THE EXPERT'S VOICE® IN OPEN SOURCE

Foundations of

Development

Build sophisticated ions using one
of the world'’s most powez rful multt plalform toolkits!

Johan Thelin

Apress

Foundations of
Qt Development

Johan Thelin

Apress’

Foundations of Qt Development
Copyright © 2007 by Johan Thelin

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-831-3
ISBN-10 (pbk): 1-59059-831-8
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Qt, the Qt logo, Qtopia, the Qtopia logo, Trolltech, and the Trolltech logo are registered trademarks of
Trolltech ASA and/or its subsidiaries in the U.S. and other countries. All rights reserved.

Lead Editor: Jason Gilmore

Technical Reviewer: Witold Wysota

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore,
Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Senior Project Manager: Tracy Brown Collins

Copy Edit Manager: Nicole Flores

Copy Editor: Nancy Sixsmith

Assistant Production Director: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor: Dina Quan

Proofreader: Paulette McGee

Indexer: Brenda Miller

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code/
Download section.

Till Asa.

Contents at a Glance

FOrBWOId . ..o XV
Aboutthe AUhOr.o XVii
About the Technical Reviewer e Xix
Acknowledgments. XXi
PART 1 Getting to Know Qt
CHAPTER1 TheQtWayofC++ 3
CHAPTER 2 Rapid Application Development Using Qt 33
CHAPTER 3 Widgetsand Layouts .. 55
CHAPTER 4 TheMainWindow 95
PART 2 The Qt Building Blocks
CHAPTER 5 The Model-View Framework 123
CHAPTER 6 CreatingWidgets ... 157
CHAPTER 7 Drawingand Printing 183
CHAPTER 8 Files, Streams,and XML 235
CHAPTER 9 ProvidingHelp................. . . . 257
CHAPTER 10 Internationalization and Localization 279
CHAPTER 11 Plugins. i, 303
CHAPTER 12 Doing ThingsinParallel....................................... 333
CHAPTER 13 Databases.................. 371
CHAPTER 14 Networking............ 403
CHAPTER 15 Building Qt Projects................ 445
CHAPTER 16 UnitTesting 471
PART 3 Appendixes
APPENDIX A Third-Party Tools i, 501
APPENDIX B Containers, Types, and Macros................................ 507
INDEX ... 513

Contents

FOrBWOId e XV

AboUtthe AULNOT. . .. Xvii

About the Technical ReVieWer i e i Xix

Acknowledgments. XXi
PART 1 Getting to Know Qt

CHAPTER1 TheQtWayofC++.. 3

Installing a Qt Development Environment............................ 3

Installing on Unix Platforms 3

Installingon Windows. 5

Making C++ “Qt-er’. 6

Inheriting Qt 7

UsingaQtString 10

Buildinga QtProgram................... i 11

Signals, Slots, and Meta-Objects.................................. 13

Making the Connection............... i it 16

Revisiting the Build Process.l 18

Connection to SomethingNew 19

Collections and Iterators. i, 21

lterating the QList 21

Fillingthe List........ 24

More ListS. ... 24

Special Lists 25

SUMMAIY. . ..o 31

CHAPTER 2 Rapid Application Development UsingQt 33

The SKetch 33

Event-Driven Applications 34

Using Designer. 35

vii

viii

CONTENTS

CHAPTER 3

CHAPTER 4

From Designerto Code. ..., 47
The Final Touches. o 53
SUMMAY. ... 54
Widgetsand Layouts 55
Creating Dialogsin Qt............ i, 55
Size Policies 57
Layoutso 60
Common Widgetscoviii 62
QPushButton. 62
QLabel 64
QLineEdit. 65
QCheCKBOX 66
QRadioButton 67
QGroUPBOX 68
QListWidget. ... 69
QComboBOX 71
QASPINBOX.o 72
QSlider. ... o 73
QProgressBar. ... 74
Common Dialogso 75
FileS .o 75
MESSAgESt 79
EvenMore Dialogs. ... 85
Validating User Input. 86
Validators. ... 87
SUMMArY. 93
The MainWindow .. 95
Windows and Documentso i 95
Single Document Interface............................ ... 96
Multiple Document Interface 103
Comparing Single and Multiple Document Interfaces 11
Application RESOUICeS 112
Resource File 112
ProjectFile 114
Applicationlcon........... 114
Dockable Widgets 115

SUMMANY 119

PART 2

CHAPTER 5

CHAPTER 6

CHAPTER 7

CONTENTS

The Qt Building Blocks

The Model-View Framework 123
Showing Data by Using Views.ooes. 124
ProvidingHeaders.............. 127
Limiting Editing 127
Limiting Selection Behavior................................. 127
ASingle ColumnList.............. 128
Creating Custom Viewso 129
ADelegate for Drawing. ...t 129
Custom Editing.oo i 132
Creating Your Own Views...............cocoiiiiiiiin... 135
Creating Custom Modelsco i, 140
A Read-Only Table Model........................c.ooii... 141
ATreeof YourOwn..... i 144
Editingthe Model.............. ... 150
Sorting and FilteringModels il 153
SUMMArY. 156
Creating Widgets.. 157
Composing Widgets ... 157
Changing and Enhancing Widgets 162
Catchingthe Events................, 164
Creating Custom Widgets from Scratch....................... 171
Your Widgets and Designer................... .. i 176
Promotion 176
ProvidingaPlugin i 177
SUMMANY. . .. 182
Drawing and Printing................................... .. 183
Drawing Widgets. ... 183
The Drawing Operations.ccociiiiiianan.., 184
Transforming the Reality 200
Painting Widgets 204
The Graphics VIeW. 215
Interacting Using a Custom Item............................. 220
Printing ... 228
OpPenGLo 232

SUMMANY ... 232

ix

X

CONTENTS

CHAPTER 8

CHAPTER 9

CHAPTER 10

Files, Streams,and XML................................... 235
WorkingwithPaths........... L 235
Workingwith Files. 238
Working with Streams. 239
XML . 243
DOM. .. 244
Reading XML Fileswith SAX 248
Files and the MainWindowo iiia... 250
SUMMArY. 255
ProvidingHelp.. 257
Creating TOOIIPS 257
Creating HTML-Formatted Tooltips........................... 259
Inserting Images into Tooltips 260
Applying Multiple Tooltips to a Widget. 260
Providing What's This Help TipS 263
Embedding Links into What’'s ThisHelp Tips 264
Taking Advantage of the StatusBar............................... 267
Creating Wizardso i 269
Assistingthe User 275
Creating the Help Documentation............................ 275
Puttinglt Together............ i, 277
SUMMArY. 278
Internationalization and Localization..................... 279
Translating an Application....................ol 279
Extractingthe Strings 281
Linguist: A Tool for Translating 281
SetUp a Translation Object 284
QEStrings ... 285
Dealing with Other Translation Cases 287
Find the Missing Strings................ o .. 291
Translatingonthe Fly, 292
Other Considerations i, 295
Dealingwith Text.......... 295
IMagES. .. 296
Numbers ... 296
Datesand Timesco oo, 298
Help ..o 301

CHAPTER 11

CHAPTER 12

CHAPTER 13

CONTENTS

Plugins. 303
Plugin Basics ... 303
Extending Qt with Plugins 304
Creating an ASCIIArt Plugin. o iiia... 304
Extending Your Application Using Plugins. 317
Filtering Images 317
Merging the Plugin and the Application....................... 323
AFactoryInterface. i 326
Non-Qt Plugins.o 329
SUMMANY. ... 332
Doing ThingsinParallel 333
Basic Threading........... ... 333
Building a Simple Threading Application...................... 334
Synchronizing Safely.l 336
ProtectingYourData.................. 338
Protected Counting i 339
Locking for Reading and Writing............................. 341
Sharing Resources Among Threads............................... 344
Getting Stuck 345
Producers and ConsSumers.cocooviviveninnnn... 347
Signaling Across the Thread Barrier............................... 352
Passing Strings Between Threads 353
Sending Your Own Types Between Threads................... 356
Threads, QObjects, andRules.t 359
Pitfalls when Threadingt 359
The User Interface Thread 360
Working with Processes. ... 363
Runninguic............. o 363
The Shell and Directions.ooi.l. 368
SUMMANY. .. 368
Databases 37
A Quick Introductionto SQL................ 371
WhatlsaDatabase?...............................l 37
Inserting, Viewing, Modifying, and Deleting Data............... 372
More Tables Mean More Power 375

Counting and Calculating................................... 377

Xi

Xii

CONTENTS

CHAPTER 14

CHAPTER 15

Qtand Databasescco i 378
Making the Connection. 378
QueryingData............... ..., 380
Establishing Several Connections............................ 382

Putting It All Together. 382
The Structure of the Application 384
TheUseriInterface................ ... il 384
The Database Class. ...l 392
Putting Everything Together................................. 397

Model Databases. 398
TheQueryModel 399
TheTableModel i 399
The Relational Table Model 400

SUMMANY. ... 402

Networking........................ 403

Using the QtNetwork Module., 403

Working with Client Protocols............................. 403
Creatingan FTP Client o ..., 404
Creatingan HTTP Client 417

SOCKEES . ..o 424
Reliability’s Role with UDPand TCP.......................... 424
Servers, Clients,and Peers 425
Sending Images Using TCPooil. 425
Broadcasting PicturesUsingUDP 436

SUMMAY. 443

Building Qt Projects.. 445

AMAKE. . .. 445
The QMake ProjectFile..................................... 445
Working with Different Platforms 450
Building Libraries with QMake. 453
Building Complex Projects with QMake....................... 454

The CMake Build System............ L 457
Managing a Simple Application with QMake 457
Working with Different Platforms 461
Building Libraries withCMake. 465
Managing Complex Projects withCMake 466

SUMMANY 469

CHAPTER 16

PART 3

APPENDIX A

APPENDIX B

CONTENTS

UnitTesting... 471
UnitTestingand Qt............ i, 472
The StructureofaTest............ 472
TestingDates. i 474
Implementingthe Testso i, 475
Data-DrivenTestingcoi i 479
Testing Widgets. ... 483
Testinga SpinBoOX............oooiii 483
Driving WidgetswithData 487
TestingSignals 490
TestingforRealc i 491
Thelnterface. 492
The Tests. ... 492
Handling Deviations., 497
SUMMArY. 497

Appendixes

Third-Party Tools ... 501
Qt Widgets for Technical Applications: Qwt 502
WWWIdgeTS. ... 503
QDEVEIOP. . ..o 504
EdyuK. ... 505
Containers, Types,and Macros 507
CONtaINBrS. . .o 507
SEOUBNCES ...\ it 507
Specialized Containers................ 508
Associative Containers 509
T PBS . 509
TypeshySize ... 509
TheVariantType ... 510
Macros and Functions, 511
TreatingValues. 511
RandomValues i, 511
lterating 512

Xiii

Foreword

My very first computer, a ZX81, did not have a graphical user interface. Compared with
today’s offerings, I'd say it hardly had graphics at all. That computer never got me excited
about programming, mostly because the manuals were in English and I didn’t yet know how
to read the language.

Then I met the ABC80, a Swedish computer from Luxor. It had the same Z80 processor,

16 kilobytes of RAM, and no real graphics to talk about. It did have an introduction to BASIC in
Swedish, though, so it got me started with programming.

My next computer experience was an Atari ST. I must admit that in the beginning I used it
mostly for gaming. But as time passed I was thrilled about the possibilities of the Atari for pro-
gramming. I wrote games, utilities, and painting applications. I also ran into something that I
learned to like: an API for handling windows and drawing graphics.

Moving on, [got a PC. I learned C and C++, as well as how to do 3D graphics in software
(this was before 3D graphics cards). I was introduced to the Internet and learned lots of new
things from newsgroups and FAQs. I also got my first paid job as a programmer, processing
scientific data using FORTRAN.

At Chalmers University I met Tru64 UNIX and X Windows. The API for doing graphics felt
awkward, so I went looking for something better. That was when I found Qt. Back then, it just
solved my problem of the day: showing a couple of dialogs and drawing some graphics. But
the architecture got me hooked.

Over time, I used Qt more and more. I soon tried to figure out what it was that made Qt so
easy to use. The flexibility of the signals and slots concept that enabled me to connect widgets
and objects to each other was one reason. As was the up-to-date reference documentation—
nothing was left undocumented. And the naming made it easy to find the class and method I
was looking for. The name said it all.

Qt brought me to KDE and Linux. I learned to love GCC, Makefiles, and shell scripting.
The thing that thrilled me about Qt was that no matter what the task was, it fit right into its
architecture. Today, with Qt 4.0, the API covers most of the tasks that you might want to per-
form. Graphics, files, databases, networking, printing—you name it. Qt helps me solve my
problems quickly and easily.

I've recently become more and more involved in the Qt community. It all started
with my original “Independent Qt Tutorial” that introduced Qt 3.0 (you can still find it at
www.thelins.se/qt). I'm also a part of the administration team at QtCentre, which is where
I met the technical reviewer of this book, Witold Wysota. QtCentre (www.qtcentre.org) is
a community-driven forum, a wiki, and a news site—the natural meeting place for Qt
developers. Just over a year ago, Apress posted this question in the jobs section: Is there
anyone who wants to write a book about Qt? That was the starting point of the book that
you are reading right now.

Johan Thelin
M.Sc.E.E.

Xv

About the Author

JOHAN THELIN has worked with software development since 1995 and has
experience ranging from embedded systems to server-side enterprise
software. He started using Qt in 2000 and has loved using it ever since.
Since 2002 Johan has provided the Qt community with tutorials, articles,
and help (most notably, he wrote the “Independent Qt Tutorial”). He
currently works as a consultant focusing on embedded systems, FPGA
design, and software development.

Xvii

About the Technical Reviewer

WITOLD WYSOTA, Institute of Computer Science, Warsaw University of Technology, was born
in Wroclaw, Poland. He has a Master of Science degree in Computer Science from the Warsaw
University of Technology (WUT), where he is currently a PhD candidate. As such, he gives
lectures about Qt and conducts exercises using Qt for programming interactive applications.
Witold has been a Qt user since 2004 and was an active contributor to QtForum.org commu-
nity forum before January 2006—when he established QtCentre.org with Axel Jager, Daniel
Kish, Jacek Piotrowski, and Johan Thelin. It has since become the biggest actively maintained,
community-based Qt-related site and forum.

Witold has been practicing the traditional Seven Star Praying Mantis Kung-Fu style since
1989 and has achieved success in domestic tournaments. He is interested in IT, sports, martial
arts, astrophysics, and history. He lives in Warsaw.

Xix

Acknowledgments

There are so many people I want to thank—everybody involved in the project has been help-
ful, positive, and supportive. It has been a great time working with all of you.

First, many thanks go to Witold Wysota, who has provided me with feedback, technical
input, and kind words. Without his support I could not have completed this project. I would
also like to thank Jason Gilmore from Apress for his excellent feedback and writing tips.
Thanks to him, the text is far more enjoyable to read.

Jasmin Blanchette of Trolltech helped me by producing screenshots from the Mac. The
excellent support team at Trolltech also clarified unclear issues and fixed bugs. Everyone at
Trolltech has been very positive and supportive.

I want to thank all the people at Apress: Matt Wade, who gave me the chance to do this;
Elizabeth Seymour, Grace Wong, and Tracy Brown Collins for managing the project. An extra
thanks to Tracy who pushed me the last mile to get the project done on time.

Without the help of Nancy Sixsmith’s language skills, the text would not have been as easy
to read. Thanks to her attention to detail and excellent writing abilities, the text reads as well
as it does today.

There are so many people involved in this project that I have not worked with so closely.
I'm still very grateful to their efforts and appreciate their skills. Many thanks go to Kelly
Winquist, Dina Quan, Brenda Miller, April Milne, and Paulette McGee.

Xxi

PART 1

Getting to Know Qt

In the first few chapters of this book, you will get acquainted with the Qt way of doing
things—including using available classes as well as creating your own classes that inter-
act with the existing ones. You will also learn about the build system and some of the tools
available to help make the lives of Qt developers easier.

CHAPTER 1

The Qt Way of C++

Qt is a cross-platform, graphical, application development toolkit that enables you to com-
pile and run your applications on Windows, Mac OS X, Linux, and different brands of Unix.
Alarge part of Qt is devoted to providing a platform-neutral interface to everything, ranging
from representing characters in memory to creating a multithreaded graphical application.

Note Even though Qt was originally developed to help C++ programmers, bindings are available for a
number of languages. Trolltech provides official bindings for C++, Java, and JavaScript. Third parties provide
bindings for many languages, including Python, Ruby, PHP, and the .NET platform.

This chapter starts by taking an ordinary C++ class and integrating it with Qt to make it
more reusable and easier to use. In the process, you have a look at the build system used to
compile and link Qt applications as well as installing and setting up Qt on your platform.

The chapter then discusses how Qt can enable you to build components that can be inter-
connected in very flexible ways. This is what makes Qt such a powerful tool—it makes it easy
to build components that can be reused, exchanged, and interconnected. Finally, you learn
about the collection and helper classes offered by Qt.

Installing a Qt Development Environment

Before you can start developing Qt applications, you need to download and set up Qt. You will
use the open source edition of Qt because it is freely available for all. If you have a commercial
license for Qt, you have received installations instructions with it.

The installation procedure differs slightly depending on the platform that you are plan-
ning to use for development. Because Mac OS X and Linux are both based on Unix, the
installation process is identical for the two (and all Unix platforms). Windows, on the other
hand, is different and is covered separately. You can start all three platforms by downloading
the edition suitable for your platform from www.trolltech.com/products/qt/downloads.

Installing on Unix Platforms

All platforms except Windows can be said to be Unix platforms. However, Mac OS X differs
from the rest because it does not use the X Window System, more commonly known as X11,

CHAPTER 1 = THE QT WAY OF C++

for handling graphics. So Mac OS X needs a different Qt edition; the necessary file (qt-mac-
opensource-src-version.tar.gz) can be downloaded from Trolltech. The X11-based Unix
platforms use the qt-x11-opensource-src-version.tar.gz file from Trolltech.

Note Qt depends on other components such as compilers, linkers, and development libraries. The
requirements differ depending on how Qt is configured, so you should study the reference documentation
if you run into problems.

When the file has been downloaded, the procedure goes like this: unpack, configure, and
compile. Let’s go through these steps one by one. The easiest way is to work from the com-
mand prompt.

To unpack the file, download it, place it in a directory, and go there in your command
shell. Then type something like this (put x11 or mac in place of edition and use the version
that you have downloaded):

tar xvfz qt-edition-opensource-src-version.tar.gz

This code extracts the file archive to a folder named qt-edition-opensource-sxrc-version.
Use the cd command to enter that directory:

cd qt-edition-opensource-src-version

Before building Qt, you need to configure it using the configure script and its options.
Run the script like this:

./configure options

There are lots of options to choose from. The best place to start is to use -help, which
shows you a list of the available options. Most options can usually be left as the default, but
the -prefix option is good to use. You can direct the installation to go to a specific location by
specifying a path just after the option. For instance, to install Qt in a directory called inst/qt4
in your home directory, use the following configure command:

./configure -prefix ~/inst/qt4

The Mac OS X platform has two other options that are important to note. First, adding the
-universal option creates universal binaries using Qt. If you plan to use a PowerPC-based
computer for your development, you have to add the -sdk option.

The configure script also makes you accept the open source license (unless you have a
commercial license) before checking that all the dependencies are in place and starting to cre-
ate configuration files in the source tree. When the script is done, you can build Qt using the
following command:

make

This process will take a relatively long time to complete, but after it finishes you can
install Qt by using the next line:

make install

CHAPTER 1 = THE QT WAY OF C++

Note The installation command might need root access if you try to install Qt outside your home
directory.

When Qt has been installed, you need to add Qt to your PATH environment variable. If you
are using a compiler that does not support rpath, you have to update the LD_LIBRARY_PATH
environment variable as well.

If you used the $HOME/inst/qt4 prefix when running configure, you need to add the
path $HOME/inst/qt4/bin to PATH. If you are using a bash shell, change the variable using an
assignment:

export PATH=$HOME/inst/qt4/bin:$PATH

If you want this command to run every time you start a command shell, you can add it to
your .profile file just before a line that reads export PATH. This exports the new PATH environ-
ment variable to the command-line session.

Note The methods for setting up environment variables differ from shell to shell. If you are not using
bash, please refer to the reference documentation on how to set the PATH variable for your system.

If you have several Qt versions installed at once, make sure that the version that you
intend to use appears first in the PATH environment variable because the gmake binary used
knows where Qt has been installed.

If you have to change the LD_LIBRARY PATH environment variable, add the
$HOME/inst/qt4/1ib directory to the variable. On Mac OS X and Linux (which use the Gnu
Compiler Collection [GCC]), this step is not needed.

Installing on Windows

If you plan to use the Windows platform for your Qt development, download a file called qt-
win-opensource-version-mingw.exe from Trolltech. This file is an installer that will set up Qt
and a mingw environment.

Note mingw, which is short for Minimalist GNU for Windows, is a distribution of common GNU tools for
Windows. These tools, including GCC and make, are used by the open source edition of Qt for compiling and
linking.

The installer works as a guide, asking you where to install Qt. Make sure to pick a direc-
tory path free from spaces because that can cause you problems later. After you install Qt, you
see a Start menu folder called Ot by Trolltech (OpenSource). This folder contains entries for
the Qt tools and documentation as well as a Qt command prompt. It is important that you

CHAPTER 1 = THE QT WAY OF C++

access Qt from this command prompt because it sets up the environment variables such as
PATH correctly. Simply running the command prompt found in the Accessories folder on the
Start menu will fail because the variables are not properly configured.

Making C++ “Qt-er”

Because this is a book on programming, you will start with some code right away (see
Listing 1-1).

Listing 1-1. A simple C++ class

#include <string>
using std::string;
class MyClass
{
public:
MyClass(const string& text);

const stringd text() const;
void setText(const stringd text);

int getlengthOfText() const;

private:
string m_text;

};

The class shown in Listing 1-1 is a simple string container with a method for getting the
length of the current text. The implementation is trivial, m_text is simply set or returned, or
the size of m_text is returned. Let’s make this class more powerful by using Qt. But first, take a
look at the parts that already are “Qt-ish”:

¢ The class name starts with an uppercase letter and the words are divided using Camel-
Casing. That is, each new word starts with an uppercase letter. This is the common way
to name Qft classes.

¢ The names of the methods all start with a lowercase letter, and the words are again
divided by using CamelCasing. This is the common way to name Qt methods.

¢ The getter and setter methods of the property text are named text (getter) and setText
(setter). This is the common way to name getters and setters.

They are all traits of Qt. It might not seem like a big thing, but having things named in a
structured manner is a great timesaver when you are actually writing code.

CHAPTER 1 = THE QT WAY OF C++

Inheriting Qt

The first Qt-specific adjustment you will make to the code is really simple: you will simply let
your class inherit the QObject class, which will make it easier to manage instances of the class
dynamically by giving instances parents that are responsible for their deletion.

Note All Qt classes are prefixed by a capital Q. So if you find the classes QDialog and Dialog, you can
tell right away that QDialog is the Qt class, whereas Dialog is a part of your application or third-party
code. Some third-party libraries use the QnnClassName naming convention, which means that the class
belongs to a library extending Qt. The nn from the prefix tells you which library the class belongs to. For
example, the class QwtDial belongs to the Qt Widgets for Technical Applications library that provides
classes for graphs, dials, and so on. (You can find out more about this and other third-party extensions to
Qt in the appendixes.)

The changes to the code are minimal. First, the definition of the class is altered slightly, as
shown in Listing 1-2. The parent argument is also added to the constructor as a convenience
because Q0bject has a function, setParent, which can be used to assign an object instance to
a parent after creation. However, it is common—and recommended—to pass the parent as
an argument to the constructor as the first default argument to avoid having to type setParent
for each instance created from the class.

Listing 1-2. Inheriting QObject and accepting a parent

#include <QObject>
#include <string>
using std::string;

class MyClass : public QObject

{
public:
MyClass(const string& text, QObject *parent = 0);

};

Note To access the Q0bject class, the header file <Q0bject> has to be included. This works for most
Qt classes; simply include a header file with the same name as the class, omitting the . h, and everything
should work fine.

CHAPTER 1 = THE QT WAY OF C++

The parent argument is simply passed on to the Q0bject constructor like this:
MyClass::MyClass(const stringd text, QObject *parent) : QObject(parent)

Let’s look at the effects of the change, starting with Listing 1-3. It shows amain function
using the MyClass class dynamically without Qt.
Listing 1-3. Dynamic memory without Qt

#include <iostream>
int main(int argc, char **argv)
{

MyClass *a, *b, *c;

a = new MyClass("foo");
b = new MyClass("ba-a-ar");
c = new MyClass("baz");

std::cout << a->text() << " (" << a->getlengthOfText() << ")" << std::endl;
a->setText(b->text());
std::cout << a->text() << " (" << a->getlengthOfText() << ")" << std::endl;

int result = a->getlengthOfText() - c->getlLengthOfText();

delete a;
delete b;
delete c;

return result;

Each new call must be followed by a call to delete to avoid a memory leak. Although it is
not a big issue when exiting from the main function (because most modern operating systems
free the memory when the application exits), the destructors are not called as expected. In
locations other than loop-less main functions, a leak eventually leads to a system crash when
the system runs out of free memory. Compare it with Listing 1-4, which uses a parent that is
automatically deleted when the main function exits. The parent is responsible for calling
delete for all children and—ta-dal—the memory is freed.

Note In the code shown in Listing 1-4, the parent object is added to show the concept. In real life, it
would be an object performing some sort of task—for example, a QApplication object, or (in the case of
a dialog box or a window) the this pointer of the window class.

CHAPTER 1 = THE QT WAY OF C++

Listing 1-4. Dynamic memory with Qt

#include <QtDebug>
int main(int argc, char **argv)
{

Q0bject parent;

MyClass *a, *b, *c;

a = new MyClass("foo", 8parent);
b = new MyClass("ba-a-ar", 8parent);
¢ = new MyClass("baz", 8parent);

gDebug() << QString::fromStdString(a->text())
<« " (" << a->getlengthOfText() << ")";

a->setText(b->text());

qDebug() << QString::fromStdString(a->text())
<« " (" << a->getlengthOfText() << ")";

return a->getlengthOfText() - c->getlengthOfText();
}

You even saved the extra step of having to keep the calculated result in a variable because
the dynamically created objects can be used directly from the return statement. It might look
odd to have a parent object like this, but most Qt applications use a QApplication object to act
as a parent.

Note Listing 1-4 switched from using std: : cout for printing debugging messages to qDebug (). The
nice thing about using qDebug () is that it sends the message to the right place on all platforms. It is also
easy to turn off: simply define the QT_NO_DEBUG_OUTPUT symbol when compiling. If you have debugging
messages after which you want to terminate the application, Qt provides the gFatal() function, which
works just like gDebug (), but terminates the application after the message. The compromise between the
two is to use gWarning(), which indicates something more serious than a debug message, but nothing
fatal. The Qt functions for debugging messages automatically appends a line break after each call, so you
do not have to include the std: :end1 any more.

When comparing the code complexity in Listing 1-3 and Listing 1-4, look at the different
memory situations, as shown in Figure 1-1. The parent is gray because it is allocated on the
stack and thus automatically deleted, whereas the instances of MyClass are white because they
are on the heap and must be handled manually. Because you use the parent to keep track of
the children, you trust the parent to delete them when it is being deleted. So you no longer
have to keep track of the dynamically allocated memory as long as the root object is on the
stack (or if you keep track of it).

10 CHAPTER 1 = THE QT WAY OF C++

Without a parent With a parent on the stack
a b c parent
0On the stack
a b c

|:| On the heap

Figure 1-1. Difference between dynamic memory with a parent and without a parent on the stack

Using a Qt String

Another step toward using Qt is to replace any classes from the C++ standard template library
(STL) with the corresponding Qt class. Although it is not required (Qt works great alongside
the STL), it does make it possible to avoid having to rely on a second framework. The benefit
of not using the STL is that you use the same containers, strings, and helpers as Qt does, so the
resulting application will most likely be smaller. You also avoid having to track down compati-
bility issues and strange deviations from the STL standard when moving between platforms
and compilers—you can even develop on platforms that do not have implementations of
the STL.

Looking at the class as it currently stands, spot the string class as the only STL class used.
The corresponding Qt class is called 0String. You can mix QString objects and string objects
seamlessly, but using only 0String means performance gains and more features. For example,
QString supports Unicode on all platforms, making it a lot easier for international users to use
your application.

Listing 1-5 shows how your code looks after replacing all occurrences of string with
0String. As you can see, the changes to the class are minimal.

Listing 1-5. MyClass using QString instead of string

#include <QString>
#include <QObject>

class MyClass : public QObject

{
public:
MyClass(const QStringd& text, QObject *parent = 0);

const QStringd text() const;
void setText(const QString& text);

int getlengthOfText() const;

CHAPTER 1 = THE QT WAY OF C++

private:
QString m_text;
};

Tip When mixing string and QString, use the QString methods toStdString and fromStdString
to convert to and from the Qt Unicode format to the ASCII representation used by the string class.

Building a Qt Program

Compiling and building this application should not be any different from building the original
application. All that you have to do is make sure that the compiler can find the Qt headers and
that the linker can find the Qt library files.

To handle all this smoothly and in a cross-platform manner, Qt comes with the QMake
tool, which can create Makefiles for a range of different compilers. It even creates the project
definition file for you if you want it to.

Try this by building a simple application. Start by creating a directory called testing. Then
put the code from Listing 1-6 inside this directory. You can call the file anything as long as it
has the cpp extension.

Listing 1-6. A trivial example
#include <QtDebug>

int main()

{
gDebug() << "Hello Qt World!";

return 0O;

Now open a command line and change your working directory to the one that you just
created. Then type qmake -project and press Enter, which should generate a file named test-
ing.pro. My version of that file is shown in Listing 1-7.

Tip If you are running the open-source version of Qt in Windows, you have an application called some-
thing like Qt 4.2.2 Command Prompt in the Start menu folder that was created when you installed Qt. Run
this application and use the cd command to change the directory. For example, first locate your folder using
Explorer; then copy the entire path (it should be similar to c: \foo\bar\baz\testing). Now type cd, fol-
lowed by a space at the command prompt before you right-click, select Paste, and then press Enter. That
should get you to the right working directory in a snap.

11

12

CHAPTER 1 = THE QT WAY OF C++

Listing 1-7. A generated project file

HHHHHH
Automatically generated by gmake (2.00a) to 10. aug 17:06:34 2006
TS S S L U

TEMPLATE = app
TARGET +=

DEPENDPATH += .
INCLUDEPATH += .

Input
SOURCES += anything.cpp

The file consists of a set of variables that are set by using = or extended by using +=. The
interesting part is the SOURCES variable, which tells you that QMake has found the anything.
cpp file. The next step is to generate a platform-specific Makefile using QMake. Because the
working directory contains only one project file, simply type qmake and press Enter. This
should give you a Makefile and platform-specific helper files.

Note On GNU/Linux, the result is a single file called Makefile. On Windows, if you use the open-source
edition and mingw you get Makefile, Makefile.Release, Makefile.Debug, and two directories: debug
and release.

The last step is to build the project from the generated Makefile. How to do this depends
on which platform and compiler you are using. You should usually type make and press
Enter, but gmake (common on Berkeley Software Distribution [BSD] systems) and nmake (on
Microsoft compilers) are other common alternatives. Try looking in your compiler manual if
you cannot get it to work at the first try.

Tip When running Windows, applications do not get a console output by default. This means that Win-
dows applications cannot, by default, write output to the command-line users. To see any output from
gDebug(), you must add a line reading CONFIG += console to the project file. If you built the executable
and then saw this tip, try fixing the project file; then run make clean followed by make. This process
ensures that the project is completely rebuilt and that the new configuration is taken into account.

The only thing left to do now is to run the application and watch this message: Hello Qt
World!. The executable will have the same name as the directory that you used. For Windows
users, the executable ends up in the release directory with the exe file name extension, so you
start it by running the following command:

release\testing.exe

CHAPTER 1 = THE QT WAY OF C++

On other platforms it is usually located directly in the working directory, so you start it by
typing the following:

./testing

On all platforms the result is the same: the Hello Qt World! message is printed to the
console. The resulting command prompt on the Windows platform is shown in Figure 1-2.

& Qt 4.2.3 Command Prompt -|=f x|

Figure 1-2. A Qt application running from the command prompt

Signals, Slots, and Meta-0bjects

Two of the biggest strengths that Qt brings to C++ are signals and slots, which are very flexible
ways to interconnect objects and help to make code easy to design and reuse.

A signal is a method that is emitted rather than executed when called. So from your view-
point as a programmer, you declare prototypes of signals that might be emitted. Do not
implement signals; just declare them in the class declaration in the signals section of your
class.

A slot is a member function that can be invoked as a result of signal emission. You have to
tell the compiler which methods to treat as slots by putting them in one of these sections:
public slots, protected slots, or private slots. The protection level protects the slot only
when it is being used as a method. You can still connect a private slot or a protected slotto a
signal that you receive from another class.

When it comes to connecting signals and slots, you can connect any number of signals to
any number of slots. This means that a single slot can be connected to many signals, and a
single signal can be connected to many slots. There are no limitations to how you intercon-
nect your objects. When a signal is emitted, all slots connected to it are called. The order of the
calls is undefined, but they do get called. Let’s look at some code that shows a class declaring
both a signal and a slot (see Listing 1-8).

13

14

CHAPTER 1 = THE QT WAY OF C++

Listing 1-8. A class with a signal and a slot

#include <QString>
#include <QObject>
class MyClass : public QObject

{
Q_OBJECT

public:
MyClass(const QString &text, QObject *parent = 0);

const QStringd text() const;
int getlengthOfText() const;

public slots:
void setText(const QString &text);

signals:
void textChanged(const QString&);

private:
QString m_text;
};

The code is a new incarnation of the class MyClass you have been working with through-
out the chapter. There are changes related to the signals and slots in the three emphasized
areas of the listing. Start from the bottom with the new section labeled signals:. This tells you
that the functions declared in this section will not be implemented by you; they are simply
prototypes for the signals that this class can emit. This class has one signal: textChanged.

Moving upward, there is another new section: public slots:. Slots can be public, pro-
tected, or private like any other member—just add the appropriate protection level before the
slots keyword. Slots can be considered a member function that can be connected to a signal.
There is really no other difference; it is declared and implemented just like any other member
function of the class.

Tip Setter methods are natural slots. By making all setters slots, you guarantee that you can connect sig-
nals to all interesting parts of your class. The only time when a setter should not also be a slot is when the
setter accepts some very custom type that you are sure will never come from a signal.

At the very top of the class declaration you find the Q_0BJECT macro. It is important that
this macro appears first in the body of the class declaration because it marks the class as a
class that needs a meta-object. Let’s look at what meta-objects are before continuing.

The word meta indicates that the word prefixed is about itself. So a meta-object is an
object describing the object. In the case of Qt, meta-objects are instances of the class

CHAPTER 1 = THE QT WAY OF C++

OMetaObject and contain information about the class such as its name, its super classes, its
signals, its slots, and many other interesting things. The important thing to know now is that
the meta-object knows about the signals and slots.

This leads into the next implication of this feature. Until now, all the examples have fitted
nicely into a single file of source code. It is possible to go on like this, but the process is
much smoother if you separate each class into a header and a source file. A Qt tool called
the meta-object compiler, moc, parses the class declaration and produces a C++ implementa-
tion file from it. This might sound complex, but as long as you use QMake to handle the
project, there is no difference to you.

This new approach means that the code from Listing 1-8 goes into a file called myclass.h.
The implementation goes into myclass.cpp, and the moc generates another C++ file from the
header file called moc_myclass.cpp. The contents from the generated file can change between
Qt versions and is nothing to worry about. Listing 1-9 contains the part of the implementation
that has changed because of signals and slots.

Listing 1-9. Implementing MyClass with signals and slots

void MyClass::setText(const QString &text)
{
if(m_text == text)
return;

m_text = text;
emit textChanged(m text);
}

The changes made to emit the signal textChanged can be divided into two parts. The first
half is to check that the text actually has changed. If you do not check this before you connect
the textChanged signal to the setText slot of the same object, you will end up with an infinite
loop (or as the user would put it, the application will hang). The second half of the change is
to actually emit the signal, which is done using the Qt keyword emit followed by the signal’s
name and arguments.

SIGNALS AND SLOTS UNDER THE HOOD

Signals and slots are implemented by Qt using function pointers. When calling emit with the signal as argu-
ment, you actually call the signal. The signal is a function implemented in the source file generated by the
moc. This function calls any slots connected to the signal using the meta-objects of the objects holding the
connected slots.

The meta-objects contain function pointers to the slots, along with their names and argument types.
They also contain a list of the available signals and their names and argument types. When calling connect,
you ask the meta-object to add the slot to the signal’s calling list. If the arguments match, the connection is
made.

When matching arguments, the match is checked only for the arguments accepted by the slot. This
means that a slot that does not take any arguments matches all signals. The arguments not accepted by the
slot are simply dropped by the signal-emitting code.

15

16 CHAPTER 1 = THE QT WAY OF C++

Making the Connection

To try out the signals and slots in MyClass, the a, b, and c instances are created:

Q0bject parent;
MyClass *a, *b, *c;

a = new MyClass("foo", 8parent);
new MyClass("bar", &parent);
new MyClass("baz", &parent);

N o
1} 1}

Now connect them. To connect signals and slots, the Q0bject: :connect method is
used. The arguments are source object, SIGNAL(source signal), destination object,
SLOT(destination slot).The macros SIGNAL and SLOT are required; otherwise, Qt refuses to
establish the connection. The source and destination objects are pointers to QObjects or
objects of classes inheriting Q0bject. The source signal and destination slot are the name and
argument types of the signal and slot involved. The following shows how it looks in the code.
Figure 1-3 shows how the object instances are connected.

Q0bject: :connect(
a, SIGNAL(textChanged(const QStringd)),
b, SLOT(setText(const QStringd&)));
Q0bject: :connect(
b, SIGNAL(textChanged(const QString&)),
c, SLOT(setText(const QStringd)));
Q0bject: :connect(
c, SIGNAL(textChanged(const QString&)),
b, SLOT(setText(const QString8&)));

Caution Trying to specify signal or slot argument values when connecting will cause your code to fail at
run-time. The connect function understands only the argument types.

textChanged
QString
textChanged setText textChanged setText
- ®) - b - o) - c
QString QString QString QString

Figure 1-3. The connections between a, b, and c

The following line shows a call to one of the objects:
b->setText("test");

Try tracing the call from b, where there is a change from "bar" to "test"; through the con-
nection to c, where there is a change from "baz" to "test"; and through the connection to b,

CHAPTER 1 = THE QT WAY OF C++

where there is no change. The result is that a is unaltered, while b and c get the text set to
"test." This is illustrated in Figure 1-4, in which you can see how the text "test" propagates
through the objects. Now try to trace the following call. Can you tell what the outcome will be?

a->setText("0t");

Calling setText on b,

setText (“test”)

textChanged
Y QString
a textChanged setText b textChanged setText c J
“fo0” QString - (QString “bar” QString - QString “baz”

The signal goes from b to ¢ and changes the text of c.

textChanged
QString
a textChanged setText b textChanged setText c J
“foo” QString - (QString “test” “tost” < “togt” “baz”

The signal goes from ¢ to b—where it is dropped.

textChanged
QString
a textChanged setText b textChanged - setText c
“fo0” QString -+ “test” “test” QString - QString “test”

¢
’
’
’
Vi

As the signal’s value is “test,”
which is the current value,
the signal is ignored by
the slot.

Figure 1-4. Tracing the text through the connections

Tip By providing a signal for each slot (for example, textChanged corresponds to setText), you make
it possible to tie two objects together. In the previous example, the objects b and ¢ always have the same
value because a change in one triggers a change in the other. This is a very useful feature when one object
is a part of a graphical user interface, as you will see later.

17

18 CHAPTER 1 = THE QT WAY OF C++

Revisiting the Build Process

The last time building Qt applications was mentioned, the reason for using the QMake tool
was platform independence. Another big reason is that QMake handles the generation of
meta-objects and includes them in the final application. Figure 1-5 shows how a standard C++
project is built.

Sources are Objects are
compiled to linked to
C++ source files objects. object files an executable.
> executable

Headers are
included by
sources.

C++ header files

Figure 1-5. A standard C++ project is built.

When using QMake, all header files are parsed by the meta-object compiler: moc. The moc
looks for classes containing the Q_ OBJECT macro and generates meta-objects for these classes.
The generated meta-objects are then automatically linked into the final application. Figure 1-6
shows how this fits into the build process. QMake makes this completely transparent to you as

a developer.
Sources are Objects are
compiled to linked to
C++ source files objects. object files an executable.
> > executable
Headers are Sources are
'n:(l;:::sgsby Headers are co;;p;l;g to
) compiled to JEcts.
meta-object
Sources. -obj
C++ header files —_— > WLEFC 00D

C++ source files

Figure 1-6. Meta-objects are being built.

CHAPTER 1 = THE QT WAY OF C++

Tip Remember that Qt is simply standard C++ mixed with some macros and the moc code generator. If
you get compiler or linker messages complaining about missing functions with names telling you that they
are signals, the code for the signals is not being generated. The most common reason is that the class does
not contain the Q_OBJECT macro. It is also possible to get strange compilation errors by not inheriting
Q0bject (directly or indirectly) and still use the Q_OBIECT macro, or by forgetting to run qmake after having
inserted or removed the macro in a class.

Connection to Something New

Signals and slots are very loose types of connection, so the only thing that matters is that the
arguments’ types match between the signal and the slot. The called class does not need to
know anything about the calling class, and vice versa. That means that the simple example
class can be put to the test—letting it interact with a set of Qt’s classes.

The plan is to put MyClass between a widget that lets the user enter text, QLineEdit, and a
widget that shows text, QLabel. A widget is a visual component such as a button, a slider, a
menu item, or anything else that is a part of a graphical user interface. (Widgets are described
in some detail in Chapter 3.) You can make the MyClass object work as a bridge carrying text
from the user editable field to the label by connecting the textChanged signal from the
QLineEdit object to the setText slot of the MyClass object and then connecting the textChanged
signal from the MyClass object to the QLabel object’s setText slot. The entire setup is shown in
Figure 1-7.

textChanged setText textChanged setText
9 &) MyClass g >)

QLineEdit @
QString 4 QString 4 QString =4 QString

QLabel

Figure 1-7. MyClass acting as a bridge between QLineEdit and QLabel

The main function of this example can be split into three parts: creating the involved
object instances, making the connections, and then running the application. Listing 1-10
shows how the involved components are created. First, there is a QApplication object. For all
graphical Qt applications, there must be one (and only one) application instance available.
The application object contains what is called the event loop. In this loop, the application
waits for something to happen—for an event to occur. For example, the user presses a key or
moves the mouse, or a certain period of time has passed. As soon as an event has occurred, it
is transformed into a call to an appropriate Q0bject. For instance, the key press event would
go to the widget having keyboard focus. The event is processed by the receiving object, and
sometimes a signal is emitted. In the key press scenario, a textChanged signal is emitted; in the
case of a button and the key being entered or space, a pressed signal is emitted. The signals
are then connected to slots performing the actual tasks of the application.

Take a moment to review Listing 1-10. The QApplication object is created, along with
three widgets: a plain QWidget, a QLineEdit, and a QLabel. The QWidget acts as a container for
the other two. That is why you create a QVBoxLayout—it is a vertical box layout that stacks its
widgets on top of each other. Then you put the line edit and label in the box layout before
assigning the layout to the widget. The resulting widget is shown in Figure 1-8.

19

20

CHAPTER 1 = THE QT WAY OF C++

Finally, you create an instance of MyClass, which is the last object that you will need.

Listing 1-10. Creating an application, widgets, layout, and a MyClass object

#include <QtGui>

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QWidget widget;
QlLineEdit *1lineEdit = new QLineEdit;
QLabel *1label = new QLabel;

QVBoxLayout *layout = new QVBoxLayout;
layout->addWidget(lineEdit);
layout->addWidget(label);
widget.setlayout(layout);

MyClass *bridge = new MyClass("", 8app);

According to Figure 1-7, you need to make two connections (see Listing 1-11). It is impor-
tant to remember that the names of the signals and slots (textChanged and setText) just
happen to be the same as in MyClass. The only thing important to Qt is the type sent and
accepted as argument: QString.

Listing 1-11. Setting up the connections

QObject: :connect(
lineEdit, SIGNAL(textChanged(const QString8)),
bridge, SLOT(setText(const QStringd)));
Q0bject: :connect(
bridge, SICGNAL(textChanged(const QStringd)),
label, SLOT(setText(const QString8)));

You might fear that showing the user interface and then starting the event loop is the
hard part. In fact, the opposite is true. Listing 1-12 shows all the code involved. Because the
line edit and label are contained in the plain widget, they are shown as soon as the widget is
shown. When you try to show the widget, Qt realizes that it is missing a window and automati-
cally puts it in a window. Then the application method exec runs the event loop until all
windows are closed and returns zero as long as everything works as expected.

Listing 1-12. Showing the user interface and executing the event loop

widget.show();

return app.exec();

}

CHAPTER 1 = THE QT WAY OF C++

As soon as the event loop is up and running, everything takes care of itself. Keyboard
activity ends up in the line edit widget. The key presses are handled, and the text changes
accordingly. These changes lead to textChanged signals being emitted from the line edit to
the MyClass object. This signal propagates through the MyClass object to the label where the
change can be seen by the user as the label is redrawn with the new text. A screenshot from
the application is shown in Figure 1-8.

—_ex5 =) 0Ed

|This is a test string... |

This is a test string...

Figure 1-8. It does not show on the surface, but MyClass is playing an important role in this
application.

The important thing to remember is that MyClass knows nothing about QLineEdit or
QLabel, and vice versa—they meet in the main function where they are interconnected. There
is no need for having events, delegates, or signal classes that are commonly known by the
involved classes. The only common factor is that they inherit Q0bject; the rest of the needed
information is available at run-time from the meta-objects.

Collections and Iterators

Qt has classes to replace the classes of the C++ STL (until now, you have seen the QString
class). This section looks at the containers and iterators that Qt has to offer.

Qt’s containers are template classes and can contain any other mutable class. There is a
range of different containers, including different lists, stacks, queues, maps, and hash lists.
With these classes come iterators—both STL-compatible ones and Qt’s Java-inspired versions.
Iterators are lightweight objects that are used to move around in the containers and to get
access to the data kept in them.

Tip Al Qt collection classes are implicitly shared, so no copies are made of a list until it is modified. Pass-
ing lists as arguments or returning lists as results is inexpensive performance and memory wise. Passing
const references to lists as arguments or results is even cheaper because it guarantees that no change can
be made unintentionally.

Iterating the QList

Let’s start by looking at the QList class. Listing 1-13 shows how a list of QString objects is
created and populated. Using the << operator for appending data makes it easy to fill lists
with information. When the list is populated, the foreach macro is used to print the contents
of the list.

21

22 CHAPTER 1 = THE QT WAY OF C++

Listing 1-13. Populating a QList and printing the contents

QList<QString> list;
list << "foo" << "bar" << "baz";

foreach(QString s, list)
gDebug() << s;

Listing 1-13 shows how Qt developers think lists ought to be: easy to use. Using the
foreach macro shortens the code, but iterator instances are used behind the scenes.

Qt offers both STL-style iterators and Java-style iterators. The code in Listing 1-14 shows
how both iterators are used. The while loop at the top of the list uses the Java-style iterator
QListIterator. The function hasNext checks to see whether there are any more valid items in
the list, whereas the next method returns the current item and moves the iterator to the next
item. If you want to look at the next item without moving the iterator, use the peekNext
method.

The for loop at the end of the listing uses STL-style iterators. The iterator name can be
specified using either STL naming or Qt naming—const_iterator and ConstIterator are syn-
onyms, but the latter is more “Qt-ified.”

When iterating in for loops, it is valuable to use ++iterator instead of iterator++. This
gives you more efficient code because the compiler avoids having to create a temporary object
for the context of the for loop.

Listing 1-14. STL-style iterators and Java-style iterators side by side

QList<int> list;
list << 23 << 27 << 52 << 52;

QListIterator<int> javalter(list);
while(javaIter.hasNext())
gDebug() << javalter.next();

QlList<int>::const_iterator stllter;
for(stlIter = list.begin(); stlIter != list.end(); ++stlIter)
gDebug() << (*stllIter);

When comparing STL- and Java-style iterators, it is important to remember that STL-style
iterators are slightly more efficient. However, the readability and code clarity provided by the
Java-style iterators might be enough motivation to use them.

Tip Itis common to use typedef to avoid having to type QList<>: : Tterator everywhere. For example,
a list of MyClass items could be called MyClassList (create the type like this: typedef QList<MyClass>
MyClassList) with an iterator called MyClassListIterator (create the type like this: typedef
QList<MyClass>::Iterator MyClassListIterator).This process helps to make code using STL-style
iterators more readable.

CHAPTER 1 = THE QT WAY OF C++

Listing 1-14 showed you how to use constant iterators, but sometimes it is necessary to be
able to modify the list as you iterate over it. Using STL-style iterators, this means skipping the
const part of the name. For Java-style iteration, QutablelListIterator is used. Listing 1-15
shows iterating and modifying list contents using Qt classes:

Listing 1-15. Modifying lists using iterators

QList<int> list;
list << 27 << 33 << 61 << 62;

QMutablelistIterator<int> javalter(list);
while(javaIter.hasNext())
{
int value = javalter.next() + 1;
javaIter.setValue(value);
gDebug() << value;

}

QList<int>::Iterator stllter;
for(stllter = list.begin(); stllter != list.end(); ++stllter)
{
(*stllter) = (*stlIter)*2;
gDebug() << (*stllter);
}

Listing 1-15 shows that the Java-style loop reads the next value using next and then sets
the current value using setValue. This means that the loop in the listing increases all the val-
ues in the list by one. It also means that setValue should not be used before next has been
called as the iterator; it then points at the non-existing value before the actual list.

Caution When modifying the list by removing or inserting items, the iterators might become invalid. Be
aware of this when modifying the actual list (and not the list’s contents).

In the STL-style loop nothing has changed, except that this time the items referenced by
the iterator can be modified. This example used the Iterator name instead of iterator, which
does not affect the result (they are synonyms).

It is not only possible to iterate in one direction but for STL-style iterators it is also possi-
ble to use the -- operator as well as the ++ operator. For Java-style iterators, the methods next,
previous, findNext, and findPrevious are available. When using next and previous, it is
important to guard the code by using hasNext and hasPrevious to avoid undefined results.

Tip When you pick an iterator to use, always try to use constant iterators when possible because they
give faster code and prevent you from modifying list items by mistake.

23

24

CHAPTER 1 = THE QT WAY OF C++

When you need to iterate in a specialized way or just want to access a specific item, you
can always use indexed access with the [] operator or the at method. For a QList, this process
is very quick. For example, the following line calculates the sum of the sixth and eighth ele-
ment of a list:

int sum = list[5] + list.at(7);

Filling the List

Until now you have filled the lists using the << operator, which means appending new data to
the end of a list. It is also possible to prepend data; for example, put it at the start of the list or
insert data in the middle of it. Listing 1-16 shows the different ways of placing items in a list.

Figure 1-9 shows each of the insertions in the list. First, the string "first" is appended to
an empty list and then the string "second" is appended to the end of the list. After that, the
string "third" is prepended to the list. Finally, the strings "fourth" and "fifth" are inserted
into the list.

Listing 1-16. Appending, prepending, and inserting

QList<QString> list;

list << "first";
list.append("second");
list.prepend("third");
list.insert(1, "fourth");
list.insert(4, "fifth");

<< “first” append(“second”) prepend(“third”) insert(1, “fourth”) insert(4, “fifth”)
0: first 0: first 0: third 0 third 0 third
1: second 1: first 1 fourth 1 fourth
2: second 2: first 2: first
3 second 3 second
4 fifth

Figure 1-9. The list contents during appending, prepending, and inserting

More Lists

QList is not the only list class available; there are several lists for different scenarios. When
selecting which list class to use, the right answer is almost always QList. The only drawback of
using QList is that it can get really slow when you insert items in the middle of large lists.

The other two list classes are more specialized, but they should not be considered special
cases. The first one, the QVector class, guarantees that the items contained are kept in order in
memory, so when you insert items at the start of the list and in the middle of it, all items later
on in the list have to be moved. The benefit is that indexed access and iterating is quick.

CHAPTER 1 = THE QT WAY OF C++

The second alternative is QLinkedlList, which provides a linked list implementation that
gives quick iterations, but has no indexed access. It also supports constant time insertions
independently of where in the list the new item is inserted. Another nice aspect is that itera-
tors stay valid as long as the element is left in the list—it is possible to freely remove and insert
new items in the list and still use the iterator. Table 1-1 compares the linked list and vector
classes to the QList.

Table 1-1. Comparison of QList, QVector, and QLinkedList

Insertions Insertions Insertions Access by Access by
Class at start in middle atend index iterator
QList Fast Very slow on
large lists Fast Fast Fast
QVector Slow Slow Fast Fast Fast
QLinkedList Medium Medium Medium Not available Fast
Special Lists

Until now, you have looked at lists for generic purposes. Qt also has a set of specialized lists.
Let’s start by having a look at the QStringlList.

List of Strings

The string list class inherits QList<QString> and can be treated as such. However, it also has
some string-specific methods that make it useful. First, you need to create a list and fill it with
some contents. This should not bring any surprises:

QStringlist list;
list << "foo" << "bar" << "baz";

This gives you a list containing "foo", "bar" and "baz". You can join them with a string of
your choice between them. Here it is a comma:

non

QString all = list.join(",");

The string all will contain "foo,bar,baz" after this operation. Another thing to do is to
replace something in all strings contained in the list. For example, you can replace all occur-
rences of "a" with "o0o":

list.replaceInStrings("a", "oo");

The replacement operation results in a new list with the following contents: "foo", "boor",
and "booz". Besides join, QString also has a method called split. This method splits the given
string by each occurrence of a given string and returns a QStringlList that is easily added to
the already existing list. In this example, you split by each comma:

list << all.split(",");

The final list will contain the items "foo", "boor", "booz", "foo", "bar", and "baz".

25

26

CHAPTER 1 = THE QT WAY OF C++

Stacks and Queues

The string list takes a list and extends it with methods, making it easier to work with the con-
tents. The other types of special lists are made for putting new items in a specific part of the
list and getting items from one specific part. The classes are QStack and QQueue, in which the
stack class can be classified as a LIFO (last in, first out) list, and the queue is classified as a
FIFO (first in, first out) list.

Working with the stack, new items are added to or pushed onto it using push. The top
method is used to look at the current item. The current item is returned and removed from
the stack by calling pop. This is called popping the stack. Before trying to pop the stack, you
can check whether there is something there to get by using the isEmpty method. Listing 1-17
shows how these methods are used. The string result will contain the text "bazbarfoo" when
the code shown in the listing has executed. Notice that the item first pushed onto the stack
appears last in the string—LIFO.

Listing 1-17. Using a stack

QStack<QString> stack;

stack.push("foo");
stack.push("bar");
stack.push("baz");

QString result;
while(!stack.isEmpty())
result += stack.pop();

For the queue, the corresponding methods are enqueue for adding items, dequeue for
pulling them out of the queue, and head for having a peek at the current item. Just as for the
stack, there is a method called isEmpty that indicates whether there is anything enqueued.
Listing 1-18 shows these methods in action. The resulting string will contain the text
"foobarbaz" when the code has executed. That is, the item first enqueued appears first in
the string—FIFO.

Listing 1-18. Using a queue
QQueue<QString> queue;
queue.enqueue("foo");

queue.enqueue("bar");
queue.enqueue("baz");

QString result;
while(!queue.isEmpty())
result += queue.dequeue();

CHAPTER 1 = THE QT WAY OF C++

Mapping and Hashing

Lists are good for keeping things, but sometimes it is interesting to associate things, this is
where maps and hashes enter the picture. Let’s start by having a look at the QMap class, which
enables you to keep items in key-value pairs. For example, you can associate a value to a
string, as shown in Listing 1-19. When you create a QMap, the template arguments are the type
of key and then the type of values.

Listing 1-19. Creating a map associating strings with integers and filling it with information

QOMap<QString, int> map;

map["foo"] = 42;
map["bar"] = 13;
map["baz"] = 9;

To insert a new item in a map, all you have to do is assign it with the [] operator. If the key
already exists, the new item replaces the existing one. If the key is new to the map, a new item
is created.

You can see whether a key exists by using the contains function or you can get a list of all
keys using the keys method. Listing 1-20 shows you how to acquire the keys and iterate over
all items in the map.

Listing 1-20. Showing all key-value pairs on the debugging console

foreach(QString key, map.keys())

" "

gDebug() << key << " =" << map[key];

Instead of iterating over a list of the keys, it is possible to use an iterator directly on the
map, as shown in Listing 1-21. This gives instant access to both the key and the value through
the iterator, and thus saves a lookup per loop iteration.

Listing 1-21. Iterating over all key-value pairs

QOMap<QString, int>::Constlterator ii;
for(ii = map.constBegin(); ii != map.constEnd(); ++ii)

gDebug() << ii.key() << " =" << ii.value();

In Listing 1-20, the [] operator is used to access items that you know exist in the list. If the
[] operator is used to get an item that does not exist (as shown following), a new item is cre-
ated. The new item is equal to zero or created using the default constructor.

sum = map["foo"] + map["ingenting"];

If you use the [] operator instead of the value method, you prevent the map from creating
anew item. Instead, a zero or default constructed item is returned without being added to the
map. It is recommended practice to use value because it avoids filling the memory with non-
sense items from a bug that can be very hard to find:

sum = map["foo"] + map.value("ingenting");

27

28

CHAPTER 1 = THE QT WAY OF C++

When creating a map, the type used as key must have the operators == and < defined
because the map must be able to compare keys and order them. QMap delivers good lookup
performance because it always keeps the keys sorted. This is evident when executing
Listing 1-20, in which the results are returned in bar-baz-foo order, not as they were inserted.
If this is not important to your application, you can gain even more performance by using a
QHash instead.

The QHash class can be used in the same way as QMap, but the order of the keys is arbitrary.
The type used for keys in a hash must have the == operator and a global function called gHash.
The gHash function should return an unsigned integer called a hash key that is used for looking
up items in the hash list. The only requirement for the function is that it should always return
the same value for the same data. Qt provides such functions for the most common types, but
you must provide such a function if you want to put your own classes in a hash list.

The performance of the hash list depends on the number of collisions that it can expect;
that is, the number of keys that yields the same hash key. By using your knowledge of the keys
that might appear, you can use the hash function to increase performance. For example, in a
phone book application, persons might have the same name, but usually do not share a name
and a phone number. Listing 1-22 shows the class Person that holds a person with name and
number.

Listing 1-22. A class holding name and number

class Person

{
public:
Person(const QString& name, const QString& number);

const QStringd name() const;
const QStringd number() const;

private:
QString m_name, m_number;

};

For this class, you must provide a == operator and a gHash function (shown in Listing 1-23).
The == operator ensures that both the name and number match. The gHash function takes the
hashes for the name and number from the gHash(QString) function and joins them using the
XOR logical operator (*).

Listing 1-23. Hash functions for the Person class

bool operator==(const Person &a, const Person 8b)

{
}

return (a.name() == b.name()) && (a.number() == b.number());

uint gHash(const Person &key)

{
return gHash(key.name()) ~ gHash(key.number());

}

CHAPTER 1 = THE QT WAY OF C++

To try out the hash function implemented in Listing 1-23, create a hash list and put a
couple of items in it before trying to look up both existing and non-existing items. This is
shown in Listing 1-24. The comment after each qDebug line shows the expected result.

Listing 1-24. Hashing the Person class

QHash<Person, int> hash;

hash[Person("Anders", "8447070")] = 10;
hash[Person("Micke", "7728433")] = 20;

qDebug() << hash.value(Person("Anders", "8447070")); // 10
gDebug() << hash.value(Person("Anders", "8447071")); // O
qDebug() << hash.value(Person("Micke", "7728433")); // 20
qDebug() << hash.value(Person("Michael", "7728433")); // 0O

Sometimes the interesting thing is not mapping a value to a key, but remembering which
keys are valid. In this situation, you can use the QSet class. A set is a hash without the value, so
there must be a gHash function and a == operator for the keys. Also, the order of the keys is
arbitrary. Listing 1-25 shows that you populate a set by using the same operator as when you
populate a list. Farther down, the two access methods can be seen. You can either access the
keys by using an iterator or you can call contains to see whether the key is a part of the set.

Listing 1-25. Populating a QSet; then showing the keys and testing for the key "FORTRAN"

QSet<QString> set;
set << "Ada" << "C++" << "Ruby";

for(QSet<QString>::ConstIterator ii = set.begin(); ii != set.end(); ++ii)
gDebug() << *ii;

if(set.contains("FORTRAN"))
gDebug() << "FORTRAN is in the set.";
else
gDebug() << "FORTRAN is out.";

Multiple Items per Key

The QMap and QHash classes store one item for each key. When you want to have a list of items
for each key, you can use QMultiMap and QMultiHash. These classes relate to each other just as
QMap relates to QHash—key order is preserved in the map; hashes are quicker but order the keys
arbitrarily.

