
7
Multitasking

In this chapter:
• Running a

Command in the
Backg round

• Checking on a
Process

• Cancelling a Process

Unix can do many jobs at once, dividing the processor’s time between the
tasks so quickly that it looks as if everything is running at the same time.
This is called multitasking.

With a window system, you can have many applications running at the
same time, with many windows open. But most Unix systems also let you
run more than one program inside the same terminal. This is called job
contr ol. It gives some of the benefits of window systems to users who
don’t have windows. But, even if you’re using a window system, you may
want to use job control to do several things inside the same terminal win-
dow. For instance, you may prefer to do most of your work from one ter-
minal window, instead of covering your desktop with multiple windows.

Why else would you want job control? Suppose you’re running a program
that will take a long time to process. On a single-task operating system
such as MS-DOS, you would enter the command and wait for the system
pr ompt to retur n, telling you that you could enter a new command. In
Unix, however, you can enter new commands in the “foregr ound” while
one or more programs are still running in the “background.”

When you enter a command as a background process, the shell prompt
reappears immediately so that you can enter a new command. The origi-
nal program will still run in the background, but you can use the system
to do other things during that time. Depending on your system and your
shell, you may even be able to log off and let the background process run
to completion.

130

7 January 2002 13:14



Running a Command
in the Background
Running a program as a background process is most often done to free a
ter minal when you know the program will take a long time to run. It’s
used whenever you want to launch a new window program from an exist-
ing terminal window—so that you can keep working in the existing termi-
nal, as well as in the new window.

To run a program in the background, add the “&” character at the end of
the command line before you press the RETURN key. The shell then
assigns and displays a process ID number for the program:

$ sort bigfile > bigfile.sort &
[1] 29890
$

(Sorting is a good example because it can take a while to sort huge files,
so users often do it in the background.)

The process ID (PID) for this program is 29890. The PID is useful when
you want to check the status of a background process, or if you need to,
cancel it. You don’t need to remember the PID, because there are Unix
commands (explained in later sections of this chapter) to check on the
pr ocesses you have running. Some shells write a status line to your screen
when the background process finishes.

Her e’s another example. If you’re using a terminal window, and you’d like
to open another terminal window, you can probably click a button or
choose a menu item to do that. But, if you occasionally want to specify
command-line options for that new window, it’s much easier to type the
options on a command line in an existing window. (Most menus and but-
tons don’t give you the flexibility to choose options each time you open a
new window.) For instance, by default, an xter m window saves 64 lines
of your previous work in its “scrollback buffer.” If you’ll be doing a lot of
work that you’ll want to review with the scrollbar, you might want to
open a new window with a 2000-line scrollback buffer. You could enter
the following command in an existing xter m window:

$ xterm -sl 2000 &
[1] 19283

A new xter m window should pop open—wher e you’ll be able to scroll
almost forever.

Running a Command in the Background 131

7 January 2002 13:14



132 Chapter 7: Multitasking

In the C shell, you can put an entire sequence of commands separated by
semicolons (;) into the background by putting an ampersand at the end of
the entire command line. In other shells, enclose the command sequence
in parentheses before adding the ampersand. For instance, you might
want to sort a file, then print it after sor t finishes. The syntax that works
on all shells is:

(command1; command2) &

The examples above work on all shells. On many systems, the shells have
the feature we mentioned earlier called job control. You can use the sus-
pend character (usually CTRL-Z ) to suspend a program running in the
for eground. The program pauses and you get a new shell prompt. You
can then do anything else you like, including putting the suspended pro-
gram into the background using the bg command. The fg command brings
a suspended or background process to the foregr ound.

For example, you might start sor t running on a big file, and, after a
minute, want to send email. Stop sor t, then put it in the background. The
shell prints a message, then another shell prompt. Send mail while sor t
runs.

$ sort hugefile1 hugefile2 > sorted
...time goes by...

CTRL-Z Stopped
$ bg
[1] sort hugefile1 hugefile2 > sorted &
$ mail eduardo@nacional.cl

...

Checking on a Process
If a background process takes too long, or you change your mind and
want to stop a process, you can check the status of the process and even
cancel it.

ps
When you enter the command ps, you can see how long a process has
been running, the process ID of the background process and the terminal
fr om which it was run. The tty pr ogram shows the name of the terminal
wher e it’s running; this is especially helpful when you’re using a window
system or you’re logged into multiple terminals. Example 7-1 shows this in
mor e detail.

