
4
File Management

In this chapter:
• File and Director y

Names
• File and Director y

Wildcards
• Creating and Editing

Files
• Manag ing Your Files
• Printing Files

Chapter 3 introduced the Unix filesystem. This chapter explains how to
name, edit, copy, move, find, and print files.

File and Director y Names
As Chapter 3 explains, both files and directories are identified by their
names. A directory is really just a special kind of file, so the rules for nam-
ing directories are the same as the rules for naming files.

Filenames may contain any character except /, which is reserved as the
separator between files and directories in a pathname. Filenames are usu-
ally made of upper- and lowercase letters, numbers, “.” (dots), and “_”
(underscor es). Other characters (including spaces) are legal in a filename,
but they can be hard to use because the shell gives them special mean-
ings. So we recommend using only letters, numbers, dots, and underscore
characters. You can also use “–” (dashes), as long as they aren’t the first
character of a filename, which can make a program think the filename is
an option.

If you have a file with a space in its name, the shell will be confused if
you type its name on the command line. That’s because the shell breaks
command lines into separate arguments at the spaces.

To tell the shell not to break an argument at spaces, put quote marks (")
ar ound the argument. For example, the rm pr ogram, cover ed later in this
chapter, removes files.

66

7 January 2002 13:13

To remove a file named a confusing name, the first rm command, which
follows, doesn’t work; the second one does:

$ ls -l
total 2
-rw-r--r-- 1 jpeek users 0 Oct 23 11:23 a confusing name
-rw-r--r-- 1 jpeek users 1674 Oct 23 11:23 ch01
$ rm a confusing name
rm: a: no such file or directory
rm: confusing: no such file or directory
rm: name: no such file or directory
$ rm "a confusing name"
$

Unlike some operating systems, Unix doesn’t requir e a dot (.) in a file-
name; in fact, you can use as many as you want. For instance, the file-
names pizza and this.is.a.mess ar e both legal.

Some Unix systems limit filenames to 14 characters. Most newer systems
allow much longer filenames.

A filename must be unique inside its directory, but other directories may
have files with the same names. For example, you may have the files
called chap1 and chap2 in the directory /users/car ol/work and also have
files with the same names in /users/car ol/play.

File and Director y Wildcards
When you have a number of files named in series (for example, chap1 to
chap12) or filenames with common characters (such as aegis, aeon, and
aerie), you can use wildcar ds to specify many files at once. These special
characters are * (asterisk), ? (question mark), and [] (squar e brackets).
When used in a file or directory name given as an argument on a com-
mand line, the following is true:

* An asterisk stands for any number of characters in a filename. For
example, ae* would match aegis, aerie, aeon, etc. if those files were
in the same directory. You can use this to save typing for a single
filename (for example, al* for alphabet.txt) or to choose many files at
once (as in ae*). A * by itself matches all file and subdirectory names
in a directory.

? A question mark stands for any single character (so h?p matches hop
and hip, but not help).

File and Director y Wildcards 67

7 January 2002 13:13

68 Chapter 4: File Management

[] Squar e brackets can surround a choice of single characters (i.e., one
digit or one letter) you’d like to match. For example, [Cc]hapter
would match either Chapter or chapter, but [ch]apter would match
either capter or hapter. Use a hyphen (–) to separate a range of con-
secutive characters. For example, chap[1–3] would match chap1,
chap2, or chap3.

The following examples show the use of wildcards. The first command
lists all the entries in a directory, and the rest use wildcards to list just
some of the entries. The last one is a little tricky; it matches files whose
names contain two (or more) a ’s.

$ ls
chap10 chap2 chap5 cold
chap1a.old chap3.old chap6 haha
chap1b chap4 chap7 oldjunk
$ ls chap?
chap2 chap5 chap7
chap4 chap6
$ ls chap[5-7]
chap5 chap6 chap7
$ ls chap[5-9]
chap5 chap6 chap7
$ ls chap??
chap10 chap1b
$ ls *old
chap1a.old chap3.old cold
$ ls *a*a*
chap1a.old haha

Wildcards are useful for more than listing files. Most Unix programs accept
mor e than one filename, and you can use wildcards to name multiple files
on the command line. For example, the less pr ogram displays a file on the
scr een. Let’s say you want to display files chap3.old and chap1a.old.
Instead of specifying these files individually, you could enter the com-
mand as:

$ less *.old

This is equivalent to “less chap1a.old chap3.old”.

