier to differentiate between one repository and another.

youngest

```
svnlook youngest repos_path
```

Print the youngest revision number of a repository.
**svnserve Options**

Unlike the previous commands we’ve described, `svnserve` has no subcommands; `svnserve` is controlled exclusively by options.

--daemon, -d
Run in daemon mode. `svnserve` backgrounds itself, and accepts and serves TCP/IP connections on the `svn` port (3690, by default).

--foreground
When used together with `-d`, this option causes `svnserve` to stay in the foreground. This option is mainly useful for debugging.

--help, -h
Display a usage summary and exit.

--inetd, -i
Use the standard input/standard output file descriptors, as appropriate for a server running out of `inetd`.

--listen-host=host
Listen on the interface specified by `host`, which may be either a hostname or an IP address.

--listen-once, -X
Accept one connection on the `svn` port, serve it, and exit. This option is mainly useful for debugging.

--listen-port=port
Listen on `port` when run in daemon mode.

--pid-file filename
Write process ID to `filename`.

--root=root, -r=root
Set the virtual root for repositories served by `svnserve` to `root`. The pathname in URLs provided by the client are interpreted relative to this root and are not allowed to escape this root.

--threads, -T
When running in daemon mode, spawn a thread instead of a process for each connection. The `svnserve` process still backgrounds itself at startup time.

--tunnel, -t
Run in tunnel mode, which is just like the `inetd` mode of operation (serve one connection over standard input/standard output), except that the connection is considered to be pre-authenticated with the username of the current UID. This flag is selected by the client when running over a tunnelling agent such as `ssh`.

--tunnel-user username
Used with `--tunnel` to specify an alternate username for pre-authentication.
The Git Version Control System

Git is a powerful, open source, distributed version control system (DVCS). It is not considered as user-friendly as Subversion but has many advanced features, including elegant merges of contributions from multiple independent sources and the ability to access the entire project history, even when not connected to a central server.

This chapter covers the following topics:
- Conceptual overview
- Using Git: a quick tour
- The Git command line client: `git`

Version control was introduced in Chapter 12, which contains a comparison of Subversion, Git, and other popular systems. A more thorough discussion on Git can be found in Jon Loeliger’s *Version Control with Git* (O’Reilly).

**Conceptual Overview**

Git was originally created in 2005 by Linus Torvalds as a system for managing changes to the Linux kernel. Although it is used for many of the same tasks as other version control systems like Subversion, Git’s internal workings are very different. It’s important to understand some of these concepts in order to use Git successfully.

Git maintains a repository; a directory structure that tracks the historical contents of a set of files. Generally, the repository is stored in a .git directory (or another directory named by `$GIT_DIR`) along with the files themselves.

Unlike other version control systems, Git does not enforce the concept of a “central repository.” Instead, every set of files tracked by Git has its own .git repository, and revisions can be easily pushed and pulled from one repository to another.
The set of files currently being tracked by Git is called the *working tree*. The working tree is where most of your daily work takes place. By default, the working tree starts in the parent directory of the `.git` directory. (You can override this by setting `GIT_WORK_TREE`). The operation of creating a working tree from a repository is called *checking out* the files, which is done by `git checkout`. After modifying the files in the working tree, you save the changes back to the repository by *committing* them with `git commit` (this is also called *checking in*).

Unlike other systems, Git introduces an extra, intermediate state between the repository and the working tree called the *index*. (You might see the index called the *cache* in a few places, but this terminology is obsolete and should be avoided.) Initially, the index tracks the set of files as they were at checkout time. As you become confident that changes you made to the working tree are correct, you add them to the index using `git add`. Then, when the set of changes forms a coherent batch, you commit the index into the repository (along with a log message) using `git commit`. The main advantage of this two-step process is it’s easy to limit a commit to only some of the changes you’ve been working on, which leads to more coherent individual commits. Git’s working style—including the index—encourages many small commits instead of large batches.

### Git Repository Format

The set of commits in a Git repository is stored in the form of a *directed acyclic graph*, or DAG. This simply means that each commit can reference one or more earlier “parent” commits, and more than one commit can refer to the same parents. The word “acyclic” refers to the fact that the structure is not allowed to contain loops; no parent commit can refer back to a commit that lists it as a parent.

The structure of the DAG defines the repository’s *history*. Normally, each commit has exactly one parent, which describes the repository exactly as it was before the new commit was made. By comparing a commit to its parent, you can produce a *diff*, which is a precise set of changes that were applied to the parent in order to produce the new version.

Some commits have more than one parent. These commits are called *merge commits* because they express a merging of two separate branches of history. If two people have a copy of a particular repository and start making commits, those two histories will start to diverge, which is called *forking*. Eventually, someone will need to rejoin the two histories into one, which is called *merging*. (As with other version control systems, you can also create additional named *branches* in each repository if you want. For example, you might create a maintenance branch for each major release of your software.)

### Referring to Commits

Each commit in Git can be uniquely identified by its *commitid*, a SHA-1 hash code made up of 40 hexadecimal digits. Unlike revisions in centralized systems like Subversion, Git revision numbers cannot be sequential, since there’s no central server to assign the sequential IDs. Because it’s impossible for a human to remember strings of 40 digits, Git provides several more convenient ways to refer to commits.
Any Git command that can accept a revision can accept any of the following forms:

**Full 40-digit hash**
You can always simply supply the full 40-digit hash code, such as `da87b5990c03a799ae7a581c2ed287db08a0a3`.

**Abbreviated hash**
Since the 40 digits of a hash code are effectively random, it’s very unlikely (though not impossible) that there will be more than one commit with the same hash. Thus, you can refer to any commit by the first few digits of its name, as long as only one commit starts with those digits. People often choose seven digits as a reasonably safe length. For example, `da87b59`.

**Tags**
Using the `git tag` command, you can create user-friendly names for individual commits. For example, if you released version v1.1 of your software after making commit `da87b59`, you could run `git tag v1.1 da87b59` so that in the future, you can always refer to a commit named `v1.1`. Tag names can be shared between repositories, but you have to do it explicitly using `git push` and `git pull`.

**Local branches**
Branches are similar to tags, in that they name a particular commit. However, branches are special because if you check out a branch and make a new commit, the branch advances automatically to point at the new commit.

Unlike with other version control systems, branch names in Git are maintained locally for every copy of a repository. That means if you clone someone else’s repository, you take a copy of the branch called `master` (the default Git branch name). They may continue committing to their `master` branch, and you might commit to yours, and then there will exist two branches called `master`, each with different contents. You can resync them using `git push` and `git pull`.

**Remote tracking branches**
When you clone a central repository, you will frequently want to keep track of the branches as they exist in that repository, even as you make changes to them in your own repository. Git helps do this by naming repositories using the `git remote` command. After that, a particular branch on a particular remote would be named `remotename/branchname`. (Git automatically creates a remote named `origin` to identify the repository you originally cloned from, and the default branch in a repository is usually `master`. So you might have a local branch called `master` corresponding to a remote tracking branch called `origin/master`.)

**HEAD**
`HEAD` is a special name that always refers to the currently checked-out commit.

**FETCH_HEAD**
`FETCH_HEAD` is a special name that refers to the most recent commit retrieved by `git fetch`. 
commit^n notation
For any commit, you can refer to its n-th direct parent by giving its name (using any acceptable form of a commit name, such as a branch name, tag, or hash), followed by ^, followed by the parent number you want. Most commits (other than merge commits) have only one parent, so if n is omitted, the immediate parent is returned. For example, da87b59^ is the first parent of da87b59; HEAD^2^1 is the first parent of the second parent of HEAD; origin/master^^^^ is four parents up from origin/master, taking the first parent at each step.

commit~n notation
You can refer to a parent n steps up the tree using commit~n notation. For example, HEAD~4 is four parents up from HEAD, and is equivalent to HEAD^^^^. Note that you can combine ~ and ^ notation, so HEAD^2~4 is four steps up the tree from the second direct parent of HEAD.

branch@[n] notation
Because branch names can be retargeted at any time to refer to a different commit, you run the risk of accidentally losing a lot of work if you change or delete a branch name incorrectly. branch@[n] notation is designed to fix this; it refers to the commit branch referred to n commits ago. For example, if you use git reset or git merge and then change your mind, you can refer to the commit before the most recent change using HEAD@[1]. Unlike ^ and ~ notation, the name here must really be a branch name, not an arbitrary commit, since it makes no sense to refer to the old meaning of a particular commit. However, you can use ^ and ~ on the output of commit@[n], however. For example, HEAD@[1]^2~4.

You can see the history of a branch name in a format suitable for use with commit@[n], using git reflog.

Using Git: A Quick Tour
Git permits a staggering number of different workflow styles, from “almost centralized” (everyone frequently pushes and pulls to the same central server) to entirely email-based (people exchange patches using a mailing list). It would be impossible to explain all the different Git workflows here, so we’ll focus on just one: a simple push/pull workflow with a single shared repository.

Before You Start
Before you start using Git for the first time, you need to set two global configuration values, user.email and user.name, or else you won’t be able to make new commits. Here’s how:

$ git config --global user.name 'John Smith'
$ git config --global user.email 'jsmith@example.com'

These settings will remain in place across all your repositories, so you don’t have to reset them every time. You can also override them on a per-repository basis if you want, by running the commands in a particular repository and omitting the --global option.
Example: The Linux Kernel Repository

As our first example, let’s clone a copy of the Linux kernel into `/tmp/linux-2.6`:

```bash
$ cd /tmp
$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git linux-2.6
```

Initialized empty Git repository in /tmp/linux-2.6/.git/.
remote: Counting objects: 1177432, done.
remote: Compressing objects: 100% (189064/189064), done.
remote: Total 1177432 (delta 982454), reused 1176803 (delta 981879)
Receiving objects: 100% (1177432/1177432), 288.00 MiB | 406 KiB/s, done.
Resolving deltas: 100% (982454/982454), done.
Checking out files: 100% (27842/27842), done.

Now you have a copy of the entire Linux kernel and its development history, including many different tags and branches. You’ve started out on branch `master`, which is the latest version. Check out the `v2.6.20` tag to get an older version:

```bash
$ cd linux-2.6
$ git checkout v2.6.20
```

Checking out files: 100% (33554/33554), done.
Note: moving to 'v2.6.20' which isn't a local branch
If you want to create a new branch from this checkout, you may do so
(now or later) by using `-b` with the checkout command again. Example: `git checkout -b <new_branch_name>`
HEAD is now at 62d0cfc... Linux 2.6.20

You can’t make changes to tags, and you haven’t created a local branch for your work, so Git has given you what it calls a disconnected HEAD. You can make commits, but they won’t be attached to any branch at all. That’s a bit dangerous, since it’s easy to lose track of your work that way. Let’s name our work so it doesn’t get lost:

```bash
$ git checkout -b my-test-branch
Switched to a new branch "my-test-branch"
```

And look at the list of local branches:

```bash
$ git branch
master
* my-test-branch
```

You can make a test commit:

```bash
$ echo 'hello world' >hello.txt
$ git add hello.txt
$ git commit -m 'my first hello commit'
```

Created commit 22b0a19: my first hello commit
1 files changed, 1 insertions(+), 0 deletions(-)
create mode 100644 hello.txt

Remember, this new commit hasn’t been shared with anyone; you’ve only committed it to your local repository.
Try pulling in the changes from v2.6.20 to v2.6.21:

```bash
$ git pull origin v2.6.21
Merge made by recursive.
...
$ ls hello.txt
hello.txt
```

All the changes from v2.6.21 have been merged into your branch, but your new `hello.txt` is still there too. Success! If you had permission to push your new branch back to the central kernel repository, which you probably don’t, you could do it now:

```bash
$ git push origin my-test-branch
Counting objects: 228, done.
Delta compression using 2 threads.
Compressing objects: 100% (228/228), done.
Writing objects: 100% (228/228), 38.66 KiB, done.
Total 228 (delta 142), reused 77 (delta 60)
To git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
 * [new branch] my-test-branch -> my-test-branch
```

Someone could then pull your branch into theirs and receive your `hello.txt` changes.

### Creating and Sharing a New Repository

If you have a project that isn’t already in Git, you will need to first create a local repository for it. Let’s say you have a directory called `my-project` in which you already have a set of files. You want to keep it under version control. Here’s what you do:

```bash
$ cd my-project
$ git init
Initialized empty Git repository in .git/
$ git add .
$ git commit -m 'Initial commit'
```

(The `git add` command above won’t work unless there is at least one file to add, and `git commit` won’t work until you’ve `git added` at least one file.)

For personal projects, that might be all you need; you can now create commits, branches, and tags, compare differences, and so on.

If you want to share your project with someone else, however, you will need to create a bare repository (i.e., one with no work tree of its own) and give other people access to it. In this example, we’ll create a new bare repository in `/home/git/my-project.git`, copied from `/tmp/my-project`, and give access to everyone in the mygroup Unix group:

```bash
$ git clone --bare /tmp/my-project /home/git/my-project.git
Initialized empty Git repository in .git/
$ cd /home/git/my-project.git
$ git config core.sharedRepository group
$ chgrp -R mygroup .
$ chmod -R g+rwX .
```
By convention, bare repositories have pathnames that end in a .git suffix. This is because they don’t contain a .git subdirectory—the .git subdirectory contents are in the root of the bare repository, since there’s no work tree.

People in mygroup can now `git clone /home/git/my-project.git` and push and pull from it.

If you want to host an open source project that everyone on the Internet can share, you have several options:

**git daemon**
You can run the Git daemon on your server. The `git daemon` command is beyond the scope of this book, but you can find instructions in `git help daemon`.

**Gitosis**
Gitosis is a separate tool that lets you create a single SSH account and give multiple people access to a Git repository through that.

**git shell**
The `git shell` command (see `git help shell`) is included with Git and does a similar job to Gitosis. Most people prefer Gitosis.

**http://github.com**
A commercial service, github.com, offers free hosting services for open source projects and reasonably priced hosting of proprietary projects.

**Gitorious**
Gitorious is an open source tool similar to github.com. You can use it to create your own github.com-like hosting service.

**http://repo.or.cz**
repo.or.cz was the original public Git hosting service. It provides basic push/pull access, although it isn’t as user friendly as the other alternatives.

Because Git repositories are fully distributed, you can choose to host your project in more than one place at a time for added reliability, in case a server is unavailable or loses its data.

### The Git Command Line Client: git

#### The git Command

Everything you do with Git is accomplished using the `git` command. The `git` main program doesn’t actually do anything itself; instead, it runs subcommands based on the first word on the command line, often executing a subprogram based on that name. For example, if you run `git add`, Git might end up executing a program called `git-add`. In fact, if you create additional `git-*` commands in your `SPATH`, Git will add them to its repertoire automatically.

Git contains a daunting number of subcommands—well over 100 of them. Most of these commands are meant to be used internally to create other subcommands. We’ll cover only the most important commands in this book.
Accessing Git's Online Help

You can ask the git command for help using the git help command. By default, it just gives a list of the most common commands:

```
$ git help
The most commonly used git commands are:
 add Add file contents to the index
 apply Apply a patch on a git index file and a working tree
 archive Create an archive of files from a named tree
...
```

You can also get a complete list of all the commands:

```
$ git help -a
git commands available in '/usr/bin'
--
 add gui reflog
 add--interactive hash-object relink
 am http-fetch remote
 ...
```

Finally, you can get the Unix manpage for a particular command (every Git command, even the obscure ones, has a manpage). For example, to get help for the git add command:

```
$ git help add
```

**git Subcommands**

**add**

```
git add filename ...
```

Add or update a file in the index so its changes will be committed upon the next call to git commit. This is called staging the change. Unlike other systems, Git commits only the exact file contents that you have added, so if you make further changes to a file, you will need to add it again before running git commit.

With the -p option, Git lets you stage individual changes (“hunks”) interactively, even inside a particular file. You can use this to help break your commits into smaller, more understandable pieces.

**Options**

- `-n` (no-op)
- `-v` (verbose)
- `-f` (force)
- `-p` (partial)

**Examples**

To stage a new or updated file in the index:

```
$ git add myfile.c
```

To stage all the files in the current directory, except the ones ignored by .gitignore:

```
$ git add.
```
To add a file even though it is ignored by `.gitignore`:

```
$ git add myfile.o
The following paths are ignored by one of your .gitignore files:
myfile.o
Use -f if you really want to add them.
fatal: no files added
$ git add -f myfile.o
```

To add only part of a file:

```
$ git add -p README
diff --git a/README b/README
index 42644cd..e2ad5c3 100644
--- a/README
+++ b/README
@@ -1 +1,2 @@
...
Stage this hunk [y,n,q,a,d,/,e,?] y
```

---

**git archive**

```
git archive [--remote=repository-path] [--format=zip] revision
-- [path ...] >outputfile
```

Create a tar or zip format archive from the current repository or from the repository at repository-path if `--remote` is specified. The default output file format is (uncompressed) tar, but `git archive` can also produce a zip file instead if you specify `--format=zip`.

`git archive` always writes the new archive to standard output, so you should redirect or pipe its output somewhere.

You must specify the revision from which to take the files. If you want to use the current revision, use `HEAD`.

If you specify one or more paths, only those paths are included in the produced archive.

**Options**

```
--list
--remote
--format=tar|zip
```

**Examples**

To list the available options for `--format`:

```
$ git archive --list
 tar
 zip
```

To create a `tar.gz` file of the currently checked-out revision:

```
$ git archive HEAD | gzip >my-release.tar.gz
```

To create a zip file of tag v1.2 in a repository from another computer named `myserver` (where you have Unix shell access via ssh):

```
$ git archive --format=zip --remote=myserver:src/myapp.git v1.2 >myapp-1.2.zip
```
Go back in history to find the first commit that introduced a problem. `git bisect` uses a binary search algorithm to narrow down which commit caused a problem using as few steps as possible. If there are \( n \) commits to consider, `git bisect` can find the exact culprit with approximately \( \log_2 n \) attempts. For example, with 100 commits, it will take about 7 tries; with 1,000 commits, it will take about 10 tries.

**`git bisect`**

- **Start**: `git bisect start [bad-commit [good-commit ...]] -- [path ...]`
  - Use this command to start the bisection. You can optionally specify one known `bad-commit` (which exhibits the problem) and one or more known `good-commits` (which do not exhibit the problem). If you know the bug is in a particular set of files or directory, specify them as `paths` to further narrow the set of commits to consider.
- **Bad**: `git bisect bad [commit ...]`
  - Mark the given commit(s) as bad and check out the next candidate. If no commits are provided, the default is the currently checked-out `HEAD`.
- **Good**: `git bisect good [commit ...]`
  - Mark the given commit(s) as good and check out the next candidate. If no commits are provided, the default is the currently checked-out `HEAD`.
- **Skip**: `git bisect skip [commit ...]`
  - Mark the given commit(s) as untestable and check out the next candidate. You need this if some other bug exists in the current commit that prevents you from testing the bug you're looking for. If no commits are provided, the default is the currently checked-out `HEAD`.
- **Reset**: `git bisect reset`
  - Abort the bisection and check out the commit you were using when you ran `git bisect start`.
- **View**: `git bisect view`
  - Show the current bisection status using `gitk`.
- **Run**: `git bisect run cmd [args ...]`
  - Continue the bisection automatically by running the given `cmd` on each candidate. If the command returns an error, the commit is considered bad; otherwise, it is considered good.
Examples
To look for a problem when you know revisions v2.0 and v1.1 are good, but the current version is bad, and the bug is probably in the mymodule subdirectory:

```bash
$ git bisect start HEAD v2.0 v1.1 -- mymodule
Bisecting: 100 revisions left to test after this (roughly 7 steps)
[fa16ab36ad014bcc03acc4313bb0918fb241b54d] Fix the widget
$ make test
...
$ git bisect bad
Bisecting: 50 revisions left to test after this (roughly 6 steps)
[49cf82288aac5f00dcb152e2d75cd340e48d9e760] Change some bits
$ make test
...
$ git bisect good
fa16ab36ad014bcc03acc4313bb0918fb241b54d is first bad commit
```

To find a bug that was introduced somewhere between v1.1 and v2.0, and that could be in any file:

```bash
$ git bisect start
$ git bisect good v1.1
$ git bisect bad v2.0
Bisecting: 97 revisions left to test after this (roughly 7 steps)
[fa16ab36ad014bcc03acc4313bb0918fb241b54d] Fix the widget
$ git bisect run make test
...
1f73862f3b63bbc9f0a8a8a12dd58e1a39a3355f is first bad commit
```

**branch**

- `git branch [-r] [-a] [--contains commit]`
- `git branch [-f] [--track] branchname [commit]`
- `git branch -m oldname newname`
- `git branch -d|-D [-r] branchname`

List, create, rename, and delete branches.

- `git branch [-r] [-a] [--contains commit]`
  List the existing branches. By default, lists only local branches (`.git/refs/heads/*`). With `-r`, list remote tracking branches instead (`.git/refs/remotes/*`). With `-a`, list all local and remote tracking branches. With `--contains`, list only the branches that contain the given `commit`. 

git branch [-f] [--track|--no-track] branchname [commit]
Create a new branch, branchname, that points at the given commit. The default for commit is HEAD. If branchname already exists, the operation will fail unless -f is specified. If you specify --track (the default in newer versions of Git) and commit is a remote tracking branch, you will be able to type simply git merge or git pull in the future to merge remote changes into your branch.

This command does not check out your new branch. If you want to create a new branch and check it out in one step, use git checkout -b.

git branch -m|-M oldname newname
Rename a branch from oldname to newname. If newname already exists, -m will fail while -M will overwrite it.

git branch -d|-D [-r] branchname
Delete branchname. If -r is specified, branchname is a remote tracking branch (.git/refs/remotes/*/*); otherwise it is a local branch (.git/refs/heads/*). If you use -d, the branch will only be deleted if your current HEAD already includes everything in branchname; otherwise, it will fail. If you use -D, this safety check doesn’t occur.

Examples
To get the list of all branches:

$ git branch -a
To create a new branch that starts off pointing at your current HEAD:

$ git branch saveminecraft
To later delete the saveminecraft branch:

$ git branch -d saveminecraft
To create and check out a new branch test based on remote tracking branch origin/master:

$ git branch --track test origin/master
$ git checkout test
Switched to branch 'test'

checkout

Copy files from the repository into your working tree and possibly switch branches. git checkout does one of four different things, depending on which options are provided:

revision but no path
Switch branches to the one named by revision. If files are modified in the working tree and also changed in the new branch, the operation will fail. The next commit will be in the new branch.
If revision is a valid commit but not the name of a local branch, Git still switches HEAD to the given commit but does not give the new branch a name. This is called a detached HEAD. You can later name the new branch with git checkout -b.

In either case, if the -b option is given, a new branch is created from the given revision, and Git switches to that branch.

path(s) but no revision
Destroys all working tree changes in the named files or directories, replacing them with their contents from the index.

revision and path(s)
Destroys all working tree changes in the named files or directories, replacing them with their contents from the given revision. This does not switch branches; instead, it replaces contents of the given files in the index. The next git commit will affect the same branch as before, but the named paths will be considered modified.

no revision and no path(s)
No changes. Prints a list of files that have been modified in the working tree.

Options
- -q (quiet)
- -f (force)
- -b new_branch_name
- --track (-t)
- --no-track
- -m (merge)

Examples
To revert all the files in directory docs to their version from the index:

$ git checkout docs

To switch to the branch called new-feature, which must already exist:

$ git checkout new-feature
Switched to branch "new-feature"

To switch to the remote branch origin/master, creating a new branch called new-feature:

$ git checkout -b new-feature origin/master
Branch new-feature set up to track remote branch refs/remotes/origin/master.
Switched to a new branch "new-feature"

cherry-pick

Take the changes from an individual commit (usually one from another branch) and apply it to the current branch. Note that unlike git merge, git cherry-pick applies only a single change, not all the history leading up to that change.
The newly created commit is completely independent of the original, although it has the same commit message by default. 

**git cherry-pick commit** is the rough equivalent of **git show commit** | patch -p1

**Options**

- `-e`, `--edit`  
- `-x` (extend commit message)  
- `-m parent-number`  
- `-n`, `--no-commit`  
- `-s`, `--signoff`

**Examples**

To cherry-pick commit 1a48191 onto the current branch and edit the commit message:

```
$ git cherry-pick -e 1a48191
Finished one cherry-pick.
```

---

**clean**

**git clean** `-n`|`-f` [-`d`] [-`x`]

Removes files from the work tree that are not in the Git index. By default, it only removes files that are not listed in `.gitignore` and does not remove directories. (To undo work tree changes to files that are in the index, use **git checkout**.)

You must provide one of `-n` or `-f`.

**Options**

- `-n` (print only, do not remove)  
- `-f` (force removal of files)  
- `-d` (also remove extra directories)  
- `-x` (also remove files skipped by `.gitignore`)  
- `-X` (only remove files skipped by `.gitignore`)  
- `-q` (quiet)

**Examples**

To remove all extra files in the work tree so the only files remaining are ones that would be there after a fresh **git clone**:

```
$ git clean -f -d -x
Removing foo
```

To see what would happen if you ran the above command:

```
$ git clean -n -d -x
Would remove foo
```

---

**clone**

**git clone** repository [local-directory]

Make a copy of repository (which can be a local or remote Git repository) in local-directory. By default, if repository is on the local filesystem, Git will use hardlinks to copy the `.git/objects` folder to minimize disk space waste.
Available forms for repository are:

/path/repo.git
rsync://hostname/path/repo.git
http://hostname/path/repo.git
https://hostname/path/repo.git
git://host/path/repo.git
ssh://host/path/repo.git
ssh://user@host:port/path/repo.git
host:path/repo.git
user@host:path/repo.git

Options
-s, --shared
--no-hardlinks
--reference other-parent-repository
-q, --quiet
-n, --no-checkout
--bare
-o origin-name, --origin origin-name
--depth shallow-clone-depth

Examples
To clone the Linux kernel repository:

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git linux-2.6

commit

git commit [-- file ...]
Commit the changes that have already been staged in the index, updating HEAD.
If -a is given, all changed files in the work tree— not only staged changes— will be committed. (-a is the common behavior in systems like Subversion.)
If files are specified, exactly those files are committed, regardless of the state of the index.
You cannot commit a file for the first time, even with -a, unless it has first been added with git add.

Options
-a (all files, not just added ones)
--amend
-m commit-message, --message=commit-message
-F commit-message-file
-q, --quiet
-s, --signoff
Examples
To commit changes only to files in the mylib directory:

$ git commit -- mylib
Created commit 90716b6: my new commit
1 files changed, 13 insertions(+), 0 deletions(-)
create mode 100644 test-file

config

**git config [--global] --list**
**git config [--global] name**
**git config [--global] name value**

List, get, or set configuration values. If --global is given, uses your account-wide default settings (in "$HOME/.gitconfig"); otherwise uses the settings for the current repository (in .git/config). Instead of using **git config**, you can also just view or edit these files directly.

The most important settings are:

core.autocrlf
- If true, converts LF line endings to CRLF on files when checking out and converts the line endings back to LF when committing.

core.bare
- Makes this repository a bare repository, which means it has no work tree. (Public shared repositories are usually bare.)

core.sharedRepository
- Set to either all, group, or false. If group, the files in .git will be group readable and writable. If all, the files will also be readable (but not writable) by everyone.

core.editor
- The path of your favourite text editor, for editing commit messages. The $EDITOR environment variable overrides this.

gc.autopacklimit
- Controls how frequently Git will automatically run **git gc** after common operations. To disable it completely, use 0.

rerere.enabled
- When committing a conflicted merge, Git will remember how you resolved the conflict and attempt to reuse the recorded resolution if it encounters it again in the future.

user.email
- Your email address. This will be attached to commit messages automatically. The $EMAIL environment variable overrides this.

user.name
- You full name. This will be attached to commit messages automatically. The $GIT_COMMITTER_NAME and $GIT_AUTHOR_NAME environment variables override this.

