R T 7% e
17} eamﬂﬂ&“zm“
z wRanzaonanza
\ *
:
|

0

WRITTEN BY

LInuX
SI8BLE

THE COMPREHENSIVE, TUTORIAL RESOURCE

BUILD LINUX DESKTOP, ' ADVANCE TO ENTERPRISE § BECOME A LINUX SYSTEM
WORKSTATION, AND AND CLOUD COMPUTING ADMIN OR POWER USER

SERVER SKILLS

WILEY

Linux®

Bible

Ninth Edition

Linuxe

BIBLE

Ninth Edition

Christopher Negus

WILEY

Linux® Bible, Ninth Edition

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-99987-5

ISBN: 978-1-118-99989-9 (ebk)

ISBN: 978-1-118-99988-2 (ebk)

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING,
OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEB SITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR
THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS
READ.

For general information on our other products and services please contact our Customer Care Department within
the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download this
material at http://booksupport.wiley.com. For more information about Wiley products, visit
www.wiley.com.

Library of Congress Control Number: 2015937667

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates, in the United States and other countries, and may not be used without written permission. Linux is
a registered trademark of Linus Torvalds. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go
http://booksupport.wiley.com
http://www.wiley.com

As always, I dedicate this book to my wife, Sheree.

About the Author

Chris Negus is a Red Hat Certified Instructor (RHCI), Red Hat Certified Examiner (RHCX),
Red Hat Certified Architect (RHCA), and Principal Technical Writer for Red Hat Inc. In more
than six years with Red Hat, Chris has taught hundreds of IT professionals aspiring to
become Red Hat Certified Engineers (RHCE).

In his current position at Red Hat, Chris produces articles for the Red Hat Customer Portal.
The projects he works on include Red Hat Enterprise Linux 7, Red Hat Enterprise OpenStack
Platform, Red Hat Enterprise Virtualization and Linux containers in Docker format.

Besides his RHCA certification, Chris is a Red Hat Certified Virtualization Administrator
(RHCVA) and Red Hat Certified Datacenter Specialist (RHCDS). He also has certificates of
expertise in Deployment and Systems Management, Clustering and Storage Management,
Cloud Storage, and Server Hardening.

Before joining Red Hat, Chris wrote or co-wrote dozens of books on Linux and UNIX, includ-
ing Red Hat Linux Bible (all editions), Cent0S Bible, Fedora Bible, Linux Troubleshooting Bible,
Linux Toys and Linux Toys II. Chris also co-authored several books for the Linux Toolbox
series for power users: Fedora Linux Toolbox, SUSE Linux Toolbox, Ubuntu Linux Toolbox, Mac
0S X Toolbox, and BSD UNIX Toolbox.

For eight years Chris worked with the organization at AT&T that developed UNIX before
moving to Utah to help contribute to Novell's UnixWare project in the early 1990s. When
not writing about Linux, Chris enjoys playing soccer and just hanging out with his wife,
Sheree, and son, Seth.

About the Technical Editor

Richard Blum, LPIC-1, has worked in the IT industry for more than 20 years as both a
systems and network administrator and has published numerous Linux and open source
books. He has administered UNIX, Linux, Novell, and Microsoft servers, as well as helped
design and maintain a 3,500-user network utilizing Cisco switches and routers. He has used
Linux servers and shell scripts to perform automated network monitoring and has written
shell scripts in most of the common Linux shell environments. Rich is an online instruc-
tor for an Introduction to Linux course that is used by colleges and universities across the
United States. When he isn’t being a computer nerd, Rich plays electric bass in a couple of
different church worship bands, and enjoys spending time with his wife, Barbara, and two
daughters, Katie Jane and Jessica.

Credits

Project Editor
Martin V. Minner

Technical Editor
Richard Blum

Production Manager
Kathleen Wisor

Copy Editor
Gwenette Gaddis

Manager of Content
Development & Assembly
Mary Beth Wakefield

Marketing Director
David Mayhew

Marketing Manager
Carrie Sherrill

Professional Technology & Strategy

Director
Barry Pruett

Business Manager
Amy Knies

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Brent Savage

Proofreader
Amy Schneider

Indexer
John Sleeva

Cover Designer
Wiley

Acknowledgments

many of the best Linux developers, testers, support professionals and instructors in
the world. Since I cant thank everyone individually, I instead salute the culture of
cooperation and excellence that serves to improve my own Linux skills every day.

S ince I was hired by Red Hat Inc. more than six years ago, I have been exposed to

I don't speak well of Red Hat because I work there; I work at Red Hat because it lives up

to the ideals of open source software in ways that match my own beliefs. There are a few
people at Red Hat I would like to acknowledge particularly. Discussions with Victor Costea,
Andrew Blum, and other Red Hat instructors have helped me adapt my ways of thinking
about how people learn Linux. I'm able to work across a wide range of technologies because
of the great support I get from my supervisor, Adam Strong, and my senior manager, Sam
Knuth, who both point me toward cool projects but never hold me back.

In this edition, particular help came from Ryan Sawhill Aroha, who helped me simplify my
writing on encryption technology. For the new content I wrote in this book on Linux cloud
technologies, I'd like to thank members of OpenStack, Docker, and RHEV teams, who help
me learn cutting-edge cloud technology every day.

As for the people at Wiley, thanks for letting me continue to develop and improve this book
over the years. Marty Minner has helped keep me on task through a demanding schedule.
Mary Beth Wakefield and Ken Brown have been there to remind me at the times I forgot it
was a demanding schedule. Thanks to Richard Blum for his reliably thorough job of tech
editing. Thanks to Margot Maley Hutchison from Waterside Productions for contracting the
book for me with Wiley and always looking out for my best interests.

Finally, thanks to my wife, Sheree, for sharing her life with me and doing such a great job
raising Seth and Caleb.

Xi

Contents at a Glance

ACKNOWIEAGIMENES L.uieiiiiiieeitiieeeiiie e eeiiee e eeeae e e e ttaeeeetraaeeseeraaeesertaneseersanessersnnssseesnnsseenen xi
INEIOAUCTION toeviiiiiiiiiiiii ittt e e e xxxiii
Partl: Getting Startedc i e 1
Chapter 1: Starting With LINUXceeeeeueeiiiiiieriiiiie et eetiee e eeteie e e eneae s eeraneseennaenns 3
Chapter 2: Creating the Perfect Linux DesKtop..cceueeeeeiuueeiiiiiiieiiiiiiee et 29
Part Il: Becoming a Linux PowerUser. 63
Chapter 3: Using the SHell....ci it eereae e eeteae e s eeeae s eeeenaeeennns 65
Chapter 4: Moving around the FileSyStem cuuuuueiiiiiueiiiiiieiiiiiee et eeeae e eeeaes 97
Chapter 5: Working with TeXt FileS...uuueiiiiueeriiiiiereiiiee ettt eeeae e e e eeeeeeeeraaeeseeenns 117
Chapter 6: Managing RUNNING ProCeSSES ..cuuuueiiiiuueereiiiiieretiieereetieeeeeeieeeereneeeeennaeeeeenns 137
Chapter 7: Writing Simple Shell SCripts...iiuuueiiiiiuieriiiiieieiiiee et e e e eeenes 153
Part lll: Becoming a Linux System Administrator. 171
Chapter 8: Learning System Administration.....cceeeeeeeuerreriiirriiiienreeiieeeeeeeeeeeeraeeeeeenns 173
Chapter 9: INStalling LiNUX...ccuueereiueueereeiieereiiiieeeetitieeeeereeereernneeerannseerennssserssnsseennns 201
Chapter 10: Getting and Managing SOftWaTe ...cc..eeeiieiiiiiiiiiireiiee e 233
Chapter 11: Managing USEr ACCOUNES ..uuvitruuuererteneeeetiiereettiereetuaeeereneeeeernnnseersnneseeenns 259
Chapter 12: Managing Disks and FileSyStemS....cuuriiuriiiireiiieiiiieeeieeete e eeieeeeieeeneeeaaneens 283
Part IV: Becoming a Linux Server Administrator.................... 313
Chapter 13: Understanding Server Administration.....ccceeeeeeeueeriiiininreeiiineeiiiee e eeeene 315
Chapter 14: Administering NetWoOrKingu.oeveeeuuieriiiiiiiriiiiie et eeeeeeeeerneeeeeenns 347
Chapter 15: Starting and StOPPINgG SeIVICES....ccuuueiiiiiuuiereriiiiereiiieereetiee e et eeeraaeeeeenns 377
Chapter 16: Configuring a PIint SEYVEI.......ccuvuuuuuiieerrrreieiiiiiiiieeeeeeeeeenraiiiseeeeeeeeeenennnnnns 423
Chapter 17: Configuring @ WEb SEIVETccuuuiiiiiiieiieiiiieeeiiiieeeeeeieeeeraieeeeraaeeeeesaaeeeessnns 449
Chapter 18: Configuring an FTP SeIVET....cuuueiiiiiuuerieiiiieeietiiieeeeeeiieseeraneeeersnneeeessneneeesenns 477
Chapter 19: Configuring a Windows File Sharing (Samba) Server......ccccccieeeerreeeeenennnnne. 499
Chapter 20: Configuring an NES File SEIVET ..cccivuuiiiiiiiniriiiiiieeieeeieeeeeeieeeetenieeeeeenaeeeasenns 527
Chapter 21: TroubleShooting LiNUX.....eiieeuuerieiuuierieiiiieeeetiiereeeineeeeeeieeeeeenneeeesenneeeesens 551
Part V: Learning Linux Security Techniques. 589
Chapter 22: Understanding Basic Linux SECUTILY ...cccvvuiriiimniiriiiiiiireiiiieeeeiie e e 591
Chapter 23: Understanding Advanced Linux SECUTIItY.....cceuuuuuirerrereeeerremmenieneeeeeeeenennnnnns 627
Chapter 24: Enhancing Linux Security with SELINUX ...ovieivviiriiiiiienieiiiiereeeiiieeeeevieeeeeenns 669
Chapter 25: Securing Linux on a NetWork.......ccuuueeiiiiiiiriiiiiiiniciiien e ceeeieeeeeeeee e eeeens 699

Xiv

Part VI: Extending Linux intothe Cloud. 727

Chapter 26: Using Linux for Cloud CoOmputing......cceeeeeeeermuuuueeerrreeeeiieiiiieeeeeeeeeeenennnnnenns 729
Chapter 27: Deploying Linux to the Cloudccuuueeiiiiiiiriiiiiiieeeiiee e e e e e eeaaen 749
Part VII: Appendixes.t et s it e 769
APPENAIX A: MEAIA.iiuuiiiieiiiiieeiee ettt eeiie e e ete e et e etaeetaeeetaeeanneatnseennearneeaneeannns 771
ApPPENdix B: EXEICISE ATISIWETS. iuuuiiruueeirueeetuererneeerueeeenererneeeeneeesserssseessseesssessssssnseennnns 781
LT) QPRSP PPPPR 839

Contents

AcKnowledgments ot e Xi

Introduction. XXXiii

Part I: Getting Started 1

Chapter 1: Startingwith Linuxt e e 3

Understanding What LINUX IS c.eeeuuueeiiiiiiinreiiiiieeeeeiieeeeteieeeetenieeeeenaieseeenneeeeesnnnseenes 4

Understanding How Linux Differs from Other Operating Systems......ceeveeevueereeinnnnens 6

EXPloring LINUX HIStOIV coveeruueiieiiiieieiiiiieeeeiiiieeeeeiieeeeteieeeeennieeseenennseeennesseensnnneenes 6

Free-flowing UNIX culture at Bell Labs....ccuuuerriiiuiiiiiiiiiieiieiieeeeeeicee e e 7

Commercialized UNIX ..ooueuiiiiiiiiiiiiiiiie ettt ee et 9

Berkeley Software Distribution arrivesececeeeeveeiieerreiinierreieiienreeennenns 9

UNIX Laboratory and commercialization......cceeueereeiuneereeinneeeeeeneereennnes. 10

GNU transitions UNIX t0 fre@dom cuuuuuuuueeerrieeieiiiiiiieeneeeeeetiriiiieeeeeeeeeenenaanaeens 11

BSD 10S€S SOME SEEAM ..uuvuniiiiiiiiiiiiiiiiiiieieettiiiiie e et e e e e naraa s 13

Linus builds the miSSINg PIECE w.uuviiruuiriiiiiiiieiie ettt eteae e e 13

0SI open source definitioncceeeeeeeereiuiiiieeeeeeeeiiiiiee e eerereee e e e eeeeeeenaas 14

Understanding How Linux Distributions Emerged.......ccuuueereevuueriiiinninieinnnenieennnennens 16

Choosing a Red Hat distribution .u..eeeeeuuueriiiuiiniiiiiiier et eeeice e eeeeiee e 17

Using Red Hat Enterprise LiNUX «.ccuueereeeruuerieeiuienreeiiienreeeeieeeeeenneeeeennnns 17

USING FOAOTAr . i eitiiieeieiiiee ettt e ettt eeraee s ee e e s eeesa e e eeeaaeseennnans 18

Choosing Ubuntu or another Debian distribution.......cceuueereeeinienriiinienrennnnnens 19

Finding Professional Opportunities with Linux Todayceeveeemuerrerinienreiinnenreennnnnees 20

Understanding how companies make money with LinuXcccceevevvuieereeinnnnnnen. 21

Becoming Red Hat certified.....c..eeeiiiuuerriiiiieiiiiiieeeeiiec e 22

RHCSA £0PICS tetuuettuteiiieetiieetiieetieeeieeeteeetnsetneeetneeaunsessnseesnseesnsesnnnees 23

RHCE £0PICS cetetunteunretieeetiererieeetieeeeueretueeetneeeaneerunseesnseennssesnseennssennsees 24

SUIIUIMAT Y. ettt ettt ettt et e ettt e e e et s e e tae e s e eraa s eetnaeseeenneeennenneseennnnes 26

Chapter 2: Creating the Perfect Linux Desktop.o ... 29

Understanding Linux Desktop Technology «.cceeueereeeneiriiineriiiiiieeieiieeeeeeieeeeeeneees 30
Starting with the Fedora GNOME Desktop

LIVE IIMAGE ietuneetueeitieetieteieeete ettt eetueeetnereteaeetaneeesnssesnssesnssesnsssensssensesesnsennnnns 32

Using the GNOME 3 DeSKEOD veuureeruuireiiniieetiiiee ettt eeeteie s eetieeeeeennaeeseeenaseennnneees 33

After the computer BOOtS UP vvvuviiiiieeiiiiiieie et eeaaaes 33

Navigating with the MOUSecviiiiuieriiiiiee e 34

XV

Contents

Navigating with the keyboard........cceveiiueiriiiiiiiriiiieiiiiee e 38

Setting up the GNOME 3 deSKtOD...cieeiuuueeriiiieiiiiie ettt 41
Extending the GNOME 3 deSKtOP «eevueieruniienriiiireiiieeiieeeieeeeieeerieeeeneeeneeennns 42
Using GNOME shell eXtenSIONS..cuuuierueeeueeineeiieeeeieeeenerenneeeeneeeeneeennnees 42

Using the GNOME TWeak TOOL....ceeeierirremuiieeeeeeeeeeiiniiieeeeeeeeeeerennieeeaeeas 44

Starting with desktop applications......eeieeeueiiiiiiieiiiiiier et 45
Managing files and folders with Nautilusccevvueereeiiiiereeiniienieeinieneennnn. 45

Installing and managing additional SOftware......ccceeeveevvunerieennenienennnnns 46

Playing music with RhythmboxX ...ccouueeiiiiiiiiiiiiiiniie e, 48

Stopping the GNOME 3 deSKEOP cevuuereeruuueriiiiieereiiieeeetiiee et eeeeaeeeeeeaeeeeees 49
Using the GNOME 2 DeSKLOD .uueverruuerrerriieeeeiiiieerettieereetiieeeeetneeeereeneeseersnenseennnnneenes 49
Using the Metacity Window Manager......cceeeereeruuuerrereuerrerenereerineeeeennneeeeennns 50
Changing GNOME'S aDPEATAIICE tevvuuurrerrnneererrnnerrertnnereernnneeerreneseernnesserenneseenes 52
Using the GNOME PamelS.....eeeeeueeeeiienereeiiieeeetieieeeeteniereereneeseersneseersnneseenenns 53
Using the Applications and System MeNnUScceeeevueeeenerernieeeneeeeneennnnnes 54

Adding an aPPlet cuuneiueeiiie et eere e ere e et e e e e eeaa e 54

Adding another panel ...coeueeueeeeriiiiiiiiieeee e 55

Adding an application laUNChereviiiiiierieiiiee et eeeee 55

AddINg @ AYAWET tevuuiiiiiiierieiiieeeetieeeeeriee e eeeieeeeeraeeeeeeaaaseeesanseasennnnns 56

Changing panel ProPerties....cceeieeuuueererruiireeetieeeeereieereeeeneeeeeenneneeeennes 57

Adding 3D effects With AIGLX c..uiiiiiuiiiiiiiieieeiiie et eerie e eeeeee e e eeeaes 58
UL IT AT Y ettt et e et e et e et e et e et e et e eeaa e eena s eaaeeaneseneeseraneaansaennsstnnssennssennssennnsenns 60
EROTCISES tieeitiitiiee ettt ettt e ettt e e e e et ba b e ee 61
Part Il: Becoming a Linux Power User 63
Chapter 3: Usingthe Shell. i e e 65
About Shells and Terminal Windowscoeeveeiiiiiimmiiiiiiiiiiiiiiiiiieeeriiiii e 66
Using the shell Prompt......cceeeeeeeeiiee et eeeereeee e e e eeeereeneee e e e eeee 67
Using a terminal WinAOWcceeeueeeeiiuueeieeiuiineeetiieeeeetieeeeseneeeereneneeesssnseeesenns 68
USING VItUAl COMSOLES tevruuuriiririeieiieieieetuieeeeetuieeeeereaeeeeereneeeerennseeessnseesennns 69
ChooSing YOUY SHell...ccuuueeiiiiuiiriiiiiee et eeriee et e eeeee s eereaeeeeeeaaeseeennaeeenennnnns 69
RUNNING COMIMANAS etvvuieiiiiiiieeeiiiieereetiieereeteieeeeteneeeereneseerennseerssnsssersnnssenennnes 70
Understanding command SYNtaX....cuuueereeruueereeiuiieereriiiereeeenereernneeeereneeeenenns 71
LoCating COMIMANAS uuuurrirruereeriueeeeiiiee ettt e eetraeeeetaneeeernnneseennnessersnneseennes 74
Recalling Commands Using Command HiStorV......ccveeerrermmueeriiinierriiineneeiiieneeenieeees 76
Command-line edIting ...ccevueeeeeriuerreiiiee ettt eeeiee e eereee s eernaeeeeenaeeeees 77
Command-line COmMPLEtION uuu.iiuurieieieriereiiieetiieetie e et e erieeeraeeeeneeanaeeannnaas 79
Command-line recall......cceeeeiiiiiiiiimiiiiiiiiiiiiiiiiii s 80
Connecting and Expanding COmMmMandS.....ccuueeeeureeeuereenererneeeenerenneeerneneeneeeneeenneeenns 82
Piping between commandscceuuuuuueeeerrreeiiriiiieeeeeeeeeeeeeeieeeeeeeeeerennaaaeens 82
Sequential COMIMANAS ...vieruuuereerriiereetiiieeeeteieeeettieeeetreeeeeereneeeeraneseesesnseeees 83
Background COMIMANGAS ...cvvuuereriruuereeruiienieeeieeeeetieeeeeenieeeeeranseeennneeeesennseeenes 83
Expanding COMIMANAS ..oceeeuuuereerruereeriieeeeeiieeeeetieeeeenaieeeeereneeeeenneeeeennseeees 84

XVi

Contents

Expanding arithmetic eXPreSSIONS ..ccuuueereeeuuerreriueeretiiieereeiieereeeneeeerraaeeeenns 84
Expanding variables ... eeiiiee ettt 85
USING Shell Variables ... ieuee i eiiireeiie ettt et e et e eeaeetaeeeneeesaeesnnssesnneennns 85
Creating and USING Ali@SES..u.eeuureuuererueeeeunreruaeeerreruaeersnseeenseesnseesnseennseesnesees 87
Exiting the shell..coeeeeeeieeeieeeeeee et e 88
Creating Your Shell ENVITONIMEINT ..ccuuueiiiiiiiereeiiiee ettt eeeriee e eetiieseeeeaieeeeeneneeeenennns 88
Configuring Your SHell ...ieiuuueeiiiiieeieiiiie et eeeaee e e eeae e e eraaeeees 88
Setting YOUT PYOTIPE tevuuriiiiiieeieiiiie e ettt ettt e eereee e ettt e e eeesaeeeeenneeeeesnnnnaees 89
Adding environment variablesS.....ccuueeriiiiiieriiiiieneeiiee et ee e 91
Getting Information about COMMANAS ...cuuueriiriuiirriiiiie et eeeee e eeeaees 92
Y0 11h 1T D PP PPPR PPN 94
X OICISES tettuuerettnieeeeetue et ettt e e ettee s eetai e e eetaaeeeeraaeeseeraansseannnnneenannnssanennsseensnnnnees 95
Chapter 4: Moving around the Filesystem i, 97
Using Basic Filesystem COMIMAndS.....ccuuuuerieruuerreeenereerrnereerueeeeeereneereeeenseeeennnnns 100
Using Metacharacters and OperatorS.......eeeeeeueereeeuereerrnereetineeeeeeneeeeeenaeeeeeennenns 102
Using file-matching metacharacters....ceeieeeueeerieiiieieiiiee et 102
Using file-redirection metacharactersccoeeeveeiiiierriiiiiiiiiiieenecicee e 103
Using brace expansion CharaCterScceeeieeeueereiiuuiereiiieereeiiereeriieeeereaeeeees 105
Listing Files and Dir€CtOTies ...cieeeuuereeimunereeiiieerettieerettieeeetieereereneseernneeseeennnnns 105
Understanding File Permissions and Ownership.......cooeeviiiiiiiiiiiiiiiiiiiiiinninnnn 109
Changing permissions with chmod (nUMbETS) .ccevvvuueeeerrriiiiiiiiiieeeeeeeeeeeeinanes 111
Changing permissions with chmod (letters)....cceuvuuueeeerreeriieemiiiieeeeeeeeeerennanes 111
Setting default file permission with Umaskccceeevieiiiieriiiiiieiiiiiien e 112
Changing file OWNeIShIP..ciuuueeieiiiee ittt e e e e e eeae e e e 113
Moving, Copying, and Removing FileS.....ceiieuueeieeruerieieieneeiiieeeeeiieeeeeeeieeeeennaenns 114
U8 11 h 1T D AP PP PPPR PPN 115
X OICISES tetruuereituieeeertueeeetttieeeetteeeetaaeeeeeaaaeeaernnesearenneseenssnnsseessnsnsenssnnnseennnnnns 115
Chapter 5: Working with Text Fileso ii i s 117
Editing Files With vim and Vi.....ceeeereeiiiorieiiier e e ee e eeeeeae e e eennaes 117
StArting With Vi ..eveoeeoe e 119
AddINg tEXtu e iiiiuieeiiiiiee ettt e e e e e ra e e eaaaaas 119

Moving around in the teXt..ccceeeriiiiiieriiiiiieeeeree e 120

Deleting, copying, and changing texXt....cccceeveeeuierririnierieiiiienreeineerennnn. 121

Pasting (PUtting) teXt.cuuueereiiueeriiiiieeeiiee e e eeeaas 122

Repeating COMMAanAS .evuuueereeiuueereriuieeeiiiieeeeeeiereeriaeeeerreneeeeeenneseeenns 122

|55 a8 1o 17 RSO OUPR PO URRPRN 122

Skipping around in the filecouueeiiiiiieiiiii e 123
SearChing fOr tEXE ciivuuueiiiiiiiee et eeere e e e e e eaaeeeees 124
USING X MOGE..eeetiitirriuieeeeeeeettetuuiiaaeeeeeeeeterennanaeseeeeeererennnnnsseeeeeeresennnnnns 124
Learning more about vi and ViMl......ceuueerieiiiierieiiiienieiiie e eeriieeeeeeneeeees 124
FINAING FIlES.uiiitiieeiiiiiei ettt ettt ee et e e eeaeee e e ereae e eeraneeeeeaaaseeassnnssesennnnns 125
Using locate to find files by NamMe ...ccuuueeiiiiiieriiiiiie e 125

XVii

Contents

Searching for files with findceeviiimiriiiii e 127
Finding files DY Name..couuuiieiiiiiiieiiiee et e eeaaes 127

FINding files DY SI1Z€ .ciiiuuueiiiiiiiiiieiiiiee et e eeriee e e e e e e eerae e e eeaaaes 128

FINding files DY USeI..iiuuuiieiiiiieieiiiiee i eetiee e eeeiee e eeriee e eeeaeeeeeeaeeeeneanns 128

Finding files by permission.........uceeerereeieremmiieeeeeeeeeeeiieiieeeeeeeeeeeennens 129

Finding files by date and timeccceeeieivieiiiiiiiinieiiiiee e, 130

Using ‘not” and ‘or’ when finding files......coveevvuieiiiiiiiniiiiiiinnieeiee e, 131

Finding files and executing commandscceevuuereerrenereeeenneneeeenneneenennns 131

Searching in files With grepP....cceuceeiiiieioiiiiiien et 132
SUITLIT AT Y e ettt et e et e et e et e et e et e eaa e ena s enaeeeueseaaneeennestanssennesesnssennesennssennnnaes 134
EROTCISES coeieiiiitiiee ettt e e e et s e e e e e teaae s 134
Chapter 6: Managing Running Processes.oviiiininninnnennnennns 137
Understanding PrOCESSES ciuuuueiietuuiereetiiieeeettiieeeettieeeetreeeretnaaeereeenneseeenssseesennnaes 137
LiStING PIOCESSES wuuererruierieiiiieeeetiiieeeeteuereettieseettaeeeeesneeeenennsseerennsseensssseesennnnnes 138
Listing processes With PS ceeueeieeuueriiiiiiiriiiiiie et eeere e eeee e e e e 138
Listing and changing processes With t0P......eereeeueeriiinieriiiiiiee s 140
Listing processes with System MOnitor.....cccceeereeruerriiinierieiiiieneeiieeeeeeieeeees 142
Managing Background and Foreground ProCeSSeS......ceieeeuuereeeunereeriunereernneererennnnens 144
Starting background ProCESSES cuu..eiieeueereiiieereiiieereite e et et eeraieeeeees 144
Using foreground and background commandsceevueeeeerunereeeinnereeenneneennnn. 145
Killing and ReNiCinNg PrOCESSES..uuueiiuuriiruretriererieeerieretieeetueeeneeenneeenneeerneeeensennneees 146
Killing processes with kill and Killall........cceeuermeuieerrrrreiiiiiiiiieeeeeeeeeeeeeieeeen. 146
Using kill to signal processes by PID.......cceieeiuueeieiiiiinreeiiieneeeeieneennnnn 147

Using killall to signal processes by Namecceuueeeeeevereeeeeniereeeenneeeenennns 148

Setting processor priority with nice and reniceoeevueveviiiierieiiiiinreeiiennenes 148
Limiting Processes With COTOUPS....uueetitiuueriitiiiee et eerie et eetree e eeeae e eeeaa e 149
SUITLIT AT Yttt etuie et ettt et ettt e et e tae e eau e eaae s enaeeeuesaeaesennnsstanssennesesnssennssennnsennnnees 151
BRI CISES 1 ettuuuereitueerette e ettt e eetuaeeeettaeeeeeraueseetnaeeeersnnseenenesseennnnnseennnnnsersnnnnnes 151
Chapter 7: Writing Simple Shell Scripts 153
Understanding Shell SCripts.....ccieeuuuummiieiieeeiiiiieee ettt et e ee e 153
Executing and debugging shell SCIiptscceevummmmiiiiiiiiiiiiiiiee e, 154
Understanding shell variablesceeriiiiiiiiiiiiiiiiiieeiiiiiicee e, 154
Special shell positional ParametersS......ccuueererruneereerinerreerieereeeneneeennnns 156

Reading in parameters ciu.eeeeeeuereeeeueereeiieeeeetieeeeteeieeeeeaieeseernaeeeereanes 157

Parameter expansion in bashccccuueiiiiiiiiiiiiii e 157

Performing arithmetic in shell SCIIPtS....cceervrrrruuiiirrriieiiiiiiiiiee e, 158
Using programming constructs in shell SCripts....ccciuueeiiiireiiiiiiiiiiiiieieierennnnees 159

The “if...then” statements.....ccoeeereeiiiiiiiiiieeeeeeeeeeeeeee 159

The case COMMANGeeeeirriruuiieeeeeeeetiieiireeeeeeeeeeeneeaeeeeeeeeeeerennanaenns 162

The “f0r...d0" 100D eietrrierieiiiiieeeitiee ettt eetiee e eeerieeeeeeaaeeeeaeaeeeenennns 163

The “while...do” and “until...do” l0OPS . cuueereeeruiereeiiiiereeeiieeeeeeie e eeeenen. 164

Trying some useful text manipulation programs.....ccceeeereevuueereeeenieeeerennneenns 164

The general regular eXPIESSION PATSET..cuuuureerruuererrruneeerrnneeeerennereenennns 165

Xviii

Contents

Remove sections of lines of text (CUL)...ceuuverriiiniiriiiiiiiiiiiiee e, 165
Translate or delete characters (LtI) ...ceeeeeeeeeeeeeeueereiieienreeiieereeeeeeereenen. 165
The stream editor (SEA) ..eeevrrrruuueeeerreeriiiiiiireeeeeeeeeererieeeeeeeeeeenenaaaaes 166
Using simple Shell SCIIPLS.cuuiiiueriieriiiieiiie ettt eeree et e eeeee et eeneeeaneennnnas 167
TElEPhONE LiST.eirrruuniieeereeeiiiiiiieee e ee ettt e e e e eeeereenee e e e eeeeeenennaaaes 167
BaCKUP SCIIPL veeiiieiiiiiiee et ectiee e eetee e e e v e e e aaa e e eeeaaeeeeeenes 168
ST ITL AT T e sttt etuie ittt eete e et e et e et e enueeeenesereneennsseennsennnsasnnsennssennnsennnnsennnsennnsennnnes 168
B R CISES ettt ettt ettt e e ettt e e e e et ettt e e e e e e e eeban e e e e 169
Part lll: Becoming a Linux System Administrator 171
Chapter 8: Learning System Administration.............. i, 173
Understanding System Administrationcc.ceeveeeeiierriiiiiereeiiiereeiiee e eeeeneees 173
Using Graphical Administration TOOLS ..c..ueereeruuereeruuenreriiieeretiieeeeereeeeeernaeeeeeenaenne 175
Using system-config-* £001S...ccuuuueiiiiuuieeieriiieeeeiiieeeeerieeeeerieeeeerrieeeeeeaaeeeeens 175
Using browser-based admin t00lSieuueiiuueiiuiiiiieiiiiereieeeeieeeriee e eeeeeeaaees 177
Using the 100t USET @CCOUNT .. .ciitiiiiiiiiiiiieeeeeeeetiiiiee e e e eeeeretee e e e e eeerrrenaaeeeeeeee 177
Becoming root from the shell (su command)euuueeeerrieeiiiemmiiieeenreeeeeenennnnn. 178
Allowing administrative access via the GUI......cceeveivuieriiiiiiirieiinienieeniieneennnns 180
Gaining administrative access With sud0o.......evieiveeriiiiiieiiiiiie e 180
Exploring Administrative Commands, Configuration Files, and Log Files 182
Administrative cOMMANAS «.ccveueeuieiiiiiiiiiiiieee ettt 182
Administrative configuration filescceeuuuerriiiiiiiriiiieieiiicee e 183
Administrative log files and systemd journal.......c.ceeueeereeienerrerinncereeinnenrenen. 188
Using journalctl to view the systemd journalceeueeveeiniereeinnnnennnnns. 188
Managing log messages with rsyslogd.......ceeveeeneireiiiiiiriiiiiieriiinenneeene. 189
Using Other Administrative ACCOUNES . .uuuiiuuiiiiuieitiereiiieitiieeeiieeereeereeeeneeenaeerneaeens 189
Checking and Configuring HardWareccceeieeuuueeeeriuieeeeriieneeriieeeesnneeeesnnseesennnnns 190
Checking your RardwWarecceeeeeeeeeiieiieeeeeeeeeeiiieee e eeeeterenee e e e eeeeeenenaas 191
Managing removable hardWarecceuueeieeiiieeieeiiieeeiiiee e eeeeie e eeeeaeeeeeee 194
Working with loadable MOdULEScvvuuerieiiieeiiiiiee e e eeeaes 197
Listing loaded mOQULES....ccieeuruereiiiiireeeiiieeeeeiee e eereieeeeenaeeeeeeaieeeeeenns 197
L0oading MOAULES . ceuuuiiereieieeiiieeeeeiiieeeeeeieeeeeeeeseeraaeeeeennaseeeeenneseeenns 198
RemMOVING MOQULES ..uiiiieieeieiiiiiee et eetiee e et eerte e e eenaeeeeeeaaeseeenns 198
SUITIITI AT T ettt ettt et et e et e et e et e et e e et e eaae s eansenaesenaeeetaeseaanernneseanesennesennnnas 199
EROYCISES ceetiiuuiiiiee ittt ettt e e ettt s e e e et bbb e 199
Chapter 9: Installing Linux. oot i e 201
ChoOSING @ COMMPULET ceevvuueieiiiiereeiiiieeeetteeeeeetteeeereaaeeeeeensseeraasseensneseeeennnnsesnennns 202
Installing Fedora from Live Mediad...c.cieerieiiiieereiiiieneeeiie et eeeeiee s eeeee e e eenaaaens 203
Installing Red Hat Enterprise Linux from
Installation Media ..cceueeeeeiieiiiiiiiiiiiiiieeeeccriiri ettt 208
Understanding Cloud-Based Installations........ceereeeuueereriuiiereiiininreiieeereeeiieeneeennenns 211
Installing Linux in the Enterprise ...ttt eeeaee 211

XiX

Contents

Exploring Common Installation TOPICS ceeuuereerrueereermuieeeiiiieereeeiereeriieeeereeeeeeeenaenns 213
Upgrading or installing from scratch.......ccevvvuuuiiieriiiiiiiiiiiiiiieeeeeeeeeeeeieen, 213

DUAL DOOTIIIG tuutetieeiitiiie st e ettt cete et eeteeeaaeeeaaeeaaeesneeesnneaennsennnnees 214
Installing Linux to 1un vVirtually c.eeeeeeeeeeeeeeeiiereiieeeieneeie e eeeeeenneeennenens 216
Using installation hoot 0PtioNS ..e..ueeeeereeeeiiiiiiiieieee et 216

Boot options for disabling featuresccuueereeivuereeirienieeiiien e e eeeenen, 217

Boot options for video Problems.......ueeeeiuuuireeiunieeeeiiiieeeereeneeerieeeeeennns 217

Boot options for special installation tyPes....ccceeeeeeeeeeerieeeeienreeeniereennnnn. 218

Boot options for kickstarts and remote reposSitories......cccceereevuuereennnnn. 218
Miscellaneous boot OPtionS...cuuuerieiuuereeiiiiereeiier e et et eeeeeeeeeeeaaes 219

Using specialized STOTAgE ..uueiiiruueereriiieeeetiieeeetetieereerieeeeetnaeeeeennaeeeenenneneenes 219
Partitioning hard driVes ..c...eveeeeeerriiiiereiiiee et e eee e e 220
Understanding different partition types.....ccceeeereeimiieriiiiiienrieinenrennnn. 221

Reasons for different partitioning schemes.......cceeeeeeevriiieieennrreeeennnne. 222

Tips for creating PartitionsS.....ceeeeeeeeereeiiiieieeiieee e e eeeee e eeaaenn 222

Using the GRUB b0oot 10ader.....ueiiuuriiieiiiieieiieeeiieeeiiee et et eereeeeeeerneennenees 224
Using GRUB Legacy (VETSION 1) ..cceeieeeeerruuuueeeeeeeeerenennnieneeeeeeeeeenennnnnnnns 225

USING GRUB 2 ..iiiiieeieiiiee s cetiee ettt e eeteee s eetaiee e eenaa s e s eeanaessennnnsseesennns 229

UL IT AT Yttt etuueetueerneeenueetneeerueeeeneeeenseennesannssennesensnssnssneensssnnnssssnssennssennssennnnaen 231
B RO CISES ettt ettt ettt e e e et ettt e e e e ettt e b e e e e e eeeenennaees 231
Chapter 10: Getting and Managing Software i, 233
Managing Software on the DesKtop ..ccevuuuuueerrieiiiiiiiieee et 233
Going Beyond the Software Windoweieeeuuerieiiiienieriiiereeeiieeeeeeeeeeeeeneeeeneneeees 235
Understanding Linux RPM and DEB Software Packaging......ccceeeevevvuuerieeinnnneennnnnnns 236
Understanding DEB Packaging....ceeeeeuuereeruuerieiunieeeeeiiieeeeenneneeeenneseeensnseeeens 237
Understanding RPM Packaging ...eeeeeeeeeeeeeruereeiuniiereriieereeeneeeeeenneseernnnseeeens 238
What isin an RPM? ..ciiiiiiiiiiee ettt 238

Where do RPMs cOmMe fIOM?.cuuuuiiiieieiiiiiiiereeiieeeeeeeieeeeeenieeeennaeeeennnens 239

INStAllING RPMS viiieiiiieei ettt et s e et e e e eeae e s eenee s e eeeaees 239

Managing RPM Packages With YUM.....ccouceriiiiuiiiiiiiiieeeiiieeretee e eereieeeeeenaeee 240
Understanding how YU WOTKS....cocuuuueiriiiiinreiiiee et eeeeieeeeees 241

1. Checking /etc/yUm.CONS ... iiiiiieiiiiiiiee ettt eeeree e eeea s 242

2. Checking /etc/sysconfig/rhn/up2date (RHEL 0NlY) ceevvvvrnennerereneennnnns 242

3. Checking /etc/yum.repos.d/*.1epo fileS..cuuuuuueeeerreeeiierirniiieeeereeeeennen. 243

4. Downloading RPM packages and metadata from a YUM repository243

5. RPM packages installed to Linux file system.......ccevuerieiriienieiennnnens 244

6. Store YUM repository metadata to local RPM database.........cccuuuenneen. 244

Using YUM with third-party software repositories...cccceeeveeeuueerieiinierrerennnnennes 244
Managing software with the YUM commandc..ceeveevmeerririnenieiinenreeinnennens 245
Searching for Packages ... e eeieueeriiiiee e e eeeaaes 246

Installing and removing packages.......ceuueereeruuerreiiiereereiieereeeneneeennens 247

Updating Packages....ceeuueereeiuiireiiiiereeiiee et eetiie e e et e e ennaeseeraaaes 249

Updating groups of Packages ...cceeveueereeiiiieieeiiiieeeeeiiieeeeeeieeeeenieeeeenaens 250

XX

Contents

Maintaining your RPM package database and cache.......cccceeerevvnnennnnnne. 251
Downloading RPMs from a yum repoSitOryceeeerreeerveruunueneereeeeenennnnnns 252

Installing, Querying, and Verifying Software
with the rpm Command.....c.ceeeuriiiiriiirer e e e erae e e e e eeaeenaans 252
Installing and removing packages with 1pmeeuieereriieiiiiiiiiiienereeeeeeieineee. 253
Querying rpm informationceeeeumuuieeeerreeiiieiiere e eeeeeeeree e e e eeeeeenaanaas 254
Verifying RPM PacKages ...ceieiueueiieiiiieieeiiiieeeeiiieeeereieeeetniieeeeennaeseesnnnnseesenns 255
Managing Software in the EnterprisSe. e iiiuieriiiiieeieiiieeeetiieeeeeeeee e eereaeeeeeeanaees 256
U8 11h 1T D AP PP PPRR PPN 257
BRI CISES c ittt ettt e ettt e e e e et e e ee 258
Chapter 11: Managing User ACCOUNtSiii it ittt it i i e i a e e 259
Creating USeY ACCOUINES...uuiiiiuuereettiiereetuiieeeettieeeeteneeeetaneeeeesnseeesssnssesssnnneeesnnnnns 259
Adding users with useradd.....cceeeeeeuuieriiiiiieniiiiiee e e ee e 262
Setting USer defatlts .uueeiiieuueeiiiiiiee ettt e e e 265
Modifying users with USermodceeeeuueeriiiniiiriiiiieeeeiee e 266
Deleting users with Uuserdel........ceieeieuerriiiiieniiiiieeeeiee e e 268
Understanding Group ACCOUIES cevvuuurriruuneretiiieerettieereetieeeeteeneeeeennneererennseerensnees 268
USING gIOUD QCCOUINES..tttrrunnreeriuneretruueerertnneeeertnneeetrnneeseernnesseermnnsseeesnneseees 269
Creating groUP ACCOUNES..ciuuutrtiruieerettueeeetiueeeetiaeererenaeeeeeraaeseernaneeeernaneaeaes 270
Managing Users in the EnterPriSe. e iiiiiiiiiriiiieiiiieieieeerieeeeieeetneeeeneeenaeeennneees 270
Setting permissions with Access Control Lists ...c.cveeuuererneeeenreeniereineeennrennnnes 271
Setting ACLs with Setfaclceeeveruuuiieerieeiiiiiiiceee e 272
Setting default ACLS ...ccuvueeieeiuiireeiiiiieeeeitiee e eeeiieeeeetaneeeeereaeeeeeeaneeeeenns 273
ENaDlINg ACLS..iiiuieeiiiiiieeeeiiiieeeetiee e eettieeeeeetie s eeneaeseeeanseeeanneseesssnnns 274
Adding directories for users to collaborateceucevveevnerieiiiierieiiiiin e, 276
Creating group collaboration directories (set GID bit)....ccceuuuueeerreeeennne 276
Creating restricted deletion directories (sticky bit)ccovvuuuuieeriiiiennnn. 278
Centralizing USer ACCOUNES .ccvuurterruueeretiieerettuereettnereetnneeeeennaeeernnsseersnssesennnnns 278
Using the USers WINAOW .eeuuueeeeruuurreeruueereetnieereetnieeeteenereereneeseersnseeessnneesees 279
Using the Authentication Configuration window.......cccceeerviiiuieriiincinecinnenees 279
U IT AT Fa s ettt ittt eeteeetieeeuneeeuueetteetueeeesnseasessessssesnseessnsesnsesssnesssnsssssnsesnneesnnsesnnees 281
EXOYCISES teiiiiiiiiiiiiiiiiiiiiiii et e e b 281
Chapter 12: Managing Disks and Filesystems i, 283
Understanding DisK StOTage...ccieeuuuerrerrueriiiiiiieeetiiee ettt e eetiieeeetnneeeeeeneeeeereneesees 283
Partitioning Hard DiSKS.....ccuuueereiiuiiriiiiee ettt eceee e ereee s eeeaa s eennaaees 285
Understanding partition tables......coueeiieiiiieiieiiiiiiiiiieeeee e 286
Viewing disk partitions...c.eicueeceereiuiriinieiiiie et eeieeeeieeeeieeeneeereeenneeennnees 286
Creating a single-partition disK.....ccceeeeeeiiriiiiiiiiiriiiieeeie e e eenaeee 288
Creating a multiple-partition disK.......ceeeeerreeeimemmiuieinenreeeiiiiiieeee e eeeeeeennanees 292
Using Logical Volume Management Partitions.....cccoeeereeevuerieiiiierieiniinneeiiieneeennnenns 295
Checking an existing LVMciiiiuiieiieiiiiereeiie et eeteie e eeeeieeeeseneeeenanaeees 296
Creating LVM 10Gical VOLUITES ..cevvuuereeruurierriiereeeinieeeeeenieeeeneneeeerenneesennneenes 299
Growing LVM 10Gical VOIUIMES...ccuuuurrerrunereerrnieeeerrnieereeenieeeeenneeeeerenneeeeennneeeens 300

XXi

Contents

MoUNting FileSyYSTOmMS. cuuuereiiieereeiiiee et e ettt eetie e ettt e ettt s eeraneeseennnneerannnnnns 301
SUPPOTTEd fileSYStOMS . iiiiriieeieiiiieeeeitee e e eeteee e eeree e e erreeeerateeeeeraaeeeessnaeeanes 301
ENabling SWaAP ATEAS .uvevuurirueirureruieeeueeeueetueeesneeesnesesssessnseesnssesnseesnssssnseees 303
DiSabling @ SWAP @IA tevvurirrurerunrrrueerueeeieerueeeueernneeesneeesnseennseesnseesnssennnsees 304
Using the fstab file to define mountable file Systems......cuvuuueeerrreeeerernnnnnnnn. 305
Using the mount command to mount file SYStEMS ...evvvurreriiierieiiiiereeiiiieeeeens 307
Mounting a disk image in 100Pback......ceieiuuueriiiiiiiniiiiienecieer e, 308
Using the umount command.......coeevuuuerieiiierieiiiinreeiiee e eerieeeeeeeeeeeereneeeenes 309

Using the mkfs Command to Create a FileSYStem cuuuuevieereuerieiiierieiiienreeeieeeeeenins 310

SUITL I AT Yttt ett et e et e et e et e et e e ta e e eaa e seaa s enaeetaesenae e enaneetanesennesennesennesennnsennnnees 311

EROTCISES coeeeitiittiee ettt ettt e ettt e e e e et e bae s 31

Part IV: Becoming a Linux Server Administrator 313
CHAPTER 13: Understanding Server Administration. 315

Starting with Server AdminiStrationceeeuueieruiriiieriiiiriiiir e e e eeaeeeraenees 316
Step 1: Install the SEIVET...cciiiiiiiiiiiieeeee ettt eeeeereeees 316
Step 2: Configure the SEIVEY ..icuuuueiiiiiiiei ittt erie e e e eeaeeeeeees 318

Using configuration filescuuueeieeiuiiriieiiinieeiiee et e eeeee e e eeeaaes 318
Checking the default configurationccceeeeveevuerieiiiienieiiiien e, 319
Step 3: Start the SEIVET .. e 319
Step 4: SeCUTE the SEIVET..uuuiii ittt ettt eeeae e e eeeaeeeeees 321
PassWOrd ProteCtioN ..cuuiiiue it ittt ee e e e eaaaas 321
FIT@WallS woeiiieiiiiiiiieee et e 321
TP I AP POIS tuuieunirnreurenerneeeeeueeneeneensreneeenaenssenssensenssenssenssnssenssnnns 322
SELIMUX 1ueeitiieiettiiereetiieeetteieeetieieeseetaneeseeenneseetsannssersnnessesennessersanes 322
Security settings in configuration fileS........ceuvueeeiiiiiriiiiiieiieeiiieneennnn, 322
Step 5: MOnitor the SEIVET ...t eere e e eeae e eeaeees 322
ConfiguIe L0GGInNg.eeuuuueeeeeeeeeireniieeeeeeeeeteieiieeeeeeeeeeerrenaieeeeeeeeeernennns 322
Run system activity rePorts.....ceeeiuuueeieiiuienieiiier et eereiee e eeeieeeeeeaaes 323
Keep system software up to date.....eeieeeuieeieiiniiiiiiiiiin e, 323
Check the filesystem for signs of crackers....cccceeeveeveueiiiiniieniiiiiennennnn. 323

Managing Remote Access with the Secure Shell SEIVICeevvevvreeriiiiiiiiieiiinreeiies 323
Starting the openssh-SeIver SEIVICE . .uuuiiiiiiuueereiiieereiiieeeetieeeeriieeeeeeaeeeeees 324
USIng SSH ClieNt £001S. ciiuuuriiiiieeriiiieereiiie e et eeeiee e eeraeeeeeenaeeeeeeaaeeenes 326

Using ssh for remote login ..cuueeeeriieeeriiiiieieeiiee et eeee e eeeaees 326
Using ssh for remote eXecution ...ceuuuevieiiueireiiiiieriiiiien e, 328
Copying files between systems with scp and 1SyNcceevvveeeeeevnnnneennnen. 329
Interactive copying With sSftp .cccevvueeiiiiiiiii i, 332
Using key-based (passwordless) authentication........ccceevevvvuuiieeeereeeeeenennnnnnn. 332

Configuring SYSteImM LOGGingueeeereeeeeiemuuieeeeeeeeeitiiiieeeeeeeeeeeeenieeeeeeeeeeenennnnennns 334

Enabling system logging with rSyslogccuuueeieeiiienieiiiienieiiiien e 334
Understanding the rsyslog.conf file.....ccoeeereeiiiiiiiiiiiinniiiiiee e, 335
Understanding the messages 10g file....ccuueereeiiiieiiiiiiiiniiiiiieneeiee e, 337

XXii

Contents

Setting up and using a loghost with rsyslogd.......ccceeueerriiinierieinnnnenene. 337

Watching logs with logwatch.....cooeeuueiiiiiiiiiii e, 339
Checking System Resources With Sar......cccceeiiiuiriiiiiiiiiiiiiiireiieecre e eeeeeeeas 340
Checking SYSteIM SPaCE...cuuiiiur ittt ettt eeieeeteeerie e et e et e eeaeeeennssenneeennssennnns 341
Displaying system space With df.......cceeerriiiiiiiiiiiiiiieeieee e 342
Checking disk usage With AU.......eeiieiuieriiiiiiiriiiiee e 342
Finding disk consumption with findcceveriiiiiiiriiiiiinie e 343
Managing Servers in the EnterprisSe....cuuceriiiiierieiiiienietiiee et eeereee e eereeeeeeeaaaens 344
U8 11h 1T D AP PP PPPR PPN 344
| (S (o 1< PSRN 345
Chapter 14: Administering Networking. i i i e 347
Configuring Networking for DesSKtOPS...ccuuueeieiuuerieiiiierietiiee et eeeeee e eeeeaee e eeeaaanas 348
Checking your network interfaces.....cceeerieiiueriiiiiieniiiiieneeeiee et 350
Checking your network from NetworkManagercccceeeeeevenererennnnrennnns 350

Checking your network from the command linecccceevveveueereirnnnnennnne 352
Configuring network interfacesoieeeueereiiiieriiiiiiee e 355
Setting IP addresses Manuallycoceeuuerrereuereernnnerrerieieereeeneneeennneneennns 355

Setting IP address aliasescevuuueeeeeeuereeruueereeriieereeinneeeeeenerereaneseeenns 356

SETEINIG TOULES tiruniiiieiiie ittt ettt e et e eee e eat e et e eaneeearaesaaneeanans 357
Configuring a network proxXy CONNECION ...ccuueeerrruereeruueeeeriieereeriieeeerenneeeenns 358
Configuring Networking from the Command Line.......ccceevuuerieiiiienierinieneeernnneeennnnn. 360
Editing @ COMMECION .uuiiiiriiiiiiiiieieiiiee et eeerte e e eeraee e eeeae e e eeenaeeeeees 360
Understanding networking configuration files.......cceuueeieiiiieniiiiiienieinniinnnnn. 362
Network interface files covu i e naes 363

Other networking files...uuueiiiiueieriiiiiiee e e 365

Setting alias Network interfacesoievvuueeriiiiiieiiiiiee e 367
Setting up Ethernet channel bondingcceueeereiiiieiiiiiiiiiiiieeie e 368
Setting CUSTOM TOULES..viiiruuereiirieereeriee ettt e ettteeeeeeaeeeereneseeraaneeeeennnnanees 370
Configuring Networking in the Enterprise....cccceevieeuuirieiiiieriiiiieieiiiee e reeeanne 371
Configuring LinUx @S @ TOULEY ceeevvuuerieiiiereiiiie et eceieeeerene e e ereeeeeeenaaeeees 371
Configuring Linux as @ DHCP SEYVET .cvuurieiruneeeeiiiieeeeranieeeereneeeeersneeeessnnneeees 372
Configuring Linux as @ DNS SEIVET ...ccuuuerieiruueeeeriieeeerinieeeerineeeersneeeessnneeens 372
Configuring LINUX @S @ PIOXY SEIVEI ...uuuureereerrereruunneneereererrmennnnnaseeeeeeeesennnnnns 373
SUIMIMAT Y. e ettt ettt ettt et e ettt e e e et s e e et s eetaaaeeeeenaeseeaanaeseensnnsseesnnnnns 374
|5 (S (0 11 PO 374
Chapter 15: Starting and Stopping Servicesc. i 377
Understanding the Initialization Daemon (init or systemd)........ceeeveuereeinunreeennnnns 378
Understanding the classic init daemonsccuuveeneriiierieiireiiir e eenneees 380
Understanding the Upstart init daemoneeveevvieeiiiiiierieiiiiee e, 386
Learning Upstart init daemon basicscuuerreiruerieiiierieiiiiineeeiieeeeennns 386

Learning Upstart’s backward compatibility to SysVinitcccceeeeeennnen. 388
Understanding systemd initializationcceeeeereeiiiirieiiiier e eeeeiee e 392

XXiii

Contents

Learning systemd DasiCS...cieeeeuerreeuueereiiiienreeiieeeeteieeeeeeneereeeneeeeeennes 392

Learning systemd’s backward compatibility to SysVinit.........ccceneeenee. 397

Checking the Status 0f SEIVICES ciuuuiiiiiiiieiiiiiie ettt eerree e eerae e e eaaaes 399
Checking services for SYSVInit SYSTEMS ...ccuvueeieeruierieiiiiereeiiiieeeeriieeeereieeeenns 400
Checking services for Upstart SYStEIMS .eeeeeeerrerunuueeeeeeeeeiiiiieeeeeeeeeeenenaaaeeens 401
Checking services for systemd SYSTEMS ..eevvvueeieiruierieriiierieiiiieeeeeiieeeeeeieeeenes 402
Stopping and Starting SEIVICES .icuuuueeiiiiuierieiiiieeeetiiiereettieeeeteee e eeraaeeeeeeaneeerennanaes 403
Stopping and starting SysSVinit SEYVICES ..eevvueereeruuerreeiiierieiiiieeeeeiieeeeeeieeeenns 403
Stopping and starting Upstart SEIVICES ceveeveuereeruuerreriierieiiiieeeeeiieeeeeeneeeenes 405
Stopping and starting systemd SEIVICES ..cevuuerieruuerreriniereeriieeeeeiieeeeeeneeeenns 406
Stopping a service with systemdceveeeuieerieiiiiriiiiiirreiee e, 406

Starting a service with systemd......ceeveeeuiieriiiiiiiriiiierieeee e, 406

Restarting a service with systemd.......cceuueereiimiiriiiiieiriiiiieireeieeeeeenes 407

Reloading a service with systemd........cceuueereeimiireiiieireiiiieereceieeeeeenes 407

Enabling Persistent SEIVICES .uuiiiueiiuieiiiirieiieietiieetiereeieetieeeeeeenneeenneeenneeeensennnnees 408
Configuring persistent services for SYSVinit.......cceeeeereeeereveuuiieeeereeeeenennnnnnnn. 408
Configuring persistent services for Upstart.........eeeeeeeeeereeenniieeeeeeeeeeeennnnnnnn. 409
Configuring persistent services for systemd......ccceeeereeruierieiiiierieiiiieneeneieneens 410
Enabling a service with systemdcoeeevuueerieiiiiiiiiiienieeiiiee e eeeennn 410

Disabling a service with systemdcoeuueeriiiiiiiiiiiieniiiiien e, 411
Configuring a Default Runlevel or Target Unitcceueereeenierieeininiieiiiinneeiiiieeeeennns 412
Configuring the SysVinit default runlevel......c.cceuueeriiiieniiiiiieniiiiieeeeeiieeeees 412
Configuring the default runlevel in Upstart.....cccceeereeiuerreiiiienreiiiienreeeieneees 413
Configuring the default target unit for systemd......ccceuuveeriiieeriiiiieirieinennees 413
Adding New 0or CustOmized SEIVICES...ciuuietriiruierriiineieetiiee e et e eeeneeeeerneeeeenaaees 414
Adding new services t0 SYSVINIt .iuuviiuueiiiueiiiiireiiieiiiie et eeiie e eeeeeerieeeaaeee 414

Step 1: Create a new or customized service script filecceevveevnunnennnnne. 415

Step 2: Add the service script to /etc/rc.d/init.d...ccceeieiiineiieiiiieninnnnen. 416

Step 3: Add the service to runlevel directories.......cccceeevevuueeereeereennnens 417

Adding new services t0 UPStart....ccuvuerieiiuerieiriirieiiiieeeeetiereeeeiieeeeeeeneeeenes 417
Adding new services t0 SYStEMA ..ovevuuuerieiruuerieiiiiieieeiieeeeetieeeeeeeieeeeenaeeeeees 419

Step 1: Create a new or customized service configuration unit file........ 419

Step 2: Move the service configuration unit filecc.eerveveerriviniennnnnnn. 420

Step 3: Add the service to the Wants directory.....cccceeerevieueereeennennennnne. 420

SUITLITIAT Y ettt e et ettt et e et e et et s eai e ena s ebasetaesesanseaanestanssennesennesennesesnnrennnens 422
EXOTCISES toeiiiiiiiiiiee ittt e e et e e e e e st aae s 422
Chapter 16: Configuring a Print Server. 423
Common UNIX Printing SYStEIM cieeuuueeieeiuerieiiiiereetiiieeeeeeieeeeteieseereneeeennnneeennnnnnns 423
Setting UP Printers coveeuueeiiiiierieiiiiee ettt eette e eette e e eeee s eeeaasseenanaeeenenannns 425
Adding a printer aUtomMatiCally .. ceeeeeuueererrunierriiiiinreerieereeiieereerieeeeranaeeeenes 425
Using web-based CUPS administrationceeeeeeeueereeiineereeiniieneeiiieereeeieneens 426
Using the Print Settings WindOW ...cceuueereiiuirriiiiiiireiiiee e eeeeie e 428
Configuring local printers with the Print Settings window................... 429

XXiv

Contents

Configuring remote PrintersS.....cceeeeeeeereeeuueereiiieereeieeeeeteeeereeenieereeenns 432

Adding a remote CUPS Printer....c..cceieeeuuerreiiuinreiiiiereiiieereeenieereeenaenne 433

Adding a remote UNIX (LDP/LPR) PIinter.......cccevrruuuureerreereerrnnnnnnaaeaes 433

Adding a Windows (SMB) PIinter.....cceeeuueceeereeeeeerremnunieeneeeeeererennannennnns 434

Working with CUPS PIrINting ...ceeeeeeeuueeeeerreetiiiiiiieeeeeeeeeieieniieeeeeeeeeenennanaeeeeeeeenens 435
Configuring the CUPS server (cupsd.CONf).....cceuumuumieeerrireriiiemiiieeeeeeeeeeeennnnne 436
Starting the CUPS SEIVET.....uciiiiuueeiiiiiieeeetiieeeetiieeeeteieeeeeeneeeeeeneeeeeanaeeees 437
Configuring CUPS printer options manuallycceuueererererrernnereernniereeeeneeenns 438
Using Printing CommMands......eeieeeuueereeruuereeiiieereeeieeeeeenieeeereeeeeeeennnssesnsnssseennnnnns 439
Printing With 1T .ceeeeeeriiiii e e e e e e e 440
Listing status With 1pC..cceeueriiiiiii e 440
Removing print jobs With Iprm cee..eviiimeeriiiiiiieee e 441
Configuring Print SEIVEIS c.iceuuuiiiiiiiieiiiiiee ettt eetie e ectae e e e teaeeseeraneeseeenaenas 441
Configuring a shared CUPS printer......ccoveeeeeiriiiiieiiiiiieeriiieeeeetneeeerieeees 442
Configuring a shared Samba Printer.....ccccceueereeiiiierieiiiiee e eeeiee e 443
Understanding smb.conf for printing.......ccceevueeeieiiieniiiiiienieciiieneeennnn. 444

Setting Up SMB ClIENES ..uveeereeiiiiiiieeee et eeeereeee e e e e eeeeeeens 445

UL I AT T e sttt etueeiieeeieeetieeetieeetieeetueeeeneseenaeennneeenssennnsassssennssennnsennsssesnnsesnnsennnnes 446
L5 (oh T T PP PP UPUPPPPPPRRPRUPPPRt 446
Chapter 17: Configuring aWeb Serverttt i i it i e inens 449
Understanding the Apache Web ServVer....icuviiieiiiiiiiiiie e eeee e eeaeeeees 449
Getting and Installing Your Web SeIverceeeeeeeeeiiiimmiiieeeeeeeeeeiiiieee e e e eeeeeeennanaes 450
Understanding the httpd package....coeeeieeeueiiiiiiiiiiiiiien e 450
INStalling APACHE cecivuiiiiiiiiee et ettt e et e e erae e e ee et e e eeaaaeeeees 453
StATTING APACHE ettt e it eer e s eera e e eaaa s 454
SECUTING APACKHE 1uuiiiiieieiiiee ettt e eee e e e reee e e e raa e e eeeaaeeeees 455
Apache file permissions and ownership......ccceeeereeiiieeriiiiieniieiienneeeieenns 455

Apache and 1ptables ... i 455

Apache and SELINUX.u..iiuueeiiieieriieeriieeiiieeeiie et eeeieeesieesnesessneessneesnnnes 456
Understanding the Apache configuration filesceevevuueeriiiieiriiiiiiniiiiiennee 457
USING QIreCtIVeS.civuueriiiieeieiiieer ettt et etie e e et e e eeeae e s eeenas 457
Understanding default Settings.....ceeeeeeruueeeeeiiiieieeiiiieeeeeiieeeeereieeeeeenns 460

Adding a virtual host t0 Apache ... 462
Allowing users to publish their own web content.......cceuuuieeeerrreiiiiiiiieennnnns 464
Securing your web traffic with SSL/TLS ..ccevrueiiiiiiieiieiiiee et 465
Understanding how SSL is configuredcceeeeeeueereeiiiiereeiiiinneeeinneeennnns 467

Generating an SSL key and self-signed certificate....c.cceeeeveueereennnnnennn. 469

Generating a certificate signing requUest c...eeveeeeeeereeiiereeiiiee e eeeenns 470
Troubleshooting YOUT WED SEIVET c..uciiiiiuiriiiiiieeiitiiieneeeeieeeetieeeeeereeeeeennneeeeeananes 471
Checking for configuration €IT0IScceuuevreiiuneereiiieereiiee e eeeeae e 472
Accessing forbidden and server internal €IT0TS ...cevevvuuereeriunerrerinniererininrenenn. 474
U8 11D 11T DR PPP PPN 475
EXOYCISES teiiitiiuuiiiiiiiiiiiiiii ettt e et bbb e e et e bbb s 475

XXV

Contents

Chapter 18: Configuring an FTP Servero i 477
Understanding FTP...ouu e iiiiiee ittt cetee e ceree e eetrie e eetaae e s eeaaaeeeeeanneseesnnnnnnns 477
Installing the vSftPd FTP SeIVETI....iiiiiuiiii it e ieiiie e et et e eeeaie e e eenneeeeeaaaan s 479
Starting the vsftPd SeIVICE. ...ttt eeeae e e e eeae e 480
SeCUTING YOUT FTP SOIVET..ciiuuiiiiiiiieeiitiiereetiiieeeetiieeeeetieeeeteneeseeraneeseeannneeeennnnnns 483

Opening up your firewall for FTP....cccvuuiriiiiiiiiiiiiieereiie et 483
Allowing FTP access in TCP WIapPeIS...ceeeeuuueeeruuuereermuereernneeeemnneeeeensnneseenes 486
Configuring SELinux for your FTP SEIVeIceriiruierriiinerieiiieneerineeeeeeneneees 486
Relating Linux file permissions to vSftpdeeeeevieeiiiiiieiiiiiiiee e, 488
Configuring YOUT FTP SEIVEY ..uiieiuueeiiiiieieeriieeeerttiereeetuneeesauneeesssnneeessnnnseessnnnaens 488
SEtting UP USET ACCESS truurerrrerurerueerneeeueerueeenneeenneressseeenseennesernseeenssesnneees 488
ATIOWING UPLOAAING +evvuuereerrereririieiieeeeeeeeeererenuaeaeeeeeeeererennaneeeeeeeeeeerennnnnnnns 489
Setting up vsftpd for the Internetceveeeueieiiiiiieniiiie e 491
Using FTP Clients to Connect t0 YOUTI SEIVET...cciiiiuuierieiriereetiiieeeeeiieeeeeenieeeernnaeees 492
Accessing an FTP server from FirefoXcovuvevieiuiiriiiiiieniieiicen e 493
Accessing an FTP server with the Iftp commandcccoeeveeiiieeriiiiinnreeniennene. 493
USIng the gFTP ClIENt...iiiuueeieiiiiee ettt eerae e e eeeaee e e eeeneeeeees 495
SUITLITLAT Y ettt ettt et s et e et e et et s eai e et sebaeetaeseaansenanestaneennesennssennnsesnnsennnnens 496
25 () (6 YT TR 497

Chapter 19: Configuring a Windows File Sharing (Samba) Server.................. 499
Understanding SAmDba ...oeeeeeueereeiiiieriiiiiee et eeereeeeerae e s e erae e s eeea e e raan s 499
Installing SAmMDa...ciiiieee et e e s e e ra e e e eea e 500
Starting and StopPPINg SAmMDa....cceuueriiiiiieiiiiiee e 502