Wildcards match directory names, too. You can use them anywhere in a
pathname — absolute or relative — though you still need to separate direc-
tory levels with slashes (/). For example, let’s say you have subdirectories
named Jan, Feb, Mar, and so on. Each has a file named summary. You
could read all the summary files by typing “less */summary”. That’s almost

7 January 2002 13:13

equivalent to “less Jan/summar y Feb/summar y . . . ” but there’s one impor-
tant differ ence: the names will be alphabetized, so Apr/summary would
be first in the list.

Creating and Editing Files
One easy way to create a file is with a Unix feature called input/output
redir ection, as Chapter 1 explains. This sends the output of a program
dir ectly to a file, to make a new file or add to an existing one.

You’ll usually create and edit a plain-text file with a text editor pr ogram.
Text editors are somewhat differ ent than wor d pr ocessors.

Te xt Editor s and Word Processor s
A text editor lets you add, change, and rearrange text easily. Two common
Unix editors are vi (pr onounced “vee-eye”) and emacs (“ee-macs”). Pico
(“pea-co”) is a simple editor that has been added to many Unix systems.

Since there are several editor programs, you can choose one you’re com-
fortable with. vi is probably the best choice because almost all Unix sys-
tems have it, but emacs is also widely available. If you’ll be doing simple
editing only, pico is a great choice. Although pico is much less powerful
than emacs or vi, it’s also a lot easier to learn.

None of those editors has the same features as popular word processing
softwar e on personal computers. vi and emacs ar e sophisticated,
extr emely flexible editors for all kinds of plain text files: programs, email
messages, and so on.

By “plain text,” we mean a file with only letters, numbers, and punctua-
tion characters in it. Unix systems use plain text files in many places: redi-
rected input and output of Unix programs (Chapter 1), as shell setup files
(see the section “Customizing Your Account” in Chapter 3), for shell
scripts (shown in the section “Programming” of Chapter 8), for system
configuration, and more. Text editors edit these files. When you use a
word processor, though, although the screen may look as if the file is only
plain text, the file probably also has hidden codes (nontext characters) in
it. That’s often true even if you tell the word processor to “Save as plain
text.” One easy way to check for nontext characters in a file is by reading
the file with less; look for characters in reversed colors, codes like <36>,
and so on.

If you need to do word processing — making documents, envelopes, and
so on—most Unix systems also support easy-to-use word processors such

Creating and Editing Files 69

7 January 2002 13:13

70 Chapter 4: File Management

as WordPer fect and StarOffice (which are compatible, more or less, with
Micr osoft word processors). Ask your system staff what’s available or can
be installed.

The Pico Text Editor
The Pico editor, from the University of Washington, is easy to use. If you
send email with Pine, you already know how to use Pico; it’s Pine’s mes-
sage editor. Like Pine, Pico is still evolving; if you use an older version
than we did here (Version 3.7), yours may have some differ ent featur es.

Start Pico by typing its name; the argument is the filename you want to
cr eate or edit. If you’re editing a Unix shell setup file or shell script, you’ll
also want the –w option; it tells Pico not to break (“wrap”) lines at the
right margin, but only when you press the RETURN key. If a line is
longer than the right margin, like the line starting with PATH= in Figure 4-1,
pico –w marks the right end with a dollar sign ($). When you move the
cursor over the dollar sign, the next 80 characters of that one line are dis-
played. For instance, to edit my .pr ofile setup file, I cd to my home direc-
tory and enter:

$ pico -w .profile

My terminal fills with a copy of the file (and, because the file is short,
some blank lines too), as shown in Figure 4-1.

UW PICO(tm) 3.7 File: .profile

PATH=’/bin:/usr/bin:/opt/bin:/usr/local/bin:/users/jpeek/bin:/users/$
LESS=’eMq’
export PATH LESS
/usr/games/fortune
date
umask 002

[Read 6 lines]

ˆG Get Help ˆO WriteOut ˆR Read File ˆY Prev Pg ˆK Cut Text
ˆX Exit ˆJ Justify ˆW Where is ˆV Next Pg ˆU UnCut Text

Figur e 4-1. Pico display while editing

7 January 2002 13:13

The bottom two rows of the window list some Pico commands. For exam-
ple, CTRL-J justifies the paragraph you’re editing, making the lines fit
neatly between the margins. For a complete list of commands, use
CTRL-G , the “Get Help” command.