Options

--unset
**Examples**

To set your email address and name for future commits:

```
$ git config --global user.name 'John Smith'
$ git config --global user.email 'jsmith@example.com'
```

To list all your global settings:

```
$ git config --global --list
user.name=John Smith
user.email=jsmith@example.com
gc.autopacklimit=0
```

diff

git diff first-commit [second-commit] [-- path ...]
git diff --cached [first-commit] [-- path ...]

Show the differences between two revisions. If paths are specified, restricts the comparison to only the given files or directories.

The default first-commit is HEAD.

The default second-commit is normally the work tree. With --cached, the default second-commit is the index.

**Options**

--name-only
--name-status
--stat (show diffstat instead of patch)
-a, --text
-M (detect renames)
-C (detect copies and renames)
--find-copies-harder
-R (reverse patch)
-w, --ignore-all-space
--exit-code
-U, --unified=n

**Examples**

To see which changes are already staged in the index:

```
$ git diff --cached
```

To see which changes are in the work tree but not yet staged:

```
$ git diff
```

To see a summary of changes between two tags (v1.1 and v2.0):

```
$ git diff --stat v1.1 v2.0
```

To see the changes between v1.1 and the current work tree:

```
$ git diff v1.1
```

To see the changes between v1.1 and HEAD:

```
$ git diff v1.1 HEAD
```
**fetch**

```
git fetch [remote-name]
git fetch repository [remoteref[:localref]]
```

Fetch commits from a remote Git repository and adds it to the local one.

In the first form, fetch all branches and tags from the given `remote-name` (a remote repository set up using `git remote`). The default remote name is `origin`.

In the second form, fetch a particular `remoteref` from repository and store it as local branch `localref`. The default `localref` is `FETCH_HEAD`. The default `remoteref` is `HEAD`.

**Options**

- `-f`, `--force`  
- `-n`, `--no-tags`  
- `-t`, `--tags`

**Examples**

To fetch the latest Linux kernel release and compare it against your current work tree:

```
$ git fetch git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git linux-2.6 master
From git://git.kernel.org/...
* branch master -> FETCH_HEAD
```

```
$ git diff FETCH_HEAD
```

To update all the remote tracking branches attached to the remote named `origin`:

```
$ git fetch origin
remote: Counting objects: 15, done.
remote: Compressing objects: 100% (10/10), done.
remote: Total 10 (delta 8), reused 0 (delta 0)
Unpacking objects: 100% (10/10), done.
From git://git.kernel.org/...
6544ab2..e3498f3 master -> origin/master
```

To retrieve the branch `test1` from someone’s repository and save it as the local branch `mytest1`:

```
$ git fetch git://git.kernel.org/... test1:mytest1
```

**gc**

```
git gc [--prune] [--aggressive]
```

Pack the `.git/objects` directory to save disk space and increase speed.

`git gc` is run automatically from time to time, so it is rarely needed unless you want to use the `--prune` or `--aggressive` options or want to force packing to happen at a particular time (such as before making a backup).

**Options**

- `--aggressive` (take extra time to save even more space)  
- `--prune` (delete unused objects)
Examples
To aggressively repack the current repository and save as much space as possible:

```
$ git gc --aggressive --prune
Generating pack...
Done counting 3299 objects.
Deltifying 3299 objects...
100% (3299/3299) done
Writing 3299 objects...
100% (3299/3299) done
Total 3299 (delta 2225), reused 0 (delta 0)
Pack pack-4eb8f89a145f826ef93923fe97c4ab23bd8abb62 created.
Removing unused objects 100%...
Done.
```

**gitk**

```
gitk [git-log options...]
```

Display a graphical browser showing the Git history. *gitk* takes all the same options as *git log*.

Examples
To show the history of all changes to the *mylib* directory on branches *test1* and *test2*, but leave out all changes that are included in *v1.1*:

```
$ gitk test1 test2 ^v1.1 -- mylib
```

**grep**

```
git grep [-e] pattern [--cached|--commit ...] [-- path ...]
```

Search the given commits for the given regular expression pattern(s).

If no *commits* are specified, normally searches the current work tree. With `--cached`, searches the index instead. If *paths* are specified, restricts the search to the given files or directories.

The main advantage of *git grep* over plain *grep* is that it ignores files (such as compiler output and editor backups) that have not been added with *git add*.

When multiple patterns are specified (using `-e`), the default combination is `-or`, unless `--and` or `--not` is specified.

Options
```
-e pattern
--and
--or
--not
()
-E (act like egrep)
-F (act like fgrep)
-i, --ignore-case
```
-v, --invert-match
-w, --word-regexp
-l, --files-with-matches
-L, --files-without-matches

Examples
To search the work tree for lines containing chicken without considering case:
$ git grep -i chicken
To search the top of branches test1 and test2 for lines containing alpha and either beta or gamma:
$ git grep -e alpha --and \( -e beta -e gamma \) test1 test2
To search only the mylib directory for files starting with the word chicken:
$ git grep '^chicken' -- mylib

init

$ git init [-q] [--bare] [--shared=false|group|all]
Create a new Git repository in the current directory.

Options
-q, --quiet
--bare
--shared=false|group|all

Examples
To create a new repository with default settings:
$ git init
To create a new bare repository that will be shared with everyone in your Unix group:
$ git init --bare --shared=group

log

$ git [revision ...] [-- path ...]
Show the commit history. If paths are specified, show only the history related to the given files or directories. If revisions are specified, show the history starting from the given revisions. The default revision is HEAD. With --all, the default is to show all revisions in all local branches.
Each revision can be specified in one of the following formats:
commit
Include the history for the given commit.
^commit
Exclude the history starting at the given commit.
a...b
Includes all commits in b that are not in a. Equivalent to b ^a.
a..b
Includes all commits in a and b that are not in both.
Options
---
- --all
- -p (show patch)
- -Un, --unified=n
- -a, --text
- --raw
- --stat
- -M (detect renames)
- -C (detect copies)
- --findcopies-harder
- -R (reverse patch)
- -w, --ignore-all-space
- -n, --max-count=n (show up to only n commits)
- --pretty=(oneline|short|medium|full|fuller|email|raw|format:...)
- --abbrev-commit
- --full-history
- --no-merges
- --first-parent
- --parents
- --left-right
- --graph
- --author=regex
- --committer=regex
- --grep=regex
- --reverse

Examples
---
To show the commits on this branch, starting with the most recent:

$ git log
commit 3ad3a1c1866bef36461d54d87fe39babe412d61
Author: John Smith <jsmith@example.com>
Date:   Sun Jan 18 18:41:32 2009 -0500

Make some changes.

commit 529fc80df85a5ec7c88552bcb27bc0770a84e336
Author: John Smith <jsmith@example.com>
Date:   Sun Jan 17 12:13:06 2009 -0500

Do the first thing.
...

To show what was changed by the most recent commit:

$ git log -1 -p
diff --git a/server/hello.html b/server/hello.html
index 63ede62..e26d280 100644
--- a/server/hello.html
+++ b/server/hello.html
@@ -1,17 +1 @@
...
To show all commits in all local branches where the commit message contains the word *hello*:

```
$ git log --grep=hello --all
commit 3ad3a1c1866bef36461d549d87fe39babe412d61
Author: John Smith <jsmith@example.com>
Date: Sun Jan 18 18:41:32 2009 -0500

Undo changes to hello.html.
...
```

---

merge

```
git merge commit ...
```

Merge one or more other branches into the current HEAD. For each specified commit, Git calculates the set of changes on that branch that are not currently in HEAD and attempts to apply those changes to the current HEAD. If the changes cannot be applied successfully, Git will leave conflicts in the index, which you will need to resolve by hand (using an editor, *git add*, and *git commit*).

Almost always, you will supply exactly one commit. In some situations, you may wish to merge more than one branch at the same time; this is called an octopus merge and is allowed only if none of the merges cause any conflicts. It is equivalent to merging the given commits one by one, except that the merged result produces only one new commit.

You can override the merge strategy to be used, but this is almost never necessary. When more than one commit is specified, the only allowed strategy is octopus.

Normally, Git combines the branch histories so *git log* will show all the commits from all branches that have been merged. With **--squash**, it eliminates the history of the branches other than HEAD. This simplifies the *git log* output, but prevents successful merges from that branch in the future, so it is usually a bad idea.

**Options**

```
--no-commit
--squash
--log
--no-ff
-s (resolve|recursive|octopus|ours|subtree)
-m msg
```

**Examples**

To merge feature branches *feature1* and *feature2* into your current branch using an octopus merge:

```
$ git merge feature1 feature2
Already up-to-date with
aa871d4ef9657e03b2ef7053dc13a16777955499
Trying simple merge with
bdd84225b4f7c282731aed54017fe7cbe392c00d
Merge made by octopus.
58 files changed, 1371 insertions(+), 195 deletions(-)
```
To merge the branch production into the current HEAD, resulting in a conflict:

```
$ git merge production
Auto-merging testfile.c
Auto-merging server/hello.html
CONFLICT (content): Merge conflict in server/hello.html
Auto-merging test2.c
Recorded preimage for 'server/hello.html'
Automatic merge failed; fix conflicts and then commit the result.
```

To resolve the conflict above and commit the completed merge:

```
(editable server/hello.html)
$ git add server/hello.html
$ git commit
```

---

**mv**

```
git mv oldfile newfile
```

```
git mv oldfiles ... newdir
```

Rename `oldfile` to `newfile` or move a series of `oldfiles` into the directory `newdir`, which must already exist. `git mv` updates both the work tree and the index.

There is no need for a `git cp` (copy) command. Just copy the file using Unix `cp` and `git add`. Git is still able to track the history of files moved and copied in this way.

**Options**

- `-f` (overwrite even if newfile exists)
- `-n`, `--dry-run`

**Examples**

To rename `file1.c` to `file1b.c`:

```
$ git mv file1.c file1b.c
```

To move `file1.c` and `file2.c` into the `mylib` directory:

```
$ git mv file1.c file2.c mylib/
```

---

**pull**

```
git pull
```

```
git pull repository branch
```

Fetch the given branch then merge it into HEAD. `git pull` is just a short form for `git fetch` followed by `git merge`.

If no repository or branch is specified, `git pull` attempts to pull from the remote tracking branch associated with your current branch, if any. (Associations are set up using the `--track` option when creating a branch with `git branch`. You can also add them later with `git config`.)

The repository can be a local repository path, a repository URL (see `git clone`), or a remote name (see `git remote`). The branch must be a valid branch or tag name in the remote repository.
For more information about how pull works, see `git fetch` and `git merge`.

**Options**
- `--no-commit`
- `--squash`
- `--log`
- `--no-ff`
- `-s (resolve|recursive|octopus|ours|subtree)`
- `--tags`
- `--no-tags`

**Examples**
To pull the latest Linux kernel changes into your current branch:

```
$ git pull git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git master
From git://git.kernel.org/...*
 branch master -> FETCH_HEAD
Merge made by recursive.
 21 files changed, 932 insertions(+), 66 deletions(-)
```

**push**

```
git push [--all] [--tags] [repository [localref][:remoteref]]
```

Push changes from one or more branches or tags into the specified remote repository.

*Repository* can be a local repository path, a repository URL (see `git clone`), or a remote name (see `git remote`). If repository is omitted, it defaults to *origin*.

If *localref* is omitted, it defaults to pushing all the refs that currently exist on the remote. For example, if you have local branches named A, B, C, and D, and the remote has branches named A, C, and E, then Git will push branches A and C unless you specify a specific *localref*.

As an alternative to providing *localref*, you can provide `--all` or `--tags`. With `--all`, Git pushes all the local branches. With `--tags`, Git pushes all the local tags.

If *remoteref* is omitted, it defaults to the same name as *localref*. If you supply *remoteref*, it needs to be the full refname, such as `refs/heads/master`, not just the base branch name.

If you supply a *remoteref* without a *localref*, Git deletes *remoteref* in the remote repository. This is useful if the remote end refuses to update a ref because it is not a fast forward; you can delete the remote ref, and then re-create it.

**Options**
- `--all`
- `--tags`
- `--dry-run`
- `--thin`
Examples
To push the current branch (master) to the remote named origin:

$ git push origin master

To push all local branches to the default remote (origin), as long as
they already exist there:

$ git push

To push all the local branches to a particular remote repository:

$ git push --all server:/git/myrepo.git

To delete the branch test1 on a remote named myremote:

$ git push myremote :test1

To push the current HEAD to a branch named test1 on myremote:

$ git push myremote HEAD:refs/heads/test1

rebase

```
git rebase [-i] [--onto onto-commit] base-commit [switch-branch]
git rebase --continue | --skip | --abort
```

Automatically cherry-pick a series of commits between base-commit and switch-branch onto onto-commit, leaving the result in switch-branch.

If switch-branch is omitted, the default is HEAD. If onto-commit is omitted, the default is base-commit.

Using `git rebase` can completely disrupt future merges to and from the rebased branch. Use `git rebase` only for changing commits that have never been shared with others, such as before a new branch has been pushed to a shared repository.

`git rebase` is a powerful alternative to `git merge`. You can use it to simplify and rewrite the history of your changes in order to make them easier to review, audit, and share. However, because `git rebase` rewrites the history of your repository, misuse can cause hard-to-resolve errors, including duplicate commits and merge conflicts.

You can imagine `git rebase` as a series of commands that looks something like this:

```
git checkout switch-branch
git reset --hard onto-commit
for commit in base-commit..switch-branch
git cherry-pick commit
done
```

The end result is a new branch that contains onto-branch plus a linear series of commits (i.e., with no merges). The new commits consist of all the commits that were previously part of switch-branch but not base-commit.

With `-i`, `git rebase` opens an interactive editor before the rebase operation starts. The editor contains a list of all the commits in
You can rearrange the list, add/delete individual entries, or merge (squash) multiple commits into a single one, thus allowing you to produce a set of commits that is easier for others to review.

During a rebase operation, cherry-picking a particular commit may result in a conflict. In that case, you need to do one of the following:

- Resolve the conflict, commit it with `git commit`, and then run `git rebase --continue`.
- Run `git rebase --skip` to skip this commit entirely.
- Run `git rebase --abort` to cancel the rebase operation and change the Git history back to the way it started.

**Options**

- `-i`, `--interactive`
- `--onto onto-commit`
- `-p`, `--preserve-merges`

**Examples**

To take all the patches in `HEAD` that are not in `origin/master`, and apply them on top of the current `origin/master`:

```
$ git rebase origin/master
```

To do the same as the above, but interactively reorder, edit, and squash the patches:

```
$ git rebase -i origin/master
```

To take all the patches in the `feature1` branch that are not in `origin/master`, and add them on top of `feature2`, resulting in a new `feature1`:

```
$ git rebase --onto feature2 origin/master feature1
```

To do the same as the above in two steps for clarity:

```
$ git checkout feature1
$ git rebase --onto feature2 origin/master
```

To resolve a conflict that arose during the rebase operation:

```
(edit test1.c)
$ git add test1.c
$ git commit
$ git rebase --continue
```

**reflog**

`git reflog show [branch]`

Show entries from the `reflog`, which tracks changes to local refs (branches). If `branch` is omitted, shows the reflog for `HEAD`.

The reflog tracks the “history of history.” Although commands like `git reset` can be used to undo a commit, the old commit still stays around in the reflog until it eventually expires. This allows you to undo many Git operations you might have performed by accident.
You can refer to entries in the reflog using \textit{branch@\{n\}} notation. For example, \texttt{HEAD@\{5\}} means to use \texttt{HEAD} as it existed five changes ago.

\textbf{Examples}

To list all the recent changes to \texttt{HEAD}:

\begin{verbatim}
$ git reflog
\end{verbatim}

To undo the most recent merge operation:

\begin{verbatim}
$ git reset HEAD@\{1\}
\end{verbatim}

---

\textbf{remote}

\begin{verbatim}
git remote add [-f] name repository-url
git remote rm name
Git remote show name
Git remote prune [--dry-run] name
Git remote update [name ...]
\end{verbatim}

Manipulate remote, which act as short forms for tracking repository URLs and branches. This command takes one of several forms:

\begin{verbatim}
git remote add name repository-url
\end{verbatim}

Register a new remote name at repository-url. With -f, also \texttt{git fetch} the set of remote branches from the new remote.

\begin{verbatim}
git remote rm name
\end{verbatim}

Unregister the remote name.

\begin{verbatim}
git remote show name
\end{verbatim}

Show information about the given remote name.

\begin{verbatim}
git remote prune name
\end{verbatim}

Delete remote tracking branches that no longer exist on the remote name. To prevent accidental data loss, remote tracking branches in the local repository are never deleted unless you run this command.

\begin{verbatim}
git remote update [name ...]
\end{verbatim}

Equivalent to running \texttt{git fetch name} for each of the names individually. If no names are provided, fetches all the registered remotes.

\textbf{Examples}

To show information about the remote named \texttt{origin} (which is created automatically by \texttt{git clone}):

\begin{verbatim}
$ git remote show origin
* remote origin
  URL: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
  HEAD branch: master
Remote branches:
  master tracked
  production tracked
Local branches configured for 'git pull':
  master merges with remote master
  production merges with remote production
\end{verbatim}
Local refs configured for 'git push':
master     pushes to master     (up to date)
production pushes to production (local out of date)

To replace origin with a pointer to a new server and fetch the branches on the new server:

$ git remote rm origin
$ git remote add -f origin myserver:/git/myproj.git

Updating origin
From myserver:/git/myproj.git
  * [new branch] master   -> origin/master
  * [new branch] production -> origin/production

To update all registered remotes:

$ git remote update

reset

reset [-soft|--hard] [commit] [-- path ...]

If no paths are given, update HEAD to point at the given commit. This can be used to undo one or more commits as if they had never happened. If paths are given, HEAD is not changed; only the listed files and directories are modified.

reset is extremely dangerous and can cause you to lose track of portions of your repository's history. Use it only on branches that have never been shared with anyone else. If you make a mistake with reset, you can usually undo it using git reflog.

With --soft, neither the index nor the working tree are modified, and only the HEAD pointer is changed. Thus, the difference between HEAD and the index is the set of changes needed to convert the new HEAD into the original HEAD. If you then run git commit, a new commit will be created that changes the files back to the way they were before you ran git reset.

With --hard, both the index and the working tree are modified to match the given commit; any changes from the given commit to HEAD are lost.

If neither --soft nor --hard is specified, then the index is updated, but not the working tree.

Examples

To undo the most recent commit without losing the changes to the files themselves (so they can be committed again):

$ git reset HEAD^
To undo the above `git reset` operation by recovering the previous HEAD from the reflog:

```
$ git reset --hard HEAD@{1}
```

To undo the most recent five commits and recommit their changes as a single commit:

```
$ git reset --soft HEAD@{5}
$ git commit
```

---

### `revert`

`git revert [-n] commit`

Create a new commit that reverses the effect of `commit`.

**Options**

- `-n`, `--no-commit`
- `-s`, `--signoff`

**Examples**

To undo the most recent commit:

```
$ git revert HEAD
[master ae3f932] Revert "Say hello."
 1 files changed, 0 insertions(+), 50 deletions(-)
```

To undo commit `ae3f932`, even if it is not the most recent commit:

```
$ git revert ae3f932
[master ae3f932] Revert "Say hello."
 1 files changed, 0 insertions(+), 50 deletions(-)
```

---

### `rm`

`git rm [-f] [-r] -- path ...`

Remove files from the work tree and index. They will be permanently removed when you run `git commit`.

With `-f`, forces removal of a file even if it doesn’t match HEAD. With `-r`, removes entire directories and all their contained files.

**Options**

- `-f` (force)
- `-r` (recursive)
- `--cached` (ignore work tree)
- `-n`, `--dry-run`

**Examples**

To remove the `mylib` directory:

```
$ git rm -r mylib
rm 'mylib/test1.c'
rm 'mylib/test2.c'
```
stash

`git stash`
`git stash list`
`git stash show [stashid]`
`git stash apply [stashid]`

Save, list, or reapply the set of uncommitted changes from a work tree and index.

This command takes one of four forms:

`git stash`
Save the current set of uncommitted changes and undo them. The index and work tree are reset to match HEAD.

`git stash list`
Show the list of all stashes that have previously been saved.

`git stash show [stashid]`
Show the exact set of changes that are saved as `stashid`. If `stashid` is omitted, uses the most recently saved changes.

`git stash apply [stashid]`
Brings back the changes from the given `stashid` and applies them to the current index and work tree. If `stashid` is omitted, uses the most recently saved changes.

Examples

To save the current set of uncommitted changes, switch branches, and apply those changes to the new branch:

```
$ git stash
Saved working directory and index state "WIP on master:
44951b7... Say hello"
(To restore them type "git stash apply")
HEAD is now at 44951b7 Say hello

$ git checkout feature1
Switched to a new branch "feature1"

$ git stash apply
Removed test1.c
```

status

`git status [path ...]`
Check what would happen if you ran `git commit`. If `paths` are specified, check what would happen if you ran `git commit paths`.

Examples

To check the status of the current branch:

```
$ git status
On branch master
Changed but not updated:
(use "git add <file>..." to update what will be committed)
#
modified: test1.c
```
no changes added to commit (use "git add" and/or "git commit -a")

To see what would happen if you ran `git commit test1.c`:

```bash
$ git status test1.c
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: test1.c
#
Changed but not updated:
(use "git add <file>..." to update what will be committed)
#
modified: test2.c
```

**tag**

`git tag [-a|-s|-u gpg-key-id] [-f] [-m msg | -F msg-file]`  
`tagname commit`

Create a new tag named *tagname* based on the given commit. With `-a`, the tag is annotated (i.e., it has a commit message attached) but not signed. With `-s` or `-u`, the tag is annotated and signed with the default or specified gpg private key, respectively. With `-m` or `-F`, use the given commit message or filename containing the commit message, respectively. If none of `-a`, `-s`, or `-u` is specified, the tag has no annotation. (Tags you shared with other people should always have an annotation and should usually be gpg signed.)

`git tag -d tagname`

Delete the given *tagname* from the local repository. Note that if the tag has already been pushed to a remote repository, there is no way to make sure everyone erases it.

`git tag -l [glob-pattern]`

List all the tags matching the *glob-pattern*. If *glob-pattern* is omitted, lists all the tags.

`git tag -v tagname`

Verifies the gpg signature of each requested tag.
**Examples**

To mark the current version with a *v1.1* tag and sign it with your gpg key:

```
$ git tag -s v1.1 HEAD
```

To delete the *v1.1* tag (only useful if it has never been pushed):

```
$ git tag -d v1.1
```

To list all tags for version *1.x*:

```
$ git tag -l 'v1.*'
```
This chapter covers common tools used with Linux to run many virtual servers on a single physical server. We cover the two dominant hypervisors used with Linux: Xen and KVM. We also cover libvirt-based tools used to manage both Xen and KVM. Although it isn’t strictly a Linux solution, VMware uses a Linux operating system for the Service Console of their ESX server and recent vSphere products, so we have included basic console commands they provide.

This chapter covers the following topics:

- Conceptual overview
- Basic virtualization operations
- The Xen Hypervisor
- The KVM Hypervisor
- The libvirt virtualization API
- VMware command line interface

We do not provide a tutorial or in-depth information on virtualization here. This is meant as a quick reference to virtualization concepts, commands, and utilities. Refer to the following locations for more in-depth coverage on each of these technologies.

- The Xen hypervisor: http://www.xen.org/
- The KVM hypervisor: http://www.linux-kvm.org/
- libvirt virtualization API: http://libvirt.org/
- VMware Documentation: http://www.vmware.com/support/pubs/
Conceptual Overview

All of the virtualization programs we cover in this chapter provide full system virtualization. They use a software layer to present a virtualized hardware system. This layer, called the virtual machine monitor (VMM) or hypervisor, makes it possible to run multiple operating systems simultaneously. The operating system at the base—running directly on the hardware and interacting with it directly—is called the **host**, and the software instances that run on top of it—interacting only indirectly with hardware—are called the **guests**.

Virtualization isn’t a new topic. As a means to divide a computer’s resources into multiple running environments, virtualization has been around since the 60s. Back then, IBM used it to partition mainframe computers into separate virtual machines, allowing it to run multiple applications and processes simultaneously. Although low-cost PC hardware generally replaced mainframe hardware virtualization in the 80s and 90s, virtual machines were still commonly used to provide a virtualized environment for a process: e.g., creating a security sandbox or providing greater portability. The Java Virtual Machine (JVM) is a good example of process virtualization. This kind of virtualization also includes tools like **chroot** and **virtfs**.

Another popular type of virtualization creates a new instance of the same operating system on top of the host. This technology is often called **containers**. It typically includes such projects as Solaris Zones and User Mode Linux (UML). We don’t cover containers in this chapter.

Here, we cover the tools of industrial-strength server virtualization. The solutions in this chapter offer environments that look like complete, independent hardware computers even though they are just software instances running on a common hardware base. While hardware costs for PCs remain fairly low, systems with multiple CPUs or CPU cores can easily handle the task of running dozens of highly available virtualized servers simultaneously. Businesses use virtualization to reduce deployment and administration costs. Many businesses also use virtualized-desktop systems to replace physical desktops, simplifying management tasks throughout the company.

Configuring virtualization requires administrative access to systems, CPUs with built-in virtualization technology, or even modified operating systems. The tools covered here are intended for large-scale server deployments. Although these tools might allow you to run an alternative operating system on your desktop or notebook, if you are just looking to run a single guest you will find that easier to do with another kind of tool. VMware Player or VirtualBox, for example, both run in user space, require no kernel modifications or special CPU, and are available for free.

System Requirements

To run the tools covered in this chapter you should have at minimum:

- A processor that supports virtualization technology (Intel VT or AMD-V). Support should be enabled in the system BIOS.
- At least 2 GB of memory.
- At least 6 GB of disk space.
Xen can run paravirtualized guests without virtualization technology in the CPU, but it requires it for full virtualization. You can check whether your existing CPU supports virtualization by grepping `/proc/cpuinfo` as follows:

```
$ egrep '(vmx|svm)' /proc/cpuinfo
```

If nothing shows up, your CPU does not support virtualization. If something does appear, you may still need to enable it in BIOS to use it.

Each solution has additional requirements or limitations. Before making a hardware purchase you should check the requirements and supported hardware for the solution you plan to use.

If you want to support migration (moving a running guest from one host to another) you will also want some kind of shared-storage solution. That might be an iSCSI or SAN volume to which all servers have access. You don’t need that to get started though.

**Virtualization Technology**

In full virtualization, the guest operating system doesn’t need to be aware that it is running in a virtual environment. It interacts with the virtual hardware in the same way it would physical hardware. Some tasks in a fully virtualized environment, however, are computationally expensive. One way to handle the expensive tasks is to use a modified processor that performs these tasks for the hypervisor.

Paravirtualization provides another way to handle these expensive tasks. In paravirtualization the guest operating system is modified to hand these expensive tasks to the hypervisor, which can handle the task without having to emulate hardware.

**Network Concepts**

For your virtual server to connect to the Internet it must have a way to use the physical connection of the host. Xen, KVM, and VMware will all create a default bridge interface to handle mapping the virtual systems to the physical interface. A virtual machine could also be assigned directly to a physical device, but for most situations a bridge is what you want. More complex network configurations can be made by defining a kind of virtual switch or router. We will cover some commands that can do this here.

**libvirt Tools and Terminology**

Xen, KVM, and other Linux-based hypervisors support a single generic API called **libvirt**. For most tasks, it doesn’t matter which Linux hypervisor you are using. You can use the same basic tools. libvirt has its own terminology which will be helpful to know when reading the libvirt section.