Starting the Samba (SmMb) SEIVICE evvrvuueiiiiiieeieiiee e 503
Starting the NetBIOS (nmbd) NamMe SEIVET w..uuvreeruurrerrunereeiiiieereeineereeenaeeenes 505
Stopping the Samba (smb) and NetBIOS (nmb) Services.....ccceeeerervuueereeennnnnenes 506
SECUTING SAIMDA ivuniiiiiiiiie ittt ere e et e eeteetaeeeaaeeaaaeennneasnseeennsernnnees 506
Configuring firewalls for SAMbDaccvvuueriiiiiiei it 507
Configuring SELINuX for Samba......cceuuuerieiuiieiieiiiienietiie et eeeiieeeeneieeeenes 508
Setting SELinux Booleans for Samba.......ccceeveevuuerieiiiiinieeiiienieenieneeennnn. 508

Setting SELinux file contexts for Sambaccvvueviiiiieniiiiiiinieiiiieneeennen, 510
Configuring Samba host/user permisSionsc.cevuueereeruereernuiereeeiuieeeeeeneeeenns 510
CONfIGUIING SAMDA . .iiiruieriiiiiierietiiee ettt eettee e eeraaeeeeereeeeeeraneseeannsseerennnnees 511
Using system-config-samba ...ccuuueereeiueriiiiiienieiiien et 511
Choosing Samba server Settingsueereeruueereeiunierreiiierreerieereeeneeeeeennns 511
Configuring Samba USEr aCCOUNES .evuuurriiruiereiiiiieeetiieeeereieeeeeraeeeeeeaaes 512

Creating a Samba shared folder.......ceeveiiuiiiriiiiiiriiiiiiiriee e, 513

Checking the Samba share......cccuueiiiiiiiiiiiiiiii e 514
Configuring Samba in the smb.conf fileceeieiriieiiiiiiiiiiiiiiier e, 516
Configuring the [global] seCtion......evieiuuieiiiiiiieieeiiier et eeeeaen, 516
Configuring the [homes] SECLION .ievvuerieiiiiieieiiieee e e e eeeaeen 518
Configuring the [printers] seCtion....ccicieuueereiiiirieiiiier e e, 519

Creating custom shared directoriescceeeereeevueereiiiirieeiienieeeiieeeeeennn. 519

XXVi

Contents

Accessing SAamba Shares .oceuueeiiiiuiiiiiiiee e et e e 521
Accessing Samba shares in LINUX..ceuuereeruuereiiiiienreiinereeeiieneetineeeeeeneeeeeenns 522
Accessing Samba shares in Windowsc..eeeeuereiuiriiiireiiinieiie e eeeneeenneeens 524

Using Samba in the ENterPrise . iiieiiiieiiieiiiireiiereiiieetiieeeieeetieeetneeeeneeenneeernnneens 525

SUIMIMAT Y. et eteteeeiitee ettt ettt e ettt e ettt e e etaa e s eetanaeeetnnaeseenanaeseernnnsseennnnnns 525

553 (o TSP PR PPP PR PPPPPRPN 526

Chapter 20: Configuring an NFS File Server. it i 527

Installing an NES SeIVET ..uiiiuiiiiie ittt et eete e etiee et e eeteeetaeenneeaneennneesnnaeens 529

StaArting the NES SEIVICE .iuui it iiiieiiiiieiiiir et etieeeteeetie e et e et e eeeneeenneesnseesnsennnnes 530

Sharing NES FileSYStOIMS .eeeuruuuuureeeereeetiieiiiieeeeeeeeettrtnniieeeeeeeeeerrennanneeeeeeeeerennnnnns 531
Configuring the /etc/exXports file.....cuuueeriiiiiiiriiiiiiirieiiee e 532

Hostnames in /etc/eXPOrtS .cuuuueeiiiiuiieieiiiiieeeeiiiiereeriieeeeeeeieeeeeeaeeeeeenns 533
Access Options in /etC/@XPOTtS..cuuuueeiiiruerieeiiereeriieeeeerieeeeeraeeeeeenaenas 534
User mapping options in /etc/eXPOrts «ucveverreeenereeriuierreeiieeeeeeneeeeeenns 534
Exporting the shared fileSyStemS....cuuuueeiiiinerriiiiieeeiiee e 535

Securing YOUT NES SEIVET ..vivvuuiriiiiiiieieiiieeretiieeeeteieeeetiieesetenieeeenennseernnnnseeennnnns 536
Opening up your firewall for NESccevuuiiiiiiiiiiiiiiee e 537
Allowing NES access in TCP WIapPeIS..ciieuuuueereruuueererennereerruieeeerennereennnesserenns 539
Configuring SELinux for your NES SEIVETcccvvurrruueerereeerrrrrrniieneeeeeeeerennnnnns 539

USING NES FileSYStOIMS cevvuuiiiuriiiieiiiieeeietetieeetieeeeneretueeetueeesnseesnsesnssesnesennssssnseeens 540
Viewing NES Shares...ccueeeuieiiiiiiiiieiiie et cree et eeeeeeneeeee e enaeenneeeens 540
Manually mounting an NES fileSystem......cceereruumuiiiererereeiiiiiiiieeeeeeeeeeeeennannes 541
Mounting an NFS filesystem at boot timecoeeeveueriiiiiieriiiiiiee e 542

Mounting noauto fileSYStemMS .uuueiiiruuerieiiiiireeeiiiiereeriieeeetiieeeereaeeeeeenns 543
Using mount OPtioNS...ceuuueeieiiuiieieiiieereeiieeeeeeieeeerieeeeeeeeeeeeeenaeeeeeenns 543
Using autofs to mount NFS filesystems on demand.......cceeeevvueerieinnieneennnnennnns 545
Automounting to the /net directory...cccceeveeeuerririeierriiiiieereeiieeeeeenienns 546
Automounting home direCtories....ceeieeeuueereeiuerriiiiiereeiieereeeieeeeeeaaaens 547

Unmounting NFS filesystems. oo euuueriirieeieiiiiee et eete et e e eereeeseernneeeeennanes 549

I8 11011 DR PPPR PPN 549

EXOYCISES teeiiiuiiiiiieiiiiiiiiiii ettt ettt b e e e et b b 550

Chapter 21: Troubleshooting Linux. it itii e eie e ae s 551

Boot-Up TroubleShoOting c.eeeeueeereeiuereeiiiienieiiiee ettt e et e e eeeee e s eeeaaeeseeennenes 551

Understanding Startup Methodsccuuueeriiiieiriiiiieiiiiee e 552
Starting with System V init scripts ...cceeeeeuereiiiiiiiiiiiieieiiiieereceee e 552
Starting with systemd.......coeeeueieiiiiiiiiie e 553
Starting with Upstart....ceeee et eeee e eeaans 554

Starting from the firmware (BIOS or UEFI) ..cccivviiiuuiieenrreeiiiiniiieeeeeeeeeeeenennns 554
Troubleshooting BIOS SETUD weevuuueeeerereriiriiiiiieeeeeeeeeereriieeeeeeeeeeenennanaes 555
Troubleshooting boot 0Tder......ceieiuuuerieiiiieiiiiiee e e 556

Troubleshooting the GRUB boot 102derccuuuerieiiuurieiiiiinieeiieeeeeriieeeeeeviee e 557

Starting the Kernel ... oot e e e 559
Troubleshooting the initialization SYStemc.cceeveerreiieierreeennenrennn. 560

XXVii

Contents

Troubleshooting System V initializationccceeevreeiierreiinienreiineneennnee, 560
Troubleshooting rc.SYSIMIt . ceuueuirriiuuereiiiieieeiie et 561
Troubleshooting runlevel ProCESSES ...iuuueiirurierueiirieeeiiererierereeeenerennnaees 562
Troubleshooting systemd initializationceeeeveveeeeenerennerennereenerennnnens 566
Troubleshooting Software Packages......ceeeeeeerieeimuuiieeeeeeeeieiiiiieeeeeeeeeeeeenieeeeeeeeee 568
Fixing RPM databases and cache......c.eeeieiuueiiiiiiieniiiiee et e eeeeie e 572
Troubleshooting NetWorkingcuuueeieeiuuieriiiiiieiieiiie et ceeee e eeeee e e ereaee s 573
Troubleshooting outgoing cONNECtioNS....c.uuevieieeuirieiiiieeieeiieee e eeeeeeeees 573

View network interfacescoooviieiiiiiiiiiiiiiiiiiiicce e 574

Check physical CONNECLIONS vivvuurrrerruererriieereetieeeeeeteereeraieeeeernneeeerennes 574

Check T0ULeS..oiiiiiiiiieie et e 575

Check hostname reSolUtionevreerueeriiiiiiereeiieee e e eeeaees 576
Troubleshooting incoming cONNECLIONS ..evvuuerrrriruereiiieereeiieeeeeiieeeeeeeieeeees 577
Check if the client can reach your system at all........ceeeevvvueeieeinnneennnen. 577

Check if the service is available to the client.....cccccceeveeeiiiiiiiiiin. 578

Check the firewall on the SEIVeTI.......uuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin, 578

Check the service on the SEIVerceveeiiiiiiiiieieeieeeeeiiiiceee e, 579
TroubleShoOting MeIMOTY oevuuueeeetuueeietiieeeettiereetunereeteeneeeeereneeeerenneseesesneseesennneees 580
UNCOVEIING MEIMOTY ISSUES .uurerrrruererrrnueeeernneeeerenneeeersnnseeerssseeesssseeesssnsseenes 581
Checking for memory problems ..o eeeeeeeeeeeieereeiiee et e eeriieeeereieeeeeanes 583

Dealing with memory Problems ...ceevuueriiiiuerieiiiieereeie e eereeeeeeeees 584
Troubleshooting in ReSCUE MOGE vuuuevieirueeriiiiierieiiieeeetiieeeeteaeeeeeeieeeeennneeerrananes 585
SUITLITLAT Y ettt et e et e et e et e et et s eai s et sebaeetaeseaansennneseanesennestnnesennssennnsennnens 587
EXOICISES coeiiiiiiiiiieie ettt e et e e e e st aee s 587
Part V: Learning Linux Security Techniques 589
Chapter 22: Understanding Basic Linux Security i, 591
Understanding SECUTIItY BasiCS..cceuuuuuuuurerrreeririiiiiieaeeeeeeeeieneiieeeeeeeeeeeennnnasaeeaeene 591
Implementing physical SECUTITY..cuieiuuuerieirierieiiiiereetiiiee e eeriee e eerieeeeeeaieeeeenes 591
Implementing diSaster YECOVEI V.. uiiiuuueririiuieeeeiriieereertieeeeeraaeeeeeeeneeeesenneeenes 592
SECUTITIG USET ACCOUINLS cvverrunrerruuereerrrieereeneieereernneeeerrnneeeerennseeeensneeeesennsseenes 593

One USeT Per USET ACCOUNE . tiuuurirueeiureinretneetueeeuieetaeeennerenneenneeennens 593

Limit access to the root user acCoUNtccevvveemuciiiiiiiiiiiiiiiicieeeeeeceeeneee, 594

Setting expiration dates on temporary accountseeeeevueereeenneneennnnns 594

Removing unused USer aCCOUNES...cvuuuereiruueereriiiieeeeriieereeraieereeenereerennes 595

SECUTING PASSWOIEAS tevuuereernniererinieretteieereteiieereernaeerertnneeeernnneseersnneeerenneseeees 596
ChooSing good PasSWOIAS.....ceuuuerrerrunereernueeeeieieereeeeneereennneereeenneseerennes 597

Setting and changing passwWordSeeeeueeeereeruireiuieeeiieeeiieeeneeeneeennens 598

Enforcing best password practices.....cceeuuueereeiuueeeeirineeieeniieneeerieeeenennns 599
Understanding the password files and password hashes....................... 601

Securing the filleSYStem tiuuuueiiiiiiiei it e ee e e e e 603
Managing dangerous filesystem permisSionsceceeeveeeeeeeeuereeeeunereenennns 603

Securing the password fileseviiivuieriiiiiiiiiiiieee e 604

XXViii

Contents

Locking down the fileSyStem ... cieeeuuiriiiiiierriiiereciiee et 606

Managing Software and SEIVICESveererrerrrrruuuuieereereeerrrriiireeeeeeeeeerrennnenens 607
Updating Software packagesceieevuueeeeeiuiieeeeiiieeieeiiieeeeeeiieeeeereieeeenenns 607

Keeping up with security advisories....ccceeeeueeeeuririreiireeieeinneeeeeennnnes 607

Advanced implementation......u.. . eeeereeeeiiiiiiieeeeeeeeeeeriniee e e e eeeereraaee e e 608
MOnitoring YOUY SYSTIMS .eeiuuuueiiiiriieieeiiiieeeettieeeeteieeeertneeeeeteneeeeransseersnseeeennnnns 608
Monitoring 10g fileS vuuuiieeuuereeiiiierietiiiee e eeiee e eete e e eereee e eraeeeeetaae e e eeeaneeeaes 608
MOnNitOTing USEY ACCOUMES uuuuririrruerretrrieeeeetuieeeeetuieeeeereneeeereneeeerenseeeeennseeens 612
Detecting counterfeit new accounts and privileges.......ccevveeereeenuenrenenne 612

Detecting bad account passWords......cceeeeuuerrerruereerinereeenneererenneereeenns 614

Monitoring the fileSYStem ... iiiueiriiiiiiee it 615
Verifying software packagescuceeeveeeuerriiiuinriiiieeeeeiiee e eeeeaieens 615

Scanning the fileSyStem ... viiiueeiiiiiiiieiiee e 616

Detecting viruses and Y0OtKitS.....couuerriiuiierreiiniiiriiiieneeriee e 618

Auditing and Reviewing LiNUX.....cceeieuirieuiniiiieieieeeiieeeiiee et eerieeeneeenneeenneennseennns 622
Conducting COMPLlIATICE TEVIEWS .uvevuurerunrrernreennnrenneeeenererneeerneeeenssernaseenessennnns 623
Conducting SECUTIILY TEVIEWS .oveeeeirirreuieeeeeeeeetieriiieeeeeeeeeeeeereaeeeeeeeeeeeennnnnes 623
UL ITL AT T u sttt etueeiieeeteeeteeetieeetieeetueeeeneseeeaeennneeenssennnsasnssennsssnnnssnnsssesnnsennnsennnnas 624
L5 (oh T T PP PP PPPPPPPPRRRRUPPPRt 624
Chapter 23: Understanding Advanced Linux Securityot 627
Implementing Linux Security with Cryptography ...ccceeeeeveriiiriiiiiiiiiiiieeee e, 627
Understanding hashing......coieeeeeeiumiiiiernrieeiiiiieee et eeeeeeenaaaaes 628
Understanding encryption/decryption....ccceeeieeeuuerieiiierieiiiienieeiieneeeeaieeeenns 630
Understanding cryptographic cipherscceevieivuerieiiiienieiiiieneeeeieneeennns 630
Understanding cryptographic cipher Keys.....ccuueevieiiierieiiienieniniennennnn. 631
Understanding digital SIgnaturesceeeeeeeeeeeeeniereerieeeeeeneeereeenneeeeeenns 637
Implementing Linux cryptography..cceeeereeeuerreiiierreiiiiereeeeeeeeeeieeeeeeeaeeeees 639
Ensuring file Integrity e e eeeeeereeiieee e eeeeae e e eeeaes 639
Encrypting a Linux fileSyStem ..ovevuuueriiiiiieiriiieeieeriee et eeeeiee e 640

Encrypting a LinuX direCtory..ccieeeuueereeruuiieeiiiiiereeiiieeneeenieeeeeenieeeeneenens 642
Encrypting a LINUX file....ceieiiieeiiiiiiee e eeevee e eerae e e eeeae 645

Encrypting Linux with miscellaneous toolS....cc.ccevuureivureerneierneeeinneennnnns 645

Using Encryption from the DesKtop.....cccvveerieiiuieieeiiiieeieiiiieeeereieeeeeens 646
Implementing Linux Security With PAM.....cccooiiiiimiiiiieireeeiiiiiieeee e eeeeeeeeieeee e 648
Understanding the PAM authentication processcveereeivueereeinicnreeinnnnenns 649
Understanding PAM CONTEXES vuuuriiiruueieiiiiieeeeiiiieeeetiieeeeeeeieeeeeeneeeeeenns 650
Understanding PAM control flags.....ueeeeeeeuerreeenieieeiinieneeeiiieeeeeenieeeeeenns 651
Understanding PAM mModUles. ... eeeeeuuueereeeniereeiiiereetiieereeenieeeereneeeeeennns 652
Understanding PAM system event configuration files.....cccceeereeruunnnennne. 653
Administering PAM on your LinUx SYSteM ...cccvuuuerrereneerrerinereerinieeeeeenieereennns 654
Managing PAM-aware application configuration filescccceerervuuennenene. 654

Managing PAM system event configuration files.....cccccevreivuuieriiinnnnenne. 655
Implementing resources limits with PAMccuviiiiiiiiiiiiiiiiiiieeciieeenenes 657
Implementing time restrictions with PAM......cccooiviiiiiiiieiiiiiiciieeeennes 658

XXiX

Contents

Enforcing good passwords with PAM.....c..ceviiiiiieriiiinenriiiieereeiieeeeeene, 660
Encouraging sudo use with PAM.......coiiiiiiiriiininriiiieneerieee e eeeenees 664

Locking accounts With PAMccuuiiiiiiiiiiiiiiiieeie it et eeneeeneeenanes 665

Obtaining more information on PAMccccuuueiiiiiiierieiiiieeeetiiee e eeeiieeeeeanieeeeenes 667
SUIMIMAT Y. e ettt eeettieteetiee e e et et teea e e e teen s eetea e seetaaeeeeeenaesetnenaeseenannnseersnnssseennnnns 668
B RO CISES c e eeetitiiieeee e e et ettt e e e e e e et ettt e e e e e eeeteteaa e e e eeeeeenennaa e eeeeeeeenennnaaaaes 668
Chapter 24: Enhancing Linux Security with SELinux 669
Understanding SELINUX BENETILS vuuueiiiiiiiiiiiiiiieieiiiee et ectiee e ceriee e eeeee e eennae e 669
Understanding HOw SELINUX WOTKS ..cvvuniirriiiniriiiiriiiieeiiieeeiieeeiieeeeieeeeneeeneeeenneenns 671
Understanding type enforcement.....ccoeveeeeeeeiuuuiireeeeeeeeieiinieeeeeeeeeeeenennaaaenns 671
Understanding multi-level SECUIItY.cuuuerieirueririiiiirieiiiieeeeeiiieeeeerieeeeeeeieeeeeees 672
Implementing SELinux security models....ccceeieiuuuerieerineereeiiieneeeeiiieeeeneneeeenns 673
Understanding SELinux operational modescceeeevvuereeeenieneeeenneneennnnn. 673
Understanding SELinux Security ContextsS....ccoveerrerruuerrerenereeeennereenennns 674
Understanding SELINUX POLICY tYPES ceeerruuererrrunereerrieeeeennieererrnneeeerennns 677
Understanding SELinux policy rule packagesceeeveeeeeevennenrevenneneennnnn. 678
CONFIGUIING SELITIUX tevvuuereerinnreerniieeeetrniereetnnieseetneeeeeerenneesenenssseersnnssesnsnnsseresnnnnes 679
Setting the SELINUX MOAe....ciiiiuuiiriiiiieieiiiee et eeree e eeteae e eeeeaeeeeees 680
Setting the SELINUX POLICY LYPE uurriiruuerriiiieiieiiiee ettt eerie e eerie e eeeeaeeeeees 682
Managing SELIiNUX SeCUTitY COMtEXES . uuriiuriiuriiireiieieieeeeeeerieeerieeeeneenannees 683
Managing the user security Contextccceeeeueeeiiireeuinienieeeiieeeneeeneeennens 684

Managing the file security context.......cceeveemiieeeerreeeiiieniiiieeeeeeeeeeeennens 684

Managing the process security conteXt.....ooieeuuerreiiruerieennienieennieneennnnn. 685

Managing SELinux policy rule Packages ..ccuuueeieeruueriereuereeiiieeeeeeneeeeeenaeeeenes 686
Managing SELINUX Via DOOLEANS ..uviiituueeeeiiiieeieeiieneeetieeeeteaeeeeeraieeeeeenaeeenes 688
Monitoring and Troubleshooting SELINUX....ccuueereerruiererrenierrereiiereeriieneeereneeenennnns 689
Understanding SELINUX L0GGINg...cceeuuuerrerruuereeruuneereemnneereernneeeerrnneseernnneeeeees 689
Reviewing SELinux messages in the audit 10g......ccevvuerrereinenreeinnenrennnne. 690

Reviewing SELinux messages in the messages 10g.....ceeveeevueereeennenrennnnn. 690
Troubleshooting SELINUX l0Gging...cccuueereeruuereerueueereirieereeiiieeeeeenneeeeennneseenes 691
Troubleshooting common SELiNUX Problemscuueeiivnriiiieeeiieiiieeeieeeeieeevnens 692
Using a nonstandard directory for a Servicececeevvvereervieeeeeeennereennnnn. 692

Using a nonstandard port for a SEIVICEuueeeerrreereriiuiiieeeeeeeeeeeenieeneen. 693

Moving files and losing security context labelscccevvreruueieernrereeennn. 693

Booleans set inCOITECLLY vuurerrruereirierieiiieeeeteieeeeerieeeeeaaeeeeeeaeeeenennns 694

Putting It All TOGETher cuuu ittt et e e e e ee e e e eeenaeees 694
Obtaining More Information on SELINUX ..ccceevuerieiruinreeiiiineeeiiieereeniieeeeennieeeeennnnnens 695
SUITL I AT Yttt eteieeeiie ettt et e et e eet e etaeeeaaeenaesenneeeenesannnsennnsseanssennssennssennnsennnsennnnees 695
EROTCISES ceiiiiiieiiee ettt ettt e e et e e e e et e bebaa s 696
Chapter 25: Securing Linuxona Networkooiiiiiiiiiinnnnnnnnn. 699
AUditing NetWOorK SeIVICES . uuiiiiiuueetieiiieeeitiiieeeettee e eettieeeettaeeeeeeaaeeeeeannseeesnnnaes 699
Evaluating access to network services with nmapccceeeeevvvenieiinienreennennens 701
Using nmap to audit your network services advertisements......ccceeeeeevvuunnennns 704

XXX

Contents

Controlling access to NEtWOIK SEIVICES ...vriruuerreiriuiereiiiieeretiiereeriieeeernaeeees 708

WOorking With FireWalls...ccuuueereiiuirieiiieereiiiee et eeree e cree e eraae e eeeaaaeeeees 710

Understanding fireWalls ..uuuuiieiueeeieiiiiee et et eerieeeeerree e eerreeeeeraaeeeens 710

Implementing fireWalls ..cuuu.eiieeuuereeiiiiee et eeriee e eerree e e eraee e eeraaeeeees 711

Starting with firewalld......cceeriiimiiiiiinereeeeieee e 712

Understanding the iptables Utility .u..eeeeeeeerieiiiieiieiiiierieieee e, 713

Using the iptables Utility....ceeeueereeiuiirriiiiie et eeeee e e eeeaes 716

Ui AT e sttt ettt et et e et e et e etneetueeeennetnnseeennaennesarnesennnsannnsernnssesnssennnsennnnns 724

B RO CISES c ettt ettt e ettt e e e e e ettt e e e e e e e e eebe e e ee 724

Part VI: Extending Linux into the Cloud 727

Chapter 26: Using Linux for Cloud Computing i, 729

Overview of Linux and Cloud COmMPULINgceereereererriueiiieeeereeeetriiiiiireeeeeeeererennnnnns 729

Cloud hypervisors (a.k.a. compute Nodes)......cevurrruueeeerrerrrrririiieneeeeeeeeeennannns 730
Cloud cONtIOLEYS ...vviiiiiiiiiiiiiiiiieiiiiiii e
CLOUA STOTAGE +uuueeeeeeeeeiiriiiieeeeeeeetttteeieeeeeeeeeereneaaaeeeeeeeeenanananaeeeeeeeesennnnnns

Cloud authentication

Cloud deployment and configuration.....ccceeeeeeeeeruuierieeiniereeeiiieeeerreieeeereneeeens 732

CloUd PlAatfOrmS uuueiiieieeeitiieeeeetiee e eetiee e etrteeeetateeeeeanaeeeeaeneeeerenaseeennnnnaeees 732

Trying Basic Cloud TeChNOlogy...cuuuueiiiiuieiiiiieee et et e eteeee e eeraee s eeraaeeeeeenaenes 732

Setting Up a SMaAll ClOUA ..uveeveuriiiiiiirieiiiee ettt eeriie e eeteieeeeeeaeeeeeeaeseeraaeeeennnanns 734

ConfiguIing Ry PeIVISOTS.ciiuuueieiiiieeriitieeeetiee et e eeeie e e etee e eeraaeeeennaaeeees 735

Step 1: Get Linux SOfEWATE oevvuiiiiiiiie i 735

Step 2: Check yoUY COMPULETS v.uuurerreieieiiiieieeiiie et eeee e eeene e eeeees 735

Step 3: Install Linux on hypervisors....ccueeieuueeeeuereriereinireenrerieeeneennnns 736

Step 4: Start services on the hypervisors....cceccvevevueriiiiriiiereiieneeninennnns 737

Step 5: Edit /etc/hosts or set Up DNS....cccuueiiiiiieiieiiiirieeriieeeeeeieeeeeenes 738

CONfIGUIING STOTAGE cevvuuiiiiiiieieiiiiee e ettt eettee e eeta e e ereee e eenaaeeeeanaaeaeees 738

Step 1: Install LINUX SOFtWATE uuueiiiiiiieeiiiiiie e et eeeeie e e 738

Step 2: Configure NES Share ..ccu.ceiiivuiiriiiiiien et eeeee e eeeeaes 739

Step 3: Start the NES SEIVICE..uuueeiiiiuuieiiiiiieieetieeeeetieeeeeeeee e eeeaieeeeeenns 739

Step 4: Mount the NFS share on the hypervisors....cccoeeeeeevvneereevenenrennnn. 740

Creating virtual MaChineS ... ceieeeeueerieiiee et eeeaee e 740

Step 1: Get images to make virtual machines........ccceeeereiiinieriiinennennn. 741

Step 2: Check the network bridge......ceeveevuuerriiiiiiriiiiiiiriiee e 741

Step 3: Start Virtual Machine Manager (virt-manager)cccceeeeeevueneeenne 741

Step 4: Check connection detailS....cccveieuuerirnieeiniiiiiiriiir e eenaes 742

Step 5: Create a new virtual Machinec.ccceveeeviriiiiriiiniiireiee e eeeaes 743

Managing virtual MaChinesS......eeeeueeeiuieiiieriiie e eeeeeeeeeeraeeeeeeeaneeennenes T44

Migrating virtual machines.......ceuuuuieeeeireiiiiiiicee et 745

Step 1: Identify other hypervisors....cceiceuuueeieeiuierieiiiirieiiiieeeeeeieeeeeens 745

Step 2: Migrate running VM to another hypervisor.......cccceeeeveevvnnnnennn. 746

U8 11 h 1T D AP U TR PPPR PPN 747

RO CISES c ettt ettt ettt e e e e ettt b s e e ettt eebe e e ee 747

Contents

Chapter 27: Deploying LinuxtotheCloud. i, 749
Getting Linux to RUN in @ Cloud......eeieeeuieiiiiiiieieeiiee et et ceeeeee s ee e e e eeeaiee e 749
Creating Linux Images for ClOUAS cuuuuereieuuerieiiiereeiiiiee et et eeeeee e eevae e e eeeai e 751

Configuring and running a cloud-init cloud instance.......ccceveereevvuneereeennnnnenns 751
Investigating the cloud inStancecoueeveeeeeieiiiiiie it 753
Cloning the cloud INStANCE...ciitiuuereitteeeetiiee e eeieereete e eerae e eernaeeeeeaaeeeeens 754
Trying an Ubuntu cloud iMageeeeeeeeeeriienereiiiiereeiieereeeieeeeeenieeeeennneeeenns 756
Expanding your cloud-init configurationceceeueereiinierieiiienieiiieeeeiiieeeees 757
Adding ssh keys with cloud-init....ccceieuuiieiiieiiiiirieiiereie e 757

Adding network interfaces with cloud-init........cccevvueeiiiiiiieriiiiienennnnnn. 758

Adding software with cloud-initcccevvueuieerrrreeiiiiiiiieeree e, 758

Using cloud-init in enterprise COMPULING vuvurieirruerieiiiereeeiiereeeeieeeeeneieeeenns 759
Using OpenStack to Deploy Cloud IMages ...ccuuuereerruuereeereneeeriiiereeeeneeeereneeeennnneeens 760
Starting from the OpenStack Dashboard........cccevuueeiiiiiiiriiiiiiiniiiiien e, 761
Configuring your OpenStack virtual networkcceeeeeeevuuenrevineneennnnn. 761
Configuring keys for 1eImMOote aCCESS..uuiittuuerrerrieeeeeiiieeeeerieereerneeeeeennes 763

Launching a virtual machine in OpenStack....cccceeeeveuerriiiiinriiinennennnne. 764

Accessing the virtual machine via sSh.....coveeeieeriiiiiiniiiiienreieeeeeeenee, 765

Using Amazon EC2 to Deploy Cloud Images......eeeeeeueereerrunerrerenieereeinienreeeniereeeennnnes 765
SUITLITIAT Y. ettt et ettt ettt sttt s eea e et seba s e ta s eaaa s etanstansennestnnesennesssnnsernnens 766

Part VII: Appendixes 769

Appendix AiMedia e 771

Appendix B: EXErCiSe ANSWEIS . . . v v vttt ittt ittt it et e, 781

INAEX. . ot 839

XXXii

Introduction

ou can't learn Linux without using it.

I've come to that conclusion over more than a decade of teaching people to learn Linux. You

can't just read a book; you can't just listen to a lecture. You need someone to guide you and
you need to jump in and do it.

In 1999, Wiley published my Red Hat Linux Bible. The book’s huge success gave me the opportunity
to become a full-time, independent Linux author. For about a decade, I wrote dozens of Linux books
and explored the best ways to explain Linux from the quiet of my small home office.

In 2008, I hit the road. I was hired by Red Hat, Inc., as a full-time instructor, teaching Linux to
professional system administrators seeking Red Hat Certified Engineer (RHCE) certification. In my
three years as a Linux instructor, I honed my teaching skills in front of live people whose Linux
experience ranged from none to experienced professional.

In the previous edition, I turned my teaching experience into text to take a reader from someone
who has never used Linux to someone with the skills to become a Linux professional. In this edi-
tion, I set out to extend those skills into the cloud. The focus of this ninth edition of the Linux
Bible can be summed up in these ways:

m Beginner to certified professional: As long as you have used a computer, mouse, and
keyboard, you can start with this book. I tell you how to get Linux, begin using it, step
through critical topics, and ultimately excel at administering and securing it.

m System administrator-focused: When you are finished with this book, you will know how
to use Linux and how to modify and maintain it. All the topics needed to become a Red Hat
Certified Engineer are covered in this book. That said, many software developers have also
used this book to understand how to work on a Linux system as a development platform or
target for their applications.

B Emphasis on command-line tools: Although point-and-click interfaces for managing
Linux have improved greatly in recent years, many advanced features can only be utilized
by typing commands and editing configuration files manually. I teach you how to become
proficient with the Linux command-line shell and occasionally compare shell features with
graphical tools for accomplishing the same tasks.

® Aimed at fewer Linux distributions: In previous editions, I described about 18 different
Linux distributions. With only a few notable exceptions, most popular Linux distributions
are either Red Hat-based (Red Hat Enterprise Linux, Fedora, Cent0S, and so on) or Debian-
based (Ubuntu, Linux Mint, KNOPPIX, and so on). Although this book most thoroughly cov-
ers Red Hat distributions, I have increased coverage of Ubuntu throughout in this edition
(because that’s what many of the biggest Linux fans start with).

XXXiii

Introduction

XXXiV

B Many, many demos and exercises: Instead of just telling you what Linux does, I
actually show you what it does. Then, to make sure you got it, you have the oppor-
tunity to try exercises yourself. Every procedure and exercise has been tested to
work in Fedora or Red Hat Enterprise Linux. Most work in Ubuntu as well.

m Lead into cloud technologies: Linux is at the heart of most technological advances
in cloud computing today. That means you need a solid understanding of Linux
to work effectively in tomorrow’s data centers. Learn Linux basics in the front of
this book. Then in the last few chapters, I demonstrate how you can try out Linux
systems as hypervisors, cloud controllers, and virtual machines, as well as manage
virtual networks and networked storage.

How This Book Is Organized

The book is organized to enable you to start off at the very beginning with Linux and grow
to become a professional Linux system administrator and power user.

Part I, “Getting Started,” includes two chapters designed to help you understand what
Linux is and get you started with a Linux desktop:

m Chapter 1, “Starting with Linux,” covers topics such as what the Linux operating
system is, where it comes from, and how to get started using it.

m Chapter 2, “Creating the Perfect Linux Desktop,” provides information on how you
can create a desktop system and use some of the most popular desktop features.

Part II, “Becoming a Linux Power User,” provides in-depth details on how to use the Linux
shell, work with filesystems, manipulate text files, manage processes, and use shell scripts:

® Chapter 3, “Using the Shell,” includes information on how to access a shell, run
commands, recall commands (using history), and do tab completion. The chapter
also describes how to use variables, aliases, and man pages (traditional Linux com-
mand reference pages).

® Chapter 4, “Moving around the Filesystem,” includes commands for listing, creat-
ing, copying, and moving files and directories. More advanced topics in this chapter
include filesystem security, such as file ownership, permissions, and access control
lists.

m Chapter 5, “Working with Text Files,” includes everything from basic text editors to
tools for finding files and searching for text within files.

® Chapter 6, “Managing Running Processes,” describes how to see what processes are
running on your system and change those processes. Ways of changing processes
include killing, pausing, and sending other types of signals.

® Chapter 7, “Writing Simple Shell Scripts,” includes shell commands and functions
you can gather together into a file to run as a command itself.

Introduction

In Part III, “Becoming a Linux System Administrator,” you learn how to administer Linux
systems:

Chapter 8, “Learning System Administration,” provides information on basic
graphical tools, commands, and configuration files for administering Linux
systems.

Chapter 9, “Installing Linux,” covers common installation tasks, such as disk
partitioning and initial software package selection, as well as more advanced
installation tools, such as installing from kickstart files.

Chapter 10, “Getting and Managing Software,” provides an understanding
of how software packages work and how to get and manage software
packages.

Chapter 11, “Managing User Accounts,” discusses tools for adding and deleting
users and groups, as well as how to centralize user account management.

Chapter 12, “Managing Disks and Filesystems,” provides information on adding
partitions, creating filesystems, and mounting filesystems, as well as working with
logical volume management.

In Part IV, “Becoming a Linux Server Administrator,” you learn to create powerful network
servers and the tools needed to manage them:

Chapter 13, “Understanding Server Administration,” covers remote logging,
monitoring tools, and the Linux boot process.

m Chapter 14, “Administering Networking,” discusses how to configure networking.

m Chapter 15, “Starting and Stopping Services,” provides information on starting and

stopping services.

Chapter 16, “Configuring a Print Server,” describes how to configure printers to use
locally on your Linux system or over the network from other computers.

Chapter 17, “Configuring a Web Server,” describes how to configure an Apache Web
server.

Chapter 18, “Configuring an FTP Server,” covers procedures for setting up a vsftpd FTP
server that can be used to enable others to download files from your Linux system
over the network.

Chapter 19, “Configuring a Windows File Sharing (Samba) Server,” covers Windows
file server configuration with Samba.

Chapter 20, “Configuring an NES File Server,” describes how to use
Network File System features to share folders of files among systems over a
network.

Chapter 21, “Troubleshooting Linux,” covers popular tools for troubleshooting your
Linux system.

XXXV

Introduction

In Part V, “Learning Linux Security Techniques,” you learn how to secure your Linux sys-
tems and services:

m Chapter 22, “Understanding Basic Linux Security,” covers basic security concepts
and techniques.

®m Chapter 23, “Understanding Advanced Linux Security,” provides information on
using Pluggable Authentication Modules (PAM) and cryptology tools to tighten sys-
tem security and authentication.

® Chapter 24, “Enhancing Linux Security with SELinux,” shows you how to enable
Security Enhanced Linux (SELinux) to secure system services.

m Chapter 25, “Securing Linux on the Network,” covers network security features,
such as firewalld and iptables firewalls, to secure system services.

Part VI, “Extending Linux into the Cloud,” takes you into cutting-edge cloud technologies:

m Chapter 26, “Using Linux for Cloud Computing,” introduces concepts of cloud com-
puting in Linux by describing how to set up hypervisors, build virtual machines,
and share resources across networks.

® Chapter 27, “Deploying Linux to the Cloud,” describes how to deploy Linux images
to different cloud environments, including OpenStack, Amazon EC2, or a local Linux
system configured for virtualization.

Part VII contains two appendixes to help you get the most from your exploration of Linux.
Appendix A, “Media,” provides guidance on downloading Linux distributions. Appendix B,
“Exercise Answers,” provides sample solutions to the exercises included in chapters 2 through 26.

Conventions Used in This Book

Throughout the book, special typography indicates code and commands. Commands and
code are shown in a monospaced font:

This is how code looks.

In the event that an example includes both input and output, the monospaced font is still
used, but input is presented in bold type to distinguish the two. Here’s an example:

$ ftp ftp.handsonhistory.com
Name (home:jake): jake
Password: **k*k*

As for styles in the text:

m New terms and important words appear in italics when introduced.

m Keyboard strokes appear like this: Ctrl+A. This means to hold the Ctrl key as you
also press the letter “a” key.

XXXVi

Introduction

B Filenames, URLs, and code within the text appear like so: persistence.
properties.

The following items call your attention to points that are particularly important.

NoTE
A Note box provides extra information to which you need to pay special attention.

Tip

A Tip box shows a special way of performing a particular task.

CAUTION

A Caution box alerts you to take special care when executing a procedure, or damage to your computer hardware or
software could result.

Jumping into Linux

If you are new to Linux, you might have vague ideas about what it is and where it came
from. You may have heard something about it being free (as in cost) or free (as in freedom
to use it as you please). Before you start putting your hands on Linux (which we will do
soon enough), Chapter 1 seeks to answer some of your questions about the origins and fea-
tures of Linux.

Take your time and work through this book to get up to speed on Linux and how you can
make it work to meet your needs. This is your invitation to jump in and take the first step
to becoming a Linux expert!

Visit the Linux Bible website

To find links to various Linux distributions, tips on gaining Linux certification, and corrections to the
book as they become available, go to http://www.wiley.com/go/linuxbible9.

XXXVii

http://www.wiley.com/go/linuxbible9

Part |

Getting Started

IN THIS PART

Chapter 1
Starting with Linux

Chapter 2
Creating the Perfect Linux Desktop

CHAPTER

Starting with Linux

IN THIS CHAPTER

Learning what Linux is

Learning where Linux came from

Choosing Linux distributions

Exploring professional opportunities with Linux

Becoming certified in Linux

Besides its impact on the growth of the Internet and its place as an enabling technology for a
range of computer-driven devices, Linux development has been a model for how collaborative
projects can surpass what single individuals and companies can do alone.

Linux is one of the most important technology advancements of the twenty-first century.

Google runs thousands upon thousands of Linux servers to power its search technology. Its Android
phones are based on Linux. Likewise, when you download and run Google’s Chrome 0S, you get a
browser that is backed by a Linux operating system.

Facebook builds and deploys its site using what is referred to as a LAMP stack (Linux, Apache

web server, MySQL database, and PHP web scripting language)—all open source projects. In fact,
Facebook itself uses an open source development model, making source code for the applications
and tools that drive Facebook available to the public. This model has helped Facebook shake out
bugs quickly, get contributions from around the world, and fuel Facebook’s exponential growth.

Financial organizations that have trillions of dollars riding on the speed and security of their
operating systems also rely heavily on Linux. These include the New York Stock Exchange, the
Chicago Mercantile Exchange, and the Tokyo Stock Exchange.

As “cloud” continues to be one of the hottest buzzwords today, a part of the cloud that isn't hype is
that Linux and other open source technologies are the foundation on which today’s greatest cloud
innovations are being built. Every software component you need to build a private or public cloud
(such as hypervisors, cloud controllers, network storage, virtual networking, and authentication)

is freely available for you to start using from the open source world.

Part I: Getting Started

The widespread adoption of Linux around the world has created huge demand for Linux
expertise. This chapter starts you on a path to becoming a Linux expert by helping

you understand what Linux is, where it came from, and what your opportunities are for
becoming proficient in it. The rest of this book provides you with hands-on activities to
help you gain that expertise. Finally, I show you how you can apply that expertise to cloud
technologies.

Understanding What Linux Is

Linux is a computer operating system. An operating system consists of the software that
manages your computer and lets you run applications on it. The features that make up
Linux and similar computer operating systems include the following:

Detecting and preparing hardware—When the Linux system boots up (when you
turn on your computer), it looks at the components on your computer (CPU, hard
drive, network cards, and so on) and loads the software (drivers and modules)
needed to access those particular hardware devices.

Managing processes—The operating system must keep track of multiple processes
running at the same time and decide which have access to the CPU and when. The
system also must offer ways of starting, stopping, and changing the status

of processes.

Managing memory—RAM and swap space (extended memory) must be allocated to
applications as they need memory. The operating system decides how requests for
memory are handled.

Providing user interfaces—An operating system must provide ways of accessing
the system. The first Linux systems were accessed from a command-line interpreter
called a shell. Today, graphical desktop interfaces are commonly available as well.

Controlling filesystems—Filesystem structures are built into the operating system
(or loaded as modules). The operating system controls ownership of and access to
the files and directories (folders) that the filesystems contain.

Providing user access and authentication—Creating user accounts and allowing
boundaries to be set between users is a basic feature of Linux. Separate user and
group accounts enable users to control their own files and processes.

Offering administrative utilities—In Linux, hundreds (perhaps thousands) of
commands and graphical windows are available to do such things as add users,
manage disks, monitor the network, install software, and generally secure and
manage your computer.

Starting up services—To use printers, handle log messages, and provide a variety
of system and network services, processes called daemon processes run in the
background, waiting for requests to come in. Many types of services run in Linux.

Chapter 1: Starting with Linux

Linux provides different ways of starting and stopping these services. In other
words, while Linux includes web browsers to view web pages, it can also be the
computer that serves up web pages to others. Popular server features include web,
mail, database, printer, file, DNS, and DHCP servers.

B Programming tools—A wide variety of programming utilities for creating
applications and libraries for implementing specialty interfaces are available
with Linux.

As someone managing Linux systems, you need to learn how to work with those
features just described. While many features can be managed using graphical interfaces,
an understanding of the shell command line is critical for someone administering

Linux systems.

Modern Linux systems now go way beyond what the first UNIX systems (on which Linux
was based) could do. Advanced features in Linux, often used in large enterprises, include
the following:

B (Clustering—Linux can be configured to work in clusters so that multiple systems
can appear as one system to the outside world. Services can be configured to pass
back and forth between cluster nodes, while appearing to those using the services
that they are running without interruption.

B Virtualization—To manage computing resources more efficiently, Linux can run as
a virtualization host. On that host, you could run other Linux systems, Microsoft
Windows, BSD, or other operating systems as virtual guests. To the outside world,
each of those virtual guests appears as a separate computer. KVM and Xen are two
technologies in Linux for creating virtual hosts.

® Cloud computing—To manage large-scale virtualization environments, you can use
full-blown cloud computing platforms based on Linux. Projects such as OpenStack
and Red Hat Enterprise Virtualization can simultaneously manage many virtualiza-
tion hosts, virtual networks, user and system authentication, virtual guests, and
networked storage.

® Real-time computing—Linux can be configured for real-time computing, where
high-priority processes can expect fast, predictable attention.

B Specialized storage—Instead of just storing data on the computer’s hard disk,
many specialized local and networked storage interfaces are available in Linux.
Shared storage devices available in Linux include iSCSI, Fibre Channel, and
Infiniband. Entire open source storage platforms include projects such as Ceph
(http://ceph.com) and GlusterFS (http://gluster.org).

Some of these advanced topics are not covered in this book. However, the features covered
here for using the shell, working with disks, starting and stopping services, and config-
uring a variety of servers should serve as a foundation for working with those advanced
features.

http://ceph.com
http://gluster.org

Part I: Getting Started

Understanding How Linux Differs from Other
Operating Systems

If you are new to Linux, chances are good that you have used a Microsoft Windows or Apple
Mac 0S operating system. Although Mac OS X has its roots in a free software operating system,
referred to as the Berkeley Software Distribution (more on that later), operating systems from
both Microsoft and Apple are considered proprietary operating systems. What that means is:

B You cannot see the code used to create the operating system.

B You, therefore, cannot change the operating system at its most basic levels if it
doesn't suit your needs—and you can't use the operating system to build your own
operating system from source code.

B You cannot check the code to find bugs, explore security vulnerabilities, or simply
learn what that code is doing.

B You may not be able to easily plug your own software into the operating system if
the creators of that system don’t want to expose the programming interfaces you
need to the outside world.

You might look at those statements about proprietary software and say, “What do I care? I'm
not a software developer. I don't want to see or change how my operating system is built.”

That may be true. But the fact that others can take free and open source software and
use it as they please has driven the explosive growth of the Internet (think Google),
mobile phones (think Android), special computing devices (think Tivo), and hundreds of
technology companies. Free software has driven down computing costs and allowed for an
explosion of innovation.

Maybe you don't want to use Linux—as Google, Facebook, and other companies have done—
to build the foundation for a multi-billion-dollar company. But those and other companies
who now rely on Linux to drive their computer infrastructures need more and more people
with the skills to run those systems.

You may wonder how a computer system that is so powerful and flexible has come to be free
as well. To understand how that could be, you need to see where Linux came from. So the
next section of this chapter describes the strange and winding path of the free software
movement that led to Linux.

Exploring Linux History

Some histories of Linux begin with this message posted by Linus Torvalds to the comp.
os.minix newsgroup on August 25, 1991 (http://groups.google.com/group/comp.
os.minix/msg/b813d52cbc5a044b?pli=1):

http://groups.google.com/group/comp.os.minix/msg/b813d52cbc5a044b?pli=1):
http://groups.google.com/group/comp.os.minix/msg/b813d52cbc5a044b?pli=1):

Chapter 1: Starting with Linux

Linus Benedict Torvalds
Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and professional
like gnu) for 386(486) AT clones. This has been brewing since april, and is start-
ing to get ready. I'd like any feedback on things people like/dislike in minix, as
my 0S resembles it somewhat (same physical layout of the file-system (due to
practical reasons, among other things)...Any suggestions are welcome, but I won't
promise I'll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes — it's free of any minix code, and it has a multi-threaded fs. It is NOT
protable [sic] (uses 386 task switching etc), and it probably never will support
anything other than AT-harddisks, as that’s all I have :-(.

Minix was a UNIX-like operating system that ran on PCs in the early 1990s. Like Minix,
Linux was also a clone of the UNIX operating system. With few exceptions, such as
Microsoft Windows, most modern computer systems (including Mac 0S X and Linux) were
derived from UNIX operating systems, created originally by AT&T.

To truly appreciate how a free operating system could have been modeled after a
proprietary system from AT&T Bell Laboratories, it helps to understand the culture in
which UNIX was created and the chain of events that made the essence of UNIX possible
to reproduce freely.

NoTE

To learn more about how Linux was created, pick up the book Just for Fun: The Story of an Accidental Revolutionary
by Linus Torvalds (HarperCollins Publishing, 2001).

Free-flowing UNIX culture at Bell Labs

From the very beginning, the UNIX operating system was created and nurtured in a
communal environment. Its creation was not driven by market needs, but by a desire to
overcome impediments to producing programs. AT&T, which owned the UNIX trademark
originally, eventually made UNIX into a commercial product, but by that time, many of
the concepts (and even much of the early code) that made UNIX special had fallen into the
public domain.

If you are not old enough to remember when AT&T split up in 1984, you may not remember
a time when AT&T was “the” phone company. Up until the early 1980s, AT&T didn't have
to think much about competition because if you wanted a phone in the United States, you
had to go to AT&T. It had the luxury of funding pure research projects. The mecca for such
projects was the Bell Laboratories site in Murray Hill, New Jersey.

mailto:torvalds@kruuna.helsinki.fi

Part I: Getting Started

After a project called Multics failed in around 1969, Bell Labs employees Ken Thompson
and Dennis Ritchie set off on their own to create an operating system that would offer
an improved environment for developing software. Up to that time, most programs were
written on punch cards that had to be fed in batches to mainframe computers. In a 1980
lecture on “The Evolution of the UNIX Time-sharing System,” Dennis Ritchie summed up
the spirit that started UNIX:

What we wanted to preserve was not just a good environment in which to do
programming, but a system around which a fellowship could form. We knew

from experience that the essence of communal computing as supplied by
remote-access, time-shared machines is not just to type programs into a terminal
instead of a keypunch, but to encourage close communication.

The simplicity and power of the UNIX design began breaking down barriers that, until
this point, had impeded software developers. The foundation of UNIX was set with
several key elements:

B The UNIX filesystem—Because it included a structure that allowed levels of sub-
directories (which, for today’s desktop users, looks like folders inside folders), UNIX
could be used to organize the files and directories in intuitive ways. Furthermore,
complex methods of accessing disks, tapes, and other devices were greatly simpli-
fied by representing those devices as individual device files that you could also
access as items in a directory.

B Input/output redirection—Early UNIX systems also included input redirec-
tion and pipes. From a command line, UNIX users could direct the output of a
command to a file using a right-arrow key (>). Later, the concept of pipes (|)
was added where the output of one command could be directed to the input of
another command. For example, the following command line concatenates (cat)
filel and file2, sorts (sort) the lines in those files alphabetically, paginates the
sorted text for printing (pr), and directs the output to the computer’s default
printer (1pr):
$ cat filel file2 | sort | pr | lpr

This method of directing input and output enabled developers to create their own
specialized utilities that could be joined with existing utilities. This modularity
made it possible for lots of code to be developed by lots of different people. A user
could just put together the pieces as needed.

® Portability—Simplifying the experience of using UNIX also led to it becoming
extraordinarily portable to run on different computers. By having device drivers
(represented by files in the filesystem tree), UNIX could present an interface to
applications in such a way that the programs didn't have to know about the details
of the underlying hardware. To later port UNIX to another system, developers had
only to change the drivers. The application programs didn’t have to change for
different hardware!

Chapter 1: Starting with Linux

To make portability a reality, however, a high-level programming language was needed to
implement the software needed. To that end, Brian Kernighan and Dennis Ritchie created
the C programming language. In 1973, UNIX was rewritten in C. Today, C is still the primary
language used to create the UNIX (and Linux) operating system kernels.

As Ritchie went on to say in a 1979 lecture (http://cm.bell-labs.com/who/dmr/
hist.html):

Today, the only important UNIX program still written in assembler is the
assembler itself; virtually all the utility programs are in C, and so are most of the
application’s programs, although there are sites with many in Fortran, Pascal, and
Algol 68 as well. It seems certain that much of the success of UNIX follows from
the readability, modifiability, and portability of its software that in turn follows
from its expression in high-level languages.

If you are a Linux enthusiast and are interested in what features from the early days

of Linux have survived, an interesting read is Dennis Ritchie’s reprint of the first UNIX
programmer’s manual (dated November 3, 1971). You can find it at Dennis Ritchie’s website:
http://cm.bell-labs.com/cm/cs/who/dmr/lstEdman.html. The form of this
documentation is UNIX man pages, which is still the primary format for documenting UNIX
and Linux operating system commands and programming tools today.

What's clear as you read through the early documentation and accounts of the UNIX system
is that the development was a free-flowing process, lacked ego, and was dedicated to
making UNIX excellent. This process led to a sharing of code (both inside and outside Bell
Labs), which allowed rapid development of a high-quality UNIX operating system.

It also led to an operating system that AT&T would find difficult to reel back in later.

Commercialized UNIX

Before the AT&T divestiture in 1984, when it was split up into AT&T and seven “Baby Bell”
companies, AT&T was forbidden to sell computer systems. Companies that would later
become Verizon, Qwest, and Alcatel-Lucent were all part of AT&T. As a result of AT&T's
monopoly of the telephone system, the U.S. government was concerned that an unrestricted
AT&T might dominate the fledgling computer industry.

Because AT&T was restricted from selling computers directly to customers before its
divestiture, UNIX source code was licensed to universities for a nominal fee. There was
no UNIX operating system for sale from AT&T that you didn't have to compile yourself.

Berkeley Software Distribution arrives

In 1975, UNIX V6 became the first version of UNIX available for widespread use outside
Bell Laboratories. From this early UNIX source code, the first major variant of UNIX
was created at University of California at Berkeley. It was named the Berkeley Software
Distribution (BSD).

http://cm.bell-labs.com/who/dmr/hist.html):
http://cm.bell-labs.com/who/dmr/hist.html):
http://cm.bell-labs.com/cm/cs/who/dmr/1stEdman.html

Part I: Getting Started

NoTE
In an early email newsgroup post, Linus Torvalds made a request for a copy, preferably online, of the POSIX standard.

For most of the next decade, the BSD and Bell Labs versions of UNIX headed off in separate
directions. BSD continued forward in the free-flowing, share-the-code manner that was
the hallmark of the early Bell Labs UNIX, whereas AT&T started steering UNIX toward
commercialization. With the formation of a separate UNIX Laboratory, which moved out

of Murray Hill and down the road to Summit, New Jersey, AT&T began its attempts to
commercialize UNIX. By 1984, divestiture was behind AT&T and it was ready to really start
selling UNIX.

UNIX Laboratory and commercialization

The UNIX Laboratory was considered a jewel that couldn’t quite find a home or a way to
make a profit. As it moved between Bell Laboratories and other areas of AT&T, its name
changed several times. It is probably best remembered by the name it had as it began its
spin-off from AT&T: UNIX System Laboratories (USL).

The UNIX source code that came out of USL, the legacy of which was sold in part to Santa
Cruz Operation (SCO), was used for a time as the basis for ever-dwindling lawsuits by SCO
against major Linux vendors (such as IBM and Red Hat, Inc.). Because of that, I think the
efforts from USL that have contributed to the success of Linux are lost on most people.

During the 1980s, of course, many computer companies were afraid that a newly divested
AT&T would pose more of a threat to controlling the computer industry than would

an upstart company in Redmond, Washington. To calm the fears of IBM, Intel, Digital
Equipment Corporation, and other computer companies, the UNIX Lab made the following
commitments to ensure a level playing field:

m Source code only—Instead of producing its own boxed set of UNIX, AT&T continued
to sell only source code and to make it available equally to all licensees. Each
company would then port UNIX to its own equipment. It wasn't until about 1992,
when the lab was spun off as a joint venture with Novell (called Univel), and then
eventually sold to Novell, that a commercial boxed set of UNIX (called UnixWare)
was produced directly from that source code.

m Published interfaces—To create an environment of fairness and community to
its OEMs (original equipment manufacturers), AT&T began standardizing what
different ports of UNIX had to be able to do to still be called UNIX. To that end,
Portable Operating System Interface (POSIX) standards and the AT&T UNIX System
V Interface Definition (SVID) were specifications UNIX vendors could use to create
compliant UNIX systems. Those same documents also served as road maps for the
creation of Linux.

| think that nobody from AT&T expected someone to actually be able to write his own clone of UNIX from those inter-
faces, without using any of its UNIX source code.

10

Chapter 1: Starting with Linux

B Technical approach—Again, until the very end of USL, most decisions on the
direction of UNIX were made based on technical considerations. Management was
promoted up through the technical ranks, and to my knowledge, there was never
any talk of writing software to break other companies’ software or otherwise
restrict the success of USL's partners.

When USL eventually started taking on marketing experts and creating a desktop UNIX
product for end users, Microsoft Windows already had a firm grasp on the desktop market.
Also, because the direction of UNIX had always been toward source-code licensing destined
for large computing systems, USL had pricing difficulties for its products. For example, on
software that it was including with UNIX, USL found itself having to pay out per-computer
licensing fees that were based on $100,000 mainframes instead of $2,000 PCs. Add to that
the fact that no application programs were available with UnixWare, and you can see why
the endeavor failed.

Successful marketing of UNIX systems at the time, however, was happening with other
computer companies. SCO had found a niche market, primarily selling PC versions of

UNIX running dumb terminals in small offices. Sun Microsystems was selling lots of UNIX
workstations (originally based on BSD but merged with UNIX in SVR4) for programmers and
high-end technology applications (such as stock trading).

Other commercial UNIX systems were also emerging by the 1980s as well. This new
ownership assertion of UNIX was beginning to take its toll on the spirit of open
contributions. Lawsuits were being initiated to protect UNIX source code and trademarks.
In 1984, this new, restrictive UNIX gave rise to an organization that eventually led a path
to Linux: the Free Software Foundation.

GNU transitions UNIX to freedom

In 1984, Richard M. Stallman started the GNU project (http://www.gnu.org), recursively
named by the phrase GNU is Not UNIX. As a project of the Free Software Foundation (FSF),
GNU was intended to become a recoding of the entire UNIX operating system that could be
freely distributed.

The GNU Project page (http://www.gnu.org/gnu/thegnuproject.html) tells the
story of how the project came about in Stallman’s own words. It also lays out the problems
that proprietary software companies were imposing on those software developers who
wanted to share, create, and innovate.

Although rewriting millions of lines of code might seem daunting for one or two people,
spreading the effort across dozens or even hundreds of programmers made the project
possible. Remember that UNIX was designed to be built in separate pieces that could be
piped together. Because they were reproducing commands and utilities with well-known,
published interfaces, that effort could easily be split among many developers.

11

http://www.gnu.org
http://www.gnu.org/gnu/thegnuproject.html
http://www.gnu.org

Part I: Getting Started

12

It turned out that not only could the same results be gained by all new code, but in some
cases, that code was better than the original UNIX versions. Because everyone could see
the code being produced for the project, poorly written code could be corrected quickly or
replaced over time.

If you are familiar with UNIX, try searching the thousands of GNU software packages for
your favorite UNIX command from the Free Software Directory (http://directory.
fsf.org/wiki/GNU). Chances are good that you will find it there, along with many, many
other available software projects.

Over time, the term free software has been mostly replaced by the term open source software.
The term “free software” is preferred by the Free Software Foundation, while open source
software is promoted by the Open Source Initiative (http://www.opensource.org).

To accommodate both camps, some people use the term Free and Open Source Software
(FOSS) instead. An underlying principle of FOSS, however, is that, although you are free to
use the software as you like, you have some responsibility to make the improvements you
make to the code available to others. In that way, everyone in the community can benefit
from your work as you have benefited from the work of others.

To clearly define how open source software should be handled, the GNU software project
created the GNU Public License, or GPL. Although many other software licenses cover
slightly different approaches to protecting free software, the GPL is the most well known—
and it’s the one that covers the Linux kernel itself. Basic features of the GNU Public License
include the following:

® Author rights—The original author retains the rights to his or her software.

B Free distribution—People can use the GNU software in their own software, chang-
ing and redistributing it as they please. They do, however, have to include the
source code with their distribution (or make it easily available).

® Copyright maintained—Even if you were to repackage and resell the software, the
original GNU agreement must be maintained with the software, which means all
future recipients of the software have the opportunity to change the source code,
just as you did.

There is no warranty on GNU software. If something goes wrong, the original developer of
the software has no obligation to fix the problem. However, many organizations, big and
small, offer paid support (often in subscription form) for the software when it is included in
their Linux or other open source software distribution. (See the “0SI open source definition”
section later in this chapter for a more detailed definition of open source software.)

Despite its success in producing thousands of UNIX utilities, the GNU project itself failed to
produce one critical piece of code: the kernel. Its attempts to build an open source kernel
with the GNU Hurd project (http://www.gnu.org/software/hurd) were unsuccessful
at first, so it failed to become the premier open source kernel.

http://directory.fsf.org/wiki/GNU
http://directory.fsf.org/wiki/GNU
http://www.opensource.org
http://www.gnu.org/software/hurd

Chapter 1: Starting with Linux

BSD loses some steam

The one software project that had a chance of beating out Linux to be the premier
open source kernel was the venerable BSD project. By the late 1980s, BSD developers
at University of California (UC) Berkeley realized that they had already rewritten most
of the UNIX source code they had received a decade earlier.

In 1989, UC Berkeley distributed its own UNIX-like code as Net/1 and later (in 1991) as
Net/2. Just as UC Berkeley was preparing a complete, UNIX-like operating system that was
free from all AT&T code, AT&T hit them with a lawsuit in 1992. The suit claimed that the
software was written using trade secrets taken from AT&T’s UNIX system.

It's important to note here that BSD developers had completely rewritten the copyright-
protected code from AT&T. Copyright was the primary means AT&T used to protect its rights
to the UNIX code. Some believe that if AT&T had patented the concepts covered in that
code, there might not be a Linux (or any UNIX clone) operating system today.

The lawsuit was dropped when Novell bought UNIX System Laboratories from AT&T in 1994.
But, during that critical period, there was enough fear and doubt about the legality of the
BSD code that the momentum BSD had gained to that point in the fledgling open source
community was lost. Many people started looking for another open source alternative.

The time was ripe for a college student from Finland who was working on his own kernel.

NoTE
Today, BSD versions are available from three major projects: FreeBSD, NetBSD, and OpenBSD. People generally
characterize FreeBSD as the easiest to use, NetBSD as available on the most computer hardware platforms, and

OpenBSD as fanatically secure. Many security-minded individuals still prefer BSD to Linux. Also, because of its
licensing, BSD code can be used by proprietary software vendors, such as Microsoft and Apple, who don’t want
to share their operating system code with others. Mac 0S X is built on a BSD derivative.

Linus builds the missing piece

Linus Torvalds started work on Linux in 1991, while he was a student at the University of
Helsinki, Finland. He wanted to create a UNIX-like kernel so that he could use the same
kind of operating system on his home PC that he used at school. At the time, Linus was
using Minix, but he wanted to go beyond what the Minix standards permitted.

As noted earlier, Linus announced the first public version of the Linux kernel to the comp
.0s.minix newsgroup on August 25, 1991, although Torvalds guesses that the first version
didn't actually come out until mid-September of that year.

Although Torvalds stated that Linux was written for the 386 processor and probably wasn't
portable, others persisted in encouraging (and contributing to) a more portable approach in
the early versions of Linux. By October 5, Linux 0.02 was released with much of the original

13

Part I: Getting Started

assembly code rewritten in the C programming language, which made it possible to start
porting it to other machines.

The Linux kernel was the last—and the most important—piece of code that was needed

to complete a whole UNIX-like operating system under the GPL. So, when people started
putting together distributions, the name Linux and not GNU is what stuck. Some
distributions such as Debian, however, refer to themselves as GNU/Linux distributions.
(Not including GNU in the title or subtitle of a Linux operating system is also a matter of
much public grumbling by some members of the GNU project. See http://www.gnu.org.)

Today, Linux can be described as an open source UNIX-like operating system that reflects
a combination of SVID, POSIX, and BSD compliance. Linux continues to aim toward
compliance with POSIX as well as with standards set by the owner of the UNIX trademark,
The Open Group (http://www.unix.org).

The non-profit Open Source Development Labs, renamed the Linux Foundation after
merging with the Free Standards Group (http://www.linuxfoundation.org), which
employs Linus Torvalds, manages the direction today of Linux development efforts. Its
sponsors list is like a Who's Who of commercial Linux system and application vendors,
including IBM, Red Hat, SUSE, Oracle, HP, Dell, Computer Associates, Intel, Cisco Systems,
and others. The Linux Foundation’s primary charter is to protect and accelerate the
growth of Linux by providing legal protection and software development standards for
Linux developers.

Although much of the thrust of corporate Linux efforts is on corporate, enterprise
computing, huge improvements are continuing in the desktop arena as well. The KDE

and GNOME desktop environments continuously improve the Linux experience for casual
users. Newer lightweight desktop environments such as Xfce and LXDE now offer efficient
alternatives that today bring Linux to thousands of netbook owners.

Linus Torvalds continues to maintain and improve the Linux kernel.

NoTE
For a more detailed history of Linux, see the book Open Sources: Voices from the Open Source Revolution (0’Reilly,

1999). The entire first edition is available online at http://oreilly.com/catalog/opensources/book/
toc.html.

0SI open source definition

Linux provides a platform that lets software developers change the operating system as
they like and get a wide range of help creating the applications they need. One of the
watchdogs of the open source movement is the Open Source Initiative (0SI, http://www.
opensource.org).

14

http://www.gnu.org
http://www.unix.org
http://www.linuxfoundation.org
http://oreilly.com/catalog/opensources/book
http://www
http://www.unix.org

Chapter 1: Starting with Linux

Although the primary goal of open source software is to make source code available, other
goals of open source software are also defined by 0SI in its open source definition. Most of
the following rules for acceptable open source licenses serve to protect the freedom and
integrity of the open source code:

Free distribution—An open source license can't require a fee from anyone who
resells the software.

Source code—The source code must be included with the software and there can be
no restrictions on redistribution.

Derived works—The license must allow modification and redistribution of the code
under the same terms.

Integrity of the author’s source code—The license may require that those who
use the source code remove the original project’s name or version if they change
the source code.

No discrimination against persons or groups—The license must allow all people
to be equally eligible to use the source code.

No discrimination against fields of endeavor—The license can't restrict a project
from using the source code because it is commercial or because it is associated with
a field of endeavor that the software provider doesn't like.

Distribution of license—No additional license should be needed to use and
redistribute the software.

License must not be specific to a product—The license can't restrict the source
code to a particular software distribution.

License must not restrict other software—The license can't prevent someone
from including the open source software on the same medium as non-open
source software.

License must be technology-neutral—The license can't restrict methods in which
the source code can be redistributed.