Pico tour

Let’s take a tour through Pico. In this example, you’ll make a new file with
wrapped lines. So (unlike what you’d do when editing a system setup file)
we won’t use the –w option. You can call the file anything you want, but
it’s best to use only letters and numbers in the filename. For instance, to
make a file named sample, enter the command pico sample. Let’s start our
tour now.

1. Your screen should look something like the previous example, but the
middle of the screen should be blank, ready for you to enter text.

2. Enter some lines of text. Make some lines too short (press
RETURN before the line gets to the right margin). Make others too
long; watch how Pico wraps long lines. If you’re using a window sys-
tem and you have another terminal window open with some text in it,
you can also use your mouse to copy text from another window and
paste it into the Pico window. (Chapter 2 includes the section “Using
a Mouse with xterm Windows,” which has instructions for copying
and pasting between xter m windows.) To get a lot of text quickly,
paste the same text more than once.

3. Let’s practice moving around the file. Pico works on all terminals,
with or without a mouse, so it will probably ignore your mouse if you
try to use it to move the cursor. Instead, use the keyboard to move
the cursor. If your keyboard has arrow keys, they’ll probably move
the cursor. Otherwise, try the cursor-moving commands listed in the
help page, such as CTRL-F to move forward a character, CTRL-E to
move to the end of a line, and CTRL-A to go to the start of a line. If
your PAGE UP and PAGE DOWN keys don’t work, use CTRL-Y and
CTRL-V , respectively.

Pico’s search or “where is” command, CTRL-W , can help you find a
word quickly. It’s handy even on a short file, where it can be quicker
to type CTRL-W and a word than to use the cursor-moving com-
mands. The search command is also a good example of the way that
pico can change its display momentarily. Let’s try it. Type CTRL-W ;
you should see a display like Figure 4-2.

Creating and Editing Files 71

7 January 2002 13:13

72 Chapter 4: File Management

UW PICO(tm) 3.7 File: Sample Modified

This is a test file
If you’re using a window system, and you have
another terminal window open with some text in it, you can also
use your mouse to copy text from another window and paste it
into the Pico window.

If you’re using a window system, and
you have another terminal window open with some text in it,
you can also use your mouse to copy text from another window
and paste it into the Pico window.

Search :

ˆG Get Help ˆY FirstLine ˆT LineNumber ˆO End of Par
ˆC Cancel ˆV LastLine ˆW Start of P

Figur e 4-2. Pico display while searching

Notice that the command list at the bottom of the display has changed
since you started Pico (Figure 4-1). The cursor sits after the word
“Search:”. You can type a word or characters to search for, then press
RETURN to do the search. You also can do any other command
listed, such as CTRL-T to go to a particular line number. Type
CTRL-G to get a help display. Notice that if you type CTRL-W while
the search command is active, it doesn’t start another search; it goes
to the start of the current paragraph. After a search finishes, you can
type CTRL-W again, then press RETURN to repeat the search.

4. If your text isn’t in paragraphs separated by blank lines, break some
of it into paragraphs. Put your cursor at the place you want to break
the text and press RETURN twice (once to break the line, another to
make a blank line).

Now justify one paragraph. Put the cursor somewhere in it and press
CTRL-J . Now the paragraph’s lines should flow and fit neatly
between the margins.

5. Because pico doesn’t use a mouse, cutting/copying and pasting text
works differ ently than it does with mouse-based editors you might
have used before. Please choose some text to copy or cut, then
paste.

The first step is to select the text to cut or copy. Move the cursor to
the first character, then press CTRL-ˆ (contr ol followed by the caret
key, ˆ).

7 January 2002 13:13

Move the cursor to the last character you want and press CTRL-K .
That cuts the text. Pico will “remember” the text you cut and let you
paste it back as many times as you want until you cut some other text
(or until you quit your pico session).

If you only wanted to copy the text, not to cut it, you can paste the
text back where you cut it. Pr ess CTRL-U to ‘‘uncut’’ — that is,
paste — the text at current cursor position.

Or, if you wanted to move the text somewhere else, move the cursor
to that spot and press CTRL-U ther e.

