
1
Getting Started

In this chapter:
• Working in the Unix

Environment
• Syntax of Unix

Command Lines
• Types of Commands
• The Unresponsive

Terminal

Befor e you can use Unix, a system staff person has to set up a Unix
account for you. The account is identified by your user name, which is
usually a single word or an abbreviation. Think of this account as your
of fice—it’s your place in the Unix environment. Other users may also be
at work on the same system. At many sites, there will be a whole network
of Unix computers. So in addition to knowing your username, you may
also need to know the hostname (name) of the computer that has your
account. Alternatively, your account may be shared between all computers
on the local network, and you may be able to log into any of them.

Once you’ve logged in to your account, you’ll interact with your system
by typing commands at a command line, to a program called a shell.
You’ll get acquainted with the shell, enter a few commands, and see how
to handle common problems. To finish your Unix session, you’ll log out.

Working in the Unix Environment
Each user communicates with the computer from a terminal. To get into
the Unix environment, you first connect to the Unix computer. (Your ter-
minal is probably already connected to a computer.* But Unix systems
also let you log into other computers across a network. In this case, log
into your local computer first, then use a remote login command to con-
nect to the remote computer. See the section “Remote Logins” in Chapter
6.)

* Some terminals can connect to many computers through a kind of switchboard called a
port contender or data switch. On these terminals, start by telling the port contender which
computer you want to connect to.

1

7 January 2002 13:10

2 Chapter 1: Getting Started

After connecting your terminal, if needed, you start a session by logging in
to your Unix account. To log in, you need your username and a passwor d.
Logging in does two things: it identifies which user is in a session, and it
tells the computer that you’re ready to start work. When you’ve finished,
log out—and, if necessary, disconnect from the Unix computer.

ˆM If someone else has your username and password, they
pr obably can log into your account and do anything you
can. They can read private information, corrupt or delete
important files, send email messages as if they came from
you, and more. If your computer is connected to a net-
work — the Inter net or a local network inside your organi-
zation — intruders may also be able to log in without sitting
at your keyboard! See the section “Remote Logins” in Chap-
ter 6 for one explanation of one way this can be done.

Anyone may be able to get your username — it’s usually
part of your email address, for instance. Your password is
what keeps others from logging in as you. Don’t leave your
password anywhere around your computer. Don’t give your
password to anyone who asks you for it unless you’re sur e
they’ll preserve your account security. Also don’t send your
password by email; it can be stored, unprotected, on other
systems and on backup tapes, where other people may find
it and then break into your account.

If you suspect that someone is using your account, ask sys-
tem staff for advice. If you can’t do that, setting a new pass-
word may help; see the section “Changing Your Password”
in Chapter 3.

Unix systems are case sensitive. Most usernames, commands, and file-
names use lowercase letters (though good passwords use a mixture of
lower- and uppercase letters). Before you log in, be sure your
CAPS LOCK key is off.

Connecting to the Unix Computer
If you see a message from the computer that looks something like this:

login:

you’r e pr obably connected! You can skip ahead to the section “Logging in
Nongraphically” and log in.

7 January 2002 13:10

Otherwise, if someone nearby uses the same kind of computer system you
do, the easiest way to find out if you’re connected is probably to ask for
help. (We can’t cover every user’s situation exactly. There are just too
many possibilities.)

If there’s no one to ask, look ahead at the section “Logging in Nongraphi-
cally,” later in this chapter, as well as the section “Starting X” in Chapter 2
and the section “Remote Logins” in Chapter 6. You may recognize your
situation.

If that doesn’t help, but your computer seems to be running an operating
system other than Unix (such as Microsoft Windows), check your menus
and icons for one with the name of the Unix computer you’re supposed
to connect to. You might also find a program named either telnet, eXceed,
ssh, VMware, procomm, qmodem, kermit, or minicom, or something relat-
ing to remote access.

Logg ing in Nongraphically
The process of making yourself known to the computer system and get-
ting to your Unix account is called logging in. If you’ve connected to the
Unix host from another operating system, you may have been logged into
Unix automatically; in this case, you should be able to run Unix programs,
as shown later in this chapter in the section “Shells in a Window System”
and the section “The Shell Prompt.” Otherwise, before you can start work,
you must connect your terminal or terminal window to the computer you
need (as in the previous section) and identify yourself to the Unix system.