- **A node** is a single physical machine.
- **A hypervisor** is a layer of software that virtualizes a node, providing a set of virtual machines that may differ from the node itself.
- **A domain** is an instance of an operating system running on a virtualized machine provided by the hypervisor.
Throughout this chapter, though, we’ll stick to more common industry terminology, referring to a domain as a guest and the node running the guest as a host.

Basic Virtualization Operations

The complexity of virtualization prevents us from covering everything in a small chapter within this book. Fortunately, developers have written tools that handle much of the complexity for you. They have worked hard to make the defaults do the right thing for your system and have written scripts to simplify the tasks. Here we cover the higher-order tools that will help you create and manage virtual systems and networks.

Creating Virtual Systems

For VMware you will use the VI Client GUI interface to create your virtual systems. We won’t cover that task here. With Xen and KVM you can use virt-manager’s virt-install to install a new guest. At minimum you must tell virt-install:

- the name of the new guest domain
- whether the guest will be paravirtualized or fully virtualized (-p or -v)
- the amount of RAM to give to the new system (-r)
- what to use as a system disk and if creating a disk, how large it should be (-f and -s)
- whether to support graphics or not (--vnc or --nographics)
- where to find the installation files (-c, -l, or --pxe)

virt-install will prompt for any values you do not provide to it on the command line. The name should be a short unique identifier; whatever helps you distinguish it from other virtual machines controlled by the same hypervisor. Paravirtualization or full virtualization depends on what your OS supports. If you do not have an installation already prepared for virtualization, you need full virtualization.

The system disk can be stored anywhere in your filesystem. Use a full path to specify where, or just a filename to have it stored in the default location for your hypervisor.

You will need a way to connect to the new system. See the section “Graphic and Console Interfaces” on page 842. If you are installing a fully virtualized system, use the --vnc option. If you aren’t installing on a system running X Window System, you may need to connect to your guest remotely from a system that does. If you are installing a paravirtualized system and the guest system supports it, you can use either --vnc or --nographics. If using --nographics fails, you may need to use virsh to destroy the domain and start over as you will have no way to connect to it.

What you use for installation files will depend on what kind of virtualization you are using. For a fully virtualized system you may want to install from a CDROM drive or an installation disk ISO. You can use the -c option to point to a physical device on the host (/dev/cdrom) or to an ISO file.
To install a paravirtualized Linux or UNIX system, you will instead use the `-l` option with `virt-install` to point to the location of the initial boot image. For some distributions, you can point this to an ISO image, but the `-l` option does not configure a virtual CDROM, so after the boot you will need to tell the install program where to find a mirror of the installation media. You can use HTTP, NFS, or FTP to connect to that media. This means you will have already had to have set up a server to provide these files. You can quickly prepare an installation ISO for this by mounting it via the loop back device and either exporting the directory via NFS or serving the files through HTTP. We'll provide examples.

`virt-install` has many other options that can help you customize your virtual server. If you are using KVM, you might want to use the `--accelerate` option to better take advantage of the hypervisor. You might want to use `--os-type` option to optimize guest configuration. You can provide more detailed information on how to configure the network interface (without any options, it just connects the guest to the default bridge interface). See `virt-install`'s entry in this chapter for further information.

Some distributions come with wrapper-scripts that call `virt-install` with default options to install a basic Linux operating system. Ubuntu, for example, provides a `vm-builder` script that will install a stripped-down version of Ubuntu, ready to run.

### Examples

Mounting a Red Hat ISO for export via NFS:

```bash
mkdir /mount/rhel5.3
mount -o ro,loop RHEL-5.3.iso /mount/rhel5.3
exportfs *:/mount/rhel5.3/
```

Mounting a Red Hat ISO for HTTP access:

```bash
mkdir /var/www/html/rhel5.3
mount -o ro,loop RHEL-5.3.iso /var/www/html/rhel5.3
```

Full virtualization install from an installation iso:

```bash
virt-install -name rhel-fv -v -r 256 -f /images/rhel-fv.img -s 8 -vnc -c RHEL-5.3.iso
```

Paravirtual installation via HTTP using a serial console:

```bash
virt-install -name rhel-pv -p -r 256 -f /images/rhel-pv.img -s 6 -l http://example.com/rhel-5.3/
```

### Managing Virtual Systems

While hypervisors can control the starting and stopping of virtual machines, they can't always shut them down gracefully. You may want to power off your systems by connecting to each system and initiating a shutdown in the normal way. Sometimes you can't do that, though, and you need to do the virtual equivalent of pulling the plug on a system that isn't responding. The commands listed here cover these basic operations.
Xen and KVM virtual guests can be managed with `virsh` commands. Use `virsh list --all` to get a list of all managed domains. The `start`, `shutdown`, `reboot`, and `destroy` commands are your virtual power and reset buttons. From the service console in VMware’s ESX server you can do similar things with `vmware-cmd`.

**Graphic and Console Interfaces**

You need some way to interact with the virtual systems. Generally, you will use a VNC or SDL graphic interface set up by your guest installation tool. VMware provides its own client software to handle this. For Xen and KVM you will likely use the VNC client `virt-viewer` or the GUI management tool `virt-manager` to connect to a virtual system. As an alternative, you could interact with a virtual system through a text-based console connected to a virtual system’s serial device. The `virt-install` command has a `--nographics` option that will attempt to set this console up for you, but it works only with paravirtualized guests. If your guest system has a properly functioning network connection, you may also be able to use `ssh` to connect to it.

**Configuring Networks**

Your basic network options are to use bridging or Network Address Translation (NAT). In bridging, a special bridge interface transparently connects your virtual interfaces to your host’s physical interface(s). Your virtual servers will share the physical interface.

Using NAT, your virtual servers are assigned private network IP addresses, and another interface then provides the NAT for your system. This NAT interface is essentially a bridge as well. A bridge is really any interface used to hook your virtual interfaces up to your physical interfaces. Still, these two approaches are commonly referred to as bridging and NAT.

VMware uses a third option. It creates a virtual switch to which you connect your guests’ interfaces. The default switch, however, simply bridges the switch to the server’s network interface card. Neither Xen or KVM come with a ready-made virtual switch solution, although some vendors may offer virtual switch solutions you could add to your system.

Upon installation of the hypervisor and libvirt, most distributions will automatically configure basic networking support. They will likely configure both a NAT and bridge interface. Xen’s tools will use the bridge interface by default, but `virt-manager`’s tools will likely use NAT.

The approach you want to use will depend on the kind of system on which you have installed the host operating system. If you are installing on a system that might frequently change networks (for example, a notebook you move between home and work) or want to keep your virtual systems separate from your physical network, you will probably want NAT. If you are using a wireless card, you must use NAT. Bridging will not work with wireless interfaces because wireless chipsets reject foreign MAC addresses. If you are installing on a server and want your virtual systems to interact with your network the way any physical system would, you want to use bridging.
While we don’t cover it in this chapter, the Net:Bridge or (bridge-utils) package contains the `brctl` command. This command can help you build and manage more complex bridges. You can find more information on this package at:

http://www.linuxfoundation.org/en/Net:Bridge

We highly recommend you read that page and explore the tool if you want to dig any deeper into configuring your bridges.

The basic concept to keep in mind for virtual networking is that your host systems will have interfaces for physical devices, virtual devices, and bridge devices. What they are named by default depends on your distribution and hypervisor. The following are the interfaces you might find running if you used `ifconfig` on a CentOS system running Xen.

`vifX.Y`  
A vif interface on the host connects to the virtual interface on a guest domain. Consider it the server’s representation of that virtual Network Interface Card (NIC). vif0.0 is Domain-0’s first interface. vif0.1 would be its second. vif1.0 is the first interface on the first running guest (Domain 1).

`eth0`  
The virtual interface for Domain-0, which is connected to vif0.0.

`peth0`  
This device performs packet distribution for guest systems, including Domain-0. It is bound to the bridge device, the physical network card. It has no IP address of its own, but instead acts as a simple switch. This is how packets get to the appropriate vif device.

`xenbr0`  
Xen’s default bridge device that connects vif interfaces to the physical interface (peth0).

`virbr0`  
An interface providing NAT. This is the default bridge device for virt-manager tools. You may need to enable packet forwarding in Domain-0 to make this device work.

You will likely find these devices on an Ubuntu system running KVM:

`eth0`  
The physical interface for the host. Note that it doesn’t have an IP address. The host’s interface is bridged to this device.

`vnet0`  
An interface providing NAT. The default bridge device for virt-manager.

`vnetX`  
Interfaces connected to a guest’s virtual interface, where X is numbered 1 or higher. These are bridged through vnet0 by default.

`br0`  
The host system’s bridge device. This one has the host’s IP address and connects to the physical interface, eth0.

You can set the interface to be used by a virtual domain when using `virt-install` with the `--network` option.
MAC Addresses

You may want to set a MAC address on a virtual interface manually. This is a special hexadecimal number that uniquely identifies your interface card. If not set, your configuration tool will generate a random number for it, but knowing what it will be ahead of time can help you configure DHCP or a PXE boot. With virt-install you can set it with the --mac option. VMware’s VI Client provides an option as well.

There are some restrictions. The first three sets of numbers in a MAC address identify the vendor. When setting them, use the following vendor addresses:

<table>
<thead>
<tr>
<th>Vendor</th>
<th>MAC Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xen</td>
<td>00:16:3e</td>
</tr>
<tr>
<td>KVM/Qemu</td>
<td>54:52:00</td>
</tr>
<tr>
<td>VMware</td>
<td>12:50:56 AM</td>
</tr>
</tbody>
</table>

Making Changes to Virtual Machines

VMware’s VI Client can be used to edit virtual machine configurations. Making changes to a virtual machine under Xen or KVM can be a little trickier. You can make some changes (such as memory settings) using xm or virsh. For more complex changes with Xen, you could change the configuration files located under /etc/xen/. These are in a text format, and most of the settings you will want to change will be easy to figure out.

virsh provides one common way to make complex changes:

1. Run virsh dumpxml to get an XML configuration file for the domain you wish to change.
2. Use a text editor to edit the XML file.
3. Shut down the virtual system if it is still running.
4. Run virsh define to remove the old configuration from the hypervisor and replace it with the configuration in your edited XML file.

You can now start the domain with your new configuration.

Creating and Manipulating Disk Image Files

Tools such as virt-install will create disks as needed when installing a new virtual server, but you might want to add a disk to an existing server. One common form of disk image for virtual machines is a sparse file. The simplest tool for creating this is the dd command documented in Chapter 3. For instance, to create a 10,000 MB sparse file suitable for use as a disk image you can use the following command:

```
dd if=/dev/zero of=newdisk.img bs=1M seek=10000 count=1
```

Change the system’s configuration file to add the new drive. You can use the guest’s system tools (such as fdisk) to configure the new disk.

You can easily increase the size of a sparse file by using dd to create a new sparse file then append the existing file with the new file. Don’t try this with an image file.
Currently in use by a running guest, though: shut down the guest system first. Here we use \texttt{dd} and \texttt{cat} to add a 5000 MB extension to the original image.

\begin{verbatim}
# dd if=/dev/zero of=diskextension.img bs=1M seek=5000 count=1
# cat diskextension.img >> newdisk.img
\end{verbatim}

You will need to use a tool appropriate to the guest operating system to take advantage of the new space. For example, \texttt{resize2fs} makes the space available to an ext3 filesystem.

For more advanced features on a disk image, you can use \texttt{qemu-img}, a tool we don’t document here. It can create and convert disk images to several different formats, including to VMWare’s \texttt{.vmdk} format. If you are using KVM you should already have it installed on your system. If you do not, you can install it via the \texttt{qemu} package.

\textbf{Xen}

Xen is the most common hypervisor used on Red Hat Advanced Server 5, Fedora, and distributions based on these, such as CentOS 5. Assuming you are using one of these, to use Xen you must install the \texttt{xen} and \texttt{kernel-xen} packages from your package repository:

\begin{verbatim}
# yum install xen kernel-xen
\end{verbatim}

Other operating systems will probably have similar packages. Some offer a \texttt{groupinstall} that will include all the necessary packages:

\begin{verbatim}
# yum groupinstall Virtualization
\end{verbatim}

Once installed, reboot your system using the Xen kernel. You may want to modify your \texttt{/boot/grub/grub.conf} file to boot the Xen kernel by default. Usually this means changing the \texttt{default=} entry to \texttt{default=0}, where 0 refers to the first boot configuration described by the file. See Chapter 4 for details on configuring \texttt{grub} and modifying the \texttt{grub.conf} file.

The installation of the previously mentioned packages should also configure two services to run: the Xen daemon (\texttt{xend}) and the \texttt{xendomains} script that the system uses to automatically start and stop your guest domains.

Once the new kernel and \texttt{xend} service is running, you should be able to run the command

\begin{verbatim}
# xm list
\end{verbatim}

to list your current nodes. At first you will have one domain running, Domain-0.

To understand Domain-0, it helps to know that your system is not really running Linux directly. It’s running Xen’s own kernel, a virtual machine monitor based on the Nemesis microkernel. Xen’s kernel doesn’t provide an administrative interface; it depends on a modified operating system running as a guest to do this. This privileged guest also provides guest domains access to hardware devices. In our case, Domain-0 is running a modified version of Linux. Your OS is actually the controlling domain in a cluster of guest domains.
In Xen, these other guest domains are referred to as unprivileged domains, or DomU (the U stands for unprivileged). Domain-0 can also delegate control of hardware devices to other privileged domains, but that’s a more advanced topic we won’t cover here.

Paravirtualization and Architecture

Xen supports paravirtualized guests that run on the same architecture as Domain-0. Thus, if Domain-0 is running X86_64, paravirtualized guests must be X86_64 as well. To run a 32-bit guest on a 64-bit system, you must run it fully virtualized.

Like Domain-0, paravirtualized Linux guests run the Xen kernel instead of the regular kernel.

Xen Networking

Mixing libvirt and Xm tools can lead to some confusion when it comes to networking. Guest domains installed using Xen’s tools bridge to device xenbr0 by default. Those installed by libvirt’s virt-install bridge to device virbr0. To cut down on confusion and take full advantage of libvirt, you may want to disable Xen’s bridge networking altogether. Details on how to configure networking for Xen using libvirt can be found on the libvirt wiki: http://wiki.libvirt.org/page/Networking. Alternatively you can tell virt-install to bridge to device xenbr0 using the -w option (-w bridge:xenbr0).

Xen Commands

Xen has its own special commands for installing and managing domains, but for most things you can use the libvirt tools documented in this chapter. Here, we will cover the most commonly used xm subcommands and the xentop command.

```
xm [options] command

Xen hypervisor management interface. Generally you will use virsh to control VMs, but there are a few useful functions you can get from xm but not virsh. We cover the most common commands here.

xm can be used to configure virtual machine access rights and security policies. Policies are given labels and the labels applied to domains. This is an advanced topic we do not cover in this book.

Commands

console domain
Connect to serial console on domain, if available. Use ctrl-] to exit a console.

create [-c] configfile [settings]
Start the guest domain described in configfile. This command is generally used to start a previously installed domain that is not currently running. By default, a domain will have a configuration file of the same name in /etc/xen/. You can specify the configfile with a full path, or a path relative to /etc/xen/. The configuration file, a Python executable file, largely consists
```
of name=value pairs. These can also be given in a space-separated list on the command line. The manpage for xmdomain.cfg contains details on configuration file format and valid entries. The -c option causes xm to connect to the console as soon as the machine starts.

destroy domain
Immediately kill any running instance of the domain and free its resources to the hypervisor. (You usually want to use shutdown instead.)

dmesg [-c]
Print the Xen message buffer. This buffer contains informational, warning, and error messages. The -c option clears the message buffer.

help [--long]
Print a list of xm commands. If --long is given, print all commands grouped by function.

info
Print information about host system.

list [options] [domains]
List information about one or more domains (a space-separated list of domain names, ids or UUIDs). This is a more verbose listing than that provided by libvirt. It includes resource allocation and running time information.

Options
-1, --long
Print detailed information about domains in a format that can easily be consumed by external programs.

--label
Include security label information.

log
Print the contents of the xend log. This log is also found at /var/log/xen/xend.log.

top
Run the xenxtop command (described next).

list [options] [domains]
List information about one or more domains (a space-separated list of domain names, ids or UUIDs). This is a more verbose listing than that provided by libvirt. It includes resource allocation and running time information as well as state. There are six possible states: running, blocked, paused, shutdown, crashed, and dying.

Options
-1, --long
Print detailed information about domains in a format that can easily be consumed by external programs.

--label
Include security label information.
pause domain
   Cease hypervisor scheduling for domain.

shutdown [options] domain
   Begin a graceful shutdown on domain. For guests that support
   this, it is the same as running shutdown on the guest. It may
   not succeed. By default, the command does not wait for the
   shutdown to complete. xm list will reveal the guest’s current
   state.

Options
- `-a` Print detailed information about domains in a format that can
  easily be consumed by external programs.
- `-w` Wait for domain to complete shutdown before exiting.

unpause domain
   Resume hypervisor scheduling for domain.

xentop

xentop [options]
   Provide frequently updated information about current domains.
   This program performs a function similar to the Linux top
   command, only with information about the hypervisor and
   domains instead of processes. Its various options change what
   information is displayed. Like top, xentop also has some interactive
   commands to change what information xentop displays as it runs.

Options
- `-b`, `--batch`
  Run in batch mode; don’t accept command-line input. Useful
  for sending output to another command or to a file.
- `-d seconds`, `--delay=seconds`
  Set the delay between refreshes. Default is 3.
- `-i num`, `--iterations=num`
  Update display num times, then exit.
- `-n`, `--networks`
  Show network information.
- `-r`, `--repeat-header`
  Repeat the table header before each domain.
- `-v`, `--vcpus`
  Show virtual CPU information.
- `-x`, `--vbds`
  Show virtual block device information.

Interactive commands
   All interactive commands are case-insensitive.
- B Toggle display of virtual block device information.
- D Prompt for a new delay setting.
- N Toggle display of network information.
KVM

The Kernel-based Virtual Machine (KVM) is a full virtualization hypervisor for Linux. The work of the KVM hypervisor is handled by the Linux kernel. Each guest in KVM runs as a process and can be managed by Linux tools such as top and kill.

KVM isn’t a complete virtualization solution. It depends on both the libvirt tools for management and the open source processor emulator QEMU for hardware emulation. Therefore, you will need those installed as well.

KVM is the most popular hypervisor on Ubuntu distributions. Assuming you are using Ubuntu, you can use apt-get to install the necessary packages:

```
$ sudo apt-get install kvm libvirt-bin ubuntu-vm-builder qemu bridge-utils
```

You may also want the virt-viewer and virt-manager packages, though these will require the X Window System as well. As of Ubuntu version 8.10 (Intrepid) you can install the meta package ubuntu-virt-server for the basic tools mentioned previously and ubuntu-virt-mgmt for the GUI management tools.

You will likely want to provide your controlling user account with access to network devices created by libvirt. Use usermod to add your account to the libvirtd user group.

Restart your system. If all goes well, you should be able to run the following command without error:

```
$ virsh -c qemu:///system list
```

Also check to make sure KVM is working:

```
sudo kvm
```

This will confirm that you have enabled virtualization support in BIOS properly.

QEMU

QEMU is really its own virtualization solution that works in user space. Combining it with KVM speeds it up considerably, providing a robust hypervisor running at the kernel level. QEMU comes with some of its own commands for the installation and launching of virtual systems. Some older tutorials show how to use them. We won’t cover those here; instead use libvirt tools to handle these tasks.
Ubuntu Builder Scripts

Ubuntu comes with tools to help you quickly build guest systems. In older systems these tools are in the `ubuntu-vm-builder` package; in newer systems, they are in the `python-vm-builder` package. These tools handle the defaults for installing a simple Ubuntu guest. In most cases all you need to provide is a name for your new domain.

libvirt and Red Hat Virtual Machine Manager

The libvirt virtualization API provides an open source programming interface to hypervisors like Xen and KVM. It comes with `virsh`, a management interface for controlling hypervisors. A closely related project, the Red Hat Virtual Machine Manager application, is a collection of tools built using libvirt. This includes a few command-line tools as well as the GUI `virt-manager` application.

Whether you are using Xen or KVM, these libvirt based tools will handle most of the tasks of creating and managing your guests. Except for some minor differences in what each hypervisor supports and the connection string used to get to the hypervisor, these commands work the same regardless of what hypervisor you choose. You’ll want to know these tools well.

XML Configuration Files

libvirt uses XML files to define or describe the capabilities and configuration of domains, networks, and hardware devices. Many of the command tools expect to receive information from an XML file. You don’t have to know the XML tags to get started, as the tools will build the required files for you, but you may want to edit an XML file directly to change the configuration of a guest.

The XML formats, as well as more in-depth information on virsh and the API, can be found on the libvirt website: http://libvirt.org.

Connection URIs

To control a hypervisor, libvirt tools must first connect to it. You will use a URI to specify the location of the hypervisor. For KVM use a `qemu://` URI and for Xen use `xen://`. For backwards compatibility `virsh` will also accept just plain `xen`, which it will treat as `xen://`. If no connection option is given, `virsh` will try to connect to the URI given in the environment variable `LIBVIRT_DEFAULT_URI`. If none exists, it will probe the defaults in whatever hypervisor drivers it has available.

You can also make a connection to a remote server. For security reasons you will usually use SSH to do this by using an `xen+ssh://` or `qemu+ssh://` URI.

Connection URI Examples

Connect to the local Xen hypervisor:

```
xen://
```
Use SSH to connect to the Xen hypervisor running on xenhost.yoyodyne.com:

```
xen+ssh://xenhost.yoyodyne.com/
```

Connect as root to the local KVM hypervisor:
```
qemu:///system
```

Connect as an unprivileged user to the local KVM hypervisor:
```
qemu:///session
```

Use SSH to connect as user john to the KVM hypervisor on kvmhost.yoyodyne.com.
```
ssh+qemu:///john@kvmhost.yoyodyne.com/system
```

**Remote GUI control**

Installing the X Window System on your server nodes will consume resources you might rather give to a virtual machine, as well as increase the security risk to your servers. Instead, consider creating a server to control your nodes. That system can be a desktop system with a full X Window installation. Install the libvirtd tools and virt-manager to that system and use a URI connection string to connect to your client. Using SSH will keep the connection secure. Use the `VIRSH_DEFAULT_CONNECT_URI` environment variable to hold the connection string. `virsh` will look there before trying the default connection URIs.

You may have problems connecting with virt-manager over SSH. If you launch virt-manager as an unprivileged user, it will usually try to switch you to the root user. This will clear environment settings like your ssh-agent settings. If prompted for the root password, select the “run unprivileged” option. This will preserve your current SSH settings. You don’t need to run as root because you aren’t controlling a hypervisor on the local system. For privileged access you will connect to a privileged user on the remote node.

At this time, virt-manager does not support creating new guests on remote systems. But you can manage your system just fine.

**IP Forwarding and libvirt Networking**

libvirtd’s default network configures an isolated bridge device to be used by guest domains. This default bridge creates a private network for the virtual machines, but does not connect that private network to your physical network. The simplest way to complete that connection is to enable IP Forwarding in the kernel. You can quickly enable IP Forwarding using `sysctl` like so:

```
sysctl -w net.ipv4.ip_forward=1
```

To set your system to enable IP forwarding upon bootup, edit the `net.ipv4.ip_forward` setting in `/etc/sysctl.conf`.

While IP forwarding can get you running quickly, for production environments you probably want to configure a more robust bridge network. Information on creating bridge networks for libvirt can be found on the libvirt wiki at:

```
http://wiki.libvirt.org/page/Networking
```
libvirt and Virtual Machine Manager Commands

virsh

**libvirt** management interface. **virsh** uses the **libvirt** API to connect to a hypervisor and manipulate the configuration and state of virtual machines controlled by that hypervisor. If invoked with a command, it will execute the command and then exit. If invoked without a command, **virsh** enters a shell mode from which you can execute commands.

This manager will work with any hypervisor that has libvirt support. However, not all **virsh** commands are supported by all hypervisors. Nor will they work on all guests. Still, if a hypervisor can do something, you can generally use **virsh** to do it. Some hypervisors, including Xen, come with their own tools for managing virtual machines, but we still recommend you use **virsh** instead.

Most **virsh** commands expect a **domain** option. A domain refers to a virtual machine. You can use the virtual machine’s name or UUID. If the machine is running, it should also have an ID number within the hypervisor, and you can use this for the **domain** option as well. Use the **list** command to see names and IDs of domains managed by the hypervisor.

**Options**

- **--c uri, --connect=uri**
  
  Connect to a hypervisor specified by *uri*.

- **-d level, --debug=level**
  
  Set the level of debugging information to be printed to standard output. Accepted values are 0–5. 0 disables debugging messages and is the default. 5 prints all debugging messages.

- **-h, --help**
  
  Print a brief description of options and commands.

- **-l file, --log=file**
  
  Log debugging information and errors to the specified *file*.

- **-q, --quiet**
  
  Quiet mode. Do not print informational messages to standard output.

- **-r, --readonly**
  
  Connect to hypervisor in read-only mode.

- **-t, --timing**
  
  Print timing information.

- **-v, --version**
  
  Print version information, and exit.

**Commands**

- **attach-device domain xmlfile**
  
  Attach device defined in xmlfile to domain.
attach-disk domain source target [options]
Attach disk device to domain. source and target are paths for the files and devices.

Options
--driver name
Set the driver name attribute. Valid values include file, tap (network tap), or phy (physical).
--subdriver type
Set the driver type attribute. The valid values depend on the driver. It’s common to use aio with the tap driver.
--mode mode
Set the mode of device. Valid values include readonly and shareable.
--type type
Set the type of device. Valid values include cdrom and floppy.

attach-interface domain type source [options]
Attach interface device to domain. Usually type will be either network or bridge. The source is the host’s network or bridge device to which the virtual network should connect, or default, to use the default gateway.

Options
--mac macaddress
Assign an address to the virtual interface.
--target name
Assign the target interface name to use in the guest.
--script path
Provide the path to a script to handle the bridge.

autostart [--disable] domain
Automatically start domain at system boot.

capabilities
Print hypervisor capabilities in XML format.

connect [uri] [--readonly]
Connect or reconnect to a hypervisor.

console domain
If a serial console is available on domain, connect to it. Use ctrl-] to exit a console.

create xmlfile
Start a domain described in the specified xmlfile.

start domain
Start an inactive domain.

destroy domain
Immediately kill any running instance of the domain and free its resources to the hypervisor. (You usually want to use shutdown instead.)
**define xmlfile**
Add persistent domain information described in the specified XML file. The domain is added but not started.

**detach-device domain file**
Detach device device defined in file.

**detach-disk domain target**
Detach disk device target from domain.

**detach-interface domain type [--mac macaddress]**
Detach network interface from domain. Use macaddress to distinguish between multiple interfaces of the specified type.

**domblkstat domain device**
Print basic stats for block device on domain.

**domid domain**
Given the domain name, print the domain’s ID.

**domifstat domain interface**
Print basic stats for network interface device on domain.

**dominfo domain**
Print basic information on domain.

**domuuid domain**
Print the domain’s UUID.

**domname domain**
Given the domain ID, print the domain’s name.

**domstate domain**
Print the domain’s state.

**dump domain file**
Dump domain’s core to file.

**dumpxml domain**
Print the domain’s information in XML. Output is suitable for use with the create and define commands.

**freecell [number]**
Print available memory on the machine, or if specified, available memory in Non-Uniform Memory Access (NUMA) cell number.

**help [command]**
Print a list of available commands or information on a specified command.

**hostname**
Print the hypervisor’s hostname.

**list [option]**
Print a list of active domains and their current state. Use option --inactive to list inactive domains, or --all to list both active and inactive domains. There are six possible states: running, blocked, paused, shutdown, crashed, and dying.