6. As with any text editor, it’s a good idea to save your work from pico
every few minutes. That way, if something goes wrong on the com-
puter or network, you’ll only lose the work since the last time you
saved it. (Pico saves interrupted work in a file named pico.save or
filename.save, wher e filename is the name of the file you were edit-
ing. But I like to save by hand when I know that the file is in a good
state.)

Try writing out your work with CTRL-O . The bottom of the display
will look like Figure 4-3. The cursor sits after the name of the file
you’r e editing.

This part confuses some pico beginners. If you want to save the file
with the same name it had as you started, just press RETURN ; that’s
all! You can also choose a dif ferent filename.

One way to use a differ ent filename is to edit the filename in place.
For instance, if you want to call the backup copy sample1, simply
pr ess the 1 key to add a 1 to the end of the filename before you press
RETURN to save it.

You can backspace over the name and type a new one. Or move to
the start or middle of the name by using the arrow keys, CTRL-B and
CTRL-F , then add or delete characters in the name. As an example,
you could edit the filename to be an absolute pathname such as
/home/car ol/backups/sample.

If you choose CTRL-T , “To Files,” you’ll go to a file browser where
you can look through a list of your files and directories. You also can
type part of an existing filename and use filename completion (see
the section “Completing File and Directory Names” in Chapter 3). By
default, filename completion assumes that you started Pico from your
home directory — even if you didn’t. (You can change this with the
use-curr ent-dir pr efer ence setting for Pine—which also affects Pico.
See the section “Configuring Pine” in Chapter 6.)

Creating and Editing Files 73

7 January 2002 13:13

74 Chapter 4: File Management

7. Make one or two more small edits. Then exit with CTRL-X . Pico
pr ompts you to save the file; see the explanation of CTRL-O earlier.

File Name to write : sample

ˆG Get Help ˆY To Files
ˆC Cancel TAB Complete

Figur e 4-3. Bottom of Pico display while saving work

Manag ing Your Files
The tree structure of the Unix filesystem makes it easy to organize your
files. After you make and edit some files, you may want to copy or move
files from one directory to another, or rename files to distinguish differ ent
versions of a file. You may want to create new directories each time you
start a differ ent pr oject.

A dir ectory tr ee can get cluttered with old files you don’t need. If you
don’t need a file or a directory, delete it to free storage space on the disk.
The following sections explain how to make and remove directories and
files.

Creating Director ies with mkdir
It’s handy to group related files in the same directory. If you were writing
a spy novel, you probably wouldn’t want your intriguing files mixed with
restaurant listings. You could create two directories: one for all the chap-
ters in your novel (spy, for example), and another for restaurants
(boston.dine).

To create a new directory, use the mkdir pr ogram. The syntax is:

mkdir dir name(s)

dir name is the name of the new directory. To make several directories,
put a space between each directory name. To continue our example, you
would enter:

$ mkdir spy boston.dine

Copying Files
If you’re about to edit a file, you may want to save a copy first. That
makes it easy to get back the original version.

7 January 2002 13:13

cp

The cp pr ogram can put a copy of a file into the same directory or into
another directory. cp doesn’t affect the original file, so it’s a good way to
keep an identical backup of a file.

To copy a file, use the command:

cp old new

wher e old is a pathname to the original file and new is the pathname you
want for the copy. For example, to copy the /etc/passwd file into a file
called passwor d in your working directory, you would enter:

$ cp /etc/passwd password
$

You can also use the form:

cp old olddir

This puts a copy of the original file old into an existing directory olddir.
The copy will have the same filename as the original.

If there’s already a file with the same name as the copy, cp replaces the
old file with your new copy. This is handy when you want to replace an
old copy with a newer version, but it can cause trouble if you accidentally
overwrite a copy you wanted to keep. To be safe, use ls to list the direc-
tory before you make a copy there. Also, many versions of cp have an –i
(interactive) option that asks you before overwriting an existing file.

You can copy more than one file at a time to a single directory by listing
the pathname of each file you want copied, with the destination directory
at the end of the command line. You can use relative or absolute path-
names (see “the section “The Unix Filesystem” in Chapter 3) as well as
simple filenames. For example, let’s say your working directory is /users/
car ol (fr om the filesystem diagram in Figure 3-1). To copy three files
called ch1, ch2, and ch3 fr om /users/john to a subdirectory called work
(that’s /users/car ol/work), enter:

$ cp ../john/ch1 ../john/ch2 ../john/ch3 work

Or, you could use wildcards and let the shell find all the appropriate files.
This time, let’s add the –i option for safety:

$ cp -i ../john/ch[1-3] work
cp: overwrite work/ch2? n

Manag ing Your Files 75

7 January 2002 13:13

76 Chapter 4: File Management

Ther e is already a file named ch2 in the work dir ectory. When cp asks,
answer n to prevent copying ch2. Answering y would overwrite the old
ch2.