Open source licenses used by software development projects must meet these criteria to be
accepted as open source software by 0SI. About 70 different licenses are accepted by OSI to
be used to label software as “0OSI Certified Open Source Software.” In addition to the GPL,
other popular 0SI-approved licenses include:

LGPL—The GNU Lesser General Public License (LGPL) is often used for distributing
libraries that other application programs depend upon.

BSD—The Berkeley Software Distribution License allows redistribution of source
code, with the requirement that the source code keep the BSD copyright notice and
not use the names of contributors to endorse or promote derived software without
written permission. A major difference from GPL, however, is that BSD does not
require people modifying the code to pass those changes on to the community.

15

Part I: Getting Started

16

As a result, proprietary software vendors such as Apple and Microsoft have used
BSD code in their own operating systems.

® MIT—The MIT license is like the BSD license, except that it doesn't include the
endorsement and promotion requirement.

B Mozilla—The Mozilla license covers the use and redistribution of source code
associated with the Firefox web browser and other software related to the Mozilla
project (http://www.mozilla.org). It is a much longer license than the others
just mentioned because it contains more definitions of how contributors and those
reusing the source code should behave. This includes submitting a file of changes
when submitting modifications and that those making their own additions to
the code for redistribution should be aware of patent issues or other restrictions
associated with their code.

The end result of open source code is software that has more flexibility to grow and fewer
boundaries in how it can be used. Many believe that the fact that numerous people look
over the source code for a project results in higher-quality software for everyone. As open
source advocate Eric S. Raymond says in an often-quoted line, “Given enough eyeballs, all
bugs are shallow.”

Understanding How Linux Distributions Emerged

Having bundles of source code floating around the Internet that could be compiled and
packaged into a Linux system worked well for geeks. More casual Linux users, however,
needed a simpler way to put together a Linux system. To respond to that need, some of
the best geeks began building their own Linux distributions.

A Linux distribution consists of the components needed to create a working Linux system
and the procedures needed to get those components installed and running. Technically,
Linux is really just what is referred to as the kernel. Before the kernel can be useful, you
must have other software such as basic commands (GNU utilities), services you want to
offer (such as remote login or web servers), and possibly a desktop interface and graphical
applications. Then, you must be able to gather all that together and install it on your
computer’s hard disk.

Slackware (http://www.slackware.com) is one of the oldest Linux distributions still
being developed today. It made Linux friendly for less technical users by distributing
software already compiled and grouped into packages (those packages of software
components were in a format called tarballs). You would use basic Linux commands then
to do things like format your disk, enable swap, and create user accounts.

Before long, many other Linux distributions were created. Some Linux distributions
were created to meet special needs, such as KNOPPIX (a live CD Linux), Gentoo (a cool

http://www.mozilla.org
http://www.slackware.com

Chapter 1: Starting with Linux

customizable Linux), and Mandrake (later called Mandriva, which was one of several desk-
top Linux distributions). But two major distributions rose to become the foundation for
many other distributions: Red Hat Linux and Debian.

Choosing a Red Hat distribution

When Red Hat Linux appeared in the late 1990s, it quickly became the most popular Linux
distribution for several reasons:

m RPM package management—Tarballs are fine for dropping software on your
computer, but they don't work as well when you want to update, remove, or even
find out about that software. Red Hat created the RPM packaging format so a
software package could contain not only the files to be shared, but also information
about the package version, who created it, which files were documentation or
configuration files, and when it was created. By installing software packaged in
RPM format, that information about each software package could be stored in a
local RPM database. It became easy to find what was installed, update it, or
remove it.

m Simple installation—The anaconda installer made it much simpler to install Linux.
As a user, you could step through some simple questions, in most cases accepting
defaults, to install Red Hat Linux.

B Graphical administration—Red Hat added simple graphical tools to configure
printers, add users, set time and date, and do other basic administrative tasks.
As a result, desktop users could use a Linux system without even having to
run commands.

For years, Red Hat Linux was the preferred Linux distribution for both Linux professionals
and enthusiasts. Red Hat, Inc., gave away the source code, as well as the compiled, ready-
to-run versions of Red Hat Linux (referred to as the binaries). But as the needs of their
Linux community users and big-ticket customers began to move further apart, Red Hat
abandoned Red Hat Linux and began developing two operating systems instead: Red Hat
Enterprise Linux and Fedora.

Using Red Hat Enterprise Linux

In March 2012, Red Hat, Inc., became the first open source software company to bring in
more than $1 billion in yearly revenue. It achieved that goal by building a set of products
around Red Hat Enterprise Linux (RHEL) that would suit the needs of the most demanding
enterprise computing environments.

While other Linux distributions focused on desktop systems or small business computing,
RHEL worked on those features needed to handle mission-critical applications for business
and government. It built systems that could speed transactions for the world’s largest
financial exchanges and be deployed as clusters and virtual hosts.

17

Part I: Getting Started

18

Instead of just selling RHEL, Red Hat offers an ecosystem of benefits for Linux customers to
draw on. To use RHEL, customers buy subscriptions that they can use to deploy any version
of RHEL they desire. If they decommission a RHEL system, they can use the subscription to
deploy another system.

Different levels of support are available for RHEL, depending on customer needs. Customers
can be assured that, along with support, they can get hardware and third-party software
that is certified to work with RHEL. They can get Red Hat consultants and engineers to help
them put together the computing environments they need. They can also get training and
certification exams for their employees (see the discussion of RHCE certification later in
this chapter).

Red Hat has also added other products as natural extensions to Red Hat Enterprise Linux.
JBoss is a middleware product for deploying Java-based applications to the Internet or
company intranets. Red Hat Enterprise Virtualization is composed of the virtualization
hosts, managers, and guest computers that allow you to install, run, manage, migrate, and
decommission huge virtual computing environments.

In recent years, Red Hat has extended its portfolio into cloud computing. RHEL OpenStack
Platform and Red Hat Enterprise Virtualization offer complete platforms for running and
managing virtual machines. Red Hat Cloudforms is a cloud management platform. RHEL
Atomic and Linux containers in Docker format offer ways of containerizing applications
for the cloud.

There are those who have tried to clone RHEL, using the freely available RHEL source code,
rebuilding and rebranding it. Oracle Linux is built from source code for RHEL but currently
offers an incompatible kernel. CentOS is a community-sponsored Linux distribution that is
built from RHEL source code. Recently, Red Hat took over support of the CentOS project.

I've chosen to use Red Hat Enterprise Linux for many of the examples in this book because,
if you want a career working on Linux systems, there is a huge demand for those who can
administer RHEL systems. If you are starting out with Linux, however, Fedora can provide
an excellent entry point to the same skills you need to use and administer RHEL systems.

Using Fedora

While RHEL is the commercial, stable, supported Linux distribution, Fedora is the free,
cutting-edge Linux distribution that is sponsored by Red Hat, Inc. Fedora is the Linux

system Red Hat uses to engage the Linux development community and encourage those
who want a free Linux for personal use and rapid development.

Fedora includes more than 16,000 software packages, many of which keep up with the
latest available open source technology. As a user, you can try the latest Linux desktop,
server, and administrative interfaces in Fedora for free. As a software developer, you can
create and test your applications using the latest Linux kernel and development tools.

Chapter 1: Starting with Linux

Because the focus of Fedora is on the latest technology, it focuses less on stability. So
expect that you might need to do some extra work to get everything working and that not
all the software will be fully baked.

However, I recommend that you use Fedora for most of the examples in this book for the
following reasons:

B Fedora is used as a proving ground for Red Hat Enterprise Linux. Red Hat tests
many new applications in Fedora before committing them to RHEL. By using
Fedora, you will learn the skills you need to work with features as they are being
developed for Red Hat Enterprise Linux.

W For learning, Fedora is more convenient than RHEL, yet still includes many of the
more advanced, enterprise-ready tools that are in RHEL.

B Fedora is free, not only as in “freedom” but also as in “you don't have to
pay for it.”

Fedora is extremely popular with those who develop open source software. However, in
the past few years, another Linux distribution has captured the attention of many people
starting out with Linux: Ubuntu.

Choosing Ubuntu or another Debian distribution

Like Red Hat Linux, the Debian GNU/Linux distribution was an early Linux distribution
that excelled at packaging and managing software. Debian uses deb packaging format and
tools to manage all of the software packages on its systems. Debian also has a reputation
for stability.

Many Linux distributions can trace their roots back to Debian. According to distrowatch
(http://distrowatch.com), more than 130 active Linux distributions can be traced
back to Debian. Popular Debian-based distributions include Linux Mint, elementary 0S,
Zorin 0S, LXLE, Kali Linux, and many others. However, the Debian derivative that has
achieved the most success is Ubuntu (http://www.ubuntu.com).

By relying on stable Debian software development and packaging, the Ubuntu Linux
distribution was able to come along and add those features that Debian lacked. In pursuit
of bringing new users to Linux, the Ubuntu project added a simple graphical installer and
easy-to-use graphical tools. It also focused on full-featured desktop systems, while still
offering popular server packages.

Ubuntu was also an innovator in creating new ways to run Linux. Using live CDs or live USB
drives offered by Ubuntu, you could have Ubuntu up and running in just a few minutes.
Often included on live CDs were open source applications, such as web browsers and word
processors, that actually ran in Windows. This made the transition to Linux from Windows
easier for some people.

19

http://distrowatch.com
http://www.ubuntu.com
http://www.ubuntu.com

Part I: Getting Started

If you are using Ubuntu, don't fear. Most of subject matter covered in this book will work as
well in Ubuntu as it does in Fedora or RHEL. This edition of Linux Bible provides expanded
coverage of Ubuntu.

Finding Professional Opportunities with Linux Today

If you want to develop an idea for a computer-related research project or technology
company, where do you begin? You begin with an idea. After that, you look for the tools
you need to explore and eventually create your vision. Then, you look for others to help
you during that creation process.

Today, the hard costs of starting a company like Google or Facebook include just a
computer, a connection to the Internet, and enough caffeinated beverage of your choice

to keep you up all night writing code. If you have your own world-changing idea, Linux
and thousands of software packages are available to help you build your dreams. The open
source world also comes with communities of developers, administrators, and users who are
available to help you.

If you want to get involved with an existing open source project, projects are always
looking for people to write code, test software, or write documentation. In those projects,
you will find people who use the software, work on the software, and are usually willing
to share their expertise to help you as well.

But whether you seek to develop the next great open source software project or simply
want to gain the skills needed to compete for the thousands of well-paying Linux admin-
istrator or development jobs, it will help you to know how to install, secure, and maintain
Linux systems.

So, what are the prospects for Linux careers? “The 2014 Linux Jobs Report” from the Linux
Foundation (http://www.linuxfoundation.org/publications/linux-founda-
tion/linux-adoption-trends-end-user-report-2014) surveyed more than 1,100
hiring managers and 4,000 Linux professionals. Here is what the Linux Foundation found:

B Linux talent is a high priority—Hiring people with Linux expertise is a priority
for 77 percent of hiring managers.

m Career advancement with Linux—As for career opportunities, 86 percent of Linux
professionals reported that Linux knowledge increased career opportunities.

B More Linux recruiting—Of the hiring managers surveyed, 46 percent reported
that they planned to increase recruitment of Linux talent from the previous year
(up 3 percent from the previous year).

The major message to take from this survey is that Linux continues to grow and create
demands for Linux expertise. Companies that have begun using Linux have continued to

20

http://www.linuxfoundation.org/publications/linux-founda-tion/linux-adoption-trends-end-user-report-2014
http://www.linuxfoundation.org/publications/linux-founda-tion/linux-adoption-trends-end-user-report-2014
http://www.linuxfoundation.org/publications/linux-founda-tion/linux-adoption-trends-end-user-report-2014

Chapter 1: Starting with Linux

move forward with Linux. Those using Linux continue to expand its use and find that cost
savings, security, and the flexibility it offers continue to make Linux a good investment.

Understanding how companies make money with Linux

Open source enthusiasts believe that better software can result from an open source soft-
ware development model than from proprietary development models. So in theory, any com-
pany creating software for its own use can save money by adding its software contributions
to those of others to gain a much better end product for themselves.

Companies that want to make money by selling software need to be more creative than
they were in the old days. Although you can sell the software you create that includes
GPL software, you must pass the source code of that software forward. Of course, others
can then recompile that product, basically using and even reselling your product without
charge. Here are a few ways that companies are dealing with that issue:

m Software subscriptions—Red Hat, Inc., sells its Red Hat Enterprise Linux products
on a subscription basis. For a certain amount of money per year, you get binary
code to run Linux (so you don't have to compile it yourself), guaranteed support,
tools for tracking the hardware and software on your computer, access to the com-
pany’s knowledge base, and other assets.

Although Red Hat's Fedora project includes much of the same software and is also
available in binary form, there are no guarantees associated with the software or
future updates of that software. A small office or personal user might take a risk
on using Fedora (which is itself an excellent operating system), but a big company
that’s running mission-critical applications will probably put down a few dollars
for RHEL.

B Training and certification—With Linux system use growing in government and
big business, professionals are needed to support those systems. Red Hat offers
training courses and certification exams to help system administrators become
proficient using Red Hat Enterprise Linux systems. In particular, the Red Hat
Certified Engineer (RHCE) and Red Hat Certified System Administrator (RHCSA)
certifications have become popular (http://www.redhat.com/certification).
More on RHCE/RHCSA certifications later in this chapter.

Other certification programs are offered by Linux Professional Institute
(http://www.1lpi.org), CompTIA (http://www.comptia.org), and Novell
(https://training.novell.com/). LPI and CompTIA are professional computer
industry associations. Novell centers its training and certification on its SUSE
Linux products.

B Bounties—Software bounties are a fascinating way for open source software
companies to make money. Suppose you are using XYZ software package and you
need a new feature right away. By paying a software bounty to the project itself,
or to other software developers, you can have your needed improvements moved

21

http://www.redhat.com/certification
http://www.lpi.org
http://www.comptia.org
https://training.novell.com

Part I: Getting Started

22

to the head of the queue. The software you pay for will remain covered by its open
source license, but you will have the features you need, at probably a fraction of
the cost of building the project from scratch.

B Donations—Many open source projects accept donations from individuals or open
source companies that use code from their projects. Amazingly, many open source
projects support one or two developers and run exclusively on donations.

® Boxed sets, mugs, and T-shirts—Some open source projects have online stores
where you can buy boxed sets (some people still like physical DVDs and hard copies
of documentation) and a variety of mugs, T-shirts, mouse pads, and other items.
If you really love a project, for goodness sake, buy a T-shirt!

This is in no way an exhaustive list, because more creative ways are being invented every
day to support those who create open source software. Remember that many people have
become contributors to and maintainers of open source software because they needed or
wanted the software themselves. The contributions they make for free are worth the return
they get from others who do the same.

Becoming Red Hat certified

Although this book is not focused on becoming certified in Linux, it touches on the
activities you need to be able to master to pass popular Linux certification exams. In
particular, most of what is covered in the Red Hat Certified Engineer (RHCE) and Red Hat
Certified System Administrator (RHCSA) exams for Red Hat Enterprise Linux 7 is described
in this book.

If you are looking for a job as a Linux IT professional, often RHCSA or RHCE certification

is listed as a requirement or at least a preference for employers. The RHCSA exam (EX200)
provides the basic certification, covering such topics as configuring disks and filesystems,
adding users, setting up a simple web and FTP server, and adding swap space. The RHCE
exam (EX300) tests for more advanced server configuration, as well an advanced knowledge
of security features, such as SELinux and firewalls.

Those of us who have taught RHCE/RHCSA courses and given exams (as I did for three
years) are not allowed to tell you exactly what is on the exam. However, Red Hat gives an
overview of how the exams work, as well as a list of topics you can expect to see covered in
the exam. You can find those exam objectives on the following sites:

m RHCSA—http://www.redhat.com/en/services/training/
ex200-red-hat-certified-system-administrator-rhcsa-exam
B RHCE—http://www.redhat.com/en/services/training/

ex300-red-hat-certified-engineer-rhce-exam

As the exam objectives state, the RHCSA and RHCE exams are performance-based, which
means that you are given tasks to do and you must perform those tasks on an actual Red

http://www.redhat.com/en/services/training
http://www.redhat.com/en/services/training

Chapter 1: Starting with Linux

Hat Enterprise Linux system, as you would on the job. You are graded on how well you
obtained the results of those tasks.

If you plan to take the exams, check back to the exam objectives pages often, because they
change from time to time. Keep in mind also that the RHCSA is a standalone certification;
however, you must pass the RHCSA and the RHCE exams to get an RHCE certification. Often,
the two exams are given on the same day.

You can sign up for RHCSA and RHCE training and exams at http://training.redhat.
com. Training and exams are given at major cities all over the United States and around the
world. The skills you need to complete these exams are described in the following sections.

RHCSA topics

As noted earlier, RHCSA exam topics cover basic system administration skills. These are
the current topics listed for Red Hat Enterprise Linux 7 at the RHCSA exam objectives site
(again, check the exam objectives site in case they change) and where in this book you can
learn about them:

B Understand essential tools—You are expected to have a working knowledge of
the command shell (bash), including how to use proper command syntax and do
input/output redirection (< > >>). You need to know how to log in to remote and
local systems. Expect to have to create, edit, move, copy, link, delete, and change
permission and ownership on files. Likewise, you should know how to look up infor-
mation on man pages and /usr/share/doc. Most of these topics are covered in
Chapters 3 and 4 in this book. Chapter 5 describes how to edit and find files.

B Operate running systems—In this category, you must understand the Linux boot
process, go into single-user mode, shut down, reboot, and change to different
targets (previously called runlevels). You need to identify processes and change
nice values or kill processes as requested. You must be able to start and stop virtual
machines and network services, as well as find and interpret log files. Chapter
15 describes how to change targets and runlevels and manage system services.

See Chapter 6 for information on managing and changing processes. Chapter 26
describes how to manage virtual machines. Logging is described in Chapter 13.

m Configure local storage—Setting up disk partitions includes creating physical
volumes and configuring them to be used for Logical Volume Management (LVM)
or encryption (LUKS). You should also be able to set up those partitions as
filesystems or swap space that can be mounted or enabled at boot time. Disk
partitioning and LVM are covered in Chapter 12. LUKS and other encryption
topics are described in Chapter 23.

B (Create and configure filesystems—Create and automatically mount different
kinds of filesystems, including regular Linux filesystems (ext2, ext3, or ext4),
LUKS-encrypted filesystems, and network filesystems (NFS and CIFS). Create collab-
orative directories using the set group ID bit feature and Access Control Lists (ACL).

23

http://training.redhat

Part I: Getting Started

24

You must also be able to use LVM to extend the size of a logical volume. Filesystem
topics are covered in Chapter 12. See Chapter 19 for CIFS and Chapter 20 for
NES coverage.

® Deploy, configure, and maintain systems—This covers a range of topics,
including configuring networking, creating cron tasks, setting the default
runlevel, and installing RHEL systems. You must also be able to configure a simple
HTTP and FTP server. For software packages, you must be able to install packages
from Red Hat Network, a remote repository, or the local filesystem. Finally, you
must be able to properly install a new kernel and choose that or some other ker-
nel to boot up when the system starts. The cron facility is described in Chapter
13. Web server (HTTP) and FTP server setups are covered in Chapters 17 and 18,
respectively.

B Manage users and groups—You must know how to add, delete, and change user
and group accounts. Another topic you should know is password aging, using the
chage command. You must also know how to configure a system to authenticate by
connecting to an LDAP directory server. See Chapter 11 for information on config-
uring users and groups.

B Manage security—You must have a basic understanding of how to set up a firewall
(firewalld, system-config-firewall or iptables) and how to use SELinux.
You must be able to set up SSH to do key-based authentication. Learn about
SELinux in Chapter 24. Firewalls are covered in Chapter 25. Chapter 13 includes a
description of key-based authentication.

Most of these topics are covered in this book. Refer to Red Hat documentation (https://
access.redhat.com/documentation/) under the Red Hat Enterprise Linux heading for
descriptions of features not found in this book. In particular, the System Administrator’s
Guide contains descriptions of many of the RHCSA-related topics.

RHCE topics

RHCE exam topics cover more advanced server configuration, along with a variety of secu-
rity features for securing those servers in Red Hat Enterprise Linux 7. Again, check the
RHCE exam objectives site for the most up-to-date information on topics you should study
for the exam.

System configuration and management

The system configuration and management requirement for the RHCE exam covers a range
of topics, including the following:

B Bonding—Set up bonding to aggregate network links. Bonding is described in
Chapter 14.

m Route IP traffic—Set up static routes to specific network addresses. Chapter 14
includes a description of how to set up custom routes.

https://access.redhat.com/documentation
https://access.redhat.com/documentation

Chapter 1: Starting with Linux

B Firewalls—Block or allow traffic to selected ports on your system that offer
services such as web, FTP, and NFS, as well as block or allow access to services
based on the originator’s IP address. Firewalls are covered in Chapter 25.

B Kernel tunables—Set kernel tunable parameters using the /etc/sysctl.conf
file and the sysctl command. See Chapter 14 for a description of how to use the
/etc/sysctl.conf file to change IP forwarding settings in /proc/sys.

m Kerberos authentication—Use Kerberos to authenticate users on a RHEL system.
Chapter 11 includes a description of setting up a system to authentication to a
Kerberos server.

B Configure iSCSI—Set up system as an iSCSI target and initiator that mounts
an iSCSI target at boot time. See the Red Hat Storage Administration Guide for
further information (https://access.redhat.com/documentation/en-US/
Red Hat Enterprise Linux/7/html/Storage Administration Guide/
ch-iscsi.html)

B System reports—Use features such as sar to report on system use of memory, disk
access, network traffic, and processor utilization. Chapter 13 describes how to use
the sar command.

m Shell scripting—Create a simple shell script to take input and produce output in
various ways. Shell scripting is described in Chapter 7.

B Remote logging—Configure the rsyslogd facility to gather log messages and
distribute them to a remote logging server. Also, configure a remote logging server
facility to gather log messages from logging clients. Chapter 13 covers remote
logging with rsyslogd.

® SELinux—With Security Enhanced Linux in Enforcing mode, make sure that all
server configurations described in the next section are properly secured with
SELinux. SELinux is described in Chapter 24.

Installing and configuring network services

For each of the network services in the list that follows, make sure that you can go through
the steps to install packages required by the service, set up SELinux to allow access to the
service, set the service to start at boot time, secure the service by host or by user (using
iptables, TCP wrappers, or features provided by the service itself), and configure it for
basic operation. These are the services:

m Web server—Configure an Apache (HTTP/HTTPS) server. You must be able to set
up a virtual host, deploy a CGI script, use private directories, and allow a particular
Linux group to manage the content. Chapter 17 describes how to configure a
Web server.

B DNS server—Set up a DNS server (bind package) to act as a caching-only
name server that can forward DNS queries to another DNS server. No need
to configure master or slave zones. DNS is described from the client side in

25

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-iscsi.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-iscsi.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-iscsi.html

Part I: Getting Started

26

Chapter 14. For information on configuring a DNS server with Bind, see the RHEL
Networking Guide (https://access.redhat.com/documentation/en-US/
Red Hat Enterprise Linux/7/html-single/Networking Guide).

B NFS server—Configure an NFS server to share specific directories to specific client
systems so they can be used for group collaboration. Chapter 20 covers NES.

® Windows file sharing server—Set up Linux (Samba) to provide SMB shares to
specific hosts and users. Configure the shares for group collaboration. See
Chapter 19 to learn about configuring Samba.

B Mail server—Configure postfix or sendmail to accept incoming mail from outside
the local host. Relay mail to a smart host. Mail server configuration is not covered
in this book (and should not be done lightly). See the RHEL System Administrator’s
Guide for information on configuring mail servers (https://access.redhat.
com/documentation/en-US/Red Hat Enterprise Linux/7/html-single/
System Administrators Guide/index.html#ch-Mail Servers).

m Secure Shell server—Set up the SSH service (sshd) to allow remote login to your
local system as well as key-based authentication. Otherwise, configure the sshd.
conf file as needed. Chapter 13 describes how to configure the sshd service.

B Network Time server—Configure a Network Time Protocol server (ntpd) to syn-
chronize time with other NTP peers. See Chapter 26 for information on configuring
the ntpd service.

m Database server—Configure the MariaDB database and manage it in various ways.
Learn how to configure MariaDB from the MariaDB.org site (https://mariadb.
com/kb/en/mariadb/documentation/).

Although there are other tasks in the RHCE exam, as just noted, keep in mind that most
of the tasks have you configure servers and then secure those servers using any technique
you need. Those can include firewall rules (iptables), SELinux, TCP Wrappers, or any fea-
tures built into configuration files for the particular service.

Summary

Linux is an operating system that is built by a community of software developers around
the world and led by its creator, Linus Torvalds. It is derived originally from the UNIX oper-
ating system, but has grown beyond UNIX in popularity and power over the years.

The history of the Linux operating system can be tracked from early UNIX systems that
were distributed free to colleges and improved by initiatives such as the Berkeley Software
Distribution (BSD). The Free Software Foundation helped make many of the components
needed to create a fully-free UNIX-like operating system. The Linux kernel itself was the
last major component needed to complete the job.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Networking_Guide
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Networking_Guide
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/System_Administrators_Guide/index.html#ch-Mail_Servers
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/System_Administrators_Guide/index.html#ch-Mail_Servers
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/System_Administrators_Guide/index.html#ch-Mail_Servers
https://mariadb.com/kb/en/mariadb/documentation
https://mariadb.com/kb/en/mariadb/documentation

Chapter 1: Starting with Linux

Most Linux software projects are protected by one of a set of licenses that fall under the
Open Source Initiative umbrella. The most prominent of these is the GNU Public License
(GPL). Standards such as the Linux Standard Base and world-class Linux organizations and
companies (such as Canonical Ltd. and Red Hat, Inc.) make it possible for Linux to continue
to be a stable, productive operating system into the future.

Learning the basics of how to use and administer a Linux system will serve you well in any
aspect of working with Linux. The remaining chapters each provide a series of exercises
with which you can test your understanding. That’s why, for the rest of the book, you will
learn best with a Linux system in front of you so you can work through the examples in
each chapter and complete the exercises successfully.

The next chapter describes how to get started with Linux by describing how to get and use
a Linux desktop system.

27

CHAPTER

Creating the Perfect Linux
Desktop

IN THIS CHAPTER

Understanding the X Window System and desktop environments
Running Linux from a Live CD/DVD

Navigating the GNOME 3 desktop

Adding extensions to GNOME 3

Using Nautilus to manage files in GNOME 3

Working with the GNOME 2 desktop

Enabling 3D effects in GNOME 2

with everything in Linux, you have choices. There are full-featured GNOME or KDE desktop
environments or lightweight desktops such as LXDE or Xfce. There are even simpler
standalone window managers.

U sing Linux as your everyday desktop system is becoming easier to do all the time. As

After you have chosen a desktop, you will find that almost every major type of desktop application
you have on a Windows or Mac system has equivalent applications in Linux. For applications that
are not available in Linux, you can often run a Windows application in Linux using Windows
compatibility software.

The goal of this chapter is to familiarize you with the concepts related to Linux desktop systems
and to give you tips for working with a Linux desktop. In this chapter you:

m Step through the desktop features and technologies that are available in Linux
® Tour the major features of the GNOME desktop environment
B Learn tips and tricks for getting the most out of your GNOME desktop experience

29

Part I: Getting Started

To use the descriptions in this chapter, I recommend you have a Fedora system running in
front of you. You can get Fedora in lots of ways, including these:

B Running Fedora from a live medium—Refer to Appendix A for information on
downloading and burning Fedora Live image to a DVD or USB drive so you can boot
it live to use with this chapter.

m Installing Fedora permanently—Install Fedora to your hard disk and boot it from
there (as described in Chapter 9, “Installing Linux”).

Because the current release of Fedora uses the GNOME 3 interface, most of the procedures
described here work with other Linux distributions that have GNOME 3 available. If you are
using an older Red Hat Enterprise Linux system (RHEL 6 uses GNOME 2, but RHEL 7 uses
GNOME 3), I added descriptions of GNOME 2 that you can try as well.

NoTE
Ubuntu uses its own Unity desktop as its default, instead of GNOME. There is, however, an Ubuntu GNOME project.
To download the medium for the latest Ubuntu version with a GNOME desktop, go to the Ubuntu GNOME download

page (http://ubuntugnome.org/download/).

You can add GNOME and use it as the desktop environment for Ubuntu 11.10 and later. Older Ubuntu releases use
GNOME 2 by default.

Understanding Linux Desktop Technology

Modern computer desktop systems offer graphical windows, icons, and menus that are
operated from a mouse and keyboard. If you are under 30 years old, you might think there’s
nothing special about that. But the first Linux systems did not have graphical interfaces
available. Also, today, many Linux servers tuned for special tasks (for example, serving as a
web server or file server) don't have desktop software installed.

Nearly every major Linux distribution that offers desktop interfaces is based on the X
Window System (http://www.x.org). The X Window System provides a framework on
which different types of desktop environments or simple window managers can be built.

The X Window System (sometimes simply called X) was created before Linux existed and even
predates Microsoft Windows. It was built to be a lightweight, networked desktop framework.

X works in a sort of backward client/server model. The X server runs on the local sys-

tem, providing an interface to your screen, mouse, and keyboard. X clients (such as word
processors, music players, or image viewers) can be launched from the local system or from
any system on your network, provided that the X server gives permission to do so.

X was created in a time when graphical terminals (thin clients) simply managed the key-
board, mouse, and display. Applications, disk storage, and processing power were all on

30

http://ubuntugnome.org/download
http://www.x.org

Chapter 2: Creating the Perfect Linux Desktop

larger centralized computers. So applications ran on larger machines but were displayed
and managed over the network on the thin client. Later, thin clients were replaced

by desktop personal computers. Most client applications on PCs ran locally, using local
processing power, disk space, memory, and other hardware features, while not allowing
applications that didn't start from the local system.

X itself provides a plain gray background and a simple “X"” mouse cursor. There are no
menus, panels, or icons on a plain X screen. If you were to launch an X client (such as a
terminal window or word processor), it would appear on the X display with no border around
it to move, minimize, or close the window. Those features are added by a window manager.

A window manager adds the capability to manage the windows on your desktop and often
provides menus for launching applications and otherwise working with the desktop.

A full-blown desktop environment includes a window manager, but also adds menus, panels,
and usually an application programming interface that is used to create applications that
play well together.

So how does an understanding of how desktop interfaces work in Linux help you when it
comes to using Linux? Here are some ways:

B Because Linux desktop environments are not required to run a Linux system, a
Linux system may have been installed without a desktop. It might offer only a
plain-text, command-line interface. You can choose to add a desktop later. After it
is installed, you can choose whether to start up the desktop when your computer
boots or start it as needed.

B For a very lightweight Linux system, such as one meant to run on less powerful
computers, you can choose an efficient, though less feature-rich, window manager
(such as twm or fluxbox) or a lightweight desktop environment (such as LXDE
or Xfce).

B For more robust computers, you can choose more powerful desktop environments
(such as GNOME and KDE) that can do such things as watch for events to happen
(such as inserting a USB flash drive) and respond to those events (such as opening
a window to view the contents of the drive).

B You can have multiple desktop environments installed and you can choose which
one to launch when you log in. In this way, different users on the same computer
can use different desktop environments.

Many different desktop environments are available to choose from in Linux. Here are some
examples:

B GNOME—GNOME is the default desktop environment for Fedora, Red Hat Enterprise
Linux, and many others. Think of it as a professional desktop environment,
focusing on stability more than fancy effects.

m K Desktop Environment—KDE is probably the second most popular desktop
environment for Linux. It has more bells and whistles than GNOME and offers more

31

Part I: Getting Started

32

integrated applications. KDE is also available with Fedora, RHEL, Ubuntu, and many
other Linux systems.

B Xfce—The Xfce desktop was one of the first lightweight desktop environments.
It is good to use on older or less powerful computers. It is available with RHEL,
Fedora, Ubuntu, and other Linux distributions.

B LXDE—The Lightweight X11 Desktop Environment (LXDE) was designed to be
a fast-performing, energy-saving desktop environment. Often, LXDE is used on
less-expensive devices (such as netbook computers) and on live media (such as a live
CD or live USB stick). It is the default desktop for the KNOPPIX live CD distribution.
Although LXDE is not included with RHEL, you can try it with Fedora or Ubuntu.

GNOME was originally designed to resemble the MAC OS desktop, while KDE was meant
to emulate the Windows desktop environment. Because it is the most popular desktop
environment, and the one most often used in business Linux systems, most desktop
procedures and exercises in this book use the GNOME desktop. Using GNOME, however,
still gives you the choice of several different Linux distributions.

Starting with the Fedora GNOME Desktop
Live image

A live Linux ISO image is the quickest way to get a Linux system up and running so you
can start trying it out. Depending on its size, the image can be burned to a CD, DVD, or
USB drive and booted on your computer. With a Linux live image, you can have Linux take
over the operation of your computer temporarily, without harming the contents of your
hard drive.

If you have Windows installed, Linux just ignores it and uses Linux to control your
computer. When you are finished with the Linux live image, you can reboot the computer,
pop out the CD or DVD, and go back to running whatever operating system was installed on
the hard disk.

To try out a GNOME desktop along with the descriptions in this section, I suggest you get a
Fedora Live DVD (as described in Appendix A). Because a live DVD does all its work from the
DVD and in memory, it runs slower than an installed Linux system. Also, although you can
change files, add software, and otherwise configure your system, by default, the work you
do disappears when you reboot, unless you explicitly save that data to your hard drive or
external storage.

The fact that changes you make to the live environment go away on reboot is very good for
trying out Linux, but not that great if you want an ongoing desktop or server system. For
that reason, I recommend that if you have a spare computer, you install Linux permanently
on that computer’s hard disk to use with the rest of this book (as described in Chapter 9).

Chapter 2: Creating the Perfect Linux Desktop

After you have a live CD or DVD in hand, do the following to get started:

1. Get a computer. If you have a standard PC (32-bit or 64-bit) with a CD/DVD drive
and at least 1GB of memory (RAM) and at least a 400-MHz processor, you are
ready to start. (Just make sure the image you download matches your computer’s
architecture—a 64-bit medium does not run on a 32-bit computer.)

2. Start the live CD/DVD. Insert the live CD/DVD or USB drive into your computer and
reboot your computer. Depending on the boot order set on your computer, the live
image might start up directly from the BIOS (the code that controls the computer
before the operating system starts).

NoTE
If, instead of booting the live medium, your installed operating system starts up instead, you need to perform an
additional step to start the live CD/DVD. Reboot again, and when you see the BIOS screen, look for some words that

say something like “Boot Order.” The onscreen instructions may say to press the F12 or F1 key. Press that key imme-
diately from the BIOS screen. Next, you should see a screen that shows available selections. Highlight an entry for
CD/DVD or USB drive, and press Enter to boot the live image. If you don’t see the drive there, you may need to go into
BIOS setup and enable the CD/DVD or USB drive there.

3. Start Fedora. If the selected drive is able to boot, you see a boot screen. For
Fedora, with Start Fedora highlighted, press Enter to start the live medium.

4. Begin using the desktop. For Fedora, the live medium lets you choose between
installing Fedora or boots directly from the medium to a GNOME 3 desktop.

You can now proceed to the next section, “Using the GNOME 3 Desktop” (which includes
information on using GNOME 3 in Fedora, Red Hat Enterprise Linux, and other operating
systems). The section following that covers the GNOME 2 desktop.

Using the GNOME 3 Desktop

The GNOME 3 desktop offers a radical departure from its GNOME 2.x counterparts. GNOME 2.x
is serviceable, but GNOME 3 is elegant. With GNOME 3, a Linux desktop now appears more
like the graphical interfaces on mobile devices, with less focus on multiple mouse buttons
and key combinations and more on mouse movement and one-click operations.

Instead of feeling structured and rigid, the GNOME 3 desktop seems to expand as you
need it to. As a new application is run, its icon is added to the Dash. As you use the next
workspace, a new one opens, ready for you to place more applications.

After the computer boots up

If you booted up a live image, when you reach the desktop, you are assigned as the Live
System User for your username. For an installed system, you see the login screen, with

33

Part I: Getting Started

user accounts on the system ready for you to select and enter a password. Log in with the
username and password you have defined for your system.

Figure 2.1 is an example of the GNOME 3 desktop screen that appears for Fedora. Press the
Windows key (or move the mouse cursor to the upper-left corner of the desktop) to toggle
between a blank desktop and the Overview screen.

FIGURE 2.1

Starting with the GNOME 3 desktop in Fedora.

Activities Sat 10:01

Q Type to search...

There is very little on the GNOME 3 desktop when you start out. The top bar has the word
“Activities” on the left, a clock in the middle, and some icons on the right for such things
as adjusting audio volume, checking your network connection, and viewing the name of
the current user. The Overview screen is where you can select to open applications, active
windows, or different workspaces.

Navigating with the mouse
To get started, try navigating the GNOME 3 desktop with your mouse:

34

Chapter 2: Creating the Perfect Linux Desktop

1. Toggle activities and windows. Move your mouse cursor to the upper-left
corner of the screen, near the Activities button. Each time you move there,
your screen changes between showing you the windows you are actively using
and a set of available Activities. (This has the same effect as pressing the
Windows key.)

2. Open windows from applications bar. Click to open some applications from the
Dash on the left (Firefox, File Manager, Shotwell, or others). Move the mouse to the
upper-left corner again, and toggle between showing all active windows minimized
(Overview screen) and showing them overlapping (full-sized). Figure 2.2 shows an
example of the miniature windows view.

FIGURE 2.2

Show all windows on the desktop minimized.

Activities Sat 11:06
s =l

Get Started with Docker Containers in
RHEL 7 and RHEL Atomic

Get Started with Docker Containers i... chris@hostl:~/Pictures

Shotwell

3. Open applications from Applications list. From the Overview screen, select the
Application button from the bottom of the left column (the button has nine dots in
a box). The view changes to a set of icons representing the applications installed on
your system, as shown in Figure 2.3.

35

Part I: Getting Started

36

FIGURE 2.3

Show the list of available applications.

Activities Sat 11:08
e =il

@)

Contacts

Firefox

LibreO...

&
Settings

Frequent

4. View additional applications. From the Applications screen, you can change the
view of your applications in several ways, as well as launch them in different ways:

B Page through—To see icons representing applications that are not onscreen, use
the mouse to click dots on the right to page through applications. If you have a
wheel mouse, you can use that instead to scroll the icons.

B Frequent—Select the Frequent button on the bottom of the screen to see
often-run applications or the All button to see all applications again.

B Launching an application—To start the application you want, left-click its icon
to open the application in the current workspace. Right-click to open a menu
that lets you choose to open a New Window, add or remove the application from
Favorites (so the application’s icon appears on the Dash), or Show Details about
the application. Figure 2.4 shows an example of the menu.

5. Open additional applications. Start up additional applications. Notice that as you
open a new application, an icon representing that application appears in the Dash
bar on the left. Here are other ways to start applications:

Chapter 2: Creating the Perfect Linux Desktop

FIGURE 2.4

Click the middle mouse button to display an application’s selection menu.

New Window

Add to Favorites

Show Details

Eveluti... Firefox

m Application icon—Click any application icon to open that application.

®m Drop Dash icons on workspace—From the Windows view, you can drag any
application icon from the Dash by pressing and holding the left mouse button on
it and dragging that icon to any of the miniature workspaces on the right.

6. Use multiple workspaces. Move the mouse to the upper-left corner again
to show a minimized view of all windows. Notice all the applications on the
right jammed into a small representation of one workspace while an additional
workspace is empty. Drag and drop a few of the windows to an empty desktop
space. Figure 2.5 shows what the small workspaces look like. Notice that an
additional empty workspace is created each time the last empty one is used.
You can drag and drop the miniature windows to any workspace and then
select the workspace to view it.

7. Use the window menu. Move the mouse to the upper-left corner of the screen to
return to the active workspace (large window view). Right-click the title bar on a
window to view the window menu. Try these actions from that menu:

B Minimize—Remove window temporarily from view.
® Maximize—Expand window to maximum size.

® Move—Change window to moving mode. Moving your mouse moves the window.
Click to fix the window to a spot.

B Resize—Change the window to resize mode. Moving your mouse resizes the
window. Click to keep the size.

m Workspace selections—Several selections let you use workspaces in different
ways. Select Always on Top to make the current window always on top of other
windows in the workspace. Select Always on Visible Workspace to always show
the window on the workspace that is visible. Or select Move to Workspace Up or
Move to Workspace Down to move the window to the workspace above or below,
respectively.

37

Part I: Getting Started

FIGURE 2.5

As new desktops are used, additional ones appear on the right.

Activities Sat11:22
i—

o 9

&

Shotwell

[] B ‘|

Rhythmbox

If you don't feel comfortable navigating GNOME 3 with your mouse, or if you don't have a
mouse, the next section helps you navigate the desktop from the keyboard.

Navigating with the keyboard
If you prefer to keep your hands on the keyboard, you can work with the GNOME 3 desktop
directly from the keyboard in a number of ways, including these:

® Windows key—Presses the Windows key on the keyboard. On most PC keyboards,
this is the key with the Microsoft Windows logo on it next to the Alt key. This
toggles the mini-window (Overview) and active-window (current workspace) views.
Many people use this key often.

m Select different views—From the Windows or Applications view, hold Ctrl+Alt+Tab
to see a menu of the different views (see Figure 2.6). Still holding the Ctrl+Alt keys,
press Tab again to highlight one of the following icons from the menu and release
to select it:

B Top bar—Keeps the current view.

38

Chapter 2: Creating the Perfect Linux Desktop

FIGURE 2.6

Press Ctrl+Alt+Tab to display additional desktop areas to select.

(kB QW

Top Bar Dash Windows Applications Search Message Tray

m Dash—Highlights the first application in the application bar on the left.
Use arrow keys to move up and down that menu, and press Enter to open the
highlighted application.

® Windows—Selects the Windows view.
®m Applications—Selects the Applications view.

m Search—Highlights the search box. Type a few letters to show only icons for
applications that contain the letters you type. When you have typed enough
letters to uniquely identify the application you want, press Enter to launch the
application.

B Message tray—Reveals the bottom message tray. This tray lets you view
notifications and open removable media.

B Select an active window—Return to any of your workspaces (press the Windows
key if you are not already on an active workspace). Press Alt+Tab to see a list of all
active windows (see Figure 2.7). Continue to hold the Alt key as you press the Tab
key (or right or left arrow keys) to highlight the application you want from the
list of active desktop application windows. If an application has multiple windows
open, press Alt+ (backtick, located above the Tab key) to choose among those
sub-windows. Release the Alt key to select it.

39

Part I: Getting Started

40

FIGURE 2.7

Press Alt+Tab to select which running application to go to.

EEvents
No Event

Firefox GNU Image Manip... Terminal Shotwell

Items: 3 Photos

B Launch a command or application—From any active workspace, you can launch a
Linux command or a graphical application. Here are some examples:

m Applications—From the Overview screen, press Ctrl+Alt+Tab and continue to
press Tab until the Applications icon is highlighted; then release Ctrl+Alt. The
Applications view appears, with the first icon highlighted. Use the Tab key or
arrow keys (up, down, right, and left) to highlight the application icon you
want, and press Enter.

B Command box—If you know the name (or part of a name) of a command
you want to run, press Alt+F2 to display a command box. Type the name of
the command you want to run into the box (try gnome-calculator to open a
calculator application, for example).

B Search box—From the Overview screen, press Ctrl+Alt+Tab and continue
to press Tab until the magnifying glass (Search) icon is highlighted; then
release Ctrl+Alt. In the search box now highlighted, type a few letters in an
application’s name or description (type scr to see what you get). Keep typing
until the application you want is highlighted (in this case, Screenshot), and
press Enter to launch it.

m Dash—From the Overview screen, press Ctrl+Alt+Tab and continue to press Tab
until the star (Dash) icon is highlighted; then release Ctrl+Alt. From the Dash,
move the up and down arrows to highlight an application you want to launch,
and press Enter.

® Escape—When you are stuck in an action you don't want to complete, try pressing
the Esc key. For example, after pressing Alt+F2 (to enter a command), opening an
icon from the top bar, or going to an overview page, pressing Esc returns you to the
active window on the active desktop.

Chapter 2: Creating the Perfect Linux Desktop

I hope you now feel comfortable navigating the GNOME 3 desktop. Next, you can try
running some useful and fun desktop applications from GNOME 3.

Setting up the GNOME 3 desktop

Much of what you need GNOME 3 to do for you is set up automatically. However, you need to
make a few tweaks to get the desktop the way you want. Most of these setup activities are
available from the System Settings window (see Figure 2.8). Open the Settings icon from
the Applications list.

FIGURE 2.8

Change desktop settings from the System Settings window.

AlL Settings |Q| x
Personal
—
b @ @ B O BE o=
Background Motifications Online Privacy Region & Search
Accounts Language
Hardware
> = .y
@ av-‘-‘l = U i
Bluetooth Color Displays Keyboard Mouse & Network
Touchpad
iz B O
w & J=
Power Printers Sound Wacom Tablet
System
0 < 0 <
Date & Time Details Sharing Universal Users
Access

Here are some suggestions for configuring a GNOME 3 desktop:

m Configure networking—A wired network connection is often configured
automatically when you boot up your Fedora system. For wireless, you probably
have to select your wireless network and add a password when prompted. An icon
in the top bar lets you do any wired or wireless network configuration you need to
do. Refer to Chapter 14, “Administering Networking,” for further information on
configuring networking.

41

Part I: Getting Started

42

B Personal settings—Tools in this group let you change your desktop background
(Background), use different online accounts (Online Accounts), and set your language
and date and currency format based on region (Region and Language) and screen
locking (Screen). To change your background, open the System Settings window,
select Background, and then select from the available Wallpapers. To add your own
Background, download a wallpaper image you like to your Pictures folder, click the
Wallpapers box to change it to Pictures folder, and choose the image you want.

B Bluetooth—If your computer has Bluetooth hardware, you can enable that device to
communicate with other Bluetooth devices (such as a Bluetooth headset or printer).

B Printers—Instead of using the System Settings window to configure a printer,
refer to Chapter 16, “Configuring a Print server,” for information on setting up a
printer using the CUPS service.

B Sound—Click the Sound settings button to adjust sound input and output devices
on your system.

Extending the GNOME 3 desktop

If the GNOME 3 shell doesn’t do everything you like, don’t despair. You can add extensions
to provide additional functionality to GNOME 3. Also, a GNOME Tweak Tool lets you change
advanced settings in GNOME 3.

Using GNOME shell extensions

GNOME shell extensions are available to change the way your GNOME desktop looks and
behaves. Visit the GNOME Shell Extensions site (http://extensions.gnome.org) from
your Firefox browser on your GNOME 3 desktop. That site tells you what extensions you
have installed and which ones are available for you to install (you must select to allow the
site to see those extensions).

Because the extensions page knows what extensions you have and the version of GNOME 3
you are running, it can present only those extensions that are compatible with your sys-
tem. Many of the extensions help you add back in features from GNOME 2, including these:

m Applications Menu—Adds an Applications menu to the top panel, just as it was in
GNOME 2.

m Places Status Indicator—Adds a systems status menu, similar to the Places menu
in GNOME 2, to let you quickly navigate to useful folders on your system.

® Window list—Adds a list of active windows to the top panel, similar to the Window
list that appeared on the bottom panel in GNOME 2.

To install an extension, simply select the ON button next to the name. Or you can click the
extension name from the list to see the extension’s page, and click the button on that page
from OFF to ON. Click Install when you are asked if you want to download and install the
extension. The extension is then added to your desktop.

http://extensions.gnome.org

Chapter 2: Creating the Perfect Linux Desktop

Figure 2.9 shows an example of the Applications Menu (the GNOME foot icon), Window
List (showing several active applications icons), and Places Status Indicator (with folders
displayed from a drop-down menu) extensions installed.

FIGURE 2.9

Extensions add features to the GNOME 3 desktop.

Applications » Places ~ ‘;_Firefox hd Sat 12:09
- GNOME Shell Extensions — Mozilla Firefox X

Home
Documents B~
Downloads

Music 5iOI'IS

Pictures

Extensions Add yours

Videos .
.ensions

Computer ib by gcampax
: with a window based switcher that does not group by applic:
Browse Network
i Menu by gcampax

Add a category-based menu for applications.

Background Logo

Overlay a tasteful logo on the background to enhance the user experience

@ Launch new instance by gcampax

Always launch a new instance when clicking in the dash or the application view.

= Places Status Indicator by gcampax
y gcampax

Add a menu for quickly navigating places in the system.
B m @ Window List by gcampax

) Installed Extensions - GNOME Sh...

More than 100 GNOME shell extensions are available now, and more are being added all
the time. Other popular extensions include Notifications Alert (which alerts you of unread
messages), Presentation Mode (which prevents the screensaver from coming on when you
are giving a presentation), and Music Integration (which integrates popular music players
into GNOME 3 so you are alerted about songs being played).

Because the Extensions site can keep track of your extensions, you can click the Installed
extensions button at the top of the page and see every extension that is installed. You can
turn the extensions off and on from there and even delete them permanently.

43

Part I: Getting Started

Using the GNOME Tweak Tool

If you don't like the way some of the built-in features of GNOME 3 behave, you can change
many of them with the GNOME Tweak Tool. This tool is not installed by default with the
Fedora GNOME Live CD, but you can add it by installing the gnome-tweak-tool package.
(See Chapter 10, “Getting and Managing Software,” for information on how to install soft-
ware packages in Fedora.)

After installation, the GNOME Tweak Tool is available by launching the Advanced Settings
icon from your Applications screen. Start with the Desktop category to consider what you
might want to change in GNOME 3. Figure 2.10 shows the Tweak Tool (Advanced Settings
window) displaying Appearance settings.

FIGURE 2.10
Change desktop settings using the GNOME Tweak Tool (Advanced Settings).

Q Tweaks Appearance x

Global Dark Theme OFF

Applications need to be restarted for change to take effect

Desktop
Theme
B Window Adwaita (default) ~
Fonts GTK+ Adwaita (default) ¥
Keyboard and Mouse Icons Adwaita w7
Power Cursor Adwaita (default) ~
Shell theme A M

Startup Applications
Top Bar

Typing

Windows

Workspaces

If fonts are too small for you, select the Fonts category and click the plus sign next to the
Scaling Factor box to increase the font size. Or change fonts individually for documents,
window titles, or monospace fonts.

Under Top Bar settings, you can change how clock information is displayed in the top bar or
set whether to show the week number in the calendar. To change the look of the desktop,

44

Chapter 2: Creating the Perfect Linux Desktop

select the Appearance category and change the Icons theme and GTK+ theme as you like
from drop-down boxes.

Starting with desktop applications

The Fedora GNOME 3 desktop live DVD comes with some cool applications you can start
using immediately. To use GNOME 3 as your everyday desktop, you should install it
permanently to your computer’s hard disk and add the applications you need (a word
processor, image editor, drawing application, and so on). If you are just getting started,
the following sections list some cool applications to try out.

Managing files and folders with Nautilus

To move, copy, delete, rename, and otherwise organize files and folders in GNOME 3, you
can use the Nautilus file manager. Nautilus comes with the GNOME desktop and works like
other file managers you may use in Windows or Mac.

To open Nautilus, click the Files icon from the GNOME Dash or Applications list. Your user
account starts with a set of folders designed to hold the most common types of content:
Music, Pictures, Videos, and the like. These are all stored in what is referred to as your
Home directory. Figure 2.11 shows Nautilus open to a home directory.

FIGURE 2.11

Manage files and folders from the Nautilus window.

L <[>][Hame | la [=[=]v =]

© Recent Ll —
I o S
chris Documents

Desktop
[Documents —— —— ——
<, Downloads m
d3 Music Downloads Music Pictures
o o =
8 Videos Public Templates Videos

b

Trash

B 39 GB Volume

When you want to save files you downloaded from the Internet or created with a word
processor, you can organize them into these folders. You can create new folders as needed,
drag and drop files and folders to copy and move them, and delete them.

Because Nautilus is not much different from most file managers you have used on other
computer systems, this chapter does not go into detail about how to use drag-and-drop and

45

Part I: Getting Started

NoTE
You can try installing software if you are running the live medium. But keep in mind that because writeable space on

traverse folders to find your content. However, I do want to make a few observations that
may not be obvious about how to use Nautilus:

Home folder—You have complete control over the files and folders you create in
your Home folder. Most other parts of the filesystem are not accessible to you as a
regular user.

Filesystem organization—Although it appears under the name Home, your home
folder is actually located in the filesystem under the /home folder in a folder
named after your username—for example, /home/liveuser or /home/chris.
In the next few chapters, you learn how the filesystem is organized (especially in
relation to the Linux command shell).

Working with files and folders—Right-click a file or folder icon to see how you
can act on it. For example, you can copy, cut, move to trash (delete), or open any
file or folder icon.

Creating folders—To create a new folder, right-click in a folder window and select
New Folder. Type the new folder name over the highlighted Untitled Folder, and
press Enter to name the folder.

Accessing remote content—Nautilus can display content from remote servers
as well as the local filesystem. In Nautilus, select Connect to Server from the

file menu. You can connect to a remote server via SSH (secure shell), FTP with
login, Public FTP, Windows share, WebDav (HTTP), or Secure WebDav (HTTPS).
Add appropriate user and password information as needed, and the content of
the remote server appears in the Nautilus window. Figure 2.12 shows an example
of a Nautilus window displaying folders from a remote server over SSH protocol
(ssh://192.168.0.138).

Installing and managing additional software

The Fedora Live Desktop comes with a web browser (Firefox), a file manager (Nautilus),

and a few other common applications. However, there are many other useful applications
that, because of their size, just wouldn't fit on a live CD. If you install the live Fedora
Workstation to your hard disk (as described in Chapter 9), you almost certainly will want to
add some more software.

a live medium uses virtual memory (RAM), that space is limited and can easily run out. Also, when you reboot your
system, anything you install disappears.

46

When Fedora is installed, it is automatically configured to connect your system to the
huge Fedora software repository that is available on the Internet. As long as you have an

ssh://192.168.0.138

Chapter 2: Creating the Perfect Linux Desktop

Internet connection, you can run the Add/Remove software tool to download and install
any of thousands of Fedora packages.

FIGURE 2.12

Access remote folders using the Nautilus Connect to Server feature.

| < ‘ > H W 192.168.0.138 ‘ |EH = . v ||E‘ x
o o =]

2 Home
chris Desktop Documents

-

[0 Documents

~ Downloads E

B

d3 Music Downloads Music My Stuff
o o B & o
8 Videos Pictures Public Templates

@ Trash E

B 39 GB Volume

Videos
[Computer
g@? Browse Network

B Connect to Server

Although the entire facility for managing software in Fedora (the yum and rpm features)
is described in detail in Chapter 10, “Getting and Managing Software,” you can start
installing some software packages without knowing much about how the feature works.
Begin by going to the applications screen and opening the Software window.

With the Software window open, you can select the applications you want to install by
searching (type the name into the Find box) or choosing a category. Each category offers
packages sorted by subcategories and featured packages in that category. Figure 2.13 shows
the results of a search for the word adventure in the description or name of a package.

You can read a description of each package that comes up in your search. When you are ready,
click Install to install the package and any dependent packages needed to make it work.

By searching for and installing some common desktop applications, you should be able to
start using your desktop effectively. Refer to Chapter 10 for details on how to add software

47

Part I: Getting Started

48

repositories and use yum and rpm commands to manage software in Fedora and Red Hat

Enterprise Linux.

FIGURE 2.13

Download and install software from the huge Fedora repository.

The Legend of Edgar
bR 8 & A

GNU FreeDink

&
g
S

ScummVM
Wk e Uy Y

- ManaPlus
Fedr Ty vy

AlL Installed Updates

‘ Q. adventure| a ‘

The Legend of Edgar is a 2D platform game. Your hero must save his dad from
the hands of the evil sorcerer. To help Edgar in his mission you must to walk
around a big world, solve puzzles and kill a lot of powerful enemies. A great ad...

Dink Smallwood is an adventure/role-playing game, similar to Zelda, made by
RTsoft. Besides twisted humour, it includes the actual game editor, allowing
players to create hundreds of new adventures called Dink Modules or D-Mods ...

ScummVM is a program which allows you to run certain classic graphical point-
and-click adventure games, provided you already have their data files.
ScummVM supports many adventure games, including LucasArts SCUMM game...

Free 2D MMORPG. You can choose to join a Guild, become stronger and travel
new lands as one adventurer or live in peace with your friends.

Install

Install

Install

Install

Playing music with Rhythmbox

Rhythmbox is the music player that comes on the Fedora GNOME Live Desktop. You can
launch Rhythmbox from the GNOME 3 Dash and immediately play music CDs, podcasts, or
Internet radio shows. You can import audio files in WAV and Ogg Vorbis formats, or add

plug-ins for MP3 or other audio formats.

Figure 2.14 shows an example of the Rhythmbox window with music playing from an
imported audio library.

Here are a few ways you can get started with Rhythmbox:

® Radio—Double-click the Radio selection under Library and choose a radio station

from the list that appears to the right.
m Podcasts—Search for podcasts on the Internet and find the URL for one that

interests you. Right-click the Podcasts entry and select New Podcast Feed. Paste or
type in the URL to the podcast, and click Add. A list of podcasts from the site you

selected appears to the right. Double-click the one you want to listen to.

® Audio CDs—Insert an audio CD, and press Play when it appears in the Rhythmbox

window. Rhythmbox also lets you rip and burn audio CDs.

® Audio files—Rhythmbox can play WAV and Ogg Vorbis files. By adding plug-ins,
you can play many other audio formats, including MP3. Because there are patent

Chapter 2: Creating the Perfect Linux Desktop

issues related to the MP3 format, the ability to play MP3s is not included with
Fedora. In Chapter 10, I describe how to get software you need that is not in the
repository of your Linux distribution.

FIGURE 2.14
Play music, podcasts, and Internet radio from Rhythmbox.
Gueen - Bohemian Rhapsody x
I n Q3 el R ErE) -3:50/5:56 =—(i
by Queen from Greatest Hits: ... -
Library Edit Extract Eject Reload Dupli
0 Play Queue
Album: | Greatest Hits: We Will Rock You
dd Music
R Podcasts Artist: | Queen
8 Radio Artist sort order: | Queen
C6 Last.fm
Genre: | | Year: | 2004 | Disc: | al
B Libre.fm
Devices W) & Track ~ Title Artist Genre
> 1 Bohemian Rhapsody Queen Unknown
™ 2 Another One Bites the Dust Queen Unknown
Playlists .
™ 3 Killer Queen Queen Unknown
Q My Top Rated ~ a4 Fat Bottomed Girls Queen Unknown
Q Recently Added ¥ s Bicycle Race Queen Unknown
O Boconth Plauod V& You're My Best Friend Queen Unknown
+ rs .
- M 7 Don't Stop Me Now Queen Unknown
20 songs, 1 hour and 9 minutes

Plug-ins are available for Rhythmbox to get cover art, show information about artists and
songs, add support for music services (such as Last.fm and Magnatune), and fetch song lyrics.

Stopping the GNOME 3 desktop

When you are finished with your GNOME 3 session, select the down arrow button in the upper-
right corner of the top bar. From there, you can choose the On/0ff button, which allows you
to Log Out, Suspend your session, or switch to a different user account without logging out.

Using the GNOME 2 Desktop

The GNOME 2 desktop is the default desktop interface used up through Red Hat Enterprise
Linux 6. It is well-known, stable, and perhaps a bit boring.

49

Part I: Getting Started

50

GNOME 2 desktops provide the more standard menus, panels, icons, and workspaces. If you
are using a Red Hat Enterprise Linux system up to RHEL 6 or an older Fedora or Ubuntu
distribution, you are probably looking at a GNOME 2 desktop.

This section provides a tour of GNOME 2, along with some opportunities for sprucing it up a
bit. Recent GNOME releases include advances in 3D effects (see “3D effects with AIGLX" later
in this chapter) and improved usability features that I'll show you as well.

To use your GNOME desktop, you should become familiar with the following components:

B Metacity (window manager)—The default window manager for GNOME 2 is
Metacity. Metacity configuration options let you control such things as themes,
window borders, and controls used on your desktop.

B Compiz (window manager)—You can enable this window manager in GNOME to
provide 3D desktop effects.

B Nautilus (file manager/graphical shell) —When you open a folder (by double-click-
ing the Home icon on your desktop, for example), the Nautilus window opens and
displays the contents of the selected folder. Nautilus can also display other types of
content, such as shared folders from Windows computers on the network (using SMB).

® GNOME panels (application/task launcher)—These panels, which line the top and
bottom of your screen, are designed to make it convenient for you to launch the
applications you use, manage running applications, and work with multiple virtual
desktops. By default, the top panel contains menu buttons (Applications, Places, and
System), desktop application launchers (Evolution email and Firefox web browser), a
workspace switcher (for managing four virtual desktops), and a clock. Icons appear in
the panel when you need software updates or SELinux detects a problem. The bottom
panel has a Show Desktop button, window lists, a trash can, and a workspace switcher.

B Desktop area—The windows and icons you use are arranged on the desktop area,
which supports drag-and-drop between applications, a desktop menu (right-click
to see it), and icons for launching applications. A Computer icon consolidates CD
drives, floppy drives, the filesystem, and shared network resources in one place.

GNOME also includes a set of Preferences windows that enable you to configure different aspects
of your desktop. You can change backgrounds, colors, fonts, keyboard shortcuts, and other
features related to the look and behavior of the desktop. Figure 2.15 shows how the GNOME 2
desktop environment appears the first time you log in, with a few windows added to the screen.

The desktop shown in Figure 2.15 is for Red Hat Enterprise Linux. The following sections
provide details on using the GNOME 2 desktop.

Using the Metacity window manager

The Metacity window manager seems to have been chosen as the default window manager
for GNOME because of its simplicity. The creator of Metacity refers to it as a “boring window

Chapter 2: Creating the Perfect Linux Desktop

manager for the adult in you” and then goes on to compare other window managers to
colorful, sugary cereal, whereas Metacity is characterized as Cheerios.

NoTE

To use 3D effects, your best solution is to use the Compiz window manager, described later in this chapter. You can’t
do much with Metacity (except get your work done efficiently). You assign new themes to Metacity and change colors

and window decorations through the GNOME preferences (described later). Only a few Metacity themes exist, but
expect the number to grow.

Basic Metacity functions that might interest you are keyboard shortcuts and the workspace switcher. Table 2.1 shows
keyboard shortcuts to get around the Metacity window manager.

FIGURE 2.15
The GNOME 2 desktop environment.

[@ Applications_Places system @ (o (2 @ @ B B G @ chris Negus @ % ™ q) O all . ~66°F Thureb23,10:34PM

B LinuxBiblesthEdition_CHO6.doc - LibreOffice Writer -ox

File Edit View Insert Format Table Tools Window Help
Nea@ v «90a-a QE-V 2csEm 1A g,
< JC a4A

© 1 B 2 B 3 4

Listing and Changing Processes with top

cnegus|

. . @
The top command provides a screen-oriented Mean (. ¢y ey search Teminal selp

running on your system. With top, processes are displayedter - 22:34:06 up 5:01, 2 users, 1
Tasks: 273 total, 2 running, 271 sl

time they are currently consuming, by default. However, yopule): 2.0%us, 1.3ty o.Otni, 96
om:

3716196k total, 1407016k used

columns as well. Once you identify a misbehaving procesigrer: 4194296k total, 0k used|
k_lll or I‘eI‘liCe that pl‘OCeSS. PID USER PR NI VIRT RES SHI 517 x 515 pixels 15.9KB 77% 8/8
2532 root 0 169m 25m 14m s 4.0 0:48.82 Xorg
. . 7464 cnegus 0 254m 10m 8440 s 2.6 0.3 0:00.08 gnome-screensho F
If you want to be able to kill or renice processes, yc ssss cnegus 0 1104m 114m 65m s 1.7 3.1 0:18.32 soffice.bin
. . 3094 cnegus 0 333m 24m 10m s 1.0 0.7 0:02.38 gnome-panel
root user. If you just want to display processes, you can dc 3oss cnegus 0 27lm 1lm 91125 0.7 0.3 0:01.75 metacity
. 3105 cnegus 20 0 327m 12m 9708 S 0.7 0.3 0:01.26 wnck-applet
Here is an example: 7436 cnegus 20 0 15220 1392 972 R 0.7 0.0 0:00.26 top
2475 root 20 0 110m 1496 1000 s 0.3 0.0 0:08.88 spiceusbsrvd
2939 cnegus 20 0 32476 1872 836 s 0.3 0.1 0:00.31 dbus-daemon
[top 3121 cnegus 20 0 233m 7332 5852 S 0.3 0.2 0:00.05 seapplet
3275 cnegus 20 0 291m 11m 8968 s 0.3 0.3 0:00.30 notification-da
top - 11:26:39 up 4 days, 13:22, 2 users, load average: 1.08, 1.12, 1 7379 cnegus 20 0 291m 12m 9768 S 0.3 0.4 0:00.18 gnome-terminal
1 root 20 0 19404 1560 1252 s 0.0 0.0 0:02.04 init
< I | 2 root 20 o o o 0s 0.0 0.0 0:00.02 kthreadd
% @ 3 root RT 0O o 0 0SS 0.0 0.0 0:00.00 migration/0
S - 4 root 20 o0 0 0 0S 0.0 0.0 0:00.00 ksoftirqd/0
Page 5 /20 Default English (USA) INSRT | STD 5 root RT 0 o o 0s 0.0 0.0 0:00.00 migration/0 =

M shadowman-transpare...