7 January 2002 13:14



Example 7-1. Output of ps and tty programs

$ ps
PID TTY TIME CMD

27285 pts/3 0:01 csh
27285 pts/3 0:01 ps
29771 pts/2 0:00 csh
29792 pts/2 0:54 sort
$ tty
/dev/pts/3

In its basic form, ps lists the following:

Pr ocess ID (PID)
A unique number assigned by Unix to the process.

Terminal name (TTY)
The Unix name for the terminal from which the process was started.

Run time (TIME)
The amount of computer time (in minutes and seconds) that the pro-
cess has used.

Command (CMD)
The name of the process.

In a window system, each terminal window has its own terminal name.
Example 7-1 shows processes running on two terminals: pts/3 and pts/2.
Some versions of ps list only the processes on the same terminal where
you run ps; other versions list processes on all terminals where you’r e
logged in. If you have more than one terminal window open, but all the
entries in the TTY column show the same terminal name, try typing either
“ps x” or “ps -u user name”, where user name is your username. If you
need to find out the name of a particular terminal, run the tty pr ogram
fr om a shell prompt in that window, as shown in Example 7-1.

While using a window system, you may see quite a few processes you
don’t recognize; they’re probably helping the window manager do its job.
You may also see the names of any other programs running in the back-
gr ound and the name of your shell’s process (sh, csh, and so
on) — although dif ferent versions of ps may show fewer processes by
default. ps may or may not list its own process.

You should be aware that there are two types of programs on Unix sys-
tems: directly executable programs and interpreted programs. Directly
executable programs are written in a programming language such as C or
Pascal and stored in a file that the system can read directly. Interpreted
pr ograms, such as shell scripts and Perl scripts, are sequences of

Checking on a Process 133

7 January 2002 13:14



134 Chapter 7: Multitasking

commands that are read by an interpreter program. If you execute an
interpr eted pr ogram, you will see an additional command (such as perl,
sh, or csh) in the ps listing, as well as any Unix commands that the inter-
pr eter is executing now.

Shells with job control have a command called jobs which lists back-
gr ound pr ocesses started from that shell. As mentioned earlier, ther e ar e
commands to change the foregr ound/backgr ound status of jobs. There are
other job control commands as well. See the refer ences in the section
“Documentation” in Chapter 8.

Cancelling a Process
You may decide that you shouldn’t have put a process in the background.
Or you decide that the process is taking too long to execute. You can can-
cel a background process if you know its process ID.

kill
The kill command aborts a process. The command’s format is:

kill PID(s)

kill ter minates the designated process IDs (shown under the PID heading
in the ps listing). If you do not know the process ID, do a ps first to dis-
play the status of your processes.

In the following example, the “sleep n” command simply causes a process
to “go to sleep” for n number of seconds. We enter two commands, sleep
and who, on the same line, as a background process.

$ (sleep 60; who)&
[1] 21087
$ ps
PID TTY TIME COMMAND
20055 4 0:10 sh
21087 4 0:01 sh
21088 4 0:00 sleep
21089 4 0:02 ps
$ kill 21088
[1]+ Terminated sleep 60
$ tom tty2 Aug 30 11:27
grace tty4 Aug 30 12:24
tim tty5 Aug 30 07:52
dale tty7 Aug 30 14:34

We decided that 60 seconds was too long to wait for the output of who.
The ps listing showed that sleep had the process ID number 21088, so we

7 January 2002 13:14



used this PID to kill the sleep pr ocess. You should see a message like “ter-
minated” or “killed”; if you don’t, use another ps command to be sure the
pr ocess has been killed.

The who pr ogram is executed immediately, since it is no longer waiting
on sleep; it lists the users logged into the system.

Problem checklist

The process didn’t die when I told it to.
Some processes can be hard to kill. If a normal kill of these processes
is not working, enter “kill -9 PID”. This is a sure kill and can destroy
almost anything, including the shell that is interpreting it.

In addition, if you’ve run an interpreted program (such as a shell
script), you may not be able to kill all dependent processes by killing
the interpreter process that got it all started; you may need to kill
them individually. However, killing a process that is feeding data into
a pipe generally kills any processes receiving that data.

Cancelling a Process 135

7 January 2002 13:14