This section discusses the QMultiMap class, but all that I say also applies to the QMultiHash
class. The QMultiMap class does not have a [] operator; instead, the insert method is used for
adding values and the method values for accessing the inserted items. Because the QMultiMap
can contain multiple elements for a key, the values method returns a QList with the items
associated with the given key. Before requesting a list, it is possible to see how many items are
associated to a given key using the count method.

29

30

CHAPTER 1 = THE QT WAY OF C++

Note The multicollection QMultiMap and QMultiHash classes are just wrappers of the QMap and QHash
classes. The QMap and QHash classes can be used as multicollections by using the insertMulti method,
but it is easy to overwrite a list of items by accident by using the [] operator or insert method. Using the
multicollections detects any such mistakes at compile-time and reduces the risk of hard-to-find bugs.

Listing 1-26 shows how a QMultiMap is created and populated. This code does not contain
any surprises. However, the relationship of QMultiMap with QMap shows that if you have a look
at the list returned from the keys method, foo appears twice. The best way to find all the
unique keys is to add all keys to a QSet and then iterate over it. Listing 1-27 shows how to first
find all keys and then iterate over them, showing all items for each key.

Listing 1-26. Creating and populating a QMultiMap

QMultiMap<QString, int> multi;

multi.insert("foo", 10);
multi.insert("foo", 20);
multi.insert("bar", 30);

Listing 1-27. Finding the unique keys and then iterating over each key and its associated items

QSet<QString> keys = QSet<QString>::fromList(multi.keys());

foreach(QString key, keys)
foreach(int value, multi.values(key))
qDebug() << key << ": " << value;

There is a quicker way to find all the items in a QMultiMap: use an iterator. A QMultiMap::
iterator has the member functions key and value, which are used to get the information that
it contains. Iterators can also be used to find all the items for a given key in a highly efficient
way. Using the find method, you can get an iterator that points to the first item belonging to a
given key. As the keys are sorted, you can reach all items belonging to a given key by iterating
until the iterator from find reaches the end of the QMultiMap or another key (Listing 1-28
shows an example). The iterator approach also avoids having to build a list with all the items
belonging to the key, which is what happens when you use the values method—saving both
memory and time.

Listing 1-28. Finding the items for a given key using an iterator

QMultiMap<QString, int>::ConstIterator ii = multi.find("foo");
while(ii != multi.end() 8& ii.key() == "foo")
{

gDebug() << ii.value();

++11;

}

CHAPTER 1 = THE QT WAY OF C++

In the start of this section, I said that all the information also applies to the QMultiHash
class. Listing 1-29 shows this by performing the same task as in Listing 1-26, Listing 1-27, and
Listing 1-28. The highlighted lines contain the changes needed—only changes of which class
to use. The only possible difference in outcome is that the keys are returned in an arbitrary
order. Notice that this does not mean that the find and iterate method fails—the keys appear
in an arbitrary order, but are still in order.

Listing 1-29. Finding the items for a given key using an iterator

QMultiHash<QString, int> multi;

multi.insert("foo", 10);
multi.insert("foo", 20);
multi.insert("bar", 30);

QSet<QString> keys = QSet<QString>::fromList(multi.keys());

foreach(QString key, keys)
foreach(int value, multi.values(key))
qDebug() << key << ": " << value;

QMultiHash<QString, int>::ConstIterator ii = multi.find("foo");
while(ii != multi.end() 8& ii.key() == "foo")
{

gDebug() << ii.value();

++11;

}

Summary

Qt has a naming scheme that is recommended because it makes it easier to guess names of
classes and methods. All elements use CamelCasing; that is, each new word starts with a capi-
tal letter, like this: ThisIsAnExample.

Class names start with an uppercase letter, Qt classes are prefixed with a Q. This is an
example of a Qt class: QMessageBox, and this is another class: MyClass. A class prefixed by a Q
and a set of lowercase letters is a third-party Qt class; for example: QjColorPicker.

When using a Qt class, make sure to include the header file with the same name as the
class (this is case sensitive on most platforms) without any file extension (for example, the
class QMessageBox is included by #include <QMessageBox>).

Method names start with lowercase letters (for example, thisIsAMethod). Getter and setter
methods are named foo and setFoo, respectively. If there is a signal that reflects a change in
foo, it is usually called fooChanged. In the example here, foo is called a property.

Regarding signals and slots: setters are natural candidates for slots and also a good place
for emitting signals concerning changes. If you emit such a signal, make sure to check that the
setter receives a new value, not the same value. Doing so avoids infinite recursion loops.

31

32

CHAPTER 1 = THE QT WAY OF C++

Slots can be public, protected, or private. These sections are labeled as public slots:,
protected slots:, or private slots:. Signals are signal prototypes and are placed after the
signals: label. Slots are implemented as any other member function, although you never
implement signals—just declare them in the class definition and let the meta-object compiler
handle the details.

When connecting signals and slots, remember that the connect method cannot handle
argument values, only argument types. The values of the arguments must come from the
emitting object.

When using signals and slots, you must inherit Q0bject and start the class declaration
with the Q_OBJECT macro. This adds the required code and tells the meta-object compiler that
the class needs a meta-object.

As soon as you have inherited Q0bject, you can assign a parent to an object and any num-
ber of children. Each parent takes responsibility for calling delete on its children, so as long as
you make sure to delete the ancestor to all objects, all objects are deleted.

Qt has classes for handling the tasks that usually are handled by the C++ standard tem-
plate library, STL. The Qt equivalents are more adapted to be used in combination with Qt,
but can interact with their STL equivalents with ease.

For handling text, use the QString class. It supports Unicode and interacts well with the
QStringlist class. The string list class offers methods for search and replace in all strings con-
tained in the list as well as for joining the strings with a delimiter of your choice.

For keeping lists of any sort of object, Qt has the template classes QList, QLinkedlList, and
QVector. All have pros and cons, but QList is usually the right choice. When inserting items
in the middle of a very large list, use QLinkedList when constant time insertions and quick
sequential access are required. QVector is good at random access and when items are required
to be stored in order in contiguous memory.

For queues and stacks, the QQueue and QStack classes work well; they offer quick insertion
and access from the ends indicated by their name. When you use a stack, you push and pop to
the top; when you use a queue, you enqueue items on the tail and dequeue them from the head.

The QMap and QHash classes associate items with keys. The QHash class sorts the items in an
arbitrary order while performing slightly faster than the QMap class. The map always sorts the
items by key. For managing several items per key, it is best to use the QMultiMap or QMultiHash
classes.

If you do not need to associate any items to a key but want to maintain a list of keys, the
QSet class is right for you. It works as a hash, but without any associated values.

CHAPTER 2

Rapid Application Development
Using Qt

Although Qt started as a tool for developing cross-platform applications with graphical
user interfaces, the toolkit has expanded into a tool useful for building all types of software—
command-line applications, embedded software, and graphical user interfaces for heavy
workstation applications.

The historical roots show as Qt makes it really easy to create a graphical user interface
and build an application around it. This chapter goes from the original idea all the way to a
working application in a few easy steps.

The Sketch

When developing software, it is always good to have a plan—a sketch that shows what it is that
you are trying to achieve. The goal of this chapter is a very simple phone book that holds a list
of contacts and phone numbers.

The graphical user interface, UI from here on, will be built around two dialogs: one for
showing the list and available actions, and one for editing contacts. Figure 2-1 shows an early
draft of the two dialogs.

33

34 CHAPTER 2 = RAPID APPLICATION DEVELOPMENT USING QT

MG\I/\ #

:l_uu-'t - Nuplot i II | Ad '{" l;L..L

"mr_ FL | cdieloy

—_ ' 0& / !'?-..f
T (Ded 1 L e

T e A OV S

t e -_,t.'(tt"“CL\

Figure 2-1. The first draft of the user interface

The next step in the process is to transform the ideas found in the sketch into a structure
that can be implemented. To do so, you have to understand how a Qt application works.

Event-Driven Applications

All Qt applications are event-driven, so you cannot directly follow the path of execution from
the main function through all the parts of the application. Instead, you initialize your appli-
cation from the main function, and the main function then calls the exec method on a
QApplication object. This starts the application’s event loop. (An event can be anything from a
new package received over a network, a certain time having passed, or the user having pressed
a key or moved the mouse.)

The QApplication object waits for these events and passes them to any affected Q0bject.
For instance, when the user clicks the Clear All button in the phone book dialog shown in
Figure 2-1, the click is received by the application’s event loop. The QApplication object then
takes the clicked event and passes it on to the affected object: in this case, the QPushButton
object representing the button. This button object then reacts to the event and emits the
relevant signals.

By connecting signals for buttons being clicked and list items selected to slots imple-
menting the actual functionality of the application, the user interface is set up to react to user
interaction. So a good starting point when developing an application is to identify the actions
that the user can take through the UI shown in Figure 2-1.

Tip The actions identified here are very much like use cases in the Unified Modeling Language (UML),
which means that the two approaches are very compatible.

CHAPTER 2 © RAPID APPLICATION DEVELOPMENT USING QT

» The first action is to start the application. When this happens, the list dialog is shown.
¢ From the list dialog, the user adds a new item. This shows an empty editing dialog.

¢ From the list dialog, the user edits the currently selected item. This shows a filled-out
editing dialog.

¢ From the list dialog, the user removes the currently selected item.
¢ From the list dialog, the user clears the list.
¢ From the list dialog, the user exits the application.

* From the editing dialog, the user approves the changes made. This means that the
changes will be reflected in the list dialog.

¢ From the editing dialog, the user cancels the changes made.

Starting from the top of the list, the host operating system has to take care of starting the
application. Your part in the process is to show the list dialog from the main function. The rest
of the actions show up as buttons on the two dialogs that make up the UL

To sum things up: the application consists of a main function, a list dialog, and an editing
dialog. Each dialog consists of a form—that is, an XML description of the Ul—and a class
making up the actual QDialog that Qt is interested in. This is enough information to create a
project file. The result is shown in Listing 2-1. Notice that it starts with the application tem-
plate app, which is the starting point for all Qt applications. The rest of the project file is just a
list of files that needs to be created, which is what you will be doing for the rest of this chapter.

Listing 2-1. Phone book application’s project file

TEMPLATE = app
TARGET = addressbook

SOURCES += main.cpp editdialog.cpp listdialog.cpp
HEADERS += editdialog.h listdialog.h
FORMS += editdialog.ui listdialog.ui

Now create a new directory for the application and place the project file in it. When you
put the rest of the files shown in this chapter in that directory, you end up with a complete
application.

Using Designer

Designer is the tool for designing user interfaces that comes with Qt. This section shows you
how to use Designer to build the list dialog. Then you learn the specifications for the editing
dialog so you can put it together yourself.

Let’s begin by starting Designer. You see the dialog shown in Figure 2-2. For the list dialog,
choose to create a dialog with the buttons at the bottom and click Create.

35

36

CHAPTER 2 = RAPID APPLICATION DEVELOPMENT USING QT

Tip If you are running Windows, you can start Designer by selecting it from the Start menu or by starting
the Qt command prompt and then typing designer at the console. Those of you running Mac 0S X can use
Finder to locate Designer and start it. On a Unix platform, this process can be slightly different—especially if
you have both version 3 and 4 of Qt installed. Possible commands can be designer or designer-qt4. If
you have installed Qt 4 using a package manager, you are likely to find it from your Program menu. Read the
documentation for your distribution to get more information.

(% New Form

E templates\forms
Dialog with Buttons Bottom
Dialog with Buttons Right

- Main Window

(Lo J(cmnt]

Show this Dialog on Startup

[Create ” Close ” Open...

Figure 2-2. Designer dialog for creating new forms

Designer’s UI appears. Let’s start with a quick overview of this interface. Designer can be
run in two modes: docked windows or multiple top-level windows. You can change the setting
by choosing Edit » User Interface Mode. Having multiple top-level windows is great for multi-
screen setups, but can result in a cluttered workspace if you are running many applications
together with Designer. Try both configurations to determine which one you prefer.

In either UI mode, Designer consists of a number of components listed as follows. Each of
these components can be shown or hidden from the Tools menu. I prefer not to show all the
components at all times—usually the widget box and Property Editor are enough for me—but
feel free to experiment to get a working environment that you enjoy.

* The widget box, shown in Figure 2-3, contains a list of all available widgets groups into
a number of categories.

¢ The Property Editor, shown in Figure 2-4, shows all the designable properties available
for the currently selected widget in the working form.

¢ The Object Inspector, shown in Figure 2-5, shows which object is parent to which
objects.

» The Signal/Slot Editor, also known as the Connection Editor, shown in Figure 2-6, is
used for managing connections between the objects making up the working form.

CHAPTER 2

RAPID APPLICATION DEVELOPMENT USING QT

¢ The Resource Editor, shown in Figure 2-7, is used to manage resources such as icons
that are compiled into the executable.

¢ The Action Editor, shown in Figure 2-8, is used to manage actions; that is, an object
represented in many places in the UI, such as the menu bar, toolbar, and a keyboard

shortcut.

File Edt Form Tooks Window Help

[@Qtpesigner [Jold

P EE LY

1ELES)

[E! Layouts
g Vertical Layout

|]]] Horizontal Layout

- 832 Grid Layout

E Spacers J
- [l Horizontal Spacer

x Vertical Spacer

= Buttons]
Push Button

Tool Button

~ (@ Radio Button
L.

Figure 2-3. Designer’s widget box along with the toolbar and the menus

Property | Value

| S

windowModality Qt::NonModal
enabled true
g try [0, 0, 400, 300]
sizePolicy [Preferred, Preferred, 0, 0]
minimumSize [0, 0]
maximumsize [16777215, 16777215]
sizeIncrement [0, 0]
baseSize [0, 0]
palette
font [Ae [Ms Shell DIg 2, 8]
cursor % Arrow
mouseTracking false
focusPolicy Qt::NoFocus
contextMenuPolicy Qt::DefaultContextMenu

Figure 2-4. Designer’s Property Editor

37

38

CHAPTER 2 © RAPID APPLICATION DEVELOPMENT USING QT

Object | Class [l

=]
buttonBox | QDialogButtonBox

Figure 2-5. Designer’s Object Inspector

m

I_ Sender | Signal | Receiver Slot |
buttonBox [accepted() Dialog accept()
buttonBox rejected() Dialog reject()

Figure 2-6. Designer’s Signal/Slot Editor

(| /=] [g2 Add Files....

Figure 2-7. Designer’s Resource Editor

m
D% e s

Figure 2-8. Designer’s Action Editor

CHAPTER 2 © RAPID APPLICATION DEVELOPMENT USING QT

Figure 2-9 shows the form created from the template. The contents consist of a button
box containing two buttons: OK and Cancel. The button box is a widget, and all dialogs and
windows built using Qt consist of widgets and layouts. A widget is a part of the Ul—for exam-
ple, a button, alabel, or a slider. Widgets are organized in layouts. The reason for using layouts
instead of just remembering the coordinates of each widget is that you can resize fonts and
dialogs freely. Also, translators can write any label text because the label can resize according
to the text. There are many aspects of widgets and layouts that need to be covered in more
detail (Chapter 3 discusses it in more detail).

Figure 2-9. The form fresh from the template

Note | refer to the dialog as a form because it is possible to design widgets containing other widgets,
main windows, and dialogs using Designer. They are all shown as a form in Designer—but the end results
are different.

You start your work in Designer by selecting the button box in the dialog and pressing
Delete. You see the cleared dialog shown in Figure 2-10.

ls, Dialog - untitled* =]

Figure 2-10. The form cleared from buttons

39

40

CHAPTER 2 = RAPID APPLICATION DEVELOPMENT USING QT

After deleting the widget, you can now start adding widgets. Make sure that you are in the
mode for editing widgets. The working mode is selected from the toolbar shown in Figure 2-11.

B R B

Figure 2-11. The working modes are (from left to right): edit widgets, edit connections, edit
buddies, and edit tab order.

Now browse through the widget box and locate the push button (in the buttons’ group).
When you click and hold the push button, the mouse pointer changes into an actual button.
Drag that button to the form and place it in the upper-right corner. Add two more buttons in a
vertical row below the first one; then leave a gap before you add a fourth button in the lower-
right corner. The form should look similar to Figure 2-12 after you finish.

e

Figure 2-12. The form with the buttons

Now locate the vertical spacer in the widget box (it is in the spacers’ group near the top).
Drag the spacer to the dialog and place it in the gap between the upper three buttons and the
lower one, as shown in Figure 2-13.

s

o

Figure 2-13. The form after the spacer has been added

CHAPTER 2 © RAPID APPLICATION DEVELOPMENT USING QT

Now select the four buttons and the spring, and then apply a vertical layout so that you
get the form shown in Figure 2-15. You can select multiple items by clicking and holding the
Shift key or by dragging a box containing the items that you want to select. Notice that you
do not want to add the layout from the widget box. Instead, select the widgets that you want
inside the layout and click the vertical layout button in the toolbar shown in Figure 2-14. The
buttons are the following (from left to right):

Apply horizontal layout places the widgets in horizontal row.
Apply vertical layout places the widgets in a vertical row.

Horizontal splitter places the widgets in a horizontal row, but also enables the user to
adjust the size of the widgets.

Vertical splitter places the widgets in a vertical row, but also enables the user to adjust
the size of the widgets.

Apply grid layout places the widgets in a stretchable grid.
Break layout removes any current layout.

Adjust size adjusts the size of the current layout so that the contained widgets fit.

Try holding the pointer over the toolbar buttons to find the one with the tooltip Lay Out
Vertically, which is the one you want.

0

SWEBEBE

Figure 2-14. The layout toolbar

l¢, Dialog - untitled* x|

’ Push;utton]j

’ PushButton]

PushButton l :

*\\\\\\\\\\\\|

PushButton | -

Figure 2-15. All widgets in a vertical layout

You can find the list widget in the group item widgets in the widget box. Place it on the
form in the middle of the free space. Then click on a free spot on the form, which selects the
actual form. You can see that you have selected the actual form by looking at the Object

4

42

CHAPTER 2 = RAPID APPLICATION DEVELOPMENT USING QT

Inspector. When the dialog is chosen, you have the right selection. Now apply a grid layout by
clicking the appropriate button in the toolbar. Applying a layout when having selected a
widget containing other widgets applies that layout to the form (layout is an attribute of the
parent widget, not the children within it). Figure 2-16 shows the form after the list widget has
been added, and Figure 2-17 shows the form after the layout has been applied.

Tip If the contents of a dialog are not stretched when the dialog is resized, the problem is most likely that
you have forgotten to add a top-level layout. Select the dialog form itself and apply a layout—that should
solve the problem.

s Dialog - untitled* <)

: ’mshﬁutton]_

. [PushButton]:

o ’PushButton‘- -

-

: ’PushButton‘;

Figure 2-16. The list widget has been added

{s, Dialog - untitled* <)

{ PushButton |

: FushButton]

|| PushButton]

Im\\\m\\mmm\\\wum\\mm\w{

PushButton]

Figure 2-17. A grid layout has been applied to the form itself and all its contents

Now you have placed a number of widgets in layouts forming a dialog. You can try out
the dialog in different styles using the preview function available from the Form menu. Try

CHAPTER 2 © RAPID APPLICATION DEVELOPMENT USING QT

resizing the dialog to see how the layouts interact and try different styles for seeing the dialog
on the different platforms that Qt supports. Before the dialog is done, however, there are a few
details to sort out. First, all texts and widget names must be set up.

Selecting a button displays its properties in the Property Editor. Simply click on the value
and edit it to change it. Table 2-1 shows the names and texts to apply to the buttons from the
top down. Notice that there are properties to change for both the dialog and the list widget.
Figure 2-18 shows the dialog after the changes.

Table 2-1. Properties to change

Widget Property Value

Top button name addButton
Top button text Add new
Second button name editButton
Second button text Edit

Third button name deleteButton
Third button text Delete
Bottom button name clearButton
Bottom button text Clear all
List widget name list

Dialog name ListDialog
Dialog window title Phone Book

ls. Phone Book - untitled*

e

{ Add new... |

Edt.. |

Delete]

Im\\\m\\\\m\\\m\\\\m\\m\\\\m\\mq

Clear all J

Figure 2-18. Names and texts have been updated

The name property is used to give each widget a variable name, which is the name you
will use later on when you access the widget from the source code. This implies that the name
property must be a valid C++ identifier name; that is, not start with a digit and use only the
English alphabet, digits, and underscores.

43

44

CHAPTER 2 = RAPID APPLICATION DEVELOPMENT USING QT

Tip If you want to adjust the main property of a widget (for example, the text of a label or button), simply
select the widget and press the F2 key.

One nice aspect of building forms in Designer is that it is possible to make connections
graphically. Select the mode for editing connections from the working mode toolbar. Then
click and drag from the clearButton value to the 1ist value. When you release the mouse
button over the list, the dialog shown in Figure 2-19 displays.

l@ Configure Connection EZE
clearButton (QPushButton) list (QListWidget)
dlicked() clear()
clicked(bool) clearSelection()
pressed() doltemsLayout()
released() edit(QModelIndex)
toggled(bool) reset()

scrollToBottom()

scrollToltem(const QListWidgetTtem™)
scrollToltem(const QListWidgettem™, QAL
scrollToTop()

selectall()

[] show all signals and slots

o | (o]

Figure 2-19. Making the connection by picking the signal to the left and the slot to the right

On the left, the available signals from the clearButton value are shown; on the right, the
slots of the 1ist value are shown. Pick the clicked() signal and the clear() slot and press OK.
The resulting connection is shown as an arrow in the form (see Figure 2-20).

|e, Phone Book - untitled*

&

L] clear() [

)
S

rall]

fn
ked(

Figure 2-20. The connection shown directly in the form

CHAPTER 2 © RAPID APPLICATION DEVELOPMENT USING QT

The connection can also be seen in the Connection Editor, as shown in Figure 2-21.

Sender Signal Receiver Slot

list dear()

= @

Figure 2-21. The connection shown in the Connection Editor

The final step of preparing the form is to set up the tab order, which is the order in which
the widgets are visited when the user jumps between them using the Tab key. To do this, start
by selecting the tab order mode from the working mode toolbar. Each widget is now shown
with a number in a blue box—this is the tab order. Start clicking the blue boxes in the order
that you feel is right, and the numbers will change. Figure 2-22 shows the dialog with my tab
order—feel free to use another order if you like. When you are satisfied, preview the dialog and
move through the widgets by pressing Tab.

5

|e, Phone Book - untitled*
[

= hdd new...

1.;: Edit...

Delete

i

'

Clear all

i

Figure 2-22. The form with the tab order set

All that is left now is to save the result of your work. Save the file as 1istdialog.ui in the
same directory as the project file from Listing 2-1.

To try out your new Designer skills, I present the details for the editing dialog as follows,
but you have to create it yourself. Notice that all the connections are set up automatically if
you start from the template with buttons on the bottom. Figure 2-23 shows the resulting dia-
log, along with the text properties of the labels, buttons, and the dialog.

45

CHAPTER 2 © RAPID APPLICATION DEVELOPMENT USING QT

Figure 2-23. Editing dialog

The Object Inspector is shown in Figure 2-24. You can tell the names of the different
objects from that view and also which objects go into which layout. To create a grid layout,
place the widgets in some sort of order, select them, and apply a grid layout. Designer usually
gets the grid right at the first try, but sometimes it might be necessary to break the layout
(available from the layout toolbar), rearrange the widgets, and apply it again. This is a place
where practice makes perfect.

s — = |

Object | Class |
- Gawiaog oveeg
= <noname> QGridLayout
label Qlabel
label_2 QLabel

nameEdit QLineEdit

numberEdit | QLineEdit
buttonBox QDialogButtonBox
verticalSpacer Spacer

Figure 2-24. Objects in the editing dialog

Figure 2-25 shows the connections in the dialog. They are already made in the template,
so you should not have to do anything about them.

!ﬁ

| Signal | Receiver | Slot ||
| i accepted() Dialog accept()
buttonBox rejected() Dialog reject()

Figure 2-25. Connections in the editing dialog

Finally, Figure 2-26 shows the tab order I chose. Feel free to set up a tab order that
suits you.

CHAPTER 2 © RAPID APPLICATION DEVELOPMENT USING QT

l¢, Dialog - untitled* x|
Name: |
Number: |

’ oK ” Cancel]

Figure 2-26. Tab order of the editing dialog

To make sure that the dialog is put together in the right way, make sure that the Object
Inspector view and the form itself look 100 percent correct. The connections and tab order are
also important, but the other two views are the places in which any mistakes are most likely to
show. When you finish, save the dialog, along with the rest of the files, as editdialog.ui.

From Designer to Code

The files created in Designer are definitions of the Uls. If you open them in a text editor, you
can see that they are XML files.

Caution If you are used to working with earlier versions of Qt and Designer, you will notice that things
have changed. Qt 4 brings a completely new Designer application and a completely new approach to the
way designs are used from the application code. You can no longer use Designer to add code to your project;
instead, you use the results from Designer from your code.

By including references to these XML files in the project file (as shown in Listing 2-1),
a C++ file is automatically generated when the project is built. If the Designer file is called
foo.ui, the resulting C++ file is called ui_foo.h. If the designed form is named FooDialog,
the resulting class is Ui: :FooDialog.

Note The Ui::FooDialog is placed in the Ui namespace to avoid namespace collisions because you
might want to call your final dialog class FooDialog. The generated file creates a class in the global name-
space as well. It is called U1_FooDialog and is identical to Ui: : FooDialog. | prefer using the class from
the Ui namespace because it feels more correct than prefixing the class name with Ui_, but you are free to
do as you like.

The generated C++ file is created by the user interface compiler (uic). It interacts with the
build process a bit like the meta-object compiler, but instead of taking a C++ header file, it
takes an XML description of a user interface. Figure 2-27 shows how it all fits together. By
using QMake to generate a Makefile, everything is handled automatically.

47

48 CHAPTER 2 = RAPID APPLICATION DEVELOPMENT USING QT

Sources are Objects are
compiled to linked to
C++ source files objects. object files an executable.
> > executable
Headers are Sources are
m:::l(:s:sby Headers are co;;p;l;: to
) compiled to JEcts.
meta-object
sources. -obj
C++ header files _— MRS

C++ source files

User interfaces
are compiled to
header files.

User interface
definition files

Figure 2-27. A Qt project is built from sources, generated meta-objects, and user interface
descriptions.

In Qt applications, all dialogs inherit from the QDialog class. The code generated by the
uic does not inherit that class; in fact, it does not even inherit from Q0bject. The conclusion is
that you must create a class based on QDialog. Let’s start by having a look at the list dialog.

Listing 2-2 shows the header file for the list dialog. A class called ListDialog is created
that inherits QDialog. The class has slots, so the Q_OBJECT macro must be there. Then, at the
very end, the Ui::ListDialog class is used to create the private member variable ui.

Listing 2-2. The header file for the ListDialog class

#ifndef LISTDIALOG H
#define LISTDIALOG H

#include <QDialog>
#include "ui listdialog.h"

class ListDialog : public QDialog

{
Q OBJECT

public:
ListDialog();

CHAPTER 2 © RAPID APPLICATION DEVELOPMENT USING QT

private slots:
void addItem();
void editItem();
void deleteItem();

private:
Ui::ListDialog ui;

};
#endif // LISTDIALOG H

The ui object consists of a set of pointers to all widgets and layouts that make up the dia-
log. It also contains two functions: setupUi (for populating a QDialog with the widgets and
layouts), and retranslateUi (for internationalizing applications—covered in more detail in
Chapter 10).

The implementation of the ListDialog constructor shows how the ui object is used (see
Listing 2-3). First, setupUi is called to create the Ul of the dialog. When calling the setupUi, the
connections made in Designer are set up. The rest of the connections are done manually by
calling connect. In the calls, the ui object is used to access the widgets in the dialog.

No connections really have to be made manually. By implementing a slot named
on_addButton clicked(), the setupUi call automatically connects the clicked signal from the
addButton to that slot. This works for all slots named using the scheme on_widget name_signal
name(signal arguments).Even as this is possible, I recommend not using it because it does
not encourage providing clear names for slots that reflect what they do. Also, when connecting
several signals result in the same action, this approach fails. You end up having several slots
calling the same function or—even worse—containing the same code. Making all connections
in the constructor of the dialog classes ensures that the code will be easy to follow and read—
you just created a table of how the user interface is connected to the slots performing the
actual work.

Listing 2-3. Constructor of the ListDialog class

ListDialog::ListDialog() : QDialog()
{
ui.setupUi(this);

connect(ui.addButton, SIGNAL(clicked()), this, SLOT(addItem()));
connect(ui.editButton, SIGNAL(clicked()), this, SLOT(editItem()));
connect(ui.deleteButton, SIGNAL(clicked()), this, SLOT(deleteItem()));

49

50

CHAPTER 2 = RAPID APPLICATION DEVELOPMENT USING QT

Note There are more ways to use a Ul created in Designer from a QDialog object than the method
shown here. The method used here is called the single inheritance approach. In the Designer user manual,
two alternate methods are described: the multiple inheritance method (inheriting both QDialog and Ui
classes) and the direct method (creating a QDialog and a Ui from the method using the dialog). | prefer
using the single inheritance approach and will use it throughout this book. It keeps the generated code sepa-
rated from the manually written source code through the ui object—something that helps making changes
more controllable. Feel free to consult the Designer user manual and try the alternatives if you want to.

Listing 2-4 shows the implementation of the addItem slot. The function looks very simple
and uses the EditDialog class (which has not been discussed yet). Before continuing with it,
let’s see how a dialog is used. First, the d1g variable is created. The this pointer passed on to
the EditDialog sets the parent of the dlg to the list dialog. Then you call the exec method of
the dialog, which shows the dialog in an application modal state. That a dialog is application
modal means that no other dialog or window of the application can get UI focus until the dia-
log is closed—forcing the user to use or close the shown dialog.

The exec method returns a status from the dialog, where Qt: :Accepted means that the OK
button was clicked last (or that the accept slot was called to close the dialog). The other possi-
ble result is Ot : :Rejected, meaning that the dialog was closed from the title bar or cancelled.

When the dialog has been shown using exec, and the result is Qt: :Accepted, a new item is
added to the list widget: ui.list. The new item is built using the name and number getter mem-
bers from the editing dialog (you will have a look at them later on in this chapter).

Listing 2-4. Adding a new item to the list

void ListDialog::addItem()

{
EditDialog dlg(this);

if(dlg.exec() == Qt::Accepted)
ui.list->addItem(dlg.name() + " -- " + dlg.number());

The opposite of adding a new item is shown in Listing 2-5. Deleting a list widget item
is just a matter of calling delete on it. The currently selected item is returned from the
currentItem method, so just delete whatever that method returns.

If no item is selected, the return value is 0 (zero, a null pointer), but that is not a problem
when used in a call to delete—it is simply ignored.

Listing 2-5. Deleting an item of the list

void ListDialog::deleteItem()
{

delete ui.list->currentItem();

}

CHAPTER 2 © RAPID APPLICATION DEVELOPMENT USING QT

When trying to edit the current item, it is important to ensure that the currentItemisa
valid pointer, which is why the editItem slotin Listing 2-6 starts by checking it. If the returned
pointer is a null pointer, the slot returns without doing anything.

If a valid pointer is encountered, the text of the current list widget item is split into a name
and a number using the split method. They are used to set up an editing dialog. When setting
the name and the number, the parts of the split text are trimmed, which means removing all
additional white space from the ends of the string (white space consists of all characters that
take up space without showing). Examples of white space are spaces, tabs, line-feeds, new-
lines, and so on.

As soon as the editing dialog has been set up, the code looks very much like the addItem
slot, just that the current item’s text is changed instead of adding a new item to the list widget.

Listing 2-6. Editing an item of the list

void ListDialog::editItem()

{
if(lui.list->currentItem())
return;
QStringlist parts = ui.list->currentItem()->text().split("--");

EditDialog dlg(this);
dlg.setName(parts[o].trimmed());
dlg.setNumber(parts[1].trimmed());

if(dlg.exec() == Qt::Accepted)
ui.list->currentItem()->setText(dlg.name() + " -- " + dlg.number());

You have used the editing dialog twice now, so it is time to have a look at it. In Listing 2-7,
you can see the class declaration. The EditDialog class inherits 0Dialog and has a private vari-
able called ui containing the generated code for the user interface. This is very much like the
ListDialog class.

The class then contains getters and setters for two properties: name and number. Because
the dialog is specially made for the application and not at all likely to be reused in other cir-
cumstances, I have taken the liberty to avoid the policies for getters and setters. The setters are
not slots, nor are there any signals that are emitted when a property is changed. When it is
obvious that a class will not be reused, there is no point in overdesigning it to make it reusable.

Because there are no signals or slots, the Q_0BJECT macro is omitted, so the class does not
have a meta-object. This saves memory at run-time and makes compilation slightly quicker.

Listing 2-7. Editing dialog class

class EditDialog : public QDialog

{
public:
EditDialog(Qwidget *parent=0);

51

52 CHAPTER 2 = RAPID APPLICATION DEVELOPMENT USING QT

const QString name() const;
void setName(const QStringd);

const QString number() const;
void setNumber(const QStringd);

private:
Ui::EditDialog ui;
15

As Listing 2-8 shows, the constructor is very simple. Because all connections have been
made in Designer, a single call to setupU1i is all that is needed. Looking at the connections in
Designer, you see that the accepted and rejected signals from the button box are connected
to the accept and the reject slot. The accepted signal is emitted when the user clicks OK, and
rejected is emitted from Cancel. The accept and reject slots set the result returned from exec
to Qt::Accepted or Ot: :Rejected and then closes the dialog. This means that the dialog already
works as expected from the caller’s viewpoint.

Listing 2-8. Editing an item of the list

EditDialog::EditDialog(QWidget *parent) : QDialog(parent)
{

ui.setupUi(this);
}

The name and number properties are implemented in the same way. In Listing 2-9, the name
property is shown. The setter, setName, is trivial, simply passing on the value to the right
QLineEdit. The getter, name, is slightly more complex. Instead of simply returning the text from
the line edit, it removes any occurrences of double dashes ("--") using replace. All occur-
rences of double dashes are replaced by an empty string, which is the same thing as removing
them. They have to be removed because the name and number are divided by double dashes
in the list dialog, and the editing slot, editItem (see Listing 2-9), relies on that. Before return-
ing the double-dash-free string, it also calls trimmed to remove any white space left trailing at
the end of the text. This prevents the user from accidentally leaving spaces or tabs after the
name.

Listing 2-9. Editing an item of the list

const QString EditDialog::name() const
{

return ui.nameEdit->text().replace("--","").trimmed();

}

void EditDialog::setName(const QString &name)
{

ui.nameEdit->setText(name);

}

CHAPTER 2 © RAPID APPLICATION DEVELOPMENT USING QT

The number property’s implementation looks identical to the implementation of the name
property. The only difference is the name of the QLineEdit involved: nameEdit is used for the
name and numberEdit for the number.

The Final Touches

The only part missing from the project file now is the main function. In Listing 2-10, you can
see the implementation. First, a QApplication object is created; then the list dialog is created.
The dialog is then shown before the exec method of the application is called.

Calling exec means that the QApplication object starts to process system events and
passes them on to the appropriate Q0bject instances—the application is event-driven. The
function returns as soon as all windows and dialogs have been closed, so when you close the
list dialog, exec returns, and the application reaches its end.

Listing 2-10. Editing an item of the list

int main(int argc, char **argv)
{
OApplication app(argc, argv);
ListDialog dlg;

dlg.show();

return app.exec();

Looking back at the list of user actions that you want the user to be able to perform, you
can see that most actions are represented by a connection. The connection can either be
made in Designer or by using the connect call in a dialog class’ constructor. The final push to
get the application going is the main function. Its job is to show the list dialog and to start the
event loop.

To test the application, start by running gmake on the project file you started with to gen-
erate a Makefile. Now build the application using make or your system’s equivalent, which
should generate an executable for you. In Figure 2-28, I am trying out the application for the
very first time—and it looks as if everything is working.

The application is not very useful because it cannot save and load data. The user interface
is fully functional, however.

53

54 CHAPTER 2 = RAPID APPLICATION DEVELOPMENT USING QT

I Phone Book v
Karl -- 10020 Add new...
Ada -- 50402
Osborn -- 12402 Edit...

—IPhone Book Entry BX]

Name: |Osb0rn |
Number: |12402| |
0K] ’ Cancel]

Clear all

Figure 2-28. The application is put to use.

Summary

This chapter showed the two classes of dialogs available in Qt applications: active or passive;
intelligent or dumb.

The list dialog contains a slot for each action that the user can perform. This is called an
active or intelligent dialog. Any dialog requiring anything but the simplest possible input from
the user is good to make active. Small active elements can make a dialog very much easier
to use.

The editing dialog does not contain any slots; it simply relies on the intelligence built into
the widgets used and the accept and reject slots. This is enough for very simple dialogs, in
which the user can fill out fields of different types. This is called a passive or dumb dialog. It is
quite common to have a few passive dialogs in an application; in fact, the application does not
work without them.

Even though the editing dialog is passive toward the user, it does not have to be passive
toward the developer—you. The editing dialog nicely hides the actual implementation of the
graphical user interface using the name and number properties. This made it possible to keep
the ui variable private at the cost of a few lines of trivial code. By doing this, you ensure that
the UI can be changed without changing the code using the editing dialog. Separating the Ul
and the code of the application usually helps when maintaining and extending the application
in the future.

CHAPTER 3

Widgets and Layouts

All graphical user interfaces (Uls) are built around widgets that are arranged using layouts.
In this chapter you will learn which widgets Qt provides and how they are used. You will also
have a look at how layouts are used to create the desired design. The chapter alternates
between using code directly and using Designer to visually build the user interface, which
will teach you to understand the code that Designer generates.

Creating Dialogs in Qt

As you learned in the last chapter, a dialog is a top-level window, and all dialogs are built from
widgets. Further, widgets are organized using layouts that make it possible to build flexible
dialogs.

Layouts help make Qt special. Using layouts makes it easy to build dialogs that adapt to
changes in screen resolution, font sizes, and different languages. An alternative to using lay-
outs is static placement, which ensures that all widgets are given a size and location. So if a
translator wants to use texts of different lengths in different languages, the design of the dialog
must be adapted to the longest text. Using layouts, the design describes the relative placement
of the widgets instead of their absolute sizes and locations. The widgets then tell layouts how
much space they need and are placed in the dialog accordingly.

Let’s start the exploration by using Designer. Start Designer and create a new dialog from
the buttons at the bottom template. Then add a group box, a line edit, a label, and a vertical
spacer to the dialog, as shown in Figure 3-1. Make sure that the line edit and the label are
inside the group box. You can try to move the group box. If the other widgets are inside it,
they should move with the group box.

55

CHAPTER 3 = WIDGETS AND LAYOUTS

. - GroupBox S

T [

Ji

Figure 3-1. The widgets dropped onto the dialog form

Select the group box and apply a horizontal layout; then select the dialog form itself and
apply a vertical layout. Your dialog should now look similar to Figure 3-2.

B = = e e e s e

TextLabel |

Figure 3-2. The layouts have been applied.

Figure 3-3 shows the Object Inspector for the dialog. The information that all widgets that
contain other widgets also have a layout is not visible.

CHAPTER 3 = WIDGETS AND LAYOUTS

Object Inspector 8 %
Object Class
- Dlalog e
buttonBox QDialogButtonBox
= groupBox QGroupBox
label QLabel

lineEdit QLineEdit
verticalSpacer | Spacer

Figure 3-3. The Object Inspector, showing the widgets in the dialog

Just to test the concept of the layout, try entering Supercalifragilisticexpialidocious as
the label text (bring up the context menu by using the right mouse button and pick Change
text from the menu). As shown in Figure 3-4, the label expands, and the line editor shrinks.

l¢, Dialog - untitled* =

GroupBox

Supercalifragilisticexpialidocious | |

Figure 3-4. The label text goes Supercalifragilisticexpialidocious.

Size Policies

So what really happened in this example? Layouts look at the size hints and size policies of
widgets when calculating their sizes. If you look at the sizePolicy property in Designer, you
can see that the label has a Preferred size type for both the horizontal and vertical direction
(hSizeType and vSizeType). The line edit has a Fixed height (vertical direction), but has an
Expanding width (horizontal direction). What does all this mean?

Each widget calculates a size hint at run-time—the preferred size of the widget. It also has
properties for controlling the smallest and largest sizes it can accept (the minimumSize and
maximumSize properties).

When a widget says that its size policy is to keep a Preferred size in one direction, it
means that it can grow larger or be made smaller than the size hint if needed, but prefers not
to. It does not want to grow unless forced to by the layout and the surrounding widgets. For
example, if the user increases the size of a window, and the surrounding widgets are config-
ured not to grow, the widget grows beyond its preferred size.

The line edit has a Fixed height, so the height of the widget is not negotiable; it always
uses the size hint for size. The Expanding policy means that the widget can be shrunk, but
prefers to be as large as possible; it wants to grow.

57

58

CHAPTER 3 WIDGETS AND LAYOUTS

There are several policies available (summed up in Table 3-1).

Table 3-1. Size policies and their behaviors

Size Policy Can Grow Can Shrink Wants to Grow Uses Size Hint
Fixed No No No Yes
Minimum Yes No No Yes
Maximum No Yes No Yes
Preferred Yes Yes No Yes
Expanding Yes Yes Yes Yes
MinimumExpanding Yes No Yes Yes
Ignored Yes Yes Yes No

You can learn a lot about the roles of size policies by playing with them in Designer
because as soon as you have applied a layout to your widgets, the policy change is reflected
directly in the form. Start by setting the label’s horizontal size type to Expanding, which makes
both the label and line edit try to be as large as possible so they share the given space. You can
also get the policy to Maximum and then try to vary the width of the dialog form. Using sizing
policies and layouts is a skill, and skills are learned by doing—so don't be afraid to experiment
with them at length.

Tip You can set the size policy and size hint for spacers as well, which is great for enforcing spaces and
grouping dialog items together.

Setting Size Policies in Code

Now you know the basics of layouts and size policies using Designer. How can you achieve the
same thing with code? It is important to know how to do this because the files produced by
Designer are converted into code by the uic tool. To use these files and to troubleshoot compi-
lation problems, you need to understand what is contained in the files. You are also likely to
create smaller user interface elements directly in code because using Designer is overkill in
such situations.

When I create dialogs by code, I try to group the things that I do into logical groups—so
first I create all the widgets (shown in Listing 3-1). I do not bother to assign parents to any of
the widgets because as soon as a widget is put in a layout, that layout takes responsibility for
the widget.

Listing 3-1. The widgets are created.

QDialog dlg;

QGroupBox *groupBox = new QGroupBox("Groupbox");
QLabel *1label =

CHAPTER 3 = WIDGETS AND LAYOUTS

new QlLabel("Supercalifragilisticexpialidocious");
QLineEdit *lineEdit = new QLineEdit;
QDialogButtonBox *buttons =
new QDialogButtonBox(QDialogButtonBox::0k |
QDialogButtonBox::Cancel);

The next step is to put the widgets in layouts. As with the dialog in Designer, you can use a
vertical layout and a horizontal layout. Looking at Listing 3-2 from the top down, you see that
it starts with the horizontal layout. The Qt class representing horizontal layouts is QHBoxLayout,
where H represents the horizontal direction. You can see that it will apply to groupBox as it is
passed as parent. The widgets are then added from left to right, first adding label and then
adding linekEdit. When they are added, the hLayout is made parent to them and they are
placed in the parent inside the group box.

The QVBoxLayout (used to manage vertical layout) is applied to the dialog itself. In it,
widgets are added from the top down. First the group box is added; then a spacer is added.
The spacer is not added as a widget; in fact, there is no spacer widget. By calling the
addStretch method, a QSpacerItemis inserted into the layout. This item works as a spacer,
so the effect is the same as when you used Designer. Finally buttons are added to the bottom
of the layout.

Listing 3-2. The widgets are laid out.

QHBoxLayout *hLayout = new QHBoxLayout(groupBox);
hLayout->addWidget(label);
hLayout->addWidget(lineEdit);

QVBoxLayout *vLayout = new QVBoxLayout(&dlg);
vLayout->addWidget(groupBox);
vLayout->addStretch();

vLayout->addWidget(buttons);

Both listings result in the dialog shown in Figure 3-4. If you want to play with the layout
policies from the code, you need to know which properties and methods to use. All widgets
have a sizePolicy property, which is represented by a QSizePolicy object. The minimumSize
and maximumSize properties are QSize objects.

Tip When | refer to a property name, for example sizePolicy, it is understood that there is a getter
method called sizePolicy and a setter method called setSizePolicy. There are read-only properties
without setter, but they are uncommon.

Let’s start by setting a custom size policy through code. Listing 3-3 shows you how to copy;,
modify, and apply a custom policy. First, the size policy from label is copied. It is preferred
with a stretch factor of 1. The stretch factor is changed, and the policy is applied to the label.
The stretch factor is then set to 1, and the policy is applied to lineEdit.

59

60 CHAPTER 3 WIDGETS AND LAYOUTS

Listing 3-3. Modifying and applying a custom policy

QSizePolicy policy = label->sizePolicy();
policy.setHorizontalStretch(3);
label->setSizePolicy(policy);

policy = lineEdit->sizePolicy();
policy.setHorizontalStretch(1);
lineEdit->setSizePolicy(policy);

The code in Listing 3-3 shows two things. First, it shows you how to copy and apply a
policy using sizePolicy and setSizePolicy. It also shows stretch factors, with which you can
control the relative size of the widgets in a dialog. Three buttons are shown (see Figure 3-5),
and all have been assigned the horizontal size policy Preferred. Their stretch factors are (left
toright) 1, 3, and 2. This means that the first button takes 1/(1+3+2)—one-sixth—of the
width available; the second button takes 3/(14+3+2)—one-half; and the third uses 2/(1+3+2)—
one-third.

[etch :] [stretch = 3] [stretch = 2]

Figure 3-5. Buttons with stretch factors (left to right: 1, 3, and 2)

Layouts

Up to now you have looked at size policies and used horizontal and vertical layouts. From
Designer you can attain the three most common layouts: horizontal, vertical, and grid.

The box layouts (which you have seen several times) are available through the classes
QHBoxLayout (horizontal) and QVBoxLayout (vertical). They simply put the widgets in a row or
column from left to right or from top-down. Figures 3-6 and 3-7 show both classes in action.
In the examples, the widgets were added in this order: foo, bar, baz. When used in combina-
tion with stretch factors and size policies, they can be used as a basis for many different dialog
layouts.

Tip If you need to, you can alter the direction in which widgets are added by using the setDirection
method. This means that you can add widgets from right to left to a horizontal layout or upwards to a vertical
layout.

Figure 3-6. Horizontal box layout

CHAPTER 3 = WIDGETS AND LAYOUTS

foo
bar

baz

Figure 3-7. Vertical box layout

The more powerful big brother of the box layouts is the grid layout QGridLayout. Using a
grid layout, you add your widgets into a table-like grid. By default, each widget occupies one
single table cell, but you can make it span several cells. Listing 3-4 shows you how to populate
a grid layout with three buttons, and the resulting layout is shown in Figure 3-8. The widgets
are added by using the addWidget(OWidget *widget, int row, int col, int height=1,
int width=1) method. The bar and baz buttons are added to the cells in the lower row and
span one cell in both directions. The foo button is larger (it spans two cells wide) and starts
in the top-left corner—first row and first column.

Listing 3-4. The grid layout is populated.

QGridLayout layout(8widget);

layout.addwidget(new QPushButton("foo"), 0, 0, 1, 2);
layout.addwidget(new QPushButton("bar"), 1, 0);
layout.addwidget(new QPushButton("baz"), 1, 1);

’ foo]

(o) (e

Figure 3-8. Grid layout

With layouts, the sizing policies of the widgets involved play an important role. For exam-
ple, push button widgets are by default Fixed in the vertical direction. This means that if you
rotate the layout from Listing 3-4 so that columns are rows (and vice versa), the result will look
like Figure 3-9. The button does not stretch to fill two cells; instead it is centered vertically, but
keeps the height from the size hint of the widget.

bar

baz

Figure 3-9. A grid layout with a fixed-height widget

61

62

CHAPTER 3 WIDGETS AND LAYOUTS

It is possible to use other layout classes, but it is not very common to use them directly.
The box layouts and grid layout are usually all you need; combined with stretch factors and
sizing policies, you can build pretty much any conceivable dialog layout.

Tip Do you want to experiment with size policies and layouts? Do it in Designer to receive visual feedback
as soon as you change the property value.

Common Widgets

All user interfaces start with layouts and widgets, and almost all user actions are started from a
widget, so knowing about available widgets is important when you design an application.

This section introduces the most common widgets, along with screenshots of them from
the major platforms. You also learn about closely related widgets as well as the most useful
signals and slots for each widget.

QPushButton
Testing (Testing)

Windows XP Plastique Aqua

The push button is the most common button in dialogs. With its standard behavior (it just
reacts to clicks), the most interesting signal is c1icked(). If you want the button to alternate
between the pressed and released states, you can set the checkable property to true. Doing so
makes the toggled(bool) signal interesting because it carries the current state as well as indi-
cating that a click has taken place.

Listing 3-5 shows the implementation of a dialog. In the constructor, two buttons are
created: an ordinary button and a toggle. The buttons are placed in a horizontal layout,
and their signals are connected to two of the dialog’s slots. The custom slots use the static
information method from the QMessageBox class to show a message.

Tip In the buttonToggled slot, the QString arg method is used to combine two strings. The %1 in
the original string is replaced by the argument given to arg. You can join several (but not more than nine)
strings by using repeated calls to arg. For example, QString("%1 %3 %2").arg("foo").arg("bar").
arg("baz") results in the string "foo baz bar".

CHAPTER 3 = WIDGETS AND LAYOUTS

Listing 3-5. Basic demonstration of the push button widget

ButtonDialog: :ButtonDialog(QWidget *parent) : QDialog(parent)

{
clickButton = new QPushButton("Click me!", this);

toggleButton = new QPushButton("Toggle me!", this);
toggleButton->setCheckable(true);

QHBoxLayout *layout = new QHBoxLayout(this);
layout->addWidget(clickButton);
layout->addWidget(toggleButton);

connect(clickButton, SIGNAL(clicked()), this, SLOT(buttonClicked()));
connect(toggleButton, SICGNAL(clicked()), this, SLOT(buttonToggled()));

}

void ButtonDialog: :buttonClicked()
{

QMessageBox: :information(this, "Clicked!", "The button was clicked!");

}

void ButtonDialog: :buttonToggled()

{
QMessageBox: :information(this, "Toggled!",
QString("The button is %1!")
.arg(toggleButton->isChecked()?"pressed": "released"));
}

Various platforms have different placements of buttons at the bottom of dialogs. For exam-
ple, in a Mac or a Gnome desktop, the rightmost button is the accepting one (Ok), whereas in
Windows the rightmost button is usually Close or Cancel. By using the QDialogButtonBox
widget, you can get the ordinary buttons automatically. You can also add your own buttons
using addButton and give them a role. The buttons are placed where the user expects them
when you tell Qt which button has the HelpRole and which has the ApplyRole.

Listing 3-6 shows a small part of a dialog using the button box. First the button box is cre-
ated with a direction—it can be either Horizontal or Vertical. Then a button is created and
connected to a slot in the dialog before it is added to the button box with a QDialogButtonBox
role. Figure 3-10 shows the resulting dialog on a Windows XP system. Compare this with Fig-
ure 3-11, in which the style has been forced to Cleanlooks—the style for Gnome desktops. The
ordering is adapted to the current style, which makes the user experience better because the
user can stick to old habits instead of reading the text on all the buttons before clicking.

Listing 3-6. Creating a button, connecting it, and then adding it with a role to a button box
QDialogButtonBox *box = new QDialogButtonBox(Qt::Horizontal);
button = new QPushButton("Ok");

connect(button, SIGNAL(clicked()), this, SLOT(okClicked()));
box->addButton(button, QDialogButtonBox::AcceptRole);

63

64

CHAPTER 3 WIDGETS AND LAYOUTS

Note Instead of connecting the button to the slot in Listing 3-6, you could have connected the role of the
button box as this connect (box, SIGNAL(accepted()), this, SLOT(okClicked())).

1 buttonbox e

Try out the buttons!

’ Reset] [Ok ” Cancel ” Apply ” Help]

Figure 3-10. A QDialogButtonBox with buttons in Windows XP style

_Tbuttonbox e

Try out the buttons!

[Help H Reset l [Apply H Cancel H ok l

Figure 3-11. A QDialogButtonBox with buttons in CleanLooks style

QLabel

Testing Testing Testing

Windows XP Plastique Aqua

The label widget, one of the most common widgets, is used to show text that helps the
user better understand dialogs. When using a QLabel, it is possible to give it a keyboard short-
cut or mnemonic by entering an ampersand in the label text just before the letter that you
want to be the mnemonic. For example, by setting the text to "E&xit", the mnemonic is x, and
the keyboard shortcut is Alt+x.

By assigning a buddy widget to the label using setBuddy (QWidget*), the user moves the
focus to that widget by pressing the mnemonic. This is shown in Listing 3-7, in which two
labels are made buddies to two line edits.

If you are using Designer, you can reach the buddy editing mode from the working mode
toolbar. You connect labels to their buddy widgets by drawing arrows, just as you do when you
make signals and slots connections.

Listing 3-7 shows how a dialog is populated by two labels and two line edits in a grid lay-
out. The labels are assigned each of the line edits as buddies. If you try running the example,
you will find that you can move between the line edits using the Alt key combined with the
mnemonic of the label in question.

CHAPTER 3 = WIDGETS AND LAYOUTS

Listing 3-7. Labels and line edits as buddies
QDialog dlg;

QLabel *foolLabel = new QLabel("&Foo:");
QLabel *barLabel = new QLabel("8Bar:");
QlLineEdit *fooEdit = new QLineEdit;
QlLineEdit *barEdit = new QLineEdit;

foolLabel->setBuddy(fooEdit);
barLabel->setBuddy(barkEdit);

QGridLayout *layout = new QGridlLayout(8dlg);
layout->addWidget(foolabel, 0, 0);
layout->addWidget(fooEdit, 0, 1);
layout->addWidget(barLabel, 1, 0);
layout->addWidget(barEdit, 1, 1);

QLineEdit

Testing| |Testing| Testing

Windows XP Plastique Aqua

The line edit is used to enable the user to edit a single line of text. (For multiline texts, use
the QTextEdit widget.) The most common use is for the user to enter text, but you can also use
it for passwords. Just set the echoMode property to Password, and the entered text shows up as
asterisks.

You can set the text of the line edit using setText (const QString&), and you get it with
text (). Whenever the text is changed, you can connect to the textChanged(const QString&)
signal.

If you want to make sure that the user does not enter an entire essay into the field, you
can limit the length of the text using the maxLength property.

To try out the line edit widget, you can test it in Designer. First create a dialog with six line
edits and four labels, as shown in Figure 3-12. The figure shows the connections in which the
textChanged signal of each line edit in the left column is connected to the setText slot of the
corresponding widget in the right column. The label for each row then tells you what property
was changed for each line edit in the left column.

Tip If you want to get to know a widget, try playing with its properties and do a preview (Ctrl+R) to see
how it behaves at run-time. This way, you can get quick feedback on the changes that you make.

65

66

CHAPTER 3 WIDGETS AND LAYOUTS

le, Dialog - untitled*

e

Contents

Standard: | [textChanged(QString) Y setText(QString)| |

|textChanged[QString]HsetText[QString]| |

1T
_‘textchanged[QString]HsetText[QString]}—‘
= -
o

Password echo mode: |

Max length 20:

rejected

o o]

— accept

+0 roincki)

Figure 3-12. The line edit widget demonstration dialog with its connections

Figure 3-13 shows how the dialog looks in preview mode. The password in the middle row
is hidden, and the length of the bottom row is limited.

| Dialog - [Preview] R[]

Contents

Standard:

Max length 20:

Password echo mode: |

| This is a text

| | This is a text |

| |This is also a text |

|Iwant to type a lon|

| |Iwant to type a lon |

[0K H Cancel]

Figure 3-13. The line edit widget demonstration in action

QCheckBox
[] Testing Testing [] Testing
Windows XP Plastique Aqua

A checkbox can be checked or unchecked by the user. The class is related to the push but-
ton widget through a common base class, so the programming interface should be familiar.

In the default mode, you can use the isChecked() method to tell whether the box is
checked or not. In some situations, you might want to have three states: unchecked, unde-
fined, and checked (use the tristate property to do this). In that mode you have to use the
checkState property to learn about the state.

When the checked state changes, the stateChanged(int) signal is emitted. For non-tristate
checkboxes, you can connect to the toggled(bool) signal instead.

CHAPTER 3 = WIDGETS AND LAYOUTS

QRadioButton
() Testing Testing () Testing
Windows XP Plastique Aqua

The radio button is a close relative of the checkbox. It works like a checkbox, except that
only one in a group can be checked each time. After you have checked a box in a group, you
cannot remove the check; you can move it only within the group. This means that if you check
one box programmatically when you initialize your dialog, you are guaranteed that one of the
boxes is checked at all times. To monitor the state of the buttons, use the toggled(bool) signal
and the isChecked method.

A group of radio buttons consists of all buttons with the same parent widget. You can
divide the buttons into groups using group boxes, which also puts a nice frame with a title
around them. If you do not want to split them visually, you can use a QButtonGroup, as shown
in Listing 3-8. Figure 3-14 shows that it might be a bad idea not to divide them visually.

The listing can be divided into three sections. First, the group box and buttons are created;
then the buttons are added to their respective button group using the addButton method. The
button group does not initialize the buttons in any way; it simply ensures that at most one
radio button at a time is checked. The third and last section of the listing is the creation of the
grid and the placing of the buttons within the grid using addWidget.

Listing 3-8. Creating four radio buttons; then putting them in button groups and a layout

QGroupBox box("Printing Options");

QRadioButton *portrait = new QRadioButton("Portrait");
QRadioButton *landscape = new QRadioButton("Landscape");
QRadioButton *color = new QRadioButton("Color");
QRadioButton *bw = new QRadioButton("B&W");

QButtonGroup *orientation = new QButtonGroup(&box);
QButtonGroup *colorBw = new QButtonGroup(&box);

orientation->addButton(portrait);
orientation->addButton(landscape);
colorBw->addButton(color);
colorBw->addButton(bw);

QGridLayout *grid = new QGridLayout(&box);
grid->addWidget(portrait, 0, 0);
grid->addWidget(landscape, 0, 1);
grid->addWidget(color, 1, 0);
grid->addWidget(bw, 1, 1);

67

68

CHAPTER 3 WIDGETS AND LAYOUTS

T radiobutt... (- JO/Ed

Printing Options

() portrait () Landscape

O color O B

Figure 3-14. Four radio buttons in a group box. Can you tell which one groups with which?

QGroupBox
Testing eStng ‘Testing
O foo foo () foa
() bar bar O bar
() baz baz () baz
Windows XP Plastique Aqua

You can use a group box to structure the contents of a dialog. It provides a frame with a
title in which you can put other widgets. The group box is a passive widget that works only as a
container for other widgets.

If you want to be able to turn the option controlled by the widgets in the group box on or
off, you can make it checkable using the checkable property (this means that a checkbox will
be shown in the title). When the checkbox is unchecked, its contents are disabled, and users
cannot use it. Checkable group boxes have the isChecked() method and the toggled(bool)
signal.

Figure 3-15 shows a simple preview run from Designer. I have created three checkboxes
with a push button in each. The leftmost group box is not checkable and looks as expected
and you can click the button inside of it.

(% Dialog - [Preview] EE
Not Checkable Checked [] unchecked
’ PushButton] ’ PushButton] PushButton
’ 0K] ’ Cancel]

Figure 3-15. Group boxes: not checkable, checkable (checked), and unchecked

CHAPTER 3 = WIDGETS AND LAYOUTS

The center and rightmost group boxes are checkable—one is checked and the other is
not. In the unchecked group, the button is disabled and the user cannot use it. This happens
automatically; no signal connections have been made. All that is necessary is that the button
be inside the group box.

Caution When setting properties in Designer, they might be set too early. For example, if you set the
checked property to false in the group box example dialog, the push button remains enabled. This is
because the button is added to the group box after the checked property has been set and is thus left unal-
tered (since the group box enables and disables all contained widgets on the toggled signal). Instead,
create the dialog in Designer, but initialize all user modifiable properties after the call to setupU1i in your
source code.

QListWidget
ffoo | R R |
bar bar bar
baz baz baz
Windows XP Plastique Aqua

Qt has widgets for lists, tables, and trees. This chapter is limited to the list widget because
Qt has a very powerful approach to lists, tables, and trees using models and views (covered in
detail in Chapter 5).