TABLE 2.1 Keyboard Shortcuts

Actions Keystrokes

Cycle backward, without pop-up icons Alt+Shift+Esc
Cycle backward among panels Alt+Ctrl+Shift+Tab
Close menu Esc

51

Part I: Getting Started

52

You can use other keyboard shortcuts with the window manager as well. Select
System => Preferences > Keyboard Shortcuts to see a list of shortcuts, such as the following:

B Run Dialog—To run a command to launch an application from the desktop by
command name, press Alt+F2. From the dialog box that appears, type the command
and press Enter. For example, type gedit to run a simple graphical text editor.

B Lock Screen—If you want to step away from your screen and lock it, press
Ctrl+Alt+L. You need to type your user password to open the screen again.

® Show Main Menu—To open an application from the Applications, Places, or System
menu, press Alt+F1. Then use the up and down arrow keys to select from the
current menu, or use the right and left arrow keys to select from other menus.

B Print Screen—Press the Print Screen key to take a picture of the entire desktop.
Press Alt+Print Screen to take a picture of the current window.

Another Metacity feature of interest is the workspace switcher. Four virtual workspaces
appear in the Workspace Switcher on the GNOME 2 panel. You can do the following with the
Workspace Switcher:

® Choose current workspace—Four virtual workspaces appear in the Workspace
Switcher. Click any of the four virtual workspaces to make it your current
workspace.

m Move windows to other workspaces—Click any window, each represented by a
tiny rectangle in a workspace, to drag and drop it to another workspace. Likewise,
you can drag an application from the Window list to move that application to
another workspace.

B Add more workspaces—Right-click the Workspace Switcher, and select
Preferences. You can add workspaces (up to 32).

® Name workspaces—Right-click the Workspace Switcher, and select Preferences. Click
in the Workspaces pane to change names of workspaces to any names you choose.

You can view and change information about Metacity controls and settings using the
gconf-editor window (type gconf-editor from a Terminal window). As the window
says, it is not the recommended way to change preferences, so when possible, you should
change the desktop through GNOME 2 preferences. However, gconf-editor is a good way
to see descriptions of each Metacity feature.

From the gconf-editor window, select apps = metacity, and choose from general,
global_keybindings, keybindings_commands, window_keybindings, and workspace_names.
Click each key to see its value, along with short and long descriptions of the key.

Changing GNOME'’s appearance

You can change the general look of your GNOME desktop by selecting System > Preferences
> Appearance. From the Appearance Preferences window, select from three tabs:

Chapter 2: Creating the Perfect Linux Desktop

B Theme—Entire themes are available for the GNOME 2 desktop that change the
colors, icons, fonts, and other aspects of the desktop. Several different themes
come with the GNOME desktop, which you can simply select from this tab to use.
Or click Get more themes online to choose from a variety of available themes.

B Background—To change your desktop background, select from a list of backgrounds
on this tab to have the one you choose immediately take effect. To add a different
background, put the background you want on your system (perhaps download one by
selecting Get more backgrounds online and downloading it to your Pictures
folder). Then click Add, and select the image from your Pictures folder.

m Fonts—Different fonts can be selected to use by default with your applications,
documents, desktop, window title bar, and for fixed width.

Using the GNOME panels

The GNOME panels are placed on the top and bottom of the GNOME desktop. From those
panels, you can start applications (from buttons or menus), see what programs are active,
and monitor how your system is running. You can also change the top and bottom panels in
many ways—by adding applications or monitors or by changing the placement or behavior
of the panel, for example.

Right-click any open space on either panel to see the Panel menu. Figure 2.16 shows the
Panel menu on the top.

FIGURE 2.16
The GNOME Panel menu.

;_E ap il ﬂ}a Sun Oct 24, 10:40 PM Chris Negus

Properties
Delete This Panel

New Panel

Help
About Panels

From GNOME’s Panel menu, you can choose from a variety of functions, including these:

H Use the menus

B The Applications menu displays most of the applications and system tools you
will use from the desktop.

B The Places menu lets you select places to go, such as the Desktop folder, home
folder, removable media, or network locations.

B The System menu lets you change preferences and system settings, as well as
get other information about GNOME.

53

Part I: Getting Started

54

Add to Panel—Add an applet, menu, launcher, drawer, or button.
Properties—Change the panel’s position, size, and background properties.

Delete This Panel—Delete the current panel.

New Panel—Add panels to your desktop in different styles and locations.
You can also work with items on a panel. For example, you can do the following:

B Move items—To move an item on a panel, right-click it, select Move, and drag and
drop it to a new position.

B Resize items—You can resize some elements, such as the Window list, by clicking
an edge and dragging it to the new size.

m Use the Window list—Tasks running on the desktop appear in the Window list
area. Click a task to minimize or maximize it.

The following sections describe some things you can do with the GNOME panel.

Using the Applications and System menus

Click Applications on the panel, and you see categories of applications and system tools
that you can select. Click the application you want to launch. To add an item from a menu
so that it can launch from the panel, drag and drop the item you want to the panel.

You can add items to your GNOME 2 menus. To do that, right-click any of the menu
names and select Edit Menus. The window that appears lets you add or delete menus
associated with the Applications and System menus. You can also add items to launch
from those menus by selecting New Item and typing the name, command, and comment
for the item.

Adding an applet

You can run several small applications, called applets, directly on the GNOME panel. These
applications can show information you may want to see on an ongoing basis or may just
provide some amusement. To see what applets are available and to add applets that you
want to your panel, follow these steps:

1. Right-click an open space in the panel so the Panel menu appears.

2. Click Add to Panel. An Add to Panel window appears.

3. Select from among several dozen applets, including a clock, dictionary lookup,
stock ticker, and weather report. The applet you select appears on the panel,
ready for you to use.

Figure 2.17 shows (from left to right) eyes, system monitor, weather report, terminal, and
Wanda the fish.

Chapter 2: Creating the Perfect Linux Desktop

FIGURE 2.17

Placing applets on the panel makes accessing them easy.

0O MM oF @B -

After an applet is installed, right-click it on the panel to see what options are available.
For example, select Preferences for the stock ticker, and you can add or delete stocks whose
prices you want to monitor. If you don't like the applet’s location, right-click it, click Move,
slide the mouse until the applet is where you want it (even to another panel), and click to
set its location.

If you no longer want an applet to appear on the panel, right-click it, and click Remove
From Panel. The icon representing the applet disappears. If you find that you have run out
of room on your panel, you can add a new panel to another part of the screen, as described
in the next section.

Adding another panel
If you run out of space on the top or bottom panels, you can add more panels to your
desktop. You can have several panels on your GNOME 2 desktop. You can add panels that
run along the entire bottom, top, or side of the screen. To add a panel, follow these steps:
1. Right-click an open space in the panel so the Panel menu appears.
2. Click New Panel. A new panel appears on the side of the screen.
3. Right-click an open space in the new panel, and select Properties.
4. From the Panel Properties, select where you want the panel from the
Orientation box (Top, Bottom, Left, or Right).

After you've added a panel, you can add applets or application launchers to it as you did to
the default panel. To remove a panel, right-click it and select Delete This Panel.

Adding an application launcher
Icons on your panel represent a web browser and several office productivity applications.
You can add your own icons to launch applications from the panel as well. To add a new
application launcher to the panel, follow these steps:

1. Right-click in an open space on the panel.

2. Click Add to Panel > Application Launcher from the menu. All application
categories from your Applications and System menus appear.

3. Select the arrow next to the category of application you want, and then select
Add. An icon representing the application appears on the panel.

55

Part I: Getting Started

To launch the application you just added, simply click the icon on the panel.

If the application you want to launch is not on one of your menus, you can build a launcher
yourself as follows:
1. Right-click in an open space on the panel.

2. Click Add to Panel => Custom Application Launcher => Add. The Create Launcher
window appears.

3. Provide the following information for the application you want to add:

m Type—Select Application (to launch a reqular GUI application) or Application
in Terminal. Use Application in Terminal if the application is a character-based
or ncurses application. (Applications written using the ncurses library run in a
Terminal window but offer screen-oriented mouse and keyboard controls.)

® Name—Choose a name to identify the application (this appears in the tooltip
when your mouse is over the icon).

B Command—This identifies the command line that is run when the application is
launched. Use the full pathname, plus any required options.

B Comment—Enter a comment describing the application. It also appears when
you later move your mouse over the launcher.
4. Click the Icon box (it might say No Icon), select one of the icons shown, and
click OK. Alternatively, you can browse your filesystem to choose an icon.
5. Click OK.

The application should now appear in the panel. Click it to start the application.

NoTE
Icons available to represent your application are contained in the /usr/share/pixmaps directory. These icons

are in either. png or . xpm formats. If there isn’t an icon in the directory you want to use, create your own (in one of
those two formats) and assign it to the application.

Adding a drawer

A drawer is an icon that you can click to display other icons representing menus, applets, and
launchers; it behaves just like a panel. Essentially, any item you can add to a panel you can
add to a drawer. By adding a drawer to your GNOME panel, you can include several applets
and launchers that together take up the space of only one icon. Click the drawer to show the
applets and launchers as if they were being pulled out of a drawer icon on the panel.

To add a drawer to your panel, right-click the panel and select Add to Panel => Drawer.
A drawer appears on the panel. Right-click it, and add applets or launchers to it as you
would to a panel. Click the icon again to retract the drawer.

56

Chapter 2: Creating the Perfect Linux Desktop

Figure 2.18 shows a portion of the panel with an open drawer that includes an icon for
launching a weather report, sticky notes, and a stock monitor.

FIGURE 2.18

Add launchers or applets to a drawer on your GNOME 2 panel.

Changing panel properties

You can change the orientation, size, hiding policy, and background properties of your
desktop panels. To open the Panel Properties window that applies to a specific panel,
right-click an open space on the panel and choose Properties. The Panel Properties window
that appears includes the following values:

B Orientation—Move the panel to a different location on the screen by clicking a
new position.

B Size—Select the size of your panel by choosing its height in pixels (48 pixels
by default).

B Expand—Select this check box to have the panel expand to fill the entire side, or
clear the check box to make the panel only as wide as the applets it contains.

B AutoHide—Select whether a panel is automatically hidden (appearing only when
the mouse pointer is in the area).

m Show Hide buttons—Choose whether the Hide/Unhide buttons (with pixmap
arrows on them) appear on the edges of the panel.

B Arrows on hide buttons—If you select Show Hide Buttons, you can choose to have
arrows on those buttons.

B Background—From the Background tab, you can assign a color to the background
of the panel, assign a pixmap image, or just leave the default (which is based on
the current system theme). Click the Background Image check box if you want to
select an Image for the background, and then select an image, such as a tile from
/usr/share/backgrounds/tiles or another directory.

Tip

| usually turn on the AutoHide feature and turn off the Hide buttons. Using AutoHide gives you more desktop space

to work with. When you move your mouse to the edge where the panel is, the panel pops up—so you don’t need
Hide buttons.

57

Part I: Getting Started

58

Adding 3D effects with AIGLX

Several initiatives have made strides in recent years to bring 3D desktop effects to Linux.
Ubuntu, openSUSE, and Fedora used AIGLX (http://http://fedoraproject.org/
wiki/RenderingProject/aiglx).

The goal of the Accelerated Indirect GLX project (AIGLX) is to add 3D effects to everyday
desktop systems. It does this by implementing OpenGL (http://opengl.org) accelerated
effects using the Mesa (http://www.mesa3d.org) open source OpenGL implementation.

Currently, AIGLX supports a limited set of video cards and implements only a few 3D
effects, but it does offer some insight into the eye candy that is in the works.

If your video card was properly detected and configured, you may be able to simply turn
on the Desktop Effects feature to see the effects that have been implemented so far.

To turn on Desktop Effects, select System = Preferences > Desktop Effects. When the
Desktop Effects window appears, select Compiz. (If the selection is not available, install
the compiz package.)

Enabling Compiz does the following:

m Starts Compiz—Stops the current window manager and starts the Compiz
window manager.

® Enables the Windows Wobble When Moved effect—With this effect on, when you
grab the title bar of the window to move it, the window wobbles as it moves. Menus
and other items that open on the desktop also wobble.

® Enables the Workspaces on a Cube effect—Drag a window from the desktop to
the right or the left, and the desktop rotates like a cube, with each of your desktop
workspaces appearing as a side of that cube. Drop the window on the workspace
where you want it to go. You can also click the Workspace Switcher applet in the
bottom panel to rotate the cube to display different workspaces.

Other nice desktop effects result from using the Alt+Tab keys to tab among different
running windows. As you press Alt+Tab, a thumbnail of each window scrolls across the
screen as the window it represents is highlighted.

Figure 2.19 shows an example of a Compiz desktop with AIGLX enabled. The figure
illustrates a web browser window being moved from one workspace to another as
those workspaces rotate on a cube.

The following are some interesting effects you can get with your 3D AIGLX desktop:

http://fedoraproject.org/wiki/RenderingProject/aiglx
http://fedoraproject.org/wiki/RenderingProject/aiglx
http://opengl.org
http://www.mesa3d.org

Chapter 2: Creating the Perfect Linux Desktop

FIGURE 2.19

Rotate workspaces on a cube with AIGLX desktop effects enabled.

® Spin cube—Hold Ctrl+Alt keys, and press the right and left arrow keys. The
desktop cube spins to each successive workspace (forward or back).

m Slowly rotate cube—Hold the Ctrl+Alt keys, press and hold the left mouse button,
and move the mouse around on the screen. The cube moves slowly with the mouse
among the workspaces.

B Scale and separate windows—If your desktop is cluttered, hold Ctrl+Alt and press
the up arrow key. Windows shrink down and separate on the desktop. Still holding
Ctrl+Alt, use your arrow keys to highlight the window you want and release the
keys to have that window come to the surface.

m Tab through windows—Hold the Alt key, and press the Tab key. You see reduced
versions of all your windows in a strip in the middle of your screen, with the
current window highlighted in the middle. Still holding the Alt key, press Tab or
Shift+Tab to move forward or backward through the windows. Release the keys
when the one you want is highlighted.

B Scale and separate workspaces—Hold Ctrl+Alt, and press the down arrow key to
see reduced images of the workspace shown on a strip. Still holding Ctrl+Alt, use
the right and left arrow keys to move among the different workspaces. Release the
keys when the workspace you want is highlighted.

59

Part I: Getting Started

60

B Send current window to next workspace—Hold Ctrl+Alt+Shift keys together,
and press the left and right arrow keys. The next workspace to the left or right,
respectively, appears on the current desktop.

m Slide windows around—Press and hold the left mouse button on the window title
bar, and then press the left, right, up, or down arrow keys to slide the current
window around on the screen.

If you get tired of wobbling windows and spinning cubes, you can easily turn off

the AIGLX 3D effects and return to using Metacity as the window manager. Select
System > Preferences o> Desktop Effects again, and toggle off the Enable Desktop Effects
button to turn off the feature.

If you have a supported video card, but find that you cannot turn on the Desktop Effects,
check that your X server started properly. In particular, make sure that your /etc/x11/
xorg.conf file is properly configured. Make sure that dri and glx are loaded in the
Module section. Also, add an extensions section anywhere in the file (typically at the end
of the file) that appears as follows:

Section "extensions"
Option "Composite"
EndSection

Another option is to add the following line to the /etc/X11/xorg. conf file in the
Device section:

Option "XAANoOffscreenPixmaps"

The XAANoOf fscreenPixmaps option improves performance. Check your /var/log/
Xorg.log file to make sure that DRI and AIGLX features were started correctly. The
messages in that file can help you debug other problems as well.

Summary

The GNOME desktop environment has become the default desktop environment for many
Linux systems, including Fedora and RHEL. The GNOME 3 desktop (now used in Fedora and
Red Hat Enterprise Linux 7) is a modern, elegant desktop, designed to match the types of
interfaces available on many of today’s mobile devices. The GNOME 2 desktop (used through
RHEL 6) provides a more traditional desktop experience.

Besides GNOME desktops, you can try out other popular and useful desktop environments.
The K Desktop Environment (KDE) offers many more bells and whistles than GNOME and is
used by default in several Linux distributions. Netbooks and live CD distributions some-
times use the LXDE or Xfce desktops.

Chapter 2: Creating the Perfect Linux Desktop

Now that you have a grasp of how to get and use a Linux desktop, it’s time to start digging
into the more professional administrative interfaces. Chapter 3 introduces you to the Linux
command-line shell interface.

Exercises

Use these exercises to test your skill in using a GNOME desktop. You can use either a GNOME
2.x (Red Hat Enterprise Linux up until RHEL 6.x) or GNOME 3.x (Fedora 16 or later or Ubuntu
up to 11.10, or later using the Ubuntu GNOME project) desktop. If you are stuck, solutions
to the tasks for both the GNOME 2 and GNOME 3 desktops are shown in Appendix B.

1. Obtain a Linux system with either a GNOME 2 or GNOME 3 desktop available. Start
the system, and log in to a GNOME desktop.

2. Launch the Firefox web browser, and go to the GNOME home page (http://
gnome.org).

3. Pick a background you like from the GNOME art site (http://gnome-look.org/),
download it to your Pictures folder, and select it as your current background.

4. Start a Nautilus File Manager window, and move it to the second workspace on
your desktop.

5. Find the image you downloaded to use as your desktop background, and open it in
any image viewer.

6. Move back and forth between the workspace with Firefox on it and the one with
the Nautilus file manager.

7. Open a list of applications installed on your system, and select an image viewer to
open from that list. Use as few clicks or keystrokes as possible.

8. Change the view of the windows on your current workspace to smaller views of
those windows you can step through. Select any window you like to make it your
current window.

9. From your desktop, using only the keyboard, launch a music player.

10. Take a picture of your desktop, using only keystrokes.

61

http://gnome.org
http://gnome.org
http://gnome-look.org
http://gnome.org
http://gnome.org

Part i

Becoming a Linux
Power User

IN THIS PART Chapter 6

Managing Running Processes

Chapter 3

Using the Shell Chapter 7

Writing Simple Shell Scripts

Chapter 4
Moving around the Filesystem

Chapter 5
Working with Text Files

CHAPTER

Using the Shell

IN THIS CHAPTER

Understanding the Linux shell

Using the shell from consoles or terminals
Using commands

Using command history and tab completion
Connecting and expanding commands
Understanding variables and aliases
Making shell settings permanent

Using man pages and other documentation

most computers. On UNIX systems, from which Linux was derived, the program used to inter-

B efore icons and windows took over computer screens, you typed commands to interact with
pret and manage commands was referred to as the shell.

No matter which Linux distribution you are using, you can always count on the fact that the shell
is available to you. It provides a way to create executable script files, run programs, work with
filesystems, compile computer code, and manage the computer. Although the shell is less intuitive
than common graphic user interfaces (GUIs), most Linux experts consider the shell to be much more
powerful than GUIs. Shells have been around a long time, and many advanced features that aren't
available from the desktop can be accessed by running shell commands.

The Linux shell illustrated in this chapter is called the bash shell, which stands for Bourne
Again Shell. The name is derived from the fact that bash is compatible with the one of the
earliest UNIX shells: the Bourne shell (named after its creator Stephen Bourne, and represented
by the sh command).

Although bash is included with most distributions, and considered a standard, other shells are
available, including the C shell (csh), which is popular among BSD UNIX users, and the Korn shell
(ksh), which is popular among UNIX System V users. Ubuntu uses the dash shell, by default, which
is designed to perform faster than the bash shell. Linux also has a tcsh shell (an improved C shell)
and an ash shell (another Bourne shell look-alike).

65

Part Il: Becoming a Linux Power User

66

The odds are strong that the Linux distribution you are using has more than one shell
installed by default and available for your use. This chapter, however, focuses primarily on
the bash shell. That is because the Linux distributions featured in this book, Fedora and
Red Hat Enterprise Linux, both use the bash shell by default. The bash shell can also easily
be added to Ubuntu.

The following are a few major reasons to learn how to use the shell:

B You will know how to get around any Linux or other UNIX-like system. For
example, I can log in to my Red Hat Enterprise Linux web server, my home multi-
media server, my home router, or my wife’s Mac and explore and use any of those
computer systems from a shell. I can even log in and run commands on my Android
phone. They all run Linux or similar systems on the inside.

B Special shell features enable you to gather data input and direct data output
between commands and the Linux filesystem. To save typing, you can find, edit,
and repeat commands from your shell history. Many power users hardly touch a
graphical interface, doing most of their work from a shell.

B You can gather commands into a file using programming constructs such as con-
ditional tests, loops, and case statements to quickly do complex operations that
would be difficult to retype over and over. Programs consisting of commands that
are stored and run from a file are referred to as shell scripts. Most Linux system
administrators use shell scripts to automate tasks such as backing up data, moni-
toring log files, or checking system health.

The shell is a command language interpreter. If you have used Microsoft operating systems,
you'll see that using a shell in Linux is similar to—but generally much more powerful than—
the interpreter used to run commands in DOS or in the CMD command interface. You can hap-
pily use Linux from a graphical desktop interface, but as you grow into Linux you will surely
need to use the shell at some point to track down a problem or administer some features.

How to use the shell isn't obvious at first, but with the right help you can quickly learn
many of the most important shell features. This chapter is your guide to working with the
Linux system commands, processes, and filesystem from the shell. It describes the shell
environment and helps you tailor it to your needs.

About Shells and Terminal Windows

There are several ways to get to a shell interface in Linux. Three of the most common are
the shell prompt, Terminal window, and virtual console, which you learn more about in the
following sections.

To start using this section, boot up your Linux system. On your screen, you should either
see a plain-text login prompt similar to the following:

Chapter 3: Using the Shell

Red Hat Enterprise Linux Server release 7.0 (Maipo)
Kernel 3.10.0-121.el17.x86_64 on an X86
joe login:

Or you will see a graphical login screen.

In either case, you should log in with a regular user account. If you have a plain-text login
prompt, continue to the “Using the shell prompt” section. If you log in through a graphical
screen, go to the “Using a terminal window” section to see how to access a shell from the
desktop. In either case, you can access more shells as described in the “Using virtual con-
soles” section.

Using the shell prompt

If your Linux system has no graphical user interface (or one that isn't working at the
moment), you will most likely see a shell prompt after you log in. Typing commands from
the shell will probably be your primary means of using the Linux system.

The default prompt for a reqular user is simply a dollar sign:

$

The default prompt for the root user is a pound sign (also called a hash mark):

#

In most Linux systems, the $ and # prompts are preceded by your username, system
name, and current directory name. For example, a login prompt for the user named jake
on a computer named pine with /usr/share/ as the current working directory would
appear as

[jake@pine sharel$

You can change the prompt to display any characters you like and even read in pieces of
information about your system—for example, you can use the current working directory,
the date, the local computer name, or any string of characters as your prompt. To configure
your prompt, see the section “Setting your prompt” later in this chapter.

Although a tremendous number of features are available with the shell, it’s easy to begin
by just typing a few commands. Try some of the commands shown in the remainder of this
section to become familiar with your current shell environment.

In the examples that follow, the dollar ($) and pound (#) symbols indicate a prompt.
A ¢ indicates that the command can be run by any user, but a # typically means you
should run the command as the root user—many administrative tools require root per-
mission to be able to run them. The prompt is followed by the command that you type
(and then press Enter). The lines that follow show the output resulting from

the command.

67

Part Il: Becoming a Linux Power User

68

Using a terminal window

With the desktop GUI running, you can open a terminal emulator program (sometimes
referred to as a Terminal window) to start a shell. Most Linux distributions make it easy for
you to get to a shell from the GUI. Here are two common ways to launch a Terminal window
from a Linux desktop:

m Right-click the desktop. In the context menu that appears, if you see Open in
Terminal, Shells, New Terminal, Terminal Window, Xterm, or some similar item,
select it to start a Terminal window. (Some distributions have disabled this feature.)

®m Click the panel menu. Many Linux desktops include a panel at the top or bottom
of the screen from which you can launch applications. For example, in some sys-
tems that use the GNOME 2 desktop, you can select Applications &> System Tools =
Terminal to open a Terminal window. In GNOME 3, go to the activities screen, type
Terminal, and press Enter.

In all cases, you should be able to type a command as you would from a shell with no GUI.
Different terminal emulators are available with Linux. In Fedora, Red Hat Enterprise Linux
(RHEL), and other Linux distributions that use the GNOME desktop, the default Terminal
emulator window is the GNOME Terminal (represented by the gnome-terminal command).

GNOME Terminal supports many features beyond the basic shell. For example, you can cut and
paste text to or from a GNOME Terminal window, change fonts, set a title, choose colors or
images to use as background, and set how much text to save when text scrolls off the screen.

To try some GNOME Terminal features, start up a Fedora or RHEL system and log in to the
desktop. Then follow this procedure:

1. Select Applications > Utilities &> Terminal (or go the the Activities screen and
type Terminal). A Terminal window should open on your desktop.

2. Select Edit => Profile Preferences.
3. On the General tab, uncheck the “Use the system fixed width font” box.

4. From the Font field, try a different font and select OK. The new font appears in the
Terminal window.

5. Re-select the “Use system fixed width font” box. This takes you back to the
original font.

6. On the Colors tab, clear the “Use colors from system theme” check box. From
here, you can try some different font and background colors.

7. Re-select the “Use colors from system theme” box to go back to the default colors.

8. Go to the Profile window. There are other features you may want to experiment
with, such as setting how much scrolled data is kept.

9. Close the Profile window when you are finished. You are now ready to use your
Terminal window.

Chapter 3: Using the Shell

If you are using Linux from a graphical desktop, you will probably most often access the
shell from a Terminal window.

Using virtual consoles

Most Linux systems that include a desktop interface start multiple virtual consoles running
on the computer. Virtual consoles are a way to have multiple shell sessions open at once in
addition to the graphical interface you are using.

You can switch between virtual consoles by holding the Ctrl and Alt keys and pressing a
function key between F1 and F6. For example, in Fedora, press Ctrl+Alt+F1 (or F2, F3, F4,
and so on up to F6 on most Linux systems) to display one of seven virtual consoles. The
first virtual workspace in Fedora is where the GUI is and the next six virtual consoles

are text-based virtual consoles. You can return to the GUI (if one is running) by pressing
Ctrl+Alt+F1. (On some systems the GUI runs on the virtual console 5 or 6. So you'd return to
the GUI by pressing Ctrl+Alt+F5 or Ctrl+Alt+F6.)

Try it right now. Hold down the Ctrl+Alt keys, and press F3. You should see a plain-text
login prompt. Log in using your username and password. Try a few commands. When you
are finished, type exit to exit the shell. Then press Ctrl+Alt+F1 to return to your graphical
desktop interface. You can go back and forth between these graphical consoles as much as
you like.

Choosing Your Shell

In most Linux systems, your default shell is the bash shell. To find out what your default
login shell is, type the following commands:

S who am i

chris pts/0 2014-10-21 22:45 (:0.0)

$ grep chris /etc/passwd

chris:x:13597:13597:Chris Negus:/home/chris:/bin/bash

The who am i command shows your username, and the grep command (replacing chris
with your name) shows the definition of your user account in the /etc/password file. The
last field in that entry shows that the bash shell (/bin/bash) is your default shell (the
one that starts up when you log in or open a Terminal window).

It's possible, although not likely, that you might have a different default shell set. To try a
different shell, simply type the name of that shell (examples include ksh, tcsh, csh, sh,
dash, and others, assuming they are installed). You can try a few commands in that shell
and type exit when you are finished to return to the bash shell.

You might choose to use different shells for the following reasons:

69

Part Il: Becoming a Linux Power User

B You are used to using UNIX System V systems (often ksh by default) or Sun
Microsystems and other Berkeley UNIX-based distributions (frequently csh by
default), and you are more comfortable using default shells from those environments.

B You want to run shell scripts that were created for a particular shell environment,
and you need to run the shell for which they were made so you can test or use
those scripts from your current shell.

B You simply prefer features in one shell over those in another. For example, a mem-
ber of my Linux Users Group prefers ksh over bash because he doesn't like the way
aliases are used with bash.

Although most Linux users have a preference for one shell or another, when you know how to
use one shell, you can quickly learn any of the others by occasionally referring to the shell’s
man page (for example, type man bash). The man pages (described later in the “Getting
Information about Commands” section) provide documentation for commands, file formats,
and other components in Linux. Most people use bash just because they don't have a particu-
lar reason for using a different shell. The rest of this section describes the bash shell.

Bash includes features originally developed for sh and ksh shells in early UNIX systems, as
well as some csh features. Expect bash to be the default login shell in most Linux systems
you are using, with the exception of some specialized Linux systems (such as some that run
on embedded devices) that may require a smaller shell that needs less memory and requires
fewer features. Most of the examples in this chapter are based on the bash shell.

Tip

The bash shell is worth knowing not only because it is the default in most installations, but because it is the one you
will use with most Linux certification exams.

Running Commands

The simplest way to run a command is to type the name of the command from a shell. From
your desktop, open a Terminal window. Then type the following command:

S date
Sat Oct 19 08:04:00 EST 2014

Typing the date command, with no options or arguments, causes the current day, month,
date, time, time zone, and year to be displayed as just shown. Here are a few other com-
mands you can try:

$ pwd
/home/chris
$ hostname
mydesktop

70

Chapter 3: Using the Shell

S 1ls
Desktop Downloads Pictures Templates
Documents Music Public Videos

The pwd command shows your current working directory. Typing hostname shows your
computer’s hostname. The 1s command lists the files and directories in your current direc-
tory. Although many commands can be run by just typing command names, it’s more com-
mon to type more after the command to modify its behavior. The characters and words you
can type after a command are called options and arguments.

Understanding command syntax

Most commands have one or more options you can add to change the command'’s behavior.
Options typically consist of a single letter, preceded by a hyphen. However, you can group
single-letter options together or precede each with a hyphen, to use more than one option
at a time. For example, the following two uses of options for the 1s command are the same:

$ 1ls -1 -a -t
$ 1s -lat

In both cases, the 1s command is run with the -1 (long listing), -a (show hidden dot
files), and -t options (list by time).

Some commands include options that are represented by a whole word. To tell a command
to use a whole word as an option, you typically precede it with a double hyphen (--). For
example, to use the help option on many commands, you enter --help on the command
line. Without the double hyphen, the letters h, e, 1, and p would be interpreted as separate
options. (There are some commands that don't follow the double hyphen convention, using
a single hyphen before a word, but most commands use double hyphens for word options.)

NoTE

You can use the - -help option with most commands to see the options and arguments that they support: for exam-
ple, try typing hostname --help.

Many commands also accept arguments after certain options are entered or at the end

of the entire command line. An argument is an extra piece of information, such as a file-
name, directory, username, device, or other item that tells the command what to act on.
For example, cat /etc/passwd displays the contents of the /etc/passwd file on your
screen. In this case, /etc/passwd is the argument. Usually, you can have as many argu-
ments as you want on the command line, limited only by the total number of characters
allowed on a command line.

Sometimes, an argument is associated with an option. In that case, the argument must immedi-
ately follow the option. With single-letter options, the arqument typically follows after a space.
For full-word options, the argument often follows an equal sign (=). Here are some examples:

71

Part Il: Becoming a Linux Power User

72

S 1ls --hide=Desktop
Documents Music Public Videos
Downloads Pictures Templates

In the previous example, the - -hide option tells the 1s command to not display the file or
directory named Desktop when listing the contents of the directory. Notice that the equal
sign immediately follows the option (no space) and then the argument (again, no space).

Here's an example of a single-letter option that is followed by an argument:

$ tar -cvf backup.tar /home/chris

In the tar example just shown, the options say to create (c) a file (£) named backup.tar
that includes all the contents of the /home/chris directory and its subdirectories and
show verbose messages as the backup is created (v). Because backup.tar is an argument
to the f option, backup.tar must immediately follow the option.

Here are a few commands you can try out. See how they behave differently with
different options:

S 1s
Desktop Documents Downloads Music Pictures Public Templates
Videos
$ 1ls -a
Desktop .gnome2 private .lesshst Public
.. Documents .gnote .local Templates
.bash history Downloads .gnupg .mozilla Videos
.bash logout .emacs .gstreamer-0.10 Music
.xsession-errors
.bash profile .esd auth .gtk-bookmarks Pictures .zshrc
.bashrc .fsync.log .gvfs Pictures
$ uname
Linux

$ uname -a

Linux unused 3.10.0-121.el7.x86_64 #1 SMP Tue Oct 21 10:48:19
EDT 2014 x86_64 x86_ 64 x86_ 64 GNU/Linux

$ date

Tue Oct 21 09:08:38 EST 2014

$ date +'%d/%m/%y’

10/21/14

S date +'%A, %B %d, %Y'

Tuesday, October 21, 2014

The 1s command, by itself, shows all regular files and directories in the current directory.
By adding the -a, you can also see the hidden files in the directory (those beginning with
a dot). The uname command shows the type of system you are running (Linux). When you
add -a, you also can see the hostname, kernel release, and kernel version.

The date command has some special types of options. By itself, date simply prints the
current day, date, and time as shown above. But the date command supports a special +

Chapter 3: Using the Shell

format option, which lets you display the date in different formats. Type date --help to
see different format indicators you can use.

Try the id and who commands to get a feel for your current Linux environment, as
described in the following paragraphs.

When you log in to a Linux system, Linux views you as having a particular identity, which
includes your username, group name, user ID, and group ID. Linux also keeps track of your
login session: It knows when you logged in, how long you have been idle, and where you
logged in from.

To find out information about your identity, use the id command as follows:

$ id

uid=501(chris) gid=501(chris) groups=105(sales), 7(1lp)
In this example, the username is chris, which is represented by the numeric user ID (uid)
501. The primary group for chris also is called chris, which has a group ID (gid) of 501.
It is normal for Fedora and Red Hat Enterprise Linux users to have the same primary group
name as their username. The user chris also belongs to other groups called sales (gid
105) and 1p (gid 7). These names and numbers represent the permissions that chris has
to access computer resources.

NoTE
Linux distributions that have Security Enhanced Linux (SELinux) enabled, such as Fedora and RHEL, show additional
information at the end of the id output. That output might look something like the following:

context=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023

SELinux provides a means of tightly locking down the security of a Linux system. See Chapter 24, “Enhancing Linux
Security with SELinux,” if you want to learn about SELinux.

You can see information about your current login session by using the who command. In
the following example, the -u option says to add information about idle time and the
process ID and -H asks that a header be printed:

$ who -uH
NAME LINE TIME IDLE PID COMMENT
chris ttyl Jan 13 20:57 . 2013

The output from this who command shows that the user chris is logged in on tty1 (which

is the first virtual console on the monitor connected to the computer), and his login session
began at 20:57 on January 13. The IDLE time shows how long the shell has been open without
any command being typed (the dot indicates that it is currently active). PID shows the process
ID of the user’s login shell. COMMENT would show the name of the remote computer the user
had logged in from, if that user had logged in from another computer on the network, or the
name of the local X display if that user were using a Terminal window (such as :0.0).

73

Part Il: Becoming a Linux Power User

Locating commands

Now that you have typed a few commands, you may wonder where those commands are
located and how the shell finds the commands you type. To find commands you type, the
shell looks in what is referred to as your path. For commands that are not in your path, you
can type the complete identity of the location of the command.

If you know the directory that contains the command you want to run, one way to run it
is to type the full, or absolute, path to that command. For example, you run the date com-
mand from the /bin directory by typing

$ /bin/date

0f course, this can be inconvenient, especially if the command resides in a directory with a
long pathname. The better way is to have commands stored in well-known directories and
then add those directories to your shell's PATH environment variable. The path consists of
a list of directories that are checked sequentially for the commands you enter. To see your
current path, type the following:

S echo $PATH
/usr/local/bin: /usr/bin:/bin:/usr/local/sbin:/usr/sbin:/sbin:
/home/chris/bin

The results show a common default path for a reqular Linux user. Directories in the path
list are separated by colons. Most user commands that come with Linux are stored in the
/bin, /usr/bin, or /usr/local/bin directories. The /sbin and /usr/sbin directories
contain administrative commands (some Linux systems don't put those directories in requ-
lar users’ paths). The last directory shown is the bin directory in the user’s home directory
(/home/chris/bin).

Tip

If you want to add your own commands or shell scripts, place them in the bin directory in your home directory (such
as /home/chris/bin for the user named chris). This directory is automatically added to your path in some

Linux systems, although you may need to create that directory or add it to your PATH on other Linux systems. So, as
long as you add the command to your bin with execute permission, you can begin using it by simply typing the com-
mand name at your shell prompt. To make commands available to all users, add them to /usr/local/bin.

Unlike some other operating systems, Linux does not, by default, check the current direc-
tory for an executable before searching the path. It immediately begins searching the path,
and executables in the current directory are run only if they are in the PATH variable or
you give their absolute (such as /home/chris/scriptx.sh) or relative (for example,
./scriptx.sh) address.

The path directory order is important. Directories are checked from left to right. So, in
this example, if there is a command called foo located in both the /bin and /usr/bin

74

Chapter 3: Using the Shell

directories, the one in /bin is executed. To have the other foo command run, you either
type the full path to the command or change your PATH variable. (Changing your PATH and
adding directories to it are described later in this chapter.)

Not all the commands you run are located in directories in your PATH variable. Some com-
mands are built into the shell. Other commands can be overridden by creating aliases that
define any commands and options that you want the command to run. There are also ways
of defining a function that consists of a stored series of commands. Here is the order in
which the shell checks for the commands you type:

1. Aliases. Names set by the alias command that represent a particular command
and a set of options. Type alias to see what aliases are set. Often, aliases enable
you to define a short name for a long, complicated command. (I describe how to
create your own aliases later in this chapter.)

2. Shell reserved word. Words reserved by the shell for special use. Many of these
are words that you would use in programming-type functions, such as do, while,
case, and else. (I cover some of these reserved words in Chapter 7, “Writing
Simple Shell Scripts.”)

3. Function. This is a set of commands that are executed together within the
current shell.

4. Built-in command. This is a command built into the shell. As a result, there
is no representation of the command in the filesystem. Some of the most com-
mon commands you will use are shell built-in commands, such as cd (to change
directories), echo (to output text to the screen), exit (to exit from a shell), f£g
(to bring a command running in the background to the foreground), history
(to see a list of commands that were previously run), pwd (to list the present
working directory), set (to set shell options), and type (to show the location
of a command).

5. Filesystem command. This command is stored in and executed from the computer’s
filesystem. (These are the commands that are indicated by the value of the PATH
variable.)

To find out where a particular command is taken from, you can use the type command.
(If you are using a shell other than bash, use the which command instead.) For example,
to find out where the bash shell command is located, type the following:

$ type bash
bash is /bin/bash

Try these few words with the type command to see other locations of commands: which,
case, and return. If a command resides in several locations, you can add the -a option to
have all the known locations of the command printed. For example, the command type -a
1s should show an aliased and filesystem location for the 1s command.

75

Part Il: Becoming a Linux Power User

Tip

Sometimes, you run a command and receive an error message that the command was not found or that permission to
run the command was denied. If the command was not found, check that you spelled the command correctly and that

it is located in your PATH variable. If permission to run the command was denied, the command may be in the PATH
variable, but may not be executable. Also remember that case is important, so typing CAT or Cat will not find the cat
command.

76

If a command is not in your PATH variable, you can use the locate command to try to find
it. Using locate, you can search any part of the system that is accessible to you (some
files are only accessible to the root user). For example, if you wanted to find the location of
the chage command, you could type the following:

S locate chage

/usr/bin/chage

/usr/sbin/lchage
/usr/share/man/fr/manl/chage.1l.9z
/usr/share/man/it/manl/chage.l.9gz
/usr/share/man/ja/manl/chage.l.gz
/usr/share/man/manl/chage.l.gz
/usr/share/man/manl/lchage.l.gz
/usr/share/man/pl/manl/chage.l.gz
/usr/share/man/ru/manl/chage.l.gz
/usr/share/man/sv/manl/chage.l.gz
/usr/share/man/tr/manl/chage.1l.9z

Notice that locate not only found the chage command, but also found the 1chage
command and a variety of man pages associated with chage for different languages. The
locate command looks all over your filesystem, not just in directories that

contain commands.

In the coming chapters, you learn to use additional commands. For now, I want you to
become more familiar with how the shell itself works. So I talk next about features for
recalling commands, completing commands, using variables, and creating aliases.

Recalling Commands Using Command History

Being able to repeat a command you ran earlier in a shell session can be convenient.
Recalling a long and complex command line that you mistyped can save you some trouble.
Fortunately, some shell features enable you to recall previous command lines, edit those
lines, or complete a partially typed command line.

The shell history is a list of the commands that you have entered before. Using the history
command in a bash shell, you can view your previous commands. Then using various shell

Chapter 3: Using the Shell

features, you can recall individual command lines from that list and change them however
you please.

The rest of this section describes how to do command-line editing, how to complete parts
of command lines, and how to recall and work with the history list.

Command-line editing

If you type something wrong on a command line, the bash shell ensures that you don't
have to delete the entire line and start over. Likewise, you can recall a previous command
line and change the elements to make a new command.

By default, the bash shell uses command-line editing that is based on the emacs text
editor. (Type man emacs to read about it, if you care to.) If you are familiar with emacs,
you probably already know most of the keystrokes described here.

Tip

If you prefer the vi command for editing shell command lines, you can easily make that happen. Add the following

line to the .bashrc file in your home directory:

set -o vi
The next time you open a shell, you can use vi commands to edit your command lines.

To do the editing, you can use a combination of control keys, meta keys, and arrow keys.
For example, Ctrl+F means to hold the Ctrl key, and type f. Alt+F means to hold the Alt key,
and type f. (Instead of the Alt key, your keyboard may use a Meta key or the Esc key. On a
Windows keyboard, you can use the Windows key.)

To try out a bit of command-line editing, type the following:
$ 1s /usr/bin | sort -f | less

This command lists the contents of the /usr/bin directory, sorts the contents in alphabeti-
cal order (regardless of case), and pipes the output to less. The less command displays the
first page of output, after which you can go through the rest of the output a line (press Enter)
or a page (press spacebar) at a time. Simply press g when you are finished. Now, suppose you
want to change /usr/bin to /bin. You can use the following steps to change the command:

1. Press the up arrow (T) key. This displays the most recent command from your
shell history.
2. Press Ctrl+A. This moves the cursor to the beginning of the command line.

3. Press Ctrl+F or the right arrow (—) key. Repeat this command a few times to
position the cursor under the first slash (/).

4. Press Ctrl+D. Type this command four times to delete /usr from the line.

5. Press Enter. This executes the command line.

7

Part Il: Becoming a Linux Power User

As you edit a command line, at any point you can type reqular characters to add those
characters to the command line. The characters appear at the location of your text cursor.
You can use right — and left «— arrows to move the cursor from one end to the other on the
command line. You can also press the up T and down | arrow keys to step through previous
commands in the history list to select a command line for editing. (See the “Command-line
recall” section for details on how to recall commands from the history list.)

You can use many keystrokes to edit your command lines. Table 3.1 lists the keystrokes
that you can use to move around the command line.

TABLE 3.1 Keystrokes for Navigating Command Lines

Keystroke Full Name Meaning

Ctrl+F Character forward Go forward one character.

Ctrl+B Character backward Go backward one character.

Alt+F Word forward Go forward one word.

Alt+B Word backward Go backward one word.

Ctrl+A Beginning of line Go to the beginning of the current line.

Ctrl+E End of line Go to the end of the line.

Ctrl+L Clear screen Clear screen and leave line at the top of the screen.

The keystrokes in Table 3.2 can be used to edit command lines.

TABLE 3.2 Keystrokes for Editing Command Lines

Keystroke Full Name Meaning

Ctrl+D Delete current Delete the current character.

Backspace Delete previous Delete the previous character.

Ctrl+T Transpose character Switch positions of current and previous characters.
Alt+T Transpose words Switch positions of current and previous words.
Alt+U Uppercase word Change the current word to uppercase.

Alt+L Lowercase word Change the current word to lowercase.

Alt+C Capitalize word Change the current word to an initial capital.
Ctrl+V Insert special character ~ Add a special character. For example, to add a Tab

character, press Ctrl+V+Tab.

Use the keystrokes in Table 3.3 to cut and paste text on a command line.

78

Chapter 3: Using the Shell

TABLE 3.3 Keystrokes for Cutting and Pasting Text from within
Command Lines

Keystroke Full Name Meaning

Ctrl+K Cut end of line Cut text to the end of the line.

Ctrl+U Cut beginning of line Cut text to the beginning of the line.

Ctrl+W Cut previous word Cut the word located behind the cursor.
Alt+D Cut next word Cut the word following the cursor.

Ctrl+Y Paste recent text Paste most recently cut text.

Alt+Y Paste earlier text Rotate back to previously cut text and paste it.
Ctrl+C Delete whole line Delete the entire line.

Command-line completion

To save you a few keystrokes, the bash shell offers several different ways of completing
partially typed values. To attempt to complete a value, type the first few characters and
press Tab. Here are some of the values you can type partially from a bash shell:

B Command, alias, or function—If the text you type begins with reqular
characters, the shell tries to complete the text with a command, alias, or
function name.

m Variable—If the text you type begins with a dollar sign ($), the shell completes
the text with a variable from the current shell.

® Username—If the text you type begins with a tilde (~), the shell completes the
text with a username. As a result, ~username indicates the home directory of the
named user.

m Hostname—If the text you type begins with the at symbol (@), the shell completes
the text with a hostname taken from the /etc/hosts file.

Tip

To add hostnames from an additional file, you can set the HOSTFILE variable to the name of that file. The file must
be in the same format as /etc/hosts.

Here are a few examples of command completion. (When you see <Tab>, it means to press
the Tab key on your keyboard.) Type the following:

S echo $0S<Tab>
$ cd ~ro<Tab>
$ fing<Tab>

79

Part Il: Becoming a Linux Power User

80

The first example causes $OS to expand to the SOSTYPE variable. In the next example,
~ro expands to the root user’s home directory (~root/). Next, £ing expands to the
finger command.

Pressing Tab twice offers some wonderful possibilities. Sometimes, several possible comple-
tions for the string of characters you have entered are available. In those cases, you can
check the possible ways text can be expanded by pressing Tab twice at the point where you
want to do completion.

The following shows the result you would get if you checked for possible completions
on SP:

$ echo $P<Tab><Tab>
SPATH SPPID $PS1 $PS2 $PS4 SPWD
$ echo S$SP

In this case, there are six possible variables that begin with $p. After possibilities are
displayed, the original command line returns, ready for you to complete it as you choose.
For example, if you typed another P and pressed Tab again, the command line would be
completed with $PPID (the only unique possibility).

Command-line recall

After you type a command line, the entire command line is saved in your shell’s
history list. The list is stored in the current shell until you exit the shell. After that,
it is written to a history file, from which any command can be recalled to run again at
your next session. After a command is recalled, you can modify the command line, as
described earlier.

To view your history list, use the history command. Type the command without options
or followed by a number to list that many of the most recent commands. For example:

$ history 8

382 date

383 1ls /usr/bin | sort -a | more

384 man sort

385 cd /usr/local/bin

386 man more

387 useradd -m /home/chris -u 101 chris
388 passwd chris

389 history 8

A number precedes each command line in the list. You can recall one of those commands
using an exclamation point (!). Keep in mind that when using an exclamation point, the
command runs blind, without presenting an opportunity to confirm the command you're
referencing. There are several ways to run a command immediately from this list, including
the following:

Chapter 3: Using the Shell

B ! n—Run command number. Replace the n with the number of the command line
and that line is run. For example, here’s how to repeat the date command shown as
command number 382 in the preceding history listing:

S 1382
dateWed Oct 29 21:30:06 PDT 2014

B | ! —Run previous command. Runs the previous command line. Here’s how you
would immediately run that same date command:
$ 11
dateWed Oct 29 21:30:39 PDT 2014
B |?string?—Run command containing string. This runs the most recent command
that contains a particular string of characters. For example, you can run the date
command again by just searching for part of that command line as follows:

S 1?2dat?
dateWed Oct 29 21:32:41 PDT 2014

Instead of just running a history command line immediately, you can recall a particular
line and edit it. You can use the following keys or key combinations to do that, as shown in
Table 3.4.

TABLE 3.4 Key Strokes for Using Command History

Key(s) Function Name Description
Arrow keys Step Press the up and down arrow keys to step through each
(Tand) command line in your history list to arrive at the one you

want. (Ctrl+P and Ctrl+N do the same functions,
respectively.)

Ctrl+R Reverse incre- After you press these keys, you enter a search string to do a
mental search reverse search. As you type the string, a matching command
line appears that you can run or edit.
Ctrl+S Forward incre- This is the same as the preceding function but for forward
mental search search. (It may not work in all instances.)
Alt+P Reverse search After you press these keys, you enter a string to do a reverse

search. Type a string and press Enter to see the most recent
command line that includes that string.

Alt+N Forward search This is the same as the preceding function but for forward
search. (It may not work in all instances.)

Another way to work with your history list is to use the fc command. Type fc followed

by a history line number, and that command line is opened in a text editor (vi by default;
type :wq to save and exit or :g! to just exit if you are stuck in vi). Make the changes that
you want. When you exit the editor, the command runs. You can also give a range of line

81

Part Il: Becoming a Linux Power User

numbers (for example, £c 100 105). All the commands open in your text editor, and then
run one after the other when you exit the editor.

After you close your shell, the history list is stored in the .bash history file in your
home directory. Up to 1,000 history commands are stored for you by default.

NoTE
Some people disable the history feature for the root user by setting the HISTFILE to /dev/null or simply leav-
ing HISTSIZE blank. This prevents information about the root user’s activities from potentially being exploited. If

you are an administrative user with root privileges, you may want to consider emptying your file upon exiting as well
for the same reasons. Also, because shell history is stored permanently when the shell exits properly, you can prevent
storing a shell’s history by killing a shell. For example, to kill a shell with process ID 1234, type kill -9 1234
from any shell.

Connecting and Expanding Commands

A truly powerful feature of the shell is the capability to redirect the input and output
of commands to and from other commands and files. To allow commands to be strung
together, the shell uses metacharacters. A metacharacter is a typed character that has
special meaning to the shell for connecting commands or requesting expansion.

Metacharacters include the pipe character (|), ampersand (&), semicolon (;), right paren-
thesis ()), left parenthesis ((), less than sign (<), and greater than sign (>). The next
sections describe how to use metacharacters on the command line to change how com-
mands behave.

Piping between commands

The pipe (|) metacharacter connects the output from one command to the input of another
command. This lets you have one command work on some data and then have the next
command deal with the results. Here is an example of a command line that includes pipes:

$ cat /etc/passwd | sort | less

This command lists the contents of the /etc/passwd file and pipes the output to the
sort command. The sort command takes the usernames that begin each line of the
/etc/passwd file, sorts them alphabetically, and pipes the output to the less command
(to page through the output).

Pipes are an excellent illustration of how UNIX, the predecessor of Linux, was created

as an operating system made up of building blocks. A standard practice in UNIX was to
connect utilities in different ways to get different jobs done. For example, before the days
of graphical word processors, users created plain-text files that included macros to

82

Chapter 3: Using the Shell

indicate formatting. To see how the document really appeared, they would use a command
such as the following:

$ gunzip < /usr/share/man/manl/grep.l.gz | nroff -c¢ -man | less

In this example, the contents of the grep man page (grep.1.gz) are directed to the
gunzip command to be unzipped. The output from gunzip is piped to the nroff com-
mand to format the man page using the manual macro (-man). The output is piped to the
less command to display the output. Because the file being displayed is in plain text, you
could have substituted any number of options to work with the text before displaying it.
You could sort the contents, change or delete some of the content, or bring in text from
other documents. The key is that, instead of all those features being in one program, you
get results from piping and redirecting input and output between multiple commands.

Sequential commands

Sometimes, you may want a sequence of commands to run, with one command completing
before the next command begins. You can do this by typing several commands on the same
command line and separating them with semicolons (;):

$ date ; troff -me verylargedocument | lpr ; date

In this example, I was formatting a huge document and wanted to know how long it would
take. The first command (date) showed the date and time before the formatting started.
The troff command formatted the document and then piped the output to the printer.
When the formatting was finished, the date and time were printed again (so I knew how
long the troff command took to complete).

Another useful command to add to the end of a long command line is mail. You could add
the following to the end of a command line.

; mail -s "Finished the long command" chris@example.com

Then, for example, a mail message is sent to the user you choose after the command
completes.

Background commands

Some commands can take a while to complete. Sometimes, you may not want to tie up your
shell waiting for a command to finish. In those cases, you can have the commands run in
the background by using the ampersand (&).

Text formatting commands (such as nroff and troff, described earlier) are examples
of commands that are often run in the background to format a large document. You also
might want to create your own shell scripts that run in the background to check con-
tinuously for certain events to occur, such as the hard disk filling up or particular users
logging in.

83

mailto:chris@example.comThen
mailto:chris@example.comThen

Part Il: Becoming a Linux Power User

84

The following is an example of a command being run in the background:

S troff -me verylargedocument | lpr &

Don't close the shell until the process is completed, or that kills the process. Other ways
to manage background and foreground processes are described in Chapter 6, “Managing
Running Processes.”

Expanding commands

With command substitution, you can have the output of a command interpreted by the
shell instead of by the command itself. In this way, you can have the standard output of a
command become an argument for another command. The two forms of command substitu-
tion are $ (command) and ~command™ (backticks, not single quotes).

The command in this case can include options, metacharacters, and arguments. The follow-
ing is an example of using command substitution:

$ vi $(find /home | grep xyzzy)

In this example, the command substitution is done before the vi command is run. First,
the find command starts at the /home directory and prints out all files and directories
below that point in the filesystem. The output is piped to the grep command, which filters
out all files except for those that include the string xyzzy in the filename. Finally, the vi
command opens all filenames for editing (one at a time) that include xyzzy. (If you run
this and are not familiar with vi, you can type :q! to exit the file.)

This particular example is useful if you want to edit a file for which you know the name but
not the location. As long as the string is uncommon, you can find and open every instance
of a filename existing beneath a point you choose in the filesystem. (In other words, don't
use grep from the root filesystem or you'll match and try to edit several thousand files.)

Expanding arithmetic expressions

Sometimes, you want to pass arithmetic results to a command. There are two forms you
can use to expand an arithmetic expression and pass it to the shell: $ [expression] or
$ (expression). The following is an example:

S echo "I am $[2015 - 1957] years old."
I am 58 years old.

The shell interprets the arithmetic expression first (2015 - 1957) and then passes that
information to the echo command. The echo command displays the text, with the results
of the arithmetic (58) inserted.

Here's an example of the other form:

S echo "There are $(ls | wc -w) files in this directory."
There are 14 files in this directory.

Chapter 3: Using the Shell

This lists the contents of the current directory (1s) and runs the word count command to
count the number of files found (wc -w). The resulting number (14, in this case) is echoed
back with the rest of the sentence shown.

Expanding variables

Variables that store information within the shell can be expanded using the dollar sign ()
metacharacter. When you expand an environment variable on a command line, the value of
the variable is printed instead of the variable name itself, as follows:

$ 1s -1 $BASH
-rwxr-xr-x 1 root root 1012808 Oct 8 08:53 /bin/bash

Using $BASH as an argument to 1s -1 causes a long listing of the bash command to
be printed.

Using Shell Variables

The shell itself stores information that may be useful to the user’s shell session in what are
called variables. Examples of variables include $SHELL (which identifies the shell you are
using), $PS1 (which defines your shell prompt), and $MAIL (which identifies the location of
your mailbox).

You can see all variables set for your current shell by typing the set command. A subset
of your local variables are referred to as environment variables. Environment variables are
variables that are exported to any new shells opened from the current shell. Type env to
see environment variables.

You can type echo $VALUE, where VALUE is replaced by the name of a particular environ-
ment variable you want to list. And because there are always multiple ways to do anything
in Linux, you can also type declare to get a list of the current environment variables and
their values along with a list of shell functions.

Besides those that you set yourself, system files set variables that store things such as
locations of configuration files, mailboxes, and path directories. They can also store values
for your shell prompts, the size of your history list, and type of operating system. You

can refer to the value of any of those variables by preceding it with a dollar sign ($) and
placing it anywhere on a command line. For example:

S echo $USER
chris

This command prints the value of the USER variable, which holds your username (chris).
Substitute any other value for USER to print its value instead.

85

Part Il: Becoming a Linux Power User

86

When you start a shell (by logging in via a virtual console or opening a Terminal window),
many environment variables are already set. Table 3.5 shows some variables that either are
set when you use a bash shell or can be set by you to use with different features.

TABLE 3.5 Common Shell Environment Variables
Variable Description
BASH

This contains the full pathname of the bash command. This is usually /bin/
bash.

BASH VERSION

This is a number representing the current version of the bash command.

EUID

This is the effective user ID number of the current user. It is assigned when
the shell starts, based on the user’s entry in the /etc/passwd file.

FCEDIT

If set, this variable indicates the text editor used by the £c command to edit
history commands. If this variable isnt set, the vi command is used.

HISTFILE

This is the location of your history file. It is typically located at $HOME/ .
bash history.

HISTFILESIZE

This is the number of history entries that can be stored. After this number is
reached, the oldest commands are discarded. The default value is 1000.

HISTCMD

This returns the number of the current command in the history list.

HOME

This is your home directory. It is your current working directory each time
you log in or type the cd command with any options.

HOSTTYPE

This is a value that describes the computer architecture on which the Linux
system is running. For Intel-compatible PCs, the value is i386, 1486, i586,
i686, or something like 1386-1inux. For AMD 64-bit machines, the value is
x86 64.

MAIL

This is the location of your mailbox file. The file is typically your username in
the /var/spool/mail directory.

OLDPWD

This is the directory that was the working directory before you changed to
the current working directory.

OSTYPE

This name identifies the current operating system. For Fedora Linux, the
OSTYPE value is either 1inux or 1inux-gnu, depending on the type of shell
you are using. (Bash can run on other operating systems as well.)

PATH

This is the colon-separated list of directories used to find commands that
you type. The default value for regular users varies for different distribu-
tions, but typically includes the following: /bin: /usr/bin: /usr/local/
bin:/usr/bin/X11:/usr/X11R6/bin:~/bin. You need to type the full
path or a relative path to a command you want to run that is not in your
PATH. For the root user, the value also includes /sbin, /usr/sbin, and
/usr/local/sbin.

PPID

This is the process ID of the command that started the current shell (for
example, the Terminal window containing the shell).

Chapter 3: Using the Shell

Variable Description
PROMPT _ This can be set to a command name that is run each time before your shell
COMMAND prompt is displayed. Setting PROMPT_COMMAND=date lists the current date/

time before the prompt appears.

PsSl This sets the value of your shell prompt. There are many items that you can
read into your prompt (date, time, username, hostname, and so on).
Sometimes a command requires additional prompts, which you can set with
the variables PS2, PS3, and so on.

PWD This is the directory that is assigned as your current directory. This value
changes each time you change directories using the cd command.

RANDOM Accessing this variable causes a random number to be generated. The
number is between 0 and 99999.

SECONDS This is the number of seconds since the time the shell was started.

SHLVL This is the number of shell levels associated with the current shell session.

When you log in to the shell, the SHLVL is 1. Each time you start a new bash
command (by, for example, using su to become a new user, or by simply
typing bash), this number is incremented.

TMOUT This can be set to a number representing the number of seconds the shell
can be idle without receiving input. After the number of seconds is
reached, the shell exits. This security feature makes it less likely for
unattended shells to be accessed by unauthorized people. (This must be
set in the login shell for it to actually cause the shell to log out the user.)

Creating and using aliases

Using the alias command, you can effectively create a shortcut to any command and
options you want to run later. You can add and list aliases with the alias command.
Consider the following examples of using alias from a bash shell:

$ alias p='pwd ; ls -CF'
$ alias rm='rm -i'

In the first example, the letter p is assigned to run the command pwd, and then to run 1s
-CF to print the current working directory and list its contents in column form. The
second example runs the rm command with the -1i option each time you type rm. (This is
an alias that is often set automatically for the root user. Instead of just removing files, you
are prompted for each individual file removal. This prevents you from automatically remov-
ing all the files in a directory by mistakenly typing something such as rm *.)

While you are in the shell, you can check which aliases are set by typing the alias com-
mand. If you want to remove an alias, type unalias. (Remember that if the alias is set
in a configuration file, it will be set again when you open another shell.)

87

Part Il: Becoming a Linux Power User

88

Exiting the shell

To exit the shell when you are finished, type exit or press Ctrl+D. If you go to the shell
from a Terminal window and you are using the original shell from that window, exiting
causes the Terminal window to close. If you are at a virtual console, the shell exits and
returns you to a login prompt.

If you have multiple shells open from the same shell session, exiting a shell simply returns
you to the shell that launched the current shell. For example, the su command opens a
shell as a new user. Exiting from that shell simply returns you to the original shell.

Creating Your Shell Environment

You can tune your shell to help you work more efficiently. You can set aliases to create
shortcuts to your favorite command lines and environment variables to store bits of infor-
mation. By adding those settings to shell configuration files, you can have the settings
available every time you open a shell.

Configuring your shell

Several configuration files support how your shell behaves. Some of the files are executed
for every user and every shell, whereas others are specific to the user who creates the con-
figuration file. Table 3.6 shows the files that are of interest to anyone using the bash shell
in Linux. (Notice the use of ~ in the filenames to indicate that the file is located in each
user’s home directory.)

TABLE 3.6 Bash Configuration Files

File Description

/etc/profile This sets up user environment information for every user. It is executed
when you first log in. This file provides values for your path, in addition
to setting environment variables for such things as the location of your
mailbox and the size of your history files. Finally, /etc/profile gathers
shell settings from configuration files in the /etc/profile.d directory.

/etc/bashrc This executes for every user who runs the bash shell, each time a bash
shell is opened. It sets the default prompt and may add one or more
aliases. Values in this file can be overridden by information in each
user’s ~/ .bashrec file.

~/.bash_profile This is used by each user to enter information that is specific to his or
her use of the shell. It is executed only once, when the user logs in. By
default, it sets a few environment variables and executes the user’s
.bashrc file. This is a good place to add environment variables
because, once set, they are inherited by future shells.

Chapter 3: Using the Shell

File Description

~/ .bashrc This contains the information that is specific to your bash shells. It is
read when you log in and also each time you open a new bash shell.
This is the best location to add aliases so that your shell picks them up.

~/ .bash_logout This executes each time you log out (exit the last bash shell). By default,
it simply clears your screen.

To change the /etc/profile or /etc/bashrc files, you must be the root user. Users can
change the information in the SHOME/ .bash profile, $HOME/.bashrc, and SHOME/ .
bash logout files in their own home directories.

Until you learn to use the vi editor, described in Chapter 5, “Working with Text Files,” you
can use a simple editor called nano to edit plain-text files. For example, type the following
to edit and add stuff to your $HOME/ .bashrc file:

$ nano $HOME/.bashrc

With the file open in nano, move the cursor down to the bottom of the file (using the down
arrow key). Type the line you want (for example, you could type alias d='date +%D').
To save the file, press Ctrl+0 (the letter 0); to quit, press Ctrl+X. The next time you log in

or open a new shell, you can use the new alias (in this case, just type d). To have the new
information you just added to the file available from the current shell, type the following:

$ source S$HOME/.bashrc

The following sections provide ideas about items to add to your shell configuration files. In
most cases, you add these values to the .bashrc file in your home directory. However, if
you administer a system, you may want to set some of these values as defaults for all your
Linux system’s users.

Setting your prompt

Your prompt consists of a set of characters that appear each time the shell is ready to
accept a command. The PS1 environment variable sets what the prompt contains and is
what you interact with most of the time. If your shell requires additional input, it uses the
values of PS2, PS3, and Ps4.

When your Linux system is installed, often a prompt is set to contain more than just a
dollar sign or pound sign. For example, in Fedora or Red Hat Enterprise Linux, your prompt
is set to include the following information: your username, your hostname, and the base
name of your current working directory. That information is surrounded by brackets and
followed by a dollar sign (for regular users) or a pound sign (for the root user). The follow-
ing is an example of that prompt:

[chris@myhost bin]$

89

Part Il: Becoming a Linux Power User

If you change directories, the bin name would change to the name of the new directory.
Likewise, if you were to log in as a different user or to a different host, that information
would change.

You can use several special characters (indicated by adding a backslash to a variety of
letters) to include different information in your prompt. Special characters can be used to
output your terminal number, the date, and the time, as well as other pieces of informa-
tion. Table 3.7 provides some examples (you can find more on the bash man page).

Tip

If you are setting your prompt temporarily by typing at the shell, you should put the value of PS1 in quotes. For example,
you could type export PS1="[\t \wl\$ " tosee aprompt that looks like this: [20:26:32 /var/spool]s$.

TABLE 3.7 Characters to Add Information to bash Prompt

Special
Character Description

\! This shows the current command history number. This includes all previous com-
mands stored for your username.

\# This shows the command number of the current command. This includes only the
commands for the active shell.

\$ This shows the user prompt ($) or root prompt (#), depending on which user you are.

\W This shows only the current working directory base name. For example, if the cur-

rent working directory was /var/spool/mail, this value simply appears as mail.

\ [This precedes a sequence of nonprinting characters. This can be used to add a
terminal control sequence into the prompt for such things as changing colors, add-
ing blink effects, or making characters bold. (Your terminal determines the exact
sequences available.)

\1 This follows a sequence of nonprinting characters.

\\ This shows a backslash.

\d This displays the day name, month, and day number of the current date—for exam-
ple, Sat Jan 23.

\h This shows the hostname of the computer running the shell.

\n This causes a newline to occur.

\nnn This shows the character that relates to the octal number replacing nnn.

\s This displays the current shell name. For the bash shell, the value would be bash.