As you saw in the section “Relative pathnames up” in Chapter 3, the short-
hand form . puts the copy in the working directory, and .. puts it in the
par ent dir ectory. For example, the following puts the copies into the
working directory:

$ cp ../john/ch[1-3] .

cp can also copy entire dir ectory tr ees. Use the option –R, for “recursive.”
Ther e ar e two arguments after the option: the pathname of the top-level
dir ectory you want to copy from, and the pathname of the place where
you want the top level of the copy to be. As an example, let’s say that a
new employee, Asha, has joined John and Carol. She needs a copy of
John’s work dir ectory in her own home directory. See the filesystem dia-
gram in Figure 3-1. Her home directory is /users/asha. If Asha’s own work
dir ectory doesn’t exist yet (important!), she could type the following com-
mands:

$ cd /users
$ cp -R john/work asha/work

Or, from her home directory, she could have typed “cp –R ../john/work
work”. Either way, she’d now have a new subdirectory /users/asha/work
with a copy of all files and subdirectories from /users/john/work.

If you give cp –R the wrong pathnames, it can copy a
dir ectory tr ee into itself—running forever until your filesys-
tem fills up!

If the copy seems to be taking a long time, stop cp with
CTRL-Z , then explore the filesystem (ls –RF is handy for
this). If all’s okay, you can resume the copying by putting
the cp job in the background (with bg) so it can finish its
slow work. Otherwise, kill cp and do some cleanup—
pr obably with rm –r, which we mention in the section
“r mdir” later in this chapter. (See the section “Running a
Command in the Background” and the section “Cancelling
a Process” in Chapter 7.)

7 January 2002 13:13

Problem checklist

The system says something like “cp: cannot copy file to itself.”
If the copy is in the same directory as the original, the filenames must
be differ ent.

The system says something like “cp: filename: no such file or directory.”
The system can’t find the file you want to copy. Check for a typing
mistake. If a file isn’t in the working directory, be sure to use its path-
name.

The system says something like “cp: permission denied.”
You may not have permission to copy a file created by someone else
or copy it into a directory that does not belong to you. Use ls –l to
find the owner and the permissions for the file, or ls –ld to check the
dir ectory. If you feel that you should be able to copy a file, ask the
file’s owner or a system staff person to change its access modes.

Copying files across a network

The cp pr ogram works on whatever computer you’re logged onto. But,
unless your computer has a networked filesystem (see the section “The
Dir ectory Tr ee” in Chapter 3), you can’t copy files to other computers with
cp. To do this, see the section “Transferring Files” in Chapter 6.

Renaming and Moving Files with mv
To rename a file, use mv (move). The mv pr ogram can also move a file
fr om one directory to another.

The mv command has the same syntax as the cp command:

mv old new

old is the old name of the file and new is the new name. mv will write
over existing files, which is handy for updating old versions of a file. If
you don’t want to overwrite an old file, be sure that the new name is
unique. If your cp has an –i option for safety, your mv pr obably has one
too.

$ mv chap1 intro
$

The previous example changed the file named chap1 to intr o. If you list
your files with ls, you will see that the filename chap1 has disappeared.

Manag ing Your Files 77

7 January 2002 13:13

78 Chapter 4: File Management

The mv command can also move a file from one directory to another. As
with the cp command, if you want to keep the same filename, you only
need to give mv the name of the destination directory.

Finding Files
If your account has lots of files, organizing them into subdirectories can
help you find the files later. Sometimes you may not remember which
subdir ectory has a file. The find pr ogram can search for files in many
ways; we’ll look at two.

Change to your home directory so find will start its search there. Then
car efully enter one of the following two find commands. (The syntax is
strange and ugly—but find does the job!)