The list widget is used to present a list of items to the user. You can add widgets to the
list using the addItem(const QString8) or addItems(const QStringlist&) methods. When
the user changes the current item, you can tell by connecting to the currentItemChanged
(QListWidgetItem *, QListWidgetItem *) or currentTextChanged(const QStringd) signals.
Notice that the current item does not always have to be selected—it depends on the selection
mode.

With the selectionMode property, you can enable the user to select only one item, a con-
tiguous range of items, or all items. Whenever the selection is changed, the itemSelectionChanged
signal is emitted.

The items of the list view can be added to the list from text strings, but they are stored as
QListWidgetItem objects. These objects are owned by the list widget and automatically deleted
when the list widget is destructed. If you want to remove an item from a list, simply find it by
using the currentItem property or the item(int row) method; then delete it.

69

CHAPTER 3 WIDGETS AND LAYOUTS

Listing 3-9 shows an example of how a dialog with list widgets is set up. First, a layout is
created along with the widgets—two list widgets and two buttons for moving items between
the lists. After that, the buttons are connected to slots in the dialog class that perform the
actual moving of the items before the list is populated. Figure 3-16 shows the dialog with the
lists being used.

Listing 3-9. Creating and populating the list widgets

ListWidgetDialog: :ListWidgetDialog() : ODialog()

{
QPushButton *left, *right;

QGridlLayout *layout = new QGridLayout(this);
layout->addWidget(left = new QPushButton("<<"), 0, 1);
layout->addWidget(right = new QPushButton(">>"), 1, 1);
layout->addWidget(leftList = new QListWidget, 0, 0, 3, 1);
layout->addWidget(rightlList = new QListWidget, 0, 2, 3, 1);

connect(left, SIGNAL(clicked()), this, SLOT(movelLeft()));
connect(right, SIGNAL(clicked()), this, SLOT(moveRight()));

QStringlist items;

items << "Argentine" << "Brazilian" << "South African"
<< "USA West" << "Monaco" << "Belgian" << "Spanish"
<< "Swedish" << "French" << "British" << "German"
<< "Austrian" << "Dutch" << "Italian" << "USA East"
<< "Canadian";

leftList->addItems(items);

}

Tlistwidget e
USA West << South African
Monaco Brazilian
Belgian Argentine
Spanish German
Swedish British
Dutch Austrian
Ttalian French
USA East
Canadian

Figure 3-16. The list widget dialog in action

Listing 3-10 shows how the items are moved between two list widgets. The code shows the
slot for moving items from the left list to the right list. First, use the selectedItems().count()
method to determine whether there actually is anything to move. The takeItem(int) method

CHAPTER 3 = WIDGETS AND LAYOUTS

is used to remove an item from one list widget without having to delete it. This method tells
the list widget that you take responsibility for managing the item and removes it from the list
widget. You can then add the item to the other list widget using the addItem(QListWidgetItem*)
method. This approach enables you to move the items between the list widgets without delet-
ing or creating anything.

Listing 3-10. Slot for moving items from the right to the left

void ListWidgetDialog::movelLeft()

{
if(rightlList->selectedItems().count() != 1)

return;

QListWidgetItem *item = rightlist->takeItem(rightList->currentRow());
leftList->addItem(item);

}
QComboBox
foo I'_vi foo - (foo |3%]
Windows XP Plastique Aqua

A combo box can be used like a list widget when only the current item is shown. An alter-
nate use is to provide the users with a list of items, but also enable them to write their own
texts. You control whether the user can type in custom text by using the editable property.

When the user picks an item from the list, the activated(int) and activated(const
QString8) signals are emitted.

Tip Use the currentIndexChanged if you want the signal to be emitted when you change the current
item via code as well as when the user picks an item. The activated signal is emitted only when the user
changes the current item.

You can also use the currentIndex and currentText properties to find out about the
current item. When the user enters a custom text, you can detect it by connecting to the
editTextChanged(const QString8) signal.

A common use for the combo box widget is to enable the user to pick a font and a size in
word processors. To pick a font, Qt has had the QFontComboBox widget since version 4.2, which
shows each list item in the right font.

|

72

CHAPTER 3 WIDGETS AND LAYOUTS

QSpinBox
b2 & k2 2 2 [
Windows XP Plastique Aqua

When you want users to choose a number within a given range with some sort of preci-
sion, a spin box is ideal. Because it only allows the user to type in a value, it is precise. At the
same time, the user can change the value by clicking the up and down arrows. If some sort of
feedback is given, the arrows can be used to experiment with the effect of different values.

By default, the range is 0 to 99, and each click on one of the arrows changes the value by
one. You can change the range by changing the minimum and maximum properties. In the same
way, the singleStep property indicates how much each click adds or subtracts from the cur-
rent value. Notice that even if the single step size is larger than one, the user can still enter any
value in the box.

Tip Instead of calling setMinimum(min) and setMaximum(max), it is possible to call setRange(min,max),
which can make the code more readable and also save you from typing an entire line of code.

When the value of the spin box is changed, it emits the valueChanged(int) signal. If you
want to connect something to the spin box, the setValue(int) slot can be used.

To try out the spin box widget, I put together a dialog consisting of an LCD number
(QLCDNumber) and a spin box (see Figure 3-17). The spin box’s valueChanged signal has been
connected to the LCD number’s display(int) slot. You can play with the spin box by making
changes to the singleStep property, typing in numbers, moving up and down using the arrow
keys, clicking the up and down buttons, or even using the page up and down keys. You will
soon get a hang of how to control the spin box widget to do what you want.

[« Dialog - [Pr... 2JEd

S

Figure 3-17. A spin box connected to an LCD value

CHAPTER 3 = WIDGETS AND LAYOUTS

If you need to handle values of higher precision, the QDoubleSpinBox widget can be used.
Its programming interface is similar to the one of QSpinBox, but the decimals property enables
you to control the precision of the value.

For handling time, dates, or a combination of the two, you can use QTimeEdit, QDateEdit,
and QDateTimeEdit. They work in pretty much the same way as a spin box, but the user con-
trols the hours, minutes, seconds, years, months, and days of the month separately. The
programming interface is similar but not identical. For example, the range is controlled by
minimumDate and maximumDate, and minimumTime and maximumTime.

If you like spin box-like widgets to pick dates, you can use the QCalendariWidget. It looks
like an actual calendar and enables the user to pick a date by clicking it. You can compare the
calendar widget and a date edit widget in Figure 3-18. Which one is easier to use?

& september 2006)
si md ti on to fr |Id

27 28 29 30 31 1 2

3 4
10 11 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
1 2 3 4 5 G 7

2006-08-12 /3]

Figure 3-18. A calendar widget and a date edit widget

QSlider
== O
Windows XP Plastique Aqua

Aslider is used in exactly the same way as a spin box: to enable the user to pick a value
within a given range. The QSlider class also uses the minimum and maximum properties to control
the range of the control, as well as the setRange method to change both properties at once.

When it comes to the size of each change, the slider is different. The user can make either
big changes or small changes; they are controlled by the singleStep and pageStep properties.
When the user clicks on either side of the slider position indicator, a page step is made. To take

73

74

CHAPTER 3 WIDGETS AND LAYOUTS

a single step, the user must click the slider to give it focus and then use the arrow keys of the
keyboard. Just as with the step size of the spin box, the user can still reach values between the
single steps by dragging the position indication into place.

To detect value changes, connect to the valueChanged(int) signal.

Note Use valueChanged to avoid missing changes by keyboard, dragging, or clicking. The valueChanged
signal is always emitted, regardless of why the value changed.

In Designer, the slider widget shows up as two widgets: horizontal slider and vertical
slider. You can control the orientation of the widget between Horizontal and Vertical by
using the orientation property.

A very similar widget is the QScrollBar, which tells the user that the widget not only picks
a value but also picks a range of values indicated by the size of the slider. The pageStep prop-
erty indicates how large the slider is and tells the user how much of the range is selected.

QProgressBar

[TT] 42% 42%

Windows XP Plastique Aqua

Sliders, scroll bars, and spin boxes are all useful for letting the user pick a value, but the
progress bar can be used to show a value in a read-only form. You can customize the range of
a progress bar using the minimum and maximum properties (yes, there is a setRange(int, int)
method as well). If you set both minimum and maximum to zero, you get an activity bar going
around and around without a defined end, which is great for showing that you are doing
something when performing long tasks that you cannot judge the length of in advance.

The actual progress is set using the setValue(int) method, and you can return the
progress bar to zero using the reset() method.

You can turn the percentage completed text on and off with the textVisible property and
you can alter the text to suit your application by using the format property. The format prop-
erty is a string in which any occurrence of %p is replaced with the current percentage, %v is
replaced with the current value, and %m is replaced with the maximum value.

Figure 3-19 shows a set of progress bars created in Designer. The slider at the top of the
dialog is connected to each slider through valueChanged(int) to setValue(int) connections.
By moving the slider, you can set the progress. The top progress bar has the default style; that
is, the format property is %p%, and the text is visible. The next progress bar has the format text
setto "%v out of %m steps completed." The third has hidden text. The progress bar at the
bottom has minimum and maximum set to zero, which means that it keeps moving to show
progress. The printed figure does not show that it moves continuously—there is no need to
call setValue or any other method to get movement.

CHAPTER 3 = WIDGETS AND LAYOUTS

The last detail in the test dialog is the Reset button. Its clicked signal is connected to the
reset slot of all the progress bars. When clicking it, you reset the progress bars. This means
that the value of each progress bar is set to zero, and that the texts of the progress bars are hid-
den until the value is changed from a valueChanged(int) signal emitted when you move the
slider.

(% Dialog - [Preview] EE
GroupBox

Default: 49%

Custom text: 49 out of 100 steps completed.
Hidden text: [NNNANNENNNNNNN]
Infinite range: |WRHN |]

Figure 3-19. Progress bars with different configurations

Common Dialogs

When it comes to letting the user make choices, there are many dialogs that the users expect.
There are dialogs for opening and saving files, picking colors, choosing fonts, and so on. These
dialogs look different on the different platforms supported by Qt.

By using Qt’s implementations of these dialogs, you get access to one class interface,
which ensures that you use the native version whenever possible and fall back on a generic
version if needed.

Files

The most common dialogs are the file dialogs used to open and save documents. These
dialogs are all accessed through the QFileDialog class. Because the dialog is used for the same
tasks over and over again, the class has been equipped with a set of static methods that handle
the showing (and waiting for) the dialogs.

Opening

To open a file, the static getOpenFileName method is used. This shows a file dialog similar to
the one shown in Figure 3-20. The method accepts a whole bunch of arguments. The easiest
way to understand how it is used is to look at Listing 3-11.

75

76

CHAPTER 3

WIDGETS AND LAYOUTS

"Open Document RS
Lookin: I&JAPFBSS LI L] EF v
/ [ChapressAuthorDocs W xxxxch5d with tags.doc
(% [C)backups B xxxxched with tags.doc
) deliveries W) xxxxch7d with tags.doc
My Documents |5 examples B xxxxch8d with tags.doc
[C)images ®xxxxch9d with tags.doc
[other docs W) xxxxch10d with tags.doc
Chreview 1 W) xxxxch11d with tags.doc
sy [Chwith examples W) xxxxch12d with tags.doc
zips W) xxxxch13d with tags.doc
i appendixes with tags.doc i
Book Information.doc W xxxxch15d with tags.doc
My Computer boost ch3 with tags.doc W) xxxxch16d with tags.doc
W) xxxxch1d with tags.doc
W) xxxxch2d with tags.doc
) xxxxch3d with tags.doc
W) xxxxch4d with tags with tabs.doc
) xxxxch4d with tags.doc
File name: Imxcth with tags.doc LI Open |
Files oftype: IDocumentﬁIes (*.doc *.rif) LI Cancel |
A

Figure 3-20. A dialog for opening a file on the Windows platform

Listing 3-11. Picking a file to open

QString filename = QFileDialog::getOpenFileName(

this,

tr("Open Document"),

QDir::currentPath(),

tr("Document files (*.doc *.rtf);;All files (*.*)"));
if(!filename.isNull())

{

The first argument accepted by the method is a parent for the dialog. The dialog is modal,
so the given parent will be blocked from user interaction while it is open. The second argu-
ment is the caption of the window; the third is a path to the directory from which to start.

The fourth and last argument is a list of filters separated by double semicolons (; ;). Each
document type in the filter consists of a text followed by one or more filter patterns enclosed
in parentheses. The filters specified in the listing are shown in Figure 3-21.

File name: Imxcth with tags.doc LI Open |
Files oftype: IDocumentﬁIes (*.doc *.rf) LI Cancel |

Allfiles ()

Figure 3-21. The filter controls which file types can be opened.

CHAPTER 3 = WIDGETS AND LAYOUTS

The return value from the method is a QString. If the user has canceled or in other way
aborted the dialog, the returned string is a null string. By using the isNull method, you can
see whether the user picked a file. In the block of code following the if statement in the list-
ing, you can open the file and process its contents.

The dialog shown in Figure 3-20 is the native version used on the Windows platform.
When a native dialog is missing, Qt will fall back to its own dialog (see Figure 3-22). As you can
see, the dialog no longer provides shortcuts on the left. It also fails to show the proper icons
for the different file types.

I 0pen Document [B%)
Look in: 23 C:\documents and settings\johan thelin\my documentsiteknikkonsult\active projects\apress M QO DEE
|22 apressAuthorDocs boost ch3 with tags.doc @ soooichdd with tags with tabs.doc
I3 backups xoooch10d with tags.doc B sooch4d with tags.doc
=) deliveries soooichl1d with tags.doc Q soooich5d with tags.doc
2 examples = soooch12d with tags.doc 5 soooch6d with tags.doc
) images =) soooch13d with tags.doc B somch7d with tags.doc
12 other docs = B xomch8d with tags.doc
= review 1 xo00ichl5d with tags.doc a xoooichdd with tags.doc
12 with examples soooichl16d with tags.doc
2 zips = soooch1d with tags.doc

= appendixes with tags.doc sooich2d with tags.doc
Book Information.doc = soo0ich3d with tags.doc

File name: ooccchl4d with tags.doc Open I
Files of type: Document files (*.doc *.rtf) B] | Cancel]

Figure 3-22. Qt’s fallback dialog for opening files

The getOpenFileName method enables the user to pick only one file for opening. Some
applications let the user pick several files at once, which is where getOpenFileNames can be
used. The resulting file dialog is identical to the one shown when picking one file, except that
several files can be selected at once.

Listing 3-12 shows how the method is used. The arguments are the same as in Listing 3-11,
except that the method returns a QStringlList instead of a single QString. If the list is empty,
the user has not picked any files.

Listing 3-12. Picking several files for opening

QStringlist filenames = QFileDialog::getOpenFileNames(
this,
tr("Open Document™),
QDir::currentPath(),
tr("Documents (*.doc);;All files (*.*)"));

Saving

The QFileDialog class has a method for asking for a file name when saving files: getSaveFileName.
If the file already exists, a warning dialog similar to the one seen in Figure 3-23 displays.

77

78

CHAPTER 3 = WIDGETS AND LAYOUTS

'Save Document R

-ﬁ C:\Documents and Settings\Johan Thelin\My Documents\Teknkkonsuit\Active Projects\APressoooich10d with tags.doc already exists.

Do you want to replace it?
Yes [No |

Figure 3-23. Qt verifies when the user tries to replace an existing file.

In Listing 3-13 you can see the source code used for showing the dialog in Figure 3-24.
If you compare the listing with the corresponding listing for opening a file, you see that the
arguments are identical.

When specifying filters, it is good to know that Qt helps to enforce the file extension if not
specified by the user. This means that you need to have an A1l files (*.*) filter to enable
the user to pick a file extension freely.

Listing 3-13. Qr asks the user for a name for saving a file

QString filename = QFileDialog::getSaveFileName(
this,
tr("Save Document"),
QDir::currentPath(),
tr("Documents (*.doc)"));

'Save Document RS
Savein: I@APress LI L] £ Ev
y [apressAuthorDocs W xxxxch5d with tags.doc
(% [C)backups B xxxxched with tags.doc
) deliveries W) xxxxch7d with tags.doc
My Documents |5 examples B xxxxch8d with tags.doc
[C)images B xxxxch9d with tags.doc
) other docs WYxxxxch10d with tags.doc
Chreview 1 W xxxxch11ld with tags.doc
ek [Chwith examples W) xxxxch12d with tags.doc
©zips W) xxxxch13d with tags.doc
) appendixes with tags.doc W) xxxxch14d with tags.doc
Book Information.doc W) xxxxch15d with tags.doc
My Computer boost ch3 with tags.doc W) xxxxch16d with tags.doc
) xxxxch1d with tags.doc
W) xxxxch2d with tags.doc
) xxxxch3d with tags.doc
W) xxxxch4d with tags with tabs.doc
W) xxxxch4d with tags.doc
File name: I LI Save |
Save as type: IDocuments (*.doc) LI Cancel |
A

Figure 3-24. Picking a name for saving a file

CHAPTER 3 = WIDGETS AND LAYOUTS

Opening Directories

Slightly less common than asking for a file name is asking for a directory, but the QFileDialog
class has a static member for this as well. Listing 3-14 shows the getExistingDirectory
method being used. The arguments are the same as for the methods for opening and saving
files, except that no filter is given because there is no point to filtering for extensions when
working with directories.

Listing 3-14. Asking the user for a directory

QString dirname = QFileDialog::getExistingDirectory(
this,
tr("Select a Directory"),
QDir::currentPath());

The resulting dialog, when used on the Windows platform, is shown in Figure 3-25.
It enables the user to pick a directory and to create new directories from the dialog.

Browse For Folder EZE

Select a Directory

I3 backups [~
I3 deliveries
2 () examples
) ch1
) ch2 El
= [ch3
[buttonbox

ridla Oljt
2 griday]

I Make New Folder] [0K H Cancel]

Figure 3-25. Picking a directory

Messages

You often have to tell the user something important, or ask for a word or a number, which is
where message boxes and input dialogs come in handy. Using them saves you from having to
design and implement your own dialogs. Instead, you can use Qt’s premade dialogs through
static methods—just like asking for file names.

79

80

CHAPTER 3 WIDGETS AND LAYOUTS

Messages

The OMessageBox class is used to show messages to the users (it can also be used to ask basic
questions such as Do you want to save the file?). Let’s start by having a look at the three differ-
ent types of messages that can be shown. Figure 3-26 shows three dialogs with messages of
different importance.

— Application Name —I Application Name —I Application Name
\%) An information message. -!X A warning message. @ A critical message.

Information Warning Critical
Figure 3-26. Three different messages

The dialogs are shown using the source code in Listing 3-15. The static methods
information, warning, and critical accept the same arguments and work the same way. The
difference is the importance of the message and how it is announced in the system. All mes-
sages are presented with different icons, but other aspects can be affected as well. For
example, a Windows system plays different sounds for information and critical messages.

The parameters sent to the methods are the parent, the dialog title, and then the message.
The message can be formatted using standard C methods (for example, \n works as a line
break).

Listing 3-15. Showing three different messages to the user

QMessageBox: :information(
this,
tr("Application Name"),
tr("An information message."));

QMessageBox: :warning(
this,
tr("Application Name"),
tr("A warning message."));

QMessageBox: :critical(
this,
tr("Application Name"),
tr("A critical message."));

The static method question can be used to ask the user questions (an example is shown in
Listing 3-16). The first three arguments are the same as when showing messages: parent, title,
and message. The next two arguments specify which buttons to show and which button will
act as the default button. You can see the buttons in the dialog resulting from the listing are
shown in Figure 3-27. The buttons are Yes, No, and Cancel, where the latter is the default.

CHAPTER 3

WIDGETS AND LAYOUTS

Note It is possible to ask questions using information, warning, and critical as well—just specify
buttons other than the default OK button.

Listing 3-16. Asking the user a question

switch(QMessageBox::question(
this,
tr("Application Name"),

}

tr("An information message."),

OMessageBox
OMessageBox
OMessageBox

OMessageBox

::Yes |
2:No |
::Cancel,

::Cancel))

case QMessageBox::Yes:

break;

case QMessageBox::No:

break;

case QMessageBox: :Cancel:

break;
default:

break;

The switch statement checking the return value from the method call determines which
button was clicked. There are more buttons than the ones shown in the listing. The available
options are as follows:

OMessageBox: :
QOMessageBox:
QOMessageBox:
OMessageBox:
OMessageBox:
OMessageBox:
OMessageBox:

QMessageBox:

0Ok: OK

:Open: Open
:Save: Save
:Cancel: Cancel

:Close: Close

:Apply: Apply

:Reset: Reset

:Discard: Discard or don’t save, depending on the platform

81

82

CHAPTER 3 WIDGETS AND LAYOUTS

* QMessageBox: :RestoreDefaults: Restore defaults
* QMessageBox: :Help : Help

* QMessageBox: :SaveAll: Save all

* QMessageBox: :Yes: Yes

* QMessageBox::YesToAll: Yes to all

* QMessageBox: :No: No

* QMessageBox: :NoToAll: No to all

* QMessageBox: :Abort: Abort

* QMessageBox: :Retry: Retry

* QMessageBox: :Ignore: Ignore

* QMessageBox: :NoButton: Used when you want to let Qt pick a default button

1 Application Name X

9) Aninformation message.

[Yes ” No HCanceI]

Figure 3-27. The question is shown to the user.

Input Dialog

If you need to ask slightly more advanced questions than Yes/No/Cancel, you can use the
OInputDialog class. Using this class you can ask the user for values and texts, and to pick an
item from a given list.

Let’s start by having a look at getting a piece of text from the user by using the getText
method. You can see it in Listing 3-17. The dialog shown from the code in the listing is shown
in Figure 3-28.

The arguments given to the method are parent, dialog title, label, echo mode, initial text,
followed by a pointer to a Boolean. The Boolean is set to true by the call if the dialog was
closed from the user clicking OK. Otherwise, it is set to false.

The echo mode is the echoMode property of the line edit being used in the dialog. Set it to
QLineEdit::Normal to show the entered text as usual. If you set it to QLineEdit: :Password, the
entered text will be shown as asterisks.

When the method call returns, check that ok is true and that the returned string contains
something. If that is the case, you can go on and do something with the text returned.

CHAPTER 3 = WIDGETS AND LAYOUTS

Listing 3-17. Asking the user to enter some text

bool ok;

QString text = QInputDialog::getText(
this,
tr("String"),
tr("Enter a city name:"),
QLineEdit: :Normal,
tr("Alingsas"),
&ok);

if(ok & !text.isEmpty())

{

J< String e
Enter a city name:
|AIings§s |

[0K H Cancel l

Figure 3-28. The dialog shown to the user when asking for text

When you want the user to pick a string from a given list or enter a new string, you can
use the static getItem method. Listing 3-18 shows you how it is used. The resulting dialog is
shown in Figure 3-29.

The arguments given to the method are similar to the ones used when asking for a string.
The list starts with a parent, the dialog title, and a label text, followed by a list of items. The
items are kept in a QStringlList. After the list of items follows a zero; this is the index in the
item list to start from. In this case, the dialog will start with "Foo" selected.

The false after the index indicates that the dialog will not let the user enter custom
strings. By changing it to true, the user can either pick a value from the list or write a new
string.

The arguments end with a pointer to a Boolean, used to indicate whether the user
accepted the dialog when closing it. Use this value and the contents of the returned string
when determining whether the user actually picked an item or canceled the dialog.

Listing 3-18. Asking the user to pick an item from a list

bool ok;
QStringlist items;
items << tr("Foo") << tr("Bar") << tr("Baz");
QString item = QInputDialog::getItem(
this,
tr("Item"),
tr("Pick an item:"),
items,
0,

83

84 CHAPTER 3 WIDGETS AND LAYOUTS

false,
&ok);
if(ok & !item.isEmpty())
{
< Ttem e
Pick an item:
Foo v
Foo
Bar
L Baz

Figure 3-29. The dialog shown to the user when picking an item from a list

The 0InputDialog can help you with one more thing: getting values from the user. Use
the static getInteger method to show a dialog containing a spin box (an example is shown in
Figure 3-30). The source code used to generate the dialog is shown in Listing 3-19.

The arguments given to the method are, in order, the parent, the dialog title, and a label
text. Following this are the initial value, the minimum value, the maximum value, and the step
size. The last argument is a pointer to a Boolean, used to indicate whether the user accepted
the dialog when closing it. Use this value to determine whether the number was given by the
user or whether the dialog was canceled.

Listing 3-19. Asking the user for an integer value

bool ok;
int value = QInputDialog::getInteger(
this,
tr("Integer"),
tr("Enter an angle:"),
90,
0,
360,
1,
8ok);
if(ok)
{
o< Integer e
Enter an angle:
L] &
[0K] ’ Cancel]

Figure 3-30. Asking the user to enter a value

CHAPTER 3 © WIDGETS AND LAYOUTS

If you need ask the user for a floating-point value, you can use the static getDouble
method, which uses a double spin box for showing and editing the value.

Even More Dialogs

Other situations exist in which the user expects a standard dialog to appear. Two dialogs pro-
vided by Qt have been selected for this discussion: the dialogs used for selecting colors and
fonts.

Colors

The QColorDialog class is used to enable the user to pick a color. The dialog is shown in
Figure 3-31. The source code for showing the dialog is simple (see Listing 3-20). The call to
QColorDialog: :getColor accepts a QColor as a starting value and a parent. The return value
is a QColor that is invalid if the user has cancelled the dialog.

Listing 3-20. Asking the user for a color

QColor color = QColorDialog::getColox(

Qt::yellow,
this);
if(color.isValid())

{

Basic colors
L 0 1 0 1 | i

L Ll 1 e
L L 1 1 I

EEEEE
EEEEE]

Custom colors
Hue: |60 (3] Red: 255 [
EEEEEEEN N)
l:”:”:”:”:”:”:”:l Sat:Green: 255@
Define Custom Colors >> Yal: s
[ok || cancel] | Add to Custom Colors]

Figure 3-31. Enabling the user to pick a color

86

CHAPTER 3 WIDGETS AND LAYOUTS

Fonts

The QFontDialog class is used when you need to let the user pick a font. The dialog is shown in
Figure 3-32. Listing 3-21 shows you how the dialog is shown and how the result is interpreted.

The static getFont method shows the dialog and returns a QFont. Because a font cannot be
invalid, the arguments to the method start with a Boolean value that indicates whether the
user canceled the dialog. The value true indicates that the returned font has been accepted by
the user.

The second argument is a QFont to start from. The third argument is a parent widget, and
the last argument is a window title for the dialog.

Listing 3-21. How the dialog is shown and the result interpreted

bool ok;
QFont font = QFontDialog::getFont(
&ok,
QFont("Arial", 18),
this,
tr("Pick a font"));
if(ok)
{
_1Pick a font e
Font Font style Size
Arial Normal 18
Arial Black b] Normal 18 b]
Arial Narrow) | Halic 20
Baskerville Old Face Bold 22
Batang Bold Italic 24
BatangChe 26 H
Bauhaus 93 28
Bell MT M 36 M
Effects Sample
[] strikeout
[] underline AaBbeZz
Writing System
\Any [
[0K] ’ Cancel]

Figure 3-32. Picking a font

Validating User Input

Whenever you ask users to enter something in a text field, you often get something strange
back. Sometimes they enter several words when you expect one. Or they do not use the right
decimal point. Or they write a number as text—as if your application is going to parse “three”

CHAPTER 3 = WIDGETS AND LAYOUTS

for them. The point is that you cannot always trust a user to enter valid proper input—you
always have to validate everything.

When validating input, check to see that the input is right. This is not always the same as
check for errors. Even if you can detect 15 types of errors in input, someone somewhere will
try a 16th variant. And it will occur in the most inconvenient location at the most inconven-
ient time. Trust me.

Validators

Because Qt developers know that user input cannot be trusted, they provide the QValidator
class, which can be used to validate user input in QLineEdit and QComboBox widgets.

The QValidator class cannot be used directly. Instead, you must use one of its subclasses
or do it yourself.

Before you use validators, you should know something about how they work. A validator
validates a string, which can be Invalid, Intermediate, or Acceptable. An Acceptable string is
what you expect the user to enter. An Invalid string is invalid and cannot be turned into an
acceptable string. An Intermediate string is not acceptable, but can become one. When the
user enters text, it is impossible to enter Invalid strings. Intermediate strings are accepted as
input, however, as are Acceptable strings. So when a line editor with a validator refuses to
accept a key press, it probably occurs because it would render the string to be Invalid.

Validating Numbers

There are two validator classes for validating numbers: QIntValidator for integers and
QDoubleValidator for floating-point values. These two classes are shown in action in Listing 3-22.
The highlighted lines show where the validators are created and assigned, but have a look at
the entire listing first.

The listing shows a dialog class and its constructor. In the constructor two labels, two line
editors, and a button are created and put in a grid layout. The resulting dialog is shown in
Figure 3-33.

Looking at highlighted lines and the two validators, you can see that each validator class
takes quite a few arguments. Starting with the QIntValidator, it expects a lower limit, upper
limit, and parent. The object created in the listing allows integer values from zero to 100. The
QDoubleValidator also expects a lower limit, an upper limit, and then the number or wanted
decimals before the parent.

To assign a validator to a widget, use the setValidator(Qvalidator*) method, which is
available for the QLineEdit and QComboBox classes.

Listing 3-22. A dialog with two validated line editors

class ValidationDialog : public QDialog

{
public:
ValidationDialog()

{
QGridLayout *layout = new QGridlLayout(this);

QLineEdit *intEdit = new QLineEdit("42");

87

88

CHAPTER 3 WIDGETS AND LAYOUTS

QlLineEdit *doubleEdit = new QLineEdit("3.14");
QPushButton *button = new QPushButton("Close");

layout->addwidget(new QLabel("Integer:"), 0, 0);
layout->addwidget(intEdit, 0, 1);
layout->addwidget(new QLabel("Double:"), 1, 0);
layout->addwidget(doubleEdit, 1, 1);
layout->addwidget(button, 2, 0, 1, 2);

connect(button, SIGNAL(clicked()), this, SLOT(accept()));

}
};

The integer validator makes sure that the input is good, but the double validator does not
do this in all circumstances. For example, it does not enforce the number of decimals speci-
fied.

When taking the data as input for your application, you must make sure to check that the
validators actually validate the strings to Acceptable. Also, make sure to use the QString: :toInt
and 0String: :toDouble methods and see that they actually parse the values before using
them. The basic lesson here is to never trust your users when it comes to entering data.

“Ivalidator =<
I —

Double: 314 .

’ —

Figure 3-33. A line edit for integers and one for floating-point values

Regular Expressions

When it comes to parsing text-based user input, you can really write a lot of code. Imagine
having to validate a phone number structured like +nn(p)aa...a-11...1, where n represents
the nation number, p the local area code prefix, a an area code, and 1 the local number within
that area. There can be one to two digits in the nation number. The local area prefix can be 0,
8, or 9 (let’s say two to five numbers in the area code and at least one digit in the local number).
In this situation a regular expression can be your savior.

A regular expression, commonly known as a regexp or an RE, enables you to define how a
string can be structured. You can then try to match the input strings to your RE. The strings
matching are valid, whereas those not matching can be considered Invalid. In Qt, regexps are
represented by QRegExp objects.

Before you start using the ORegExp class, you need to understand how an RE is written.
REs can almost be considered a language of their own. This text does not go into details, but
explains the basic concept so that you can understand the ideas.

CHAPTER 3 = WIDGETS AND LAYOUTS 89

The RE matching the phone number described earlier would look something like
\+\d{1,2}\([089]\)\d{2,5}\-\d+. Looking at this, it is easy to understand why some program-
mers avoid using REs. The expression is not as bad as it looks, though; when you understand
the basic building blocks, you can break it down into its components and read it.

First of all, the backslash \ is used to escape characters. For example, because a + has a
meaning in REs, we escape it to tell the QRegExp class to try to match a + instead of interpreting
it. This is the reason for escaping the parentheses (and the dash - as well).

Tip Do not forget that C++ strings are escaped themselves. To write \d in C++, you need to write \\d. To
express \, you have to escape it in the RE (that is, \\, giving the C++ string \\\\).

The \d is a so called meta-character, which is a character representing one or more char-
acters. The \d represents a digit. The available meta-characters are listed as follows. Notice
that the standard C escapes work as well. For example, \n means a new-line character, and \t
means a tab character.

e . matches any character.
¢ \s matches white space (QChar: :isSpace()).
* \S matches non-white space.

¢ \wmatches a word character (QChar: :isLetterOrNumber () or QChar: :isMark() or under-
score).

¢ \Wmatches a nonword character.

¢ \d matches a digit (QChar: :isDigit()).

¢ \D matches a nondigit.

¢ \xnnnn matches the UNICODE character nnnn, where nnnn represents hexadecimal digits.
* \onnn matches the ASCII character nnn, where nnn represents octal digits.

For the local area prefix, the expression is [089], which is a character group. Putting char-
acters inside square brackets means that any one of the characters can be matched. By putting
a " first inside the brackets, you tell the RE to match any character not inside the brackets. For
example, [*089] would match anything buto, 8, or9.

A character group can be expressed by using ranges as well. Suppose you want to match
all characters between a and f (that s, a, b, ¢, d, e, or f). You can do this by using the [a-fA-F]
group. Notice that you have to have one range for lowercase characters and one for uppercase
characters.

A character group consisting of just one character can leave out the brackets, so a
matches a. Since a dot matches any character, you must escape it to use it to match itself.
This means that \. matches ..

90

CHAPTER 3 WIDGETS AND LAYOUTS

After some of the meta-characters, you see the expression {m,n}, where mand n are num-
bers. This tells the RE to match at least m instances of the preceding meta-character or
character group. If m equals to n, you can leave out n. This means that {m,m} equals {m}.

If you want to match one or more of something, you can add a + instead of {1,n}, where n
is a large enough number. In the same manner, * matches zero or more of something, and ?
matches zero or one of something.

A few more special characters are used as meta-characters, summarized in the following

list:

~ matches the start of the string being matched if appearing first in an RE.
$ matches the end of the string being matched if appearing last in an RE.

\b matches a word boundary. A word boundary can be white space or the start or end of
the string being matched.

\B matches a nonword boundary.

Returning to the original RE for matching the phone number, you must add the start of
the string and end of the string to not match a number in the middle of a given string (this
gives the following RE: "\+\d{1,2}\([089]\)\d{2,5}\-\d+$. Breaking it down gives the
following:

~ means the start of the string is matched.
\+ means a +.

\d{1,2} means one or two digits.

\(means a left parenthesis.

[089] means one of 0, 8, or 9.

\) means a right parenthesis.

\d{2, 5} means two to five digits.

\- means a dash.

\d+ means one or more digits.

$ means the end of the string is matched.

Now, let’s use this RE in combination with the QRegExp class (see Listing 3-23). The first
thing to notice is that all \ characters in the RE have been escaped since the RE is expressed
as a C++ string.

When trying to match a string to the RE, the indexIn(QString) method is used. This
method returns the index of the start of the matched part of the string. Because the RE starts
with #, it has to be 0 if the string is matched, or -1 if not. If you skip the initial *, the second
string results in an index of 5 since a phone number starts after five characters.

CHAPTER 3 = WIDGETS AND LAYOUTS

Listing 3-23. Matching phone numbers with regular expressions

ORegExp re(""\\+\\d{1,2}\\([0891\\)\\d{2,5}\\-\\d+$");

qDebug() << re.indexIn("+46(0)31-445566"); // 0
qDebug() << re.indexIn("Tel: +46(0)31-445566"); // -1
qDebug() << re.indexIn("(0)31-445566"); // -1

By adding parentheses to the RE, it is possible to capture parts of the matched string.
Listing 3-24 added four pairs of parentheses, giving the following RE:
M+(\d{1,2})\(([089]1)\) (\d{2,5})\-(\d+$). The contents of these parentheses can be
extracted using the cap method.

Note This was the reason for escaping the parentheses to be matched.

The cap method takes an index as argument, where zero returns the entire matched
string. The indexes starting from one return the matched contents between the parentheses
from left to right.

Listing 3-24. Capturing the different parts of the phone number using a regular expression with
capturing parentheses

QRegExp reCap(""\\+(\\d{1,2})\\(([089])\\) (\\d{2,5})\\-(\\d+)$");

qDebug() << reCap.indexIn("+46(0)31-445566"); // 0
qDebug() << reCap.cap(0); // "+46(0)31-445566"
qDebug() << reCap.cap(1); // "46"

qDebug() << reCap.cap(2); // "o"

qDebug() << reCap.cap(3); // "31"

qDebug() << reCap.cap(4); // "445566"

Validating Text

Because regular expressions are very useful for verifying that a given string has the correct for-
mat, it is natural that Qt has a validator based on it. The QRegExpValidator takes a QRegExp as a
constructor argument and uses the RE to validate input.

Listing 3-25 shows how this looks in real code. The dialog class containing the line editor,
button, and label has been stolen and adapted from the listing—showing the validators for
numbers. The thing to notice is that the regular expression is treated as if it starts with a * and
ends with a $, so they are left out.

91

92

CHAPTER 3 WIDGETS AND LAYOUTS

Listing 3-25. Using a regular expression for validating user input

class ValidationDialog : public QDialog

{
public:
ValidationDialog()
{
QGridLayout *layout = new QGridLayout(this);
QLineEdit *reEdit = new QLineEdit("+46(0)31-445566");
QPushButton *button = new QPushButton("Close");
layout->addwidget(new QLabel("Phone:"), 0, 0);
layout->addwidget(rekdit, o, 1);
layout->addwidget(button, 1, 0, 1, 2);
connect(button, SIGNAL(clicked()), this, SLOT(accept()));
}
¥

When the user inputs data, the QRegExpValidator enables all text to be removed from the
right. This means that the user must add the plus, the parentheses, and the dash. This is not
always clear and can cause confusion.

When entering valid text, the validator does not obstruct any input, but when editing in
the middle of the text there can be a problem. For example, it is impossible to remove the
entire country code as soon as the left parenthesis has been added because there must be at
least one digit there, according to the RE.

When the user has completed entering data, it is important to match the string to an RE
before accepting the data because the validator does not ensure that the string is complete.
It is recommended that you use the cap method to get the actual data from the input string.
Remember that you can use cap(0) to get the entire matched string. Compare this with the
QDoubleValidator, where it is important to user QString: :toDouble and check the result, even
if the string has been monitored by a validator. See Figure 3-34.

“Trevalidator B

[Close]

Figure 3-34. Part of a phone number has been entered in to the validated line edit.

CHAPTER 3 = WIDGETS AND LAYOUTS

Summary

Widgets and layouts are the building blocks of all user interfaces. Make sure to take the time to
learn how to use them.

Designer is a great tool to help you become familiar with the available components. It
enables you to try out widgets and practice building proper layouts. Remember to put all
widgets in layouts and test your designs by resizing the dialog. By making sure that it always
looks good, you ensure that it will work with different languages, screen resolutions, and font
settings.

The most important lessons from this chapter are the following:

* Always put dialog buttons in a QDialogButtonBox to ensure that they appear in the order
that the user expects on all platforms.

¢ Make sure that all widgets are managed by a layout—any stray widgets can make a
dialog look bad on other platforms and on systems with different visual settings.

¢ When designing a dialog, make sure to always look at it from the user’s viewpoint. Refer
to Figure 3-33 and think about structure, visual aids, and the user’s purpose when using
the design.

* Do not be afraid to experiment with Designer. You can learn to build any design by
using Designer and its preview capabilities.

93

CHAPTER 4

The Main Window

Thus far in this book you have primarily used dialogs to communicate with your users. Yet
although dialogs are a great solution when you need a widget for holding widgets and guiding
the user in a particular task or configuring options surrounding a specific subject, most appli-
cations are not based around just one particular task, but a document. This is where a main
window enters the picture.

A main window is the top-level window around which an application is based. It can have
amenu bar, toolbars, a status bar, and areas in which toolboxes and other supporting win-
dows can be docked. It is possible to open the application’s dialogs from the main window,
and the main window contains the working document.

Note Unless stated otherwise, in the context of this book the term document does not refer to files such
as those used for word processing purposes. Instead, in the context of Qt a document is the term used to
refer to the actual data that the user interacts with. The data can represent anything from a movie for view-
ing to a CAD model of a spaceship. To define what a document represents and what the user can do to it is
pretty much what desktop application development is all about.

Windows and Documents

There are two schools of thought when it comes to arranging documents in windows: the
single document interface (SDI) and multiple document interface (MDI). The difference is
whether each document is situated in a new window or whether the application uses only
one window for all documents, respectively. Figure 4-1 presents a comparison of the two.
Examples of MDI interfaces are Qt Designer and Photoshop; popular SDI applications are
WordPad, Google Earth, and a nontabbed Web browser.

The MDI concept was very common in the Windows 3.x days, while SDI always has been
dominant on X11. About the time of Windows 95, Microsoft’s policy started to shift, and today
most Windows products have an SDI interface.

To compare the two architectures and the structures they bring, you will build two appli-
cations around the QTextEdit widget, where the text editor will act as the document widget.

95

96

CHAPTER 4 = THE MAIN WINDOW

ZJunnamed* - SDT ESjisl] %

Fe Edr He
nlise

D |ige B &

|This is & document in & single document interface,

T unnamedE = SOT EE 16 &0 MDT Applcation, a6 you can s,

documents are inside & master

Fie EdR Hep | window]

Ol P&

Yous can ted that it is a sngle document interface as the documents each appear in a top level windove

SDI MDI

Figure 4-1. A single document interface compared with a multiple document interface

Single Document Interface

Let’s start by having a look at a single document interface. In an SDI-driven environment, each
main window corresponds to a document. The document itself is kept in a widget called the
central widget. Each main window has one central widget that appears in the central area of
the window that is left when all menu bars, docked widgets, toolbars, and such have been
added.

This gives our application a structure built around the main window and its central
widget. These two objects together will contain almost all slots reacting to user interaction,
so all responses to user actions are initiated from one of these two classes.

The slots of the main window are associated with tasks such as disabling and enabling
menu items, creating new files, and closing windows—housekeeping tasks. The slots of the
central widget handle the user interaction modifying the actual document—working tasks.
These tasks can include standard clipboard actions such as using cut, copy, and paste; per-
forming a document-specific operation such as rotating an image; stopping playback; or
running a wizard—anything that applies to the document of the application in question.

Text Editor

Let’s create a simple SDI-driven application based on the QTextEdit widget that can be used as
amultiline QLineEdit equivalent or as a simple word processor. You can see it and some SDI-
specific details in the constructor of the main window shown in Listing 4-1. A screenshot of
the application is shown in Figure 4-2.

Listing 4-1. Constructor of the SDI main window

SdiWindow: :SdiWindow(QWidget *parent) : QMainWindow(parent)
{
setAttribute(Qt::WA DeleteOnClose);
setWindowTitle(QString("%1[*] - %2").arg("unnamed"-).arg(-"SDI"));

CHAPTER 4 © THE MAIN WINDOW

docWidget = new QTextEdit(this);
setCentralWidget(docWidget);

connect(docWidget->document(), SIGNAL(modificationChanged(bool)),
this, SLOT(setWindowModified(bool)));

createActions();

createMenus();

createToolbars();
statusBar()->showMessage("Done");

Junnamed* - SDI 9= X |
Fle Edit Help

DixD@®

This is a document in a single document interface. ‘
unnamed* - M][=1%)
Fle Edit Help

Dk PP

You can tell that it is a single document interface as the documents each appear in a top level window.|

Figure 4-2. A single document application with two documents

Let’s work through this code. First, set the window attribute to Qt: :WA _DeleteOnClose so
that Qt takes care of deleting the window from memory as soon as it is closed. This means less
memory management to worry about.

Next, the window title is set to QString("%1[*] - %2").arg("unnamed").arg("SDI"). The
arg method calls inserts the "unnamed" and "SDI" strings where the %1 and %2 symbols appear
in the first string. The leftmost arg replaces %1; the next replaces %2; and so on. You can merge
up to nine strings with a main string using this method.

You can use setWindowTitle to set any window title. You use the title shown in the preced-
ing example because it allows Qt to help us manage parts of the title (for example, indicating
whether the current document has been modified). This explains parts of the command, but it
does not explain why the first string is in a call to tr or why you won't use "unnamed[*] - SDI"
right away. You want to be able to support other languages (you'll learn more in Chapter 10).

97

98

CHAPTER 4 © THE MAIN WINDOW

For now, remember that all strings that are shown to the user need to be enclosed in calls
to tr (). Although this is done automatically by Designer, when you create user interfaces and
set texts through code, you'll need to manage it yourself.

Tip Scripts can be used to find strings missing tr (). If you are using a Unix shell, you can use this line to
find them: grep -n """ *.cpp | grep -v 'tr("'.Another method is to stop Qt from automatically con-
verting char* strings to QString objects. This will cause compiler errors for all the times you have missed
calling tr (). You can disable the conversion by adding a line reading DEFINES += QT _NO_CAST FROM
ASCIT to your project file.

You use the arg method because the strings unnamed and SDI are independent from the
viewpoint of a translator. For example, the string SDI is used in more places. By splitting the
string, you ensure that it is translated once, avoiding any possible inconsistencies. Also, by
using a main string into which the unnamed and SDI strings are inserted, you enable the trans-
lator to reorder the strings and add more text around them, making the application more
adaptable to other cultures and languages.

One more thing about setting main window titles: the string [*] serves as a placeholder
for the document-modified marker that some applications use. The marker is shown when the
windowModified property is set to true; that is, when the document has been modified. The
reasons for letting Qt handle the showing of the marker are twofold. First, it avoids repeating
the code for handling it in all your applications. On Mac OS X, the color of the title text is used
to indicate whether the document has been modified. By not putting an asterisk in the win-
dow title, explicitly using your own code and letting Qt handle this instead, you also let Qt
handle any other aspects of the different platforms supported.

That was a lot of information about a window title! Continue down Listing 4-1 to the lines
that create the QTextEdit and set it as the central widget of the main window. This means that
it will fill the entire main window and act as the user’s view of the document.

The next line connects the modified status of the text editor’s document to the
windowModified property of the main window. It lets Qt show the asterisk and change the title
text color when the document is modified. The signal is emitted from docWidget->document(),
not directly from the docWidget because the formatted text is represented by the
QTextDocument. The QTextEdit is just a viewer and editor for formatted text, so the document
is modified, not the editor—hence the signal is emitted from the document.

Taking Actions

Continuing the review of Listing 4-1, you encounter four lines that set up menus, toolbars,
and a status bar. Before these actual menus are created, actions are created. An action,
embodied in the class QAction, makes it possible to store a text, a tooltip, a keyboard shortcut,
an icon, and more into one class. Each action emits the signal triggered()—and possibly
toggled(bool) when invoked by the user. The toggled signal is emitted when the action is
configured to be checkable. Actions work much like buttons that can be either checkable or
clickable.

CHAPTER 4 © THE MAIN WINDOW 99

The nice thing is that the same action can be added to menus and toolbars, so if a user
enters advanced editing mode by pressing a toolbar button, the corresponding menu item is
automatically checked. This also applies when actions are enabled and disabled—menus and
buttons are automatically in sync. Also, the only connection required is the one going from the
action to the acting slot.

Listing 4-2 shows you how the actions are created in the method createActions, which is
called from the constructor shown in Listing 4-1. [have trimmed the listing down slightly to
show you the three major types of actions used. Before considering the differences, look at the
similarities; for example, every action is created as a QAction. The QAction constructor accepts
an optional QIcon, followed by a text and a parent. For the actions requiring a keyboard short-
cut, the setShortcut(const QKeySequenced) method is called. Using the setStatusTip(const
QString8), each action is assigned a tip to show on the status bar when the action acts as a
menu item and is hovered over. (Try it!) The strange-looking file path for the icon is a so-called
resource path (its use is explained in the resource section that follows).

Listing 4-2. Creating actions for the SDI application

void SdiWindow::createActions()
{
newAction = new QAction(QIcon(":/images/new.png"), tr("8New"), this);
newAction->setShortcut(tr("Ctrl+N"));
newAction->setStatusTip(tr("Create a new document"));
connect(newAction, SIGNAL(triggered()), this, SLOT(fileNew()));

cutAction = new QAction(QIcon(":/images/cut.png"), tr("Cu&t"), this);
cutAction->setShortcut(tr("Ctrl+X"));
cutAction->setStatusTip(tr("Cut"));
cutAction->setEnabled(false);
connect(docWidget, SIGNAL(copyAvailable(bool)),
cutAction, SLOT(setEnabled(bool)));
connect(cutAction, SIGNAL(triggered()), docWidget, SLOT(cut()));

aboutQtAction = new QAction(tr("About &Qt"), this);
aboutQtAction->setStatusTip(tr("About the Qt toolkit"));
connect(aboutQtAction, SIGNAL(triggered()), gApp, SLOT(aboutQt()));

First up is newAction, which is connected to a slot in the main window. This is the logical
place because creating new documents is not handled by the document itself (apart from ini-
tialization, but that is put in the document’s constructor). Instead, the creation and closure of
documents is handled by the main window. Please notice that the keyboard shortcut, set using
setShortcut, is enclosed in a tr () call, which gives the translator the freedom to change short-
cuts to localized versions.

Next is the cutAction. Its triggered signal, emitted when the user invokes the action, is
connected to a slot in the document. This is also logical because cutting takes data from
the document as well as modifying the document. The connection from copyAvailable to
setEnabled is an example of how to enable and disable actions. As soon as something is

100

CHAPTER 4 © THE MAIN WINDOW

selected, copyAvailable is emitted with true as the argument. When no selection is available,
the argument is false. So the action is enabled when applicable and disabled at all other
times.

The last action is the aboutQtAction, which is connected to the gApp object. The applica-
tion object manages application global tasks such as closing all windows and showing a dialog
with information about the Qt version being used.

Note The global gApp pointer variable is always set to point to the active QApplication object. To get
access to this pointer, you must not forget to include the <QApplication> header file in the files where you
use it.

Menus and Toolbars

Looking back at Listing 4-1 you can see that after the call to createActions, the next steps are
the createMenus and createToolbars methods. These methods take the newly created actions
and put them in the right places.

Listing 4-3 shows how the File menu and the file operation’s toolbar are populated
with actions. Because each action already has a text and icon, all it takes is a call to
addAction(QAction*) for the text and icon to appear in the menu. The menuBar () and
addToolBar(const QStringd) calls are a part of the main window class. The first time menuBar
is called, a menu bar is created. Later calls will refer to this menu bar because each window
has only one menu. Toolbars are created using the addToolBar method, and you can create
any number of toolbars for each window. Using the addSeparator () method, you can divide
the actions into groups, which can be used in both menus and toolbars.

Listing 4-3. The menus and toolbars are populated.

void SdiWindow: :createMenus()

{

QMenu *menu;

menu = menuBar()->addMenu(tr("8File"));
menu->addAction(newAction);
menu->addAction(closeAction);
menu->addSeparator();

menu->addAction(exitAction);

void SdiWindow: :createToolbars()

{

QToolBar *toolbar;

CHAPTER 4 © THE MAIN WINDOW

toolbar = addToolBar(tr("File"));
toolbar->addAction(newAction);

Refer to Listing 4-1 again—you will see that after the actions have been added to the
menus and toolbars, the final call in the constructor creates a status bar and displays the mes-
sage "Done" in it. The statusBar () method works just like menuBar (): the bar is created and
returned at the first call and then a pointer to it is returned in subsequent calls.

Creating New Documents and Closing Open Ones

You will use the QTextEdit class as your document class because it contains all the functional-
ity you need. It can handle creating and editing text, as well as copying and pasting to and
from the clipboard. This leaves you with only the tasks of implementing the functionality for
creating new documents and closing any open documents.

Creating new documents is easy. All it takes is bringing up a new main window—the
constructor shown in Listing 4-1 will do all the hard work. Listing 4-4 shows the trivial imple-
mentation of the fileNew() slot. It creates a new window and then shows it.

Listing 4-4. Creating a new document

void SdiWindow::fileNew()

{
}

(new SdiWindow())->show();

Closing documents is more complex because a document (or the window containing a
document) can be closed in many different ways. One possible cause is the window manager
telling the window to close for various reasons. For example, perhaps the user is trying to close
the window by clicking the close button in the title bar. Or the computer is shutting down. Or
the user is choosing Exit or Close from the File menu of the application.

To intercept all these user actions that end up in attempts to close the current window,
you can implement an event handler for the close event by overriding the
closeEvent(QCloseEvent*) method. Listing 4-5 shows the SDI application implementation.

Listing 4-5. Closing a document

void SdiWindow::closeEvent(QCloseEvent *event)
{
if(isSafeToClose())
event->accept();
else
event->ignore();

}

bool SdiWindow: :isSafeToClose()

{
if(isWindowModified())

101

102

CHAPTER 4 © THE MAIN WINDOW

switch(QMessageBox::warning(this, tr("SDI"),
tr("The document has unsaved changes.\n"
"Do you want to save it before it is closed?"),
QMessageBox: :Discard | QMessageBox::Cancel))
{
case QMessageBox::Cancel:
return false;
default:
return true;
}
}

return true;

}

You can choose to accept() or ignore() an event: ignoring a close event leaves the win-
dow open, and accepting it closes the window. To ensure that it is safe to close the window, use
the isSafeToClose method, which ascertains whether the document has been modified using
isWindowModified(). If the document hasn’t been modified, it is safe to close it. If the docu-
ment has been modified, ask the user whether it is okay to discard the changes using a
OMessageBox.

Tip QMessageBox is very useful when it comes to displaying short pieces of information to the user. The
four static methods information, question, warning, and critical can be used to show messages of
different importance. All four methods accept five arguments: a parent widget, a title text, a message text,
the combinations of buttons to show, and the button that will be used as the default button. The buttons and
default button all have default settings.

D ? A o

Information Question Warning Critical

The buttons can be configured by or’ing together members from the QMessageBox: : StandardButtons
enumerated type. The available buttons are: Ok, Open, Save, Cancel, Close, Discard, Apply, Reset,
RestoreDefaults, Help, SaveAll, Yes, YesToAll, No, NoToAll, Abort, Retry, and Ignore. The default
button can be picked from the same list, but only one button is allowed to be set as the default. The return
value from one of the four methods is the selected button, as named in this list.

The result of the isSafeToClose member is true if the document is not modified or if the
user chooses to close the message box with the Discard button and the closeEvent member
accepts the event. If the user clicks Cancel, the close event is ignored.

CHAPTER 4 = THE MAIN WINDOW

The close event can have several sources: the user might have clicked Close or Exit from
the File menu, or the user might have closed the window by using features of the current plat-
form. If the close event’s source is the application exiting, an ignored close event means that
no more windows will be closed. The user cancels the entire process of exiting, not just the
closing of the current window, which makes it possible to cancel the entire closing-down
process of the entire application using the Cancel button of the QMessageBox shown from a
single document

In Chapter 8, you will learn that it is really easy to integrate saving changes at close if you
extend the isSafeToClose method. The structure looks unnecessarily complex now because
you need to be able to handle the save before closing option as well.

Building the Application

To create from the SdiWindow class, you need to provide a trivial main function that initializes a
QApplication object before creating and showing an SdiWindow. The application then runs by
itself, creating new windows for new documents and finishing when all documents have been
closed.

To build it, you also have to create a project file—using the file created from running
gmake -project is enough. Then simply run qmake followed by make to compile and link the
application.

Multiple Document Interface

To compare the SDI and MDI approaches and learn about their differences, you will create an
MDI application based on the same theme used in the previous section. A screenshot of the
application is provided in Figure 4-3.

This is an MDI application, as you can see.
The documents are inside a master
window.|

Figure 4-3. A multiple document application with two documents

103

104

CHAPTER 4 © THE MAIN WINDOW

In the application, each document is given a smaller window inside the main window,
which is implemented using a document widget class and a QWorkspace. The workspace is the
area that contains all the document windows.

From the user’s viewpoint, the MDI application is identical to the SDI application, except
for the Window menu shown in Figure 4-4, which makes it possible to arrange the document
windows and to move to a document other than the currently active document.

Tile
Cascade

Next window
Previous window

1 unnamed[*]
v 2 unnamed[*]

Figure 4-4. Window menu

The Document and the Main Window

In the SDI application, possible user actions are divided between the document, the main
window, and the application. The same is valid for the MDI application, except that all events
for the document must pass through the main window because the main window must decide
which document widget to pass the event to. Let’s start with a look at the document widget
class. You can see the class definition in Listing 4-6.

Listing 4-6. Document widget class for the MDI application

class DocumentWindow : public QTextEdit

{
Q_OBJECT

public:
DocumentWindow(QWidget *parent = 0);

protected:
void closeEvent(QCloseEvent *event);

bool isSafeToClose();
b

The document class in an MDI application can be compared with a slim version of the
SDI application’s main window. All that it contains are the specifics for the document, so it
entails stripping all application global code as well as functions for creating new documents.

The class inherits the QTextEdit class and gets the same interface. The isSafeToClose and
closeEvent methods interact just as in the SDI example, while the constructor looks slightly
different. Listing 4-7 shows the constructor, which tells Qt to delete the document window as

CHAPTER 4 © THE MAIN WINDOW

soon as it has been closed before setting the title and making the connection between the
modification status of the document and the windowModified property of the document win-
dow itself.

Listing 4-7. Constructor of the document widget class

DocumentWindow: :DocumentWindow(QWidget *parent) : QTextEdit(parent)
{

setAttribute(Qt::WA DeleteOnClose);

setWindowTitle(QString("%1[*]").arg("unnamed"));

connect(document(), SIGNAL(modificationChanged(bool)),
this, SLOT(setWindowModified(bool)));

That'’s all there is to the document window—simply setting a title and setting up a con-
nection to let Qt indicate whether the document has been modified. Again, the method of
adding unnamed to the window title using the arg method gives the translator more freedom
when it comes to adapting the text. The [*] part of the window title is used by Qt to show or
hide an asterisk to indicate whether the file has been modified.

Let’s move on to the main window. It is shown in Listing 4-8 and looks very much like the
rest of the SDI application’s constructor—with one small addition.

The highlighted lines in the listing show how a QWorkspace is created and set as the central
widget of the main window. A workspace is a widget that treats all widgets put in it as MDI
children. (Refer to Figure 4-3—the two documents are widgets put inside the workspace.)

Next, the signal windowActivated from the workspace is connected to enableActions of
the main window. The windowActivated signal is emitted as soon as the currently active win-
dow is changed, either because the user changed documents or because the user closed the
last document. Either way, you have to make sure that only the relevant actions are enabled.
(You'll return to this soon.)

Listing 4-8. Constructor of the main window with differences between MDI and SDI highlighted

MdiWindow: :MdiWindow(QWidget *parent) : QMainWindow(parent)

{
setWindowTitle(tr("MDI"));

workspace = new QWorkspace;
setCentrallidget(workspace);

connect(workspace, SIGNAL(windowActivated(QWidget *)),
this, SLOT(enableActions()));

mapper = new QSignalMapper(this);

connect(mapper, SIGNAL(mapped(QWidget*)),
workspace, SLOT(setActivelWindow(QWidget*)));

105

106

CHAPTER 4 © THE MAIN WINDOW

createActions();

createMenus();

createToolbars();
statusBar()->showMessage(tr("Done"));

enableActions();

Next, a signal mapping object called QSignalMapper is created and connected. A signal
mapper is used to tie the source of the signal to an argument of another signal. In this exam-
ple, the action of the menu item corresponding to each window in the Window menu is tied
to the actual document window. The actions are in turn connected to mapper. When the
triggered signal is emitted by the action, the sending action has been associated with the
QWidget* of the corresponding document window. This pointer is used as the argument in
the mapped(QWidget*) signal emitted by the signal mapping object.

After the signal mapping object has been set up, the actions, menus, and toolbars are set
up just as in the SDI application. The very last line of the constructor then ensures that the
actions are properly enabled.

Managing Actions

When it comes to creating the actions of the main window, the process is fairly similar to that
used for the SDI application. The major differences are listed here:

¢ The document windows are closed by removing them from the workspace, not by clos-
ing the main window containing the document.

¢ The actions for the Window menu include tile window, cascade window, next window,
and previous window.

¢ The actions that are connected directly to the document in the SDI application are con-
nected to the main window in the MDI application.

Listing 4-9 shows parts of the createActions method. First, you can see that closeAction
is connected to closeActiveWindow() of workspace. Then you can see one of the Window menu
items: tileAction. It is connected to the corresponding slot of workspace and causes the work-
space to tile all the contained documents so that all can be seen at once. The other actions for
arranging the document windows are cascade windows, next window, and previous window.
They are set up in the same way as the tile action: simply connect the action’s triggered signal
to the appropriate slot of the workspace. The next action is the separatorAction, which acts as
a separator. Why it is created here will become clear soon. All you need to know now is that it
is used to make the Window menu look as expected.