\t This prints the current time in hours, minutes, and seconds—for example, 10:14:39.

\u This prints your current username.

\w This displays the full path to the current working directory.

90

Chapter 3: Using the Shell

To make a change to your prompt permanent, add the value of PS1 to your .bashrc file
in your home directory (assuming that you are using the bash shell). There may already be
a PS1 value in that file that you can modify. Refer to the Bash Prompt HOWTO (http://
www.t1ldp.org/HOWTO/Bash-Prompt-HOWTO) for information on changing colors, com-
mands, and other features of your bash shell prompt.

Adding environment variables

You might want to consider adding a few environment variables to your .bashrc file.
These can help make working with the shell more efficient and effective:

B TMOUT—This sets how long the shell can be inactive before bash automatically
exits. The value is the number of seconds for which the shell has not received
input. This can be a nice security feature, in case you leave your desk while you are
still logged in to Linux. To prevent being logged off while you are working, you may
want to set the value to something like TMOUT=1800 (to allow 30 minutes of idle
time). You can use any terminal session to close the current shell after a set num-
ber of seconds—for example, TMOUT=30.

B PATH—As described earlier, the PATH variable sets the directories that are
searched for commands you use. If you often use directories of commands that are
not in your path, you can permanently add them. To do this, add a PATH variable
to your .bashrc file. For example, to add a directory called /getstuff/bin, add
the following:

PATH=$PATH: /getstuff/bin ; export PATH

This example first reads all the current path directories into the new PATH ($SPATH),
adds the /getstuff/bin directory, and then exports the new PATH.

CAUTION
Some people add the current directory to their PATH by adding a directory identified simply as a dot (.) as follows:

PATH=. :SPATH ; export PATH
This enables you to run commands in your current directory before evaluating any other command in the path (which

people may be used to if they have used DOS). However, the security risk with this procedure is that you could be in a
directory that contains a command that you don’t intend to run from that directory. For example, a malicious person
could put an 1s command in a directory that, instead of listing the content of your directory, does something devi-
ous. Because of this, the practice of adding the dot to your path is highly discouraged.

B WHATEVER—You can create your own environment variables to provide shortcuts in
your work. Choose any name that is not being used and assign a useful value to it.
For example, if you do lots of work with files in the /work/time/files/info/
memos directory, you could set the following variable:

M=/work/time/files/info/memos ; export M

91

http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO
http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO

Part Il: Becoming a Linux Power User

92

You could make that your current directory by typing cd s$M. You could run a pro-
gram from that directory called hotdog by typing $M/hotdog. You could edit a file
from there called bun by typing vi $M/bun.

Getting Information about Commands

When you first start using the shell, it can be intimidating. All you see is a prompt. How do
you know which commands are available, which options they use, or how to use advanced

features? Fortunately, lots of help is available. Here are some places you can look to supple-
ment what you learn in this chapter:

® Check the PATH. Type echo $PATH. You see a list of the directories containing
commands that are immediately accessible to you. Listing the contents of those
directories displays most standard Linux commands. For example:

$ 1ls /bin
arch

awk
basename
bash

cat
chgrp
chmod
chown

cp

cpio

csh

cut

dash

date

dd

df

dmesg
dnsdomainname
domainname
echo

ed

egrep

env

ex

false
fgrep

find

findmnt

fusermount loadkeys

gawk
gettext
grep
gtar
gunzip
gzip
hostname
ipcalc
kbd_mode
keyctl
kill
link

1n

login

1s

1sblk
lscgroup
lssubsys
mail
mailx
mkdir
mknod
mktemp
more

mount

mv
nano

netstat

nice
nisdomainname
ping

pingé6

Ops

pwd

readlink

red

redhat_lsb_init

rm

mountpoint rmdir

rnano
rpm
rvi
rview
sed
setfont
setserial
sh
sleep
sort
stty
su
sync

tar

B Use the help command. Some commands are built into the shell, so they do
not appear in a directory. The help command lists those commands and shows

Chapter 3: Using the Shell

options available with each of them. (Type help | less to page through the
list.) For help with a particular built-in command, type help command, replacing
command with the name that interests you. The help command works with the
bash shell only.

B Use --help with the command. Many commands include a --help option that
you can use to get information about how the command is used. For example, if
you type date --help | less, the output shows not only options, but also time
formats you can use with the date command. Other commands simply use a -h
option, like fdisk -h.

B Use the info command. The info command is another tool for displaying infor-
mation about commands from the shell. The info command can move among a
hierarchy of nodes to find information about commands and other items. Not all
commands have information available in the info database, but sometimes more
information can be found there than on a man page.

B Use the man command. To learn more about a particular command, type man
command. (Replace command with the command name you want.) A description of
the command and its options appears on the screen.

Man pages are the most common means of getting information about commands, as well as
other basic components of a Linux system. Each man page falls into one of the categories
listed in Table 3.8. As a regular user, you will be most interested in man pages in section 1.
As a system administrator, you will also be interested in sections 5 and 8, and occasionally
section 4. Programmers will be interested in section 2 and 3 man pages.

TABLE 3.8 Manual Page Sections
Section
Number Section Name Description

1

User Commands

Commands that can be run from the shell by a regular user
(typically no administrative privilege is needed)

2 System Calls Programming functions used within an application to make calls
to the kernel
3 C Library Programming functions that provide interfaces to specific
Functions programming libraries (such as those for certain graphical
interfaces or other libraries that operate in user space)
4 Devices and Filesystem nodes that represent hardware devices (such as
Special Files terminals or CD drives) or software devices (such as random
number generators)
5 File Formats and Types of files (such as a graphics or word processing file) or

Conventions

specific configuration files (such as the passwd or group file)

Continues

93

Part Il: Becoming a Linux Power User

TABLE 3.8 (continued)

Section

Number Section Name Description

6 Games Games available on the system

7 Miscellaneous Overviews of topics such as protocols, filesystems, character

set standards, and so on

8 System Commands that require root or other administrative privileges
Administration to use
Tools and
Daemons

Options to the man command enable you to search the man page database or display man
pages on the screen. Here are some examples of man commands and options:

S man -k passwd

passwd (1) - update user's authentication tokens
passwd (5) - password file

S man passwd

S man 5 passwd

Using the -k option, you can search the name and summary sections of all man pages
installed on the system. About a dozen man pages include “passwd” in the name or
description of a command. Let’s say that the two man pages I am interested in are the
passwd command (in section 1 of the man pages) and the passwd file (in section 5) man
pages. Because just typing man passwd displays the section 1 page, I need to explicitly
request the section 5 man page if I want to see that instead (man 5 passwd).

While you are displaying a man page, you can view different parts of the file using Page
Down and Page Up keys (to move a page at a time). Use the Enter key or up and down
arrows to move a line at a time. Press the forward slash (/) and type a term to search the
document for that term. Press n to repeat the search forward or N to repeat the search
backward. To quit the man page, type q.

Summary

To become an expert Linux user, you must be able to use the shell to type commands. This
chapter focuses on the bash shell, which is the one that is most commonly used with Linux
systems. In this chapter, you learned how commands are structured and how many special
features, such as variables, command completion, and aliases are used.

The next chapter describes how to move around the Linux filesystem from the shell
command line.

94

Chapter 3: Using the Shell

Exercises

Use these exercises to test your knowledge of using the shell. These tasks assume you are
running a Fedora or Red Hat Enterprise Linux system (although some tasks work on other
Linux systems as well). If you are stuck, solutions to the tasks are shown in Appendix B
(although in Linux, there are often multiple ways to complete a task).

1. From your Desktop, switch to the second virtual console and log in to your user
account. Run a few commands. Then exit the shell, and return to the desktop.

2. Open a Terminal window, and change the font color to red and the background
to yellow.

3. Find the location of the mount command and the tracepath man page.

4. Type the following three commands, and then recall and change those commands
as described:

cat /etc/passwd
ls $HOME
date

Uy U U

B Use the command-line recall feature to recall the cat command and change /
etc/passwd to /etc/group.

B Recall the 1s command, determine how to list files by time (using the man
page), and add that option to the 1s $SHOME command line.

® Add format indicators to the date command to display the date output as
month/day/year.

5. Run the following command, typing as few characters as possible (using tab
completion):

basename /usr/share/doc/.

6. Use the cat command to list the contents of the /etc/services file and pipe
those contents to the 1less command so you can page through it (press q to quit
when you are finished).

7. Run the date command in such a way that the output from that command
produces the current day, month, date, and year. Have that read into another
command line, resulting in text that appears like the following (your date, of
course, will be different): Today is Thursday, December 10, 2015.

8. Using variables, find out what your hostname, username, shell, and home directo-
ries are currently set to.

9. Create an alias called mypass that displays the contents of the /etc/passwd file
on your screen in such a way that it is available every time you log in or open a
new shell from your user account.

10. Display the man page for the mount system call.

95

CHAPTER

Moving around the Filesystem

IN THIS CHAPTER

Learning about the Linux filesystem

Listing file and directory attributes

Making files and directories

Listing and changing permission and ownership

Making copies and moving files

In fact, one of the defining properties of the UNIX systems on which Linux is based is that
nearly everything you need to identify on your system (data, commands, symbolic links,
devices, and directories) is represented by items in the filesystems. Knowing where things are and

understanding how to get around the filesystem from the shell are critical skills in Linux.

The Linux filesystem is the structure in which all the information on your computer is stored.

In Linux, files are organized within a hierarchy of directories. Each directory can contain files, as
well as other directories. You can refer to any file or directory using either a full path (for example,
/home/joe/myfile.txt) or a relative path (for example, if /home/joe were your current
directory, you could simply refer to the file as myfile. txt).

If you were to map out the files and directories in Linux, it would look like an upside-down tree.

At the top is the root directory (not to be confused with the root user), which is represented by a
single slash (/). Below that is a set of common directories in the Linux system, such as bin, dev,
home, 1ib, and tmp, to name a few. Each of those directories, as well as directories added to the
root directory, can contain subdirectories.

Figure 4.1 illustrates how the Linux filesystem is organized as a hierarchy. To demonstrate how
directories are connected, the figure shows a /home directory that contains a subdirectory for the
user joe. Within the joe directory are the Desktop, Documents, and other subdirectories. To
refer to a file called memo1 .doc in the memos directory, you can type the full path of /home/joe/
Documents/memos /memol . doc. If your current directory is /home/joe/Documents/memos,
refer to the file as simply memo1 . doc.

97

Part Il: Becoming a Linux Power User

FIGURE 4.1

The Linux filesystem is organized as a hierarchy of directories.

boot home media mnt proc shin tmp var

joe

—— [——

Desktop Documents Downloads Music Pictures

memos plans projects

memo1.doc

Some of these Linux directories may interest you:

B /bin—Contains common Linux user commands, such as 1s, sort, date, and chmod.
B /boot—Has the bootable Linux kernel and boot loader configuration files (GRUB).

m /dev—~Contains files representing access points to devices on your systems. These
include terminal devices (tty*), floppy disks (£d*), hard disks (hd* or sd*), RAM
(ram*), and CD-ROM (cd*). Users can access these devices directly through these
device files; however, applications often hide the actual device names from end users.

B /etc—Contains administrative configuration files. Most of these files are plaintext
files that can be edited with any text editor if the user has proper permission.

B /home—~Contains directories assigned to each regular user with a login account.
(The root user is an exception, using /root as his or her home directory.)

B /media—Provides a standard location for automounting devices (removable media
in particular). If the medium has a volume name, that name is typically used as
the mount point. For example, a USB drive with a volume name of myusb would be
mounted on /media/myusb.

® /1lib—Contains shared libraries needed by applications in /bin and /sbin to
boot the system.

B /mnt—A common mount point for many devices before it was supplanted by the stan-
dard /media directory. Some bootable Linux systems still use this directory to mount
hard disk partitions and remote filesystems. Many people still use this directory to
temporarily mount local or remote filesystems that are not mounted permanently.

B /misc—A directory sometimes used to automount filesystems upon request.

m /opt—Directory structure available to store add-on application software.

98

Chapter 4: Moving around the Filesystem

/proc—Contains information about system resources.

B /root—Represents the root user’s home directory. The home directory for root
does not reside beneath /home for security reasons.

B /sbin—Contains administrative commands and daemon processes.
B /tmp—Contains temporary files used by applications.

B /usr—Contains user documentation, games, graphical files (x11), libraries (1ib),
and a variety of other commands and files that are not needed during the boot
process. The /usr directory is meant for files that don’t change after installation
(in theory, /usr could be mounted read-only).

B /var—Contains directories of data used by various applications. In particular,
this is where you would place files that you share as an FTP server (/var/ftp) or a
web server (/var/www). It also contains all system log files (/var/log) and spool
filesin /var/spool (such as mail, cups, and news). The /var directory contains
directories and files that are meant to change often. On server computers, it is
common to create the /var directory as a separate filesystem, using a filesystem
type that can be easily expanded.

The filesystems in the DOS and Microsoft Windows operating systems differ from Linux’s file
structure, as the sidebar “Linux Filesystems versus Windows-Based Filesystems” explains.

Linux Filesystems versus Windows-Based Filesystems

Although similar in many ways, the Linux filesystem has some striking differences from filesystems used
in MS-DOS and Windows operating systems. Here are a few:

B |n MS-DOS and Windows filesystems, drive letters represent different storage devices (for
example, A: is a floppy drive and C: is a hard disk). In Linux, all storage devices are connected
to the filesystem hierarchy. So the fact that all of /usr may be on a separate hard disk or that
/mnt/remotel is a filesystem from another computer is invisible to the user.

B Slashes, rather than backslashes, are used to separate directory names in Linux. So
C:\home\joe in a Microsoft system is /home/joe in a Linux system.

B Filenames almost always have suffixes in DOS (such as . txt for text files or .doc for
word-processing files). Although at times you can use that convention in Linux, three-character
suffixes have no required meaning in Linux. They can be useful for identifying a file type.
Many Linux applications and desktop environments use file suffixes to determine the contents
of afile. In Linux, however, DOS command extensions such as .com, .exe, and .bat don't
necessarily signify an executable. (Permission flags make Linux files executable.)

B Every file and directory in a Linux system has permissions and ownership associated with it.
Security varies among Microsoft systems. Because DOS and Microsoft Windows began as
single-user systems, file ownership was not built into those systems when they were designed.
Later releases added features such as file and folder attributes to address this problem.

99

Part Il: Becoming a Linux Power User

100

Using Basic Filesystem Commands

I want to introduce you to a few simple commands for getting around the filesystem to
start out. If you want to follow along, log in and open a shell. When you log in to a Linux
system and open a shell, you are placed in your home directory. In Linux, most of the files
you save and work with will probably be in that directory or subdirectories that you create.
Table 4.1 shows commands to create and use files and directories.

TABLE 41 Commands to Create and Use Files

Command Result

cd Changes to another directory

pwd Prints the name of the current (or present) working directory
mkdir Creates a directory

chmod Changes the permission on a file or directory

1s Lists the contents of a directory

One of the most basic commands you use from the shell is cd. The cd command can be used
with no options (to take you to your home directory) or with full or relative paths. Consider
the following commands:

$ c¢d /usr/share/
$ pwd
/usr/share

S ed doc
/usr/share/doc

S cd

S pwd
/home/chris

The /usr/share option represents the absolute path to a directory on the system. Because
it begins with a slash (/), this path tells the shell to start at the root of the filesystem and
take you to the share directory that exists in the usr directory. The doc option to the cd
command said to look for a directory called doc that is relative to the current directory. So
that made /usr/share/doc your current directory.

After that, by typing cd alone, you are returned to your home directory. If you ever wonder
where you are in the filesystem, the pwd command can help you. Here are a few other
interesting cd command options:

S ecd ~

$ pwd
/home/chris
$ e¢d ~/Music

Chapter 4: Moving around the Filesystem

$ pwd
/home/chris/Music
S$ed ../../../usr
$ pwd

/usr

The tilde (~) represents your home directory. So cd ~ takes you there. You can use the
tilde to refer to directories relative to your home directory as well, such as /home/chris/
Music with ~/Music. Typing a name as an option takes you to a directory below the
current directory, but you can use two dots (. .) to go to a directory above the current
directory. The example shown takes you up three directory levels (to /), and then takes
you into the /usr directory.

The following steps lead you through the process of creating directories within your home
directory and moving among your directories, with a mention of setting appropriate file
permissions:

1. Go to your home directory. To do this, simply type cd in a shell and press
Enter. (For other ways of referring to your home directory, see the “Identifying
Directories” sidebar.)

2. To make sure that you're in your home directory, type pwd. When I do this, I get
the following response (yours will reflect your home directory):

S pwd
/home/joe

3. Create a new directory called test in your home directory, as follows:
S mkdir test

4. Check the permissions of the directory:

$ 1ls -1d test
drwxr-xr-x 2 joe sales 1024 Jan 24 12:17 test

This listing shows that test is a directory (d). The d is followed by the permissions
(rwxr-xr-x), which are explained later in the “Understanding File Permissions
and Ownership” section. The rest of the information indicates the owner (joe),

the group (sales), and the date that the files in the directory were most recently
modified (Jan 24 at 12:17 p.m.).

NoTE
In Fedora and Red Hat Enterprise Linux, when you add a new user, the user is assigned to a group of the same name

by default. For example, in the preceding text, the user joe would be assigned to the group joe. This approach to
assigning groups is referred to as the user private group scheme.

For now, type the following:
$ chmod 700 test

101

Part Il: Becoming a Linux Power User

102

This step changes the permissions of the directory to give you complete access and
everyone else no access at all. (The new permissions should read rwx------)

5. Make the test directory your current directory as follows:

$ cd test
$ pwd
/home/joe/test

If you followed along, at this point a subdirectory of your home directory called test is
your current working directory. You can create files and directories in the test directory
along with the descriptions in the rest of this chapter.

Using Metacharacters and Operators

Whether you are listing, moving, copying, removing, or otherwise acting on files in your
Linux system, certain special characters, referred to as metacharacters and operators, help
you to work with files more efficiently. Metacharacters can help you match one or more files
without completely typing each file name. Operators enable you to direct information from
one command or file to another command or file.

Using file-matching metacharacters

To save you some keystrokes and to enable you to refer easily to a group of files, the bash
shell lets you use metacharacters. Any time you need to refer to a file or directory, such
as to list it, open it, or remove it, you can use metacharacters to match the files you want.
Here are some useful metacharacters for matching filenames:

m *—Matches any number of characters.
m ?—Matches any one character.

B [...]—Matches any one of the characters between the brackets, which can
include a hyphen-separated range of letters or numbers.

Try out some of these file-matching metacharacters by first going to an empty directory (such
as the test directory described in the previous section) and creating some empty files:

$ touch apple banana grape grapefruit watermelon

The touch command creates empty files. The commands that follow show you how to use
shell metacharacters with the 1s command to match filenames. Try the following com-
mands to see whether you get the same responses:

S 1ls a*

apple

$ 1s g*

grape grapefruit
S 1ls g*t
grapefruit

Chapter 4: Moving around the Filesystem

S 1ls *e*

apple grape grapefruit watermelon
$ 1ls *n*

banana watermelon

The first example matches any file that begins with a (apple). The next example matches
any files that begin with g (grape, grapefruit). Next, files beginning with g and ending
in t are matched (grapefruit). Next, any file that contains e in the name is matched
(apple, grape, grapefruit, watermelon). Finally, any file that contains n is matched
(banana, watermelon).

Here are a few examples of pattern matching with the question mark (?):

$ 1ls ??2?%e
apple grape
S ls g???e*
grape grapefruit

The first example matches any five-character file that ends in e (apple, grape). The second
matches any file that begins with g and has e as its fifth character (grape, grapefruit).

The following examples use braces to do pattern matching:

S 1ls [abw]*

apple banana watermelon
$ 1s [agw] * [ne]

apple grape watermelon

In the first example, any file beginning with a, b, or w is matched. In the second, any
file that begins with a, g, or w and also ends with either n or e is matched. You can also
include ranges within brackets. For example:

$ 1ls [a-gl*
apple banana grape grapefruit

Here, any filenames beginning with a letter from a through g are matched.

Using file-redirection metacharacters

Commands receive data from standard input and send it to standard output. Using pipes
(described earlier), you can direct standard output from one command to the standard
input of another. With files, you can use less than (<) and greater than (>) signs to direct
data to and from files. Here are the file-redirection characters:

B <—Directs the contents of a file to the command. In most cases, this is the default
action expected by the command and the use of the character is optional; using
less bigfile isthe same as less < bigfile.

B >—Directs the standard output of a command to a file. If the file exists, the
content of that file is overwritten.

103

Part Il: Becoming a Linux Power User

B 2>—Directs standard error (error messages) to the file.
B &>—Directs both standard output and standard error to the file.

>>—Directs the output of a command to a file, adding the output to the end of the
existing file.

The following are some examples of command lines where information is directed to and
from files:

$ mail root < ~/.bashrc
$ man chmod | col -b > /tmp/chmod
$ echo "I finished the project on $(date)" >> ~/projects

In the first example, the content of the .bashrc file in the home directory is sent in a
mail message to the computer’s root user. The second command line formats the chmod man
page (using the man command), removes extra back spaces (col -b), and sends the output
to the file /tmp/chmod (erasing the previous /tmp/chmod file, if it exists). The final com-
mand results in the following text being added to the user’s project file:

I finished the project on Sat Sep 6 13:46:49 EDT 2015

Another type of redirection, referred to as here text (also called a here document), enables
you to type text that can be used as standard input for a command. Here documents
involve entering two less-than characters (<<) after a command, followed by a word. All
typing following that word is taken as user input until the word is repeated on a line by
itself. Here is an example:

$ mail root cnegus rjones bdecker <<thetext

> I want to tell everyone that there will be a 10 a.m.
> meeting in conference room B. Everyone should attend.
>

> -- James

> thetext

$

This example sends a mail message to root, cnegus, rjones, and bdecker usernames. The text
entered between <<thetext and thetext becomes the content of the message. A common
use of here text is to use it with a text editor to create or add to a file from within a script:

/bin/ed /etc/resolv.conf <<resendit
a
nameserver 100.100.100.100

w

g
resendit

With these lines added to a script run by the root user, the ed text editor adds the IP
address of a DNS server to the /etc/resolv.conf file.

104

Chapter 4: Moving around the Filesystem

Using brace expansion characters

By using curly braces ({ }), you can expand out a set of characters across filenames,
directory names, or other arguments you give commands. For example, if you want to
create a set of files such as memo1l through memo5, you can do that as follows:

$ touch memo{1,2,3,4,5}
S 1s
memol memo2 memo3 memo4 memob5

The items that are expanded don't have to be numbers or even single digits. For example,
you could use ranges of numbers or digits. You could also use any string of characters, as
long as you separate them with commas. Here are some examples:

$ touch {John,Bill,Sally}-{Breakfast,Lunch,Dinner}

S 1s

Bill-Breakfast Bill-Lunch John-Dinner Sally-Breakfast Sally-Lunch
Bill-Dinner John-Breakfast John-Lunch Sally-Dinner

$ rm -f {John,Bill, Sally}-{Breakfast,Lunch,Dinner}

$ touch {a..f£}{1..5}

S 1ls

al a3 a5 b2 b4 ¢l c3 ¢c5 d2 d4 el e3 e5 f2 f4

a2 a4 bl b3 b5 c2 c4 dl d3 d5 e2 e4 f1 £3 f5

In the first example, the use of two sets of braces means John, Bill, and Sally each have
filenames associated with Breakfast, Lunch, and Dinner. If I had made a mistake, I could
easily recall the command and change touch to rm -f to delete all the files. In the next
example, the use of two dots between letters a and £ and numbers 1 and 5 specifies the
ranges to be used. Notice the files that were created from those few characters.

Listing Files and Directories

The 1s command is the most common command used to list information about files
and directories. Many options available with the 1s command allow you to gather
different sets of files and directories, as well as to view different kinds of information
about them.

By default, when you type the 1s command, the output shows you all non-hidden files and
directories contained in the current directory. When you type 1s, however, many Linux
systems (including Fedora and RHEL) assign an alias 1s to add options. To see if 1s is
aliased, type the following:

S alias ls
alias ls='ls --color=auto'

The --color=auto option causes different types of files and directories to be displayed
in different colors. So, returning to the $SHOME/test directory created earlier in the

105

Part Il: Becoming a Linux Power User

106

chapter, add a couple of different types of files, and then see what they look like with
the 1s command.

cd $HOME/test

touch scriptx.sh apple

chmod 755 scriptx.sh

mkdir Stuff

In -s apple pointer to apple

1s

apple pointer to apple scriptx.sh Stuff

Ur Ur Ur Ur Ur U

Although you can't see it in the preceding code example, the directory docs shows up in
blue, pointer to apple (a symbolic link) appears as aqua, and scriptx.sh (which is
an executable file) appears in green. All other reqular files show up in black. Typing 1s -1
to see a long listing of those files can make these different types of files clearer still:

$ 1ls -1

total 4

-ITW-rw-Ir--. joe joe 0 Dec 18 13:38 apple

1rWXTWXTWX . joe joe 5 Dec 18 13:46 pointer to apple -> apple

-TWXY-Xr-X.
AdrwxXrwxr-x.

joe joe 0 Dec 18 13:37 scriptx.sh
joe joe 4096 Dec 18 13:38 Stuff

N R R

As you look at the long listing, notice that the first character of each line shows the

type of file. A hyphen (-) indicates a reqular file, d indicates a directory, and 1 (lowercase
L) indicates a symbolic link. An executable file (a script or binary file that runs as a
command) has execute bits turned on (x). See more on execute bits in the upcoming
“Understanding File Permissions and Ownership” section.

You should become familiar with the contents of your home directory next. Use the -1 and
-a options to 1s.

$ 1s -la /home/joe

total 158

drwxrwxrwx 2 joe sales 4096 May 12 13:55

drwxr-xr-x 3 root root 4096 May 10 01:49 ..

-rW------- 1 joe sales 2204 May 18 21:30 .bash history
-rw-r--r-- 1 joe sales 24 May 10 01:50 .bash logout
-rw-r--r-- 1 joe sales 230 May 10 01:50 .bash profile
-rw-r--r-- 1 joe sales 124 May 10 01:50 .bashrc
drw-r--r-- 1 joe sales 4096 May 10 01:50 .kde
-rw-rw-r-- 1 joe sales 149872 May 11 22:49 letter

col 1 col 2 col 3 col 4 col 5 col 6 col 7

Displaying a long list (-1 option) of the contents of your home directory shows you more
about file sizes and directories. The total line shows the total amount of disk space used
by the files in the list (158 kilobytes in this example). Directories such as the current
directory (.) and the parent directory (. .)—the directory above the current directory—are

Chapter 4: Moving around the Filesystem

noted as directories by the letter d at the beginning of each entry. Each directory begins
with a d and each file begins with a dash (-).

The file and directory names are shown in column 7. In this example, a dot (.) represents /
home/joe and two dots (. .) represent /home—the parent directory of /joe. Most of the
files in this example are dot (.) files that are used to store GUI properties (.kde directory)
or shell properties (.bash files). The only non-dot file in this list is the one named letter.
Column 3 shows the directory or file owner. The /home directory is owned by root, and
everything else is owned by the user joe, who belongs to the sales group (groups are listed
in column 4).

In addition to the d or -, column 1 on each line contains the permissions set for that file
or directory. Other information in the listing includes the number of hard links to the item
(column 2), the size of each file in bytes (column 5), and the date and time each file was
most recently modified (column 6).

Here are a few other facts about file and directory listings:

B The number of characters shown for a directory (4096 bytes in these examples)
reflects the size of the file containing information about the directory. Although
this number can grow above 4096 bytes for a directory that contains lots of files,
this number doesn't reflect the size of files contained in that directory.

B The format of the time and date column can vary. Instead of displaying “May 12,”
the date might be displayed as “2011-05-12,” depending upon the distribution and
the language setting (LANG variable).

B On occasion, instead of seeing the execute bit (x) set on an executable file, you
may see an s in that spot instead. With an s appearing within either the owner
(-rwsr-xr-x) or group (-rwxr-sr-x) permissions, or both (-rwsr-sr-x),
the application can be run by any user, but ownership of the running process is
assigned to the application’s user/group instead of that of the user launching the
command. This is referred to as a set UID or set GID program, respectively. For
example, the mount command has permissions set as -rwsr-xr-x. This allows any
user to run mount to list mounted filesystems (although you still have to be root to
use mount to actually mount filesystems from the command line, in most cases).

m If a t appears at the end of a directory, it indicates that the sticky bit is set for that
directory (for example, drwxrwxr-t). By setting the sticky bit on a directory, the
directory’s owner can allow other users and groups to add files to the directory,
but prevent users from deleting each other’s files in that directory. With a set GID
assigned to a directory, any files created in that directory are assigned the same
group as the directory’s group. (If you see a capital S or T instead of the execute
bits on a directory, it means that the set GID or stick bit permission, respectively,
was set, but for some reason the execute bit was not also turned on.)

m If you see a plus sign at the end of the permission bits (for example, -rw-rw-
r--+), it means that extended attributes, such as Access Control Lists (ACLs) or
SELinux, are set on the file.

107

Part Il: Becoming a Linux Power User

Identifying Directories

When you need to identify your home directory on a shell command line, you can use the following:

B $HOME—This environment variable stores your home directory name.
B -—The tilde (~) represents your home directory on the command line.

You can also use the tilde to identify someone else’s home directory. For example, ~joe
would be expanded to the joe home directory (probably /home/joe) . So, if | wanted to go
to the directory /home/joe/test, | could type cd ~joe/test to get there.

Other special ways of identifying directories in the shell include the following:

B _—Asingle dot (.) refers to the current directory.
B . —Two dots (. .) refer to a directory directly above the current directory.
B $PWD—T his environment variable refers to the current working directory.

B SOLDPWD—This environment variable refers to the previous working directory before
you changed to the current one. (Typing cd - returns you to the directory represented
by SOLDPWD.)

As I mentioned earlier, there are many useful options for the 1s command. Return
to the $HOME/test directory you've been working in. Here are some examples of 1s
options. Don’t worry if the output doesn’t exactly match what is in your directory at
this point.

Any file or directory beginning with a dot (.) is considered a hidden file and is not
displayed by default with 1s. These dot files are typically configuration files or directories
that need to be in your home directory, but don’t need to be seen in your daily work. The
-a lets you see those files.

The -t option displays files in the order in which they were most recently modified. With
the -F option, a backslash (/) appears at the end of directory names, an asterisk (*) is
added to executable files, and an at sign (@) is shown next to symbolic links.

To show hidden and non-hidden files:

$ 1s -a
. apple docs grapefruit pointer to apple .stuff watermelon
. banana grape .hiddendir script.sh .tmpfile

To list all files by time most recently modified:
$ ls -at

.tmpfile .hiddendir .. docs watermelon banana script.sh
.stuff pointer to_apple grapefruit apple grape

108

Chapter 4: Moving around the Filesystem

To list files and append file-type indicators:

S 1ls -F
apple banana docs/ grape grapefruit pointer to apple@ script.sh*
watermelon

To avoid displaying certain files or directories when you use 1s, use the - -hide= option.
In the next set of examples, any file beginning with g does not appear in the output. Using
a -d option on a directory shows information about that directory instead of showing

the files and directories the directory contains. The -R option lists all files in the current
directory as well as any files or directories that are associated with the original directory.
The -S option lists files by size.

To not include any files beginning with the letter g in the list:

$ ls --hide=g*
apple banana docs pointer to apple script.sh watermelon

To list info about a directory instead of the files it contains:

$ 1ls -1d $HOME/test/
drwxrwxr-x. 4 joe joe 4096 Dec 18 22:00 /home/joe/test/

To create multiple directory layers (-p is needed):

$ mkdir -p $HOME/test/documents/memos/

To list all files and directories recursively from current directory down:

S 1ls -R

To list files by size:

$ 1s -8

Understanding File Permissions
and Ownership

After you've worked with Linux for a while, you are almost sure to get a Permission
denied message. Permissions associated with files and directories in Linux were designed
to keep users from accessing other users’ private files and to protect important system files.

The nine bits assigned to each file for permissions define the access that you and others
have to your file. Permission bits for a reqular file appear as - rwxrwxrwx. Those bits are
used to define who can read, write, or execute the file.

109

Part Il: Becoming a Linux Power User

NoTE
For a regular file, a dash appears in front of the nine-bit permissions indicator. Instead of a dash, you might see

a d (for a directory), 1 (for a symbolic link), b (for a block device), c (for a character device), s (for a socket), or p
(for a named pipe).

0f the nine-bit permissions, the first three bits apply to the owner’s permission, the next
three apply to the group assigned to the file, and the last three apply to all others. The r
stands for read, the w stands for write, and the x stands for execute permissions. If a dash
appears instead of the letter, it means that permission is turned off for that associated
read, write, or execute bit.

Because files and directories are different types of elements, read, write, and execute
permissions on files and directories mean different things. Table 4.2 explains what you can
do with each of them.

TABLE 4.2 Setting Read, Write, and Execute Permissions

Permission File Directory

Read View what's in the file. See what files and subdirectories it contains.

Write Change the file's Add files or subdirectories to the directory. Remove files
content, rename it, or or directories from the directory.
delete it.

Execute Run the file as a Change to the directory as the current directory, search
program. through the directory, or execute a program from the

directory. Access file metadata (file size, time stamps, and
so on) of files in that directory.

As noted earlier, you can see the permission for any file or directory by typing the 1s -1d
command. The named file or directory appears as those shown in this example:

$ 1s -1d ch3 test
-rw-rw-r-- 1 joe sales 4983 Jan 18 22:13 ch3
drwxr-xr-x 2 joe sales 1024 Jan 24 13:47 test

The first line shows that the ch3 file has read and write permission for the owner and the
group. All other users have read permission, which means they can view the file but cannot
change its contents or remove it. The second line shows the test directory (indicated by
the letter d before the permission bits). The owner has read, write, and execute permissions
while the group and other users have only read and execute permissions. As a result, the
owner can add, change, or delete files in that directory, and everyone else can only read
the contents, change to that directory, and list the contents of the directory. (If you had
not used the -d options to 1s, you would have listed files in the test directory instead of
permissions of that directory.)

110

Chapter 4: Moving around the Filesystem

Changing permissions with chmod (numbers)

If you own a file, you can use the chmod command to change the permission on it as you
please. In one method of doing this, each permission (read, write, and execute) is assigned
a number—r=4, w=2, and x=1—and you use each set’s total number to establish the
permission. For example, to make permissions wide open for yourself as owner, you would
set the first number to 7 (4+2+1), and then you would give the group and others read-only
permission by setting both the second and third numbers to 4 (4+0+0), so that the final
number is 744. Any combination of permissions can result from 0 (no permission) through
7 (full permission).

Here are some examples of how to change permission on a file (named file) and what the
resulting permission would be:

The following chmod command results in this permission: rwxrwxrwx
chmod 777 file

The following chmod command results in this permission: rwxr-xr-x
chmod 755 file

The following chmod command results in this permission: rw-r--r--
chmod 644 file rw-r--r-

The following chmod command results in this permission: ---------
chmod 000 file

The chmod command also can be used recursively. For example, suppose you wanted to give
an entire directory structure 755 permission (rwxr-xr-x), starting at the SHOME /myapps
directory. To do that, you could use the -R option, as follows:

$ chmod -R 755 $HOME/myapps

All files and directories below, and including, the myapps directory in your home directory
will have 755 permissions set. Because the numbers approach to setting permission changes
all permission bits at once, it’s more common to use letters to recursively change permission
bits over a large set of files.

Changing permissions with chmod (letters)

You can also turn file permissions on and off using plus (+) and minus (-) signs,
respectively, along with letters to indicate what changes and for whom. Using letters, for
each file you can change permission for the user (u), group (g), other (o), and all users (a).
What you would change includes the read (r), write (w), and execute (x) bits. For example,
start with a file that has all permissions open (rwxrwxrwx). Run the following chmod
commands using minus sign options. The resulting permissions are shown to the right of
each command:

111

Part Il: Becoming a Linux Power User

112

The following chmod command results in this permission: r-xr-xr-x

S chmod a-w file

The following chmod command results in this permission: rwxrwxrw-

$ chmod o-x file

The following chmod command results in this permission: rwx------

$ chmod go-rwx file
Likewise, the following examples start with all permissions closed (---------). The plus
sign is used with chmod to turn permissions on:

The following chmod command results in this permission: rw-------

S chmod u+rw files

The following chmod command results in this permission: - -x--x--x

S chmod a+x files

The following chmod command results in this permission: r-xr-x---

$ chmod ug+rx files

Using letters to change permission recursively with chmod generally works better than
using numbers because you can change bits selectively, instead of changing all permission
bits at once. For example, suppose that you want to remove write permission for “other”
without changing any other permission bits on a set of files and directories. You could do
the following:

$ chmod -R o-w $HOME/myapps

This example recursively removes write permissions for “other” on any files and directories
below the myapps directory. If you had used numbers such as 644, execute permission
would be turned off for directories; using 755, execute permission would be turned on for
regular files. Using o-w, only one bit is turned off and all other bits are left alone.

Setting default file permission with umask

When you create a file as a regular user, it’s given permission rw-rw-r-- by default. A
directory is given the permission rwxrwxr-x. For the root user, file and directory permission
are rw-r--r-- and rwxr-xr-x, respectively. These default values are determined by the
value of umask. Type umask to see what your umask value is. For example:

$ umask
0002

Chapter 4: Moving around the Filesystem

If you ignore the leading zero for the moment, the umask value masks what is considered
to be fully opened permissions for a file 666 or a directory 777. The umask value of 002
results in permission for a directory of 775 (rwxrwxr-x). That same umask results in a file
permission of 644 (rw-rw-r--). (Execute permissions are off by default for reqular files.)

To temporarily change your umask value, run the umask command. Then try creating
some files and directories to see how the umask value affects how permissions are set.
For example:

S umask 777 ; touch file0l ; mkdir dir0l ; 1ls -1d fileOl dir01l
d--------- . 2 joe joe 6 Dec 19 11:03 dir01l

—————————— . 1 joe joe 0 Dec 19 11:02 fileOl

$ umask 000 ; touch file02 ; mkdir dir02 ; 1ls -1d file02 dir02
drwxrwxrwx. 2 joe joe 6 Dec 19 11:00 dir02/

-rw-rw-rw-. 1 joe joe 0 Dec 19 10:59 file02

$ umask 022 ; touch file03 ; mkdir dir03 ; 1ls -1d file03 dir03
drwxr-xr-x. 2 joe joe 6 Dec 19 11:07 dir03

-rw-r--r--. 1 joe joe 0 Dec 19 11:07 file03

If you want to permanently change your umask value, add a umask command to the
.bashrec file in your home directory (near the end of that file). The next time you open a
shell, your umask is set to whatever value you chose.

Changing file ownership

As a reqular user, you cannot change ownership of files or directories to have them belong
to another user. You can change ownership as the root user. For example, suppose you
created a file called memo. txt, while you were root user, in the user joe's home directory.
Here’s how you could change it to be owned by joe:

chown joe /home/joe/memo.txt
1ls -1 /home/joe/memo.txt
-rw-r--r--. 1 joe root 0 Dec 19 11:23 /home/joe/memo.txt

Notice that the chown command changed the user to joe but left the group as root. To
change both user and group to joe, you could type the following instead:

chown joe:joe /home/joe/memo.txt
ls -1 /home/joe/memo.txt
-rw-r--r--. 1 joe joe 0 Dec 19 11:23 /home/joe/memo.txt

The chown command can be use recursively as well. Using the recursive option (-R) is
helpful if you need to change a whole directory structure to ownership by a particular
user. For example, if you inserted a USB drive, which is mounted on the /media/myusb
directory, and wanted to give full ownership of the contents of that drive to the user joe,
you could type the following:

chown -R joe:joe /media/myusb

113

Part Il: Becoming a Linux Power User

114

Moving, Copying, and Removing Files

Commands for moving, copying, and deleting files are fairly straightforward. To change the
location of a file, use the mv command. To copy a file from one location to another, use the
cp command. To remove a file, use the rm command. These commands can be used to act on
individual files and directories or recursively to act on many files and directories at once.
Here are some examples:

S mv abc def
$ mv abc ~
$ mv /home/joe/mymemos/ /home/joe/Documents/

The first mv command moves the file abc to the file def in the same directory (essentially
renaming it), whereas the second moves the file abc to your home directory (~). The

next command moves the mymemos directory (and all its contents) to the /home/joe/
Documents directory.

By default, the mv command overwrites any existing files if the file you are moving to
exists. However, many Linux systems alias the mv command so that it uses the -i option
(which causes mv to prompt you before overwriting existing files). Here’s how to check if
that is true on your system:

$ alias mv
alias mv="mv -i'

Here are some examples of using the cp command to copy files from one location to another:

cp abc def

cp abc ~

cp -r /usr/share/doc/bash-completion* /tmp/a/
cp -ra /usr/share/doc/bash-completion* /tmp/b/

Ur Ur Ur Ur

The first copy command (cp) copies abc to the new name def in the same directory,
whereas the second copies abc to your home directory (~), keeping the name abc. The two
recursive (-r) copies copy the bash-completion directory, and all files it contains, first to
new /tmp/a/ and /tmp/b/ directories. If you run 1s -1 on those two directories, you
see that for the cp command run with the archive (-a) option, the date/time stamps and
permissions are maintained by the copy. Without the -a, current date/time stamps are
used and permissions are determined by your unmask.

The cp command typically also is aliased with the -1 option, to prevent you from inadver-
tently overwriting files.

As with the cp and mv commands, rm is also usually aliased to include the -1 option. This
can prevent the damage that can come from an inadvertent recursive remove (-r) option.
Here are some examples of the rm command:

$ rm abc
S rm *

Chapter 4: Moving around the Filesystem

The first remove command deletes the abc file; the second removes all the files in the
current directory (except that it doesn't remove directories or any files that start with a
dot). If you want to remove a directory, you need to use the recursive (-r) option to rm or,
for an empty directory, you can use the rmdir command. Consider the following examples:

$ rmdir /home/joe/nothing/
$ rm -r /home/joe/bigdir/
$ rm -rf /home/joe/hugedir/

The rmdir command in the preceding code only removes the directory (nothing) if it is

empty. The rm -r example removes the directory bigdir and all its contents (files and
multiple levels of subdirectories) but prompts you before each is removed. By adding the
force option (-£), the hugedir directory and all its contents are immediately removed,

without prompting.

CAUTION

When you override the -1 option on the mv, cp, and rm commands, you risk removing some (or lots of) files by
mistake. Using wildcards (such as *) and no -i makes mistakes even more likely. That said, sometimes you don’t
want to be bothered to step through each file you delete. You have other options:

B As noted with the - £ option, you can force rm to delete without prompting. An alternative is to run rm, cp,
or mv with a backslash in front of it (\rm bigdir). The backslash causes any command to run unaliased.

B Another alternative with mv is to use the -b option. With -b, if a file of the same name exists at the destina-
tion, a backup copy of the old file is made before the new file is moved there.

Summary

Commands for moving around the filesystem, copying files, moving files, and removing

files are among the most basic commands you need to work from the shell. This chapter
covers lots of commands for moving around and manipulating files, as well as commands for
changing ownership and permission.

The next chapter describes commands for editing and searching for files. These commands
include the vim/vi text editors, the find command and the grep command.

Exercises

Use these exercises to test your knowledge of efficient ways to move around the filesystem
and work with files and directories. When possible, try to use shortcuts to type as little as

possible to get the desired results. These tasks assume you are running a Fedora or Red Hat
Enterprise Linux system (although some tasks work on other Linux systems as well).

115

Part Il: Becoming a Linux Power User

116

If you are stuck, solutions to the tasks are shown in Appendix B (although in Linux, there
are often multiple ways to complete a task).

1.

Create a directory in your home directory called projects. In the projects
directory, create nine empty files that are named housel, house2, house3, and
so on to house9. Assuming there are lots of other files in that directory, come up
with a single arqument to 1s that would list just those nine files.

Make the SHOME/projects/houses/doors/ directory path. Create the following
empty files within this directory path (try using absolute and relative paths from
your home directory):

SHOME/projects/houses/bungalow. txt

SHOME /projects/houses/doors/bifold. txt

SHOME /projects/outdoors/vegetation/landscape. txt

3. Copy the files housel and house5 to the $SHOME/projects/houses/ directory.

© ® N

10.

Recursively copy the /usr/share/doc/initscripts* directory to the $SHOME/
projects/ directory. Maintain the current date/time stamps and permissions.

Recursively list the contents of the $SHOME /projects/ directory. Pipe the output
to the less command so you can page through the output.

Remove the files house6, house7, and house8 without being prompted.
Move house3 and house4 to the SHOME/projects/houses/doors directory.
Remove the $HOME/projects/houses/doors directory and its contents.

Change the permissions on the SHOME/projects/house?2 file so it can be read
and written by the user who owns the file, only read by the group, and have no
permission for others.

Recursively change permissions of the $SHOME /projects/ directory so nobody has
write permission to any files or directory beneath that point in the filesystem.

CHAPTER

Working with Text Files

IN THIS CHAPTER

Using vim and v1i to edit text files
Searching for files

Searching in files

on the system in plain-text files. Thus, it was critical for users to know how to use tools for

W hen the UNIX system, on which Linux was based, was created, most information was managed
searching for and within plain-text files and to be able to change and configure those files.

Today, most configurations of Linux systems can still be done by editing plain-text files. Even
when a graphical tool is available for working with a configuration file, the graphical tool rarely
provides a way to do everything you might want to do in that file. As a result, you may find a need
to use a text editor to configure a file manually. Likewise, some document file types, such as HTML
and XML, are also plain-text files that can be edited manually.

Before you can become a full-fledged system administrator, you need to be able to use a plain-text
editor. The fact that most professional Linux servers don't even have a graphical interface available
makes the need for editing of plain-text configuration files with a non-graphical text editor necessary.

After you know how to edit text files, you still might find it tough to figure out where the files

are located that you need to edit. With commands such as £ind, you can search for files based on
various attributes (filename, size, modification date, and ownership, to name a few). With the grep
command, you can search inside text files to find specific search terms.

Editing Files with vim and vi

It's almost impossible to use Linux for any period of time and not need a text editor because, as
noted earlier, most Linux configuration files are plain-text files that you will almost certainly need
to change manually at some point.

If you are using a GNOME desktop, you can run gedit (type gedit into the Search box and press
Enter, or select Applications=> Accessories> gedit), which is fairly intuitive for editing text.

117

Part Il: Becoming a Linux Power User

You can also run a simple text editor called nano from the shell. However, most Linux shell
users use either the vi or emacs command to edit text files.

The advantage of vi or emacs over a graphical editor is that you can use the command
from any shell, character terminal, or character-based connection over a network (using
telnet or ssh, for example)—no graphical interface is required. They also each contain
tons of features, so you can continue to grow with them.

This section provides a brief tutorial on the vi text editor, which you can use to manually
edit a text file from any shell. It also describes the improved versions of vi called vim. (If
vi doesn’t suit you, see the sidebar “Exploring Other Text Editors” for other options.)

The vi editor is difficult to learn at first, but after you know it, you never have to use a
mouse or a function key—you can edit and move around quickly and efficiently within files
just by using the keyboard.

Exploring Other Text Editors

Dozens of text editors are available for use with Linux. Some alternatives might be in your Linux
distribution. You can try them out if you find vi to be too taxing. Here are some of the options:

B nano—This popular, streamlined text editor is used with many bootable Linux systems and
other limited-space Linux environments. For example, nano is available to edit text files
during a Gentoo Linux install process.

B gedit—The GNOME text editor runs on the desktop.

B jed—This screen-oriented editor was made for programmers. Using colors, jed can highlight
code you create so you can easily read the code and spot syntax errors. Use the Alt key to
select menus to manipulate your text.

B joe—The joe editor is similar to many PC text editors. Use control and arrow keys to move
around. Press Ctrl+C to exit with no save or Ctrl+X to save and exit.

B kate—This nice-looking editor comes in the kdebase package. It has lots of bells and
whistles, such as highlighting for different types of programming languages and controls
for managing word wrap.

B kedit—This GUl-based text editor comes with the KDE desktop.

B ncedit—In this editor, function keys help you get around, save, copy, move, and delete text.
Like jed and joe, mcedit is screen-oriented. It comes in the mc package in RHEL and Fedora.

B nedit—This is an excellent programmer’s editor. You need to install the optional nedit
package to get this editor.

If you use ssh to log in to other Linux computers on your network, you can use any available text
editor to edit files. If you use ssh -X to connect to the remote system, a GUl-based editor pops
up on your local screen. When no GUI is available, you need a text editor that runs in the shell,
such as vi, jed, or joe.

118

Chapter 5: Working with Text Files

Starting with vi

Most often, you start vi to open a particular file. For example, to open a file called
/tmp/test, type the following command:

$ vi /tmp/test

If this is a new file, you should see something similar to the following:

"/tmp/test" [New File]

A blinking box at the top represents where your cursor is. The bottom line keeps you
informed about what is going on with your editing (here, you just opened a new file). In
between, there are tildes (~) as filler because there is no text in the file yet. Now, here’s
the intimidating part: There are no hints, menus, or icons to tell you what to do. To make
it worse, you can't just start typing. If you do, the computer is likely to beep at you. (And
some people complain that Linux isn't friendly.)

First, you need to know the two main operating modes: command and input. The vi editor
always starts in command mode. Before you can add or change text in the file, you have to type
a command (one or two letters, sometime preceded by an optional number) to tell vi what you
want to do. Case is important, so use uppercase and lowercase exactly as shown in the examples!

NoTE
On Red Hat Enterprise Linux, Fedora, and other Linux distributions, for regular users the vi command is aliased
to run vim. If you type alias wvi, you should see alias vi='vim'. The first obvious difference between vi

and vim is that any known text file type, such as HTML, C code, or a common configuration file, appears in color.
The colors indicate the structure of the file. Other features of vim that are not in vi include features such as visual
highlighting and split-screen mode. By default, the root user doesn’t have vi aliased to vim.

Adding text

To get into input mode, type an input command letter. To begin, type any of the following
letters. When you are finished inputting text, press the Esc key (sometimes twice) to return
to command mode. Remember the Esc key!

B a—The add command. With this command, you can input text that starts to the
right of the cursor.

B A—The add at end command. With this command, you can input text starting at
the end of the current line.

119

Part Il: Becoming a Linux Power User

Tip

i—The insert command. With this command, you can input text that starts to the
left of the cursor.

I—The insert at beginning command. With this command, you can input text that
starts at the beginning of the current line.

o—The open below command. This command opens a line below the current line
and puts you in insert mode.

0—The open above command. This command opens a line above the current line
and puts you in insert mode.

When you are in insert mode, -- INSERT -- appears at the bottom of the screen.

Type a few words, and press Enter. Repeat that a few times until you have a few lines of
text. When you're finished typing, press Esc to return to command mode. Now that you
have a file with some text in it, try moving around in your text with the keys or letters
described in the next section.

Tip

Remember the Esc key! It always places you back into command mode. Remember that sometimes you must press Esc
twice. For example, if you type a colon (:) to go into ex mode, you must press Esc twice to return to command mode.

Moving around in the text

To move around in the text, you can use the up, down, right, and left arrows. However,
many of the keys for moving around are right under your fingertips when they are in
typing position:

Arrow keys—Move the cursor up, down, left, or right in the file one character
at a time. To move left and right, you can also use Backspace and the spacebar,
respectively. If you prefer to keep your fingers on the keyboard, move the cursor
with h (left), 1 (right), j (down), or k (up).

w—Moves the cursor to the beginning of the next word (delimited by spaces, tabs,
or punctuation).

W—Moves the cursor to the beginning of the next word (delimited by spaces or tabs).

m b—Moves the cursor to the beginning of the previous word (delimited by spaces,

tabs, or punctuation).

B—Moves the cursor to the beginning of the previous word (delimited by spaces
or tabs).

B 0 (zero)—Moves the cursor to the beginning of the current line.

120

$—Moves the cursor to the end of the current line.

Chapter 5: Working with Text Files

B H—Moves the cursor to the upper-left corner of the screen (first line on the screen).
B M—Moves the cursor to the first character of the middle line on the screen.

m L—Moves the cursor to the lower-left corner of the screen (last line on the screen).

Deleting, copying, and changing text
The only other editing you need to know is how to delete, copy, or change text. The %, 4,

v, and ¢ commands can be used to delete and change text. These can be used along with
movement keys (arrows, PgUp, PgDn, letters, and special keys) and numbers to indicate
exactly what you are deleting, copying, or changing. Consider the following examples:
x—Deletes the character under the cursor.
X—Deletes the character directly before the cursor.

u
]

B d<?>—Deletes some text.
B c<?>—Changes some text.
]

y<?>—Yanks (copies) some text.

The <?> after each letter in the preceding list identifies the place where you can use a
movement command to choose what you are deleting, changing, or yanking. For example:

B dw—Deletes (d) a word (w) after the current cursor position.

B db—Deletes (d) a word (b) before the current cursor position.

B dd—Deletes (d) the entire current line (d).

m c$—Changes (c) the characters (actually erases them) from the current character
to the end of the current line ($) and goes into input mode.

B c0—Changes (c) (again, erases characters) from the previous character to the
beginning of the current line (0) and goes into input mode.

B cl—Erases (c) the current letter (1) and goes into input mode.

B cc—Erases (c) the line (c¢) and goes into input mode.

m yy—Copies (y) the current line (y) into the buffer.

B y)—Copies (y) the current sentence ()), to the right of the cursor, into the buffer.

m y}—Copies (y) the current paragraph (}), to the right of the cursor, into the buffer.

Any of the commands just shown can be further modified using numbers, as you can see in
the following examples:

m 3dd—Deletes (d) three (3) lines (d), beginning at the current line.

B 3dw—Deletes (d) the next three (3) words (w).

B 5cl—Changes (c) the next five (5) letters (1) (that is, removes the letters and
enters input mode).

121

Part Il: Becoming a Linux Power User

Tip

If you've really trashed the file by mistake, the :q! command is the best way to exit and abandon your changes. The

B 125—DMoves down (j) 12 lines (12).
B 5cw—Erases (c) the next five (5) words (w) and goes into input mode.

B 4y)—Copies (y) the next four (4) sentences ()).

Pasting (putting) text

After text has been copied to the buffer (by deleting, changing, or yanking it), you can
place that text back in your file using the letter p or P. With both commands, the text most
recently stored in the buffer is put into the file in different ways.

B pP—Puts the copied text to the left of the cursor if the text consists of letters or
words; puts the copied text above the current line if the copied text contains
lines of text.

m p—Puts the buffered text to the right of the cursor if the text consists of letters or
words; puts the buffered text below the current line if the buffered text contains

lines of text.

Repeating commands

After you delete, change, or paste text, you can repeat that action by typing a period (.).
For example, with the cursor on the beginning of the name Joe, you type cw and type Jim
to change Joe to Jim. You search for the next occurrence of Joe in the file, position the
cursor at the beginning of that name, and press a period. The word changes to Jim, and
you can search for the next occurrence. You can go through a file this way, pressing n to go
to the next occurrence and period (.) to change the word.

Exiting vi
To wrap things up, use the following commands to save or quit the file:
m zZ—Saves the current changes to the file and exits from vi.
m :w—Saves the current file but doesn't exit from vi.
B :wg—Works the same as zZ.
B :g—Quits the current file. This works only if you don't have any unsaved changes.

B :q!—Quits the current file and doesn't save the changes you just made to the file.

file reverts to the most recently changed version. So, if you just saved with : w, you are stuck with the changes up
to that point. However, despite having saved the file, you can type u to back out of changes (all the way back to the
beginning of the editing session if you like) and then save again.

122

Chapter 5: Working with Text Files

You have learned a few vi editing commands. I describe more commands in the following
sections. First, however, consider the following tips to smooth out your first trials with vi:

B Esc—Remember that Esc gets you back to command mode. (I've watched people
press every key on the keyboard trying to get out of a file.) Esc followed by zZZ gets
you out of command mode, saves the file, and exits.

B u—Press u to undo the previous change you made. Continue to press u to undo the
change before that and the one before that.

m Ctrl+R—If you decide you didn't want to undo the previous undo command, use
Ctrl+R for Redo. Essentially, this command undoes your undo.

m Caps Lock—Beware of hitting Caps Lock by mistake. Everything you type in vi has
a different meaning when the letters are capitalized. You don't get a warning that
you are typing capitals; things just start acting weird.

B :!command—You can run a shell command while you are in vi using : ! followed
by a shell command name. For example, type : !date to see the current date
and time, type : !pwd to see what your current directory is, or type : !jobs to
see whether you have any jobs running in the background. When the command
completes, press Enter and you are back to editing the file. You could even use
this technique to launch a shell (: !bash) from vi, run a few commands from
that shell, and then type exit to return to vi. (I recommend doing a save before
escaping to the shell, just in case you forget to go back to vi.)

B Ctrl+G—If you forget what you are editing, pressing these keys displays the name
of the file that you are editing and the current line that you are on at the bottom
of the screen. It also displays the total number of lines in the file, the percentage
of how far you are through the file, and the column number the cursor is on. This
just helps you get your bearings after you've stopped for a cup of coffee at 3 a.m.

Skipping around in the file

Besides the few movement commands described earlier, there are other ways of moving
around a vi file. To try these out, open a large file that you can't do much damage to.
(Try copying /etc/services to /tmp and opening it in vi.) Here are some movement
commands you can use:

Ctrl+f—Pages ahead, one page at a time.

Ctrl+b—Pages back, one page at a time.

Ctrl+d—Pages ahead one-half page at a time.

Ctrl+u—Pages back one-half page at a time.

G—Goes to the last line of the file.

1G—Goes to the first line of the file.

35G—Goes to any line number (35, in this case).

123

Part Il: Becoming a Linux Power User

Searching for text

To search for the next or previous occurrence of text in the file, use either the slash (/) or
the question mark (?) character. Follow the slash or question mark with a pattern (string of
text) to search forward or backward, respectively, for that pattern. Within the search, you
can also use metacharacters. Here are some examples:

B /hello—Searches forward for the word hello.
B ?goodbye—Searches backward for the word goodbye.

B /The.*foot—Searches forward for a line that has the word The in it and also,
after that at some point, the word foot.

B ? [pP]lrint—Searches backward for either print or Print. Remember that case
matters in Linux, so make use of brackets to search for words that could have
different capitalization.

After you have entered a search term, simply type n or N to search again in the same
direction (n) or the opposite direction (N) for the term.

Using ex mode

The vi editor was originally based on the ex editor, which didn't let you work in full-screen
mode. However, it did enable you to run commands that let you find and change text on
one or more lines at a time. When you type a colon and the cursor goes to the bottom of
the screen, you are essentially in ex mode. The following are examples of some of those ex
commands for searching for and changing text. (I chose the words Local and Remote to
search for, but you can use any appropriate words.)

B :g/Local—Searches for the word Local, and prints every occurrence of that line
from the file. (If there is more than a screenful, the output is piped to the more
command.)

B :s/Local/Remote—Substitutes Remote for the first occurrence of the word
Local on the current line.

B :g/Local/s//Remote—Substitutes the first occurrence of the word Local on
every line of the file with the word Remote.

B :g/Local/s//Remote/g—Substitutes every occurrence of the word Local with
the word Remote in the entire file.

B :g/Local/s//Remote/gp—Substitutes every occurrence of the word Local with
the word Remote in the entire file, and then prints each line so you can see the
changes (piping it through less if output fills more than one page).

Learning more about vi and vim

To learn more about the vi editor, try typing vimtutor. The vimtutor command opens a
tutorial in the vim editor that steps you through common commands and features you can
use in vim.

124

Chapter 5: Working with Text Files

Finding Files

Even a basic Linux installation can have thousands of files installed on it. To help you find
files on your system, you can use commands such as locate (to find commands by name),
find (to find files based on lots of different attributes), and grep (to search within text
files to find lines in files that contain search text).

Using locate to find files by name

On most Linux systems (Fedora and RHEL included), the updatedb command runs once per
day to gather the names of files throughout your Linux system into a database. By running
the locate command, you can search that database to find the location of files stored in
that database.

Here are a few things you should know about searching for files using the locate
command:

B There are advantages and disadvantages to using locate to find filenames instead
of the find command. A locate command finds files faster because it searches
a database instead of having to search the whole filesystem live. A disadvantage
is that the locate command cannot find any files added to the system since the
previous time the database was created. Not every file in your filesystem is stored
in the database. The contents of the /etc/updatedb.conf file limit which file-
names are collected by pruning out select mount types, filesystem types, file types,
and mount points. For example, filenames are not gathered from remotely mounted
filesystems (cifs, nfs, and so on) or locally mounted CDs or DVDs (1s09660).
Paths containing temporary files (/tmp) and spool files (/var/spool/cups) are
also pruned. You can add items to prune (or remove some items that you don’t want
pruned) the locate database to your needs. In RHEL 7, the updatedb. conf file
contains the following:

PRUNE_BIND MOUNTS = "yes"

PRUNEFS = "9p afs anon inodefs auto autofs bdev binfmt misc cgroup
cifs coda configfs cpuset debugfs devpts ecryptfs exofs fuse fuse.
sshfs fusectl gfs gfs2 hugetlbfs inotifyfs iso9660 jffs2 lustre
mqueue ncpfs nfs nfs4 nfsd pipefs proc ramfs rootfs rpc pipefs
securityfs selinuxfs sfs sockfs sysfs tmpfs ubifs udf usbfs"

PRUNENAMES = ".git .hg .svn"

PRUNEPATHS = "/afs /media /mnt /net /sfs /tmp /udev /var/cache/
ccache /var/lib/yum/yumdb /var/spool/cups /var/spool/squid /
var/tmp"

B As aregular user, you can't see any files from the locate database that you can't
see in the filesystem normally. For example, if you can't type 1s to view files in
the /root directory, you can't locate files stored in that directory.

125

Part Il: Becoming a Linux Power User

126

B When you search for a string, the string can appear anywhere in a file's path.
For example, if you search for passwd, you could turn up /etc/passwd,
/usr/bin/passwd, /home/chris/passwd/pwdfiles.txt, and many other
files with passwd in the path.

m If you add files to your system after updatedb runs, you can't locate those
files until updatedb runs again (probably that night). To get the database to
contain all files up to the current moment, you can simply run updatedb from
the shell as root.

Here are some examples of using the locate command to search for files:

S locate .bashrc
/etc/skel/ .bashrc
/home/cnegus/ .bashrc
locate .bashrc
/etc/skel/ .bashrc
/home/bill/.bashrc
/home/joe/ .bashrc
/root/.bashrc

When run as a regular user, locate only finds .bashrc in /etc/skel and the user’s
own home directory. Run as root, the same command locates .bashrc files in everyone’s
home directory.

S locate muttrc
/usr/share/doc/mutt-1.5.20/sample.muttrc

S locate -i muttrc

/etc/Muttre

/etc/Muttrc.local
/usr/share/doc/mutt-1.5.20/sample.muttrc

Using locate -1, filenames are found regardless of case. In the previous example,
Muttrc and Muttrc.local were found with -i whereas they weren’t found without
that option.

S locate services
/etc/services
/usr/share/services/bmp.kmgio
/usr/share/services/data.kmgio

Unlike the find command, which uses the -name option to find filenames, the locate
command locates the string you enter if it exists in any part of the file’s path. For example,
if you search for services using the locate command, you find files and directories that
contain the “services” string of text.

Chapter 5: Working with Text Files

Searching for files with find

The find command is the best command for searching your filesystem for files, based on
a variety of attributes. After files are found, you can act on those files as well (using the
-exec or -okay options) by running any commands you want on them.

When you run find, it searches your filesystem live, which causes it to run slower than
locate, but gives you an up-to-the-moment view of the files on your Linux system.
However, you can also tell £ind to start at a particular point in the filesystem, so the
search can go faster by limiting the area of the filesystem being searched.

Nearly any file attribute you can think of can be used as a search option. You can search
for filenames, ownership, permission, size, modification times, and other attributes. You
can even use combinations of attributes. Here are some basic examples of using the
find command:

$ find

$ find /etc

find /etc

$ find $HOME -1ls

Run on a line by itself, the find command finds all files and directories below the current
directory. If you want to search from a particular point in the directory tree, just add the
name of the directory you want to search (such as /etc). If you run £ind as a regular
user, you do not have special permission to find files that are readable only by the root
user. So £ind produces a bunch of error messages. If you run £ind as the root user, £ind
/etc finds all files under /etc.

A special option to the find command is -1s. A long listing (ownership, permission, size,
and so on) is printed with each file when you add -1s to the find command (similar to
output of the 1s -1 command). This option helps you in later examples when you want to
verify that you have found files that contain the ownership, size, modification times, or
other attributes you are trying to find.

NoTE
If, as a regular user, you are searching an area of the filesystem where you don’t have full permission to access all
files it contains (such as the /etc directory), you might receive lots of error messages when you search with £ind.

To get rid of those messages, direct standard errors to /dev/null. To do that, add the following to the end of the
command line: 2> /dev/null. The 2> redirects standard error (STDERR) to the next option (in this case /dev/
null, where the output is discarded).

Finding files by name
To find files by name, you can use the -name and - iname options. The search is done by
base name of the file; the directory names are not searched by default. To make the search

127

Part Il: Becoming a Linux Power User

128

more flexible, you can use file-matching characters, such as asterisks (*) and question
marks (?), as in the following examples:

find /etc -name passwd
/etc/pam.d/passwd
/etc/passwd

find /etc -iname '*passwd*'
/etc/pam.d/passwd
/etc/passwd-

/etc/passwd.OLD

/etc/passwd

/etc/MYPASSWD
/etc/security/opasswd

Using the -name option and no asterisks, the first example above lists any files in the
/etc directory that are named passwd exactly. By using - iname instead, you can match
any combination of upper and lower case. Using asterisks, you can match any filename that
includes the word passwd.