**migrate [--live] domain destination [transport]**
Migrate a domain to a new destination host. The destination should be given as a connection URI. If the transport method differs it can be given as a separate URI, though this isn’t usually necessary. Use --live to migrate an active domain without interruption.
net-autostart [--disable] network
   Automatically start network at system boot.

net-create xmlfile
   Create and activate a network described in the specified xmlfile.

net-define xmlfile
   Define a network described in the specified xmlfile but don’t start it.

net-destroy network
   Immediately stop an active network.

net-dumpxml network
   Print the network’s information in XML.

net-list [option]
   Print a list of active networks. Use option --inactive to list inactive networks, or --all to list both active and inactive networks.

net-name uuid
   Print the name of the network specified by uuid.

net-start network
   Start a previously defined but inactive network.

net-undefine network
   Remove network’s definition.

net-uuid name
   Print the UUID of the network specified by name.

nodeinfo
   Print basic information about the physical system.

quit
   Exit virsh’s interactive terminal.

reboot domain
   Reboot the domain as if a reboot command was run from the console.

restore file
   Restore a domain from a domain state saved in file by the save command.

resume domain
   Resume execution of a suspended domain.

save domain file
   Save a domain’s state to file. This will suspend the domain, similar to hibernating a system.

schedinfo [options] domain
   Set or show CPU scheduler settings.

Options

   --weight n
      Set scheduler weight. Valid values of n are between 1 and 65535.

   --cap percent
      Set the maximum percent that any one physical CPU domain can consume.
setmem domain size
Change domain’s current memory allocation to the size given in kilobytes.

setmaxmem domain size
Change domain’s maximum memory allocation to the size given in kilobytes. The new size can’t be larger than was specified when the virtual machine was created.

setvcpus domain n
Change the number of active virtual CPUs. n cannot exceed the number of CPUs specified in domain’s configuration file at boot time.

shutdown domain
Shut down the domain as if the shutdown command was run from the console.

suspend domain
Pause execution of domain.

ttyconsole domain
Print domain’s tty console device if it has one.

undefine domain
Remove domain’s definition.

uri
Print hypervisor’s URI.

vcpuinfo domain
Print information about domain’s virtual CPU.

vcpupin domain vcpu cpulist
Control domain virtual CPU affinity. Assign the given vcpu number to the physical cpulist given as a comma-separated list of numbers or number ranges: e.g., 0,2 or 0–2,5,6.

version
Print library API version number and the hypervisor URI.

vncdisplay domain
Print the IP address and port number of domain’s display, if available.

virt-clone
virt-clone [options]
Clone a virtual machine. virt-clone copies hard drives and duplicates the virtual hardware configuration of an existing virtual machine. Elements that must be unique, such as the MAC address of a virtualized network interfaces, are updated so as to avoid conflicts with the old system. This system to be cloned must be shut off, as an active system cannot be safely cloned.

If no options are given, virt-clone will query for the needed information.

virt-clone writes debugging information to $HOME/virtinst/virt-clone.log.
Options

--connect=uri
The hypervisor connection uri.
-d, --debug
Print debugging information to standard output.
-f path, --file=path
The path to the file, disk partition, or logical volume to use to store the new guests virtual disk. If the original system has multiple disks, this option should be run once per disk.
--force
Run without prompting. Assume a yes response to any yes/no prompt. For all other prompts, exit.
-n name, --name=name
The new domain name for the copied system.
-o domain, --original=domain
The name or UUID of the original domain to copy.
--preserve-data
Preserves any data that exists on the target of an -f option.
-m address, --mac=address
The new hardware MAC address for the network interface on the copied system.
-u uuid, --uuid=uuid
The new uuid for the copied system. This is a 32-digit hexadecimal number. If not specified, a random UUID is used.

virt-image

Create a guest machine from the image descriptor in xmlfile. Attributes for the new guest are taken from the descriptor file, although some missing information can be provided on the command line. Command-line options supersede information in the image descriptor file.

Options

--boot=n
If image has multiple boot descriptors, use descriptor n. The first descriptor is descriptor 0. When omitted, the one that best fits the current hypervisor is chosen.
--check-cpu
Warn if the number of virtual CPUs for the guest exceeds the number of physical CPUs in the host system.
--connect=uri
The hypervisor connection uri.
-d, --debug
Print debugging information to standard output.
-h, --help
Print information on the command and options, then exit.
-k map, --keymap=map
  Set the map to use for the graphical console. By default, an English keymap is used.

-m address, --mac=address
  The hardware MAC address for the network interface on the copied system. If none is specified or the address is given as RANDOM, assign a random address.

-n name, --name=name
  The domain name for the new guest.

--noacpi
  Disable Advanced Configuration and Power Interface (ACPI).

--noapic
  Disable Advanced Programmable Interrupt Controller (APIC).

--nographics
  Do not set up graphic support.

-r size, --ram=size
  Allocate size in megabytes of memory for guest.

--sdl
  Use Simple DirectMedia Layer for graphic access.

-uuid, --uuid=uuid
  The uuid for the new guest system. This is a 32-digit hexadecimal number. If not specified, a random UUID is used.

--vnc
  Use permanent port n for VNC instead of a random port. Note that specifying a port may cause clashes with other guests.

--vncport=n
  Use port n for VNC. Note that specifying a port may cause clashes with other guests.

--vcpus n
  Configure the new system with n virtual CPUs.

-w type[:name], --network=type[:name]
  Configure the guest’s network connection. The type of network may be bridge, network, or user. For bridge and network you should also provide the network name as configured in the hypervisor. (Use virsh net-list to see configured network names.) user is supported by qemu’s unprivileged mode. It provides limited NAT by way of SliRP, a SLIP/PPP emulator.

<table>
<thead>
<tr>
<th><strong>virt-install</strong></th>
<th><strong>virt-install [options]</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a guest machine completely from the command line. Virt-install does not require an XML image descriptor file. <strong>virt-install</strong> will prompt for any required information not provided on the command line. Following is the required information.</td>
<td></td>
</tr>
</tbody>
</table>
Options
--accelerate
Use KVM or QEMU kernel acceleration if available. Recommended when the guest OS is compatible.

--boot=n
If an image has multiple boot descriptors, use descriptor n. The first descriptor is descriptor 0. When omitted, the one that best fits the current hypervisor is chosen.

-c path, --cdrom=path
File to use for virtual CDROM device. The file may be an ISO file, CDROM device, or a URL that refers to an ISO image to fetch.

--check-cpu
Warn if the number of virtual CPUs for the guest exceeds the number of physical CPUs in the host system.

--connect=uri
The hypervisor connection uri.

--cpuset=set
Allow guest to use only the given set of CPUs. A set is a comma-separated list of numbers or number ranges: e.g., 0,2 or 0–2,5,6.

-d, --debug
Print debugging information to standard output.

-f path, --file=path
Required. The path to the file, disk partition, or logical volume to use to store the new guest’s virtual disk. If the original system has multiple disks, this option should be given once per disk.

-h, --help
Print information on the command and options, then exit.

-k map, --keymap=map
Set the keymap to use for the virtual console. By default, an English keymap is used.

-l path, --location=path
Specify the location of the installation source. path may be given as a URI. Use this instead of -c when installing from a kernel/initrd pair instead of a CDROM. Required for installing paravirtualized guests.

--livecd
The guest will always use a live CDROM image. Configure guest to boot from CDROM drive by default. Commonly used with --nodisks option.

-m address, --mac=address
The hardware MAC address for the network interface on the copied system. If none is specified or address is given as RANDOM, assign a random address.

-n name, --name=name
Required. The domain name for the new guest.
--noacpi
Disable Advanced Configuration and Power Interface (ACPI).

--noapic
Disable Advanced Programmable Interrupt Controller (APIC).

--noautoconsole
Don’t automatically launch a console for the installation. By default, `virt-install` launches a VNC client or `virsh console` to connect to the guest.

--nodisks
Guest is being created without disks. Do not prompt for disk setup.

--nographics
Don’t prompt for virtual console setup if neither --sdl nor --vnc is specified. Set up a text based console on the first serial port (or equivalent console device) instead.

--nonsparse
Fully allocate space for the virtual disk. This takes longer to initialize, but results in a faster disk and ensures you don’t run out of space. Recommended.

--os-type=type
Optimize guest for the specified guest OS type. Valid values for type include `linux`, `windows`, `unix`, and `other`.

-p, --paravirt
Guest will be a paravirtualized system.

--pxe
Use PXE boot protocol to load initial kernel.

-r size, --ram=size
Required. Allocate size in megabytes of memory for guest.

-s size, --file-size=size
Required when creating a new file. Create a file of size in gigabytes. Size may be given as a decimal, for example: 2.5. By default, virt-install creates a sparse file. The full size will be allocated, though, if used with the --nonsparse option.

--sdl
Set up a virtual console and export it using Simple Direct-Media Layer (SDL).

-u uuid, --uuid=uuid
The uuid for the new guest system. This is a 32-digit hexadecimal number. If not specified, a random UUID is used.

-v, --hvm
Configure guest with full virtualization. Don’t use paravirtualization if available.

--vnc
Set up a virtual console and export it using VNC.

--vncport=n
Use permanent port n for VNC instead of a random port. Note that specifying a port may cause clashes with other guests.
--vcpus $n$
Configure new system with $n$ virtual CPUs.

-w type[:name], --network=type[:name]
Configure guest’s network connection. The type of network may be bridge, network, or user. For bridge and network you should also provide the network name as configured in the hypervisor. (Use virsh net-list to see configured network names.) user is supported by qemu’s unprivileged mode. It provides limited NAT by way of SliRP, a SLIP/PPP emulator. If this option is omitted, a single NIC is created to a bridge device or to the default network. Specify the option multiple times to set up multiple network interfaces.

-x kernelargs, --extra-args=kernelargs
Pass additional kernel arguments to a Linux kernel. Used with the -l option. Commonly used to pass a Kickstart file to the kernel.

virt-viewer virt-viewer [options] domain
Use VNC to open the console of a virtual machine. The domain may be given by name, ID, or UUID.

Options
--c uri, --connect=uri
Connect to a hypervisor specified by uri.
--d, --direct
Don’t tunnel the VNC connection over SSH, even if the connection URI uses SSH.
--v, --verbose
Print information about the connection to standard output.
--w, --wait
Wait for the domain to start up before connecting to the console.

virt-manager virt-manager [options]
Launch GUI virtual machine manager. This manager visually displays domain and hypervisor stats. Like virsh, it can manage domains, and when run on the same system as the hypervisor, it can even be used to configure new systems. It has a couple of useful options for controlling how it starts.

Options
--c uri, --connect=uri
Connect to a hypervisor specified by uri.
--no-fork
Run without forking a new process. This can be useful for debugging connection problems.
VMware ESX 3.5

While VMware isn’t exactly a Linux product and isn’t free, it does provide access to a Service Console, which is something like Xen’s Domain-0. The Service Console runs a modified version of Red Hat Enterprise Server 3.0. So even though it is a commercial product, we want to include some information on it in this chapter.

Here, we will cover useful Service Console commands for administrators using the commercial ESX 3.5 product. VMware has also provided a free version of ESX, named ESXi. ESXi does not technically have a Service Console, though you can launch an unsupported Linux interface similar to the Service Console that has many of the same commands. Many of the commands listed in this section will work in the unsupported console, although in keeping with the unsupported nature of this console, nothing is guaranteed. VMware also provides a remote command line interface (rCLI), which is a collection of Perl utilities that mostly mimic the Service Console commands.

As we are writing this, VMware is preparing to release vSphere, the new version of ESX. It too, has a Service Console and remote CLI, the vCLI. VMware has deprecated some commands in vSphere moving functionality to the vCLI. still, they continue to provide the Service Console for troubleshooting and technical support sessions. Most of what we document here still works in vSphere.

You will need to install ESX or ESXi on a bare system. Its installation is nearly identical to an older Red Hat installation. Given your network information, it should be able to configure a default network switch that will provide your guest systems with network access.

ESX Management Client

While we cover some of the common commands below, you won’t use these for most of your management tasks. Once installed and booted, the initial screen will give you a URL you can connect to in order to perform some basic configuration. That URL will also direct you to where you can find a Virtual Infrastructure Client (VI Client) to manage your ESX server. It’s that client you will use to manage your servers. VI Client runs on Microsoft Windows.

Virtual Center

If you are using VMware servers, you are probably going to use multiple servers to take advantage of the High Availability features VMware offers, such as Vmotion. To coordinate those servers you will need to run a Microsoft Windows Server system with VMware’s virtual center installed. It’s rumored that vSphere will have a Linux-based Virtual Center, but this has not been announced for the initial release. It still requires Microsoft Windows.

VMware is GUI driven and VMware expects you will primarily use VI Client to interact with your systems. You will need to run at least one windows system to manage VMware ESX servers. The Service Console won’t let you get around this requirement. However, when your network stops working right or you need to take a closer look at a system’s performance, you will be glad to have the service console available.
VMware Networking

When configuring a virtual network switch, you will configure three different network connection types: Virtual Machine, VMkernel, and Service Console. VMware refers to these as different kinds of *port groups*. A port group specifies port configuration options, such as VLAN tagging or bandwidth limitations for devices assigned to that group. The switch handles the mapping of virtual devices to physical devices. In a default installation of ESX you should have a Service Console and Virtual Machine port group.

The **Service Console** port group provides network access to the service console and is used by the virtual center or VI Client to control the server. The **Virtual Machine** port group is a default port group that will bridge your virtual machines to your physical network devices. Each network card on a virtual machine must be assigned to a virtual machine port group. For a high availability cluster of ESX servers, you will need to add a **VMkernel** port group as well. This is the port group the hypervisors will use to speak with each other and for moving virtual machines between servers.

Physical interfaces on a server are given a name beginning with `vmnic`. The service console’s interfaces are given names beginning with `vswif`. Both of these will show up if you run `ifconfig` from the service console.

We won’t cover virtual switch configuration further, but these terms will help you better understand the network and switch-related commands.

**Shared Disks**

To run multiple ESX servers, you need a shared data store. It can be SAN-based block storage (e.g., Fibre Channel or iSCSI) or a NAS connection (NFS), but you need some place the servers can all access the same data. For block storage, VMware uses a shared filesystem, `vmfs`, which is designed to handle multiple systems reading and writing to the same drive.

**Snapshots**

ESX can take snapshots of a running system. This process essentially freezes machine state and begins tracking changes to the system in a separate file. Later you can apply those changes or discard them to revert your system to the state it had when you took the snapshot. This is commonly used to test a configuration change or system update.

Because it preserves a system’s state at a specific time, you want your virtual machine doing as little as possible when taking the snapshot. Activity such as network file transfers and database transactions will fail if you decide to revert to the snapshot. Depending on virtual machine configuration, some disk activity may not be included in the snapshot.

The file tracking changes can grow quickly, so you will need sufficient space to hold the file, and you will probably not want to keep snapshots for very long. Having a snapshot may also limit your ability to migrate a system between servers.
Restoring the snapshot on a new system may not work. VMware will generate warnings when you try to migrate a system with a snapshot. Generally you want to remove all snapshots before migration.

**VMware Tools**

Paravirtualization on ESX depends on VMware tools. This is a collection of drivers and daemons that allow the hypervisor to communicate with the guest system. VMware tools can synchronize the guests clock with the ESX server’s clock, initiate graceful shutdowns when needed, provide better access to an X Window System running on a guest, and more. You almost always want to install these.

**ESX Server Commands**

Most commands for ESX server begin with either `vm` or `esx`. Commands that begin with `vm` all have something to do with manipulating virtual machines. Commands that begin with `esx` manipulate the server and its configuration. The commands may have more options than those we document here. Here, we focus on the most useful commands and command options.

```
esxcfg-firewall esxcfg-firewall [options]
```

Configure a firewall for the service console. ESX uses `iptables` to provide the firewall. Don’t use the `iptables` command to configure it, though; use this command instead. In its default configuration, it denies all incoming or outgoing connections except for the ports required for the server to function:

```
--allowIncoming
 Allow incoming connections by default.

--allowOutgoing
 Allow outgoing connections by default.

--blockIncoming
 Block incoming connections by default.

--blockOutgoing
 Block outgoing connections by default.

-c port type direction, --close port type direction
 Close a port. The type may be tcp or udp, The direction may be in or out.

-d [service], --disableService [service]
 Close the ports required by the specified service.

-e [service], --enableService [service]
 Open the ports required by the specified service.

-h, --help
 Print a usage message. This is the default if no options are given.

-l, --load
 Load current firewall settings into `iptables`.
```
esxcfg-vswif | 865

esxcfg-vswif options [interface]
Configure the service console network interface. Don’t use ifconfig or manipulate /etc/sysconfig/network-script files directly; use this command instead. Service console interface names start with vswif followed by a number. For example: vswif0 or vswif1.

Options
-a, --add
Add a service console interface. Requires the --ip and --port-group options.
-b address, --broadcast address
Set the broadcast address.
-d, --del
Remove a service console interface.
-D, --disable-all
Disable all service console interfaces.
-e, --enable
Enable a disabled interface.
-E, --enable-all
Enable all service console interfaces.
-i address, --ip address
Set the IP address for the interface. You can also specify DHCP for address.
-l, --list
List service console interfaces along with current configuration and state.
-n mask, --netmask mask
Set the netmask.

Example
Allow vmware-cmd to connect to remote hosts by opening outgoing connections to port 443:

# esxcfg-firewall -o 443,tcp,out,vmware-cmd
-p name, --portgroup name
  Set the interface’s portgroup name.

-s, --disable
  Disable an interface.

**esxcfg-vswitch**

```
esxcfg-vswitch options [switch]
```

Configure a virtual switch. The virtual switch handles port groups and VLAN tagging, and sets the uplink for virtual port groups. By default, there is a single virtual switch: vSwitch0. You can add additional switches and assign them to different physical network interfaces.

**Options**

-a, --add
  Add a new virtual switch. You must provide a switch name.

-A name, --add-pg name
  Add port group name to the switch.

-b, --get-cdp
  Print the current Cisco Discovery Protocol (CDP) for the switch.

-B status, --set-cdp status
  Set the CDP status for the switch. This may be down, listen, advertise, or both.

-d, --delete
  Delete a virtual switch. If the switch has any ports in use, this will fail.

-D name, --del-pg name
  Remove port group name from the switch.

-l, --list
  List switches and their port groups.

-L interface, --link interface
  Attach an uplink interface to a virtual switch. This should be an unused physical interface or vmnic.

-m size, --mtu size
  Set the size of the Maximum Transfer Unit (MTU) for the switch. This will affect all interfaces attached to the virtual switch.

-M interface, --add-pg-uplink interface
  Add an uplink interface to a port group.

-N interface, --del-pg-uplink interface
  Remove an uplink interface from a port group.

-p name, --pg name
  Specify name of the port group to use with the --vlan option. Specify ALL to apply to all port groups on the switch.

-U interface, --unlink interface
  Remove an uplink interface from a virtual switch.

-v id, --vlan id
  Set the VLAN id for a port group. Use with the --pg option. Setting id to 0 disables VLAN tagging for the port group.
esxtop

Display information about physical network interfaces and manage some interface settings.

Options
-a, --auto
Set the interface to auto-negotiate speed and duplex settings.
-d mode, --duplex mode
Set duplex mode for the interface. Value may be full or half.
-l, --list
Print current configuration of all network interfaces on the system.
-s n, --speed n
Set the speed of the interface to n. Valid values are 10, 100, 1000, or 10000 and are measured in megabits per second.

esxtop

Provide frequently updated information about resource usage on the ESX server. This program performs a function similar to the Linux top command. Where top shows information on processes and process IDs, esxtop shows information on hypervisor resource pools, and resource pool groups. A resource pool is any item the hypervisor must schedule. For example, each virtual CPU, has a resource pool ID, and each virtual processor on a single virtual machine belongs to the same resource pool group.
esxtop’s various options change what information is displayed. Like top, esxtop also offers interactive commands to change what information it displays as it runs. esxtop has more interactive commands than we’ll show here. We are just covering the basic screens and common commands. The h command, however, will always show you the currently valid interactive commands.

Options
-a Override configuration file settings and show all statistics.
b Run in batch mode; don’t accept command-line input. Useful for sending output to another command or to a file.
c file
Use alternative configuration file. This also becomes the default file for the interactive command W.
d seconds
Set the delay between refreshes. Default is 3.
n num
Update display num times, then exit.
s Secure mode. Disable the interactive command s.
**Interactive commands**

```
Prompt for number of rows to show.
c Switch to CPU resource screen.
d Switch to storage device screen.
f, F Add or remove fields.
h Show information on currently available commands.
m Switch to memory resource screen.
o, O Change field order.
Q, Esc Quit.
s Prompt for a new delay setting.
n Switch to network resource usage screen.
v Switch to virtual machine disk usage screen.
W Write a configuration file matching current setup to ~/.esxtop3rc.
```

---

**vmware-cmd**

`vmware-cmd [options][vmxpath command]`

Console-based virtual machine manager. This command can work on the local system, or connect to a remote system using the Simple Object Access Protocol (SOAP). To connect to a remote system you may need to alter your firewall settings on the system issuing the commands so that it will allow outgoing connections to port 443. See the example in `esxcfg-firewall`.

The guest you want to work on is identified by the full path to its `.vmx` configuration file (`vmxpath`). The path must include the UUID of the vmfs volume and so can be quite long. Use the `-l` option to get the correct path for all registered virtual machines. While `vmware-cmd` has options for getting and setting virtual machine configuration values, we don’t cover those here.

**Options**

```
-h Print basic usage and commands.
-H host
 Connect to remote host. This can be given as a domain name
 or IP address.
-s [un]register configfile
 Add or remove the guest described in .vmx file found at path
 from server control.
-l List virtual machines registered with server.
-O port
 Connect to alternative port, specified by port number. The
 default is port 443.
-P password
 Provide password for the user specified in the -U option.
```
-q  Quiet mode. Minimize output.
-U username
    Connect with the given username.
-v  Verbose mode.

**Command**

Return values for the command generally show the command function and whether they succeed (value 1) or fail (value 0.) Power-related commands generally take an option power operation *mode* of **soft**, **hard**, or **trysoft**. **soft** power operations use **vmware-tools** to generally do the right thing to the guest, such as gracefully shutting it down before pulling the virtual plug, or running special scripts to prepare the system for suspension. **hard** operations just perform the requested action immediately. **trysoft** operations will attempt to use **vmware-tools** for its operations, but if that fails, will force the operation without using tools.

**connectdevice name**
    Connect device *name* to system. Valid device names can be found in the system’s .vmx configuration file.

**createsnapshot name description quiesce memory**
    Take a snapshot of the system, setting the new snapshot’s *name* and *description*. If these values contain spaces, enclose them in quotes. You can quiesce drive activity and save memory state while taking the snapshot. *quiesce* and *memory* should be 0 for false or 1 for true. You usually will want both to be 1.

**getstate**
    Report whether the virtual machine is off, on, suspended, or stuck.

**getuptime**
    Report how long, in minutes, a machine has been running.

**hassnapshot**
    Report whether virtual machine has a snapshot.

**reset [mode]**
    Restart virtual machine.

**removesnapshots**
    Apply saved changes and delete all snapshots.

**revertsnapshot**
    Discard changes and restore virtual machine to most recent snapshot. Begin tracking changes again from the snapshot state.

**start [mode]**
    Power up virtual machine.

**stop [mode]**
    Power off virtual machine.

**suspend**
    Save virtual machine’s state and suspend its operation.
Examples
List registered virtual machines:

```bash
vmware-cmd -l
```

Register the yoyodyne system with the hypervisor:

```bash
vmware-cmd -s register /vmfs/volumes/uuid/yoyodyne/yoyodyne.vmx
```

Start a registered virtual machine:

```bash
vmware-cmd /vmfs/volumes/uuid/yoyodyne/yoyodyne.vmx start
```

Create a snapshot of the yoyodyne system:

```bash
vmware-cmd /vmfs/volumes/uuid/yoyodyne/yoyodyne.vmx createsnapshot beforeupdate "state before system update" 1 1
```

Connect a virtual IDE CDROM to yoyodyne system:

```bash
vmware-cmd /vmfs/volumes/uuid/yoyodyne/yoyodyne.vmx \nconnectdevice ide0:0
```

---

**vmkfstools**

`vmkfstools options [target]`

Manipulate disk images and vmfs filesystems. As with other commands, you generally use VI Client to perform these tasks. But you must use the command line when importing a disk from another VMware product, such as VMware Workstation. Use this command to create or extend a VMFS system or to extend, rename, or remove a disk image. It can also set or query disk image properties. Use `vmkfstools` instead of `mv` and `cp` to move and copy virtual disks.

You generally do not want to perform virtual disk operations on disks currently in use by a virtual machine. Shut down virtual machines first. Changes in a virtual disk will often require changes in a virtual machine’s configuration or changes in the virtual machine’s operating system. One example is changing virtual machine partition information to take advantage of an extended disk.

**Targets**

The `target` will be a device, partition, or file, depending on what you intend to do.

**device**

A device `target` will begin with `/vmfs/devices/`, the mount point of the device filesystem. This will include SAN-based disks, logical volumes, and SCSI devices attached to the ESX server.

**partition**

A partition `target` begins with `vmhba` followed by numbers that signify `adapter:target: LUN:partition:[filepath]`. For example, `vmhba0:1:14:2` would be the 2nd partition of LUN 14 on target 1 HBA 0. You can also target a file on a partition by appending the `filepath`.

**path**

A path `target` is simply a path to a `.vmdk` virtual disk file. This path can be given relative to the `/vmfs` directory. The path to the file target isn’t required if it is in the current working directory.
Options
We have grouped options that are commonly used together, generally following the order used in the manpages.

VMFS options:
- **-b size, --blocksize size**
  Set new VMFS volume block size. Default is 1m for 1 megabyte. Other valid options are 2m, 4m and 8m. Used with the -C option.

- **-C type, --createfs type**
  Create a VMFS filesystem on a partition target. In ESX 3.5, the only valid type is vmfs3.

- **-S label, --setfsname label**
  Set the label for a new VMFS filesystem. This is used only with the -C option.

- **-Z partition, --extendfs partition**
  Extend existing vmfs3 filesystem by adding the specified partition to it. vmfs3 filesystems can have at most 32 partitions.

- **-P, --queryfs**
  List attributes of a VMFS filesystem. The target of this command may be the path to any directory or file on a VMFS filesystem.

- **-h, --human-readable**
  Used in conjunction with the -P option. Print sizes in a more easily read form.

Virtual disk options:
- **-c size, --createvirtualdisk size**
  Create a new virtual disk of the specified size in bytes (by default). You can also append g, m, or k to give numbers in gigabytes, megabytes, or kilobytes, respectively. For example: 8g for 8 gigabytes.

- **-a [type], --adaptertype [type]**
  Specify adapter type to use with the virtual disk. The only valid types are buslogic or lsilogic. Default is buslogic, but for Linux you probably want lsilogic.

- **-d format, --diskformat format**
  Set virtual disk format. This option is used when creating and cloning virtual disks (-c and -i options). See later options for valid virtual disk formats. When cloning, this option can be used to specify the format of the target disk; for example, when cloning a VMFS virtual disk file to a 2 GB sparse file useable by other VMware products.

- **-U, --deletevirtualdisk**
  Delete a virtual disk and any associated files.

- **-E source, --renamevirtualdisk source**
  Rename source virtual disk and associated files to target.
-i source, --clonevirtualdisk source
Clone source virtual disk and associated files to target. This is commonly used to import disks from other VMware products. You can use -d to specify the format of the source.