Listing 4-9. Creating actions for the MDI application

void MdiWindow: :createActions()

{

closeAction = new QAction(tr("&Close"), this);
closeAction->setShortcut(tr("Ctrl+W"));

CHAPTER 4 © THE MAIN WINDOW

closeAction->setStatusTip(tr("Close this document"));
connect(closeAction, SIGNAL(triggered()), workspace, SLOT(closeActiveWindow()));

tileAction = new QAction(tr("&Tile"), this);
tileAction->setStatusTip(tr("Tile windows"));
connect(tileAction, SIGNAL(triggered()), workspace, SLOT(tile()));

separatorAction = new QAction(this);
separatorAction->setSeparator(true);

It is important to ensure that only the available actions are enabled, which prevents con-
fusion for the user by showing available menu items and toolbar buttons for tasks that aren’t
valid in the application’s current state. For instance, you can’t paste something when you don’t
have a document open—that makes no sense. Thus, the pasteAction action must be disabled
whenever you have no active document.

In Listing 4-10, the method enableActions() is shown alongside the helper method
activeDocument (). The latter takes the QWidget* return value from QWorkspace: :activeWindow
and casts it into the handier DocumentWindow* using qobject cast. The qobject cast function
uses the type information available for all Q0bjects and descending classes to provide type-
safe casting. If the requested cast can’t be made, 0 is returned.

The activeDocument method returns NULL (or 0) if there is no active window or if the active
window is not the DocumentWindow type. It is used in the enableActions method. Two Boolean
values are used to make the code easier to read: hasDocuments and hasSelection. If the work-
space has an active document of the right type, most items are enabled, and the separatorAction
is visible. The copy-and-cut actions require not only a document but also a valid selection, so
they are enabled only if hasSelection is true.

Listing 4-10. Enabling and disabling actions

DocumentWindow *MdiWindow: :activeDocument()

{

return qobject cast<DocumentWindow*>(workspace->activeWindow());

}

void MdiWindow: :enableActions()

{

bool hasDocuments = (activeDocument() != 0);

closeAction->setEnabled(hasDocuments);
pasteAction->setEnabled(hasDocuments);
tileAction->setEnabled(hasDocuments);
cascadeAction->setEnabled(hasDocuments);
nextAction->setEnabled(hasDocuments);
previousAction->setEnabled(hasDocuments);
separatorAction->setVisible(hasDocuments);

107

108

CHAPTER 4 © THE MAIN WINDOW

bool hasSelection = hasDocuments 88 activeDocument()->textCursor().hasSelection();

cutAction->setEnabled(hasSelection);
copyAction->setEnabled(hasSelection);

}

The helper function activeDocument is used in several places. One example passes the sig-
nals from the main window to the actual document window. The functions for doing this are
shown in Listing 4-11. All QActions such as menu items and toolbar buttons must be passed
through the main window like this when building an MDI-based application.

Listing 4-11. Passing signals from the main window to the document widget

void MdiWindow: :editCut()

{
activeDocument()->cut();
}
void MdiWindow::editCopy()
{
activeDocument()->copy();
}
void MdiWindow: :editPaste()
{
activeDocument()->paste();
}
Window Menu

Closely related to enabling and disabling actions is the functionality to handle the Window
menu. The Window menu (refer to Figure 4-4) enables the user to arrange document windows
and switch between different documents.

Listing 4-12 shows how menus are created. All menus except the Window menu are created
by putting the actions in them, just as in the SDI application. The Window menu is different
because it changes as documents are opened and closed over time. Since you need to be able
to alter it, a pointer to it—called windowMenu—is kept in the class. Instead of adding actions
to the menu, now the signal aboutToShow() from the menu is connected to the custom slot
updateWindowList() that populates the menu. The aboutToShow signal is emitted just before
the menu is shown to the user, so the menu always has valid contents.

Listing 4-12. Creating the Window menu

void MdiWindow: :createMenus()

{

QMenu *menu;

CHAPTER 4 © THE MAIN WINDOW

menu = menuBar()->addMenu(tr("8File"));
menu->addAction(newAction);
menu->addAction(closeAction);
menu->addSeparator();

menu->addAction(exitAction);

windowMenu = menuBar()->addMenu(tr("&Window"));
connect(windowMenu, SIGNAL(aboutToShow()), this, SLOT(updateWindowlist()));

The updatelWindowlList slot is shown in Listing 4-13. In the slot, the menu is cleared before
the predefined actions are added. After that, each window is added as an action, and the first
nine windows are prefixed by a number that acts as a shortcut if keyboard navigation is used
(the user has pressed Alt+W to reach the Window menu). A Window menu with more than
nine documents open is shown in Figure 4-5.

Listing 4-13. Updating the Window menu

void MdiWindow: :updateWindowList()
{

windowMenu->clear();

windowMenu->addAction(tileAction);
windowMenu->addAction(cascadeAction);
windowMenu->addSeparator();
windowMenu->addAction(nextAction);
windowMenu->addAction(previousAction);
windowMenu->addAction(separatorAction);

int i=1;
foreach(QWidget *w, workspace->windowlList())
{
QString text;
if(i<10)
text = QString("8%1 %2").arg(i++).arg(w->windowTitle());
else
text = w->windowTitle();

QAction *action = windowMenu->addAction(text);
action->setCheckable(true);

action->setChecked(w == activeDocument());

connect(action, SIGNAL(triggered()), mapper, SLOT(map()));
mapper->setMapping(action, w);

109

110

CHAPTER 4 © THE MAIN WINDOW

Tile
Cascade

Next window
Previous window

1 unnamed[*]
2 unnamed[*]
3 unnamed[*]
v 4 unnamed[*]
S unnamed[*]
6 unnamed[*]
7 unnamed[*]
8 unnamed[*]
9 unnamed[*]
unnamed[*]
unnamed[*]
unnamed[*]

Figure 4-5. Window menu with more than nine open documents

In the foreach loop where the windows are listed, each window is represented by a
QAction. These actions are created from a QString and belong to the windowMenu object, which
means that the call to clear() first in the slot deletes them properly. The triggered signal
from each action is connected to the map() slot of the signal mapping object. The call to
setMapping(QObject*, QWidget*) then associates the emitting action with the correct
document window. As you remember, the mapped signal from the signal mapping object is
connected to the setActivelWindow slot of workspace. The signal mapping object makes sure
that the right QWidget* is sent as an argument, with the mapped signal depending on the
source of the original signal connected to map.

If there were no document windows to add to the list, the separatorAction would be left
dangling as a separator with no items under it—which is why it’s hidden instead of disabled in
the enableActions slot.

Creating and Closing Documents

The difference between an SDI application and an MDI application is the way the documents
are handled. This difference shows clearly in the methods for creating and closing new
documents.

Starting with the fileNew() slot of the main window shown in Listing 4-14, you can see
that the trick is to create a new document window instead of a new main window. As a new
window is created, some connections need to be taken care of as well. As soon as the
copyAvailable(bool) signal is emitted, the currently active document has lost the selection
or has a new selection. This has to be reflected by the copy-and-cut actions and it is what the
two connect calls do.

When another document is activated, the status enabled by copy-and-cut is managed in
the enableActions() slot.

CHAPTER 4 © THE MAIN WINDOW

Listing 4-14. Creating a new document

void MdiWindow: :fileNew()

{
DocumentWindow *document = new DocumentWindow;
workspace->addWindow(document);

connect(document, SIGNAL(copyAvailable(bool)),
cutAction, SLOT(setEnabled(bool)));

connect(document, SIGNAL(copyAvailable(bool)),
copyAction, SLOT(setEnabled(bool)));

document->show();

}

When the user tries to close the main window, all the documents must be closed. If any of
the documents has unsaved changes, the DocumentWindow class takes care of asking the user
whether it is okay to close (and canceling the event if not). The closeEvent of the main window
attempts to close all document windows using the closeAllWindows () method of QWorkspace.
Before closing the main window, it checks to see whether any document was left open. If so,
the close event is canceled because the user has chosen to keep a document. You can see the
source code for the main window close event in Listing 4-15.

Listing 4-15. Closing all documents and the main window

void MdiWindow: :closeEvent(QCloseEvent *event)

{

workspace->closeAllWindows();

if(activeDocument())
event->ignore();

Building the Application

Similar to the SDI application procedure, you need a trivial main function to get things
started. In this case, all the function needs to do is initialize the QApplication object and then
create and show an MdiWindow object.

Running qmake -project, followed by qmake and make, should compile and link the appli-
cation for you.

Comparing Single and Multiple Document Interfaces

If you compare the single and multiple document interface approaches, you'll quickly notice
several important differences. The most important difference to the user is that SDI applications
generally match the average user’s expectations. It is quite easy to lose a document in an MDI
application—at least as soon as you maximize one document. Using SDI means that all docu-
ments appear in the task bar, and each window always corresponds to one document.

1

112

CHAPTER 4 © THE MAIN WINDOW

From a software development viewpoint, the SDI application is simpler. Testing one win-
dow is enough because each window handles only one document. The MDI approach has one
advantage from a development viewpoint: the document is clearly separated from the main
window. This is possible to achieve in the SDI case as well, but it requires more discipline. You
must never add functionality that affects the document in the main window; it goes in the
document widget class instead.

The MDI approach has another advantage: it’s possible to have several types of document
windows while still keeping the feeling of using a single application. This might be an unusual
requirement, but sometimes it is useful.

Because both SDI and MDI are fairly easy to implement using Qt, and both approaches
are fairly common, the final decision is up to you. Remember to evaluate the development
effort needed and see how your users will use the application; then choose what suits your
project best.

Application Resources

In the code for creating actions, you might have noticed how the icons were created. The code
looked something like this: QIcon(":/images/new.png"). Looking at the constructor for QIcon,
you can see that the only constructor taking a QString as an argument expects a file name,
which is what: /images/new.png is.

The colon (:) prefix informs the Qt file-handling methods that the file in question is to be
fetched from an application resource, which is a file embedded within the application when it
is built. Because it is not an external file, you do not have to worry about where in the file sys-
tem it is located. As you can see, you can still refer to files using paths and directories within
the resources. A resource file contains a small file system of its own.

Resource File

So, you access files from application resources using the : prefix. But how do you put the files
in a resource? The key lies in the Qt resource files with the qrc file name extension. The previ-
ous SDI and MDI applications used the four icons shown in Figure 4-6. The image files are
located in a directory called images inside the project directory.

P 3 %y B

copy.png cut.png paste.png new.png

Figure 4-6. The four icons used in the SDI and MDI applications

The XML-based Qt resource file for the images is shown in Listing 4-16. This is a file that
you create to tell Qt which files to embed as resources.

CHAPTER 4 © THE MAIN WINDOW

Tip You can create resource files from within Designer. Bring up the Resource Editor from the Tools menu
and start adding files.

The DOCTYPE, RCC, and gresource tags are all required. Each file to be included is then listed
in a file tag. In the file shown in Listing 4-16, the file tag is used in its simplest form without
any attributes.

Listing 4-16. Q¢ resource file for the SDI and MDI applications

<IDOCTYPE RCC><RCC version="1.0">

<qresource>
<file>images/new.png</file>
<file>images/cut.png</file>
<file>images/copy.png</file>
<file>images/paste.png</file>

</qresource>

</RCC>

If you want to refer to a resource file by a name other than the file used to build the
resource, you can use the alias attribute. Doing so can be handy if you use different resources
for different platforms. By aliasing the file names, you can refer to a single file name in your
application and still put different files into the resources, depending on the target platform.
Listing 4-17 shows how the alias attribute is used to change the name of a file or simply to
change the location within the resource file.

Listing 4-17. Using alias to change the resource file name

<file alias="other-new.png">images/new.png</file>
<file alias="new.png">images/new.png</file>

If you want to change the location of several files in a resource file, you can use the prefix
attribute of the qresource tag. It can be used to group the files of a resource file into virtual
directories. Listing 4-18 shows how multiple qresource tags are used to divide the images into
the file and edit directories. For example, the new.png file can be accessed as : /file/images/
new.png in the resulting application.

Listing 4-18. Using prefix to change the resource file location

<qresource prefix="/file">
<file>images/new.png</file>

</qresource>

<gresource prefix="/edit">
<file>images/cut.png</file>
<file>images/copy.png</file>
<file>images/paste.png</file>

</qresource>

113

114

CHAPTER 4 © THE MAIN WINDOW

Project File

Before you can access the resources from your application, you have to tell Qt which resource
files you need. There is nothing that limits the number of resource files—you can have one,
several, or none.

Resource files are compiled into a C++ source file using the resource compiler rcc. This is
handled by QMake just like the moc and the uic. Simply add a line reading RESOURCES +=
filename.qrc to your project file and then rebuild.

The resulting file is named qrc_filename.cpp, so foo.qrc generates qrc_foo.cpp, which is
compiled and linked into the application like any other C++ source file. It results in the files
from the resource file being added to a virtual file tree that is used by Qt when it encounters
file names starting with :.

Application Icon

Up until now, all the applications you have seen have used the standard Qt icon for all win-
dows. Instead, you might want to show your own icon in the title bar of the windows of your
application. You can do this by setting a window icon for all top-level windows and widgets
with the method setWindowIcon. For example, in the SDI and MDI applications, adding a call
to setWindowIcon(QIcon(":/images/logo.png")) in the constructor of each main windows
does the trick.

This process ensures that the right icon is shown for all the windows of the running appli-
cation. If you want to change the icon of the application executable, the application icon, you
need to treat each platform differently.

Caution You need to recognize the difference between the application icon and the windows icon.
They can be the same, but are not required to be the same.

Windows

Executable files on Windows systems usually have an application icon. The icon is an image
of the ico file format. You can create ico files using a number of free tools such as The Gimp
(http://www.gimp.org) or png2ico (http://www.winterdrache.de/freeware/png2ico/index.
html). You can also use Visual Studio from Microsoft to create ico files.

After you create an ico file, you must put it in a Windows-specific resource file using the
following line:

IDI_ICON1 ICON DISCARDABLE "filename.ico"

The file name part of the line is the file name of your icon. Save the Windows resource file
as filename.rc where filename is the name of the resource file (it can be different from the
icon). Finally, add a line reading RC_FILE = filename.rc to your QMake project file.

CHAPTER 4 © THE MAIN WINDOW

Mac 0S X

Executables usually have an application icon on Mac OS X systems. The file format used for
the icon is icns. You can easily create icns files using freeware tools such as Iconverter. You
can also use Apple’s Icon Composer that ships with OS X for this task.

Now all you have to do to apply the icon to your executable is to add the line ICON =
filename.icns to your QMake project file.

Unix Desktops

In a Unix environment, the application’s executable does not have an icon (the concept is
unknown on the platform). However, modern Unix/Linux desktops use desktop entry files
specified by the freedesktop.org organization. It might seem nice and structured, but the
problem is that different distributions use different file locations for storing the icons. (This
topic is covered in more detail in Chapter 15.)

Dockable Widgets

Although the sample SDI and MDI applications used only one document window, it can
sometimes be useful to show other aspects of the document. At other times, toolbars are
too limited to show the range of tools that you need to make available. This is where the
QDockWidget enters the picture.

Figure 4-7 shows that the dock widgets can appear around the central widget but inside
the toolbars. The figure shows where toolbars and dock widgets can be placed. If they do not
occupy a space, the central widget stretches to fill as much area as possible.

Menu Bar

Toolbar Areas

Dockable Areas

Central Widget

Status Bar

Figure 4-7. Each main window has a central widget surrounded by dockable widgets and
toolbars.

115

116

CHAPTER 4 © THE MAIN WINDOW

Note By the way, did you know that the toolbars can be moved around and hidden? Try building the
application described as follows and then right-click on one of the toolbars to hide it. Also try to drag the
handle of the toolbar to move it around.

Dock widgets can also be shown, hidden, and moved around to stick to different parts
of the main window. In addition, they can be detached and moved around outside the main
window. (A dock widget is an ordinary widget placed inside a QDockWidget.) The QDockWidget
object is then added to the main window, and everything works fine. Figure 4-8 shows a num-
ber of ways to show docks: docked, floating, and tabbed.

[hock widgets (M=% Customers 5 [thock Widgets (=15
Be EX Yew Hep John Doe, Harmany Fnterprises, 13 Lai | D= Edt em MHep
JBS »

Tammy Shea, T
Tim Shaen, Car
Sol Harvey, Chicos Coffes, 53 New Spri The tim

Salby Hobart, Tiroli Tea, &7 Lang River, 1 Cty 5

Peragum ax

Docked Floating Tabbed

Figure 4-8. Docks can be shown in many different ways.

Using the SDI application as a base, try adding a dock widget. It will listen to the
contentsChange(int, int, int) signal from the QTextDocument available through the
QTextEdit: :document() method. The signal is emitted as soon as the text document is changed
and tells you where the change took place, how many characters were removed, and how
many were added. A new widget called InfoWidget will be created that listens to the signal and
displays the information from the latest emitted signal.

Listing 4-19 shows the class declaration of InfoWidget. As you can see, the widget is based
on QLabel and consists of a constructor and a slot.

Listing 4-19. InfolWidget class

class InfoWidget : public QlLabel

{
Q OBJECT

public:
InfoWidget(QWidget *parent=0);

public slots:
void documentChanged(int position, int charsRemoved, int charsAdded);

};

CHAPTER 4 © THE MAIN WINDOW

Now you reach the constructor of InfolWidget. The source code is shown in Listing 4-20.
The code sets up the label to show the text both horizontally and vertically centered using
setAlignment(Qt::Alignment). Make sure that the text is wrapped into multiple lines, if
needed, by setting the wordWrap property to true. Finally, the initial text is set to Ready.

Listing 4-20. Constructor of the InfoWidget class

InfoWidget::InfoWidget(QWidget *parent) : QLabel(parent)
{

setAlignment(Qt::AlignCenter);

setWordWrap(true);

setText(tr("Ready"));
}

The interesting part of the InfolWidget class is the implementation of the slot. The slots
arguments are three integers named position, charsRemoved, and charsAdded, which is a per-
fect match of the QTextDocument: : contentsChange signal. The code shown in Listing 4-21 takes
charsRemoved and charsAdded and then builds a new text for the widget each time the signal is
emitted. The tr(QString,QString, int) version of the tr() method is used to allow the transla-
tor to define plural forms, which means that the charsRemoved and charsAdded values are used
to pick a translation. It doesn't affect the English version because both "1 removed" and
"10 removed" are valid texts. (For other languages, this is not always true. You'll learn more
in Chapter 10.)

Listing 4-21. The slot updates the text according to the arguments.

void InfoWidget::documentChanged(int position, int charsRemoved, int charsAdded)

{
QString text;

if(charsRemoved)
text = tr("%1 removed", "", charsRemoved).arg(charsRemoved);

if(charsRemoved 88 charsAdded)
text += tr(", ");

if(charsAdded)
text += tr("%1 added", "", charsAdded).arg(charsAdded);

setText(text);

If you thought creating the InfoWidget was simple, you'll find that using it is even easier.
The changes affect the SdiWindow class, in which a new method called createDocks () is added
(see Listing 4-22). The steps for creating a dock widget are to create a new QDockWidget, create
and put your widget—the InfoWidget—in the dock widget, and finally call addDockWidget (Qt::
DockWidgetArea, QDockWidget*) to add the dock widget to the main window. When adding it
to the main window, you must also specify where you want it to appear: Left, Right, Top, or

117

118

CHAPTER 4 © THE MAIN WINDOW

Bottom. Using the allowedAreas property of the QDockWidget, you can control where a dock
can be added. The default value of this property is AL1DockWidgetAreas, which gives the user
full control.

Before the createDocks method is ready, the signal from the text document to the
InfoWidget is connected.

Listing 4-22. Creating the dock widget

void SdiWindow: :createDocks ()

{
dock = new QDockWidget(tr("Information"), this);
InfoWidget *info = new InfoWidget(dock);
dock->sethWidget(info);
addDockWidget(Qt::LeftDockWidgetArea, dock);

connect(docWidget->document(), SIGNAL(contentsChange(int, int, int)),
info, SLOT(documentChanged(int, int, int)));

That’s all that it takes to enable the dock widget, but because the user can close it you
must also supply a way for the user to show it. This is usually handled in the View menu (or
possibly in the Tools or Window menu, depending on the application). Adding a View menu
and making it possible to show and hide the dock widget from there is very easy. Because this
is a common task, the QDockWidget class already provides QAction for this. The action is avail-
able through the toggleViewAction() method. The changes needed to the createMenus
method of SdiWindow are shown in Listing 4-23.

Listing 4-23. Creating a new View menu for the main window

void SdiWindow: :createMenus()

{

QMenu *menu;

menu = menuBar()->addMenu(tr("8File"));
menu->addAction(newAction);
menu->addAction(closeAction);
menu->addSeparator();

menu->addAction(exitAction);

menu = menuBar()->addMenu(tr("8Edit"));
menu->addAction(cutAction);
menu->addAction(copyAction);
menu->addAction(pasteAction);

menu = menuBar()-s>addMenu(tr("&view"));
menu->addAction(dock->toggleViewAction());

CHAPTER 4 © THE MAIN WINDOW

menu = menuBar()->addMenu(tr("&Help"));
menu->addAction(aboutAction);
menu->addAction(aboutQtAction);

}

Before you can build the modified SDI application you must be sure to add the header
and source of InfoWidget to the project file. Then run qmake and make to build the executable.
Figure 4-9 shows the application running with two documents: one document has a floating
information dock; the other document is docked to the main window.

X

=)

Tunnamed* - SDI !;:ii

Fle Edit View Help
D &D® S - =g
: — Fle Edit View Help

tat =
. Il - N)
Dk P @
Information & x | |test

W 1 added

2 removed, 1 added

Figure 4-9. The SDI application with dock widgets

Summary

Some applications are best implemented as a single dialog, but most are based around a doc-
ument. For these applications, a main window is the best class to base the application’s
window around because it offers a view of the document along toolbars, menus, status bars,
and dockable widgets.

Using Qt’s QMainWindow class, you can choose between the established single document
and multiple document interfaces, or you can “roll your own” custom interface. All you have
to do is provide a central widget to the main window. For SDI applications, the central widget
is your document widget; for MDI applications, it is a QWorkspace widget in which you add
your document widgets.

The development approach is the same with dialogs, SDI applications, and MDI applica-
tions. Set up the user interface and connect all interesting signals emitted from user actions to
slots that perform the actual work.

The signals can come from menu items, keyboard shortcuts, toolbar buttons, or any other
conceivable source. To manage it you can use QAction objects, which enable you to place the
same action in different places and handle all sources using just one single signal to slot
connection.

119

120

CHAPTER 4 © THE MAIN WINDOW

When providing toolbars (and also menus), it is nice to be able to add icons to each
action. To avoid having to ship your application executable with a collection of icon image
files, you can use resources. By building an XML-based qrc file and adding a RESOURCES line to
your project file, you can embed files in your executable. At run-time, you can access the files
by adding the : prefix to the file name.

Providing icons for the application’s executable is one of the few platform-dependent
tasks you have to manage when using Qt. For Windows and Mac OS X, there are standardized
ways to add icons to an executable; on Unix, you still have to target your install package to a
specific distribution. Much work is being done here so I am sure that there will be a standard
way available soon.

This chapter showed you what is possible to do by using the framework available for main
windows in Qt. You will use the QMainWindow class in applications later on in this book, so there
is more to come!

PART 2

The Qt Building Blocks

This part looks at the key parts of Qt in depth. The classes and techniques presented here
enable you to create and modify the Qt building blocks and create custom components for
your own applications.

CHAPTER 5

The Model-View Framework

M odels and views are design patterns that frequently occur in software of all types. By sepa-
rating the data into a model and rendering that model to the users through views, a robust
and reusable design is created.

Models are used to describe the structures shown in Figure 5-1: lists, tables, and trees.
A listis a one-dimensional vector of data. A table is a list, but with multiple columns—a two-
dimensional data structure. A free is simply a table, but with yet another dimension because
data might be hidden inside other data.

When you think about how to build applications, you will find that these structures can
be used in almost all cases—so you can build a model the represents your data structure in a
good way. It is also important to remember that you need not change the way in which you
actually store your data—you can provide a model class that represents your data and then
maps each item in the modeled data to an actual item in your application’s data structures.

All these structures can be shown in many different ways. For example, a list can be
shown as a list (which shows all items at once) or as a combo box (which shows only the cur-
rent item). Each value can also be shown in different ways—for example, as text, values, or
even images. This is where the view enters the picture—its task is to show the data from the
model to the user.

List Table Tree

Figure 5-1. A list, a table, and a tree

In the classic model-view-controller (MVC) design pattern (see Figure 5-2), the model
keeps the data, and the view renders it to a display unit. When the user wants to edit the data,
a controller class handles all modifications of the data.

Qt approached this pattern in a slightly different way. Instead of having a controller class,
the view handles data updating by using a delegate class (see Figure 5-2). The delegate has two

123

124

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

tasks: to help the view render each value and to help the view when the user wants to edit the
value. Comparing the classic MVC pattern with Qt’s approach, you can say that the controller
and view have been merged, but the view uses delegates to handle parts of the controller’s job.

Model Model
w\Efﬂt
Render Edit
Render Delegate
View &) Controller ‘/R;mer
View
The MVC design pattern The QT model-view design

Figure 5-2. MVC compared with model-view and delegates

Showing Data by Using Views

Qt offers three different default views: a tree, a list, and a table. In the Chapter 2 phone book
example you encountered the list view by way of the QListWidget. The QListWidget classis a
specialized version of QListView, but QListWidget contains the data shown in the list, whereas
QListView accesses its data from a model. The QListWidget is sometimes referred to as a con-
venience class because it is less flexible, but is more convenient in less complex situations
when compared with using the QListView and a model.

In the same way that the list widget relates to the list view, the QTreelWidget-QTreeView and
QTableWidget-QTableView pairs relate.

Let’s start with an example showing how to create a model, populate it, and show it using
all three views. To keep matters simple, it is created from a single main function.

The first thing to do is to create the widgets. In Listing 5-1, you can see that the QTreeView,
QListView, and QTableView are created and put into a QSplitter. A splitter is a widget that puts
movable bars between its children. This means that the user can divide the space between the
tree, list, and table freely. You can see the splitter in action in Figure 5-3.

Listing 5-1. Creating the views and putting them in a splitter

QTreeView *tree = new QTreeView;
QListView *1list = new QListView;
QTableView *table = new QTableView;

QSplitter splitter;

splitter.addWidget(tree);
splitter.addWidget(list);
splitter.addWidget(table);

CHAPTER 5

THE MODEL-VIEW FRAMEWORK

_views

=13

1 2

Row:0, Column:1
Row:1, Co... Row:1, Column:1
Row:2, Co... Row:2, Column:1
Row:3, Co... Row:3, Column:1
#- Row:4, Co... Row:4, Column:1

Row:0, Column:0
Row:1, Column:0
Row:2, Column:0
Row:3, Column:0
Row:4, Column:0

1

1| Row:0, Colum...
2| Row:1, Colum...
3| Row:2, Colum...
4| Row:3, Colum...

5| Row:4, Colum...

2
Row:0, Colum...
Row:1, Colum...
Row:2, Colum...
Row:3, Colum...

Row:4, Colum...

The user drags the splitters.

e

«—

—views

oy

1 2
Row:0, Column:1
Row:1, Co... Row:1, Column:1
#- Row:2, Co... Row:2, Column:1
-- Row:3, Co... Row:3, Column:1
- Row:4, Co... Row:4, Column:1

<] 11l

Row:0, Column]
Row:1, Column
Row:2, Column]
Row:3, Column]
Row:4, Column

| (3]

1

1| Row:0, Colum...
2| Row:1, Colum...
3| Row:2, Colum...
4| Row:3, Colum...

5| Row:4, Colum...

2
Row:0, Colum...
Row:1, Colum...
Row:2, Colum...
Row:3, Colum...

Row:4, Colum...

Figure 5-3. The tree, list, and table can be resized by using the splitter. The top window is the
default starting state, whereas the splitter bars have been moved in the lower window.

When the widgets are created, you have to create and populate a model. To get started,
the QStandardItemModel is used, which is one of the standard models shipped with Qt.

Listing 5-2 shows how the model is populated. The population process consists of three
loops: rows (1), columns (c), and items (i). The loops create five rows of two columns, in which
the first column has three items as children.

Listing 5-2. Creating and populating the model

QStandardItemModel model(5, 2);

for(int r=0; r<5; r++)
for(int c=0; c<2; c++)

{

QStandardItem *item

new QStandardItem(QString("Row:%1, Column:%2").arg(r).arg(c));

if(c==0)

for(int i=0; i<3; i++)
item->appendRow(new QStandardItem(QString("Item %1").arg(i)));

model.setItem(r, c, item);

125

126

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Let’s have a close look at how the population is made. First, QStandardItemModel is cre-
ated, and the constructor is told to make it five rows by two columns. Then a pair of loops for
the rows and columns is run where a QStandardItemis created for each position. This item is
put in the model by using the setItem(int, int, QStandardItem*) method. For all items in
the first column, where c equals 0, three new QStandardItem objects are created and put as
children to the item using the appendRow(QStandardItem*) method. Figure 5-4 shows how the
model looks in a tree view. The items for each column and row position are shown as a table.
In the table, the second row has been expanded, revealing the three child items.

{Row:0, Column:1
Row:1, Column:1

- Row:2, Column:0 Row:2, Column:1
- Row:3, Column:0 Row:3, Column:1
- Row:4, Column:0 Row:4, Column:1

B

Figure 5-4. The model shown in a tree view, with the second row opened to show the child items

Before the small example application shows the model, you must tell the views what
model to use by using the setModel (QAbstractItemModel*) method, as shown in Listing 5-3.

Listing 5-3. Setting the model for all views

tree->setModel(&model);
list->setModel(8model);
table->setModel(&model);

Although setting the model is all that’s required to get things up and running, I want to
demonstrate the differences between the models using the selection model, so there is one
more step to perform before you continue.

The selection model manages selections in a model. Each view has a selection model of
its own, but it is possible to assign a model using the
setSelectionModel (QItemSelectionModel*) method. By setting the tree’s model in the list and
the table, as shown in Listing 5-4, selections will be shared. This means that if you select some-
thing in one view, the same item will be selected in the other two as well.

Listing 5-4. Sharing the selection model

list->setSelectionModel(tree->selectionModel());
table->setSelectionModel(tree->selectionModel());

Wrapping all this in a main function along with a QApplication object gives you a working
application that can be built with QMake. Figures 5-3 and 5-4 show the running application.

There are a number of things for you to try out in the application that can teach you some-
thing about how the models and views work in Qt:

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

» Try picking one item at a time in any one of the views and study where the selection is
shown in the other views. Notice that the list shows only the first column, and the child
items only affect the tree view.

» Try picking items with the Ctrl or Shift keys pressed (and then try it with both).

¢ Try picking a row from each view. When you select a row in the list, only the first
column is selected.

¢ Try picking columns in the table (click the header) and see what happens in the other
views. Make sure to pick the second column and watch the list view.

¢ Double-click any item and alter the text. QStandardItem objects are by default editable.

¢ Don't forget to experiment with the spacer bars.

Providing Headers

The views and the standard model are flexible. You might not like some details in the applica-
tion, so let’s start looking at these details. You can start by setting some descriptive text in the
headers: insert QStandardItems into the model by using setHorizontalHeaderItem(int,
QStandardItem*) and setVerticalHeaderItem(int, QStandardItem*). Listing 5-5 shows the
lines added to the main function to add horizontal headers.

Listing 5-5. Adding headers to the standard item model

model.setHorizontalHeaderItem(0, new QStandardItem("Name"));
model.setHorizontalHeaderItem(1, new QStandardItem("Phone number"));

Limiting Editing
Then there is the issue of the items being editable by the user. The editable property is con-

trolled at the item level. By using the setEditable(bool) method on each child item shown in
the tree view, you make them read-only (see the inner loop for it in Listing 5-6).

Listing 5-6. Creating read-only items in a standard item model

if(c==0)
for(int i=0; i<3; i++)
{

QStandardItem *child = new QStandardItem(QString("Item %1").arg(i));
child->setEditable(false);
item->appendRow(child);

Limiting Selection Behavior

Sometimes it is helpful to limit the ways in which selections can be made. For example, you
might want to limit the user to selecting only one item at a time (or to select only entire rows).

127

128

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

This limitation is controlled with the selectionBehavior and selectionMode properties of each
view. Because it is controlled on a view level, it is important to remember that as soon as the
selection model is shared between two views, both views need to have their selectionBehavior
and selectionMode properties set up properly.

The selection behavior can be set to SelectItems, SelectRows, or SelectColumns (which
limits the selections to individual items, entire rows, or entire columns, respectively). The
property does not limit how many items, rows, or columns the user can select; it is controlled
with the selectionMode property. The selection mode can be set to the following values:

* NoSelection: The user cannot make selections in the view.
e SingleSelection: The user can select a single item, row, or column in the view.

e ContiguousSelection: The user can select multiple items, rows, or columns in the view.
The selection area must be in one piece, next to each other without any gaps.

e ExtendedSelection: The user can select multiple items, rows, or columns in the view.
The selection areas are independent and can have gaps. The user can choose items by
clicking and dragging, selecting items while pressing the Shift or Ctrl keys.

e MultiSelection: Equivalent to ExtendedSelection from the programmer’s viewpoint,
the selection areas are independent and can have gaps. The user toggles the selected
state by clicking the items. There is no need to use the Shift or Ctrl keys.

In Listing 5-7, the table view is configured to allow only one entire row to be selected. Try
selecting multiple items and single items by using the tree and list views.

Listing 5-7. Changing the selection behavior

table->setSelectionBehavior(QAbstractItemView::SelectRows);
table->setSelectionMode(QAbstractItemView::SingleSelection);

A Single Column List

For the really simple lists, Qt offers the QStringlListModel. Because lists of items are often kept
in QStringlist objects in Qt applications, it’s nice to have a model that takes a string list and
works with all views.

Listing 5-8 shows how the QStringlist object list is created and populated. A
QStringlistModel is created, and the list is set with setStringlist(const QStringlist&).
Finally, the list is used in the list view.

Listing 5-8. Using the QStringlListModel to populate a QListView

QListView list;
QStringlistModel model;
QStringlist strings;

strings << "Huey" << "Dewey" << "Louie";

model.setStringlist(strings);
list.setModel(&model);

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Creating Custom Views

Being able to show models through existing views can be useful, but sometimes you need to
be able to customize the views to your own needs. There are two approaches to this: either
build a delegate from the QAbstractItemDelegate class or create a completely custom view
from the QAbstractItemView class.

Creating a delegate is the easiest approach, so start there. The views shipped with Qt all
use delegates to draw and edit its items. By creating a delegate for drawing a row or a column—
or all items in a view—you can usually get the look and feel that you need.

A Delegate for Drawing

Start by creating a delegate to show integer values as a bar. The delegate can be seen in action
in the table view shown in Figure 5-5. The bars range from 0-100, where 0 is just a thin line in
blue, and 100 is a full green bar. If the value exceeds 100, the bar turns red to indicate that it is
out of range.

I bardelegate =%

6 | Row 6
7 |Row 7
8 |Row 8
9 |Row 9

10| Row 10

Figure 5-5. The BarDelegate class is used to show integer values as bars.

Because it is a delegate for showing bars, the new class is called BarDelegate and is built
on the QAbstractItemDelegate class. The abstract item delegate class is the base class of all
delegates. The class declaration is shown in Listing 5-9. The code can be considered a boiler-
plate for all delegates managing the showing of values because both methods to override are
clearly stated in the documentation for the QAbstractItemDelegate base class. The purpose of
the method is easy to guess from its name. The paint(QPainter*, const QStyleOptionViewItem8,
const QModelIndex&) method draws the item, whereas sizeHint(const QStyleOptionViewItem8,
const QmodelIndexd) indicates how large the each item wants to be.

129

130

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Listing 5-9. The class declaration of the custom delegate

class BarDelegate : public QAbstractItemDelegate

{
public:
BarDelegate(QObject *parent = 0);
void paint(QPainter *painter,
const QStyleOptionViewItem &option,
const QModelIndex &index) const;
QSize sizeHint(const QStyleOptionViewItem &option,
const QModelIndex &index) const;
};

The sizeHint method is shown in Listing 5-10. It simply returns a size that is large enough
yet doesn’t exceed the size limitations. Remember that this is just a hint; the real size can be
changed by Qt for layout issues or by the user by adjusting the size of rows and columns.

Listing 5-10. Returning a size hint for the custom delegate

QSize BarDelegate::sizeHint(const QStyleOptionViewItem &option,
const QModelIndex &index) const
{
return QSize(45, 15);
}

The sizeHint method is very straightforward; the paint method is more interesting (see
Listing 5-11). The first if statement checks whether the item is selected by testing the state of
the style option. (Style options are used to control the appearance of everything in Qt applica-
tions.) The styling system responsible for making Qt applications look like native applications
uses style option objects for palettes, areas, visual states, and everything else that affects the
appearance of objects on the screen. There are numerous style object classes—almost one for
every graphical element. All inherit the QStyleOption class.

Listing 5-11. Painting the value for the custom delegate

void BarDelegate::paint(QPainter *painter,
const QStyleOptionViewItem &option, const QModelIndex &index) const

{
if(option.state & QStyle::State_Selected)
painter->fillRect(option.rect, option.palette.highlight());

int value = index.model()->data(index, Qt::DisplayRole).toInt();
double factor = (double)value/100.0;

painter->save();

if(factor » 1)
{

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

painter->setBrush(Qt::red);
factor = 1;
}
else
painter->setBrush(QColor(0, (int)(factor*255), 255-(int)(factor*255)));

painter->setPen(Qt::black);

painter->drawRect(option.rect.x()+2, option.rect.y()+2,
(int)(factor*(option.rect.width()-5)), option.rect.height()-5);

painter->restore();

If the style option indicates that the item is selected, the background is filled with the
platform’s selected background color that you also get from the style option. For drawing, use
the QPainter object and the fillRect(const QRect&, const QBrush&) method that fills a given
rectangle.

The next line picks the value from the model and converts it to an integer. The code
requests the value with the DisplayRole for the index. Each model item can have data for sev-
eral different roles, but the value to be shown has the DisplayRole. The value is returned as a
QVariant. The variant data type can hold any type of values: strings, integers, real values,
Booleans, and so on. The toInt(bool*) method attempts to convert the current value to an
integer, which is what the delegate expects.

The two lines getting the information about the item’s selection state and value are high-
lighted. These lines must always appear in some form or another in delegate painting
methods.

The value from the model is used to calculate a factor, which tells you how large a fraction
of 100 the value is. This factor is used to calculate the length of the bar and the color to fill it
with.

The next step is to save the painter’s internal state, so you can change the pen color and
brush, and then call restore() to leave the painter as you got it. (The QPainter class is dis-
cussed in more detail in Chapter 7.)

The if statement checks whether factor exceeds one and takes care of coloring the brush
used to fill the bar. If the factor is larger than one, the bar goes red; otherwise, the color is cal-
culated so that a factor close to zero gives a blue color, and a factor close to one gives a green
color. Because the factor is used to control the length of the bar, the factor is limited to one if it
is too large, which ensures that you don’t attempt to draw outside the designated rectangle.

After the brush color has been set, the pen color is set to black by using the drawRect (int,
int, int, int) method before the bar is drawn. The rect member of option tells you how
large the item is. Finally, the painter is restored to the state that was saved before the method
ends.

To test the delegate, a table view and a standard model in a main function are created. The
source code for this is shown in Listing 5-12. The model has two columns: a read-only row
with strings and one that contains the integer values.

The delegate is created and set up in the highlighted lines at the end of the listing. The
setItemDelegateForColumn(int, QAbstractItemDelegate*) delegate is assigned to the second
column. If you don’t want to customize a row, you can assign a delegate to a row by using
setItemDelegateForRow(int, QAbstractItemDelegate*) or you can assign a delegate to an
entire model by using setItemDelegate(QAbstractItemDelegate*).

131

132 CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Listing 5-12. Creating and populating a model; then setting a delegate for the second column

QTableView table;

QStandardItemModel model(10, 2);

for(int 1=0; 1<10; ++1)

{
QStandardItem *item = new QStandardItem(QString("Row %1").arg(r+1));
item->setEditable(false);
model.setItem(r, 0, item);

model.setItem(r, 1, new QStandardItem(QString::number((r*30)%100)));

}
table.setModel(&model);

BarDelegate delegate;
table.setItemDelegateForColumn(1, &delegate);

The resulting application is shown running in Figure 5-5. The problem is that the user
can't edit the values behind the bars because no editor is returned from the delegate’s
createEditor method.

Custom Editing

To enable the user to edit items shown using a custom delegate, you have to extend the dele-
gate class. In Listing 5-13, the lines with the new members are highlighted. They are all
concerned with providing an editing widget for the model item. Each method has a task to
take care of, according to the following list:

e createEditor(...): Creates an editor widget and applies the delegate class as an event
filter

e setEditorData(...): Initializes the editor widget with data from a given model item
¢ setModelData(...): Sets the value for a model item to the value from the editor widget

e updateEditorGeometry(...): Updates the geometry (that is, the location and size) or the
editing widget

Listing 5-13. The custom delegate with support for a custom editing widget

class BarDelegate : public QAbstractItemDelegate
{
public:

BarDelegate(QObject *parent = 0);

void paint(QPainter *painter,
const QStyleOptionViewItem &option,
const QModelIndex &index) const;

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

QSize sizeHint(const QStyleOptionViewItem &option,
const QModelIndex &index) const;

OWidget *createEditor(QWidget *parent,
const QStyleOptionViewItem &option,
const QModelIndex &index) const;
void setEditorData(QWidget *editor,
const QModelIndex &index) const;
void setModelData(QWidget *editor,
OAbstractItemModel *model,
const QModelIndex &index) const;
void updateEditorGeometry(QWidget *editor,
const QStyleOptionViewItem &option,
const QModelIndex &index) const;

};

Because the value is shown as a bar growing horizontally, a slider moving in the horizon-
tal direction as editor is used. This means that the horizontal position of the slider will
correspond to the horizontal extent of the bar, as shown in Figure 5-6.

T editdelegate =[x}

il

1 | Rowl

2 |Row 2

3 |Row 3

4 |Row 4

5 |Row 5
6 | Row 6
7 |Row 7
8 |Row 8

9 |Row 9

e

10| Row 10

Figure 5-6. The custom delegate shows the value as a bar and edits the value using a custom
editing widget: a slider.

Let’s look at the createEditor and updateEditorGeometry methods shown in Listing 5-14.
The member for updating the geometry is pretty easy—it just takes the rect given through
option and sets the geometry of editor accordingly.

133

134

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Listing 5-14. Creating the custom editing widget and resizing it

QWidget *BarDelegate::createEditor(Qwidget *parent,
const QStyleOptionViewItem &option, const QModelIndex &index) const

{
QSlider *slider = new QSlider(parent);

slider->setAutoFillBackground(true);
slider->setOrientation(Qt::Horizontal);

slider->setRange(0, 100);

slider->installEventFilter(const cast<BarDelegate*>(this));

return slider;

}

void BarDelegate::updateEditorGeometry(QWidget *editor,
const QStyleOptionViewItem &option, const QModelIndex &index) const

{

editor->setGeometry(option.rect);

}

Tip Using the setGeometry(const QRect&) method to set the location and size of a widget might
seem like a good idea, but layouts are the better choice in 99 percent of the cases. It is used here because
the area showing the model item is known and has been determined directly or indirectly from a layout if
layouts have been used.

The method for creating the editor contains slightly more code, but it is not complicated.
First, a QSlider is set up to draw a background so that the model item’s value is covered by the
widget. Then the orientation and range is set before the delegate class is installed as an event
filter. The event-filtering functionality is included in the base class QAbstractItemDelegate.

Note Event filtering is a way to have a peek at the events sent to a widget before they reach the widget.
It is discussed in more detail in Chapter 6.

Before the editing widget is ready for the user, it must get the current value from the
model. This is the responsibility of the setEditorData method. The method, shown in
Listing 5-15, gets the value from the model. The value is converted to an integer using
toInt(bool*), so non-numeric values will be converted to the value zero. Finally, the value
of the editor widget is set by using the setValue(int) method.

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Listing 5-15. Initializing the editor widget according to the model value

void BarDelegate::setEditorData(QWidget *editor, const QModelIndex &index) const
{
int value = index.model()->data(index, Qt::DisplayRole).toInt();
static_cast<QSlider*>(editor)->setValue(value);

}

The editor widget can be created, placed, and sized correctly, and then get initialized with
the current value. The user can then edit the value in a meaningful way, but there is no way
for the new value to get to the model. This is the task handled by setMode1Data(QWidget*,
QAbstractItemModel*, const QModelIndexd).You can see the method in Listing 5-16. The code
is fairly straightforward, even if it is slightly obscured by a cast. What happens is that the value
from the editor widget is taken and used in a setData(const QModelIndex&, const QVariant8,
int) call. The affected model index, index, is passed to the setModelData method as an argu-
ment, so there are no real hurdles left.

Listing 5-16. Getting the value from the editor widget and updating the model

void BarDelegate::setModelData(QWidget *editor,
QAbstractItemModel *model, const QModelIndex &index) const
{
model->setData(index, static cast<QSlider*>(editor)->value());

}

The resulting application shows values as bars and enables the user to edit them using a
slider. (Refer to Figure 5-6 for the running application.)

Creating Your Own Views

When you feel that you can'’t get to where you want by using the available views, delegates, or
any other tricks, you face a situation in which you have to implement a view of your own.

Figure 5-7 shows a table and a custom view showing the selected item. The custom view
shows a single item at a time (or a text explaining it if more than one item is selected at a
time). It is based around a QAbstractItemView and uses a QLabel for showing the text.

I singleitemview =<
1 2

1| Row:0, Colum... Row:0, Colum...
2| Row:1, Colum... Row:1, Colum...

3| Row:2, Colum... Row:3, Column:1

4| Row:3, Colum... Row:3, Colum...

5| Row:4, Colum... Row:4, Colum...

Figure 5-7. The custom view in action

135

136

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

When implementing a custom view, you must provide implementations of a whole bunch
of methods. Some methods are important; others just provide a valid return value. Which
methods need a complex implementation largely depends on the type of view you are imple-
menting.

In Listing 5-17, you can see the class declaration of the custom view SingleItemView. All
methods except updateText () are required because they are declared as pure abstract meth-
ods in QAbstractItemView.

Tip A pure abstract method is a virtual method set to zero in the base class declaration. This means that
the method is not implemented and that the class can’t be instantiated. To be able to create objects of a
class inheriting the base class, you must implement the method because all methods for all objects must be
implemented.

The methods in the class declaration tell you the responsibilities of a view: showing a view
of the model, reacting to changes in the model, and acting on user actions.

Listing 5-17. The custom view with all required members

class SingleItemView : public QAbstractItemView

{
Q_OBJECT

public:
SingleItemview(QWidget *parent = 0);

QModelIndex indexAt(const QPoint 8point) const;
void scrollTo(const QModelIndex &index, ScrollHint hint = EnsureVisible);
ORect visualRect(const QModelIndex &index) const;

protected:
int horizontalOffset() const;
bool isIndexHidden(const QModelIndex &index) const;
OModelIndex moveCursor(CursorAction cursorAction,
Qt::KeyboardModifiers modifiers);
void setSelection(const QRect &rect, QItemSelectionModel::SelectionFlags flags);
int verticalOffset() const;
QRegion visualRegionForSelection(const QItemSelection &selection) const;

protected slots:
void dataChanged(const QModelIndex &topleft, const QModelIndex &bottomRight);
void selectionChanged(const QItemSelection 8selected,
const QItemSelection 8deselected);

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

private:
void updateText();

QlLabel *label;
b

The constructor of SingleViewItem sets up a QLabel inside the view port of the
QAbstractItemView widget. The QAbstractItemView class inherits QAbstractScrollArea,
which is used to create widgets that might need scroll bars. The inside of that scrollable
area is the view port widget.

The source code of the constructor, which is shown in Listing 5-18, shows how to make
the label fill the view port. First, a layout is created for the view port and then the label is
added to the layout. To ensure that the label fills the available area, its size policy is set to
expand in all directions. Finally, the label is configured to show the text in the middle of the
available area before a standard text is set.

Listing 5-18. Setting up a label in the viewport of the custom view

SingleItemView::SingleItemvView(QWidget *parent) : QAbstractItemView(parent)
{

QGridlLayout *layout = new QGridLayout(this->viewport());

label = new QLabel();

layout->addWidget(label, 0, 0);

label->setAlignment(Qt::AlignCenter);
label->setSizePolicy(

QSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding));
label->setText(tr("<i>No data.</i>"));

In the constructor, a standard text is set; in the updateText method, the actual text is set.
Listing 5-19 shows the implementation of the method. It works by looking at the number of
QModelIndex objects it gets from the selection model’s selection method. The selection
method returns indexes to all selected items in the model. If the number of selected items is
zero, the text is set to No data. When one item is selected, the value of that item is shown.
Otherwise, meaning more than one selected item, a text informing the user that only one item
can be shown is displayed.

The value of the selected item is retrieved through the model’s data method and the
currentIndex method. As long as at least one item is selected, the combination of these
methods will return the value from the current item.

Listing 5-19. Updating the text of the label

void SingleItemView: :updateText()
{

switch(selectionModel()->selection().indexes().count())

{

case 0:

137

138

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

label->setText(tr("<i>No data.</i>"));
break;

case 1:
label->setText(model()->data(currentIndex()).toString());
break;

default:
label->setText(tr("<i>Too many items selected.
"
"Can only show one item at a time.</i>"));
break;

Because a large part of the view’s job is to show items, the views need to have methods for
telling what is visible and where. Because the view shows only one item, you are left with an
all-or-nothing situation. The method visualRect, shown in Listing 5-20, returns a rectangle
containing a given model index. The method simply checks whether it is the visible item—if
so, the area of the entire view is returned; otherwise, an empty rectangle is returned.

There are more methods working in the same way: visualRegionForSelection,
isIndexHidden, and indexAt. All these methods check to see whether the given model
index is the one that is shown and then returns accordingly.

Listing 5-20. Determining what is visible and what is not

QRect SingleItemView::visualRect(const QModelIndex &index) const

{

if(selectionModel()->selection().indexes().count() != 1)
return QRect();

if(currentIndex() != index)
return QRect();

return rect();

}

The purpose of some methods is to return valid values to maintain a predefined interface,
which is the job of the methods shown in Listing 5-21. Because the scroll bars are left unused,
and only one item is shown at a time, these methods are left as close to empty as possible.

Listing 5-21. Returning valid responses without taking action

int SingleItemView::horizontalOffset() const
{

return horizontalScrollBar()->value();

}

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

int SingleItemView::verticalOffset() const

{

return verticalScrollBar()->value();

}

QModelIndex SingleItemView::moveCursor(CursorAction cursorAction,
Qt::KeyboardModifiers modifiers)

{

return currentIndex();

}

void SingleItemView::setSelection(const QRect 8rect,
QItemSelectionModel: :SelectionFlags flags)

{
}

// do nothing

void SingleItemView::scrollTo(const QModelIndex &index, ScrollHint hint)

{
}

// cannot scroll

Reacting to Changes

The last task of the view is to react to changes in the model and to user actions (by changing
the selection, for example). The methods dataChanged and selectionChanged react to these
events by updating the text shown using updateText. You can see the implementation of the
two methods in Listing 5-22.

Listing 5-22. Reacting to changes in the model and the selection

void SingleItemView::dataChanged(const QModelIndex 8topLeft,
const QModelIndex &bottomRight)

{
}

updateText();

void SingleItemView::selectionChanged(const QItemSelection &selected,
const QItemSelection 8deselected)

{
}

updateText();

Using the custom view is just as simple as using one of the views shipped with Qt. Listing
5-23 shows how it can look (populating the model has been left out). A QStandardItemModel is
used and populated using a pair of nestled for loops. As you can see, using the view and shar-
ing the selection model is very easy. (The application can be seen in Figure 5-7.)

139

140

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Listing 5-23. Using the single item view together with a table view

int main(int argc, char **argv)

{
OApplication app(argc, argv);

QTableView *table = new QTableView;
SingleItemView *selectionView = new SingleItemView;

QSplitter splitter;
splitter.addWidget(table);
splitter.addWidget(selectionView);

table->setModel(&model);
selectionView->setModel(&model);

selectionView->setSelectionModel(table->selectionModel());
splitter.show();

return app.exec();

Creating Custom Models

Until now, you have been looking at custom views and delegates. The models have all been
QStandardItemModels or QStringlistModels, so one of the major points of the model-view
architecture is missed: custom models.

By being able to provide models of your own, you can transform the data structures of
your application into a model that can be shown as a table, list, tree, or any other view. By let-
ting the model transform your existing data, you don’t have to keep the data sets—one for the
internals of the application and one for showing. This brings yet another benefit: you do not
have to ensure that the two sets are synchronized.

There are four approaches to custom models:

¢ You can keep your application’s data in the model and access it through the model’s
predefined class interface used by the views.

¢ You can keep your application’s data in the model and access it through a custom class
interface implemented next to the predefined interface used by the views.

* You can keep your application’s data in an external object and let the model act as a
wrapper between your data and the class interface needed by the views.

* You can generate the data for the model on the fly and provide the results through the
class interface used by the views.

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

This section discusses tables and trees, as well as read-only and editable models. All
models use different approaches to keeping and providing data to the views; all views work
with the standard views as well as any custom view that you use.

A Read-Only Table Model

First, you'll see a read-only table model that generates its data on the fly. The model class,
which is called MulModel, shows a configurable part of the multiplication table. The class dec-
laration is shown in Listing 5-24.

The class is based on the QAbstractTableModel, which is a good class to start from when
creating two-dimensional models. All models are really based on the QAbstractItemModel
class, but the abstract table model class provides stub implementations for some of the meth-
ods required. The methods of the MulModel class each has a special responsibility:

e flags: Tells the view what can be done with each item (whether it can be edited,
selected, and so on)

¢ data: Returns the data for a given role to the view
¢ headerData: Returns the data for the header to the view

e rowCount and columnCount: Return the dimensions of the model to the view

Listing 5-24. Custom model class declaration

class MulModel : public QAbstractTableModel
{
public:
MulModel(int rows, int columns, QObject *parent = 0);

Qt::ItemFlags flags(const QModelIndex 8index) const;
QVariant data(const QModelIndex &index, int role = Qt::DisplayRole) const;
QVariant headerData(int section, Qt::Orientation orientation,
int role = Qt::DisplayRole) const;
int rowCount(const QModelIndex 8parent = QModelIndex()) const;
int columnCount(const QModelIndex &parent = QModelIndex()) const;

private:
int m_rows, m_columns;

};

The constructor simply remembers the number of rows and columns to show and then
passes the parent on to the base class constructor. The rowCount and columnCount methods are
just as simple as the constructor because they simply return the dimensions given to the con-
structor. You can see these methods in Listing 5-25.

14

142

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Listing 5-25. Constructor, rowCount, and columnCount methods

MulModel: :MulModel(int rows, int columns, QObject *parent) :
QAbstractTableModel(parent)

{
m_TOWS = IOWS;
m_columns = columns;

}
int MulModel::rowCount(const QModelIndex &parent) const
{
return m_rows;
}
int MulModel::columnCount(const QModelIndex 8parent) const
{
return m_columns;
}

The data method returns data for the given role. The data is always returned as a
QVariant, meaning that it can be converted to icons, sizes, texts, and values. The roles define
what the data is used for, as summarized in the following list:

e Qt::DisplayRole: Data to show (the text)

e Qt::DecorationRole: Data used to decorate the item (the icon)

e Qt::EditRole: Data in a format that can be used with an editor

e Qt::ToolTipRole: Data to show as a tooltip (text)

e Qt::StatusTipRole: Data to show as information in the status bar (text)
e Qt::WhatsThisRole: Data to show in What'’s this? information

e Qt::SizeHintRole: Size hint for the views

The data method of MulModel supports the DisplayRole and the ToolTipRole. The display
role is the value for the current multiplication; the tooltip shown is the multiplication expres-
sion itself. The source code for the method is shown in Listing 5-26.

Listing 5-26. Providing data from the custom model

QVariant MulModel::data(const QModelIndex &index, int role) const

{

switch(role)

{
case Qt::DisplayRole:
return (index.row()+1) * (index.column()+1);

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

case Qt::ToolTipRole:
return QString("%1 x %2").arg(index.row()+1).arg(index.column()+1);

default:
return QVariant();
}
}

The header data is returned for different roles just as for the actual item data. When
returning header data, it is usually important to pay attention to the direction (that is, whether
the requested information is for the Horizontal or Vertical headers). Because it is irrelevant
for a multiplication table, the method shown in Listing 5-27 is very simple.

Listing 5-27. Providing headers for the custom model

QVariant MulModel::headerData(int section,
Qt::Orientation orientation, int role) const

{
if(role != Qt::DisplayRole)
return QVariant();

return section+1;

}

Finally, the flags returned by flags are used to control what the user can do to the item.
The method, shown in Listing 5-28, tells the view that all items can be selected and are
enabled. There are more flags available. Refer to the following list for a quick overview:

e Qt::ItemIsSelectable: The item can be selected.

e Qt::ItemIsEditable: The item can be edited.

e Qt::ItemIsDragEnabled: The item can be dragged from the model.

e Qt::ItemIsDropEnabled: Data can be dropped onto the item.

e Qt::ItemIsUserCheckable: The user can check and uncheck the item.
e Qt::ItemIsEnabled: The item is enabled.

e Qt::ItemIsTristate: The item cycles between tree states.

Listing 5-28. Flags being used to control what the user can do with a model item

Qt::ItemFlags MulModel::flags(const QModelIndex &index) const

{
if(!lindex.isValid())
return Qt::ItemIsEnabled;

return Qt::ItemIsSelectable | Qt::ItemIsEnabled;
}

143

144

CHAPTER 5 THE MODEL-VIEW FRAMEWORK

This is all the methods needed for the model. Before continuing, look at Figure 5-8, which
displays the MulModel in action showing a tooltip. The code for using the MulModel with a
QTableView is shown in Listing 5-29.

m

lalalslalslelz]ls]l el wm|m]m|

1 |1 2 |3 |4 |5 |6 (7 8 |9 o |11 |12

2 |2 4 |6 & |10 |12 |14 |16 |18 |20 (22 |24

3 |3 6 |9 |12 |15 |18 |21 |24 |27 |30 |33 36

4|4 & |12 |16 |20 |24 |28 |32 |36 |40 |44 48

5 |5 10 |15 |20 |25 |30 |35 |40 |45 |50 |55 |60

6 |6 12

Z |7 14

8 |8 16

9 |9 18

10|10 20 |30 |40 |50 |60 |70 |80 |90 |100 |110 120

11|11 22 |33 |44 |55 |66 |77 |88 |99 |110 |121 (132

12|12 24 |36 |48 |60 |72 (B4 |96 108 |120 132 144

Figure 5-8. The MulModel class used with a QTableView

Listing 5-29. Using the custom model with a table view

int main(int argc, char **argv)

{
QApplication app(argc, argv);

MulModel model(12, 12);

QTableView table;
table.setModel(&model);

table.show();

return app.exec();

A Tree of Your Own

Although creating a two-dimensional table is not that difficult, creating tree models is slightly
more complex. To understand the difference between a table and a tree, have a look at
Figure 5-9, which shows a tree in Qt.

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Figure 5-9. A tree is really a table in which each cell can contain more tables.

The trick of getting a tree model working is to map a tree structure to the indexes of the
model. This makes it possible to return data for each index as well as the number of rows and
columns available for each index (that is, the number of child items available for each index).

I chose to base the model on a tree structure that is available in all Qt applications: the
Q0bject ownership tree. Each Q0bject has a parent and can have children, which builds a tree
that the model will represent.

Caution The model presented here shows a snapshot of a Q0bject tree. If the tree is modified by
adding or removing objects, the model will get out of sync and will have to be reset.

The application that will be implemented is shown in action in Figure 5-10.

“Ttreemodel =%

Object Class
- foo QObject
QObject
QObject

"QObject
QObject
QObject

Figure 5-10. The tree model showing Q0bjects through the QTreeView

Let’s start by having a look at the class declaration (see Listing 5-30). The class is called
ObjectTreeModel and is based on QAbstractItemModel. The highlighted lines in the listing show
the methods that have been added when compared with the MulModel.

145

146

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Listing 5-30. The class declaration for the tree model

class ObjectTreeModel : public QAbstractItemModel
{
public:
ObjectTreeModel(QObject *root, QObject *parent = 0);

Qt::ItemFlags flags(const QModelIndex 8index) const;
QVariant data(const QModelIndex &index, int role) const;
QVariant headerData(int section, Qt::Orientation orientation,
int role = Qt::DisplayRole) const;
int rowCount(const QModelIndex 8parent = QModelIndex()) const;
int columnCount(const QModelIndex &parent = QModelIndex()) const;

QModelIndex index(int row, int column,
const QModelIndex &parent = QModelIndex()) const;
QModelIndex parent(const QModelIndex &index) const;

private:
Q0bject *m_root;
};

The constructor is just as simple as with the MulModel class. Instead of remembering the
dimensions of a multiplication table, it stores a pointer to the root QObject asm_root.