Finding files by size

If your disk is filling up and you want to find out where your biggest files are, you can
search your system by file size. The -size option enables you to search for files that
are exactly, smaller than, or larger than a selected size, as you can see in the following
examples:

$ find /usr/share/ -size +10M

$ find /mostlybig -size -1M

$ find /bigdata -size +500M -size -5G -exec du -sh {} \;
4.1G /bigdata/images/rhel6.img

606M /bigdata/Fedora-16-i686-Live-Desktop.iso

560M /bigdata/dance2.avi

The first example in the preceding code finds files larger than 10MB. The second finds files
less than 1MB. In the third example, I'm searching for ISO images and video files that are
between 500MB and 5GB. This includes an example of the -exec option (which I describe
later) to run the du command on each file to see its size.

Finding files by user

You can search for a particular owner (-user) or group (-group) when you try to find files.
By using -not and -or, you can refine your search for files associated with specific users
and groups, as you can see in the following examples:

Chapter 5: Working with Text Files

$ find /home -user chris -1ls

131077 4 -rw-Yr--rv-- 1 chris chris 379 Jun 29 2014 ./.bashrc
find /home -user chris -or -user joe -1ls

131077 4 -Yw-r--r-- 1 chris chris 379 Jun 29 2014 ./.bashrc
181022 4 -rw-r--r-- 1 joe joe 379 Jun 15 2014 ./.bashrc
find /etc -group ntp -1ls

131438 4 drwxrwsr-x 3 root ntp 4096 Mar 9 22:16 /etc/ntp
find /var/spool -not -user root -1ls

262100 0 -rw-rw---- 1 rpc mail 0 Jan 27 2014 /var/spool/mail/rpc
278504 0 -rw-rw---- 1 joe mail 0 Apr 3 2014 /var/spool/mail/joe
261230 0 -rw-rw---- 1 bill mail 0 Dec 18 2014 /var/spool/mail/bill
277373 0 -rw-rw---- 1 chris mail 0 Mar 15 2014 /var/spool/mail/chris

The first example outputs a long listing of all files under the /home directory that are
owned by the user chris. The next lists files owned by chris or joe. The £ind command
of /etc turns up all files that have ntp as their primary group assignment. The last
example shows all files under /var/spool that are not owned by root. You can see files
owned by other users in the sample output.

Finding files by permission

Searching for files by permission is an excellent way to turn up security issues on your
system or uncover access issues. Just as you changed permissions on files using numbers
or letters (with the chmod command), you can likewise find files based on number or
letter permissions along with the -perm options. (Refer to Chapter 4, “Moving around the
Filesystem,” to see how to use numbers and letters with chmod to reflect file permissions.)

If you use numbers for permission, as I do below, remember that the three numbers represent
permissions for the user, group, and other. Each of those three numbers varies from no
permission (0) to full read/write/execute permission (7), by adding read (4), write (2), and
execute (1) bits together. With a hyphen (-) in front of the number, all three of the bits
indicated must match; with a plus (+) in front of it, any of the numbers can match for the
search to find a file. The full, exact numbers must match if neither a hyphen or plus is used.

Consider the following examples:

$ find /bin -perm 755 -ls
788884 28 -rwxr-xr-x 1 root root 28176 Mar 10 2014 /bin/echo

$ find /home/chris/ -perm -222 -type d -ls
144503 4 drwxrwxrwx 8 chris chris 4096 June 23 2014 /home/chris

By searching for -perm 755, any files or directories with exactly rwxr-xr-x
permission are matched. By using -perm -222, only files that have write permission for

129

Part Il: Becoming a Linux Power User

130

user, group, and other are matched. Notice that, in this case, the -type dis added to
match only directories.

$ find /myreadonly -perm +222 -type £
685035 0 -rw-rw-r-- 1 chris chris 0 Dec 30 2014 /tmp/write/abc

$ find . -perm -002 -type f -ls
266230 0 -rw-rw-rw- 1 chris chris 0 Dec 20 2014 ./LINUX BIBLE/a

Using -perm +222, you can find any file (-type £) that has write permission turned on
for the user, group, or other. You might do that to make sure that all files are read-only in
a particular part of the filesystem (in this case, beneath the /myreadonly directory). The
last example, -perm +002, is very useful for finding files that have open write permission
for “other,” regardless of how the other permission bits are set.

Finding files by date and time

Date and time stamps are stored for each file when it is created, when it is accessed, when
its content is modified, or when its metadata is changed. Metadata includes owner, group,
time stamp, file size, permissions, and other information stored in the file’s inode. You
might want to search for file data or metadata changes for any of the following reasons:

B You just changed the contents of a configuration file, and you can't remember
which one. So you search /etc to see what has changed in the past 10 minutes:

$ find /etc/ -mmin -10

B You suspect that someone hacked your system three days ago. So you search the
system to see if any commands have had their ownership or permissions changed in
the past three days:

$ find /bin /usr/bin /sbin /usr/sbin -ctime -3

B You want to find files in your FTP server (/var/ftp) and web server (/var/www)
that have not been accessed in more than 300 days, so you can see if any need to
be deleted:

$ find /var/ftp /var/www -atime +300

As you can glean from the examples, you can search for content or metadata changes over a

certain number of days or minutes. The time options (-atime, -ctime, and -mtime) enable
you to search based on the number of days since each file was accessed, was changed, or had
its metadata changed. The min options (-amin, -cmin, and -mmin) do the same in minutes.

Numbers that you give as arguments to the min and time options are preceded by a
hyphen (to indicate a time from the current time to that number of minutes or days ago) or
a plus (to indicate time from the number of minutes or days ago and older). With no hyphen
or plus, the exact number is matched.

Chapter 5: Working with Text Files

Using ‘not’ and ‘or’ when finding files

With the -not and -or options, you can further refine your searches. There may be times
when you want to find files owned by a particular user, but not assigned to a particular
group. You may want files larger than a certain size, but smaller than another size. Or you
might want to find files owned by any of several users. The -not and -or options can help
you do that. Consider the following examples:

B There is a shared directory called /var/all. This command line enables you to
find files that are owned by either joe or chris.

$ find /var/all \(-user joe -o -user chris \) -1ls

679967 0 -rw-r--r-- 1 chris chris 0 Dec 31 2014 /var/all/cn
679977 0 -rw-r--r-- 1 joe joe 4379 Dec 31 2014 /var/all/jj
679972 0 -rw-r--r-- 1 joe sales 0 Dec 31 2014 /var/all/js

B This command line searches for files owned by the user joe, but only those that
are not assigned to the group joe:

$ find /var/all/ -user joe -not -group joe -1ls
679972 0 -rw-r--r-- 1 joe sales 0 Dec 31 2014 /var/all/js

B You can also add multiple requirements on your searches. Here, a file must be
owned by the user joe and must also be more than 1MB in size:

$ find /var/all/ -user joe -and -size +1M -ls
679977 0 -rw-r--r-- 1 joe joe 4379 Dec 31 2014 /var/all/jj

Finding files and executing commands

One of the most powerful features of the find command is the capability to execute
commands on any files you find. With the -exec option, the command you use is executed
on every file found, without stopping to ask if that’s okay. The -ok option stops at each
matched file and asks whether you want to run the command on it.

The advantage of using -ok is that, if you are doing something destructive, you can make
sure that you okay each file individually before the command is run on it. The syntax for
using -exec and -ok is the same:

$ find [options] -exec command {} \;
$ find [options] -ok command {} \;:

With -exec or -0k, you run £ind with any options you like to find the files you are
looking for. Then enter the -exec or -ok option, followed by the command you want
to run on each file. The set of curly braces indicates where on the command line to read
in each file that is found. Each file can be included in the command line multiple times,

131

Part Il: Becoming a Linux Power User

132

if you like. To end the line, you need to add a backslash and semicolon (\ ;). Here are
some examples:

® This command finds any file named iptables under the /etc directory and

includes that name in the output of an echo command:

$ find /etc -iname iptables -exec echo "I found {}" \;
I found /etc/bash completion.d/iptables
I found /etc/sysconfig/iptables

This command finds every file under the /usr/share directory that is more than
5MB in size. Then it lists the size of each file with the du command. The output
of £ind is then sorted by size, from largest to smallest. With -exec entered, all
entries found are processed, without prompting:

$ find /usr/share -size +5M -exec du {} \; | sort -nr
116932 /usr/share/icons/HighContrast/icon-theme.cache
69048 /usr/share/icons/gnome/icon-theme.cache
20564 /usr/share/fonts/cjkuni-uming/uming.ttc

The -ok option enables you to choose, one at a time, whether each file found is
acted upon by the command you enter. For example, you want to find all files that
belong to joe in the /var/allusers directory (and its subdirectories) and move
them to the /tmp/joe directory:

find /var/allusers/ -user joe -ok mv {} /tmp/joe/ \;
<mv ... /var/allusers/dict.dat > ? y
<mv ... /var/allusers/five > ? y

Notice in the preceding code that you are prompted for each file that is found before it is
moved to the /tmp/joe directory. You would simply type y and press Enter at each line to
move the file, or just press Enter to skip it.

For more information on the find command, type man £ind.

Searching in files with grep

If you want to search for files that contain a certain search term, you can use the grep
command. With grep, you can search a single file or search a whole directory structure of
files recursively.

When you search, you can have every line containing the term printed on your screen
(standard output) or just list the names of the files that contain the search term. By
default, grep searches text in a case-sensitive way, although you can do case-insensitive
searches as well.

Instead of just searching files, you can also use grep to search standard output. So, if a
command turns out lots of text and you want to find only lines that contain certain text,
you can use grep to filter just want you want.

Here are some examples of grep command lines, used to find text strings in one or more files:

Chapter 5: Working with Text Files

$ grep desktop /etc/services
desktop-dna 2763/tcp # Desktop DNA
desktop-dna 2763/udp # Desktop DNA

$ grep -i desktop /etc/services

sco-dtmgr 617/tcp # SCO Desktop Administration Server
sco-dtmgr 617/udp # SCO Desktop Administration Server
airsync 2175/tcp # Microsoft Desktop AirSync Protocol

In the first example, a grep for the word desktop in the /etc/services file turned up
two lines. Searching again, using the -i to be case-insensitive (as in the second example),
there were 29 lines of text produced.

To search for lines that don't contain a selected text string, use the -v option. In the
following example, all lines from the /etc/services file are displayed except those
containing the text tcp (case-insensitive):

$ grep -vi tcp /etc/services

To do recursive searches, use the -r option and a directory as an argument. The following
example includes the -1 option, which just lists files that include the search text, without
showing the actual lines of text. That search turns up files that contain the text peerdns
(case-insensitive).

$ grep -rli peerdns /usr/share/doc/
/usr/share/doc/dnsmasg-2.66/setup.html
/usr/share/doc/initscripts-9.49.17/sysconfig.txt

The next example recursively searches the /etc/sysconfig directory for the term root.
It lists every line in every file beneath the directory that contains that text. To make it
easier to have the term root stand out on each line, the --color option is added. By
default, the matched term appears in red.

$ grep -ri --color root /etc/sysconfig/

To search the output of a command for a term, you can pipe the output to the grep
command. In this example, I know that IP addresses are listed on output lines from the ip
command that include the string inet. So, I use grep to just display those lines:

$ ip addr show | grep inet
inet 127.0.0.1/8 scope host lo
inet 192.168.1.231/24 brd 192.168.1.255 scope global wlan0

133

Part Il: Becoming a Linux Power User

134

Summary

Being able to work with plain-text files is a critical skill for using Linux. Because so

many configuration files and document files are in plain-text format, you need to become
proficient with a text editor to effectively use Linux. Finding filenames and content in files
are also critical skills. In this chapter, you learned to use the locate and £ind commands
for finding files and grep for searching files.

The next chapter covers a variety of ways to work with processes. There, you learn how
to see what processes are running, run processes in the foreground and background, and
change processes (send signals).

Exercises

Use these exercises to test your knowledge of using the vi (or vim) text editor, commands
for finding files (locate and £ind), and commands for searching files (grep). These tasks
assume you are running a Fedora or Red Hat Enterprise Linux system (although some tasks
work on other Linux systems as well). If you are stuck, solutions to the tasks are shown in
Appendix B (although in Linux, there are often multiple ways to complete a task).

1. Copy the /etc/services file to the /tmp directory. Open the /tmp/services
file in vim, and search for the term WorldwideWeb. Change that to read World
Wide Web.

2. Find the following paragraph in your /tmp/services file (if it is not there, choose
a different paragraph) , and move it to the end of that file.

Note that it is presently the policy of IANA to assign a single
well-known

port number for both TCP and UDP; hence, most entries here have two
entries

even if the protocol doesn't support UDP operations.

Updated from RFC 1700, "Assigned Numbers" (October 1994). Not all
ports

are included, only the more common ones.

3. Using ex mode, search for every occurrence of the term tcp (case-sensitive) in
your /tmp/services file and change it to WHATEVER.

4. As areqular user, search the /etc directory for every file named passwd. Redirect
error messages from your search to /dev/null.

5. Create a directory in your home directory called TEST. Create files in that directory
named one, two, and three that have full read/write/execute permissions on for
everyone (user, group, and other). Construct a £ind command to find those files
and any other files that have write permission open to “others” from your home
directory and below.

Chapter 5: Working with Text Files

10.

. Find files under the /usr/share/doc directory that have not been modified in

more than 300 days.

. Create a /tmp/FILES directory. Find all files under the /usr/share directory

that are more than 5MB and less than 10MB and copy them to the /tmp/FILES
directory.

. Find every file in the /tmp/FILES directory, and make a backup copy of each file

in the same directory. Use each file's existing name, and just append .mybackup to
create each backup file.

. Install the kernel-doc package in Fedora or Red Hat Enterprise Linux. Using

grep, search inside the files contained in the /usr/share/doc/kernel-doc*
directory for the term 1000 (case-insensitive) and list the names of the files that
contain that term.

Search for the e1000 term again in the same location, but this time list every line
that contains the term and highlight the term in color.

135

CHAPTER

Managing Running Processes

IN THIS CHAPTER

Displaying processes
Running processes in the foreground and background

Killing and renicing processes

Multitasking means that many programs can be running at the same time. An instance of a
running program is referred to as a process. Linux provides tools for listing running processes,
monitoring system usage, and stopping (or killing) processes when necessary.

I n addition to being a multiuser operating system, Linux is also a multitasking system.

From a shell, you can launch processes, and then pause, stop, or kill them. You can also put them
in the background and bring them to the foreground. This chapter describes tools such as ps, top,
kill, jobs, and other commands for listing and managing processes.

Understanding Processes

A process is a running instance of a command. For example, there may be one vi command on the
system. But if vi is currently being run by 15 different users, that command is represented by 15
different running processes.

A process is identified on the system by what is referred to as a process ID. That process ID is unique for
the current system. In other words, no other process can use that number as its process ID while that
first process is still running. However, after a process is ended, another process can reuse that number.

Along with a process ID number, other attributes are associated with a process. Each process,
when it is run, is associated with a particular user account and group account. That account
information helps determine what system resources the process can access. For example,
processes run as the root user have much more access to system files and resources than a process
running as a regular user.

The ability to manage processes on your system is critical for a Linux system administrator.
Sometimes, runaway processes may be killing your system’s performance. Finding and dealing with
processes, based on attributes such as memory and CPU usage, are covered in this chapter.

137

Part Il: Becoming a Linux Power User

NoTE

Commands that display information about running processes get most of that information from raw data stored in

the /proc file system. Each process stores its information in a subdirectory of /proc, named after the process
ID of that process. You can view some of that raw data by displaying the contents of files in one of those directories
(using cat or 1ess commands).

NoTE

Listing Processes

From the command line, the ps command is the oldest and most common command for listing
processes currently running on your system. The top command provides a more screen-oriented
approach to listing processes and can also be used to change the status of processes. If you are
using the GNOME desktop, you can use gnome-system-monitor to provide a graphical means
of working with processes. These commands are described in the following sections.

Listing processes with ps

The most common utility for checking running processes is the ps command. Use it to see
which programs are running, the resources they are using, and who is running them. The
following is an example of the ps command:

$ psu

USER PID %CPU $MEM VSZ RSS TTY STAT START TIME COMMAND
jake 2147 0.0 0.7 1836 1020 ttyl S+ 14:50 0:00 -bash
jake 2310 0.0 0.7 2592 912 ttyl R+ 18:22 0:00 ps u

In this example, the u option asks that usernames be shown, as well as other information
such as the time the process started and memory and CPU usage for processes associated
with the current user. The processes shown are associated with the current terminal
(ttyl). The concept of a terminal comes from the old days, when people worked exclusively
from character terminals, so a terminal typically represented a single person at a single
screen. Now, you can have many “terminals” on one screen by opening multiple virtual
terminals or Terminal windows on the desktop.

In this shell session, not much is happening. The first process shows that the user named
jake opened a bash shell after logging in. The next process shows that jake has run the
ps u command. The terminal device tty1 is being used for the login session. The STAT
column represents the state of the process, with R indicating a currently running process
and S representing a sleeping process.

Several other values can appear under the STAT column. For example, a plus sign (+) indicates that the process is
associated with the foreground operations.

138

Chapter 6: Managing Running Processes

The USER column shows the name of the user who started the process. Each process is
represented by a unique ID number referred to as a process ID (PID). You can use the PID

if you ever need to kill a runaway process or send another kind of signal to a process. The
$CPU and $MEM columns show the percentages of the processor and random access memory,
respectively, that the process is consuming.

VSZ (virtual set size) shows the size of the image process (in kilobytes), and RSS (resident
set size) shows the size of the program in memory. The VSZ and RSS sizes may be
different because VSZ is the amount of memory allocated for the process, whereas RSS

is the amount that is actually being used. RSS memory represents physical memory that
cannot be swapped.

START shows the time the process began running, and TIME shows the cumulative
system time used. (Many commands consume very little CPU time, as reflected by 0:00 for
processes that haven't even used a whole second of CPU time.)

Many processes running on a computer are not associated with a terminal. A normal Linux
system has many processes running in the background. Background system processes
perform such tasks as logging system activity or listening for data coming in from the
network. They are often started when Linux boots up and run continuously until the
system shuts down. Likewise, logging into a Linux desktop causes many background
processes to kick off, such as processes for managing audio, desktop panels, authentication,
and other desktop features.

To page through all the processes running on your Linux system for the current user, add
the pipe (|) and the less command to ps ux:

$ ps ux | less

To page through all processes running for all users on your system, use the ps aux
command as follows:

$ ps aux | less

A pipe (located above the backslash character on the keyboard) enables you to direct the
output of one command to be the input of the next command. In this example, the output
of the ps command (a list of processes) is directed to the 1less command, which enables
you to page through that information. Use the spacebar to page through and type g to end
the list. You can also use the arrow keys to move one line at a time through the output.

The ps command can be customized to display selected columns of information and to
sort information by one of those columns. Using the -o option, you can use keywords to
indicate the columns you want to list with ps. For example, the next example lists every
running process (-e) and then follows the -o option with every column of information I
want to display, including:

139

Part Il: Becoming a Linux Power User

140

The process ID (pid), username (user), user ID (uid), group name (group), group ID
(gid), virtual memory allocated (vsz), resident memory used (rss), and the full command
line that was run (comm). By default, output is sorted by process ID number.

$ ps -eo pid,user,uid,group,gid,vsz,rss,comm | less

PID USER GROUP GID VSZ RSS COMMAND
1 root root 0 19324 1320 init
2 root root 0 0 0 kthreadd

If you want to sort by a specific column, you can use the sort= option. For example, to see
which processes are using the most memory, I sort by the rss field. That sorts from lowest
memory use to highest. Because I want to see the highest ones first, I put a hyphen in front
of that option to sort (sort=-rss).

$ ps -eo pid,user,group,gid,vsz,rss,comm --sort=-rss | less
PID USER GROUP GID VSZ RSS COMMAND
12005 cnegus cnegus 13597 1271008 522192 firefox
5412 cnegus cnegus 13597 949584 157268 thunderbird-bin
25870 cnegus cnegus 13597 1332492 112952 swriter.bin

Refer to the ps man page for information on other columns of information you can display
and sort by.

Listing and changing processes with top

The top command provides a screen-oriented means of displaying processes running on
your system. With top, the default is to display processes based on how much CPU time
they are currently consuming. However, you can sort by other columns as well. After you
identify a misbehaving process, you can also use top to kill (completely end) or renice
(reprioritize) that process.

If you want to be able to kill or renice processes, you need to run top as the root user. If
you just want to display processes, and possibly kill or change your own processes, you can
do that as a regular user. Figure 6.1 shows an example of the top window:

General information about your system appears at the top of the top output, followed by
information about each running process (or at least as many as will fit on your screen). At
the top, you can see how long the system has been up, how many users are currently logged
in to the system, and how much demand there has been on the system for the past 1, 5,
and 10 minutes.

Other general information includes how many processes (tasks) are currently running,
how much CPU is being used, and how much RAM and swap are available and being used.
Following the general information are listings of each process, sorted by what percent of
the CPU is being used by each process. All this information is redisplayed every 5 seconds,
by default.

Chapter 6: Managing Running Processes

FIGURE 6.1

Displaying running processes with top.

System uptime Average system load
Running
tasks \top - 07:53:13 up 11:37, 2 users, load average: 1.21, 1.17, 1.12
Tasks: 277 total, 1 running, 276 sleeping, 0 stopped, 0 zombie
Cpu(s): 11.0%us, 2.1%sy, 0.0%ni, 86.5%id, 0.4%wa, 0.0%hi, 0.0%si, 0.0%st
RAM Mem: 3716196k total, 2159508k used, 1556688k free, 227916k buffers
Swap: 4194296k total, 0k used, 4194296k free, 784696k cached
Swap/
space PID USER PR NI VIRT RES SHR S 3CPU 3IMEM TIME+ COMMAND
3472 cnegus 20 0 1053m 418m 29%m D 27.5 11.5 20:40.89 firefox
3665 cnegus 20 0 172m 62m 13m S 15.9 1.7 104:04.93 npviewer.bin
2577 cnegus 20 0 174m 26m 13m 5 4.3 0.7 3:42.17 Xorg
Allocated Memory actually ~ Sort by Sort by
memory in use CPU use memory use

The following list includes actions you can do with top to display information in different
ways and modify running processes:

W Press h to see help options, and then press any key to return to the top display.

B Press M to sort by memory usage instead of CPU, and then press P to return to
sorting by CPU.

B Press the number 1 to toggle showing CPU usage of all your CPUs, if you have more
than one CPU on your system.

B Press R to reverse sort your output.

B Press u and enter a username to display processes only for a particular user.

A common practice is to use top to find processes that are consuming too much
memory or processing power and then act on those processes in some way. A process
consuming too much CPU can be reniced to give it less priority to the processors. A
process consuming too much memory can be killed. With top running, here’s how to
renice or kill a process:

B Renicing a process: Note the process ID of the process you want to renice and
press r. When the PID to renice: message appears, type the process ID of the process
you want to renice. When prompted to Renice PID to value: type in a number from
-19 to 20. (See “Setting processor priority with nice and renice” later in this chap-
ter for information on the meanings of different renice values.)

m Killing a process: Note the process ID of the process you want to kill and press k.
Type 15 to terminate cleanly or 9 to just kill the process outright. (See “Killing
processes with kill and killall” later in this chapter for more information on using
different signals you can send to processes.)

141

Part Il: Becoming a Linux Power User

142

Listing processes with System Monitor

If you have GNOME desktop available on your Linux system, System Monitor (gnome-
system-monitor) is available to provide a more graphical way of displaying processes on
your system. You sort processes by clicking columns. You can right-click processes to stop,
kill, or renice them.

To start System Monitor from the GNOME 2 desktop, select Applications=> System

Tools=> System Monitor. Or in GNOME 3, press the Windows key, then type System Monitor
and press Enter. Then select the Processes tab. Figure 6.2 shows an example of the System
Monitor window.

FIGURE 6.2

Use the System Monitor window to view and change running processes.

Processes Resources File Systems Q = = o x
Process Name + User % CPU 1D Memory Priority
C.§2192,168,0,139-m root 0 10051 N/A Normal
< abrtd root 0 672 1.7 MiB Normal
@abrt-dump-journal-oops root 0 685 1.7 MiB Normal
< accounts-daemon root 0 640 1016.0 KiB Normal
{Bracpi_thermal_pm root 0 72 N/A Very High
& alsactl root 0 639 200.0KiB Very Low
B ata_sff root 0 52 N/A Very High
& atd root 0 1164 184.0 KiB Normal
< audispd root 0 632 224.0KiB Very High
< auditd root 0 626 296.0 KiB High
B bash root 0 12939 2.5 MiB Normal
Bt bioset root 0 50 N/A Very High

bioset root 0 395 N/A Very High
it bioset root 0 405 N/A Very High
< bluetoothd root 0 1697 336.0 KiB Normal
i cfgao211 root 0 766 N/A Very High

By default, only running processes associated with your user account are displayed. Those
processes are listed alphabetically at first. You can re-sort the processes by clicking any of
the field headings (forward and reverse). For example, click the $CPU heading to see which
processes are consuming the most processing power. Click the Memory heading to see which
processes consume the most memory.

You can change your processes in various ways by right-clicking a process name and
selecting from the menu that appears (see Figure 6.3 for an example).

Here are some of the things you can do to a process from the menu you clicked:

B Stop—Pauses the process, so no processing occurs until you select Continue
Process. (This is the same as pressing Ctrl+Z on a process from the shell.)

Chapter 6: Managing Running Processes

B Continue—Continues running a paused process.

B End—Sends a Terminate signal (15) to a process. In most cases, this terminates the
process cleanly.

B Kill—Sends a Kill signal (9) to a process. This should kill a process immediately,
regardless of whether it can be done cleanly.

m Change—Presents a slider bar from which you can renice a process. Normal priority
is 0. To get better processor priority, use a negative number from -1 to -20. To
have a lower processor priority, use a positive number (0 to 19). Only the root user
can assign negative priorities, so you need to provide the root password, when
prompted, to set a negative nice value.

B Memory Maps—Lets you view the system memory map to see which libraries and
other components are being held in memory for the process.

B Open Files—Lets you view which files are currently being held open by the process.

B Properties—Lets you see other settings associated with the process (such as
security context, memory usage, and CPU use percentages).

FIGURE 6.3
Renice, kill, or pause a process from the System Monitor window.
| Processes ‘ Resources ‘ File Systems
Process Name - User % CPU ID Mem|
4 abrtd root 0 672 1.
& abrt- QUi Ctri+5 685 1
raccol Continue cl+c @ 640 1016
©racpi_ End Ctrl+E 4] 72
@alsac il Ctrl+k 0 639 200
{Hrata_s 0 52
& atd Change Priority » 0 1164 184
< audis Memory Maps ctri+m O 632 224
®BUd't Open Files ctri+0 0 626 296
B bash 0 12939 2
%EﬁbiDSE Properties Alt+Return (4] 50

You can display running processes associated with users other than yourself. To do
that, highlight any process in the display (just click it). Then, from the menu button
(button with three bars on it), select All Processes. You can modify processes you
don’t own only if you are the root user or if you can provide the root password when
prompted after you try to change a process.

Sometimes, you don’t have the luxury of working with a graphical interface. To change
processes without a graphical interface, you can use a set of commands and keystrokes
to change, pause, or kill running processes. Some of those are described next.

143

Part Il: Becoming a Linux Power User

Managing Background and Foreground Processes

If you are using Linux over a network or from a dumb terminal (a monitor that allows
only text input with no GUI support), your shell may be all that you have. You may
be used to a graphical environment in which you have lots of programs active at the
same time so you can switch among them as needed. This shell thing can seem pretty
limited.

Although the bash shell doesn’t include a GUI for running many programs at once, it does
let you move active programs between the background and foreground. In this way, you
can have lots of stuff running and selectively choose the one you want to deal with at
the moment.

You can place an active program in the background in several ways. One is to add an
ampersand (&) to the end of a command line when you first run the command. You can also
use the at command to run commands in such a way that they are not connected to the shell.

To stop a running command and put it in the background, press Ctrl+Z. After the
command is stopped, you can either bring it back into the foreground to run (the fg
command) or start it running in the background (the bg command). Keep in mind that
any command running in the background might spew output during commands that you
run subsequently from that shell. For example, if output appears from a command run-
ning in the background during a vi session, simply press Ctrl+L to redraw the screen to
get rid of the output.

Tip

To avoid having the output appear, you should have any process running in the background send its output to a file or
to null (add 2> /dev/null to the end of the command line).

Starting background processes

If you have programs that you want to run while you continue to work in the shell, you can
place the programs in the background. To place a program in the background at the time
you run the program, type an ampersand (&) at the end of the command line, like this:

$ find /usr > /tmp/allusrfiles &
[3] 15971

This example command finds all files on your Linux system (starting from /usr),
prints those filenames, and puts those names in the file /tmp/allusrfiles. The
ampersand (&) runs that command line in the background. Notice that the job number,
[3], and process ID number, 15971, are displayed when the command is launched. To
check which commands you have running in the background, use the jobs command,
as follows:

144

Chapter 6: Managing Running Processes

S jobs

[1] Stopped (tty output) vi /tmp/myfile

[2] Running find /usr -print > /tmp/allusrfiles &
[3] Running nroff -man /usr/man2/* >/tmp/man2 &
[4] - Running nroff -man /usr/man3/* >/tmp/man3 &
[5]+ Stopped nroff -man /usr/man4/* >/tmp/mand

The first job shows a text-editing command (vi) that I placed in the background and
stopped by pressing Ctrl+Z while I was editing. Job 2 shows the find command I just ran.
Jobs 3 and 4 show nroff commands currently running in the background. Job 5 had been
running in the shell (foreground) until I decided too many processes were running and
pressed Ctrl+Z to stop job 5 until a few processes had completed.

The plus sign (+) next to number 5 shows that it was most recently placed in the background.
The minus sign (-) next to number 4 shows that it was placed in the background just before
the most recent background job. Because job 1 requires terminal input, it cannot run in the
background. As a result, it is Stopped until it is brought to the foreground again.

Tip

To see the process ID for the background job, add a -1 (the lowercase letter L) option to the jobs command. If you
type ps, you can use the process ID to figure out which command is for a particular background job.

Using foreground and background commands

Continuing with the example, you can bring any of the commands on the jobs list to the
foreground. For example, to edit myfile again, type:

$ fg %1

As a result, the vi command opens again. All text is as it was when you stopped the vi job.

CAUTION

Before you put a text processor, word processor, or similar program in the background, make sure you save your file. It's
easy to forget you have a program in the background, and you will lose your data if you log out or the computer reboots.

To refer to a background job (to cancel or bring it to the foreground), use a percent sign (%)
followed by the job number. You can also use the following to refer to a background job:

B %—Refers to the most recent command put into the background (indicated by the
plus sign when you type the jobs command). This action brings the command to
the foreground.

B 3string—Refers to a job where the command begins with a particular string of
characters. The string must be unambiguous. (In other words, typing $vi when
there are two vi commands in the background results in an error message.)

145

Part Il: Becoming a Linux Power User

146

B 3?string—Refers to a job where the command line contains a string at any point.
The string must be unambiguous or the match fails.

m - -—Refers to the previous job stopped before the one most recently stopped.

If a command is stopped, you can start it running again in the background using the bg
command. For example, take job 5 from the jobs list in the previous example:

[5]+ Stopped nroff -man man4/* >/tmp/man4
Type the following:
S bg %5
After that, the job runs in the background. Its jobs entry appears as follows:

[5] Running nroff -man man4/* >/tmp/man4d &

Killing and Renicing Processes

Just as you can change the behavior of a process using graphical tools such as System
Monitor (described earlier in this chapter), you can also use command-line tools to kill a
process or change its CPU priority. The kill command can send a kill signal to any process
to end it, assuming you have permission to do so. It can also send different signals to a
process to otherwise change its behavior. The nice and renice commands can be used to
set or change the processor priority of a process.

Killing processes with Kill and killall

Although usually used for ending a running process, the kill and killall commands
can actually be used to send any valid signal to a running process. Besides telling a process
to end, a signal might tell a process to reread configuration files, pause (stop), or continue
after being paused, to name a few possibilities.

Signals are represented by both numbers and names. Signals that you might send most
commonly from a command include SIGKILL (9), SIGTERM (15), and SIGHUP (1). The
default signal is STGTERM, which tries to terminate a process cleanly. To kill a process
immediately, you can use SIGKILL. The SIGHUP signal tells a process to reread its
configuration files. SIGSTOP pauses a process, while SIGCONT continues a stopped process.

Different processes respond to different signals. Processes cannot block SIGKILL and
SIGSTOP signals, however. Table 6.1 shows examples of some signals (type man 7 signal
to read about other available signals):

Chapter 6: Managing Running Processes

TABLE 6.1 Signals Available in Linux

Signal Number Description

SIGHUP 1 Hang-up detected on controlling terminal or death of controlling process.
SIGINT 2 Interrupt from keyboard.

SIGQUIT 3 Quit from keyboard.

SIGABRT 6 Abort signal from abort(3).

SIGKILL 9 Kill signal.

SIGTERM 15 Termination signal.

SIGCONT 1918,25 Continue if stopped.
SIGSTOP 1719,23 Stop process.

Notice that there are multiple possible signal numbers for SIGCONT and SIGSTOP because
different numbers are used in different computer architectures. For most x86 and power PC
architectures, use the middle value. The first value usually works for Alpha and Sparc, while
the last one is for MIPS architecture.

Using kill to signal processes by PID

Using commands such as ps and top, you can find processes you want to send a signal to.
Then you can use the process ID of that process as an option to the kill command, along
with the signal you want to send.

For example, you run the top command and see that the bigcommand process is consum-
ing most of your processing power:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
10432 chris 20 0 471lm 121m 18m S 99.9 3.2 77:01.76 bigcommand

Here, the bigcommand process is consuming 99.9 percent of the CPU. You decide you want
to kill it so that other processes have a shot at the CPU. If you use the process ID of the
running bigcommand process, here are some examples of the kill command you can use
to kill that process:

$ kill 10432
$ kill -15 10432
$ kill -SIGKILL 10432

The default signal sent by kill is 15 (SIGTERM), so the first two examples have exactly the
same results. On occasion, a SIGTERM doesn't kill a process, so you may need a SIGKILL to
kill it. Instead of SIGKILL, you can use -9.

147

Part Il: Becoming a Linux Power User

148

Another useful signal is SIGHUP. Some server processes, such as the httpd process, which
provides web services, respond to a SIGHUP (1) signal by rereading its configuration files.
In fact, the command service httpd reload (in RHEL 6) or systemctl reload
httpd (RHEL 7) actually sends SIGHUP to httpd processes running on your system to
tell them that configuration files need to be read again. If the httpd process had a PID of
1833, you could use either of these commands to have it read configuration files again:

kill -1 1833
systemctl reload httpd

Using killall to signal processes by name

With the killall command, you can signal processes by name instead of by process ID.
The advantage is that you don't have to look up the process ID of the process you want to
kill. The potential downside is that you can kill more processes than you mean to if you
are not careful. (For example, typing killall bash may kill a bunch of shells that you
don't mean to kill.)

Like the kill command, killall uses SIGTERM (signal 15) if you don't explicitly enter
a signal number. Also as with k111, you can send any signal you like to the process you
name with killall. For example, if you see a process called testme running on your
system and you want to kill it, you can simply type the following:

$ killall -9 testme

The killall command can be particularly useful if you want to kill a bunch of commands
of the same name.

Setting processor priority with nice and renice

When the Linux kernel tries to decide which running processes get access to the CPUs on
your system, one of the things it takes into account is the nice value set on the process.
Every process running on your system has a nice value between -20 and 19. By default, the
nice value is set to 0. Here are a few facts about nice values:

m The lower the nice value, the more access to the CPUs the process has. In other
words, the nicer a process is, the less CPU attention it gets. So, a -20 nice value
gets more attention than a process with a 19 nice value.

®m A reqular user can set nice values only from 0 to 19. No negative values are allowed.
So a reqular user can't ask for a value that gives a process more attention than most
processes get by default.

B A regular user can set the nice value higher, not lower. So, for example, if a user
sets the nice value on a process to 10, and then later wants to set it back to 5, that
action will fail. Likewise, any attempt to set a negative value will fail.

B A regular user can set the nice value only on the user’s own processes.

® The root user can set the nice value on any process to any valid value, up or down.

Chapter 6: Managing Running Processes

You can use the nice command to run a command with a particular nice value. When a
process is running, you can change the nice value using the renice command, along with
the process ID of the process, as in the example that follows:

nice +5 updatedb &

The updatedb command is used to generate the locate database manually by gathering
names of files throughout the file system. In this case, I just wanted updatedb to run in
the background (&) and not interrupt work being done by other processes on the system. I
ran the top command to make sure that the nice value was set properly:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
20284 root 25 598.7m 932 644 D 2.7 0.0 0:00.96 updatedb

Notice that under the NI column, the nice value is set to 5. Because the command was
run as the root user, the root user can lower the nice value later by using the renice
command. (Remember that a reqular user can’t reduce the nice value or ever set it to
a negative number.) Here's how you would change the nice value for the updatedb
command just run to -5:

renice -n -5 20284

If you ran the top command again, you might notice that the updatedb command is now
at or near the top of the list of processes consuming CPU time because you gave it priority
to get more CPU attention.

Limiting Processes with cgroups

You can use a feature like “nice” to give a single process more or less access to CPU time.
Setting the nice value for one process, however, doesn’t apply to child processes that a
process might start up or any other related processes that are part of a larger service.

In other words, “nice” doesn’t limit the total amount of resources a particular user or
application can consume from a Linux system.

As cloud computing takes hold, many Linux systems will be used more as hypervisors than
as general-purpose computers. Their memory, processing power, and access to storage will
become commodities to be shared by many users. In that model, more needs to be done to
control the amount of system resources to which a particular user, application, container,
or virtual machine running on a Linux system has access.

That's where cgroups come in.

Cgroups can be used to identify a process as a task, belonging to a particular control
group. Tasks can be set up in a hierarchy where, for example, there may be a task
called daemons that sets default limitations for all daemon server processes, then
subtasks that may set specific limits on a web server daemon (httpd) or FTP service
daemon (vsftpd).

149

Part Il: Becoming a Linux Power User

150

As a task launches a process, other processes the initial process launches (called child
processes) inherit the limitations set for the parent process. Those limitations might
say that all the processes in a control group have access only to particular processors
and certain sets of RAM. Or they may allow access only to up to 30 percent of the total
processing power of a machine.

The types of resources that can be limited by cgroups include the following:

B Storage (blkio)—Limits total input and output access to storage devices (such
as hard disks, USB drives, and so on).

B Processor scheduling (cpu)—Assigns the amount of access a cgroup has to
be scheduled for processing power.

B Process accounting (cpuacct)—Reports on CPU usage. This information can
be leveraged to charge clients for the amount of processing power they use.

B CPU assignment (cpuset)—On systems with multiple CPU cores, assigns a task
to a particular set of processors and associated memory.

B Device access (devices)—Allows tasksin a cgroup to open or create (mknod)
selected device types.

B Suspend/resume (freezer)—Suspends and resumes cgroup tasks.

B Memory usage (memory)—Limits memory usage by task. It also creates reports
on memory resources used.

B Network bandwidth (net cls)—Limits network access to selected cgroup
tasks. This is done by tagging network packets to identify the cgroup task that
originated the packet and having the Linux traffic controller monitor and restrict
packets coming from each cgroup.

B Network traffic (net prio)—Sets priorities of network traffic coming from
selected cgroups and lets administrators change these priorities on the fly.

B Name spaces (ns)—Separates cgroups into namespaces, so processes in one
cgroup can only see the namespaces associated with the cgroup. Namespaces can
include separate process tables, mount tables, and network interfaces.

Creating and managing cgroups, at its most basic level, is generally not a job for new Linux
system administrators. It can involve editing configuration files to create your own cgroups
(/etc/cgconfig.conf) or limit particular users or groups (/etc/cgrules.cont). Or
you can use the cgreate command to create cgroups, which results in those groups being
added to the /sys/fs/cgroup hierarchy. Setting up cgroups can be tricky and, if done
improperly, can make your system unbootable.

The reason I introduce cgroups here is to help you understand some of the underlying
features in Linux that you can use to limit and monitor resource usage. In the future,

you will probably run into these features from controllers that manage your cloud
infrastructure. You will be able to set rules like: “Allow the marketing department’s virtual

Chapter 6: Managing Running Processes

machines to consume up to 40 percent of the available memory” or “Pin the database
application to a particular CPU and memory set.”

Knowing how Linux can limit and contain the resource usage by the set of processes
assigned to a task will ultimately help you manage your computing resources better. If you
are interested in learning more about cgroups, you can refer to the following:

B Red Hat Enterprise Linux Resource Management and Linux Containers
Guide—https://access.redhat.com/documentation/en-US/Red Hat
Enterprise Linux/7/html-single/Resource Management and Linux
Containers Guide/index.html

m Kernel documentation on cgroups—Refer to files in the /usr/share/doc/
kernel-doc-*/Documentation/cgroups directory after installing the
kernel-doc package.

Summary

Even on a Linux system where there isn't much activity, typically dozens or even hundreds
of processes are running in the background. Using the tools described in this chapter, you
can view and manage the processes running on your system.

Managing processes includes viewing processes in different ways, running them in the
foreground or background, and killing or renicing them. More advanced features for
limiting resource usage by selected processes are available using the cgroups feature.

In the next chapter, you learn how to combine commands and programming functions into
files that can be run as shell scripts.

Exercises

Use these exercises to test your knowledge of viewing running processes and then changing
them later by killing them or changing processor priority (nice value). These tasks assume
you are running a Fedora or Red Hat Enterprise Linux system (although some tasks work on
other Linux systems as well). If you are stuck, solutions to the tasks are shown in Appendix
B (although in Linux, you can often use multiple ways to complete a task).

1. List all processes running on your system, showing a full set of columns. Pipe that
output to the less command so you can page through the list of processes.

2. List all processes running on the system, and sort those processes by the name of
the user running each process.

3. List all processes running on the system, and display the following columns of
information: process ID, user name, group name, virtual memory size, resident
memory size, and the command.

151

https://access.redhat.com/documentation/en-US/Red_Hat_

Part Il: Becoming a Linux Power User

152

. Run the top command to view processes running on your system. Go back and

forth between sorting by CPU usage and memory consumption.

. Start the gedit process from your desktop. Make sure you run it as the user you

are logged in as. Use the System Monitor window to kill that process.

. Run the gedit process again. This time, using the kill command, send a signal

to the gedit process that causes it to pause (stop). Try typing some text into the
gedit window and make sure that no text appears yet.

. Use the killall command to tell the gedit command you paused in the previous

exercise to continue working. Make sure the text you type in after gedit was
paused now appears on the window.

. Install the xeyes command (in Red Hat Enterprise Linug, it is in the xorg-x11-

apps package). Run the xeyes command about 20 times in the background so
that 20 xeyes windows appear on the screen. Move the mouse around and watch
the eyes watch your mouse pointer. When you have had enough fun, kill all xeyes
processes in one command using killall.

. As aregular user, run the gedit command so it starts with a nice value of 5.
10.

Using the renice command, change the nice value of the gedit command you
just started to 7. Use any command you like to verify that the current nice value
for the gedit command is now set to 7.

CHAPTER

Writing Simple Shell Scripts

IN THIS CHAPTER

Working with shell scripts
Doing arithmetic in shell scripts
Running loops and cases in shell scripts

Creating simple shell scripts

system when it starts. Likewise, you could work more efficiently if you grouped together sets

You’d never get any work done if you typed every command that needs to be run on your Linux
of commands that you run all the time. Shell scripts can handle these tasks.

A shell script is a group of commands, functions, variables, or just about anything else you can use
from a shell. These items are typed into a plain text file. That file can then be run as a command.
Linux systems have traditionally used system initialization shell scripts during system startup to
run commands needed to get services going. You can create your own shell scripts to automate the
tasks you need to do regularly.

This chapter provides a rudimentary overview of the inner workings of shell scripts and how they
can be used. You learn how simple scripts can be harnessed to a scheduling facility (such as cron
or at) to simplify administrative tasks or just run on demand as they are needed.

Understanding Shell Scripts

Have you ever had a task that you needed to do over and over that took lots of typing on the
command line? Do you ever think to yourself, “Wow, I wish I could just type one command to do all
this”? Maybe a shell script is what you're after.

Shell scripts are the equivalent of batch files in MS-DOS and can contain long lists of commands,
complex flow control, arithmetic evaluations, user-defined variables, user-defined functions, and
sophisticated condition testing. Shell scripts are capable of handling everything from simple
one-line commands to something as complex as starting up your Linux system. Although dozens of
different shells are available in Linux, the default shell for most Linux systems is called bash, the
Bourne Again Shell.

153

Part Il: Becoming a Linux Power User

154

Executing and debugging shell scripts

One of the primary advantages of shell scripts is that they can be opened in any text editor
to see what they do. A big disadvantage is that large or complex shell scripts often execute
more slowly than compiled programs. You can execute a shell script in two basic ways:

B The filename is used as an argument to the shell (as in bash myscript). In
this method, the file does not need to be executable; it just contains a list of
shell commands. The shell specified on the command line is used to interpret the
commands in the script file. This is most common for quick, simple tasks.

B The shell script may also have the name of the interpreter placed in the first line
of the script preceded by #! (asin #!/bin/bash) and have the execute bit of the
file containing the script set (using chmod +x filename). You can then run your
script just like any other program in your path simply by typing the name of the
script on the command line.

When scripts are executed in either manner, options for the program may be specified
on the command line. Anything following the name of the script is referred to as a
command-line argument.

As with writing any software, there is no substitute for clear and thoughtful design and
lots of comments. The pound sign (#) prefaces comments and can take up an entire line or
exist on the same line after script code. It is best to implement more complex shell scripts
in stages, making sure the logic is sound at each step before continuing. Here are a few
good, concise tips to make sure things are working as expected during testing:

B In some cases, you can place an echo statement at the beginning of lines within
the body of a loop and surround the command with quotes. That way, rather
than executing the code, you can see what will be executed without making any
permanent changes.

B To achieve the same goal, you can place dummy echo statements throughout the
code. If these lines get printed, you know the correct logic branch is being taken.

B You can use set -x near the beginning of the script to display each command that
is executed or launch your scripts using

S bash -x myscript
B Because useful scripts have a tendency to grow over time, keeping your code

readable as you go along is extremely important. Do what you can to keep the logic
of your code clean and easy to follow.

Understanding shell variables

Often within a shell script, you want to reuse certain items of information. During the
course of processing the shell script, the name or number representing this information

Chapter 7: Writing Simple Shell Scripts

may change. To store information used by a shell script in such a way that it can be easily
reused, you can set variables. Variable names within shell scripts are case-sensitive and can
be defined in the following manner:

NAME=value

The first part of a variable is the variable name, and the second part is the value set for
that name. Be sure that the NAME and value touch the equal sign, without any spaces.
Variables can be assigned from constants, such as text, numbers, and underscores. This
is useful for initializing values or saving lots of typing for long constants. The following
examples show variables set to a string of characters (CITY) and a numeric value (PI):

CITY="Springfield"
PI=3.14159265

Variables can contain the output of a command or command sequence. You can accomplish
this by preceding the command with a dollar sign and open parenthesis, and following it
with a closing parenthesis. For example, MYDATE=$ (date) assigns the output from the
date command to the MYDATE variable. Enclosing the command in backticks () can have
the same effect. In this case, the date command is run when the variable is set and not
each time the variable is read.

Escaping Special Shell Characters

Keep in mind that characters such as dollar sign ($), backtick (), asterisk (*), exclamation point (!),
and others have special meaning to the shell, which you will see as you proceed through this chapter.
On some occasions, you want the shell to use these characters’ special meaning and other times you
don't. For example, if you typed echo $HOME, the shell would think you meant to display the name of
your home directory (stored in the $HOME variable) to the screen (such as /home/chris) because a $
indicates a variable name follows that character.

If you wanted to literally show $HOME, you would need to escape the $. Typing echo '$HOME' or echo
\$HOME would literally show $HOME on the screen. So, if you want to have the shell interpret a single
character literally, precede it with a backslash (\). To have a whole set of characters interpreted literally,
surround those characters with single quotes (').

Using double quotes is a bit trickier. Surround a set of text with double quotes if you want all but a
few characters used literally. For example, with text surrounded with double quotes, dollar signs (%),
backticks (), and exclamation points (!) are interpreted specially, but other characters (such as an
asterisk) are not. Type these two lines to see the different output (shown on the right):

echo '$HOME *** “date™' SHOME *** “date”
echo "$HOME *** “date™" /home/chris filel file2 Tue Jan 20 16:56:52 EDT 2015

Using variables is a great way to get information that can change from computer to
computer or from day to day. The following example sets the output of the uname -n

155

Part Il: Becoming a Linux Power User

command to the MACHINE variable. Then I use parentheses to set NUM_FILES to the num-
ber of files in the current directory by piping (|) the output of the 1s command to the
word count command (wc -1).

MACHINE="uname -n-
NUM FILES=$(/bin/ls | wc -1)

Variables can also contain the value of other variables. This is useful when you have to
preserve a value that will change so you can use it later in the script. Here, BALANCE is set
to the value of the CurBalance variable:

BALANCE="$CurBalance"

NoTE
When assigning variables, use only the variable name (for example, BALANCE) . When you reference a variable,

meaning you want the value of the variable, precede it with a dollar sign (as in SCurBalance). The result of the
latter is that you get the value of the variable, not the variable name itself.

Special shell positional parameters

There are special variables that the shell assigns for you. One set of commonly used
variables is called positional parameters or command line arguments and is referenced as
$0, $1, $2, $3...9n. $0 is special and is assigned the name used to invoke your script; the
others are assigned the values of the parameters passed on the command line, in the
order they appeared. For example, let’s say you had a shell script named myscript that
contained the following:

#!/bin/bash

Script to echo out command-line arguments

echo "The first argument is $1, the second is $2."
echo “The command itself is called $0.”

Assuming the script is executable and located in a directory in your $PATH, the following
shows what would happen if you ran that command with foo and bar as arguments:

$ chmod 755 /home/chris/bin/myscript

$ myscript foo bar

The first argument is foo, the second is bar.

The command itself is called /home/chris/bin/myscript.

As you can see, the positional parameter $0 is the full path or relative path to myscript,
$1is foo, and $2 is bar.

Another variable, $#, tells you how many parameters your script was given. In the
example, $# would be 2. The $e@ variable holds all the arguments entered at the command

156

Chapter 7: Writing Simple Shell Scripts

line. Another particularly useful special shell variable is $?, which receives the exit
status of the last command executed. Typically, a value of zero means the command exited
successfully, and anything other than zero indicates an error of some kind. For a complete
list of special shell variables, refer to the bash man page.

Reading in parameters

Using the read command, you can prompt the user for information, and store that information
to use later in your script. Here’s an example of a script that uses the read command:

#!/bin/bash
read -p "Type in an adjective, noun and verb (past tense): " al nl vl
echo "He sighed and $vl to the elixir. Then he ate the $al s$nl."

In this script, after prompting for an adjective, noun, and verb, the user is expected to
enter words that are then assigned to the adj1, nouni, and verb1 variables. Those three
variables are then included in a silly sentence, which is displayed on the screen. If the
script were called sillyscript, here’s an example of how it might run:

$ chmod 755 /home/chris/bin/sillyscript

$ sillyscript

Type in an adjective, noun and verb (past tense): hairy football
danced

He sighed and danced to the elixir. Then he ate the hairy
football.

Parameter expansion in bash

As mentioned earlier, if you want the value of a variable, you precede it with a $ (for
example, $CITY). This is really just shorthand for the notation ${CITY}; curly braces

are used when the value of the parameter needs to be placed next to other text without a
space. Bash has special rules that allow you to expand the value of a variable in different
ways. Going into all the rules is probably overkill for a quick introduction to shell scripts,
but the following list presents some common constructs you're likely to see in bash scripts
you find on your Linux system.

B ${var:-value}—If variable is unset or empty, expand this to value.

B ${var#pattern}—Chop the shortest match for pattern from the front of
var's value.

B ${var##pattern}—Chop the longest match for pattern from the front of
var's value.

B ${varspattern}—Chop the shortest match for pattern from the end of var's
value.

B ${var%spattern}—Chop the longest match for pattern from the end of
var's value.

157

Part Il: Becoming a Linux Power User

Try typing the following commands from a shell to test how parameter expansion works:

S THIS="Example"

$ THIS=${THIS:-"Not Set"}
$ THAT=${THAT:-"Not Set"}
$ echo $THIS

Example

$ echo $THAT

Not Set

In the examples here, the THIS variable is initially set to the word Example. In the next
two lines, the THIS and THAT variables are set to their current values or to Not Set, if
they are not currently set. Notice that because I just set THIS to the string Example, when
I echo the value of THIS it appears as Example. However, because THAT was not set, it
appears as Not Set.

NoTE

For the rest of this section, | show how variables and commands may appear in a shell script. To try out any of those
examples, however, you can simply type them into a shell, as shown in the previous example.

In the following example, MYFILENAME is set to /home/digby/myfile.txt. Next, the
FILE variable is set to myfile.txt and DIR is set to /home/digby. In the NAME variable,
the filename is cut down to simply myfile; then, in the EXTENSION variable, the file
extension is set to txt. (To try these out, you can type them at a shell prompt as in the
previous example and echo the value of each variable to see how it is set.) Type the code on
the left. The material on the right side describes the action.

MYFILENAME=/home/digby/myfile.txt—Sets the value of MYFILENAME
FILE=${MYFILENAME##*/}—FILE becomes myfile.txt
DIR=${MYFILENAME%/*}—DIR becomes /home/digby
NAME=${FILE%.*}—NAME becomes myfile
EXTENSION=${FILE##*.}—EXTENSION becomes txt

Performing arithmetic in shell scripts

Bash uses untyped variables, meaning it normally treats variables as strings or text, but can
change them on the fly if you want it to. Unless you tell it otherwise with declare, your
variables are just a bunch of letters to bash. But when you start trying to do arithmetic
with them, bash converts them to integers if it can. This makes it possible to do some fairly
complex arithmetic in bash.

Integer arithmetic can be performed using the built-in 1et command or through the
external expr or bc commands. After setting the variable BIGNUM value to 1024,

158

Chapter 7: Writing Simple Shell Scripts

the three commands that follow would all store the value 64 in the RESULT variable.
The bc command is a calculator application that is available in most Linux distribu-
tions. The last command gets a random number between 0 and 10 and echoes the
results back to you.

BIGNUM=1024

let RESULT=$BIGNUM/16
RESULT="expr S$BIGNUM / 16~
RESULT="echo "$BIGNUM / 16" | bc™
let foo=$RANDOM; echo $foo

Another way to incrementally grow a variable is to use $ (()) notation with ++I added to
increment the value of I. Try typing the following:

S I=0
$ echo The value of I after increment is $((++I))
The value of I after increment is 1

S echo The value of I before and after increment is $((I++)) and $I
The value of I before and after increment is 1 and 2

Repeat either of those commands to continue to increment the value of $I.

NoTE
Although most elements of shell scripts are relatively freeform (where whitespace, such as spaces or tabs, is
insignificant), both 1et and expr are particular about spacing. The 1et command insists on no spaces between

each operand and the mathematical operator, whereas the syntax of the expr command requires whitespace
between each operand and its operator. In contrast to those, bc isn’t picky about spaces, but can be trickier to use
because it does floating-point arithmetic.

To see a complete list of the kinds of arithmetic you can perform using the let command,
type help let at the bash prompt.

Using programming constructs in shell scripts

One of the features that makes shell scripts so powerful is that their implementation of
looping and conditional execution constructs is similar to those found in more complex
scripting and programming languages. You can use several different types of loops,
depending on your needs.

The “if...then” statements

The most commonly used programming construct is conditional execution, or the if
statement. It is used to perform actions only under certain conditions. There are several
variations of if statements for testing various types of conditions.

159

Part Il: Becoming a Linux Power User

The first if. . .then example tests if VARIABLE is set to the number 1. If it is, then the
echo command is used to say that it is set to 1. The f£i statement then indicates that the

if statement is complete and processing can continue.

VARIABLE=1

if [SVARIABLE -eq 1 1 ; then
echo "The variable is 1"

fi

Instead of using -eq, you can use the equal sign (=), as shown in the following example.

The = works best for comparing string values, while -eq is often better for comparing

numbers. Using the else statement, different words can be echoed if the criterion of the
if statement isnt met ($STRING = "Friday"). Keep in mind that it’s good practice to

put strings in double quotes.

STRING="Friday"

if [$STRING = "Friday"] ; then
echo "WhooHoo. Friday."
else
echo "Will Friday ever get here?"
fi
You can also reverse tests with an exclamation mark (!). In the following example, if

STRING is not Monday, then "At least it's not Monday" is echoed.

STRING="FRIDAY"

if ["SSTRING" != "Monday"] ; then
echo "At least it's not Monday"

fi

In the following example, elif (which stands for “else if”) is used to test for an additional

condition (for example, whether filename is a file or a directory).

filename="$HOME"

if [-f "$filename"] ; then
echo "$filename is a regular file"

elif [-d "$filename"] ; then

a

echo "$filename is directory"
else

echo "I have no idea what $filename is"
fi

As you can see from the preceding examples, the condition you are testing is placed

between square brackets []. When a test expression is evaluated, it returns either a value
of 0, meaning that it is true, or a 1, meaning that it is false. Notice that the echo lines are

indented. The indentation is optional and done only to make the script more readable.

Table 7.1 lists the conditions that are testable and is quite a handy reference. (If youre in a

hurry, you can type help test on the command line to get the same information.)

160

Chapter 7: Writing Simple Shell Scripts

TABLE 71 Operators for Test Expressions

Operator What Is Being Tested?

-a file Does the file exist? (same as -e)

-b file Is the file a block special device?

-c file Is the file character special (for example, a character device)? Used to iden-
tify serial lines and terminal devices.

-d file Is the file a directory?

-e file Does the file exist? (same as -a)

-f file Does the file exist, and is it a regular file (for example, not a directory,
socket, pipe, link, or device file)?

-g file Does the file have the set-group-id (SGID) bit set?

-h file Is the file a symbolic link? (same as -L)

-k file Does the file have the sticky bit set?

-L file Is the file a symbolic link?

-n string Is the length of the string greater than 0 bytes?

-0 file Do you own the file?

-p file Is the file a named pipe?

-r file Is the file readable by you?

-s file Does the file exist, and is it larger than 0 bytes?

-8 file Does the file exist, and is it a socket?

-t fd Is the file descriptor connected to a terminal?

-u file Does the file have the set-user-id (SUID) bit set?

-w file Is the file writable by you?

-x file Is the file executable by you?

-z string Is the length of the string O (zero) bytes?

exprl -a expr2 Are both the first expression and the second expression true?

exprl -o expr2 |seither of the two expressions true?

filel -nt file2 |sthe firstfile newer than the second file (using the modification timestamp)?
filel -ot file2 |sthe firstfile older than the second file (using the modification timestamp)?
filel -ef file2 Are the two files associated by a link (a hard link or a symbolic link)?

varl = var2 Is the first variable equal to the second variable?

varl -eq var2 Is the first variable equal to the second variable?

varl -ge var2 Is the first variable greater than or equal to the second variable?
varl -gt var2 Is the first variable greater than the second variable?

varl -le var2 Is the first variable less than or equal to the second variable?
varl -1t var2 Is the first variable less than the second variable?

varl != var2 Is the first variable not equal to the second variable?

varl -ne var2 Is the first variable not equal to the second variable?

161

Part Il: Becoming a Linux Power User

162

There is also a special shorthand method of performing tests that can be useful for
simple one-command actions. In the following example, the two pipes (| |) indicate that
if the directory being tested for doesn't exist (-d dirname), then make the directory
(mkdir $dirname).

[test 1 || action

Perform simple single command if test is false
dirname="/tmp/testdir"

[-d "$dirname"] || mkdir "$dirname"

Instead of pipes, you can use two ampersands to test if something is true. In the following
example, a command is being tested to see if it includes at least three command-line arguments.

[test] && {action}
Perform simple single action if test is true
[S# -ge 3] && echo "There are at least 3 command line arguments."

You can combine the && and | | operators to make a quick, one-line if-then-else
statement. The following example tests that the directory represented by $dirname
already exists. If it does, a message says the directory already exists. If it doesn't, the
statement creates the directory:

dirname=mydirectory
[-e $dirname] && echo $dirname already exists || mkdir $dirname

The case command

Another frequently used construct is the case command. Similar to a switch statement
in programming languages, this can take the place of several nested if statements. The
following is the general form of the case statement:

case "VAR" in
Resultl)
{ body };;
Result?2)
{ body }i;
*)
{ body };;
esac

Among other things, you can use the case command to help with your backups. The following
case statement tests for the first three letters of the current day (case 'date +%a' in).
Then, depending on the day, a particular backup directory (BACKUP) and tape drive (TAPE)
are set.

Our VAR doesn't have to be a variable,
it can be the output of a command as well
Perform action based on day of week
case “date +%a” in
"Mon")
BACKUP=/home/myproject/data0

Chapter 7: Writing Simple Shell Scripts

TAPE=/dev/rft0
Note the use of the double semi-colon to end each option
Note the use of the "|" to mean "or"
nTyen | "Thu")
BACKUP=/home/myproject/datal
TAPE=/dev/rftl
uwedn]’uFriM
BACKUP=/home/myproject/data2
TAPE=/dev/rft2
Don't do backups on the weekend.
*)

BACKUP="none"
TAPE=/dev/null

esac

The asterisk (*) is used as a catchall, similar to the default keyword in the C programming
language. In this example, if none of the other entries are matched on the way down the
loop, the asterisk is matched, and the value of BACKUP becomes none. Note the use of esac,
or case spelled backwards, to end the case statement.

The “for...do” loop

Loops are used to perform actions over and over again until a condition is met or until all
data has been processed. One of the most commonly used loops is the for. . .do loop. It
iterates through a list of values, executing the body of the loop for each element in the list.
The syntax and a few examples are presented here:

for VAR in LIST
do

{ body }
done

The for loop assigns the values in LIST to VAR one at a time. Then for each value, the
body in braces between do and done is executed. VAR can be any variable name, and LIST
can be composed of pretty much any list of values or anything that generates a list.

for NUMBER in 0 1 2 3 4 56 7 8 9
do

echo The number is S$NUMBER
done

for FILE in ~/bin/ls’
do

echo SFILE
done

163

Part Il: Becoming a Linux Power User

164

You can also write it this way, which is somewhat cleaner:

for NAME in John Paul Ringo George ; do
echo SNAME is my favorite Beatle
done

Each element in the LIST is separated from the next by whitespace. This can cause trouble
if you're not careful because some commands, such as 1s -1, output multiple fields per
line, each separated by whitespace. The string done ends the for statement.

If you're a die-hard C programmer, bash allows you to use C syntax to control your loops:

LIMIT=10
Double parentheses, and no $ on LIMIT even though it's a variable!
for ((a=1; a <= LIMIT ; a++)) ; do
echo "Sa"
done

The “while...do” and “until...do” loops

Two other possible looping constructs are the while. . .do loop and the until. . .do loop.
The structure of each is presented here:

while condition until condition
do do

{ body } { body }
done done

The while statement executes while the condition is true. The until statement executes
until the condition is true—in other words, while the condition is false.

Here is an example of a while loop that outputs the number 0123456789:

N=0

while [$N -1t 10] ; do
echo -n SN
let N=SN+1

done

Another way to output the number 0123456789 is to use an until loop as follows:

N=0

until [$N -eq 10] ; do
echo -n SN
let N=SN+1

done

Trying some useful text manipulation programs

Bash is great and has lots of built-in commands, but it usually needs some help to do
anything really useful. Some of the most common useful programs you'll see used are

Chapter 7: Writing Simple Shell Scripts

grep, cut, tr, awk, and sed. As with all the best UNIX tools, most of these programs are
designed to work with standard input and standard output, so you can easily use them with
pipes and shell scripts.

The general regular expression parser

The name general regular expression parser (grep) sounds intimidating, but grep is just a
way to find patterns in files or text. Think of it as a useful search tool. Gaining expertise
with regular expressions is quite a challenge, but after you master it, you can accomplish
many useful things with just the simplest forms.

For example, you can display a list of all regular user accounts by using grep to search for
all lines that contain the text /home in the /etc/passwd file as follows:

$ grep /home /etc/passwd

Or you could find all environment variables that begin with HO using the following
command:

$ env | grep “HO

NoTE

The * in the preceding code is the actual caret character, *, not what you’ll commonly see for a backspace, “H. Type
“, H, and O (the uppercase letter) to see what items start with the uppercase characters HO.

To find a list of options to use with the grep command, type man grep.

Remove sections of lines of text (cut)

The cut command can extract fields from a line of text or from files. It is very useful
for parsing system configuration files into easy-to-digest chunks. You can specify the
field separator you want to use and the fields you want, or you can break up a line
based on bytes.

The following example lists all home directories of users on your system. This grep
command line pipes a list of reqgular users from the /etc/passwd file and displays the
sixth field (-£6) as delimited by a colon (-d':"). The hyphen at the end tells cut to
read from standard input (from the pipe).

$ grep /home /etc/passwd | cut -d':' -f6 -

Translate or delete characters (tr)

The tr command is a character-based translator that can be used to replace one character
or set of characters with another or to remove a character from a line of text.