$ cd
$ find . -type f -name "chap*" -print
./chap2
./old/chap10b
$ find . -type f -mtime -2 -print
./work/to_do

The first command looked in your working directory (.) and all its subdi-
rectories for files (–type f) whose names start with chap. (find understands
wildcards in filenames. Be sure to put quotes around any filename pattern
with a wildcard in it, as we did in the example.) The second command
looked for all files that have been created or modified in the last two days
(–mtime –2). The relative pathnames that find finds start with a dot (./),
the name of the working directory, which you can ignore.

Linux systems, and some others, have the GNU locate pr ogram. If it’s
been set up and maintained on your system, you can use locate to search
part or all of a filesystem for a file with a certain name. For instance, if
you’r e looking for a file named alpha-test, alphatest, or something like
that, try this:

$ locate alpha
/users/alan/alpha3
/usr/local/projects/mega/alphatest

You’ll get the absolute pathnames of files and directories with alpha in
their names. (If you get a lot of output, add a pipe to less—see the sec-
tion “Piping to a Pager” in Chapter 1.) locate may or may not list pro-
tected, private files; its listings usually also aren’t completely up to date.
To lear n much more about find and locate, read your online documenta-
tion (see Chapter 8) or read the chapter about them in Unix Power Tools
(O’Reilly).

7 January 2002 13:13

Removing Files and Director ies
You may have finished work on a file or directory and see no need to
keep it, or the contents may be obsolete. Periodically removing unwanted
files and directories frees storage space.

rm

The rm pr ogram removes files. The syntax is simple:

rm filename(s)

rm removes the named files, as the following example shows:

$ ls
chap10 chap2 chap5 cold
chap1a.old chap3.old chap6 haha
chap1b chap4 chap7 oldjunk
$ rm *.old chap10
$ ls
chap1b chap4 chap6 cold oldjunk
chap2 chap5 chap7 haha
$ rm c*
$ ls
haha oldjunk
$

When you use wildcards with rm, be sur e you’r e deleting the right files! If
you accidentally remove a file you need, you can’t recover it unless you
have a copy in another directory or in the system backups.

Do not enter rm * car elessly. It deletes all the files in your
working directory.

Her e’s another easy mistake to make: you want to enter a
command such as rm c* (r emove all filenames starting with
“c”) but instead enter rm c * (r emove the file named c and
all files!).

It’s good practice to list the files with ls befor e you remove
them. Or, if you use rm’s –i (interactive) option, rm asks
you whether you want to remove each file.

rmdir

Just as you can create new directories, you can remove them with the
rmdir pr ogram. As a precaution, rmdir won’t let you delete directories that

Manag ing Your Files 79

7 January 2002 13:13

80 Chapter 4: File Management

contain any files or subdirectories; the directory must first be empty. (The
rm –r command removes a directory and everything in it. It can be dan-
ger ous for beginners, though.)

The syntax is:

rmdir dir name(s)

If a directory you try to remove does contain files, you get a message like
“r mdir: dir name not empty”.

To delete a directory that contains some files:

1. Enter “cd dir name” to get into the directory you want to delete.

2. Enter “rm *” to remove all files in that directory.

3. Enter “cd ..” to go to the parent directory.

4. Enter “rmdir dir name” to remove the unwanted directory.

Problem checklist

I still get the message “dirname not empty” even after I’ve deleted all the
files.

Use ls –a to check that there are no hidden files (names that start with
a period) other than . and .. (the working directory and its parent).
The following command is good for cleaning up hidden files (which
ar en’t matched by a simple wildcard like *):

$ rm .[a-zA-Z] .??*

Files on Other Operating Systems
Chapter 6 includes the section “Transferring Files,” which explains ways to
transfer files across a network—possibly to nonUnix operating systems.
Your system may also be able to run operating systems other than Unix.
For instance, many Linux systems can also run Microsoft Windows. If
yours does, you can probably use those files from your Linux account
without needing to boot and run Windows.

If the Windows filesystem is mounted with your other filesystems, you’ll
be able to use its files by typing a Unix-like pathname. For instance, from
our PC under Linux, we can access the Windows file
C:\WORD\REPOR T.DOC thr ough the pathname /winc/wor d/report.doc.