-X size, --extendvirtualdisk size
Extend an existing disk to the specified size in bytes (by default). You can also append g, m, or k to give numbers in gigabytes, megabytes, or kilobytes respectively. This action will break snapshots and the guest will need some way to recognize and take advantage of the new disk size (such as by resizing a partition with resize2fs).

-r device, --createrdm device
Create a virtual raw device mapping. (See the following section, “Virtual disk formats.”) Give device as the full path to a device under /vmfs/devices.

-q, --queryrdm
Print attributes of an existing raw disk mapping.

-z device, --createrdmpassthrough device
Create a physical raw device mapping. (See the following section, “Virtual disk formats.”) Give device as the full path to a device under /vmfs/devices.

-g, --geometry
Print geometry information for a virtual disk.

-w, --writezeroes
Initialize a virtual disk with zeroes. This will wipe any existing data from the disk.

-j, --inflatedisk
Convert a thin virtual disk to a preallocated virtual disk, preserving existing data and zeroing out unallocated blocks.

Virtual disk formats
This section lists the valid target disk formats to use with the -d option when creating or cloning a virtual disk. Created disks may be in any of the ESX vmdk formats. When cloning a disk, use -d if you need to export to an alternate format or target a raw device.

ESX vmdk formats:
zeroedthick
Allocate all space and wipe any previous contents of that space during virtual machine read and write operations. This is the default format.

eagerzeroedthick
Like zeroedthick, only the allocated space is wiped at creation time.

thick
Allocate all space, but don’t bother cleaning any existing content on the disk.

thin
Supply and zero out space for the filesystem as it is used by the virtual machine.
VMware compatible formats:

2gbsparse
Sparse disk with 2 GB maximum extent size (the Virtual disk will be split into 2 GB sections). This is a useful format when writing to disks that don't support files larger than 2 GB.

monosparse
One monolithic disk file.

monoflat
One monolithic flat file.

Raw device mappings:

rdm:device
Virtual raw device mapping. These are treated by a guest as any other virtual disk.

rdmp:device
Physical raw device mapping. A virtual machine is given direct access to a physical raw device and interacts with it as it would any SCSI device. LUN listing requests are virtualized, however, so only the system that owns the virtual device can access it.

raw:device
A raw SCSI device, like a tape archive or an unmapped LUN.

Examples
Export a VMFS virtual disk to 2 GB sparse file:

```
vmkfstools -i original.vmdk -d 2gbsparse new.vmdk
```
We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols

& (ampersand)
  background execution, 601, 602
  command redirection, 603
  repeat substitute command in ex, 710
  reuse text matched by pattern, 657

&& (ampersand, double)
  AND operator for commands, 602
  AND operator, in expressions, 620, 732

< or > (angle brackets)
  command redirection, 601, 602–604
  shift commands in ex, 710

* (asterisk)
  match multiple instances of a character, 655
  in filename, 599
  multiplication operator, 732

** (asterisk, double)
  exponentiation operator, 732
  *= (asterisk, equals sign) assignment operator, 732
  () (asterisk, parentheses) in filename, 600
  **= (asterisks, equals sign) assignment operator, 732

@ (at sign)
  execute register command in ex, 710
  @() (at sign, parentheses) in filename, 600

\ (backslash)
  escape character, Bash shell, 601
  escape character, pattern matching, 657
  escape character, prompt strings, 612

< or > (backslash, angle brackets)
  match beginning or end of word, 656

' (backslash, apostrophe)
  escape character, pattern matching, 656

( backtick, backtick)
  escape character, pattern matching, 656

{...} (backslash, braces)
  enclosing range of characters to match, 655

(... ) (backslash parentheses)
  enclosing pattern address in sed, 714

{... } (braces)
  enclosing command grouping, 602
  enclosing nested pattern address in sed, 714
  enclosing procedures in gawk, 729
  enclosing range of characters to match, 655
[... (brackets) enclosing array elements, 611
enclosing characters to match, 655
enclosing expressions, 647–650
in filename, 599
[[...]] (brackets, double) enclosing expressions, 620
^ (caret) match at beginning of line or string, 655
exponentiation operator, 732
^= (caret, equals sign) assignment operator, 732
: (colon) null command, 620
preceding ex commands, 696
preceding label, sed, 717
$(dollar sign) field reference, 732
last input line as pattern address in sed, 714
match at end of line or string, 655
preceding built-in variables, 607
preceding macros in ftp, 149
variable substitution, 601
${...} (dollar sign, braces) enclosing arrays, 611
enclosing variable substitution, 606
$(()) (dollar sign, double parentheses) arithmetic substitution, 602, 613
$() (dollar sign, parentheses) command substitution, 602
. (dot) end message, mailx, 267
match single character, 655
read and execute file command, 620
"..." (double quotes) enclosing special characters, 601
= (equals sign) assignment operator, 732
print line number command in ex, 710
command in sed, 716, 717
! (exclamation point) execute command in ex, 709
execute command, mailx, 269
history expansion character, 614
logical negation character, 614
negating pipeline, 619
NOT operator for commands, 602
preceding commands in ftp, 149
!= (exclamation point, equal) not equal operator, 732
!() (exclamation point, parentheses) in filename, 600
!~ (exclamation point, tilde) match negation of regular expression, 732
# (hash sign) preceding comments in gawk, 738
preceding comments in LILO configuration file, 507
preceding comments in sed scripts, 717
preceding comments in shell scripts, 619
- (hyphen) previous command, mailx, 269
subtraction operator, 732
unary minus operator, 732
- (hyphen, double) decrement operator, 732
-= (hyphen, equals sign) assignment operator, 732
- or -- (hyphen(s)) preceding command options, 33
< (left angle bracket) less than operator, 620, 732
<= (left angle bracket, equals sign) less than or equal operator, 732
(…) (parentheses) enclosing group of commands, 601, 602
enclosing group of regular expressions, 656
% (percent sign) preceding job ID in commands, 617
reuse previous replacement pattern, 657
modulo operator, 732
%=(percent sign, equals sign) assignment operator, 732
+ (plus sign) addition operator, 732
match one or more instances, 656
unary plus operator, 732
++ (plus sign, double) increment operator, 732
+= (plus sign, equals sign) assignment operator, 732
+() (plus sign, parentheses) in filename, 600
? (question mark)
   in filename, 599
   help command, mailx, 269
   match zero or one instance, 656
?: (question mark, colon) conditional expression, 732
?() (question mark, parentheses) in filename, 600
> (right angle bracket)
   greater than operator, 620, 732
   output redirection, 746
>> (right angle bracket, double) append output, 746
>= (right angle bracket, equals sign)
   greater than or equal operator, 732
> or >> (right angle brackets) in cat command, 68
; (semicolon) command separator, 601, 602
'...' (single quotes) enclosing special characters, 601
/ (slash) division operator, 732
/= (slash, equals sign) assignment operator, 732
/.../ (slashes) enclosing pattern address in sed, 714
~ (tilde)
   in filename, 599
   match regular expression, 732
   tilde escape commands, mailx, 268
   replace regular expression command in ex, 710
   reuse previous replacement pattern, 657
~+ (tilde, plus sign) in filename, 599
| (vertical bar)
   match either one or the other, 656
   output directed to next command, 746
   pipe character, 601, 602
& (vertical bar, ampersand) output directed to coprocess, 735, 746
|| (vertical bar, double)
   OR operator for commands, 602
   OR operator, in expressions, 620, 732

A
\a alert escape sequence, 601, 715, 733, 612
a command, sed, 716, 718
\A time escape sequence, 612
abbreviate command, ex, 697
accept command, 34
access command, 34
access mode for files, checking, 34
access permissions, changing, 80
account command, ftp, 149
account command, mailx, 269
aclocal command, 34
acconnect command, 35
ACPI (Advanced Configuration and Power Interface)
   displaying information about, 35
events from, informing user programs of, 36
acpi command, 35
acpid daemon, 36
add command, git, 812
add command, svn, 767
addition operator (+), 732
addr add command, ip, 212
addr del command, ip, 212
addr show command, ip, 212
addr2line command, 37
Address Resolution Protocol (ARP), 22, 49
addresses of lines, ex, 696, 710
addresses, program, translating to filenames and line numbers, 37
Advanced Configuration and Power Interface (see ACPI)
Advanced Linux Sound Architecture (see ALSA)
Advanced Package Tool (see APT)
Advanced Power Management (APM) hardware, handling events from, 45
agetty command, 38
alias command, Bash, 620
alias command, lftp, 245
alias command, mailx, 269
aliases
   assigning, 620
   removing, 653
aliases database, rebuilding, 308
alnum character class, 600, 656
alpha character class, 600, 656
ALSA (Advanced Linux Sound Architecture)
MIDI files
   playing, 44
   recording, 48
mixer
   connecting to one or more sound cards, 40
   controlling, 41
   ports, reading and writing MIDI files to, 40
   sound cards, advanced configuration settings for, 39
sound files
   playing, 43
   recording, 48
alsactl command, 39
alsamixer command, 40
alternates (alt) command, mailx, 269
amidi command, 40
amixer command, 41
ampersand (&)
   background execution, 601, 602
   command redirection, 603
   repeat substitute command in ex, 710
   reuse text matched by pattern, 657
ampersand, double (&&)
   AND operator, in expression, 620
   AND operator, in expressions, 732
   for commands, 602
anacron command, 43
and() function, gawk, 738
AND operator (&&)
   for commands, 602
   in expression, 620
angle brackets (< or >)
   command redirection, 601, 602–604
   shift commands in ex, 710
   (see also left angle bracket; right angle bracket)
anon command, lftp, 245
ANSI/VT100 terminal emulation, 379–384
Apache web server
   benefits of using with Linux, 3
   user authentication files for, creating or updating, 199
aplay command, 43
aplaymidi command, 44
APM (Advanced Power Management)
   hardware, handling events from, 45
apmd command, 45
append command, ex, 698
append command, ftp, 149
apropos command, 46
AFT (Advanced Package Tool), 46, 544
   (see also aptitude command, Debian; synaptic command, Debian)
ap command, 46
apt-cache command, Debian, 569–571
apt-cdrom command, Debian, 571
apt-config command, Debian, 572
apt-extracttemplates command, Debian, 573
apt-file script, Debian, 568
apt-ftparchive command, Debian, 574
apt-get command, Debian, 575–579
aptitude command, Debian, 544, 579–583
apt-redepends script, Debian, 568
apt-sortpkg command, Debian, 579
ar command, 47
arch command, 48
Arch system, 753
architecture for package, 543
architecture type, printing, 48
archive command, git, 813
archives
   copying files to or from tape or disk, 89–92
   copying files to or restoring from, 431–437
   of Debian packages, 566
   index for, generating, 347
   maintaining, 47
   of RPM packages, 552
   (see also packages)
arerecord command, 48
arerecordmidid command, 48
args command, ex, 698
arguments on command-line
   checking, 633
   printing, 494
   shifting, 643
arithmetic expressions, 602, 613, 636
arithmetic for loop, 632
ARP (Address Resolution Protocol), 22, 49
arp command, 49
arrays
  Bash, 611, 637
gawk, 733
AS (autonomous system), 25
as command, 50
ASCII codes of keys, printing, 399
ascii command, lftp, 149
ASCII format, displaying files in, 196
asort() function, gawk, 738
asorti() function, gawk, 738
assembly source files, generating object files from, 50
assignment operators, gawk, 732
associative arrays
  Bash, 611
gawk, 733
asterisk (*)
  in filename, 599
  match multiple instances of a character, 655
  multiplication operator, 732
asterisk, double (**), exponentiation operator, 732
asterisk, equals sign (*=), assignment operator, 732
asterisk, parentheses (*()), in filename, 600
asterisks, equals sign (**=), assignment operator, 732
at command
  at command, 51
  at command, lftp, 245
at sign (@)
  at sign, execute register command in ex, 710
  at sign, parentheses (@()), in filename, 600
atan2() function, gawk, 739
atd command, 53
atq command, 53
atrm command, 53
audio files
  playing, 43
  recording, 48
  recording to CDs, 69–71, 75, 484–488
  recording to DVDs, 125, 484–488
authentication
  adding RSA or DSA identities to agent, 409
  gathering keys from multiple hosts, 411
  hold private keys for public key authentication, 410
  keys, managing, 410
author command, svnlook, 800
autoconf command, 34, 53
autoheader command, 54
automake command, 55
autoreconf command, 56
auto_resume built-in variable, 611
autoscan command, 57
autoupdate command, 58
awk, GNU (see gawk language)
  AWKPATH environment variable, 736

B
  \b backspace escape sequence, 601, 733
  b command, sed, 717, 718
  \B escape sequence, 656, 715
  \b escape sequence, 656, 715
background execution of commands, 601, 602, 621, 653
backing up files, 122–123
backslash (\)
  escape character, Bash shell, 601
  escape character, pattern matching, 657
  escape character, prompt strings, 612
backslash, angle brackets (\< or \>), match beginning or end of word, 656
backslash, apostrophe (‘), escape character, pattern matching, 656
backslash, backtick (‘), escape character, pattern matching, 656
backslash, braces (\{...\}) enclosing range of characters to match, 655
backslash parentheses (\(...\)), save enclosed subpattern, 656
backslash, semicolon (\;...;), enclosing pattern address in sed, 714
backtick (’), command substitution, 601, 602
backup files, restoring, 357–359
badblocks command, 58
base64 command, 59
basename command, 59
BASH built-in variable, 608
Bash shell, 60, 596–653
arguments for, 599
arithmetic expressions, 602, 613, 636
arrays, 611
background execution, 601, 621
built-in commands, executing
bypassing functions, 622
built-in variables, 607–611
command classes, 600
command execution, 618
command forms, 602
command history, 614–617, 631, 634
command redirection, 601, 602–604
command substitution, 601, 602
command-line options for, 598
commands, enabling or disabling, 629
commands, list of, 619–653
coprocesses, 604
debugger, 608
escape character, 601
filenames, metacharacters for, 599
functions, 605
help on commands for, 634
home directories for, 599
invoking, 597–599
job control, 617
line-edit mode, 614
options for, setting or unsetting, 643–647
POSIX notation in, 600
programmable
completion, 615–617, 624–626
prompt strings, 612
quoting special characters in, 600
restricted shells, 619
startup files for, 599
suspending, 647
variable substitution, 601, 606
version of, covered in this book, 596
websites about, 597
BASH_ARGC built-in variable, 608
BASH_ARGV built-in variable, 608
BASH_COMMAND built-in variable, 608
BASH_EXECUTION_STRING built-in variable, 608
BASH_LINENO built-in variable, 608
BASH_REMATCH built-in variable, 608
BASH_SOURCE built-in variable, 608
BASH_SUBSHELL built-in variable, 608
BASH_VERSINFO built-in variable, 608
BASH_VERSION built-in variable, 608
batch command, 60
Bautts, Tony (Linux Network Administrator’s Guide), xvii, 23, 29
bc compiler, 60–64
bdelete command, ex, 698
Beebe, Nelson H.F. (Classic Shell Scripting), 597
bell command, ftp, 149
Berkeley C shell, 596
Berkeley Internet Name Domain (BIND), 26
Berkeley Software Distribution (BSD), 4, 7
bg command, Bash, 621
BGP (Border Gateway Protocol), 25
binary command, ftp, 149
BIND (Berkeley Internet Name Domain), 26
bind command, Bash, 621
BIND DNS server, sending commands to, 363
binder process, NIS, 494
bindtextdomain() function, gawk, 739
biod daemon, 30
bisect command, git, 814–815
bison command, 64
blame command, svn, 767
blank character class, 600, 656
block files, creating, 292
blocklist command, GRUB, 530
blocks group, printing information about, 124
bookmark command, lftp, 245
books and publications
Building Internet Firewalls (Zwicky; Cooper; Chapman), 29
Classic Shell Scripting (Robbins; Beebe), 597
GNU Emacs Pocket Reference (Cameron), 654
Internetworking with TCP/IP (Comer), 23
Learning GNU Emacs (Cameron et al.), 654, 662
Learning Red Hat Enterprise Linux and Fedora (McCarty), 5
Learning the bash Shell (Newham), 597
Learning the Unix Operating System (Peek; Todino-Gonguet; Strang), xvii
Linux iptables Pocket Reference (Purdy), 29
Linux Journal, xviii
Linux Magazine, xviii
Linux Network Administrator’s Guide (Bautts; Dawson; Purdy), xvii, 23, 29
Managing Projects with GNU Make (Mecklenburg), 275
Mastering Regular Expressions (Friedl), 654
Perl 5 Pocket Reference (Vromans), 654
Perl in a Nutshell (Patwardhan et al.), 654
Regular Expression Pocket Reference (Stubblebine), 654
Running Linux (Dalheimer; Welsh), xvii, 4
TCP/IP Network Administration (Hunt), 23
Version Control with Subversion (Pilato et al.), 755
boot command, GRUB, 530
boot loader, 505
boot sector, 505
booting, 504–541
dual booting, 504, 505, 536–539
GRUB, 504, 516–536
kernel options during, 539–541
LILO, 504, 506–516
virtualization for, 504
bootp command, GRUB, 526
Border Gateway Protocol (BGP), 25
Bourne shell, 596
Bourne-Again SHell (see Bash shell)
braces ({...})
enclosing command grouping, 602
enclosing nested pattern address in sed, 714
enclosing procedures in gawk, 729
enclosing range of characters to match, 655
brackets ([...])
enclosing array elements, 611
enclosing characters to match, 655
enclosing expressions, 647–650
in filename, 599
brackets, double ([[[...]]]) enclosing expressions, 620
branch command, git, 815
branches, for source code management system, 750, 756
branches, in Git, 806, 815
merging, 826, 827
pushing, 828
tracking changes to, 830
brctl command, 843
break command, Bash, 622
break command, gawk, 739
break command, gdb, 164
bridge-utils package, 843
bridging, 842
BSD (Berkeley Software Distribution), 4, 7
bt command, gdb, 164
buffer command, ex, 698
buffer-manipulation commands, Emacs, 666
buffers command, ex, 698
Building Internet Firewalls (Zwicky; Cooper; Chapman), 29
built-in command, Bash, 622
built-in commands (see commands, Bash)
built-in variables, 607–611
built-in variables, gawk, 731
bunzip2 command, 65
bye command, ftp, 149
bzcat command, 65
bzcmp command, 65
bdiff command, 65
bgrep command, 65
bzip2 command, 65
bzip2 files, 65–67
(see also compressed files)
bzzip2recover command, 65
bzless command, 67
bzmore command, 67
C

c command, gdb, 164
c command, sed, 716, 718
c++ compiler (see g++ compiler)
\c control character escape sequence, 601
C language
   generating from RPC code, 366
   preprocessor for, 92–98
cache command, lftp, 245
cache command, mailx, 269
cal command, 68
calendar, printing, 68
caller command, Bash, 622
cameras, reading images from, 376
Cameron, Debra
   GNU Emacs Pocket Reference, 654
   Learning GNU Emacs, 654, 662
capitalization commands, Emacs, 666
caret (^)
   exponentiation operator, 732
   match at beginning of line or string, 655
caret, equals sign (^=) assignment operator, 732
case command, Bash, 622
case command, ftp, 149
cat command, 68
cat command, GRUB, 531
cat command, svn, 768
cat command, svnlook, 800
c compiler (see gcc compiler)
cd command, Bash, 623
cd command, ex, 698
cd command, ftp, 149
cd command, gdb, 164
CDDA (Compact Disc Digital Audio)
   converting to WAV, 69
   converting to WAV format, 200–203
cdda2wav command, 69
cdparanoia command, 69–71
CDPATH built-in variable, 609
cdrecord command, 71–75
CD-Rs, writing in DAO mode, 71–75
CDs
   commands for, list of, 9
   converting from CDDA to WAV format, 200–203
   ejecting, 128
   reading and writing, 350, 352
   recording audio files to, 69–71, 75
   recording data files to, 75
   recording data or audio to, 484–488
cdup command, ftp, 149
center command, ex, 699
centering commands, Emacs, 668
cfdisk command, 75
c++filt command, 67
C-h command (help), Emacs, 663
chage command, 76
chainloader, 517
chainloader command, GRUB, 531
chains, 29
change command, ex, 699
changed command, svnlook, 800
changelist command, svn, 768
Chapman, D. Brent (Building Internet Firewalls), 29
character classes
   Bash, 600
   pattern matching, 656
character files, creating, 292
chattr command, 77
chdir (c) command, mailx, 269
checkout command, git, 816
checkout command, svn, 769
checksums, calculating and printing, 427
check-update command, yum, 547
cherry-pick command, git, 817
chfn command, 78
chgrp command, 78
chkconfig command, 79
chmod command, 80
chmod command, ftp, 149
chown command, 82
chpasswd command, 84
chrt command, 83
chsh command, 84
chvt command, 84
CIDR (Classless Inter-Domain Routing), 24
cksum command, 84
Classic Shell Scripting (Robbins; Beebe), 597
classify command, mailx, 270
Classless Inter-Domain Routing (CIDR), 24
clean command, git, 818
clean command, yum, 548
cleanup command, svn, 770
clear command, 84
clear command, gdb, 164
clearing screen, 356
client, NIS, 32
client/server model, for source code management system, 751
clocks
  commands for, list of, 14
  reading or setting, 200
clone command, git, 818
close command, ex, 699
close command, ftp, 150
close command, lftp, 246
close() function, gawk, 739
cmp command, 85
cmp command, GRUB, 531
cntrl character class, 600, 656
code examples in this book, using, xix
Codeville system, 753
col command, 85
colct command, 86
colon (:)  
  null command, 620
  preceding ex commands, 696
  preceding label, sed, 717
color command, GRUB, 526
colrm command, 86
column command, 86
columns
  formatting input into, 86
  removing from file, 86, 102
COLUMNS built-in variable, 609
Comer, Douglas E. (Internetworking with TCP/IP), 23
comm command, 86
command command, Bash, 623
command command, lftp, 246
command mode, vi, 678, 681
command-line arguments
  checking, 633
  printing, 494
  shifting, 643
commands, 3, 5
Bash, 619–653
  aliases for, assigning, 620
  aliases for, removing, 653
  conditional execution of, 622, 635
  coprocessing, 604
  enabling or disabling, 629
executing, 618
executing based on signals, 650
executing, bypassing aliases or functions, 622, 623
executing in current process, 630
forms of, 602
hash table for, 633
history of, 614–617, 631, 634
programmable completion for, 624–626
redirection of, 601, 602–604
substitution of, 601, 602
type of, determining, 651
for clocks, 14
for communications, 7
for comparisons, 8
for daemons, 14
deleting queued jobs of, 53
displaying queued manual pages for, 283
Emacs, 663, 669–676
  buffer-manipulation, 666
  capitalization, 666
  centering, 668
  completions for, 662
  deletion, 664
  file-handling, 663
  help, 663, 668
  indentation, 667
  jobs, 667
  listing, 663
  macro, 668
  paragraph, 665
  region, 665
  search, 665
  shell, 667
  stopping, 665
  transposition, 665
  undoing, 665
  windows, 666
  word-abbreviation, 666
ex, 697–710
  line addresses in, 696, 710
  options for, 697
  syntax for, 696
executing and timing the execution, 445
executing as superuser, 426
executing at scheduled times, 98
executing at specific time and date, 51
executing even after logging out, 311
commands (continued)
executing in a new session, 395
executing in batch from standard input, 60
executing on remote host, 367
executing periodically, 43
executing queued jobs of, 53
executing remotely, 359
executing repeatedly, 472
executing with arguments from standard input, 488–489
executing with lower priority, 309
executing with specific options, 119
executing within ftp, 149
for file management, 8
for filesystems, 17
full pathnames for execution of, 481
GRUB, 525–536
for hardware, 15
help on, 33
for host information, 15
for installation, 16
for kernel, 17
list of, by category, 7–13
listing queued jobs of, 53
locating files for, 480
for mail, 16
for media, 9
for networking, 18
for NFS administration, 22
for NIS administration, 22
for NIS maps, 31
options for, entering, 33
output from, sending to both standard output and files, 440
for printing, 9, 18
for process management, 19
for program maintenance, 10
for programming, 9
for scheduling, 20
for searching, 10
for security, 18
sending to BIND DNS server, 363
for shell programming, 11
for storage, 11
for system administration, 14–20
for system integrity, 18
for system logging, 20
for system status, 11
for TCP/IP administration, 21
for TCP/IP troubleshooting, 28
for text processing, 12
tracing system calls and signals for, 416–418
for user management, 20
vi, 683–692
copy and move, 688
edit, 687
insert, 686
macros, 691
movement, 683–686
multiple files, accessing, 689
saving files, 688
:set command, 692–696
system access, 690
window, 690
waiting before execution of, 403
(see also specific commands)
cannot command, gdb, 164
comments
in bc, 63
in C, nested warnings for, 96, 161
in database map input file, 282
in DNS update requests, 311
in file containing format strings, 197
in gawk, 738
in GRUB configuration file, 521
in history expansion, 611
in LILO configuration files, 507
in MAC address input file, 305
in makefiles, 276
in RPM package manifest file, 557
in sed scripts, 717
in shell scripts, 619
in xinetd input, 491
commit command, git, 819
commit command, svn, 771
communications, commands for, 7
Compact Disc Digital Audio (see CDDA)
comparison operators, 620
comparisons, commands for, 8
COMP_CWORD built-in variable, 608
cmpgen command, Bash, 624
compl() function, gawk, 739
complete command, Bash, 615, 624–626
completion, programmable, 615–617, 624–626
COMP_LINE built-in variable, 608
COMP_POINT built-in variable, 608
COMPREPLY built-in variable, 609
compress command, logrotate, 253
compresscmd command, logrotate, 253
compressed files
   bzip2 files, 65–67
   comparing, 501
   compressing executable files, 190
   compressing files with Lempel-Ziv coding, 191
   reading and then writing to standard output, 501
   renaming, 501
   uncompressing and searching, 502
   uncompressing and then paging through, 502
   uncompressing and then recompressing in .gz format, 503
   uncompressing files, 190
compressext command, logrotate, 253
compressoptions command, logrotate, 253
COMP_WORDBREAKS built-in variable, 608
COMP_WORDS built-in variable, 608
concatenation operator, 732
Concurrent Versions System (CVS), 752
conditional execution of commands
   case command, 622
   if command, 635
   short-circuit operations for, 602
config command, git, 820
configurable command, GRUB, 531
configuration of vi editor, 692–696
configuration script
   generating from m4 macros, 53
   updating, 56
conflict, in source code management system, 751
cr command, ftp, 150
CRC (cyclic redundancy check)
   checksum, computing, 84
create command, logrotate, 254
create command, svnadmin, 795
create command, xm, 846
cron command, 545
crond command, 98
crontab command, 98
csh shell, 596
csplit command, 99
CSSC system, 754
ctags command, 100
Ctrl key (C-), Emacs, 662
CUPS printer queues, configuring, 256
cupsd command, 101
current working directory
   changing, 623
   printing, 638
cursor (point) location, Emacs, 662
cursor-movement commands, Emacs, 664
cut and paste (kill and yank), Emacs, 662
cut command, 102
cut-and-paste utility for Linux console, 178–180
CVS (Concurrent Versions System), 752
cyclic redundancy check (CRC)
   checksum, computing, 84
D
D command, sed, 717, 719
d command, sed, 716, 719
\D date escape sequence, 612
\d date escape sequence, 612
\d decimal escape sequence, 715
daemons, 21
  commands for, list of, 14
  nfsd daemons, 30
  routing daemons, 25
daily command, logrotate, 254
Dalheimer, Matthias Kalle (Running Linux), xvii, 4
DAO (disk-at-once) mode, 71
database maps for sendmail, creating, 282
database of files, searching, 250
databases, searching for a specific key, 173
date and time
  current date and time, printing, 103–105
  retrieving from specific host(s) on network, 348
date command, 103–105
date command, svnlook, 800
Dawson, Terry (Linux Network Administrator’s Guide), xvii, 23, 29
dbm database files, 31
dbm file, NIS, creating or dumping, 281
dgettext() function, gawk, 739
dcngettext() function, gawk, 739
dd command, 105, 844
dd command, GRUB, 519
deallocv command, 107
Debian Package Manager, 544, 565–569
  commands for, 569–595
  files used by, 565
  interactive frontend for (see dselect command, Debian)
  lower-level packaging tool for (see dpkg-deb command, Debian)
  naming conventions for, 543, 565
  package flags, 567
  package priorities, 566
  package states, 567
  scripts for, 568
debug command, ftp, 150
debug command, GRUB, 531
debuggs command, 107–110
debugger
  Bash, 608
gdb, 163–165
debuginfo-install plugin, yum, 551
decimal format, displaying files in, 196
declare command, Bash, 626
decoding, base64, 59
decrement operator (--), 732
decryption (see encryption and decryption)
default command, GRUB, 522
#define statements, generating template of, 54
delaycompress command,
  logrotate, 254
delete command, ex, 699
delete command, ftp, 150
delete command, gawk, 740
delete command, gdb, 164
delete command, svn, 773
delete (d) command, mails, 270
deletion commands, Emacs, 664
deltify command, svnadmin, 795
dependencies for packages, 542, 543
dependency file, creating, 110
deplist command, yum, 548
depmod command, 110
desktop environments, 4
desktop system, Linux as, 3
destroy command, xm, 847
devdump command, 111
device command, GRUB, 526
device map, GRUB, 518
devices
  assigning interfaces to, 305
  displaying contents of, 111
  formatting, 287
  formatting as ext2
  filesystem, 288–290
  paging, turning off, 427
  paging, turning on, 427
  swapping, turning off, 427
  swapping, turning on, 427
  volume name for, determining, 471
df command, 112
dhcp command, GRUB, 527
diff command, 113–115
diff command, git, 821
diff command, svn, 774–775
diff command, svnlook, 800
diff3 command, 115–116
dg command, 26, 116
digit character class, 600, 656
dir command, 118
dir command, ftp, 150
dircolors command, 118
directories
   adding to stack, 638
   contents of, listing verbosely, 468
   creating, 287
   deleting, 362
   listing contents of, 118, 260–263
   lost+found directory, creating, 292
   moving or renaming, 302–303
   printing stack for, 627
   printing top directory from stack, 637
   removing from path, 59
Dired (Directory Editor) mode, Emacs, 662
dirs command, 119
dirs-changed command, svnlook, 801
DIRSTACK built-in variable, 609
disaster recovery data, storing, 126
disconnect command, ftp, 150
disk image files, for virtualization, 844
disk usage
   auditing, 345
   available space, determining, 112
   printing, 120, 344
   quota statistics for, printing, 347
   reporting on, 355
disk-at-once (DAO) mode, 71
disown command, Bash, 628
display command, gdb, 164
displayapm command, GRUB, 531
displaymem command, GRUB, 531
distributions of Linux, 3
division operator (/), 732
dmesg command, 119
dmesg command, xm, 847
DNS (Domain Name System), 26
DNS servers, querying, 116
do command, gawk, 740
do reserved word, Bash, 628
document formatting (see groff command)
document processing, gs command for, 189
doexec command, 119
dollar sign ($)
   field reference, 732
   last input line as pattern address in sed, 714
   match at end of line or string, 655
   preceding built-in variables, 607
   preceding macros in ftp, 149
   variable substitution, 601
dollar sign, braces (${...}$)
   enclosing arrays, 611
   enclosing variable substitution, 606
   dollar sign, double parentheses ($()$)
   arithmetic substitution, 602, 613
domain Name System (DNS), 26
domain names
   contact for, finding, 483
   definition of, 26
   domain nameserver querying, 311
   updating, 311
domainname command, 120
domains
   definition of, 26
   NIS, 31
done reserved word, Bash, 628
dosfsck command, 120
dot (.)
   end message, mailx, 267
   match single character, 655
   read and execute file command, 620
double quotes ("...") enclosing special characters, 601
down command, gdb, 164
downloading files from Internet, 474–480
dp (dt) command, mailx, 270
dpkg command, Debian, 583–588
   (see also Debian Package Manager)
dpkg-architecture script, Debian, 568
dpkg-buildpackage script, Debian, 568
dpkg-checkbuilddeps script, Debian, 568
dpkg-deb command, Debian, 544, 588–590
dpkg-distaddfile script, Debian, 568
dpkg-divert script, Debian, 568
dpkg-g-enchanges script, Debian, 568
dpkg-gencontrol script, Debian, 568
dpkg-name script, Debian, 568
dpkg-parsechangelog script, Debian, 568
dpkg-preconfigure script, Debian, 568
dpkg-query command, Debian, 590