165

Part Il: Becoming a Linux Power User

166

The following example translates all uppercase letters to lowercase letters and displays the
words mixed upper and lower case as a result:

$ FOO="Mixed UPpEr aNd LoWeR cAsE"
$ echo $FO0 | tr [A-Z] [a-z]
mixed upper and lower case

In the next example, the tr command is used on a list of filenames to rename any files in
that list so that any tabs or spaces (as indicated by the [:blank:] option) contained in a
filename are translated into underscores. Try running the following code in a test directory:

for file in * ; do

f="echo $file | tr [:blank:] []°

[nsfilen - usfn] || nv o-i -- "$file" usfn
done

The stream editor (sed)

The sed command is a simple scriptable editor, so it can perform only simple edits, such

as removing lines that have text matching a certain pattern, replacing one pattern of
characters with another, and so on. To get a better idea of how sed scripts work, there’s no
substitute for the online documentation, but here are some examples of common uses.

You can use the sed command to essentially do what I did earlier with the grep example:
search the /etc/passwad file for the word home. Here the sed command searches the
entire /etc/passwd file, searches for the word home, and prints any line containing the
word home.

$ sed -n '/home/p' /etc/passwd

In this example, sed searches the file somefile.txt and replaces every instance of the
string Mac with Linux. Notice that the letter g is needed at the end of the substitution
command to cause every occurrence of Mac on each line to be changed to Linux.
(Otherwise, only the first instance of Mac on each line is changed.) The output is then
sent to the fixed file.txt file. The output from sed goes to stdout, so this command
redirects the output to a file for safekeeping.

$ sed 's/Mac/Linux/g' somefile.txt > fixed file.txt

You can get the same result using a pipe:

$ cat somefile.txt | sed 's/Mac/Linux/g' > fixed file.txt

By searching for a pattern and replacing it with a null pattern, you delete the original
pattern. This example searches the contents of the somefile. txt file and replaces
extra blank spaces at the end of each line (s/ *$) with nothing (//). Results go to the
fixed file.txt file.

$ cat somefile.txt | sed 's/ *$//' > fixed file.txt

Chapter 7: Writing Simple Shell Scripts

Using simple shell scripts

Sometimes, the simplest of scripts can be the most useful. If you type the same sequence
of commands repetitively, it makes sense to store those commands (once!) in a file. The
following sections offer a couple of simple, but useful, shell scripts.

Telephone list

This idea has been handed down from generation to generation of old UNIX hacks. It's
really quite simple, but it employs several of the concepts just introduced.

#!/bin/bash

(@)/ph

A very simple telephone list

Type "ph new name number" to add to the list, or
just type "ph name" to get a phone number

PHONELIST=~/.phonelist.txt

If no command line parameters (S#), there
1s a problem, so ask what they're talking about.
if [$# -1t 1] ; then
echo "Whose phone number did you want? "
exit 1
fi

Did you want to add a new phone number?
if [$1 = "new"] ; then

shift

echo $* >> S$PHONELIST

echo $* added to database

exit 0
fi

Nope. But does the file have anything in it yet?
This might be our first time using it, after all.

if [! -s S$SPHONELIST] ; then
echo "No names in the phone list yet! "
exit 1
else
grep -i -gq "$*" SPHONELIST # Quietly search the file
if [$? -ne 0 1 ; then # Did we find anything?
echo "Sorry, that name was not found in the phone list™"
exit 1
else
grep -i "$*" SPHONELIST
fi
fi
exit 0

167

Part Il: Becoming a Linux Power User

168

So, if you created the telephone list file as ph in your current directory, you could type the
following from the shell to try out your ph script:

$ chmod 755 ph

$./ph new "Mary Jones" 608-555-1212

Mary Jones 608-555-1212 added to database
$./ph Mary

Mary Jones 608-555-1212

The chmod command makes the ph script executable. The . /ph command runs the ph
command from the current directory with the new option. This adds Mary Jones as the
name and 608-555-1212 as the phone number to the database (SHOME/.phone.txt). The
next ph command searches the database for the name Mary and displays the phone entry
for Mary. If the script works, add it to a directory in your path (such as SHOME/bin).

Backup script

Because nothing works forever and mistakes happen, backups are just a fact of life when
dealing with computer data. This simple script backs up all the data in the home directories
of all the users on your Fedora or RHEL system.

#!/bin/bash

(@) /my backup

A very simple backup script
#

Change the TAPE device to match your system.

Check /var/log/messages to determine your tape device.

You may also need to add scsi-tape support to your kernel.
TAPE=/dev/rft0

Rewind the tape device $STAPE

mt STAPE rew

Get a list of home directories

HOMES="grep /home /etc/passwd | cut -f6 -d':'
Back up the data in those directories

tar cvf STAPE $SHOMES

Rewind and eject the tape.

mt STAPE rewoffl

Summary

Writing shell scripts gives you the opportunity to automate many of your most common
system administration tasks. This chapter covered common commands and functions you
can use in scripting with the bash shell. It also provided some concrete examples of scripts
for doing backups and other procedures.

Chapter 7: Writing Simple Shell Scripts

In the next chapter, you transition from learning about user features into examining
system administration topics. Chapter 8 covers how to become the root user, as well as how
to use administrative commands, monitor log files, and work with configuration files.

Exercises

Use these exercises to test your knowledge of writing simple shell scripts. These tasks
assume you are running a Fedora or Red Hat Enterprise Linux system (although some tasks
work on other Linux systems as well). If you are stuck, solutions to the tasks are shown in
Appendix B (although in Linux, there are often multiple ways to complete a task).

1. Create a script in your $HOME/bin directory called myownscript. When the script
runs, it should output information that looks as follows:

Today is Sat Dec 10 15:45:04 EST 2016.
You are in /home/joe and your host is abc.example.com.

0f course, you need to read in your current date/time, current working directory,
and hostname. Also, include comments about what the script does and indicate
that the script should run with the /bin/bash shell.

2. Create a script that reads in three positional parameters from the command line,
assigns those parameters to variables named ONE, TWO, and THREE, respectively,
and outputs that information in the following format:

There are X parameters that include Y.
The first is A, the second is B, the third is C.

Replace X with the number of parameters and Y with all parameters entered. Then
replace A with the contents of variable ONE, B with variable TWO, and C with
variable THREE.

3. Create a script that prompts users for the name of the street and town where
they grew up. Assign town and street to variables called mytown and mystreet,
and output them with a sentence that reads as shown in the following code (of
course, Smystreet and Smytown will appear with the actual town and street the
user enters):

The street I grew up on was S$mystreet and the town was Smytown.
4. Create a script called myos that asks the user, “What is your favorite operating
system?” Qutput an insulting sentence if the user types Windows or Mac. Respond

“Great choice!” if the user types Linux. For anything else, say “Is <what is typed in>
an operating system?”

5. Create a script that runs the words moose, cow, goose, and sow through a for loop.
Have each of those words appended to the end of the line “I have a....”

169

Part Il

Becoming a Linux
System Administrator

IN THIS PART Chapter 11

Managing User Accounts
Chapter 8

Learning System Administration Chapter 12

Managing Disks and Filesystems
Chapter 9
Installing Linux

Chapter 10
Getting and Managing Software

CHAPTER

Learning System Administration

IN THIS CHAPTER

Doing graphical administration
Using the root login
Understanding administrative commands, config files, and log files

Working with devices and filesystems

Multiuser features enable many people to have accounts on a single Linux system, with their

data kept secure from others. Multitasking enables many people to run many programs on the
computer at the same time, with each person able to run more than one program. Sophisticated
networking protocols and applications make it possible for a Linux system to extend its capabilities
to network users and computers around the world. The person assigned to manage all of a Linux
system'’s resources is called the system administrator.

Linux, like other UNIX-based systems, was intended for use by more than one person at a time.

Even if you are the only person using a Linux system, system administration is still set up to be
separate from other computer use. To do most administrative tasks, you need to be logged in as the
root user (also called the superuser) or to temporarily get root permission (usually using the sudo
command). Regular users who don’t have root permission cannot change, or in some cases even see,
some of the configuration information for a Linux system. In particular, security features such as
stored passwords are protected from general view.

Because Linux system administration is such a huge topic, this chapter focuses on the general
principles of Linux system administration. In particular, it examines some of the basic tools you
need to administer a Linux system for a personal desktop or on a small server. Beyond the basics,
this chapter also teaches you how to work with file systems and monitor the setup and performance
of your Linux system.

Understanding System Administration

Separating the role of system administrator from that of other users has several effects. For a
system that has many people using it, limiting who can manage it enables you to keep a system
more secure. A separate administrative role also prevents others from casually harming your system
when they are just using it to write a document or browse the Internet.

173

Part Ill: Becoming a Linux System Administrator

174

If you are the system administrator of a Linux system, you generally log in as a regular
user account and then ask for administrative privileges when you need them. This is often
done with one of the following:

su command—Often, su is used to open a shell as root user. After it is open, the
administrator can run multiple commands and then exit to return to a shell as a
regular user.

sudo command—With sudo, a reqular user is given root privileges, but only when
that user runs the sudo command to run another command. After running that
one command with sudo, the user is immediately returned to a shell and acts as
the reqular user again. Ubuntu assigns sudo privilege to the first user account

on an Ubuntu system by default. This is not done by default in Fedora and RHEL,
although you can choose for your first user to have sudo privilege if you like,
during Fedora or RHEL installation.

Graphical windows—Many graphical administration windows, which can be
launched from the System or Applications menu (GNOME 2) or Activities screen
(GNOME 3), can be started by a reqular user. With some tools, when root privilege is
needed, you are prompted for the root password.

Tasks that can be done by only the root user tend to be those that affect the system as
a whole or impact the security or health of the system. The following is a list of common
features that a system administrator is expected to manage:

Filesystems—When you first install Linux, the directory structure is set up to make
the system usable. However, if users later want to add extra storage or change the
filesystem layout outside their home directory, they need administrative privileges
to do that. Also, the root user has permission to access files owned by any user. As

a result, the root user can copy, move, or change any other user’s files—a privilege
needed to make backup copies of the filesystem for safe keeping.

Software installation—Because malicious software can harm your system or
make it insecure, you need root privilege to install software so it is available to
all users on your system. Regular users can still install some software in their own
directories and can list information about installed system software.

User accounts—Only the root user can add and remove user accounts and
group accounts.

Network interfaces—In the past, the root user had to configure network interfaces
and start and stop those interfaces. Now, many Linux desktops allow regular users
to start and stop network interfaces from their desktop using Network Manager.
This is particularly true for wireless network interfaces, which can come and go by
location, as you move your Linux laptop or handheld device around.

Servers—Configuring web servers, file servers, domain name servers, mail servers,
and dozens of other servers requires root privilege, as does starting and stopping
those services. Content, such as web pages, can be added to servers by non-root

Chapter 8: Learning System Administration

users if you configure your system to allow that. Services are often run as special
administrative user accounts, such as apache (for the httpd service) and rpc (for
the rpcbind service). So if someone cracks a service, they can't get root privilege
to other services or system resources.

B Security features—Setting up security features, such as firewalls and user access
lists, is usually done with root privilege. It's also up to the root user to monitor how
the services are being used and make sure that server resources are not exhausted
or abused.

The easiest way to begin system administration is to use some graphical administration tools.

Using Graphical Administration Tools

Most system administration for the first Linux systems was done from the command line.
As Linux has become more popular, however, both graphical and command-line interfaces
began to be offered for most common Linux administrative tasks.

Some of the first graphical system administration tools came from Red Hat. Commands for
launching these GUI tools typically start with system-config-*. They can be used for
doing basic administrative tasks, such as configuring a printer or setting the date, time,
and time zone.

To create wider adoption of Linux in enterprise data centers, however, some of the more
prominent software projects for managing cloud projects, identity management, and other
services now offer browser-based interfaces. This has helped encourage adoption of Linux
in organizations that had previously used Microsoft Windows systems in their data centers.

The following sections describe some of the point-and-click types of interfaces that are
available for doing system administration in Linux.

Using system-config-* tools

A set of graphical tools that comes with Fedora and Red Hat Enterprise Linux systems
can be launched from the Administration submenu of the System menu (GNOME 2), from
the Activities screen (GNOME 3), or from the command line. Most of the Fedora and RHEL
tools that launch from the command line begin with the system-config string (such as
system-config-network).

These system-config tools require root permission. If you are logged in as a regular user,
you must enter the root password before the Graphical User Interface (GUI) application’s
window opens or, in some cases, when you request to do some special activity.

The following list describes many of the graphical tools you can use to administer a Fedora
or Red Hat Enterprise Linux system (some are only in Fedora and many are not installed

175

Part Ill: Becoming a Linux System Administrator

by default). The command you can launch to get the feature is shown in parentheses (often,
it is the same as the package name). The following graphical tools are available in Fedora:

B Domain Name System (system-config-bind)—Create and configure zones if
your computer is acting as a DNS server.

B HTTP (system-config-httpd)—Configure your computer as an Apache web server.

B NFS (system-config-nfs)—Set up directories from your system to be shared with
other computers on your network using the NFS service.
B Root Password (system-config-rootpassword)—Change the root password.

B Samba NFS (system-config-samba)—Configure Windows (SMB) file sharing. (To
configure other Samba features, you can use the SWAT window.)

The following graphical tools are available in both Fedora and Red Hat Enterprise Linux:

B Services (system-config-services)—Display and change which services
are running on your Fedora system at different run levels from the Service
Configuration window.

® Authentication (authconfig-gtk)—Change how users are authenticated on your
system. Typically, Shadow Passwords and MD5 Passwords are selected. However, if
your network supports LDAP, Kerberos, SMB, NIS, or Hesiod authentication, you can
select to use any of those authentication types.

B Date & Time (system-config-date)—Set the date and time or choose to have an
NTP server keep system time in sync.

m Firewall (system-config-firewall)—Configure your firewall to allow or deny
services to computers from the network.

B Language (system-config-language)—Select the default language used for the
system.

B Printing (system-config-printer)—~Configure local and network printers.

® SELinux Management (policycoreutils-gui)—Set SELinux enforcing modes
and default policy.

B Users & Groups (system-config-users)—Add, display, and change user and
group accounts for your Fedora system.

Other administrative utilities are available from the Applications menu on the top panel.
Select the System Tools submenu (in GNOME 2) or go to the Activities screen (in GNOME 3)
to choose some of the following tools (if they are installed):

®m Configuration Editor (gconf-editor)—Directly edit the GNOME configuration
database.

m Disk Usage Analyzer (gnome-utils)—Display detailed information about your
hard disks and removable storage devices.

176

Chapter 8: Learning System Administration

B Disk Utility (gnome-disks)—Manage disk partitions and add filesystems
(gnome-disk-utility package).

B Kickstart (system-config-kickstart)—Create a kickstart configuration file
that can be used to install multiple Linux systems without user interaction.

As you go through the rest of this book to configure various Linux servers, I'll describe how
to use many of these tools. When you want to go beyond a point-and-click administrative
interface, you need to learn how to gain root privilege from the shell, as described in the
next section.

Using browser-based admin tools

To simplify the management of many enterprise-quality open source projects, those
projects have begun offering browser-based graphical management tools. In most cases,
these projects offer command-line tools for managing these projects as well.

For example, if you are using Red Hat Enterprise Linux, there are browser-based interfaces
for managing the following projects:

B Red Hat Enterprise Linux OpenStack Platform (RHELOSP)—The OpenStack
platform-as-a-service project lets you manage your own private, hybrid cloud
through your browser. This includes the OpenStack dashboard from the OpenStack
Horizon project (http://horizon.openstack.org). That interface lets you
launch and manage virtual machines and all the resources around them: storage,
networking, authentication, processing allocations, and so on. Refer to Chapter 27
for a description of how to use the OpenStack Dashboard.

B Red Hat Enterprise Virtualization (RHEV)—With RHEV, the RHEV manager
provides the browser-based interface for managing virtual machines, including
allocating storage and user access to resources. Many other examples of
browser-based graphical administration tools are available with open source projects.
If you are new to Linux, it can be easier to get started with these interfaces.
However, keep in mind that often you need to use command line tools if you need to
troubleshoot problems, because graphical tools are often limited in that area.

Using the root user account

Every Linux system starts out with at least one administrative user account (the root user)
and possibly one or more regular user accounts (given a name that you choose, or a name
assigned by your Linux distribution). In most cases, you log in as a reqgular user and become
the root user to do an administrative task.

The root user has complete control of the operation of your Linux system. That user can
open any file or run any program. The root user also installs software packages and adds
accounts for other people who use the system.

177

http://horizon.openstack.org

Part Ill: Becoming a Linux System Administrator

Tip

Think of the root user in Linux as similar to the Administrator user in Windows.

When you first install most Linux systems (although not all systems), you add a password
for the root user. You must remember and protect this password; you need it to log in as
root or to obtain root permission while you are logged in as some other user.

To become familiar with the root user account, you can simply log in as the root user. I
recommend trying this from a virtual console. To do so, press Ctrl+Alt+F2. When you see
the login prompt, type root (press Enter) and enter the password. A login session for
root opens. When you are finished, type exit, and then press Ctrl+Alt+F1 to return to the
regular desktop login.

After you have logged in as root, the home directory for the root user is typically /root.
The home directory and other information associated with the root user account are located
in the /etc/passwd file. Here's what the root entry looks like in the /etc/passwd file:

root:x:0:0:root:/root:/bin/bash

This shows that for the user named root, the user ID is set to 0 (root user), the group

ID is set to 0 (root group), the home directory is /root, and the shell for that user is
/bin/bash. (Linux uses the /etc/shadow file to store encrypted password data, so the
password field here contains an x.) You can change the home directory or the shell used
by editing the values in this file. A better way to change these values, however, is to use
the usermod command (see the section “Modifying Users with usermod” in Chapter 11 for
further information).

At this point, any command you run from your shell is run with root privilege. So be
careful. You have much more power to change (and damage) the system than you did as a
regular user. Again, type exit when you are finished, and if you are on a virtual console
and have a desktop interface running on another console, press Ctrl+Alt+F1 to return to the
graphical login screen, if you are using a Linux desktop system.

NoTE
By default, the root account has no password set in Ubuntu. This means that even though the account exists, you

cannot log in using it or use su to become the root user. This adds a further level of security to Ubuntu and requires
you to use sudo before each command you want to execute as the root user.

Becoming root from the shell (su command)

Although you can become the superuser by logging in as root, sometimes that is not
convenient.

178

Chapter 8: Learning System Administration

B For example, you may be logged in to a regular user account and just want to make
a quick administrative change to your system without having to log out and log
back in. You may need to log in over the network to make a change to a Linux
system but find that the system doesn't allow root users in from over the net-
work (a common practice for secure Linux systems). One solution is to use the su
command. From any Terminal window or shell, you can simply type the following:

$ su
Password: ****k*

#

When you are prompted, type the root user’s password. The prompt for the regular user ($)
changes to the superuser prompt (#). At this point, you have full permission to run any
command and use any file on the system. However, one thing that the su command doesn't
do when used this way is read in the root user’s environment. As a result, you may type a
command that you know is available and get the message Command Not Found. To fix this
problem, use the su command with the dash (-) option instead, like this:

S su -
Password: ****k*

#

You still need to type the password, but after that, everything that normally happens at
login for the root user happens after the su command is completed. Your current directory
will be root’s home directory (probably /root), and things such as the root user’s PATH
variable are used. If you become the root user by just typing su, rather than su -, you
don't change directories or the environment of the current login session.

You can also use the su command to become a user other than root. This is useful for
troubleshooting a problem that is being experienced by a particular user, but not by others
on the computer (such as an inability to print or send email). For example, to have the
permissions of a user named jsmith, you'd type the following:

$ su - jsmith

Even if you were root user before you typed this command, afterward you would have
only the permissions to open files and run programs that are available to jsmith. As root
user, however, after you type the su command to become another user, you don't need a
password to continue. If you type that command as a regular user, you must type the new
user’s password.

When you are finished using superuser permissions, return to the previous shell by exiting
the current shell. Do this by pressing Ctrl+D or by typing exit. If you are the administrator
for a computer that is accessible to multiple users, don't leave a root shell open on someone
else’s screen—unless you want to give that person freedom to do anything he or she wants
to the computer!

179

Part Ill: Becoming a Linux System Administrator

Allowing administrative access via the GUI

As mentioned earlier, when you run GUI tools as a regular user (from Fedora, Red Hat
Enterprise Linux, or some other Linux systems), you are prompted for the root password
before you are able to access the tool. By entering the root password, you are given root
privilege for that task.

For Linux systems using the GNOME 2 desktop, after you enter the password, a yellow badge
icon appears in the top panel, indicating that root authorization is still available for other
GUI tools to run from that desktop session. For GNOME 3 desktops, you must enter the root
password each time you start any of the system-config tools.

Gaining administrative access with sudo

Particular users can also be given administrative permissions for particular tasks or
any task by typing sudo followed by the command they want to run, without being
given the root password. The sudoers facility is the most common way to provide such
privilege. Using sudoers, for any users or groups on the system, you can do

the following:

B Assign root privilege for any command they run with sudo.

B Assign root privilege for a select set of commands.

B Give users root privilege without telling them the root password because they only
have to provide their own user password to gain root privilege.

m Allow users, if you choose, to run sudo without entering a password at all.

B Track which users have run administrative commands on your system. (Using su,
all you know is that someone with the root password logged in, whereas the sudo
command logs which user runs an administrative command.)

With the sudoers facility, giving full or limited root privileges to any user simply entails
adding the user to /etc/sudoers and defining what privilege you want that user to
have. Then the user can run any command he or she is privileged to use by preceding that
command with the sudo command.

Here’s an example of how to use the sudo facility to cause the user named joe to have full
root privilege.

Tip

If you look at the sudoers file in Ubuntu, you see that the initial user on the system already has privilege, by

default, for the admin group members. To give any other user the same privilege, you could simply add the additional
user to the admin group when you run visudo.

180

Chapter 8: Learning System Administration

1. As the root user, edit the /etc/sudoers file by running the visudo command:

/usr/sbin/visudo

By default, the file opens in vi, unless your EDITOR variable happens to be set to
some other editor acceptable to visudo (for example, export EDITOR=gedit).
The reason for using visudo is that the command locks the /etc/sudoers file and
does some basic sanity checking of the file to ensure it has been edited correctly.

NoTE

If you are stuck here, try running the vimtutor command for a quick tutorial on using vi and vim.

2. Add the following line to allow joe to have full root privileges on the computer:
joe ALL= (ALL) ALL

This line causes joe to provide a password (his own password, not the root pass-
word) in order to use administrative commands. To allow joe to have that privilege
without using a password, type the following line instead:

joe ALL= (ALL) NOPASSWD: ALL

3. Save the changes to the /etc/sudoers file (in vi, type Esc, and then :wq). The
following is an example of a session by the user joe after he has been assigned
sudo privileges:

[joels sudo touch /mnt/testfile.txt
We trust you have received the usual lecture
from the local System Administrator. It usually
boils down to these two things:
#1) Respect the privacy of others.
#2) Think before you type.
Password: **kkkkkkk
[joels$ 1s -1 /mnt/testfile.txt
-rw-r--r--. 1 root root 0 Jan 7 08:42 /mnt/testfile.txt
[joel$ rm /mnt/testfile.txt
rm: cannot remove ‘/mnt/testfile.txt’: Permission denied
[joel$ sudo rm /mnt/textfile.txt
[joel$

In this session, the user joe runs sudo to create a file (/mnt/textfile.txt) in a direc-
tory for which he doesn't have write permission. He is given a warning and asked to pro-
vide his password (this is joe's password, not the root password).

Even after joe has given the password, he must still use the sudo command to run subsequent
administrative commands as root (the rm fails, but the sudo rm succeeds). Notice that he is
not prompted for a password for the second sudo. That's because after entering his password
successfully, he can enter as many sudo commands as he wants for the next 5 minutes
without having to enter it again. (You can change the timeout value from 5 minutes to any
length of time you want by setting the passwd_timeout value in the /etc/sudoers file.)

181

Part Ill: Becoming a Linux System Administrator

The preceding example grants a simple all-or-nothing administrative privilege to

joe. However, the /etc/sudoers file gives you an incredible amount of flexibility

in permitting individual users and groups to use individual applications or groups of
applications. Refer to the sudoers and sudo man pages for information about how to tune
your sudo facility.

Exploring Administrative Commands, Configuration
Files, and Log Files

You can expect to find many commands, configuration files, and log files in the same places
in the filesystem, regardless of which Linux distribution you are using. The following sec-
tions give you some pointers on where to look for these important elements.

NoTE
If GUI administrative tools for Linux have become so good, why do you need to know about administrative files? For
one thing, while GUI tools differ among Linux versions, many underlying configuration files are the same. So, if you

learn to work with them, you can work with almost any Linux system. Also, if a feature is broken or if you need to do
something that’s not supported by the GUI, when you ask for help, Linux experts almost always tell you how to run
commands or change the configuration file directly.

Administrative commands

Only the root user is intended to use many administrative commands. When you log in

as root (or use su - from the shell to become root), your $PATH variable is set to include
some directories that contain commands for the root user. In the past, these have included
the following:

B /sbin—Contained commands needed to boot your system, including commands for
checking filesystems (£sck) and turn on swap devices (swapon).

B /usr/sbin—~Contained commands for such things as managing user accounts
(such as useradd) and checking processes that are holding files open (such
as 1sof). Commands that run as daemon processes are also contained in this
directory. Daemon processes are processes that run in the background, waiting
for service requests such as those to access a printer or a web page. (Look for
commands that end in d, such as sshd, pppd, and cupsd.)

The /sbin and /usr/sbin directories are still used in Ubuntu as described here. However,
for RHEL 7 and the latest Fedora releases, all administrative commands from the two
directories are stored in the /usr/sbin directory (which is symbolically linked to /sbin).
Also, only /usr/sbin is added to the PATH of the root user, as well as the PATH of all
regular users.

182

Chapter 8: Learning System Administration

Some administrative commands are contained in reqgular user directories (such as /bin
and /usr/bin). This is especially true of commands that have some options available to
everyone. An example is the /bin/mount command, which anyone can use to list mounted
filesystems, but only root can use to mount filesystems. (Some desktops, however, are
configured to let reqular users use mount to mount CDs, DVDs, or other removable media.)

NoTE

See the section “Mounting Filesystems” in Chapter 12 for instructions on how to mount a filesystem.

To find commands intended primarily for the system administrator, check out the section 8
manual pages (usually in /usr/share/man/man8). They contain descriptions and options
for most Linux administrative commands. If you want to add commands to your system,
consider adding them to directories such as /usr/local/bin or /usr/local/sbin.
Some Linux distributions automatically add those directories to your PATH, usually before
your standard bin and sbin directories. In that way, commands installed to those direc-
tories not only are accessible, but also can override commands of the same name in other
directories. Some third-party applications that are not included with Linux distributions
are sometimes placed in the /usr/local/bin, /opt/bin, or /usr/local/sbin
directories.

Administrative configuration files

Configuration files are another mainstay of Linux administration. Almost everything
you set up for your particular computer—user accounts, network addresses, or GUI
preferences—is stored in plaintext files. This has some advantages and some
disadvantages.

The advantage of plain text files is that it’s easy to read and change them. Any text editor
will do. The downside, however, is that as you edit configuration files, no error checking is
going on. You have to run the program that reads these files (such as a network daemon or
the X desktop) to find out whether you set up the files correctly.

While some configuration files use standard structures, such as XML, for storing information,
many do not. So you need to learn the specific structure rules for each configuration file. A
comma or a quote in the wrong place can sometimes cause an entire interface to fail.

You can check in many ways that the structure of many configuration files is correct:

m Some software packages offer a command to test the sanity of the configuration file
tied to a package before you start a service. For example, the testparm command
is used with Samba to check the sanity of your smb.conf file. Other times, the
daemon process providing a service offers an option for checking your config file.
For example, run httpd -t to check your Apache web server configuration before
starting your web server.

183

Part Ill: Becoming a Linux System Administrator

NoTE
Some text editors, such as the vim command (not vi), understand the structure of some types of configuration

files. If you open such a configuration file in vim, notice that different elements of the file are shown in different
colors. In particular, you can see comment lines in a different color than data.

Throughout this book, you'll find descriptions of the configuration files you need to
set up the different features that make up Linux systems. The two major locations of
configuration files are your home directory (where your personal configuration files are
kept) and the /etc directory (which holds system-wide configuration files).

Following are descriptions of directories (and subdirectories) that contain useful
configuration files. Those descriptions are followed by some individual configuration files in
/etc that are of particular interest. Viewing the contents of Linux configuration files can
teach you a lot about administering Linux systems.

B S$SHOME—AIl users store information in their home directories that directs how their
login accounts behave. Many configuration files are directly in each user’s home
directory (such as /home/joe) and begin with a dot (.), so they don't appear in a
user’s directory when you use a standard 1s command (you need to type 1s -a to
see them). Likewise, dot files and directories won't show up in most file manager
windows by default. There are dot files that define the behavior of each user’s shell,
the desktop look-and-feel, and options used with your text editor. There are even
files such as those in each user’s $SHOME/ . ssh directory that configure permissions
for logging into remote systems. (To see the name of your home directory, type
echo $HOME from a shell.)

B /etc—This directory contains most of the basic Linux system configuration files.

B /etc/cron*—Directories in this set contain files that define how the crond
utility runs applications on a daily (cron.daily), hourly (cron.hourly),
monthly (cron.monthly), or weekly (cron.weekly) schedule.

B /etc/cups—Contains files used to configure the CUPS printing service.

B /etc/default—Contains files that set default values for various utilities. For
example, the file for the useradd command defines the default group number, home
directory, password expiration date, shell, and skeleton directory (/etc/skel)
that are used when creating a new user account.

B /etc/httpd—Contains a variety of files used to configure the behavior of your
Apache web server (specifically, the httpd daemon process). (On Ubuntu and other
Linux systems, /etc/apache or /etc/apache? is used instead.)

B /etc/init.d—Contains the permanent copies of System V-style run-level scripts.
These scripts are often linked from the /etc/rc?.d directories to have each
service associated with a script started or stopped for the particular run level. The

184

Chapter 8: Learning System Administration

? is replaced by the run-level number (0 through 6). Although System V init scripts
are still supported, most services are now managed by the systemd facility.

/etc/mail—~Contains files used to configure your sendmail mail transport
agent.

/etc/pcmeia—Contains configuration files that allow you to have a variety

of PCMCIA cards configured for your computer (if the pcmciautils package is
installed). PCMCIA slots are those openings on your laptop that enable you to have
credit-card-sized cards attached to your computer. You can attach devices such as
modems and external CD-ROMs. With many devices now available as USB devices,
PCMCIA slots are less common than they were.

/etc/postfix—~Contains configuration files for the postfix mail transport
agent.

/etc/ppp—~Contains several configuration files used to set up Point-to-Point
Protocol (PPP) so you can have your computer dial out to the Internet. (PPP was
more commonly used when dial-up modems were popular.)

/etc/rc?.d—There is a separate rc?.d directory for each valid system state:
rc0.d (shutdown state), rcl.d (single-user state), rc2.d (multiuser state), rc3.d
(multiuser plus networking state), rc4 .d (user-defined state), rc5.d (multiuser,
networking, plus GUI login state), and rc6.d (reboot state).

/etc/security—~Contains files that set a variety of default security conditions
for your computer, basically defining how authentication is done. These files are
part of the pam (pluggable authentication modules) package.

/etc/skel—Any files contained in this directory are automatically copied
to a user’s home directory when that user is added to the system. By default,
most of these files are dot (.) files, such as .kde (a directory for setting KDE
desktop defaults) and .bashrc (for setting default values used with the
bash shell).

/etc/sysconfig—~Contains important system configuration files that are created
and maintained by various services (including iptables, samba, and most
networking services). These files are critical for Linux distributions, such as Fedora
and RHEL, that use GUI administration tools but are not used on other Linux
systems at all.

/etc/systemd—Contains files associated with the systemd facility, for managing
the boot process and system services. In particular, when you run systemctl
commands to enable and disable services, files that make that happen are stored in
subdirectories of the /etc/systemd/system directory.

/etc/xinetd.d—Contains a set of files, each of which defines an on-demand
network service that the xinetd daemon listens for on a particular port.

185

Part Ill: Becoming a Linux System Administrator

186

When the xinetd daemon process receives a request for a service, it uses the
information in these files to determine which daemon processes to start to
handle the request.

The following are some interesting configuration files in /etc:

aliases—~Can contain distribution lists used by the Linux mail services. (This file
is located in /etc/mail in Ubuntu when you install the sendmail package.)

bashrc—Sets system-wide defaults for bash shell users. (This may be called bash.
bashrc on some Linux distributions.)

crontab—Sets times for running automated tasks and variables associated with
the cron facility (such as the SHELL and PATH associated with cron).

csh.cshre (or cshre)—Sets system-wide defaults for csh (C shell) users.

B exports—~Contains a list of local directories that are available to be shared by

remote computers using the Network File System (NFS).

fstab—Identifies the devices for common storage media (hard disk, floppy,
CD-ROM, and so on) and locations where they are mounted in the Linux system.
This is used by the mount command to choose which filesystems to mount when
the system first boots.

group—Identifies group names and group IDs (GIDs) that are defined on the
system. Group permissions in Linux are defined by the second of three sets of rwx
(read, write, execute) bits associated with each file and directory.

gshadow—~Contains shadow passwords for groups.

B host.conf—Used by older applications to set the locations in which domain

names (for example, redhat . com) are searched for on TCP/IP networks (such as
the Internet). By default, the local hosts file is searched and then any name server
entries in resolv.conf.

hostname—Contains the host name for the local system (beginning in RHEL 7 and
recent Fedora and Ubuntu systems).

hosts—~Contains IP addresses and host names that you can reach from your
computer. (Usually this file is used just to store names of computers on your LAN or
small private network.)

hosts.allow—Lists host computers that are allowed to use certain TCP/IP ser-
vices from the local computer. (This and hosts.deny are part of the TCP Wrappers
service.)

hosts.deny—Lists host computers that are not allowed to use certain TCP/IP ser-
vices from the local computer (although this file is used if you create it, it doesn’t
exist by default).

Chapter 8: Learning System Administration

inittab—O0n earlier Linux systems, contained information that defined which
programs start and stop when Linux boots, shuts down, or goes into different
states in between. This configuration file was the first one read when Linux
started the init process. This file is no longer used on Linux systems that
support systemd.

B mtab—Contains a list of filesystems that are currently mounted.

B mtools.conf—~Contains settings used by DOS tools in Linux.

B named.conf—~Contains DNS settings if you are running your own DNS server (bind

or bind9 package).

nsswitch.conf—Contains name service switch settings, for identifying where
critical systems information (user accounts, host name-to-address mappings, and so
on) comes from (local host or via network services).

B ntp.conf—Includes information needed to run the Network Time Protocol (NTP).

B passwd—Stores account information for all valid users on the local system. Also

includes other information, such as the home directory and default shell. (Rarely
includes the user passwords themselves, which are typically stored in the /etc/
shadow file.)

printcap—~Contains definitions for the printers configured for your computer.
(If the printcap file doesn’t exist, look for printer information in the /etc/
cups directory.)

profile—Sets system-wide environment and startup programs for all users. This
file is read when the user logs in.

protocols—Sets protocol numbers and names for a variety of Internet services.
rpc—Defines remote procedure call names and numbers.
services—Defines TCP/IP and UDP service names and their port assignments.

shadow—~Contains encrypted passwords for users who are defined in the passwd
file. (This is viewed as a more secure way to store passwords than the original
encrypted password in the passwd file. The passwd file needs to be publicly
readable, whereas the shadow file can be unreadable by all but the root user.)

shells—Lists the shell command-line interpreters (bash, sh, csh, and so on)
that are available on the system, as well as their locations.

sudoers—Sets commands that can be run by users, who may not otherwise have
permission to run the command, using the sudo command. In particular, this file
is used to provide selected users with root permission.

rsyslog.conf—Defines what logging messages are gathered by the rsyslogd
daemon and what files they are stored in. (Typically, log messages are stored in files
contained in the /var/log directory.)

187

Part Ill: Becoming a Linux System Administrator

188

B termcap—Lists definitions for character terminals, so character-based applications
know what features are supported by a given terminal. Graphical terminals and
applications have made this file obsolete to most people.

B xinetd.conf—~Contains simple configuration information used by the xinetd
daemon process. This file mostly points to the /etc/xinetd.d directory for
information about individual services.

Another directory, /etc/X11, includes subdirectories that each contain system-wide
configuration files used by X and different X window managers available for Linux. The
xorg.conf file (configures your computer and monitor to make it usable with X) and
configuration directories containing files used by xdm and xinit to start X are in here.

Directories relating to window managers contain files that include the default values that
a user will get if that user starts one of these window managers on your system. Window
managers that may have system-wide configuration files in these directories include twm
(twm/) and xfce (xdg/).

Administrative log files and systemd journal

One of the things that Linux does well is keep track of itself. This is a good thing, when
you consider how much is going on in a complex operating system.

Sometimes you are trying to get a new facility to work and it fails without giving you the
foggiest reason why. Other times, you want to monitor your system to see whether people
are trying to access your computer illegally. In any of those cases, you want to be able to

refer to messages coming from the kernel and services running on the system.

For Linux systems that don't use the systemd facility, the main utility for logging error
and debugging messages is the rsyslogd daemon. (Some older Linux systems use syslogd
and syslogd daemons.) Although you can still use rsyslogd with systemd systems,
systemd has its own method of gathering and displaying messages called the systemd
journal (journalctl command).

Using journalctl to view the systemd journal

The primary command for viewing messages from the systemd journal is the journalctl
command. The boot process, the kernel and all systemd-managed services direct their
status and error messages to the systemd journal.

Using the journalctl command, you can display journal messages in many different
ways. Here are some examples:

journalctl

journalctl --list-boots | head

-12 eb3d5cbdda8f4f8da7bdbc71fb94e6le Sun 2014-08-17 15:33:30 EDT...
-11 534713a5a65c41clb5b3d056487al6db Wed 2014-08-20 06:45:15 EDT...

Chapter 8: Learning System Administration

-10 64147da7154b4499a312a88a696c19bd Fri 2014-08-29 23:14:38 EDT...
journalctl -b eb3d5cbdda8f4f8da7bdbc71fb94eble
journalctl -k

In these examples, the journalctl command with no options lets you page through all
messages in the systemd journal. To list the boot IDs for each time the system was booted,
use the -1list-boots option. To view messages associated with a particular boot instance,
use the -b option with one of the boot instances. To see only kernel messages, use the -k
option. Here are some more examples:

journalctl SYSTEMD UNIT=sshd.service
journalctl PRIORITY=0
journalctl -a -f

Use the SYSTEMD UNIT= options to show messages for specific services (here, the sshd
service) or for any other systemd unit file (such as other services or mounts). To see
messages associated with a particular syslog log level (from 0 to 7). In this case, only
emergency (0) messages are shown. To follow messages as they come in, use the - £ option;
to show all fields, use the -a option.

Managing log messages with rsyslogd

The rsyslogd facility, and its predecessor syslogd, gather log messages and direct
them to log files or remote log hosts. Logging is done according to information in the
/etc/rsyslog.conf file. Messages are typically directed to log files that are usually
in the /var/log directory, but can also be directed to log hosts for additional security.
Here are a few common log files:

B boot.log—Contains boot messages about services as they start up.

B messages—Contains many general informational messages about the system.

B secure—Contains security-related messages, such as login activity or any other
act that authenticates users.

B XFree86.0.log or Xorg.0.log—Depending on which X server you are using,
contains messages about your video card, mouse, and monitor configuration.

Refer to Chapter 13, “Understanding Server Administration,” for information on configuring
the rsyslogd facility.

Using Other Administrative Accounts

You don't hear much about logging in with other administrative user accounts (besides
root) on Linux systems. It was a fairly common practice in UNIX systems to have several
different administrative logins that allowed administrative tasks to be split among several

189

Part Ill: Becoming a Linux System Administrator

190

users. For example, people sitting near a printer could have 1p permissions to move print
jobs to another printer if they knew a printer wasn't working.

In any case, administrative logins are available with Linux; however, logging in directly

as those users is disabled by default. The accounts are maintained primarily to provide
ownership for files and processes associated with particular services. By running daemon
processes under separate administrative logins, having one of those processes cracked does
not give the cracker root permission and the ability to access other processes and files.
Consider the following examples:

m 1p—User owns such things as the /var/log/cups printing log file and various
printing cache and spool files. The home directory for 1p is /var/spool/lpd.

B apache—User can be used to set up content files and directories. It is primarily
used to run the web server processes (httpd) in RHEL and Fedora systems, while
the www-data user runs the Apache service (apache2) on Ubuntu systems.

B avahi—User runs the avahi-daemon process to provide zeroconf services on
your network.

B chrony—User runs the chronyd daemon, which is used to maintain accurate
computer clocks.

B postfix—User owns various mail server spool directories and files. The user runs
the daemon processes used to provide the postfix service (master).

B bin—User owns many commands in /bin in traditional UNIX systems. This is not
the case in some Linux systems (such as Ubuntu, Fedora and Gentoo) because root
owns most executable files. The home directory of bin is /bin.

B news—~User could do administration of Internet news services, depending on how
you set permission for /var/spool/news and other news-related resources. The
home directory for news is /etc/news.

B rpc—User runs the remote procedure calls daemon (rpcbind), which is used to
receive calls for services on the host system. The NFS service uses the RPC service.

By default, the administrative logins in the preceding list are disabled. You would need
to change the default shell from its current setting (usually /sbin/nologin or
/bin/false) to a real shell (typically /bin/bash) to be able to log in as these users.
As mentioned earlier, however, they are really not intended for interactive logins.

Checking and Configuring Hardware

In a perfect world, after installing and booting Linux, all your hardware is detected
and available for access. Although Linux systems are rapidly moving closer to that
world, sometimes you must take special steps to get your computer hardware working.
Also, the growing use of removable USB and FireWire devices (CDs, DVDs, flash drives,

Chapter 8: Learning System Administration

digital cameras, and removable hard drives) has made it important for Linux to do
the following:

m Efficiently manage hardware that comes and goes

B Look at the same piece of hardware in different ways (for example, be able to see a
printer as a fax machine, scanner, and storage device, as well as a printer)

Linux kernel features added in the past few years have made it possible to change
drastically the way hardware devices are detected and managed. Features in, or
closely related to, the kernel include Udev (to dynamically name and create devices as
hardware comes and goes) and HAL (to pass information about hardware changes to
user space).

If all this sounds confusing, dont worry. It's designed to make your life as a Linux user
much easier. The result of features built on the kernel is that device handling in Linux has
become:

m More automatic—For most common hardware, when a hardware device is
connected or disconnected, it is automatically detected and identified. Interfaces
to access the hardware are added, so it is accessible to Linux. Then the fact that
the hardware is present (or removed) is passed to the user level, where applications
listening for hardware changes are ready to mount the hardware and/or launch an
application (such as an image viewer or music player).

m More flexible—If you don't like what happens automatically when a hardware item
is connected or disconnected, you can change it. For example, features built into
GNOME and KDE desktops let you choose what happens when a music CD or data DVD
is inserted, or when a digital camera is connected. If you prefer that a different
program be launched to handle it, you can easily make that change.

This section covers several issues related to getting your hardware working properly in
Linux. First, it describes how to check information about the hardware components of your
system. It then covers how to configure Linux to deal with removable media. Finally, it
describes how to use tools for manually loading and working with drivers for hardware that
is not detected and loaded properly.

Checking your hardware

When your system boots, the kernel detects your hardware and loads drivers that allow
Linux to work with that hardware. Because messages about hardware detection scroll
quickly off the screen when you boot, to view potential problem messages you have to
redisplay those messages after the system comes up.

There are a few ways to view kernel boot messages after Linux comes up. Any user can run
the dmesg command to see what hardware was detected and which drivers were loaded by

191

Part Ill: Becoming a Linux System Administrator

the kernel at boot time. As new messages are generated by the kernel, those messages are
also made available to the dmesg command.

A second way to see boot messages on some Linux systems is by displaying the contents
of the /var/log/dmesg file, if it exists. A third way is the journalctl command to
show the messages associated with a particular boot instance (as shown earlier in

this chapter).

NoTE

After your system is running, many kernel messages are sent to the /var/log/messages file. So, for example, if

you want to see what happens when you plug in a USB drive, you can type tail -f /var/log/messages and
watch as devices and mount points are created. Likewise, you can use the journalctl -f command to follow
messages as they come into the systemd journal.

The following is an example of some output from the dmesg command that was trimmed
down to show some interesting information:

$ dmesg | less

[

— o e e

—

192

0.000000] Linux version 3.16.3-200.£fc20.x86 64
(mockbuild@bkernel02.phx2.fedoraproject.org)

(gcc version 4.8.3 20140624 (Red Hat 4.8.3-1) (GCC))
#1 SMP Wed Sep 17 22:34:21 UTC 2014

0.000000] DMI: Dell Inc. Precision WorkStation 490
/0GU083, BIOS A06 08/20/2007
0.485293] Unpacking initramfs...

.886285] Freeing initrd memory: 17284K...
.056934] CPUO: Intel(R) Xeon(R) CPU E5320 @ 1.86GHz stepping 0b
.272025] Brought up 4 CPUs
.272029] Total of 4 processors activated (14895.38 BogoMIPS) .
.020618] Serial: 8250/16550 driver,4 ports,IRQ sharing enabled
.041185] serial8250: ttyS0 at I/O 0x3f8 (irg = 4) is a 16550A
.061880] serial8250: ttySl at I/O 0x2f8 (irg = 3) is a 16550A
.145982] mousedev: PS/2 mouse device common for all mice
.538044] scsi 6:0:0:0: CD-ROM

TSSTcorp DVD-ROM TS-H352C DE02 PQ: 0 ANSI: 5

3.870128] input: ImPS/2 Generic Wheel Mouse
as /devices/platform/i8042/seriol/input/input3

26.964764] e1000: Intel(R) PRO/1000 Network Driver
26.964767] e1000: Copyright (c) 1999-2006 Intel Corporation.
26.964813] e1000 0000:0c:02.0: PCI INT A -> GSI 18 (level, low)
27.089109] parport pc 00:08: reported by Plug and Play ACPI
27.089169] parport0: PC-style at 0x378 (0x778), irqg 7

W wwwwoooo

24179.176315] scsi 9:0:0:0: Direct-Access

S31B1102 USB DISK 1100 PQ: 0 ANSI: 0 CCs

mailto:mockbuild@bkernel02.phx2.fedoraproject.org

Chapter 8: Learning System Administration

[24179.177466] sd 9:0:0:0: Attached scsi generic sg2 type 0
[24179.177854] sd 9:0:0:0: [sdb]

8343552 512-byte logical blocks: (4.27 GB/3.97 GiB)
[24179.178593] sd 9:0:0:0: [sdb] Write Protect is off

From this output, you first see the Linux kernel version, followed by information about the
computer (Dell Precision WorkStation), and kernel command line options. Next, you can see
the type of processors (Intel Xeon) and the number of CPUs (4). After that, I trimmed down
to information about hardware connected to the computer: serial ports, mouse port, CD
drive, network interface card (e1000), and parallel port. The last few lines reflect a 4GB USB
drive being plugged into the computer.

If something goes wrong detecting your hardware or loading drivers, you can refer to this
information to see the name and model number of hardware that’s not working. Then you
can search Linux forums or documentation to try to solve the problem.

After your system is up and running, some other commands let you look at detailed infor-
mation about your computer’s hardware. The 1spci command lists PCI buses on your com-
puter and devices connected to them. Here’s a snippet of output:

$ lspci

00:00.0 Host bridge: Intel Corporation
5000X Chipset Memory ControllerHub

00:02.0 PCI bridge: Intel Corporation 5000 Series Chipset
PCI Express x4 Port 2

00:1b.0 Audio device: Intel Corporation 631xESB/632xESB
High Definition Audio Controller (rev 09)

00:1d.0 USB controller: Intel Corporation 631xESB/632xESB/3100
Chipset UHCI USBController#l (rev 09)

07:00.0 VGA compatible controller: nVidia Corporation NV44

0c:02.0 Ethernet controller: Intel Corporation 82541PI
Gigabit Ethernet Controller (rev 05)

The host bridge connects the local bus to the other components on the PCI bridge. I cut
down the output to show information about the different devices on the system that
handle various features: sound (Audio device), flash drives and other USB devices (USB
controller), the video display (VGA compatible controller), and wired network cards
(Ethernet controller). If you are having trouble getting any of these devices to work, noting
the model names and numbers gives you something to Google for.

To get more verbose output from 1spci, add one or more -v options. For example, using
lspci -vvv, I received information about my Ethernet controller, including latency,
capabilities of the controller, and the Linux driver (e1000) being used for the device.

If you are specifically interested in USB devices, try the 1susb command. By default,
lsusb lists information about the computer’s USB hubs along with any USB devices
connected to the computer’s USB ports:

193

Part Ill: Becoming a Linux System Administrator

194

$ lsusb

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation

Bus 002 Device 001: ID 1d6b:0001 Linux Foundation

Bus 003 Device 001: ID 1d6b:0001 Linux Foundation

Bus 004 Device 001: ID 1d6b:0001 Linux Foundation

Bus 005 Device 001: ID 1d6b:0001 Linux Foundation

Bus 002 Device 002: ID 413c:2105 Dell Computer Corp.
Model L100 Keyboard

Bus 002 Device 004: ID 413c:3012 Dell Computer Corp.
Optical Wheel Mouse

Bus 001 Device 005: ID 090c¢:1000 Silicon Motion, Inc. -
Taiwan 64MB QDI U2 DISK

root hub
root hub
root hub
root hub
root hub

R R RN
e =]

From the preceding output, you can see the model of a keyboard, mouse, and USB flash
drive connected to the computer. As with 1spci, you can add one or more -v options to
see more details.

To see details about your processor, run the 1scpu command. That command gives basic
information about your computer’s processors.

S lscpu

Architecture: x86 64

CPU op-mode (s) : 32-bit, 64-bit
CPU(s) : 4

On-line CPU(s) list: 0-3

Thread(s) per core: 1

Core (s) per socket: 4

From the sampling of output of 1scpu, you can see that this is a 64-bit system (x86-64), it
can operate in 32-bit or 64-bit modes, and there are four CPUs.

Managing removable hardware

Linux systems such as Red Hat Enterprise Linux, Fedora, and others that support full KDE
and GNOME desktop environments include simple graphical tools for configuring what
happens when you attach popular removable devices to the computer. So, with a KDE

or GNOME desktop running, you simply plug in a USB device or insert a CD or DVD and a
window may pop up to deal with that device.

Although different desktop environments share many of the same underlying mechanisms
(in particular, Udev) to detect and name removable hardware, they offer different tools
for configuring how they are mounted or used. Udev (using the udevd daemon) creates
and removes devices (/dev directory) as hardware is added and removed from the com-
puter. The Hardware Abstraction layer (HAL) provides the overall platform for discovering
and configuring hardware. Settings that are of interest to someone using a desktop Linux
system, however, can be configured with easy-to-use desktop tools.

Chapter 8: Learning System Administration

The Nautilus file manager used with the GNOME desktop lets you define what happens when
you attach removable devices or insert removable media into the computer from the File
Management Preferences window. The descriptions in this section are based on GNOME 3.14
in Fedora 21.

From the GNOME 3.14 desktop, select Activities and type Details. Then select the Details
icon. When the Details window appears, select Removable Media from the left column.
Figure 8.1 shows an example of that window.

FIGURE 8.1

Change removable media settings in the Removable Media window.

< Details x

Overview Select how media should be handled
Default Applications

CD audio | Ask what to do w
Removable Media
DVD video | Ask what to do hod
Music player | Ask what to do v
Photos | Ask what to do hod
Software | Run Software W
Other Media...

|_| Never prompt or start programs on media insertion

The following settings are available from the Removable Media window. These settings
relate to how removable media are handled when they are inserted or plugged in. In most
cases, you are prompted about how to handle a medium that is inserted or connected.

B CD audio—When an audio CD is inserted, you can choose to be prompted for what
to do (default), do nothing, open the contents in a folder window, or select from
various audio CD players to be launched to play the content. Rhythmbox (music
player), Audio CD Extractor (CD burner), and Brasero (CD burner) are among the
choices you have for handling an inserted audio CD.

195

Part Ill: Becoming a Linux System Administrator

B DVD video—When a commercial video DVD is inserted, you are prompted for what
to do with that DVD. You can change that default to launch Totem (videos), Brasero
(DVD burner) or another media player you have installed (such as MPlayer).

B Music player—When inserted media contains audio files, you are asked what to do.
You can select to have Rhythmbox or some other music player begin playing the
files by selecting that player from this box.

® Photos—When inserted media (such as a memory card from a digital camera)
contains digital images, you are asked what to do with those images. You can
select to do nothing. Or you can select to have the images opened in the Shotwell
image viewer (the default application for viewing images on the GNOME desktop) or
another installed photo manager.

B Software—When inserted media contains an autorun application, an autorun
prompt opens. To change that behavior (to do nothing or open the media contents
in a folder), you can select that from this box.

m Other Media—Select the Type box under the Other Media heading to select how
less commonly used media are handled. For example, you can select what actions
are taken to handle audio DVDs or blank Blu-ray discs, CDs, DVDs or HD DVD discs.
You can select what applications to launch for Blu-ray video disc, ebook readers, HD
DVD videos, Picture CDs, Super Video CDs, and video CDs.

Note that the settings described here are in effect only for the user who is currently logged
in. If multiple users have login accounts, each can have his or her own way of handling
removable media.

NoTE

The Totem movie player does not play movie DVDs unless you add extra software to decrypt the DVD. You should look
into legal issues and other movie player options if you want to play commercial DVD movies from Linux.

The options to connect regular USB flash drives or hard drives are not listed on this
window. But if you connect one of those drives to your computer, devices are created
when you plug them in (named /dev/sda, /dev/sdb, and so on). Any filesystems found
on those devices are automatically mounted on /run/media/username, and you are
prompted if you want to open a Nautilus window to view files on those devices. This is
done automatically, so you don't have to do any special configuration to make this happen.

When you are finished with a USB drive, right-click the device’s name in the Nautilus file
manager window and select Safely Remove Drive. This action unmounts the drive and
removes the mount point in the /run/media/username directory. After that, you can
safely unplug the USB drive from your computer.

196

Chapter 8: Learning System Administration

Working with loadable modules

If you have added hardware to your computer that isn't properly detected, you might need
to manually load a module for that hardware. Linux comes with a set of commands for
loading, unloading, and getting information about hardware modules.

Kernel modules are installed in /1ib/modules/ subdirectories. The name of each
subdirectory is based on the release number of the kernel. For example, if the kernel

were 3.17.4-301.fc21.x86_64, the /1ib/modules/3.17.4-301.fc21.x86_ 64 directory
would contain drivers for that kernel. Modules in those directories can then be loaded and
unloaded as they are needed.

Commands for listing, loading, unloading, and getting information about modules are
available with Linux. The following sections describe how to use those modules.

Listing loaded modules

To see which modules are currently loaded into the running kernel on your computer, use
the 1smod command. Consider the following example:

lsmod

Module Size Used by

viat 17411 1

fat 65059 1 vfat

uas 23208 0

usb storage 65065 2 uas

fuse 91446 3

ipt MASQUERADE 12880 3

xt CHECKSUM 12549 1

nfsv3 39043 1
rpcsec_gss_krbb 31477 0

nfsv4 466956 0
dns_resolver 13096 1 nfsv4

nfs 233966 3 nfsv3,nfsvé
i2c_algo_bit 13257 1 nouveau
drm kms helper 58041 1 nouveau
ttm 80772 1 nouveau
drm 291361 7 ttm,drm kms_helper,nouveau
ata_generic 12923 0

pata acpi 13053 0

el000 137260 O

i2c_core 55486 5 drm,i2c_i801,drm_kms helper

This output shows a variety of modules that have been loaded on a Linux system, including
one for a network interface card (e1000).

197

Part Ill: Becoming a Linux System Administrator

198

To find information about any of the loaded modules, use the modinfo command. For
example, you can type the following:

/sbin/modinfo -d 1000
Intel (R) PRO/1000 Network Driver

Not all modules have descriptions available and, if nothing is available, no data is
returned. In this case, however, the e1000 module is described as an Intel(R) PRO/1000
Network Driver module. You can also use the -a option to see the author of the module or
-n to see the object file representing the module. The author information often has the
e-mail address of the driver’s creator, so you can contact the author if you have problems
or questions about it.

Loading modules

You can load any module (as root user) that has been compiled and installed

(toa /1lib/modules subdirectory) into your running kernel using the modprobe
command. A common reason for loading a module is to use a feature temporarily (such as
loading a module to support a special filesystem on a floppy you want to access). Another
reason to load a module is to identify that module as one that will be used by a particular
piece of hardware that could not be autodetected.

Here is an example of the modprobe command being used to load the parport module,
which provides the core functions to share parallel ports with multiple devices:

modprobe parport

After parport is loaded, you can load the parport pc module to define the PC-style
ports available through the interface. The parport pc module lets you optionally
define the addresses and IRQ numbers associated with each device sharing the parallel
port. For example:

modprobe parport pc io=0x3bc irg=auto
In this example, a device is identified as having an address of 0x3bc, and the IRQ for the

device is auto-detected.

The modprobe command loads modules temporarily—they disappear at the next reboot. To
permanently add the module to your system, add the modprobe command line to one of
the startup scripts run at boot time.

Removing modules

Use the rmmod command to remove a module from a running kernel. For example, to
remove the module parport pc from the current kernel, type the following:

Chapter 8: Learning System Administration

rmmod parport pc

If it is not currently busy, the parport pc module is removed from the running kernel. If
it is busy, try killing any process that might be using the device. Then run rmmod again.
Sometimes, the module you are trying to remove depends on other modules that may be
loaded. For instance, the usbcore module cannot be unloaded while the USB printer mod-
ule (usblp) is loaded, as shown here:

rmmod usbcore
ERROR: Module usbcore is in use by wacom,usblp,ehci hcd,ohci hed

Instead of using rmmod to remove modules, you could use the modprobe -r command.
With modprobe -r, instead of just removing the module you request, you can also remove
dependent modules that are not being used by other modules.

Summary

Many features of Linux, especially those that can potentially damage the system or impact
other users, require that you gain root privilege. This chapter describes different ways of
obtaining root privilege: direct login, su command, or sudo command. It also covers some
of the key responsibilities of a system administrator and components (configuration files,
graphical tools, and so on) that are critical to a system administrator’s work.

The next chapter describes how to install a Linux system. Approaches to installing
Linux that are covered in that chapter include how to install from live media and from
installation media.

Exercises

Use these exercises to test your knowledge of system administration and allow you to
explore information about your system hardware. These tasks assume you are running

a Fedora or Red Hat Enterprise Linux system (although some tasks work on other Linux
systems as well). If you are stuck, solutions to the tasks are shown in Appendix B (although
in Linux, there are often multiple ways to complete a task).

1. From a GNOME desktop, open the Date and Time window. Check that your time zone
is set properly.

2. Run the System Monitor to sort all processes running on your system by user name.
Notice which users run which processes.

3. Find all files under the /var/spool directory that are owned by users other than
root and display a long listing of them.

199

Part Ill: Becoming a Linux System Administrator

200

Become the root user using the su - command. To prove that you have root
privilege, create an empty or plain text file named /mnt/test.txt. Exit the shell
when you are finished. If you are using Ubuntu, you must set your root password
first (sudo passwd root).

Log in as a regular user and become root using su -. Edit the /etc/sudoers
file to allow your regular user account to have full root privilege via the sudo
command.

As the user you just gave sudoers privilege to, use the sudo command to create
a file called /mnt/test2.txt. Verify that the file is there and owned by the root
user.

. Run the journalctl -f command and plug a USB drive into a USB port on your

computer. If it doesn't mount automatically, mount it on /mnt/test. In a second
terminal, unmount the device and remove it, continuing to watch the output from
journalctl -f.

Run a command to see what USB devices are connected to your computer.

9. Pretend that you added a TV card to your computer, but the module needed to use it

10.

(bttv) was not properly detected and loaded. Load the bttv module yourself, and
then look to see that it was loaded. Were other modules loaded with it?

Remove the bttv module along with any other modules that were loaded with it.
List your modules to make sure this was done.

CHAPTER

Installing Linux

IN THIS CHAPTER

Choosing an installation method

Installing a single- or multi-boot system
Performing a Live media installation of Fedora
Installing Red Hat Enterprise Linux
Understanding cloud-based installations
Partitioning the disk for installation

Understanding the GRUB boot loader

up to spec (hard disk, RAM, CPU, and so on) and you don't mind totally erasing your hard drive.
Installation is more complex if you want to stray from a default installation. So this chapter
begins with a simple installation from Live media and progresses to more complex installation topics.

I nstalling Linux has become a fairly easy thing to do—if you are starting with a computer that is

To ease you into the subject of installing Linux, I cover three ways of installing Linux and step you
through each process:

m Installing from Live media—A Linux Live media ISO is a single, read-only image that
contains everything you need to start a Linux operating system. That image can be burned
to a DVD or USB drive and booted from that medium. With the Live media, you can totally
ignore your computer’s hard disk; in fact, you can run Live media on a system with no
hard disk. After you are running the Live Linux system, some Live media ISOs allow you to
launch an application that permanently installs the contents of the Live medium to your
hard disk. The first installation procedure in this chapter shows you how to permanently
install Linux from a Fedora Live media ISO.

m Installing from an installation DVD—An installation DVD, available with Fedora, RHEL,
Ubuntu and other Linux distributions, offers more flexible ways of installing Linux. In
particular, instead of just copying the whole Live media contents to your computer, with
an installation DVD you can choose exactly which software packages you want. The second
installation procedure I show in this chapter steps you through an installation process from
a Red Hat Enterprise Linux 7 installation DVD.

201

Part Ill: Becoming a Linux System Administrator

B Installing in the enterprise—Sitting in front of a computer and clicking through
installation questions isn’t inconvenient if you are installing a single system. But
what if you need to install dozens or hundreds of Linux systems? What if you want
to install those systems in particular ways that need to be repeated over multiple
installations? The last section of this chapter describes efficient ways of installing
multiple Linux systems, using network installation features and kickstart files.

A fourth method of installation not covered in this chapter is to install Linux as a virtual
machine on a virtualization host, such as Virtual Box or VMware system. Chapter 26 and
27 describe ways of installing or deploying a virtual machine on a Linux KVM host or in a
cloud environment.

To try the procedures in this chapter along with me, you should have a computer in front of
you that you don’t mind totally erasing. As an alternative, you can use a computer that has
another operating system installed (such as Windows), as long as there is enough unused disk
space available outside that operating system. I describe the procedure, and risk of data loss,
if you decide to set up one of these “dual boot” (Linux and Windows) arrangements.

Choosing a Computer

You can get a Linux distribution that runs on handheld devices or an old PC in your closet
with as little as 24MB of RAM and a 486 processor. To have a good desktop PC experience
with Linux, however, you should consider what you want to be able to do with Linux when
you are choosing your computer.

Be sure to consider the basic specifications you need for a PC-type computer to run the
Fedora and Red Hat Enterprise Linux distributions. Because Fedora is used as the basis for
Red Hat Enterprise Linux releases, hardware requirements are similar for basic desktop and
server hardware for those two distributions.

m Processor—A 400 MHz Pentium processor is the minimum for a GUI installation.
For most applications, a 32-bit processor is fine (x86). However, if you want to set
up the system to do virtualization, you need a 64-bit processor (x86_64).

NoTE
If you have a 486 machine (at least 100 MHz), consider trying Damn Small Linux (http://www.damnsmall -

linux.org) or Slackware (http://www.slackware.org). It won’'t have the same graphical interface, but
you could do some of the shell exercises. If you have a MacBook, try a GNOME version of Ubuntu that you can get at
https://help.ubuntu.com/community/MacBook.

m RAM—Fedora recommends at least 1GB of RAM, but at least 2GB or 3GB would be
much better. On my RHEL desktop, I'm running a web browser, word processor, and
mail reader, and I'm consuming over 2GB of RAM.

202

http://www.damnsmall-linux.org
http://www.damnsmall-linux.org
http://www.damnsmall-linux.org
http://www.slackware.org
https://help.ubuntu.com/community/MacBook

Chapter 9: Installing Linux

B DVD or CD drive—You need to be able to boot up the installation process from a DVD,
CD, or USB drive. In recent releases, the Fedora live media ISO has become too big to
fit on a CD, so you need to burn it to a DVD or USB drive. If you can’t boot from a DVD
or USB drive, there are ways to start the installation from a hard disk or by using a
PXE install. After the installation process is started, more software can sometimes be
retrieved from different locations (over the network or from hard disk, for example).

NoTE
PXE (pronounced pixie) stands for Preboot eXecution Environment. You can boot a client computer from a Network

Interface Card (NIC) that is PXE-enabled. If a PXE boot server is available on the network, it can provide everything a
client computer needs to boot. What it boots can be an installer. So with a PXE boot, it is possible to do a complete
Linux installation without a CD, DVD, or any other physical medium.

B Network card—You need wired or wireless networking hardware to be able to add
more software or get software updates. Fedora offers free software repositories if
you can connect to the Internet. For RHEL, updates are available as part of the
subscription price.

B Disk space—Fedora recommends at least 10GB of disk space for an average desktop
installation, although installations can range (depending on which packages you
choose to install) from 600MB (for a minimal server with no GUI install) to 7GB
(to install all packages from the installation DVD). Consider the amount of data
you need to store. Although documents can consume very little space, videos can
consume massive amounts of space. (By comparison, you can install the Damn
Small Linux Live CD to disk with only about 200MB of disk space.)