7 January 2002 13:13

Your Linux (or other) system may also have the MTOOLS utilities. These
give you Windows-like (actually, DOS-like) programs that interoperate
with the Unix-like system. For example, we can put a Windows floppy
disk in the A: drive and then copy a file named summary.txt into our cur-
rent directory (.) by entering:

$ mcopy a:summary.txt .
Copying summary.txt
$

The mcop y –t option translates the end-of-line characters in plain-text files
fr om the Windows format to the Unix format or vice versa. In general,
don’t use –t unless you’re sur e that you need to translate end-of-line char-
acters. A local expert should be able to tell you about translation, whether
other filesystems are mounted or can be mounted, whether you have utili-
ties like MTOOLS, and how to use them.

Pr inting Files
Befor e you print a file on a Unix system, you may want to refor mat it to
adjust the margins, highlight some words, and so on. Most files can also
be printed without refor matting, but the raw printout may not look quite
as nice.

Many versions of Unix include two powerful text formatters, nrof f and
trof f. (Ther e ar e also versions called gnrof f and gr off.) They are much too
complex to describe here. Before we cover printing itself, let’s look at a
simple formatting program called pr.

pr
The pr pr ogram does minor formatting of files on the terminal screen or
for a printer. For example, if you have a long list of names in a file, you
can format it onscreen into two or more columns.

The syntax is:

pr option(s) filename(s)

pr changes the format of the file only on the screen or on the printed
copy; it doesn’t modify the original file. Table 4-1 lists some pr options.

Pr inting Files 81

7 January 2002 13:13

82 Chapter 4: File Management

Table 4-1. Some pr options

Option Descr iption

–k Pr oduces k columns of output.

–d Double-spaces the output (not on all pr versions).

–h “header” Takes the next item as a report header.

–t Eliminates printing of header and top/bottom margins.

Other options allow you to specify the width of columns, set the page
length, etc.

Befor e using pr, her e ar e the contents of a sample file named food:

$ cat food
Sweet Tooth
Bangkok Wok
Mandalay
Afghani Cuisine
Isle of Java
Big Apple Deli
Sushi and Sashimi
Tio Pepe’s Peppers

.

.

.

Let’s use pr options to make a two-column report with the header
“Restaurants”:

$ pr -2 -h "Restaurants" food

Oct 6 9:58 2001 Restaurants Page 1

Sweet Tooth Isle of Java
Bangkok Wok Big Apple Deli
Mandalay Sushi and Sashimi
Afghani Cuisine Tio Pepe’s Peppers

.

.

.
$

The text is output in two-column pages. The top of each page has the
date and time, header (or name of the file, if header is not supplied), and
page number. To send this output to the printer instead of the terminal
scr een, cr eate a pipe to the printer program — usually lp or lpr. The fol-
lowing section describes lp and lpr; Chapter 1 covers pipes.

7 January 2002 13:13

lp and lpr
The command lp or lpr prints a file (onto paper as opposed to the
scr een). Some systems have lp; others have lpr. The syntax is:

lp option(s) filename(s)
lpr option(s) filename(s)

Printers on Unix systems are usually shared by a group of users. After you
enter the command to print a file, the shell prompt retur ns to the screen
and you can enter another command. However, seeing the prompt doesn’t
mean that your file has been printed. Your file has been added to the
printer queue to be printed in turn.

Your system administrator has probably set up a default printer at your
site. To print a file named bills on the default printer, use the lp or lpr
command, as in this example:

$ lp bills
request id is laserp-525 (1 file)
$

lp shows an ID that you can use to cancel the print job or check its status.
If you need ID numbers for lpr jobs, use the lpq pr ogram (see the section
“lpstat and lpq” later in this chapter). The file bills will be sent to a printer
called laserp. The ID number of the request is “laserp-525.”

lp and lpr have several options. Table 4-2 lists three of them.

Table 4-2. Some lp and lpr options

Option
lp lpr Descr iption

–dprinter –Pprinter Use given printer name if there is mor e than one printer
at your site. The printer names are assigned by the
system administrator.

–n# –# Print # copies of the file.

–m –m Notify sender by email when printing is done.

Windowing applications like StarOffice typically run lp or lpr for you,
“behind the scenes.” They may have a printer configuration menu entry
wher e you can specify any lp or lpr options you want to use on every
print job.

If lp and lpr don’t work at your site, ask other users for the printer com-
mand. You’ll also need the printer locations, so you know where to get
your output.

Pr inting Files 83

7 January 2002 13:13

84 Chapter 4: File Management

Problem checklist

My printout hasn’t come out.
See whether the printer is printing now. If it is, other users may have
made a request to the same printer ahead of you and your file should
be printed in turn. The following section explains how to check the
print requests.