The headerData method, shown in Listing 5-31, is slightly more complex than the
MulModel method because it returns only horizontal headers. You can tell from the method
that all tree nodes will have two columns: one for the object name and one for the class name.

Listing 5-31. The header function for the tree model

QVariant ObjectTreeModel::headerData(int section,
Qt::Orientation orientation, int role) const
{
if(role != Qt::DisplayRole || orientation != Qt::Horizontal)
return QVariant();

switch(section)
{
case 0:
return QString("Object");

case 1:
return QString("Class");

default:
return QVariant();
}
}

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

If you compare the index methods with the ObjectTreeModel class and the MulModel class,
you can see some real differences, which is expected because the data is represented in differ-
ent ways (and it is also indexed differently). In the MulModel, you didn’t have to provide an
index method because the QAbstractTableModel implemented it for you.

The ObjectTreeModel class’ index method takes a model index, parent, a column, and
arow; it gives a location in a table in the tree. The mapping of an index to the actual tree is
handled through the internalPointer() method of the model index. This method makes it
possible to store a pointer in each index, and you can store a pointer to the indexed Q0bject.

If the index is valid, you can get the appropriate Q0bject, and for it you want each child to
correspond to a row. This means that by using row as an index into the array returned from
children(), you can build a pointer to a new Q0bject that you use to build a new index.

The index is built using the createIndex method available from QAbstractItemModel (see
Listing 5-32).

In the index method, one assumption was made. If the view asks for an invalid index, it

gets the root of the tree, which gives the view a way to get started.

Listing 5-32. The workhorse—turning Q0bjects into indexes

QModelIndex ObjectTreeModel::index(int row, int column,
const QModelIndex 8parent) const

{
Q0bject *parentObject;

if(!parent.isvalid())
parentObject = m_root;
else
parentObject = static_cast<QObject*>(parent.internalPointer());

if(row >= 0 8& row < parentObject->children().count())

return createIndex(row, column, parentObject->children().at(row));
else

return QModelIndex();

Given the index method, the methods for returning the number of available rows and
columns (shown in Listing 5-33) are easy to implement. There are always two columns, and
the number of rows simply corresponds to the size of the children array.

Listing 5-33. Calculating the number of rows and returning 2 for the number of columns

int ObjectTreeModel::rowCount(const QModelIndex &parent) const

{
Q0bject *parentObject;

if(!parent.isvalid())
parentObject = m_root;
else
parentObject = static_cast<QObject*>(parent.internalPointer());

147

148

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

return parentObject->children().count();

}

int ObjectTreeModel::columnCount(const QModelIndex &parent) const

{
}

return 2;

Getting the data is almost as easy as calculating the number of rows. The object name for

the first column is available through the objectName property, whereas you have to get the
OMetaObject to obtain the class name for the second column. You also have to make sure to
return it only for the DisplayRole. The ToolTipRole was left out of Listing 5-34, but you can
see how the DisplayRole data is retrieved.

Listing 5-34. Returning the actual data for each index

QVariant ObjectTreeModel::data(const QModelIndex &index, int role) const

{
if(lindex.isValid())
return QVariant();

if(role == Qt::DisplayRole)

{
switch(index.column())
{
case 0:
return static cast<QObject*>(index.internalPointer())->objectName();
case 1:
return static cast<QObject*>(index.internalPointer())->
metaObject()->className();
default:
break;
}
}
else if(role == Qt::ToolTipRole)
{
}

return QVariant();

The last method implementation is slightly more complex: the parent method (see

Listing 5-35) returns an index for the parent of a given index. It is easy to find the parent of the

Q0bject that you get from the index, but you also need to get a row number for that parent.

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

The solution is to see that if the parent object is not the root object, it must also have a
grandparent. Using the indexOf method on the children array of the grandparent, you can get
the row of the parent. It's important to know the order of your children!

Listing 5-35. Building an index for the parent requires asking the grandparent for the indexOf
method.

QModelIndex ObjectTreeModel::parent(const QModelIndex &index) const
{
if(lindex.isvalid())
return QModelIndex();

Q0bject *indexObject = static cast<QObject*>(index.internalPointer());
Q0bject *parentObject = indexObject->parent();

if(parentObject == m root)
return QModelIndex();

Q0bject *grandParentObject = parentObject->parent();

return createIndex(grandParentObject->children().indexOf(parentObject),
0, parentObject);

To try out the all-new ObjectTreeModel, you can use the main function from Listing 5-36.
The largest part of the main function is used to build a tree of Q0bjects. Creating a model with
a pointer to the root object and passing it to the view is done in just four lines of code (and
that includes creating and showing the view). The running application is shown in Figure 5-10.

Listing 5-36. Building a tree of Q0bjects and then showing it using the custom tree model

int main(int argc, char **argv)

{
OApplication app(argc, argv);

Q0bject root;
root.setObjectName("root");
Q0bject *child;

Q0bject *foo = new QObject(&root);
foo->setObjectName("foo");
child = new QObject(foo);
child->setObjectName("Mark");
child = new QObject(foo);
child->setObjectName("Bob");
child = new QObject(foo);
child->setObjectName("Kent");

149

150 CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Q0bject *bar = new QObject(&root);
bar->setObjectName("bar");

ObjectTreeModel model(&root);

QTreeView tree;
tree.setModel(&model);

tree.show();

return app.exec();

Editing the Model

The previous two models—a two-dimensional array and a tree—showed complex structures,
but they were read-only. The IntModel shown here is very simple—just a list of integers—but it
can be edited.

Listing 5-37 shows the class declaration of the IntModel that is based on the simplest of
the abstract model bases: QAbstractListModel (which means that a one-dimensional list is
being created).

This class has fewer methods than MulModel and ObjectTreeModel. The only news is the
setData method used to make the model writeable.

Listing 5-37. The IntModel has fewer methods than MulModel, but MulModel does not have
setData.

class IntModel : public QAbstractlListModel
{
public:
IntModel(int count, QObject *parent = 0);

Qt::ItemFlags flags(const QModelIndex 8index) const;
QVariant data(const QModelIndex &index, int role = Qt::DisplayRole) const;
int rowCount(const QModelIndex 8parent = QModelIndex()) const;

bool setData(const QModelIndex &index, const QVariant 8value,
int role = Qt::EditRole);

private:
QList<int> m_values;

};

Because IntModel is a very simple model, it also has a number of simple methods. First,
the constructor shown in Listing 5-38 initializes the list with the number of values specified
through count.

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Listing 5-38. Easy as one, two, three . .. the constructor just fills the list.

IntModel: :IntModel(int count, QObject *parent)
{

for(int i=0; i<count; ++i)
m values << i+1;

The number of rows equals the count property of them values list. This means that
rowCount is as simple as Listing 5-39.

Listing 5-39. The number of rows is the number of items in the list.

int IntModel::rowCount(const QModelIndex &parent) const

{

return m_values.count();

}

Returning data for each index is also easy (see Listing 5-40); you can use the rows property
of the index to look up the right value in the m_values list. The same QVariant for the DisplayRole
as the EditRole is returned. The EditRole represents the value used to initialize the editor. If
you leave it out, the user has to start with an empty editor every time.

Listing 5-40. Returning values is as simple as looking in the list.

QVariant IntModel::data(const QModelIndex &index, int role) const

{
if(role != Qt::DisplayRole || role != Qt::EditRole)
return QVariant();

if(index.column() == 0 &8 index.row() < m_values.count())
return m values.at(index.row());
else

return QVariant();

To make an item editable, it is important to return the flag value ItemIstditable as well as
ItemIsSelectable. By returning ItemIsEnabled, the item also looks active. The flag method is
shown in Listing 5-41.

Listing 5-41. Flagging editability, selectability, and being enabled

Qt::ItemFlags IntModel::flags(const QModelIndex &index) const

{
if(lindex.isValid())
return Qt::ItemIsEnabled;

return Qt::ItemIsSelectable | Qt::ItemIsEditable | Qt::ItemIsEnabled;
}

151

152

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Listing 5-42 shows the setData method, which is the most complex method of the entire
IntModel class and still fits in seven lines of code. It first checks that the given index is valid
and that the role is the EditRole. (The EditRole is the data in a format suitable for editing and
is what you get from the view after the user has edited a value.)

After you establish that the index and role are fine, you must ensure that an actual change
has taken place. If the value has not changed (or if the index or role is invalid), false is
returned, indicating that no change has taken place.

When an actual change has taken place, the model’s value is updated, and the dataChanged
signal is emitted before returning true. Don’t forget emitting the signal and returning the cor-
rect value; otherwise, the interaction between the models and views will fail.

Listing 5-42. Updating the model according to an edit action

bool IntModel::setData(const QModelIndex &index, const QVariant &value, int role)

{
if(role != Qt::EditRole ||
index.column() !'= 0 ||
index.row() >= m_values.count())
return false;

if(value.toInt() == m values.at(index.row()))
return false;

m values[index.row()] = value.toInt();

emit dataChanged(index, index);
return true;

}

Listing 5-43 and Figure 5-11 show IntModel in use. The model being editable does not
affect the main function in any way. This is something that the model and view agree on using
the return value from the flag method of the model.

Listing 5-43. Using the IntModel with aQListView

int main(int argc, char **argv)
{
QApplication app(argc, argv);
IntModel model(25);
QlListView list;
list.setModel(&model);
list.show();

return app.exec();

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK 163

Figure 5-11. An IntModel being edited

Sorting and Filtering Models

The data delivered from models usually comes unsorted, but you can enable sorting by imple-
menting the sort method of your model. If you are using a tree view or table view to show
your model, you can enable the user to click headers to sort by setting the property
sortingEnabled to true.

As long as you use the QStandardItemModel model and stick to the types handled by
QVariant, the sorting will work right away. However, you are bound to run into situations in
which you do not want to change the model to perform the sorting. This is where proxy
models enter the picture.

A proxy model is a model that wraps another class in itself, transforms it, and takes its
place. The wrapped model is usually called the source model. All actions performed on the
proxy model are forwarded to the source model, and all changes in the source model are prop-
agated to the proxy model. To implement a proxy model, start from the QAbstractProxyModel
class (if you want to sort or filter a model, use the QSortFilterProxyModel class).

To get started, let’s provide custom sorting through a proxy model. Before you start imple-
menting the proxy model , you might want to have a look at the main function shown in
Listing 5-44. The main function shows that the proxy model, sorter, is inserted between the
source model (model) and the view (table). The source model is assigned to the proxy model
by using the setSourceModel (QAbstractItemModel*) method. Then the proxy is used as model
in the view instead of using the source directly.

154

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Listing 5-44. The source model is assigned to the proxy model that is then used by the view
instead of using the source model directly.

int main(int argc, char **argv)

{
QApplication app(argc, argv);

QStringlListModel model;

QStringlist list;

list << "Totte" << "Alfons" << "Laban" << "Bamse" << "Skalman";
model.setStringlist(1list);

SortOnSecondModel sorter;
sorter.setSourceModel(&model);

QTableView table;
table.setModel(&sorter);
table.setSortingEnabled(true);
table.show();

return app.exec();

If you want to provide custom sorting through a class inheriting QSortFilterProxyModel,
you need to override the lessThan(const QModelIndex8, const QModelIndex&) method. The
proxy class itself is very simple—all it takes is a constructor and the overriding method. The
example sorter proxy model ignores the first letter of strings before sorting them alphabeti-
cally. The class is called SortOnSecondModel, and the declaration is shown in Listing 5-45.

Listing 5-45. The class declaration of the custom sorting proxy model

class SortOnSecondModel : public QSortFilterProxyModel
{
public:

SortOnSecondModel(QObject *parent = 0);

protected:
bool lessThan(const QModelIndex &left, const QModelIndex &right) const;

};

The constructor of SortOnSecondModel is simple; it just passes the parent object onto the
constructor of the base class. The code of the class is contained in the 1lessThan method shown
in Listing 5-46.

CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Listing 5-46. The lessThan method ignores the first character of strings before comparing them.

bool SortOnSecondModel::lessThan(const QModelIndex &left,
const QModelIndex &right) const
{
QString leftString = sourceModel()->data(left).toString();
QString rightString = sourceModel()->data(right).toString();

if(!leftString.isEmpty())
leftString = leftString.mid(1);

if('rightString.isEmpty())
rightString = rightstring.mid(1);

return leftString < rightString;
}

In the method, you use the sourceModel () method to get a reference to the source model
and you get the actual data to compare from it. Before comparing the strings, the first letter, if
any, is truncated from the left and right strings. Figure 5-12 shows the application running
with the source model sorted according to the proxy model’s sort order.

Isorting =<

1 -

3| Laban
4| Bamse

5| Skalman

2| Alfons

Figure 5-12. The custom sorting proxy model in action

When a model’s data changes, the sorting is not automatically updated, but it can be
changed by setting the dynamicSortFilter property of the proxy model to true. Before using
this method, make sure that your model is small enough to actually have the time to get sorted
before it changes again.

The previous application used only the sorting capabilities of QSortFilterProxyModel. If
you need to filter a model to leave out a few rows, you can reimplement the filterAcceptsRow
method. Use the filterAcceptsColumn to filter on columns. The methods take a source index
and row (or column) and return a Boolean value that is true if the row (or column) is to be
shown.

155

156 CHAPTER 5 © THE MODEL-VIEW FRAMEWORK

Summary

Using models and views can seem like an overly complex way of doing things, but the result-
ing software is built with a structure that has been proven to be flexible and powerful.

You should consider using the model-view approach when you are dealing with situations
in which you need to show the same data in several ways; deal with common selections; or
just show lists, trees, or tables of data.

Using a standard view with custom delegates and models is often a better solution than
providing a completely custom widget.

CHAPTER 6

Creating Widgets

The term widgets is the name collectively applied to the various visual elements that com-
prise an application: buttons, title bars, text boxes, checkboxes, and so on. There are two
schools of thought on using widgets to create user interfaces: either stick to the standard
widgets or go out on a limb to create your own. Qt supports both.

Unless you have esoteric needs, you should stick to the established widgets as much as
possible. This makes your life really easy when you are using Qt because the standard widget
looks native on most platforms. However, if you want to walk on the wild side, you can take
advantage of Qt’s excellent styling capabilities, inherit widgets and override their painting; or
simply create your own widgets. In some situations you are required to do this because your
application handles data that can’t be shown otherwise. This chapter shows you how to tweak
and create widgets to suit your own needs.

Composing Widgets
Do you combine the same set of widgets in the same way every time? Composite widgets can
help. A composite widget is built by composing already existing widgets and providing them
with a nice set of properties, signals, and slots.

For instance, a keypad is very messy to manage. Figure 6-1 shows a keypad that consists
of a bunch of QPushButtons and a QLineEdit. Setting it up consists of creating a grid layout,
putting the widgets in the layout, and then making the connections to make things work.

JIRETONN | ST AT
SRR U ANV | S
IR | SN A
RSN § VSR | S-S

Figure 6-1. A keypad made from a QLinetdit and a set of QPushButton widgets

Let’s have a look at which parts of the collection of widgets are “interesting” and which are
not (everything in the “not-interesting” category is unnecessarily complex). That complexity

can be hidden by creating a composite widget. 157

158

CHAPTER 6 = CREATING WIDGETS

The rest of the application needs to know the text of the QLineEdit; everything else just
obfuscates the source code of your application. Listing 6-1 shows the class declaration of the
NumericKeypad class. If you focus on the signals and public sections you see that the text is all
that is available. The private sections are concerned with the internals of the widget: the text,
the line edit, and a slot for catching the input from the buttons.

Listing 6-1. The class declaration of the composite widget NumericKeypad

class NumericKeypad : public QWidget

{
Q_OBJECT

public:
NumericKeypad(QWidget *parent = 0);

const QStringd text() const;

public slots:
void setText(const QString &text);

signals:
void textChanged(const QString &text);

private slots:
void buttonClicked(const QString &text);

private:
QLineEdit *m lineEdit;
QString m_text;
1
Before you look at how the text is managed, you should understand how the widget is
constructed. You can tell that the widget is based on a QWidget from the class declaration.

In the constructor a layout is applied to the QWidget (this); then the QLineEdit and the
QPushButton widgets are put in the layout. The source code is shown in Listing 6-2.

Listing 6-2. Creating and laying out the buttons in the constructor

NumericKeypad: :NumericKeypad(QWidget *parent)

{
QGridLayout *layout = new QGridlLayout(this);

m_lineEdit = new QLineEdit
m_lineEdit->setAlignment(Qt::AlignRight);

QPushButton *button0 = new QPushButton(tr("o"));
QPushButton *button1 = new QPushButton(tr("1"));

CHAPTER 6 = CREATING WIDGETS

QPushButton *buttonDot = new QPushButton(tr("."));
QPushButton *buttonClear = new QPushButton(tr("C"));

layout->addWidget(m lineEdit, 0, 0, 1, 3);

layout->addWidget(buttoni, 1, 0);
layout->addWidget(button2, 1, 1);

layout->addWidget(buttonDot, 4, 1);
layout->addWidget(buttonClear, 4, 2);

You will probably find the parts of the constructor that were left out of the previous exam-
ple more interesting. Each QPushButton object, except the C button, is mapped to a QString
using the setMapping(QObject *, const QString&) method of QSignalMapper. When all the
mappings have been set up, the clicked() signals from the buttons are all connected to the
map () slot of the signal mapper. When map is called, the signal mapper will look at the signal
sender and emit the mapped string through the mapped(const QString8) signal. This signal is
in turn connected to the buttonClicked(const QStringd) slot of this. You can see how this is
set up in Listing 6-3.

The listing also shows that the C button’s c1icked signal is mapped to the clear slot of
the QLineEdit, and the textChanged signal of the QLineEdit is connected to the setText
method of the keypad widget. This means that clicking the C button clears the text; any
changes to the QLineEdit—either by user interaction or pressing the C button—update the
text of the NumericKeypad object.

Listing 6-3. Setting up the signal mapping in the constructor

NumericKeypad: :NumericKeypad(QWidget *parent)
{

layout->addWidget(buttonDot, 4, 1);
layout->addWidget(buttonClear, 4, 2);

0SignalMapper *mapper = new QSignalMapper(this);

mapper->setMapping(buttono, "0");
mapper->setMapping(button1, "1");

mapper->setMapping(button9, "9");
mapper->setMapping(buttonDot, ".");

connect(buttono, SIGNAL(clicked()), mapper, SLOT(map()));
connect(button1, SIGNAL(clicked()), mapper, SLOT(map()));

connect(button9, SIGNAL(clicked()), mapper, SLOT(map()));

159

160

CHAPTER 6 = CREATING WIDGETS

connect(buttonDot, SIGNAL(clicked()), mapper, SLOT(map()));
connect(mapper, SIGNAL(mapped(QString)), this, SLOT(buttonClicked(QString)));

connect(buttonClear, SIGNAL(clicked()), m lineEdit, SLOT(clear()));
connect(m_lineEdit, SIGNAL(textChanged(QString)), this, SLOT(setText(QString)));

The slots handling the changes of the text are shown in Listing 6-4. The buttonClicked slot
simply appends the new text to the end of the current text, which is kept in the 0String vari-
able m_text. The text is kept in a separate string, not only in QLineEdit, because the user can
change the text directly by typing into the editor. If such a change were made, you couldn'’t tell
whether the setText call was relevant or not because you couldn’t compare the current text to
the new. This could lead to the textChanged method being emitted without an actual change
taking place.

Tip You could do a workaround by setting the text editor’s enabled property to false, but it causes the
editor to look different.

Listing 6-4. Handling changes of the text

void NumericKeypad::buttonClicked(const QString &newText)
{

setText(m_text + newText);

}

void NumericKeypad::setText(const QString 8newText)
{
if(newText == m text)
return;

m_text = newText;
m lineEdit->setText(m_text);

emit textChanged(m text);
}

The setText slot starts by checking whether an actual change has taken place. If so, the
internal text is updated as well as the QLineEdit text. Then the textChanged signal is emitted
with the new text.

Any external widget interested in the text of the QLineEdit can either connect to the
textChanged signal or ask by calling the text method. The method, shown in Listing 6-5, is
simple—it returns m_text.

CHAPTER 6 = CREATING WIDGETS

Listing 6-5. Returning the current text

const QStringd NumericKeypad::text() const
{

return m_text;

}

Using a composite widget is just as easy as using an ordinary widget. In Listing 6-6 you
can see how the NumericKeypad widget is used. The keypad is placed over a label just to test the
textChanged signal. The label’s setText slot is connected to the keypad’s textChanged signal.
Figure 6-2 shows the application in action. The text of the QLineEdit is reflected by the QLabel
at all times.

Listing 6-6. Using the NumericKeypad widget

int main(int argc, char **argv)
{
OApplication app(argc, argv);

QWidget widget;
QVBoxLayout *layout = new QVBoxlLayout(8widget);

NumericKeypad pad;
layout->addWidget(&pad);

QLabel *1label = new QLabel;
layout->addWidget(label);

Q0bject::connect(&pad, SICNAL(textChanged(const QStringd)),
label, SLOT(setText(const QString8)));

widget.show();

return app.exec();

}

1 composed ==X

| 3.554215 |
[SEINUN § Y | T
[SUETINGN § SRNU | -
(SRR | SN) ST
[SNSTESORND | SURUSRNR) =S

3.554215

Figure 6-2. The composite widget live

161

162

CHAPTER 6 = CREATING WIDGETS

There are many benefits of composing widgets. Using the NumericKeypad widget with the
main function is far easier than if all the buttons and the QLineEdit widget were configured
there. Also, the signals and slots create a nice interface to connect the keypad to the rest of the
widgets.

Take a step back and look at the widget itself—you see that the component is far more
reusable than the knowledge of how to set up the solution. This makes it more likely to be
used in more places in an application (or in more applications). As soon as you use it twice,
you will save development time and effort since you need to set up the signal mapper only
once. You also know that it works because you have verified it once—saving you the problem
of locating bugs.

Changing and Enhancing Widgets

Another way to customize widgets is by changing or enhancing their behavior. For example, a
QLabel can make a great digital clock widget; all that is missing is the part that updates the text
with the current time. The resulting widget can be seen in Figure 6-3.

). B =X |

19:04

Figure 6-3. A label acting as a clock

By using an already existing widget as the starting point for a new widget, you avoid having
to develop all the logic needed for painting, size hints, and such. Instead you can focus on
enhancing the widget with the functionality you need. Let’s see how this is done.

First, there must be a method that checks the time at even intervals—once every second,
for example. The text has to be updated to the current time each time it is checked. To check
the time every second, you can use a QTimer. A timer object can be set up to emit the timeout
signal at a given interval. By connecting this signal to a slot of the clock label, you can check
the time and update the text accordingly every second.

Listing 6-7 shows the class declaration for the ClockLabel widget. It has a slot, updateTime,
and a constructor. That (and inheriting QLabel) is all you need to implement this custom
behavior.

Listing 6-7. The ClocklLabel class declaration

class ClockLabel : public QLabel
{
0 OBJECT
public:
ClockLabel(QWidget *parent = 0);

private slots:
void updateTime();

};

CHAPTER 6 = CREATING WIDGETS

You can see the implementation of the ClockLabel widget in Listing 6-8. Starting from the
bottom, the updateTime() slot is very simple—all it does is set the text to the current time. The
QTime: :toString() method converts a time to a string according to a formatting string, where
hh represents the current hour and mm represents the minute.

A QTimer object is created in the constructor. The interval (how often the timeout signal is
to be emitted) is set to 1,000 milliseconds (1 second).

Tip Divide the number of milliseconds by 1,000 to get the equivalent number of seconds. 1,000 milli-
seconds correspond to 1 second.

When the timer’s interval is set, the timer’s timeout () signal is connected to the
updateTime signal of this before the timer starts. QTimer objects must be started before they
begin emitting the timeout signal periodically. The signal emitting is turned off by using the
stop() method. This means that you can set up a timer and then turn it on and off depending
on the current state of the application.

Caution oTimer objects are good enough for user interfaces and such, but you have to use an alterna-
tive solution if you are developing an application requiring precision timing. The accuracy of the intervals
depends on the platform on which the application is running.

Before the constructor is completed, an explicit call is made to updateTime, which ensures
that the text is updated at once. Otherwise, it would take one second before the text was
updated, and the user would be able to see the uninitialized widget for a short period of time.

Listing 6-8. The ClockLabel implementation

ClockLabel::ClocklLabel(QWidget *parent) : QLabel(parent)
{
QTimer *timer = new QTimer(this);
timer->setInterval(1000);
connect(timer, SIGNAL(timeout()), this, SLOT(updateTime()));
timer->start();
updateTime();

}

void ClockLabel::updateTime()

{
setText(QTime::currentTime().toString("hh:mm"));

}

163

164

CHAPTER 6 = CREATING WIDGETS

Sometimes you might want to enhance an existing widget; for example, you might want a
slot to accept another type of argument or where a slot is missing. You can inherit the base
widget, add your slot, and then use the resulting class instead of the original one.

Catching the Events

Widgets provide the catalyst for processing user actions by providing access to the actual user-
generated events that trigger signals and provide interaction. Events are the raw input that the
user gives the computer. By reacting to these events, the user interface can interact with the
user and provide the expected functionality.

The events are processed by event handlers, which are virtual protected methods that the
widget classes override when they need to react to a given event. Each event is accompanied
with an event object. The base class of all event classes is QEvent, which enables the receiver to
accept or ignore an event using the methods with the same names. Ignored events can be
propagated to the parent widget by Qt.

Figure 6-4 shows user actions triggering events that are received by the QApplication.
These events result in the application calling the affected widget, which reacts to the event
and emits signals if necessary.

—
——

Objects

7
4 event /

andlers [Widgets
)
\ Widgets \ /'

—
——

Objects

Signals

Event -Events>» QApplication

Figure 6-4. User actions passing the QApplication object before reaching the widgets and
triggering signals driving the application

Listening to the User

To better understand how event handling works, you can create a widget that emits a signal
carrying a string that tells you which event has just been received. The widget class is called
EventWidget, and the signal is named gotEvent(const QString &). By hooking this signal to a
QTextEdit, you get an event log that you can use to explore the events.

Start by having a quick look at Listing 6-9. The EventWidget has a range of event handlers,
and the responsibility of each is described in the following list. These event handling methods
are some of the most common ones, but there are more. In each line in the list I kept the event
object type with the event name so that you can see which events are related. For instance, all
focus events take a QFocusEvent pointer as argument.

CHAPTER 6 = CREATING WIDGETS

e closeEvent(QCloseEvent*):The widget is about to close. (You saw how this was used
in Chapter 4.)

e contextMenuEvent(QContextMenuEvent*): A context menu is requested.
¢ enterEvent(QEvent*): The mouse pointer has entered the widget.

e focusInEvent(QFocusEvent*):The widget received focus.

e focusOutEvent(QFocusEvent*): Focus left the widget.

e hideEvent(QHideEvent*):The widget is about to be hidden.

¢ keyPressEvent(QKeyEvent*): A keyboard key has been pressed.

¢ keyReleaseEvent(QKeyEvent*): A keyboard key has been released.

e leaveEvent(QEvent*): The mouse pointer has left the widget.

e mouseDoubleClickEvent(QMouseEvent*): A mouse button has been double-clicked.
¢ mouseMoveEvent(QMouseEvent*): The mouse is moving over the widget.
e mousePressEvent(QMouseEvent*): A mouse button has been pressed.

¢ mouseReleaseEvent(QMouseEvent*): A mouse button has been released.
e paintEvent(QPaintEvent*): The widget needs to be repainted.

e resizeEvent(QResizeEvent*):The widget has been resized.

¢ showEvent(QShowEvent*):The widget is about to be shown.

e wheelEvent(QWheelEvent*): The mouse scroll view has been moved.

In the preceding list you can see that related events share the event object type. For
example, all mouse events—such as pressing, releasing, moving, and double-clicking—take a
QMouseEvent.

The events taking only a QEvent can be regarded as simple notifications. No additional
information is carried in a QEvent object, so all there is to know is that the event occurred.
Because the QEvent is the base class of all event classes, the event handlers sharing QEvent as
event object type are not related in the same way as the mouse events are, for example.

A few event handlers were left out of the list and the EventWidget class. Although the
missing handlers are not less relevant, they aren’t dramatically different from the ones used
in the class.

Listing 6-9. The EventWidget implements most event handlers and emits the gotEvent signal for
each event.

class EventWidget : public QWidget

{
Q_OBJECT

public:
EventWidget(QWidget *parent = 0);

165

166 CHAPTER 6 = CREATING WIDGETS

signals:
void gotEvent(const QString&);

protected:
void closeEvent(QCloseEvent * event);
void contextMenuEvent(QContextMenuEvent * event);
void enterEvent(QEvent * event);
void focusInEvent(QFocusEvent * event);
void focusOutEvent(QFocusEvent * event);
void hideEvent(QHideEvent * event);
void keyPressEvent(QKeyEvent * event);
void keyReleaseEvent(QKeyEvent * event);
void leaveEvent(QEvent * event);
void mouseDoubleClickEvent(QMouseEvent * event);
void mouseMoveEvent(QMouseEvent * event);
void mousePressEvent(QMouseEvent * event);
void mouseReleaseEvent(QMouseEvent * event);
void paintEvent(QPaintEvent * event);
void resizeEvent(QResizeEvent * event);
void showEvent(QShowEvent * event);
void wheelEvent(QWheelEvent * event);

};

Before you continue looking at the event handlers, look at the main function, which shows
the widget with a log. The source code is shown in Listing 6-10. The log is presented in a
QTextEdit widget, and the gotEvent signal is connected to the append(const QString&) slot of
the log. This is all the preparation needed before the widgets can be shown and the applica-
tion runs.

Listing 6-10. Creating a log widget and an EventWidget and using them

int main(int argc, char **argv)
{
OApplication app(argc, argv);

QTextEdit log;
EventWidget widget;

Q0bject::connect(&widget, SIGNAL(gotEvent(const QStringd)),
8log, SLOT(append(const QString&)));

log.show();
widget.show();

return app.exec();

}

CHAPTER 6 = CREATING WIDGETS

When the application is running, the log window is shown next to a window containing
the event widget. A sample log is shown in Figure 6-5. All events are listed, and selected
parameters are shown for some events. For example, the text is shown for QKeyEvent events,
and the position of the pointer is shown for QMouseEvent events.

T eventlister =5
enterEvent .
leaveEvent

enterEvent

leaveEvent

paintEvent

enterEvent

mousePressEvent(x:105, y:278, button:LeftButton)

paintEvent

mouseReleaseEvent(x:105, y:278, button:LeftButton)
keyPressEvent(text:, modifiers:ShiftModifier ControlModifier
AltModifier MetaModifier KeypadModifier GroupSwitchModifier)
keyPressEvent(text:Q, modifiers:ShiftModifier ControlModifier
AltModifier MetaModifier KeypadModifier GroupSwitchModifier)
keyReleaseEvent(text:Q, modifiers:ShiftModifier ControlModifier
AltModifier MetaModifier KeypadModifier GroupSwitchModifier)
keyReleaseEvent(text:, modifiers:MoModifier)

keyPressEvent(text:t, modifiers:NoModifier)

keyReleaseEvent(text:t, modifiers:NoModifier)

keyPressEvent(text:, modifiers:NoModifier)

keyReleaseEvent(text:, modifiers:MoModifier)
contextMenuBEvent(x:626, y:354, reason:Keyboard)
keyPressEvent(text:, modifiers:ShiftModifier ControlModifier
AltMadifier MetaModifier KeypadModifier GroupSwitchModifier)
keyPressEvent(text:, modifiers:ShiftModifier ControlModifier
AltModifier MetaModifier KeypadModifier GroupSwitchModifier)
leaveEvent

paintEvent

paintEvent

paintEvent

<]

Figure 6-5. A log from the EventWidget

Listing 6-11 offers the closeEvent handler as an example. The enterEvent, leaveEvent,
showEvent, hideEvent, and paintEvent handlers all simply log the name of the event. The show,
hide, and paint events have their own event object types. The QShowEvent and QHideEvent
classes add nothing to the QEvent class. The QPaintEvent does add a lot of information (you
will look more closely at this event later in this chapter).

Listing 6-11. A simple event handling method

void EventWidget::closeEvent(QCloseEvent * event)

{
emit gotEvent(tr("closeEvent"));

}

Dealing with Keyboard Events

The events dealing with keyboard activity are keyPresskEvent and keyReleaseEvent. They both
look similar, so only keyPressEvent is shown in Listing 6-12. Because most modern environ-
ments support auto-repeating keys, you might get several keyPressEvents before you see the

167

168

CHAPTER 6 = CREATING WIDGETS

keyReleaseEvent. You usually cannot rely on seeing the keyReleaseEvent—the user might
move the focus between widgets (using the mouse) before releasing the key.

If you need to ensure that your widget gets all keyboard events, use the grabKeyboard and
releaseKeyboard methods. When a widget grabs the keyboard, all key events are sent to it
regardless of which widget currently has the focus.

The event handler in the listing shows modifier keys and the text of the pressed key. The
modifiers are stored as a bit mask, and several can be active at once.

Listing 6-12. A keyboard event handling method

void EventWidget::keyPressEvent(QKeyEvent * event)

{
emit gotEvent(QString("keyPressEvent(text:%1, modifiers:%2)")
.arg(event->text())
.arg(event->modifiers()==0?tr("NoModifier"):(
(event->modifiers() & Qt::ShiftModifier ==0 ? tr(""):
tr("ShiftModifier "))+
(event->modifiers() & Qt::ControlModifier ==0 ? tr(""):
tr("ControlModifier "))+
(event->modifiers() & Qt::AltModifier ==0 ? tr(""):
tr("AltModifier "))+
(event->modifiers() & Qt::MetaModifier ==0 ? tr(""):
tr("MetaModifier "))+
(event->modifiers() & Qt::KeypadModifier ==0 ? tr(""):
tr("KeypadModifier "))+
(event->modifiers()&Qt::GroupSwitchModifier ==0 ? tr(""):
tr("GroupSwitchModifier")))));
}

Dealing with Mouse Events

The context menu event is triggered when the user tries to bring up a context menu (the menu
that appears when right-clicking on something—usually offering actions such as cut, copy,
and paste). This event can be triggered with both the mouse and the keyboard. The event
object contains the source of the request (reason) and the coordinates of the mouse pointer
when the event occurs. The handler is shown in Listing 6-13. If a context menu event is
ignored, it is reinterpreted and sent as a mouse event, if possible.

All event objects carrying the mouse position have the pos() and globalPos() methods.
The pos method is the position in widget-local coordinates, which is good for updating the
widget itself. If you want to create a new widget at the location of the event, you need to use
the global coordinates instead. The positions consist of x and y coordinates, which can be
obtained directly from the event object through the x, y, globalX, and globalY methods.

Listing 6-13. A context menu has been requested.

void EventWidget::contextMenuEvent(QContextMenuEvent * event)

{

emit gotEvent(QString("contextMenuEvent(x:%1, y:%2, reason:%3)")

CHAPTER 6 = CREATING WIDGETS

.arg(event->x())
.arg(event->y())
.arg(event->reason()==0ContextMenuEvent::Other ? "Other"
(event->reason()==QContextMenuEvent: :Keyboard ? "Keyboard" :
"Mouse")));

The context menu event carries the mouse position, as does the QMouseEvent. The mouse
events are mousePressEvent, mouseReleaseEvent, mouseMoveEvent, and mouseDoubleClickEvent.
You can see the latter in Listing 6-14. The handler shows the button as well as the x and y coor-
dinates.

When dealing with mouse events, it is important to understand that the movement event
is sent only as long as a mouse button is pressed. If you need to get the movement event at all
times, you must enable mouse tracking with the mouseTracking property.

If you want to get all the mouse events, you can use the mouse just as you can use the
keyboard. Use the methods grabMouse () and releaseMouse() for this. Just be careful because a
bug occurring while the mouse is grabbed can prevent mouse interaction for all applications.
The rule is to grab only when necessary, to release as soon as possible, and to never ever forget
to release the mouse.

Listing 6-14. A mouse event handling method

void EventWidget::mouseDoubleClickEvent(QMouseEvent * event)
{
emit gotEvent(QString("mouseDoubleClickEvent(x:%1, y:%2, button:%3)")
.arg(event->x())
.arg(event->y())
.arg(event->button()==
event->button(
event->button(
event->button()==

::LeftButton? "LeftButton":
::RightButton?"RightButton":
::MidButton? "MidButton":
::XButton1? "XButtoni":
"XButton2"));

)==0t
)==0t
)==0t
)==0t

Working with the Mouse Wheel

The mouse wheel is usually considered a part of the mouse, but the event has a separate event
object. The object contains the position of the mouse pointer when the event occurs as well as
the orientation of the wheel and the size of the scrolling (delta). The event handler is shown in
Listing 6-15.

The mouse wheel event is first sent to the widget under the mouse pointer. If it is not
handled there, it is passed on to the widget with focus.

Listing 6-15. The wheel is separate from the rest of the mouse.

void EventWidget::wheelEvent(QwheelEvent * event)

{
emit gotEvent(QString("wheelEvent(x:%1, y:%2, delta:%3, orientation:%4)")

169

170

CHAPTER 6 = CREATING WIDGETS

.arg(event->x())

.arg(event->y())

.arg(event->delta()).arg(event->orientation()==Qt::Horizontal?
"Horizontal":"Vertical"));

There are more event handlers implemented in the EventWidget class. You can learn a lot
about widgets by trying out different things on the widget and then studying the log.

Filtering Events

Creating an event filter is easier than inheriting a widget class and overriding an event handling
class. An event filter is a class inheriting Q0bject that implements the eventFilter(Q0bject*,
QEvent*) method. The method makes it possible to intercept events before they reach their
destinations. The events can then be filtered (let through or stopped).

Event filters can be used to implement many special functions, such as mouse gestures
and recognizing key sequences. They can be used to enhance widgets or to change a widget’s
behavior without having to subclass the widget.

Let’s try an event filter that removes any numerical key presses from the event queue.
The class declaration and implementation is shown in Listing 6-16. The interesting part is the
eventFilter method, which has two arguments: a pointer to the destination Q0bject (dest)
and a pointer to the QEvent object (event). By checking whether the event is a key press event
using type, you know that the event pointer can be cast to a QkeyEvent pointer. The QKeyEvent
class has the text method that you use to determine whether the key pressed is a number.

If the key press is from a numerical key, true is returned, indicating that the filter handled
the event. This stops the event from reaching the destination object. For all other events, the
value of the base class implementation is returned, which will result in either handling the
event by the base class filter or letting it pass through the final destination object.

Listing 6-16. The event filtering class KeyboardFilter stops key presses for numeric keys.

class KeyboardFilter : public QObject

{
public:
KeyboardFilter(QObject *parent = 0) : QObject(parent) {}
protected:
bool eventFilter(QObject *dist, QEvent *event)
{
if(event->type() == QEvent::KeyPress)
{

OKeyEvent *keyEvent = static cast<OKeyEvent*>(event);
static QString digits = QString("1234567890");
if(digits.indexOf(keyEvent->text()) != -1)
return true;

CHAPTER 6 = CREATING WIDGETS

return QObject::eventFilter(dist, event);

}
};

To test the event filter, you can install it on a QLineEdit (its source code is shown in
Listing 6-17). The QLineEdit and KeyboardFilter objects are created like any other objects.
Then the installEventFilter(Q0bject*) is used to install the filter on the line edit before the
editor is shown.

Listing 6-17. To use an event filter, you must install it on a widget. The events to that widget are
then passed through the filter.

int main(int argc, char **argv)
{
OApplication app(argc, argv);

QlLineEdit lineEdit;
KeyboardFilter filter;

linekdit.installEventFilter(&filter);
lineEdit.show();

return app.exec();

Try using the line edit. The key presses are filtered, but numbers can still be forced into
the editor by using the clipboard. You must be careful when implementing and applying event
filters—there might be hard-to-foresee side effects.

If you are careful when designing your filters you can enhance applications by filtering,
reacting to, and redirecting events—making interaction easier for the user. An example is to
catch keyboard events in a draw area, redirecting them to a text editor, and moving the focus.
This saves the user from clicking the text editor before entering text, making the application
more user-friendly.

Creating Custom Widgets from Scratch

When nothing else works, or if you choose to follow a different approach, you might end up in
a situation in which you have to create your own widget. Creating a custom widget consists of
implementing an interface of signals and slots as well as a set of applicable event handlers.

To show you how this is done, I will guide you through the CircleBar widget (see Figure 6-6).
The application shown in the figure has a CircleBar widget over a horizontal slider. Moving
the slider changes the value of the circle bar, as does rotating the mouse wheel when hovering
over the circle bar widget.

The function of the CircleBar widget is to show a value between 0 and 100 by varying the
size of the filled circle. A full circle means 100, while a dot in the middle means 0. The user can
change the value shown by using the mouse scroll wheel.

m

172 CHAPTER 6 = CREATING WIDGETS

r:r circlebar L_HQ]1

|
L]

Figure 6-6. The CircleBar widget and a horizontal slider

The main function, shown in Listing 6-18, sets up the slider and the circle bar. The code
works by first creating a base widget for the QVBoxLayout that holds the slider and the circle
bar. The slider and circle bar are then interconnected, so a valueChanged signal from one of
them results in a setValue call to the other one. Then the base widget is shown before the
application is started.

Listing 6-18. Setting up the CircleBar and the slider

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QWidget base;
QVBoxLayout *layout = new QVBoxLayout(base);

CircleBar *bar = new CircleBar;
QSlider *slider = new QSlider(Qt::Horizontal);

layout->addWidget(bar);
layout->addWidget(slider);

QObject::connect(slider, SIGNAL(valueChanged(int)), bar, SLOT(setValue(int)));
QObject::connect(bar, SIGNAL(valueChanged(int)), slider, SLOT(setValue(int)));

base.show();

return app.exec();

From the main function you can see that the CircleBar widget needs a setValue(int) slot
and a valueChanged(int) signal. To make the interface complete, you also need to have a value
method to read the value.

CHAPTER 6 = CREATING WIDGETS

Because the widget is painted by the code, the paintEvent needs to be reimplemented.
You will also need to reimplement the wheelEvent because you want to listen to mouse wheel
activity. I chose to add a heightForWidth function, which will be used to keep the widget
square, and a sizeHint method that gives it a nice starting size.

All this is summarized in the class declaration shown in Listing 6-19.

Listing 6-19. The class declaration of the CircleBar widget class

class CircleBar : public QWidget

{
Q_OBJECT

public:
CircleBar(int value = 0, QWidget *parent = 0);

int value() const;

int heightForWidth(int) const;
QSize sizeHint() const;

public slots:
void setValue(int);

signals:
void valueChanged(int);

protected:
void paintEvent(QPaintEvent*);
void wheelEvent(QWheelEvent*);

private:
int m_value;

};

The constructor of the CircleBar class shown in Listing 6-20 starts by initializing the
internal value that is kept in the m_value member. It also creates a new size policy that is
preferred in both directions and tells the layout management system to listen to the
heightForWidth method.

Listing 6-20. The constructor of the CircleBar widget

CircleBar::CircleBar(int value, QWidget *parent) : QWidget(parent)
{

m_value = value;

0SizePolicy policy(QSizePolicy::Preferred, QSizePolicy::Preferred);
policy.setHeightForWidth(true);
setSizePolicy(policy);

173

174

CHAPTER 6 = CREATING WIDGETS

The size policy is accompanied by the heightForWidth(int) method and the sizeHint
method returning the preferred widget size. The implementation of these methods is shown in
Listing 6-21. The heightForhWidth method takes a width as argument and returns the wanted
height to the layout manager. The implementation used in the CircleBar class returns the
given width as height, resulting in a square widget.

Listing 6-21. The size handling methods

int CircleBar::heightForWidth(int width) const

{
return width;
}
QSize CircleBar::sizeHint() const
{
return QSize(100, 100);
}

The methods for handing the values value() and setValue are shown in Listing 6-22. The
value method is simple—it simply returns m_value. The setValue method limits the value to
the range 0-100 before checking whether a change has taken place. If so, m_value is updated
before a call to update is made and the valueChanged signal is emitted.

By calling update(), a repaint event is triggered, which causes a call to paintEvent.
Remember that you can’t draw the widget outside the paintEvent method. Instead, call update
and then handle the painting from the paintEvent method.

Listing 6-22. Handing the value of the CircleBar widget

int CircleBar::value() const

{

return m_value;

}

void CircleBar::setValue(int value)

{

if(value < 0)
value = 0;

if(value > 100)
value = 100;

if(m_value == value)
return;

m_value = value;

CHAPTER 6 = CREATING WIDGETS

update();

emit valueChanged(m_value);

}

In Listing 6-23 you can see the implementation of the paintEvent method. Before you
look at the code, you should know how the autoFillBackground property works. As long as it is
set to true (the default), the widget’s background is filled with the appropriate color before the
paintEvent method is entered. This means that we do not have to worry about clearing the
widget's area before painting to it.

The radius and factor helper variables are calculated in the paintEvent method. Then a
QPainter object is created to draw the widget. First the pen is set to black, and the outer circle
is drawn; then the brush is set to black, and the inner circle is drawn. The pen is used to draw
the contour of the circle; the brush is used to fill it. By default, both are set to draw nothing, so
setting the pen only before drawing the outer circle gives a circle contour.

Listing 6-23. Painting the outer and inner circles

void CircleBar::paintEvent(QPaintEvent *event)

{
int radius = width()/2;
double factor = m value/100.0;
QPainter p(this);
p.setPen(Qt::black);
p.drawEllipse(0, 0, width()-1, width()-1);
p.setBrush(Qt::black);
p.drawEllipse((int)(radius*(1.0-factor)),
(int)(radius*(1.0-factor)),
(int) ((width()-1)*factor)+1,
(int) ((width()-1)*factor)+1);
}

The final piece of the CircleBar widget is the wheelEvent method (see Listing 6-24). First
the event is accepted before the value is updated using setValue.

The delta value of the QwheelEvent object tells how many eighths of a degree the scroll
movement is. Most mice scroll 15 degrees at a time, so each “click” in the scroll wheel corre-
sponds to a delta of 120. I chose to divide the delta value by 20 before using it to change the
value. I picked the value 20 by feel—the bar is resized quickly enough while still giving enough
precision.

Listing 6-24. Updating the value from scroll wheel movements

void CircleBar::wheelEvent(QWheelEvent *event)

{

event->accept();
setValue(value() + event->delta()/20);
}

175

176

CHAPTER 6 = CREATING WIDGETS

Custom widgets consist of two parts: properties visible to the rest of the application
(value and setValue) and event handlers (paintEvent and wheelEvent). Almost all custom
widgets reimplement the paintEvent method, while the rest of the event handlers to reimple-
ment are picked by determining which are needed to implement the functionality wanted.

Your Widgets and Designer

After you have created a widget of your own, you might want to integrate it with Designer. The
benefit of doing this is that you are not forced to leave the Designer workflow because you are
using custom widgets. Another advantage is that if you develop widgets for others, you can let
them use Designer with your widgets as well as standard Qt widgets.

There are two approaches to integrating widgets with designer: one simple and one com-
plex. Comparing the two methods, the simple method leaves more work to do when using
Designer, while the complex method makes the integration with Designer seamless. Let’s start
out with the simple approach.

Promotion

You can test the promotion way of integrating your widgets with Designer using the ClockWidget
that you created earlier in this chapter. Because it is based on a QLabel, draw a QLabel on the
form you are designing. Now bring up the context menu for the label and choose the Promote
to Custom Widget menu entry, which brings up the dialog shown in Figure 6-7. The figure has
a class name—the header file name is automatically guessed by Designer.

(@ Promote to Custom Widget BR[x]
Base class name: QLabel
Custom class name: | CustomWidget M
Header file: customwidget.h
[0K l ’ Cancel]

Figure 6-7. Promoting a QLabel fo a ClockWidget

To be able to use this feature of Designer, you must provide a constructor taking a QWidget
pointer and make the include file accessible for the make system. This can be done with the
INCLUDEPATH variable in the QMake project file.

It is important to pick a widget that is in your custom widget’s inheritance tree to make
sure that all properties shown in Designer are available for your widget. The user interface
compiler generates code for setting all properties marked as bold in Designer. In the property
box shown in Figure 6-8, the properties objectName, geometry, text, and flat will be set.

This means that if you promote the widget, your widget needs to have the setObjectName,
setGeometry, setText, and setFlat methods. If you choose to promote a widget from the
inheritance tree of your custom widget, you get these methods free through inheritance.

CHAPTER 6 = CREATING WIDGETS 177

Property Editor 8 %
Property | Value
groupBox

windowModality Qt::NonModal
enabled true

geometry [130, 70, 120, 80]

sizePolicy [Preferred, Preferred, 0, 0]

minimumSize [0, 0]

maximumsize [16777215, 16777215]

sizeIncrement [0, 0]

baseSize [0, 0]
palette

font [Ae [Ms Shell DIg 2, 8]
cursor % Arrow
mouseTracking false
focusPolicy Qt::NoFocus
contextMenuPolicy Qt::DefaultContextMenu
acceptDrops false

toolTip

statusTip

whatsThis

accessibleName

RN

accessibleDescription

layoutDirection Qt::LeftToRight
autoFillBackground false
styleSheet
title Qt Designer
alignment [Qt::AlignLeft,]
S e E0)
checkable false
checked false

Figure 6-8. The properties marked as bold will be set in the code generated by uic.

Providing a Plugin

If you spend slightly more time implementing a plugin that works in Designer, you can skip
the promotion method in Designer. Instead your widget will appear in the widget box with all
the other widgets.

Creating a widget plugin for Designer is pretty much a copy-and-paste job. Before you can
start creating the plugin, you must make a small change to the widget class declaration. (For
the plugin, you'll use the CircleBar widget developed earlier in this chapter.) The class decla-
ration is shown in Listing 6-25. The first half of the change is the addition of the ODESIGNER _
WIDGET EXPORT macro, which ensures that the class is available from the plugin on all plat-
forms that Qt supports. The other half is the addition of a constructor taking a parent as
argument. This is needed for the generated code from uic to work.

178

CHAPTER 6 = CREATING WIDGETS

Listing 6-25. Changes to the CircleBar class

class QDESIGNER_WIDGET_EXPORT CircleBar : public QWidget

{
Q_OBIJECT

public:
CircleBar(QWidget *parent = 0);
CircleBar(int value = 0, QWidget *parent = 0);

int value() const;

int heightForWidth(int) const;
QSize sizeHint() const;

public slots:
void setValue(int);

signals:
void valueChanged(int);

protected:
void paintEvent(QPaintEvent*);
void wheelEvent(QWheelEvent*);

private:
int m_value;

};

Now you can start looking at the actual plugin in Listing 6-26. The plugin class is simply
an implementation of the interface defined by the QDesignerCustomWidgetInterface class. All
methods must be implemented, and the task of each method is strictly defined.

The plugin class for the CircleBar widget is called CircleBarPlugin. This is a common
way to name widget plugin classes.

Listing 6-26. The plugin class
#ifndef CIRCLEBARPLUGIN H
#define CIRCLEBARPLUGIN H
#include <QDesignerCustomWidgetInterface>

class QExtensionManager;

class CircleBarPlugin : public QObject, public QODesignerCustomWidgetInterface

{
Q_OBJECT

Q INTERFACES(QDesignerCustomWidgetInterface)

CHAPTER 6 = CREATING WIDGETS 179

public:
CircleBarPlugin(QObject *parent = 0);

bool isContainer() const;
bool isInitialized() const;
QIcon icon() const;

QString domXml() const;

QString group() const;

QString includeFile() const;

QString name() const;

QString toolTip() const;

QString whatsThis() const;

QWidget *createWidget(QWidget *parent);

void initialize(QDesignerFormEditorInterface *core);

private:
bool m_initialized;

};
#endif /* CIRCLEBARPLUGIN H */

First, widgets must handle an initialized flag, which is done through the constructor and
the isInitialized() and initialize(QDesignerFormEditorInterface*) methods. The methods
are shown in Listing 6-27. You can see that the implementation is pretty straightforward and
can be copied and pasted between all widget plugin classes.

Listing 6-27. Handing initialization

CircleBarPlugin::CircleBarPlugin(QObject *parent)

{
m initialized = false;
}
bool CircleBarPlugin::isInitialized() const
{
return m_initialized;
}

void CircleBarPlugin::initialize(QDesignerFormEditorInterface *core)

{
if(m_initialized)
return;

m initialized = true;

180

CHAPTER 6 = CREATING WIDGETS

If you thought initialized flag handling was simple, you will find the methods in Listing 6-28
even easier. The methods isContainer(),icon(),toolTip(), and whatsThis() return as little as
possible. You can easily give your widget a custom icon, a tooltip, and What's this text.

Listing 6-28. Simple methods returning the least possible

bool CircleBarPlugin::isContainer() const

{
return false;
}
QIcon CircleBarPlugin::icon() const
{
return QIcon();
}
QString CircleBarPlugin::toolTip() const
{
return "";
}
QString CircleBarPlugin::whatsThis() const
{
return "";
}

The includeFile(),name(), and domXml() methods return standardized strings built from
the class name. It is important to return the same class name from both the name and domXml
methods. Notice that the name is case sensitive. You can see the methods in Listing 6-29.

Listing 6-29. Returning XML for the widget, header file name, and class name

QString CircleBarPlugin::includeFile() const

{
return "circlebar.h";
}
QString CircleBarPlugin::name() const
{
return "CircleBar";
}

QString CircleBarPlugin::domXml() const
{

return "<widget class=\"CircleBar\" name=\"circleBar\">\n"
"</widget>\n";

CHAPTER 6 = CREATING WIDGETS

To control in which group of widgets your widget appears, the name of the group is
returned from the group() method. The method implementation is shown in Listing 6-30.

Listing 6-30. The group to join in Designer

QString CircleBarPlugin::group() const
{

return "Book Widgets";

}

To help Designer create a widget, you need to implement a factory method, which is
named createlWidget (OQWidget*) and is shown in Listing 6-31.

Listing 6-31. Creating a widget instance

QWidget *CircleBarPlugin::createWidget(QWidget *parent)
{

return new CircleBar(parent);

}

The final step is to actually export the plugin class as a plugin by using the Q_EXPORT _
PLUGIN2 macro, as shown in Listing 6-32. This line is added to the end of the implementation
file.

Listing 6-32. Exporting the plugin

Q EXPORT_PLUGIN2(circleBarPlugin, CircleBarPlugin)

To build a plugin, you must create a special project file, which is shown in Listing 6-33.
The important lines are highlighted in the listing. What they do is tell QMake to use a template
for building a library; then the CONFIG line tells QMake that you need the designer and plugin
modules. The last line configures the output of the build to end up in the right place using the
DESTDIR variable.

Listing 6-33. The project file for a Designer plugin

TEMPLATE = 1ib
CONFIG += designer plugin release

DEPENDPATH += .
TARGET = circlebarplugin

HEADERS += circlebar.h circlebarplugin.h
SOURCES += circlebar.cpp circlebarplugin.cpp

DESTDIR = $$[QT INSTALL DATA]/plugins/designer

181

182

CHAPTER 6 = CREATING WIDGETS

After you build the plugin, you can check whether Designer has found it by accessing the
Help » About Plugins menu item. This will bring up the dialog shown in Figure 6-9. In the
figure, you can see that the plugin has been loaded and that the widget has been found.

(% Plugin Information e
Qt Designer found the following plugins

- (@ GradientRendererEx [»]
- /@ PathStrokeRendererkx
@ CompositionRenderer
3 drclebarplugin.dil

@ CircleBar

=- 3 qt3supportwidgets.dll
Q3ToolBar

- @ Q3IconView
- @ Q3GroupBox
-~ (@ Q3Frame L
- @ Q3Wizard
@
L@
@

Q3Mainwindow
Q3WidgetStack
(Q3ButtonGroup
- (@ Q3Table]

Figure 6-9. The plugin has been loaded.

Creating widget plugins for Designer is simply a matter of filling out a given interface. The
job is easy, but it can be quite tedious.

Summary

Custom widgets are what make your application different from the rest. The special task that
your application will perform is often handled through a special widget. Having said this, I
recommend that you pick standard widgets whenever possible because it can be difficult for
the users of your application to learn how to use your special widget.

Designing widgets that fit into the Qt way of writing applications is not hard. First, you
need to find a widget to inherit from—the starting point. If there is no given starting point, you
have to start from the QWidget class.

After you have picked a suitable starting point, you must decide which events you want to
pay attention to. This helps you decide which event handling functions to override. The event
handlers can be considered your interface with users.

When you have decided on your interface, you need to tend to the rest of the application,
including setters, getters, signals, and slots (as well as setting up size policies and creating size
hints). Make sure to think through usage scenarios other than the current one to make your
widget reusable. An investment in time when writing a widget can help you in future projects
because you can save having to reinvent the wheel time after time.

After having discussed all these software development issues, I must emphasize the most
important aspect of your widgets: usability. Try thinking as a user and make sure to test your
design on real users before putting it in your production software.

CHAPTER 7

Drawing and Printing

Al] painting in Qt is performed through the QPainter class in one way or another. Widgets,
pictures, delegates—everything uses the same mechanism. There is actually one exception to
the rule (to use OpenGL directly), but you'll start with the QPainter class.

Drawing Widgets
Using Qt you can draw on almost anything: widgets, pictures, pixmaps, images, printers,
OpenGL areas, and so on. The common base class of all these drawables is the QPaintDevice
class.

Since a widget is a paint device, you can easily create a QPainter for drawing onto the
widget; simply pass this as argument to the constructor, as shown in Listing 7-1.

Listing 7-1. Pass this as argument to the QPainter constructor from a paint event handler to set
everything up.

void CircleBar::paintEvent(QPaintEvent *event)

{

QPainter p(this);

To set up a painter for another paint device, just pass a pointer to it to the painter con-
structor. Listing 7-2 shows how a painter for a pixmap is set up. The pixmap that is 200 pixels
wide and 100 pixels high is created. The painter for drawing on the pixmap is then created,
and a pen and a brush are set up. Pens are used to draw the boundary of whatever shape you
are drawing. Brushes are used to fill the interior of the shape.

Before continuing, you need to know what a pixmap is and how it is different from an
image or a picture. There are three major classes for representing graphics in Qt: QPixmap is
optimized for being shown onscreen, QImage is optimized for loading and saving images, and
QPicture records painter commands and makes it possible to replay them later.

183

184

CHAPTER 7 = DRAWING AND PRINTING

Tip When targeting Unix and X11, the QPixmap class is optimized for showing only onscreen. It can even
be stored on the X server (handing the screen), meaning less communication between the application and
the X server.

Listing 7-2. Creating a pixmap and a painter before setting up a pen and a brush

QPixmap pixmap(200, 100);
QPainter painter(&pixmap);

painter.setPen(Qt::red);
painter.setBrush(Qt::yellow);

Listing 7-2 sets the pen and brush to Qt’s standard colors—a red pen and a yellow brush
in this case. It is possible to create colors from the red, green, and blue components through
the constructor of the QColor class. You can use the static methods QColor: : fromHsv and
QColor: :fromCmyk to create a color from hue, saturation, and value; or cyan, magenta, yellow,
and black. Qt also supports an alpha channel, controlling the opacity of each pixel. (You'll
experiment with this later in the chapter.)

If you want to clear the pen and brush setting, you can use the setPen(Qt: :noPen) and
setBrush(Qt: :noBrush) calls. The pen is used to draw the outlines of shapes, while the brush is
used to fill them. Hence, you can draw the outlines without a brush and fill the shapes without
apen.

The Drawing Operations

The painter class enables you to draw most basic shapes that you might need. This section
lists the most useful methods along with example output. First let’s take a look at a few classes
that are often used as arguments to the drawing method.

When drawing, you must tell the painter where to draw the shapes. Each point of the
screen can be specified using an x and a y value, as shown in Figure 7-1. As you can see, the
y-axis goes from the top, where y is 0 and downward to higher values. In the same way, the
x-axis grows while going from the left to the right. When talking about a point, you write (x,y).
This means that (0,0) is your upper-left corner of the coordinate system.

Note It’s possible to use negative coordinates to move above and to the left of the (0,0) position.

CHAPTER 7 © DRAWING AND PRINTING 185

Y
>

Figure 7-1. The x value increases from left to right; the y value increases from the top downward.

Figure 7-2 shows how the coordinate system of a widget can be different from the screen
when drawing on a widget. The coordinates used when drawing on a widget are aligned so
that (0,0) is the upper-left corner of the widget (which is not always the same as (0,0) in the
device’s global coordinate system). The global coordinate system addresses actual pixels
onscreen, dots on printers, and points on other devices.

Screen (0,0)

Y
x

Widget a (0,0)

Widget b (0,0
Widget a getb(0.0)

Y

Widget b

Figure 7-2. When drawing on a widget, the upper-left corner of the widget is (0,0).

186

CHAPTER 7 = DRAWING AND PRINTING

A point on the screen is represented by a QPoint object, and you can specify the x and y
values for a point in the constructor. A point is usually not enough to draw something; to
specify a point alongside a width and a height you can use the QRect class. The QRect construc-
tor accepts an x value, a y value, and a width, followed by a height. Figure 7-3 shows a QRect
and QPoint in a coordinate system.