B Special hardware features—Some Linux features require special hardware
features. For example, to use Fedora or RHEL as a virtualization host using KVM,
the computer must have a processor that supports virtualization. These include
AMD-V or Intel-VT chips.

If you're not sure about your computer hardware, there are a few ways to check what
you have. If you are running Windows, the System Properties window can show you the
processor you have, as well as the amount of RAM that’s installed. As an alternative,
with the Fedora Live CD booted, open a shell and type dmesg | less to see a listing of
hardware as it is detected on your system.

With your hardware in place, you can choose to install Linux from a Live CD or from
installation media, as described in the following sections.

Installing Fedora from Live media

In Chapter 1, you learned how to get and boot up Linux Live media. This chapter steps you
through an installation process of a Fedora Live DVD so it is permanently installed on your
hard disk.

203

Part Ill: Becoming a Linux System Administrator

Simplicity is the main advantage of installing from Live media. Essentially, you are just
copying the kernel, applications, and settings from the ISO image to the hard disk. There
are fewer decisions you have to make to do this kind of installation, but you also don't get
to choose exactly which software packages to install. After the installation, you can add
and remove packages as you please.

The first decisions you have to make about your Live media installation include where
you want to install the system and whether you want to keep existing operating systems
around when your installation is done:

m Single-boot computer—The easiest way to install Linux is to not have to worry
about other operating systems or data on the computer and have Linux replace
everything. When you are done, the computer boots up directly to Fedora.

B Multi-boot computer—If you already have Windows installed on a computer,
and you don't want to erase it, you can install Fedora along with Windows on
that system. Then at boot time, you can choose which operating system to start
up. To be able to install Fedora on a system with another operating system
installed, you must either have extra disk space available (outside the Windows
partition) or be able to shrink the Windows system to gain enough free space to
install Fedora.

B Bare metal or virtual system—The resulting Fedora installation can be installed to
boot up directly from the computer hardware or from within an existing operating
system on the computer. If you have a computer that is running as a virtual
host, you can install Fedora on that system as a virtual guest. Virtualization host
software includes KVM, Xen, and VirtualBox (for Linux and UNIX systems, as well as
Windows and the MAC), Hyper-V (for Microsoft systems), and VMWare (both Linux
and Microsoft systems). You can use the Fedora Live ISO image from disk or burned
to a DVD to start an installation from your chosen hypervisor host. (Chapter 16
describes how to set up a KVM virtualization host.)

The following procedure steps you through the process of installing the Fedora Live ISO
described in Chapter 1 to your local computer. Because the Fedora 21 installation is very
similar to the Red Hat Enterprise Linux 7 installation described later in this chapter, you
can refer to that procedure if you want to go beyond the simple selections shown here
(particularly in the area of storage configuration).

CAUTION
Before beginning the procedure, be sure to make backup copies of any data that you want to keep. Although you can

choose to not erase selected disk partitions (as long as you have enough space available on other partitions), there
is always a risk that data can be lost when you are manipulating disk partitions. Also, unplug any USB drives you have
plugged into your computer because they could be overwritten.

204

Chapter 9: Installing Linux

1. Get Fedora. Choose the Fedora Live media image you want to use, download it to
your local system, and burn it to a DVD, as described in Chapter 1. See Appendix A for
information on how to get the Fedora Live media and burn it to a DVD or USB drive.

2. Boot the Live image. Insert the DVD or USB drive. When the BIOS screen appears,
look for a message that tells you to press a particular function key (such as F12)
to interrupt the boot process and select the boot medium. Select the DVD or USB
drive, depending on which you have, and Fedora should come up and display the
boot screen. When you see the boot screen, select Start Fedora Live.

3. Start the installation. When the Welcome to Fedora screen appears, position your
mouse over the Install to Hard Drive area and select it. Figure 9.1 shows an example
of the Install to Hard Drive selection on the Fedora Live media.

FIGURE 9.1

Start the installation process from Live media.

Welcome to Fedora

Try Fedora Install to Hard Drive

You are currently running Fedora from live media.
You can install Fedora now, or choose "Install to Hard Drive" in the
Activities Overview at any later time.

4. Select the language. When prompted, choose the language type that best suits
you (such as U.S. English) and select Next. You should see the Installation summary
screen, as shown in Figure 9.2.

5. Select DATE & TIME. From the DATE & TIME screen, you can select your time zone
by either clicking the map or choosing the region and city from drop-down boxes.
To set the date and time, if you have an Internet connection, you can select the
Network Time button to turn it on. Or you can select OFF and set the date and time
manually from boxes on the bottom of the screen. Select Done in the upper-right
corner when you are finished.

205

Part Ill: Becoming a Linux System Administrator

FIGURE 9.2

Select configuration options from the Installation Summary screen.

INSTALLATION SUMMARY FEDORA 21 INSTALLATION
BEus | Help! ‘
fedora. LOCALIZATION
WORKSTATION
DATE & TIME KEYBOARD
9 Americas/New York timezone English (US)
SYSTEM

INSTALLATION DESTINATION 9 NETWORK & HOSTNAME
\ Automatic partitioning selected 6 Wired (ethO) connected

6. Select INSTALLATION DESTINATION. Available storage devices (such as your hard
drive) are displayed, with your hard drive selected as the installation destination.
If you want the installer to automatically install Fedora, just select Done in the
upper-left corner. Here are your choices as this point:

m Automatically configure...—If there is enough available disk space on the
selected disk drive, you can continue with the installation by selecting
Continue. The installer will ensure that there’s enough available disk space to
install Fedora.

® I want more space...—If you want to get rid of some or all the space on the
hard disk that is currently being used, choose this selection and click Continue.
You can erase partitions that currently contain data.

m I want to review/modify...—To take more control of your disk partitioning,
select this option and click Continue. This lets you add and delete partitioning
to divide up you disk exactly as you like.

m Other options—From this screen, you can also choose your partitioning scheme
(I recommend LVM because it allows you to expand your storage more easily
later). You can also choose whether to encrypt the data on your disk, making
your data inaccessible to anyone who tries to boot your computer without the
password you set later.

Select Done when you have configured your storage.

7. Select KEYBOARD. You can use the default English (U.S.) keyboard or select
KEYBOARD to choose a different keyboard layout.

206

Chapter 9: Installing Linux

8. Select NETWORK CONFIGURATION. Choose this to be able to enable your
network interface and type in a hostname for the computer. If DHCP is available
on the network, you can simply set your network interfaces to pick up IP address
information automatically. You can also set up IP address information manually.
Select Begin Installation when you are finished, and the installation process begins.

9. Select ROOT PASSWORD. As Fedora installs, this selection lets you set the password
for the root user. Type any password you like, and then type it again in the Confirm
box. Select Done to set the password. If the password is not at least six characters
long or if it is considered to be too easy (like a common word), the installer doesn't
leave the password screen when you click Done. You can either change the password
or click Done again to have the installer use the password anyway.

10. Select CREATE USER. It is good practice to have at least one regular (non-root)
user on every system, because root should be used only for administrative tasks
and not everyday computer use. Add the user’s full name, short username, and
password. To allow this user to do administrative tasks without knowing the root
password, select the “Make this user administrator” box.

By clicking the Advanced box, you can change some of the default settings.

For example, with a user named chris, the default home directory would be
/home/chris, and the next available user ID and group ID are assigned to the
user. By selecting Advanced, you can change those settings and even assign the
user to additional groups. Select Done when you are finished adding the user.

11. Finish Configuration. When the first part of the installation is complete, click
Finish Configuration. Some final configuration happens on the system at this
point. When that is finished, select Quit. At this point, the disk is repartitioned,
filesystems are formatted, the Linux image is copied to hard disk, and the
necessary settings are implemented.

12. Reboot. Select the little on/off button on the top-right corner of the screen. When
prompted, click the restart button. Eject or remove the Live media. The computer
should boot to your newly installed Fedora system. (You may need to actually
power off the computer for it to boot back up.)

13. Log in and begin using Fedora. The login screen appears at this point, allowing
you to log in as the user account and password you just created.

14. Get software updates. To keep your system secure and up to date, one of the
first tasks you should do after installing Fedora is to get the latest versions of the
software you just installed. If your computer has an Internet connection (plugging
into a wired Ethernet network or selecting an accessible wireless network from the
desktop takes care of that), you can simply open a Terminal as root and type yum
update to download and update all your packages from the Internet. If a new kernel
is installed, you can reboot your computer to have that new kernel take effect.

At this point, you can begin using the desktop, as described in Chapter 2. You can also use
the system to perform exercises from any of the chapters in this book.

207

Part Ill: Becoming a Linux System Administrator

208

Installing Red Hat Enterprise Linux from
Installation Media

In addition to offering a live DVD, most Linux distributions offer a single image or set of
images that can be used to install the distribution. For this type of installation media,
instead of copying the entire contents of the medium to disk, software is split up into
packages that you can select to meet your exact needs. A full installation DVD, for example,
can allow you to install anything from a minimal system to a full-featured desktop to a
full-blown server that offers multiple services.

In this chapter, I use a Red Hat Enterprise Linux 7 server edition installation DVD as the
installation medium. Review the hardware information and descriptions of dual booting in
the previous section before beginning your RHEL installation.

Follow this procedure to install Red Hat Enterprise Linux from an installation DVD.

1. Get installation media. The process of downloading RHEL install ISO images is
described on the Red Hat Enterprise Linux product page. If you are not yet a Red
Hat customer, you can apply for an evaluation copy and download ISO images
here: http://www.redhat.com/en/technologies/linux-platforms/
enterprise-linux.

This requires that you create a Red Hat account. If that is not possible, you can
download an installation DVD from a mirror site of the Cent0S project to get a
similar experience: http://wiki.centos.org/Download.

For this example, I used the 3.4G RHEL 7 Server DVD ISO named rhel-server-
7.0-x86_64-dvd.iso. After you have the DVD ISO, you can burn it to a physical
DVD as described in Appendix A.

2. Boot the installation media. Insert the DVD into your DVD drive, and reboot your
computer. The Welcome screen appears.

3. Select Install or Test media. Select “Install” or “Test this media & install” to
do a new installation of RHEL. The media test verifies that the DVD has not
been corrupted during the copy or burning process. If you need to modify the
installation process, you can add boot options by pressing the Tab key with a boot
entry highlighted and typing in the options you want. See the section “Using
installation boot options” later in this chapter.

4. Select a language. Select your language, and select Continue. The Installation
Summary screen appears. From that screen, you can select to change: Date & Time,
Language support, Keyboard, Installation Source, Software Selection, Installation
Destination, and Network & Hostname, as shown in Figure 9.3.

5. Date & Time. Choose a time zone for your machine from either the map or the
list shown (as described in the Fedora section). Either set the time manually with
up/down arrows or select Network Time to have your system try to automatically

http://www.redhat.com/en/technologies/linux-platforms
http://wiki.centos.org/Download

Chapter 9: Installing Linux

connect to networked time servers to sync system time. Select Done when you
are finished.

FIGURE 9.3

Choose from Localization, Software, and System topics on the Installation Summary screen.

INSTALLATION SUMMARY RED HAT ENTERPRISE LINUX 7.0 INSTALLATION
Eus

LOCALIZATION
DATE & TIME KEYBOARD
Americas/New York timezone English (US)
LANGUAGE SUPPORT
English (United States)

SOFTWARE
INSTALLATION SOURCE SOFTWARE SELECTION
Local media Server with GUI

SYSTEM
INSTALLATION DESTINATION NETWORK & HOSTNAME
Automatic partitioning selected Wired (eth0) connected

Quit Begin Installation

6. Language support. You have a chance to add support for additional languages
(beyond what you set by default earlier). Select Done when you are finished.

7. Keyboard. Choose from different types of keyboards available with the languages
you selected earlier. Type some text to see how the keys are laid out.

8. Installation Source. The installation DVD is used, by default, to provide the
RPM packages used during installation. You have the option of selecting “On the
network” and choosing a Web URL (http, https, or ftp) when a Red Hat Enterprise
Linux software repository is installed. After choosing the DVD or a network
location, you can add additional yum repositories to have those repositories used
during installation as well. Select Done when you are finished.

9. Software Selection. A minimal installation is selected by default, which offers
no desktop interface (shell only). If you are new to Linux and want to try out
some services, the “Server with GUI” selection provides a GNOME 3 desktop
system on top of a basic server install. You can select to add other services, such
as a DNS, File and Storage, Identity Management, and other services. Other base
environments include Infrastructure server, File and Print server, Basic Web

209

Part Ill: Becoming a Linux System Administrator

210

10.

11.

12.

13.

14.

15.

16.

server, and Virtualization Host server. Select Done when you are ready
to continue.

Installation Destination. The new RHEL system is installed, by default, on the
local hard drive using automatic partitioning. You also have the option of attaching
network storage or special storage, such as Firmware RAID. (See the section
“Partitioning Hard Drives” later in this chapter for details on configuring storage.)
Click Done when you are finished. You may be asked to verify that it’s okay to
delete existing storage.

Network & Hostname. Any network interface cards that are discovered can be
configured at this point. If a DHCP service is available on the network, network
address information is assigned to the interface after you select ON. Select
Configure if you prefer to configure the network interface manually. Fill in the
Hostname box if you want to set the system’s hostname. Setting up your network
and hostname during installation can make it easier to begin using your system
after installation. Click Done to continue.

Begin Installation. Click the Begin Installation button to start the install process.
A progress bar marks the progress of the installation. As the system is installing,
you can set the root password and create a new user account for your new system.

Root Password. Set the password for the root user and verify it (type it again).
Click Done to accept it. If the password is too short or too weak, you stay on the
page (where you can set a new password). If you decide to keep the weak password
instead, click Done again to accept the weak password.

Create User. It is good practice to log into a Linux system with a non-root user
account and request root privilege as needed. You can set up a user account,
including a username, full name, and password. You can select “Make this user
administrator” to give that user sudo privileges (allowing the account to act as the
root user as needed). Select Done when you are finished. If the password you enter
is too short or otherwise weak, you must change it or click Done again if you still
want to use the weak password.

Complete the installation. When installation is finished, click Reboot. Pop out the
DVD when the system restarts, and Red Hat Enterprise Linux starts up from the
hard disk.

Run firstboot. If you installed a desktop interface, the firstboot screen appears the
first time you boot the system. Here’s what you do:

B License—Read and agree to the License Information, click Done, and click
Finish Configuration.

B Kdump—You can choose to set aside some amount of RAM for the kdump
feature. If kdump is enabled, the RAM set aside can be used in the event that
your kernel crashes to have a place that the kernel dump can be stored. Without
kdump, there would be no way to diagnose a crashed kernel. If you enable
kdump, which is done by default, you can also manually set the amount of
memory to set aside for it. Click Forward when you are finished.

Chapter 9: Installing Linux

B Subscription Registration—Provided that your network is configured, you can
select “Yes” to register your system now. When prompted, you can leave the
default subscription management system in place (subscription.rhn.redhat.com)
or enter the location of a Red Hat Satellite server to register your system. You
need your Red Hat account and password to register and entitle your system
for updates. In most cases, you can automatically attach an entitlement to the
system. However, you can click the “Manually attach...” button if you want to
choose a specific entitlement to attach to the system later when you log in to
the system.

You should now be able to log in to your Red Hat Enterprise Linux system. One of the first
things you should do is get software updates for the new system.

Understanding Cloud-Based Installations

When you install a Linux system on a physical computer, the installer can see the
computer’s hard drive, network interfaces, CPUs, and other hardware components. When
you install Linux in a cloud environment, those physical components are abstracted into
a pool of resources. So, to install a Linux distribution in an Amazon EC2, Google Compute
Engine, or OpenStack cloud platform, you need to go about things differently.

The common way of installing Linux in a cloud is to start with a file that is an image of
an installed Linux system. Typically, that image includes all the files needed by a basic,
running Linux system. Metadata is added to that image from a configuration file or by
filling out a form from a cloud controller that creates and launches the operating system
as a virtual machine.

The kind of information added to the image might include a particular hostname, root
password, and new user account. You might also want to choose to have a specific amount
of disk space, particular network configuration, and a certain number of CPU processors.

Methods for installing Linux in a local cloud-like KVM environment are discussed in
Chapter 26, “Using Linux for Cloud Computing.” Methods for deploying cloud images are
contained in Chapter 27, “Deploying Linux to the Cloud.” That chapter covers how to run
a Linux system as a virtual machine image on a KVM environment, Amazon EC2 cloud, or
OpenStack environment.

Installing Linux in the Enterprise

If you were managing dozens, hundreds, even thousands of Linux systems in a large
enterprise, it would be terribly inefficient to have to go to each computer to type and
click through each installation. Fortunately, with Red Hat Enterprise Linux and other

211

Part Ill: Becoming a Linux System Administrator

212

distributions, you can automate installation in such a way that all you need to do is turn
on a computer and boot from the computer’s network interface card to get your desired
Linux installation.

Although we have focused on installing Linux from a DVD or USB media, there are many
other ways to launch a Linux installation and many ways to complete an installation. The
following bullets step through the installation process and describe ways of changing that
process along the way:

Launch the installation medium. You can launch an installation from any medium
you can boot from a computer: CD, DVD, USB drive, hard disk, or network inter-

face card with PXE support. The computer goes through its boot order and looks

at the master boot record on the physical medium or looks for a PXE server on the
network.

Start the anaconda kernel. The job of the boot loader is to point to the special
kernel (and possibly an initial RAM disk) that starts the Linux installer (called
anaconda). So any of the media just described simply needs to point to the
location of the kernel and initial RAM disk to start the installation. If the software
packages are not on the same medium, the installation process prompts you for
where to get those packages.

Add kickstart or other boot options. Boot options (described later in this chapter)
can be passed to the anaconda kernel to configure how it starts up. One option
supported by Fedora and RHEL allows you to pass the location of a kickstart file to
the installer. That kickstart can contain all the information needed to complete the
installation: root password, partitioning, time zone, and so on to further configure
the installed system. After the installer starts, it either prompts for needed
information or uses the answers provided in the kickstart file.

Find software packages. Software packages don’t have to be on the installation
medium. This allows you to launch an installation from a boot medium that contains
only a kernel and initial RAM disk. From the kickstart file or from an option you
enter manually to the installer, you can identify the location of the repository
holding the RPM software packages. That location can be a local CD (cdrom), website
(http), FTP site (ftp), NES share (nfs), NFS ISO (nfsiso), or local disk (hd).

Modify installation with kickstart scripts. Scripts included in a kickstart can
run commands you choose before or after the installation to further configure the
Linux system. Those commands can add users, change permissions, create files and
directories, grab files over the network, or otherwise configure the installed system
exactly as you specify.

Although installing Linux in enterprise environments is beyond the scope of this book, I
want you to understand the technologies that are available when you want to automate the
Linux installation process. Here are some of those technologies available to use with Red
Hat Enterprise Linux, along with links to where you can find more information about them:

Chapter 9: Installing Linux

B Install server—If you set up an installation server, you don't have to carry the
software packages around to each machine where you install RHEL. Essentially, you
copy all the software packages from the RHEL installation medium to a web server
(http), FTP server (ftp), or NES server (nfs), and then point to the location of that
server when you boot the installer. The RHEL Installation Guide describes how to
set up an installation server (https://access.redhat.com/documentation/
en-US/Red Hat Enterprise Linux/7/html-single/Installation Guide/
index.html#sect-making-media-sources-network).

B PXE server—If you have a computer with a network interface card that supports
PXE booting (as most do), you can set your computer’s BIOS to boot from that
NIC. If you have set up a PXE server on that network, that server can present a
menu to the computer containing entries to launch an installation process. The
RHEL Installation Guide provides information on how to set up PXE servers for
installation (https://access.redhat.com/documentation/en-US/Red
Hat Enterprise Linux/7/html-single/Installation Guide/index.
html#chap-installation-server-setup).

B Kickstart files—To fully automate an installation, you create what is called a
kickstart file. By passing a kickstart file as a boot option to a Linux installer, you
can provide answers to all the installation questions you would normally have to
click through.

When you install RHEL, a kickstart file containing answers to all installation ques-
tions for the installation you just did is in the /root/anaconda-ks.cfg file. You
can present that file to your next installation to repeat the installation configura-
tion or use that file as a model for different installations.

See the RHEL Installation Guide for information on passing a kickstart file to the
anaconda installer (https://access.redhat.com/documentation/en-US/
Red Hat Enterprise Linux/7/html-single/Installation Guide/
index.html#sect-parameter-configuration-files-kickstart-

$390) and creating your own kickstart files (https://access.redhat.com/
documentation/en-US/Red Hat Enterprise Linux/6/html-single/
Installation Guide/index.html#sl-kickstart2-file).

Exploring Common Installation Topics

Some of the installation topics touched upon earlier in this chapter require further
explanation for you to be able to implement them fully. Read through the topics in this
section to get a greater understanding of specific installation topics.

Upgrading or installing from scratch

If you have an earlier version of Linux already installed on your computer, Fedora, Ubuntu,
and other Linux distributions offer an upgrade option. Red Hat Enterprise Linux offers a
limited upgrade path from RHEL 6 to RHEL 7.

213

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Installation_Guide/index.html#sect-making-media-sources-ne
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Installation_Guide/index.html#sect-making-media-sources-ne
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Installation_Guide/index.html#sect-making-media-sources-ne
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Installation_Guide/index.html#chap-installation-server-set
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Installation_Guide/index.html#chap-installation-server-set
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Installation_Guide/index.html#chap-installation-server-set
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Installation_Guide/index.html#sect-parameter-configuration
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Installation_Guide/index.html#sect-parameter-configuration
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Installation_Guide/index.html#sect-parameter-configuration
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Installation_Guide/index.html#sect-parameter-configuration
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Installation_Guide/index.html#s1-kickstart2-file
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Installation_Guide/index.html#s1-kickstart2-file
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Installation_Guide/index.html#s1-kickstart2-file

Part Ill: Becoming a Linux System Administrator

Upgrading lets you move a Linux system from one major release to the next. Between minor
releases, you can simply update packages as needed (for example, by typing yum update).
Here are a few general rules before performing an upgrade:

m Remove extra packages. If you have software packages you don't need, remove
them before you do an upgrade. Upgrade processes typically upgrade only those
packages that are on your system. Upgrades generally do more checking and
comparing than clean installs do, so any package you can remove saves time
during the upgrade process.

m Check configuration files. A Linux upgrade procedure often leaves copies of
old configuration files. You should check that the new configuration files still
work for you.

Tip

Installing Linux from scratch goes faster than an upgrade. It also results in a cleaner Linux system. So, if you don't

need the data on your system (or if you have a backup of your data), | recommend you do a fresh installation. Then
you can restore your data to a freshly installed system.

Some Linux distributions, most notably Gentoo, have taken the approach of providing
ongoing updates. Instead of taking a new release every few months, you simply continuously
grab updated packages as they become available and install them on your system.

Dual booting

It is possible to have multiple operating systems installed on the same computer. One way
to do this is by having multiple partitions on a hard disk and/or multiple hard disks, and
then installing different operating systems on different partitions. As long as the boot
loader contains boot information for each of the installed operating systems, you can
choose which one to run at boot time.

CAUTION
Although tools for resizing Windows partitions and setting up multi-boot systems have improved in recent years,
there is still some risk of losing data on Windows/Linux dual-boot systems. Different operating systems often have

different views of partition tables and master boot records that can cause your machine to become unbootable
(at least temporarily) or lose data permanently. Always back up your data before you try to resize a Windows (NTFS
or FAT) filesystem to make space for Linux.

If the computer you are using already has a Windows system on it, quite possibly the entire
hard disk is devoted to Windows. Although you can run a bootable Linux, such as KNOPPIX
or Damn Small Linux, without touching the hard disk, to do a more permanent installation,
you'll want to find disk space outside the Windows installation. There are a few ways to

do this:

214

Chapter 9: Installing Linux

B Add a hard disk. Instead of messing with your Windows partition, you can simply
add a hard disk and devote it to Linux.

B Resize your Windows partition. If you have available space on a Windows
partition, you can shrink that partition so free space is available on the disk to
devote to Linux. Tools such as Acronis Disk Director (http://www.acronis.com)
are available to resize your disk partitions and set up a workable boot manager.
Some Linux distributions (particularly bootable Linuxes used as rescue CDs) include
a tool called GParted (which includes software from the Linux-NTES project for
resizing Windows NTES partitions).

NoTE

Type yum install gparted (in Fedora) or apt-get install gparted (in Ubuntu) to install GParted.
Run gparted as root to start it.

Before you try to resize your Windows partition, you might need to defragment it. To
defragment your disk on some Windows systems, so that all your used space is put in
order on the disk, open My Computer, right-click your hard disk icon (typically C:), select
Properties, click Tools, and select Defragment Now.

Defragmenting your disk can be a fairly long process. The result of defragmentation is
that all the data on your disk are contiguous, creating lots of contiguous free space at the
end of the partition. Sometimes, you have to complete the following special tasks to make
this true:

m If the Windows swap file is not moved during defragmentation, you must remove it.
Then, after you defragment your disk again and resize it, you need to restore the
swap file. To remove the swap file, open the Control Panel, open the System icon,
click the Performance tab, and select Virtual Memory. To disable the swap file, click
Disable Virtual Memory.

m If your DOS partition has hidden files that are on the space you are trying to free
up, you need to find them. In some cases, you can't delete them. In other cases, such
as swap files created by a program, you can safely delete those files. This is a bit
tricky because some files should not be deleted, such as DOS system files. You can
use the attrib -s -h command from the root directory to deal with hidden files.

After your disk is defragmented, you can use commercial tools described earlier (Acronis
Disk Director) to repartition your hard disk to make space for Linux. Or use the open source
alternative GParted.

After you have cleared enough disk space to install Linux (see the disk space requirements
described earlier in this chapter), you can install Ubuntu, Fedora, RHEL, or another Linux
distribution. As you set up your boot loader during installation, you can identify Windows,
Linux, and any other bootable partitions so you can select which one to boot when you
start your computer.

215

http://www.acronis.com

Part Ill: Becoming a Linux System Administrator

216

Installing Linux to run virtually

Using virtualization technology, such as KVM, VMWare, VirtualBox, or Xen, you can
configure your computer to run multiple operating systems simultaneously. Typically, you
have a host operating system running (such as your Linux or Windows desktop), and then
you configure guest operating systems to run within that environment.

If you have a Windows system, you can use commercial VMWare products to run Linux on
your Windows desktop. Visit http://www.vmware.com/try-vmware to get a trial of
VMWare Workstation. Then run your installed virtual guests with the free VMWare Player.
With a full-blown version of VMWare Workstation, you can run multiple distributions at the
same time.

Open source virtualization products that are available with Linux systems include
VirtualBox (http://www.virtualbox.org), Xen (http://www.xen.org), and
KVM (http://www.linux-kvm.org). VirtualBox was developed originally by Sun
Microsystems. Some Linux distributions still use Xen. However, all Red Hat systems
currently use KVM as the basis for Red Hat’s hypervisor features in RHEL, Red Hat
Enterprise Virtualization, and other cloud projects. See Chapter 26 for information on
installing Linux as a virtual machine on a Linux KVM host.

Using installation boot options

When the anaconda kernel launches at boot time for RHEL or Fedora, boot options provided
on the kernel command line modify the behavior of the installation process. By interrupt-
ing the boot loader before the installation kernel boots, you can add your own boot options
to direct how the installation behaves.

When you see the installation boot screen, depending on the boot loader, press Tab or some
other key to be able to edit the anaconda kernel command line. The line identifying the
kernel might look something like the following:

vmlinuz initrd=initrd.img ...

The vmlinuz is the compressed kernel and initrd. img is the initial RAM disk (contain-
ing modules and other tools needed to start the installer). To add more options, just type
them at the end of that line and press Enter.

So, for example, if you have a kickstart file available from /root/ks.cfg on a CD, your
anaconda boot prompt to start the installation using the kickstart file could look like the
following:

vmlinuz initrd=initrd.img ks=cdrom:/root/ks.cfg

For Red Hat Enterprise Linux 7 and the latest Fedora releases, kernel boot options used dur-
ing installation are transitioning to a new naming method. With this new naming, a prefix
of inst. can be placed in front of any of the boot options shown in this section that are
specific to the installation process (for example, inst .xdriver or inst.repo=dvd).

http://www.vmware.com/try-vmware
http://www.virtualbox.org
http://www.xen.org
http://www.linux-kvm.org
http://www.linux-kvm.org

Chapter 9: Installing Linux

For the time being, however, you can still use the options shown in the next few sections
with the inst. prefix.

Boot options for disabling features

Sometimes, a Linux installation fails because the computer has some non-functioning or
non-supported hardware. Often, you can get around those issues by passing options to the
installer that do such things as disable selected hardware when you need to select your
own driver. Table 9.1 provides some examples:

TABLE 9.1 Boot Options for Disabling Features

Installer Option Tells System

nofirewire Not to load support for firewire devices

nodma Not to load DMA support for hard disks

noide Not to load support for IDE devices

nompath Not to enable support for multipath devices

noparport Not to load support for parallel ports

nopcmcia Not to load support for PCMCIA controllers

noprobe Not to probe hardware, instead prompt user for drivers

noscsi Not to load support for SCSI devices

nousb Not to load support for USB devices

noipvé Not to enable IPVé networking

nonet Not to probe for network devices

numa-off To disable the Non-Uniform Memory Access (NUMA) for AMDé4 architecture
acpi=off To disable the Advanced Configuration and Power Interface (ACPI)

Boot options for video problems

If you are having trouble with your video display, you can specify video settings as noted
in Table 9.2.

TABLE 9.2 Boot Options for Video Problems

Boot Option Tells System

xdriver=vesa Use standard vesa video driver

resolution=1024x768 Choose exact resolution to use

nofb Don't use the VGA 16 framebuffer driver

skipddc Don't probe DDC of the monitor (the probe can hang the installer)
graphical Force a graphical installation

217

Part Ill: Becoming a Linux System Administrator

Boot options for special installation types

By default, installation runs in graphical mode with you sitting at the console answering
questions. If you have a text-only console, or if the GUI isn't working properly, you can run an
installation in plain-text mode: By typing text, you cause the installation to run in text mode.

If you want to start installation on one computer, but you want to answer the installation
questions from another computer, you can enable a vnc (virtual network computing) instal-
lation. After you start this type of installation, you can go to another system and open a vnc
viewer, giving the viewer the address of the installation machine (such as 192.168.0.99:1).
Table 9.3 provides the necessary commands, along with what to tell the system to do.

TABLE 9.3 Boot Options for VNC Installations

Boot Option Tells System

vnc Run installation as a VNC server

vncconnect=hostname [:port] Connect to VNC client hostname and optional port

vncpassword=<password> Client uses password (at least 8 characters) to connect to
installer

Boot options for kickstarts and remote repositories

You can boot the installation process from an installation medium that contains little
more than the kernel and initial RAM disk. If that is the case, you need to identify the
repository where the software packages exist. You can do that by providing a kickstart
file or by identifying the location of the repositories in some way. To force the installer to
prompt for the repository location (CD/DVD, hard drive, NES, or URL), add askmethod to
the installation boot options.

Using repo= options, you can identify software repository locations. The following
examples show the syntax to use for creating repo= entries:

repo=hd:/dev/sdal: /myrepo

Repository in /myrepo on disk 1 first partition
repo=http://abc.example.com/myrepo

Repository available from /myrepo on Web server
repo=ftp://ftp.example.com/myrepo

Repository available from /myrepo on FTP server
repo=cdrom

Repository available from local CD or DVD
repo=nfs: :mynfs.example.com: /myrepo/

Repository available from /myrepo on NFS share
repo=nfsiso::nfs.example.com: /mydir/rhel7.iso
Installation ISO image available from NFS server

218

http://abc.example.com/myrepo
ftp://ftp.example.com/myrepo

Chapter 9: Installing Linux

Instead of identifying the repository directly, you can specify it within a kickstart file.
The following are examples of some ways to identify the location of a kickstart file.

ks=cdrom:/stuff/ks.cfg

Get kickstart from CD/DVD.

ks=hd:sda2:/test/ks.cfg

Get kickstart from test directory on hard disk (sda2)
ks=http://www.example.com/ksfiles/ks.cfg

Get kickstart from a Web server.
ks=ftp://ftp.example.com/allks/ks.cfg

Get kickstart from a FTP server.
ks=nfs:mynfs.example.com:/someks/ks.cfg

Get kickstart from an NFS server.

Miscellaneous boot options
Here are a few other options you can pass to the installer that don't fit in a category.

rescue
Instead of installing, run the kernel to open Linux rescue mode.

mediacheck
Check the installation CD/DVD for checksum errors.

For further information on using the anaconda installer in rescue mode (to res-
cue a broken Linux system), see Chapter 21, “Troubleshooting Linux.” For infor-
mation on the latest boot options use in RHEL 7, refer to the RHEL 7 Installation
Guide (https://access.redhat.com/documentation/en-US/Red Hat
Enterprise Linux/7/html-single/Installation Guide/index.
html#chap-anaconda-boot-options).

Using specialized storage

In large enterprise computing environments, it is common to store the operating system
and data outside the local computer. Instead, some special storage device beyond the local
hard disk is identified to the installer, and that storage device (or devices) can be used
during installation.

Once identified, the storage devices you indicate during installation can be used the same
way that local disks are used. You can partition them and assign a structure (filesystem,
swap space, and so on) or leave them alone and simply mount them where you want the
data to be available.

The following types of specialized storage devices can be selected from the Specialized
Storage Devices screen when you install Red Hat Enterprise Linux, Fedora, or other Linux
distributions:

219

http://www.example.com/ksfiles/ks.cfg
ftp://ftp.example.com/allks/ks.cfg
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Installation_Guide/index.html#chap-anaconda-boot-options
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Installation_Guide/index.html#chap-anaconda-boot-options
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Installation_Guide/index.html#chap-anaconda-boot-options

Part Ill: Becoming a Linux System Administrator

220

® Firmware RAID—A firmware RAID device is a type of device that has hooks in the
BIOS, allowing it to be used to boot the operating system, if you choose.

B Multipath devices—As the name implies, multipath devices provide multiple paths
between the computer and its storage devices. These paths are aggregated, so these
devices look like a single device to the system using them, while the underlying
technology provides improved performance, redundancy, or both. Connections can
be provided by iSCSI or Fibre Channel over Ethernet (FCoE) devices.

®m Other SAN devices—Any device representing a Storage Area Network (SAN).

While configuring these specialized storage devices is beyond the scope of this book, know
that if you are working in an enterprise where iSCSI and FCoE devices are available, you can
configure your Linux system to use them at installation time. The types of information you
need to do this include:

m iSCSI devices—Have your storage administrator provide you with the target IP
address of the iSCSI device and the type of discovery authentication needed to use
the device. The iSCSI device may require credentials.

® Fibre Channel over Ethernet Devices (FCoE)—For FCoE, you need to know the
network interface that is connected to your FCoE switch. You can search that
interface for available FCoE devices.

Partitioning hard drives

The hard disk (or disks) on your computer provide the permanent storage area for your
data files, application programs, and the operating system itself. Partitioning is the act

of dividing a disk into logical areas that can be worked with separately. In Windows, you
typically have one partition that consumes the whole hard disk. However, with Linux there
are several reasons why you may want to have multiple partitions:

B Multiple operating systems—If you install Linux on a PC that already has a
Windows operating system, you may want to keep both operating systems on
the computer. For all practical purposes, each operating system must exist on a
completely separate partition. When your computer boots, you can choose which
system to run.

m Multiple partitions within an operating system—To protect their entire
operating system from running out of disk space, people often assign separate
partitions to different areas of the Linux filesystem. For example, if /home and
/var were assigned to separate partitions, then a gluttonous user who fills up the
/home partition wouldn't prevent logging daemons from continuing to write to log
files in the /var/log directory.

Multiple partitions also make doing certain kinds of backups (such as an image
backup) easier. For example, an image backup of /home would be much faster
(and probably more useful) than an image backup of the root filesystem (/).

Chapter 9: Installing Linux

m Different filesystem types—Different kinds of filesystems have different
structures. Filesystems of different types must be on their own partitions. Also,
you might need different filesystems to have different mount options for special
features (such as read-only or user quotas). In most Linux systems, you need at
least one filesystem type for the root of the filesystem (/) and one for your swap
area. Filesystems on CD-ROM use the is09660 filesystem type.

Tip

When you create partitions for Linux, you usually assign the filesystem type as Linux native (using the ext2, ext3,
ext4, or xfs type on most Linux systems). If the applications you are running require particularly long filenames, large
file sizes, or many inodes (each file consumes an inode), you may want to choose a different filesystem type.

For example, if you set up a news server, it can use many inodes to store small news articles. Another reason for
using a different filesystem type is to copy an image backup tape from another operating system to your local disk
(such as a legacy filesystem from an 0S/2 or Minix operating system).

Coming from Windows

If you have only used Windows operating systems before, you probably had your whole hard disk
assigned to C: and never thought about partitions. With many Linux systems, you have the opportunity
to view and change the default partitioning based on how you want to use the system.

During installation, systems such as Fedora and RHEL let you partition your hard disk
using graphical partitioning tools. The following sections describe how to partition your
disk during a Fedora installation. See the section “Tips for creating partitions” for some
ideas for creating disk partitions.

Understanding different partition types

Many Linux distributions give you the option of selecting different partition types when
you partition your hard disk during installation. Partition types include:

B Linux partitions—Use this option to create a partition for an ext2, ext3, or ext4
filesystem type that is added directly to a partition on your hard disk (or other
storage medium). The xfs filesystem type can also be used on a Linux partition.

B LVM partitions—Create an LVM partition if you plan to create or add to an LVM
volume group. LVMs give you more flexibility in growing, shrinking, and moving
partitions later than regular partitions do.

B RAID partitions—Create two or more RAID partitions to create a RAID array.
These partitions should be on separate disks to create an effective RAID array.

221

Part Ill: Becoming a Linux System Administrator

222

RAID arrays can help improve performance, reliability, or both as those features
relate to reading, writing, and storing your data.

m Swap partitions—Create a swap partition to extend the amount of virtual memory
available on your system.

The following sections describe how to add regular Linux partitions, LVM, RAID, and swap
partitions using the Fedora graphical installer. If you are still not sure when you should use
these different partition types, refer to Chapter 12 for further information on configuring
disk partitions.

Reasons for different partitioning schemes

Different opinions exist relating to how to divide up a hard disk. Here are some issues
to consider:

B Do you want to install another operating system? If you want Windows on your
computer along with Linux, you need at least one Windows (Win95, FAT16, VFAT, or
NTES type), one Linux (Linux ext4 or xfs), and usually one Linux swap partition.

m s it a multiuser system? If you are using the system yourself, you probably don't
need many partitions. One reason for partitioning an operating system is to keep
the entire system from running out of disk space at once. That also serves to put
boundaries on what an individual can use up in his or her home directory (although
disk quotas provide a more refined way of limiting disk use).

B Do you have multiple hard disks? You need at least one partition per hard disk. If
your system has two hard disks, you may assign one to / and one to /home (if you
have lots of users) or /var (if the computer is a server sharing lots of data). With a
separate /home partition, you can install another Linux system in the future with-
out disturbing your home directories (and presumably all or most of your user data).

Tips for creating partitions

Changing your disk partitions to handle multiple operating systems can be very tricky, in
part because each operating system has its own ideas about how partitioning information
should be handled, as well as different tools for doing it. Here are some tips to help you
get it right:

m If you are creating a dual-boot system, particularly for a Windows system, try to
install the Windows operating system first after partitioning your disk. Otherwise,
the Windows installation may make the Linux partitions inaccessible. Choosing a
VEAT instead of NTES filesystem for Windows also makes sharing files between your
Windows and Linux systems easier and more reliable. (Support for NTES partitions
from Linux has improved greatly in the past few years, but not all Linux systems
include NTFS support.)

® The fdisk man page recommends that you use partitioning tools that come with
an operating system to create partitions for that operating system. For example,

Chapter 9: Installing Linux

the DOS fdisk knows how to create partitions that DOS will like, and the Linux
fdisk will happily make your Linux partitions. After your hard disk is set up for
dual boot, however, you should probably not go back to Windows-only partitioning
tools. Use Linux £disk or a product made for multi-boot systems (such as Acronis
Disk Director).

B You can have up to 63 partitions on an IDE hard disk. A SCSI hard disk can have up
to 15 partitions. You typically won't need nearly that many partitions. If you need
more partitions, use LVM and create as many logical volumes as you like.

If you are using Linux as a desktop system, you probably dont need lots of different
partitions. However, some very good reasons exist for having multiple partitions for Linux
systems that are shared by lots of users or are public web servers or file servers. Having
multiple partitions within Fedora or RHEL, for example, offers the following advantages:

m Protection from attacks—Denial-of-service attacks sometimes take actions
that try to fill up your hard disk. If public areas, such as /var, are on separate
partitions, a successful attack can fill up a partition without shutting down the
whole computer. Because /var is the default location for web and FTP servers,
and is expected to hold lots of data, entire hard disks often are assigned to the
/var filesystem alone.

m Protection from corrupted filesystems—If you have only one filesystem (/),
its corruption can cause the whole Linux system to be damaged. Corruption of
a smaller partition can be easier to fix and often allows the computer to stay in
service while the correction is made.

Table 9.4 lists some directories that you may want to consider making into separate
filesystem partitions.

TABLE 9.4 Assigning Partitions to Particular Directories

Directory Explanation

/boot Sometimes, the BIOS in older PCs can access only the first 1,024 cylinders of
your hard disk. To make sure that the information in your /boot directory is
accessible to the BIOS, create a separate disk partition (of about 500MB) for
/boot. Even with several kernels installed, there is rarely a reason for /boot
to be larger than 500MB.

/usr This directory structure contains most of the applications and utilities available to
Linux users. The original theory was that if /usr were on a separate partition, you
could mount that filesystem as read-only after the operating system had been
installed. This would prevent attackers from removing important system applica-
tions or replacing them with their own versions that may cause security problems. A
separate /usr partition is also useful if you have diskless workstations on your local
network. Using NFS, you can share /usr over the network with those workstations.

Continues

223

Part Ill: Becoming a Linux System Administrator

NoTE
SYSLINUX is another boot loader you will encounter with Linux systems. The SYSLINUX boot loaders are not typically

TABLE 9.4 (continued)

Directory Explanation

/var Your FTP (/var/£tp) and web server (/var/www) directories are, by default in many
Linux systems, stored under /var. Having a separate /var partition can prevent an
attack on those facilities from corrupting or filling up your entire hard disk.

/home Because your user account directories are located in this directory, having a
separate /home account can prevent a reckless user from filling up the entire hard
disk. It also conveniently separates user data from your operating system (for easy
backups or new installs). Often, /home is created as an LVM logical volume, so it
can grow in size as user demands increase. It may also be assigned user quotas to
limit disk use.

/tmp Protecting /tmp from the rest of the hard disk by placing it on a separate partition
can ensure that applications that need to write to temporary files in /tmp can
complete their processing, even if the rest of the disk fills up.

Although people who use Linux systems casually rarely see a need for lots of partitions,
those who maintain and occasionally have to recover large systems are thankful when the
system they need to fix has several partitions. Multiple partitions can limit the effects

of deliberate damage (such as denial-of-service attacks), problems from errant users, and
accidental filesystem corruption.

Using the GRUB boot loader

A boot loader lets you choose when and how to boot the operating systems installed on your
computer’s hard disks. The GRand Unified Bootloader (GRUB) is the most popular boot loader
used for installed Linux systems. There are two major versions of GRUB available today:

B GRUB Legacy (version 1)—As of this writing, this version of GRUB is used by
default to boot Red Hat Enterprise Linux operating systems (at least through RHEL
6.5). It was also used with earlier versions of Fedora and Ubuntu.

B GRUB 2—The current versions of Red Hat Enterprise Linux, Ubuntu, and Fedora use
GRUB 2 as the default boot loader.

The GRUB Legacy version is described in the following sections. After that, there is a
description of GRUB 2.

used for installed Linux systems. However, SYSLINUX is commonly used as the boot loader for Linux CDs and DVDs.
SYSLINUX is particularly good for booting IS09660 CD images (isolinux) and USB sticks (syslinux), and for working
on older hardware or for PXE booting (pxelinux) a system over the network.

224

Chapter 9: Installing Linux

Using GRUB Legacy (version 1)

With multiple operating systems installed and several partitions set up, how does your
computer know which operating system to start? To select and manage which partition is
booted and how it is booted, you need a boot loader. The boot loader that is installed by
default with Red Hat Enterprise Linux systems is the GRand Unified Boot loader (GRUB).

GRUB Legacy is a GNU boot loader (http://www.gnu.org/software/grub) that offers
the following features:

® Support for multiple executable formats.

m Support for multi-boot operating systems (such as Fedora, RHEL, FreeBSD, NetBSD,
OpenBSD, and other Linux systems).

m Support for non-multi-boot operating systems (such as Windows 95, Windows 98,
Windows NT, Windows ME, Windows XP, Windows Vista, Windows 7, and 0S/2) via
a chain-loading function. Chain-loading is the act of loading another boot loader
(presumably one that is specific to the proprietary operating system) from GRUB to
start the selected operating system.

m Support for multiple filesystem types.
B Support for automatic decompression of boot images.

m Support for downloading boot images from a network.

At the time of this writing, GRUB version 1 is used in Red Hat Enterprise Linux 6.
GRUB version 2 is used in Fedora, Ubuntu, Red Hat Enterprise Linux 7, and other Linux
distributions. This section describes how to use GRUB version 1.

For more information on how GRUB works, at the command line type man grub or info
grub. The info grub command contains more details about GRUB.

Booting with GRUB Legacy

When you install Linux, you are typically given the option to configure the information
needed to boot your computer (with one or more operating systems) into the default
boot loader. GRUB is very flexible to configure, so it looks different in different Linux
distributions.

With the GRUB boot loader that comes with Red Hat Enterprise Linux installed in the
master boot record of your hard disk, when the BIOS starts up the boot loader one of
several things can happen:

m Default—If you do nothing, the default operating system boots automatically after
five seconds. (The timeout is set by the timeout value, in seconds, in the grub.
conf or menu. lst file.)

B Select an operating system—Press any key before the five seconds expires, and
you see a list of titles to select from. The titles can represent one or more kernels

225

http://www.gnu.org/software/grub

Part Ill: Becoming a Linux System Administrator

226

for the same Linux system. Or they may represent Windows, Ubuntu, or other
operating systems. Use the up and down arrow keys to highlight any title, and
press Enter to boot that operating system.

m Edit the boot process—If you want to change any of the options used during
the boot process, use the arrow keys to highlight the operating system you want
and type e to select it. Follow the next procedure to change your boot options
temporarily.

If you want to change your boot options so they take effect every time you boot your
computer, see the section on permanently changing boot options. Changing those options
involves editing the /boot/grub/grub.conf file.

Temporarily changing boot options

From the GRUB Legacy boot screen, you can select to change or add boot options for the
current boot session. On some Linux systems, the menu is hidden, so you have to press
the Tab key or some other key (before a few seconds of timeout is exceeded) to see the
menu. Then select the operating system you want (using the arrow keys), and type e
(as described earlier).

Three lines in the example of the GRUB Legacy editing screen identify the boot process for
the operating system you chose. Here is an example of those lines (because of the length of
the kernel line, it is represented here as three lines):

root (hdo0,0)
kernel /vmlinuz-2.6.32-131.17.1.el6.x86 64 ro
root=/dev/mapper/vg_myhost-1lv_root
rd NO MD rd NO DM
LANG=en US.UTF-8 SYSFONT=latarcyrheb-sunlé KEYBOARDTYPE=pcC
KEYTABLE=us rhgb quiet crashkernel=auto
initrd /initramfs-2.6.32-131.17.1.el6.x86 64.1img

The first line (beginning with root) shows that the entry for the GRUB boot loader is on
the first partition of the first hard disk (hdo, 0). GRUB represents the hard disk as hd,
regardless of whether it is a SCSI, IDE, or other type of disk. In GRUB Legacy, you just count
the drive number and partition number, starting from zero (0).

The second line of the example (beginning with kernel) identifies the kernel boot image
(/boot/vmlinuz-2.6.32-131.17.1.el6.x86_ 64) and several options. The options
identify the partition as initially being loaded ro (read-only) and the location of the root
filesystem on a partition with the label that begins root=/dev/mapper/vg myhost-1v
root. The third line (starting with initrd) identifies the location of the initial RAM disk,
which contains additional modules and tools needed during the boot process.

If you are going to change any of the lines related to the boot process, you will probably
change only the second line to add or remove boot options. Follow these steps to do
just that:

Chapter 9: Installing Linux

1. After interrupting the GRUB boot process and typing e to select the boot entry you
want, position the cursor on the kernel line and type e.

2. Either add or remove options after the name of the boot image. You can use a
minimal set of bash shell command-line editing features to edit the line. You can
even use command completion (type part of a filename and press Tab to complete
it). Here are a few options you may want to add or delete:

®m Boot to a shell. If you forgot your root password or if your boot process hangs,
you can boot directly to a shell by adding init=/bin/sh to the boot line.

m Select a run level. If you want to boot to a particular run level, you can add
the run level you want to the end of the kernel line. For example, to have RHEL
boot to run level 3 (multiuser plus networking mode), add 3 to the end of the
kernel line. You can also boot to single-user mode (1), multiuser mode (2), or X
GUI mode (5). Level 3 is a good choice if your GUI is temporarily broken. Level 1
is good if you have forgotten your root password.

m Watch boot messages. By default, you will see a splash screen as Linux boots.
If you want to see messages showing activities happening as the system boots
up, you can remove the option rhgb quiet from the kernel line. This lets you
see messages as they scroll by. Pressing Esc during boot-up gets the same result.

3. Press Enter to return to the editing screen.

4. Type b to boot the computer with the new options. The next time you boot your
computer, the new options will not be saved. To add options so they are saved
permanently, see the next section.

Permanently changing boot options

You can change the options that take effect each time you boot your computer by changing
the GRUB configuration file. In RHEL and other Linux systems, GRUB configuration centers
on the /boot /grub/grub.conf or /boot/grub/menu. lst file.

The /boot/grub/grub.conf file is created when you install Linux. Here's an example of
that file for RHEL:

grub.conf generated by anaconda
#
Note you do not have to rerun grub after making changes to the file
NOTICE: You have a /boot partition. This means that
all kernel and initrd paths are relative to /boot/, eg.
root (hdo,0)
kernel /vmlinuz-version ro root=/dev/mapper/vg joke-1lv_root
initrd /initrd- [generic-]version.img
#boot=/dev/sda
default=0
timeout=5
splashimage=(hd0, 0) /grub/splash.xpm.gz

H H H H*

227

Part Ill: Becoming a Linux System Administrator

hiddenmenu
title Red Hat Enterprise Linux (2.6.32-131.17.1.el6.x86 64)
root (hdo0,0)
kernel /vmlinuz-2.6.32-131.17.1.el6.x86 64 ro
root=/dev/mapper/vg_myhost-1lv_root rd NO MD rd NO_DM
LANG=en US.UTF-8 SYSFONT=latarcyrheb-sunlé KEYBOARDTYPE=pcC
KEYTABLE=us rhgb quiet crashkernel=auto
initrd /initramfs-2.6.32-131.17.1.el16.x86_ 64.1img
title Windows XP
rootnoverify (hdo0,1)
chainloader +1

The default=0 line indicates that the first partition in this list (in this case, Red Hat
Enterprise Linux) is booted by default. The line timeout=5 causes GRUB to pause for five
seconds before booting the default partition. (That's how much time you have to press

e if you want to edit the boot line, or to press arrow keys to select a different operating
system to boot.)

The splashimage line looks in the first partition on the first disk (hdo, 0) for the
boot partition (in this case /dev/sdal). GRUB loads splash.xpm.gz as the image

on the splash screen (/boot/grub/splash.xpm.gz). The splash screen appears as the
background of the boot screen.

NoTE

GRUB indicates disk partitions using the following notation: (hd0, 0). The first number represents the disk, and the
second is the partition on that disk. So (hd0, 1) is the second partition (1) on the first disk (0).

The two bootable partitions in this example are Red Hat Enterprise Linux and Windows XP.
The title lines for each of those partitions are followed by the name that appears on the
boot screen to represent each partition.

For the RHEL system, the root line indicates the location of the boot partition as the
second partition on the first disk. So, to find the bootable kernel (vmlinuz-*) and the
initrd initial RAM disk boot image that is loaded (initrd-*), GRUB mounts hdo, 0 as
the root of the entire filesystem (represented by /dev/mapper/vg myhost-1v_root
and mounted as /). There are other options on the kernel line as well.

For the Windows XP partition, the rootnoverify line indicates that GRUB should not
try to mount the partition. In this case, Windows XP is on the first partition of the first
hard disk (hdo, 1) or /dev/sda2. Instead of mounting the partition and passing options
to the new operating system, the chainloader +1 line tells GRUB to pass the booting of
the operating system to another boot loader. The +1 indicates that the first sector of the
partition is used as the boot loader. (You could similarly set up to boot a Windows Vista or
Windows 7 operating system.)

228

Chapter 9: Installing Linux

NoTE

Microsoft operating systems require that you use the chainloader to boot them from GRUB because GRUB
doesn’t offer native support for Windows operating systems.

If you make any changes to the /boot/grub/grub.conf file, you do not need to load
those changes. GRUB automatically picks up those changes when you reboot your computer.

Adding a new GRUB bhoot image

You may have different boot images for kernels that include different features. In most
cases, installing a new kernel package automatically configures grub.conf to use that new
kernel. However, if you want to manually add a kernel, here is the procedure for modifying
the grub. conf file in Red Hat Enterprise Linux to be able to boot that kernel:

1. Copy the new image from the directory in which it was created (such as /usr/
src/kernels/linux-2.6.25-11/arch/i386/boot) to the /boot directory.
Name the file something that reflects its contents, such as bz-2.6.25-11. For
example:

c¢d /usr/src/Linux-2.6.25.11/arch/i386/boot
cp bzImage /boot/bz-2.6.25-11

2. Add several lines to the /boot /grub/grub.conf file so that the image can be
started at boot time if it is selected. For example:
title Red Hat Enterprise Linux 6.3 (My own IPV6 build)
root (hdo,4)
kernel /bz-2.6.25-11 ro root=/dev/sda5
initrd /initrd-2.6.25-11.img

3. Reboot your computer.

4. When the GRUB boot screen appears, move your cursor to the title representing the
new kernel and press Enter.

The advantage to this approach, as opposed to copying the new boot image over the old
one, is that if the kernel fails to boot, you can always go back and restart the old kernel.
When you feel confident that the new kernel is working properly, you can use it to replace
the old kernel or perhaps just make the new kernel the default boot definition.

Using GRUB 2

GRUB 2 represents a major rewrite of the GRUB Legacy project. It has been adopted as

the default boot loader for Red Hat Enterprise Linux 7, Fedora, and Ubuntu. The major
function of the GRUB 2 boot loader is still to find and start the operating system you want,
but now much more power and flexibility is built into the tools and configuration files that
get you there.

229

Part Ill: Becoming a Linux System Administrator

230

In GRUB 2, the configuration file is now named /boot/grub2/grub.cfg (in Fedora and
other Linux systems using GRUB 2). Everything from the contents of grub.cfg to the way
grub.cfgis created is different from the GRUB Legacy grub. conf file. Here are some
things you should know about the grub.cfg file:

B Instead of editing grub.cfg by hand or having kernel RPM packages add to it,
grub.cfg is generated from the contents of the /etc/default/grub file and
the /etc/grub.d directory. You should modify or add to those files to configure
GRUB 2 yourself.

B The grub.cfg file can contain scripting syntax, including such things as func-
tions, loops, and variables.

B Device names needed to identify the location of kernels and initial RAM disks can
be more reliably identified using labels or Universally Unique Identifiers (UUIDs).
This prevents the possibility of a disk device such as /dev/sda being changed
to /dev/sdb when you add a new disk (which would result in the kernel not
being found).

Comments in the grub.cfg file indicate where the content came from. For example,
information generated from the /etc/grub.d/00 header file comes right after this
comment line:

BEGIN /etc/grub.d/00 header

In the beginning of the 00 _header section, there are some functions, such as those that
load drivers to get your video display to work. After that, most of the sections in the
grub.cfg file consist of menu entries. The following is an example of a menu item from
the grub. cfg file that you could select to start Fedora 20 when the system boots up:

menuentry 'Fedora (3.16.3-200.fc20.x86 64)' --class fedora

--class gnu-linux --class gnu --class os ...{

load video

set gfxpayload=keep

insmod gzio

insmod part msdos

insmod ext2

set root=' (hd0,msdosl)"

search --no-floppy --fs-uuid --set=root
eb31517£-£404-410b-937e-a6093b5a5380

linux /vmlinuz-3.16.3-200.£c20.x86 64
root=/dev/mapper/fedora fedora20-root ro
rd.lvm.lv=fedora fedora20/swap
vconsole. font=1latarcyrheb-sunlé
rd.lvm.lv=fedora fedora20/root rhgb quiet
LANG=en_US.UTF-8

initrd /initramfs—3.16.3—200.fc20.x86_64.img

Chapter 9: Installing Linux

The menu entry for this selection appears as Fedora (3.16.3-200.£c20.x86_64) on the
GRUB 2 boot menu. The --class entries on that line allow GRUB 2 to group the menu entries
into classes (in this case, it identifies it as a fedora, gnu-linux, gnu, os type of system). The
next lines load video drivers and file system drivers. After that, lines identify the location
of the root file system.

The linux line shows the kernel location (/boot/vmlinuz-3.16.3-200.£c20.x86 64),
followed by options that are passed to the kernel.

There are many, many more features of GRUB 2 you can learn about if you want to dig
deeper into your system’s boot loader. The best documentation for GRUB 2 is available on
the Fedora system; type info grub2 at the shell. The info entry for GRUB 2 provides lots
of information for booting different operating systems, writing your own configuration
files, working with GRUB image files, setting GRUB environment variables, and working
with other GRUB features.

Summary

Although every Linux distribution includes a different installation method, you need to
do many common activities, regardless of which Linux system you install. For every Linux
system, you need to deal with issues of disk partitioning, boot options, and configuring
boot loaders.

In this chapter, you stepped through installation procedures for Fedora (using a live
media installation) and Red Hat Enterprise (from installation media). You learned how
deploying Linux in cloud environments can differ from traditional installation methods by
combining metadata with prebuilt base operating system image files to run on large pools
of compute resources.

The chapter also covered special installation topics, including using boot options and disk
partitioning. With your Linux system now installed, Chapter 10 describes how to begin
managing the software on your Linux system.

Exercises

Use these exercises to test your knowledge of installing Linux. I recommend you do
these exercises on a computer that has no operating system or data on it that you
would fear losing (in other words, one you dont mind erasing). If you have a computer
that allows you to install virtual systems, that is a safe way to do these exercises as
well. These exercises were tested using a Fedora 21 Live media and an RHEL 7 Server
Installation DVD.

231

Part Ill: Becoming a Linux System Administrator

1. Start installing from Fedora Live media, using as many of the default options as
possible.

2. After you have completely installed Fedora, update all the packages on the system.

3. Start installing from an RHEL installation DVD, but make it so the installation runs
in text mode. Complete the installation in any way you choose.

4. Start installing from an RHEL installation DVD, and set the disk partitioning as
follows: a 400MB /boot, / (3GB), /var (2GB), and /home (2GB). Leave the rest as
unused space.

CAUTION
Completing Exercise 4 ultimately deletes all content on your hard disk. If you want to use this exercise only to prac-

tice partitioning, you can reboot your computer before clicking Accept Changes at the very end of this procedure
without harming your hard disk. If you go forward and partition your disk, assume that all data that you have not
explicitly changed has been deleted.

232

CHAPTER

10

Getting and Managing Software

IN THIS CHAPTER

Installing software from the desktop
Working with RPM packaging
Using yum to manage packages
Using rpm to work with packages
Installing software in the enterprise
n Linux distributions such as Fedora and Ubuntu, you don't need to know much about how

software is packaged and managed to get the software you want. Those distributions have
excellent software installation tools that automatically point to huge software repositories. Just

a few clicks and you're using the software in little more time than it takes to download it.

The fact that Linux software management is so easy these days is a credit to the Linux community,
which has worked diligently to create packaging formats, complex installation tools, and
high-quality software packages. Not only is it easy to get the software, but after it’s installed, it’s
easy to manage, query, update, and remove it.

This chapter begins by describing how to install software in Fedora using the new Software graphical
installation tool. If you are just installing a few desktop applications on your own desktop system,
you may not need much more than that and occasional security updates.

To dig deeper into managing Linux software, I next describe what makes up Linux software packages
(comparing deb and rpm formatted packaging), underlying software management components, and
commands (yum and rpm) for managing software in Fedora and Red Hat Enterprise Linux. That's
followed by a description of how to manage software packages in enterprise computing.

Managing Software on the Desktop

In Fedora 21, the Fedora Project includes the new Software application to replace the PackageKit Add/
Remove Software window. The Software window offers a more intuitive way of choosing and installing
desktop applications that does not align with typical Linux installation practices. With the Software
window, the smallest software you install is an application. With Linux, you install packages.

233

Part Ill: Becoming a Linux System Administrator

234

Figure 10.1 shows an example of the Software window.

FIGURE 10.1

Install and manage software packages from the Software window.

Software. ‘

Featured

Painting program for digital artists
Picks
) ol 8/ i 2
—! = [/‘ -
Transmission GnuCash Simple Scan Geary Mail AisleRiot Solitaire Stellarium
Categories

Add-ons

Education

Internet

system

Audio

Games

Office

Utilities

Development Tools

Graphics

Science

Video

From the Software window, you can select the applications you want to install from the
Picks group (a handful of popular applications), choose from categories of applications
(Internet, Games, Audio, Video, and so on), or search by application name or description.
Select the Install button to have the Software window download and install all the
software packages needed to make the application work.

Other features of this window let you see all installed applications (Installed tab) or view
a list of applications that have updated packages available for you to install (Updates tab).
If you want to remove an installed application, simply click the Remove button next to the
package name.

If you are using Linux purely as a desktop system, where you want to write documents,
play music, and do other common desktop tasks, the Software window might be all you

Chapter 10: Getting and Managing Software

need to get the basic software you want. By default, your system connects to the main
Fedora software repository and gives you access to hundreds of software applications.

But although the Software window lets you download and install hundreds of applications
from the Fedora software repository, that repository actually contains tens of thousands
of software packages. What packages can you not see from that repository, when might
you want those other packages, and how can you gain access to those packages (as well as
packages from other software repositories)?

Going Beyond the Software Window

If you are managing a single desktop system, you might be quite satisfied with the
hundreds of packages you can find through the Software window. Open source versions
of most common types of desktop applications are available to you through the Software
window after you have an Internet connection from Fedora to the Internet.

However, here are some examples of why you might want to go beyond what you can do
with the Software window:

B More repositories—Fedora and Red Hat Enterprise Linux distribute only open
source, freely distributable software. You may want to install some commer-
cial software (such as Adobe Flash Player) or non-free software (available from
repositories such as rpmfusion.org).

m Beyond desktop applications—Tens of thousands of software packages in the
Fedora repository are not available through the Software window. Most of these
packages are not associated with graphical applications at all. For example, some
packages contain pure command-line tools, system services, programming tools, or
documentation that dont show up in the Software window.

m Flexibility—Although you may not know it, when you install an application through
the Software window, you are actually installing multiple RPM packages. This set of
packages may just be a default package set that includes documentation, extra fonts,
additional software plugins, or multiple language packs that you may or may not want.
With yum and rpm commands, you have more flexibility with exactly which packages
related to an application or other software feature is installed on your system.

B More complex queries—Using commands such as yum and rpm, you can get
detailed information about packages, package groups, and repositories.

m Software validation—Using rpm and other tools, you can check whether a
signed package has been modified before you installed it or whether any of the
components of a package have been tampered with since the package was installed.

B Managing software installation—Although the Software window works well if
you are installing desktop software on a single system, it doesn't scale well for
managing software on multiple systems. Other tools are built on top of the rpm
facility for doing that.

235

Part Ill: Becoming a Linux System Administrator

236

Before I launch into some of the command-line tools for installing and managing

software in Linux, the next section describes how the underlying packaging and package
management systems in Linux work. In particular, I focus on RPM packaging as it is used in
Fedora, Red Hat Enterprise Linux, and related distributions, as well as Deb packages, which
are associated with Debian, Ubuntu, Linux Mint, and related distributions.

Understanding Linux RPM and DEB
Software Packaging

On the first Linux systems, if you wanted to add software, you would grab the source code
from a project that produced it, compile it into runnable binaries, and drop it onto your
computer. If you were lucky, someone would have already compiled it in a form that would
run on your computer.

The form of the package could be a tarball, containing executable files (commands),
documentation, configuration files, and libraries. (A tarball is a single file in which multiple
files are gathered together for convenient storage or distribution.) When you install software
from a tarball, the files from that tarball might be spread across your Linux system in
appropriate directories (/usr/share/man, /etc, /bin, and /1ib, to name a few).

Although it is easy to create a tarball and just drop a set of software onto your Linux
system, this method of installing software makes it difficult to do these things:

m Get dependent software—You would need to know if the software you were
installing depended on other software being installed for your software to work.
Then you would have to track down that software and install that too (which might
itself have some dependencies).

m List the software—Even if you knew the name of the command, you might not
know where its documentation or configuration files were located when you looked
for it later.

m Re