Ther e ar e generally two ways to log in: graphically and nongraphically. If
your screen has a window or windows floating in it, something like Figure
2-2A, you probably need to log in graphically, as explained by “the sec-
tion “A. Ready to Run X (with a Graphical Login)” in Chapter 2.

Otherwise, to log in nongraphically, enter your username (usually your
name or initials) and your private password. The password does not
appear as you enter it.

When you have logged in successfully, you’ll get some system messages
and finally the shell prompt (where you can enter Unix commands). A
successful login to the system named nutshell could look like Example
1-1.

Working in the Unix Environment 3

7 January 2002 13:10

4 Chapter 1: Getting Started

Example 1-1. Nongraphical login

nutshell login: john
Password:
Last login: Mon Oct 8 14:34:51 EST 2001 from joe_pc
Sun Microsystems Inc. SunOS 5.7 Generic October 1998

------------- NOTICE TO ALL USERS -----------------
The hosts nutshell, mongo, and cruncher will be down
for maintenance from 6 to 9 PM tonight.

My opinions may have changed, but not the fact that I am right.
Tue Oct 9 12:24:48 MST 2001
$

In this example, the system messages include a maintenance notice, a
“fortune,” and the date. Although this example doesn’t show it, you may
be asked for your ter minal type, accounting or chargeback information,
and so on. The last line to appear is the Unix shell prompt. When you
reach this point, you’re logged in to your account and can use Unix com-
mands.

Instead of a shell prompt, you may get a menu of choices (“email,”
“news,” and so on). If one choice is something like “shell prompt” or
“command prompt,” select it. Then you’ll be able to follow descriptions
and examples in this book.

The messages you see at login time differ from system to system and day
to day. Shell prompts can also differ. Examples in this book use the cur-
rency sign $ as a prompt.

Let’s summarize logging in nongraphically, step by step:

1. If needed, connect your terminal or terminal window to the Unix sys-
tem.

2. Get a “login:” prompt.

3. Type in your username in lower case letters at the prompt. For exam-
ple, if your login name is “john,” type:

login: john

Pr ess the RETURN key.

The system should prompt you to enter your password. If passwords
ar en’t used on your system, you can skip the next step.

7 January 2002 13:10

4. If you were assigned a password, type it at the prompt. For security,
your password is not displayed as you type it:

Password:

Pr ess the RETURN key.

The system checks your account name and password, and if they’re cor-
rect, logs you in to your account.

Problem checklist

Nothing seemed to happen after I logged in.
Wait a minute, since the system may just be slow. If you still get
nothing, ask other users if they have the same problem.

The system says “login incorrect.”
If you have a choice of computer to log into (as we explained at the
start of this chapter in the section “Working in the Unix Environ-
ment”), check that you’re connected to the right computer. If you
have accounts on several computers, be sure you’r e using the correct
user name and password for this computer. Otherwise, try logging in
again, taking care to enter the username and password correctly. Be
sur e to type your username at the “login:” prompt and your password
at the “password:” prompt. Backspacing may not work while entering
either of these; if you make a mistake, use RETURN to get a new
“login:” prompt and try again. Also make sure to use the exact com-
bination of upper- and lowercase letters your password contains.

If you still fail after trying to log in a few more times, check with the
person who created your account to confirm your username and pass-
word.

All letters are in UPPERCASE and/or have backslashes (\) befor e them.
You probably entered your username in uppercase letters. Type exit
at the shell prompt and log in again.

The Unix Shell
Once you have a shell prompt, you’re working with a program called a
shell. The shell interprets command lines you enter, runs programs you
ask for, and generally coordinates what happens between you and the
Unix operating system. Common shells include Bourne (sh), Korn (ksh),
and C (csh) shells, as well as bash and tcsh.

Working in the Unix Environment 5

7 January 2002 13:10

6 Chapter 1: Getting Started

For a beginner, dif ferences between shells are slight. If you plan to work a
lot with Unix, though, you should learn mor e about your shell and its spe-
cial commands.*

Shells in a Window System
If you’re using a window system, as described in Chapter 2, get a shell by
opening a ter minal window—if you don’t already have a terminal win-
dow open or iconified (minimized) somewhere, that is. (Figure 2-1 shows
an example, but yours may look differ ent; the important thing is that the
window have a shell prompt in it.) Check your menus and icons for a
command with “terminal” or “term” in its name, or a picture of a blank
ter minal (like a TV screen) in its icon; one common program is xter m.

The Shell Prompt
When the system is ready to run a command, the shell outputs a pr ompt
to tell you that you can enter a command line.