Screen (0,0)

T

p.y()

< PX0 opoint p

-
A —=E—>

< r.X()
0 rwidth() R
S
2 QRect r
=
\ 4

Figure 7-3. A QPoint and a QRect with their x, y, width, and height properties

Tip There are two classes closely related to QPoint and QRect: QPointF and QRectF. They are equiva-
lent, but operate on floating-point values. Aimost all methods that accept a rectangle or point can accept
either type of rectangle or point.

Lines

Aline is the most basic shape that you can draw using a painter. A line that goes between
two points is drawn by using the drawLine(QPoint,QPoint) method. If you want to join
more points in one go, you can use the drawPolyline(QPoint*, int) method. The
drawlLines(QVector<QPoint>) method is also used to draw several lines at once, but the
lines aren’t continuous. The three methods are used in Listing 7-3 and the result is shown
in Figure 7-4.

In the listing, a pixmap is created and filled with white before a painter is created, and the
pen is configured to draw black lines. The two vectors polyPoints and linePoints are initial-
ized, where 1inePoints is calculated from shifting the polyPoints points 80 pixels to the right.
You can shift the points by adding an offset QPoint to each QPoint, which adds the x and y
values together separately.

CHAPTER 7 © DRAWING AND PRINTING

Note | refer to polyPoints as a vector because that is what a QPolygon really is. However, the
QPolygon class also provides methods for moving all the points around at once, as well as calculating
the rectangle containing all the points.

To draw actual lines, the drawLine, drawPolyline, and drawLines methods are called. Com-
pare the differences between drawPolyline and drawLines. As you can see, drawPolyline joins
all points, while drawLines joins each pair of points given.

Listing 7-3. Drawing lines using drawLine, drawPolyline, and drawlLines

QPixmap pixmap(200, 100);
pixmap.fill(Ot::white);

QPainter painter(&pixmap);
painter.setPen(Qt::black);

QPolygon polyPoints;

polyPoints << QPoint(60, 10)
<< QPoint(80, 90)
<< QPoint(75, 10)
<< QPoint(110, 90);

QVector<QPoint> linePoints;
foreach(QPoint point, polyPoints)
linePoints << point + QPoint(80, 0);

painter.drawLine(QPoint(10, 10), QPoint(30, 90));

painter.drawPolyline(polyPoints);
painter.drawLines(linePoints);

L

Figure 7-4. Lines drawn using different methods; from left to right: drawLine, drawPolylines, and
drawlines (two lines)

187

188

CHAPTER 7 = DRAWING AND PRINTING

Aline is drawn using the pen, so you can draw the line you need by altering the properties
of the pen object. The two most commonly used properties of a QPen object are color and
width, which control the color of the line drawn and the width.

When drawing continuous lines using drawPolyline, it is useful to be able to control how
the lines are joined together—the joinStyle property can help. Figure 7-5 shows the available
styles: bevel, miter, and rounded. The appropriate style is set by setting the joinStyle of your
QPen object to Qt: :BevelJoin, Qt::MiterJoin, or Qt: :RoundJoin.

Miter Bevel Rounded

Figure 7-5. Line segments can be joined in three ways: bevel, miter, and rounded.

The QPen can be set up to draw dotted and dashed lines as well as completely freely
dashed lines. The different variations of this are shown in Figure 7-6.

— L —y — -
—y — —
— — — -y
Solid Dashed Dot-dashed
e Ty —
‘..~... .-....... — §~
Dot-dot-dashed Dotted Custom

Figure 7-6. Lines can be drawn solid or dashed in different patterns—there are predefined
patterns as well as capabilities to do custom patterns.

The pattern is picked by setting the style property of the QPen object to Qt: :SolidlLine,
Qt::DotLine, Qt::DashLine, Qt::DotDashlLine, Qt: :DotDotDashLine, or Qt: :CustomDashLine. If
you use a custom line, you must also set a custom dash pattern through the dashPattern prop-
erty (Listing 7-4 shows how it’s done). The output from the listing is shown in Figure 7-7.

The dashPattern consists of a vector list of greal values. The values determine the width
of the dashes and gaps, where the first value is the first dash, then a gap, then a dash, then
another gap, and so on.

CHAPTER 7 © DRAWING AND PRINTING

Listing 7-4. Drawing lines using predefined or custom patterns

QPixmap pixmap(200, 100);
pixmap.fill(Ot::white);

QPainter painter(&pixmap);
QPen pen(Qt::black);

pen.setStyle(Qt::SolidlLine);
painter.setPen(pen);
painter.drawLine(QPoint(10, 10), QPoint(190, 10));

pen.setStyle(Qt::DashDotlLine);
painter.setPen(pen);
painter.drawLine(QPoint(10, 50), QPoint(190, 50));

pen.setDashPattern(QVector<greal>() << 1 << 1 << 1 << 1 << 2 << 2
2K 2K AKKA<Acd
<< 8 << 8<<8<8);

pen.setStyle(Qt::CustomDashLine);

painter.setPen(pen);

painter.drawLine(QPoint(10, 90), QPoint(190, 90));

Figure 7-7. Predefined and custom patterns

Square Shapes

You can draw rectangles with square or rounded corners, as shown in Figure 7-8. The methods
accept either a QRect or four values representing an (x,y) pair for the top-left corner, then the
width, followed by the height of the rectangle. The methods are named drawRect and
drawRoundRect.

189

190

CHAPTER 7 = DRAWING AND PRINTING

- J

Figure 7-8. Rectangles with square and rounded corners

Listing 7-5 shows how rectangles with rounded and square corners are drawn. The first
two rectangles are drawn using coordinates specified directly in the method calls. The coordi-
nates are specified as x, y, w, h; where x and y specify the top-left corner, and w, h specify the
width of the rectangle.

Note If wor his less than 0, the corner specified by x, y is not the top-left corner of the rectangle.

The second pair of rectangles is drawn according to a given QRect class, which holds the
coordinates for the rectangle. In the drawRoundRect call, the rect variable is used directly. In
the drawRect call, the rectangle specified by rect is translated, or moved, 45 pixels down. This
is achieved by using the translated(int x, int y) method that returns a rectangle of the
same size, but moved by the amount of pixels specified.

The results of the drawing operations are shown in Figure 7-9.

Listing 7-5. Drawing rectangles to a pixmap

QPixmap pixmap(200, 100);
pixmap.fill(Qt::white);

QPainter painter(&pixmap);
painter.setPen(Qt::black);

painter.drawRect(10, 10, 85, 35);
painter.drawRoundRect(10, 55, 85, 35);

QRect rect(105, 10, 85, 35);

painter.drawRoundRect(rect);
painter.drawRect(rect.translated(0, 45));

CHAPTER 7 © DRAWING AND PRINTING

N _

Figure 7-9. The drawn rectangles

Round Shapes

Circles and ellipses are drawn by using the drawEl1lipse method (see Figure 7-10). The method
takes a rectangle or four values for x, y, width, and height (just like the rectangle drawing
methods). To draw a circle, you have to make sure that the width and height are equal.

Figure 7-10. Circles and ellipses are drawn using the drawE1lipse method.

Drawing ellipses is fun because you can also draw parts of them. Qt can draw three parts
(shown in Figure 7-11):

¢ drawArc draws an arc—the part of the line around the circle.

¢ drawChord draws a circle segment—the area enclosed between the chord and the arc
outside the chord.

¢ drawPie draws a pie segment—a pie-shaped piece of the ellipse.

All the methods for drawing parts of ellipses take a rectangle (just like the drawE1lipse
method). They then accept a starting angle and a value indicating how many degrees the part
of the ellipse is spanning over. The angles are expressed as integers, where the value is 1/16 of
a degree, which means that the value 5760 corresponds to a full circle. The value 0 corre-
sponds to three o’clock, and positive angles move counterclockwise.

Arc Chord Pie

Figure 7-11. An arc, a chord, and a pie-shaped piece of a circle

191

192

CHAPTER 7 = DRAWING AND PRINTING

Listing 7-6 shows how to draw ellipses and arcs (the results are shown in Figure 7-12). As
you can see, the proportions of the shapes are changed, and the rightmost ellipse and arc are
actually circular (the width equals the height).

As the source code shows, it is possible to specify the rectangle in which the ellipse or arc
is drawn by using coordinates directly or by passing a QRect value to the drawing method.

When specifying the angles, I multiplied the different values by 16 to convert the value
from actual degrees to the values that Qt expects.

Listing 7-6. Drawing ellipses and arcs

QPixmap pixmap(200, 190);
pixmap.fill(Qt::white);

QPainter painter(&pixmap);
painter.setPen(Qt::black);

painter.drawEllipse(10, 10, 10, 80);
painter.drawEllipse(30, 10, 20, 80);
painter.drawEllipse(60, 10, 40, 80);
painter.drawEllipse(QRect(110, 10, 80, 80));

painter.drawArc(10, 100, 10, 80, 30*16, 240*16);
painter.drawArc(30, 100, 20, 80, 45*16, 200*16);

painter.drawArc(60, 100, 40, 80, 60*16, 160*16);
painter.drawArc(QRect(110, 100, 80, 80), 75*16, 120*16);

O
i

Figure 7-12. The drawn ellipses and arcs

CHAPTER 7 © DRAWING AND PRINTING 193

Text

Qt offers several possible ways to draw text (see Figure 7-13 for some examples). Refer to the
figure while you work your way through the code used to create it.

_jfou can draw text from a point...

|y0u can draw it inside a rectar|
Left. Right]
Left. Right.|

A QTextDocument can be used
to present formatted text in a
nice way.

It can be formatted iN
different ways.

The text can be really long
and contain many paragraphs.

Figure 7-13. You can draw text in many different ways.

First of all, you need to create a QPixmap to draw to and a QPainter to draw with. You also
have to fill the pixmap with white and set the pen of the painter to be black:

QPixmap pixmap(200, 330);
pixmap.fill(Ot::white);

QPainter painter(&pixmap);
painter.setPen(Qt::black);

Draw the text at the top of the figure, which originates at a QPoint. The following source
code shows you the drawText call is used. The following drawLine class simply marks the point
used with a cross (you can see this cross in Figure 7-13 on the left of the top text).

QPoint point = QPoint(10, 20);

painter.drawText(point, "You can draw text from a point...");
painter.drawLine(point+QPoint(-5, 0), point+QPoint(5, 0));
painter.drawLine(point+QPoint(0, -5), point+QPoint(0, 5));

Drawing text from a point has its advantages—it is an easy way to get text onto the screen.
If you need more control, you can draw text in a rectangle, which means that you can align the

text to the right, left, or center horizontally (also at the top, bottom, or center vertically). The
enumerations used for alignment are summarized in this list:

e Qt::Alignleft: Align left

e Qt::AlignRight: Align right

194

CHAPTER 7 = DRAWING AND PRINTING

e Qt::AlignHCenter: Center-align horizontally

e Qt::AlignTop: Align at the top

e Qt::AlignBottom: Align at the bottom

e Qt::AlignVCenter: Center-align vertically

e Qt::AlignCenter: Center-align both vertically and horizontally

Another benefit of drawing the text inside a rectangle is that the text is clipped to the rec-
tangle, which means you can limit the area used by the text. The following source code draws
a text centered in a rectangle:

QRect rect = QRect(10, 30, 180, 20);
painter.drawText(rect, Qt::AlignCenter,

"...or you can draw it inside a rectangle.");
painter.drawRect(rect);

Because you can limit the text to a rectangle, you also need to be able to determine how
much space the text uses. Start by translating the rectangle to a new position; you'll get the
standard QFont from the QApplication object. Using the font, set a pixelSize to fit the rectangle
before drawing text on either side of the rectangle.

Tip Because you're painting to a QPixmap, use the font from the QApplication. If you were painting to a
QWidget or to a QPixmap used in a specific widget, it would be more logical to get the font from the widget.

This didn’t end up as expected; instead, the text is clipped at the bottom. The pixel size of
a font only defines the size above the base line on which all characters are drawn.

rect.translate(0, 30);

QFont font = QApplication::font();
font.setPixelSize(rect.height());
painter.setFont(font);

painter.drawText(rect, Qt::AlignRight, "Right.");
painter.drawText(rect, Qt::AlignlLeft, "Left.");
painter.drawRect(rect);

To really be able to fit the text into a rectangle, use the QFontMetrics class to get accurate
measures of the text. The font metrics class can be used to determine the width of a given text
as well as its height. The height, however, is not dependent on any particular text; it's defined
entirely by the font. The following code adjusts the height of the rectangle used to keep the
text before drawing the text. Refer to Figure 7-13: the text fits beautifully this time around.

CHAPTER 7 © DRAWING AND PRINTING

rect.translate(0, rect.height()+10);
rect.setHeight(QFontMetrics(font).height());

painter.drawText(rect, Ot::AlignRight, "Right.");
painter.drawText(rect, Ot::AlignLeft, "Left.");
painter.drawRect(rect);

Using drawText to paint text has its limitations. For instance, parts of the text can't be for-
matted, nor can it be divided into paragraphs. You can use the QTextDocument class to draw
formatted text (as shown in the following source code).

Drawing text with a text document is slightly more complicated than using drawText
directly. Start by creating a QTextDocument object that you initialize with HTML-formatted text
using setHTML. Set up the rectangle in which you’ll draw the text. Translate it to a new position
below the last drawn text and then adjust the height to allow for more text.

The rectangle is then used to set the width of the text document using setTextWidth.
Before you're ready to draw the text, you must translate the painter (more about this soon)
because the text document will start painting its text at the (0,0) coordinate. Before translating
the painter, save the current state (it’s later restored with a call to the restore method).
Because you translated the painter, you must also translate the rectangle when you call
drawContents to draw the text to the given painter inside the given rectangle.

QTextDocument doc;

doc.setHtml("<p>A QTextDocument can be used to present formatted text "
"in a nice way.</p>"
"<p align=center>It can be formatted
"in <i>different</i> ways.</p>"
"<p>The text can be really long and contain many "
"paragraphs. It is properly wrapped and such...</p>");

rect.translate(0, rect.height()+10);

rect.setHeight(160);

doc.setTextWidth(rect.width());

painter.save();

painter.translate(rect.topLeft());

doc.drawContents(&painter, rect.translated(-rect.topLeft()));
painter.restore();

painter.drawRect(rect);

As shown in Figure 7-13, the entire contents of the text document would not fit into the
given rectangle. Once again, there is a way to determine the height needed by the text. In this
case, use the height property of the size property from the QTextDocument. In the following
source code, you use this height to determine the size of the gray rectangle drawn below the
rendered text document. This rectangle shows how long the text really is.

rect.translate(0, 160);

rect.setHeight(doc.size().height()-160);
painter.setBrush(Qt::gray);
painter.drawRect(rect);

195

196

CHAPTER 7 = DRAWING AND PRINTING

Note Although it is fairly easy to draw text using the drawText method, you might want to use the
QTextDocument class to draw more complex texts. This class enables you to draw complex documents
with various formatting and alignments in a straightforward way.

Paths

Painter paths make it possible to draw any shape you want, but the trick is to define a path
surrounding a region. You can then stroke the path with a given pen and brush. A path can
contain several closed regions; for instance, it is possible to represent an entire text string
using a path.

The path shown in Figure 7-14 is created in three steps. First, the QPainterPath object is
created and the circle is added using the addE11ipse method. This ellipse forms one closed
region.

QPainterPath path;

path.addEllipse(80, 80, 80, 80);

Path

Figure 7-14. A path has been filled.

The next step is to add the quarter circle originating from the center of the full circle and
stretching to the top and left. It is started at (100, 100), and you move to that point using a
moveTo call. Then you draw a line straight up using lineTo before drawing an arc using addArc.
The arc is drawn in a rectangle starting at (40, 40); that is, 160 pixels high and wide. It starts at
90 degrees and spans another 90 degrees counterclockwise. The region is then closed with a
line that returns to the starting point. This forms another closed region.

Note The arc starts at 90 degrees because 0 degrees is considered to be the point to the right of the
center point and you want it to start right above the center.

path.moveTo(120, 120);
path.lineTo(120, 40);
path.arcTo(40, 40, 160, 160, 90, 90);
path.lineTo(120, 120);

CHAPTER 7 © DRAWING AND PRINTING 197

The last part to add is the text below the shapes. This is done by setting up a large font and
then using it in a call to addText. The addText works like drawText but allows the text to start
only from a given point (that is, no texts contained in rectangles). This forms a whole bunch of
closed regions that form the text:

QFont font = QApplication::font();
font.setPixelSize(40);
path.addText(20, 180, font, "Path");

When the painter path is complete, all that’s left to do is stroke it with a painter. In the fol-
lowing code, you configure a pen and a brush for a painter. Then the drawPath method is used
to draw the actual painter path.

Figure 7-14 shows that when the regions overlap, the brush is not applied. This makes it
possible to create hollow paths by putting other paths inside them.

painter.setPen(Qt::black);
painter.setBrush(Qt::gray);

painter.drawPath(path);

Paths can consist of more shapes than the ones used in the preceding source code. The
following list mentions some of the methods that you can use to add shapes to your path:

¢ addEllipse: Adds an ellipse or circle.
¢ addRect: Adds a rectangle.

e addText: Adds text.

* addPolygon: Adds a polygon.

When building a region from lines, arcs, and other components, the following methods
can be useful:

¢ moveTo: Moves the current position.

e lineTo: Draws a line to the next position.

¢ arcTo: Draws an arc to the next position.

e cubicTo: Draws a cubic Bezier curve (a smooth line) to the next point.

* closeSubpath: Closes the current region by drawing a straight line from the current
position to the starting point.

Paths can be very useful for representing shapes that you need to draw over and over
again, but their true potential is shown when they are combined with brushes (discussed
next).

198

CHAPTER 7 © DRAWING AND PRINTING

Brushes

Brushes are used to fill shapes and paths. Until now you used brushes to fill the designated
areas using solid colors. This is only a part of what is possible. Using different patterns, gradi-
ents, or even textures, you can fill your shapes in any conceivable way.

When you create a QBrush object, you can specify a color and a style. The constructor is
defined as QBrush(QColor, Qt::BrushStyle).The QBrush is then given to a QPainter using the
setBrush method.

The style of the brush controls how the color is used when filling shapes. The simplest
styles are patterns, which are used when you need to fill a shape with lines or a dithered
shade. The available patterns and corresponding enumerated styles are shown in Figure 7-15.

Qt::SolidPattern Qt:DenseiPattern Qt:Dense2Pattern Qt:Dense3Pattern Qt:D 4Pattern Qt:D attern Qt:Dense6Pattern Qt:Dense7Pattern

v

Qt::HorPattern Qt::VerPattern Qt:CrossPattern Qt:FDiagPattern Qt:BDiagPattern Qt::DiagCrossPattern Qt::NoBrush

e

Figure 7-15. The available patterns

A more flexible way to fill shapes is to use gradient brushes, which are brushes based on a
QGradient object. A gradient object represents a blend between one or more colors according
to a predefined pattern. The available patterns are shown in Figure 7-16. The linear gradient,
which is based on the QLinearGradient class, defines a two-dimensional linear gradient. The
radial gradient is implemented through QRadialGradient and describes a gradient emanating
from a single point where the shade depends on the distance from the point. The conical gra-
dient, QConicalGradient, represents a gradient emanating from a single point where the shade
depends on the angle from the point.

The different gradients are defined as a spread between two points (except for conical
gradients, which start and stop at an angle). The way the gradient is continued outside the
range defined by those points is defined by the spread policy, which is set with the setSpread
method. The results from the different spread policies are also shown in Figure 7-16. With
pad spread (QGradient: :PadSpread) the gradient simply stops when the pads have been
reached. With repeat spread (QGradient: :RepeatSpread) the gradient is repeated. With reflected
spread (QGradient: :ReflectSpread) the gradient is repeated, but the direction is alternated—
causing the gradient to be reflected every other time.

Note The spread policy does not affect the conical gradients because they define the color of all pixels.

CHAPTER 7 © DRAWING AND PRINTING

Linear Radial Conical

QGradient::PadSpread

QGradient::RepeatSpread W H
QGradient::ReflectSpread 7 [‘

Figure 7-16. Different gradients and spread policies

Listing 7-7 shows how the different gradients are configured. Notice that the linear gradi-
ent is defined between two points, forming a direction. The radial gradient is defined by a
center point and a radius, while the conical gradient is defined as a center point and a starting
angle. The starting angle is specified in degrees, where 0 degrees define the direction pointing
right from the center point.

The gradients are also assigned colors using the setColorAt method. The colors are set for
a value ranging between 0 and 1. These values define a point between the two points for linear
gradients, where one point is 0 and the other point is 1. In the same way, 0 defines the starting
point, and 1 defines the full specified radius for radial gradients. For conical gradients, 0 speci-
fies the starting angle. The value then increases in the counterclockwise direction until 1
specifies the ending angle—which is the same as the starting angle.

Note It is possible to set several colors at different points; set the end colors to show the effect in a
clear way.

199

200 CHAPTER 7 = DRAWING AND PRINTING

Listing 7-7. Setting up gradients

QLinearGradient linGrad(QPointF(80, 80), QPoint(120, 120));
linGrad.setColorAt(0, Qt::black);
linGrad.setColorAt(1, Qt::white);

QRadialGradient radGrad(QPointF(100, 100), 30);
radGrad.setColorAt(0, Qt::black);
radGrad.setColorAt(1, Qt::white);

QConicalGradient conGrad(QPointF(100, 100), -45.0);
conGrad.setColorAt(0, Qt::black);
conGrad.setColorAt(1, Qt::white);

To use one of the gradients as a brush, simply pass the QGradient object to the 0Brush
constructor. Gradient brushes are not affected by calls to the setColor method of the QBrush
object.

The last way to create a brush is to pass a QPixmap or a QImage object to the QBrush con-
structor or to call setTexture on a QBrush object. This process makes the brush use the given
image as a texture and fill any shape by repeating the pattern (an example is shown in
Figure 7-17).

Figure 7-17. A texture-based brush

Transforming the Reality

As you learned during the discussion of global (device) coordinates and local (widget) coordi-
nates, Qt can use different coordinate systems for different areas of the screen. The difference
between the global and local coordinates is that the origin, the point (0,0), has been moved. In
technical terms, this is known as translating the coordinate system.

CHAPTER 7 © DRAWING AND PRINTING

Note | refer to the device’s coordinates as global because they are shared between all painters working
on the device (and widgets, if the device happens to be a screen). Each painter is then transformed to a point
relevant to its purpose. Other commonly used notations are physical device coordinates and /ogical local
coordinates.

The coordinate system of a painter can be translated as well (an example of such a trans-
lation is shown in Figure 7-18). In the figure, the gray box is what is drawn in relation to the
original coordinate system. The coordinate system is transformed through the following call:

painter.translate(30, 30);

The result is that the rectangle is drawn where the black rectangle is—the coordinate
system has been shifted to the right and downward.

[1]
-

Figure 7-18. Translating the coordinate system means moving the origin (0,0).

The painter class is capable of more translations. The coordinate system can be trans-
lated, scaled, rotated, and sheared (these transformations are shown in Figure 7-19, Figure
7-20, and Figure 7-21).

To scale the painter, the following call is made:

painter.scale(1.5, 2.0);

The first parameter is the scaling along the x axis (in the horizontal direction), while the
second parameter is the vertical scaling (see Figure 7-19). Notice that the pen used for paint-
ing is scaled as well—the lines are higher than they are wide.

201

202

CHAPTER 7 = DRAWING AND PRINTING

S —

b

Figure 7-19. Scaling the coordinate system moves all points closer to the origin (0,0).

When rotating, the following call is made:
painter.rotate(30);

The parameter is the number of degrees to rotate the coordinate system in the clockwise
direction. The method accepts floating-point values, so it is possible to rotate the coordinate
system any number or fraction of a degree (see Figure 7-20).

Figure 7-20. Rotating the coordinate system around the origin (0,0)

The last transformation—shearing—is a bit more complicated. What happens is that the
coordinate system is twisted around the origin. To understand this, look at Figure 7-21 and the
following call:

painter.shear(0.2, 0.5);

Notice that the larger the x value, the larger the change of the y value. In the same way, a
large y value results in a large change in the x value. The first parameter of the shear method
controls how large a change of the y value the x should give, and the second parameter does
the same in reverse. For example, look at the lower-right corner of the sheared rectangle and
compare it with the original gray box. Then compare the upper-left corner of the sheared and
original rectangles. Comparing the two points, you can see that one has moved more than the
other according to the size of the parameters of the shear method. Because the upper-right
corner has non-0 values for both x and y, that point is moved in both directions in accordance
with the parameters.

CHAPTER 7 © DRAWING AND PRINTING

Figure 7-21. Shearing the coordinate system relative to the origin (0,0)

When you perform a transformation of the coordinate system of a painter, you want to
know that there’s a way to get the original settings back. By calling save on your painter object,
the current state is placed on a stack. To restore the last saved state, call restore (this is handy
when you want to apply several transformations that start from the original coordinate sys-
tem). It is also common to be given a pointer to a painter object; you should save the state
before modifying the painter and then restore the painter before returning from the method.

Keep Order

It’'s possible to combine several transformations by performing them in turn. When doing this,
the ordering is important because all transformations are referring to the origin (0,0). For
example, rotating always means rotating around the origin, so if you want to rotate a shape
around a different point, you have to translate the center of rotation to (0,0), apply the rota-
tion, and then translate the coordinate system back.

Let’s draw a rectangle at (0,0)—that is, 70 pixels wide and -70 pixels high—with the follow-
ing line:

painter.drawRect(0, 0, 70, -70);

Now rotate the coordinate system 45 degrees using the following line (the result is shown
in Figure 7-22):

painter.rotate(45);

Figure 7-22. Simply rotating the rectangle rotates it around the origin.

203

204

CHAPTER 7 = DRAWING AND PRINTING

If you instead translate the coordinate system so that the center of the rectangle (35, -35)
is the origin before rotating and then retranslating the coordinate system into place, you end
up like Figure 7-23. The code for translating and rotating and then translating back is the fol-
lowing:

painter.translate(35, -35);
painter.rotate(45);
painter.translate(-35, 35);

Figure 7-23. By translating back and forth, it is possible to rotate around the center of the rectangle.

If you mix up the order of the translations, you end up with Figure 7-24 (you have rotated
around the wrong point).

Figure 7-24. Mixing up the order of the translations rotates around the wrong origin.

The order of translations is important for all translations. Both scaling and shearing are
equally dependent on the origin of the coordinate system, just as rotating is.

Painting Widgets
All Qt widgets are paint devices, so you can create a QPainter object and use it to draw to a
widget. However, this can be done only from the paintEvent(QPaintEvent*) method.

CHAPTER 7 © DRAWING AND PRINTING

The paintEvent method is called by the event loop when a widget needs to be redrawn.
You need to tell Qt when you want to redraw your widgets, and Qt will call your paintEvent
method. You can achieve this with two methods: update and repaint. The repaint method
triggers and immediately redraws, while update places a request for an update on the event
queue. The latter means that Qt gets a chance to merge update calls into fewer (optimally as
single) calls to paintEvent. This can be both good and bad. It is bad because you could have
created a widget that relies on paintEvent being called a specific number of times. It is good
because it allows Qt to tune the number or repaints to the current workload of the system run-
ning your application. In almost all cases, you should use update. When doing so, try to avoid
relying on the paintEvent method being called a certain number of times.

Note There are more reasons for not relying on paintEvent being called as often as you call update.
For instance, your widget can be completely obstructed, or something might be moving in front of it causing
fewer or more calls to paintEvent.

Before you get carried away and start implementing completely new widgets, let’s see how
a button is modified to look different. (A button is a good starting point because it has been
designed for this purpose.) All buttons inherit the QAbstractButton class, which defines the
basic mechanics and properties of a button. This class is then inherited into QPushButton,
QRadioButton, and QCheckBox, which implement three different views of a button.

Note There are more abstract widgets made to be used as a base for custom widgets, including
QAbstractScrollArea, QAbstractSlider, and QFrame. Notice that even though the two first classes are
abstract, it is not a rule. QFrame can be used as the basis of a new widget, but is also useful on its own.

A New Button

The new button class doesn’t create a radically different button; it simply lets the text of the
button light up when the user presses it. The button class is called MyButton, and the class dec-
laration is shown in Listing 7-8.

In the listing, you can see that the class inherits QAbstractButton class. It then imple-
ments a constructor, a sizeHint method, and a paintEvent method. The sizeHint and
paintEvent methods override existing methods inherited from ancestor classes. This means
that their declarations must remain exactly the same (including that the sizeHint method be
declared as const).

Listing 7-8. The class declaration of the custom button

class MyButton : public QAbstractButton

{
Q_OBJECT

205

206

CHAPTER 7 = DRAWING AND PRINTING

public:
MyButton(QWidget *parent=0);

QSize sizeHint() const;

protected:
void paintEvent(QPaintEvent*);

};

You can review the constructor and the sizeHint method in Listing 7-9. The constructor
simply passes on the parent argument to the parent class. The sizeHint method returns the
size that the widget wants. This is just a hint given to the Qt layout classes, so you can't rely on
the widget getting these dimensions.

Sizes are represented by QSize objects, which have two properties: width and height. For
the button, these two measurements are dependent on the text to show and the font to use
for showing it. To learn about the dimensions of a given QFont, use a QFontMetrics object. All
widgets have a fontMetrics property returning a QFontMetrics object for the current font. By
asking this object about the width and the height of a given string and then adding 10 pixels
extra in each direction for margins, you get an appropriate size for the widget.

Note The height of a given font doesn’t depend on the text being entered. Instead, it takes the possible
height of the font into account. The width of a given text for most fonts depends on the text because charac-
ters’ widths differ.

Listing 7-9. The constructor and the sizeHint method of the button

MyButton::MyButton(QWidget *parent) : QAbstractButton(parent)

{
¥

QSize MyButton::sizeHint() const
{
return QSize(fontMetrics().width(text())+10, fontMetrics().height()+10);

}

The task of painting the button is taken care of in the paintEvent method (see Listing 7-10).
The method starts with the creation of a QPainter object for painting to the widget. All widgets
are double-buffered by Qt, so when you draw to the painter, you are actually drawing to a
buffer that is used to redraw the screen. This means that you do not have to worry about
flickering.

There are two ways to draw widgets: directly or through a style. By using a style, you can
adapt the widget’s look to the rest of the system. By drawing directly to the widget, you get full
control. For the button you will draw the frame and background using a style and the text
directly.

CHAPTER 7 © DRAWING AND PRINTING

Each widget has a QStyle associated with it that you can reach through the style prop-
erty. This style usually reflects the system’s setting, but it might have been changed from the
code instantiating widget. The widget itself should not care about the origin of the style or its
relation to the current platform.

Before you can use the style for drawing, you need to set up a style option object (in this
case, a QStyleOptionButton object). The style option class to use depends on the style element
to draw. By referring to the Qt documentation for the drawControl method, you can see which
style object it expects.

The style option object is initialized by passing the this pointer to its init method, which
configures most of the settings. However, you still need to tell whether the button is being
pressed or is toggled. These states are available from the isDown and isChecked methods
implemented by the QAbstractButton class. If the isDown method returns true, the button is
currently being pressed. If isChecked returns true, the button has been toggled and is currently
checked (that is, in its on state). When the button is being pressed, set the QStyle: :State
Sunken bit in the style option’s state property. For checked buttons, the QStyle: :State On bit
is set.

Note The state bits are added using the | = operator (bitwise or), not clearing any bits set by the init
method.

When the style object has been properly set up, the drawControl(ControlElement,
QStyleOption*, QPainter*, QWidget*) of the current style method is called. In the call, you
ask for a QStyle: :CE_PushButtonBevel to be painted, which paints all parts of the button
except the text and optional icon.

The second half of the paintEvent method takes care of painting the text directly to the
widget. It starts by setting the font of the painter to the widget’s current font. Then the color of
the pen is determined, depending on the state of the button. Disabled buttons have gray text,
pressed buttons have red text, and all other buttons have dark red text. Notice that isDown
returns true when the button is actively pressed, not when toggled buttons are left in the on
state. This means that the text lights up only when the mouse button is pressed.

When the pen and font of the painter are configured, continue by drawing the actual text
with drawText. The text is centered in the button and is contained by the actual rectangle that
the button occupies. You don't take the margins that you added in the sizeHint method into
account.

The paintEvent method accepts a QPaintEvent pointer as argument; a pointer that you
choose to ignore in this example. The event object has a member method called rect () that
returns a QRect, specifying the rectangle that the paintEvent method needs to update. For
some widgets you can limit the painting to that rectangle to improve performance.

Listing 7-10. Painting the bevel using a style and the text directly

void MyButton::paintEvent(QPaintEvent*)
{

QPainter painter(this);

207

208

CHAPTER 7 = DRAWING AND PRINTING

QStyleOptionButton option;
option.init(this);
if(isDown())
option.state |= QStyle::State Sunken;
else if(isChecked())
option.state |= QStyle::State On;

style()->drawControl(QStyle::CE PushButtonBevel, 8option, &painter, this);
painter.setFont(font());

if(lisEnabled())
painter.setPen(Qt::darkGray);

else if(isDown())
painter.setPen(Qt::red);

else
painter.setPen(Qt::darkRed);

painter.drawText(rect(), Ot::AlignCenter, text());
}

To try out the button, you create a dialog with it. The resulting dialog is shown in action in
Figure 7-26 (but you are still a few steps away).

Start by creating a new dialog in Designer. Add three QPushButton widgets to the dialog
and set their text properties according to the figure of the dialog. Also, set the enabled prop-
erty to false for the top button and the checkable button to true for the bottom one.

Right-click each button and choose Promote To Custom Widget from the popup menu.
This will display the dialog shown alongside the popup menu in Figure 7-25. By entering
MyButton as the custom class name in the dialog, the header file name will (correctly) be
guessed to be mybutton.h, which will cause the user interface compiler to use the MyButton
class when creating the buttons instead of the QPushButton class.

Caution Because MyButton does not inherit QPushButton (it inherits the QAbstractButton class),
it is important to leave the properties appearing under the QPushButton heading in the Property Editor
untouched. Otherwise, you will experience compilation errors. All properties from the base class
(OAbstractButton) and up can be used freely.

The dialog’s name is set to Dialog, and the middle button is named clickButton before
the design is saved as dialog.ui.

Change text...

Change objectName...

CHAPTER 7

DRAWING AND PRINTING

Change toolTip... (4> Promote to Custom Widget

Change whatsThis...
Change styleSheet...

Promote to Custom Widget

Y

o2 Cut Ctri+X

Base class name:
Custom class name:

Header file:

QPushButton
MyButton

mybutton.h

" Copy Ctrl+C
51 Paste Ctri+V

OK

[x==n

Select Al Ctrl+A
Delete

Lay out »

Figure 7-25. Using MyButton from Designer

To show the dialog, declare a minimal dialog class (shown in Listing 7-11 and Listing 7-12).
The dialog simply sets up the user interface from the design and connects the button’s clicked

signal to a slot showing a dialog.

Listing 7-11. Header of a minimal dialog

class Dialog : public QDialog

{
Q_OBJECT

public:
Dialog();

private slots:
void buttonClicked();

private:
Ui::Dialog ui;

};

Listing 7-12. Implementation of a minimal dialog

Dialog::Dialog() : QDialog()
{

ui.setupUi(this);

connect(ui.clickButton, SIGNAL(clicked()), this, SLOT(buttonClicked()));

}

209

210

CHAPTER 7 = DRAWING AND PRINTING

void Dialog::buttonClicked()

{
OMessageBox: :information(this, tr("Wohoo!"), tr("You clicked the button!"));

}

The dialog, combined with a minimal main function, produces the dialog shown in
Figure 7-26. In the figure, the top button is disabled, the middle button is being pressed, while
the bottom one is an inactive toggle button.

—

“IDialog B%)

This is Disabled

Click Thisl

Toggle This!

Figure 7-26. The MyButton class in action

Completely Custom

If you need to create a completely new widget (something that does not act like any other
widget), you have to subclass the QWidget class directly. This enables you to do anything, but
that freedom also comes with responsibilities. All internal states have to be managed by you,
as will all repainting and size hinting.

Let’s start by looking at what you're trying to do. The widget that you'll create is called
CircleWidget and will listen to mouse events. When the mouse is pressed, a circle is created.
Aslong as a mouse button is pressed within the circle, the circle grows. If the mouse is pressed
while the pointer is kept outside the circle, the circle will shrink until it disappears, and a new
circle will start to grow where the pointer was when the first circle disappeared (see Figure 7-27).

_levents -Jokd

Figure 7-27. A circle shown by the circle widget

CHAPTER 7 © DRAWING AND PRINTING

You have to track mouse events: button presses, button releases, and pointer movements.
You also need to have a timer for growing and shrinking the circles over time. Finally, you have
to take care of the repainting and give the Qt layout classes a size hint (all can be seen in the
class declaration in Listing 7-13).

Looking at the class declaration, you can group together the contents:

The basic necessities: Here you find the constructor and sizeHint.

Painting: The paintEvent method uses the variables x, y, r, and color for keeping track
of what to draw.

Mouse interaction: The mouse’s events are caught using mousePressEvent,
mouseMoveEvent, and mouseReleaseEvent. The last known mouse position is kept
in mx and my.

Timing: The QTimer object pointed to by timer is connected to the timeout slot.
It updates x, y, r, and color depending on the mx and my values.

Note The sizeHint method is not necessary, but you are encouraged to implement it for all your
widgets.

Listing 7-13. The class declaration of the custom widget

class

{

CircleWidget : public QWidget

0 OBJECT

public:
CircleWidget(QWidget *parent=0);

QSize sizeHint() const;

private slots:
void timeout();

protected:
void paintEvent(QPaintEvent*);

void mousePressEvent(QMouseEvent*);
void mouseMoveEvent(QMouseEvent*);
void mouseReleaseEvent(QMouseEvent*);

private:
int x, y, 1;
QColor color;

211

212

CHAPTER 7 = DRAWING AND PRINTING

int mx, my;

QTimer timer;
};
The constructor shown in Listing 7-14 initializes the radius of the current circle, r, to 0,
meaning no circle. It then configures and connects a QTimer object. The timer interval is set to

50 milliseconds, meaning that the circle will be updated roughly 20 times per second (this is
often enough to imitate a continuous motion).

Listing 7-14. Initializing the custom widget

CircleWidget::CircleWidget(QWidget *parent) : QWidget(parent)
{

T =0;
timer.setInterval(50);

connect(&timer, SIGNAL(timeout()), this, SLOT(timeout()));
}

The sizeHint method is the simplest one of the entire class; it simply returns a static size
(see Listing 7-15).

Listing 7-15. Returning a static size

QSize CircleWidget::sizeHint() const
{

return QSize(200, 200);

}

Listing 7-16 shows the three methods used to track the mouse activity. Before looking too
closely at the methods it is important to know that mouse movements are reported only when
the mouse buttons are pressed. This means that mouseMoveEvent will not be called unless a
mouse button is pressed.

Tip You can get mouse movement reports by setting the mouseTracking property to true.

Both mousePressEvent and mouseMoveEvent update the mx and my variables according to the
coordinates passed in the QMouseEvent object. They are used by the timeout slot when deter-
mining whether it wants to grow or shrink the current circle. The timeout slot is connected to
the timer, so you can turn the timeout slot on and off by starting and stopping the timer in the
mousePressEvent and mouseReleaseEvent. The timer will be active only when a mouse button is
being pressed (during that time, the mx and my values are valid).

CHAPTER 7 © DRAWING AND PRINTING

Listing 7-16. Handling mouse events

void CircleWidget::mousePressEvent(QMouseEvent *e)
{

mx = e->x();

my = e->y();

timer.start();

}
void CircleWidget::mouseMoveEvent(QMouseEvent *e)

mx = e->x();
my = e->y();
}

void CircleWidget::mouseReleaseEvent(QMouseEvent *e)
{

timer.stop();
}

When the timer is active, the timeout slot is called about 20 times per second. The task of
the slot is to determine whether it will create a new circle, grow the current circle, or shrink it.
Listing 7-17 shows how it’s done.

If the current radius, 1, is 0, a new circle is created with its center (x, y) in the current
mouse position: mx, my. A new color is created randomly, so each new circle will have a new
color.

Whether working on a new circle or not, the slot then checks to see if mx, my is within the
circle by using the Pythagorean Theorem (comparing the squared distance between mx, my and
X, y to the radius, r, squared). If the mouse is within an existing circle, the radius is increased; if
it is outside, the radius is decreased.

When all the changes to the circle have been made, the update method is called, which
puts a paint event on the Qt event queue. When that event is reached, the paintEvent method
is invoked.

Listing 7-17. Changing the circles according to the current circle’s position and size and the
mouse pointer’s position

void CircleWidget::timeout()

{
if(r==0)
{
X = mx;
y = my;

color = QColor(grand()%256, qrand()%256, qrand()%256);
}

213

214 CHAPTER 7 = DRAWING AND PRINTING

int dx
int dy

mx-X;
my-y;

if(dx*dx+dy*dy <= r¥r)
T++;

else
r--;

update();
}

The paintEvent method is shown in Listing 7-18. All the method does is paint the current
circle (as defined by x, y, r, and color if r is more than 0). Because circle edges sometimes have
a tendency to look jagged, you also tell the painter to soften the edges with antialiasing (by
setting a rendering hint). As the name suggests, it is a hint, not a guaranteed operation.

Tip Antialiasing means that the edges of a shape are smoothed. The edges sometimes appear jagged
because the edge is located between the available pixels. By calculating the amount of color to add to each
pixel, a smoother result can be achieved (depending on how close to the edge each pixel is located).

Simply painting the new circle without erasing anything works because Qt always copies
the background graphics by default. Because this widget isn’t intended to be placed on top of
other widgets, that usually means plain gray. You can force Qt to fill the background with the
style’s background color by setting the autoFillBackground property to true.

Listing 7-18. Painting the circle

void CircleWidget::paintEvent(QPaintEvent*)
{
if(r>o0)
{
QPainter painter(this);

painter.setRenderHint(QPainter::Antialiasing);

painter.setPen(color);
painter.setBrush(color);
painter.drawEllipse(x-r, y-r, 2*r, 2*r);

When discussing paint events, there are a few widget attributes that you should be
aware of—they can be used to further optimize widget painting. You can set these attributes
using the setAttribute(Qt::WidgetAttribute, bool) method. The Boolean argument, which

CHAPTER 7 © DRAWING AND PRINTING

is true by default, indicates that the attribute should be set. If false is passed instead,
the attribute is cleared. You can test whether an attribute is set by using the
testAttribute(Qt::WidgetAttribute) method. This incomplete list explains some
attributes that can be used to optimize widget painting:

e Qt::WA OpaquePaintEvent: When the widget repaints itself, it draws all its pixels using
opaque colors. This means no alpha blending, and Qt doesn’t need to handle back-
ground clearing.

* Qt::WA NoSystemBackground: The same as Qt: :WA _OpaquePaintEvent, but more definite.
Widgets without system background are not event-initialized by Qt, so the underlying
graphics will shine through until the widget has been painted.

e Qt::WA StaticContents:The content is static and has its center of origin in the top-left
corner. When such a widget is enlarged, only the new rectangles appearing to the right
and below need repainting. When being shrunk, no paintEvent at all is needed.

The Graphics View

Until now, you have managed all custom painting through the paintEvent. The graphics view
framework takes into account that most applications are built around a two-dimensional can-
vas. By providing classes for handing this scenario in an optimized manner, it is possible to
create a feeling of a custom widget without actually creating a custom widget.

The graphics view framework is built from three basic components: the view, the scene,
and the items. A view class, QGraphicsView, is a widget that shows the contents of a scene. The
scene, QGraphicsScene, holds a collection of widgets and manages the propagation of events
and states concerning the items. Each item is a subclass of QGraphicsItem and represents a
single graphical item or a group of items.

The basic idea is that you create a set of items, put it in a scene, and let a view show it. By
listening to events and redrawing your items, you can create the user interface that you want.
To avoid having to create a set of items, Qt comes with a range of prepared items.

Listing 7-19 shows a main function in which a scene is filled with standard items and
shown using a view. Let’s start from the top of the function and work down.

Start by creating a QGraphicsScene object called scene and pass a QRect to the constructor.
This rectangle is used to define the scene. All items are expected to appear inside of this area.
Notice that the scene can start from a non-zero coordinate—it can even start from a negative
coordinate.

The next step is to populate the scene with items. Start by creating
QGraphicsRectItem(QRect,QGraphicsItem*,QGraphicsScene*). The constructor accepts a rec-
tangle defining the dimensions and location of the item, a QGraphicsItem pointer to a parent
item, and a QGraphicsScene pointer to a parent scene. Using parent items, it is possible to
place items in other items (you’ll learn more about this later). By passing a scene pointer,
you add the item to the given scene. You can also do this with the addItem(QGraphicsItem*)
method available from the scene object. When the rectangle has been added to the scene, you
also set a pen and a brush for it.

215

216

CHAPTER 7 = DRAWING AND PRINTING

Note If you don’t set a pen or a brush, you’ll end up with the standard settings, which usually means no
brush and black solid lines.

The next item you create is a QGraphicsSimpleTextItem. The constructor takes a QString
text and the two parent pointers. Because the constructor does not let you position the text,
call the setPos method to position the top-left corner of the item.

Add aQGraphicsEllipseItem with a constructor that takes a rectangle and the parent
pointers. Follow with a QGraphicsPolygonItem that takes a QPolygonF object and the parent
pointers. The QPolygonF is initialized using a vector of QPointF objects. These points define the
points between which the edges of the polygon are drawn. Set a pen and a brush for both of
these objects.

When these items have been added to the scene, create a QGraphicsView widget and call
setScene(QGraphicsScene*) to tell it which scene to show. You then show the view and run
app.exec() to start the event loop. The resulting window is shown in Figure 7-28.

Listing 7-19. Populating a scene with standard shapes

int main(int argc, char **argv)
{
OApplication app(argc, argv);

QGraphicsScene scene(QRect(-50, -50, 400, 200));

QGraphicsRectItem *rectItem = new QGraphicsRectItem(

QRect(-25, 25, 200, 40), 0, &scene);
rectItem->setPen(QPen(Qt::red, 3, Qt::DashDotlLine));
rectItem->setBrush(Qt::gray);

QGraphicsSimpleTextItem *textItem = new QGraphicsSimpleTextItem(
"Foundations of Qt", 0, &scene);
textItem->setPos(50, 0);

QGraphicsEllipseItem *ellipseltem = new QGraphicsEllipseItem(
QRect(170, 20, 100, 75),
0, &scene);
ellipseItem->setPen(QPen(Qt::darkBlue));
ellipseItem->setBrush(Qt::blue);

QVector<QPointF> points;
points << QPointF(10, 10) << QPointF(0, 90) << QPointF(40, 70)
<< QPointF(80, 110) << QPointF(70, 20);
QGraphicsPolygonItem *polygonItem = new QGraphicsPolygonItem(
QPolygonF(points()), 0, &scene);
polygonItem->setPen(QPen(Qt::darkGreen));
polygonItem->setBrush(Qt::yellow);

CHAPTER 7 © DRAWING AND PRINTING 217

QGraphicsView view;
view.setScene(&scene);
view.show();

return app.exec();

_Istandarditems 9[[=1[X)

Foundations of Qt

Figure 7-28. A graphics view with some standard items

Figure 7-28 and Listing 7-19 show a number of interesting things:

¢ The view’s upper-left corner corresponds to the scene coordinate -50, -50 because of
the QRect passed to the scene’s constructor.

¢ The rectangle item is obstructed by the polygon and ellipse because the scene items
are drawn in the order in which they were added to the scene. It can be controlled pro-
grammatically if you don't like it.

e Ifyou try running the example yourself and shrink the window containing the view, the
view will automatically show sliders to let you pan over the entire scene.

There are other standard items that come with Qt, some of which are listed here:

e QGraphicsPathItem: Draws a painter path.

QGraphicsLineItem: Draws a single line.

QGraphicsPixmapItem: Draws a pixmap; that is, a bitmapped image.

QGraphicsSvgtIem: Draws a vector graphics image.
* QGraphicsTextItem: Draws complex text such as a rich text document.

You can transform shape items freely with a graphics view, which is also where the item’s
parent enters the picture. If an item’s parent item is transformed, the child is transformed in
the same way.

Listing 7-20 shows the function createItem, which takes a parent scene pointer and an
x offset as arguments. These two arguments are then used to create a rectangle containing
another rectangle and an ellipse. The outer rectangle is filled with a gray brush; the inner
items are filled with white.

218

CHAPTER 7 © DRAWING AND PRINTING

The function returns a pointer to the outer rectangle, which in turn contains the other
two. This means that the pointer can be used to manipulate all the shapes.

Listing 7-20. A shape containing two other shapes

QGraphicsItem *createItem(int x, QGraphicsScene *scene)
{
QGraphicsRectItem *rectItem = new QGraphicsRectItem(
QRect(x+40, 40, 120, 120),
0, scene);
rectItem->setPen(QPen(Qt::black));
rectItem->setBrush(Qt::gray);

QGraphicsRectItem *innerRectItem = new QGraphicsRectItem(
QRect(x+50, 50, 45, 100),
rectItem, scene);
innerRectItem->setPen(QPen(Qt::black));
innerRectItem->setBrush(Qt::white);

QGraphicsEllipseItem *ellipseItem = new QGraphicsEllipseItem(
QRect(x+105, 50, 45, 100),
rectItem, scene);

ellipseItem->setPen(QPen(Qt::black));

ellipseItem->setBrush(Qt::white);

return rectItem;

The createItem function is used in the main function shown in Listing 7-21, in which a
scene is created. Five items are then added to that scene before it is shown. Each of the items
is transformed in a different manner. The resulting scene can be seen in Figure 7-29. Refer to
the figure and the source code when you look at the transformations applied on each of these
items.

Figure 7-29. From the left: original, rotated, scaled, sheared, and all at once

The item1 item is placed in the scene without any transformations being applied. It can
be seen as the reference item.

The item2 item is translated, rotated 30 degrees, and then translated back to its original
position so that the rotation is made around the (0,0) point. By translating the item so its
center point is in the point (0,0), you can rotate it about its center before putting it back in its
original position by translating it back.

CHAPTER 7 © DRAWING AND PRINTING

The item3 item is also translated so that the point (0,0) becomes the center of the item. It
is scaled before it is translated back because the scaling is also relative to the coordinate sys-
tem’s center point. By scaling the item around its center, you change the size of the shape, but
not its position.

The fourth item, item4, is translated and retranslated as both item2 and item3. Between
the translations it is sheared.

The fifth item, items, is scaled, rotated, and sheared, which makes it distorted. This item
shows how to apply all transformations to one object.

Note When applying transformations, it is important to keep the order in mind. Applying the transforma-
tions in a different order will yield a different result.

Listing 7-21. Transforming the five items

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QGraphicsScene scene(QRect(0, 00, 1000, 200));

QGraphicsItem *item1 = createItem(0, &scene);

QGraphicsItem *item2 = createItem(200, &scene);
item2->translate(300, 100);

item2->rotate(30);

item2->translate(-300, -100);

QGraphicsItem *item3 = createItem(400, &scene);
item3->translate(500, 100);

item3->scale(0.5, 0.7);

item3->translate(-500, -100);

QGraphicsItem *item4 = createItem(600, &scene);
item4->translate(700, 100);

itema->shear(0.1, 0.3);

itema->translate(-700, -100);

QGraphicsItem *item5 = createItem(800, &scene);
items->translate(900, 100);

items->scale(0.5, 0.7);

items->rotate(30);

items->shear(0.1, 0.3);

items->translate(-900, -100);

219

220 CHAPTER 7 = DRAWING AND PRINTING

QGraphicsView view;
view.setScene(&scene);
view.show();

return app.exec();

When working with graphics items, you can use the Z value to control the order in which
the items are drawn. You can set each item using the setZValue(greal) method. The default
Z value for any item is 0.

When drawing the scene, items with a high Z value appear in front of items with lower
Z values. For items with the same Z value, the order is undefined.

Interacting Using a Custom Item

With custom items you can create the kind of behavior you want by using graphics view. This
flexibility and ease of implementing custom shapes are what make graphics view such a nice
tool to use.

The aim of this section is to create a set of handles: one central handle for moving shapes
and two edge handles for resizing them. Figure 7-30 shows the handles in action. Notice that
you can apply handles to several shapes at once and that the shapes used are standard shapes:
QGraphicsRectItem and QGraphicsEllipseItem.

“interaction M=%}

Figure 7-30. The handles in action

CHAPTER 7 © DRAWING AND PRINTING

Let’s start looking at the code, beginning from the main function of the application. This
shows how the handles are created, configured, and used. The main function is shown in
Listing 7-22.

The function starts by creating the Qt classes that you need: a QApplication, a
QGraphicsScene, and the two shapes represented through a QGraphicsRectItem and a
QGraphicsEllipseItem. When these shapes have been added to the scene, it’s time to create
six HandleItem objects—three for each of the shapes.

Each handle’s constructor takes the following arguments: an item to act upon, a scene, a
color, and a role. The available roles are TopHandle, RightHandle, and CenterHandle. When you
create a CenterHandle you have to pass a QList with pointers to the two other handles. That is,
if you choose to have other handles, the CenterHandle works perfectly on its own, as do the
other two variants.

The main function then continues by creating a QGraphicsView and sets it up to show the
scene. The main loop is then started by calling the exec method on the QApplication object.
However, you do not return the result from this directly. Because the handles refer to the other
shapes without being child nodes, it is important that you delete the handles first. The
remaining shapes are then deleted when the QGraphicsScene is destroyed.

Listing 7-22. Using the HandleItem class in a scene

int main(int argc, char **argv)

{
OApplication app(argc, argv);

QGraphicsScene scene(0, 0, 200, 200);

QGraphicsRectItem *rectItem = new QGraphicsRectItem(
QRect(10, 10, 50, 100),
0, &scene);
QGraphicsEllipseItem *elItem = new QGraphicsEllipseItem(
QRect(80, 40, 100, 80),
0, &scene);

HandleItem *trh = new HandleItem(rectItem, &scene, Qt::red,
HandleItem::TopHandle);

HandleItem *rrh = new HandleItem(rectItem, &scene, Qt::red,
HandleItem::RightHandle);

HandleItem *crh = new HandleItem(rectItem, &scene, Qt::red,
HandleItem::CenterHandle,
QList<HandleItem*>() << trh << rrh);

HandleItem *teh = new HandleItem(elItem, &scene, Qt::green,
HandleItem::TopHandle);

HandleItem *reh = new HandleItem(elItem, &scene, Qt::green,
HandleItem::RightHandle);

HandleItem *ceh = new HandleItem(elItem, &scene, Qt::green,
HandleItem::CenterHandle,
QList<HandleItem*>() << teh << reh);

221

222 CHAPTER 7 = DRAWING AND PRINTING

QGraphicsView view;
view.setScene(&scene);
view.show();

return app.exec();

Now that you know how the handles look and how the class is used in a scene, it’s time to
have a look at the actual class. Listing 7-23 shows the class declaration.

The listing starts with a forward declaration of the class because the class will contain
pointers to instances of itself. Then it defines an enumeration of the different available roles:
CenterHandle, RightHandle, and TopHandle.

The constructor that follows the enum contains all the expected arguments, as discussed
earlier. However, the role and list of handles have default values. The default role is a center
handle, and the list is empty by default.

The next two methods are required when inheriting from QGraphicsItem. The paint
method is responsible for painting the shape upon request, while boundingRect tells the scene
how large the shape is.

The class declaration then continues with a set of protected methods. You can override
these methods to interact with the user through the shape. The mousePresstEvent and
mouseReleaseEvent methods react to the mouse buttons, while the itemChange method can be
used to filter and react to all changes to the item. You use it to react to and limit the moving of
the widget.

The private section ends the class declaration. It contains all the local states and variables
that are needed. The following list summarizes their roles and uses (you will look more closely
at how they are used in the rest of this section):

e m_item: The QGraphicsItem that the handles acts on.
e m_role: The role of the handle.
e m_color: The color of the handle.

e m_handles: Alist of other handles acting on the same m_item—required by center
handles.

e m_pressed: A Boolean that indicates whether the mouse button is pressed. This is
important because you need to be able to tell whether the handle is moving because
of user interaction or programmatic changes.

Listing 7-23. The handle class

class HandleItem;

class HandleItem : public QGraphicsItem

{
public:

CHAPTER 7 © DRAWING AND PRINTING 223

enum HandleRole
{
CenterHandle,
RightHandle,
TopHandle

};

HandleItem(QGraphicsItem *item, QGraphicsScene *scene,
QColor color, HandleRole role = CenterHandle,
QList<HandleItem*> handles = QList<HandleItem*>());

void paint(QPainter *paint,
const QStyleOptionGraphicsItem *option, QWidget *widget);
ORectF boundingRect() const;

protected:
void mousePressEvent(QGraphicsSceneMouseEvent *event);
void mouseReleaseEvent(QGraphicsSceneMouseEvent *event);

Qvariant itemChange(GraphicsItemChange change, const QVariant &data);

private:
QGraphicsItem *m_item;

HandleRole m role;
QColor m color;

QList<HandleItem*> m handles;
bool m_pressed;
b5

The constructor shown in Listing 7-24 simply initializes all the class variables before set-
ting a high zValue. This ensures that the handles appear in front of the shapes that they work
with. Then a flag is set to make the shapes moveable by using the setFlag method.

Tip Other flags let you enable the shape to be allowed to be selected (ItemIsSelectable) or accept
keyboard focus (ItemIsFocusable). These flags can be combined through logical or operations.

Listing 7-24. The constructor of the handle item

HandleItem: :HandleItem(QGraphicsItem *item, QGraphicsScene *scene,
QColor color, HandlelItem::HandleRole role,
QList<HandleItem*> handles)
: QGraphicsItem(0, scene)

224 CHAPTER 7 = DRAWING AND PRINTING

m role = role;
m_color = color;

m_item = item;
m_handles = handles;

m pressed = false;
setZValue(100);

setFlag(ItemIsMovable);

Because the class actually implements three different handles, it often uses switch
statements to differentiate between the different roles (see Listing 7-25, which shows the
boundingRect method). The bounding rectangle is defined by the location of the bounding
rectangle of the shape that is handled. The handles do not have a position of their own;
instead they are entirely based on the location and size of the handled shape.

Listing 7-25. Determining the bounding rectangle of the handles

QRectF HandleItem::boundingRect() const
{

QPointF point = m_item->boundingRect().center();

switch(m_role)
{
case CenterHandle:

return QRectF(point-QPointF(5, 5), QSize(10, 10));
case RightHandle:

point.setX(m_item->boundingRect().right());

return QRectF(point-QPointF(3, 5), QSize(6, 10));
case TopHandle:

point.setY(m_item->boundingRect().top());

return QRectF(point-QPointF(5, 3), QSize(10, 6));
}

return QRectF();
}

The paint method shown in Listing 7-26 uses the boundingRect method to determine
where and how to draw the different handles. The center handle is drawn as a circle, while the
top and right handles are drawn as arrows pointing up and right.

Note When painting the top and right handles, use the center method to find the center point of the
bounding rectangle.

CHAPTER 7 © DRAWING AND PRINTING

Listing 7-26. Painting the handles

void HandleItem::paint(QPainter *paint,
const QStyleOptionGraphicsItem *option,
QWidget *widget)

paint->setPen(m_color);
paint->setBrush(m color);

QRectF rect = boundingRect();
QVector<QPointF> points;

switch(m_role)
{
case CenterHandle:
paint->drawEllipse(rect);
break;
case RightHandle:
points << rect.center()+QPointF(3,0) << rect.center()+QPointF(-3,-5)
<< rect.center()+QPointF(-3,5);
paint->drawConvexPolygon(QPolygonF(points));
break;
case TopHandle:
points << rect.center()+QPointF(0,-3) << rect.center()+QPointF(-5,3)
<< rect.center()+QPointF(5,3);
paint->drawConvexPolygon(QPolygonF(points));
break;
}
}

After you determine where to paint and then paint the handles, the next step is to wait for
user interaction. Listing 7-27 shows the methods for handling mouse button events such as
press and release.

Because you set the ItemIsMoveable flag earlier in the constructor, all you have to do is
update the m_pressed variable before passing the event on the QGraphicsItemhandler.

Listing 7-27. Handling the mouse press and release events

void HandleItem::mousePressEvent(QGraphicsSceneMouseEvent *event)

{

m pressed = true;
QGraphicsItem: :mousePressEvent(event);

}

void HandleItem::mouseReleaseEvent(QGraphicsSceneMouseEvent *event)

{

m pressed = false;
QGraphicsItem: :mouseReleaseEvent(event);

}

225

226

CHAPTER 7 = DRAWING AND PRINTING

When a user chooses to move a handle, the itemChange method is invoked. This method
gives you a chance to react to (or even stop) a change (you can see the implementation in List-
ing 7-28). 1 cut out the parts of the listing that handle movements of the different roles (you
will look at them later); the listing shows only the outer framework. Simply let programmatic
movements and changes that aren’t related to movements pass through to the corresponding
QGraphicsItem method. If you run into a user-invoked position change, you act differently
depending on the role of the handle. But first the actual movement is calculated by comparing
the new position with the current position. The new position is passed through the data argu-
ment, while the current position is given from the pos method. You also determine the center
point of the shape being handled because it is used when handling both the right and top
handles.