Index
dpkg-reconfigure script, Debian, 568
dpkg-scanpackages script, Debian, 568
dpkg-shlibdeps script, Debian, 568
dpkg-source script, Debian, 569
dpkg-split command, Debian, 591
dpkg-statoverride script, Debian, 569
dSA identities, adding to authentication agent, 409
dselect command, Debian, 544, 592–594
du command, 120
dual booting, 504, 505, 536–539
dump command, 122–123
dump command, GRUB, 531
dump command, svnadmin, 795
dumpe2fs command, 124
dumpio command, 124
dumpkeys command, 124
dvrecord command, 125
DVDs
commands for, list of, 9
ejecting, 128
recording, 125, 484–488

E
e command, sed, 716, 719
\E escape character, pattern matching, 657
\E escape sequence, 601
\e escape character, pattern matching, 657
\e escape sequence, 601, 612
e2fsck command, 125
e2image command, 126
e2label command, 127
EasyBCD software, 536
echo command, 127
echo command, Bash, 628
ed editor, metacharacters supported by, 657
edit command, ex, 699
edit commands, vi, 687
edit (e) command, mailx, 270
EDITOR built-in variable, 609
editors (see ed editor; Emacs editor; ex editor; sed editor; vi editor; vim editor)
edquota command, 127
EGP (Exterior Gateway Protocol), 25
egrep command, 128, 657
eject command, 128
elevator algorithm, setting latency for, 130
ELF (Executable and Linking Format) object files, 351
elvis editor, 677
evtune command, 130
EMACS built-in variable, 609
emacs command, 663
Emacs editor, 130, 661–676
commands
buffer-manipulation, 666
capitalization, 666
centering, 668
completions for, 662
cursor-movement, 664
deletion, 664
file-handling, 663
help, 663, 668, 669
indentation, 667
jobs, 667
list of, alphabetic by keystroke, 669–672
list of, alphabetic by name, 672–676
list of, most important, 663
listing, 663
macro, 668
paragraph, 665
region, 665
search, 665
shell, 667
stopping, 665
transposition, 665
undoing, 665
windows, 666
word-abbreviation, 666
Ctrl key notation (C-), 662
file buffers in, 662
invoking, 663
kill and yank (cut and paste) in, 662
mark location in, 662
Meta key notation (M-), 662
modes in, 661
point (cursor) location in, 662
windows in, 662
embed command, GRUB, 532
embedded versions of Linux, 3
enable command, 130
enable command, Bash, 629
encoding, base64, 59
encryption and decryption with GNU
Privacy Guard, 173–177
(see also security)
endscript command, logrotate, 254
Enter key, print next line command in
ex, 710
ENV built-in variable, 609
env command, 130
environment, displaying, 130
environment variables
printing, 334
setting, 130
substituting in shell string or
script, 131
envsbust command, 131
equals sign (=)
assignment operator, 732
command in sed, 716, 717
print line number command in
ex, 710
esac reserved word, Bash, 629
escape sequences, 601
gawk, 733
pattern matching, 656
ESX management client, for
VMware, 862
ESX server commands, for
VMware, 864–873
esxcfg-firewall command, VMware, 864
esxcfg-nics command, VMware, 867
esxcfg-vswif command, VMware, 865
esxcfg-vswitch command, VMware, 866
esxtop command, VMware, 867
etags command, 131
EUID built-in variable, 609
eval command, Bash, 629
ex editor, 132, 677, 678–680, 696–710
command options, 697
command syntax, 696
command-line options, 678–680
commands, 697–710
exiting, 681
invoking, 680, 696
line addresses in, 696, 710
pattern matching metacharacters
supported by, 657
examples in this book, using, xix
exclamation point (!)
execute command in ex, 709
execute command, mailx, 269
history expansion character, 614
logical negation operator, 732
negating pipeline, 619
NOT operator for commands, 602
preceding commands in ftp, 149
exclamation point, equal (!=) not equal
operator, 732
exclamation point, parentheses (!()) in
filename, 600
exclamation point, tilde (!~) match
negation of regular
expression, 732
exec command, Bash, 630
Executable and Linking Format (ELF)
object files, 351
executable files, compressing, 190
exit command, Bash, 630
exit command, gawk, 740
exit (ex, x) command, mailx, 270
exp() function, gawk, 740
expand command, 132
exponentiation operator (^ or **), 732
export command, Bash, 630
export command, svn, 775
expr command, 133–135
expressions, evaluating, 133–135, 443,
620, 647–650
ext2 filesystem
checking and repairing, 125
debugging, 107–110
formatting devices as, 288–290
label for, displaying, 127
printing block and superblock
information, 124
resizing, 356
storing disaster recovery data
for, 126
tuning parameters of, 457–460
ext3 filesystem, 16
debugging, 107–110
formatting devices as, 291
printing block and superblock
information, 124
extended Internet services
daemon, 490–493
extended regular expressions, searching
with, 128
Extensible Filesystem (see XFS)
extension command, logrotate, 254
tension() function, gawk, 740
Exterior Gateway Protocol (EGP), 25
eXternal Data Representation (XDR), 32
F

form feed escape sequence, 715, 733, 601
factor command, 135
fallback command, GRUB, 522
false command, 135
false command, Bash, 631
Fast Lexical Analyzer Generator, 143
FAT filesystem, 16
fc command, Bash, 614, 631
fc-cache command, 135
FCEDIT built-in variable, 609
fc-list command, 136
fdisk command, 136
fetch command, git, 822
fflush() function, gawk, 740
fg command, Bash, 631
fgconsole command, 137
fgrep command, 137
fi reserved word, Bash, 632
field reference ($), gawk, 732
FIFO pipes, creating, 292
FIGNORE built-in variable, 609
file command, 137
file command, ex, 700
file (fi) command, mailx, 270
file inclusion, gawk, 736
filenames
  checking validity of, 326
  database of, searching, 250
  metacharacters for, 599
  temporary, 293
  validity and portability of, 326
files
  access mode for, checking, 34
  access permissions for, changing, 80
  attributes of, changing, 77
  attributes of, listing, 263
  backing up, 122–123
  base64 encoding or decoding, 59
  byte count for, 473
  classifying, 137
  columns in, removing, 86
  comparing, 85, 113–116
  comparing and finding differences
    between, 384
  comparing lines common to, 86
  compressing, 191
  compressing and decompressing, 65
  computing or checking MD5
    checksums for, 285
  concatenating, 68
  conditions of, testing for, 647
  converting into tables for parsing, 64
  converting to alternate character
    encoding, 203
  converting to tables, 493
  copying, 87–89
  copying and converting format
    of, 105
  copying or restoring from
    archives, 431–437
  copying securely, 378
  copying to or from remote
    systems, 347
  creation mask for, displaying or
    setting, 652
  deleting, 361
  deleting files older than a specific
    access time, 447
  displaying in hex, octal, decimal, or
    ASCII, 196
  displaying one screen at a
time, 235–242, 295
  downloading from Internet, 474–480
  dumping, in octal format by
default, 319–322
  executable, compressing, 190
  formatting into columns, 86
  group for, changing, 78
  line count for, 473
  linking, 247
  locating, 480
  maintaining in archives, 47
  management of, commands for, 8,
    663
  merging, 286
  merging corresponding lines of, 323
  moving or renaming, 302–303
  overwriting, to make contents
    unrecoverable, 400
  ownership of, changing, 82
  paginating, suitable for
    printing, 332–334
  paging through, 235–242, 295
  paging, turning off, 427
  printing, 258
  printing first few lines of, 196
  printing last ten lines of, 430
  printing lines in reverse order, 429
  processes using, identifying, 154
recompiling and relinking based on dependencies, 275–281
reformatting to a specific width, 144, 145
remote file distribution, 348–350
removing by unlinking, 464
removing columns or fields from, 102
removing duplicate adjacent lines in, 463
renaming, 354
restoring from backup, 357–359
reversing characters in each line of, 359
searching, 137
searching for files meeting specific conditions, 139–143
searching for printable strings in, 418
searching for strings at beginning of lines, 256
searching with extended regular expressions, 128
separating into context-based sections, 99
sorted, joining, 226
sorting lines of, 404
sorting strings in, 457
splitting into equal-sized segments, 405
swapping, turning off, 427
transferring to and from remote sites, 148–153, 244–247, 398
unchanged, verifying, 285
uncompressing, 190
updating access and modification times to current time, 452
updating across a network, 368–374
word count for, 473
(see also directories; paths)
filesystem checker, for MS-DOS filesystems, 120
filesystem types, 16
filesystems, 16
checking and repairing, 125, 147
commands for, list of, 17
creating on a device, 291
debugging, 107–110
displaying contents of, 111
ISO9660/Joliet/HFS, generating, 165–173, 292
mounting, 297–299, 300
quotas, editing, 127
quotas for, enforcing, 346
quotas for, turning off enforcement of, 347
unmounting, 461
writing buffers to disk, 428
(see also NFS)
find command, 139–143
find command, GRUB, 532
firewalls, 28
book about, 29
rules, printing, 223
rules, restoring, 222
firstaction command, logrotate, 254
fixmbr command, 506
flex command, 143
floppy disks, ejecting, 128
fmt command, 144
fold command, 145
fold command, ex, 700
foldclose command, ex, 700
folder (fold) command, mailx, 270
folders command, mailx, 270
foldopen command, ex, 700
font conventions used in this book, xx
font information caches, creating, 135
fonts, listing, 136
for command, Bash, 632
for command, gawk, 740, 741
foreground, moving job to, 631
form command, ftp, 150
formail command, 145–147
forward (fwd) command, mailx, 270
frame command, gdb, 164
free command, 147
free disk space, determining, 112
Free Software Foundation (see FSF)
Friedl, Jeffrey E.F. (Mastering Regular Expressions), 654
from (f) command, mailx, 270
fsck command, 147
fsck.ext2 command, 125
FSF (Free Software Foundation), 6
fstest command, GRUB, 532
ftp command, 148–153
(see also stp command)
ftpd command, 153
FUNCNAME built-in variable, 609
function command, Bash, 633
function command, gawk, 741
functions, 605
  declaring, 633
  defining, 637
  deleting, 653
  exiting and returning status
  from, 640
  listing for source file, 131
  overloading, decoding symbols
  for, 67
  source and line number for, 622
  user-defined, gawk, 734
fuser command, 154

G

G command, sed, 716, 719
g command, sed, 716, 719
g++ compiler, 155
gateways, 25
gawk command, 155
gawk language, 726–747
  array assignment, 733
  built-in variables, 731
  command-line options for, 728–729
  command-line syntax for, 727
  commands for, 737–746
  coprocesses, 735
  escape sequences, 733
  file inclusion for, 736
  functions for, 737–746
  hexadecimal constants in, 734
  implementation limits of, 737
  internationalization for, 736
  invoking, 727
  octal constants in, 734
  operators, 732
  output redirection, 746
  pattern matching metacharacters
    supported by, 657
  patterns in, 729, 730
  procedures in, 729, 730
  profiling, 735
  sockets, 735
  user-defined functions, 734
  variable assignment, 732
gc command, git, 822
gcc compiler, 156–163
gdb debugger, 163–165
General Public License (see GPL)
genisoimage command, 165–173
gensub() function, gawk, 741

geometry command, GRUB, 532
get command, ftp, 150
getent command, 173
getkeycodes command, 173
getime command, gawk, 741
getopts command, Bash, 633
getpwuid() function, 599
getuid() function, 599
ggettext, GNU, 736
GhostScript, 189
git command, 811–836
  add subcommand, 812
  archive subcommand, 813
  bisect subcommand, 814–815
  branch subcommand, 815
  checkout subcommand, 816
  cherry-pick subcommand, 817
  clean subcommand, 818
  clone subcommand, 818
  commit subcommand, 819
  config subcommand, 820
  diff subcommand, 821
  fetch subcommand, 822
  gc subcommand, 822
gtk subcommand, 823
grep subcommand, 823
  help subcommand, 812
  init subcommand, 824
  log subcommand, 824
  merge subcommand, 826
  mv subcommand, 827
  pull subcommand, 827
  push subcommand, 828
  rebase subcommand, 829
  reflog subcommand, 830
  remote subcommand, 831
  reset subcommand, 832
  revert subcommand, 833
  rm subcommand, 833
  stash subcommand, 834
  status subcommand, 834
  tag subcommand, 835
  git daemon, 811
  git shell, 811
Git version control system, 753,
  805–836
  branches in, 806, 815
  merging, 826, 827
  pushing, 828
  tracking changes to, 830
checking in (committing) files, 806, 809, 819
cherry-picking commits, 817, 829
finding problem in, 814–815
referring to commits, 806–808
remotely, 822
reversing, 833
searching commits, 823
testing results of, 834
undoing, 832
checking out files, 806, 809, 816
command line for, 811
cleaning, 818
configuring, 820
differences, generating, 821
help for, 812
history, displaying, 823, 824
hosting projects, 811
index for, 806
adding or updating files in, 812
removing files from, 833
remotes for, 831
repositories for, 805, 806
cloning, 818
creating, 810, 824
creating archive from, 813
packing, 822
subcommands for, 812–836
tags for, 807, 835
uncommitted changes, working with, 834
user name and email for, 808
working tree for, 806
cleaning, 818
removing files from, 833
github.com service, 811
gitk command, git, 823
Gitorious tool, 811
Gitosis tool, 811
glob command, ftp, 150
global command, ex, 700
GLOBIGNORE built-in variable, 609
GNOME desktop, 7
GNU Arch system, 753
GNU awk (see gawk language)
GNU Emacs Pocket Reference
(Cameron), 654
GNU Emacs (see Emacs editor)
GNU gettext, 736
GNU makefiles, creating from template files, 55
GNU Privacy Guard application, 173–177
GNU project, 3
GNU sed editor (see sed editor)
GNU utilities documentation, website for, xvii
GNU/Linux, 1
(see also Linux)
good (go) command, mailx, 270
gpasswd command, 173
gpg command, 173–177
gpgslist command, 177
gpgv command, 178
GPL (General Public License), 6
gpm command, 178–180
gprof command, 181–182
GRand Unified Bootloader (see GRUB)
graph character class, 600, 656
groff command, 185–187
 grpck command, 188
 grpconv command, 189
 grub command, GRUB, 519, 523

good (go) command, mailx, 270
grpck command, 188
grpconv command, 189
grub command, GRUB, 519, 523

glyphs
changing for files, 78
changing for user, 308
creating, 187
creating shadowed groups from, 189
listing for users, 188
managing, 173
modifying, 188
removing, 188
removing corrupt and duplicate entries in, 188
space allowed on disk for, 344
GROUPS built-in variable, 609
groups command, 188
grpack command, 188
grpackconv command, 189
grub command, GRUB, 519, 523
GRUB (GRand Unified Bootloader), 504, 516–536
boot CD for, 519
boot floppy for, 519
commands for, 525–536
configuration file, 521–523, 539, 541
device map, 518
installation stages, 517
installing, 518–521
menu interface, 523
naming conventions, 517
shell, 523–525
grub-install shell script, 518, 520
grub-md5-crypt command, GRUB, 522
gs command, 189
gsub() function, gawk, 741
gunzip command, 190
gzexe command, 190
gzip command, 191

H
H command, sed, 716, 720
h command, sed, 716, 720
H hostname escape sequence, 612
\h hostname escape sequence, 612
halt command, 192
halt command, GRUB, 532
hard drive
parameters for, reading or setting, 192–195
partitioning, 75, 136
hard links, 248
hardware
commands for, list of, 15
performance improvements on, 3
supported by Linux, 3
hardware clock, reading or setting, 200
hash command, Bash, 633
hash command, ftp, 150
hash sign (#)
preceding comments, 619
preceding comments in gawk, 738
preceding comments in LILO configuration file, 507
preceding comments in sed scripts, 717
hdparm command, 192–195
head command, 196
header for packages, 552
headers- (h-) command, mailx, 270
Hello Protocol, 25
help command, Bash, 634
help command (C-h), Emacs, 663
help command, ftp, 150
help command, git, 812
help command, GRUB, 532
help command, ip, 212
help command, mailx, 270
help command, svn, 776
help command, svnadmin, 796
help command, svnlook, 801
help command, xim, 847
help command, yum, 549
help commands, Emacs, 663, 668, 669
hexadecimal constants, gawk, 734
hexadecimal format
displaying files in, 196
printing host ID in, 198
hexdump command, 196
HFS filesystem, generating, 165–173, 292
hiddenmenu command, GRUB, 522
hide command, ex, 700
hide command, GRUB, 527
histchars built-in variable, 611
HISTCMD built-in variable, 607, 609
HISTCONTROL built-in variable, 610
HISTFILE built-in variable, 610
HISTFILESIZE built-in variable, 610
HISTIGNORE built-in variable, 610
history command, Bash, 634
history command, mailx, 270
history expansion character (!), 614
history of commands, 614–617, 631, 634
HISTSIZE built-in variable, 610
HISTTIMEFORMAT built-in variable, 610
HICLOCK built-in variable, 610
HICLOCKSPACE built-in variable, 610
HOME built-in variable, 610
HOMEdirectories, determining, 599
host command, 26, 197
host ID, printing in hexadecimal format, 198
HOSTFILE built-in variable, 610
HOSTID built-in variable, 198
HOSTNAME built-in variable, 609
hostname command, 198
hosts
information about, commands
for, 15
name of, displaying or setting, 198
printing information about, 197
HOSTTYPE built-in variable, 609
hotcopy command, svnadmin, 796
htdigest command, 199
htspell command, 199
Hunt, Craig (TCP/IP Network Administration), 23
hypervisor, 838, 839
(see also virtualization tools)
hyphen (-)
previous command, mails, 269
subtraction operator, 732
unary minus operator, 732
hyphen, double (-- decrement
operator, 732
hyphen, equals sign (=) assignment
operator, 732
hyphen(s) (- or --) preceding command
options, 33

i command, sed, 716, 720
IANA (Internet Assigned Numbers Authority), 25
IBM Journaled Filesystem (see JFS)
ICANN (Internet Corporation for Assigned Names and Numbers), 27
icedax command, 200–203
ICMP (Internet Control Message Protocol), 23
iconv command, 203
id command, 204
idle command, ftp, 150
IEEE 1394 packets, dumping, 124
if command, Bash, 635
if command, gawk, 742
ifconfig command, 27, 204–206
ifconfig command, GRUB, 527
ifempty command, logrotate, 254
IFS built-in variable, 610
gawk (inclusion gawk), 736
ignore command, mailx, 271
IGNOREEEOF built-in variable, 610
image command, ftp, 149
imap command, mailx, 271
IMAP (Interactive Mail Access Protocol)
server daemon, 207
imapd command, 207
import command, svn, 776
impsprobe command, GRUB, 532
in operator, for array membership, 732
include command, logrotate, 254
@include directive, gawk, 736
inclusion gawk (igawk), 736
InCrEdible Digital Audio eXtractor (see icedax command)
increment operator (++) , 732
indentation commands, Emacs, 667
index, for Git, 806
adding or updating files in, 812
removing files from, 833
index() function, gawk, 742
inetd command, 207
info command, 207
info command, gdb, 164
info command, svn, 777
info command, svnlook, 801
info command, xm, 847
info command, yum, 549
init command, awk, 824
init daemon, Upstart, 208
init program, 19
initctl command, 208
inittab command, GRUB, 522, 533, 541
inode, printing contents of, 413–416
input command, ftp, 151
INPUTRC built-in variable, 413–416
input command, ex, 701
insert command, vi, 686
insert mode, vi, 678, 681
insmod command, 209
install command, 210
install command, GRUB, 533
install command, yum, 549
installation, commands for, 16
int() function, gawk, 742
integer comparisons, testing for, 649
Intel Multiprocessor Specification, 532
Interactive Mail Access Protocol (IMAP)
server daemon, 207
interfaces, assigning to a device, 305
internationalization, gawk, 736
Internet Assigned Numbers Authority
(IANA), 25
Internet Control Message Protocol
(ICMP), 23
Internet Corporation for Assigned Names and Numbers (ICANN), 27
Internet protocols, 21
Internet services daemon, 207
Internetworking with TCP/IP (Comer), 23
interprocess communication (see IPC)
I/O latency for elevator algorithm, 130
I/O scheduling class, setting, 211
ionice command, 211
toprobe command, GRUB, 534
IP address
  contact for, finding, 483
definition of, 23–25
ip command, 27, 211–215
IP ports, mapping to RPC program numbers, 329
IPC (interprocess communication)
  removing message queues, 215
  removing semaphore arrays, 215
  removing shared memory segments, 215
  reporting on, 216
ipcrm command, 215
ipcs command, 216
iptables command, 29, 216–222
iptables (see netfilter)
iptables-restore command, 29, 222
iptables-save command, 29, 223
IPv4 addresses, 23
IPv6 addresses, 24
ISO9660 images
  displaying content of, 223
  displaying information about, 223
  displaying length of, 224
  verifying integrity of, 224
ISO9660/Joliet/HFS filesystem, generating, 165–173, 292
isodump command, 223
isoinfo command, 223
isosize command, 224
isovfy command, 224
ispell command, 224

J
/j jobs escape sequence, 612
JFS (Journaled Filesystem), 16
job control, 617
  Emacs commands for, 667
  listing jobs, 635
  moving job to foreground, 631
  removing job from job list, 628
  terminating jobs, 636
  waiting for background jobs to finish, 653
jobs command, Bash, 635
join command, 226
join command, ex, 701
Journaled Filesystem (see JFS)
jump command, gdb, 164
jumps command, ex, 701
junk (j) command, mailx, 271