If no file is printing, check the printer’s paper supply, physical con-
nections, and power switch. The printer may also be hung (stalled).
If it is, ask other users or system staff people for advice.

My printout is garbled or doesn’t look anything like the file did on my ter-
minal.

The printer may not be configured to print the kind of file you’re
printing. For instance, a file in PostScript format will look fine when
you use a PostScript viewer on your terminal, but look like gibberish
when you try to print it. If the printer doesn’t understand PostScript,
ask your system administrator to install a printer driver that handles
PostScript.

You may be trying to print a file directly (with lp or lpr) that should
be printed from its own application. For instance, if you have a
StarOf fice file named report.sdw, you should open that file from a
StarOf fice window and use the Print command on the StarOffice File
menu.

Viewing the Printer Queue
If you want to find out how many files or “requests” for output are ahead
of yours in the printer queue, use the program named lpstat (for lp) or lpq
(for lpr). The cancel pr ogram lets you terminate a printing request made
by lp; lpr m cancels jobs from lpr.

If you have a graphical application such as StarOffice that does its printing
with lp or lpr, you should be able to use these commands to check and
cancel those print jobs.

lpstat and lpq

The lpstat pr ogram shows what’s in the printer queue: request IDs, own-
ers, file sizes, when the jobs were sent for printing, and the status of the

7 January 2002 13:13

requests. Use lpstat –o if you want to see all output requests rather than
just your own. Requests are shown in the order they’ll be printed:

$ lpstat -o
laserp-573 john 128865 Oct 6 11:27 on laserp
laserp-574 grace 82744 Oct 6 11:28
laserp-575 john 23347 Oct 6 11:35
$

The first entry shows that the request “laserp-573” is currently printing on
laserp. The exact format and amount of information given about the
printer queue may differ from system to system. If the printer queue is
empty, lpstat says “No entries” or simply gives you back the shell prompt.

lpq gives slightly differ ent infor mation than lpstat –o:

$ lpq
laserp is ready and printing
Rank Owner Job Files Total Size
active john 573 report.ps 128865 bytes
1st grace 574 ch03.ps ch04.ps 82744 bytes
2nd john 575 standard input 23347 bytes
$

The first line displays the printer status. If the printer is disabled or out of
paper, you may see differ ent messages on this first line. The “active” job,
the one being printed, is listed first. The “Job” number is like the lpstat
request ID. To specify another printer, add the –P option (Table 4-2).

cancel and lprm

cancel ter minates a printing request from the lp pr ogram. lpr m ter minates
lpr requests. You can specify either the ID of the request (displayed by lp
or lpq) or the name of the printer.

If you don’t have the request ID, get it from lpstat or lpq. Then use cancel
or lpr m. Specifying the request ID cancels the request, even if it is cur-
rently printing:

$ cancel laserp-575
request "laserp-575" cancelled

To cancel whatever request is currently printing, regardless of its ID, sim-
ply enter cancel and the printer name:

$ cancel laserp
request "laserp-573" cancelled

Pr inting Files 85

7 January 2002 13:13

86 Chapter 4: File Management

The lpr m pr ogram will cancel the active job if it belongs to you. Other-
wise, you can give job numbers as arguments, or use a dash (-) to remove
all of your jobs:

$ lprm 575
dfA575diamond dequeued
cfA575diamond dequeued

lpr m tells you the actual filenames removed from the printer queue
(which you probably don’t need).

Exer cise: manipulating files

In this exercise, you’ll create, rename, and delete files. First you’ll need to
find out if your site has one or more printers and the appropriate com-
mand to use for printing.

Go to home directory. Enter cd

Copy distant file to work-
ing directory.

Enter cp /etc/passwd myfile

Cr eate new directory. Enter mkdir temp

List working directory. Enter ls -F

Move file to new directory. Enter mv myfile temp

Change working directory. Enter cd temp

Copy file to working direc-
tory.

Enter cp myfile myfile.two

Print the file. Enter your printer command and the filename (if
the file is long, you may want to edit it first—with
Pico, for instance)

List filenames with wild-
card.

Enter ls -l myfile*

Remove files. Enter rm myfile*

Go up to parent directory. Enter cd ..

Remove directory. Enter rmdir temp

Verify that directory was
removed.

Enter ls -F

7 January 2002 13:13