Listing 7-28. Handling changes to the handle

QVariant HandleItem::itemChange(GraphicsItemChange change,
const QVariant &data)

{
if(change == ItemPositionChange && m_pressed)
{
QPointF movement = data.toPoint() - pos();
QPointF center = m_item->boundingRect().center();
switch(m_role)
{
}
}
return QGraphicsItem::itemChange(change, data);
}

Listing 7-29 shows how to handle a user-invoked position change of a center handle.
Move the item that is being handled, m_item, by using a moveBy call. All the handles in the
m_handles list are translated into place because any right and top handles must follow the
shape they are handling.

Listing 7-29. Handle movements of a center handle

switch(m_role)

{

case CenterHandle:
m_item->moveBy(movement.x(), movement.y());

foreach(HandleItem *handle, m handles)
handle->translate(movement.x(), movement.y());

CHAPTER 7 © DRAWING AND PRINTING

break;
}
return QGraphicsItem::itemChange(change, pos()+movement);

The top and right handles affect only themselves, which means that they do not use the
m_handles list. The center point of the shape is not affected; the horizontal direction is not
affected by the top handler nor is the vertical direction affected by the right handle.

Listings 7-30 and 7-31 show how the roles are handled. The listings look very similar; the
only difference is the direction in which they act.

Let’s look at the details of Listing 7-30; that is, the top handle. The listing starts with an if
clause that ensures that the shape will not be too small. If that’s the case, pass the current
position as the next position to the QGraphicsItem itemChange method.

If the handled shape is big enough, continue by limiting the movement to the direction
of the handle (you don't allow horizontal movement for the top handle). Then you translate
the shape being handled so the center of the shape is the origo of the coordinate system. This
is a preparation for the scaling, in which you scale the shape according to the movement.
The shape is translated back into its original location, the switch statement is left, and the
QGraphicsItem itemChange method is given the event, but with the direction of limited
movement.

Listing 7-30. Handling movements of a top handle
switch(m_role)

{

case TopHandle:
if(-2*movement.y() + m_item->sceneBoundingRect().height() <=5)
return QGraphicsItem::itemChange(change, pos());

movement.setX(0);

m_item->translate(center.x(), center.y());

m_item->scale(1, 1.0-2.0*movement.y()
/(m_item->sceneBoundingRect().height()));

m_item->translate(-center.x(), -center.y());

break;

}

return QGraphicsItem::itemChange(change, pos()+movement);

Listing 7-31. Handling movements of a right handle

switch(m_role)

{

case RightHandle:

227

228

CHAPTER 7 = DRAWING AND PRINTING

)

if(2*movement.x() + m_item->sceneBoundingRect().width() <= 5)
return QGraphicsItem::itemChange(change, pos());

movement.setY(0);

m_item->translate(center.x(), center.y());

m_item->scale(1.0+2.0*movement.x()
/(m_item->sceneBoundingRect().width()), 1);

m_item->translate(-center.x(), -center.y());

break;

return QGraphicsItem::itemChange (change, pos()+movement);

Printing
Qt handles printers with the QPrinter class, which represents a print job to a specific printer
and can be used as a paint device. This means that you can create a QPainter for painting onto
a page represented through QPrinter. The printer object is then used to create new pages and
tell the printer when the job is ready to be printed.

Take a look at some of the properties available from the class:

colorMode: The printer prints in color or grayscale. Can be set to either QPrinter::Color
or QPrinter: :GrayScale.

orientation: The page can either be positioned as a landscape (QPrinter::Landscape)
or as a portrait (QPrinter: :Portrait).

outputFormat: The printer can print to the platform’s native printing system
(QPrinter::Native), a PDF document (QPrinter: :PdfFormat), or a PostScript document
(QPrinter::PostScriptFormat). When printing to a file, which is necessary when creat-
ing PDF and PostScript documents, you must set the file name for the document using
setOutputFileName.

pageSize: The size of the paper according to different standards. Includes the paper
sizes A4 (QPrinter: :A4) and Letter (QPrinter::Letter), but supports many more. Refer
to the Qt documentation for details.

Let’s continue with some actual printing.

Tip When experimenting with printing, it can be really useful to have a virtual printer driver or to print to a
file—it can save lots of paper.

CHAPTER 7 © DRAWING AND PRINTING 229

Painting to the Printer

The most straightforward way to draw to a printer is to create a QPainter to access the
QPrinter object directly. To configure the QPrinter object, use a QPrintDialog standard dialog
(see Figure 7-31), in which the user can pick a printer and also make some basic choices about
the print job.

Print X}

— Printer

MName: 'Samsung CLP-510 Series v| Properties... |

Status: Ready

Type: Samsung CLP-510 Series

Where: IP_12.0.0210

Comment: [~ Printto file

—Printrange Copies

= Al Number of copies: |1 3:

" Pages from:l' ID:I'
| Selection Ijl

oK I Cancel

Figure 7-31. A printer selection and configuration dialog

Listing 7-32 shows the source code of an entire application that creates a five-page print-
out. The top of one of the pages from the print job is shown in Figure 7-32.

Page 1

Figure 7-32. A painted page

Listing 7-32 starts by creating QApplication, QPrinter, and QPrintDialog. The dialog is
then executed; if it is accepted, you'll do some printing.

The actual printing is prepared as you create a QPainter referring to the printer object and
set it to use a black pen. Then you use a for loop to create five pages. For each page, draw a
rectangle and two lines forming a cross in the QPrinter pageRect. This is a rectangle represent-
ing the printable area (the rectangle representing the entire paper is called the paperRect).

230

CHAPTER 7 = DRAWING AND PRINTING

Calculate the dimensions of the textArea rectangle. (This rectangle has one-half inch
margins on the sides and at the top, and a full inch at the bottom.) The resolution method
gives the number of dots per inch, so 0.5*printer.resolution() results in the number of dots
needed to cover one-half inch. You draw a frame around the text area and then print the page
number as text inside the same rectangle.

If you're not on the last page, that is, the page isn't equal to four, call the newPage method.
This page prints the current page and creates a new blank page to continue painting on.

Listing 7-32. Painting to a QPrinter object

int main(int argc, char **argv)

{
OApplication app(argc, argv);

QPrinter printer;

QPrintDialog dlg(&printer);

if(dlg.exec() == QDialog::Accepted)
{

QPainter painter(&printer);
painter.setPen(Qt::black);

for(int page=0; page<5; page++)
{
painter.drawRect(printer.pageRect());x
painter.drawLine(printer.pageRect().topLeft(),
printer.pageRect().bottomRight());
painter.drawLine(printer.pageRect().topRight(),
printer.pageRect().bottomLeft());

QRectF textArea(
printer.pageRect(
printer.pageRect(
printer.pageRect(
printer.pageRect(

.left() +printer.resolution()
.top() +printer.resolution()
.width() -printer.resolution()
.height()-printer.resolution()

0.5,
0.5,
1.0,
1.5);

* X ¥ ¥

— —

painter.drawRect(textArea);

painter.drawText(textArea, Qt::AlignTop | Qt::AlignlLeft,
QString("Page %1").arg(page+l));

if(page !=4)
printer.newPage();

return 0;

}

CHAPTER 7 © DRAWING AND PRINTING

Rendering a Graphics Scene to the Printer

It might be easy to draw to a printer using a painter object, but it doesn't help if your entire
document is based on the graphics view framework. You must be able to render your scene to
the printer, which is very easy to do.

Compare Listing 7-33 with Listing 7-19. Listing 7-33 uses the same scene as Listing 7-19,
but instead of showing it through a scene, it prints it to a printer using the render method. You
can compare the outputs by comparing Figure 7-33 with Figure 7-28. As you can see, the scene
is nicely represented both on paper and onscreen.

Foundations of Qt

Figure 7-33. A printed graphics scene

The render method accepts four arguments. From left to right, they are a painter to ren-
der to, a destination rectangle, a source rectangle, and a flag determining how to scale. In the
listing, the painter paints to a QPrinter object. The destination rectangle represents the entire
printable area of the page, while the source is the entire scene. The scaling flag is set to
Qt: :KeepAspectRatio, which means that the scene’s height-to-width ratio will be kept.

If you want the scene to stretch to fill the destination rectangle, you can use
Qt::IgnoreAspectRatio. Another alternative is to let the scene fill the page, but still keep its
height-to-width ratio by passing Qt : :KeepAspectRatioByExpanding. This means that the scene
will continue beyond the available page unless the source and destination rectangles have the
same portions.

Listing 7-33. Rendering a graphics scene to the printer

int main(int argc, char **argv)
{
QApplication app(argc, argv);

QGraphicsScene scene(QRect(-50, -50, 400, 200));

QPrinter printer;
QPrintDialog dlg(&printer);
if(dlg.exec())

{

QPainter painter(&printer);

231

232

CHAPTER 7 = DRAWING AND PRINTING

scene.render(8painter, printer.pageRect(),
scene.sceneRect(), Qt::KeepAspectRatio);

return O;

}

OpenGL

In the very first paragraph of this chapter I mentioned that the only alternative to using the
QPainter class is to use OpenGL directly. Because OpenGL is a programming interface and
falls outside the scope of this book, you'll look at how the hardware acceleration for OpenGL
can be used without actually writing OpenGL code directly.

A QGraphicsView is a viewport to a given scene, but it also contains a viewport widget that
you can reach with the viewport property. If you provide the view with a QGLWidget, the graph-
ics will be drawn using OpenGL.

In Listing 7-21, the required change is limited to the line highlighted in Listing 7-34. The
code creates a new QGLWidget and sets it as the viewport. The QGraphicsView item takes owner-
ship of its viewport, so you don’t need to provide a parent pointer.

Listing 7-34. Drawing a graphics scene using OpenGL

int main(int argc, char **argv)

{

QGraphicsView view;

view.setScene(&scene);
view.setViewport(new QGLWidget());
view.show();

return app.exec();

To build a Qt application using OpenGL, you have to include the Qt OpenGL module by
adding a line reading QT += opengl to your project file. The differences between drawing the
scene using OpenGL or to a normal widget can't be seen—that’s the point. However, on sys-
tems providing hardware acceleration of OpenGL the performance will be vastly improved.

Summary

It’s easy to draw using the QPainter class, which can be used to paint to various devices (a
screen, images, pixmaps, and printers). By scaling, rotating, shearing, and translating, it is
possible to draw almost any conceivable shape.

CHAPTER 7 © DRAWING AND PRINTING

The QPainter class is the workhorse when creating custom widgets with painting logic.
If you want to represent multiple independent shapes in a single document or widget, the
graphics view framework is helpful. By creating a QGraphicsScene and populating it with
QGraphicsItem objects, you can easily create an interactive canvas for the users. The scene
can be shown using a QGraphicsView widget or just as easily printed using a QPainter for
painting to a QPrinter.

233

CHAPTER 8

Files, Streams, and XML

Handling files is a complex problem when it comes to cross-platform applications because
even the most basic features can vary across platforms. For instance, Unix systems use the
slash (/) as a separator in paths, whereas the Windows platform uses a backslash (\). And this
is just the beginning; you'll also encounter an unnerving array of fundamental differences
such as different line endings and encodings, each of which can cause all sorts of strange
problems to crop up when you attempt to coax your application into running on multiple
platforms.

To overcome this problem, Qt offers a range of classes to handle paths, files, and streams.
Qt also handles XML files—a format structuring the contents in a portable way.

Working with Paths

The QDir class is the key to handling paths and drives in Qt applications. When specifying
paths to a QDir object, the slash (/) is used as a separator and is automatically converted to
whatever separator is used on the current platform. Drive letters are allowed, and paths start-
ing with a colon (:) are interpreted as references to resources embedded into the application.

The QDir static methods make it possible to easily navigate the file system. First,
QDir::current() returns a QDir that refers to the application’s working directory. QDir: :home()
returns a QDir for the user’s home directory. QDir: :root () returns the root, and QDir: : temp()
returns the directory for temporary files. QDir: :drives() returns a QList of QFileInfo objects,
representing the roots of all the available drives.

Note Unix systems are considered to have a single drive /, whereas a Windows machine's drive space
can be configured to have several drives.

QFileInfo objects are used to hold information about files and directories. It has a number
of useful methods, some of which are listed here:

235

236

CHAPTER 8 = FILES, STREAMS, AND XML

e isDir(), isFile(), and isSymLink(): Return true if the file information object repre-
sents a directory, file, or symbolic link (or a shortcut on Windows).

e dir() and absoluteDir():Return a QDir object represented by the file information
object. The dir method can return a directory relative to the current directory,
whereas absoluteDir returns a directory path starting with a drive root.

¢ exists(): Returns true if the object exists.

e isHidden(), isReadable(), isWritable(), and isExecutable():Return information
about the file’s state.

e fileName():Returns the file name without the path as a QString.

e filePath():Returns the file name including the path as a QString. The path can be
relative to the current directory.

e absoluteFilePath():Returns the file name including the path as a QString. The path
starts with a drive root.

e completeBaseName() and completeSuffix():Return QString objects holding the name of
the file and the suffix (extension) of the file name.

Let’s use these methods to create an application listing all drives and folders in the root of
each drive. The trick is to find the drives using QDir: :drives and then find the directories of
each drive’s root (see Listing 8-1).

Listing 8-1. Listing the drives with the root directories

#include <QDir>
#include <QFileInfo>

#include <QtDebug>

int main(int argc, char **argv)

{

foreach(QFileInfo drive, QDir::drives())

{
gDebug() << "Drive:

n

<< drive.absolutePath();

QDir dir = drive.dir();
dir.setFilter(QDir::Dirs);

foreach(QFileInfo rootDirs, dir.entryInfolist())

gDebug() << " " << rootDirs.fileName();

return 0;

}

CHAPTER 8 = FILES, STREAMS, AND XML

The QDir: :drives method returns a list of QFileInfo objects that are iterated using
foreach. After having printed the drive’s root path through gDebug, the QDir object for each
root is retrieved using the dir method.

Note To use qDebug in a Windows environment, you must add the line CONFIG += console to your
project file.

One nice aspect of QDir objects is that they can be used to get a directory listing. By using
the filter() method, you can configure the object to return only directories. The directories
are then returned as a QList of QFileInfo objects from the entryInfolist method. These
QFileInfo objects represent directories, but the fileName method still returns the directory
name. The isDir and isFile methods make it possible to confirm that the file name is a direc-
tory name or the name of a file. This is easier to understand if you consider directories to be
files containing references to their contents.

The setFilter(Filters) method can be used to filter out directory entries based on a
number of different criteria. You can also combine the filters criteria to get the entry list you
want. The following values are supported:

QDir::Dirs: Lists directories that are matched by the name filter.
QDir::AllDirs: Lists all directories (does not apply the name filter).
QDir::Files: Lists files.

QDir::Drives: Lists drives. It is ignored on Unix systems.

QDir: :NoSymLinks: Does not list symbolic links. It is ignored on platforms in which
symbolic links not are supported.

QDir::NoDotAndDotDot: Does not list the special entries . and ...

QDir::AllEntries: Lists directories, files, drives, and symbolic links.

QDir::Readable: Lists readable files. It must be combined with Files or Dirs.
QDir::Writeable: Lists writable files. It must be combined with Files or Dirs.
QDir::Executable: Lists executable files. It must be combined with Files or Dirs.
QDir::Modified: Lists files that have been modified. It is ignored on Unix systems.
QDir::Hidden: Lists files that are hidden. On Unix systems, it lists files starting with ..
QDir::System: Lists system files.

QDir::CaseSensitive: The name filter should be case sensitive if the file system is
case sensitive.

237

238

CHAPTER 8 = FILES, STREAMS, AND XML

The filter method is combined with the setNameFilters() method, which takes a
QStringlist of file name-matching patterns such as *.cpp. Notice that the name filter is a list
of patterns, so it is possible to filter for *.cpp, *.h, *.qrc, *.ui, and *.pro files with one name
filter.

Working with Files

You can use QDir to find files and QFileInfo to find out more about files. To take it one step
further to actually open, read, modify and create files, you have to use the QFile class.

Let’s start looking at QFile by checking out Listing 8-2. The application checks whether
the file testfile.txt exists. If it does, the application attempts to open it for writing. If that is
allowed, it simply closes the file again. Along the way, it prints status messages using qDebug.

The highlighted lines in the listing show the interesting QFile operations. First, the file
name is set in the constructor. The file name can be set using the setFileName(const
QString8) method, which makes it possible to reuse a QFile object. Next, the application
uses the exists method to see whether the file exists.

The last highlighted line attempts to open the file for writing because it is easy to write-
protect a file on all platforms supported by Qt. The open method returns true if the file is
successfully opened.

The rest of the listing consists of code for outputting debug messages and exiting the
main function (using return). Make sure to close the file before exiting if the opening of the
file was successful.

Listing 8-2. Basic QFile operations
#include <QFile>

#include <QtDebug>

int main(int argc, char **argv)
{ QFile file("testfile.txt");

if(!file.exists())

{
gDebug() << "The file" <« file.fileName() << "does not exist.";
return -1;

}

if(!file.open(QIODevice::WriteOnly))

{
gDebug() << "Could not open" << file.fileName() << "for writing.";
return -1;

}

qDebug() << "The file opened.";

CHAPTER 8 = FILES, STREAMS, AND XML

file.close();

return 0;

}

The previous listing opened the file for writing. You can use other flags when opening files
to control how the file is read and modified:

* QIODevice::WriteOnly: Opens the file for writing.
* QIODevice::ReadWrite: Opens the file for reading and writing.
* QIODevice::ReadOnly: Opens the file for reading.

The preceding three flags can be combined with the following flags to control the file
access mode in detail:

e QIODevice::Append: Appends all written data to the end of the file.
e QIODevice::Truncate: Empties the file when it is opened.

e QIODevice::Text: Opens the file as a text file. When reading from the file, all line
endings are translated to \n. When writing to the file, the line endings are converted
to a format appropriate for the target platform (for example, \r\n on Windows and \n
on Unix).

* QIODevice::Unbuffered: Opens the file without any buffering.

You can always tell which mode is used for a given QFile object by calling the openMode ()
method. It returns the current mode. For closed files, it returns QI0Device: :NotOpen.

Working with Streams

After you have opened a file, it is more convenient to access it using a stream class. Qt comes
with two stream classes: one for text files and one for binary files. By opening a stream to
access a file, you can use redirect operators (<< and >>) to write and read data to and from the
file. With streams, you also get around platform differences such as endianess and different
line-ending policies.

Text Streams

With text streams, you can interface a file as you can from the C++ standard library—but with
a twist. The twist is that the file is handled in a cross-platform manner so that line endings and
other such details do not mess up the results when you move applications and files between
different computers.

To create a text stream for a file, create a QF ile object and open it as usual. It is recom-
mended that you pass the QI0Device: : Text flag with your read and write policy. After you
open the file, pass a pointer to the file object to the constructor of a QTextStream object. The
QTextStream object is now a stream to and from the file, depending on how the file was
opened.

239

240

CHAPTER 8 = FILES, STREAMS, AND XML

Listing 8-3 shows a main function that opens a file called main. cpp for reading as text. If
the file is opened successfully, a text stream is created. At the end of the function, the file is
closed.

Listing 8-3. Opening a text stream for reading

int main(int argc, char **argv)

{
QFile file("main.cpp");
if(!file.open(QIODevice::ReadOnly | QIODevice::Text))
gFatal("Could not open the file");
QTextStream stream(8file);
file.close();
return O;
}

Listing 8-4 shows a simple loop meant to be used in the main function from the previous
listing. The loop uses atEnd to see whether the end of the file is reached. If not, a QString is
read from the stream using the >> operator and then printed to the debug console.

The result of executing the loop shown will not look like the contents of the main. cpp file.
Operator >> reads until the first white space is encountered. So the line #include <QFile>
would be split into #include and <QFile>. Because gDebug adds a line break after each call, the
example line would be printed over two lines on the debug console.

Listing 8-4. Reading from a text stream word by word

while(!stream.atEnd())
{
QString text;
stream >> text;
gDebug() << text;

The solution is to either read the entire file, including both text and line breaks, by using
the readAl1() method on the stream object or to read it line by line. Reading with readAl1()
works in most cases, but because the entire file is loaded into memory at once, it can easily
use up the entire memory.

To read the file line by line, use the readLine() method, which reads a complete line at a
time. Listing 8-5 shows the loop from the previous listing, but with readLine instead. Execut-
ing the loop gives a result on the debug console, showing the contents of the main.cpp file.

CHAPTER 8 = FILES, STREAMS, AND XML

Listing 8-5. Reading from a text stream line by line

while(!stream.atEnd())

{
0String text;
text = stream.readline();
gDebug() << text;

Data Streams

Sometimes you can't rely on using a text file for your data. For instance, you might want to
support an already existing file format that is not text-based or you might want to produce
smaller files. By storing the actual data in a machine-readable, binary format instead of con-
verting it to human-readable text, you can save both file size and complexity in your save and
load method.

When you need to read and write binary data, you can use the QDataStream class. There
are two important matters you need to keep in mind when using data streams, however: data
types and versioning.

With data types, you must ensure that you use exactly the same data type for the >> oper-
ator as for the << operator. When dealing with integer values, it is best to use qint8, qint16,
gint32, or qint64 instead of the short, int, and long data types that can change sizes between
platforms.

The second issue, versioning, involves making sure that you read and write the data using
the same version of Qt because the encoding of the binary data has changed between the dif-
ferent versions of Qt. To avoid this problem, you can set the version of the QDataStream with
the setVersion(int) method. If you want to use the data stream format from Qt 1.0, set the
version to QDataStream: :0t_1 0. When creating a new format, it is recommended to use the
highest possible version (for Qt 4.2 applications, use QDataStream::Qt 4 2).

All the basic C++ types and most Qt types—such as QColor, QList, QString, ORect, and
QPixmap—can be serialized through a data stream. To make it possible to serialize a type of
your own, such as a custom struct, you need to provide << and >> operators for your type.
Listing 8-6 shows the ColorText structure and the redirect operators for it. The structure is
used for keeping a string and a color.

Tip When an object or data is serialized, it means that the object is converted into a series of data
suitable for a stream. Sometimes this conversion is natural (for example, a string is already a series of char-
acters); in other cases it requires a conversion operation (for example, a tree structure can’t be mapped to a
series of data in a natural way). When conversion is needed, a serialization scheme must be designed that
defines how to serialize a structure and also how to restore the structure from the serialized data.

In this context, fype means any type—a class, a structure, or a union. By providing the <<
and >> operators for such a type, you make it possible to use the type with a data stream with-
out requiring any special treatment. If you look at the stream operators in the listing, you see

24

242

CHAPTER 8 = FILES, STREAMS, AND XML

that they operate on a reference to a QDataStream object and a ColorText object, and return a
reference to a QDataStream object. This is the interface that you must provide for all custom
types that you want to be able to serialize. The implementation is based on using existing <<
and >> operators to serialize the type in question. Also remember to place the data on the
stream in the same order in which you plan to read it back in.

If you want to write stream operators for a type of variable size—for example, a string-like
class—you must first send the length of your string to the stream in your << operator to know
how much information you need to read back using your >> operator.

Listing 8-6. The ColoxrText structure with its << and >> operators

struct ColorText
{
QString text;
QColor color;

};

QDataStream 8operator<<(QDataStream &stream, const ColorText &data)

{

stream << data.text << data.color;

return stream;

}

QDataStream 8operator>>(QDataStream &stream, ColorText &data)
{

stream >> data.text;

stream >> data.color;

return stream;

}

Now that the custom type ColorText is created, let’s try to serialize a list of ColorText
objects: aQList<ColorText>. Listing 8-7 shows you how to do this. First, a list object is created
and populated. Then a file is opened for writing before a data stream is created in the same
manner as a text stream. The last step is to use setVersion to ensure that the version is prop-
erly set. When everything is set up, it is just a matter of sending the list to the stream by using
the << operator and closing the file. All the details are sorted out by the different layers of <<
operators being called directly and indirectly for QList, ColorText, QString, and QColor.

Listing 8-7. Saving a list of ColorText items
QList<ColorText> list;

ColorText data;

data.text = "Red";
data.color = Qt::red;
list << data;

CHAPTER 8 = FILES, STREAMS, AND XML

QFile file("test.dat");
if(!file.open(QIODevice::WriteOnly))
return;

QDataStream stream(&file);
stream.setVersion(QDataStream::Qt 4 2);

stream << list;

file.close();

Loading the serialized data back is just as easy as serializing it. Simply create a destination
object of the right type; in this case, use QList<ColorText>. Open a file for reading and then
create a data stream. Ensure that the data stream uses the right version and reads the data
from the stream using the >> operator.

In Listing 8-8, you can see that the data is loaded from a file, and the contents of the
freshly loaded list are dumped to the debug console using gDebug from a foreach loop.

Listing 8-8. Loading a list of ColorText items

QList<ColorText> list;

QFile file("test.dat");
if(!file.open(QIODevice::ReadOnly))
return;

QDataStream stream(&file);
stream.setVersion(QDataStream::Qt 4 2);

stream >> list;
file.close();

foreach(ColorText data, list)
qDebug() << data.text << "("
<< data.color.red() << ","
<< data.color.green() << ","

<< data.color.blue() << ")";

XML

XML is a meta-language that enables you to store structurized data in a string or text file (the
details of the XML standard are beyond the scope of this book). The basic building blocks of
an XML file are tags, attributes, and text. Take Listing 8-9 as an example. The document tag

243

244

CHAPTER 8 = FILES, STREAMS, AND XML

contains the author tag and the text that reads Some text.The document tag starts with the
opening tag <document> and ends with the closing tag </document>.

Listing 8-9. A very simple XML file

<document name="DocName">
<author name="AuthorName" />
Some text

</document>

Both tags have an attribute called name with the values DocName and AuthoxrName. It is pos-
sible for a tag to have any number of attributes, ranging from none to infinity.

The author tag has no contents and is opened and closed at once. Writing <author /> is
equivalent to writing <author></author>.

Note This information is the very least you need to know about XML. The XML file presented here is not
even a proper XML file—it lacks a document type definition. And you haven’t even started to learn about
namespaces and other fun details of XML. But you do know enough now to start reading and writing XML
files using Qt.

Qt supports two ways of handing XML files: DOM and SAX (described in the following
sections). Before you get started, you need to know that the XML support is part of the Qt
module 0tXml, which means that you are required to add a line reading QT += xml to your
project file to include it.

DOM

The document object model (DOM) works by representing the entire XML document as a tree
of node objects in memory. Although it is easy to parse and modify the document, the entire
file is loaded into memory at once.

Creating an XML File

Let’s start by creating an XML file using the DOM classes. To make things easier, the goal is to
create the document shown in Listing 8-9. The process is divided into three parts: creating the
nodes, putting the nodes together, and writing the document to a file.

The first step—creating the nodes—is shown in Listing 8-10. The different building blocks
of the XML file include a QDomDocument object representing the document, QDomElement objects
representing the tags, and a QDomText object representing the text data in the document tag.

The elements and text object are not created using a constructor. Instead, you have to use
the createElement(const QStringd) and createTextNode(const QString &) methods of the
QDomDocument object.

CHAPTER 8 = FILES, STREAMS, AND XML

Listing 8-10. Creating the nodes for a simple XML document

QDomDocument document;

QDomElement d = document.createElement("document”);
d.setAttribute("name", "DocName");

QDomElement a = document.createElement("author");
a.setAttribute("name", "AuthorName");

QDomText text = document.createTextNode("Some text");

The nodes created in Listing 8-10 are not ordered in any way. They can be considered to
be independent objects, even though they all were created with same document object.

To create the structure shown in Listing 8-9, the author element and text have to be put in
the document element by using the appendChild(const QDomNode&) method, as shown in
Listing 8-11. In the listing, you can also see that the document tag is appended to the document
in the same manner. It builds the same tree structure, as can be seen in the file that you are
trying to create.

Listing 8-11. Purting the nodes together in the DOM tree

document.appendChild(d);
d.appendChild(a);
d.appendChild(text);

The last step is to open a file, open a stream to it, and output the DOM tree to it, which
is what happens in Listing 8-12. The XML string represented by the DOM tree is retrieved by
calling toString(int) on the QDomDocument object in question.

Listing 8-12. Writing a DOM document to a file

QFile file("simple.xml");
if(!file.open(QIODevice::WriteOnly | QIODevice::Text))

{
gDebug("Failed to open file for writing.");

return -1;

}

QTextStream stream(&file);
stream << document.toString();

file.close();

Loading an XML File

Knowing how to create a DOM tree is only half of what you need to know to use XML through
DOM trees. You also need to know how to read an XML file into a QDomDocument and how to
find the elements and text contained in the document.

245

246

CHAPTER 8 = FILES, STREAMS, AND XML

This is far easier than you might think. Listing 8-13 shows all the code it takes to get a
QDomDocument object from a file. Simply open the file for reading and try to use the file in a call
to the setContent member of a suitable document object. If it returns true, your XML data is
available from the DOM tree. If not, the XML file was not valid.

Listing 8-13. Getting a DOM tree from a file

QFile file("simple.xml");
if(!file.open(QIODevice::ReadOnly | QIODevice::Text))
{

gDebug("Failed to open file for reading.");

return -1;

}

QDomDocument document;

if(!document.setContent(&file))

{
gDebug("Failed to parse the file into a DOM tree.");
file.close();
return -1;

}

file.close();

The root element of a DOM tree can be retrieved from the document object by using the
documentElement () method. Given that element, it is easy to find the child nodes. Listing 8-14
shows you how to use firstChild() and nextSibling() to iterate through the children of the
document element.

The children are returned as QDomNode objects—the base class of both QDomElement and
QDomText. You can tell what type of node you are dealing with by using the isElement() and
isText() methods. There are more types of nodes, but text and element nodes are most com-
monly used.

You can convert the QDomNode into a QDomElement by using the toElement() method. The
toText () method does the same thing, but returns a QDomText instead. You then get the actual
text using the data() method inherited from QDomCharacterData.

For the element object, you can get the name of the tag from the tagName() method.
Attributes can be queried using the attribute(const QString &, const QString &) method.
It takes the attribute’s name and a default value. In Listing 8-14, the default value is “not set.”

Listing 8-14. Finding the data from the DOM tree

QDomElement documentElement = document.documentElement();

QDomNode node = documentElement.firstChild();
while(!node.isNull())
{

if(node.isElement())

{

CHAPTER 8 = FILES, STREAMS, AND XML

QDomElement element = node.toElement();
qDebug() << "ELEMENT" << element.tagName();
qDebug() << "ELEMENT ATTRIBUTE NAME"

<< element.attribute("name", "not set");

}

if(node.isText())

{
QDomText text = node.toText();
qDebug() << text.data();

}

node = node.nextSibling();

}

Listing 8-14 simply lists the child nodes of the root node. If you want to be able to traverse
DOM trees with more levels, you have to use a recursive function to look for child nodes for all
element nodes encountered.

Modifying an XML File

Being able to read and write DOM trees is all you need to know in many applications. Keeping
your application’s data in a custom structure and translating your data into a DOM tree before
saving and then extracting your data from the DOM tree when loading is usually enough.
When the DOM tree structure is close enough to your application’s internal structure, it is
nice to be able to modify the DOM tree on the fly, which is what happens in Listing 8-15.

To put the code in the listing in a context, you need to know that the document has been
loaded from a file before this code is run. When the code has been executed, the document is
written back to the same file.

You find the root node using documentElement, which gives you a starting point. Then you
ask the root node for a list of all author tags (all elements with the tagName property set to
author) by using the elementsByTagName(const QString &) method.

If the list is empty, add an author element to the root node. The freshly created element is
added to the root node using insertBefore(const QDomNode &, const QDomNode &).Because
you give an invalid QDomNode object as the second parameter to the method, the element is
inserted as the first child node.

If the list contains an author element, you add a revision element to it. The revision ele-
ment is given an attribute named count, whose value is calculated from the number of
revision elements already in the author element.

That’s all it takes. Because the nodes have been added to the DOM tree, you just need to
save it again to get an updated XML file.

Listing 8-15. Modifying an existing DOM tree

ODomNodelList elements = documentElement.elementsByTagName("author");
if(elements.isEmpty())

{

QDomElement a = document.createElement("author");

247

248 CHAPTER 8 = FILES, STREAMS, AND XML

documentElement.insertBefore(a, QDomNode());
}

else if(elements.size() == 1)

{

QDomElement a = elements.at(0).toElement();

QDomElement r = document.createElement("revision");
r.setAttribute("count",
QString: :number (
a.elementsByTagName("revision").size() + 1));

a.appendChild(r);
}

Reading XML Files with SAX

The simple API for XML (SAX) can be used only to read XML files. It works by reading the file
and locating opening tags, closing tags, attributes, and text; and calling functions in the han-
dler objects set up to handle the different parts of an XML document. The benefit of this
approach compared with using a DOM document is that the entire file does not have to be
loaded into memory at once.

To use SAX, three classes are used: QXmlInputSource, QXmlSimpleReader, and a handler.
Listing 8-16 shows the main function of an application using SAX to parse a file. The
QXmlInputSource is used to provide a predefined interface between the QFile and the
0XmlSimpleReader object.

The 0XmlSimpleReader is a specialized version of the QXmlReader class. The simple reader
is powerful enough to be used in almost all cases. The reader has a content handler that is
assigned using the setContentHandler method. The content handler must inherit the
0XmlContentHandler, and that is exactly what the MyHandler class does. Having set everything
up, it is just a matter of calling the parse(const QXmlInputSource *, bool) method, passing
the XML input source object as a parameter, and waiting for the reader to report everything
worth knowing to the handler.

Listing 8-16. Setting up a SAX reader with a custom handler class

int main(int argc, char **argv)
{
QFile file("simple.xml");
if(!'file.open(QIODevice::ReadOnly | QIODevice::Text))
{
gDebug("Failed to open file for reading.");
return -1;

}

0XmlInputSource source(&file);

MyHandler handler;

CHAPTER 8 = FILES, STREAMS, AND XML

QXmlSimpleReader reader;
reader.setContentHandler(&handler);
reader.parse(source);

file.close();

return 0;

The declaration of the handler class MyHandler can be seen in Listing 8-17. The class
inherits from QXmlDefaultHandler, which is derived from QXmlContentHandler. The benefit
of inheriting QXmlDefaultHandler is that the default handler class provides dummy imple-
mentations of all the methods that you otherwise would have had to implement as stubs.

The methods in the handler class get called by the reader when something is encountered.
You want to handle text and tags and know when the parsing process starts and ends, so the
methods shown in the class declaration have been implemented. All methods return a bool
value, which is used to stop the parsing if an error is encountered. All methods must return
true for the reader to continue reading.

Listing 8-17. The MyHandler SAX handler class

class MyHandler : public QXmlDefaultHandler
{
public:

bool startDocument();

bool endDocument();

bool startElement(const QString &namespaceURI,
const QString &localName,
const QString &gName,
const OXmlAttributes 8atts);
bool endElement(const QString &namespaceURI,
const QString &localName,
const QString &gName);

bool characters(const QString &ch);

};

All methods except startElement look more or less like the method shown in Listing 8-18.
A simple text is printed to the debug console, and then true is returned. In the case of
endElement (shown in the listing), an argument is printed as well.

Listing 8-18. A simple handling class method

bool MyHandler::endElement(const QString 8namespaceURI, const QString &localName,
const QString &gName)
{

gDebug() << "End of element" << gName;
return true;

}

249

250

CHAPTER 8 = FILES, STREAMS, AND XML

The startElement method, shown in Listing 8-19, is slightly more complex. First, the ele-
ment’s name is printed; then the list of attributes passed through an QXmlAttributes object is
printed. The QXmlAttributes is not a standard container, so you must iterate through it using
an index variable instead of just using the foreach macro. Before the method ends, you return
true to tell the reader that everything is working as expected.

Listing 8-19. The startElement method lists the attributes of the element.

bool MyHandler::startElement(const QString &namespaceURI, const QString &localName,
const QString 8gName, const QXmlAttributes 8atts)
{
gDebug() << "Start of element" << gName;
for(int i=0; i<atts.length(); ++i)
gDebug() << " "

<< atts.gName(i) << "=" << atts.value(i);

return true;

}

The reason for printing the gName instead of the namespaceURI or localName is that the
gName is the tag name that you expect. Namespaces and local names are beyond the scope of
this book.

It is not very complicated to build an XML parser by implementing a SAX handler. As
soon as you want to convert the XML data into custom data for your application, you should
consider using SAX. Because the entire document is not loaded at once, the memory require-
ments of the application are reduced, which might mean that your application runs more
quickly.

Files and the Main Window

You learned in Chapter 4 that the setup with a isSafeToClose and the closeEvent method was
a good starting point for giving the user the option to save the file when a window with a mod-
ified document is closed. Now the time has come to add support for that functionality to the
SDI application (the same concept also applies to the MDI application).

Starting with Listing 8-20, you can see the changes made to the SdiWindow class declara-
tion. The highlighted lines were added to handle the load and save functionality.

The change is made to add the menu items Open, Save, and Save As to the File menu. The
changes to the class declaration consist of four parts: actions for handling the menu entries,
slots for the actions, the functions loadFile and saveFile for loading and saving the docu-
ment to an actual file, and the private variable currentFilename for keeping the current file
name. All methods that have to do with saving documents return a bool value, telling the
caller whether the document was saved.

Listing 8-20. Changes made to the SdiWindow class to enable loading and saving documents

class SdiWindow : public QMainWindow

{
Q_OBJECT

public:

CHAPTER 8

SdiWindow(QWidget *parent = 0);

protected:

void closeEvent(QCloseEvent *event);

private slots:
void fileNew();
void helpAbout();

void fileOpen();
bool fileSave();
bool fileSaveAs();

private:

void createActions();
void createMenus();
void createToolbars();

bool isSafeToClose();

bool saveFile(const QString &filename);
void loadFile(const QString &filename);

QString

currentFilename;

QTextEdit *docWidget;

QAction
QAction
QAction
QAction
QAction
QAction

QAction
QAction
QAction

QAction
QAction
b

*newAction;
*openAction;
*saveAction;
*saveAsAction;
*closeAction;
*exitAction;

*cutAction;
*copyAction;
*pasteAction;

*aboutAction;
*aboutQtAction;

FILES, STREAMS, AND XML

Creating the actions and then adding them to the appropriate menu is done in exactly
the same way as for the already existing actions. The fileOpen method, connected to the
open action, is shown in Listing 8-21. It uses the static getOpenFileName method from the
QFileDialog class to get a file name. If the user has closed the dialog without choosing a file,
the resulting string’s isNull method returns true. In that case, you return from the slot with-
out opening a file.

251

252

CHAPTER 8 = FILES, STREAMS, AND XML

If an actual file name is retrieved, you can try to load the file using loadFile. However, if
the current document has not been given a file name and is unchanged, the file is loaded into
the current document. If the current document has a file name or has been modified, a new
SdiWindow instance is created and then the file is loaded into it.

All SdiWindows are given file names when they are saved or loaded, so only new files do
not have valid file names.

Listing 8-21. Implementing the slot connected to the open action

void SdiWindow: :fileOpen()

{
QString filename = QFileDialog::getOpenFileName(this);
if(filename.isEmpty())
return;
if(currentFilename.isEmpty() && !docWidget->document()->isModified())
loadFile(filename);
else
{
SdiWindow *window = new SdiWindow();
window->loadFile(filename);
window->show();
}
}

The loadFile(const QStringd) method is used to load the contents from a given file into
the document of the current window. The source code of the method is shown in Listing 8-22.
The function attempts to open the file. If the file cannot be opened, a message box is shown
for the user. If the file is opened, a QTextStream is created, and the entire file content is loaded
by using readAll. The document is then assigned the new text with the setPlainText method.
When the document has been updated, the currentFilename variable is updated, the modified
flag is set to false, and the window's title is updated.

Listing 8-22. Source code actually loading file contents into the document

void SdiWindow::loadFile(const QString &filename)
{
QFile file(filename);
if(!file.open(QIODevice::ReadOnly | QIODevice::Text))
{
QMessageBox: :warning(this, tr("SDI"), tr("Failed to open file."));
return;

}

QTextStream stream(&file);
docWidget->setPlainText(stream.readAll());

CHAPTER 8 = FILES, STREAMS, AND XML

currentFilename = filename;
docWidget->document()->setModified(false);
setWindowTitle(tr("%1[*] - %2").arg(filename).arg(tr("SDI")));

}

The opposite method of loadFile is saveFile(const QString &). (You can see its imple-
mentation in Listing 8-23.) Despite their different tasks, the two functions’ implementations
look very similar. The concept is the same: attempt to open the file, send the document as
plain text to a stream and update the currentFilename, reset the modified bit, and update the
window title. When a file is actually saved, the saveFile function returns true; if the file is not
saved, the function returns false.

Listing 8-23. Source code for saving the document to a file

bool SdilWindow::saveFile(const QString &filename)
{
QFile file(filename);
if(!file.open(QIODevice::WriteOnly | QIODevice::Text))
{
QMessageBox: :warning(this, tr("SDI"), tr("Failed to save file."));
return false;

}

QTextStream stream(&file);
stream << docWidget->toPlainText();

currentFilename = filename;
docWidget->document()->setModified(false);
setWindowTitle(tr("%1[*] - %2").arg(filename).arg(tr("SDI")));

return true;

The return value from the saveFile method is used in the implementation of the
fileSaveAs method shown in Listing 8-24. The Save As slot looks very much like the Open
slot. It uses the getSaveFileName method to ask the user for a new file name. If a file name is
selected, the saveFile method is called to try to save the document.

Notice that false is returned if the file dialog is canceled, and the return value from the
saveFile method is returned when an attempt to save the document is made. The saveFile
returns true only if the document actually has been written to the file.

Listing 8-24. Source code for the Save As action

bool SdiWindow: :fileSaveAs()
{

QString filename =
QFileDialog::getSaveFileName(this, tr("Save As"), currentFilename);

253

254

CHAPTER 8 = FILES, STREAMS, AND XML

if(filename.isEmpty())
return false;

return saveFile(filename);

}

The fileSave method tries to save the document to the same file as before—the name
keptin currentFilename. If the current file name is empty, the file has not been given a file
name yet. In this case, the fileSaveAs method is called, showing the user a File dialog to pick
a file name. It is shown as source code in Listing 8-25.

The fileSave method returns the return value from either saveFile or fileSaveAs,
depending on which method is used to save the file.

Listing 8-25. Source code for the Save action

bool SdiWindow::fileSave()
{
if(currentFilename.isEmpty())
return fileSaveAs();
else
return saveFile(currentFilename);

The final option needed to make the dialog behave as expected is to let the user save the
file from the warning dialog shown when a modified document is being closed. The new
implementation of the isSafeToClose method is shown in Listing 8-26, in which the lines
containing the actual changes are highlighted.

The first change is the addition of the Save option to the warning dialog using the
OMessageBox: : Save enumerated value. The other change consists of a case for handling the
Save button. If the button is pressed, a call is made to fileSave. If the file is not saved (that is,
false is returned), the close event is aborted. This makes it impossible for the user to lose a
document without actually having chosen to do so (or experiencing some sort of power
failure).

Listing 8-26. Source code for checking whether to close a document

bool SdiWindow: :isSafeToClose()
{
if(isWindowModified())
{
switch(QMessageBox::warning(this, tr("SDI"),
tr("The document has unsaved changes.\n"
"Do you want to save it before it is closed?"),
QMessageBox: :Save | QMessageBox::Discard | QMessageBox::Cancel))
{
case QMessageBox::Cancel:
return false;
case QMessageBox: :Save:
return fileSave();

CHAPTER 8 = FILES, STREAMS, AND XML

default:
return true;
}
}

return true;

}

Adding these saving and loading capabilities fits well into the SDI structure presented
earlier. By confirming that the document actually has been saved (by using the return value
from all methods involved), you can build a waterproof protection, making it impossible to
close an unsaved document without confirming to do so.

Summary

Using files on different platforms usually means trouble. The incompatibilities are found on
all levels: file names, directory paths, line breaks, endianess, and so on. You can avoid prob-
lems with paths, drives, and file names by using the QDir and QFileInfo classes.

After you locate a file, you can open it by using QFile. Qt has streams to read and write
data. If you use the QTextStream class, you can handle text files with ease; if you use the
QDataStream class, it is easy to serialize and read back your data from binary files. Just think
about the potential stream-versioning problem. Even if you use the same Qt versions for all
your application deployments, you will get more versions in the future. A simple setVersion
call can save days of frustration.

One alternative to storing your data as text or in a custom binary format is to use XML.
Qt enables you to use DOM, which allows you to read an entire XML document into memory,
modify it, and then write it back to a file. If you want to read an XML file without having to
load it all at once, you can use Qt’s SAX classes.

When you use XML, you need to add the line QT += xml to your project file because the

XML support is implemented in a separate module. This module is not included in all editions

of Qt, so verify that you have access to it before trying to use it.

Finally, you saw the missing piece of the SDI application. Adding the methods covered in
the final section of this chapter makes it easy to build applications that support file loading
and saving.

255

CHAPTER 9

Providing Help

Sometimes users need a helping hand. With Qt you can give them the instruction they’re
looking for in a variety of ways: wizards, tooltips, status bar messages, and pointers to product
documentation, to name a few.

When considering how to add help-related features to your application, keep in mind that
there’s much more to it than simply responding to the F1 key (the de facto mechanism for dis-
playing the application’s help window). Assistance is most effective when it’s an integral yet
nonintrusive part of your entire application.

By using a good design that clearly reflects both what users are currently doing and where
in the process they are, you can dramatically reduce the need for help. Some of the tools and
principles include providing wizards for complex settings, avoiding or clearly indicating differ-
ent working modes such as insert and overwrite, and alerting users when they’re about to do
something that can destroy a lot of information.

Providing lots and lots of help does not make it easy to use an application; too much help
can just make it hard to find the information that the user is looking for. What you need to
achieve is an easy-to-use whole: a combination of relevant help and a clear design. This is
what makes using your application a joy.

Creating Tooltips

One of the most common ways to add some additional guidance to the user is to provide
tooltips, which are little signs containing information (see Figure 9-1). They appear when you
hover the mouse pointer over a control for a short period of time.

—Jtooltips

Group
[] check! label
Push This is a group box tool tip.

Motice that it appears between and around the contained widgets.
It is also spanning several lines.

Figure 9-1. The dialog and the tooltip for the group box

257

258

CHAPTER 9 = PROVIDING HELP

All widgets can be assigned a tooltip using the setTooltip(const QString&) method,
which accepts a string that can either be plain text or formatted using HTML. To demonstrate
tooltips, I have put together a QDialog class with a number of widgets. Listing 9-1 presents the
constructor used to set up the widgets and layouts (refer to Figure 9-1 to see the result).

Listing 9-1. The dialog constructor

ToolTipDialog: :ToolTipDialog() : QDialog()

{
QGroupBox *groupBox = new QGroupBox(tr("Group"));
QGridLayout *gblLayout = new QGridLayout(groupBox);

QCheckBox *checkBox = new QCheckBox(tr("Check!"));
QLabel *label = new QLabel(tr("label"));
QPushButton *pushButton = new QPushButton(tr("Push me!"));

gblayout->addWidget(checkBox, 0, 0);
gblLayout->addWidget(label, 0, 1);
gblLayout->addwidget(pushButton, 1, 0, 1, 2);

QGridLayout *dlglayout = new QGridlLayout(this);
dlglayout->addWidget(groupBox, 0, 0);

In Listing 9-2 the tooltips for the checkbox and group box are set. The checkbox gets a
single line, while the group box text is divided into three lines using the standard line break \n.
The group box tooltip shows when you hover the mouse pointer around and between the
widgets contained in the group box. If you hover over the label, checkbox, or push button,
their respective tooltips are shown.

Listing 9-2. Setting simple tooltip texts

checkBox->setToolTip(tr("This is a simple tool tip for the check box."));
groupBox->setToolTip(tr("This is a group box tool tip.\n"

"Notice that it appears between "

"and around the contained widgets.\n"

"It is also spanning several lines."));

Tip Breaking a string over multiple lines does not affect the result. From the C++ compiler’s viewpoint,
the string "foo"—Iine break—"bar" is identical to the string "foobar". Sometimes it is handy to be able
to break down a line because it can be used to increase the readability or simply to fit the code onto the
paper when printing it.

CHAPTER 9 = PROVIDING HELP

Creating HTML-Formatted Tooltips

Although it is possible to represent new-lines with the
 HTML tag, Qt actually supports
many HTML tags that can make formatting tooltips much easier. Listing 9-3 shows some of
the formatting that is possible. The resulting tooltip is shown in Figure 9-2.

Listing 9-3. An HTML-formatted tooltip

label->setToolTip(tr("<p>It is possible to do lists.</p>"
""
"You can <i>format</i> text.</1i>"
"Bold is possible too.</1i>"
"<1i>And the color and
"size.</1i>"
""
"<p>You can do ordered lists as well.</p>"
""
"First.</1i>"
"Second.</1i>"
"<1i>Third.</1i>"
""));

n

It is possible to do lists.

* You can format text.
* Bold is possible too.

* And the color and Size.
‘You can do ordered lists as well.

1. First.
2. Second.
3. Third.

Figure 9-2. A tooltip with lists and formatting
The following list explains the most common tags that can be used to format your
tooltips:

* <p>...</p>: This tagis used to enclose a paragraph. Paragraphs have some spacing
above and below, separating them from other parts of the text.

e
:This tag represents a line break. If you have decided to use HTML tags,

works, but \n does not. The \n system works only in texts without tags.

e <i>...</i>:The enclosed text is shown as italic.
e ...:The enclosed text is shown as bold.

e ... : The enclosed text is shown in the specified color nnn.
The color can be expressed as a color name (such as red, green, black, or white) or as a
hexadecimal value prefixed with #. The format is #rrggbb, where rr is the red value, gg is
the green value, and bb is the blue value.

259

260

CHAPTER 9 = PROVIDING HELP

e ...: The enclosed text is shown in an alternate size. The nnn
part can either be a relative size prefixed with + or -, or a fixed size (an integer value).

e ...: Contains list items that are prefixed by bullets.
e ... </0l>: Contains list items that are prefixed by numbers.

e ...</1i>: The enclosed text is treated as a list item.

Inserting Images into Tooltips

Another very useful tag is the img tag, which is used to insert images from files or resources
into the text. Figure 9-3 shows an example tooltip. The tag’s syntax looks like ,
where nnn is the file name. If the file name starts with :, it refers to a resource embedded into
the executable file. Listing 9-4 presents the source code for creating the example tooltip found
in Figure 9-3.

@You can also insert images
into your tool tips.

Figure 9-3. A tooltip with text and an image

Listing 9-4. A tooltip including an image

pushButton->setToolTip(tr(""
"You can also insert images into your tool tips."));

It is easy to provide tooltips for all your widgets and thus give your users the support they
need. A tooltip is often used to answer questions such as “What does this button do?” and
“Where did that hide ruler button go?” When you design a tooltip, try to keep the text ata
minimum because the tips are often used to quickly obtain an understanding of the various
interface widgets.

Applying Multiple Tooltips to a Widget

There are times when you'll want to assign several tooltips to a single widget—usually when
you're dealing with views for models and other widgets showing a complex document. In
these situations a single widget is used to show several different items, in which each item
might need a tooltip of its own. For example, suppose you have a drawing application in
which you want to use tooltips to show the diameter of circles and the width and height of
rectangles. Because the entire drawing is shown using a single viewing widget, that widget
needs to provide different tooltips depending on where the mouse pointer is located.

To do this it helps to understand how the tooltip is shown. The actual appearance of a
tooltip is triggered through a ToolTip event. By intercepting the event in the event (QEvent*)
method, you can change the tooltip depending on where the mouse pointer is located.

Figure 9-4 shows the desired effect: the four squares are all part of one widget, but each
square shows a different tooltip text.

CHAPTER 9 = PROVIDING HELP

Note Wnhen working with a QGraphicsView and friends, you can set tooltips for each QGraphicsItem—
avoiding the need to intercept the ToolTip event for the view widget or the scene. When working with
item views, you can use the model-view architecture to set tooltips for each item by assigning data to
Qt::ToolTipRole. If you want to provide custom tooltips for the view, reimplement the
viewportEvent (QEvent*) method instead of event().

—_tooltipzones =JEEd| |2 tooltipzones [Z]@
ls
Green
—_tooltipzones =JEEd| |Ztooltipzones [;]
Iy
Yellow

Figure 9-4. The same widget shows different tooltips for different parts.

Let’s get started with intercepting the right event and set the tooltip text for each of the
four squares. All events are passed through the event method before some of them are distrib-
uted to the different handlers, such as the paintEvent, mouseMoveEvent, and keyPressEvent
methods. Because there is no toolTipEvent method, you have to intercept the event in the
event method.

The source code for the interception is shown in Listing 9-5. Because the event method
receives a QEvent object, you must use the type property to determine whether a ToolTip
event was received. The QEvent class is the base class for all specialized event classes, so as
soon as you can tell that you are dealing with a tooltip, you can cast the QEvent object into a
QHelpEvent object.

261

262

CHAPTER 9 = PROVIDING HELP

Note How can you tell that the ToolTip event is sent as a QHelpEvent object? Look at the documenta-
tion for the enum QEvent: : Type; you'll see a list of all event types and the type of objects passed along
such an event.

After the event object has been cast into a QHelpEvent object, the rectangles for the four
zones are set up. Then the tooltip is set depending on which rectangle contains the point
returned by the pos () method of the QHelpEvent object.

When the tooltip text has been set, do not mark the event as accepted. Instead call the
default handler (because it knows how to show the actual tooltip) by calling the parent’s han-
dler Qwidget: :event. This is where all the non-ToolTip events go as well—making sure that
everything works as expected.

Listing 9-5. Intercepting all ToolTip events and updating the tooltip text before passing it on to
the default handler

bool TipZones::event(QEvent *event)

{
if(event->type() == QEvent::ToolTip)
{
QHelpEvent *helpEvent = static_cast<QHelpEvent*>(event);
ORect redRect, greenRect, blueRect, yellowRect;
redRect = QRect(0, 0, width()/2, height()/2);
greenRect = QRect(width()/2, 0, width()/2, height()/2);
blueRect = QRect(0, height()/2, width()/2, height()/2);
yellowRect = QRect(width()/2, height()/2, width()/2, height()/2);
if(redRect.contains(helpEvent->pos()))
setToolTip(tr("Red"));
else if(greenRect.contains(helpEvent->pos()))
setToolTip(tr("Green"));
else if(blueRect.contains(helpEvent->pos()))
setToolTip(tr("Blue"));
else
setToolTip(tr("Yellow"));
}

return QWidget::event(event);

}

CHAPTER 9 = PROVIDING HELP

Providing What’s This Help Tips

What's this help looks very much like a tooltip, except the user has invoked the What'’s this
mode and then clicked the widget of interest. The What'’s this mode is entered by clicking the
question mark button that appears on the title bar of the dialog window if any widget has
What's this help. The question mark button can be seen in Figure 9-5.

I whatsthis m

Group

[] checkl label

Figure 9-5. A dialog with the question mark button in the title bar

The What's this help text tends to be slightly longer and more detailed than the tooltip text
because the user usually wants to know a bit more about a widget.

The What's this text is set using the setWhatsThis(const QStringd) method and can be set
for all widgets. Although the string passed as argument is very similar to the string passed as
tooltip, there are some differences.

The most important difference is line breaks. When specifying What's this texts it is
important to use the
 tag, not the \n character to break the lines. Also, the What's this
texts are always word-wrapped unless you explicitly specify the paragraph not to be wrapped.
Figure 9-6 shows the same What's this text with and without word-wrapping.

To avoid word-wrapping you must put the text in a paragraph tag with the attribute
style="white-space:pre'. For example, the following line shows the word-wrapped text from
the figure:

checkBox->setWhatsThis(tr("This is a simple <i>What's This help</i>
"for the check box."));

This piece of source code shows the same text without word-wrapping:

n

checkBox->sethWhatsThis(tr("<p style='white-space:pre'>This is a simple
"<i>What's This help</i> for the check box.</p>"));

Sometimes it can be useful to prevent word-wrapping, but try to let Qt handle it whenever
possible. By letting Qt wrap the lines, the text is more likely to appear properly on the screen.
Take the example of a low-resolution screen with a very large font size setting (see Figure 9-6).
Your nonwrapped text might not fit the screen.

263

264

CHAPTER 9 = PROVIDING HELP

Non-wrapped This is a simple What's This help for the check box.

This is a simple
Wrapped What's This help for
the check box.

Figure 9-6. The same What's this text with and without word-wrapping

When it comes to formatting, What's this help texts can handle all the tags that tooltip
texts can. Figure 9-7 shows What's this help boxes demonstrating formatting and inline
images. Although the word-wrapping is slightly different, the results are identical to the
tooltip boxes.

It is possible to do lists.
* You can format text.

* Bold is possible too.
* And the color and SiZ€. @You can also insert

images into your What's This
You can do ordered lists as well. help.

1. First.
2. Second.
3. Third.

Figure 9-7. What's this help items handles the same formatting as tooltip texts.

Embedding Links into What’s This Help Tips

Even though What's this texts usually are a bit more detailed than tooltip texts, sometimes
even the expanded text allowance isn't enough. In these cases it can be useful to be able to
place a hyperlink in the text. The link can point to anything you please—for example, a dialog,
a section in online help, or a page on the Web.

When a link in a What's this text is clicked, a WhatsThisClicked event is sent to the widget
tied to the What's this help tip. This event can be intercepted in the event method, just as the
ToolTip event was intercepted when different tips for different parts of a widget were pro-
vided. However, because there might be many dialogs with What'’s this help containing links,
a good solution is to intercept all the WhatsThisClicked events in one place. This process
enables you to treat all links in the same way using the same mechanisms. The event inter-
ception can be performed using an event filter.

The idea is to have an event filter that can be installed on all dialogs that provide What'’s
this help. The filter object then emits a signal each time a link has been clicked. This signal can
be connected to a central point that performs the appropriate action (such as opening a help
page).

Listing 9-6 shows the class declaration of the LinkFilter filter class. It provides a signal
to emit when a link is clicked, a constructor, and the eventFilter method. The constructor
simply passes on the parent pointer to the Q0bject constructor to keep Qt happy.

CHAPTER 9

Listing 9-6. The declaration of the event filtering class
#ifndef LINKFILTER H

#define LINKFILTER H

#include <QObject>

class LinkFilter : public QObject

{
Q_OBJECT

public:
LinkFilter(QObject *parent=0);

signals:
void linkClicked(const QString &);

protected:
bool eventFilter(QObject*, QEvent*);

};

#endif // LINKFILTER H

PROVIDING HELP

The actual filtering takes place in Listing 9-7. All events of the type WhatsThisClicked
are handled. The QEvent object is cast into a QwhatsThisClickedEvent object from which the
href property is emitted through the 1inkClicked signal. Make sure to call the QWhatsThis::
hideText method that hides the What's this box before the signal is emitted and any action is

taken.

Finally, handled events return true, preventing any further event handling. All other

events return false—informing Qt that the event is ignored.

Listing 9-7. Filtering the events for WhatsThisClicked events

bool LinkFilter::eventFilter(QObject *object, QEvent *event)

{
if(event->type() == QEvent::WhatsThisClicked)

{

QWhatsThisClickedEvent *wtcEvent = static_cast<QWhatsThisClickedEvent*>(event);

QWhatsThis: :hideText();
emit 1linkClicked(wtcEvent->href());
return true;

}

return false;

}

To test the LinkFilter class a simple dialog class, LinkDialog, was created The dialog has
a constructor and a slot: showLink(const QStringd). (Listing 9-8 shows the constructor of the

dialog.)

265

266

CHAPTER 9 = PROVIDING HELP

First a LinkFilter is created and installed as an event filter for the dialog. The 1inkClicked
signal is connected to the showLink slot of the dialog. Notice that the WhatsThisClicked event
is passed through the dialog so you can intercept clicked links for all widgets in the dialog
here. Since the filter is installed on the dialog it is possible to install the filter from a main
window before showing the dialog.

After the filter is installed, a QPushButton widget is created and the What's this text is set.
To create a link, the ... tagis used. The nnn part is the string passed as the
href property of the QWhatsThisClickedEvent and then passed on through the 1inkClicked sig-
nal. The text between the and parts is the text that will be shown as a link.

Before the constructor ends, the push button is placed in a layout.