K
k command, ex, 701
kbd_mode command, 227
kbdrate command, 227
kernel, 1
  commands for, list of, 17
  loading modules into, 209
  messages, displaying, prioritizing, and logging, 229
  parameters, displaying or modifying, 428
kernel command, GRUB, 522, 523, 534
Kernel-based Virtual Machine (see KVM hypervisor)
keyboard
  assigning keycode events to scan codes, 393
  driver translation tables, printing information about, 124
  mode for, printing or setting, 227
  printing keycodes, scan codes, or ASCII codes of keys pressed, 399
  rate, setting, 227
  Unicode mode for, 463
keycodes
  mapping table for, 173
  printing, 399
keymaps, loading, 248
keys, authentication
  gathering public and private keys from multiple, 411
  generating, managing, and converting, 410
  holding private keys for public authentication, 410
keyword substitutions, in source code management system, 750
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>kill and yank (cut and paste)</td>
<td>897</td>
</tr>
<tr>
<td>Emacs</td>
<td>662</td>
</tr>
<tr>
<td>kill command</td>
<td>227</td>
</tr>
<tr>
<td>kill command, Bash</td>
<td>636</td>
</tr>
<tr>
<td>kill command, gdb</td>
<td>164</td>
</tr>
<tr>
<td>killall command</td>
<td>228</td>
</tr>
<tr>
<td>klogd command</td>
<td>229</td>
</tr>
<tr>
<td>Korn shell</td>
<td>596</td>
</tr>
<tr>
<td>ksh shell</td>
<td>596</td>
</tr>
<tr>
<td>KVM hypervisor</td>
<td>849</td>
</tr>
<tr>
<td>building guest systems</td>
<td>850</td>
</tr>
<tr>
<td>changing virtual machine configurations</td>
<td>844</td>
</tr>
<tr>
<td>device interfaces for</td>
<td>843</td>
</tr>
<tr>
<td>graphic interface for</td>
<td>842</td>
</tr>
<tr>
<td>installing, 849</td>
<td></td>
</tr>
<tr>
<td>libvirt used with (see libvirt virtualization API)</td>
<td></td>
</tr>
<tr>
<td>managing virtual systems</td>
<td>842</td>
</tr>
<tr>
<td>QEMU used with</td>
<td>849</td>
</tr>
<tr>
<td>website for</td>
<td>837</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>\l basename escape sequence</td>
<td>612</td>
</tr>
<tr>
<td>l command, sed</td>
<td>716, 721</td>
</tr>
<tr>
<td>\L escape character, pattern matching</td>
<td>657</td>
</tr>
<tr>
<td>\l escape character, pattern matching</td>
<td>657</td>
</tr>
<tr>
<td>LANG built-in variable</td>
<td>610</td>
</tr>
<tr>
<td>last command</td>
<td>230</td>
</tr>
<tr>
<td>lastaction command, logrotate</td>
<td>254</td>
</tr>
<tr>
<td>lastb command</td>
<td>230</td>
</tr>
<tr>
<td>lastlog command</td>
<td>231</td>
</tr>
<tr>
<td>latency in elevator algorithm</td>
<td>130</td>
</tr>
<tr>
<td>LC_ALL built-in variable</td>
<td>610</td>
</tr>
<tr>
<td>LC_COLLATE built-in variable</td>
<td>610</td>
</tr>
<tr>
<td>LC_CTYPE built-in variable</td>
<td>610</td>
</tr>
<tr>
<td>lcd command, ftp</td>
<td>150</td>
</tr>
<tr>
<td>LC_MESSAGES built-in variable</td>
<td>610</td>
</tr>
<tr>
<td>LC_NUMERIC built-in variable</td>
<td>610</td>
</tr>
<tr>
<td>ld command, 231–234</td>
<td></td>
</tr>
<tr>
<td>ldconfig command</td>
<td>234</td>
</tr>
<tr>
<td>ldd command, 235</td>
<td></td>
</tr>
<tr>
<td>Learning GNU Emacs (Cameron et al.)</td>
<td>654, 662</td>
</tr>
<tr>
<td>Learning Red Hat Enterprise Linux and Fedora (McCarty)</td>
<td>5</td>
</tr>
<tr>
<td>Learning the bash Shell (Newham)</td>
<td>597</td>
</tr>
<tr>
<td>Learning the Unix Operating System (Peek; Todino-Gonguet; Strang)</td>
<td>xvii</td>
</tr>
<tr>
<td>LED flag settings, displaying or changing</td>
<td>393</td>
</tr>
<tr>
<td>left angle bracket (&lt;) less than operator, 620, 732</td>
<td></td>
</tr>
<tr>
<td>left angle bracket, equals sign (&lt;=) less than or equal operator, 732</td>
<td></td>
</tr>
<tr>
<td>left command, ex</td>
<td>701</td>
</tr>
<tr>
<td>Lempel-Ziv coding (LZ77), compressing files using</td>
<td>191</td>
</tr>
<tr>
<td>length() function, gawk</td>
<td>742</td>
</tr>
<tr>
<td>less command</td>
<td>235–244</td>
</tr>
<tr>
<td>less than operator (&lt;), 620</td>
<td></td>
</tr>
<tr>
<td>lesskey command</td>
<td>242–244</td>
</tr>
<tr>
<td>let command, Bash</td>
<td>613, 636</td>
</tr>
<tr>
<td>lexical analysis program, generating</td>
<td>143</td>
</tr>
<tr>
<td>lftp command, 244–247</td>
<td></td>
</tr>
<tr>
<td>lftpget command</td>
<td>247</td>
</tr>
<tr>
<td>libraries</td>
<td></td>
</tr>
<tr>
<td>examining and updating</td>
<td>234</td>
</tr>
<tr>
<td>shared, displaying program requirements for</td>
<td>235</td>
</tr>
<tr>
<td>libvirt virtualization API</td>
<td>839, 850–861</td>
</tr>
<tr>
<td>connection URIs for hypervisor</td>
<td>850</td>
</tr>
<tr>
<td>networking for</td>
<td>851</td>
</tr>
<tr>
<td>remote GUI control for</td>
<td>851</td>
</tr>
<tr>
<td>virsh commands</td>
<td>852–856</td>
</tr>
<tr>
<td>virt-clone command</td>
<td>856</td>
</tr>
<tr>
<td>virt-image command</td>
<td>857</td>
</tr>
<tr>
<td>virt-install command</td>
<td>858–861</td>
</tr>
<tr>
<td>virt-manager command</td>
<td>861</td>
</tr>
<tr>
<td>virt-viewer command</td>
<td>861</td>
</tr>
<tr>
<td>website for</td>
<td>837, 850</td>
</tr>
<tr>
<td>XML configuration files for</td>
<td>850</td>
</tr>
<tr>
<td>licenses for Linux</td>
<td>6</td>
</tr>
<tr>
<td>(see also GPL)</td>
<td></td>
</tr>
<tr>
<td>lilo command</td>
<td>506, 514–516</td>
</tr>
<tr>
<td>LILO (Linux Loader)</td>
<td>504, 506–516</td>
</tr>
<tr>
<td>boot errors</td>
<td>516</td>
</tr>
<tr>
<td>configuration file</td>
<td>506, 507–514, 539, 541</td>
</tr>
<tr>
<td>global options</td>
<td>508–511</td>
</tr>
<tr>
<td>image options</td>
<td>512</td>
</tr>
<tr>
<td>kernel options</td>
<td>513</td>
</tr>
<tr>
<td>rescue CD for, making</td>
<td>506</td>
</tr>
<tr>
<td>line-edit mode, Bash</td>
<td>614</td>
</tr>
<tr>
<td>LINENO built-in variable</td>
<td>607</td>
</tr>
<tr>
<td>LINES built-in variable</td>
<td>610</td>
</tr>
</tbody>
</table>
link command, 247
link set command, ip, 212
link show command, ip, 212
Linux
  benefits of, 2
  commands, 3, 5
  compared to Unix, 1
  as desktop system, 3
  distributions of, 3
  embedded versions of, 3
  hardware supported by, 3
  history of, 1
  installing, book about, xvii
  licenses for, 6
  performance improvements by, 3
  source code for, 6
  starting, 19
  stopping, 19
  support for, xviii, 3
  (see also shells)
Linux Documentation Project
  website, xvii
Linux Gazette website, xvii
Linux Insider website, xvii
Linux iptables Pocket Reference
  (Purdy), 29
Linux Journal, xviii
Linux Loader (see LILO)
Linux Magazine, xviii
Linux Network Administrator’s Guide
  (Bautts; Dawson; Purdy), xvii,
  23, 29
Linux Second Extended Filesystem (see
  ext2 filesystem)
Linux Security website, xvii
Linux Third Extended Filesystem (see
  ext3 filesystem)
Linux Today website, xvii
Linux Weekly News website, xvii
list command, ex, 701
list command, gdb, 164
list command, mailx, 271
list command, svn, 778
list command, xm, 847
list command, yum, 549
list-dblogs command, svnadmin, 796
list-unused-dblogs command,
  svnadmin, 796
ln command, 247
load command, svnadmin, 796
loaded modules, listing, 264
loadkeys command, 248
local command, Bash, 636
local variables, Bash, 636
locale command, 249
locale settings, printing, 249
localinstall command, yum, 549
localizing gawk programs, 736
localupdate command, yum, 350
locate command, 250
lock command, GRUB, 522, 334
lock command, svn, 779
lock command, svnlook, 802
lockfile command, 251
log command, git, 824
log command, svn, 779
log command, svnlook, 802
log command, xm, 847
log() function, gawk, 742
log message, for source code
  management system, 750
logger command, 252
logging in
  to remote host, 360
  to remote system, securely, 406–409
  to tty port, 38
logging (see system logging)
logical AND operator (&&), 620
logical negation operator (!), 732
logical operators, 620
logical OR operator (||), 620
logout command, Bash, 636
logrotate command, 253–256
look command, 256
loops
  exiting from, 622
  for command, 632
  skipping remaining commands in, 626
  until command, 653
  while command, 653
login shell
  changing, 84
  exiting, 636
logins
  bad attempts at, displaying, 230
  for system accounts, displaying times
    of, 231
  most recent, printing, 230
  printing list of, 467
  printing summary of, 471
logout command, Bash, 636
logrotate command, 253–256
look command, 256
loop devices, setting up and
  controlling, 256
logs
  changing, 84
  for system accounts, displaying times
    of, 231
  most recent, printing, 230
  printing list of, 467
  printing summary of, 471
losetup command, 256
lost+found directory, creating, 292
lower character class, 600, 656
lpadmin command, 256
lpinfo command, 258
lpmove command, 258
lpq command, 258
lpr command, 258
lprm command, 259
lpstat command, 260
ls command, 118, 260–263
ls command, ftp, 260–263
lsattr command, 263
lsholes command, svnadmin, 797
lsmod command, 264
lspci command, 263
lstxns command, svnadmin, 797
lsusb command, 264
LZ77 (Lempel-Ziv coding), compressing files using, 191

M
m4 command, 264
m4 macros
  combining into one file, 34
  generating configuration script from, 33
  generating template of #define statements from, 54
MAC address, for virtualization, 844
macdef command, ftp, 150
MACHTYPE built-in variable, 609
macro commands, Emacs, 668
macro commands, vi, 691
macro processor, 264
macros
  executing in ftp, 149
  in package spec file, 553
  listing for source file, 131
magnetic tape drive, controlling, 300
mail
  aliases database, rebuilding, 308
  aliases, printing, 334
  commands for, list of, 16
  reading or sending, 265, 266–275
  remote mail, receiving, 362
  sendmail queue, listing messages in, 265
  sendmail statistics, reporting, 266
  MAIL built-in variable, 610
  mail command, 265
  mail command, logrotate, 254
  mail (m) command, mailx, 271
  mail transfer agent (MTA), 385–392
  mailbox format, filtering input into, 145–147
  MAILCHECK built-in variable, 610
  mailfirst command, logrotate, 254
  maillast command, logrotate, 254
  MAILPATH built-in variable, 610
  mailq command, 265
  mailstats command, 266
  mailx command, 266–275
  make command, 275–281
  makeactive command, GRUB, 534
  makecache command, yum, 550
  makefiles
    creating from template files, 55
    executing, 275–281
  makemap command, 281
  man command, 283
man pages
displaying, 283
  path to, determining, 285
  searching for keyword, 480
  searching short descriptions for strings, 46
map command, ex, 701
map command, GRUB, 534
mapfile command, Bash, 637
maps, NIS, 31
mark command, ex, 702
mark location, Emacs, 662
marks command, ex, 702
masquerading, 29
master boot record (see MBR)
Mastering Regular Expressions (Friedl), 654
match() function, gawk, 742
mbox command, mailx, 271
MBR (master boot record), 505
  installing GRUB boot loader on, 518, 520, 521
  installing LILO boot loader on, 506
  restoring, 506
McCarty, Bill (Learning Red Hat Enterprise Linux and Fedora), 5
MD5 checksums for files, computing or checking, 285
md5crypt command, GRUB, 522, 534
md5sum command, 285
mdelete command, ftp, 151
mdir command, ftp, 151
Mecklenburg, Robert (Managing Projects with GNU Make), 275
media (see CDs; DVDs)
memory maps, displaying for a process, 329
memory usage, statistics about, 147
menu items, providing to user, 640
merge command, 286
merge command, git, 826
merge command, svn, 781
mergeinfo command, svn, 782
mesg command, 286
message queues, IPC, removing, 215
Meta key handling, displaying or setting, 394
Meta key (M-), Emacs, 662
metacharacters in pattern matching, 654–658
mget command, ftp, 151
MIDI files
  playing, 44
  reading and writing to ALSA ports, 40
  recording, 48
MIDI ports, connecting to route events, 35
mirror command, lftp, 246
missingok command, logrotate, 254
mixer, ALSA
  connecting to ALSA sound card(s), 40
  controlling, 41
mkdir command, 287
mkdir command, ftp, 151
mkdir command, svn, 782
mkdosfs command, 287
mke2fs command, 288–290
mkexrc command, ex, 702
mkfifo command, 291
mknod command, 292
mkisofs command, 292
mkisofs command, GRUB, 519
mklost+found command, 292
mknod command, 292
mkrescue command, 506
mkswap command, 293
mktemp command, 293
mktime() function, gawk, 742
mls command, ftp, 151
mode command, ftp, 151
modinfo command, 294
modprobe command, 294
modtime command, ftp, 151
module command, GRUB, 534
modulenonzip command, GRUB, 534
modules
  loading, 294
  loading into kernel, 209
  printing information about, 294
  unloading, 362
modulus operator (%), 732
monotone system, 754
monthly command, logrotate, 254
more command, 295
mount command, 30, 297–299
mountd command, 300
mountd daemon, 30
mouse server for Linux console, 178–180
move command, ex, 702
move command, svn, 783
move (mv) command, mailx, 271
movement commands, vi, 683–686
mt command, 300
MTA (mail transfer agent), 385–392
Multiboot Specification, 516
multiplication operator (*), 732
mv command, 302–303
mv command, git, 827
M-x Tab (command names list) command, Emacs, 663

N
N command, sed, 717, 721
n command, sed, 716, 721
\n escape character, pattern matching, 656, 657
\n newline escape sequence, 601, 715, 733, 612
name command, Bash, 637
name service, 26
named daemon, 26
named pipes (FIFO), making, 291
namei command, 304
nameif command, 305
nameserver, 26, 311
naming conventions
  GRUB, 517
  packages, 543
NAT (Network Address Translation), 842
nc command, 305–306
neigh add command, ip, 212
neigh chg command, ip, 213
neigh del command, ip, 213
neigh flush command, ip, 213
neigh list command, ip, 213
neigh repl command, ip, 213
Net:Bridge package, 843
netcat command (see nc command)
netfilter (iptables), 29
  books about, 29
  filtering rules, configuring, 216–222
netstat command, 306
network, 21–22
  administration, book about, xvii
  commands for, list of, 18
  configuring for virtualization, 842
  confirming response of remote hosts on, 327
  devices, manipulating, 211–215
  dumping headers and packets of network traffic, 437–439
  interface, configuring, 27, 204–206
  packet capture files for, reading and manipulating, 439
  reading and writing data across, 305–306
  serial lines, attaching as network interfaces, 403
  status of, displaying, 306
TCP/IP administration, 21, 22–28
  updating files across, 368–374
Windows-based, Linux server supporting, 3
(see also NFS; NIS)
Network Address Translation (NAT), 842
Network Information System (see NIS)
new command, ex, 702
newaliases command, 308
newer command, ftp, 151
newgrp command, 308
Newham, Cameron (Learning the bash Shell), 597
newline character, as word separator, 601
newsgroups, xviii
newusers command, 308
next command, ex, 702
next command, gawk, 743
next command, gdb, 164
next (n) command, mailx, 271
nextfile command, gawk, 743
NFS (Network File System), 29
  administering, 30
  commands for, list of, 22
  daemons, 30
  exporting filesystems, 30
  module, launching threads for, 308
  mounting filesystems, 30
  server, displaying information about, 400
  statistics on, printing, 309
nfds command, 308
nfds daemons, 30
nfstat command, 309
NIC names, finding contact for, 483
nice command, 309
NIS+, 31
NIS binder process, 494
NIS database
  creating, 495
  printing specific values in, 495
NIS dbm file, creating or dumping, 281
NIS map
  forcing propagation of, 497
  printing values of keys, 496
  transferring from server to local host, 500, 501
  version of, determining, 497
NIS (Network Information System), 31
  administering, 32
  client, setting up, 32
  commands for, list of, 22, 31
  domain, setting or displaying name of, 120
NIS (continued)
domains, 31
login password for, changing, 496
maps, 31
password file, modifying, 496
server, setting up, 32
servers, 31
services, checking configuration for, 499
user accounts, 32
NIS server, 498
hostname of, determining, 500
setting for ypbind command, 499
nlist command, ftp, 151
nm command, 310
nmap command, ftp, 151
ncompress command, logrotate, 255
ncopy command, logrotate, 255
ncopytruncate command,
logrotate, 255
ncreate command, logrotate, 255
nodelaycompress command,
logrotate, 255
nohlssearch command, ex, 703
nohup command, 311
nomail command, logrotate, 255
nomissingok command, logrotate, 255
noolddir command, logrotate, 255
nosharedscripts command,
logrotate, 255
NOT operator (!) for commands, 602
notifempty command, logrotate, 255
nroff command, formatting output from, 85, 86
nslookup command, 311
nsupdate command, 311
ntrans command, ftp, 151
null command (\), 620
number command, ex, 703
numbers, printing in sequence, 393
nvi editor, 677

object files
combining into executable object module, 231–234
copying, 313–317
displaying information about, 317–319
generating from assembly source files, 50
removing symbols from, 419
size of, printing, 402
octal constants, gawk, 734
octal format, displaying files in, 196
od command, 319–322
olddir command, logrotate, 255
OLDFWD built-in variable, 607
online documentation, displaying, 207
only command, ex, 703
open command, ex, 703
open command, ftp, 152
OpenPGP-format messages, splitting into packets, 177
OpenPGP-signed files, checking signature of, 178
openvt command, 322
operating system, printing information about, 461
operators
arithmetic, 613
comparison, 620
gawk, 732
logical, 620
OPTARG built-in variable, 607
OPTERR built-in variable, 610
OPTIND built-in variable, 607
or() function, gawk, 743
OR operator (||)
for commands, 602
for expressions, 620, 732
OSTYPE built-in variable, 609
output redirection, gawk, 746
ownership of files, changing, 82

P
P command, sed, 716, 717, 722
p command, sed, 722
package managers, 542–545
(see also APT; Debian Package Manager; RPM; yum program)
package-cleanup plugin, yum, 551
packages, 542–595
Debian, 565–595
  archive of, 566
  cache for, managing, 569–571
  files used by, 565
  flags for, 567
  generating, 574
  managing, 575–590, 592–594
  naming conventions for, 565
  priorities of, 566
  querying, 590
  sorting records in, 579
  sources for, adding, 571
  splitting, 591
  states of, 567
dependencies for, 543
naming conventions for, 543
RPM, 545–565
  archive of, 552
  building, 564–565
  header for, 552
  managing with rpm
    command, 553–563
  managing with yum, 545–552
  repository of, 545
  signature verification for, 552
  spec file for, 552
  signature verification for, 543
  user privileges required for, 543
packets
  IEEE394, dumping, 124
  tracing path to host taken by, 454, 455
pager command, GRUB, 527
paragraph commands, Emacs, 665
paravirtualization, 839, 846, 864
parentheses ((...))
  enclosing group of commands, 601, 602
  enclosing group of regular
    expressions, 656
partnew command, GRUB, 527
parttype command, GRUB, 528
passwd command, 322
password command, GRUB, 522, 528
passwords
  changing, 83
  created shadowed entries for, 344
  creating or changing, 322
  expirations for, changing, 76
  information stored with,
    changing, 78
  removing corrupt or duplicate
    entries, 343
paste command, 323
paste (yank), Emacs, 662
patch command, 324–326
patches, applying, 324–326
PATH built-in variable, 610
pathchk command, 326
paths
  checking validity of, 326
  following to terminal point, 304
  for current working directory,
    printing, 344
  printing only leading directory
    components from, 119
  removing leading directory
    components from, 59
pattern addressing, sed, 714–715
pattern matching, 155, 654–660
  character classes in, 656
  escape sequences in, 656
  metacharacters in, 654–658
  replacement patterns, 656
  search patterns, 655
  searching and replacing, examples
    of, 659
  searching, examples of, 658
  searching files with extended regular
    expressions, 128
  searching files with regular
    expressions, 182–185
pattern space, sed, 712
patterns, gawk, 729, 730
Patwardhan, Nathan (Perl in a
  Nutshell), 654
pause command, GRUB, 535
pause command, xm, 848
pcardctl command, 327
PCI (Peripheral Component
  Interconnect) devices,
  listing, 263
PCMCIA sockets, controlling, 327
PDF (Portable Document Format)
  language, interpreter for, 189
Peek, Jerry (Learning the Unix Operating System), xvii

percent sign (%)
modulus operator, 732
preceding job ID in commands, 617
reuse previous replacement pattern, 657
percent sign, equals sign (=%) assignment operator, 732

performance, Linux improving, 3
Peripheral Component Interconnect (PCI) devices, listing, 263
Perl 5 Pocket Reference (Vromans), 654
Perl in a Nutshell (Patwardhan et al.), 654
permuted indexes, 342
pgawk (profiling gawk), 735
pidof command, 327
Pilato, C. Michael (Version Control with Subversion), 755
ping command, 327
pipe character (|), 601, 602
pipe (pi) command, mailx, 271
pipes
named pipes (FIFO), making, 291
negating result of, 619
PIPESTATUS built-in variable, 609
plus, equals sign (+=) assignment operator, 732
plus sign (+)
adition operator, 732
match one or more instances, 656
unary plus operator, 732
plus sign, double (++) increment operator, 732
plus sign, parentheses (+()) in filename, 600
pmap command, 329
PNM (Portable aNyMap) format, writing images to, 376
point (cursor) location, Emacs, 662
Point-to-Point Protocol (PPP), 23, 28, 330–332
popd command, Bash, 637
Portable aNyMap (PNM) format, writing images to, 376
Portable Document Format (PDF) language, interpreter for, 189
portmap command, 329
portmap daemon, 30
POSIX notation, in Bash, 600, 602
POSIXLY_CORRECT built-in variable, 610
postrotate command, logrotate, 255
PostScript language, interpreter for, 189
poweroff command, 330
PPID built-in variable, 607
PPP (Point-to-Point Protocol), 23, 28, 330–332
pppd command, 330–332
pppd daemon, 28
pr command, 332–334
#pragma implementation directive, 163
#pragma interface directive, 162
praliases command, 334
prerotate command, logrotate, 255
preserve command, ex, 703
preserve (pre) command, mailx, 271
previous command, ex, 703
prime factors, calculating, 135
print character class, 600, 656
print command, ex, 703
print command, gawk, 743, 746
print command, gdb, 164
print jobs
cancelling, 259
moving to a new destination, 258
Print (P) command, mailx, 271
print (p) command, mailx, 271
print queues
accepting, 34
CUPS, configuring, 256
displaying status of, 260
rejecting, 354
print scheduler, starting, 101
print spool queue, displaying information about, 258
printenv command, 334
printer drivers, printing information about, 258
printers
enabling, 130
printing information about, 258
tuning device parameters for, 460
printf command, 334
printf command, Bash, 638
printf() function, gawk, 743, 746
printing, commands for, 9, 18, 258
priority of processes, controlling, 355
privileges required for packages, 543
procedures, gawk, 729, 730
process IDs
determining for specific files or filesystems, 154
displaying for programs, 327
processes
active, reporting on, 335–341
managing, commands for, 19
memory maps for, displaying, 329
most CPU-intensive, displaying information about, 448–452
priority of, controlling, 355
real-time scheduling for, changing, 83
terminating, 227, 636
terminating all processes, 228
processor affinity mask, retrieving or setting, 437
profile data for an object, displaying, 181–182
profiling, gawk, 735
program addresses, translating to filenames and line numbers, 37
programmable completion, 615–617, 624–626
programming
commands for, list of, 9
maintenance of, commands for, 10
(see also gawk language; source code management systems)
prompt command, ftp, 152
prompt strings, 612
PROMPT_COMMAND built-in variable, 610
propdel command, svn, 784–786
propedit command, svn, 784
properties, Subversion, 757
propget command, svn, 785
propget command, svnlook, 802
propplist command, svn, 785
propplist command, svnlook, 802
propset command, svn, 786
protocols, Internet, 21
provides command, yum, 550
proxy command, ftp, 152
ps command, 335–341
PS1 built-in variable, 610, 612
PS2 built-in variable, 612
PS2 built-in variable, 610
PS3 built-in variable, 610
PS4 built-in variable, 611, 612
pseudonyms (links) for files, 247
ptx command, 342
ptype command, gdb, 164
pull command, git, 827
punct character class, 600, 656
Purdy, Gregor
Linux iptables Pocket Reference, 29
Linux Network Administrator’s Guide, xvii, 23, 29
push command, git, 828
pushd command, Bash, 638
put command, ex, 703
put command, ftp, 152
pwck command, 343
pwconv command, 344
PWD built-in variable, 607
pwd command, Bash, 638
pwd command, ftp, 152
pwd command, gdb, 164
python-vm-builder package, 850
Q
Q command, sed, 716, 722
q command, sed, 716, 722
qall command, ex, 703
QEMU, combining with KVM hypervisor, 849
qemu-img tool, 845
question mark (?)
in filename, 599
help command, mailx, 269
match zero or one instance, 656
question mark, colon (?:) conditional expression, 732
question mark, parentheses (?()) in filename, 600
quit command, ex, 704
quit command, ftp, 149
quit command, gdb, 165
quit command, GRUB, 535
quit (q) command, mailx, 271
quota command, 344
quotacheck command, 345
quotaoff command, 347
quotaon command, 346
quotas
exceeding limit, sending messages to users regarding, 472
setting, 394
quotastats command, 347
quote command, ftp, 152
quoting special characters in Bash, 600