Shell prompts usually end with $ or %. The prompt can be customized,
though, so your own shell prompt may be differ ent.

A prompt that ends with a hash mark (#) usually means that you’re logged
in as the superuser. The superuser doesn’t have the protections for stan-
dard users that are built into the Unix system. In this case, we recommend
that you stop work until you’ve found out how to access your personal
Unix account.†

Enter ing a Command Line
Entering a command line at the shell prompt tells the computer what to
do. Each command line includes the name of a Unix program. When you
pr ess RETURN , the shell interprets your command line and executes the
pr ogram.

* To find out which shell you’re using, run the commands echo $SHELL and ps $$. (See the
section “Entering a Command Line,” later in this chapter.) The answer, something like bash
or /bin/bash, is your shell’s name or pathname.

† This can happen if you’re using a window system that was started by the superuser when
the system was rebooted. Or maybe your prompt has been customized to end with # when
you aren’t the superuser.

7 January 2002 13:10

The first word that you type at a shell prompt is always a Unix command
(or program name). Like most things in Unix, program names are case
sensitive; if the program name is lowercase (and most are), you must type
it in lowercase. Some simple command lines have just one word, which is
the program name. For more infor mation, see the section “Syntax of Unix
Command Lines,” later in this chapter.

date

An example single-word command is date. Entering the command date
displays the current date and time:

$ date
Tue Oct 9 13:39:24 MST 2001
$

As you type a command line, the system simply collects your keyboard
input. Pressing the RETURN key tells the shell that you’ve finished enter-
ing text and that it can run the program.

who

Another simple command is who. It displays a list of each logged-on
user’s username, terminal number, and login time. Try it now, if you’d
like.

The who pr ogram can also tell you who is logged in at your terminal. The
command line is who am i. This command line consists of the command
(who, the program’s name) and arguments (am i). (Arguments are
explained in the section “Syntax of Unix Command Lines,” later in this
chapter.)

$ who am i
cactus!john tty23 Oct 6 08:26 (rose)

The response shown in this example says that:

• “I am” John (actually, my username is john).

• I’m logged on to the computer named “cactus.”

• I’m using terminal 23.

• I logged in at 8:26 on the morning of October 6.

• I started my login from another computer named “rose.”

Not all versions of who am i give the same information.

Working in the Unix Environment 7

7 January 2002 13:10

8 Chapter 1: Getting Started

Recalling Previous Commands
Moder n Unix shells remember command lines you’ve typed before. They
can even remember commands from previous login sessions. This handy
featur e can save you a lot of retyping common commands. As with many
things in Unix, though, there are several differ ent ways to do this; we
don’t have room to show and explain them all. You can get more infor ma-
tion from sources listed in the section “Documentation” in Chapter 8.

After you’ve typed and executed several command lines, try pressing the
up-arr ow key on your keyboard. If your shell is configured to understand
this, you should see the previous command line after your shell prompt,
just as you typed it before. Pressing the up-arrow again recalls the previ-
ous command line, and so on. Also, as you’d expect, the down-arrow key
will recall more recent command lines.

To execute one of these remember ed commands, just press the
RETURN key. (Your cursor doesn’t have to be at the end of the command
line.)

Once you’ve recalled a command line, you can also edit it. If you don’t
want to execute any remember ed commands, cancel the command line
with CTRL-C . Next, the section “Correcting a Command Line” explains
both of these.

Cor recting a Command Line
What if you make a mistake in a command line? Suppose you typed dare
instead of date and pressed the RETURN key befor e you realized your
mistake. The shell will give you an error message:

$ dare
dare: command not found
$

Don’t be too concerned about getting error messages. Sometimes you’ll
get an error even if it appears that you typed the command correctly. This
can be caused by typing control characters that are invisible on the
scr een. Once the prompt retur ns, reenter your command.

As we said earlier (in the section “Recalling Previous Commands”) most
moder n shells let you recall previous commands and edit command lines.
If you’ll do a lot of work at the shell prompt, it’s worth learning these
handy techniques. They take more time to learn than we can spend here,

7 January 2002 13:10

though — except to mention that, on those shells, the left-arrow and right-
arr ow keys may move your cursor along the command line to the point
wher e you want to make a change. Here, let’s concentrate on simple
methods that work with all shells.

If you see a mistake before you press RETURN , you can use the erase
character to erase and correct the mistake.

The erase character differs from system to system and from account to
account, and can be customized. The most common erase characters are:

• BACKSPACE

• DELETE , DEL , or RUBOUT

• CTRL-H

CTRL-H is called a contr ol character. To type a control character (for
example, CTRL-H), hold down the CTRL key, then press the letter “h.”
In the text, we will write control characters as CTRL-H , but in the exam-
ples, we will use the standard notation: ˆH. This is not the same as press-
ing the ˆ (car et) key, letting go, and then typing an H!

The key labeled DEL may be used as the interrupt character instead of
the erase character. (It’s labeled DELETE or RUBOUT on some termi-
nals.) This key is used to interrupt or cancel a command, and can be used
in many (but not all) cases when you want to quit what you’re doing.
Another character often programmed to do the same thing is CTRL-C .

Other common control characters are:

CTRL-U

Erases the whole input line; you can start over.

CTRL-S

Pauses output from a program that’s writing to the screen. This can
be confusing; we don’t recommend using CTRL-S , but want you to
be aware of it.

CTRL-Q

Restarts output after a pause by CTRL-S .

CTRL-D

Used to signal end-of-input for some programs (such as cat and mail,
explained in Chapter 1 and Chapter 6) and retur n you to a shell
pr ompt. If you type CTRL-D at a shell prompt, it may close your ter-
minal window or log you out of the Unix system.

Working in the Unix Environment 9

7 January 2002 13:10

10 Chapter 1: Getting Started

Find the erase and interrupt characters for your account and write them
her e:

_______ Backspace and erase a character

_______ Interrupt a program

Logg ing Out
To end a Unix session, you must log out. You should not end a session by
just turning off your terminal!

If you’re using a window system, first close open windows and then close
the window system; see the section “Quitting” in Chapter 2 for more infor-
mation. If you logged in graphically, that should end your login session.
But, if you logged in nongraphically before you started the window sys-
tem, closing the window system should take you back to a shell prompt
(wher e you originally typed xinit or star tx). In that case, use the following
steps to finish logging out.

If you aren’t currently using a window system, you can log out by enter-
ing the command exit at a shell prompt. (In many cases, the command
logout will also work.) Depending on your shell, you may also be able to
log out simply by typing CTRL-D .

What happens next depends on the place from which you’ve logged in: if
your terminal is connected directly to the computer, the “login:” prompt
should appear on the screen. Otherwise, if you were connected to a
remote computer, the shell prompt from your local computer should reap-
pear on your screen. (That is, you’re still logged in to your local com-
puter.) Repeat the process if you want to log out from the local computer.

After you’ve logged out, you can turn off your terminal or leave it on for
the next user. But, if the power switch for your terminal is the same as the
power switch for the whole Unix computer system, do not simply turn off
that power switch! Ask a local expert for help with shutting down your
Unix system safely.

Problem checklist

The first few times you use Unix, you aren’t likely to have the following
pr oblems. But you may encounter these problems later, as you do more
advanced work.

7 January 2002 13:10

You get another shell prompt or the shell says “logout: not login shell”
You’ve been using a subshell (a shell created by your original login
shell). To end each subshell, type exit (or just type CTRL-D) until
you’r e logged out.

The shell says “There are stopped jobs” or “There are running jobs.”
Many Unix systems have a feature called job control that lets you sus-
pend a program temporarily while it’s running or keep it running sep-
arately in the “background.” One or more programs you ran during
your session has not ended, but is stopped (paused) or in the back-
gr ound. Enter fg to bring each stopped job into the foregr ound, then
quit the program normally. (See Chapter 7 for more infor mation.)

Syntax of Unix Command Lines
Unix command lines can be simple, one-word entries such as the date
command. They can also be more complex; you may need to type more
than the command or program name.*

A Unix command may or may not have ar guments. An argument can be
an option or a filename. The general format for Unix command lines is:

command option(s) filename(s)

Ther e isn’t a single set of rules for writing Unix commands and arguments,
but you can use these general rules in most cases:

• Enter commands in lowercase.

• Options modify the way in which a command works. Options are
often single letters prefixed with a dash (-, also called “hyphen” or
“minus”) and set off by any number of spaces or tabs. Multiple
options in one command line can be set off individually (such as –a
–b). In some cases, you can combine them after a single dash (such
as –a b)—but most commands’ documentation doesn’t tell you
whether this will work; you’ll have to try it.

Some commands, including those on Linux systems, also have options
made from complete words or phrases and starting with two dashes,
like ––delete or ––confir m–delete. When you enter a command line,
you can use this option style, the single-letter options (which all start
with a single dash), or both.

* The command can be the name of a Unix program (such as date), or it can be a command
that’s built into the shell (such as exit). You probably don’t need to worry about this! You
can read more precise definitions of these terms and others in Glossary.

Syntax of Unix Command Lines 11

7 January 2002 13:10

12 Chapter 1: Getting Started

• The argument filename is the name of a file that you want to use.
Most Unix programs also accept multiple filenames, separated by
spaces. If you don’t enter a filename correctly, you may get a
response such as “filename: no such file or directory” or “filename:
cannot open.”

Some commands, such as telnet and who (shown earlier in this chap-
ter), have arguments that aren’t filenames.

• You must type spaces between commands, options, and filenames.

• Options come before filenames.

In a few cases, an option has another argument associated with it;
type this special argument just after its option. Most options don’t
work this way, but you should know about them. The sor t command
is an example of this: you can tell sor t to write the sorted text to a
filename given after its –o option. In the following example, sor t
reads the file sortme (given as an argument), and writes to the file
sorted (given after the –o option):

$ sort -o sorted -n sortme

We also used the –n option in that example. But –n is a more stan-
dard option; it has nothing to do with the final argument sortme on
that command line. So, we also could have written the command line
this way:

$ sort -n -o sorted sortme

Another example is the mail –s option, shown in the section “Sending
Mail from a Shell Prompt” of Chapter 6. Don’t be too concerned
about these special cases, though. If a command needs an option like
this, its documentation will say so.

• Command lines can have other special characters, some of which we
see later in this book. They also can have several separate com-
mands. For instance, you can write two or more commands on the
same command line, each separated by a semicolon (;). Commands
enter ed this way are executed one after another by the shell.

Unix has a lot of commands! Don’t try to memorize all of them. In fact,
you’ll probably need to know just a few commands and their options. As
time goes on, you’ll learn these commands and the best way to use them
for your job. We cover some useful Unix commands in later chapters. This
book’s quick refer ence card has quick reminders.

7 January 2002 13:10

Let’s look at a sample Unix command. The ls pr ogram displays a list of
files. You can use it with or without options and arguments. If you enter:

$ ls

you’ll see a list of filenames. But if you enter:

$ ls -l

ther e’ll be an entire line of information for each file. The –l option (a dash
and a lowercase letter “L”) changes the normal ls output to a long format.
You can also get information about a particular file by using its name as
the second argument. For example, to find out about a file called chap1,
enter:

$ ls -l chap1

Many Unix commands have more than one option. For instance, ls has the
–a (all) option for listing hidden files. You can use multiple options in
either of these ways:

$ ls -a -l
$ ls -al

You must type one space between the command name and the dash that
intr oduces the options. If you enter ls–al, the shell will say “ls–al: com-
mand not found.”

Exer cise: enter ing a few commands

The best way to get used to Unix is to enter some commands. To run a
command, type the command and then press the RETURN key. Remem-
ber that almost all Unix commands are typed in lowercase.

Get today’s date. Enter date

List logged-in users. Enter who

Obtain more infor mation about users. Enter who -u or finger or w

Find out who is at your terminal. Enter who am i

Enter two commands in the same line. Enter who am i;date

Mistype a command. Enter woh

In this session, you’ve tried several simple commands and seen the results
on the screen.

Syntax of Unix Command Lines 13

7 January 2002 13:10

14 Chapter 1: Getting Started

Types of Commands
When you use a program, you’ll want to know how to control it. How can
you tell it what job you want done? Do you give instructions before the
pr ogram starts, or after it’s started? There are thr ee general ways to give
commands on a Unix system, three differ ent kinds of programs. It’s good
to be aware of them.

1. Some Unix programs work only with a window system. For instance,
when you type netscape at a shell prompt (or click a button or
choose the command from a menu), the Netscape web browser starts.
It opens one or more windows on your screen. The pr ogram has its
own way to receive your commands—thr ough menus and buttons on
its windows, for instance.

2. You’ve also seen (previously, in the section “Syntax of Unix Command
Lines”) Unix commands that you enter at a shell prompt. These pr o-
grams work in a window system (from a terminal window) or from
any terminal. Control those programs from the Unix command line—
that is, by typing options and arguments from a shell prompt before
you start the program running. After you start the program, wait for it
to finish; you generally don’t interact with it.

3. Some Unix programs that work in terminals have commands of their
own. (If you’d like some examples, see the section “Looking Inside
Files with less” in Chapter 3 and the section “The Pico Text Editor” in
Chapter 4.) These programs may accept options and arguments on
their command line. But, once you start the program, it prints its own
pr ompt and/or menus and it understands its own commands; it takes
instructions from your keyboard, which weren’t given on its command
line.

For instance, if you enter pine at a shell prompt, you’ll see a new
pr ompt fr om the pine pr ogram. Enter Pine commands to handle
email messages. When you enter the special command q to quit the
pine pr ogram, pine will stop prompting you. Then you’ll get another
shell prompt, where you can enter other Unix commands.

The Unresponsive Ter minal
During your Unix session (while you’re logged in), your terminal may not
respond when you type a command, or the display on your screen may
stop at an unusual place. That’s called a “hung” or “frozen” terminal or
session.

7 January 2002 13:10

(Note that most of the techniques in this section apply to terminal win-
dows in a window system, but not to nonterminal windows such as a web
br owser. In Chapter 2, the section “Unresponsive Windows” should help
with windows in general.)

A session can hang for several reasons. For instance, the connection
between your terminal and the computer can get too busy; your terminal
has to wait its turn. (Other users or computers probably share the same
connection.) In that case, your session starts by itself in a few moments.
You should not try to “un-hang” the session by entering extra commands
because those commands will all take effect after the connection resumes.

If the system doesn’t respond for quite a while (how long that is depends
on your individual situation; ask other users about their experiences), the
following solutions usually work. Try the following steps in the order
shown until the system responds:

1. Press the RETURN key once.

You may have typed text at a prompt (for example, a command line
at a shell prompt) but haven’t yet pressed RETURN to say that you’re
done typing and your text should be interpreted.

2. If you can type commands, but nothing happens when you press
RETURN , try pressing LINEFEED or typing CTRL-J . If this works,
your terminal needs resetting to fix the RETURN key. Some systems
have a reset command that you can run by typing CTRL-J reset
CTRL-J . If this doesn’t work, you may need to log out and log back
in or turn your terminal off and on again. (But, before you turn off
your terminal, read the notes earlier and later in this chapter about
tur ning of f the power.)

3. If your shell has job control (see Chapter 7), type CTRL-Z .

This suspends a program that may be running and gives you another
shell prompt. Now you can enter the jobs command to find the pro-
gram’s name, then restart the program with fg or terminate it with kill.

4. Use your interrupt key (found earlier in this chapter in the section
“Corr ecting a Command Line”—typically DELETE or CTRL-C).

This interrupts a program that may be running. (Unless a program is
run in the background, as described in the section “Running a Com-
mand in the Background” in Chapter 7, the shell waits for it to finish
befor e giving a new prompt. A long-running program may thus
appear to hang the terminal.) If this doesn’t work the first time, try it
once more; doing it more than twice usually won’t help.

The Unresponsive Ter minal 15

7 January 2002 13:10

16 Chapter 1: Getting Started

5. Type CTRL-Q .

If output has been stopped with CTRL-S , this will restart it. (Note
that some systems will automatically issue CTRL-S if they need to
pause output; this character may not have been typed from the key-
board.)

6. Check that the NO SCROLL key (if you have one) is not locked or
toggled on.

This key stops the screen display from scrolling upward. If your key-
board has a NO SCROLL key that can be toggled on and off by press-
ing it over and over, keep track of how many times you’ve pressed it
as you try to free yourself. If it doesn’t seem to help, be sure you’ve
pr essed it an even number of times; this leaves the key in the same
state it was when you started.

7. Check the physical connection from the terminal to the system.

8. Type CTRL-D once at the beginning of a new line.

Some programs (such as mail) expect text from the user. A pr ogram
may be waiting for an end-of-input character from you to tell it that
you’ve finished entering text. Typing CTRL-D may cause you to log
out, so you should try this only as a last resort.

9. If you’r e using a window system, close (terminate) the window you’re
using and open a new one. See the section “Unresponsive Windows”
in Chapter 2.

Otherwise, turn your terminal off, wait ten seconds or so, then turn it
on again. This may also log you out, but it may not; your old login
session could still be running. You can check for old processes and
ter minate them (as explained in Chapter 7 in the section “Checking on
a Process” and in the section “Cancelling a Process”) — although this
isn’t an easy thing for a beginner to do, so you might want help.

7 January 2002 13:10