Listing 9-8. Setting up a dialog with the LinkFilter event filter

LinkDialog::LinkDialog() : QDialog()
{
LinkFilter *filter = new LinkFilter(this);
this->installEventFilter(filter);
connect(filter, SIGNAL(1linkClicked(const QStringd)),
this, SLOT(showLink(const QStringd)));

QPushButton *button = new QPushButton("What is this?");
button->setWhatsThis("This is a test link.");

QGridLayout *layout = new QGridlLayout(this);
layout->addWidget(button, 0, 0);

Figure 9-8 shows the What's this text and the link being shown. When the user clicks the
link, a QWhatsThisClickedEvent is triggered, the 1inkClicked signal is emitted, and the
showLink slot is triggered. The source code of the slot is shown in Listing 9-9.

Tw... 2JES

This is a test link.

Figure 9-8. The What's this text with a link

Listing 9-9. Showing the clicked link using a message box

void LinkDialog::showlLink(const QString &link)

{
QMessageBox: :information(this, tr("Link Clicked"), tr("Link: %1").arg(link));

}

CHAPTER 9 = PROVIDING HELP

All the slot does is show a message box with the link string (see Figure 9-9). Here, you can
add code to interpret the given string and then take the appropriate action instead of just
showing a message box.

ILink Clicked E3

\i‘) Link: test link

Figure 9-9. The dialog showing the link text

Taking Advantage of the Status Bar

Status bars, which are usually found at the bottom of application windows, are often used to
display temporary messages as well as information about working modes, location in the cur-
rent document, size of the current file, and so on. The information shown is very dependent
on the application type, but it is information that is useful to the user.

The status bar is represented by a QStatusBar widget. When you use a status bar in a main
window you can get a reference to the status bar object with the statusBar () method. The first
time you call the method a status bar is created, whereas consecutive calls simply return a
pointer to the bar.

The most common use of the status bar is to show messages such as "Loading", "Saving",
"Ready"”, "Done", and so on. These messages are shown using the showMessage (const
QString8, int) method. For example, the following line shows the message text "Ready"
for two seconds (see Figure 9-10):

statusBar->showMessage(tr("Ready"), 2000);

Ready
Figure 9-10. A status bar showing a temporary message

The time given to showMessage is specified in milliseconds (multiply the time in seconds
by 1000 to get the time in milliseconds). If you call showMessage without specifying a time or
specifying a time of zero milliseconds, the message is shown until you replace the message by
calling showMessage or until you call clearMessage() to remove the message.

When not used for status messages, the status bar can contain a set of widgets. The usual
use for these widgets is to provide the user with information that is useful to have at hand at
all times.

Widgets can be added to the status bar as normal or permanent. The difference is that
normal widgets are covered by messages, whereas permanent widgets are always shown.

The widgets are added from left to right, but permanent widgets always appear to the right
of normal widgets.

267

268

CHAPTER 9 = PROVIDING HELP

The status bar shown in Figure 9-11 shows a status bar with a progress bar and three
labels. The label reading N indicates that the current document isn't modified. This shows one
of the limitations of status bars: the available space is limited so the information will have to
be presented in a very compact format. It is possible to set a tooltip for the label to explain
what is shown, but it’s not a very intuitive solution.

N OkB EDIT

Figure 9-11. A status bar with a progress bar and three labels

The creation of the status bar and the widgets are shown in Listing 9-10. The code is taken
from a constructor for a class based on QMainWindow. The highlighted lines are the ones that
affect the status bar. First a pointer to the status bar is acquired, then the permanent widget is
added using addPermanentWidget (QWidget*, int), and finally the three normal widgets using
addWidget(QWidget*, int) are added.

Listing 9-10. The status bar and its widgets are set up in the constructor of the main window.

MainWindow: :MainWindow() : QMainWindow()

{

QStatusBar *statusBar = this->statusBar();

QProgressBar *progressBar = new QProgressBar;
QLabel *mode = new QLabel(tr(" EDIT "));
QLabel *modified = new QLabel(tr(" Y "));
QLabel *size = new QLabel(tr(" 999999kB "));

mode->setMinimumSize(mode->sizeHint());
mode->setAlignment(Qt::AlignCenter);
mode->setText(tr("EDIT"));

mode->setToolTip(tr("The current working mode."));

statusBar->addPermanentWidget(mode);

modified->setMinimumSize(modified->sizeHint());

modified->setAlignment(Qt::AlignCenter);

modified->setText(tr("N"));

modified->setToolTip(tr("Indicates if the current document "
"has been modified or not."));

size->setMinimumSize(size->sizeHint());

size->setAlignment(Qt::AlignRight | Qt::AlignVCenter);
size->setText(tr("%1kB ").arg(0));

size->setToolTip(tr("The memory used for the current document."));

CHAPTER 9 = PROVIDING HELP

progressBar->setTextVisible(false);
progressBar->setRange(0, 0);

statusBar->addWidget(progressBar, 1);
statusBar->addiWidget(modified);
statusBar->addiWidget(size);

Notice that the widgets are created with a large size and the minimumSize policy to the
sizeHint is set. This means that the widgets will not be shrunk to a smaller size than this. By
setting the second argument to 1 when adding the progress bar, you enable it to take the rest
of the available space. The second argument is the stretch factor, which defaults to zero. By
playing with it, you can ensure that the widgets keep their relative sizes when the main win-
dow is resized.

The labels then get a proper text and a tooltip before they are added to the status bar.
Notice that the permanent widget appears on the right even if it is added before the normal
widgets. This is so that a message can cover the normal widgets while keeping the permanent
widgets visible. An example can be seen in Figure 9-12.

Ready EDIT
Figure 9-12. A status bar showing a message and the permanent widget

One of the more common uses of status bars is to show different working modes. (Don'’t
forget that the status bar is fairly small.) Try to show the different working modes in other
ways, too: change the mouse pointer, change the appearance of handles for the objects being
processed, or simply change the background color. Just showing a small three-letter code on
the status bar is a good way to confuse just about any user.

Creating Wizards

When the user is faced with a multitude of options, a wizard can help by presenting the
options in a logical order and provide extra support in the form of explanatory text for
each option.

According to Qt, a wizard is a QWidgetStack containing all the pages; QPushButton widgets
for the Next, Previous, and Cancel buttons; and a QDialog for keeping all the components.
Each page is a QWidget in itself that can contain other widgets for settings.

A QWidgetStack is a special widget that can hold other widgets. These widgets are keptin a
stack (as in a stack of cards), in which only the current widget is visible. This makes it possible
to move forward and backward through the pages by simply changing the current widget of
the stack.

The best tool for designing a wizard is Qt Designer, but to show the concept I'll show you
a hand-coded version. Its first page is shown in Figure 9-13.

269

270 CHAPTER 9 = PROVIDING HELP

_Twizard W
The Rules

The rules are to be followed!

|:| I accept

Previous Next

Figure 9-13. The first page of the example wizard

A wizard is nothing more than a dialog to the rest of the application. Listing 9-11 shows
the declaration of the Wizard dialog class. The public interface contains only a constructor.
The private part of the interface consists of slots for the Next and Previous buttons, followed
by a number of pointers to the different widgets from which the dialog is composed.

Listing 9-11. The declaration of a wizard class

class Wizard : public QDialog

{
Q OBJECT

public:
Wizard();

private slots:
void doNext();
void doPrev();

private:
QPushButton *next;
QPushButton *previous;

QStackedWidget *pages;

PageOne *pageOne;
PageTwo *pageTwo;
PageThree *pageThree;

};

In the wizard I chose to place all logic in the Wizard class, so all the pages simply handle
the visual details. The controls that can be accessed later, such as checkboxes and line edits

CHAPTER 9 = PROVIDING HELP

with user configurations, are made public members in the page classes. The first page from
Figure 9-13 is shown in Listing 9-12.

The listing starts with the class declaration. For the first page, only the constructor and
the checkbox for accepting the rules are available because the Wizard class needs to be able to
tell whether the Next button is to be enabled or disabled.

The other half of the listing consists of the implementation of the constructor, in which
the widgets are created, set up, and put in the layout. The QTextEdit widget is used as a reader,
so the readOnly property is set to true before the text is set using setHtml.

Listing 9-12. The first page of the wizard

class PageOne : public QWidget

{
public:
PageOne(QWidget *parent = 0);

QCheckBox *acceptDeal;
b

PageOne: :PageOne(QWidget *parent) : QWidget(parent)
{
QGridlLayout *layout = new QGridLayout(this);

QTextEdit *textEdit = new QTextEdit;
textEdit->setReadOnly(true);
textEdit->setHtml(tr("<h1>The Rules</h1>"
"<p>The rules are to be followed!</p>"));

acceptDeal = new QCheckBox(tr("I accept"));

layout->addWidget(textEdit, o, 0, 1, 2);
layout->addWidget(acceptDeal, 1, 1);

There is still one piece missing before you can show the first page in the wizard dialog: the
constructor. The constructor takes care of creating the Next, Previous, and Cancel buttons;
creates the pages; and puts them in a stack before applying layouts and making the needed
connections.

The source code for the constructor is shown in Listing 9-13. Following the code from the
top down, it starts with the creation of the layout and the widgets. The widgets are then placed
in the layout before the buttons are configured. Both Next and Previous are disabled from the
start because there is nothing to go back to, and the user has to approve of the rules before it is
possible to continue. These buttons are connected to the doNext () and doPrev() slots, while
the Cancel button is connected to the reject() slot that closes the dialog.

When the buttons are connected, the pages are created and added to the widget stack.
The final step is to connect the toggled(bool) signal of the checkbox from the first page to the
setEnabled(bool) slot of the Next button.

27

272

CHAPTER 9 = PROVIDING HELP

Listing 9-13. The constructor of the wizard

Wizard::Wizard() : QDialog()

{
QGridLayout *layout = new QGridlLayout(this);

QPushButton *cancel = new QPushButton(tr("Cancel"));
next = new QPushButton(tr("Next"));
previous = new QPushButton(tr("Previous"));

pages = new QStackedWidget;

layout->addWidget(pages, 0, 0, 1, 5);
layout->setColumnMinimumwWidth(0, 50);
layout->addWidget(previous, 1, 1);
layout->addWidget(next, 1, 2);
layout->setColumnMinimumWidth(3, 5);
layout->addWidget(cancel, 1, 4);

previous->setEnabled(false);
next->setEnabled(false);

connect(next, SIGNAL(clicked()), this, SLOT(doNext()));
connect(previous, SIGNAL(clicked()), this, SLOT(doPrev()));
connect(cancel, SIGNAL(clicked()), this, SLOT(reject()));

pages->addwidget(pageOne = new PageOne(pages));
pages->addwidget(pageTwo = new PageTwo(pages));
pages->addwWidget(pageThree = new PageThree(pages));

connect(pageOne->acceptDeal, SIGNAL(toggled(bool)),w=
next, SLOT(setEnabled(bool)));

}

When the user has checked the box and clicked the Next button, the dialog shown in
Figure 9-14 is displayed. There are a number of things to deal with when the next button is
clicked: the enabled property of the Next button is no longer depending on the state of the
checkbox, the Previous button needs to be enabled, and you mustn'’t forget to show the next
page. All this is managed in the doNext slot.

CHAPTER 9 = PROVIDING HELP

"Iwizard B[]

[] po this

[] o that

[] Add something extra

[Pre'vious H Next] ’ Cancel]

Figure 9-14. The second page of the example wizard

The source code for the doNext slot is shown in Listing 9-14. The basis of the method is a
switch operation that determines what to do depending on the page that the user was on
when clicking the Next button. Because this wizard contains three pages, there are three cases
to handle. When leaving the first page, the connection to handle the enabled property of the
Next button is disconnected, and the Previous button is enabled. When leaving the second
page for the last page, the text of the Next button is changed to Finish, as shown in Figure 9-15.

Listing 9-14. Handling the Next button

void Wizard::doNext()

{
switch(pages->currentIndex())
{
case 0:
previous->setEnabled(true);
disconnect(pageOne->acceptDeal, SIGNAL(toggled(bool)),
next, SLOT(setEnabled(bool)));
break;
case 1:
next->setText(tr("Finish"));
break;
case 2:
QMessageBox: :information(this, tr("Finishing"),
tr("Here is where the action takes place."));
accept();
return;
}

pages->setCurrentIndex(pages->currentIndex()+1);

}

273

274

CHAPTER 9 = PROVIDING HELP

_wizard W

All is ready. Press finish to get it done!

’Pre'vious H Finish] ’ Cancel]

Figure 9-15. The final page of the example wizard

When leaving the last page, a message box is shown before the dialog is closed by using
the accept method before returning from the slot. This is where you would have completed
the wizard by actually doing something. The actual work can be done in the dialog or in the
code bringing up the dialog. Because you close the dialog using accept here and reject in all
other cases, you can check the dialog result and take action if the dialog was accepted.

The last task of the doNext slot is to update the currentIndex property of the widget stack,
which shows the next page. Because this is done for all pages, the code for it is placed outside
the switch block.

The final piece needed to complete the wizard is the ability to go back, which is handled
from the doPrev slot shown in Listing 9-15. The principle is the same as used in the doNext slot:
a switch operation to determine what to do depending on what page is being shown when the
button is clicked.

Listing 9-15. Handling the Previous button

void Wizard::doPrev()
{
switch(pages->currentIndex())
{
case 1:
previous->setEnabled(false);
next->setEnabled(pageOne->acceptDeal->isChecked());

connect(pageOne->acceptDeal, SIGNAL(toggled(bool)),
next, SLOT(setEnabled(bool)));

break;
case 2:
next->setText(tr("Next"));

CHAPTER 9 = PROVIDING HELP

break;

}

pages->setCurrentIndex(pages->currentIndex()-1);

}

The actions being performed can be traced back to the doNext slot. When moving from
page 1 to 0, you reconnect the toggled signal to the enabled property of the Next button and
disable the Previous button. When moving from page 2 to 1, you reset the text of the Next but-
ton to Next.

As you can see, creating wizards is a fairly straightforward task. Because all wizards are
application-dependent, you're bound to end up with a large amount of application-specific
code for each wizard. By designing the wizard using Qt Designer, you can reduce the amount
of work to implement a doNext and a doPrev slot. Nearly all the other code is there only to
handle the appearance of the dialog and the different pages.

Assisting the User

Of course, you might want to rely on the de facto standard for supplying help to users: the F1
key. The reference documentation is made available through the Qt Assistant that is bundled
with Qt. When you need to provide help, you can also use Assistant as the help system for your
application. Doing so is a two-stage process: configure Assistant and then integrate Assistant
in your application.

Creating the Help Documentation

Qt Assistant can render HTML documentation, so you have to format your help files using
HTML format to take advantage of this feature. The HTML files and images are placed in a
directory next to the executable file alongside two more files needed by Assistant. The first and
most important file is the Assistant Documentation Profile called gtbookexample.adp. This file
configures Assistant so the right documentation set is used and the window title is set up cor-
rectly. You can see the contents of the file in Listing 9-16.

The second file needed by Assistant is the about. txt file used to customize the about box
in Assistant. You can see that it is referenced from the profile part of the adp file. The profile
part configures the appearance of Assistant, configuring it with a window title, an icon, a start
page, a text for the about menu, the file that contains the text for the about box, and the rela-
tive path to the rest of the documents.

Listing 9-16. The Assistant documentation profile file

<!DOCTYPE DCF>
<assistantconfig version="3.2.0">

<profile>
<property name="name">qtbookexample</property>
<property name="title">Qt Book Example</property>
<property name="applicationicon">images/qt.png</property>

275

276

CHAPTER 9 = PROVIDING HELP

<property name="startpage">index.html</property>
<property name="aboutmenutext">About The Qt Book Example</property>
<property name="abouturl">about.txt</property>
<property name="assistantdocs">.</property>
</profile>

<DCF ref="index.html" icon="images/qt.png" title="Qt Book Example">
<section ref="./basics.html" title="Basics">
<section ref="./index.html" title="The first basic thing" />
<section ref="./index.html" title="The second basic thing" />
<section ref="./easystuff.html" title="Another basic topic" />

<keyword ref="./index.html">Basic Thing One</keyword>
<keyword ref="./index.html">Basic Thing Two</keyword>
<keyword ref="./easystuff.html">Another Basic Thing</keyword>
</section>
<section ref="./advanced.html" title="Advanced Topics">
<section ref="./advi.html" title="The first advanced thing" />
<section ref="./adv2.html" title="The second advanced thing" />

<keyword ref="./advi.html">Advanced Topic One</keyword>
<keyword ref="./adv2.html">Advanced Topic Two</keyword>
</section>

<section ref="./appendix.html" title="Appendix" />
<section ref="./fag.html" title="F.A.Q." />
</DCF>

</assistantconfig>

The second half of the adp file contains the different sections and keywords to use.
Figure 9-16 shows how the information is shown in the Contents and Index tabs of Assistant.

The other tabs take care of themselves. The bookmarks are added by the user, and the
Search tab offers searching throughout all files referenced from the adp file.

To test your adp file with Assistant, you can start Assistant with the parameter -profile
and then refer to your profile. For example, assistant -profile gtbookexample.adp starts
Assistant with the qtbookexample.adp documentation, as shown in Figure 9-16.

CHAPTER 9 = PROVIDING HELP

{&* Qt Book Example - A Qt Book Examp| (& Qt Book Example - A Qt Book Example | =%)
Fie Edt View Go Bookmarks Help Fie Edit Vew Go Bookmarks Help
P = T i . T A L
S0l DA QaN ¢ AETAL . ¥ @
Sidebar ax| @ —" Sidebar # x| [AQtBookEample | x|
Contents | Index | Bookmarks | Search d Contents | Index | Bookmarks | Search
=] l A iz] | A Qt Book Example
Look For: - W Qr Book Example
| Loren =l Basics Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Pellentesgue

CONSE| The first basic thing consequat ipsum In est. Donec tincidunt sem ac ipsum. Fragsent tempus

Advanced Topic One lacus - The second basic thing lacus non massa. Mullam consectetusr dictum massa. Nunc ac nibh ey

Advanced Topic Two lectus Another basic topic lectus ultrices malesuada. Quisque & sapien eget ante fringilla elementum.

Anather Basic Thing Sed fi & Advanced Topics Sed facilisis justo sit amet magna eleifend tempus. Nullam vel magna.

Basic Thing One Pellen - The first advanced thing Pellentesque eulsmod mauris et dolor. Nullam nisl quam, elefend a, lacinia

Basic Thing Twio id, la i - The second advanced thing id, lacinia vitae, justo. Marbi congue consectetusr mi. Marbi aliquet felis
aget i i Appendi eget ipsum. Sed eu velit pretium ligula consequat vehicula. Aliquam aliguet
nunc L RAQ. nunc ut metus. Donec sem mi, pretium nec, fadlisis imperdiet, rutrum ac,
arcu. arcu. Ut mauns quam, iaculls ac, congue ut, scelerisque quis, pede. Ut est
risus, risus, pulvinar id, condimentum eu, tempus sit amet, augue. Prassent eget
metu: metus sit amet lacus cursus vulputate. Fusce lacinia elementum nulla.
Palle Pellentesgue dictum vehicula diam.
Ea Easy Thingie #1
Pelle Pellentesgue eget mi. Phasellus tincidunt pretium massa. Curabitur aliquet
EL TR arcnstaa nania Pallartacnna mallic trictinna anim Curshibor cad eanian

Figure 9-16. The documentation profile is shown as a contents tree and a list of keywords in
Assistant.

Putting It Together

To use Assistant as your help documentation browser, you need to create a QAssistantClient
object. Make sure that you create only one object for your entire application—the user might
be confused if you start several Assistant instances at once.

Listing 9-17 shows how to create an assistant client object. The first argument given to the
constructor is a path to the Assistant executable. If you assume that the users have a working
Qt development environment installed, you can use the QLibraryInfo object to find the exe-
cutables. In the most common situation, the user doesn’'t have Qt installed so you have to ship
the Assistant executable with your application and place it relative to your application’s exe-
cutable. You can find the location of your file by using the QApplication: :applicationDirPath()
method.

Listing 9-17. Creating and configuring Assistant

QAssistantClient *assistantClient =

new QAssistantClient(QApplication::applicationDirPath(), gApp);
QStringlist arguments;
arguments << "-profile" << "./documentation/qgtbookexample.adp";
assistantClient->setArguments(arguments);

When you want to show the Assistant, simply call one of the openAssistant() or
showPage(const QStringd) methods of your assistant client object. When your application
closes, make sure to call closeAssistant() on your client object to close down any open
instance of Assistant.

To be able to build a project using the QAssistantClient class, you must add the line
CONFIG += assistant to your project file.

277

278

CHAPTER 9 = PROVIDING HELP

Summary

Providing help is about much more than just responding to the F1 key; it's about providing an
intuitive user interface and adding support when the user needs it. The support must be made
available through the channels that the user knows so the help is intuitive. By providing
tooltips and What's this help for most widgets, many questions can be avoided.

When tooltips no longer help, a wizard can be used, or you can attempt to redesign the
user interface to avoid problems. The latter must always be an option, but sometimes a wizard
is the best alternative.

To make information available, you can use the status bar to give the user the same infor-
mation regardless of what the user is doing. But don’t count on the user seeing the status bar
at all times—if the working mode is changed by accident, users usually don’t go for the status
bar; instead they go to wherever they were when the change took place.

The final piece of a help system is online documentation. The Qt Assistant can help you
by providing a nice interface to your documentation. Simply compile your documentation
into a set of HTML documents, create a documentation profile, and use the Assistant as your
help client.

CHAPTER 10

Internationalization and
Localization

When you deploy your application for the international market you have to provide local-
ized versions. The reasons for doing so go far beyond the disparate languages spoken by the
world’s population; in fact, there are disparities regarding how time, dates, and monetary
values are represented; and even more complex written language issues such as whether text
should be read from the right or the left.

Tip Internationalization and localization are actually two parts of the same process. Internationalization is
about freeing your application from any ties to a specific location—to make it independent of any specific
language or culture. Localization is the next step—to take an internationalized application and adapt it to a
specific location with a specific language and culture.

Before you start dealing with all the details that have to be managed for a successful adap-
tation to different languages and cultures of your application, have a look at the tools Qt
provides for managing this.

Tip Did you know that internationalization is often written as i18n, where 18 is the number of characters
removed? Localization can often be seen as 110n (shortened in the same way).

Translating an Application

To get started, you need an application to translate. You'll use the SDI application from
Chapter 4, with the additional features it was extended with in Chapter 8 (when file handling
support was added). You can see a screenshot from the application in Figure 10-1. Because I'm
a native Swedish speaker, the task will be to translate the application into Swedish.

279

280

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

Junnamed* - SDI B]=n X |
Fle Edit Help

DixDP

This is a document in a single document interface. ‘
unnamed* - DT SEX]

Fle Edit Help

D@

You can tell that it is a single document interface as the documents each appear in a top level window.|

Figure 10-1. The SDI application

The translations are kept in two different file formats: ts and gm. The ts files are used dur-
ing development and contain all words found in the application in an easily maintainable
XML file format. The gm files are used at run-time and contain the phrases in a portable com-
pressed format. The idea is to use the ts files as source files during development. The ts files
are then compiled into the distributable qm format used by the actual applications. The compi-
lation is referred to as releasing the translation.

Before you can start translating the application, you need to notify Qt of your intent.
Since the target language is Swedish as spoken in Sweden, and the commonly used code for
that locale is sv_SE, you can add it to the end of the application name: SDI_sv_SE.

Note The sv_SE part of the name is built from combining the language code according to ISO 639-1 and
the country code according to ISO 3166-1. The application name is just an informal name for the application.
This naming convention is only by convention—you can name your translations any way you like.

To add this translation to the project, simply add the following line to the project file:
TRANSLATIONS += sdi_sv SE.ts

You can add any number of translations to a project by adding new TRANSLATION +=lines
as appropriate. You can also specify several translations at once by separating them by spaces
or tabs.

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

Extracting the Strings

When the project file has been updated with one or more translations, it is time to identify
the strings that need to be translated by extracting them from the various tr() calls found
throughout the application. There are other cases, too, but they will be discussed later.

The lupdate tool is used to extract the phrases—it creates or updates all ts files listed in
a given project file. It is nice to know that when it updates an existing file it does not remove
anything—all the translations already done are kept intact. Because the project file is called
sdi.pro, the command to enter at the command line is lupdate sdi.pro. This will create the
sdi_sv_SE.ts file from the strings found in the sources in the project file.

Although Qt comes with a tool for software translators, not all translation businesses
want to use custom tools. Fortunately, the ts files are quite easy to process because they are
formatted as XML. Listing 10-1 shows an extract of the untranslated sdi_sv_SE.1s file.

Listing 10-1. An example of the contents of an untranslated ts file

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE TS><TS version="1.1">
<context>
<name>SdilWindow</name>
<message>
<location filename="sdiwindow.cpp" line="254"/>
<source>h1[*] - %2</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="sdiwindow.cpp" line="19"/>

</context>
</TS>

As you can see from the extraction, it shouldn't be hard to convert it into the format that
your translation company prefers and back again.

Linguist: A Tool for Translating

Qt is bundled with the Linguist tool, which provides the translator with a convenient overview
of the strings to translate and their respective status: done, unknown, or missing. It also pro-
vides some simple checks to ensure that the translations are okay. For example, it checks that
the final punctuation is the same in both the original and the translated string.

Starting Linguist produces the user interface shown in Figure 10-2. The figure shows the
application after the translation has been opened and a few strings have been translated.

If you look more closely at Figure 10-2, you can see that the Linguist interface consists of
three panels. In the Context panel (on the left) are the classes containing strings and their
respective strings. The currently selected string is shown in its original and translated form in
the main panel (top right). In the Phrases panel, Qt suggests translations from looking at ear-
lier translations and a phrase book that you can load. (Phrase books are not covered here.)

281

282

CHAPTER 10

INTERNATIONALIZATION AND LOCALIZATION

@ Qt Linguist by Trolltech - C:/Documents and Settings/Johan Thelin/My Documents/ Teknikkonsult/Active Proj... = | 0JEd

Fie Edt Transiation \Vaidation Phrases Tools \View Help

ZBLsu ¢ o v RA (RGO

Context

X

=1

.
g

Dons ™

Context
Sdiwindow

T %1[*]- %2

- o unnamed
o SDI

o Done

- o About SDI
o Asingle docu...

ElNew
Ctrl+N

&0Open
Ctri+0

BSave
Ctrl+5

Save BAs

Ellose
Ctrl+w

Edaxit

Ctrl+0

Open a docu...

Ttems
5/45

namnlos

5DI

Klar

0Om 5DI

En applikati...
Sy

Create a new ...

Save the docu...

Save the docu...

Close this doc...

Source text
EMNew

Translation

any

Fhrases

Done

Phrases and guesses:

Source phrase

Translation
Klar

Guess (Ctri+1)

Definition

5/45 MoD| |

Figure 10-2. Linguist with a fresh translation file loaded

The easiest way to work in Linguist is to pick a string from the Context panel, translate it,
and press Ctrl + Enter. This brings you to the next nontranslated string if the four validators
are okay. The validators can be turned on and off from the Validation menu. Their functions
are listed as follows:

¢ Accelerators: This function ensures that there is an accelerator in the translation if there
is an accelerator in the original string.

¢ Ending Punctuation: This function ensures that the ending punctuation of the original
and the translated strings match.

¢ Phrase Matches: This function checks to see whether the original string matches a
known phrase. In that case, the translation should be the same as the translation of
the known phrase.

¢ Place Marker Matches: This function ensures that place markers (for example, %1, %2)

from the original string also exist in the translation.

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

It is possible to keep a translation if the validators do not accept it, but the Ctrl + Enter
shortcut will not move along automatically (ensuring that you make an active decision to
ignore the validators). When a validator objects to a translation, it shows a message in the
status bar (see Figure 10-3).

Linguist by Trolltech - qt_sv_SE.ts* (=%
He Edit Trenslaﬂon Vaidaton Phrases Tools He?p
ZBs W oo m-mﬂ & [12[%5:| @]
Context g x
Source text
Daons ™ Context Ttems [" _
EB ? QMenu /3 <p>This program uses (t version %1.</p>
ﬁ L QMessageBox 3/8 Transkation
: g ;i’p g-]kalp <p=Detta program anvénder Qt version lq’p‘:
o About Ot Om Ot
¥ <p>This program uses Qt version %1.<.. <p=Detta program anvan...
T <h3=About Qt</h3>%1<p>Qtisa Ct+ ...
i T <p=This program uses gt Open Source ...
+ T show Details...
| T Hide Details...
& QMultiinputContext 0/1
[QMultinputContextPlugin 0/2
i3] QNativeSocketEngine 0/2s
2 QOCIDriver 0/2
o QOCIResult o/8
[::3 QODBCDriver 0/6 E
[QODBCResult 0/5
& QObject 0/2 =
& QPSQLDriver /4
o] QPSQLResult 0/1
& QPrintDialog 0/65
i QPrintPropertiesDialog 0/3
] QProgressBar 01 =
Phrasss & x
Phrases and guesses:
I = Source phrase Translation Definition
%1 already exists. Do you want to replace it? %1 finns redan. Vill du skriva dver den? Guess (Ciri+1)
Translation does not refer to the same place markers as in the source text. 31701 MOD

Figure 10-3. The validator objects to the translation because the translation does not refer to the
same place markers as in the source text.

As you progress through the translation, you can see your status in the right side of the
status bar. When all strings are translated, the numbers on both sides of the dash will match.
You can save your translation at any time and resume the work later. Linguist and lupdate do
not lose any information unless you overwrite it or remove it yourself.

When your translation is ready and saved, you have to compile or release it to be able to
use it from your application by using the 1release tool. Simply pass your project name as
argument. In the case of the sdi.pro application, you run lrelease sdi.pro from the com-
mand line to build the needed gnm files from your ts files.

283

284

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

Set Up a Translation Object

When the translations are ready and have been released, it is time to load them into the appli-
cation. Since languages are set at an application level, the goal is to install a QTranslator
object containing the right translations on the QApplication object.

Before worrying about QTranslator objects, you need to determine which language the
user expects the application to be written in. This information can be found in the QLocale
class. A QLocale object represents a certain localization zone and language. The object is aware
of most localization details for that zone and language. To obtain an object representing the
zone and language of the computer, you can use the static method called QLocale: :system.

This name is used in Listing 10-2 to load a translation into a QTranslator object before
installing it by calling installTranslator(QTranslator*). As you can see in the listing, the file
extension of the translation file is not specified. If the load call fails, the translator will not
have any effect, and the application will be shown in the language used in the source code.

Listing 10-2. A translation is loaded into a translator that is installed on the application.

int main(int argc, char **argv)
{
OApplication app(argc, argv);

QTranslator translator;
translator.load(QString("sdi ")+QLocale::system().name());
app.installTranslator(&translator);

QTranslator gtTranslator;
qtTranslator.load(QString("qt ")+QLocale::system().name());
app.installTranslator(&qtTranslator);

SdiWindow *window = new SdiWindow;
window->show();

return app.exec();

}

There are no rules when it comes to naming translation files. It could have been called
swedish.qgmor 12345.gm—it doesn't matter. The nice thing about connecting the name of the
locale with the translator is that you can use the QLocale: : system to find the right language.

Tip You can add your gn files to a resource file to integrate the translations into your application. It makes
the executable heavier, but reduces the dependencies on other files. This can make the application easier to
deploy.

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

Qt Strings

If you were to deploy the application now, only parts of it would be translated. With Qt’s stan-
dard dialogs for opening and saving documents and the About Qt dialog, strings embedded in
the Qtlibrary are used. These strings are missed by lupdate since it looks only in the source
code of the current project. Instead, you have to install another translator for handling the
strings embedded within Qt’s standard dialogs.

Before you get to the code for adding such a translator, have a look at the translations
available for Qt. The Qt library contains about 2200 words (you can see Linguist with a Qt
translation loaded in Figure 10-4). Translations for these words are shipped with Qt for trans-
lating the default language (English) into French and German. There are other languages
included as well, but they are not officially supported by Trolltech. All translations are avail-
able from the translations subdirectory in your Qt installation directory. Notice that you can
use the qt_untranslated.ts file as a starting point if you need to support a new language. You
should also search online because many developers will release their translations for the use
of others.

@ Qt Linguist by Trolltech qt_sv_SEts. (%)
Fie Edt Transltion \Vaidation Phrases Tooks WVew Help
vBolieonns an4o
Context & x
- | Source text

Done ™ Context Ttems [
& QDlalogButtonBox /19
e QDirModel 0/s Translation
2] QErrorMessage 0/5
% 7 [Qrilebialog T s
] QfontDialog 0/9
;25 QFtp 020
] QHostInfo 0/1
& QHostinfoAgent 0/3
=] QHEEp 016 =
[QIBaseDriver 0/4
& QIBaseResult 0/17
[QIDDevice 0/s
[::} QInputContext 0/4
2 Qlibrary 0/3
[l QLineEdit o7
& QMYSQLDrver /5
17} QMYSQLResult 0/%
L2 QMenu 0/3
=] QMessageBox o/a

f Help

-7 ok

T About qt

¥ <p=This program uses Gt version %1.<... M
I"hmses & X
Phrases and guesses:

] Source phrase Translation Definition
0701 MOD

Figure 10-4. A Qt translation loaded into Linguist

285

286

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

Because the Qt strings are not a part of your application, you must release it manually.
You can do this by opening the file using Linguist and releasing it from the File menu (as
shown in Figure 10-5), or you can give the ts file as argument to 1release instead of your
project file.

Tip Another way to do it is to base your ts files on the appropriate Qt translation. Because lupdate
never removes anything, this is the same as merging the translations, which makes the release process
easier.

ch - qt_sv_SEts {[= % |

(He| Edt Transltion \Vaidaton Phrases Toos View Help

& Open Ctri+0 ﬂ? %1_§@|§|§|

-+ Hix text
B save ctles RN oirce

Release S... Translation

& Print Ctri+pP

Recenthy opened files b

=1

Ctri=)

Q3TextEdit 7
Q3TitleBar 13/13
Q3ToolBar 11
Q3urioperator 9/9
Q3Wizard 5/5
QAbstractSock 4/4
QAbstractSpin. 2/2
QApplication 5/5
QAxSelect 44
QCheckBox 33
QColorDialog 14/14
QComboBox 11
QDB2Driver 4/4
QDB2Result §/6
QDateTimeEdit 4/4 = :
Qbialog 11 Phrases &%

-G B -3 B-E

B - - 6

E-E-E-E

-

&

iDialogButton. 19/19
gnﬁ-:?de! n r; Phrases and guesses:
! 2

-

QErrorMessage 5/5 Source phrase Translation | Definition
QFileDialog 40/40

QrontDialog 9/9

QFtp 20/20
QHostInfo 11
QHostInfoAgen 3/3

QHitp 16/16
QIBaseDriver 4/4
QIBaseResult 17/17
QI0Device 5/5
QInputContext 4/4

Qlibrary 33 o)

- - B - B

=
L9999 9999999999999999999%%%4%4%Y

-

701/701 MOD

Figure 10-5. You can release the current translation with the Release option from the File menu.

When you have created or copied a translation of Qt’s strings into your project directory,
released it, and given the resulting file an appropriate name, it is time to load it into a transla-
tor and install it. In the case of Swedish, the file is called qt_sv_SE, and the loading is shown in
Listing 10-3. As you can see, the procedure is identical to the loading of translations for your
application’s strings.

CHAPTER 10 © INTERNATIONALIZATION AND LOCALIZATION

Listing 10-3. Loading and installing a translator for Qt's strings

int main(int argc, char **argv)
{
OApplication app(argc, argv);

QTranslator translator;
translator.load(QString("sdi ")+QLocale::system().name());
app.installTranslator(&translator);

QTranslator gtTranslator;
qtTranslator.load(QString("qt ")+QLocale::system().name());
app.installTranslator(&qtTranslator);

SdiWindow *window = new SdiWindow;
window->show();

return app.exec();

}

When both translators have been loaded and installed, the user interface is translated.
You can see the original English next to the translated Swedish in Figure 10-6.

unnamed - Tnamnlss-sp1 LJOJES
Help Arkiv Hjalp
g Cut Ctri+X D
¥ Copy Ctrl+C

&€ Kipp Ctrl+X

¥ Kopiera Ctrl+C

Paste J Klista in J

Figure 10-6. The SDI application in English and Swedish

Dealing with Other Translation Cases

Two things happen when you enclose strings in tr calls: lupdate finds the string and gives it to
the translator; the string is then passed through the QApplication::translate method.

So there are two kinds of special cases that you need to take care of: make sure that
lupdate can find all your strings and ensure that all strings get passed through translate in
a way that allows the method to translate it properly.

287

288

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

Finding All Strings

Sometimes you write code in which your strings do not appear inside a tr call. In this case you
can use the macros QT_TR_NOOP or QT_TRANSLATE _NOOP. Look at Listing 10-4 for an example.

The difference between the two macros is that QT_TR_NOOP does not take a context argu-
ment. That works fine for the strings in texts2, which are very unlikely to be mixed up with
other strings in the application. The strings in texts can very easily be mixed up, however. For
example, does the Title refer to the title of a web page or to a title for a person? In Swedish,
the translations would be Overskrift for a web page title and Befattning for a person’s title—
quite a big difference.

When strings can be ambiguous, the QT_TRANSLATE_NOOP macro comes in handy. It makes
it possible to add a context for the translator and translation mechanism. Figure 10-7 shows
the strings from Listing 10-4 as they appear in Linguist.

Listing 10-4. Strings outside tr calls can be made visible to lupdate using the QT_TR_NOOP and
OT_TRANSLATE_NOOP macros.

char *texts[] = { QT_TRANSLATE_NOOP("main","URL"),
QT _TRANSLATE_NOOP("main","Title"),
OT_TRANSLATE_NOOP("main”,"Publisher") };

char *texts2[] = { QT_TR_NOOP("This is a very special string."),
QT _TR_NOOP("And this is just as special.") };

Strings captured from within classes that inherit Q0bject starting with Q_OBJECT are auto-
matically placed in a context named after the class.

Using the strings from outside a Q0bject is easy. Just use the translate method available
from your application object. If your string does not have a context, you can pass a null string
(0); otherwise, pass the context as the first argument and the string as the second. The follow-
ing line uses strings from the texts and texts2 vectors:

QMessageBox: :information(0, gApp->translate("main",texts[2]), gqApp-
>translate(0,texts2[1]));

Telling Strings Apart

As discussed earlier, some strings can be ambiguous. For example, the word address can refer
to a postal address, a web URL, or a memory address in the computer’s main memory. The
translations for the different sentences can vary depending on the meaning and context. If
several of these meanings are used in one context, you can add a comment for each string to
make it possible for the translator to tell them apart.

CHAPTER 10 © INTERNATIONALIZATION AND LOCALIZATION 289

JOk|
A:-EIERES X LG]
Context Fx
Source text
Done ™ Context Ttems
) ? 7 This is a very special string.
£ 3 Thisisavery ... Dettaarenva... | | Transtation
And this Is jus... i e . .
d o i 33 Detta &r en valdigt speciell stréng.)
|Phrases & x
Phrases and guesses:
Source phrase Transation | Definition
3/5 MOD

Figure 10-7. The strings found using the QT_TRANSLATE_NOOP macro are found in a context.

Listing 10-5 shows an example of how comments are specified in tr calls. The comment is
simply sent along as a second argument to the tr method.
Listing 10-5. Adding comments to tell the same word with different meanings apart

new Qlabel(tr("Address:", "Postal address"), this);
new Qlabel(tr("Address:", "Website address"), this);

When the translator opens the ts file, the comment is shown below the actual string to
translate. The strings from Listing 10-5 are shown in Figure 10-8.

290

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

Fie Edt Transiation \Valdation Phrases Tools View Help
5D Ly B ATy - - - -
ZBs L ¢ o nRA[apR G
Context & x
Source text
Done ™ Context Ttems
= ¥ commemts 02 Adiress:
-2 Address:
9 Address: Poctal address
Translation
|
Phrases & x
Phrases and guesses:
.) ;nume phrass Translation | Definition
Translation does not end with the same punctuation as the source text. 0/2 MoD

Figure 10-8. The comment is shown to the translator below the original string.

You Have Altered n File(s)

When the translate method tries to translate a string, it needs to get an exact match, so only
one string in Listing 10-6 will work. The problem with merging strings using the + operator
inside a tr call (1ine1) is that lupdate can’t properly find the string. The problem with merging
the strings after the tr calls (1ine2) is that the word order is more or less fixed. By using the arg
call as shown in the line3 assignment, the translator can alter the word ordering freely, and
the string is matched regardless of the value of n.

Listing 10-6. Three ways to build a string: one right and two wrong

QString linel = tr("You have altered " + QString::number(n) + " file(s).");
QString line2 = tr("You have altered ") + QString::number(n) + tr(" file(s).");
QString line3 = tr("You have altered %1 file(s).").arg(n);

There is one annoying problem with the 1ine3 assignment: the (s) part. It’s possible to let
the translator provide strings for different values of n; the code for 1ine4 in Listing 10-7 shows

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

how it is done. The tr call takes three arguments: the actual string, a comment, and then a
value used for determining whether the string is to be in singular or plural form.
Listing 10-7. Handling plural strings

QString line4 = tr("You have altered %1 file.", "", n).arg(n);

When a tr call with a value is found, the translator is given the capability to provide sin-
gular and plural versions of the string. Some languages have other special forms such as
paucal—Qt handles them as well. The string for 1ine4 is shown in Figure 10-9.

sist by Trolltech - plural_sv_SE.ts* |8 = %]
Fle Edt Transltion \Vaidation Phrases Tools Vew Help

PBow ¢ o nrA &R%O

Context Fx
Source text
Done ™ Context Ttes
R Phirals o/ ‘fou have altered %1 file.
2 vou have altered Translation (Singular)
? file(s). Du har fardndrat 221 file.
= B ou have altered %1 file(s).
You b itered %1 file. 1]
2 You have ltered %1 " | Transtation (Pharal)
Du har faréndrat %1 fier.

Phrasss B & x

Phrases and guesges

snume phrase Translation | Definition

.(| . 18 ',.

0/4 MOD

Figure 10-9. Singular and plural versions of a string in Linguist

Find the Missing Strings

Sometimes it is easy to forget a call to tr or translate; or to leave out a string from the tr,
QT_TR_NOOP, or QT_TRANSLATE_NOOP markers. This leads to the string not being translated at
run-time or missed by the lupdate tool and thus be missing when translate is called.

291

292

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

There are tools to locate the missing strings. For example, Qt 4 is shipped with the findtr
perl script. You can also use the more blunt grep command grep -n '""' *.cpp | grep -v
"tr(" if you are working on a Unix system.

Another method is to use a phony language in the source code (for example, adding FOO
before all strings and BAR after them—so an ordinary menu bar would read FOOFileBAR,
FOOEditBAR, and FOOHelpBAR). This makes it easy to spot strings not being translated, thus
making it likely that all are located during the testing process.

Neither trick is foolproof, so you need to pay attention to your strings and what you do to
them. Missing a string in the translation quickly sends a message of bad quality to your users.

Tip One way to find missing tx () calls is to stop Qt from automatically converting char* strings to
QString objects, which will cause compiler errors for all the times you have missed calling tx (). You can
disable the conversion by adding a line reading DEFINES += QT_NO_CAST_FROM_ ASCII to your project file.

Translating on the Fly

Sometimes you might want your application to be able to switch between different languages
on the fly. The user should be able to pick a language, and the entire environment is then
immediately translated into the chosen language. To try this, have a look at the application
shown in Figure 10-10. Only two languages to choose from, but the same solution applies to
any number of languages.

Tdyna... 2| Tdyna.. 2

Languages Sprak
(@) English () Engelska
() swedish (@) Svenska

Figure 10-10. An application being translated on the fly

The principle is simple. When the user checks a radio button, the toggled signal is con-
nected to a slot. That slot loads a new translation into the QTranslator object installed, which
will cause all the calls to tr to return strings of the selected language. The only problem is that
all the tr calls need to be done again. In this situation it is good to know that when a new
translation is loaded, a QEvent: : LanguageChange event is sent to all Q0bjects. It all works by
putting all the setText and setTitle calls in one function and calling that function as soon
as a language changed event occurs.

This all sounds nice in theory, so let’s have a look at the actual source code. Listing 10-8
shows the declaration of the DynDialog class, which is the dialog used in the application. You
need to keep references to all widgets showing text—the languages group box and both radio
buttons.

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

Listing 10-8. The DynDialog class declaration

class DynDialog : public QDialog

{
Q OBJECT

public:
DynDialog();

protected:
void changeEvent(QEvent*);

private slots:
void languageChanged();

private:
void translateUi();

QGroupBox *languages;

QRadioButton *english;
QRadioButton *swedish;

};

The constructor shows that this dialog is intended to be translated dynamically. In the
source code shown in Listing 10-9 the widgets are created, configured, and placed in layouts,
but not a single call to setText or setTitle is made. Instead the translateUi method is called
at the very end.

Listing 10-9. The constructor of the DynDialog dialog—notice that no texts are set

DynDialog: :DynDialog() : QDialog(0)
{
languages = new QGroupBox(this);
english = new QRadioButton(this);
swedish = new QRadioButton(this);

english->setChecked(true);
qTranslator->load("english");

QVBoxLayout *baselayout = new QVBoxlLayout(this);
baseLayout->addWidget(languages);

QVBoxLayout *radiolayout = new QVBoxLayout(languages);
radiolLayout->addWidget(english);
radiolayout->addWidget(swedish);

293

294

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

connect(english, SIGNAL(toggled(bool)), this, SLOT(languageChanged()));
connect(swedish, SIGNAL(toggled(bool)), this, SLOT(languageChanged()));

translateli();
}

The translateUi method is shown in Listing 10-10. Here all the strings visible to the user
are passed through tr and then set.

Listing 10-10. Updating all the user visible strings at once

void DynDialog::translateUi()

{
languages->setTitle(tr("Languages"));

english->setText(tr("English"));
swedish->setText(tr("Swedish"));
}

Refer to Listing 10-9 to see that when the user picks another language (that is, toggles one
of the radio buttons), the languageChanged slot is invoked. The slot implementation is shown
in Listing 10-11. As you can see, the qTranslator loads a different translator for the different
user choices. The qTranslator pointer is an application global pointer that points to the
installed QTranslation object. The object is created and installed in the main function.

Listing 10-11. Loading translations

void DynDialog: :languageChanged()

{
if(english->isChecked())
gTranslator->load("english");
else
gTranslator->load("swedish");
}

When a new translation is loaded, the QEvent: : LanguageChanged event is sent to all
Q0bject instances. This event can be caught in the protected changeEvent method, as shown
in Listing 10-12. As soon as the event is encountered, the translateUi method is called again,
updating all visible texts using the newly loaded translator.

Listing 10-12. Watch for the QEvent: : LanguageChanged event and update the user interface when
encountered.

void DynDialog::changeEvent(QEvent *event)

{
if(event->type() == QEvent::LanguageChange)

{

translateli();

}

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

else
QDialog::changeEvent(event);

Tip You can watch for more internationalization events in the changeEvent method. When the locale
changes, the QEvent: :LocaleChange is sent.

To be able to build the system, a project file with the line TRANSLATIONS += english.ts
swedish.ts is used. Use lupdate to generate the ts files, Linguist to translate the strings, and
lrelease to generate the gm files. Then run qmake and make to build the application.

Other Considerations

When performing the actual localization of your application, there are several issues to be
aware of. It is not only a matter of translating text; you must also handle different ways of
typing numbers, showing images, handling currencies, and handling time and dates.

Dealing with Text

Because Qt works with Unicode characters internally, the QString and QChar classes can
handle almost any conceivable character. But this means that the standard libraries isalpha,
isdigit, isspace, and so on will not work correctly on all platforms because they sometimes
operate in a western European or American setting.

Note | sometimes run into trouble registering my street address on English-speaking websites because
the town | live in is called Alingsés. The letter & is not recognized as a legal character.

The solution is to stick to the Qt-specific implementation of these methods. The QChar
class contains the methods isAlpha, isDigit, isSpace, and more that are equivalent to the
standard functions.

Taking Unicode into consideration is important not only when validating user input but
also when parsing files. To convert a Unicode QString to a char* vector (through a QByteArray),
you can use toAscii or tolLatini to convert the string to an 8-bits-per-character format. The
result is either an ASCII string or a Latin1 (ISO 8859-1) string. If you want to convert to your
current 8-bit format, you can use the toLocal8Bit method, which converts to the 8-bit encod-
ing as indicated by the system’s settings.

You can also use the toUtf8 to convert it to UTF8. The UTF8 format represents many
characters, just as in ASCII, but supports all Unicode characters through encoding them as
multibyte sequences.

295

296

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

When drawing text, Qt respects the direction of the text. Some languages are written from
right to left, so you must respect this in your custom widgets. The easiest way to do it is to
specify the location of the text using a rectangle instead of a point. In this way Qt can place
the text where the user expects it.

Images

There are two important things to think about when it comes to images: be careful about
using images to communicate plays on words and avoid sensitive symbols. Designing effec-
tive icons is an art, and having to follow these rules can make it even harder.

A classic example of a play on words is to show a log of a tree as an icon for a log viewer.
This is very logical in an English setting, but the word for a log of a tree in Swedish is stock. The
icon can then be said to represent a stock market trading tool—which would be a bad play on
words in an English setting.

When it comes to sensitive symbols, there are numerous things to avoid. On the top of the
list are religious symbols. Another example of an image that has a cultural charge is the red
cross (in some countries, the red crescent is more common). Avoiding political and military
symbols is also wise because they tend to vary widely among countries. The key is to use your
judgment and keep in mind that people are very easily offended.

Numbers

Numbers can be a tricky issue—both to print and to interpret. The QLocale class can handle
different negative signs, decimal points, group separators, exponential characters, and charac-
ters representing zero. All this gives you quite a number of details to get wrong.

In my experience the most commonly confused issues regarding the representation of
numbers are the characters used for the decimal point and as a group separator (dividing dig-
its in groups of three). Take the number 1.234 and 1,234, for example. The interpretation of
how these numbers are read depends on your country—in some countries, the first reads as
one thousand two hundred and thirty four; in others it reads as one point two three four.
Adding two decimals makes it better, but not perfect: 1.234,00 and 1,234.00. Both are valid,
but the decimal point and group separator are different.

Tip Being able to handle the system’s decimal point character is very important. Different keyboards have
different characters for the decimal point on the numeric keypad. It can be very annoying to have to move
between the numeric keypad and the main keypad to write a decimal point.

Use the QLocale class and its method toString to convert numbers into text; use toFloat,
toInt, and so on to convert strings to numbers. Although this works for handling numbers
and strings shown to the user, remember to stick to one format when storing numbers as text
in files because the files can be moved between different countries (and you still have to be
able to read the numbers correctly, regardless of the current locale).

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

Tip The system locale QString: : toDouble and friends are used for converting strings into values.

Listing 10-13 shows a function using a given QLocale to convert and print three values.
The output from the function given a QLocale(QLocale::Swedish, Qlocale::Sweden) anda
QLocale(QLocale::English, QLocale::UnitedStates) can be seen in Listing 10-14. Notice
the different decimal points and group separators being used.

Listing 10-13. Printing three values using a given locale

void printValues(QLocale loc)

{
QLocale::setDefault(loc);

double v1 = 3.1415;
double v2 = 31415;
double v3 = 1000.001;

qDebug() << loc.toString(vi);
qDebug() << loc.toString(v2);
qDebug() << loc.toString(v3);

Listing 10-14. The same three values printed using different locales

Swedish
"3,1415"
"31 415"
"1 000"
US English
"3.1415"
"31,415"
"1,000"

Currencies

Handling currencies is something that you have to do without the help of Qt. This is all right
because currencies can be treated as a number with limited precision—usually two decimals,
but sometimes none or three.

When you present currency values to users, it is important to remember some basics.
First of all, you can always put the three-letter currency code (ISO 4217) after the value (for
example, 280,00 SEK or 8.75 USD). Notice that I used the appropriate decimal point symbol
depending on the currency in the examples. (You should, of course, pick a decimal point
symbol depending on your user’s preference.)

297

298

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

All currencies have names. For example, SEK is short for Swedish krona or just krona (the
plural is kronor). This is also something that can be put after the value being presented.

Some currencies have a sign or a symbol that can be used instead of putting a code or a
name after the value. This sign can be placed either before the value, be placed after the value,
or act as a decimal point symbol. Examples are £12.50 (GBP) and €12.50 (EUR). There are
many more symbols available for other currencies. Some symbols are widespread, while
others are used only in the local market where the currency is used.

From an internationalization perspective, I recommend using the ISO 4217 codes
because of neutrality (the codes are part of an international standard) and for ease of handling
(the code always goes after the value).

Dates and Times

Dates and times are presented in many different ways across the globe, making them a diffi-
cult challenge for developers. Although Qt provides classes to handle the complexity, there is a
risk of misinterpreting user input and confusing the user through output.

Let’s start by having a look at time and how it is presented to the user. Time expressed as
text is often presented as a digital clock, with two digits for hours and two digits for minutes.
The hours and minutes are separated by a colon or a simple dot. The issue here is that the
clock can be of the 24-hour type, where the hours run from zero to 23. The clock can also be of
the 12-hour type, where the hours run from zero to 11 twice. In the latter case, the minutes are
followed by AM or PM, indicating whether the time indicates a time in the morning or in the
evening.

You can handle both input and output in the way that the user expects with the QTime
methods toString and fromString (in combination with the timeFormat method of the QLo-
cale class) or by using the toString method from QLocale directly. Just make sure that you do
not interpret a PM time from a 12-hour clock as a time for a 24-hour clock followed by some
nonsense characters.

Listing 10-15 shows a function that prints times using given locales. The resulting output
is shown in Listing 10-16. The locales are QLocale(QLocale::Swedish, QLocale::Sweden) and
Qlocale(Qlocale::English, QLocale::UnitedStates).

Listing 10-15. Printing times using different locales

void printTimes(Qlocale loc)

{
Qlocale: :setDefault(loc);

QTime t1(6, 15, 45);
QTime t2(12, 00, 00);
QTime t3(18, 20, 25);

qDebug() << "short";

qDebug() << loc.toString(ti1, QLocale::ShortFormat);
qDebug() << loc.toString(t2, QLocale::ShortFormat);
qDebug() << loc.toString(t3, QLocale::ShortFormat);

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

qDebug() << "long";
gDebug() << loc.toString(ti1, QLocale::LongFormat);
gDebug() << loc.toString(t2, QLocale::LongFormat);
gDebug() << loc.toString(t3, QLocale::lLongFormat);
qDebug() << "default";
qDebug() << loc.toString(t1);
qDebug() << loc.toString(t2);
qDebug() << loc.toString(t3);

}

Listing 10-16. The resulting strings when printing times use different locales

Swedish

short

"06.15.45"

"12.00.00"

"18.20.25"

long

"kl. 06.15.45 W. Europe Daylight Time"
"kl. 12.00.00 W. Europe Daylight Time"
"k1. 18.20.25 W. Europe Daylight Time"
default

"kl. 06.15.45 W. Europe Daylight Time"
"kl. 12.00.00 W. Europe Daylight Time"
"kl. 18.20.25 W. Europe Daylight Time"
US English

short

"6:15:45 AM"

"12:00:00 PM"

"6:20:25 PM"

long

"6:15:45 AM W. Europe Daylight Time"
"12:00:00 PM W. Europe Daylight Time"
"6:20:25 PM W. Europe Daylight Time"
default

"6:15:45 AM W. Europe Daylight Time"
"12:00:00 PM W. Europe Daylight Time"
"6:20:25 PM W. Europe Daylight Time"

=

=

When it comes to representing dates, there are other issues to deal with. Months have dif-
ferent names in different countries, as do the days of the week. When writing dates, the order
of the day, month, and year differ between different countries. Just to make things even more
complex, the first day of the week can be either Sunday or Monday, depending on your loca-
tion. To help you manage this, the QLocale class can handle most of these issues.

299

300

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

You can present and interpret dates properly by using the toString and fromString meth-
ods from the QDate class and the dateFormat method from QLocale, or by using the toString

method of QLocale directly.

To compare the impact of locales QLocale(QLocale::Swedish, QLocale::Sweden) anda
QLocale(QLocale::English, QLocale::UnitedStates) when it comes to date formatting, I
have used the function shown in Listing 10-17. The resulting output can be seen in Listing 10-18.

Listing 10-17. Printing dates using different locales

void printDates(QLocale loc)

{
Qlocale: :setDefault(loc);

QDate d1(2006, 10, 12);
QDate d2(2006, 01, 31);
QDate d3(2006, 06, 06);

qDebug() << "short";

qDebug() << loc.toString(di, Qlocale:
gDebug() << loc.toString(d2, Qlocale:
gDebug() << loc.toString(d3, Qlocale:
gDebug() << "long";

qDebug() << loc.toString(di, QLocale::
qDebug() << loc.toString(d2, QLocale::
qDebug() << loc.toString(d3, QLocale::
qDebug() << "default";

gDebug() << loc.toString(di1);
qDebug() << loc.toString(d2);
gDebug() << loc.toString(d3);

:ShortFormat);
:ShortFormat);
:ShortFormat);

LongFormat);
LongFormat);
LongFormat);

Listing 10-18. The resulting strings when printing dates using different locales

Swedish

short

"12 okt 2006"

"31 jan 2006"

"6 jun 2006"

long

"torsdag 12 oktober 2006"
"tisdag 31 januari 2006"
"tisdag 6 juni 2006"
default

"torsdag 12 oktober 2006"
"tisdag 31 januari 2006"

CHAPTER 10 " INTERNATIONALIZATION AND LOCALIZATION

"tisdag 6 juni 2006"

US English

short

"Oct 12, 2006"

"Jan 31, 2006"

"Jun 6, 2006"

long

"Thursday, October 12, 2006"
"Tuesday, January 31, 2006"
"Tuesday, June 6, 2006"
default

"Thursday, October 12, 2006"
"Tuesday, January 31, 2006"
"Tuesday, June 6, 2006"

Notice that in both Listing 10-14 and Listing 10-18 the default format is the long format. If
I had to choose between long and short format, I would consider the shorter format easier to
read in most cases (unless I really needed all the details about weekdays and time zones).

Help

The translation tools that ship with Qt catch most of the help you provide: tooltips, status
messages, and What's this strings are found as long as they are contained in tr calls. Don't for-
get your online help documents. You must take care of translating your help documents and
make sure to show the correct language when the user requests help. It’s not very complicated;
it’s just something that you must not forget because the Qt workflow doesn’t catch it.

Summary

Internationalization and localization are about much more than just translating an applica-
tion. You can no longer depend on many things that you take for granted: date format, time
format, number format, icons being understood by the user, legal characters, and so on. The
process is really about understanding the target culture and its conventions. This is what
makes deploying an application worldwide such a big task.

By using lupdate, 1release, and Linguist together with the QLocale class, you have come
along way. Try to keep your text in QString and QChar as much as possible to ensure that
Unicode is used (saving you from having to think about encoding characters all the time).

Before deploying, be sure to test in all locales that you intend to target. Try to use local
testers if possible—they will probably spot more mistakes than you will.

301

CHAPTER 11

Plugins

Qt offers a rich programming interface that is capable of interacting with many different
technologies. This capability is what makes it possible for Qt-driven applications to look dif-
ferent on different platforms; images can be stored in many different ways and interact with
numerous database solutions. You might be surprised to know that you can create your own
new Qt features using a Qt feature known as a plugin.

The classes used by Qt to handle plugins are not limited to extending Qt. With the same
set of classes you can also create your own plugin interfaces and extend your own applications
with custom plugins. This makes it possible to create extendable applications without having
to deal with all the platform specifics involved in the process.

Plugin Basics

Before you can start working with plugins, you need to understand how a plugin works. To a
Qt application a plugin is just another instance of a class. The methods available are deter-
mined by an interface class. An interface class usually contains only pure virtual methods, so
no functions are implemented in the interface class. The plugin then inherits the Q0bject class
and the interface class and implements all the methods with their specific functionality. When
the application loads a potential plugin with the QPluginloader class, it gets a Q0bject pointer.
By attempting to cast the given object to the interface class using qobject cast, the applica-
tion can tell whether the plugin implements the expected interface and can be treated as an
actual plugin.

For the QPluginLoader to work properly the interface class must be declared an interface
by using the Q_DECLARE_INTERFACE macro, and the plugins must declare that they implement
an interface by using the Q_INTERFACES macro. These two macros enable you to safely match
a given plugin to the right interface. It is one step in a whole range of criteria that must be ful-
filled for Qt to trust the plugin. The following list contains all the checks that Qt performs
when attempting to load a plugin. If any criteria are not met, the plugin is not loaded.

¢ The same version of Qt must have been used for building the plugin and the applica-
tion. Qt checks that the major (4) and minor (4.2) numbers match, but the revision
number (4.2.2) can differ.

¢ The plugin and application must have been built using the same compiler for the same
operating system on the same platform. Versions of the compiler can differ as long as
their internal architecture remains the same (for example, name mangling).

303

304

CHAPTER 11 © PLUGINS

e The Qtlibrary used for the plugin and application must have been configured in
the same way and has to be compiled in “shared” mode (you can't use plugins with
static Qt).

Extending Qt wit