R
\r carriage return escape sequence, 612, 715, 733
R command, sed, 716, 723
r command, sed, 716, 723
rand() function, gawk, 743
RANDOM built-in variable, 608
ranlib command, 347
rarp command, GRUB, 528
RARP (Reverse Address Resolution Protocol), 23
rcp command, 347
RCS (Revision Control System), 752
rdate command, 348
rdist command, 348–350
rdistd command, 350
read command, Bash, 639
read command, ex, 704
read command, GRUB, 535
readcd command, 350
readelf command, 351
readlink command, 352
readom command, 352
readonly command, Bash, 640
real-time scheduling for processes, changing, 83
rebase command, git, 829
reboot command, 354
reboot command, GRUB, 535
recover command, ex, 704
recover command, svadmin, 797
Red Hat Package Manager (see RPM)
Red Hat Virtual Machine Manager, 850–851
redirection of commands, 602–604
redo command, ex, 704
relog command, git, 830
reget command, ftp, 152
region commands, Emacs, 665
Regular Expression Pocket Reference (Stubblebine), 654
regular expressions, 654
(see also pattern matching)
reinstall command, yum, 550
reject command, 354
relational operators, gawk, 732
release of package, 543
remainder operator (%), 732
remote command, git, 831
remote file distribution, 348–350
remote host, logging in to, 360
remote hosts, confirming responses of, 327
Remote Procedure Call (RPC) language, generating C code from, 366
Remote Procedure Call (RPC), 32
remote procedure call (RPC) activity, statistics on, 309
remote shell server, 367
remote systems, accessing, 441
remotetask command, ftp, 152
remotestatus command, ftp, 152
rename command, ftp, 152
rename command, mailx, 271
renice command, 355
replacement patterns, metacharacters for, 656
replacing, with pattern matching, 659
REPLY built-in variable, 608
Reply (R) command, mailx, 271
reply (r) command, mailx, 271
replyall command, mailx, 271
repoclosure plugin, yum, 551
repodiff plugin, yum, 551
repo-graph plugin, yum, 551
repolist command, yum, 551
reposync plugin, yum, 552
repo-manager plugin, yum, 551
repo-or.cz hosting service, 811
repo-query plugin, yum, 551
repos-rss plugin, yum, 551
repositories, for Git, 805, 806
cloning, 818
creating, 810, 824
creating archive from, 813
packing, 822
repository, for source code management system, 749, 755
repository, of RPM packages, 545
reposync plugin, yum, 552
repotrack plugin, yum, 552
repquota command, 355
reset command, 356
reset command, ftp, 152
reset command, git, 832
resize command, ex, 704
resize2fs command, 356
resolve command, svn, 787
resolved command, svn, 787
resolvedep command, yum, 550
resolver, 26
resource limits, printing, 652
resources (see books and publications; website resources)
respond command, mailx, 271
restart command, ftp, 152
restore command, 357–359
restricted shells, 619
retain command, mailx, 271
return command, Bash, 640
return command, gawk, 744
rev command, 359
Reverse Address Resolution Protocol (RARP), 23
reverse-search command, gdb, 165
revert command, git, 833
revert command, svn, 788
Revision Control System (RCS), 752
revision of package, 543
rewind command, ex, 704
rexec command, 359
rexecd command, 360
right angle bracket (>)
greater than operator, 620, 732
output redirection, 746
right angle bracket, double (>>) append output, 746
right angle bracket, equals sign (>=)
greater than or equal operator, 732
right angle brackets (> or >>) in cat command, 68
right command, ex, 704
RIP (Routing Information Protocol), 25
rlogin command, 360
rlogind command, 360
rm command, 361
rm command, git, 833
rmail command, 362
rmdir command, 362
rmdir command, ftp, 152
rmlocks command, svnadmin, 797
rmmod command, 362
rmxns command, svnadmin, 797
rndc command, 363
Robbins, Arnold (Classic Shell Scripting), 597
root command, GRUB, 535
root directory, changing, 83
rootnoverify command, GRUB, 535
rotate command, logrotate, 255
route add command, ip, 213
route chg command, ip, 213
route command, 364–365
route del command, ip, 213
route events, connecting MIDI ports to, 35
route list command, ip, 213
route repl command, ip, 213
routed daemon, 26
routing, controlling, 211–215
routing daemons, 25
Routing Information Protocol (RIP), 25
routing tables, 26, 364–365
RPC (Remote Procedure Call), 32
activity of, statistics on, 309
generating C code from, 366
program numbers
 mapping to IP ports, 329
 mapping to universal addresses, 365
reporting information for programs, 366
rpcbind command, 365
rpcbind daemon, 30
rpcgen command, 366
rpcinfo command, 366
rpm command, 367, 552–563
RPM (Red Hat Package Manager), 544, 552–565
database rebuild options for, 562
examples of, 563
freshen options for, 555
install options for, 554
naming conventions for, 543
options for, 554–563
package-query options for, 559
package-selection options for, 537–559
query options for, 557
rpm command syntax for, 553
rpmbuild command syntax and options for, 564–565
signature-check options for, 562
uninstall options for, 560
upgrade options for, 554
verify options for, 560
rpmbuild command, RPM, 552, 564–565
RSA identities, adding to authentication agent, 409
rsh command, 367
rshd command, 367
rshift() function, gawk, 744
rsync command, 368–374
rsyslogd command, 375
run command, gdb, 165
run unique command, ftp, 152
runlevel command, 376
runlevels, 19
changing, 440
specifying services to be run at, 79
Running Linux (Dalheimer; Welsh), xvii, 4

S
s command, sed, 716, 723
\s shell escape sequence, 612
sandbox, for source code management system, 750, 756
SANE (Scanner Access Now Easy), 376
sane-find-scanner command, 376
save (s) command, mailx, 272
savedefault command, GRUB, 535
saveignore command, mailx, 272
saveretain command, mailx, 272
saving files, vi, 688
snext command, ex, 705
sbuffer command, ex, 705
scancodes, printing, 399
scancode-to-keycode mapping table, 173
scanimage command, 376
Scanner Access Now Easy (SANE) detecting scanners, 376
scanners detecting by SANE, 376
reading images from, 376
SCCS (Source Code Control System), 752
scheduling commands, 20
scp command, 378
screen command, 379–384
script command, 384
scripts in package spec file, 553
SCSI scanners, detecting by SANE, 376
diff command, 384
search command, gdb, 165
search command, yum, 550
search commands, Emacs, 665
search patterns, metacharacters for, 655
searching commands for, list of, 10
with pattern matching, 658, 659
Second Extended Filesystem (see ext2 filesystem)
SECONDS built-in variable, 608
secure copying of files, 378
secure login to remote system, 406–409
security commands for, list of, 18
encryption with GNU Privacy Guard, 173–177
website about, xvii
(see also authentication; signature verification)
sed command, 385
sed editor, 711–725
branching commands, 717
command syntax for, 713
editing commands, 716
hold space for, 712
input for, 711, 712, 716, 717
input/output commands, 716
invoking, 712
line information commands, 716
multiline input commands, 717
options for, 712
pattern addressing, 714–715
pattern matching metacharacters supported by, 657
pattern space for, 712
yanking and putting commands, 716
seen command, mailx, 272
select command, Bash, 640
semaphore arrays, IPC, removing, 215
semaphore files, creating, 251
semicolon (;) command separator, 601, 602
sendmail command, 385–392
database maps for, creating, 282
mail aliases for, printing, 334
sendport command, ftp, 152
sensor chips, displaying readings and configuring, 392
sensors command, 392
seq command, 393
serial command, GRUB, 528
Serial Line IP (SLIP), 28
serial lines, attaching as network interfaces, 403
servers, NIS, 31, 32
services, managing runlevels for, 79
set command, Bash, 641–643
set command, ex, 705
set command, lftp, 247
:set command, vi, 692–696
set (se) command, vi, 692–696
set variable command, gdb, 165
setkey command, GRUB, 529
setkeycodes command, 393
setleds command, 393
setlog command, svnadmin, 798
setmetamode command, 394
setquota command, 394
setrevprop command, svnadmin, 798
setsid command, 395
setterm command, 395–397
setup command, GRUB, 521, 535
setuid command, 398
SGI Extensible Filesystem (see XFS)
sh shell, 399, 596, 597
SHA1 checksums, computing or checking, 399
sha1sum command, 399
shadow files
  creating or updating from passwords, 344
  removing corrupt and duplicate entries in, 188, 343
shadowed groups, creating, 189
shared memory segments, IPC, removing, 215
sharedscripts command, logrotate, 255
SHELL built-in variable, 611
shell command, ex, 705
shell command, yum, 550
shell commands, Emacs, 667
shell conditions, testing for, 649
#shell directive, 620
shell scripts
  comments in, 619
  exiting, 630
shell (sh) command, mailx, 272
SHELLOPTS built-in variable, 609
shells, 5, 596
  changing, 84
  creating with effective user ID, 425
  invoking in a script, 620
programming, commands for, 11
starting on remote host, 367
(see also Bash shell)
shift command, Bash, 643
SHELVL built-in variable, 609
shopt command, Bash, 643–647
show (Sh) command, mailx, 272
showkey command, 399
showmount command, 30, 400
shred command, 400
shutdown command, 401
shutdown command, xm, 848
shutting down the system, 192, 330, 354, 401
signal command, gdb, 165
signature verification
  with GNU Privacy Guard, 173–177
  of OpenPGP-signed files, 178
  of packages, 543, 552
Simple Mail Transport Protocol (SMTP), 23
Simple Network Management Protocol (SNMP), 23
sin() function, gawk, 744
single quotes (‘...’) enclosing special characters, 601
site command, ftp, 153
size command, 402
size command, ftp, 153
size command, logrotate, 255
size command, mailx, 272
slab cache information, displaying in real time, 402
slabtop command, 402
slash (/) division operator, 732
slash, equals sign (/=) assignment operator, 732
Slashdot website, xvii
slashes (/...) enclosing pattern address in sed, 714
slattach command, 403
sleep command, 403
sleep for a specified time, 467
SLIP (Serial Line IP), 28
SMTP (Simple Mail Transport Protocol), 23
snnext command, ex, 705
SNMP (Simple Network Management Protocol), 23
sockets, gawk language, 735
sort command, 404
sorted files, joining, 226
sorting strings in a file, 457
sound cards, ALSA
  advanced configuration settings
  for, 39
  connecting to ALSA mixer, 40
sound files
  playing, 43
  recording, 48
  recording to CDs, 69–71, 75, 484–488
  recording to DVDs, 125, 484–488
Source Code Control System (SCCS), 752
source code for Linux, 6
source code management systems, 749–754
  checking files in or out, 750
  client/server model for, 751
  Codeville, 753
  copy, modify, merge model for, 751
  CSSC, 754
  CVS, 752
  Git (see Git Version Control System)
  GNU Arch, 753
  locking model for, 751
  merging changes in, 750
  monotone system, 754
  RCS, 752
  SCCS, 752
  Subversion (see Subversion Version Control System)
space character, as word separator, 601
space character class, 600, 656
spec file for package, 552
spell checkers, 199, 224
splashimage command, GRUB, 529
split command, 405
split command, ex, 705
split() function, gawk, 733, 744
sprvcommand, ex, 706
strftime() function, gawk, 744, 746
sqrt() function, gawk, 744
srand() function, gawk, 744
ssh command, 406–409
ssh-add command, 409
ssh-agent command, 410
sshd command, 412
ssh-keygen command, 410
ssh-keyscan command, 411
Stallman, Richard (founder of FSF), 7
standard input
determining terminal connected to, 457
  reading a line from, 639
start command, logrotate, 255
starting the system, 19
startup files for Bash, 599
stash command, git, 834
stat command, 413–416
statd command, 416
status command, 153
status command, git, 834
status command, svn, 788–791
status line, vi, 683
step command, gdb, 165
stop command, ex, 706
stopping commands, Emacs, 665
stopping the system, 19
storage, commands for, 11
strings
  completions for, generating, 624
  converting initial whitespace to tabs, 462
  printing with specific format, 334
  sorting, 457
  translating characters in, 453–454
  writing to standard output, 628
strings command, 418
strip command, 419
strtonum() function, gawk, 734, 744
sub() function, gawk, 745
subdomains, 26
substitute command, ex, 706
substr() function, gawk, 745
subtraction operator (-), 732
Subversion version control system, 753, 755–804
atomic commits, 756
authors of files, showing, 767
book about, 755
branching in, 756, 757
checking in (committing)
changes, 756, 760, 771
checking out files, 760, 769
conflicts, handling of, 756, 787, 788
copying files, 772
copy-modify-merge model used by, 756
differencing files, 757, 761, 774–775
directories, creating, 782
directory versioning, 756
displaying file contents, 768
help for, 776
keywords for, 758
locking files, 779, 793, 797
logging for, 779
merging files, 781, 782
moving (renaming) files, 783
networks used with, 756
obtaining, 759
projects
adding files and directories to, 767
creating, 759
deleting files and directories from, 773
grouping files into collections, 768
properties (metadata) for, 756, 757, 784–786
remote access for, 803
repository for, 755, 794–803
exporting from, 775
importing to, 776
listing contents of, 778
sandbox for, 756
svn command line, 761–766
svn subcommands, 766–794
svnadmin command, 794
svnadmin subcommands, 795–799
svnlook command, 799
svnlook subcommands, 800–803
svnserv command, 803
tags in, 756, 757
working copy
cleaning, 770
printing information about, 777
status of, 788–791
updating, 791–792, 793
sudo command, 426
sum command, 427
Sun Yellow Pages (YP), 31
sunique command, ftp, 153
superblock, printing information about, 124
supernetting, 24
superuser, executing commands as, 426
support for Linux, xviii, 3
suspend command, Bash, 647
suspend command, ex, 706
svIEW command, ex, 706
svn command, Subversion, 761–766
svn subcommands, Subversion, 766–794
svnadmin command, Subversion, 794
svnadmin subcommands, Subversion, 795–799
svnlook command, Subversion, 799
svnlook subcommands, Subversion, 800–803
svnserv command, Subversion, 803
swapoff command, 427
swapon command, 427
swapspace, creating, 293
switch command, svn, 791–792
symbol table, printing in alphabetical order, 310
symbolic links, 248, 352
synaptic command, Debian, 544, 594
sync command, 428
sysctl command, 428
sysklogd command, 428
syslogd command, 429
system access commands, vi, 690
system administration, commands for, 14–20
system command, ftp, 153
system control messages, displaying, 119
system() function, gawk, 745
system integrity, commands for, 18
system load
averages of, graphing, 447
averages of, printing, 464

system logging
adding entries to log, 252
commands for, 20
manipulating logfiles, 253–256
system messages, 375, 428
system status
commands for, list of, 11
time running, printing, 464
usage, printing summary of, 471
System V init (SysVinit), 19
system() function, gawk, 745
SysVinit (System V init), 19
TCP/IP Network Administration
(Hunt), 23
tcpslice command, 439
tcsh shell, 596
tee command, 440
telinit command, 440
telnet command, 441
telnets command, 442–443
temporary filename, generating, 293
tenex command, ftp, 153
TERM built-in variable, 611
terminal
as standard input, determining, 457
attributes, setting, 395–397
initializing, 456
I/O options, setting, 420–425
resetting, 356
terminal command, GRUB, 529
terminal emulation, 379–384
terminal session, typescript of, 384
test command, 443
test command, Bash, 647–650
testload command, GRUB, 536
testvbe command, GRUB, 536
text patterns (see pattern matching)
text processing, commands for, 12
TEXTDOMAIN environment variable, gawk, 736
tftps command, GRUB, 530
Third Extended Filesystem (see ext3 filesystem)
thread (th) command, mailx, 272
threads, launching for NFS module, 308
tilde (~)
in filename, 599
match regular expression, 732
replace regular expression command
in ex, 710
reuse previous replacement
pattern, 657
tilde escape commands, mailx, 268
tilde, hyphen (~-) in filename, 599
tilde, plus sign (~+) in filename, 599
time command, 445
time command, Bash, 650
time (see date and time)
time system has been running, printing, 464
TIMEFORMAT built-in variable, 611
timeout command, GRUB, 522
times command, Bash, 650

912 | Index
Index

title command, GRUB, 522
tload command, 447
TMOUT built-in variable, 611
tmpwatch command, 447
Todino-Gonguet, Grace (Learning the Unix Operating System), xvii
tolower() function, gawk, 745
top command, 448–452
top command, mailx, 272
top command, xm, 847
Torvalds, Linus (developer of Linux), 1
touch command, 452
touch command, mailx, 272
toupper() function, gawk, 746
tr command, 453–454
trace command, ftp, 153
tracepath command, 454
tracerroute command, 455
translating characters in a string, 453–454
translation tables of keyboard driver, 124
transposition commands, Emacs, 665
trap command, Bash, 650
tree command, svnlook, 803
trigger scriptlets in package spec file, 553
troff command (see groff command)
true command, 456
true command, Bash, 651
tset command, 456
tsort command, 457
tty command, 457
tty port, logging in to, 38
tun2fs command, 457–460
tunelp command, 460
type command, Bash, 651
type command, ftp, 153
Type (T) command, mailx, 272
type (t) command, mailx, 272
typescript of terminal session, 384

U
\U escape character, pattern matching, 657
\u escape character, pattern matching, 657
\u username escape sequence, 612
ubunto-virt-mgmt package, 849
ubunto-virt-server package, 849
ubunto-vm-builder package, 850
UDP (User Datagram Protocol), 23
UID built-in variable, 609
ul command, 460
ulimit command, Bash, 652
umask command, Bash, 652
umask command, ftp, 153
umount command, 30, 461
unabbreviate command, ex, 707
unalias command, Bash, 653
unalias command, mailx, 272
uname command, Bash, 461
uname command, mailx, 272
unanswered command, mailx, 272
unary minus operator (-), 732
unary plus operator (+), 732
uncollapse (unc) command, mailx, 272
uncompresscmd command, logrotate, 256
undelete (u) command, mailx, 272
underscores, translating to underlining, 460
undisplay command, gdb, 165
undo command, ex, 707
undoing commands, Emacs, 665
unexpand command, 462
ungood command, mailx, 272
unhide command, ex, 707
unhide command, GRUB, 530
Unicode mode for keyboard, 463
unicode_start command, 463
unicode_stop command, 463
uniq command, 463
universal addresses, mapping RPC program numbers to, 365
Universal Serial Bus (USB) devices, listing, 264
Universal Unique Identifier (see UUID)
Unix, compared to Linux, 1
unjunk command, mailx, 272
unlink command, 464
unlock command, svn, 793
unmap command, ex, 707
unread (U) command, mailx, 272
unset command, Bash, 653
unset (uns) command, mailx, 273
until command, Bash, 653
until command, gdb, 165
up command, gdb, 165
up2date program, 544
update command, svn, 793
update command, yum, 551
upgrade command, yum, 551
upper character class, 600, 656
uppermem command, GRUB, 536
Upstart, 19
Upstart init daemon, 208
uptime command, 464
URLs, fetching, 247
USB scanners, detecting by SANE, 376
USB (Universal Serial Bus) devices, listing, 264
Usenet newsgroups, xviii
user accounts, NIS, 32
user authentication files, creating or updating, 199
user command, ftp, 153
User Datagram Protocol (UDP), 23
user groups, xix
user ID, displaying information about, 204
useradd command, 464–466
user-defined functions, gawk, 734
userdel command, 466
usermod command, 466
users
adding or updating, 464–466
changing groups for, 308
creating or updating, 308
current, printing ID of, 483
deleting, 466
interactive conversations with, 488
logged in, listing, 482
logged in, printing summary of, 471
mailing regarding exceeded quotas, 472
modifying account information for, 466
number of logged in, printing, 464
space allowed on disk for, 344
talking to another user, 431
writing a message to all users, 471
(see also groups)
users command, 467
usleep command, 467
uuid command, svnlook, 803
UUID (Universal Unique Identifier) creating, 468
uuidgen command, 468
\v version escape sequence, 612
\v vertical tab escape sequence, 601, 715, 733
variable substitution, 601, 606
variables
built-in, 607–611
declaring, 626
exporting to make global, 630
forcing expansion of, 629
gawk, 731, 732
local, 636
reading an input line and assigning to, 639
readonly, 640
setting or printing, 641–643
unsetting, 653
vbeprobe command, GRUB, 536
vdir command, 468
verbose command, ftp, 153
verify command, svnadmin, 799
verify (verif) command, mailx, 273
version command, ex, 707
version control system (see source code management system)
Version Control with Subversion (Pilato et al.), 755
version of package, 543
vertical bar (|)
match either one or the other, 656
output directed to next command, 746
pipe character, 601, 602
vertical bar, ampersand (|&) output directed to coprocess, 735, 746
vertical bar, double (||)
OR operator for commands, 602
OR operator, in expressions, 620, 732
VFAT filesystem, 16
vi command, 468, 678
vi editor, 677–696
command-line options, 678–680
commands, 683–692
copy and move, 688
edit, 687
insert, 686
line numbering, 685
macros, 691
marks, 685
movement, 683–686
multiple files, accessing, 689
on status line, 683
saving files, 688
:set command, 692–696
syntax for, 681
system access, 690
window, 690
configuration of, 692–696
exiting, 680, 688
invoking, 678
modes, 678, 681
pattern matching metacharacters supported by, 657
video mode, setting, 468
vidmode command, 468
view command, ex, 707
vile editor, 677
vim command, 469
vim editor, 677, 678
command-line options, 678–680
visual mode, 682
virsh commands, 842, 844, 850, 852–856
virt-clone command, 856
virt-image command, 857
virt-install command, 840, 842, 844, 846, 858–861
virt-manager command, 861
virt-manager package, 842, 849, 850, 851
virtual center, for VMware, 862
virtual console
deallocating, 107
determining number of, 137
virtual machine monitor (VMM), 838
virtual memory statistics, printing, 469–471
Virtual PC, 504
virtual terminal
executing commands on, 322
Meta key handling for, 394
switching to, 84
virtualization method for booting, 504
virtualization tools, 838–873
connection to Internet, 839
console interface for, 842
creating virtual systems, 840
disk image files for, 844
graphic interface for, 842
KVM (see KVM hypervisor)
libvirt tools, 839
libvirt (see libvirt virtualization API)
MAC address for, 844
managing virtual systems, 841
migration support for, 839
network configuration for, 842
paravirtualization, 839
for a single guest, 838
system requirements for, 838
VMware (see VMware)
Xen (see Xen hypervisor)
virt-viewer command, 861
virt-viewer package, 842, 849
VISUAL built-in variable, 611
visual command, ex, 708
visual mode, vim, 682
visual (v) command, mailx, 273
vmkfstools command, VMware, 870–873
VMM (virtual machine monitor), 838
vmstat command, 469–471
VMware, 862–873
changing virtual machine configurations, 844
ESX management client for, 862
ESX server commands, 864–873
graphic interface for, 842
managing virtual systems, 842
networking for, 863
paravirtualization with, 864
shared disks for, 863
snapshots, 863
virtual center for, 862
turning switch for networking, 842
website for, 837
VMware server, 504
vmware-cmd command, VMware, 842, 868–870
volname command, 471
volume name for device, determining, 471
Vromans, Johan (Perl 5 Pocket Reference), 654
vSphere, 862
vsplit command, ex, 708
W
w command, 471
W command, sed, 716, 725
w command, sed, 716, 725
\W current directory escape sequence, 612
current directory escape sequence, 612
\W escape character, pattern matching, 656
\W escape sequence, 715
\w escape character, pattern matching, 656
\w escape sequence, 715
wait command, Bash, 653
wait command, lftp, 247
wall command, 471
wall command, ex, 708
warnquota command, 472
watch command, 472
watch command, gdb, 165
WAV format, converting to CDDA, 69, 200–203
wc command, 473
website resources, xvii–xix
   Arch system, 753
   Bash debugger, 608
   Bash shell, 597
   Codeville system, 753
   CSSC system, 754
for this book, xxi
   GNU utilities documentation, xvii
   libvirt virtualization API, 850
   Linux Documentation Project, xvii
   Linux Gazette, xvii
   Linux Insider, xvii
   Linux Security, xvii
   Linux Today, xvii
   Linux Weekly News, xvii
monotone system, 754
netfilter, 29
online support, xviii
Slashdot, xvii
Subversion, 759
Usenet newsgroups, xviii
user groups, xix
vim editor, 678
virtualization tools, 837
weekly command, logrotate, 256
Welsh, Matt (Running Linux), xvii, 4
wget command, 474–480
whatis command, 480
whatis command, gdb, 165
whereis command, 480
which command, 481
while command, Bash, 653
while command, gawk, 746
whitespace, converting to tabs, 462
who command, 482
whoami command, 483
whos command, 483
window commands, Emacs, 666
window commands, vi, 690
Windows
   accessing files from Linux, 16
   as host OS with Linux as guest, 504
   booting with GRUB, 517
   booting with LILO, 506
   dual booting Linux with, 505, 536–539
   Linux as challenge to, 2
   networking on, Linux providing, 3
   restoring original boot loader, 506
wnext command, ex, 708
wodim command, 484–488
word character class, 600
word-abbreviation commands, Emacs, 666
working tree, for Git, 806
   cleaning, 818
   removing files from, 833
wq command, ex, 708
wqall command, ex, 709
write a message to all users, 471
write command, 488
write command, ex, 708
write messages, controlling receipt of, 286
write (w) command, mailx, 273

X
   X command, ex, 709
   x command, mailx, 270
   x command, sed, 716, 725
   \x hexadecimal escape sequence, 715, 733, 601
   X Window System, 4
   xargs command, 488–489
   xdigit character class, 600, 656
   XDR (eXternal Data Representation), 32
   Xen hypervisor, 845–849
      changing virtual machine configurations, 844
      device interfaces for, 843
      graphic interface for, 842
      installing, 845
libvirt used with (see libvirt virtualization API)
managing virtual systems, 842
networking for, 846
paravirtualization with, 846
website for, 837
xentop command, 848
xm command, 846–848
xentop command, 848
XFS (Extensible Filesystem), 16
xinetd command, 490–493
xit command, ex, 709
xit (x) command, mailx, 273
xm command, Xen, 846–848
xor() function, gawk, 746

Y
y command, sed, 716, 725
yacc command, 493
yank command, ex, 709
yank (paste), Emacs, 662
yes command, 494
youngest command, svnlook, 803
YP (Yellow Pages), 31
ypbind command, 494
ypcat command, 495
ypinit command, 495
ypmatch command, 496
yppasswd, 496
yppasswdld command, 496
yppoll command, 497
yppush command, 497
yps server, 31
ypserv command, 498
ypserv server, 31
ypset command, 499
ypstest command, 499
ypwhich command, 500
ypxfr command, 500
ypxfrd command, 501
yum program, 544, 545–552
command syntax and options for, 545–547
commands used in, 547–551
configuration for, 545
plugins for, 551
yum-builddep plugin, yum, 552
yum-complete-transaction plugin, yum, 552
yumdownloader plugin, yum, 552
yup program, 545

Z
z command, ex, 709
z command, mailx, 273
Z Shell, 596
zcat command, 501
zcmp command, 501
zdiff command, 501
zforce command, 501
zgrep command, 502
zless command, 502
zmore command, 502
znew command, 503
zones, printing information about, 197
zsh shell, 596
Zwicky, Elizabeth D. (Building Internet Firewalls), 29
About the Authors

Ellen Siever is a writer and editor specializing in Linux and other open source topics. In addition to Linux in a Nutshell, she coauthored O’Reilly’s Perl in a Nutshell. She is a longtime Linux and Unix user and was a programmer for many years until she decided that writing about computers was more fun.

Stephen Figgins honed many of his computer skills while working as O’Reilly’s book answer guy. A lifelong learner with many interests, Stephen draws on many resources to make difficult topics understandable and accessible.

Now living in Lawrence, Kansas, he administers Linux servers for Sunflower Broadband, a cable company. When not found working with computers, writing, or spending time with his family, you will likely find him outdoors. Stephen teaches wilderness awareness and living skills.

Robert Love has been a Linux user and hacker since the early days. He is active in—and passionate about—the Linux kernel and GNOME desktop communities. His recent contributions to the Linux kernel include work on the kernel event layer and inotify. GNOME-related contributions include Beagle, GNOME Volume Manager, NetworkManager, and Project Utopia. Currently, Robert works in the Open Source Program Office at Google.

Robert is the author of Linux Kernel Development (SAMS, 2005) and Linux System Programming (O’Reilly, 2007). He is also a contributing editor at Linux Journal. He is currently working on a new work for O’Reilly that will be the greatest book ever written, give or take. Robert holds a BA in mathematics and a BS in computer science from the University of Florida. A proud Gator, Robert was born in South Florida but currently calls Cambridge, Massachusetts home.

Arnold Robbins, an Atlanta native, is a professional programmer and technical author. He has worked with Unix systems since 1980, when he was introduced to a PDP-11 running a version of Sixth Edition Unix. He has been a heavy AWK user since 1987, when he became involved with gawk, the GNU project’s version of AWK. As a member of the POSIX 1003.2 balloting group, he helped shape the POSIX standard for AWK. He is currently the maintainer of gawk and its documentation. He is also coauthor of O’Reilly’s Learning the vi and Vim Editors. Since late 1997, he and his family have been living happily in Israel.

Colophon

The animal featured on the cover of Linux in a Nutshell, Sixth Edition, is an Arabian horse. Known for its grace and intelligence, the Arabian is one of the oldest breeds of horse, with evidence of its existence dating back 5,000 years. The Arabian was instrumental as an ancestor to other popular breeds, most notably the Thoroughbred in the 17th and 18th centuries. One of the more distinctive horse breeds, the typical Arabian has large, expressive eyes and nostrils; small ears; and a short, sturdy back. Its stamina suits it particularly well for endurance...
riding, a sport dominated by the Arabian breed. Its wonderful temperament makes the Arabian an all-around favorite riding horse in North America, although it also can be found in more specialized competitions such as dressage, jumping, and reining.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSansMonoCondensed.