Tools and Techniques for
Linux and Unix Administration

Essential

System

‘I.
?!Iljll'

Administration

O, REI LLY® Aleen Frisch

Unix/System Administration

O’REILLY*

Essential System Administration

Since its first printing in October 1991, Essential System Administration has been the
definitive practical guide for Unix and Linux system administrators. The book talks
about all the usual administrative tools that Unix and Linux provide—and also shows

how to use those tools in smarter and more efficient ways.

Author /leen Frisch expands coverage of networking, electronic mail, security, and kernel con-
figuration—topics of increasing importance to administrators. It also includes coverage of services
such as LDAP, PAM, DHCP, and DNS, and discussions of many important open source tools, includ-
ing SSH, Cfengine, Amanda, RRDTool, and Cricket. The latest versions of all major Unix platforms,
including Red Hat Linux 7.3 and SuSE Linux 8, Solaris 8 and 9, FreeBSD 4.6, AIX 5, HP-UX 11 and
11i, and Tru64 5.1, have been thoroughly reviewed and tested.

You will find this book indispensable whether you are responsible for a large, shared computer sys-
tem or a network of workstations, or you use a standalone Unix or Linux system and have found
that the fine line between a user and an administrator has vanished. And even if you aren’t directly
or solely responsible for system administration, you'll find that understanding important administra-
tive functions will greatly increase your ability to use Unix effectively.

“Aleen is a master at teaching system administration. The third edition of Essential System
Administration covers the bases of administering the many flavors of Unix and Linux. If
your site is one of the many non-vanilla shops, you really need this book.”

—Tina Darmohray, Information Warehouse, Inc.

“This book is ‘essential’in more ways than one. For system administrators looking to bring
Linux into a Unix environment (or to migrate from Unix to Linux), the details are all there.
It is equally a great book for those thinking about becoming system administrators. Bul
perbaps most impressively, it is an accessible book for people who use Unix or Linux and
want to learn bow to get the most out of their system. A true example of what great techni-
cal writing can be, and the standard that O’'Reilly sets as a publisher.”

—Michael Tiemann, Chief Information Officer, Red Hat, Inc.

“This update of a classic is a great introduction to the Unix altitude, the system administrator’s
attitude, and the practical details of managing Unix systems of a wide variety of types. It’s a
great introduction if you're new to Unix or to system administration, and a great reference
if you've been around a while and just want to look up a few details.”

—Elizabeth Zwicky, Consultant and former president of SAGE

www.oreilly.com

US $54.95 CAN $85.95
ISBN-10: 0-596-00343-9
ISBN-13: 978-0-596-00343-2

3 3:4:9:5
(I

Vo5 ioass ol I NI

Essential System

Administration

<W0DH000oMOM*MMM> H00ga jMOA\ WO.L) peojumod

THIRD EDITION

Essential System
Administration

Aleen Frisch

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

Essential System Administration, Third Edition
by Aleen Frisch

Copyright © 2002, 1995, 1991 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (safari.oreilly.com). For more information contact
our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Michael Loukides
Production Editor: Leanne Clarke Soylemez
Cover Designer: Edie Freedman

Interior Designer: David Futato

Printing History:
August 2002: Third Edition.
September 1995: Second Edition.
October 1991: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. Essential System Administration, Third Edition, the image of an
armadillo, and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations
used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim,
the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Library of Congress Cataloging-in-Publication Data

Frisch, AEleen
Essential System Administration/by AEleen Frisch.--3rd ed.
p. cm.
Includes index.
ISBN 0-596-00343-9
ISBN13 978-0-596-00343-2
1. UNIX (Computer file) 2. Operating systems (Computers) L. Title.

QA76.76.063 F75 2002
005.4'32--dc21 2002023321

M] [05/07]

For Frank Willison

“Part of the problem is passive-aggressive
behavior, my pet peeve and béte noire, and I don’t
like it either. Everyone should get off their high
horse, particularly if that horse is my béte noire.
We all have pressures on us, and nobody’s

pressure is more important than anyone else’s.”

sk

“Thanks also for not lending others your O’Reilly
books. Let others buy them. Buyers respect their
books. You seem to recognize that ‘lend’ and ‘lose’
are synonyms where books are concerned. If
had been prudent like you, I would still
have Volume 3 (Cats—Dorc) of the
Encyclopedia Britannica.”

Preface

1.

Table of Contents

Introduction to System Administration

Thinking About System Administration
Becoming Superuser

Communicating with Users

About Menus and GUIs

Where Does the Time Go?

TheUnixWay

Files
Processes
Devices

Essential Administrative Tools and Techniques

Getting the Most from Common Commands
Essential Administrative Techniques

Startup and Shutdown,

About the Unix Boot Process

Initialization Files and Boot Scripts

Shutting Down a Unix System

Troubleshooting: Handling Crashes and Boot Failures

TCP/IP Networking

Understanding TCP/IP Networking
Adding a New Network Host
Network Testing and Troubleshooting

12
14
31

33
53
61

74
90

127
151
169
173

180
202
219

vii

6. ManagingUsersandGroups 222

Unix Users and Groups 222
Managing User Accounts 237
Administrative Tools for Managing User Accounts 256
Administering User Passwords 277
User Authentication with PAM 302
LDAP: Using a Directory Service
for User Authentication 313
7. SeCUNtY ... 330
Prelude: What’s Wrong with This Picture? 331
Thinking About Security 332
User Authentication Revisited 339
Protecting Files and the Filesystem 348
Role-Based Access Control 366
Network Security 373
Hardening Unix Systems 387
Detecting Problems 391
8. Managing Network Services 414
Managing DNS Servers 414
Routing Daemons 452
Configuring a DHCP Server 457
Time Synchronization with NTP 469
Managing Network Daemons under AIX 475
Monitoring the Network 475
9. ElectronicMail 521
About Electronic Mail 521
Configuring User Mail Programs 532
Configuring Access Agents 537
Configuring the Transport Agent 542
Retrieving Mail Messages 596
Mail Filtering with procmail 599
A Few Final Tools 614
10. FilesystemsandDisks 616
Filesystem Types 617
Managing Filesystems 621

viii | Table of Contents

11.

12.

13.

14.

From Disks to Filesystems
Sharing Filesystems

BackupandRestore,
Planning for Disasters and Everyday Needs

Backup Media

Backing Up Files and Filesystems

Restoring Files from Backups

Making Table of Contents Files

Network Backup Systems

Backing Up and Restoring
the System Filesystems

Serial Linesand Devicesl
About Serial Lines

Specifying Terminal Characteristics

Adding a New Serial Device

Troubleshooting Terminal Problems

Controlling Access to Serial Lines

HP-UX and Tru64 Terminal Line Attributes

The HylaFAX Fax Service

USB Devices

Printers and the Spooling Subsystem
The BSD Spooling Facility

System V Printing

The AIX Spooling Facility

Troubleshooting Printers

Sharing Printers with Windows Systems

LPRng

CUPS

Font Management Under X

Automating Administrative Tasks
Creating Effective Shell Scripts

Perl: An Alternate Administrative Language

Expect: Automating Interactive Programs

When Only C Will Do

Automating Complex Configuration Tasks with Cfengine

634
694

707
717
726
736
742
744

759

766
769
776
794
796
797
799
807

818
829
848
858
860
864
874
878

886
899
911
919
921

Table of Contents

Afterword: The Profession of System Administration

15.

16.

17.

Stem: Simplified Creation of Client-Server Applications
Adding Local man Pages

Managing System Resources

Thinking About System Performance
Monitoring and Controlling Processes
Managing CPU Resources

Managing Memory

Disk I/O Performance Issues

Monitoring and Managing Disk Space Usage
Network Performance

Configuring and BuildingKernels

FreeBSD and Tru64
HP-UX

Linux

Solaris

AIX System Parameters

Accounting

Standard Accounting Files

BSD-Style Accounting: FreeBSD, Linux, and AIX
System V-Style Accounting: AIX, HP-UX, and Solaris
Printing Accounting

SAGE: The System Administrators Guild
Administrative Virtues

X

Table of Contents

Preface

This book is an agglomeration of lean-tos and annexes
and there is no knowing how big the next addition will
be, or where it will be put. At any point, I can call the
book finished or unfinished.

—Alexander Solzhenitsyn

A poem is never finished, only abandoned.
—Paul Valery

This book covers the fundamental and essential tasks of Unix system administra-
tion. Although it includes information designed for people new to system administra-
tion, its contents extend well beyond the basics. The primary goal of this book is to
make system administration on Unix systems straightforward; it does so by provid-
ing you with exactly the information you need. As I see it, this means finding a mid-
dle ground between a general overview that is too simple to be of much use to
anyone but a complete novice, and a slog through all the obscurities and eccentrici-
ties that only a fanatic could love (some books actually suffer from both these condi-
tions at the same time). In other words, I won’t leave you hanging when the first
complication arrives, and I also won’t make you wade through a lot of extraneous
information to find what actually matters.

This book approaches system administration from a task-oriented perspective, so it
is organized around various facets of the system administrator’s job, rather than
around the features of the Unix operating system, or the workings of the hardware
subsystems in a typical system, or some designated group of administrative com-
mands. These are the raw materials and tools of system administration, but an effec-
tive administrator has to know when and how to apply and deploy them. You need
to have the ability, for example, to move from a user’s complaint (“This job only
needs 10 minutes of CPU time, but it takes it three hours to get it!”) through a diag-
nosis of the problem (“The system is thrashing because there isn’t enough swap
space”), to the particular command that will solve it (swap or swapon). Accordingly,
this book covers all facets of Unix system administration: the general concepts,

Xi

underlying structure, and guiding assumptions that define the Unix environment, as
well as the commands, procedures, strategies, and policies essential to success as a
system administrator. It will talk about all the usual administrative tools that Unix
provides and also how to use them more smartly and efficiently.

Naturally, some of this information will constitute advice about system administra-
tion; I won’t be shy about letting you know what my opinion is. But I'm actually
much more interested in giving you the information you need to make informed
decisions for your own situation than in providing a single, univocal view of the
“right way” to administer a Unix system. It’s more important that you know what
the issues are concerning, say, system backups, than that you adopt anyone’s spe-
cific philosophy or scheme. When you are familiar with the problem and the poten-
tial approaches to it, you'll be in a position to decide for yourself what’s right for
your system.

Although this book will be useful to anyone who takes care of a Unix system, I have
also included some material designed especially for system administration profes-
sionals. Another way that this book covers essential system administration is that it
tries to convey the essence of what system administration is, as well as a way of
approaching it when it is your job or a significant part thereof. This encompasses
intangibles such as system administration as a profession, professionalism (not the
same thing), human and humane factors inherent in system administration, and its
relationship to the world at large. When such issues are directly relevant to the pri-
mary, technical content of the book, I mention them. In addition, I've included other
information of this sort in special sidebars (the first one comes later in this Preface).
They are designed to be informative and thought-provoking and are, on occasion,
deliberately provocative.

The Unix Universe

More and more, people find themselves taking care of multiple computers, often
from more than one manufacturer; it’s quite rare to find a system administrator who
is responsible for only one system (unless he has other, unrelated duties as well).
While Unix is widely lauded in marketing brochures as the “standard” operating sys-
tem “from microcomputers to supercomputers”—and I must confess to having writ-
ten a few of those brochures myself—this is not at all the same as there being a
“standard” Unix.At this point, Unix is hopelessly plural, and nowhere is this plural-
ity more evident than in system administration. Before going on to discuss how this
book addresses that fact, let’s take a brief look at how things got to be the way they
are now.

Figure P-1 attempts to capture the main flow of Unix development. It illustrates a sim-
plified Unix genealogy, with an emphasis on influences and family relationships
(albeit Faulknerian ones) rather than on strict chronology and historical accuracy. It

xi | Preface

Download from Wow! eBook <www.wowebook.com>

traces the major lines of descent from an arbitrary point in time: Unix Version 6 in
1975 (note that the dates in the diagram refer to the earliest manifestation of each
version). Over time, two distinct flavors (strains) of Unix emerged from its beginnings
at AT&T Bell Laboratories—which T'll refer to as System V and BSD—but there was
also considerable cross-influence between them (in fact, a more detailed diagram
would indicate this even more clearly).

AT&T Bell Labs

— - (jfect descent (c.1969-1970)

------ - strong influence

Version 6 I
(1975)

BSD
(1977)

Version 7
(1979)

v

XENIX
(1979 onward)

ey »| Systemlil
(1982)

System V.2
(1984)

4.3BSD
(1985)

System V.3
(1986)

0SF/1
(c.1992)

System V.4
(1988)

Figure P-1. Unix genealogy (simplified)

For a Unix family tree at the other extreme of detail, see http://perso.
wanadoo.fr/levenez/unix/. Also, the opening chapters of Life with UNIX,
by Don Libes and Sandy Ressler (PTR Prentice Hall), give a very enter-
taining overview of the history of Unix. For a more detailed written his-
tory, see A Quarter Century of UNIX by Peter Salus (Addison-Wesley).

Preface | xiii

The split we see today between System V and BSD occurred after Version 6.” devel-
opers at the University of California, Berkeley, extended Unix in many ways, adding
virtual memory support, the C shell, job control, and TCP/IP networking, to name
just a few. Some of these contributions were merged into the AT&T code lines at
various points.

System V Release 4 was often described as a merger of the System V and BSD lines,
but this is not quite accurate. It incorporated the most important features of BSD
(and SunOS) into System V. The union was a marriage and not a merger, however,
with some but not all characteristics from each parent dominant in the offspring (as
well as a few whose origins no one is quite sure of).

The diagram also includes OSF/1.

In 1988, Sun and AT&T agreed to jointly develop future versions of System V. In
response, IBM, DEC, Hewlett-Packard, and other computer and computer-related
companies and organizations formed the Open Software Foundation (OSF), design-
ing it with the explicit goal of producing an alternative, compatible, non-AT&T-
dependent, Unix-like operating system. OSF/1 is the result of this effort (although its
importance is more as a standards definition than as an actual operating system
implementation).

The proliferation of new computer companies throughout the 1980s brought dozens
of new Unix systems to market—Unix was usually chosen as much for its low cost
and lack of serious alternatives as for its technical characteristics—and also as many
variants. These vendors tended to start with some version of System V or BSD and
then make small to extensive modifications and customizations. Extant operating
systems mostly spring from System V Release 3 (usually Release 3.2), System V
Release 4, and occasionally 4.2 or 4.3 BSD (SunOS is the major exception, derived
from an earlier BSD version). As a further complication, many vendors freely inter-
mixed System V and BSD features within a single operating system.

Recent years have seen a number of efforts at standardizing Unix. Competition has
shifted from acrimonious lawsuits and countersuits to surface-level cooperation in
unifying the various versions. However, existing standards simply don’t address sys-
tem administration at anything beyond the most superficial level. Since vendors are
free to do as they please in the absence of a standard, there is no guarantee that

* The movement from Version 7 to System III in the System V line is a simplification of strict chronology and
descent. System III was derived from an intermediate release between Version 6 and Version 7 (CB Unix),
and not every Version 7 feature was included in System III. A word about nomenclature: The successive
releases of Unix from the research group at Bell Labs were originally known as “editions”—the Sixth Edition,
for example—although these versions are now generally referred to as “Versions.” After Version 6, there are
two distinct sets of releases from Bell Labs: Versions 7 and following (constituting the original research line),
and System III through System V (commercial implementations started from this line). Later versions of Sys-
tem V are called “Releases,” as in System V Release 3 and System V Release 4.

xiv | Preface

system administrative commands and procedures will even be similar under differ-
ent operating systems that uphold the same set of standards.

Unix Versions Discussed in This Book

How do you make sense out of the myriad of Unix variations? One approach is to
use computer systems only from a single vendor. However, since that often has other
disadvantages, most of us end up having to deal with more than one kind of Unix
system. Fortunately, taking care of n different kinds of systems doesn’t mean that
you have to learn as many different administrative command sets and approaches.
Ultimately, we get back to the fact that there are really just two distinct Unix variet-
ies; it’s just that the features of any specific Unix implementation can be an arbitrary
mixture of System V and BSD features (regardless of its history and origins). This
doesn’t always ensure that there are only two different commands to perform the
same administrative function—there are cases where practically every vendor uses a
different one—but it does mean that there are generally just two different approaches
to the area or issue. And once you understand the underlying structure, philosophy,
and assumptions, learning the specific commands for any given system is simple.

When you recognize and take advantage of this fact, juggling several Unix versions
becomes straightforward rather than impossibly difficult. In reality, lots of people do
it every day, and this book is designed to reflect that and to support them. It will also
make administering heterogeneous environments even easier by systematically pro-
viding information about different systems all in one place.

System V.3

| OSF/1 I | SystemV4 h

FreeBSD

1 - unixdefinition
O - UNIX implementation

Figure P-2. Unix versions discussed in this book

Preface | xv

The Unix versions covered by this book appear in Figure P-2, which illustrates the
influences on the various operating systems, rather than their actual origins. If the ver-
sion on your system isn’t one of them, don’t despair. Read on anyway, and you’ll find
that the general information given here applies to your system as well in most cases.

The specific operating system levels covered in this book are:

* AlX Version 5.1

* FreeBSD Version 4.6 (with a few glances at the upcoming Version 5)
* HP-UX Version 11 (including many Version 11i features)

* Linux: Red Hat Version 7.3 and SuSE Version 8

* Solaris Versions 8 and 9

* Tru64 Version 5.1

This list represents some changes from the second edition of this book. We've
dropped SCO Unix and IRIX and added FreeBSD. I decided to retain Tru64 despite
the recent merger of Compaq and Hewlett-Packard, because it’s likely that some
Tru64 features will eventually make their way into future HP-UX versions.

When there are significant differences between versions, I’ve made extensive use of
headers and other devices to indicate which version is being considered. You’ll find it
easy to keep track of where we are at any given point and even easier to find out the
specific information you need for whatever version you’re interested in. In addition,
the book will continue to be useful to you when you get your next, different Unix
system—and sooner or later, you will.

The book also covers a fair amount of free software that is not an official part of any
version of Unix. In general, the packages discussed can be built for any of the dis-
cussed operating systems.

Audience

This book will be of interest to:

* Full or part-time administrators of Unix computer systems. The book includes
help both for Unix users who are new to system administration and for experi-
enced system administrators who are new to Unix.

* Workstation and microcomputer users. For small, standalone systems, there is
often no distinction between the user and the system administrator. And even if
your workstation is part of a larger network with a designated administrator, in
practice, many system management tasks for your workstation will be left to
you.

* Users of Unix systems who are not full-time system managers but who perform
administrative tasks periodically.

xi | Preface

Why Vendors Like Standards

Standards are supposed to help computer users by minimizing the differences between
products from different vendors and ensuring that such products will successfully
work together. However, standards have become a weapon in the competitive arsenal
of computer-related companies, and vendor product literature and presentations are
often a cacophony of acronyms. Warfare imagery dominates discussions comparing
standards compliance rates for different products.

For vendors of computer-related products, upholding standards is in large part moti-
vated by the desire to create a competitive advantage. There is nothing wrong with
that, but it’s important not to mistake it for the altruism that it is often purported to
be. “Proprietary” is a dirty word these days, and “open systems” are all the rage, but
that doesn’t mean that what’s going on is anything other than business as usual.

Proprietary features are now called “extensions” and “enhancements,” and defining
new standards has become a site of competition. New standards are frequently created
by starting from one of the existing alternatives, vendors are always ready to argue for
the one they developed, and successful attempts are then touted as further evidence of
their product’s superiority (and occasionally they really are).

Given all of this, though, we have to at least suspect that it is not really in most vendors’
interest for the standards definition process to ever stop.

This book assumes that you are familiar with Unix user commands: that you know
how to change the current directory, get directory listings, search files for strings,
edit files, use I/0O redirection and pipes, set environment variables, and so on. It also
assumes a very basic knowledge of shell scripts: you should know what a shell script
is, how to execute one, and be able to recognize commonly used features like if state-
ments and comment characters. If you need help at this level, consult Learning the
UNIX Operating System, by Grace Todino-Gonguet, John Strang, and Jerry Peek,
and the relevant editions of UNIX in a Nutshell (both published by O’Reilly & Asso-
ciates).

If you have previous Unix experience but no administrative experience, several sec-
tions in Chapter 1 will show you how to make the transition from user to system
manager. If you have some system administration experience but are new to Unix,
Chapter 2 will explain the Unix approach to major system management tasks; it will
also be helpful to current Unix users who are unfamiliar with Unix file, process, or
device concepts.

This book is not designed for people who are already Unix wizards. Accordingly, it
stays away from topics like writing device drivers.

Preface | xvii

Organization

This book is the foundation volume for O’Reilly & Associates’ system administra-
tion series. As such, it provides you with the fundamental information needed by
everyone who takes care of Unix systems. At the same time, it consciously avoids try-
ing to be all things to all people; the other books in the series treat individual topics
in complete detail. Thus, you can expect this book to provide you with the essentials
for all major administrative tasks by discussing both the underlying high-level con-
cepts and the details of the procedures needed to carry them out. It will also tell you
where to get additional information as your needs become more highly specialized.

These are the major changes in content with respect to the second edition (in addi-
tion to updating all material to the most recent versions of the various operating sys-
tems):

* Greatly expanded networking coverage, especially of network server administra-
tion, including DHCP, DNS (BIND 8 and 9), NTP, network monitoring with
SNMP, and network performance tuning.

* Comprehensive coverage of email administration, including discussions of send-
mail, Postfix, procmail, and setting up POP3 and IMAP.

* Additional security topics and techniques, including the secure shell (ssh), one-
time passwords, role-based access control (RBAC), chroot jails and sandboxing,
and techniques for hardening Unix systems.

* Discussions of important new facilities that have emerged in the time since the
second edition. The most important of these are LDAP, PAM, and advanced file-
system features such as logical volume managers and fault tolerance features.

* Overviews and examples of some new scripting and automation tools, specifi-
cally Cfengine and Stem.

* Information about device types that have become available or common on Unix
systems relatively recently, including USB devices and DVD drives.

* Important open source packages are covered, including the following additions:
Samba (for file and printer sharing with Windows systems), the Amanda enter-
prise backup system, modern printing subsystems (LPRng and CUPS), font man-
agement, file and electronic mail encryption and digital signing (PGP and
GnuPG), the HylaFAX fax service, network monitoring tools (including RRD-
Tool, Cricket and NetSaint), and the GRUB boot loader.

Chapter Descriptions

The first three chapters of the book provide some essential background material
required by different types of readers. The remaining chapters generally focus on a
single administrative area of concern and discuss various aspects of everyday system
operation and configuration issues.

xvii | Preface

Chapter 1, Introduction to System Administration, describes some general principles
of system administration and the root account. By the end of this chapter, you’ll be
thinking like a system administrator.

Chapter 2, The Unix Way, considers the ways that Unix structure and philosophy
affect system administration. It opens with a description of the man online help facil-
ity and then goes on to discuss how Unix approaches various operating system func-
tions, including file ownership, privilege, and protection; process creation and
control; and device handling. This chapter closes with an overview of the Unix sys-
tem directory structure and important configuration files.

Chapter 3, Essential Administrative Tools and Techniques, discusses the administra-
tive uses of Unix commands and capabilities. It also provides approaches to several
common administrative tasks. It concludes with a discussion of the cron and syslog
facilities and package management systems.

Chapter 4, Startup and Shutdown, describes how to boot up and shut down Unix sys-
tems. It also considers Unix boot scripts in detail, including how to modify them for
the needs of your system. It closes with information about how to troubleshoot boot-
ing problems.

Chapter 5, TCP/IP Networking, provides an overview of TCP/IP networking on Unix
systems. It focuses on fundamental concepts and configuring TCP/IP client systems,
including interface configuration, name resolution, routing, and automatic IP
address assignment with DHCP. The chapter concludes with a discussion of net-
work troubleshooting.

Chapter 6, Managing Users and Groups, details how to add new users to a Unix sys-
tem. It also discusses Unix login initialization files and groups. It covers user authen-
tication in detail, including both traditional passwords and newer authentication
facilities like PAM. The chapter also contains information about using LDAP for user
account data.

Chapter 7, Security, provides an overview of Unix security issues and solutions to
common problems, including how to use Unix groups to allow users to share files
and other system resources while maintaining a secure environment. It also dis-
cusses optional security-related facilities such as dialup passwords and secondary
authentication programs. The chapter also covers the more advanced security config-
uration available by using access control lists (ACLs) and role-based access control
(RBAC). It also discusses the process of hardening Unix systems. In reality, though,
security is something that is integral to every aspect of system administration, and a
good administrator consciously considers the security implications of every action
and decision. Thus, expecting to be able to isolate and abstract security into a sepa-
rate chapter is unrealistic, and so you will find discussion of security-related issues
and topics in every chapter of the book.

Chapter 8, Managing Network Services, returns to the topic of networking. It dis-
cusses configuring and managing various networking daemons, including those for

Preface | xix

DNS, DHCP, routing, and NTP. It also contains a discussion of network monitoring
and management tools, including the SNMP protocol and tools, Netsaint, RRDTool,
and Cricket.

Chapter 9, Electronic Mail, covers all aspects of managing the email subsystem. It
covers user mail programs, configuring the POP3 and IMAP protocols, the sendmail
and Postfix mail transport agents, and the procmail and fetchmail facilities.

Chapter 10, Filesystems and Disks, discusses how discrete disk partitions become part
of a Unix filesystem. It begins by describing the disk mounting commands and filesys-
tem configuration files. It also considers Unix disk partitioning schemes and describes
how to add a new disk to a Unix system. In addition, advanced features such as logi-
cal volume managers and software striping and RAID are covered. It also discusses
sharing files with remote Unix and Windows systems using NFS and Samba.

Chapter 11, Backup and Restore, begins by considering several possible backup strat-
egies before going on to discuss the various backup and restore services that Unix
provides. It also covers the open source Amanda backup facility.

Chapter 12, Serial Lines and Devices, discusses Unix handling of serial lines, includ-
ing how to add and configure new serial devices. It covers both traditional serial lines
and USB devices. It also includes a discussion of the HylaFAX fax service.

Chapter 13, Printers and the Spooling Subsystem, covers printing on Unix systems,
including both day-to-day operations and configuration issues. Remote printing via a
local area network is also discussed. Printing using open source spooling systems is
also covered, via Samba, LPRng, and CUPS.

Chapter 14, Automating Administrative Tasks, considers Unix shell scripts, scripts,
and programs in other languages and environments such as Perl, C, Expect, and
Stem. It provides advice about script design and discusses techniques for testing and
debugging them. It also covers the Cfengine facility, which provides high level auto-
mation features to system administrators.

Chapter 15, Managing System Resources, provides an introduction to performance
issues on Unix systems. It discusses monitoring and managing use of major system
resources: CPU, memory, and disk. It covers controlling process execution, optimiz-
ing memory performance and managing system paging space, and tracking and
apportioning disk usage. It concludes with a discussion of network performance
monitoring and tuning.

Chapter 16, Configuring and Building Kernels, discusses when and how to create a
customized kernel, as well as related system configuration issues. It also discusses
how to view and modify tunable kernel parameters.

Chapter 17, Accounting, describes the various Unix accounting services, including
printer accounting.

The Appendix covers the most important Bourne shell and bash features.

xx | Preface

The Afterword contains some final thoughts on system administration and informa-
tion about the System Administrator’s Guild (SAGE).

Conventions Used in This Book

The following typographic and usage conventions are used in this book:

italic
Used for filenames, directory names, hostnames, and URLs. Also used liberally
for annotations in configuration file examples.

constant width
Used for names of commands, utilities, daemons, and other options. Also used
in code and configuration file examples.

constant width italic
Used to indicate variables in code.
constant width bold
Used to indicate user input on a command line.

constant width bold italic
Used to indicate variables in command-line user input.

Indicates a warning.

A W
MG
N

Indicates a note.

Indicates a tip.

he, she

This book is meant to be straightforward and to the point. There are times when
using a third-person pronoun is just the best way to say something: “This set-
ting will force the user to change his password the next time he logs in.” Person-
ally, I don’t like always using “he” in such situations, and T abhor “he or she”
and “s/he,” so I use “he” some of the time and “she” some of the time, alternat-
ing semi-randomly. However, when the text refers to one of the example users
who appear from time to time throughout the book, the appropriate pronoun is
always used.

Preface | xxi

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/esa3/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

Acknowledgments

Many people have helped this book at various points in its successive incarnations.
In writing this third edition, I'm afraid I fell at times into the omnipresent trap of
writing a different book rather than revising the one at hand; although this made the
book take longer to finish, I hope that readers will benefit from my rethinking many
topics and issues.

[am certain that few writers have been as fortunate as I have in the truly first-rate set
of technical reviewers who read and critiqued the manuscript of the third edition.
They were, without doubt, the most meticulous group I have ever encountered:

* Jon Forrest

* Peter Jeremy

* Jay Kreibich

* David Malone

* Eric Melander

* Jay Migliaccio

* Jay Nelson

* Christian Pruett

* Eric Stahl

xxii | Preface

Luke Boyett, Peter Norton and Nate Williams also commented on significant
amounts of the present edition.

My thanks go also to the technical reviews of the first two editions. The second edi-
tion reviewers were Nora Chuang, Clem Cole, Walt Daniels, Drew Eckhardt, Zenon
Fortuna, Russell Heise, Tanya Herlick, Karen Kerschen, Tom Madell, Hanna Nel-
son, Barry Saad, Pamela Sogard, Jaime Vazquez, and Dave Williams; first edition
reviewers were Jim Binkley, Tan Bronson, Clem Cole, Dick Dunn, Laura Hook,
Mike Loukides, and Tim O’Reilly. This book still benefits from their comments.

Many other people helped this edition along by pointing out bugs and providing
important information at key points: Jeff Andersen, John Andrea, Jay Ashworth,
Christoph Badura, Jiten Bardwaj, Clive Blackledge, Mark Burgess, Trevor Chandler,
Douglas Clark, Joseph C. Davidson, Jim Davis, Steven Dick, Matt Eakle, Doug
Edwards, Ed Flinn, Patrice Fournier, Rich Fuchs, Brian Gallagher, Michael Gerth,
Adam Goodman, Charles Gordon, Uri Guttman, Enhua He, Matthias Heidbrink,
Matthew A. Hennessy, Derek Hilliker, John Hobson, Lee Howard, Colin Douglas
Howell, Hugh Kennedy, Jonathan C. Knowles, Ki Hwan Lee, Tom Madell, Sean
Maguire, Steven Matheson, Jim McKinstry, Barnabus Misanik, John Montgomery,
Robert L. Montgomery, Dervi Morgan, John Mulshine, John Mulshine, Darren
Nickerson, Jeff Okimoto, Guilio Orsero, Jerry Peek, Chad Pelander, David B. Perry,
Tim Rice, Mark Ritchie, Michael Saunby, Carl Schelin, Mark Summerfield, Tetsuji
Tanigawa, Chuck Toporek, Gary Trucks, Sean Wang, Brian Whitehead, Bill Wis-
niewski, Simon Wright, and Michael Zehe.

Any errors that remain are mine alone.

I am also grateful to companies who loaned me or provided access to hardware and/
or software:

* Gaussian, Inc. gave me access to several computer systems. Thanks to Mike
Frisch, Jim Cheeseman, Jim Hess, John Montgomery, Thom Vreven and Gary
Trucks.

* Christopher Mahmood and Jay Migliaccio of SuSE, Inc. gave me advance access
to SuSE 8.

* Lorien Golarski of Red Hat gave me access to their beta program.
* Chris Molnar provided me with an advance copy of KDE version 3.

* Angela Loh of Compaq arranged for an equipment loan of an Alpha Linux sys-
tem.

* Steve Behling, Tony Perraglia and Carlos Sosa of IBM expedited AIX releases for
me and also provided useful information.

* Adam Goodman and the staff of Linux Magazine provided feedback on early ver-
sions of some sections of this book. Thanks also for their long suffering patience
with my habitual lateness.

Preface | xxiii

I'd also like to thank my stellar assistant Cat Dubalil for all of her help on this third
edition. Felicia Bear also provided important editorial help. Thanks also to Laura
Lasala, my copy editor for the second edition.

At O’Reilly & Associates, my deepest gratitude goes to my amazing editor Mike
Loukides, whose support and guidance brought this edition to completion. Bob
Woodbury and Besty Waliszewski provided advice and help at key points. Darren
Kelly helped with some technical issues regarding the index. Finally, my enthusiastic
thanks go to the excellent production group at O’Reilly & Associates for putting the
finishing touches on all three editions of this book.

Finally, no one finishes a task of this size without a lot of support and encourage-
ment from their friends. I’d like to especially thank Mike and Mo for being there for
me throughout this project. Thanks also to the furry Frischs: Daphne, Susan, Lyta,
and Talia.

—/EF; Day 200 of 2002; North Haven, CT, USA

xxiv | Preface

CHAPTER 1

Introduction to System
Administration

The traditional way to begin a book like this is to provide a list of system administra-
tion tasks—I’ve done it several times myself at this point. Nevertheless, it’s important
to remember that you have to take such lists with a grain of salt. Inevitably, they leave
out many intangibles, the sorts of things that require lots of time, energy, or knowl-
edge, but never make it into job descriptions. Such lists also tend to suggest that sys-
tem management has some kind of coherence across the vastly different environments
in which people find themselves responsible for computers. There are similarities, of
course, but what is important on one system won’t necessarily be important on
another system at another site or on the same system at a different time. Similarly,
systems that are very different may have similar system management needs, while
nearly identical systems in different environments might have very different needs.

But now to the list. In lieu of an idealized list, I offer the following table showing how
[spent most of my time in my first job as full-time system administrator (I managed
several central systems driving numerous CAD/CAM workstations at a Fortune 500
company) and how these activities have morphed in the intervening two decades.

Table 1-1. Typical system administration tasks

Then: early 1980s Now: early 2000s

Adding new users. I still do it, but it's automated, and | only have to add a user
once for the entire network. Converting to LDAP did take a lot
of time, though.

Adding toner to electrostatic plotters. Printers need a lot less attention—just clearing the occa-

sional paper jam—but | still get my hands dirty changing
those inkjet tanks.

Doing backups to tape. Backups are still high priority, but the process is more cen-
tralized, and it uses (Ds and occasionally spare disks as well
as tape.

Restoring files from backups that users accidentally deleted This will never change.

or trashed.

Answering user questions (“How do | send mail?”), usually Users will always have questions. Mine also whine more:

not for the first or last time. “Why can’t | have an Internet connection on my desk?” or

“Why won't IRC work through the firewall?”

Table 1-1. Typical system administration tasks (continued)

Then: early 1980s

Monitoring system activity and trying to tune system param-
eters to give these overloaded systems the response time of
an idle system.

Moving jobs up in the print queue, after more or less user
whining, pleading, or begging, contrary to stated policy
(about moving jobs, not about whining).

Worrying about system security, and plugging the most nox-
ious security holes | inherited.

Installing programs and operating system updates.

Trying to free up disk space (and especially contiguous disk
space).

Rebooting the system after a crash (always at late and incon-
venient times).

Straightening out network glitches (“Why isn't hamlet talk-
ing to ophelia?”). Occasionally, this involved physically trac-
ing the Ethernet cable around the building, checking it at
each node.

Rearranging furniture to accommodate new equipment;
installing said equipment.

Figuring out why a program/command/account suddenly
and mysteriously stopped working yesterday, even though
the user swore he changed nothing.

Fixing—or rather, trying to fix—corrupted CAD/CAM binary
data files.

Going to meetings.

Adding new systems to the network.

Writing scripts to automate as many of the above activities as
possible.

Now: early 2000s

Installing and upgrading hardware to keep up with mono-
tonically increasing resource appetites.

This is one problem that is no longer an issue for me. Printers
are cheap, so they are no longer a scare resource that has to
be managed.

Security is always a worry, and keeping up with security
notices and patches takes a lot of time.

Same.

The emphasis is more on high performance disk 1/0 (disk
space is cheap): RAID and so on.

Systems crash a lot less than they used to (thankfully).

Last year, | replaced my last Thinnet network with twisted-
pair cabling. | hope never to see the former again. However, |
now occasionally have to replace cable segments that have
malfunctioned.

Machines still come and go on a regular basis and have to be
accommodated.

Users will still be users.

The current analog of this is dealing with email attachments
that users don't know how to access. Protecting users from
potentially harmful attachments is another concern.

No meetings, but lots of casual conversations.

This goes without saying: systems are virtually always added
to the network.

Automation is still the administrator’s salvation.

As this list indicates, system management is truly a hodgepodge of activities and
involves at least as many people skills as computer skills. While I'll offer some advice
about the latter in a moment, interacting with people is best learned by watching
others, emulating their successes, and avoiding their mistakes.

Currently, I look after a potpourri of workstations from many different vendors, as
well as a couple of larger systems (in terms of physical size but not necessarily CPU
power), with some PCs and Macs thrown in to keep things interesting. Despite these
significant hardware changes, it’s surprising how many of the activities from the
early 1980s I still have to do. Adding toner now means changing a toner cartridge in
a laser printer or the ink tanks in an inkjet printer; backups go to 4 mm tape and
CDs rather than 9-track tape; user problems and questions are in different areas but

2 | Chapter1: Introduction to System Administration

are still very much on the list. And while there are (thankfully) no more meetings,
there’s probably even more furniture-moving and cable-pulling.

Some of these topics—moving furniture and going to or avoiding meetings, most
obviously—are beyond the scope of this book. Space won’t allow other topics to be
treated exhaustively; in these cases, I'll point you in the direction of another book
that takes up where I leave off. This book will cover most of the ordinary tasks that
fall under the category of “system administration.” The discussion will be relevant
whether you’ve got a single PC (running Unix), a room full of mainframes, a build-
ing full of networked workstations, or a combination of several types of computers.
Not all topics will apply to everyone, but I've learned not to rule out any of them a
priori for a given class of user. For example, it’s often thought that only big systems
need process-accounting facilities, but it’s now very common for small businesses to
address their computing needs with a moderately-sized Unix system. Because they
need to be able to bill their customers individually, they have to keep track of the
CPU and other resources expended on behalf of each customer. The moral is this:
take what you need and leave the rest; you’re the best judge of what’s relevant and
what isn’t.

Thinking About System Administration

I’ve touched briefly on some of the nontechnical aspects of system administration.
These dynamics will probably not be an issue if it really is just you and your PC, but
if you interact with other people at all, you’ll encounter these issues. It’s a cliché that
system administration is a thankless job—one widely-reprinted cartoon has a user
saying “I’d thank you but system administration is a thankless job”—but things are
actually more complicated than that. As another cliché puts it, system administra-
tion is like keeping the trains on time; no one notices except when they’re late.

System management often seems to involve a tension between authority and respon-
sibility on the one hand and service and cooperation on the other. The extremes
seem easier to maintain than any middle ground; fascistic dictators who rule “their
system” with an iron hand, unhindered by the needs of users, find their opposite in
the harried system managers who jump from one user request to the next, in contin-
ual interrupt mode. The trick is to find a balance between being accessible to users
and their needs—and sometimes even to their mere wants—while still maintaining
your authority and sticking to the policies you’ve put in place for the overall system
welfare. For me, the goal of effective system administration is to provide an environ-
ment where users can get done what they need to, in as easy and efficient a manner
as possible, given the demands of security, other users’ needs, the inherent capabili-
ties of the system, and the realities and constraints of the human community in
which they all are located.

Thinking About System Administration | 3

To put it more concretely, the key to successful, productive system administration is
knowing when to solve a CPU-overuse problem with a command like:"

kill -9 “ps aux | awk '$1=="chavez" {print $2}"

(This command blows away all of user chavez’s processes.) It’s also knowing when
to use:

$ write chavez

You've got a lot of identical processes running on dalton.

Any problem I can help with?

"D
and when to walk over to her desk and talk with her face-to-face. The first approach
displays Unix finesse as well as administrative brute force, and both tactics are cer-
tainly appropriate—even vital—at times. At other times, a simpler, less aggressive
approach will work better to resolve your system’s performance problems in addi-
tion to the user’s confusion. It’s also important to remember that there are some
problems no Unix command can address.

To a great extent, successful system administration is a combination of careful plan-
ning and habit, however much it may seem like crisis intervention at times. The key
to handling a crisis well lies in having had the foresight and taken the time to antici-
pate and plan for the type of emergency that has just come up. As long as it only hap-
pens once in a great while, snatching victory from the jaws of defeat can be very
satisfying and even exhilarating.

On the other hand, many crises can be prevented altogether by a determined devo-
tion to carrying out all the careful procedures you've designed: changing the root
password regularly, faithfully making backups (no matter how tedious), closely mon-
itoring system logs, logging out and clearing the terminal screen as a ritual, testing
every change several times before letting it loose, sticking to policies you’ve set for
users’ benefit—whatever you need to do for your system. (Emerson said, “A foolish
consistency is the hobgoblin of little minds,” but not a wise one.)

My philosophy of system administration boils down to a few basic strategies that can
be applied to virtually any of its component tasks:

* Know how things work. In these days, when operating systems are marketed as
requiring little or no system administration, and the omnipresent simple-to-use
tools attempt to make system administration simple for an uninformed novice,
someone has to understand the nuances and details of how things really work. It
should be you.

* Plan it before you do it.

* Make it reversible (backups help a lot with this one).

* On HP-UX systems, the command is ps -ef. Solaris systems can run either form depending on which version
of ps comes first in the search path. AIX and Linux can emulate both versions, depending on whether a
hyphen is used with options (System V style) or not (BSD style).

4 | Chapter1: Introduction to System Administration

* Make changes incrementally.

* Test, test, test, before you unleash it on the world.

I learned about the importance of reversibility from a friend who worked in a
museum putting together ancient pottery fragments. The museum followed this
practice so that if better reconstructive techniques were developed in the future, they
could undo the current work and use the better method. As far as possible, I've tried
to do the same with computers, adding changes gradually and preserving a path by
which to back out of them.

A simple example of this sort of attitude in action concerns editing system configura-
tion files. Unix systems rely on many configuration files, and every major subsystem
has its own files (all of which we’ll get to). Many of these will need to be modified
from time to time.

I never modify the original copy of the configuration file, either as delivered with the
system or as [found it when I took over the system. Rather, I always make a copy of
these files the first time I change them, appending the suffix .dist to the filename; for
example:

cd /etc

cp inittab inittab.dist
chmod a-w inittab.dist

[write-protect the .dist file so I'll always have it to refer to. On systems that support
it, use the cp command’s -p option to replicate the file’s current modification time in
the copy.

I also make a copy of the current configuration file before changing it in any way so
undesirable changes can be easily undone. T add a suffix like .old or .sav to the file-
name for these copies. At the same time, I formulate a plan (at least in my head)
about how I would recover from the worst consequence I can envision of an unsuc-
cessful change (e.g., I'll boot to single-user mode and copy the old version back).

Once I've made the necessary changes (or the first major change, when several are
needed), I test the new version of the file, in a safe (nonproduction) environment if
possible. Of course, testing doesn’t always find every bug or prevent every problem,
but it eliminates the most obvious ones. Making only one major change at a time
also makes testing easier.

Some administrators use the a revision control system to track the
changes to important system configuration files (e.g., CVS or RCS).
Such packages are designed to track and manage changes to applica-
tion source code by multiple programmers, but they can also be used
to record changes to configuration files. Using a revision control sys-
tem allows you to record the author and reason for any particular
change, as well as reconstruct any previous version of a file at any
time.

Thinking About System Administration | 5

The remaining sections of this chapter discuss some important administrative tools.
The first describes how to become the superuser (the Unix privileged account).
Because I believe a good system manager needs to have both technical expertise and
an awareness of and sensitivity to the user community of which he’s a part, this first
chapter includes a section on Unix communication commands. The goal of these dis-
cussions—as well as of this book as a whole—is to highlight how a system manager
thinks about system tasks and problems, rather than merely to provide literal, cook-
book solutions for common scenarios.

Important administrative tools of other kinds are covered in later chapters of this

book.

Becoming Superuser

On a Unix system, the superuser refers to a privileged account with unrestricted
access to all files and commands. The username of this account is root. Many admin-
istrative tasks and their associated commands require superuser status.

There are two ways to become the superuser. The first is to log in as root directly.
The second way is to execute the command su while logged in to another user
account. The su command may be used to change one’s current account to that of a
different user after entering the proper password. It takes the username correspond-
ing to the desired account as its argument; root is the default when no argument is
provided.

After you enter the su command (without arguments), the system prompts you for
the root password. If you type the password correctly, you’ll get the normal root
account prompt (by default, a number sign: #), indicating that you have successfully
become superuser and that the rules normally restricting file access and command
execution do not apply. For example:

$ su

Password: Not echoed

#
If you type the password incorrectly, you get an error message and return to the nor-
mal command prompt.

You may exit from the superuser account with exit or Ctrl-D. You may suspend the
shell and place it in the background with the suspend command; you can return to it
later using fg.

When you run su, the new shell inherits the environment from your current shell
environment rather than creating the environment that root would get after logging
in. However, you can simulate an actual root login session with the following com-
mand form:

$ su -

6 | Chapter1: Introduction to System Administration

Unlike some other operating systems, the Unix superuser has all privi-
leges all the time: access to all files, commands, etc. Therefore, it is
entirely too easy for a superuser to crash the system, destroy impor-
tant files, and create havoc inadvertently. For this reason, people who
know the superuser password (including the system administrator)
should not do their routine work as superuser. Only use superuser
status when it is needed.

The root account should always have a password, and this password should be
changed periodically. Only experienced Unix users with special requirements should
know the superuser password, and the number of people who know it should be
kept to an absolute minimum.

To set or change the superuser password, become superuser and execute one of the
following commands:

passwd Works most of the time.

passwd root Solaris and FreeBSD systems when su’d to root.
Generally, you’ll be asked to type the old superuser password and then the new pass-
word twice. The root password should also be changed whenever someone who
knows it stops using the system for any reason (e.g., transfer, new job, etc.), or if
there is any suspicion that an unauthorized user has learned it. Passwords are dis-
cussed in detail in Chapter 6.

I try to avoid logging in directly as root. Instead, I su to root only as necessary, exit-
ing from or suspending the superuser shell when possible. Alternatively, in a win-
dowing environment, you can create a separate window in which you su to root,
again executing commands there only as necessary.

For security reasons, it’s a bad idea to leave any logged-in session unattended; natu-
rally, that goes double for a root session. Whenever I leave a workstation where [am
logged in as root, I log out or lock the screen to prevent anyone from sneaking onto
the system. The xlock command will lock an X session; the password of the user who
ran xlock must be entered to unlock the session (on some systems, the root pass-
word can also unlock sessions locked by other users).” While screen locking pro-
grams may have security pitfalls of their own, they do prevent opportunistic breaches
of system security that would otherwise be caused by a momentary lapse into lazi-
ness.

A w
o If you are logged in as root on a serial console, you should also use a
.‘s‘ locking utility provided by the operating system. In some cases, if you
T Gk are using multiple virtual consoles, you will need to lock each one
individually.

* For some unknown reason, FreeBSD does not provide xlock. However, the xlockmore (see http://www.tux.
org/~bagleyd/xlockmore.html) utility provides the same functionality (it’s actually a follow-on to xlock).

Becoming Superuser | 7

Controlling Access to the Superuser Account

On many systems, any user who knows the root password may become superuser at
any time by running su. This is true for HP-UX, Linux, and Solaris systems in gen-
eral.” Solaris allows you to configure some aspects of how the command works via
settings in the /etc/default/su configuration file.

Traditionally, BSD systems limited access to su to members of group 0O (usually
named wheel); under FreeBSD, if the wheel group has a null user list in the group file
(Jetc/group), any user may su to root; otherwise, only members of the wheel group
can use it. The default configuration is a wheel group consisting of just root.

AIX allows the system administrator to specify who can use su on an account-by-
account basis (no restrictions are imposed by default). The following commands dis-
play the current groups that are allowed to su to root and then limit that same access
to the system and admins groups:

lsuser -a sugroups root

root sugroups=ALL

chuser sugroups="system,admins" root
Most Unix versions also allow you to restrict direct root logins to certain terminals.
This topic is discussed in Chapter 12.

An Armadillo?

The armadillo typifies one attribute that a successful system administrator needs: a
thick skin. Armadillos thrive under difficult environmental conditions through
strength and perseverance, which is also what system administrators have to do a lot
of the time (see the colophon at the back of the book for more information about the
armadillo). System managers will find other qualities valuable as well, including the
quickness and cleverness of the mongoose (Unix is the snake), the sense of adventure
and playfulness of puppies and kittens, and at times, the chameleon’s ability to blend
in with the surroundings, becoming invisible even though you’re right in front of every-
one’s eyes.

Finally, however, as more than one reader has noted, the armadillo also provides a cau-
tionary warning to system administrators not to become so single-mindedly or nar-
rowly focused on what they are doing that they miss the big picture. Armadillos who
fail to heed this advice end up as roadkill.

* When the PAM authentication facility is in use, it controls access to su (see “User Authentication with PAM”
in Chapter 6).

8 | Chapter1: Introduction to System Administration

Running a Single Command as root

su also has a mode whereby a single command can be run as root. This mode is not a
very convenient way to interactively execute superuser commands, and I tend to see
it as a pretty unimportant feature of su. Using su -c can be very useful in scripts,
however, keeping in mind that the target user need not be root.

Nevertheless, I have found that it does have one important use for a system adminis-
trator: it allows you to fix something quickly when you are at a user’s workstation
(or otherwise not at your own system) without having to worry about remembering
to exit from an su session.” There are users who will absolutely take advantage of
such lapses, so I've learned to be cautious.

You can run a single command as root by using a command of this form:
$ su root -c "command"

where command is replaced by the command you want to run. The command should
be enclosed in quotation marks if it contains any spaces or special shell characters.
When you execute a command of this form, su prompts for the root password. If you
enter the correct password, the specified command runs as root, and subsequent
commands are run normally from the original shell. If the command produces an
error or is terminated (e.g. with CTRL-C), control again returns to the unprivileged
user shell.

The following example illustrates this use of su to unmount and eject the CD-ROM
mounted in the /cdrom directory:

$ su root -c "eject /cdrom”
Password: root password entered

Commands and output would be slightly different on other systems.

You can start a background command as root by including a final ampersand within
the specified command (inside the quotation marks), but you’ll want to consider the
security implications of a user bringing it to the foreground before you do this at a
user’s workstation.

sudo: Selective Access to Superuser Commands

Standard Unix takes an all-or-nothing approach to granting root access, but often
what you actually want is something in between. The freely available sudo facility
allows specified users to run specific commands as root without having to know the
root password (available at http://www.courtesan.com/sudo/).t

* Another approach is always to open a new window when you need to do something at a user’s workstation.
It’s easy to get into the habit of always closing it down as you leave.

1 Administrative roles are another, more sophisticated way of partitioning root access. They are discussed in
detail in “Role-Based Access Control” in Chapter 7.

Becoming Superuser | 9

For example, a non-root user could use this sudo command to shut down the system:

$ sudo /sbin/shutdown ...

Password:
sudo requires only the user’s own password to run the command, not the root pass-
word. Once a user has successfully given a password to sudo, she may use it to run
additional commands for a limited period of time without having to enter a pass-
word again; this period defaults to five minutes. A user can extend the time period by
an equal amount by running sudo -v before it expires. She can also terminate the
grace period by running sudo -K.

sudo uses a configuration file, usually /etc/sudoers, to determine which users may use
the sudo command and the other commands available to each of them after they’ve
started a sudo session. The configuration file must be set up by the system adminis-
trator. Here is the beginning of a sample version:

Host alias specifications: names for host lists

Host Alias PHYSICS = hamlet, ophelia, laertes
Host_Alias CHEM = duncan, puck, brutus

User alias specifications: named groups of users
User_ Alias BACKUPOPS = chavez, vargas, smith

Command alias specifications: names for command groups

Cmnd_Alias MOUNT = /sbin/mount, /sbin/umount

Cmnd_Alias SHUTDOWN = /sbin/shutdown

Cmnd_Alias BACKUP = /usr/bin/tar, /usr/bin/mt

Cmnd_Alias CDROM = /sbin/mount /cdrom, /bin/eject
These three configuration file sections define sudo aliases—uppercase symbolic
names—for groups of computers, users and commands, respectively. This example
file defines two sets of hosts (PHYSICS and CHEM), one set of users (BACKUPOPS),
and four command aliases. For example, the MOUNT command alias is defined as
the mount and umount commands. Following good security practice, all commands
include the full pathname for the executable.

The final command alias illustrates the use of arguments within a command list. This
alias consists of a command to mount a CD at /cdrom and to eject the media from
the drive. Note, however, that it does not grant general use of the mount command.

The final section of the file (see below) specifies which users may use the sudo com-
mand, as well as what commands they can run with it and which computers they
may run them on. Each line in this section consists of a username or alias, followed
by one or more items of the form:

host = command(s) [: host = command(s) ...]

where host is a hostname or a host alias, and command(s) are one or more com-
mands or command aliases, with multiple commands or hosts separated by com-
mas. Multiple access specifications may be included for a single user, separated by
colons. The alias ALL stands for all hosts or commands, depending on its context.

10 | Chapter1: Introduction to System Administration

Here is the remainder of our example configuration file:

User specifications: who can do what where

root ALL = ALL

%chem CHEM = SHUTDOWN, MOUNT

chavez PHYSICS = MOUNT : achilles = /sbin/swapon
harvey ALL = NOPASSWD: SHUTDOWN

BACKUPOPS ALL, !CHEM = BACKUP, /usr/local/bin

The first entry after the comment grants root access to all commands on all hosts.
The second entry applies to members of the chem group (indicated by the initial per-
cent sign), who may run system shutdown and mounting commands on any com-
puter in the CHEM list.

The third entry specifies that user chavez may run the mounting commands on the
hosts in the PHYSICS list and may also run the swapon command on host achilles.
The next entry allows user harvey to run the shutdown command on any system, and
sudo will not require him to enter his password (via the NOPASSWD: preceding the
command list).

The final entry applies to the users specified for the BACKOPS alias. On any system
except those in the CHEM list (the preceding exclamation point indicates exclu-
sion), they may run the command listed in the BACKUP alias as well as any com-
mand in the /usr/local/bin directory.

Users can use the sudo -1 command form to list the commands available to them via
this facility.

Commands should be selected for use with sudo with some care. In par-
ticular, shell scripts should not be used, nor should any utility which
provides shell escapes—the ability to execute a shell command from
within a running interactive program (editors, games, and even output
display utilities like more and less are common examples). Here is the
reason: when a user runs a command with sudo, that command runs as
root, so if the command lets the user execute other commands via a
shell escape, any command he runs from within the utility will also be
run as root, and the whole purpose of sudo—to grant selective access to
superuser command—will be subverted. Following similar reasoning,
because most text editors provide shell escapes, any command that
allows the user to invoke an editor should also be avoided. Some
administrative utilities (e.g., AIX’s SMIT) also provide shell escapes.

The sudo package provides the visudo command for editing /etc/sudoers. It locks the
file, preventing two users from modifying the file simultaneously, and it performs
syntax checking when editing is complete (if there are errors, the editor is restarted,
but no explicit error messages are given).

There are other ways you might want to customize sudo. For example, I want to use a
somewhat longer interval for password-free use. Changes of this sort must be made
by rebuilding sudo from source code. This requires rerunning the configure script

Becoming Superuser | 11

with options. Here is the command I used, which specifies a log file for all sudo oper-
ations, sets the password-free period to ten minutes, and tells visudo to use the text
editor specified in the EDITOR environment variable:

cd sudo-source-directory

./configure --with-logpath=/var/log/sudo.log \
--with-timeout=10 --with-env-editor

Once the command completes, use the make command to rebuild sudo.”

sudo’s logging facility is important and useful in that it enables you to keep track of
privileged commands that are run. For this reason, using sudo can sometimes be pref-
erable to using su even when limiting root-level command access is not an issue.

The one disadvantage of sudo is that it provides no integrated remote-
access password protection. Thus, when you run sudo from an inse-
cure remote session, passwords are transmitted over the network for
any eavesdropper to see. Of course, using SSH can overcome this
limitation.

Communicating with Users

The commands discussed in this section are simple and familiar to most Unix users.
For this reason, they’re often overlooked in system administration discussions. How-
ever, I believe you’ll find them to be an indispensable part of your repertoire. One
other important communications mechanism is electronic mail (see Chapter 9).

Sending a Message

A system administrator frequently needs to send a message to a user’s screen (or win-
dow). write is one way to do so:

$ write username [tty]

where username indicates the user to whom you wish to send the message. If you
want to write to a user who is logged in more than once, the tty argument may be
used to select the appropriate terminal or window. You can find out where a user is
logged in using the who command.

Once the write command is executed, communication is established between your
terminal and the user’s terminal: lines that you type on your terminal will be trans-
mitted to him. End your message with a CTRL-D. Thus, to send a message to user
harvey for which no reply is needed, execute a command like this:

* A couple more configuration notes: sudo can also be integrated into the PAM authentication system (see
“User Authentication with PAM” in Chapter 6). Use the - -use-pam option to configure. On the other hand,
if your system does not use a shadow password file, you must use the - -disable-shadow option.

12 | Chapter1: Introduction to System Administration

$ write harvey

The file you needed has been restored.

Additional lines of message text

D
In some implementations (e.g., AIX, HP-UX and Tru64), write may also be used
over a network by appending a hostname to the username. For example, the com-
mand below initiates a message to user chavez on the host named hamlet:

$ write chavez@hamlet

When available, the rwho command may be used to list all users on the local subnet
(it requires a remote who daemon be running on the remote system).

The talk command is a more sophisticated version of write. It formats the messages
between two users in two separate spaces on the screen. The recipient is notified that
someone is calling her, and she must issue her own talk command to begin commu-
nication. Figure 1-1 illustrates the use of talk.

How screens appear after both users have

executed talk commands:
" ") | | 4 , ") |
[Connection Established] [Connection Established]
Not bad. Link 501 compiles! Hi. How’s it going?
Sure. Ali Baba's?_ Great. Lunch?
Hi. How's it going? Not bad. Link 501 compiles!
Great.Lunch? Sure. Ali Baba's?__
| N V| | N V|
First Users screen Second User’ screen

Figure 1-1. Two-way communication with talk

Users may disable messages from both write and talk by using the command mesg n
(they can include it in their .login or .profile initialization file). Sending messages as
the superuser overrides this command. Be aware, however, that sometimes users
have good reasons for turning off messages.

In general, the effectiveness of system messages is inversely propor-
tional to their frequency.

Sending a Message to All Users

If you need to send a message to every user on the system, you can use the wall com-
mand. wall stands for “write all” and allows the administrator to send a message to
all users simultaneously.

Communicating with Users | 13

To send a message to all users, execute the command:

$ wall
Followed by the message you want to send, terminated with CTRL-D on a separate line
D

Unix then displays a phrase like:
Broadcast Message from root on console ...

to every user, followed by the text of your message. Similarly, the rwall command
sends a message to every user on the local subnet.

Anyone can use this facility; it does not require superuser status. However, as with
write and talk, only messages from the superuser override users’ mesg n commands.
A good example of such a message would be to give advance warning of an immi-
nent but unscheduled system shutdown.

The Message of the Day

Login time is a good time to communicate certain types of information to users. It’s
one of the few times that you can be reasonably sure of having a user’s attention
(sending a message to the screen won’t do much good if the user isn’t at the worksta-
tion). The file /etc/motd is the system’s message of the day. Whenever anyone logs in,
the system displays the contents of this file. You can use it to display system-wide
information such as maintenance schedules, news about new software, an announce-
ment about someone’s birthday, or anything else considered important and appro-
priate on your system. This file should be short enough so that it will fit entirely on a
typical screen or window. If it isn’t, users won’t be able to read the entire message as
they log in.

On many systems, a user can disable the message of the day by creating a file named
.hushlogin in her home directory.

Specifying the Pre-Login Message

On Solaris, HP-UX, Linux and Tru64 systems, the contents of the file /etc/issue is dis-
played immediately before the login prompt on unused terminals. You can custom-
ize this message by editing this file.

On other systems, login prompts are specified as part of the terminal-related configu-
ration files; these are discussed in Chapter 12.

About Menus and GUIs

For several years now, vendors and independent programmers have been developing
elaborate system administration applications. The first of these were menu-driven,
containing many levels of nested menus organized by subsystem or administrative

14 | Chapter1: Introduction to System Administration

task. Now, the trend is toward independent GUI-based tools, each designed to man-
age some particular system area and perform the associated tasks.

Whatever their design, all of them are designed to allow even relative novices to per-
form routine administrative tasks. The scope and aesthetic complexity of these tools
vary considerably, ranging from shell scripts employing simple selections lists and
prompts to form-based utilities running under X. A few even offer a mouse-based
interface with which you perform operations by dragging icons around (e.g., drop-
ping a user icon on top of a group icon adds that user to that group, dragging a disk
icon into the trash unmounts a filesystem, and the like).

In this section, we’ll take a look at such tools, beginning with general concepts and
then going on to a few practical notes about the tools available on the systems we are
considering (usually things I wish I had known about earlier). The tools are very easy
to use, so I won’t be including detailed instructions for using them (consult the
appropriate documentation for that).

Ups and Downs

Graphical and menu-based system administration tools have some definite good
points:

* They can provide a quick start to system administration, allowing you to get
things done while you learn about the operating system and how things work.
The best tools include aids to help you learn the underlying standard administra-
tive commands.

Similarly, these tools can be helpful in figuring out how to perform some task for
the first time; when you don’t know how to begin, it can be hard to find a solu-
tion with just the manual pages.

* They can help you get the syntax right for complex commands with lots of
options.
* They make certain kinds of operations more convenient by combining several

steps into a single menu screen (e.g., adding a user or installing an operating sys-
tem upgrade).

On the other hand, they have their down side as well:

* Typing the equivalent command is usually significantly faster than running it
from an administrative tool.

* Not all commands are always available through the menu system, and some-
times only part of the functionality is implemented for commands that are
included. Often only the most frequently used commands and/or options are
available. Thus, you’ll still need to execute some versions of commands by hand.

* Using an administrative tool can slow down the learning process and sometimes
stop it altogether. I've met inexperienced administrators who had become

About MenusandGUIs | 15

convinced that certain operations just weren’t possible simply because the menu
system didn’t happen to include them.

* The GUI provides unique functionality accessible only through its interface, so

creating scripts to automate frequent tasks becomes much more difficult or
impossible, especially when you want to do things in a way that the original
author did not think of.

In my view, an ideal administrative tool has all of these characteristics:

* The tool must run normal operating system commands, not opaque, undocu-

mented programs stored in some obscure, out-of-the-way directory. The tool
thus makes system administration easier, leaving the thinking to the human
using it.

You should be able to display the commands being run, ideally before they are
executed.

The tool should log of all its activities (at least optionally).

As much as possible, the tool should validate the values the user enters. In fact,
novice administrators frequently assume that the tools do make sure their selec-
tions are reasonable, falsely thinking that they are protected from anything
harmful.

All of the options for commands included in the tool should be available for use,
except when doing so would violate the next item.

The tool should not include every administrative command. More specifically, it
should deliberately omit commands that could cause catastrophic consequences
if they are used incorrectly. Which items to omit depends on the sort of adminis-
trators the tool is designed for; the scope of the tool should be directly propor-
tional to the amount of knowledge its user is assumed to have. In the extreme
case, dragging a disk icon into a trash can icon should never do anything other
than dismount it, and there should not be any way to, say, reformat an existing
filesystem. Given that such a tool is consciously designed for minimally-compe-
tent administrators, including such capabilities is just asking for trouble.

In addition, these features make using an administrative tool much more efficient,
but they are not absolutely essential:

* A way of specifying the desired starting location within a deep menu tree when

you invoke the tool.

A one-keystroke exit command that works at every point within menu system.
Context-sensitive help.

The ability to limit access to subsections of the tool by user.

Customization features.

If one uses these criteria, AIX’s SMIT comes closest to an ideal administrative tool, a
finding that many have found ironic.

16

Chapter 1: Introduction to System Administration

As usual, using menu interfaces in moderation is probably the best approach. These
applications are great when they save you time and effort, but relying on them to
lead you through every situation will inevitably lead to frustration and disappoint-
ment somewhere down the line.

The Unix versions we are considering offer various system administration facilities.
They are summarized and compared in Table 1-2. The table columns hold the Unix
version, tool command or name, tool type, whether or not the command to be run
can be previewed before execution, whether or not the facility can log its actions and
whether or not the tool can be used to administer remote systems.

Table 1-2. Some system administration facilities

Unix Version Command/tool Type Command preview? (reateslogs?@ Remote admin?
AIX smit menu yes yes no
WSM GUI no no yes
FreeBSD sysinstall menu no no no
HP-UX sam both no yes yes
Linux linuxconf both no no no
Red Hat Linux redhat-config-* GUI no no no
SuSE Linux yast menu no no no
yast2 GuI no no no
Solaris admintool menu no no no
(DE admin tools GUI no no no
AdminSuite/SMC menu no yes yes
Tru64 sysman menu no no no
sysman -station menu no no yes

a Some tools do some rather half-hearted logging to the syslog facility, but it's not very useful.

There are also some other tools on some of these systems that will be mentioned in
this book when appropriate, but they are ignored here.

AIX: SMIT and WSM

AIX offers two main system administration facilities: the System Management Inter-
face Tool (SMIT) and the Workspace System Manager (WSM) facility. Both of them
run in both graphical and text mode.

SMIT consists of a many-leveled series of nested menus. Its main menu is illustrated
in Figure 1-2.

One of SMIT’s most helpful features is command preview: if you click on the Com-
mand button or press F6, SMIT displays the command to be executed by the current
dialog. This feature is illustrated in the window on the right in Figure 1-2.

You can also go directly to any screen by including the corresponding fast path key-
word on the smit command line. Many SMIT fast paths are the same as the command

About Menusand GUIs | 17

Why Menus and Icons Aren’t Enough

Every site needs at least one experienced system administrator who can perform those
tasks that are beyond the abilities of the administrative tool. Not only does every cur-
rent tool leave significant amounts of uncovered territory, but they also all suffer from
limitations inherent in programs designed for routine operations under normal system
conditions. When the system is in trouble, and these assumptions no longer hold, the
tools don’t work.

For example, I've been in a situation where the administrative tool couldn’t configure
a replacement because the old disk hadn’t been unconfigured properly before being
removed. One part of the tool thought the old disk was still on the system and
wouldn’t replace it, while another part wouldn’t delete the old configuration data
because it couldn’t access the corresponding physical disk.

I was able to solve this problem because I understood enough about the device data-
base on that system to fix things manually. Not only will such things happen to every
system from time to time, they will happen to everyone, sooner or later. It’s a lot easier
to coax a system back to life from single user mode after a power failure when you
understand, for example, what the Check Filesystem Integrity menu item actually
does. In the end, you need to know how things really work.

% - System Management interface Tool - 0O X
Exit Show Help |
Return To: .
¥ show_command_popup x

Change ¢ Show Characteristics of a User

Corunand :

=

=) {

if [§4 -ge 2]
then

System Management for i in "§@"
do

_| software Installation and M

span="§span \'§i\""

- done
_| Software License Management . eval chuser $spam
_| Devices J}‘.l
_| System Storage Management (I | x groups='security’ roles=' ol i d: * chavez

=

_| Security & Users

=]]

__| tommmications Applications

__| Print Spooling Cancel Help

_| Problew Determination

| Performance & Resource Scheduling

_| System Environments ¥

[:am:ell

Figure 1-2. The AIX SMIT facility

executed from a particular screen. Many other fast paths fall into a predictable pat-
tern, beginning with one of the prefixes mk (make or start), ch (change or reconfigure),
1s (list), or rm (remove or stop), to which an object code is appended: mkuser, chuser,

18 | Chapter1: Introduction to System Administration

1suser, rmuser for working with user accounts; mkprt, chprt, lsprt, rmprt for working
with printers, and so on. Thus, it’s often easy to guess the fast path you want.

You can display the fast path for any SMIT screen by pressing F8 in the ASCII ver-
sion of the tool:
Current fast path:
"mkuser”

If the screen doesn’t have a fast path, the second line will be blank. Other useful fast
paths that are harder to guess include the following;:

chgsys

View/change AIX parameters.
configtcp

Reconfigure TCP/IP.
crfs

Create a new filesystem.
lvm

Main Logical Volume Manager menu.
_nfs

Main NFS menu.

spooler
Manipulate print jobs.

Here are a few additional SMIT notes:

* The smitty command may be used to start the ASCII version of SMIT from
within an X session (where the graphical version is invoked by default).

* Although T like them, many people are annoyed by the SMIT log files. You can
use a command like this one to eliminate the SMIT log files:
$ smit -s /dev/null -1 /dev/null ...
You can define an alias in your shell initialization file to get rid of these files per-
manently (C shell users would omit the equals sign):
alias smit="/usr/sbin/smitty -s /dev/null -1 /dev/null"

* smit -x provides a command preview mode. The commands that would be run
are written to the log file but not executed.

* Newer versions of smit have the following annoying feature: when a command
has successfully completed, and you click Done to close the output window, you
are taken back to the command setup window. At this point, to exit, you must
click Cancel, not OK. Doing the latter will cause the command to run again,
which is not what you want and is occasionally quite troublesome!

The WSM facility contains a variety of GUI-based tools for managing various aspects
of the system. Its functionality is a superset of SMIT’s, and it has the advantage of
being able to administer remote systems (it requires that remote systems be running

About Menusand GUIs | 19

a web server). You can access WSM via the Common Desktop Environment’s Appli-
cations area: click on the file cabinet icon (the one with the calculator peeking out of
it); the system administration tools are then accessible under the System_Admin
icon. You can also run a command-line version of WSM via the wsm command.

The WSM tools are run on a remote system via a Java-enabled web browser. You can
connect to the tools by pointing the browser at http://hostname/wsm.html, where
hostname corresponds to the desired remote system. Of course, you can also run the
text version by entering the wsm command into a remote terminal session.

HP-UX: SAM

HP-UX provides the System Administration Manager, also known as SAM. SAM is
easy to use and can perform a variety of system management tasks. SAM operates in
both menu-based and GUI mode, although the latter requires support for Motif.

The items on SAM’s menus invoke a combination of regular HP-UX commands and
special scripts and programs, so it’s not always obvious what they do. One way to
find out more is to use SAM’s built-in logging feature. SAM allows you to specify the
level of detail in log file displays, and you can optionally keep the log open as you are
working in order to monitor what is actually happening. The SAM main window and
log display are illustrated in Figure 1-3.

If you really want to know what SAM is doing, you’ll need to consult its configura-
tion files, stored in the subdirectories of /usr/sam/lib. Most subdirectories have two-
character names, closely related to a top-level icon or menu item. For example, the
ug subdirectory contains files for the Users and Groups module, and the pm subdi-
rectory contains those for Process Management. If you examine the .tm file there,
you can figure out what some of the menu items do. This example illustrates the
kinds of items to look for in these files:
tegrep '~task [a-z]|" *execute' pm.tm
task pm_get ps {
execute "/usr/sam/lbin/pm_parse_ps"
task pm_add_cron {
execute "/usr/sam/lbin/cron_change ADD /var/sam/pm_ tmpfile"
task pm_add_cron_check {
execute "/usr/sam/lbin/cron _change CHECK /var/sam/pm_tmpfile"
task pm_mod_nice {
execute "unset UNIX95;/usr/sbin/renice -n %$INT_ID% %$STRING ID%"
task pm_rm_cron {
execute "/usr/sam/lbin/cron_change REMOVE /var/sam/pm_tmpfile"
The items come in pairs, relating a menu item or icon and an actual HP-UX com-
mand. For example, the fourth pair in the previous output allows you to figure out
what the Modify Nice Priority menu item does (runs the renice command). The sec-
ond pair indicates that the item related to adding cron entries executes the listed shell
script; you can examine that file directly to get further details.

20 | Chapter1: Introduction to System Administration

8 -4 System Administration Manager

B1 -l SAM Log Viewe
i {]

Figure 1-3. The HP-UX SAM facility

There is another configuration file for each main menu item in the /usr/sam/lib/C
subdirectory, named pm.ui in this case. Examining the lines containing “action” and
“do” provides similar information. Note that “do” entries that end with parentheses
(e.g., do pm_forcekill_xmit()) indicate a call to a routine in one of SAM’s component
shared libraries, which will mean the end of the trail for your detective work.

SAM allows you to selectively grant access to its functional areas on a per-user basis.
Invoke it via sam -1 to set up user privileges and restrictions. In this mode, you select
the user or group for which you want to define allowed access, and then you navi-
gate through the various icons and menus, enabling or disabling items as appropri-
ate. When you are finished, you can save these settings and also save groups of
settings as named permission templates that can subsequently be applied to other
users and groups.

In this mode, the SAM display changes, and the icons are colored indicating the
allowed access: red for prohibited, green for allowed, and yellow when some fea-
tures are allowed and others are prohibited.

You can use SAM for remote administration by selecting the Run SAM on Remote
System icon from the main window. The first time you connect to a specific remote
system, SAM automatically sets up the environment.

About Menusand GUIs | 21

Solaris: admintool and Sun Management Console

From a certain point of view, current versions of Solaris actually offer three distinct
tool options:

* admintool, the menu-based system administration package available under

Solaris for many years. You must be a member of the sysadmin group to run this
program.

A set of GUI-based tools found under the System_Admin icon of the Applica-
tions Manager window under the Common Desktop Environment (CDE), which
is illustrated on the left in Figure 1-4. Select the Applications — Application
Manager menu path from the CDE’s menu to open this window. Most of these
tools are very simple, one-task utilities related to media management, although
there is also an icon there for admintool.

The Solaris AdminSuite, whose components are controlled by the Sun Manage-
ment Console (SMC). The facility’s main window is illustrated on the right in
Figure 1-4.

In some cases, this package is included with the Solaris operating system. It is
also available for (free) download (from http://www.sun.com/bigadmin/content/
adminpack/). In fact, it is well worth the overnight download required if you
have only a slow modem (two nights if you want the documentation as well).

This tool can be used to perform administrative tasks on remote systems. You
specify the system on which you want to operate when you log in to the facility.

Figure 1-4. Solaris system administration tools

Linux: Linuxconf

Many Linux systems, including some Red Hat versions, offer the Linuxconf graphi-
cal administrative tool written by Jacques Gélinas. This tool can also be used with
other Linux distributions (see http://www.solucorp.qc.callinuxconf/). It is illustrated
in Figure 1-5.

22

| Chapter1: Introduction to System Administration

g lnugcont __[EN=PN

| Fils Preferences Help |
Coriy | Gontral | Status | Host name and [P devices Resolver conﬂguralionl
T Metwarking “ou can specify which name server will be used
Client tasks to resolv host ip number. Using the DNS is
|—!J Host name and IP network devices to handle this on a TCP/IP network. The others
22 Name cification (DRES) are the local fetcrhosts file
=, Routing and gateways (see “information about other hosts® menu

45 Host name search path or the NIS system
. Metwark Information System (NIS)
27 IPX interface setup

DME usage I~ DS Ig required for normal aperation
Server tasks
Misc default domain |ahan|a com
'+ Users accounts
*w File systems I of name server 1 |1D.U.9.84
B Miscellaneous services
& Peripherals IP of name server Z (opt) |

H boot mode

IP of name server 3 (opt) |

search damain 1 (oph) ||

accept | Cancal Help

Figure 1-5. The Linuxconf facility

The tool’s menu system is located in the area on the left, and forms related to the
current selection are displayed on the right. Several of the program’s subsections can
be accessed directly via separate commands (which are in fact just links to the main
linuxconf executable): fsconf, mailconf, modemconf, netconf, userconf, and uucpconf,
which administer filesystems, electronic mail, modems, networking parameters,
users and groups and UUCP, respectively.

Early versions of Linuxconf were dreadful: bug-rich and unbelievably slow. How-
ever, more recent versions have improved quite a bit, and the current version is
pretty good. Linuxconf leans toward supporting all available options at the expense
of novice’s ease-of-use at times (a choice with which I won’t quarrel). As a result, it is
a tool that can make many kinds of configuration tasks easier for an experienced
administrator; less expert users may find the number of settings in some dialogs to
be somewhat daunting. You can also specify access to Linuxconf and its various sub-
sections on a per-user basis (this is configured via the user account settings).

Red Hat Linux: redhat-config-*

Red Hat Linux provides several GUI-based administration tools, including these:
redhat-config-bindconf
Configure the DNS server (redhat-config-bind under Version 7.2).

redhat-config-network
Configure the networking on the local host (new with Red Hat Version 7.3).

redhat-config-printer-gui
Configure and manage print queues and the print server.

redhat-config-services
Select servers to be started at boot time.

About Menusand GUIs | 23

redhat-config-date and redhat-config-time
Set the date and/or time.

redhat-config-users
Configure user accounts and groups.

There are often links to some of these utilities with different (shorter) names. They
can also be accessed via icons from the System Settings icon under Start Here.
Figure 1-6 illustrates the dialogs for creating a new user account (left) and specifying
the local system’s DNS server (right).

X*= Hird Hal User Marsarger DCEE T—

== o Davicen | Hartware [Husts. 00|

= = " =
NNLllr uwlgu m@o Duirlr @ Brtoesn Harinana [ruiaa
can [

e | | R e s Prinary DheS: [110354]

Lier hone | e 10+ Primary Crcags | ol home Jj e e et Chivet secondary Dns: [

T oot oo Fosseers e Temary ones: [

b= i el e it Saecn Pam

daermon 2 TN dwmon

R = Ltk | Domain Hamn Jew |
L] 4 " L] Desets
e ; ot bl ¥ Create home directory oo |
Ji— oot aaon Aw |
B 5 e bt T

e 1 ™ o [7 Crests & pewads gris foo e sse __IU'
ey 9 newy ey T % o

i i e — [Seweity inee 1D marsaly Seach Dgmain il

tpenter 11 reat opentor Ly [8|

ot 12 et Juires =
e | o Home H ¢

p— iy Son | Xow | grp | ey || x oo |

Figure 1-6. Red Hat Linux system configuration tools

SuSE Linux: YaST2

The “YaST” in YaST2 stands for “yet another setup tool.” It is a follow-on to the
original YaST, and like the previous program (which is also available), it is a some-
what prettied up menu-based administration facility. The program’s main window is
illustrated in Figure 1-7.

The yast2 command is used to start the tool. Generally, the tool is easy to use and
does its job pretty well. It does have one disadvantage, however. Whenever you add
a new package or make other kinds of changes to the system configuration, the
SuSEconfig script runs (actually, a series of scripts in /sbin/conf.d). Before SuSE Ver-
sion 8, this process was fiendishly slow.

SuSEconfig’s actions are controlled by the settings in the /etc/rc.config configuration
file, as well as those in /etc/rc.config.d (SuSE Version 7) or /etc/sysconfig (SuSE Ver-
sion 8). Its slowness stems from the fact that every action is performed every time
anything changes on the system; in other words, it has no intelligence whatsoever
that would allow it to operate only on items and areas that were modified.

Even worse, on SuSE 7 systems, SuSEconfig’s actions are occasionally just plain
wrong. A particularly egregious example occurs with the Postfix electronic mail
package. By default, the primary Postfix configuration file, main.cf, is overwritten

24 | Chapter1: Introduction to System Administration

128 T2 Control G

W% . Control Center

o
.' Software
N DSL conflguration 15D configuration

@ Hardware
Q % mail e Modem configuration
g" Network/Basic

2_‘: Network/Advanced Q‘, Network card Start/stop services
E configuration {inetd)

=)

Figure 1-7. The SuSE Linux YaST2 facility

every time the Postfix SuSEconfig subscript is executed.” The latter happens every
time SuSEconfig runs, which is practically every time you change anything on the sys-
tem with YaST or YaST?2 (regardless of its lack of relevance to Postfix). The net result
is that any local customizations to main.cf get lost. Clearly, adding a new game pack-
age, for example, shouldn’t clobber a key electronic-mail configuration file.

Fortunately, these problems have been cleared up in SuSE Version 8. I do also use
YaST2 on SuSE 7 systems, but I've examined all of the component subscripts thor-
oughly and made changes to configuration files to disable actions I didn’t want. You
should do the same.

FreeBSD: sysinstall

FreeBSD offers only the sysinstall utility in terms of administrative tools, the same
program that manages operating system installations and upgrades (its main menu is
illustrated in Figure 1-8). Accordingly, the tasks that it can handle are limited to the
ones that come up in the context of operating system installations: managing disks
and partitions, basic networking configuration, and so on.

* You can prevent this by setting POSTFIX_CREATECEF to no in /etc/rc.config.d/postfix.rc.config.

About Menusand GUIs | 25

Jetand/sysinstall HMain Menu
Welcome to the FreeBSD installation and configuration tool. Please
select one of the options below by using the arrow keys or tuping the
first character of the option name you’re interested in. Inwoke an
option by pressing [ENTER] o [TRE-EMTER] to exit the installation.

Auick start - How to use this menu susten
Begin a standard installation (recommendec)
Begin @ guick installation (for the impatient)
Bepin a custom installation (for experts)
all configuration of Fre
Installation instructions, REAOME, etc.

Select keyboard tupe

Yiew/Set various installation options

Enter repair mode with COROMAfloppy or start shell
Upgrade an existing systen

Load default install configuration

Glossary of functions

w1t Trnstall

[Zelect] b
[Press F1 for Installation Guide]

Figure 1-8. The FreeBSD sysinstall facility

Both the Configure and Index menu items are of interest for general system adminis-
tration tasks. The latter is especially useful in that it lists individually all the available
operations the tool can perform.

Tru64: SysMan

The Tru64 operating system offers the SysMan facility. This tool is essentially menu
driven despite the fact that it can run in various graphical environments, including via
a Java 1.1-enabled browser. SysMan can run in two different modes, as shown in
Figure 1-9: as a system administration utility for the local system or as a monitoring
and management station for the network. These two modes of operations are selected

with the sysman command’s -menu and -station options, respectively; -menu is the
default.

This utility does not have any command preview or logging features, but it does have
a variety of “accelerators”: keywords that can be used to initiate a session at a partic-
ular menu point. For example, sysman shutdown takes you directly to the system shut-
down dialog. Use the command sysman -1list to obtain a complete list of all defined
accelerators.

One final note: the insightd daemon must be running in order to be able to access
the SysMan online help.

Other Freely Available Administration Tools

The freely available operating systems often provide some additional administrative
tools as part of the various window manager packages that they include. For exam-
ple, both the Gnome and KDE desktop environments include several administrative

26 | Chapter1: Introduction to System Administration

SysMan Menu on mahler

Figure 1-9. The SysMan facility

applets and utilities. Those available under KDE on a SuSE Linux system are illus-
trated in Figure 1-10.

We will consider some of the best of these tools from time to time in this book.

The Ximian Setup Tools

The Ximian project brings together the latest release of the Gnome desktop, the Red
Carpet web-based system software update facility, and several other items into what
is designed to be a commercial-quality desktop environment. As of this writing, it is
available for several Linux distributions and for Solaris systems. Additional ports,
including to BSD, are planned for the future.

The Ximian Setup Tools are a series of applets designed to facilitate system adminis-
tration, ultimately in a multiplatform environment. Current modules allow you to

About Menusand GUIs | 27

|A svstem

Screen Savers »
Appfinder

Cleanup [cans

FTPD Editar

File Manager (Super User Maode)
Fant Installer

KDE System Contral

KOE System Guard

Kangueror

Legacy theme importer

hdenu Editar

SysY Init Editor

Task Scheduler

Terminal

Terminal (Super User Mode)
User Manager

4

LB © <D E RIE

Figure 1-10. KDE administrative tools on a SuSE Linux system

administer boot setup (i.e., kernel selection), disks, swap space, users, basic net-
working, shared filesystems, printing, and the system time. The applet for the latter
is illustrated in Figure 1-11.

"@Programs System Hel 33401 AM
@rrog y .|

Datemmel
Select the servers you wish to

Please select the current date and time. ¥ou can @ : LAl
also specify atime zone and a time server.

time.nrc.ca (Canada)

Time —————————
ntpl cme ec.ge.ca (Eastern Canadal
eom | ([52fae 2 o1 2 £ Aot J
. B

L Time zone
AmeticaMew_Yark

15

2z i
55 Set time zone. |

Time server

[Keep clock synchronized with selacted servers Select servers. I
2| Maore Options == of Apply | X Close |

Figure 1-11. The Ximian Setup Tools

This applet, even in this early incarnation, goes well beyond a simple dialog allowing
you to set the current date and time; it also allows you to specify time servers for
Internet-based time synchronization. The other tools are of similar quality, and the
package seems very promising for those who want GUI-based system administration
tools.

28 | Chapter1: Introduction to System Administration

VNC

'l close this section by briefly looking at one additional administrative tool that can
be of great use for remote administration, especially in a heterogeneous environ-
ment. It is called VNC, which stands for “virtual network computing.” The package
is available for a wide variety of Unix systems” at http://www.uk.research.att.com/vnc/.
It is shown in Figure 1-12.

B Netwerking
B} Usors accounts
B} Fill sy sbems
Atcats loeH drive
tﬁ:‘ﬂ‘l rifs volume

l Sﬂdlm =

Figure 1-12. Using VNC for remote system administration

The illustration depicts the entire desktop on a SuSE Linux system. You can see sev-
eral of its icons along the left edge, as well as the tool bar at the bottom of the screen
(where you can determine that it is running the KDE window manager).

The four open windows are three individual VNC sessions to different remote com-
puters, each running a different operating system and a local YaST session. Begin-
ning at the upper left and moving clockwise, the remote sessions are a Red Hat Linux
system (Linuxconf is open), a Solaris system (we can see admintool), and an HP-UX
system (running SAM).

VNC has a couple of advantages over remote application sessions displayed via the X
Windows system:

* Official binary versions of the various tools are available for a few systems on the main web page. In addition,
consult the contrib area for ports to additional systems. It is also usually easy to build the tools from source
code.

About Menusand GUIs | 29

* With VNC you see the entire desktop, not just one application window. Thus,
you can access applications via the remote system’s own icons and menus
(which may be much less convenient to initiate via commands).

* You eliminate missing font issues and many other display and resource prob-
lems, because you are using the X server on the remote system to generate the
display images rather than the one on the local system.

In order to use VNC, you must download the software and build or install the five
executables that comprise it (conventionally, they are placed in /usr/local/bin). Then
you must start a server process on systems that you want to administer remotely,
using the vncserver command:

garden-$ vncserver
You will require a password to access your desktops.

Password: Not echoed.
Verify:

New 'X' desktop is garden:1

Creating default startup script /home/chavez/.vnc/xstartup

Starting applications specified in /home/chavez/.vnc/xstartup

Log file is /home/chavez/.vnc/garden:1.log
This example starts a server on host garden. The first time you run the vncserver
command, you will be asked for a password. This password, which is independent of
your normal Unix password, will be required in order to connect to the server.

Once the server is running, you connect to it by running the vncviewer command. In
this example, we connect to the vncserver on garden:

desert-$ vncviewer garden:1

The parameter given is the same as was indicated when the server was started. VNC
allows multiple servers to be running simultaneously.

In order to shut down a VNC server, execute a command like this one on the remote
system (i.e., the system where the server was started):

garden-$ vncserver -kill :1

Only the VNC server password is required for connection. Usernames
are not checked, so an ordinary user can connect to a server started by
root if she knows the proper password. Therefore, it is important to
select strong passwords for the server password (see “Administering
User Passwords” in Chapter 6) and to use a different password from
the normal one if such cross-user connections are needed.

Additionally, VNC passwords are sent in plain text over the network.
Thus, using VNC is problematic on an insecure network. In such cir-
cumstances, VNC traffic can be encrypted by tunneling it through a
secure protocol, such as SSH.

30 | Chapter1: Introduction to System Administration

Where Does the Time Go?

We'll close this chapter with a brief look at a nice utility that can be useful for keep-
ing track of how you spend your time, information that system administrators will
find comes in handy all too often. It is called plod and was written by Hal Pomeranz
(see http://bullwinkle.deer-run.com/~hal/plod/). While there are similar utilities with a
GUI interface (e.g., gtt and karm, from the Gnome and KDE window manager pack-
ages, respectively), I prefer this simpler one that doesn’t require a graphical environ-
ment.

plod works by maintaining a log file containing time stamped entries that you pro-
vide; the files’ default location is ~/.logdir/yyyymm, where yyyy and mm indicate the
current year and month, respectively. plod log files can optionally be encrypted.

The command has lots of options, but its simplest form is the following:
$ plod [text]

If some text is included on the command, it is written to the log file (tagged with the
current date and time). Otherwise, you enter the command’s interactive mode, in
which you can type in the desired text. Input ends with a line containing a lone
period.

Once you’ve accumulated some log entries, you can use the command’s -C, -P, and -
E options to display them, either as continuous output, piped through a paging com-
mand like more (although less is the default), or via an editor (vi is the default). You
can specify a different paging program or editor with the PAGER and EDITOR envi-
ronment variables (respectively).

You can also use the -G option to search plod log files; it differs from grep in that
matching entries are displayed in their entirety. By default, searches are not case sen-
sitive, but you can use -g to make them so.

Here is an example command that searches the current log file:

$ plod -g hp-ux

05/11/2001, 22:56 --
Starting to configure the new HP-UX box.

05/11/2001, 23:44 --

Finished configuring the new HP-UX box.
Given these features, plod can be used to record and categorize the various tasks that
you perform. We will look at a script which can read and summarize plod data in
Chapter 14.

Where Does the Time Go? | 31

CHAPTER 2
The Unix Way

It’s easy to identify the most important issues and concerns system managers face,
regardless of the type of computers they have. Almost every system manager has to
deal with user accounts, system startup and shutdown, peripheral devices, system
performance, security—the list could go on and on. While the commands and proce-
dures you use in each of these areas vary widely across different computer systems,
the general approach to such issues can be remarkably similar. For example, the pro-
cess of adding users to a system has the same basic shape everywhere: add the user to
the user account database, allocate some disk space for him, assign a password to the
account, enable him to use major system facilities and applications, and so on. Only
the commands to perform these tasks are different on different systems.

In other cases, however, even the approach to an administrative task or issue will
change from one computer system to the next. For example, “mounting disks”
doesn’t mean the same thing on a Unix system that it does on a VMS or MVS system
(where they’re not always even called disks). No matter what operating system
you’re using—Unix, Windows 2000, MVS—you need to know something about
what’s happening inside, at least more than an ordinary user does.

Like it or not, a system administrator is generally called on to be the resident guru. If
you’re responsible for a multiuser system, you’ll need to be able to answer user ques-
tions, come up with solutions to problems that are more than just band-aids, and
more. Even if you're responsible only for your own workstation, you’ll find yourself
dealing with aspects of the computer’s operation that most ordinary users can sim-
ply ignore. In either case, you need to know a fair amount about how Unix really
works, both to manage your system and to navigate the eccentric and sometimes
confusing byways of the often jargon-ridden technical documentation.

This chapter will explore the Unix approach to some basic computer entities: files,
processes, and devices. In each case, I will discuss how the Unix approach affects
system administration procedures and objectives. The chapter concludes with an
overview of the standard Unix directory structure.

32

If you have managed non-Unix computer systems, this chapter will serve as a bridge
between the administrative concepts you know and the specifics of Unix. If you have
some familiarity with user-level Unix commands, this chapter will show you their
place in the underlying operating system structure, enabling you to place them in an
administrative context. If you’re already familiar with things like file modes, inodes,
special files, and fork-and-exec, you can probably skip this chapter.

Files

Files are central to Unix in ways that are not true for some other operating systems.
Commands are executable files, usually stored in standard locations in the directory
tree. System privileges and permissions are controlled in large part via access to files.
Device 1/O and file I/O are distinguished only at the lowest level. Even most inter-
process communication occurs via file-like entities. Accordingly, the Unix view of
files and its standard directory structure are among the first things a new administra-
tor needs to know about.

Like all modern operating systems, Unix has a hierarchical (tree-structured) directory
organization, know collectively as the filesystem.” The base of this tree is a directory
called the root directory. The root directory has the special name / (the forward slash
character). On Unix systems, all user-available disk space is transparently combined
into a single directory tree under /, and the physical disk a file resides on is not part of
a Unix file specification. We’ll discuss this topic in more detail later in this chapter.

Access to files is organized around file ownership and protection. Security on a Unix
system depends to a large extent on the interplay between the ownership and protec-
tion settings on its files and the system’s user account and group' structure (as well
as factors like physical access to the machine). The following sections discuss the
basic principles of Unix file ownership and protection.

File Ownership

Unix file ownership is a bit more complex than it is under some other operating sys-
tems. You are undoubtedly familiar with the basic concept of a file having an owner:
typically, the user who created it and has control over it. On Unix systems, files have
two owners: a user owner and a group owner. What is unusual about Unix file own-
ership is that these two owners are decoupled. A file’s group ownership is indepen-
dent of the user who owns it. In other words, although a file’s group owner is often,

* Or file system—the two forms refer to the same thing. To make things even more ambiguous, these terms
are also used to refer to the collection of files on an individual formatted disk partition.

T On Unix systems, individual user accounts are organized into groups. Groups are simply collections of users,
defined by the entries in /etc/passwd and /etc/group. The mechanics of defining groups and designating users
as members of them are described in Chapter 6. Using groups effectively to enhance system security is dis-
cussed in Chapter 7.

Files | 33

perhaps even usually, the same as the group its user owner belongs to, this is not
required. In fact, the user owner of a file does need not even need to be a member of
the group that owns it. There is no necessary connection between them at all. In
such a case, when file access is specified for a file’s group owner, it applies to mem-
bers of that group and not to other members of its user owner’s group, who are
treated simply as part of “other”: the rest of the world.

The motivation behind this group ownership of files is to allow file protections and
permissions to be organized according to your needs. The key point here is flexibil-
ity. Because Unix lets users be in more than one group, you are free to create groups
as you need them. Files can be made accessible to almost completely arbitrary collec-
tions of the system’s users. Group file ownership means that giving someone access
to an entire set of files and commands is as simple as adding her to the group that
owns them; similarly, taking access away from someone else involves removing her
from the relevant group.

To consider a more concrete example, suppose user chavez, who is in the chem
group, needs access to some files usually used by the physics group. There are sev-
eral ways you can give her access:

* Make copies of the files for her. If they change, however, her copies will need to
be updated. And if she needs to make changes too, it will be hard to avoid end-
ing up with two versions that need to be merged together. (Because of inconve-
niences like these, this choice is seldom taken.)

* Make the files world-readable. The disadvantage of this approach is that it opens
up the possibility that someone you don’t want to look at the files will see them.

* Make chavez a member of the physics group. This is the best alternative and also
the simplest. It involves changing only the group configuration file. The file per-
missions don’t need to be modified at all, since they already allow access for
physics group members.

Displaying file ownership

To display a file’s user and group ownership, use the long form of the 1s command
by including the -1 option (-1g under Solaris):

$1s -1

-IWXI-Xr-x 1 root system 120 Mar 12 09:32 bronze
-r--r--r-- 1 chavez chem 84 Feb 28 21:43 gold
-IW-Iw-r-- 1 chavez physics 12842 Oct 24 12:04 platinum
-TW------- 1 harvey physics 512 Jan 2 16:10 silver

Columns three and four display the user and group owners for the listed files. For
example, we can see that the file bronze is owned by user root and group system. The
next two files are both owned by user chavez, but they have different group owners;
gold is owned by group chem, while platinum is owned by group physics. The last file,
silver, is owned by user harvey and group physics.

34 | Chapter2: TheUnix Way

Who owns new files?

When a new file is created, its user owner is the user who creates it. On most Unix
systems, the group owner is the current” group of the user who creates the file. How-
ever, on BSD-style systems, the group owner is the same as the group owner of the
directory in which the file is created. Of the versions we are considering, FreeBSD
and Tru64 Unix operate in the second manner by default.

Most current Unix versions, including all of those we are considering, allow a sys-
tem to selectively use BSD-style group inheritance from the directory group owner-
ship by setting the set group ID (setgid) attribute on the directory, which we discuss
in more detail later in this chapter.

Changing file ownership

If you need to change the ownership of a file, use the chown and chgrp commands.
The chown command changes the user owner of one or more files:

chown new-owner files

where new-owner is the username (or user ID) of the new owner for the specified
files. For example, to change the owner of the file brass to user harvey, execute this
chown command:

chown harvey brass
On most systems, only the superuser can run the chown command.

If you need to change the ownership of an entire directory tree, you can use the -R
option (R for recursive). For example, the following command will change the user
owner to harvey for the directory /home/iago/new/tgh and all files and subdirectories
contained underneath it:

chown -R harvey /home/iago/new/tgh

You can also change both the user and group owner in a single operation, using this
format:

chown new-owner:new-group files

For example, to change the user owner to chavez and the group owner to chem for
chavez’s home directory and all the files underneath it, use this command:

chown -R chavez:chem /home/chavez
If you just want to change a file’s group ownership, use the chgrp command:
$ chgrp new-group files

where new-group is the group name (or group ID) of the desired group owner for the
specified files. chgrp also supports the -R option. Non-root users of chgrp must be

* See “Unix Users and Groups” in Chapter 6 for information about how the user’s primary group is deter-
mined.

Files | 35

both the owner of the file and a member of the new group to change a file’s group
ownership (but need not be a member of its current group).

File Protection

Once ownership is set up properly, the next natural issue to consider is how to pro-
tect files from unwanted access (or the reverse: how to allow access to those people
who need it). The protection on a file is referred to as its file mode on Unix systems.
File modes are set with the chmod command; we’ll look at chmod after discussing the
file protection concepts it relies on.

Types of file and directory access

Unix supports three types of file access: read, write, and execute, designated by the
letters r, w, and x, respectively. Table 2-1 shows the meanings of those access types.

Table 2-1. File access types

Access Meaning for a file Meaning for a directory

r View file contents. Search directory contents (e.g., use 1s).

w Alter file contents. Alter directory contents (e.g., delete or rename files).
Run executable file. Make it your current directory (cd to it).

The file access types are fairly straightforward. If you have read access to a file, you
can see what’s in it. If you have write access, you can change what’s in it. If you have
execute access and the file is a binary executable program, you can run it. To run a
script, you need both read and execute access, since the shell has to read the com-
mands to interpret them. When you run a compiled program, the operating system
loads it into memory for you and begins execution, so you don’t need read access
yourself.

The corresponding meanings for directories may seem strange at first, but they do
make sense. If you have execute access to a directory, you can cd to it (or include it in
a path that you want to cd to). You can also access files in the directory by name.
However, to list all the files in the directory (i.e., to run the 1s command without any
arguments), you also need read access to the directory. This is consistent because a
directory is just a file whose contents are the names of the files it contains, along with
information pointing to their disk locations. Thus, to cd to a directory, you need only
execute access since you don’t need to be able to read the directory file itself. In con-
trast, if you want to run any command lists or use files in the directory via an explicit
or implicit wildcard—e.g., 1s without arguments or cat *.dat—you do need read
access to the directory file itself to expand the wildcards.

Table 2-2 illustrates the workings of these various access types by listing some sam-
ple commands and the minimum access you would need to successfully execute
them.

36 | Chapter2: The Unix Way

Download from Wow! eBook <www.wowebook.com>

Table 2-2. File protection examples

Minimum access needed

Command On file itself On directory file is in
cd /home/chavez N/A X
1s /home/chavez/*.c (none) r
r X
1s -1 /home/chavez/*.c (none) 74
r X
cat myfile r X
cat >>myfile w X
runme (executable) X X
cleanup.sh (script) 17 X
rm myfile (none) wx

Some items in this list are worth a second look. For example, when you don’t have
access to any of the component files, you still need only read access to a directory in
order to do a simple 1s; if you include -1 (or any other option that lists file sizes), you
also need execute access to the directory. This is because the file sizes must be deter-
mined from the disk information, an action which implicitly changes the directory in
question. In general, any operation that involves more than simply reading the list of
filenames from the directory file is going to require execute access if you don’t have
access to the relevant files themselves.

Note especially that write access on a file is not required to delete it; write access to
the directory where the file resides is sufficient (although in this case, you’ll be asked
whether to override the protection on the file):

$ rm copper

rm: override protection 440 for copper? y
If you answer yes, the file will be deleted (the default response is no). Why does this
work? Because deleting a file actually means removing its entry from the directory file
(among other things), which is a form of altering the directory file, for which you
need only write access to the directory. The moral is that write access to directories is
very powerful and should be granted with care.

Given these considerations, we can summarize the different options for protecting
directories as shown in Table 2-3.

Table 2-3. Directory protection summary

Access granted Resulting availability

Does not allow any activity of any kind within the directory or any of its subdirectories.
(no access)

r-- Allows users to list the names of the files in the directory, but does not reveal any of their
(read access only) attributes (i.e., size, ownership, mode, and so on).

Files | 37

Table 2-3. Directory protection summary (continued)

Access granted Resulting availability

-X Lets users work with programs in the directory specified by full pathname, but hides all

(execute access only) other files.

r-x Lets users work with programs in the directory and list the contents of the directory, but

(read and execute access) does not allow them to create or delete files in the directory.

-wx Used for a drop-box directory. Users can change to the directory and leave files there, but

(write and execute access) can't discover the names of files placed there by others. The sticky bit is also usually set on
such directories (see below).

wx Lets users work with programs in the directory, look at the contents of the directory, and

(full access) create or delete files in the directory.

Access classes

Unix defines three basic classes of file access for which protection may be specified
separately:

User access (u)
Access granted to the owner of the file.

Group access (g)
Access granted to members of the same group as the group owner of the file (but
does not apply to the owner himself, even if he is a member of this group).

Other access (o)
Access granted to all other normal users.

Unix file protection specifies the access types available to members of each of the
three access classes for the file or directory.

The long version of the 1s command also displays file permissions in addition to user
and group ownership:

$1s -1

-TWXI-Xr-x 1 root system 120 Mar 12 09:32 bronze

-r--1--r-- 1 chavez chem 84 Feb 28 21:43 gold

-Tw-ITw-Y-- 1 chavez physics 12842 Oct 24 12:04 platinum
The set of letters and hyphens at the beginning of each line represents the file’s
mode. The 10 characters are interpreted as indicated in Table 2-4.

Table 2-4. Interpreting mode strings

User access Group access Other access
type read write exec read write exec | read write exec
File 1 2 3 4 5 6 7 8 9 10
bronze - r w X r - X r - X
gold - r - - r - - r - -
platinum - r w - r w - r - -
/etc/passwd - r w - r - - r - -

38 | Chapter2: The Unix Way

Table 2-4. Interpreting mode strings (continued)

User access Group access Other access
type read write exec = read write exec | read write exec
File 1 2 3 4 5 6 7 8 9 10
/etc/shadow - r - - - - - - - -
/etc/inittab - r w - r w - r - -
/bin/sh - r - X r - X r - X
/tmp d r w X r w X r w t

The first character indicates the file type: a hyphen indicates a plain file, and a d indi-
cates a directory (other possibilities are discussed later in this chapter). The remain-
ing nine characters are arranged in three groups of three. Moving from left to right,
the groups represent user, group, and other access. Within each group, the first char-
acter denotes read access, the second character write access, and the third character
execute access. If a certain type of access is allowed, its code letter appears in the
proper position within the triad; if it is not granted, a hyphen appears instead.

For example, in the previous listing, read access and no other is granted for all users
on the file gold. On the file bronze, the owner—in this case, root—is allowed read,
write, and execute access, while all other users are allowed only read and execute
access. Finally, for the file platinum, the owner (chavez) and all members of the
group physics are allowed read and write access, while everyone else is granted only
read access.

The remaining entries in Table 2-4 (below the line) are additional examples illustrat-
ing the usual protections for various common system files.

Setting file protection
The chmod command is used to specify the access mode for files:
$ chmod access-string files

chmod’s second argument is an access string, which states the permissions you want to
set (or remove) for the listed files. It has three parts: the code for one or more access
classes, the operator, and the code for one or more access types.

Figure 2-1 illustrates the structure of an access string. To create an access string, you
choose one or more codes from the access class column, one operator from the mid-
dle column, and one or more access types from the third column. Then you concate-
nate them into a single string (no spaces). For example, the access string u+w says to
add write access for the user owner of the file. Thus, to add write access for yourself
for a file you own (lead, for example), use:

$ chmod u+w lead
To add write access for everybody, use the all access class:

$ chmod a+w lead

Files | 39

To remove write access, use a minus sign instead of a plus sign:
$ chmod a-w lead

This command sets the permissions on the file lead to allow only read access for all
users:

$ chmod a=r lead

If execute or write access had previously been set for any access class, executing this
command removes it.

[accessaass | [OPERATOR 1 [accesstveE
One or more of: One or more of:
u + (Add designated access) r
g +| . (Remove designated access) + w
[= (Set exact access specified) X
a (forall3)

Figure 2-1. Constructing an access string for chmod

You can specify more than one access type and more than one access class. For exam-
ple, the access string g-rw says to remove read and write access from the group access.
The access string go=r says to set the group and other access to read-only (no execute
access, no write access), changing the current setting as needed. And the access string
go+rx says to add both read and execute access for both group and other users.

You can also include more than one set of operation—access type pairs for any given
access class specification. For example, the access string u+x-w adds execute access
and removes write access for the user owner. You can combine multiple access
strings by separating them with commas (no spaces between them). Thus, the fol-
lowing command adds write access for the file owner and removes write access and
adds read access for the group and other classes for the files bronze and brass:

$ chmod u+w,og+r-w bronze brass

The chmod command supports a recursive option (-R), to change the mode of a direc-
tory and all files under it. For example, if user chavez wants to protect all the files
under her home directory from everyone else, she can use the command:

$ chmod -R go-rwx /home/chavez

Beyond the basics

So far, this discussion has undoubtedly made chmod seem more rigid than it actually
is. In reality, it is a very flexible command. For example, both the access class and the
access type may be omitted under some circumstances.

40 | Chapter2: The Unix Way

When the access class is omitted, it defaults to a. For example, the following com-
mand grants read access to all users for the current directory and every file under it:

$ chmod -R +r .

On some systems, this form operates slightly differently than a chmod a+r command.
When the a access class is omitted, the specified permissions are compared against
the default permissions currently in effect (i.e., as specified by the umask). When
there is disagreement between them, the current default permissions take prece-
dence. We’ll look at this in more detail when we consider the umask a bit later.

The access string may be omitted altogether when using the = operator; this form has
the effect of removing all access. For example, this command prevents any access to
the file lead by anyone other than its owner:

$ chmod go= lead

Similarly, the form chmod = may be used to remove all access from a file (subject to
constraints on some systems, to be discussed shortly).

The X access type grants execute access to the specified access classes only when exe-
cute access is already set for some access class. A typical use for this access type is to
grant group or other read and execute access to all the directories and executable
files within a subtree while granting only read access to all other types of files (the
first group will all presumably have user execute access set). For example:

$ 1s -1F

“IW------- 1 chavez chem609 Nov 29 14:31 data file.txt
drwx------ 2 chavez chem512 Nov 29 18:23 more stuff/
“TWX------ 1 chavez chem161 Nov 29 18:23 run_me*

$ chmod go+rX *

$ 1s -1F

-IW-r--r-- 1 chavez chem609 Nov 29 14:31 data file.txt

drwxr-xr-x 2 chavez chem512 Nov 29 18:23 more stuff/
-Twxr-xr-x 1 chavez chem161 Nov 29 18:23 run_me*

By specifying X, we avoid making data_file.txt executable, which would be a mistake.

chmod also supports the u, g, and o access types, which may be used as a shorthand
form for the corresponding class’s current settings (determined separately for each
specified file). For example, this command makes the other access the same as the
current group access for each file in the current directory:

$ chmod o=g *

If you like thinking in octal, or if you’ve been around Unix a long time, you may find
numeric modes more convenient than incantations like go+rX. Numeric modes are
described in the next section.

Filss | 4

Specifying numeric file modes

The method just described for specifying file modes uses symbolic modes, since code
letters are used to refer to each access class and type. The mode may also be set as an
absolute mode by converting the symbolic representation used by 1s to a numeric
form. Each access triad (for a different user class) is converted to a single digit by set-
ting each individual character in the triad to 1 or 0, depending on whether that type
of access is permitted or not, and then taking the resulting three-digit binary number
and converting it to an integer (which will be between 0 and 7). Here is a sample
conversion:

user group other
Mode r w X r - X r - -
Convert to binary 1 1 1 1 0 1 1 0 0
Convert to octal digit 7 5 4
Corresponding absolute mode 754

To set the protection on a file to match those above, you specify the numeric file
mode 754 to chmod as the access string:

$ chmod 754 pewter

Specifying the default file mode

You can use the umask command to specify the default mode for newly created files.
Its argument is a three-digit numeric mode that represents the access to be
inhibited—masked out—when a file is created. Thus, the value is the octal comple-
ment of the desired numeric file mode.

If masks confuse, you can compute the umask value by subtracting the numeric
access mode you want to assign from 777. For example, to obtain the mode 754 by
default, compute 777 — 754 = 023; this is the value you give to umask:

$ umask 023
Note that leading zeros are included to make the mask three digits long.

Once this command is executed, all future files created are given this protection
automatically. You usually put a umask command in the system-wide login initializa-
tion file and in the individual login initialization files you give to users when you cre-
ate their accounts (see Chapter 6).

As we mentioned earlier, the chmod command’s actions are affected by the default
permissions when no explicit access class is specified, as in this example:

% chmod +rx *

In such cases, the current umask is taken into account before the file access mode is
changed. More specifically, an individual access permission is not changed unless the
umask allows it to be set.

42 | Chapter2: The Unix Way

It takes a concrete example to fully appreciate this aspect of chmod:

$ umask Displays the current value.

23

$ 1s -1 gold silver

---------- 1 chavez chem 609 Oct 24 14:31 gold

-TwxTwxrwX 1 chavez chem 12874 Oct 22 23:14 silver
$ chmod +rwx gold

$ chmod -rwx silver

$ 1s -1 gold silver

-IWXr-xr-- 1 chavez chem 609 Nov 12 09:04 gold
----- w--wx 1 chavez chem 12874 Nov 12 09:04 silver

The current umask of 023 allows all access for the user, read and execute access for
the group, and read-only access for other users. Thus, the first chmod command acts
as one would expect, setting access in accordance with what is allowed by the
umask. However, the interaction between the current umask and chmod’s “~” opera-
tor may seem somewhat bizarre. The second chmod command clears only those access
bits that are permitted by the umask; in this case, write access for group and write
and execute access for other remain turned on.

Special-purpose access modes

The simple file access modes described previously do not exhaust the Unix possibili-
ties. Table 2-5 lists the other defined file modes.

Table 2-5. Special-purpose access modes

Code Name Meaning

t save text mode, sticky bit Files: Keep executable in memory after exit.
Directories: Restrict deletions to each user’s own files.

s setuid bit Files: Set process user ID on execution.

s setgid bit Files: Set process group ID on execution.

Directories: New files inherit directory group owner.

/ file locking Files: Set mandatory file locking on reads/writes (Solaris and Tru64 and some-
times Linux). This mode is set via the group access type and requires that group
execute access is off. Displayed as Sin 1s -1 listings.

The t access type turns on the sticky bit (the formal name is save text mode, which is
where the ¢ comes from). For files, this traditionally told the Unix operating system
to keep an executable image in memory even after the process that was using it had
exited. This feature is seldom implemented in current Unix implementations. It was
designed to minimize startup overhead for frequently used programs like vi. We’ll
consider the sticky bit on directories below.

When the set user ID (setuid) or set group ID (setgid) access mode is set on an exe-
cutable file, processes that run it are granted access to system resources based upon
the file’s user or group owner, rather than based on the user who created the pro-
cess. We'll consider these access modes in detail later in this chapter.

Files | 43

Save-text access on directories

The sticky bit has a different meaning when it is set on directories. If the sticky bit is
set on a directory, a user may only delete files that she owns or for which she has
explicit write permission granted, even when she has write access to the directory
(thus overriding the default Unix behavior). This feature is designed to be used with
directories like /tmp, which are world-writable, but in which it may not be desirable
to allow any user to delete files at will.

The sticky bit is set using the user access class. For example, to turn on the sticky bit
on /tmp, use this command:

chmod u+t /tmp

Oddly, Unix displays the sticky bit as a “t” in the other execute access slot in long
directory listings:

$ 1s -1d /tmp
drwxrwxrwt 2 root 8704 Mar 21 00:37 /tmp

Setgid access on directories

Setgid access on a directory has a special meaning. When this mode is set, it means
that files created in that directory will have the same group ownership as the direc-
tory itself (rather than the user owner’s primary group), emulating the default behav-
ior on BSD-based systems (FreeBSD and Tru64). This approach is useful when you
have groups of users who need to share a lot of files. Having them work from a com-
mon directory with the setgid attribute means that correct group ownership will be
automatically set for new files, even if the people in the group don’t share the same

primary group.
To place setgid access on a directory, use a command like this one:

chmod g+s /pub/chem2

Numerical equivalents for special access modes

The special access modes can also be set numerically. They are set via an additional
octal digit prepended to the mode whose bits correspond to the sticky bit (lowest bit:
1), setgid/file locking (middle bit: 2), and setuid (high bit: 4). Here are some examples:

chmod 4755 uid Setuid access

chmod 2755 gid Setgid access

chmod 6755 both Setuid and setgid access: 2 highest bits on
chmod 1777 sticky Sticky bit

chmod 2745 locking File locking (note that group execute is off)
#

1s -1d
-IWsr-sr-x 1 root chem 0 Mar 30 11:37 both
-IWXI-sr-x 1 root chem 0 Mar 30 11:37 gid
-IWXr-Sr-x 1 root chem 0 Mar 30 11:37 locking
drwxrwxrwt 2 root chem 8192 Mar 30 11:39 sticky
-IWsI-Xr-x 1 root chem 0 Mar 30 11:37 uid

44 | Chapter2: The Unix Way

How to Recognize a File Access Problem

My first rule of thumb about any user problem that comes up is this: it’s usually a file
ownership or protection problem.” Seriously, though, the majority of the problems
users encounter that aren’t the result of hardware problems really are file access
problems. One classic tip-off of a file protection problem is something that worked
yesterday, or last week, or even last year, but doesn’t today. Another clue is that
something works differently for root than it does for other users.

In order to work properly, programs and commands must have access to the input
and output files they use, any scratch areas they access, and any permanent files they
rely on, including the special files in /dev (which act as device interfaces).

When such a problem arises, it can come from either the file permissions being wrong
or the protection being correct but the ownership (user and/or group) being wrong.

The trickiest problem of this sort I've ever seen was at a customer site where I was
conducting a user training course. Suddenly, their main text editor, which happened
to be a clone of the VAX/VMS editor EDT, just stopped working. It seemed to start
up fine, but then it would bomb out when it got to its initialization file. But the edi-
tor worked without a hitch when root ran it. The system administrator admitted to
“changing a few things” the previous weekend but didn’t remember exactly what. I
checked the protections on everything I could think of, but found nothing. 1 even
checked the special files corresponding to the physical disks in /dev. My company
ultimately had to send out a debugging version of the editor, and the culprit turned
out to be /dev/null, which the system administrator had decided needed protecting
against random users!

There are at least three morals to this story:

* For the local administrator: always test every change before going on to the next
one—multiple, random changes almost always wreak havoc. Writing them
down as you do them also makes troubleshooting easier.

* For me: if you know it’s a protection problem, check the permissions on
everything.

* For the programmer who wrote the editor: always check the return value of sys-
tem calls (but that’s another book).

If you suspect a file protection problem, try running the command or program as
root. If it works fine, it’s almost certainly a protection problem.

A common, inadvertent way of creating file ownership problems is by accidentally
editing files as root. When you save the file, the file’s owner is changed by some edi-
tors. The most obscure variation on this effect that I've heard of is this: someone was

* At least, this was the case before the Internet.

Files | 45

editing a file as root using an editor that automatically creates backup files whenever
the edited file is saved. Creating a backup file meant writing a new file to the direc-
tory holding the original file. This caused the ownership on the directory to be set to
root.” Since this happened in the directory used by UUCP (the Unix-to-Unix copy
facility), and correct file and directory ownership are crucial for UUCP to function,
what at first seemed to be an innocuous change to an inconsequential file broke an
entire Unix subsystem. Running chown uucp on the directory fixed everything again.

Mapping Files to Disks

This section will change our focus from files as objects to files as collections of data
on disk. Users need not be aware of the actual disk locations of files they access, but
administrators need to have at least a basic conception of how Unix maps files to
disk blocks in order to understand the different file types and the purpose and func-
tioning of the various filesystem commands.

An inode (pronounced “eye-node”) is the data structure on disk that describes and
stores a file’s attributes, including its physical location on disk. When a filesystem is
initially created, a specific number of inodes are created. In most cases, this becomes
the maximum number of files of all types, including directories, special files, and
links (discussed later) that can exist in the filesystem. A typical formula is one inode
for every 8 KB of actual file storage. This is more than sufficient in most situations.t
Inodes are given unique numbers, and each distinct file has its own inode. When a
new file is created, an unused inode is assigned to it.

Information stored in inodes includes the following;:

* User owner and group owner IDs.
* File type (regular, directory, etc., or O if the inode is unused).
* Access modes (permissions).

¢ Most recent inode modification, data access, and data modification times. If the
file’s metadata does not change, the first item will correspond to the file creation
time.

* Clearly, the system itself was somewhat “broken” as well, since adding a file to a directory should never
change the directory’s ownership. However, it is also possible to do this accidentally with text editors that
allow you to edit a directory.

T There are a couple of circumstances where this may not hold. One is a filesystem containing an enormous
number of very small files. The traditional example of this is the USENET news spool directory tree
(although some modern news servers now use a better storage scheme). News files are typically both very
small and inordinately numerous, and their numbers have been known to exceed normal inode limits. A sec-
ond potential problem situation occurs with facilities that make extensive use of symbolic links for functions
such as source code version control, again characterized by many, many tiny files. In such cases, you can run
out of inodes before disk capacity is exhausted. You will want to take these factors into account when pre-
paring the disk (see Chapter 10). At the other extreme, filesystems that are designed to hold only a few very
large files might save a nontrivial amount of space by being configured with far fewer than the normal num-
ber of inodes.

46 | Chapter2: The Unix Way

* Number of hard links to the file (links are discussed later in this chapter). This is
0 if the inode is unused, and one for most regular files.

* Size of the file.
* Disk addresses of:
— Disk locations for the data blocks that make up the file, and/or

— Disk locations of disk blocks that hold the disk locations of the file’s data
blocks (indirect blocks), and/or

— Disk locations of disk blocks that hold the disk locations of indirect blocks
(double indirect blocks: two disk addresses removed from the actual data

blocks).”

In short, inodes store all available information about the file except its name and
directory location. The inodes themselves are stored elsewhere on disk.

On Unix systems, it is reasonably safe to say that “everything is a file”: the operating
system even represents I/O devices as files. Accordingly, there are several different
kinds of files, each with a different function.

Regular files

Regular files are files containing data. They are normally called simply “files.” These
may be ASCII text files, binary data files, executable program binaries, program
input or output, and so on.

Directories

A directory is a binary file consisting of a list of the other files it contains, possibly
including other directories (try running od -c on one to see this). Directory entries
are filename-inode number pairs. This is the mechanism by which inodes and direc-
tory locations are associated; the data on disk has no knowledge of its (purely logi-
cal) location within its filesystem.

Special files: character and block device files

Special files are the mechanism used for device I/O under Unix. They reside in the
directory /dev and its subdirectories, as well as the directory /devices under Solaris.

Generally, there are two types of special files: character special files, corresponding to
character-based or raw device access, and block special files, corresponding to block
I/O device access. Character special files are used for unbuffered data transfers to
and from a device (e.g., a terminal). In contrast, block special files are used when
data is transferred in fixed-size chunks known as blocks (e.g., most file I/O). Both
kinds of special files exist for some devices (including disks). Character special files

* In traditional System V filesystems, inode disk addresses can point to triple indirect blocks. FreeBSD also
uses triple indirect blocks.

Filess | 47

generally have names beginning with r (for “raw”)—/dev/rsdOa, for example—or
reside in subdirectories of /dev whose names begin with r—/dev/rdsk/c0t3d0s7, for
example. The corresponding block special files have the same name, minus the ini-
tial 7: /dev/diskOa, /dev/dsk/cOt3d0s7. Special files are discussed in more detail in later
in this chapter.

Links

A link is a mechanism that allows several filenames (actually, directory entries) to
refer to a single file on disk. There are two kinds of links: hard links and symbolic or
soft links. A hard link associates two (or more) filenames with the same inode. Hard
links are separate directory entries that all share the same disk data blocks. For
example, the command:

$ 1n index hlink

creates an entry in the current directory named hlink with the same inode number as
index, and the link count in the corresponding inode is increased by 1. Hard links
may not span filesystems, because inode numbers are unique only within a filesys-
tem. In addition, hard links should be used only for files and not for directories, and
correctly implemented versions of 1n won’t let you create the latter.

Symbolic links, on the other hand, are pointer files that refer to a different file or
directory elsewhere in the filesystem. Symbolic links may span filesystems, because
they point to a Unix pathname, not to a specific inode.

Symbolic links are created with the -s option to 1n.

The two types of links behave similarly, but they are not identical. As an example,
consider a file index to which there is a hard link hlink and a symbolic link slink. List-
ing the contents using either name with a command like cat will result in the same
output. For both index and hlink, the disk contents pointed to by the addresses in
their common inode will be accessed and displayed. For slink, the disk contents refer-
enced by the address in its inode contain the pathname for index; when it is followed,
index’s inode will be accessed next, and finally its data blocks will be displayed.

In directory listings, hlink will be indistinguishable from index. Changes made to
either file will affect both of them, since they share the same disk blocks. However,
moving either file with the mv command will not affect the other one, since moving a
file involves only altering a directory entry (keep in mind that pathnames are not
stored in the inode). Similarly, deleting index will not affect hlink, which will still
point to the same inode (the corresponding disk blocks are only freed when an
inode’s link count reaches zero).

If a new file in the current directory named index is subsequently created, there will
be no connection between it and hlink, because when the new file is created, it will
be assigned a free inode. Although they are initially created by referencing an exist-
ing file, hard links are linked only to an inode, not to the other file. In fact, all regu-
lar files are technically hard links (i.e., inodes with a link count > 1).

48 | Chapter2: The Unix Way

In contrast, a symbolic link slink to index will behave differently. The symbolic link
appears as a separate entry in directory listings, marked as a link with an “1” as the
first character in the mode string:

% 1ls -1

STW------- 2 chavez chem 5228 Mar 12 11:36 index
-IW------- 2 chavez chem 5228 Mar 12 11:36 hlink
Irwxrwxrwx 1 chavez chem 5 Mar 12 11:37 slink -> index

Symbolic links are always very small files, while every hard link to a given file (inode)
is exactly the same size (hlink is naturally the same length as index).

Changes made by referencing either the real filename or the symbolic link will affect
the contents of index. Deleting index will also break the symbolic link; slink will
point nowhere. But if another file index is subsequently recreated, slink will once
again be linked to it.” Deleting slink will have no effect on index.

Figure 2-2 illustrates the differences between hard and symbolic links. In the first pic-
ture, index and hlink share the inode N1 and its associated data blocks. The sym-
bolic link slink has a different inode, N2, and therefore different data blocks. The
contents of inode N2’s data blocks refer to the pathname to index.t Thus, accessing
slink eventually reaches the data blocks for inode N1.

When index is deleted (in the second picture), hlink is associated with inode N1 by
its own directory entry. Accessing slink will generate an error, however, since the
pathname it references does not exist. When a new index is created (in the third pic-
ture), its gets a new inode, N3. This new file clearly has no relationship to hlink, but
it does act as the target for slink.

Using the cd command can be a bit tricky when dealing with symbolic links to direc-
tories, as these examples illustrate:

$ pwd; cd ./htdocs

/home/chavez

$ cd ../bin

../bin: No such file or directory.

$ pwd

/public/web2/apache/htdocs

$ 1s -1 /home/chavez/htdocs

lrwxrwxrwx 1 chavez chem 18 Mar 30 12:06 htdocs ->
/public/web2/apache/htdocs

The subdirectory htdocs in the current directory is a symbolic link (its target is indi-
cated in the final command). Accordingly, the second cd command does not work as

* Symbolic links are actually interpreted only when accessed, so they can’t really be said to point anywhere at
other times. But conceptually, this is what they do.

T Some operating systems, including FreeBSD, store the target of the symbolic link in the inode itself, provided
the target is short enough.

Files | 49

The file index has same data points to
both a hard and asindex index
When index

symbolic link:
! hlink I slink
N2
N1
is deleted: unaffected points

N £ hiink "05‘::::9
= |

(disk)

no relation points to v

If a new index toindex index

is created:
hlink /

B - node
[1 -DataBlock

Figure 2-2. Comparing hard and symbolic links
expected, and the current directory does not change to /home/chavez/bin. Similar
effects would occur with a command like this one:

$ cd /home/chavez/htdocs/../cgi-bin; pwd
/public/web2/apache/cgi-bin

For more information about links, see the 1n manual page, and experiment with cre-
ating and modifying linked files.

Tru64 Context-Dependent Symbolic Links. In a Tru64 clustered environment, many stan-
dard system files and directories are actually a type of symbolic link known as

50 | Chapter2: The Unix Way

context-dependent symbolic links (CDSLs). They are symbolic links with a variable
component that is resolved to a specific cluster host at access time. For example,
consider this directory listing (the output is wrapped to fit):

$ 1s -1F /var/adm/c*

-IW-r--r-- 1 root system 91 May 30 13:07 cdsl _admin.inv
-IW-r--r-- 1 root adm 232 May 30 13:07 cdsl check list
lrwxr-xr-x 1 root adm 43 Jan 3 12:09 collect.dated@ ->
../cluster/members/{memb}/adm/collect.dated
lrwxr-xr-x 1 root adm 35 Jan 3 12:04 crash@ ->
../cluster/members/{memb}/adm/crash/
lrwxr-xr-x 1 root adm 34 Jan 3 12:04 cron@ ->

../cluster/members/{memb}/adm/cron/

The first two files are regular files that reside in the /var/adm directory. The remain-
ing three files are context-dependent symbolic links, indicated by the {memb] compo-
nent. When such a file is accessed, this component is resolved to a directory named
membern, where n indicates the host’s number within the cluster.

Occasionally, you may need to create such a link. The mkcdsl command serves this
purpose, as in this example (output is wrapped):

cd /var/adm

mkcdsl pacct

1s -1 pacct

lrwxr-xr-x 1 root adm 43 Jan 3 12:09 pacct ->
../cluster/members/{memb}/adm/pacct

The 1n -s command may also be used to create context-dependent symbolic links:
1n -s "../cluster/members/{memb}/adm/pacct” ./pacct

The cdslinvchk -verify command may be used to verify that all expected CDSLs are
present on a system. It reports its findings to the file /var/adm/cdsl_check_list. Here is
some sample output (wrapped to fit):
Expected CDSL: ./usr/var/X11/Xserver.conf ->
../cluster/members/{memb}/X11/Xserver.conf
An administrator or application has replaced this CDSL with:

-Yw-1--r-- 1 root system 4545 Jan 3 12:41
/usr/var/X11/Xserver.conf

This report indicates that there is one missing CDSL.

Sockets

A socket, whose official name is a Unix domain socket, is a special type of file used
for communications between processes. A socket may be thought of as a communi-
cations end point, tied to a particular local system port, to which processes may
attach. For example, on a BSD-style system, the socket /dev/printer is used by pro-
cesses to send messages to the program lpd (the line-printer spooling daemon),
informing it that it has work to do.

Files | 51

Named pipes

Named pipes are pipes opened by applications for interprocess communication (they
are “named” in the sense that applications refer to them by their pathname). They
are a System V feature that has migrated to all versions of Unix. Named pipes often
reside in the /dev directory. They are also known as FIFOs (for “first-in, first-out”).

Using Is to identify file types

The long directory listing (produced by the 1s -1 command) identifies the type of

each file it lists via the initial character of the permissions string:

- Plain file (hard link)

Directory
Block special

Socket
Named pipe

™ . N T —H Q

For example, the following 1s -1 output includes each of the file types discussed

Symbolic link

file

above, in the same order:

STW------- 2 chavez
SIW------- 2 chavez
drwx------ 2 chavez
Irwxrwxrwx 1 chavez
brw-r----- 1 root
CIW-T----- 1 root
SIW-TW-Iw- 1 root
pIW------- 1 root

Note that the -1 option also displays the target file for symbolic links (following the ->

symbol).

1s has other options to make identifying file types easy. On many systems, the -F
option will append a special character to each filename, indicating its type:

STW------- 2 chavez
SIW------- 2 chavez
drwx------ 2 chavez
-IWXY-X--- 1 chavez

Irwxrwxrwx 1 chavez
STW-TW-Iw- 1 root
PIW------- 1 root

Note than an asterisk indicates an executable file (program or script). Some versions
of 1s also support a -o option, which color-codes filenames in the output based on

their file type.

You can use the -i option to 1s to determine the equivalent file in the case of hard
links. Using -1 tells 1s to display the inode number associated with each filename.

Here is an example:

chem
chem
chem
chem
system
system
system
system

chem
chem
chem
chem
chem
system
system

Character special file

28
28
512
8

o O O o

28

28
512
23478
8

0

0

Mar
Mar
Mar
Mar
Mar
Jun
Mar
Mar

Mar
Mar
Mar
Feb
Mar
Mar
Mar

12
12
12
12

2
12
11
11

12
12
12
23
12
11
11

11
11
11
11
15

136
136
136
137
:02

1989

08
08

11:
11:
11:
09:
11:
08:
08:

119
132

36
36
36
45
37
19
32

gold.dat

hlink.dat

old data

zn.dat -> gold.dat
/dev/sdoa
/dev/rsdoa
/dev/log
/usr/1ib/cron/FIFO

gold.dat

hlink.dat

old_data/

test prog*

zn.dat@ -> gold.dat
/dev/log=
/usr/1ib/cron/FIFO|

52 | Chapter2: TheUnix Way

$ 1s -i /dev/rmto /dev/rmt/*

290 /dev/rmt0 293 /dev/rmt/c0d6ln

292 /dev/rmt/c0d6h291 /dev/rmt/codém

295 /dev/rmt/cod6hn294 /dev/rmt/codémn

290 /dev/rmt/codé6l
From this display, we can determine that the special files /dev/rmt0 (the default tape
drive for many commands, including tar) and /dev/rmt/c0d6l are equivalent, because
they both reference inode number 290.

1s can’t distinguish between text and binary files (both are “regular” files). You can
use the file command to do so. Here is an example:

file *

appoint: ... executable not stripped

bin: directory

clean: symbolic link to bin/clean

fort.1: empty

gold.dat: ascii text

intro.ms: [nt]roff, tbl, or eqn input text

Tun_me.sh: commands text

xray.c: ascii text
The file appoint is an executable image; the additional information provided for such
files differs from system to system. Note that file tries to figure out what the con-
tents of ASCII files are, with varying success.

Processes

In simple terms, a process is a single executable program that is running in its own
address space.” It is distinct from a job or a command, which, on Unix systems, may
be composed of many processes working together to perform a specific task. Simple
commands like 1s are executed as a single process. A compound command contain-
ing pipes will execute one process per pipe segment. For Unix systems, managing
CPU resources must be done in large part by controlling processes, because the
resource allocation and batch execution facilities available with other multitasking
operating systems are underdeveloped or missing.

Unix processes come in several types. We'll look at the most common here.

Interactive Processes

Interactive processes are initiated from and controlled by a terminal session. Interac-
tive processes may run either in the foreground or the background. Foreground pro-
cesses remain attached to the terminal; the foreground process is the one with which

* T am not distinguishing between processes and threads at this point.

Processes | 53

the terminal communicates directly. For example, typing a Unix command and wait-
ing for its output means running a foreground process.

While a foreground process is running, it alone can receive direct input from the ter-
minal. For example, if you run the diff command on two very large files, you will be
unable to run another command until it finishes (or you kill it with CTRL-C).

Job control allows a process to be moved between the foreground and the back-
ground at will. For example, when a process is moved from the foreground to the
background, the process is temporarily stopped, and terminal control returns to its
parent process (usually a shell). The background job may be resumed and continue
executing unattached to the terminal session that launched it. Alternatively, it may
eventually be brought to the foreground, and once again become the terminal’s cur-
rent process. Processes may also be started initially as background processes.

Table 2-6 reviews the ways to control foreground and background processes pro-
vided by most current shells.

Table 2-6. Controlling processes

Form Meaning and examples
& Run command in background.
$ long_cmd &
rZ Stop foreground process.
$ long_cmd
~Z Stopped
$
jobs List background processes.
$ jobs

[1] - Stopped emacs

[2] - big job &

[3] + Stopped long cmd
%n Refers to background job number n.

$ kill %2

fg Bring background process to foreground.
$ fg %1

%2str Refers to the background job command containing the specified characters.
$ fg %?em

bg Restart stopped background process.

$ long_cmd

~Z Stopped

$ bg

[3] long_cmd &

~Z Suspend r1ogin session.

bridget-27 $ ~"Z
Stopped
henry-85 $

54 | Chapter2: The Unix Way

Table 2-6. Controlling processes (continued)

Form Meaning and examples

~AZ Suspend second-level r1ogin session. Useful for nested r1ogins; each additional tilde says to pop
back to the next highest level of r1ogin. Thus, one tilde pops all the way back to the lowest level job
(the job on the local system), two tildes pops back to the first r1ogin session, and so on.
bridget-28 $ ~~~Z
Stopped
peter-46 $

Batch Processes

Batch processes are not associated with any terminal. Rather, they are submitted to a
queue, from which jobs are executed sequentially. Unix offers a very primitive batch
command, but vendors whose customers require queuing have generally imple-
mented something more substantial. Some of the best known are the Network Queu-
ing System (NQS), developed by NASA and used on many high-performance
computers including Crays, as well as several network-based process-scheduling sys-
tems from various vendors. These facilities usually support heterogeneous as well as
homogeneous networks, and they attempt to distribute the aggregate CPU load
evenly among the workstations in the network, a process known as load balancing or
load leveling.

Daemons

Daemons are server processes, often initiated at boot time, that run continuously
while the system is up, waiting in the background until a process requires their ser-
vice.” For example, network daemons are idle until a process requests network
access.

Table 2-7 provides a brief overview of the most important Unix daemons.

Table 2-7. Important Unix daemons

Facility Description Daemon Names

init First created process init

syslog System status/error message logging syslogd

email Mail message transport sendmail

printing Print spooler 1pd, 1psched, gdaemon, r1pdaemon

*

Daemon is an ancient Greek word meaning “divinity” or “spirit” (but keep the character of the Greek gods
in mind). The OED defines it as a “tutelary deity”: the guardian of a particular person, place or thing. More
recently, the poet Yeats wrote at length about daemons, defining them as that which we continually struggle
against yet paradoxically need in order to survive, simultaneously the source of our pain and of our strength,
even in some sense, the very essence of our being. For Yeats, the daemon is “of all things not impossible the
most difficult.”

Processes | 55

Table 2-7. Important Unix daemons (continued)

Facility Description Daemon Names

cron Periodic process execution crond

tty Terminal support. getty (and similar)

sync Disk buffer flushing update, syncd, syncher, fsflush, bdflush,

kupdated

paging and swapping Daemons to support virtual memory pagedaemon, vhand, kpiod, pageout,
management swapper, kswapd, kreclaimd

inetd Master TCP/IP daemon, responsible for inetd
starting many others on demand:
telnetd, ftpd, rshd, imapd, pop3d,
fingerd, rwhod (see /etc/inetd.conf for
a full list)

name resolution DNS server process named

routing Routing daemon routed, gated

DHCP Dynamic network client configuration dhcpd, dhcpsd

RPC Remote procedure call facility network portmap, rpcbind
port-to-service mapper

NFS Network File System: native Unix network ~ nfsd, rpc.mountd, rpc.nfsd, rpc.statd,
file sharing rpc.lockd, nfsiod

Samba File/print sharing with Windows systems smbd, nmbd

Www HTTP server httpd

network time Network time synchronization timed, ntpd

Process Attributes

Unix processes have many associated attributes. Some of the most important are:

Process ID (PID)

A unique identifying number used to refer to the process.

Parent process ID (PPID)
The PID of the process’s parent process (the process that created it).

Nice number

The process’s scheduling priority, which is a number indicating its importance
relative to other processes. This needs to be distinguished from its actual execu-
tion priority, which is dynamically changed based on both the process’s nice
number and its recent CPU usage. See “Managing CPU Resources” in Chapter 15
for a detailed discussion of nice numbers and their effect on execution priority.

TTY
The terminal (or pseudo-terminal) device associated with the process.
Real and effective user ID (RUID, EUID)

A process’s real UID is the UID of the user who started it. Its effective UID is the
UID that is used to determine the process’s access to system resources (such as

56 | Chapter2: The Unix Way

files and devices). Usually the real and effective UIDs are the same, and the pro-
cess accordingly has the same access rights as the user who launched it. How-
ever, when the setuid access mode is set on an executable image, then the EUIDs
of processes executing it are set to the UID of the file’s user owner, and they are
accorded corresponding access rights.

Real and effective group ID (RGID, EGID)
A process’s real GID is the user’s primary or current group. Its effective GID,
used to determine the process’s access rights, is the same as the real GID except
when the setgid access mode is set on an executable image. The EGIDs of pro-
cesses executing such files are set to the GID of the file’s group owner, and they
are given corresponding access to system resources.

The life cycle of a process

A new process is created in the following manner. An existing process makes an
exact copy of itself, a procedure known as forking. The new process, called the child
process, has the same environment as its parent process, although it is assigned a dif-
ferent process ID. Then, this image in the child process’s address space is overwrit-
ten by the one the child will run; this is done via the exec system call. Hence, the
often-used phrase fork-and-exec. The new program (or command) completely
replaces the one duplicated from the parent. However, the environment of the par-
ent still remains, including the values of environment variables; the assignments of
standard input, standard output, and standard error; and its execution priority.

Let’s make this picture a bit more concrete. What happens when a user runs a com-
mand like grep? First, the user’s shell process forks, creating a new shell process to
run the command. Then, the new shell process execs grep, which overlays the shell’s
executable image in memory with grep’s, which begins executing. When the grep
command finishes, the process dies.

This is the way that all Unix processes are created. The ultimate ancestor for every
process on a Unix system is the process with PID 1, init, created during the boot
process (see Chapter 4). init creates many other processes (all by fork-and-exec).
Among them are usually one or more executing the getty program. The gettys are
each assigned to a different serial line; they display the login prompt and wait for
someone to respond to it. When someone does, the getty process execs the login
program, which validates user logins, among other activities.”

Once the username and password are verified,™ login execs the user’s shell. Forking is
not always required to run a new program, and login does not fork in this case. After

* The process is similar for an X terminal window. In the latter case, the xterm or other process is created by
the window manager in use, which was itself started by a series of other X-related processes, ultimately deriv-
ing from a command issued from the login shell (e.g., startx) or as part of the login process itself.

1 If the login attempt fails, login exits, sending a signal to its parent process, init, indicating it should create
a new getty process for the terminal.

Processes | 57

logging in, the user’s shell is the same process as the getty that was watching the
unused serial line. That process changed programs twice by execing a new execut-
able, and it will go on to create new processes to execute the commands that the user
types. Figure 2-3 illustrates Unix process creation in the context of initial user login.

@ fork

PID1 PID424 exec

@@

PID424 exec

Continues to execute

PID424 exec

Cr

fork °

¥ PID 424 PID563 exec

PID1 '

Figure 2-3. Unix process creation: fork and exec

When any process exits, it sends a signal to inform its parent process that is has com-
pleted. So, when a user logs out, her login shell sends a signal to its parent, init, as it
dies, letting init know that it’s time to create a new getty process for the terminal.
init forks again and starts the getty, and the whole cycle repeats itself again and
again as different users use that terminal.

Setuid and setgid file access and process execution

The purpose of the setuid and setgid access modes is to allow ordinary users to per-
form tasks requiring privileges and access rights that are ordinarily denied to them.
For example, on many systems the write command is owned by the tty group, which
also owns all of the terminal and pseudo-terminal device files. The write command
has setgid access, allowing any user to use it to write a message to another user’s ter-
minal or window (to which they do not normally have any access). When users exe-
cute write, their effective GID is set to that of the group owner of the executable file
(often /usr/bin/write) for the duration of the command.

58 | Chapter2: The Unix Way

Setuid and/or setgid access are also used by the printing subsystem, by programs like
mailers, and by some other system facilities. However, setuid programs are also
notorious security risks. In practice, setuid almost always means setuid to root, and
the danger is that somehow, through program stupidity or their own cleverness or
both, users will figure out a way to perform additional, unauthorized functions while
the setuid command is running or to retain their inherited root status after the com-
mand ends. In general, setuid access should be avoided since it involves greater secu-
rity risks than setgid, and almost any function can be performed by using the latter in
conjunction with carefully designed groups. See Chapter 7 for a more detailed dis-
cussion of the security issues involved with setuid and setgid programs. Keep in
mind, though, that while setgid programs are safer than setuid ones, they are not
risk-free themselves.

The relationship between commands and files

The Unix operating system does not distinguish between commands and files in the
ways that some systems do. Aside from a few commands that are built into each Unix
shell, Unix commands are executable files stored in one of several standard locations
within the filesystem. Access to commands is exactly equivalent to access to these
files. By default, there is no other privilege mechanism. Even I/O is handled via special
files, stored in the directory /dev, which function as interfaces to the device drivers. All
/O operations look just like ordinary file operations from the user’s point of view.

Unix shells use search paths to locate the executable’s images for commands that
users enter. In its simplest form, a search path is simply an ordered list of directories
in which to look for command executables, and it is typically set in an initialization
file (SHOME/.profile or $HOME/.login). A faulty (incomplete) search path is the
most common cause for “Command not found” error messages.

Search paths are stored in the PATH environment variable. Here is a typical PATH:

$ echo $PATH

/bin:/usr/ucb:/usr/bin:/usr/local/bin: . :$HOME/bin
The various directories in the PATH are separated by colons. The search path is used
whenever a command name is entered without an explicit directory location. As an
example, consider the following command:

$ od data.raw

The od command is used to display a raw dump of a file. To locate this command,
the operating system first looks for a file named od in /bin. If such a file exists, it is
executed. If there is no od file in the /bin directory, /usr/uchb is checked next, followed
by /usr/bin (where od is in fact usually located). If it were necessary, the search would
continue in /usr/local/bin, the current directory, and finally the bin subdirectory of
the user’s home directory.

The order of the directories in the search path is important when more than one ver-
sion of a command exists. Such effects come into play most frequently when both

Processes | 59

the BSD and the System V versions of commands are available on a system. In this
case, you should put the directory holding the versions you want to use first in your
search path. For example, if you want to use the BSD versions of commands such as
1s and 1n on a System V-based system, then put /usr/ucb ahead of /usr/bin in your
search path. Similarly, if you want to use the System V—compatible commands avail-
able on some systems, put /usr/5bin ahead of /usr/bin and /usr/ucb in your search
path. These same considerations will obviously apply to users’ search paths that you
define for them in their initialization files (see “Initialization Files and Boot Scripts”
in Chapter 4).

Most of the Unix administrative utilities are located in the directories /sbin and /usr/
sbin. However, the locations of administrative commands can vary widely between
Unix versions. These directories typically aren’t in the search path unless you put
them there explicitly. When executing administrative commands, you can either add
these directories to your search path or provide the full pathname for the command,
as in the example below:

/usr/sbin/ping hamlet

I'm going to assume in my examples that the administrative directories have been
added to the search path. Thus, I won’t be including the full pathname for any of the
commands I'll be discussing.

The Unix Way of System Administration

System administrators are stereotypically arrogant, single-minded, and opinionated.
For Unix system administrators, the stereotype was born in the days when Unix was
this bizarre operating system that ran on only a few systems, and the local Unix guru
was some guy who generally kept to himself, locked away with his system—or so the
story goes.

The skepticism I'm exhibiting with this view of Unix system managers does not mean
that there is no truth in it at all. Like most caricatures, this one has roots in reality. For
example, it is all too easy to find people who will tell you that there is one right editor
to use, one right shell for writing scripts, one right way to do anything you care to
name. Discussing the advantages and liabilities of alternative approaches to problems
can be both useful and entertaining, but only within reason.

Since you’re reading this introductory chapter, I'm assuming that you are only begin-
ning your exploration of Unix administration. I certainly want to encourage you to
consider for yourself all the tasks and issues you will face as you proceed and to provide
help when I can. You’ll quickly form your own opinions and define what system
administration is for you. Doing so is a process, which can continue for as long and
range as widely as you want it to. However, if you get to a point where fanaticism
replaces thinking, you’ve gone too far.

60 | Chapter2: The Unix Way

Devices

One of the strengths of Unix is that users don’t need to worry about the specific
characteristics of devices and device I/O very often. They don’t need to know, for
example, what disk drive a file they want to access physically sits on. And the Unix
special file mechanism allows many device I/O operations to look just like file 1/O.
As we’ve noted, the administrator doesn’t have these same luxuries, at least not all
the time. This section discusses Unix device handling and then surveys the special
files used to access devices.

Device files are characterized by their major and minor numbers, which allow the ker-
nel to determine which device driver to use to access the device (via the major num-
ber), as well as its specific method of access (via the minor number).

Major and minor numbers appear in place of the file size in long directory listings.
For example, consider these device files related to the mouse from a Linux system:

$ cd /dev; 1s -1 *mouse

CIW-TW-T-- 1 root root 10, 10 Jan 19 03:36 adbmouse
CIW-TW-T-- 1 root root 10, 4 Jan 19 03:35 amigamouse
CIW-TW-T-- 1 root root 10, 5 Jan 19 03:35 atarimouse
CIW-IW-I-- 1 root root 10, 8 Jan 19 03:35 smouse
CIW-TW-T-- 1 root root 10, 6 Jan 19 03:35 sunmouse
CIW-TW-T-- 1 root root 13, 32 Jan 19 03:36 usbmouse

The major number for all but the last special file is 10; only the minor number dif-
fers for these devices. Thus, all of these mouse device variations are handled by the
same device driver, and the minor number indicates the variation within that general
family. The final item, corresponding to a USB mouse, has a different major num-
ber, indicating that a different device driver is used.

Device files are created with the mknod command, and it takes the desired device
name and major and minor numbers as its arguments. Many systems provide a script
named MAKEDEYV (located in /dev), which is an easy-to-use interface to mknod.

An In-Depth Device Example: Disks

We'll use disk drives as an example in this overview discussion of Unix devices.” As
we’ve noted before, Unix organizes all user-accessible files into a single hierarchical
directory structure. The files and directories it contains may be spread across several
different disk drives.

On most Unix systems, disks are divided into one or more fixed-size partitions: phys-
ical subsets of the disk drive that are separately accessed by the operating system.

* This discussion will describe traditional ways of handling disks and filesystems. Unix versions that require
or offer a logical volume manager do things quite differently at the lowest level, but this overview is still con-
ceptually true for those systems (for “disk partition,” read “logical volume”). See Chapter 10 for details.

Devices | 61

There may be several partitions or just one on each physical disk. The disk partition
containing the root filesystem is called the root partition and sometimes the root disk,
although it obviously needn’t comprise the entire disk drive. The disk containing the
root partition is generally called the system disk.

The root filesystem is the first one mounted, early in the Unix boot process, and the
remaining ones are mounted afterwards. On many operating systems, mounting a
disk refers to the process of making the device’s contents available. For Unix, it
means something more. Like the overall Unix filesystem, the files and directories
physically located on each disk partition are arranged in a tree structure.” An integral
part of the process of mounting a disk partition involves grafting its local directory
structure into the overall Unix directory tree. Once this is done, the files physically
residing on that device may be accessed via the usual Unix pathname syntax; Unix
takes care of mapping pathnames to the correct physical device and data blocks.

For administrators, however, there are a few times when the disk partition must be
accessed directly. The actual mount operation is the most common. Remember that
disk partitions may be accessed in two modes, block mode and raw (or character)
mode, and different special files are used from each mode. Character access mode
does unbuffered I/O, generally making a data transfer to or from the device with
every read or write system call. Block devices do buffered I/O on a block basis, col-
lecting data in a buffer until the operating system can transfer an entire block of data
at one time.

For example, the disk partition containing the root filesystem traditionally corre-
sponded to the special files /dev/diskOa and /dev/rdiskOa, specifying the first partition
on the first disk (disk 0, partition a), accessed in block and raw mode respectively,t
with the r designating raw device access.

Most disk partition—related commands require a specific type of spe-
cial file and won’t accept the other kind.

* For this reason, each separate disk partition may also be referred to as a filesystem. Thus, “filesystem” is used
to refer both to the overall system directory tree (as in “the Unix filesystem”), comprising every user-acces-
sible disk partition on the system, and to the files and directories on individual disk partitions (as in “build
a filesystem on the disk partition” or “mounting the user filesystems”). Whether the overall Unix directory
tree or an individual disk partition is meant will be clear from the context. On a related note, the terms par-
tition and filesystem are often used synonymously. Thus, while technically only filesystems can be mounted,
common usage often refers to “mounting a disk” or “mounting a partition.”

T The names given to the two types of special files are overdetermined. For example, the special file /dev/diskOa
is referred to as a block special file, and /dev/rdiskOa is called a character special file. However, block special
files are also sometimes called block devices, and character special files may be referred to as character devices
or raw devices.

62 | Chapter2: The Unix Way

Note that most Linux versions and newer versions of BSD do not distinguish
between the two types of special files for IDE disks and provide only one special file
per disk partition.

As an example of the use of special files to access disk partitions, consider the mount
commands below:

mount /dev/diskoa /

mount /dev/diskie /home
Naturally, the command to mount a disk partition needs to specify the physical disk
partition to be mounted (mount’s first argument) and the location to place it in the
filesystem, its mount point (the second argument).” Thus, the first command makes
the files in the first partition on drive 0 available, placing them at the root of the Unix
filesystem. The second command accesses a partition on drive 1, placing it at /home
in the overall directory tree. Thus, regular files in the top-level directory on this sec-
ond disk partition will appear in /home, and top-level directories on the disk parti-
tion become subdirectories of /home. The mount command is discussed in greater
detail in Chapter 10.

Fixed-disk special files

Currently used special file names for disk partitions are highly implementation-
dependent. However, a common logic underlies all of the various naming schemes.
Disk special files can encode the type of disk, the disk controller, the disk location on
its controller, and the disk partition within the physical disk (as well as the access
mode) within the special file name.

Let’s take the Tru64 special files for disks as an example; these special files have
names of the following form, where 7 is the disk number (beginning at 0), and x is a
letter from a to h designating the partition on the physical disk:

/dev/disk/dsknx
Block device

/dev/rdisk/dsknx
Character (raw) device

The partitions have conventional uses, and not all partitions are used on every disk
(see Chapter 10 for more details). Traditionally, the a partition on the root disk con-
tains the root filesystem. b partitions are conventionally used as swap partitions. On
the root disk, other partitions might be used for various system directories: for exam-
ple, e for /usr, h for /var, d for other filesystems, and so on.

* In fact, on most Unix systems, mount is smarter than this. If you give it a single argument—either the physical
disk partition or the mount point—it will look up the other argument in a table. But you can always supply
both arguments, which means that you can rearrange your filesystem at will. (Why you would want to is a
different question.)

Devices | 63

The ¢ partition often refers to the entire disk as a whole: every bit of space on the
disk, including areas that should be accessed only by the kernel (such as the parti-
tion table at the beginning of the drive). For this reason, using the ¢ partition for a
filesystem was not allowed under older versions of Unix. More recent versions gener-
ally do not have this restriction.

System V-based systems use a similar naming philosophy, although the actual names
differ. Special filenames for disk partitions are often of the form /dev/dsk/cktmdpsn,
where k is the controller number, m is the drive number on that controller (often the
SCSI target ID), and n is the partition (section) number on that drive (all numbers
start at 0). p refers to the logical unit number (LUN) for SCSI devices and is thus usu-
ally 0. HP-UX uses this form but typically omits the s component.

In this scheme, character and block special files have the same names, but they are
stored in two different subdirectories of /dev: /dev/dsk and /dev/rdsk, respectively.
Thus, the special file /dev/dsk/c1t4d0s2 is the block special file for the third partition
on the disk with SCSI ID 4 on controller 1 (the second controller). The correspond-
ing character device is /dev/rdsk/c1t4d0s2.

Names in this format, known as controller-drive-section identifiers, are specified for
all disk and tape devices under the System V.4 standard. Actual System V-based
implementations start with this framework and may vary it somewhat according to
the devices actually supported. Sometimes, they also provide links to more mnemon-
ically or intuitively-named special files. For example, on some (mostly older) Solaris
systems, /dev/sd0a might be linked to /dev/dsk/c0t3d0s0, allowing the conventional
SunOS name to be used for the 0 partition on the disk with SCSI ID 3 on the first
controller.”

Table 2-8 illustrates the similarities among disk special file names. The special files in
the table all refer to a partition on the second SCSI disk drive on the first controller,
using SCSI ID 4.

Table 2-8. Interpreting disk special file names

FreeBSD HP-UX Linux Solaris Tru642
Spedial file /dev/rdald /dev/rdsk/c0t4d0 /dev/sdb1 /dev/rdsk/c0t4d0s3 /dev/rdisk/dsk1c
Raw access /dev/rdald /dev/rdsk/c0t4d0 /dev/sdb1 /dev/rdsk/c0t4d0s3 /dev/rdisk/dsk1c
Device = Disk /dev/rdald /dev/rdsk/c0t4d0 /dev/sdb1 /dev/rdsk/c0t4d0s3 /dev/rdisk/dskTc
Type =SCSI /dev/rdald /dev/sdb1
Controller # /dev/rdsk/c0t4d0 /dev/rdsk/c0t4d0s3
SCSIID /dev/rdsk/c0t4d0 /dev/rdsk/c0t4d0s3

* Even this isn’t the full truth about Solaris special files. The files in /dev are usually links to the real device files
in the /devices directory subtree.

64 | Chapter2: TheUnix Way

Table 2-8. Interpreting disk special file names (continued)

FreeBSD HP-UX Linux Solaris Tru642
Device # /dev/rdald /dev/sdb1 /dev/rdisk/dsk1c
Disk Partition /dev/rdald assumed /dev/sdb1 /dev/rdsk/c0t4d0s3 /dev/rdisk/dsk1c

a Qlder Tru64 systems use the now-obsolete device names of the form /dev/rz*, /dev/ra*, and /dev/re*.

In yet another twist, systems that use logical volume managers (including AIX by
default) allow the system administrator to specify names for the special files for logi-
cal volumes—virtual disk partitions—when they are created. These special files often
have names of the form /dev/name, where name is chosen when the filesystem is cre-
ated. On such systems, it is logical volumes rather than physical partitions that hold
filesystems. We’'ll leave the rest of the gory details about these topics until
Chapter 10.

Special Files for Other Devices

Other device types have special files named differently, but they follow the same
basic conventions. Some of the most common are summarized in Table 2-9 (they will
be discussed in more detail as appropriate in later chapters). In some cases, only the
more commonly used form (block versus character) of the file is listed. For example,
tape drives are seldom, if ever, accessed via the block device, and on many systems,

the block special files do not even exist.

Table 2-9. Common Unix special file names

Device/use Special file forms Example
Floppy disk /dev/[rIfdn* /dev/fd0
/dev/floppy
Tape devices? /dev/rmtn /dev/rmt1
/dev/rmt/n /dev/rmt/0
nonrewinding /dev/nrmtn /dev/nrmt0
SCSI /dev/rstn /dev/rst0
default tape drive /dev/tape
(D-ROM devices /dev/cdn /dev/cd0
/dev/cdrom
Serial lines /dev/ttyn [dev/tty1
/dev/term/n /dev/tty01
/dev/term/01
Slave virtual terminal (windows, net- /dev/tty[p-sin /dev/ttyp1
work sessions, etc.) /dev/pts/n /dev/pts/2
Master/control virtual terminal devices /dev/pty[p-sin /dev/ptyp3
Console device /dev/console
some System V /dev/syscon
AIX /dev/Ift0

Devices

65

Table 2-9. Common Unix special file names (continued)

Device/use Special file forms Example
Process controlling TTY (used toensure /dev/tty
1/0 comes from/goes to terminal,
regardless of any I/0 redirection)
Memory maps:
physical /dev/mem
kernel virtual /dev/kmem
Mouse interface /dev/mouse
Null devices: all output is discarded; /dev/null
reads return nothing (0 characters, 0 /dev/zero

bytes) or a zero-filled buffer, respec-
tively.

a Tape devices often have suffixes that specify the tape density.

Commands for listing the devices on a system

Most Unix versions provide commands that make it easy to quickly determine what
devices are present on the system, as well as their current status. Table 2-10 lists the
commands for the systems we are considering.

Table 2-10. Device listing and information commands

Unix Version Command(s) Description

AIX lscfg List all devices.
lscfg -v -1 device Device configuration detail.
1sdev -C -s scsi List all SCSI IDs.
lsattr -E -H -1 device Display device attributes.

FreeBSD pciconf -1 -v List PCl devices
camcontrol devlist List SCSI devices.

HP-UX ioscan -f -n Detailed device listing.
ioscan -f -n -C disk Limit to device class.

Linux 1sdev List major devices.
scsiinfo -1 List SCSI devices.
lspci List PCl devices.

Solaris? dmesgb Boot messages identify all devices.
getdev List devices.
getdev type=disk Limit to device class.
devattr -v device Device detail.

Tru64 dsfmgr -s List devices.

a Unfortunately, the getdev and devattr commands are often of limited use.
b dmesg is also available under FreeBSD, HP-UX, and Linux.

66 | Chapter2: The Unix Way

The AIX Object Data Manager

Under AIX, information about the devices on the system and other system configura-
tion is stored in a binary database. The management apparatus for this database is
known as the Object Data Manager (ODM), although “ODM?” is also used colloqui-
ally to refer to the database itself, as well. Information is stored in the ODM as
objects: items of various predefined types, with a collection of attributes and their
associated sets or ranges of legal values.

Here is a textual representation of a sample entry for a disk drive:

name = "hdisko"

status = 1

chgstatus = 2

ddins = "scdisk"

location = "00-00-0S-0,0"
parent = "scsio"

connwhere = "0,0"

PdDvLn = "disk/scsi/1000mb"

This entry illustrates the general form for a device; most devices use the same fields,

although their meaning varies somewhat depending on the device type. This entry
describes a 1 GB SCSI disk drive.

The preceding entry came from the current devices database, stored in /etc/objrepos/
CuDv. The attributes for this object (as well as those for the other objects on the sys-
tem) are stored in a separate, current attributes database (found in /etc/objrepos/
CuAt). This database may have several entries for any given object, one for each
defined attribute for that class of object for which a nondefault value is set. For
example, here are two of the attributes for the logical volume hd6 (one of the disk
partitions on hdisk0):
name = "hd6"

attribute = "type"
value = "paging"

type = "R"
generic = "DU"
rep = "s"

nls _index = 639
name = "hd6"

attribute = "size"
value = "16"

type = "R"

generic = "DU"

rep = "r"

nls index = 647

The first entry indicates that this is a paging space, and the second indicates that its
size is 16 logical partitions (64 MB, assuming the default partition size).

SMIT and the AIX commands it runs retrieve information from the ODM, as well as
adding and modifying entries as necessary.

Devices | 67

The Unix Filesystem Layout

Now that we’ve considered the Unix approach to major system components, it’s
time to acquaint you with the structure of the Unix filesystem. This brief tour will
begin with the root directory and its most important subdirectories.

The basic layout of traditional Unix filesystems is illustrated in Figure 2-4, which
shows an idealized directory structure (actually a superset of the items found on any
one system). Note that in practice, there are lots of variations with respect to this
paradigm.

You’ll find small deviations from this on most Unix systems you encounter, but the
basic structure will be quite similar. We’ll consider each of the major directories in
turn.

The Root Directory

This is the base of the filesystem’s tree structure; all other files and directories,
regardless of their physical disk locations, are logically contained underneath the
root directory (described in detail in Chapter 10).

There are a variety of important first-level directories under the / directory:

/bin
The traditional location for executable (binary) files for the various Unix user
commands and utilities. On many current systems, some files within /bin are
merely symbolic links to files in /usr/bin, and /bin is sometimes a link to /usr/bin.
Other directories that hold Unix commands are /usr/bin and /usr/ucbh.

/dev
The device directory, containing special files as described previously. The /dev
directory is divided into subdirectories in most System V-based versions of
Unix, with each subdirectory holding special files of a given type. Subdirectory
names indicate the type of devices it contains: dsk and rdsk for disks accessed in
block and raw mode, mt and rmt for tape drives, term for terminals (serial lines),
pts and ptc for pseudo-terminals, and so on.

Solaris introduces a new device directory tree, beginning at /devices, and many
files under /dev are links to files in subdirectories of /devices.

letc and /sbin
System configuration files and executables. These directories contain many
administrative files and configuration files. Among the most important files are
the System V—style boot script subdirectories, named ren.d and init.d, which are
located under one of these two locations on systems using this style of booting.

/etc also traditionally contained the executable binaries for most administrative
commands. In recent Unix versions, these files have moved to /sbin and /usr/sbin.
Conventionally, the former is used for files required to boot the system, and the
latter contains all other administrative commands.

68 | Chapter2: The Unix Way

/bin
/dev
Jetc
/shin

(root directory) /home

dsk

h=1
=
a

3

term

auth

1?"'

default
init.d

rc0.d

i

r.d
ra3.d

/lib

/mnt

/opt

/proc

Jtch

/tmp

Jusr

var

/stand

CEEECEEETEELEE

X1

[1L

include sic

:

v
<2
~

uch

X11R6
cron

lock
cron

i

1?

news

preserve
mqueue

i

samba

PLECEL

Figure 2-4. Generic Unix directory structure

On many systems, /etc also contains a subdirectory default, which holds files
containing default parameter values for various commands.

On Linux systems, the sysconfig subdirectory holds network configuration and
other package-specific, boot-related configuration files.

Devices

69

Under AIX, /etc contains two additional directories of note: /etc/objrepos stores
the device configuration databases, and /etc/security stores most security-related
configuration files.

/home

/lib

This directory is a conventional location for users’ home directories. For exam-
ple, user chavez’s home directory is often /home/chavez. The name is completely
arbitrary, however, and is often changed by the local site. It may also be a sepa-
rate filesystem.

Location of shared libraries required for booting the system (i.e., before /usr is
mounted).

Nlost+found

Lost files directory. Disk errors or incorrect system shutdown may cause files to
become lost: lost files refer to disk locations that are marked as in use in the data
structures on the disk, but that are not listed in any directory (i.e., an inode with
a link count greater than zero that isn’t listed in any directory). When the sys-
tem is booting, it runs a program called fsck that, among other things, finds
these files.

There is usually a lost+found directory on every disk partition; /lost+found is the
one on the root disk. However, some Unix systems do not create the directory
until it is needed.

/mnt

/opt

Temporary mount directory: an empty directory conventionally designed for
temporarily mounting filesystems.

Directory tree into which optional software is often installed. On some systems,
optional software products are installed instead under /var/opt. On AIX systems,
this function is provided by the directory /us/Ipp.

Iproc

Process directory, designed to enable processes to be manipulated using Unix file
access system calls. Files in this directory correspond to active processes (entries
in the kernel process table). On Linux systems, there are also additional files
containing various information about the system configuration: interrupt usage,
I/O port use, DMA channel allocation, CPU type, and the like. The HP-UX
operating system does not use /proc.

/stand

Boot-related files, including the kernel executable. Solaris uses /kernel, and
Linux systems use /boot for the same purpose. FreeBSD systems use /stand for
installation and system configuration—related programs and use /boot for kernels
and related files used for booting.

70

Chapter 2: The Unix Way

Download from Wow! eBook <www.wowebook.com>

/tch
Directory tree for security-related database files on some systems offering
enhanced security features, including HP-UX and Tru64 (the name stands for
“trusted computing base”). Configuration files related to the TCB are also stored
under /etc/auth. /usr/tcb may also be used for this purpose.

/tmp
Temporary directory, available to all users as a scratch directory. The system
administrator should see that all the files in this directory are deleted occasion-
ally. Normally, one of the Unix startup scripts will clear /tmp.

lusr
This directory contains subdirectories for locally generated programs, executa-
bles for user and administrative commands, shared libraries, and other parts of
the Unix operating system. The most important subdirectories of /usr are dis-
cussed in more detail in the next section. /usr also sometimes contains applica-
tion programs.

fvar
Spooling and other volatile directories (varying data). Important subdirectories
are described below.

The /usr Directory
The directory /usr contains a number of important subdirectories:

lusr/bin
Command binary files and shell scripts. This directory contains public execut-
able programs that are part of the Unix system. Many executables for the X Win-
dow System are stored in /usr/bin/X11 or /usr/X11R6/bin.

lusr/include
Include files. This directory contains C-language header files that define the C
programmer’s interface to standard system features and program libraries. For
example, it contains the file stdio.h, which defines the user’s interface to the C
standard I/O library. The directory /usr/include/sys contains operating system
include files.

lusr/lib
Library directory, for public library files. Among other things, this directory con-
tains the standard C libraries for mathematics and I/O. Library files generally
have names of the form libx.a or libx.so, where x is one or more characters
related to the library’s contents; the extensions specify a regular (statically
linked) and shared library, respectively.

lusr/local
Local files. By convention, the directory /usr/local/bin holds executable pro-
grams that were developed locally or retrieved from the Internet and any sources

Devices | 71

other than the operating-system vendor. There may be other subdirectories here
to hold related files: man (manual pages), lib (libraries), src (source code), doc
(documentation), and so on.

fusr/sbin

Administrative commands (except ones required for booting, which are in /sbin).

fusr/share

Shared data. On some recent systems, certain CPU architecture-independent
static data files (such as the online manual pages, font directories, the dictionary
files for spell, and the like) are stored in subdirectories under /usr/share. The
name share reflects the idea that such files could be shared among a group of
networked systems, eliminating the need for separate copies on every system.

lusr/share/man

One location for the manual pages directory tree. This directory contains the
online version of the Unix reference manuals. It is divided into subdirectories for
the various sections of the manual.

Traditionally, the subdirectory structure contains several mann subdirectories
holding the raw source for the manual pages in that section and corresponding
catn subdirectories storing the formatted versions. On many current systems,
however, the latter are eliminated, and manual pages are formatted as needed. In
many cases, the source files are stored in compressed form to save even more
space.

The significance of the manual sections is described in the Table 2-11.

Table 2-11. Manual-page sections

Contents BSD style System V style
User commands 1 1
System calls 2 2
Functions and library routines 3 3
Special files and hardware 4 7
Configuration files and file formats 5 4
Games and demos 6 6orl
Miscellaneous: character sets, filesystem types, data type definitions, etc. 7 5
System administration commands 8 m
Maintenance commands 8 8
Device drivers 4 7or9

Among the systems we are considering, the BSD-style organization is used by
FreeBSD, Linux, and Tru64, and the System V—style organization is more or less
followed by AIX, HP-UX, and Solaris.

72

Chapter 2: The Unix Way

lusr/src
Source code for locally built software packages (FreeBSD and Linux). FreeBSD
also uses the /usr/ports directory tree for retrieving and building additional soft-
ware packages.

lusriuch
A directory that contains standard Unix commands originally developed under
BSD. Recent System V-based systems also provide BSD versions of commands
so that users may use the form that they prefer. Some BSD-based versions have
similar directories for System V versions of commands, conventionally /usr/5bin.
lusr/opt/s5/bin and Jusr/opt/s5/sbin perform a similar function under Tru64.

The /var Directory

As we noted, the /var directory tree holds data that changes over time. These are its
most important subdirectories:

lvarladm
Administrative directory (home directory of the special adm user). This direc-
tory traditionally contains the Unix accounting files although many Unix ver-
sions have moved them.

fvar/cron, lvar/news
/var contains subdirectories used by many system facilities. These examples are
used by the cron and Usenet news facilities, respectively.

Nvar/log
Location for log files maintained by many system facilities.

fvar/mail
User mailbox location.

Mvar/run
Contains files holding the current process IDs of various system daemons and
other server and/or execution instance-specific data.

Mvar/spool
Contains subdirectories for Unix subsystems that provide different kinds of
spooling services. Some of the tools using /var/spool subdirectories are the print
spooling system, the mail system, and the cron facility.

Devices | 73

CHAPTER 3

Essential Administrative
Tools and Techniques

The right tools make any job easier, and the lack of them can make some tasks
almost impossible. When you need an Allen wrench, nothing but an Allen wrench
will do. On the other hand, if you need a Phillips head screwdriver, you might be
able to make do with a pocket knife, and occasionally it will even work better.

The first section of this chapter will consider ways the commands and utilities that
Unix provides can make system administration easier. Sometimes that means apply-
ing common user commands to administrative tasks, sometimes it means putting
commands together in unexpected ways, and sometimes it means making smarter
and more efficient use of familiar tools. And, once in a while, what will make your
life easier is creating tools for users to use, so that they can handle some things for
themselves. We’ll look at this last topic in Chapter 14.

The second section of this chapter will consider some essential administrative facili-
ties and techniques, including the cron subsystem, the syslog facility, strategies for
handling the many system log files, and management software packages. We’ll close
the chapter with a list of Internet software sources.

Getting the Most from Common Commands

In this section, we consider advanced and administrative uses of familiar Unix
commands.

Getting Help

The manual page facility is the quintessentially Unix approach to online help: super-
ficially minimalist, often obscure, but mostly complete. It’s also easy to use, once you
know your way around it.

Undoubtedly, the basics of the man command are familiar: getting help for a com-
mand, specifying a specific section, using -k (or apropos) to search for entries for a
specific topic, and so on.

74

There are a couple of man features that I didn’t discover until I'd been working on
Unix systems for years (I'd obviously never bothered to run man man). The first is that
you can request multiple manual pages within a single man command:

$ man umount fsck newfs

man presents the pages as separate files to the display program, and you can move
among them using its normal method (for example, with :n in more).

On FreeBSD, Linux, and Solaris systems, man also has a -a option, which retrieves the
specified manual page(s) from every section of the manual. For example, the first
command below displays the introductory manual page for every section for which
one is available, and the second command displays the manual pages for both the
chown command and system call:

$ man -a intro

$ man -a chown
Manual pages are generally located in a predictable location within the filesystem,
often /usr/share/man. You can configure the man command to search multiple man
directory trees by setting the MANPATH environment variable to the colon-sepa-
rated list of desired directories.

Changing the search order

The man command searches the various manual page sections in a predefined order:
commands first, followed by system calls and library functions, and then the other
sections (i.e., 1, 6, 8,2, 3,4, 5, and 7 for BSD-based schemes). The first manual page
matching the one specified on the command line is displayed. In some cases, a differ-
ent order might make more sense. Many operating systems allow this ordering
scheme to be customized via the MANSECTS entry within a configuration file. For
example, Solaris allows the search order to be customized via the MANSECTS entry
in the /usr/share/man/man.cf configuration file. You specify a list of sections in the
order in which you want them to be searched:

MANSECTS=8,1,2,3,4,5,6,7
This ordering brings administrative command sections to the beginning of the list.

Here are the available ordering customization locations for the versions we are con-
sidering that offer this feature:

FreeBSD
MANSECT environment variable (colon-separated)

Linux (Red Hat)
MANSECT in /etc/man.config (colon-separated)

Linux (SuSE)
SECTION in /etc/manpath.config (space-separated)

Getting the Most from Common Commands | 75

Solaris
MANSECTS in /usr/share/man/man.cf and/or the top level directory of any man-
ual page tree (comma-separated)

Setting up man —k

It’s probably worth mentioning how to get man -k to work if your system claims to
support it, but nothing comes back when you use it. This command (and its alias
apropos) uses a data file indexing all available manual pages. The file often must be
initially created by the system administrator, and it may also need to be updated
from time to time.

On most systems, the command to create the index file is makewhatis, and it must be
run by root. The command does not require any arguments except on Solaris sys-
tems, where the top-level manual page subdirectory is given:

makewhatis Most systems
makewhat /usr/share/man Solaris

On AIX, HP-UX, and Tru64, the older catman -w command is used instead.

Piping into grep and awk

As you undoubtedly already know, the grep command searches its input for lines
containing a given pattern. Users commonly use grep to search files. What might be
new is some of the ways grep is useful in pipes with many administrative com-
mands. For example, if you want to find out about all of a certain user’s current pro-
cesses, pipe the output of the ps command to grep and search for her username:

% ps aux | grep chavez

chavez 8684 89.5 9.627680 5280 ? R N 85:26 /home/j90/1988
root 10008 10.0 0.8 1408 352 p2 S 0:00 grep chavez
chavez 8679 0.0 1.4 2048 704 ? I N 0:00 -csh (csh)
chavez 8681 0.0 1.3 2016 672 ? I N 0:00 /usr/nqs/scl
chavez 8683 0.0 1.3 2016 672 2 I N 0:00 csh -cb rj9o
chavez 8682 0.0 2.6 1984 1376 ? I N 0:00 j90

This example uses the BSD version of ps, using the options that list every single pro-
cess on the system,” and then uses grep to pick out the ones belonging to user chavez.
If you’d like the header line from ps included as well, use a command like:

% ps -aux | egrep 'chavez|PID'
Now that’s a lot to type every time, but you could define an alias if your shell sup-

ports them. For example, in the C shell you could use this one:

% alias pu "ps -aux | egrep '\!:1|PID
% pu chavez

* Under HP-UX and for Solaris’ /usr/bin/ps, the corresponding command is ps -ef.

76 | Chapter3: Essential Administrative Tools and Techniques

USER PID %CPU 7%MEM SZ RSS TT STAT TIME COMMAND
chavez 8684 89.5 9.6 27680 5280 ? R N 85:26 /home/j90/1988

Another useful place for grep is with man -k. For instance, I once needed to figure out
where the error log file was on a new system—the machine kept displaying annoy-
ing messages from the error log indicating that disk 3 had a hardware failure. Now, I
already knew that, and it had even been fixed. I tried man -k error: 64 matches; man
-k log was even worse: 122 manual pages. But man -k log | grep error produced
only 9 matches, including a nifty command to blast error log entries older than a
given number of days.

The awk command is also a useful component in pipes. It can be used to selectively
manipulate the output of other commands in a more general way than grep. A com-
plete discussion of awk is beyond the scope of this book, but a few examples will
show you some of its capabilities and enable you to investigate others on your own.

One thing awk is good for is picking out and possibly rearranging columns within
command output. For example, the following command produces a list of all users
running the quake game:

$ ps -ef | grep "[qluake" | awk '{print $1}"

This awk command prints only the first field from each line of ps output passed to it
by grep. The search string for grep may strike you as odd, since the brackets enclose
only a single character. The command is constructed that way so that the ps line for
the grep command itself will not be selected (since the string “quake” does not
appear in it). It’s basically a trick to avoid having to add grep -v grep to the pipe
between the grep and awk commands.

Once you’ve generated the list of usernames, you can do what you need to with it.
One possibility is simply to record the information in a file:
$ (date ; ps -ef | grep "[qluake" | awk '{print $1 " [" $7 "]"}' \
| sort | uniq) >> quaked.users

This command sends the list of users currently playing quake, along with the CPU
time used so far enclosed in square brackets, to the file quaked.users, preceding the
list with the current date and time. We’ll see a couple of other ways to use such a list
in the course of this chapter.

awk can also be used to sum up a column of numbers. For example, this command
searches the entire local filesystem for files owned by user chavez and adds up all of
their sizes:

find / -user chavez -fstype 4.2 ! -name /dev/* -1s | \

awk '{sum+=$7}; END {print "User chavez total disk use = " sum}'

User chavez total disk use = 41987453
The awk component of this command accumulates a running total of the seventh col-
umn from the find command that holds the number of bytes in each file, and it

Getting the Most from Common Commands | 77

prints out the final value after the last line of its input has been processed. awk can
also compute averages; in this case, the average number of bytes per file would be
given by the expression sum/NR placed into the command’s END clause. The
denominator NR is an awk internal variable. It holds the line number of the current
input line and accordingly indicates the total number of lines read once all of them
have been processed.

awk can be used in a similar way with the date command to generate a filename based
upon the current date. For example, the following command places the output of the
sys_doc script into a file named for the current date and host:

$ sys_doc > “date | awk '{print $3 $2 $6}' . hostname™.sysdoc

If this command were run on October 24, 2001, on host ophelia, the filename gener-
ated by the command would be 240c¢t2001.ophelia.sysdoc.

Recent implementations of date allow it to generate such strings on its own, elimi-
nating the need for awk. The following command illustrates these features. It con-
structs a unique filename for a scratch file by telling date to display the literal string
junk_ followed by the day of the month, short form month name, 2-digit year, and
hour, minutes and seconds of the current time, ending with the literal string .junk:

$ date +junk_%d%b%y%HAM%S . junk
junk_08Dec01204256. junk

We’ll see more examples of grep and awk later in this chapter.

Is All of This Really Necessary?

If all of this fancy pipe fitting seems excessive to you, be assured that I'm not telling
you about it for its own sake. The more you know the ins and outs of Unix com-
mands—both basic and obscure—the better prepared you’ll be for the inevitable unex-
pected events that you will face. For example, you’ll be able to come up with an answer
quickly when the division director (or department chair or whoever) wants to know
what percentage of the aggregate disk space in a local area network is used by the chem
group. Virtuosity and wizardry needn’t be goals in themselves, but they will help you
develop two of the seven cardinal virtues of system administration: flexibility and inge-
nuity. ('l tell you what the others are in future chapters.)

Finding Files

Another common command of great use to a system administrator is find. find is
one of those commands that you wonder how you ever lived without—once you
learn it. It has one of the most obscure manual pages in the Unix canon, so I'll spend
a bit of time explaining it (skip ahead if it’s already familiar).

78 | Chapter3: Essential Administrative Tools and Techniques

find locates files with common, specified characteristics, searching anywhere on the
system you tell it to look. Conceptually, find has the following syntax:”

find starting-dir(s) matching-criteria-and-actions

Starting-dir(s) is the set of directories where find should start looking for files. By
default, find searches all directories underneath the listed directories. Thus, specify-
ing / as the starting directory would search the entire filesystem.

The matching-criteria tell find what sorts of files you want to look for. Some of the
most useful are shown in Table 3-1.

Table 3-1. find command matching criteria options

Option Meaning

-atime n File was last accessed exactly n days ago.

-mtime n File was last modified exactly n days ago.

-newer file File was modified more recently than file was.
-size n File is n 512-byte blocks long (rounded up to next block).
-type ¢ Specifies the file type: f=plain file, d=directory, etc.
-fstype typ Specifies filesystem type.

-name nam The filename is nam.

-perm p The file’s access mode is p.

-user usr The file's owner is usr.

-group grp The file’s group owner is grp.

-nouser The file’s owner is not listed in the password file.
-nogroup The file's group owner is not listed in the group file.

These may not seem all that useful—why would you want a file accessed exactly
three days ago, for instance? However, you may precede time periods, sizes, and
other numeric quantities with a plus sign (meaning “more than”) or a minus sign
(meaning “less than”) to get more useful criteria. Here are some examples:

-mtime +7 Last modified more than 7 days ago
-atime -2 Last accessed less than 2 days ago
-size +100 Larger than 50K

You can also include wildcards with the -name option, provided that you quote them.
For example, the criteria -name '*.dat' specifies all filenames ending in .dat.

Multiple conditions are joined with AND by default. Thus, to look for files last
accessed more than two months ago and last modified more than four months ago,
you would use these options:

-atime +60 -mtime +120

* Syntactically, find does not distinguish between file-selection options and action-related options, but it is
often helpful to think of them as separate types as you learn to use find.

Getting the Most from Common Commands | 79

Options may also be joined with -o for OR combination, and grouping is allowed
using escaped parentheses. For example, the matching criteria below specifies files
last accessed more than seven days ago or last modified more than 30 days ago:

\(-atime +7 -o -mtime +30 \)
An exclamation point may be used for NOT (be sure to quote it if you’re using the C
shell). For example, the matching criteria below specify all .dat files except gold.dat:

! -name gold.dat -name *.dat
The -perm option allows you to search for files with a specific access mode (numeric
form). Using an unsigned value specifies files with exactly that permission setting,
and preceding the value with a minus sign searches for files with at least the speci-

fied access. (In other words, the specified permission mode is XORed with the file’s
permission setting.) Here are some examples:

-perm 755 Permission = rwxr-xr-x
-perm -002 World-writeable files
-perm -4000 Setuid access is set
-perm -2000 Setgid access is set

The actions options tell find what to do with each file it locates that matches all the
specified criteria. Some available actions are shown in Table 3-2.

Table 3-2. find actions

Option Meaning

-print Display pathname of matching file.

-1s2 Display long directory listing for matching file.

-exec cmd Execute command on file.

-ok cmd Prompt before executing command on file.

-xdev Restrict the search to the filesystem of the starting directory (typically used to bypass mounted remote
filesystems).

-prune Don't descend into directories encountered.

2 Not available under HP-UX.

The default on many newer systems is -print, although forgetting to include it on
older systems like SunOS will result in a successful command with no output. Com-
mands for -exec and -ok must end with an escaped semicolon (\;). The form {} may
be used in commands as a placeholder for the pathname of each found file. For
example, to delete each matching file as it is found, specify the following option to
the find command:

-exec m -f {} \;

Note that there are no spaces between the opening and closing curly braces. The
curly braces may only appear once within the command.

80 | Chapter3: Essential Administrative Tools and Techniques

Now let’s put the parts together. The command below lists the pathname of all C
source files under the current directory:

$ find . -name *.c -print

« »

The starting directory is “.” (the current directory), the matching criteria specify file-
names ending in .c, and the action to be performed is to display the pathname of
each matching file. This is a typical user use for find. Other common uses include
searching for misplaced files and feeding file lists to cpio.

find has many administrative uses, including:

* Monitoring disk use
* Locating files that pose potential security problems

* Performing recursive file operations

For example, find may be used to locate large disk files. The command below dis-
plays a long directory listing for all files under /chem larger than 1 MB (2048 512-
byte blocks) that haven’t been modified in a month:

$ find /chem -size +2048 -mtime +30 -exec 1ls -1 {} \;

Of course, we could also use -1s rather than the -exec clause. In fact, it is more effi-
cient because the directory listing is handled by find internally (rather than having to
spawn a subshell for every file). To search for files not modified in a month or not
accessed in three months, use this command:

$ find /chem -size +2048 \(-mtime +30 -o -atime +120 \) -1s

Such old, large files might be candidates for tape backup and deletion if disk space is
short.

find can also delete files automatically as it finds them. The following is a typical
administrative use of find, designed to automatically delete old junk files on the sys-
tem:
find / \(-name a.out -o -name core -o -name '*~'\

-0 -name '.**' -0 -name '#*#' \) -type f -atime +14 \

-exec rm -f {} \; -o -fstype nfs -prune
This command searches the entire filesystem and removes various editor backup
files, core dump files, and random executables (a.out) that haven’t been accessed in
two weeks and that don’t reside on a remotely mounted filesystem. The logic is
messy: the final -0 option ORs all the options that preceded it with those that fol-
lowed it, each of which is computed separately. Thus, the final operation finds files
that match either of two criteria:

* The filename matches, it’s a plain file, and it hasn’t been accessed for 14 days.

* The filesystem type is nfs (meaning a remote disk).

If the first criteria set is true, the file gets removed; if the second set is true, a “prune”
action takes place, which says “don’t descend any lower into the directory tree.”

Getting the Most from Common Commands | 81

Thus, every time find comes across an NFS-mounted filesystem, it will move on,
rather than searching its entire contents as well.

Matching criteria and actions may be placed in any order, and they are evaluated
from left to right. For example, the following find command lists all regular files
under the directories /home and /aux1 that are larger than 500K and were last
accessed over 30 days ago (done by the options through -print); additionally, it
removes those named core:
find /home /auxi -type f -atime +30 -size +1000 -print \
-name core -exec rm {} \;

find also has security uses. For example, the following find command lists all files
that have setuid or setgid access set (see Chapter 7).

find / -type f \(-perm -2000 -o -perm -4000 \) -print

The output from this command could be compared to a saved list of setuid and set-
gid files, in order to locate any newly created files requiring investigation:

find / \(-perm -2000 -o -perm -4000 \) -print | \
diff - files.secure

find may also be used to perform the same operation on a selected group of files. For
example, the command below changes the ownership of all the files under user
chavez’s home directory to user chavez and group physics:

find /home/chavez -exec chown chavez {} \; \
-exec chgrp physics {} \;

The following command gathers all C source files anywhere under /chem into the
directory /chem1/src:

find /chem -name '*.c' -exec mv {} /chemi/src \;
Similarly, this command runs the script prettify on every C source file under /chem:

find /chem -name '*.c' -exec /usr/local/bin/prettify {} \;

Note that the full pathname for the script is included in the -exec clause.

Finally, you can use the find command as a simple method for tracking changes that
have been made to a system in the course of a certain time period or as the result of a
certain action. Consider these commands:

touch /tmp/starting_time

perform some operation

find / -newer /tmp/starting_time
The output of the final find command displays all files modified or added as a result
of whatever action was performed. It does not directly tell you about deleted files,
but it lists modified directories (which can be an indirect indication).

82 | Chapter3: Essential Administrative Tools and Techniques

Repeating Commands

find is one solution when you need to perform the same operation on a group of
files. The xargs command is another way of automating similar commands on a
group of objects; xargs is more flexible than find because it can operate on any set of
objects, regardless of what kind they are, while find is limited to files and directories.

xargs is most often used as the final component of a pipe. It appends the items it
reads from standard input to the Unix command given as its argument. For exam-
ple, the following command increases the nice number of all quake processes by 10,
thereby lowering each process’s priority:

ps -ef | grep "[q]uake" | awk '{print $2}' | xargs renice +10

The pipe preceding the xargs command extracts the process ID from the second col-
umn of the ps output for each instance of quake, and then xargs runs renice using all
of them. The renice command takes multiple process IDs as its arguments, so there
is no problem sending all the PIDs to a single renice command as long as there are
not a truly inordinate number of quake processes.

You can also tell xargs to send its incoming arguments to the specified command in
groups by using its -n option, which takes the number of items to use at a time as its
argument. If you wanted to run a script for each user who is currently running quake,
for example, you could use this command:

ps -ef | grep "[q]uake" | awk '{print $1}' | xargs -n1 warn_user

The xargs command will take each username in turn and use it as the argument to
warn_user.

So far, all of the xargs commands we’ve look at have placed the incoming items at
the end of the specified command. However, xargs also allows you to place each
incoming line of input at a specified position within the command to be executed.
To do so, you include its -i option and use the form {} as placeholder for each
incoming line within the command. For example, this command runs the System V
chargefee utility for each user running quake, assessing them 10000 units:
ps -ef | grep "[qluake" | awk '{print $1}' | \
xargs -i chargefee {} 10000

If curly braces are needed elsewhere within the command, you can specify a differ-
ent pair of placeholder characters as the argument to -i.

Substitutions like this can get rather complicated. xargs’s -t option displays each
constructed command before executing, and the -p option allows you to selectively
execute commands by prompting you before each one. Using both options together
provides the safest execution mode and also enables you to nondestructively debug a
command or script by answering no for every offered command.

Getting the Most from Common Commands | 83

-iand -n don’t interact the way you might think they would. Consider this command:

$ echoabcdef| xargs -n3 -i echo before {} after

before a b c d e f after

$ echoab cdef| xargs -i -n3 echo before {} after

before {} after a b ¢

before {} after d e f
You might expect that these two commands would be equivalent and that they
would both produce two lines of output:

before a b ¢ after

before d e f after
However, neither command produces this output, and the two commands do not
operate identically. What is happening is that -i and -n conflict with one another,
and the one appearing last wins. So, in the first command, -i is what is operative,
and each line of input is inserted into the echo command. In the second command,
the -n3 option is used, three arguments are placed at the end of each echo command,
and the curly braces are treated as literal characters.

Our first use of -i worked properly because the usernames are coming from separate
lines in the ps command output, and these lines are retained as they flow through the
pipe to xargs.

If you want xargs to execute commands containing pipes, I/O redirection, com-
pound commands joined with semicolons, and so on, there’s a bit of a trick: use the
-c option to a shell to execute the desired command. I occasionally want to look at
the final lines of a group of files and then view all of them a screen at a time. In other
words, I'd like to run a command like this and have it “work”:

$ tail testoo* | more

On most systems, this command displays lines only from the last file. However, I can
use xargs to get what [want:

$ 1s -1 testoo* | xargs -i /usr/bin/sh -c \
'echo "kkkkEkE [}:"e t3i]l -15 {}; echo ""' | more

This displays the last 15 lines of each file, preceded by a header line containing the
filename and followed by a blank line for readability.

You can use a similar method for lots of other kinds of repetitive operations. For
example, this command sorts and de-dups all of the .dat files in the current directory:

$ 1s *.dat | xargs -i /usr/bin/sh -c "sort -u -o {} {}"

Creating Several Directory Levels at Once

Many people are unaware of the options offered by the mkdir command. These
options allow you to set the file mode at the same time as you create a new directory
and to create multiple levels of subdirectories with a single command, both of which
can make your use of mkdir much more efficient.

84 | Chapter3: Essential Administrative Tools and Techniques

For example, each of the following two commands sets the mode on the new direc-
tory to rwxr-xr-x, using mkdir’s -m option:

$ mkdir -m 755 ./people

$ mkdir -m u=rwx,go=rx ./places
You can use either a numeric mode or a symbolic mode as the argument to the -m
option. You can also use a relative symbolic mode, as in this example:

$ mkdir -m g+w ./things

In this case, the mode changes are applied to the default mode as set with the umask
command.

mkdir’s -p option tells it to create any missing parents required for the subdirectories
specified as its arguments. For example, the following command will create the sub-
directories ./a and ./a/b if they do not already exist and then create ./a/b/c:

$ mkdir -p ./a/b/c

The same command without -p will give an error if all of the parent subdirectories
are not already present.

Duplicating an Entire Directory Tree

It is fairly common to need to move or duplicate an entire directory tree, preserving
not only the directory structure and file contents but also the ownership and mode
settings for every file. There are several ways to accomplish this, using tar, cpio, and
sometimes even cp. I'll focus on tar and then look briefly at the others at the end of
this section.

Let’s make this task more concrete and assume we want to copy the directory /chem/
olddir as /chem1/mewdir (in other words, we want to change the name of the olddir
subdirectory as part of duplicating its entire contents). We can take advantage of
tar’s -p option, which restores ownership and access modes along with the files from
an archive (it must be run as root to set file ownership), and use these commands to
create the new directory tree:

cd /chem1

tar -cf - -C /chem olddir | tar -xvpf -

mv olddir newdir
The first tar command creates an archive consisting of /chem/olddir and all of the
files and directories underneath it and writes it to standard output (indicated by the -
argument to the -f option). The -C option sets the current directory for the first tar
command to /chem. The second tar command extracts files from standard input
(again indicated by -f -), retaining their previous ownership and protection. The sec-
ond tar command gives detailed output (requested with the -v option). The final mv
command changes the name of the newly created subdirectory of /chem1 to newdir.

If you want only a subset of the files and directories under olddir to be copied to
newdir, you would vary the previous commands slightly. For example, these

Getting the Most from Common Commands | 85

commands copy the src, bin, and data subdirectories and the logfile and .profile files
from olddir to newdir, duplicating their ownership and protection:

mkdir /chemi/newdir

set ownership and protection for newdir if necessary

cd /chem1/olddir

tar -cvf - src bin data logfile.* .profile |\
tar -xvpf - -C /chem/newdir

The first two commands are necessary only if /chem1/newdir does not already exist.

This command performs a similar operation, copying only a single branch of the sub-
tree under olddir:

mkdir /chemi/newdir

set ownership and protection for newdir if necessary

cd /chemi/newdir

tar -cvf - -C /chem/olddir src/viewers/rasmol | tar -xvpf -
These commands create /cheml/newdir/src and its viewers subdirectory but place
nothing in them but rasmol.

If you prefer cpio to tar, cpio can perform similar functions. For example, this com-
mand copies the entire olddir tree to /chem1 (again as newdir):

mkdir /chemi/newdir

set ownership and protection for newdir if necessary

cd /chem1/olddir

find . -print | cpio -pdvm /chemi/newdir
On all of the systems we are considering, the cp command has a -p option as well,
and these commands create newdir:

cp -pr /chem/olddir /chemi

mv /chemi/olddir /chemi/newdir
The -r option stands for recursive and causes cp to duplicate the source directory
structure in the new location.

Be aware that tar works differently than cp does in the case of symbolic links. tar
recreates links in the new location, while cp converts symbolic links to regular files.

Comparing Directories

Over time, the two directories we considered in the last section will undoubtedly
both change. At some future point, you might need to determine the differences
between them. dircmp is a special-purpose utility designed to perform this very oper-
ation.” dircmp takes the directories to be compared as its arguments:

$ dircmp /chem/olddir /chemi/newdir

* On FreeBSD and Linux systems, diff -r provides the equivalent functionality.

86 | Chapter3: Essential Administrative Tools and Techniques

dircmp produces voluminous output even when the directories you’re comparing are
small. There are two main sections to the output. The first one lists files that are
present in only one of the two directory trees:

Mon Jan 4 1995 /chem/olddir only and /chemi/newdir only Page 1

./water.dat ./hf.dat
./src/viewers/rasmol/init.c ./h2f.dat

All pathnames in the report are relative to the directory locations specified on the
command line. In this case, the files in the left column are present only under /chem/
olddir, and those in the right column are present only at the new location.

The second part of the report indicates whether the files present in both directory trees
are the same or different. Here are some typical lines from this section of the report:
same ./h20.dat
different ./hcl.dat
The default output from dircmp indicates only whether the corresponding files are
the same or not, and sometimes this is all you need to know. If you want to know
exactly what the differences are, you can include the -d to dircmp, which tells it to
run diff for each pair of differing files (since it uses diff, this works only for text
files). On the other hand, if you want to decrease the amount of output by limiting
the second section of the report to files that differ, include the -s option on the
dircmp command.

Deleting Pesky Files

When I teach courses for new Unix users, one of the early exercises consists of figur-
ing out how to delete the files —delete_me and delete me (with the embedded space in
the second case).” Occasionally, however, a user winds up with a file that he just
can’t get rid of, no matter how creative he is in using rm. At that point, he will come
to you. If there is a way to get rm to do the job, show it to him, but there are some
files that rm just can’t handle. For example, it is possible for some buggy application
program to put a file into a bizarre, inconclusive state. Users can also create such files
if they experiment with certain filesystem manipulation tools (which they probably
shouldn’t be using in the first place).

One tool that can take care of such intransigent files is the directory editor feature of
the GNU emacs text editor. It is also useful to show this feature to users who just
can’t get the hang of how to quote strange filenames.

This is the procedure for deleting a file with emacs:

1. Invoke emacs on the directory in question, either by including its path on the
command line or by entering its name at the prompt produced by Ctrl-X Ctrl-F.

* There are lots of solutions. One of the simplest is rm delete\ me ./-delete me.

Getting the Most from Common Commands | 87

2. Opening the directory causes emacs to automatically enter its directory editing
mode. Move the cursor to the file in question using the usual emacs commands.

3. Enter a d, which is the directory editing mode subcommand to mark a file for
deletion. You can also use u to unmark a file, # to mark all auto-save files, and ~
to mark all backup files.

4. Enter the x subcommand, which says to delete all marked files, and answer the
confirmation prompt in the affirmative.

5. At this point the file will be gone, and you can exit from emacs, continue other
editing, or do whatever you need to do next.

emacs can also be useful for viewing directory contents when they include files with
bizarre characters embedded within them. The most amusing example of this that I
can cite is a user who complained to me that the 1s command beeped at him every
time he ran it. It turned out that this only happened in his home directory, and it was
due to a file with a Ctrl-G in the middle of the name. The filename looked fine in 1s
listings because the Ctrl-G character was being interpreted, causing the beep. Con-
trol characters become visible when you look at the directory in emacs, and so the
problem was easily diagnosed and remedied (using the r subcommand to emacs’s
directory editing mode that renames a file).

Putting a Command in a Cage

As we’ll discuss in detail later, system security inevitably involves tradeoffs between
convenience and risk. One way to mitigate the risks arising from certain inherently
dangerous commands and subsystems is to isolate them from the rest of the system.
This is accomplished with the chroot command.

The chroot command runs another command from an alternate location within the
filesystem, making the command think that that the location is actually the root
directory of the filesystem. chroot takes one argument, which is the alternate top-
level directory. For example, the following command runs the sendmail daemon,
using the directory /jail as the new root directory:

chroot /jail sendmail -bd -qio0m

The sendmail process will treat /jail as its root directory. For example, when sendmail
looks for the mail aliases database, which it expects to be located in /etc/aliases, it
will actually access the file /jail/etc/aliases. In order for sendmail to work properly in
this mode, a minimal filesystem needs to be set up under /jail containing all the files
and directories that sendmail needs.

Running a daemon or subsystem as a user created specifically for that purpose
(rather than root) is sometimes called sandboxing. This security technique is recom-
mended wherever feasible, and it is often used in conjunction with chrooting for
added security. See “Managing DNS Servers” in Chapter 8 for a detailed example of
this technique.

88 | Chapter3: Essential Administrative Tools and Techniques

S FreeBSD also has a facility called jail, which is a stronger versions of
.‘s‘ chroot that allows you to specify access restrictions for the isolated
U8y command.

Starting at the End

Perhaps it’s appropriate that we consider the tail command near the end of this sec-
tion on administrative uses of common commands. tail’s principal function is to
display the last 10 lines of a file (or standard input). tail also has a -f option that
displays new lines as they are added to the end of a file; this mode can be useful for
monitoring the progress of a command that writes periodic status information to a
file. For example, these commands start a background backup with tar, saving its
output to a file, and monitor the operation using tail -f:

$ tar -cvf /dev/rmt1 /chem /cheml > 240ct94 tar.toc &

$ tail -f 240ct94_tar.toc
The information that tar displays about each file as it is written to tape is eventually
written to the table of contents file and displayed by tail. The advantage that this
method has over the tee command is that the tail command may be killed and
restarted as many times as you like without affecting the tar command.

Some versions of tail also include a -1 option, which will display the lines in a file in
reverse order, which is occasionally useful. HP-UX does not support this option, and
Linux provides this feature in the tac command.

Be Creative

As a final example of the creative use of ordinary commands, consider the following
dilemma. A user tells you his workstation won’t reboot. He says he was changing his
system’s boot script but may have deleted some files in /etc accidentally. You go over
to it, type ls, and get a message about some missing shared libraries. How do you
poke around and find out what files are there?

The answer is to use the simplest Unix command there is, echo, along with the wild-
card mechanism, both of which are built into every shell, including the statically
linked one available in single user mode.

To see all the files in the current directory, just type:
$ echo *

This command tells the shell to display the value of “*”, which of course expands to
all files not beginning with a period in the current directory.

By using echo together with cd (also a built-in shell command), I was able to get a
pretty good idea of what had happened. I'll tell you the rest of this story at the end of
Chapter 4.

Getting the Most from Common Commands | 89

Essential Administrative Techniques

In this section, we consider several system facilities with which system administra-
tors need to be intimately familiar.

Periodic Program Execution: The cron Facility

cron is a Unix facility that allows you to schedule programs for periodic execution.
For example, you can use cron to call a particular remote site every hour to exchange
email, to clean up editor backup files every night, to back up and then truncate sys-
tem log files once a month, or to perform any number of other tasks. Using cron,
administrative functions are performed without any explicit action by the system
administrator (or any other user).’

For administrative purposes, cron is useful for running commands and scripts
according to a preset schedule. cron can send the resulting output to a log file, as a
mail or terminal message, or to a different host for centralized logging. The cron
command starts the crond daemon, which has no options. It is normally started
automatically by one of the system initialization scripts.

Table 3-3 lists the components of the cron facility on the various Unix systems we are
considering. We will cover each of them in the course of this section.

Table 3-3. Variations on the cron facility

Component Location and information
crontab files Usual: /var/spool/cron/crontabs

FreeBSD: /var/cron/tabs, /etc/crontab

Linux: /var/spool/cron (Red Hat) /var/spool/cron/tabs (SuSE), /etc/crontab (both)
crontab format Usual: System V (no username field)

BSD: /etc/crontab (requires username as sixth field)

cron.allow and cron.deny files Usual: /var/adm/cron
FreeBSD: /var/cron
Linux: /etc (Red Hat), /var/spool/cron (SuSE)
Solaris: /etc/cron.d

Related facilities Usual: none
FreeBSD: periodic utility
Linux: /etc/cron.* (hourly,daily,weekly,monthly)
Red Hat: anaczon utility2

* Note that cron is not a general facility for scheduling program execution off-hours; for the latter, use a batch
processing command (discussed in “Managing CPU Resources” in Chapter 15).

90 | Chapter3: Essential Administrative Tools and Techniques

Table 3-3. Variations on the cron facility (continued)

Component Location and information

cron log file Usual: /var/adm/cron/log
FreeBSD: /var/log/cron
Linux: /var/log/cron (Red Hat), not configured (SuSE)
Solaris: /var/cron/log

File containing PID of crond Usual: not provided
FreeBSD: /var/run/cron.pid
Linux: /var/run/crond.pid (Red Hat), var/run/cron.pid (SuSE)

Boot script that starts cron AIX: /etc/inittab
FreeBSD: /etc/rc
HP-UX: /sbin/init.d/cron
Linux: /etc/init.d/cron
Solaris: /etc/init.d/cron
Tru64: /sbin/init.d/cron
Boot script configuration file: AIX: none used
cron-related entries FreeBSD: /etc/rc.conf. cron_enable="YES” and cron_flags="args-to-cron”
HP-UX: /etc/rc.config.d/cron: CRON=1
Linux: none used (Red Hat, SuSE 8), /etc/rc.config: CRON="YES” (SuSE 7)
Solaris: /etc/default/cron: CRONLOG=yes
Tru64: none used

2 The Red Hat Linux anacron utility is very similar to cron, but it also runs jobs missed due to the system being down when it reboots.

crontab files

What to run and when to run it are specified by crontab entries, which comprise the
system’s cron schedule. The name comes from the traditional cron configuration file
named crontab, for “cron table.”

By default, any user may add entries to the cron schedule. Crontab entries are stored
in separate files for each user, usually in the directory called /var/spool/cron/crontabs
(see Table 3-3 for exceptions). Users’ crontab files are named after their username:
for example, /var/spool/cron/crontabs/root.

& w
The preceding is the System V convention for crontab files. BSD sys-

.‘s\ tems traditionally use a single file, /etc/crontab. FreeBSD and Linux
N\ 4 & s . .
oi3) systems still use this file, in addition to those just mentioned.

.

Crontab files are not ordinarily edited directly but are created and modified with the
crontab command (described later in this section).

Crontab entries direct cron to run commands at regular intervals. Each one-line entry
in the crontab file has the following format:

minutes hours day-of-month month weekday command

Essential Administrative Techniques | 91

Whitespace separates the fields. However, the final field, command, can contain
spaces within it (i.e., the command field consists of everything after the space follow-
ing weekday); the other fields must not contain embedded spaces.

The first five fields specify the times at which cron should execute command. Their
meanings are described in Table 3-4.

Table 3-4. Crontab file fields

Field Meaning Range

minutes Minutes after the hour 0-59

hours Hour of the day 0-23 (0=midnight)
day-of-month Numeric day within a month 1-31

month The month of the year 1-12

weekday The day of the week 0-6 (0=Sunday)

Note that hours are numbered from midnight (0), and weekdays are numbered
beginning with Sunday (also 0).

An entry in any of these fields can be a single number, a pair of numbers separated
by a dash (indicating a range of numbers), a comma-separated list of numbers and/or
ranges, or an asterisk (a wildcard that represents all valid values for that field).

If the first character in an entry is a number sign (#), cron treats the entry as a com-
ment and ignores it. This is also an easy way to temporarily disable an entry without
permanently deleting it.

Here are some example crontab entries:

0,15,30,45 * * * * (echo ""; date; echo "") >/dev/console
0,10,20,30,40,50 7-18 * * * /usr/sbin/atrun

00 * ** find / -name "*.bak" -type f -atime +7 -exec rm {} \;
0 4 * ** /bin/sh /var/adm/mon_disk 2>&1 >/var/adm/disk.log
02 * ** /bin/sh /usr/local/sbin/sec_check 2>81 | mail root
30 3 1 * * /bin/csh /usr/local/etc/monthly 2>&1 >/dev/null

#30 2 * * 0,6 /usr/local/newsbin/news.weekend

The first entry displays the date on the console terminal every fifteen minutes (on the
quarter hour); notice that the multiple commands are enclosed in parentheses in
order to redirect their output as a group. (Technically, this says to run the com-
mands together in a single subshell.) The second entry runs /usr/sbin/atrun every 10
minutes from 7 A.M. to 6 P.M. daily. The third entry runs a find command to
remove all .bak files not accessed in seven days.

The fourth and fifth lines run a shell script every day, at 4 A.M. and 2 A.M., respec-
tively. The shell to execute the script is specified explicitly on the command line in
both cases; the system default shell, usually the Bourne shell, is used if none is
explicitly specified. Both lines’ entries redirect standard output and standard error,
sending both of them to a file in one case and as electronic mail to root in the other.

92 | Chapter3: Essential Administrative Tools and Techniques

The sixth entry executes the C shell script /ust/local/etc/monthly at 3:30 A.M. on the
first day of each month. Notice that the command format—specifically the output
redirection—uses Bourne shell syntax even though the script itself will be run under

the C shell.

Were it not disabled, the final entry would run the command /usr/local/newsbin/
news.weekend at 2:30 A.M. on Saturday and Sunday mornings.

The final three active entries illustrate three output-handling alternatives: redirecting
it to a file, piping it through mail, and discarding it to /dev/null. If no output redirec-
tion is performed, the output is sent via mail to the user who ran the command.

The command field can be any Unix command or group of commands (properly sep-
arated with semicolons). The entire crontab entry can be arbitrarily long, but it must
be a single physical line in the file.

If the command contains a percent sign (%), cron will use any text following this sign
as standard input for command. Additional percent signs can be used to subdivide
this text into lines. For example, the following crontab entry:

30 11 31 12 * /usr/bin/wall%Happy New Year!%lLet's make it great!

runs the wall command at 11:30 A.M. on December 31, using the text “Happy New
Year! Let’s make it great!” as standard input.

Note that the day of the week and day of the month fields are effectively ORed: if
both are filled in, the entry is run on that day of the month and on matching days of
the week. Thus, the following entry would run on January 1 and every Monday:

* * 1 1 1 /usr/local/bin/test55

In most implementations, the cron daemon reads the crontab files when it starts up
and whenever there have been changes to any of the crontab files. In some, generally
older versions, cron reads the crontab files once every minute.

R
s

The BSD crontab file, /etc/crontab, uses a slightly different entry for-

mat, inserting an additional field between the weekday and command

%s: fields: the user account that should be used to run the specified com-

" mand. Here is a sample entry that runs a script at 3:00 A.M. on every
weekend day:

0 3 * * 6-7 root /var/adm/weekend.sh

As this example illustratess, this entry format also encodes the days of
the week slightly differently, running from 1=Monday through 7=Sun-
day.

FreeBSD and Linux crontab entry format enhancements. FreeBSD and Linux systems use
the cron package written by Paul Vixie. It supports all standard cron features and
includes enhancements to the standard crontab entry format, including the following:

* Months and days of the week may be specified as names, abbreviated to their
first three letters: sun, mon, jan, feb, and so on.

Essential Administrative Techniques | 93

* Sunday can be specified as either 0 or 7.

* Ranges and lists can be combined: e.g., 2,4,6-7 is a legal entry. HP-UX also sup-
ports this enhancement.

* Step values can be specified with a /n suffix. For example, the hours entry 8-18/2
means “every two hours from 8 A.M. to 6 P.M.” Similarly, the minutes entry */5
means “every five minutes.”

* Environment variables can be defined within the crontab file, using the usual
Bourne shell syntax. The environment variable MAILTO may be used to specify
a user to receive any mail messages that cron thinks are necessary. For example,
the first definition below sends mail to user chavez (regardless of which crontab
the line appears in), and the second definition suppresses all mail from cron:
MAILTO=chavez
MAILTO=

Additional environment variables include SHELL, PATH, and HOME.

* On FreeBSD systems, special strings may be used to replace the scheduling fields
entirely:
@reboot Run at system reboots
@yearly Midnight on January 1
@monthly ~ Midnight on the first of the month
@weekly Midnight each Sunday
@daily Midnight
@hourly On the hour

Adding crontab entries

The normal way to create crontab entries is with the crontab command.” In its default
mode, the crontab command installs the text file specified as its argument into the
cron spool area, as the crontab file for the user who ran crontab. For example, if user
chavez executes the following command, the file mycron will be installed as /var/
spool/cron/crontabs/chavez:

$ crontab mycron

If chavez had previously installed crontab entries, they will be replaced by those in
mycron; thus, any current entries that chavez wishes to keep must also be present in
mycron.

The -1 option to crontab lists the current crontab entries, and redirecting the com-
mand’s output to a file will allow them to be captured and edited:

$ crontab -1 >mycron
$ vi mycron
$ crontab mycron

* Except for the BSD-style /etc/crontab file, which must be edited manually.

94 | Chapter3: Essential Administrative Tools and Techniques

The -1 option removes all current crontab entries.

The most convenient way to edit the crontab file is to use the -e option, which lets
you directly modify and reinstall your current crontab entries in a single step. For
example, the following command creates an editor session on the current crontab file
(using the text editor specified in the EDITOR environment variable) and automati-
cally installs the modified file when the editor exits:

$ crontab -e

Most crontab commands also accept a username as their final argument. This allows
root to list or install a crontab file for a different user. For example, this command
edits the crontab file for user adm:

crontab -e adm

The FreeBSD and Linux versions of this command provide the same functionality
with the -u option:

crontab -e -u adm

When you decide to place a new task under cron’s control, you’ll need to carefully
consider which user should execute each command run by cron, and then add the
appropriate crontab entry to the correct crontab file. The following list describes
common system users and the sorts of crontab entries they conventionally control:

root

General system functions, security monitoring, and filesystem cleanup
Ip

Cleanup and accounting activities related to print spooling
sys

Performance monitoring

uucp
Running tasks in the UUCP file exchange facility

cron log files

Almost all versions of cron provide some mechanism for recording its activities to a
log file. On some systems, this occurs automatically, and on others, messages are
routed through the syslog facility. This is usually set up at installation time, but occa-
sionally you’ll need to configure syslog yourself. For example, on SuSE Linux sys-
tems, you’ll need to add an entry for cron to the syslog configuration file /etc/syslog.
conf (discussed later in this chapter).

Solaris systems use a different mechanism. cron will keep a log of its activities if the
CRONLOG entry in /etc/default/cron is set to YES.

If logging is enabled, the log file should be monitored closely and truncated periodi-
cally, as it grows extremely quickly under even moderate cron use.

Essential Administrative Techniques | 95

Using cron to automate system administration

The sample crontab entries we looked at previously provide some simple examples
of using cron to automate various system tasks. cron provides the ideal way to run
scripts according to a fixed schedule.

Another common way to use cron for regular administrative tasks is through the use of
a series of scripts designed to run every night, once a week, and once a month; these
scripts are often named daily, weekly, and monthly, respectively. The commands in
daily would need to be performed every night (more specialized scripts could be run
from it), and the other two would handle tasks to be performed less frequently.

daily might include these tasks:

* Remove junk files more than three days old from /tmp and other scratch directo-
ries. More ambitious versions could search the entire system for old unneeded
files.

* Run accounting summary commands.
* Run calendar.
* Rotate log files that are cycled daily.

* Take snapshots of the system with df, ps, and other appropriate commands in
order to compile baseline system performance data (what is normal for that sys-
tem). See Chapter 15 for more details.

* Perform daily security monitoring.
weekly might perform tasks like these:

* Remove very old junk files from the system (somewhat more aggressively than
daily).
* Rotate log files that are cycled weekly.
* Run fsck -n to list any disk problems.
* Monitor user account security features.
monthly might do these jobs:
* List large disk files not accessed that month.
* Produce monthly accounting reports.
* Rotate log files that are cycled monthly.
* Use makewhatis to rebuild the database for use by man -k.

Additional or different activities might make more sense on your system. Such scripts
are usually run late at night:

01 * ** /bin/sh /var/adm/daily 2>81 | mail root

02 **1 /bin/sh /var/adm/weekly 2581 | mail root

03 1** /bin/sh /var/adm/monthly 2581 | mail root
In this example, the daily script runs every morning at 1 A.M., weekly runs every
Monday at 2 A.M., and monthly runs on the first day of every month at 3 A.M.

96 | Chapter3: Essential Administrative Tools and Techniques

cron need not be used only for tasks to be performed periodically forever, year after
year. It can also be used to run a command repeatedly over a limited period of time,
after which the crontab entry would be disabled or removed. For example, if you
were trying to track certain kinds of security problems, you might want to use cron
to run a script repeatedly to gather data. As a concrete example, consider this short
script to check for large numbers of unsuccessful login attempts under AIX (although
the script applies only to AIX, the general principles are useful on all systems):

#!/bin/sh
chk_badlogin - Check unsuccessful login counts

date >> /var/adm/bl
egrep '~[**].*:$|gin_coun' /etc/security/user | \
awk "BEGIN {n=0}
{if (NF>1 && $3>3) {print s,$0; n=1}}
{s=%0}
END {if (n==0) {print "Everything ok."}}"' \
>> /var/adm/bl
This script writes the date and time to the file /var/adm/bl and then checks /etc/
security/user for any user with more than three unsuccessful login attempts. If you sus-
pected someone was trying to break in to your system, you could run this script via
cron every 10 minutes, in the hopes of isolating that accounts that were being targeted:

0,10,20,30,40,50 * * * * /pin/sh /var/adm/chk_badlogin

Similarly, if you are having a performance problem, you could use cron to automati-
cally run various system performance monitoring commands or scripts at regular
intervals to track performance problems over time.

The remainder of this section will consider two built-in facilities for accomplishing
the same purpose under FreeBSD and Linux.

FreeBSD: The periodic command. FreeBSD provides the periodic command for the pur-
poses we’ve just considered. This command is used in conjunction with the cron
facility and serves as a method of organizing recurring administrative tasks. It is used
by the following three entries from /etc/crontab:

1 3 * * *x 7yoot periodic daily

15 4 * * 6 root periodic weekly

30 5 1 * * oot periodic monthly
The command is run with the argument daily each day at 3:01 A.M., with weekly on
Saturdays at 4:15 A.M., and with monthly at 5:30 A.M. on the first of each month.

The facility is controlled by the /etc/defaults/periodic.conf file, which specifies its
default behavior. Here are the first few lines of a sample file:

#!/bin/sh

#

What files override these defaults ?
periodic_conf_files="/etc/periodic.conf /etc/periodic.conf.local"

Essential Administrative Techniques | 97

This entry specifies the files that can be used to customize the facility’s operation.
Typically, changes to the default settings are all that appear in these files. The sys-
tem administrator must create a local configuration file if desired, because none is
installed by default.

The command form periodic name causes the command to run all of the scripts that
it finds in the specified directory. If the latter is an absolute pathname, there is no
doubt as to which directory is intended. If simply a name—such as daily—is given,
the directory is assumed to be a subdirectory of /etc/periodic or of one of the alter-
nate directories specified in the configuration file’s local_periodic entry:

periodic script dirs
local_periodic="/usr/local/etc/periodic /usr/X11R6/etc/periodic"

letc/periodic is always searched first, followed by the list in this entry.

The configuration file contains several entries for valid command arguments that
control the location and content of the reports that periodic generates. Here are the
entries related to daily:

daily general settings

daily output="root" Email report to root.
daily_show_success="YES" Include success messages.

daily show_info="YES" Include informational messages.
daily show _badconfig="NO" Exclude configuration error messages.

These entries produce rather verbose output, which is sent via email to root. In con-
trast, the following entries produce a minimal report (just error messages), which is
appended to the specified log file:

daily output="/var/adm/day.log" Append report to a file.

daily show_success="NO"

daily_show_info="NO"

daily_show_badconfig="N0"
The bulk of the configuration file defines variables used in the scripts themselves, as
in these examples:

100.clean-disks

daily clean_disks_enable="NO"# Delete files daily

daily clean disks files="[#,]* .#* a.out *.core .emacs [0-9]*"

daily clean disks days=3# If older than this

daily clean_disks_verbose="YES"# Mention files deleted

340.noid

weekly noid _enable="YES# Find unowned files
weekly noid_dirs="/"# Start here

The first group of settings are used by the /etc/periodic/daily/100.clean-disks script,
which deletes junk files from the filesystem. The first one indicates whether the script
should perform its actions or not (in this case, it is disabled). The next two entries
specify specific characteristics of the files to be deleted, and the final entry deter-
mines whether each deletion will be logged or not.

98 | Chapter3: Essential Administrative Tools and Techniques

The second section of entries apply to /etc/periodic/weekly/340.noid, a script that
searches the filesystem for files owned by an unknown user or group. This excerpt
from the script itself will illustrate how the configuration file entries are actually used:

case "$weekly noid enable" in
[Yy]l[Ee][Ss]) Value is yes.
echo "Check for files with unknown user or group:"
rc=$(find -H ${weekly noid dirs:-/} -fstype local \
\(-nogroup -o -nouser \) -print | sed 's/*/ /' |
tee /dev/stderr | wc -1)
[$rc -gt 1] 8& rc=1;;

*) 1c=0;; Any other value.
esac
exit $rc

If weekly_noid_enable is set to “yes,” then a message is printed with echo, and a pipe
comprised of find, sed, tee and wc runs (which lists the files and then the total num-
ber of files), producing a report like this one:
Check for files with unknown user or group:
/tmp/junk
/home/jack
2

The script goes on to define the variable r¢ as the appropriate script exit value
depending on the circumstances.

You should become familiar with the current periodic configuration and compo-
nent scripts on your system. If you want to make additions to the facility, there are
several options:

* Add a crontab entry running periodic /dir, where periodic’s argument is a full
pathname. Add scripts to this directory and entries to the configuration file as
appropriate.

* Add an entry of the form periodic name and create a subdirectory of that name
under /etc/periodic or one of the directories listed in the configuration file’s local
periodic entry. Add scripts to the subdirectory and entries to the configuration
file as appropriate.

* Use the directory specified in the daily_local setting (or weekly or monthly, as
desired) in /etc/defaults/periodic.conf (by default, this is /etc/{daily,weekly,monthly).
local). Add scripts to this directory and entries to the configuration file as
appropriate.

I think the first option is the simplest and most straightforward. If you do decide to
use configuration file entries to control the functioning of a script that you create, be
sure to read in its contents with commands like these:

if [-r /etc/defaults/periodic.conf]

then
. /etc/defaults/periodic.conf

Essential Administrative Techniques | 99

source_periodic_confs
fi

You can use elements of the existing scripts as models for your own.

Linux: The /etc/cron.* directories. Linux systems provide a similar mechanism for orga-
nizing regular activities, via the /etc/cron.* subdirectories. On Red Hat systems, these
scripts are run via these crontab entries:

01 * * * * root run-parts /etc/cron.hourly

02 4 * * * root run-parts /etc/cron.daily

22 4 * * 0 root run-parts /etc/cron.weekly

42 4 1 * * root run-parts /etc/cron.monthly
On SuSE systems, the script /ust/lib/cron/run-crons runs them; the script itself is exe-
cuted by cron every 15 minutes. The scripts in the corresponding subdirectories are
run slightly off the hour for /etc/cron.hourly and around midnight (SuSE) or 4 A.M.
(Red Hat). Customization consists of adding scripts to any of these subdirectories.

Under SuSE 8, the /etc/sysconfig/cron configuration file contains settings that control
the actions of some of these scripts.

cron security issues

cron’s security issues are of two main types: making sure the system crontab files are
secure and making sure unauthorized users don’t run commands using cron. The
first problem may be addressed by setting (if necessary) and checking the ownership
and protection on the crontab files appropriately. (In particular, the files should not
be world-writeable.) Naturally, they should be included in any filesystem security
monitoring that you do.

The second problem, ensuring that unauthorized users don’t run commands via
cron, is addressed by the files cron.allow and cron.deny. These files control access to
the crontab command. Both files contain lists of usernames, one per line. Access to
crontab is controlled in the following way:

* If cron.allow exists, a username must be listed within it in order to run crontab.

¢ If cron.allow does not exist but cron.deny does exist, any user not listed in cron.
deny may use the crontab command. cron.deny may be empty to allow unlim-
ited access to cron.

* If neither file exists, only root can use crontab, except under Linux and FreeBSD,
where the default build configuration of cron allows everyone to use it.

These files control only whether a user can use the crontab command
or not. In particular, they do not affect whether any existing crontab
entries will be executed. Existing entries will be executed until they are
removed.

The locations of the cron access files on various Unix systems are listed in Table 3-3.

100 | Chapter3: Essential Administrative Tools and Techniques

System Messages

The various normal system facilities all generate status messages in the course of
their normal operations. In addition, error messages are generated whenever there
are hardware or software problems. Monitoring such messages—and acting upon
important ones—is one of the system administrator’s most important ongoing
activities.

In this section, we first consider the syslog subsystem, which provides a centralized
system message collection facility. We go on to consider the hardware-error logging
facilities provided by some Unix systems, as well as tools for managing and process-
ing the large amount of system message data that can accumulate.

The syslog facility

The syslog message-logging facility provides a more general way to specify where and
how some types of system messages are saved. Table 3-5 lists the components of the
syslog facility.

Table 3-5. Variations on the syslog facility

Component Location and information
syslogd option to reject AIX: -1
nonlocal messages FreeBSD: -s
HP-UX: -N
Linux: - to allow remote messages
Solaris: -t

Tru64: List allowed hosts in /etc/syslog.auth (if if doesn't exist, all hosts are allowed)

File containing PID of syslogd Usual: /var/run/syslog.pid
AIX: /etc/syslog.pid

Current general message log file Usual: /var/log/messages
HP-UX: /var/adm/syslog/syslog.log
Solaris: /var/adm/messages
Tru64: /var/adm/syslog.dated/current/*.log

Boot script that starts syslogd AIX: /etc/rc.tepip
FreeBSD: /etc/rc
HP-UX: /sbin/init.d/syslogd
Linux: /etc/init.d/syslog
Solaris: /etc/init.d/syslog
Tru64: /sbin/init.d/syslog
Boot script configuration file: Usual: none used
syslog-related entries FreeBSD: /etc/rc.conf: syslogd_enable="YES” and syslogd_flags="opts”

SuSE Linux: /etc/rc.config (SuSE 7), /etc/sysconfig/syslog (SuSE 8); SYSLOGD_
PARAMS="opts” and KERNEL_LOGLEVEL=n

Essential Administrative Techniques | 101

Configuring syslog

Messages are written to locations you specify by syslogd, the system message log-
ging daemon. syslogd collects messages sent by various system processes and routes
them to their final destination based on instructions given in its configuration file /
etc/syslog.conf. Syslog organizes system messages in two ways: by the part of the sys-
tem that generated them and by their importance.

Entries in syslog.conf have the following format, reflecting these divisions:
facility.level destination

where facility is the name of the subsystem sending the message, level is the severity
level of the message, and destination is the file, device, computer or username to send
the message to. On most systems, the two fields must be separated by tab characters
(spaces are allowed under Linux and FreeBSD).

There are a multitude of defined facilities. The most important are:

kern
The kernel.

user
User processes.
mail
The mail subsystem.
Ipr
The printing subsystem.
daemon
System server processes.

auth
The user authentication system (nonsensitive information).
authpriv
The user authentication system (security sensitive information). Some systems
have only one of auth and authpriv.
fip
The FTP facility.
cron
The cron facility.
syslog
Syslog facility internal messages.
mark
Timestamps produced at regular intervals (e.g., every 15 minutes).

local*
Eight local message facilities (0-7). Some operating systems use one or more of
them.

102 | Chapter3: Essential Administrative Tools and Techniques

Download from Wow! eBook <www.wowebook.com>

Note that an asterisk for the facility corresponds to all facilities except mark.
The severity levels are, in order of decreasing seriousness:
emerg
System panic.
alert
Serious error requiring immediate attention.
crit
Critical errors like hard device errors.

err
Other errors.

warning
Warnings.
notice
Noncritical messages.
info
Informative messages.
debug
Extra information helpful for tracking down problems.
none
Ignore messages from this facility.

mark
Selects timestamp messages (generated every 20 minutes by default). This facility
is not included by the asterisk wildcard (and you wouldn’t really want it to be).

Multiple facility-level pairs may be included on one line by separating them with semi-
colons; multiple facilities may be specified with the same severity level by separating
them with commas. An asterisk may be used as a wildcard throughout an entry.

Here are some sample destinations:

/var/log/messages Send to a file (specify full pathname).
@scribe.ahania.com Send to syslog facility on a different host.
root Send message to a user...
root,chavez,ng ...or list of users.

* Send message via wall to all logged-in users.

All of this will be much clearer once we look at a sample syslog.conf file:

*.err;auth.notice /dev/console
*.err;daemon,auth.notice;mail.crit /var/log/messages
1pr.debug /var/adm/lpd-errs
mail.debug /var/spool/mqueue/syslog
*.alert root

*.emerg *

auth.info;*.warning @hamlet

*.debug /dev/tty01

Essential Administrative Techniques | 103

The first line prints all errors, as well as notices from the authentication system (indi-
cating successful and unsuccessful su commands) on the console. The second line
sends all errors, daemon and authentication system notices, and all critical errors
from the mail system to the file /var/log/messages.

The third and fourth lines send printer and mail system debug messages to their
respective error files. The fifth line sends all alert messages to user root, and the sixth
line sends all emergency messages to all users.

The final two lines send all authentication system nondebugging messages and the
warnings and errors from all other facilities to the syslogd process on host hamlet,
and it displays all generated messages on tty01.

You may modify this file to suit the needs of your system. For example, to create a
separate sulog file, add a line like the following to syslog.conf:

auth.notice /var/adm/sulog

All messages are appended to log files; thus, you’ll need to keep an eye on their size
and truncate them periodically when they get too big. This topic is discussed in
detail in “Administering Log Files,” later in this chapter.

R

On some systems, a log file must already exist when the syslogd pro-
cess reads the configuration file entry referring to it in order for it to be
1kt recognized. In other words, on these systems, you'll need to create an
* empty log file, add a new entry to syslog.conf, and signal (kill -HUP)
or restart the daemon in order to add a new log file.

Don’t make the mistake of using commas when you want semicolons. For example,
the following entry sends all cron messages at the level of warn and above to the indi-
cated file (as well as the same levels for the printing subsystem):

cron.err,lpr.warning /var/log/warns.log

Why are warnings included for cron? Each successive severity applies in order,
replacing previous ones, so warning replaces err for cron. Entries can include lists of
facility-severity pairs and lists of facilities at the same severity level, but not lists
including both multiple facilities and severity levels. For these reasons, the following
entry will log all error level and higher messages for all facilities:

*.warning,cron.err /var/log/errs.log

Enhancements to syslog.conf

Several operating systems offer enhanced versions of the syslog configuration file,
which we will discuss by example.

AIX. On AIX systems, there are some additional optional fields beyond the destination:

facility-level destination rotate size s files n time t compress archive path

104 | Chapter3: Essential Administrative Tools and Techniques

For example:
*.warn @scribe rotate size 2m files 4 time 7d compress

The additional parameters specify how to handle log files as they grow over time.
When they reach a certain size and/or age, the current log file will be renamed to
something like name.0, existing old files will have their extensions incremented and
the oldest file(s) may be deleted.

The rotate keyword introduces these parameters, and the others have the following
meanings:

size's
Size threshold: rotate the log when it is larger than this. s is followed by k or m
for KB and MB, respectively.

time t
Time threshold: rotate the log when it is older than this. ¢ is followed by h, d, w,
m, or y for hours, days, weeks, months, or years, respectively.

files n
Keep at most # files.

compress
Compress old files.

archive path
Move older files to the specified location.

FreeBSD and Linux. Both FreeBSD and Linux systems extend the facility.severity syn-
tax:

.=severity
Severity level is exactly the one specified.

I=severity
Severity level is anything other than the one specified (Linux only).

.<=severity
Severity level is lower than or equal to the one specified (FreeBSD only). The .<
and .> comparison operators are also provided (as well as .>= equivalent to the
standard syntax).

Both operating systems also allow pipes to programs as message destinations, as in
this example, which sends all error-severity messages to the specified program:

*.=err|/usr/local/sbin/save_errs

FreeBSD also adds another unusual feature to the syslog.conf file: sections of the file
which are specific to a host or a specific program.” Here is an example:

* Naturally, this feature will probably not work outside of the BSD environment.

Essential Administrative Techniques | 105

handle messages from host europa
+europa
mail.>debug/var/log/mailsrv.log

kernel messages from every host but callisto
-callisto
kern.*/var/log/kern all.log

messages from ppp

'ppp

./var/log/ppp.log
These entries handle non-debug mail messages from europa, kernel messages from
every host except callisto, and all messages from ppp from every host but callisto. As
this example illustrates, host and program settings accumulate. If you wanted the ppp
entry to apply only to the local system, you’d need to insert the following lines before
its entries to restore the host context to the local system:

reset host to local system

+0
A program context may be similarly cleared with !*. In general, it’s a good idea to
place such sections at the end of the configuration file to avoid unintended interac-
tions with existing entries.

Solaris. Solaris systems use the m4 macro preprocessing facility to process the syslog.
conf file before it is used (this facility is discussed in Chapter 9). Here is a sample file
containing m4 macros:

Send mail.debug messages to network log host if there is one.
mail.debug ifdef("LOCHOST", /var/log/syslog, @loghost)

On non-loghost machines, log "user" messages locally.
ifdef(LOGHOST', ,

user.err/var/adm/messages

user.emerg*

)

Both of these entries differ depending on whether macro LOGHOST is defined. In
the first case, the destination differs, and in the second section, entries are included
in or excluded from the file based on its status:

Resulting file when LOGHOST is defined (i.e., this host is the central logging host):

Send mail.debug messages to network log host if there is one.
mail.debug/var/log/syslog

Resulting file when LOGHOST is undefined:
Send mail.debug messages to network log host if there is one.
mail.debug@loghost

user.err/var/adm/messages
user.emerg*

106 | Chapter3: Essential Administrative Tools and Techniques

On the central logging host, you would need to add a definition macro to the config-
uration file:

define("LOGHOST', ~localhost')

The Tru64 syslog log file hierarchy. On Tru64 systems, the syslog facility is set up to log
all system messages to a series of log files named for the various syslog facilities. The
syslog.conf configuration file specifies their location as, for example, /var/adm/syslog.
dated/*/auth.log. When the syslogd daemon encounters such a destination, it auto-
matically inserts a final subdirectory named for the current date into the pathname.
Only a week’s worth of log files are kept; older ones are deleted via an entry in root’s
crontab file (the entry is wrapped to fit):

40 4 * * * find /var/adm/syslog.dated/* -depth -type d
-ctime +7 -exec rm -rf {} \;

The logger utility

The logger utility can be used to send messages to the syslog facility from a shell
script. For example, the following command sends an alert-level message via the auth
facility:
logger -p auth.alert -t DOT_FILE_CHK \
"$user's $file is world-writeable"
This command would generate a syslog message like this one:
Feb 17 17:05:05 DOT_FILE CHK: chavez's .cshrc is world-writable.

The logger command also offers a -i option, which includes the process ID within
the syslog log message.

Hardware Error Messages

Often, error messages related to hardware problems appear within system log files.
However, some Unix versions also provide a separate facility for hardware-related
error messages. After considering a common utility (dmesg), we will look in detail at
those used under AIX, HP-UX, and Tru64.

The dmesg command is found on FreeBSD, HP-UX, Linux, and Solaris systems. It is
primarily used to examine or save messages from the most recent system boot, but
some hardware informational and error messages also go to this facility, and examin-
ing its data may be a quick way to view them.

Here is an example from a Solaris system (output is wrapped):

$ dmesg | egrep 'down|up’

Sep 30 13:48:05 astarte eri: [ID 517527 kern.info] SUNW,erio :
No response from Ethernet network : Link down -- cable problem?
Sep 30 13:49:17 astarte last message repeated 3 times

Sep 30 13:49:38 astarte eri: [ID 517527 kern.info] SUNW,erio :

Essential Administrative Techniques | 107

No response from Ethernet network : Link down -- cable problem?
Sep 30 13:50:40 astarte last message repeated 3 times

Sep 30 13:52:02 astarte eri: [ID 517527 kern.info] SUNW,erio :
100 Mbps full duplex link up

In this case, there was a brief network problem due to a slightly loose cable.

The AlX error log

AIX maintains a separate error log, /var/adm/ras/errlog, supported by the errdemon
daemon. This file is binary, and it must be accessed using the appropriate utilities:
errpt to view reports from it and errclear to remove old messages.

Here is an example of errpt’s output:

IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION

C60BB505 0807122301 P S SYSPROC SOFTWARE PROGRAM ABNORMALLY TERMINATED
369D049B 0806104301 I O SYSPFS UNABLE TO ALLOCATE SPACE IN FILE SYSTEM
112FBB44 0802171901 T H ento ETHERNET NETWORK RECOVERY MODE

This command produces a report containing one line per error. You can produce
more detailed information using options:

LABEL: JFS_FS_FRAGMENTED
IDENTIFIER: 5DFED6F1

Date/Time: Fri Oct 5 12:46:45
Sequence Number: 430

Machine Id: 000C2CAD4C00

Node Id: arrakis

(lass: 0

Type: INFO

Resource Name: SYSPFS

Description
UNABLE TO ALLOCATE SPACE IN FILE SYSTEM

Probable Causes
FILE SYSTEM FREE SPACE FRAGMENTED

Recommended Actions
CONSOLIDATE FREE SPACE USING DEFRAGFS UTILITY

Detail Data

MAJOR/MINOR DEVICE NUMBER

000A 0006

FILE SYSTEM DEVICE AND MOUNT POINT
/dev/hd9var, /var

This error corresponds to an instance where the operating system was unable to sat-
isfy an 1/O request because the /var filesystem was too fragmented. In this case, the
recommended actions provide a solution to the problem.

A report containing all of the errors would be very lengthy. However, I use the fol-
lowing script to summarize the data:

108 | Chapter3: Essential Administrative Tools and Techniques

#1/bin/csh

errpt | awk '{print $1}' | sort | uniq -c | \
grep -v IDENT > /tmp/err_junk
printf "Error \t# \tDescription: Cause (Solution)\n\n"
foreach f (“cat /tmp/err junk | awk '{print $2}'")
set count = “grep $f /tmp/err_junk | awk '{print $1}'"
set desc = “grep $f /var/adm/errs.txt | awk -F: '{print $2}'"
set cause = “grep $f /var/adm/errs.txt | awk -F: '{print $3}"°
set solve = “grep $f /var/adm/errs.txt | awk -F: '{print $4}'"
printf "%s\ths\t%hs: %s (%s)\n" $f $count \
"$desc" "$cause

$solve”

end

m -f /tmp/err_junk
The script is a quick-and-dirty approach to the problem; a more elegant Perl version
would be easy to write, but this script gets the job done. It relies on an error type
summary file 've created from the detailed errpt output, /var/adm/errs.txt. Here are
a few lines from that file (shortened):

071F4755:ENVIRONMENTAL PROBLEM:POWER OR FAN COMPONENT:RUN DIAGS.

0D1F562A:ADAPTER ERROR:ADAPTER HARDWARE:IF PROBLEM PERSISTS, ...

112FBB44:ETHERNET NETWORK RECOVERY MODE:ADAPTER:VERIFY ADAPTER ...
The advantage of using a summary file is that the script can produce its reports from
the simpler and faster default errpt output.

Here is an example report (wrapped):

Error # Description: Cause (Solution)

071F4755 2 ENVIRONMENTAL PROBLEM: POWER OR FAN
COMPONENT (RUN SYSTEM DIAGNOSTICS.)

0D1F562A 2 ADAPTER ERROR: ADAPTER HARDWARE (IF

PROBLEM PERSISTS, CONTACT APPROPRIATE
SERVICE REPRESENTATIVE)

112FBB44 2 ETHERNET NETWORK RECOVERY MODE: ADAPTER
HARDWARE (VERIFY ADAPTER IS INSTALLED
PROPERLY)

369D0498B 1 UNABLE TO ALLOCATE SPACE IN FILE SYSTEM:

FILE SYSTEM FULL (INCREASE THE SIZE OF THE
ASSOCIATED FILE SYSTEM)

476B351D 2 TAPE DRIVE FAILURE: TAPE DRIVE (PERFORM
PROBLEM DETERMINATION PROCEDURES)

499B30CC 3 ETHERNET DOWN: CABLE (CHECK CABLE AND
ITS CONNECTIONS)

SDFED6F1 1 UNABLE TO ALLOCATE SPACE IN FILE SYSTEM:
FREE SPACE FRAGMENTED (USE DEFRAGFS UTIL)

C60BB505 268 SOFTWARE PROGRAM ABNORMALLY TERMINATED:

SOFTWARE PROGRAM (CORRECT THEN RETRY)

The errclear command may be used to remove old messages from the error log. For
example, the following command removes all error messages over two weeks old:

errclear 14

Essential Administrative Techniques | 109

The error log is a fixed-size file, used as a circular buffer. You can determine the size
of the file with the following command:

/usr/lib/errdemon -1
Error Log Attributes

Log File /var/adm/ras/errlog
Log Size 1048576 bytes
Memory Buffer Size 8192 bytes

The daemon is started by the file /sbin/rc.boot. You can modify its startup line to
change the size of the log file by adding the -s option. For example, the following
addition would set the size of the log file to 1.5 MB:

/usr/lib/errdemon -i /var/adm/ras/errlog -s 1572864

The default size of 1 MB is usually sufficient for most systems.

Viewing errors under HP-UX. The HP-UX xstm command may be used to view errors on
these systems (stored in the files /var/stm/logs/os/log*.raw®. It is illustrated in
Figure 3-1.

The main window appears in the upper left corner of the illustration. It shows a hier-
archy of icons corresponding to the various peripheral devices present on the sys-
tem. You can use various menu items to determine information about the devices
and their current status.

Selecting the Tools — Utility = Run menu path and then choosing logtool from the
list of tools initiates the error reporting utility (see the middle window of the left col-
umn in the illustration). Select the File = Raw menu path and then the current log
file to view a summary report of system hardware status, given in the bottom win-
dow in the left column of the figure. In this example, we can see that there have been
417 errors recorded during the lifetime of the log file.

Next, we select File » Formatted Log to view the detailed entries in the log file (the
process is illustrated in the right column of the figure). In the example, we are look-
ing at an entry corresponding to a SCSI tape drive. This entry corresponds to a
power-off of the device.

Command-line and menu-oriented versions of xstm can be started with cstm and
mstm, respectively.

The Tru64 binary error logger. Tru64 provides the binlogd binary error logging server in
addition to syslogd. It is configured via the /etc/binlog.conf file:

* K /usr/adm/binary.errlog
dumpfile /usxr/adm/crash/binlogdumpfile

The first entry sends all error messages that binlogd generates to the indicated file.
The second entry specifies the location for a crash dump.

110 | Chapter3: Essential Administrative Tools and Techniques

Figure 3-1. View hardware errors under HP-UX

Messages may also be sent to another host. The /etc/binlog.auth file controls access to
the local facility. If it exists, it lists the hosts that are allowed to forward messages to
the local system.

You can view reports using the uerf and dia commands. I prefer the latter, although
uerf is the newer command.

dia’s default mode displays details about each error, and the -0 brief option pro-
duces a short description of each error.

[use the following pipe to get a smaller amount of output:”

dia | egrep '~(Event seq)|(Entry typ)|(ASCII Mes.*[a-z])’
Event sequence number 10.

Entry type 300. Start-Up ASCII Message Type
Event sequence number 11.

* The corresponding uerf command is uerf | egrep '~SEQU|MESS'.

Essential Administrative Techniques | 111

Entry type 250. Generic ASCII Info Message Type

ASCII Message Test for EVM connection of binlogd
Event sequence number 12.

Entry type 310. Time Stamp

Event sequence number 13.

Entry type 301. Shutdown ASCII Message Type

ASCII Message System halted by root:

Event sequence number 14.

Entry type 300. Start-Up ASCII Message Type

This command displays the sequence number, type, and human-readable descrip-
tion (if present) for each message. In this case, we have a system startup message, an
event manager status test of the binlogd daemon, a timestamp record, and finally a
system shutdown followed by another system boot. Any messages of interest could
be investigated by viewing their full record. For example, the following command
displays event number 13:

dia -e s:13 e:13

A w
y

You can send a message to the facility with the logger -b command.

Q‘
*1

Administering Log Files

There are two more items to consider with respect to managing the many system log
files: limiting the amount of disk space they consume while simultaneously retaining
sufficient data for projected future requirements, and monitoring the contents of
these log files in order to identify and act upon important entries.

Managing log file disk requirements

Unchecked, log files grow without bounds and can quickly consume quite a lot of
disk space. A common solution to this situation is to keep only a fraction of the his-
torical data on disk. One approach involves periodically renaming the current log file
and keeping only a few recent versions on the system. This is done by periodically
deleting the oldest one, renaming the current one, and then recreating it.

For example, here is a script that keeps the last three versions of the su.log file in
addition to the current one:

#1/bin/sh
cd /var/adm
if [-r su.log.1]; then
mv -f su.log.1 su.log.2
fi
if [-r su.log.0]; then
mv -f su.log.0 su.log.1
fi
if [-r su.log]; then

112 | Chapter3: Essential Administrative Tools and Techniques

cp su.log su.log.o Copy the current log file.

fi

cat /dev/null > su.log Then truncate it.
There are three old su.log files at any given time: su.log.0 (the previous one), su.log.1,
and su.log.2, in addition to the current su.log file. When this script is executed, the
su.log.n files are renamed to move them back: 1 becomes 2, 0 becomes 1, and the
current su.log file becomes su.log.0. Finally, a new, empty file for current su mes-
sages is created. This script could be run automatically each week via cron, and the
last month’s worth of su.log files will always be on the system (and no more).

Make sure that all the log files get backed up on a regular basis so that
older ones can be retrieved from backup media in the event that their
information is needed.

Note that if you remove active log files, the disk space won’t actually be released
until you send a HUP signal to the associated daemon process holding the file open
(usually syslogd). In addition, you’ll then need to recreate the file for the facility to
function properly. For these reasons, removing active log files is not recommended.

As we've seen, some systems provide automatic mechanisms for accomplishing the
same thing. For example, AIX has built this feature into its version of syslog.

FreeBSD provides the newsyslog facility for performing this task (which is run hourly
from cron by default). It rotates log files based on the directions in its configuration
file, /etc/newsyslog.conf:

file [own:grp] mode # sz when [ZB] [/pid_file] [sig]
/var/log/cron 600 3 100 * Z
/var/log/amd.log 644 7 100 * Z
/var/log/lpd-errs 644 7 100 * z
/var/log/maillog 644 7 * $p0 Z

The fields hold the following information:
* the pathname to the log file
* the user and group ownership it should be assigned (optional)
* the file mode
* the number of old files that should be retained
* the size at which the file should be rotated
* the time when the file should be rotated

* a flag field (Z says to compress the file; B specifies that it is a binary log file and
should be treated accordingly)

* the path to the file holding the process ID of the daemon that controls the file

* the numeric signal to send to that daemon to reinitialize it

The last three fields are optional.

Essential Administrative Techniques | 113

Thus, the first entry in the previous example configuration file processes the cron log
file, protecting it against all non-root access, rotating it when it is larger than 100 KB,
and keeping three compressed old versions on the system. The next two entries
rotate the corresponding log file at the same point, using a seven-old-files cycle. The
final entry rotates the mail log file every day at midnight, again retaining seven old
files. The “when” field is specified via a complex set of codes (see the manual page
for details).

If both an explicit size and time period are specified (i.e., not an asterisk), rotation
occurs when either condition is met.

Red Hat Linux systems provide a similar facility via logrotate, written by Erik
Troan. It is run daily by default via a script in /etc/cron.daily, and its operations are
controlled by the configuration file, /etc/logrotate.conf.

Here is an annotated example of the logrotate configuration file:

global settings

errors root Mail errors to root.
compress Compress old files.
create Create new empty log files after rotation.
weekly Default cycle is 7 days.
include /etc/logrotate.d Import the instructions in the files here.
/var/log/messages { Instructions for a specific file.

rotate 5 Keep 5 files.

weekly Rotate weekly.

postrotate Run this command after rotating,

/sbin/killall -HUP syslogd to activate the new log file.
endscript
}

This file sets some general defaults and then defines the method for handling the /var/
log/messages file. The include directive also imports the contents of all files in the /etc/
logrotate.d directory. Many software packages place in this location files containing
instructions for how their own log files should be handled.

R

logrotate is open source and can be built on other Linux and Unix
systems as well.

Monitoring log file contents

It is very easy to generate huge amounts of logging information very quickly. You’ll
soon find that you’ll want some tool to help you sift through it all, finding the few
entries of any real interest or importance. We'll look at two of them in this subsection.

The swatch facility, written by E. Todd Atkins, is designed to do just that. It runs in a
variety of modes: examining new entries as they are added to a system log file, moni-

114 | Chapter3: Essential Administrative Tools and Techniques

toring an output stream in real time, checking through a file on a one-time basis, and
so on. When it recognizes a pattern you have specified in its input, it can perform a
variety of actions. Its home page (at the moment) is http://oit.ucsb.edu/~eta/swatch/.

Swatch’s configuration file specifies what information the facility should look for and
what it should do when it finds that information. Here is an example:

Syntax:

event action

#

network events

/refused/ echo,bell,mail=root

/connect from iago/ mail=chavez

#

other syslog events

/(uk|usa).*file system full/exec="wall /etc/fs.full"

/panic|halt/exec="/usr/sbin/bigtrouble"
The first two entries search for specific syslog messages related to network access
control. The first one matches any message containing the string “refused”. Patterns
are specified between forward slashes using regular expressions, as in sed. When
such an entry is found, swatch copies it to standard output (echo), rings the terminal
bell (bell), and sends mail to root (mail). The second entry watches for connections
from the host iago and sends mail to user chavez whenever one occurs.

The third entry matches the error messages generated when a filesystem fills up on
host usa or host uk; in this case, it runs the command wall /etc/fs.full (this form
of wall displays the contents of the specified file to all logged-in users). The fourth
entry runs the bigtrouble command when the system is in severe distress.

This file focuses on syslog events, presumably sent to a central logging host, but
swatch can be used to monitor any output. For example, it could watch the system
error log for memory parity errors.

The following swatch command could be used to monitor the contents of the /var/
adm/messages file, using the configuration file specified with the -c option:

swatch -c /etc/swatch.config -t /var/adm/messages

The -t option says to continuously examine the tail of the file (in a manner analo-
gous to tail -f). This command might be used to start a swatch process in a win-
dow that could be periodically monitored throughout the day. Other useful swatch
options are -f, which scans a file once for matching entries (useful when running
swatch via cron), and -p, which monitors the output from a running program.

Another great, free tool for this purpose is logcheck from Psionic Software (http:/
www.psionic.com/abacus/logcheck/). We’ll consider its use in Chapter 7.

Managing Software Packages

Most Unix versions provide utilities for managing software packages: bundled collec-
tions of programs that provide a particular feature or functionality, delivered via a

Essential Administrative Techniques | 115

single archive. Packaging software is designed to make adding and removing pack-
ages easier. Each operating system we are considering provides a different set of
tools.” The various offerings are summarized in Table 3-6.

Table 3-6. Software package management commands

Function Command2
List installed packages AlX:1slpp -1 all
FreeBSD: pkg_info -a -Ib
HP-UX: swlist
Linux: rpm -q -a
Solaris: pkginfo
Tru64: setld -i
Describe package FreeBSD: pkg_info
HP-UX: swlist -v
Linux: rpm -q -i

Solaris: pkginfo -1

List package contents AIX:1s1pp -f
FreeBSD: pkg info -L
HP-UX: swlist -1 file
Linux: rpm -q -1
Solaris: pkgchk -1
Tru64: setld -i

List prerequisites AIX:1s1pp -p
Linux: rpm -q ---requires
Show file’s original package AIX:1s1lpp -w
Linux: rpm -q - - -whatprovides

Solaris: pkgchk -1 -p

List available packages on media AlX:installp -1 -d device

FreeBSD: sysinstall

Configure — Packages
HP-UX: swlist -s path [-1 type]
Linux: 1s /path-to-RPMs

yast2 Install/Remove software (SuSE)
Solaris: 1s /path-to-packages

Tru64: setld -i -D path

* The freely available epm utility can generate native format packages for many Unix versions including AIX,
BSD and Linux. It is very useful for distributing locally developed packages in a heterogeneous environment.
See http://www.easysw.com/epm/ for more information.

116 | Chapter3: Essential Administrative Tools and Techniques

Table 3-6. Software package management commands (continued)

Function Commanda

Install package AIX: installp -acX
FreeBSD: pkg add
HP-UX: swinstall
Linux: rpm -1
Solaris: pkgadd
Tru64: setld -1

Preview installation AIX: installp -p
FreeBSD: pkg_add -n
HP-UX: swinstall -p
Linux:xpm -i --test

Verify package AlX:installp -a -v
Linux: rpm -V
Solaris: pkgchk
Tru64: fverify
Remove package AlX:installp -u
FreeBSD: pkg_delete
HP-UX: swremove

Linux: rpm -e

Solaris: pkgrm

Tru64: setld -d
Menu/GUI interface for package management AIX: smit

HP-UX: sam swlist -i swinstall
Linux: xrpm, gnorpm yast2 (SuSE)
Solaris: admintool

Tru64: sysman

a On Linux systems, add the -p pkg option to examine an uninstalled RPM package.
b Note that this option is an uppercase | (“eye”). All similar-looking option letters in this table are lowercase I's (“ells”).

These utilities all work in a very similar manner, so we will consider only one of them
in detail, focusing on the Solaris commands and a few HP-UX commands as examples.

We'll begin by considering the method to list currently installed packages. Gener-
ally, this is done by running the general listing command, possibly piping its output
to grep to locate packages of interest. For example, this command searches a Solaris
system for installed packages related to file compression:

pkginfo | grep -i compres

system SUNWbzip The bzip compression utility

system SUNWbzipx The bzip compression library (64-bit)
system SUNWgzip The GNU Zip (gzip) compression utility
system SUNWzip The Info-Zip (zip) compression utility
system SUNWz1ib The Zip compression library

system SUNWz1ibx The Info-Zip compression 1lib (64-bit)

Essential Administrative Techniques | 117

To find out more information about a package, we add an option and package name
to the listing command. In this case, we display information about the bzip package:
pkginfo -1 SUNWbzip
PKGINST: SUNWbzip

NAME: The bzip compression utility
CATEGORY: system

ARCH: sparc
VERSION: 11.8.0,REV=2000.01.08.18.12
BASEDIR: /

VENDOR: Sun Microsystems, Inc.
DESC: The bzip compression utility
STATUS: completely installed
FILES: 21 installed pathnames
9 shared pathnames
2 linked files
9 directories
4 executables
382 blocks used (approx)

Other options allow you to list the files and subdirectories in the package. On Solaris
systems, this produces a lot of output, so we use grep to reduce it to a simple list (a
step that is unnecessary on most systems):

pkgchk -1 SUNWbzip | grep ~Pathname: | awk '{print $2}'

/usr Subdirectories in the package are created on
/usr/bin install if they do not already exist.
/usr/bin/bunzip2

/usr/bin/bzcat

/usx/bin/bzip2

It is also often possible to find out the name of the package to which a given file
belongs, as in this example:

pkgchk -1 -p /etc/syslog.conf

Pathname: /etc/syslog.conf

Type: editted file

Expected mode: 0644

Expected owner: root

Expected group: sys

Referenced by the following packages:

SUNWcsr
Current status: installed

This configuration file is part of the package containing the basic system utilities.

When you want to install a new package, you use a command like this one, which
installs the GNU C compiler from the CD-ROM mounted under /cdrom (s8-
software-companion is the Companion Software CD provided with Solaris 8):

pkgadd -d /cdrom/s8-software-companion/components/sparc/Packages SFWgcc
Removing an installed package is also very simple:

pkgrm SFWbzip

118 | Chapter3: Essential Administrative Tools and Techniques

You can use the pkgchk command to verify that a software package is installed cor-
rectly and that none of its components has been modified since then.

Sometimes you want to list all of the available packages on a CD or tape. On
FreeBSD, Linux, and Solaris systems, you accomplish this by changing to the appro-
priate directory and running the 1s command. On others, an option to the normal
installation or listing command performs this function. For example, the following
command lists the available packages on the tape in the first drive:

swlist -s /dev/rmt/om

HP-UX: Bundles, products, and subproducts

HP-UX organizes software packages into various units. The smallest unit is the fileset
which contains a set of related file that can be managed as a unit. Subproducts con-
tain one or more filesets, and products are usually made up of one or more subprod-
ucts (although a few contain the filesets themselves). For example, the fileset
MSDOS-Utils.Manuals. DOSU-ENG-A_MAN consists of the English language man-
ual pages for the Utils subproduct of the MSDOC-Utils product. Finally, bundles are
groups of related filesets from one or more products, gathered together for a specific
purpose. They can, but do not have to, be comprised of multiple complete products.

The swlist command can be used to view installed software at these various levels
by specifying the corresponding keyword to its -1 option. For example, this com-
mand lists all installed products:

swlist -1 product

The following command lists the subproducts that make up the MS-DOS utilities
product:

swlist -1 subproduct MSDOS-Utils

MSDOS-Utils B.11.00 MSDOS-Utils
MSDOS-Utils.Manuals Manuals
MSDOS-Utils.ManualsBylang ManualsByLang
MSDOS-Utils.Runtime Runtime

You could further explore the contents of this product by running the swlist -1
fileset command for each subproduct to list the component filesets. The results
would show a single fileset per subproduct and would indicate that the MSDOS-
Utils product is made up of runtime and manual page filesets.

AIX: Apply versus commit

On AIX systems, software installation is a two-step process. First, software packages
are applied: new files are installed, but the previous system state is also saved in case
you change your mind and want to roll back the package. In order to make an instal-
lation permanent, applied software must be committed.

Essential Administrative Techniques | 119

You can view the installation state of software packages with the 1slpp command.
For example, this command displays information about software compilers:

1slpp -1 all | grep -i compil
vacpp.cmp.C 5.0.2.0 COMMITTED VisualAge C++ C Compiler
x1fcmp 7.1.0.2 COMMITTED XL Fortran Compiler
vac.C 5.0.2.0 COMMITTED C for AIX Compiler

Alternatively, you can display applied but not yet committed packages with the
installp -s all command.

The installp command has a number of options controlling how and to what degree
software is installed. For example, use a command like this one to apply and commit
software:

installp -ac -d device [items | all]

Other useful options to installp are listed in Table 3-7.

Table 3-7. Options to the AIX installp command

Option Meaning

-a Apply software.

-C Commit applied software.

-T Reject uncommitted software.

-t dir Use alternate location for saved rollback files.
-u Remove software

-C Clean up after a failed installation.

-N Don't save files necessary for recovery.

-X Expand filesystems as necessary.

-d dev Specify installation source location.

-p Preview operation.

-v Verbose output.

-1 List media contents.

-M arch Limit listing to items for the specified architecture type.

Using apply without commit is a good tactic for cautious administra-
tors and delicate production systems.

FreeBSD ports

FreeBSD includes an easy-to-use method for acquiring and building additional soft-
ware packages. This scheme is known as the Ports Collection. If you choose to install
it, its infrastructure is located at /usr/ports.

120 | Chapter3: Essential Administrative Tools and Techniques

The Ports Collection provides all the information necessary for downloading,
unpacking, and building software packages within its directory tree. Installing such
pre-setup packages is then very simple. For example, the following commands are all
that is needed to install the Tripwire security monitoring package:

cd /usr/ports/security/tripwire
make && make install

The make commands automatically take all steps necessary to install the package.

Building Software Packages from Source Code

There are a large number of useful open source software tools. Sometimes, thought-
ful people will have made precompiled binaries available on the Internet, but there
will be times when you will have to build them yourself. In this section, we look
briefly at building three packages in order to illustrate some of the problems and
challenges you might encounter. We use will HP-UX as our example system.

mtools: Using configure and accepting imperfections

We begin with mtools, a set of utilities for directly accessing DOS-format floppy
disks on Unix systems. After downloading the package, the first steps are to uncom-
press the software archive and extract its files:

$ gunzip mtools-3.9.7.tar.gz

$ tar xvf mtools-3.9.7.tar

x mtools-3.9.7/INSTALL, 737 bytes, 2 tape blocks

x mtools-3.9.7/buffer.c, 8492 bytes, 17 tape blocks

x mtools-3.9.7/Release.notes, 8933 bytes, 18 tape blocks

x mtools-3.9.7/devices.c, 25161 bytes, 50 tape blocks

Note that we are not running these commands as root.

Next, we change to the new directory and look around:

$ cd mtools-3.9.7; 1s

COPYING floppyd_io.c mmount. ¢
Changelog floppyd io.h mmove. 1
INSTALL force io.c mmove. c
Makefile fs.h mpartition.1
Makefile.Be fsP.h mpartition.c
Makefile.in getopt.h mrd.1
Makefile.os2 hash.c mread.1
NEWPARAMS htable.h mren.1
README init.c msdos.h

We are looking for files named README, INSTALL, or something similar, which
will tell us how to proceed.

Essential Administrative Techniques | 121

Here is the relevant section in this example:

Compilation

To compile mtools on Unix, first type ./configure, then make.

This is a typical pattern in a well-crafted software package. The configure utility
checks the system for all the items needed to build the package, often selecting among
various alternatives, and creates a make file based on the specific configuration.

We follow the directions and run it:

$./configure

checking for gcc... cc

checking whether the C compiler works... yes

checking whether cc accepts -g... yes

checking how to run the C preprocessor... cc -E

checking for a BSD compatible install... /opt/imake/bin/install -c
checking for sys/wait.h that is POSIX.1 compatible... yes

checking for getopt.h... no

creating ./config.status
creating Makefile
creating config.h
config.h is unchanged

At this point, we could just run make, but I always like to look at the make file first.
Here is the first part of it:

$ more Makefile
Generated automatically from Makefile.in by configure.
Makefile for Mtools

MAKEINFO = makeinfo
TEXI2DVI = texi2dvi
TEXI2HTML = texi2html

do not edit below this line
SHELL = /bin/sh

prefix = /usr/local
exec_prefix = ${prefix}

bindir ${exec_prefix}/bin
mandir = ${prefix}/man

The prefix item could be a problem if T wanted to install the software somewhere
else, but I am satisfied with this location, so I run make. The process is mostly fine,
but there are a few error messages:

cc -Ae -DHAVE_CONFIG_H -DSYSCONFDIR=\"/usr/local/etc\" -DCPU_hppal 0 -DVENDOR_hp -
DOS_hpux11 00 -DOS hpux1l -DOS hpux -g -I. -I. -c floppyd.c
cc: "floppyd.c", line 464: warning 604: Pointers are not assignment-compatible.

cc -z -0 floppyd -1SM -1ICE -1Xau -1X11 -1lnsl

122

| Chapter3: Essential Administrative Tools and Techniques

/usr/ccs/bin/ld: (Warning) At least one PA 2.0 object file (buffer.o) was detected.
The linked output may not run on a PA 1.x system.
It is important to try to understand what the messages mean. In this case, we get a
compiler warning, which is not an uncommon occurrence. We ignore it for the
moment. The second warning simply tells us that we are building architecture-
dependant executables. This is not important as we don’t plan to use them any-
where but the local system.

Now, we install the package, using the usual command to do so:

$ su

Password:

make -n install Preview first!

./mkinstalldirs /usr/local/bin

/opt/imake/bin/install -c mtools /usr/local/bin/mtools

make install Proceed if it looks ok.
./mkinstalldirs /usr/local/bin
/opt/imake/bin/install -c mtools /usr/local/bin/mtools

/opt/imake/bin/install -c floppyd /usr/local/bin/floppyd
cp: cannot access floppyd: No such file or directory

Make: Don't know how to make mtools.info. Stop.

We encounter two problems here. The first is a missing executable: floppyd, a dae-
mon to provide floppy access to remote users. The second problem is a make error
that occurs when make tries to create the info file for mtools (a documentation for-
mat common on Linux systems). The latter is unimportant since the info system is
not available under HP-UX. The first problem is more serious, and further efforts do
not resolve what turns out to be an obscure problem. For example, modifying the
source code to correct the compiler error message does not fix the problem. The fail-
ure actually occurs during the link phase, which simply fails without comment. I'm
always disappointed when errors prevent a package from working, but it does hap-
pen occasionally.

Since I can live without this component, I ultimately decide to just ignore its absence.
If it were an essential element, it would be necessary to resolve the problem to use the
package. At that point, I would either try harder to fix the problem, check news groups
and other Internet information sources, or just decide to live without the package.

Don’t let a recalcitrant package become a time sink. Give up and move
on.

bzip2: Converting Linux-based make procedures

Next, we will look at the bzip2 compression utility by Julian Seward. The initial steps
are the same. Here is the relevant section of the README file:

Essential Administrative Techniques | 123

HOW TO BUILD -- UNIX

Type “make'. This builds the library libbz2.a and then the
programs bzip2 and bzip2recover. Six self-tests are run.
If the self-tests complete ok, carry on to installation:

To install in /usr/bin, /usr/lib, /usr/man and /usr/include, type
make install

To install somewhere else, eg, /xxx/yyy/{bin,1lib,man,include}, type
make install PREFIX=/xxx/yyy

We also read the README.COMPILATION.PROBLEMS file, but it contains noth-
ing relevant to our situation.

This package does not self-configure, but simply provides a make file designed to
work on a variety of systems. We start the build process on faith:

$ make

gcc -Wall -Winline -02 -fomit-frame-pointer -fno-strength-reduce
-D_FILE OFFSET BITS=64 -c blocksort.c

sh: gcc: not found.

*¥** Error exit code 127

The problem here is that our C compiler is cc, not gcc (this make file was probably
created under Linux). We can edit the make file to reflect this. As we do so, we look
for other potential problems. Ultimately, the following lines:

SHELL=/bin/sh

CC=gcc

BIGFILES=-D_FILE OFFSET BITS=64

CFLAGS=-Wall -Winline -02 -fomit-frame-pointer ... $(BIGFILES)

are changed to:
SHELL=/bin/sh
CC=cc

BIGFILES=-D_FILE OFFSET BITS=64
CFLAGS=-Wall +w2 -0 $(BIGFILES)

The CFLAGS entry specifies options sent to the compiler command, and the original

value contains many gcc-specific ones. We replace those with their HP-UX
equivalents.

The next make attempt is successful:

cc -Wall +w2 -0 -D_FILE OFFSET BITS=64 -c blocksort.c
cc -Wall +w2 -0 -D _FILE OFFSET BITS=64 -c huffman.c
cc -Wall +w2 -0 -D_FILE_OFFSET_BITS=64 -c crctable.c

Doing 6 tests (3 compress, 3 uncompress) ...
./bzip2 -1 < samplel.ref > samplel.rb2
./bzip2 -2 < sample2.ref > sample2.rb2

124 | Chapter3: Essential Administrative Tools and Techniques

If you got this far, it looks like you're in business.

To install in /usr/bin, /usr/lib, /usr/man and /usr/include,
type: make install

To install somewhere else, eg, /xxx/yyy/{bin,lib,man,include},
type: make install PREFIX=/xxx/yyy

We want to install into /usr/local, so we use this make install command (after pre-
viewing the process with -n first):

make install PREFIX=/usr/local

If the facility had not provided the capability to specify the install directory, we
would have had to edit the make file to use our desired location.

jove: Configuration via make file settings

Lastly, we look at the jove editor by Jonathan Payne, my personal favorite editor.
Here is the relevant section from the INSTALL file:

Installation on a UNIX System.

To make JOVE, edit Makefile to set the right directories for the binaries, on line
documentation, the man pages, and the TMP files, and select the appropriate load
command (see LDFLAGS in Makefile). (IMPORTANT! read the Makefile carefully.)
"paths.h" will be created by MAKE automatically, and it will use the directories you
specified in the Makefile. (NOTE: You should never edit paths.h directly because
your changes will be undone by the next make.)

You need to set "SYSDEFS" to the symbol that identifies your system, using the
notation for a macro-setting flag to the C compiler. If yours isn't mentioned, use
"grep System: sysdep.h" to find all currently supported system configurations.

This package is the least preconfigured of those we are considering. Here is the part
of the make file I needed to think about and modify (from the original). Our changes
are highlighted in boldface:

JOVEHOME = <userinput>/usr/local</userinput>

SHAREDIR = $(JOVEHOME)/1lib/jove
BINDIR = $(JOVEHOME)/bin

Select the right libraries for your system.
LIBS = -Itermcap We uncommented the correct one.
#LIBS = -lcurses

define a symbol for your 0S if it hasn’t got one. See sysdep.h.
SYSDEFS = -DHPUX -Ac —Ac says to use the K&R Edition 1 version of C.

Once this configuration of the make file is completed, running make and make install
built and installed the software successtully.

Essential Administrative Techniques | 125

Internet software archives

I'll close this chapter with this short list of the most useful of the currently available
general and operating system-specific software archives (in my opinion). Unless oth-
erwise noted, all of them provide freely-available software.

General http://sourceforge.net
http://lwww.gnu.org
http://freshmeat.net
http:/lwww.xfree86.0rg
http://rtfm.mit.edu

AIX http://freeware.bull.net
http://aixpdslib.seas.ucla.edu/aixpdslib.html

FreeBSD http://www.freebsd.org/ports/
http://www.freshports.org

HP-UX http://hpux.cs.utah.edu
http://lwww.software.hp.com (drivers and commercial packages)

Linux http://www.redhat.com
http://lwww.suse.com
http://www.ibiblio.org/Linux
http://linux.davecentral.com

Solaris http://www.sun.com/bigadmin/downloads/
http://www.sun.com/download/
ftp:/lftp.sunfreeware.com/pub/freeware/
http://www.ibiblio.org/pub/packages/solaris/

Tru64 http://www.unix.digital.com/tools. html
ftp://ftp.digital.com
http://gatekeeper.dec.com
http://www.tru64.compaq.com (demos and commercial software)
(Compagq also offers a low-cost freeware CD for Tru64.)

126 | Chapter3: Essential Administrative Tools and Techniques

CHAPTER 4
Startup and Shutdown

Most of the time, bringing up or shutting down a Unix system is actually very sim-
ple. Nevertheless, every system administrator needs to have at least a conceptual
understanding of the startup and shutdown processes in order to, at a minimum, rec-
ognize situations where something is going awry—and potentially intervene. Provid-
ing you with this knowledge is the goal of this chapter. We will begin by examining
generic boot and shutdown procedures that illustrate the concepts and features com-
mon to virtually every Unix system. This will be followed by sections devoted to the
specifics of the various operating systems we are discussing, including a careful con-
sideration of the myriad of system configuration files that perform and control these
processes.

About the Unix Boot Process

Bootstrapping is the full name for the process of bringing a computer system to life
and making it ready for use. The name comes from the fact that a computer needs its
operating system to be able to do anything, but it must also get the operating system
started all on its own, without having any of the services normally provided by the
operating system to do so. Hence, it must “pull itself up by its own bootstraps.”
Booting is short for bootstrapping, and this is the term I'll use.”

The basic boot process is very similar for all Unix systems, although the mechanisms
used to accomplish it vary quite a bit from system to system. These mechanisms
depend on both the physical hardware and the operating system type (System V or
BSD). The boot process can be initiated automatically or manually, and it can begin
when the computer is powered on (a cold boot) or as a result of a reboot command
from a running system (a warm boot or restart).

* IBM has traditionally referred to the bootstrapping process as the IPL (initial program load). This term still
shows up occasionally in AIX documentation.

127

The normal Unix boot process has these main phases:

* Basic hardware detection (memory, disk, keyboard, mouse, and the like).
* Executing the firmware system initialization program (happens automatically).

* Locating and running the initial boot program (by the firmware boot program),
usually from a predetermined location on disk. This program may perform addi-
tional hardware checks prior to loading the kernel.

* Locating and starting the Unix kernel (by the first-stage boot program). The ker-
nel image file to execute may be determined automatically or via input to the
boot program.

* The kernel initializes itself and then performs final, high-level hardware checks,
loading device drivers and/or kernel modules as required.

* The kernel starts the init process, which in turn starts system processes (dae-
mons) and initializes all active subsystems. When everything is ready, the sys-
tem begins accepting user logins.

We will consider each of these items in subsequent sections of this chapter.

From Power On to Loading the Kernel

As we’ve noted, the boot process begins when the instructions stored in the com-
puter’s permanent, nonvolatile memory (referred to colloquially as the BIOS, ROM,
NVRAM, and so on) are executed. This storage location for the initial boot instruc-
tions is generically referred to as firmware (in contrast to “software,” but reflecting
the fact that the instructions constitute a program”).

These instructions are executed automatically when the power is turned on or the
system is reset, although the exact sequence of events may vary according to the val-
ues of stored parameters.t The firmware instructions may also begin executing in
response to a command entered on the system console (as we’ll see in a bit). How-
ever they are initiated, these instructions are used to locate and start up the system’s
boot program, which in turn starts the Unix operating system.

The boot program is stored in a standard location on a bootable device. For a nor-
mal boot from disk, for example, the boot program might be located in block 0 of the
root disk or, less commonly, in a special partition on the root disk. In the same way,
the boot program may be the second file on a bootable tape or in a designated loca-
tion on a remote file server in the case of a network boot of a diskless workstation.

* At least that’s my interpretation of the name. Other explanations abound.

T Or the current position of the computer’s key switch. On systems using a physical key switch, one of its posi-
tions usually initiates an automatic boot process when power is applied (often labeled “Normal” or “On”),
and another position (e.g., “Service”) prevents autobooting and puts the system into a completely manual
mode suitable for system maintenance and repair.

128 | Chapter4: Startup and Shutdown

There is usually more than one bootable device on a system. The firmware program
may include logic for selecting the device to boot from, often in the form of a list of
potential devices to examine. In the absence of other instructions, the first bootable
device that is found is usually the one that is used. Some systems allow for several
variations on this theme. For example, the RS/6000 NVRAM contains separate
default device search lists for normal and service boots; it also allows the system
administrator to add customized search lists for either or both boot types using the
bootlist command.

The boot program is responsible for loading the Unix kernel into memory and pass-
ing control of the system to it. Some systems have two or more levels of intermediate
boot programs between the firmware instructions and the independently-executing
Unix kernel. Other systems use different boot programs depending on the type of
boot.

Even PC systems follow this same basic procedure. When the power comes on or the
system is reset, the BIOS starts the master boot program, located in the first 512
bytes of the system disk. This program then typically loads the boot program located
in the first 512 bytes of the active partition on that disk, which then loads the kernel.
Sometimes, the master boot program loads the kernel itself. The boot process from
other media is similar.

The firmware program is basically just smart enough to figure out if the hardware
devices it needs are accessible (e.g., can it find the system disk or the network) and to
load and initiate the boot program. This first-stage boot program often performs
additional hardware status verification, checking for the presence of expected sys-
tem memory and major peripheral devices. Some systems do much more elaborate
hardware checks, verifying the status of virtually every device and detecting new ones
added since the last boot.

The kernel is the part of the Unix operating system that remains running at all times
when the system is up. The kernel executable image itself, conventionally named
unix (System V-based systems), vmunix (BSD-based system), or something similar. It
is traditionally stored in or linked to the root directory. Here are typical kernel names
and directory locations for the various operating systems we are considering:

AIX /unix (actually a link to a file in /usr/lib/boot)
FreeBSD /kernel

HP-UX [stand/vmunix

Linux /boot/vmlinuz

Tru64 /vmunix

Solaris /kernel/genunix

Once control passes to the kernel, it prepares itself to run the system by initializing
its internal tables, creating the in-memory data structures at sizes appropriate to cur-
rent system resources and kernel parameter values. The kernel may also complete the
hardware diagnostics that are part of the boot process, as well as installing loadable
drivers for the various hardware devices present on the system.

About the Unix Boot Process | 129

When these preparatory activities have been completed, the kernel creates another
process that will run the init program as the process with PID 1.

Booting to Multiuser Mode

As we’ve seen, init is the ancestor of all subsequent Unix processes and the direct
parent of user login shells. During the remainder of the boot process, init does the
work needed to prepare the system for users.

One of init’s first activities is to verify the integrity of the local filesystems, begin-
ning with the root filesystem and other essential filesystems, such as /usr. Since the
kernel and the init program itself reside in the root filesystem (or sometimes the /usr
filesystem in the case of init), you might wonder how either one can be running
before the corresponding filesystem has been checked. There are several ways around
this chicken-and-egg problem. Sometimes, there is a copy of the kernel in the boot
partition of the root disk as well as in the root filesystem. Alternatively, if the execut-
able from the root filesystem successfully begins executing, it is probably safe to
assume that the file is OK.

In the case of init, there are several possibilities. Under System V, the root filesys-
tem is mounted read-only until after it has been checked, and init remounts it read-
write. Alternatively, in the traditional BSD approach, the kernel handles checking
and mounting the root filesystem itself.

Still another method, used when booting from tape or CD-ROM (for example, dur-
ing an operating system installation or upgrade), and on some systems for normal
boots, involves the use of an in-memory (RAM) filesystem containing just the lim-
ited set of commands needed to access the system and its disks, including a version
of init. Once control passes from the RAM filesystem to the disk-based filesystem,
the init process exits and restarts, this time from the “real” executable on disk, a
result that somewhat resembles a magician’s sleight-of-hand trick.

Other activities performed by init include the following;:

* Checking the integrity of the filesystems, traditionally using the fsck utility

* Mounting local disks

* Designating and initializing paging areas

* Performing filesystem cleanup activities: checking disk quotas, preserving editor
recovery files, and deleting temporary files in /tmp and elsewhere

* Starting system server processes (daemons) for subsystems like printing, elec-
tronic mail, accounting, error logging, and cron

*

Process 0, if it exists, is really part of the kernel itself. Process 0 is often the scheduler (controls which pro-
cesses execute at what time under BSD) or the swapper (moves process memory pages to and from swap
space under System V). However, some systems assign PID 0 to a different process, and others do not have
a process 0 at all.

130 | Chapter4: Startup and Shutdown

Download from Wow! eBook <www.wowebook.com>

* Starting networking daemons and mounting remote disks

* Enabling user logins, usually by starting getty processes and/or the graphical
login interface on the system console (e.g., xdm), and removing the file /etc/
nologin, if present

These activities are specified and carried out by means of the system initialization
scripts, shell programs traditionally stored in /etc or /sbin or their subdirectories and
executed by init at boot time. These files are organized very differently under Sys-
tem V and BSD, but they accomplish the same purposes. They are described in detail
later in this chapter.

Once these activities are complete, users may log in to the system. At this point, the
boot process is complete, and the system is said to be in multiuser mode.

Booting to Single-User Mode

Once init takes control of the booting process, it can place the system in single-user
mode instead of completing all the initialization tasks required for multiuser mode.
Single-user mode is a system state designed for administrative and maintenance
activities, which require complete and unshared control of the system. This system
state is selected by a special boot command parameter or option; on some systems,
the administrator may select it by pressing a designated key at a specific point in the
boot process.

To initiate single-user mode, init forks to create a new process, which then executes
the default shell (usually /bin/sh) as user root. The prompt in single-user mode is the
number sign (#), the same as for the superuser account, reflecting the root privileges
inherent in it. Single-user mode is occasionally called maintenance mode.

Another situation in which the system might enter single-user mode automatically
occurs if there are any problems in the boot process that the system cannot handle
on its own. Examples of such circumstances include filesystem problems that fsck
cannot fix in its default mode and errors in one of the system initialization files. The
system administrator must then take whatever steps are necessary to resolve the
problem. Once this is done, booting may continue to multiuser mode by entering
CTRL-D, terminating the single-user mode shell:

"D Continue boot process to multiuser mode.
Tue Jul 14 14:47:14 EDT 1987 Boot messages from the initialization files.

Alternatively, rather than picking up the boot process where it left off, the system
may be rebooted from the beginning by entering a command such as reboot (AIX
and FreeBSD) or telinit 6. HP-UX supports both commands.

Single-user mode represents a minimal system startup. Although you have root
access to the system, many of the normal system services are not available at all or
are not set up. On a mundane level, the search path and terminal type are often not

About the Unix Boot Process | 131

set correctly. Less trivially, no daemons are running, so many Unix facilities are shut
down (e.g., printing). In general, the system is not connected to the network. The
available filesystems may be mounted read-only, so modifying files is initially dis-
abled (we’ll see how to overcome this in a bit). Finally, since only some of the filesys-
tems are mounted, only commands that physically reside on these filesystems are
available initially.

This limitation is especially noticeable if /usr was created on a separate disk partition
from the root filesystem and is not mounted automatically under single-user mode.
In this case, even commands stored in the root filesystem (in /bin, for example) will
not work if they use shared libraries stored under /usr. Thus, if there is some prob-
lem with the /usr filesystem, you will have to make do with the tools that are avail-
able. For such situations, however rare and unlikely, you should know how to use
the ed editor if vi is not available in single-user mode; you should know which tools
are available to you in that situation before you have to use them.

On a few systems, vendors have exacerbated this problem by making /bin a symbolic
link to /usr/bin, thereby rendering the system virtually unusable if there is a problem
with a separate /usr filesystem.

Password protection for single-user mode

On older Unix systems, single-user mode does not require a password be entered to
gain access. Obviously, this can be a significant security problem. If someone gained
physical access to the system console, he could crash it (by hitting the reset button,
for example) and then boot to single-user mode via the console and be automatically
logged in as root without having to know the root password.

Modern systems provide various safeguards. Most systems now require that the root
password be entered before granting system access in single-user mode. On some
System V-based systems, this is accomplished via the sulogin program that is
invoked automatically by init once the system reaches single-user mode. On these
systems, if the correct root password is not entered within some specified time
period, the system is automatically rebooted.”

Here is a summary of single-user mode password protection by operating system:
AIX Automatic
FreeBSD Required if the console is listed in /etc/ttys with the insecure
option:
console none unknown off insecure

*

The front panel key position also influences the boot process, and the various settings provide for some types
of security protection. There is usually a setting that disables booting to single-user mode; it is often labeled
“Secure” (versus “Normal”) or “Standard” (versus “Maintenance” or “Service”). Such security features are
usually described on the init or boot manual pages and in the vendor’s hardware or system operations man-
uals.

132 | Chapter4: Startup and Shutdown

HP-UX Automatic
Linux Required if /etc/inittab (discussed later in this chapter) contains

a sulogin entry for single-user mode. For example:
sp:S:respawn:/sbin/sulogin

Tru64 Required if the SECURE_CONSOLE entry in /etc/rc.config is set
to ON.

Solaris Required if the PASSREQ setting in /etc/default/sulogin is set to
YES.

Current Linux distributions include the sulogin utility but do not
always activate it (this is true of Red Hat Linux as of this writing),
leaving single-user mode unprotected by default.

Firmware passwords

Some systems also allow you to assign a separate password to the firmware initializa-
tion program, preventing unauthorized persons from starting a manual boot. For
example, on SPARC systems, the eeprom command may be used to require a pass-
word and set its value (via the security-mode and security-password parameters,
respectively).

On some systems (e.g., Compaq Alphas), you must use commands within the firm-
ware program itself to perform this operation (set password and set secure in the
case of the Alpha SRM). Similarly, on PC-based systems, the BIOS monitor program
must generally be used to set such a password. It is accessed by pressing a desig-
nated key (often F1 or F8) shortly after the system powers on or is reset.

On Linux systems, commonly used boot-loader programs have configuration set-
tings that accomplish the same purpose. Here are some configuration file entries for
lilo and grub:

password = something fetc/lilo.conf

password -md5 XXXXXXXXXXXX /boot/grub/grub.conf
The grub package provides the grub-mds-crypt utility for generating the MD5 encod-
ing for a password. Linux boot loaders are discussed in detail in Chapter 16.

Starting a Manual Boot

Virtually all modern computers can be configured to boot automatically when power
comes on or after a crash. When autobooting is not enabled, booting is initiated by
entering a simple command in response to a prompt: sometimes just a carriage
return, sometimes a b, sometimes the word boot. When a command is required, you
often can tell the system to boot to single-user mode by adding a -s or similar option
to the boot command, as in these examples from a Solaris and a Linux system:

ok boot -s Solaris
boot: linux single Linux

About the Unix Boot Process | 133

In the remainder of this section, we will look briefly at the low-level boot commands
for our supported operating systems. We will look at some more complex manual-
boot examples in Chapter 16 and also consider boot menu configuration in detail.

AIX

AIX provides little in the way of administrator intervention options during the boot
process.” However, the administrator does have the ability to preconfigure the boot
process in two ways.

The first is to use the bootlist command to specify the list and ordering of boot
devices for either normal boot mode or service mode. For example, this command
makes the CD-ROM drive the first boot device for the normal boot mode:

bootlist -m normal cdi hdisko hdiski rmto

If there is no bootable CD in the drive, the system next checks the first two hard
disks and finally the first tape drive.

The second configuration option is to use the diag utility to specify various boot pro-
cess options, including whether or not the system should boot automatically in vari-
ous circumstances. These items are accessed via the Task Selection submenu.

FreeBSD
FreeBSD (on Intel systems) presents a minimal boot menu:
F1 FreeBSD
F2 FreeBSD
F5 Drive 1 Appears if there is a second disk with a bootable partition.

This menu is produced by the FreeBSD boot loader (installed automatically if
selected during the operating system installation, or installed manually later with the
bootocfg command). It simply identifies the partitions on the disk and lets you select
the one from which to boot. Be aware, however, that it does not check whether each
partition has a valid operating system on it (see Chapter 16 for ways of customizing
what is listed).

The final option in the boot menu allows you to specify a different disk (the second
IDE hard drive in this example). If you choose that option, you get a second, similar
menu allowing you to select a partition on that disk:

F1 FreeBSD
F5 Drive 0

In this case, the second disk has only one partition.

* Some AIX systems respond to a specific keystroke at a precise moment during the boot process and place
you in the System Management Services facility, where the boot device list can also be specified.

134 | Chapter4: Startup and Shutdown

Shortly after selecting a boot option, the following message appears:”
Hit [Enter] to boot immediately, or any other key for the command prompt

If you strike a key, a command prompt appears, from which you can manually boot,
as in these examples:

diskisia:> boot -s Boot to single-user mode

diskisia:> unload Boot an alternate kernel

diskisia:> load kernel-new

diskisia:> boot
If you do not specify a full pathname, the alternate kernel must be located in the root
directory on the disk partition corresponding to your boot menu selection.

FreeBSD can also be booted by the grub open source boot loader, which is dis-
cussed—along with a few other boot loaders—in the Linux section below.

HP-UX

HP-UX boot commands vary by hardware type. These examples are from an HP
9000/800 system. When power comes on initially, the greater-than-sign prompt (>)*
is given when any key is pressed before the autoboot timeout period expires. You can
enter a variety of commands here. For our present discussion, the most useful are
search (to search for bootable devices) and co (to enter the configuration menu). The
latter command takes you to a menu where you can specify the standard and alter-
nate boot paths and options. When you have finished with configuration tasks,
return to the main menu (ma) and give the reset command.

Alternatively, you can boot immediately by using the bo command, specifying one of
the devices that search found by its two-character path number (given in the first col-
umn of the output). For example, the following command might be used to boot
from CD-ROM:

> bo P1

The next boot phase involves loading and running the initial system loader (ISL).
When it starts, it asks whether you want to enter commands with this prompt:

Interact with ISL? y

If you answer yes, you will receive the ISL> prompt, at which you can enter various
commands to modify the usual boot process, as in these examples:

ISL> hpux -is Boot to single user mode
ISL> hpux /stand/vmunix-new Boot an alternate kernel
ISL> hpux 11 /stand List available kernels

* We’re ignoring the second-stage boot loader here.
T Preceded by various verbiage.

About the Unix Boot Process | 135

Linux

When using lilo, the traditional Linux boot loader, the kernels available for booting
are predefined. When you get 1ilo’s prompt, you can press the TAB key to list the
available choices. If you want to boot one of them into single-user mode, simply add
the option single (or -s) to its name. For example:

boot: linux single

You can specify kernel parameters generally by appending them to the boot selec-
tion command.

If you are using the newer grub boot loader, you can enter boot commands manually
instead of selecting one of the predefined menu choices, by pressing the ¢ key. Here
is an example sequence of commands:

grub> root (hdo,0) Location of /boot
grub> kernel /vmlinuz=new ro root=/dev/hda2

grub> initrd /initrd.img

grub> boot

The root option on the kernel command locates the partition where the root direc-
tory is located (we are using separate / and /boot partitions here).

If you wanted to boot to single-user mode, you would add single to the end of the
kernel command.

In a similar way, you can boot one of the existing grub menu selections in single-user
mode by doing the following:

1. Selecting it from the menu
2. Pressing the e key to edit it
3. Selecting and editing the kernel command, placing single at the end of the line
4. Moving the cursor to the first command and then pressing b for boot
The grub facility is discussed in detail in Chapter 16.

On non-Intel hardware, the boot commands are very different. For example, some
Alpha Linux systems use a boot loader named aboot.” The initial power-on prompt is
a greater-than sign (>). Enter the b command to reach aboot’s prompt.

Here are the commands to boot a Compaq Alpha Linux system preconfigured with
appropriate boot parameters:

aboot> p 2 Select the second partition to boot from.
aboot> 0 Boot predefined configuration 0.

The following command can be used to boot Linux from the second hard disk
partition:

aboot> 2/vmlinux.gz root=/dev/hda2

* This description will also apply to Alpha hardware running other operating systems.

136 | Chapter4: Startup and Shutdown

You could add single to the end of this line to boot to single-user mode.

Other Alpha-based systems use quite different boot mechanisms. Consult the manu-
facturer’s documentation for your hardware to determine the proper commands for
your system.

Tru64

When power is applied, a Tru64 system generally displays a console prompt that is a
triple greater-than sign (>>>). You can enter commands to control the boot process,
as in these examples:

>>> boot -fl s Boot to single-user mode

>>> boot dkb0.0.0.6.1 Boot an alternate device or kernel

>>> boot -file vmunix-new
The -f1 option specifies boot flags; here, we select single-user mode. The second set
of commands illustrate the method for booting from an alternate device or kernel
(the two commands may be combined).

Note that there are several other ways to perform these same tasks, but these meth-
ods seem the most intuitive.

Solaris

At power-on, Solaris systems may display the ok console prompt. If not, it is because
the system is set to boot automatically, but you can generate one with the Stop-a or
L1-a key sequence. From there, the boot command may be used to initiate a boot, as
in this example:

ok boot -s Boot to single user mode

ok boot cdrom Boot from installation media
The second command boots an alternate kernel by giving its full drive and directory
path. You can determine the available devices and how to refer to them by running
the devalias command at the ok prompt.

Booting from alternate media

Booting from alternate media, such as CD-ROM or tape, is no different from boot-
ing any other non-default kernel. On systems where this is possible, you can specify
the device and directory path to the kernel to select it. Otherwise, you must change
the device boot order to place the desired alternate device before the standard disk
location in the list.

Boot Activities in Detail

We now turn to a detailed consideration of the boot process from the point of ker-
nel initialization onward.

About the Unix Boot Process | 137

Boot messages

The following example illustrates a generic Unix startup sequence. The messages
included here are a composite of those from several systems, although the output is
labeled as for a mythical computer named the Urizen, a late-1990s system running a
vaguely BSD-style operating system. While this message sequence does not corre-
spond exactly to any existing system, it does illustrate the usual elements of booting
on Unix systems, under both System V and BSD.

We’ve annotated the boot process output throughout:

>b

Urizen Ur-Unix boot in progress...
testing memory

checking devices

loading vmunix

Initiate boot to multiuser mode.

Output from boot program.
Preliminary hardware tests.
Read in the kernel executable.

Urizen Ur-Unix Version 17.4.2: Fri Apr 24 23 20:32:54 GMT 1998

Copyright (c) 1998 Blakewill Computer, Ltd.

Copyright (c) 1986 Sun Microsystems, Inc.

Copyright for OS.
Subsystem copyrights.

Copyright (c) 1989-1998 Open Software Foundation, Inc.

Copyright (c) 1991 Massachusetts Institute of Technology

All rights reserved.
physical memory = 2.00 GB

Searching SCSI bus for devices:
rdisko bus 0 target o lun 0
rdisk1 bus 0 target 1 lun 0
rdisk2 bus 0 target 2 lun 0
mto bus 0 target 4 lun 0
cdrom0 buso target 6 lun 0
Ethernet address=8:0:20:7:58:jk

Root on /dev/diskoa
Activating all paging spaces

swapon: swap device /dev/diskob activated.

Using /dev/diskob as dump device

INIT: New run level: 3

The system is coming up. Please wait.
Tue Jul 14 14:45:28 EDT 1998

Checking TCB databases
Checking file systems:

fsstat: /dev/rdiskic (/home) umounted cleanly;

fsstat: /dev/rdisk2c (/chem) dirty
Running fsck:

Unix kernel is running now.
Amount of real memory.

Peripherals are checked next.

Ethernet address of network adapter.

Indicates disk partitions used as /...
...as paging spaces and. ..

...as the crash dump location.

Single-user mode could be entered here,...
...but this system is booting to run level 3.
Messages produced by startup scripts follow.
Means “Be patient.”

Verify integrity of the security databases.
Check and mount remaining local filesystems.
Skipping check.

This filesystem needs checking.

/dev/rdisk2c: 1764 files, 290620 used, 110315 free

Mounting local file systems.

138

| Chapter4: Startup and Shutdown

Checking disk quotas: done. Daemons for major subsystems start first, ...
cron subsystem started, pid = 3387
System message logger started.
Accounting services started.
...followed by network servers,...
Network daemons started: portmap inetd routed named rhwod timed.
NFS started: biod(4) nfsd(6) rpc.mountd rpc.statd rpc.lockd.
Mounting remote file systems.
Print subsystem started. ...and network-dependent local daemons.
sendmail started.

Preserving editor files. Save interrupted editor sessions.
Clearing /tmp. Remove files from /tmp.
Enabling user logins. Remove the /etc/nologin file.

Tue Jul 14 14:47:45 EDT 1998 Display the date again.

Urizen Ur-Unix 9.1 on hamlet The hostname is hamlet.

login: Unix is running in multiuser mode.

There are some things that are deliberately anachronistic about this example boot
sequence—running fsck and clearing /tmp, for instance—but we’ve retained them
for nostalgia’s sake. We’ll consider the scripts and commands that make all of these
actions happen in the course of this section.

Saved boot log files

Most Unix versions automatically save some or all of the boot messages from the
kernel initialization phase to a log file. The system message facility, controlled by the
syslogd daemon, and the related System V dmesg utility are often used to capture
messages from the kernel during a boot (syslog is discussed in detail Chapter 3). In
the latter case, you must execute the dmesg command to view the messages from the
most recent boot. On FreeBSD systems, you can also view them in the /var/run/
dmesg.boot file.

It is common for syslogd to maintain only a single message log file, so boot mes-
sages may be interspersed with system messages of other sorts. The conventional
message file is /var/log/messages.

The syslog facility under HP-UX may also be configured to produce a messages file,
but it is not always set up at installation to do so automatically. HP-UX also pro-
vides the /etc/rc.log file, which stores boot output from the multiuser phase.

Under AIX, /var/adm/ras/bootlog is maintained by the alog facility. Like the kernel
buffers that are its source, this file is a circular log that is maintained at a predefined
fixed size; new information is written at the beginning of the file once the file is full,

replacing the older data. You can use a command like this one to view the contents
of this file:

alog -f /var/adm/ras/bootlog -o

About the Unix Boot Process | 139

General considerations

In general, init controls the multiuser mode boot process. init runs whatever initial-
ization scripts it has been designed to run, and the structure of the init program
determines the fundamental design of the set of initialization scripts for that Unix
version: what the scripts are named, where they are located in the filesystem, the
sequence in which they are run, the constraints placed upon the scripts’ program-
mers, the assumptions under which they operate, and so on. Ultimately, it is the dif-
ferences in the System V and BSD versions of init that determines the differences in
the boot process for the two types of systems.

Although we’ll consider those differences in detail later, in this section, we’ll begin
by looking at the activities that are part of every normal Unix boot process, regard-
less of the type of system. In the process, we’ll examine sections of initialization
scripts from a variety of different computer systems.

Preliminaries

System initialization scripts usually perform a few preliminary actions before getting
down to the work of booting the system. These include defining any functions and
local variables that may be used in the script and setting up the script’s execution
environment, often beginning by defining HOME and PATH environment variables:
HOME=/; export HOME
PATH=/bin:/usr/bin:/sbin:/usr/sbin; export PATH
The path is deliberately set to be as short as possible; generally, only system directo-
ries appear in it to ensure that only authorized, unmodified versions of commands
get executed (we’ll consider this issue in more detail in “Protecting Files and the File-
system” in Chapter 7).

Alternatively, other scripts are careful always to use full pathnames for every com-

mand that they use. However, since this may make commands excessively long and

scripts correspondingly harder to read, some scripts take a third approach and define

a local variable for each command that will be needed at the beginning of the script:
mount=/sbin/mount

fsck=/sbin/fsck
rm=/usr/bin/rm

The commands would then be invoked in this way:
${rm} -f /tmp/*

This practice ensures that the proper version of the command is run while still leav-
ing the individual command lines very readable.

Whenever full pathnames are not used, we will assume that the appropriate PATH
has previously been set up in the script excerpts we’ll consider.

140 | Chapter4: Startup and Shutdown

Preparing filesystems

Preparing the filesystem for use is the first and most important aspect of the mul-
tiuser boot process. It naturally separates into two phases: mounting the root filesys-
tem and other vital system filesystems (such as /usr), and handling the remainder of
the local filesystems.

Filesystem checking is one of the key parts of preparing the filesystem. This task is
the responsibility of the fsck™ utility.

Most of the following discussion applies only to traditional, non-jour-
s naled Unix filesystems. Modern filesystem types use journaling tech-
Wt niques adapted from transaction processing to record and, if
" necessary, replay filesystem changes. In this way, they avoid the need
for a traditional fsck command and its agonizingly slow verification
and repair procedures (although a command of this name is usually
still provided).

For traditional Unix filesystem types (such as ufs under FreeBSD and ext2 under
Linux), fsck’s job is to ensure that the data structures in the disk partition’s super-
block and inode tables are consistent with the filesystem’s directory entries and
actual disk block consumption. It is designed to detect and correct inconsistencies
between them, such as disk blocks marked as in use that are not claimed by any file,
and files existing on disk that are not contained in any directory. fsck deals with file-
system structure, but not with the internal structure or contents of any particular file.
In this way, it ensures filesystem-level integrity, not data-level integrity.

In most cases, the inconsistencies that arise are minor and completely benign, and
fsck can repair them automatically at boot time. Occasionally, however, fsck finds
more serious problems, requiring administrator intervention.

System V and BSD have very different philosophies of filesystem verification. Under
traditional BSD, the normal practice is to check all filesystems on every boot. In con-
trast, System V-—style filesystems are not checked if they were unmounted normally
when the system last went down. The BSD approach is more conservative, taking
into account the fact that filesystem inconsistencies do on occasion crop up at times
other than system crashes. On the other hand, the System V approach results in
much faster boots.t

If the system is rebooting after a crash, it is quite normal to see many messages indi-
cating minor filesystem discrepancies that have been repaired. By default, fsck fixes
problems only if the repair cannot possibly result in data loss. If fsck discovers a

* Variously pronounced as “fisk” (like the baseball player Carlton, rhyming with “disk”), “ef-es-see-kay,” “ef-
es-check,” and in less genteel ways.

T FreeBSD Version 4.4 and higher also checks only dirty filesystems at boot time.

About the Unix Boot Process | 141

more serious problem with the filesystem, it prints a message describing the problem
and leaves the system in single-user mode; you must then run fsck manually to
repair the damaged filesystem. For example (from a BSD-style system):

/dev/disk2e: UNEXPECTED INCONSISTENCY;

RUN fsck MANUALLY Message from fsck.
Automatic reboot failed . . . help! Message from /Jetc/rc script.
Enter root password: Single-user mode.
/sbin/fsck -p /dev/disk2e Run fsck manually with —p.

. Many messages from fsck.
BAD/DUP FILE=2216 OWNER=190 M=120777 Mode=> file is a symbolic link, so deleting it is safe.
S=16 MTIME=Sep 16 14:27 1997

CLEAR? y

*** FILE SYSTEM WAS MODIFIED ***

D Resume booting.
Mounting local file systems. Normal boot messages

In this example, fsck found a file whose inode address list contained duplicate
entries or addresses of known bad spots on the disk. In this case, the troublesome file
was a symbolic link (indicated by the mode), so it could be safely removed (although
the user who owned it will need to be informed). This example is intended merely to
introduce you to fsck; the mechanics of running fsck are described in detail in
“Managing Filesystems” in Chapter 10.

Checking and mounting the root filesystem

The root filesystem is the first filesystem that the boot process accesses as it prepares
the system for use. On a System V system, commands like these might be used to
check the root filesystem, if necessary:
/sbin/fsstat ${rootfs} >/dev/null 2581
if [$7? -eq 1] ; then
echo "Running fsck on the root file system."”
/sbin/fsck -p ${rootfs}
fi
The shell variable rootfs has been defined previously as the appropriate special file
for the root filesystem. The fsstat command determines whether a filesystem is
clean (under HP-UX, fsclean does the same job). If it returns an exit value of 1, the
filesystem needs checking, and fsck is run with its -p option, which says to correct
automatically all benign errors that are found.

On many systems, the root filesystem is mounted read-only until after it is known to
be in a viable state as a result of running fsstat and fsck as needed. At that point, it
is remounted read-write by the following command:

mount -o rw,remount /
On FreeBSD systems, the corresponding command is:

mount -u -0 rw /

142 | Chapter4: Startup and Shutdown

Preparing other local filesystems

The traditional BSD approach to checking the filesystems is to check all of them via a
single invocation of fsck (although the separate filesystems are not all checked simul-
taneously), and some System V systems have adopted this method as well. The ini-
tialization scripts on such systems include a fairly lengthy case statement, which
handles the various possible outcomes of the fsck command:

/sbin/fsck -p

retval=$?
case $retval in Check fsck exit code.
0) No remaining problems,
55 so just continue the boot process
4) fsck fixed problems on root disk.

echo "Root file system was modified."
echo "Rebooting system automatically."
exec /sbin/reboot -n
)
8) fsck failed to fix filesystem.
echo "fsck -p could not fix file system."”
echo "Run fsck manually."

${single} Single-user mode.
12) fsck exited before finishing.
echo "fsck interrupted ... run manually."
${single}
35
*) All other fsck errors.
echo "Unknown error in fsck."
${single}
esac

This script executes the command fsck -p to check the filesystem’s consistency. The
-p option stands for preen and says that any needed repairs that will cause no loss of
data should be made automatically. Since virtually all repairs are of this type, this is a
very efficient way to invoke fsck. However, if a more serious error is found, fsck asks
whether to fix it. Note that the options given to fsck may be different on your sys-
tem.

Next, the case statement checks the status code returned by fsck (stored in the local
variable retval) and performs the appropriate action based on its value.

If fsck cannot fix a disk on its own, you need to run it manually when it dumps you
into single-user mode. Fortunately, this is rare. That’s not just talk, either. I've had to
run fsck manually only a handful of times over the many hundreds of times I've
rebooted Unix systems, and those times occurred almost exclusively after crashes
due to electrical storms or other power loss problems. Generally, the most vulnera-
ble disks are those with continuous disk activity. For such systems, a UPS device is
often a good protection strategy.

About the Unix Boot Process | 143

Once all the local filesystems have been checked (or it has been determined that they
don’t need to be), they can be mounted with the mount command, as in this example
from a BSD system:

mount -a -t ufs

mount’s -a option says to mount all filesystems listed in the system’s filesystem con-
figuration file, and the -t option restricts the command to filesystems of the type
specified as its argument. In the preceding example, all ufs filesystems will be
mounted. Some versions of mount also support a nonfs type, which specifies all file-
systems other than those accessed over the network with NFS.

Saving a crash dump

When a system crashes due to an operating system—level problem, most Unix ver-
sions automatically write the current contents of kernel memory—known as a crash
dump—to a designated location, usually the primary swap partition. AIX lets you
specify the dump location with the sysdumpdev command, and FreeBSD sets it via the
dumpdev parameter in /etc/rc.conf. Basically, a crash dump is just a core dump of the
Unix kernel, and like any core dump, it can be analyzed to figure out what caused
the kernel program—and therefore the system—to crash.

Since the swap partition will be overwritten when the system is booted and paging is
restarted, some provision needs to be made to save its contents after a crash. The
savecore command copies the contents of the crash dump location to a file within
the filesystem. savecore exits without doing anything if there is no crash dump
present. The HP-UX version of this command is called savecrash.

savecore is usually executed automatically as part of the boot process, prior to the
point at which paging is initiated:

savecore /var/adm/crash

savecore’s argument is the directory location to which the crash dump should be
written; /var/adm/crash is a traditional location. On Solaris systems, you can specify
the default directory location with the dumpadm command.

The crash dumps themselves are conventionally a pair of files named something like
vmcore.n (the memory dump) and kernel.n, unix.n, or vmunix.n (the running ker-
nel), where the extension is an integer that is increased each time a crash dump is
made (so that multiple files may exist in the directory simultaneously). Sometimes,
additional files holding other system status information are created as well.

HP-UX creates a separate subdirectory of /var/adm/crash for each successive crash
dump, using names of the form crash.n. Each subdirectory holds the corresponding
crash data and several related files.

The savecore command is often disabled in the delivered versions of system initial-
ization files since crash dumps are not needed by most sites. You should check the
files on your system if you decide to use savecore to save crash dumps.

144 | Chapter4: Startup and Shutdown

Starting paging

Once the filesystem is ready and any crash dump has been saved, paging can be
started. This normally happens before the major subsystems are initialized since they
might need to page, but the ordering of the remaining multiuser mode boot activi-
ties varies tremendously.

Paging is started by the swapon -a command, which activates all the paging areas
listed in the filesystem configuration file.

Security-related activities

Another important aspect of preparing the system for users is ensuring that available
security measures are in place and operational. Systems offering enhanced security
levels over the defaults provided by vanilla Unix generally include utilities to verify
the integrity of system files and executables themselves. Like their filesystem-check-
ing counterpart fsck, these utilities are run at boot time and must complete success-
fully before users are allowed access to the system.

In a related activity, initialization scripts on many systems often try to ensure that
there is a valid password file (containing the system’s user accounts). These Unix ver-
sions provide the vipw utility for editing the password file. vipw makes sure that only
one person edits the password file at a time. It works by editing a copy of the pass-
word file; vipw installs it as the real file after editing is finished. If the system crashes
while someone is running vipw, however, there is a slight possibility that the system
will be left with an empty or nonexistent password file, which significantly compro-
mises system security by allowing anyone access without a password.

Commands such as these are designed to detect and correct such situations:

if [-s /etc/ptmp]; then Someone was editing /etc/passwd.
if [-s /etc/passwd]; then If passwd is non-empty, use it...
1s -1 /etc/passwd /etc/ptmp >/dev/console
m -f /etc/ptmp ...and remove the temporary file.
else Otherwise, install the temporary file.

echo 'passwd file recovered from /etc/ptmp'
mv /etc/ptmp /etc/passwd
fi
elif [-t /etc/ptmp]; then Delete any empty temporary file.
echo 'removing passwd lock file'
m -f /etc/ptmp
fi
The password temporary editing file, /etc/ptmp in this example, also functions as a
lock file. If it exists and is not empty (-s checks for a file of greater than zero length),
someone was editing /etc/passwd when the system crashed or was shut down. If /etc/
passwd exists and is not empty, the script assumes that it hasn’t been damaged,
prints a long directory listing of both files on the system console, and removes the
password lock file. If /etc/passwd is empty or does not exist, the script restores /etc/

About the Unix Boot Process | 145

ptmp as a backup version of /etc/passwd and prints the message “passwd file recov-
ered from /etc/ptmp” on the console.

The elif clause handles the case where /etc/ptmp exists but is empty. The script
deletes it (because its presence would otherwise prevent you from using vipw) and
prints the message “removing passwd lock file” on the console. Note that if no /etc/
ptmp exists at all, this entire block of commands is skipped.

Checking disk quotas

Most Unix systems offer an optional disk quota facility, which allows the available
disk space to be apportioned among users as desired. It, too, depends on database
files that need to be checked and possibly updated at boot time, via commands like
these:

echo "Checking quotas: \c"

quotacheck -a

echo "done."
quotaon -a

The script uses the quotacheck utility to check the internal structure of all disk quota
databases, and then it enables disk quotas with quotaon. The script displays the
string “Checking quotas:” on the console when the quotacheck utility begins (sup-
pressing the customary carriage return at the end of the displayed line) and com-
pletes the line with “done.” after it has finished (although many current systems use
fancier, more aesthetically pleasing status messages). Disk quotas are discussed in
“Monitoring and Managing Disk Space Usage” in Chapter 15.

Starting servers and initializing local subsystems

Once all the prerequisite system devices are ready, important subsystems such as
electronic mail, printing, and accounting can be started. Most of them rely on dae-
mons (server processes). These processes are started automatically by one of the boot
scripts. On most systems, purely local subsystems that do not depend on the net-
work are usually started before networking is initialized, and subsystems that do
need network facilities are started afterwards.

For example, a script like this one (from a Solaris system) could be used to initialize
the cron subsystem, a facility to execute commands according to a preset schedule
(cron is discussed in Chapter 3):

if [-p /etc/cron.d/FIFO]; then
if /usr/bin/pgrep -x -u 0 -P 1 cron >/dev/null 2>&1; then
echo "$0: cron is already running"
exit 0
fi
elif [-x /usr/sbin/cron]; then
/usr/bin/rm -f /etc/cron.d/FIFO
/usr/sbin/cron &
fi

146 | Chapter4: Startup and Shutdown

The script first checks for the existence of the cron lock file (a named pipe called FIFO
whose location varies). If it is present, the script next checks for a current cron process
(via the pgrep command). It the latter is found, the script exits because cron is already
running. Otherwise, the script checks for the existence of the cron executable file. If it
finds the file, the script removes the cron lock file and then starts the cron server.

The precautionary check to see whether cron is already running isn’t made on all sys-
tems. Lots of system initialization files simply (foolishly) assume that they will be run
only at boot time, when cron obviously won’t already be running. Others use a dif-
ferent, more general mechanism to determine the conditions under which they were
run. We’ll examine that shortly.

Other local subsystems started in a similar manner include:

update
A process that periodically forces all filesystem buffers (accumulated changes to
inodes and data blocks) to disk. It does so by running the sync command, ensur-
ing that the disks are fairly up-to-date should the system crash. The name of this
daemon varies somewhat: bdflush is a common variant, AIX calls its version
syncd, the HP-UX version is syncer, and it is named fsflush on Solaris systems.
Linux runs both update and bdflush. Whatever its name, don’t disable this dae-
mon or you will seriously compromise filesystem integrity.

syslogd
The system message handling facility that routes informational and error mes-
sages to log files, specific users, electronic mail, and other destinations accord-
ing to the specifications in its configuration file (see Chapter 3).

Accounting
this subsystem is started using the accton command. If accounting is not
enabled, the relevant commands may be commented out.

System status monitor daemons
some systems provide daemons that monitor the system’s physical conditions (e.
g., power level, temperature, and humidity) and trigger the appropriate action
when a problem occurs. For example, the HP-UX ups_mond daemon watches for
a power failure, switching to an uninterruptible power supply (UPS) to allow an
orderly system shutdown, if necessary.

Subsystems that are typically started after networking (discussed in the next section)
include:

* Electronic mail: the most popular electronic mail server is sendmail, which can
route mail locally and via the network as needed. Postfix is a common alterna-
tive (its server process is also called sendmail).

* Printing: the spooling subsystem also may be entirely local or used for printing
to remote systems in addition to (or instead of) locally connected ones. BSD-type
printing subsystems rely on the 1pd daemon, and System V systems use 1psched.
The AIX printing server is qdaemon.

About the Unix Boot Process | 147

There may be other subsystems on your system with their own associated daemon
processes; some may be vendor enhancements to standard Unix. We’ll consider
some of these when we look at the specific initialization files used by the various
Unix versions later in this chapter.

The AIX System Resource Controller. On AIX systems, system daemons are controlled by
the System Resource Controller (SRC). This facility starts daemons associated with
the various subsystems and monitors their status on an ongoing basis. If a system
daemon dies, the SRC automatically restarts it.

The sremstr command is the executable corresponding to the SRC. The 1ssrc and
chssys commands may be used to list services controlled by the SRC and change
their configuration settings, respectively. We’ll see examples of these commands at
various points in this book.

Connecting to the network

Network initialization begins by setting the system’s network hostname, if neces-
sary, and configuring the network interfaces (adapter devices), enabling it to commu-
nicate on the network. The script that starts networking at boot time contains
commands like these:

ifconfig lo0 127.0.0.1
ifconfig ent0 inet 192.168.29.22 netmask 255.255.255.0

The specific ifconfig commands vary quite a bit. The first parameter to ifconfig,
which designates the network interface, may be different on your system. In this case,
lo0 is the loopback interface, and ent0 is the Ethernet interface. Other common
names for Ethernet interfaces include eri0, dnetO, and hme0 (Solaris); ethO (Linux);
tu0 (Tru64); xI0 (FreeBSD); lan0 (HP-UX); en0 (AIX); and ef0 and etO (some System
V). Interfaces for other network media will have different names altogether. Static
routes may also be defined at this point using the route command. Networking is
discussed in detail in Chapter 5.

Networking services also rely on a number of daemon processes. They are usually
started with commands of this general form:
if [-x server-pathname]; then
preparatory commands
server-start-cmd
echo Starting server-name
fi
When the server program file exists and is executable, the script performs any neces-
sary preparatory activities and then starts the server process. Note that some servers
go into background execution automatically, while others must be explicitly started
in the background. The most important network daemons are listed in Table 4-1.

148 | Chapter4: Startup and Shutdown

Table 4-1. Common network daemons

Daemon(s)

inetd

named, routed, gated
ntpd, xntpd, timed

portmap, rpc.statd, rpc.lockd

nfsd, biod, mountd

automount

smbd, nmbd

Purpose

Networking master server responsible for responding to many types of network
requests via a large number of subordinate daemons, which it controls and to
which it delegates tasks.

The name server and routing daemons, which provide dynamic remote host-
name and routing data for TCP/IP. At most, one of routed or gated is used.

Time-synchronization daemons. The timed daemon has been mostly replaced
by the newer ntpd and the latest xntpd.

Remote Procedure Call (RPC) daemons. RPCis the primary network interprocess
communication mechanism used on Unix systems. portmap connects RPC pro-
gram numbers to TCP/IP port numbers, and many network services depend on it.
rpc. Lockd provides locking services to NFS in conjunction with rpc. statd,
the status monitor. The names of the latter two daemons may vary.

NFS daemons, which service file access and filesystem mounting requests from
remote systems. The first two take an integer parameter indicating how many
copies of the daemon are created. The system boot scripts also typically execute
the exportfs -acommand, which makes local filesystems available to
remote systems via NFS.

NFS automounter, responsible for mounting remote filesystems on demand. This
daemon has other names on some systems.

SAMBA daemons that handle SMB/CIFS-based remote file access requests from
Windows (and other) systems.

Once basic networking is running, other services and subsystems that depend on it
can be started. In particular, remote filesystems can be mounted with a command
like this one, which mounts all remote filesystems listed in the system’s filesystem

configuration file:

mount -a -t nfs On some systems, —F replaces —t.

Housekeeping activities

Traditionally, multiuser-mode boots also include a number of cleanup activities such

as the following;:

* Preserving editor files from vi and other ex-based editors, which enable users to
recover some unsaved edits in the event of a crash. These editors automatically
place checkpoint files in /tmp or /var/tmp during editing sessions. The expreserve
utility is normally run at boot time to recover such files. On Linux systems, the
elvis vi-clone is commonly available, and elvprsv performs the same function

as expreserve for its files.

* Clearing the /tmp directory and possibly other temporary directories. The com-
mands to accomplish this can be minimalist:

m -f /tmp/*

About the Unix Boot Process | 149

utilitarian:

cd /tmp; find . ! -name . ! -name .. ! -name lost+found \
I -name quota* -exec rm -fr {} \;

OI rOCOCO:

If no /tmp exists, create one (we assume /tmp is not
a separate file system).
if [! -d /tmp -a ! -1 /tmp]; then
m -f /tmp
mkdir /tmp
fi
for dir in /tmp /var/tmp /usr/local/tmp ; do
if [-d $dir] ; then
cd $dir
find . \(\(-type f \(-name a.out -o \
-name *.bak -o -name core -o -name *v -0 \
-name *> -0 -name #*# -o -name #.*# -o \
-name *.0 -o \(-atime +1 -mtime +3 \) \) \) \
-exec rm -f {} \; -0 -type d -name * \
-prune -exec m -fr {} \; \)
fi
cd /
done
The first form simply removes from /tmp all files other than those whose names
begin with a period. The second form might be used when /tmp is located on a
separate filesystem from the root filesystem to avoid removing important files
and subdirectories. The third script excerpt makes sure that the /tmp directory
exists and then removes a variety of junk files and any subdirectory trees (with

names not beginning with a period) from a series of temporary directories.

On some systems, these activities are not part of the boot process but are handled in
other ways (see Chapter 15 for details).

Allowing users onto the system

The final boot-time activities complete the process of making the system available to
users. Doing so involves both preparing resources users need to log in and removing
barriers that prevent them from doing so. The former consists of creating the getty
processes that handle each terminal line and starting a graphical login manager like
xdm—or a vendor-customized equivalent facilitcy—for X stations and the system con-
sole, if appropriate. On Solaris systems, it also includes initializing the Service Access
Facility daemons sac and ttymon. These topics are discussed in detail in Chapter 12.

On most systems, the file /etc/nologin may be created automatically when the system
is shut down normally. Removing it is often one of the very last tasks of the boot
scripts. FreeBSD uses /var/run/nologin.

letc/nologin may also be created as needed by the system administrator. If this file is
not empty, its contents are displayed to users when they attempt to log in. Creating
the file has no effect on users who are already logged in, and the root user can always
log in. HP-UX versions prior to 11i do not use this file.

150 | Chapter4: Startup and Shutdown

Initialization Files and Boot Scripts

This section discusses the Unix initialization files: command scripts that perform
most of the work associated with taking the system to multiuser mode. Although
similar activities take place under System V and BSD, the mechanisms by which they
are initiated are quite different. Of the systems we are considering, FreeBSD follows
the traditional BSD style, AIX is a hybrid of the two, and all the other versions use
the System V scheme.

Understanding the initialization scripts on your system is a vital part of system
administration. You should have a pretty good sense of where they are located and
what they do. That way, you’ll be able to recognize any problems at boot time right
away, and you’ll know what corrective action to take. Also, from time to time, you’ll
probably need to modify them to add new services (or to disable ones you’ve decided
you don’t need). We’ll discuss customizing initialization scripts later in this chapter.

Although the names, directory locations, and actual shell program code for system
initialization scripts varies widely between BSD-based versions of Unix and those
derived from System V, the activities accomplished by each set of scripts as a whole
differs in only minor ways. In high-level terms, the BSD boot process is controlled by
a relatively small number of scripts in the /etc directory, with names beginning with
rc, which are executed sequentially. In contrast, System V executes a large number of
scripts (as high as 50 or more), organized in a three-tiered hierarchy.

N
\
o Unix initialization scripts are written using the Bourne shell (/bin/sh).
:‘,“ As a convenience, Bourne shell programming features are summarized
& . -
* e in Appendix A.

Aspects of the boot process are also controlled by configuration files that modify the
operations of the boot scripts. Such files consist of a series of variable definitions that
are read in at the beginning of a boot script and whose values determine which com-
mands in the script are executed. These variables can specify things like whether a
subsystem is started at all, the command-line options to use when starting a dae-
mon, and the like. Generally, these files are edited manually, but some systems pro-
vide graphical tools for this purpose. The dialog on the left in Figure 4-1 shows the
utility provided by SuSE Linux 7 as part of its YaST2 administration tool.

The dialog on the right shows the new run-level editor provided by YaST2 on SuSE 8
systems. In this example, we are enabling inetd in run levels 2, 3, and 5.

Initialization Files Under FreeBSD

The organization of system initialization scripts on traditional BSD systems such as
FreeBSD is the essence of simplicity. In the past, boot-time activities occurred via a
series of only three or four shell scripts, usually residing in /etc, with names beginning

Initialization Files and Boot Scripts | 151

Bhart LA o o8 Bt Gyl

ooen;
st eron demer? ("gea® or re') should
I L1 urcharged 1o the demalt T
g

Figure 4-1. Editing the boot script configuration file on a SuSE Linux system

with rc. Under FreeBSD, this number has risen to about 20 (although not all of them
apply to every system).

Multiuser-mode system initialization under BSD-based operating systems is con-
trolled by the file /etc/rc. During a boot to multiuser mode, init executes the rc
script, which in turn calls other rc.* scripts. If the system is booted to single-user
mode, rc begins executing when the single-user shell is exited.

The boot script configuration files /etc/default/rc.conf, /etc/rc.conf, and Jetc/rc.conf.
local control the functioning of the rc script. The first of these files is installed by the
operating system and should not be modified. The other two files contain overrides
to settings in the first file (although the latter is seldom used).

Here are some example entries from /etc/rc.conf:

accounting enable="YES"
check_quotas="YES"
defaultrouter="192.168.29.204"
hostname="ada.ahania.com"
ifconfig x10="inet 192.168.29.216 netmask 255.255.255.0"
inetd enable="YES"

nfs _client enable="YES"
nfs_server_enable="YES"
portmap_enable="YES"

sendmail enable="NO"
sshd_enable="YES"

This file enables the accounting, inetd, NFS, portmapper, and ssh subsystems and
disables sendmail. It causes disk quotas to be checked at boot time, and specifies var-
ious network settings, including the Ethernet interface.

Initialization Files on System V Systems

The system initialization scripts on a System V-style system are much more numer-
ous and complexly interrelated than those under BSD. They all revolve around the
notion of the current system run level, a concept to which we now turn.

152 | Chapter4: Startup and Shutdown

System V run levels

At any given time, a computer system can be in one of three conditions: off (not run-
ning, whether or not it has power), single-user mode, or multiuser mode (normal
operating conditions). These three conditions may be thought of as three implicitly
defined system states.

System V—based systems take this idea to its logical extreme and explicitly define a
series of system states, called run levels, each of which is designated by a one-charac-
ter name that is usually a number. At any given time, the system is at one of these
states, and it can be sent to another one using various administrative commands. The
defined run levels are listed in Table 4-2.

Table 4-2. System V—style run levels

Run Level Name and customary purpose

0 Halted state: conditions under which it is safe to turn off the power.

1 System administration/maintenance state.

Sands Single-user mode.

2 Multiuser mode: the normal operating state for isolated, non-networked systems or networked, non-server

systems, depending on the version of Unix.

3 Remote file sharing state: the normal operating state for server systems on networks that share their local
resources with other systems (irrespective of whether networking and resource sharing occurs via TCP/IP and
NFS or some other protocol).

4,7,8,9 Administrator-definable system states: a generally unused run level, which can be set up and defined locally.

5 Same as run level 3 but running a graphical login program on the system console (e.g., xdm).

6 Shutdown and reboot state: used to reboot the system from some running state (s, 2, 3, or 4). Moving to this
state causes the system to be taken down (to run level 0) and then immediately rebooted back to its normal
operating state.

Qandq A pseudo-state that tells init to reread its configuration file /etc/inittab.

a,b, ¢ Pseudo—run levels that can be defined locally. When invoked, they cause init to run the commands in /etc/

inittab corresponding to them without changing the current (numeric) run level.

In most implementations, states 1 and s/S are not distinguished in practice, and not
all states are predefined by all implementations. State 3 is the defined normal operat-
ing mode for networked systems. In practice, some systems collapse run levels 2 and
3, supporting all networking functions at run level 2 and ignoring run level 3, or
making them identical so that 2 and 3 become alternate names for the same system
state. We will use separate run levels 2 and 3 in our examples, making run level 3 the
system default level.

Note that the pseudo—run levels (a, b, ¢, and q/Q) do not represent distinct system
states, but rather function as ways of getting init to perform certain tasks on demand.

Table 4-3 lists the run levels defined by the various operating systems we are consid-
ering. Note that FreeBSD does not use run levels.

Initialization Files and Boot Scripts | 153

Table 4-3. Run levels defined by various operating systems

AIX HP-UX Linux Tru64 Solaris
Default run level 2 3 3or5 3 3
Q yes yes yes yes yes
7,8,9 yes no yes yes no
a,b,c yes yes yes no yes

The command who -r may be used to display the current run level and the time it
was initiated:

$ who -r

. run level 3 Mar 14 11:14 3 0 S Previous run level was S.
The output indicates that this system was taken to run level 3 from run level S on
March 14. The 0 value between the 3 and the S indicates the number of times the
system had been at the current run level immediately prior to entering it this time. If
the value is nonzero, it often indicates previous unsuccessful boots.

On Linux systems, the runlevel command lists the previous and current run levels.

Now for some concrete examples. Let’s assume a system whose normal, everyday sys-
tem state is state 3 (networked multiuser mode). When you boot this system after the
power has been off, it moves from state O to state 3. If you shut the system down to
single-user mode, it moves from state 3 through state 0 to state s. When you reboot
the system, it moves from state 3 through state 6 and state 0, and then back to state 3.”

Using the telinit command to change run levels

The telinit utility may be used to change the current system run level. Its name
comes from the fact that it tells the init process what to do next. It takes the new run
level as its argument. The following command tells the system to reboot:

telinit 6

Tru64 does not include the telinit command. However, because telinit is just a
link to init that has been given a different name to highlight what it does, you can
easily create it if desired:

cd /sbin
1n init telinit

You can also just use init itself: init 6.

AIX also omits the telinit command, since it does not implement run levels in the
usual manner.

* In practice, booting to state 3 often involves implicitly moving through state 2, given the way that inittab con-
figuration files employing both states are usually set up.

154 | Chapter4: Startup and Shutdown

Initialization files overview

System V-style systems organize the initialization process in a much more complex
way, using three levels of initialization files:

* /etc/inittab, which is init’s configuration file.

* A series of primary scripts named rcn (where 7 is the run level), typically stored
in /etc or /sbin.

* A collection of auxiliary, subsystem-specific scripts for each run level, typically
located in subdirectories named ren.d under /etc or /sbin.

* In addition, some systems also provide configuration files that define variables
specifying or modifying the functioning of some of these scripts.

On a boot, when init takes control from the kernel, it scans its configuration file, /
etc/inittab, to determine what to do next. This file defines init’s actions whenever
the system enters a new run level; it contains instructions to carry out when the sys-
tem goes down (run level 0), when it boots to single-user mode (run level S), when
booting to multiuser mode (run level 2 or 3), when rebooting (run level 6), and so
on.

Each entry in the inittab configuration file implicitly defines a process to be run at
one or more run levels. Sometimes, this process is an actual daemon that continues
executing as long as the system remains in a given run level. More often, the process
is a shell script that is executed when the system enters one of the run levels speci-
fied in its inittab entry.

When the system changes run levels, init consults the inittab file to determine the
processes that should be running at the new run level. It then kills all currently run-
ning processes that should not be running at the new level and starts all processes
specified for the new run level that are not already running.

Typically, the commands to execute at the start of each run level are contained in a
script named rcn, where 7 is the run level number (these scripts are usually stored in
the /etc directory). For example, when the system moves to run level 2, init reads the
letc/inittab file, which tells it to execute rc2. rc2 then executes the scripts stored in
the directory /etc/rc2.d. Similarly, when a running system is rebooted, it moves first
from run level 2 to run level 6, a special run level that tells the system to shut down
and immediately reboot, where it usually executes rc0 and the scripts in /etc/rc0.d,
and then changes to run level 2, again executing rc2 and the files in /etc/rc2.d. A few
systems use a single rc script and pass the run level as its argument: rc 2.

A simple version of the System V rebooting process is illustrated in Figure 4-2
(assuming run level 2 as the normal operating state). We will explain all of the com-
plexities and eccentricities in it as this section progresses.

Initialization Files and Boot Scripts | 155

MOUNTfsys

nfs

init.d

tep

inittab
[etc I—

rc0.d

D
=
o
o
b
=
=
o
[
=
(o}
m

rc0 T

}

r.d

'
.

........... symbolic links

Figure 4-2. Executing System V—style boot scripts

The init configuration file

As we’ve seen, top-level control of changing system states is handled by the file /etc/
inittab, read by init. This file contains entries that tell the system what to do when it
enters the various defined system states.

156 | Chapter4: Startup and Shutdown

Entries in the inittab have the following form:
cc:levels:action:process

where cc is a unique, case-sensitive label identifying each entry (subsequent entries
with duplicate labels are ignored).” levels is a list of run levels to which the entry
applies; if it is blank, the entry applies to all of them. When the system enters a new
state, init processes all entries specified for that run level in the inittab file, in the
order they are listed in the file.

process is the command to execute, and action indicates how init is to treat the pro-
cess started by the entry. The most important action keywords are the following:
wait
Start the process and wait for it to finish before going on to the next entry for
this run state.
respawn
Start the process and automatically restart it when it dies (commonly used for
getty terminal line server processes).
once
Start the process if it’s not already running. Don’t wait for it.
boot
Execute entry only at boot time; start the process but don’t wait for it.
bootwait
Execute entry only at boot time and wait for it to finish.
initdefault
Specify the default run level (the one to reboot t0).
sysinit
Used for activities that need to be performed before init tries to access the sys-
tem console (for example, initializing the appropriate device).
off
If the process associated with this entry is running, kill it. Also used to comment
out unused terminal lines.

Comments may be included on separate lines or at the end of any entry by preceding
the comment with a number sign (#).

Here is a sample inittab file:

set default init level -- multiuser mode with networking
is:3:initdefault:

initial boot scripts

* Conventionally, labels are 2 characters long, but the actual limit is usually four characters, and some systems
allow labels of up to 14 characters.

Initialization Files and Boot Scripts | 157

fs::bootwait:/etc/bcheckrc </dev/console >/dev/console 2>&1
br::bootwait:/etc/brc </dev/console >/dev/console 2581

shutdown script
10:06:wait:/etc/rco >/dev/console 2>81 </dev/console

run level changes

r1:1:wait:/sbin/shutdown -y -iS -g0 >/dev/console 2>81
r2:23:wait:/etc/rc2 >/dev/console 2>&1 </dev/console
r3:3:wait:/etc/rc3 >/dev/console 2>&1 </dev/console
pkg:23:once:/usr/sfpkg/sfpkgd # start daemon directly

off and reboot states
off:0:wait:/sbin/uadmin 2 0 >/dev/console 2>81 </dev/console
rb:6:wait:/sbin/uadmin 2 1 >/dev/console 2>81 </dev/console

terminal initiation
€0:12345:respawn:/sbin/getty console console
t0:234:respawn:/sbin/getty ttyo 9600
t1:234:respawn:/sbin/getty tty1l 9600
t2:234:0ff:/sbin/getty tty2 9600

special run level

acct:a:once:/etc/start_acct # start accounting
This file logically consists of seven major sections, which we’ve separated with blank
lines. The first section, consisting of a single entry, sets the default run level, which in
this case is networked multiuser mode (level 3).

The second section contains processes started when the system is booted. In the
sample file, this consists of running the /etc/bcheckrc and /etc/bre preliminary boot
scripts commonly used on System V systems in addition to the rcn structure. The
bcheckrc script’s main function is to prepare the root filesystem and other critical
filesystems like /usr and /var. Both scripts are allowed to complete before init goes
on to the next inittab entry.

The third section of the sample inittab file specifies the commands to execute when-
ever the system is brought down, either during a system shutdown and halt (to run
level 0) or during a reboot (run level 6). In both cases, the script /etc/rc0 is executed,
and init waits for it to finish before proceeding.

The fourth section, headed “run level changes,” specifies the commands to run when
system states 1, 2, and 3 begin. For state 1, the shutdown command listed in the sam-
ple file takes the system to single-user mode. Some systems execute the rc1 initializa-
tion file when the system enters state 1 instead of a shutdown command like the one
above.

For state 2, init executes the rc2 initialization script; for state 3, init executes rc2
followed by rc3. In all three states, each process is allowed to finish before init goes
on to the next entry. The final entry in this section starts a process directly instead of
calling a script. The sfpkgd daemon is started only once per run level, when the

158 | Chapter4: Startup and Shutdown

system first enters run level 2 or 3. Of course, if the daemon is already running, it will
not be restarted.

The fifth section specifies commands to run (after rc0) when the system enters run
levels 0 and 6. In both cases, init runs the uadmin command, which initiates system
shutdown. The arguments to uadmin specify how the shutdown is to be handled.
Many modern systems have replaced this legacy command, folding its functionality
into the shutdown command (as we’ll see shortly). Of the System V systems we are
considering, only Solaris still uses uadmin.

The sixth section initializes the system’s terminal lines via getty processes (which are
discussed in Chapter 12).

The final section of the inittab file illustrates the use of special run level a. This entry
is used only when a telinit a command is executed by the system administrator, at
which point the start_acct script is run. The run levels a, b, and c are available to be
defined as needed.

The reninitialization scripts

As we've seen, init typically executes a script named rcn when entering run level n
(rc2 for state 2, for example). Although the boot (or shutdown) process to each sys-
tem state is controlled by the associated rcn script, the actual commands to be exe-
cuted are stored in a series of files in the subdirectory r¢n.d. Thus, when the system
enters state 0, init runs 7¢O (as directed in the inittab file), which in turn runs the
scripts in rc0.d.

The contents of an atypically small rc2.d directory (on a system that doesn’t use a
separate run level 3) are listed below:

$ 1s -C /etc/xc2.d

K30tcp Si5preserve S30tcp S50RMTMPFILES
K4onfs S20sysetup S35bsd S75cron
SO1MOUNTFSYS S21perf S40nfs S851p

All filenames begin with one of two initial filename characters (S and K), followed by
a two-digit number, and they all end with a descriptive name. The rcn scripts exe-
cute the K-files (as I'll call them) in their associated directory in alphabetical order,
followed by the S-files, also in alphabetical order (this scheme is easiest to under-
stand if all numbers are the same length; hence the leading zeros on numbers under
10). Numbers do not need to be unique.

In this directory, files would be executed in the order K30tcp, K40nfs,
SOIMOUNTESYS, Sl15preserve, and so on, ending with S75cron and S85Ip. K-files
are generally used to kill processes (and perform related functions) when transition-
ing to a different state; S-files are used to start processes and perform other initializa-
tion functions.

Initialization Files and Boot Scripts | 159

The files in the rc*.d subdirectories are usually links to those files in the subdirectory
init.d, where the real files live. For example, the file rc2.d/S30tcp is actually a link to
init.d/tcp. You see how the naming conventions work: the final portion of the name
in the rcn.d directory is the same as the filename in the init.d directory.

The file K30tcp is also a link to init.d/tcp. The same file in init.d is used for both the
kill and start scripts for each subsystem. The K and S links can be in the same rcn.d
subdirectory, as is the case for the TCP/IP initialization file, or in different subdirec-
tories. For example, in the case of the print spooling subsystem, the S-file might be in
rc2.d while the K-file is in r¢0.d.

The same file in init.d can be put to both uses because it is passed a parameter indi-
cating whether it was run as a K-file or an S-file. Here is an example invocation, from
an rc2 script:

If the directory /etc/rc2.d exists,
run the K-files in it ...
if [-d /etc/rc2.d]; then
for f in /etc/rc2.d/K*
{
if [-s ${f}]; then
pass the parameter "stop" to the file
/bin/sh ${f} stop
fi

and then the S-files:
for f in /etc/rc2.d/S*
{
if [-s ${f} 1; then
pass the parameter "start" to the file
/bin/sh ${f} start
fi
}
fi

When a K-file is executed, it is passed the parameter stop; when an S-file is executed,

it is passed start. The script file will use this parameter to figure out whether it is
being run as a K-file or an S-file.

Here is a simple example of the script file, init.d/cron, which controls the cron facil-
ity. By examining it, you’ll be able to see the basic structure of a System V initializa-
tion file:

#1/bin/sh
case $1 in
commands to execute if run as "Snncron"
"start')
remove lock file from previous cron
m -f /usr/lib/cron/FIFO
start cron if executable exists
if [-x /sbin/cron]; then
/sbin/cron

160 | Chapter4: Startup and Shutdown

echo "starting cron."
fi
commands to execute if run as "Knncron"
"stop')
pid="/bin/ps -e | grep ' cron$' | \
sed -e 's/~ *//' -e 's/ *//'
if ["${pid}" = ""]; then
kill ${pid}
fi
handle other arguments
*)
echo "Usage: /etc/init.d/cron {start|stop}"
exit 1

3
esac
The first section in the case statement is executed when the script is passed start as
its first argument (when it’s an S-file); the second section is used when it is passed
stop, as a K-file. The start commands remove any old lock file and then start the cron
daemon if its executable is present on the system. The stop commands figure out the
process ID of the cron process and kill it if it’s running. Some scripts/operating sys-
tems define additional valid parameters, including restart (equivalent to stop then
start) and status.

The file /etc/init.d/cron might be linked to both /etc/rc2.d/S75cron and Jetc/rc0.d/
K75cron. The cron facility is then started by rc2 during multiuser boots and stopped
by 7¢c0 during system shutdowns and reboots.

Sometimes scripts are even more general, explicitly testing for the conditions under
which they were invoked:

set “who -1’ Determine previous run level.
if [$8 1= "0"] The return code of the previous state change.
then
exit
fi
case $argl in 'start')
if [$9 = "S"] Check the previous run level.
then

echo "Starting process accounting”
/usr/lib/acct/startup
fi

35
This file uses various parts of the output from who -r:

$ who -r
run level 2 Mar 14 11:14 2 0 S

Initialization Files and Boot Scripts | 161

The set command assigns successive words in the output from the who command to
the shell script arguments $1 through $9. The script uses them to test whether the
current system state was entered without errors, exiting if it wasn’t. It also checks
whether the immediately previous state was single-user mode, as would be the case
on this system on a boot or reboot. These tests ensure that accounting is started only
during a successful boot and not when single-user mode has been entered due to
boot errors or when moving from one multiuser state to another.

Boot script configuration files

On many systems, the functioning of the various boot scripts can be controlled and
modified by settings in one or more related configuration files. These settings may
enable or disable subsystems, specify command-line arguments for starting dae-
mons, and the like. Generally, such settings are stored in separate files named for the
corresponding subsystem, but sometimes they are all stored in a single file (as on
SuSE Linux systems, in /etc/rc.config).

Here are two configuration files from a Solaris system; the first is /etc/default/
sendmail:

DAEMON=yes Enable the daemon.
QUEUE=1h Set the poll interval to 1 hour.

The next file is /etc/default/samba:

Options to smbd

SMBDOPTIONS="-D"

Options to nmbd

NMBDOPTIONS="-D"
The first example specifies whether the associated daemon should be started, as well
as one of its arguments, and the second file specifies the arguments to be used when
starting the two Samba daemons.

File location summary

Table 4-4 summarizes the boot scripts and configuration files used by the various
System V-style operating systems we are considering. A few notes about some of
them will follow.

Table 4-4. Boot scripts for System V—style operating systems

Component Location

inittab file Usual: /etc

rc*files Usual: /sbin/rcn
AIX: /etc/rc.*

HP-UX: /sbin/rcna
Linux: /etc/rc.d/rcna

162 | Chapter4: Startup and Shutdown

Table 4-4. Boot scripts for System V—style operating systems (continued)

Component Location

ren.d and init.d subdirectories Usual: /sbin/rcn.d and /sbin/init.d
AIX: /etc/rc.d/ren.d (but they are empty)
Linux: /etc/rc.d/ren.d and /etc/re.d/init.d (Red Hat); Zetc/init.d/ren.d and Zetc/init.d (SuSE)
Solaris: /etc/rcn.d and Jetc/init.d
Boot script configuration files AIX: none used
FreeBSD: /etc/rc.conf, and/or /etc/rc.conf.local
HP-UX: /etc/rc.config.d/*
Linux: /etc/sysconfig/* (Red Hat, SuSE 8); /etc/rc.config and /etc/rc.config.d/* (SuSE 7)
Solaris: /etc/default/*
Tru64: /etc/rc.config

a pis the parameter to rc.

Solaris initialization scripts

Solaris uses a standard System V boot script scheme. The script #cS (in /sbin) replaces
bcheckrc, but it performs the same functions. Solaris uses separate rcn scripts for
each run level from 0 through 6 (excluding rc4, which a site must create on its own),
but the scripts for run levels 0, 5, and 6 are just links to a single script, called with
different arguments for each run level. There are separate rcn.d directories for run
levels O through 3 and S.

Unlike on some other systems, run level 5 is a “firmware” (maintenance) mode,
defined as follows:

s5:5:wait:/sbin/rcs >/dev/msglog 2>81 </dev/console

of:5:wait:/sbin/uadmin 2 6 >/dev/msglog 2>81 </dev/console

These entries illustrate the Solaris msglog device, which sends output to one or more
console devices via a single redirection operation.

Solaris inittab files also usually contain entries for the Service Access Facility dae-
mons, such as the following;:

sc:234:respawn:/usr/lib/saf/sac -t 300 ...

co0:234:respawn:/usr/lib/saf/ttymon ...
Run level 3 on Solaris systems is set up as the remote file-sharing state. When TCP/IP
is the networking protocol in use, this means that general networking and NFS client
activities—such as mounting remote disks—occur as part of run level 2, but NFS
server activities do not occur until the system enters run level 3, when local filesys-
tems become available to other systems. The rc2 script, and thus the scripts in rc2.d,
are executed for both run levels by an inittab entry like this one:

s2:23:wait:/sbin/rc2 ...

Initialization Files and Boot Scripts | 163

Tru64 initialization scripts

Tru64 feels generally like a BSD-style operating system. Its initialization scripts are
one of the few places where its true, System V-style origins are revealed. It uses
bcheckrc to check (if necessary) and mount the local filesystems.

Tru64 defines only four run levels: 0, S, 2, and 3. The latter two differ in that run
level 3 is the normal, fully networked state and is usually init’s default run level.
Run level 2 is a nonnetworked state. It is designed so that it can be invoked easily
from a system at run level 3. The /sbin/rc2.d directory contains a multitude of K-files
designed to terminate all of the various network servers and network-dependent sub-
systems. Most of the K-files operate by running the ps command, searching its out-
put for the PID of a specific server process, and then killing it if it is running. The
majority of the S-files in the subdirectory exit immediately if they are run at any time
other than a boot from single-user mode. Taken together, the files in 7¢2.d ensure a
functional but isolated system, whether run level 2 is reached as part of a boot or
reboot, or via a transition from run level 3.

Linux initialization scripts

Most Linux systems use a vanilla, System V—style boot script hierarchy. The Linux
init package supports the special action keyword ctrlaltdel that allows you to trap
CTRL-ALT-DELETE sequences (the standard method of rebooting a PC), as in this
example, which calls the shutdown command and reboots the system:

ca::ctrlaltdel:/sbin/shutdown -1 now

Linux distributions also provide custom initial boot scripts (run prior to rc). For
example, Red Hat Linux uses /etc/rc.d/rc.sysinit for this purpose, and SuSE Linux sys-
tems use /etc/init.d/boot. These scripts focus on the earliest boot tasks such as check-
ing and mounting filesystems, setting the time zone, and initializing and activating
swap space.

AIX: Making System V work like BSD

It’s possible to eliminate most of the layers of initialization scripts that are standard
under System V. Consider this AIX inittab file:

init:2:initdefault:

brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1

rc:2:wait:/etc/rc 2>81 | alog -tboot > /dev/console srcmstr:2:respawn:/usr/sbin/sremstr
tepip:2:wait:/etc/rc.tepip > /dev/console 2>81

nfs:2:wait:/etc/rc.nfs > /dev/console 2>&1

ihshttpd:2:wait:/usr/HTTPServer/bin/httpd > /dev/console 2>&1
cron:2:respawn:/usr/sbin/cron

qdaemon:2:wait:/usr/bin/startsrc -sqdaemon

cons::respawn:/etc/getty /dev/console

ttyo:2:respawn:/etc/getty /dev/ttyo

164 | Chapter4: Startup and Shutdown

Other than starting a server process for the system console and executing the file /etc/
bcheckrc at boot time, nothing is defined for any run level other than state 2 (mul-
tiuser mode).

This is the approach taken by AIX. When the system enters state 2, a series of initial-
ization files are run in sequence: in this case, /etc/rc, /etc/rc.tcpip, and Jetc/re.nfs (with
the System Resource Controller starting up in the midst of them). Then several dae-
mons are started via their own inittab entries. After the scripts complete, getty pro-
cesses are started. Since /etc/ren.d subdirectories are not used at all, this setup is a
little different from that used on BSD systems.

More recent AIX operating system revisions do include hooks for other run levels,
modifying the preceding inittab entries in this way:
Note that even run level 6 is included!

tcpip:23456789:wait:/etc/rc.tcpip > /dev/console 2>&1
The /etc/rc.d/ren.d subdirectories are provided, but they are all empty.

Customizing the Boot Process

Sooner or later, you will want to make additions or modifications to the standard
boot process. Making additions is less risky than changing existing scripts. We’ll
consider the two types of modifications separately.

Before adding to or modifying system boot scripts, you should be very
familiar with their contents and understand what every line within
them does. You should also save a copy of the original script so you
can easily restore the previous version should problems occur.

Adding to the boot scripts

When you want to add commands to the boot process, the first thing you need to
determine is whether there is already support for what you want to do. See if there is
an easy way to get what you want: changing a configuration file variable, for exam-
ple, or adding a link to an existing file in init.d.

If the operating system has made no provisions for the tasks you want to accom-
plish, you must next figure out where in the process the new commands should be
run. It is easiest to add items at the end of the standard boot process, but occasion-
ally this is not possible.

It is best to isolate your changes from the standard system initialization files as much
as possible. Doing so makes them easier to test and debug and also makes them less
vulnerable to being lost when the operating system is upgraded and the previous
boot scripts are replaced by new versions. Under the BSD scheme, the best way to
accomplish this is to add a line to rc (or any other script that you need to change)
that calls a separate script that you provide:

. /etc/rc.site specific >/dev/console 2>&1

Initialization Files and Boot Scripts | 165

Ideally, you would place this at the end of r¢, and the additional commands needed
on that system would be placed into the new script. Note that the script is sourced
with the dot command so that it inherits the current environment from the calling
script. This does constrain it to being a Bourne shell script.

N
Some systems contain hooks for an rc.local script specifically designed

as for this purpose (stored in /etc like r¢). FreeBSD does—it is called near
W . .
* a2 the end of re—but you will have to create the file yourself.

On System V systems, there are more options. One approach is to add one or more
additional entries to the inittab file (placing them as late in the file as possible):
site:23:wait:/etc/rc.site_specific >/dev/console 2>&1
h96:23:once:/usr/local/bin/h96d
The first entry runs the same shell script we added before, and the second entry
starts a daemon process. Starting a daemon directly from inittab (rather than from
some other initialization file) is useful in two circumstances: when you want the dae-
mon started only at boot time and when you want it to be restarted automatically if
it terminates. You would use the inittab actions once and respawn, respectively, to
produce these two ways of handling the inittab entry.

Alternatively, if your additions need to take place at a very specific point in the boot
process, you will need to add a file to the appropriate ren.d subdirectories. Follow-
ing the System V practice is best in this case: place the new file in the init.d directory,
giving it a descriptive name, and then create links to other directories as needed.
Choose the filenames for the links carefully, so that your new files are executed at the
proper point in the sequence. If you are in doubt, executing the 1s -1 command in
the appropriate directory provides you with an unambiguous list of the current
ordering of the scripts within it, and you will be able to determine what number to
use for your new one.

Eliminating certain boot-time activities

Disabling parts of the boot process is also relatively easy. The method for doing so
depends on the initialization scripts used by your operating system. The various pos-
sibilities are (in decreasing order of preference):

* Disable a subsystem by setting the corresponding control variable to no or 0 in
one of the boot script configuration files. For example:

sendmail enable="no"

* Remove the link in the ren.d directory to the init.d directory in the case of Sys-
tem V—style boot scripts. Alternatively, you can rename the link, for example, by
adding another character to the beginning (I add an underscore: _K20nfs). That
way, it is easy to reinstate the file later.

166 | Chapter4: Startup and Shutdown

* In some cases, you will need to comment out an entry in /etc/inittab (when a dae-
mon that you don’t want is started directly).

* Comment out the relevant lines of initialization scripts that you don’t want to
use. This is the only option under FreeBSD when no rc.conf parameter has been
defined for a command or subsystem.

Linux systems often provide graphical utilities for adding and removing links to files
in init.d. Figure 4-3 illustrates the ksysv utility running on a Red Hat Linux system.

BIDIEIE]
File Edit Tools Settings Help
e s g Sy e [T
& o BB
Available Runlevel 0 Funlevel 1 Runlevel 2 Funlevel 3 Runlevel 5
Services Start Start Start Start Start
Hane [|10 Hame Ho Hame io Haue [a] [1wo Hane |~ 1o Hame [=]
;““”;ﬁ (i killall (il single [iF] ipchains 05 (5 kudzu 05 Kudzu
ﬁzmz . Hlot @ heie 17 [keyrahle 02 [iptables 08 @ ipchains || |08 [J ipchains ||
ﬁfua zun 10 dualoonf | | (08 () iptables it} iptables
b unctions 10 [netwock 10 @ dualconf 10§ dualcont
ﬁgp'it 12 (@ syslog 10 network 10 (@ network
= > ¥ 17 [keytable 12 [syslog 12 3 syslog
ﬁ%lpza:;“ = 20 (@ random [12 @portnap [&] 13 @ portmsp |4
{;};1; :i 26 @ apnd [*] 14 Anfslock [=])14 Anfstock [=]
crotate
% eytable Stop Stop Stop Stop Stop
5 killa11 Hio Hame 2| |0 Hame Al 1o Hane (&l 1o Hane [~ |10 Hame (=]
| 1uden 03 [rhnsd 03 [rhnsd 03 @ rhnsd 00 [Linuxconf 03 (@ rhnsd
% Ldap 05 (8 anacron 05 (@ anacron 05 [atd 01 [kdcrotate 20 [nfs
5 L1 ousccont 05 [atd 05) atd 20 [nfs |03 @ rhnsd 20 [retatd
2 1pd |05 @ keytable 10 [xts 20 (@ rstaed 20) nfs ({20 @ rueerzd
% netes % 0 [xfs 15 [apn 20 @) rusersd 20) rstatd 20 [J rvalld —
=5 @ ogn 20 [nis 20 [rwalld 20 () rusersd 20 [rvhod
20 (@ nfs 20) retatd 20§ rvhod 1|20 @ rwalld L35 @ smd L]
& iz 20 () rstatd 20 (@) rusessd ECI s = 20 (@ cwhed (2 las @ acpwatch [
0 A e hn @ 13 at A ac. Tl @ [18 PSS~ T L=l
F¥- Properties for syslog R ¥~ Properties for syslog B
Entry | Serwice Entry Service ‘
Hane: [syslog Description
Boints to service: [syslog Syslag is the facility by which many daemons
4 use to Loy messages to various system log AR S &
Sorting nunber [12 B || | files. 1t'is a good idea to always run sysleg %
’7{ gdit | [stare |[stop || Bestart |
L : : :

Figure 4-3. Modifying boot script links

The main window lists the scripts assigned as S-files (upper lists) and K-files for each
run level. The Available Services list shows all of the files in init.d. You can add a
script by dragging it from that list box to the appropriate run level pane, and you can
remove one by dragging it to the trash can (we are in the process of deleting the
annoying Kudzu hardware detection utility in the example).

Clicking on any entry brings up the smaller dialog at the bottom of the figure (both
of whose panels are shown as separate windows). You can specify the location
within the sequence of scripts using the Entry panel. The Service panel displays a
brief description of the daemon’s purpose and contains buttons with which you can
start, stop, and restart it. If appropriate, you can use the Edit button to view and
potentially modify the startup script for this facility.

Initialization Files and Boot Scripts | 167

Download from Wow! eBook <www.wowebook.com>

Modifying standard scripts

While it is usually best to avoid it, sometimes you have no choice but to modify the
commands in standard boot scripts. For example, certain networking functions
stopped working on several systems I take care of immediately after an operating sys-
tem upgrade. The reason was a bug in an initialization script, illustrated by the
following;:

Check the mount of /. If remote, skip rest of setup.

mount | grep ' / ' | grep ' nfs ' 2>&1 > /dev/null

if ["$?" -eq 0]

then

exit

fi
The second line of the script is trying to figure out whether the root filesystem is
local or remote—in other words, whether the system is a diskless workstation or not.
It assumes that if it finds a root filesystem that is mounted via NFS, it must be a disk-
less system. However, on my systems, lots of root filesystems from other hosts are
mounted via NFS, and this condition produced a false positive for this script, caus-
ing it to exit prematurely. The only solution in a case like this is to fix the script so
that your system works properly.

Whenever you change a system script, keep these recommendations in mind:

* As a precaution, before modifying them in any way, copy the files you intend to
change, and write-protect the copies. Use the -p option of the cp command, if it
is supported, to duplicate the modification times of the original files as well as
their contents; this data can be invaluable should you need to roll back to a pre-
vious, working configuration. For example:

cp -p /etc/xc /etc/rc.orig
cp -p /etc/rc.local /etc/rc.local.orig
chmod a-w /etc/rc*.orig
If your version of cp doesn’t have a -p option, use a process like this one:

cd /etc

mv rc rc.orig; cp rc.orig rc

mv rc.local rc.local.orig; cp rc.local.orig rc.local

chmod a-w rc.orig rc.local.orig
Similarly, when you make further modifications to an already customized script,
save a copy before doing so, giving it a different extension, such as .save. This
makes the modification process reversible; in the worst case, when the system
won’t boot because of bugs in your new versions—and this happens to every-
one—you can just boot to single-user mode and copy the saved, working ver-
sions over the new ones.

* Make some provision for backing up modified scripts regularly so that they can
be restored easily in an emergency. This topic is discussed in detail in Chapter 11.

* For security reasons, the system initialization scripts (including any old or saved
copies of them) should be owned by root and not be writable by anyone but the

168 | Chapter4: Startup and Shutdown

owner. In some contexts, protecting them against any non-root access is
appropriate.

Guidelines for writing initialization scripts

System boot scripts often provide both good and bad shell programming examples. If
you write boot scripts or add commands to existing ones, keep these recommended
programming practices in mind:

Use full pathnames for all commands (or use one of the other methods for ensur-
ing that the proper command executable is run).

Explicitly test for the conditions under which the script is run if it is relying on
the system being in some known state. Don’t assume, for example, that there are
no users on the system or that a daemon the script will be starting isn’t already
running; have the script check to make sure. Initialization scripts often get run in
other contexts and at times other than those for which their writers originally
designed them.

Handle all cases that might arise from any given action, not just the ones that
you expect to result. This includes handling invalid arguments to the script and
providing a usage message.

Provide lots of informational and error messages for the administrators who will
see the results of the script.

Include plenty of comments within the script itself.

Shutting Down a Unix System

From time to time, you will need to shut the system down. This is necessary for
scheduled maintenance, running diagnostics, hardware changes or additions, and
other administrative tasks.

During a clean system shutdown, the following actions take place:

All users are notified that the system will be going down, preferably giving them
some reasonable advance warning.

All running processes are sent a signal telling them to terminate, allowing them
time to exit gracefully, provided the program has made provisions to do so.

All subsystems are shut down gracefully, via the commands they provide for
doing so.

All remaining users are logged off, and remaining processes are killed.
Filesystem integrity is maintained by completing all pending disk updates.

Depending on the type of shutdown, the system moves to single-user mode, the
processor is halted, or the system is rebooted.

Shutting Down a Unix System | 169

After taking these steps, the administrator can turn the power off, execute diagnos-
tics, or perform other maintenance activities as appropriate.

Unix provides the shutdown command to accomplish all of this. Generally, shutdown
sends a series of timed messages to all users who are logged on, warning them that
the system is going down; after sending the last of these messages, it logs all users off
the system and places the system in single-user mode.

All Unix systems—even those running on PC hardware—should be
shut down using the commands described in this section. This is nec-
essary to ensure filesystem integrity and the clean termination of the
various system services. If you care about what’s on your disks, never
just turn the power off.

There are two main variations of the shutdown command. The System V version is
used by Solaris and HP-UX (the latter slightly modified from the standard), and the
BSD version is used under AIX, FreeBSD, Linux, Solaris (in /usr/ucb), and Tru64.

On systems that provide it, the telinit command also provides a fast
way to shut down (telinit S), halt (telinit 0) or reboot the system
(telinit 6).

The System V shutdown Command

The standard System V shutdown command has the following form:
shutdown [-y] [-g grace] [-i new-level] message

where -y says to answer all shutdown prompts with yes automatically, grace speci-
fies the number of seconds to wait before starting the process (the default is 60),
new-level is the new run level in which to place the system (the default is single-user
mode) and message is a text message sent to all users. This is the form used on
Solaris systems.

Under HP-UX, the shutdown command has the following modified form:
shutdown [-y] grace

where -y again says to answer prompts automatically with yes, and grace is the num-
ber of seconds to wait before shutting down. The keyword now may be substituted
for grace. The shutdown command takes the system to single-user mode.

Here are some example commands that take the system to single-user mode in 15
seconds (automatically answering all prompts):

shutdown -y -g 15 -i s "system going down" Solaris

shutdown -y 15 HP-UX
The HP-UX shutdown also accepts two other options, -r and -h, which can be used
to reboot the system immediately or to halt the processor once the shutdown is com-
plete (respectively).

170 | Chapter4: Startup and Shutdown

For example, these commands could be used to reboot the system immediately:

shutdown -y -g 0 -i 6 "system reboot" Solaris
shutdown -y -r now HP-UX

HP-UX shutdown security

HP-UX also provides the file /etc/shutdown.allow. 1f this file exists, a user must be
listed in it in order to use the shutdown command (and root must be included). If the
file does not exist, only root can run shutdown. Entries in the file consist of a host-
name followed by a username, as in these examples:

hamlet chavez Chavez can shut down hamlet.
+ root Root can shut down any system.
dalton + Anyone can shut down dalton.

As these examples illustrate, the plus sign serves as a wildcard. The shutdown.allow
file also supports the percent sign as an additional wildcard character denoting all
systems within a cluster; this wildcard is not valid on systems that are not part of a
cluster.

The BSD-Style shutdown Command

BSD defines the shutdown command with the following syntax:
shutdown [options] time message

where time can have three forms:

+m Shut down in m minutes.
h:m Shut down at the specified time (24-hour clock).
now Begin the shutdown at once.

now should be used with discretion on multiuser systems.

message is the announcement that shutdown sends to all users; it may be any text
string. For example, the following command will shut the system down in one hour:

shutdown +60 "System going down for regular maintenance"

It warns users by printing the message “System going down for regular mainte-
nance” on their screens. shutdown sends the first message immediately; as the shut-
down time approaches, it repeats the warning with increasing frequency. These
messages are also sent to users on the other systems on the local network who may
be using the system’s files via NFS.

By default, the BSD-style shutdown command also takes the system to single-user
mode, except on AIX systems, where the processor is halted by default. Under AIX,
the -m option must be used to specify shutting down to single-user mode.

Other options provide additional variations to the system shutdown process:

* shutdown -1 says to reboot the system immediately after it shuts down. The
reboot command performs the same function.

Shutting Down a Unix System | 171

* shutdown -h says to halt the processor instead of shutting down to single-user
mode. Once this process completes, the power may be safely turned off. You can
also use the halt command to explicitly halt the processor once single-user mode
is reached.

* shutdown -k inaugurates a fake system shutdown: the shutdown messages are
sent out normally, but no shutdown actually occurs. I suppose the theory is that
you can scare users off the system this way, but some users can be pretty persis-
tent, preferring to be killed by shutdown rather than log out.

The Linux shutdown Command

The version of shutdown found on most Linux systems also has a -t option which
may be used to specify the delay period between when the kernel sends the TERM
signal to all remaining processes on the system and when it sends the KILL signal.
The default is 30 seconds. The following command shuts down the system more rap-
idly, allowing only 5 seconds between the two signals:

shutdown -h -t 5 now

The command version also provides a -a option, which provides a limited security
mechanism for the shutdown command. When it is invoked with this option, the
command determines whether any of the users listed in the file /etc/shutdown.allow
are currently logged in on the console (or any virtual console attached to it). If not,
the shutdown command fails.

The purpose of this option is to prevent casual passers-by from typing Ctrl-Alt-
Delete on the console and causing an (unwanted) system reboot. Accordingly, it is
most often used in the inittab entry corresponding to this event.

Ensuring Disk Accuracy with the sync Command

As we’ve noted previously, one of the important parts of the shutdown process is
syncing the disks. The sync command finishes all disk transactions and writes out all
data to disk, guaranteeing that the system can be turned off without corrupting the
files. You can execute this command manually if necessary:

sync

sync
Why is sync executed two or three times (or even more")? I think this is a bit of Unix
superstition. The sync command schedules but does not necessarily immediately per-
form the required disk writes, even though the Unix prompt returns immediately.
Multiple sync commands raise the probability that the write will take place before

* Solaris administrators swear that you need to do it five times to be safe; otherwise, the password file will
become corrupted. I have not been able to reproduce this.

172 | (Chapter4: Startup and Shutdown

you enter another command (or turn off the power) by taking up the time needed to
complete the operation. However, the same effect can be obtained by waiting a few
seconds for disk activity to cease before doing anything else. Typing “sync” several
times gives you something to do while you’re waiting.

There is one situation in which you do not want sync to be executed, either manu-
ally or automatically: when you have run fsck manually on the root filesystem. If you
sync the disks at this point, you will rewrite the bad superblocks stored in the kernel
buffers and undo the fixing fsck just did. In such cases, on BSD-based systems and
under HP-UX, you must use the -n option to reboot or shutdown to suppress the
usual automatic sync operation.

FreeBSD and System V are smarter about this issue. The fsck command generally
will automatically remount the root filesystem when it has modified the root filesys-
tem. Thus, no special actions are required to avoid syncing the disks.

Aborting a Shutdown

On most systems, the only way to abort a pending system shutdown is to kill the
shutdown process. Determine the shutdown process’ process ID by using a command
like the following:

ps -ax | grep shutdown BSD-style
ps -ef | grep shutdown System V—style

Then use the kill command to terminate it:

ps -ef | grep shutdown

25723 co S 0:01 /etc/shutdown -g300 -i6 -y

25800 co S 0:00 grep shutdown

kill -9 25723
It’s only safe to kill a shutdown command during its grace period; once it has actually
started closing down the system, you’re better off letting it finish and then rebooting.

The Linux version of shutdown includes a -c option that cancels a pending system
shutdown. Every version should be so helpful.

Troubleshooting: Handling Crashes and
Boot Failures

Even the best-maintained systems crash from time to time. A crash occurs when the
system suddenly stops functioning. The extent of system failure can vary quite a bit,
from a failure affecting every subsystem to one limited to a particular device or to the
kernel itself. System hang-ups are a related phenomenon in which the system stops
responding to input from any user or device or stops producing output, but the oper-
ating system nominally remains loaded. Such a system also may be described as
frozen.

Troubleshooting: Handling Crashes and Boot Failures | 173

There are many causes of system crashes and hangups. These are among the most
common:

* Hardware failures: failing disk controllers, CPU boards, memory boards, power
supplies, disk head crashes, and so on.

* Unrecoverable hardware errors, such as double-bit memory errors. These sorts
of problems may indicate hardware that is about to fail, but they also just hap-
pen from time to time.

* Power failures or surges due to internal power supply problems, external power
outages, electrical storms, and other causes.

* Other environmental problems: roof leaks, air conditioning failure, etc.
* 1/O problems involving a fatal error condition rather than a device malfunction.

* Software problems, ranging from fatal kernel errors caused by operating system
bugs to (much less frequently) problems caused by users or third-party programs.

* Resource overcommitment (for example, running out of swap space). These situ-
ations can interact with bugs in the operating system to cause a crash or hang-up.

Some of these causes are easier to identify than others. Rebooting the system may
seem like the most pressing concern when the system crashes, but it’s just as impor-
tant to gather the available information about why the system crashed while the data
is still accessible.

Sometimes it’s obvious why the system crashed, as when the power goes out. If the
cause isn’t immediately clear, the first source of information is any messages appear-
ing on the system console. They are usually still visible if you check immediately,
even if the system is set to reboot automatically. After they are no longer on the
screen, you may still be able to find them by checking the system error log file, usu-
ally stored in /var/log/messages (see Chapter 3 for more details), as well as any addi-
tional, vendor-supplied error facilities.

Beyond console messages lie crash dumps. Most systems automatically write a dump
of kernel memory when the system crashes (if possible). These memory images can
be examined using a debugging tool to see what the kernel was doing when it
crashed. Obviously, these dumps are of use only for certain types of crashes in which
the system state at the time of the crash is relevant. Analyzing crash dumps is beyond
the scope of this book, but you should know where crash dumps go on your system
and how to access them, if only to be able to save them for your field service engi-
neers or vendor technical support personnel.

Crash dumps are usually written to the system disk swap partition. Since this area
may be overwritten when the system is booted, some provisions need to be made to
save its contents. The savecore command solves this problem, as we have seen (the
command is called savecrash under HP-UX).

174 | Chapter4: Startup and Shutdown

If you want to be able to save crash dumps, you need to ensure that
the primary swap partition is large enough. Unless your system has the
ability to compress crash dumps as they are created (e.g., Tru64) or
selectively dump only the relevant parts of memory, the swap parti-
tion needs to be at least as large as physical memory.

If your system crashes and you are not collecting crash dumps by default, but you
want to get one, boot the system to single-user mode and execute savecore by hand.
Don’t let the system boot to multiuser mode before saving the crash dump; once the
system reaches multiuser mode, it’s too late.

AIX also provides the snap command for collecting crash dump and other system
data for later analysis.

Power-Failure Scripts

There are two other action keywords available for inittab that we’ve not yet consid-
ered: powerfail and powerwait. They define entries that are invoked if a SIGPWR sig-
nal is sent to the init process, which indicates an imminent power failure. This
signal is generated only for detectable power failures: those caused by faulty power
supplies, fans, and the like, or via a signal from an uninterruptable power supply
(UPS). powerwait differs from powerfail in that it requires init to wait for its process
to complete before going on to the next applicable inittab entry.

The scripts invoked by these entries are often given the name rc.powerfail. Their
purpose is to do whatever can be done to protect the system in the limited time avail-
able. Accordingly, they focus on syncing the disks to prevent data loss that might
occur if disk operations are still pending when the power does go off.

Linux provides a third action, powerokwait, that is invoked when power is restored
and tells init to wait for the corresponding process to complete before going on to
any additional entries.

When the System Won't Boot

As with system crashes, there can be many reasons why a system won’t boot. To
solve such problems, you first must figure out what the specific problem is. You’ll
need to have a detailed understanding of what a normal boot process looks like so
that you can pinpoint exactly where the failure is occurring. Having a hard copy of
normal boot messages is often very helpful. One thing to keep in mind is that boot
problems always result from some sort of change to the system; systems don’t just
stop working. You need to figure out what has changed. Of course, if you’ve just
made modifications to the system, they will be the prime suspects.

This section lists some of the most common causes of booting problems, along with
suggestions for what to do in each case.

Troubleshooting: Handling Crashes and Boot Failures | 175

Keeping the Trains on Time

If you can keep your head when all about you
Are losing theirs and blaming it on you...

—Kipling

System administration is often metaphorically described as keeping the trains on time,
referring to the pervasive attitude that its effects should basically be invisible—no one
ever pays any attention to the trains except when they’re late. To an even greater
extent, no one notices computer systems except when they’re down. And a few days of
moderate system instability (in English, frequent crashes) can make even the most
good-natured users frustrated and hostile.

The system administrator is the natural target when that happens. People like to
believe that there was always something that could have been done to prevent what-
ever problem has surfaced. Sometimes, that’s true, but not always or even usually. Sys-
tems sometimes develop problems despite your best preventative maintenance.

The best way to handle such situations involves two strategies. First, during the period
of panic and hysteria, do your job as well as you can and leave the sorting out of who
did or didn’t do what when for after things are stable again. The second part gets car-
ried out in periods of calm between crises. It involves keeping fairly detailed records of
system performance and status over a significant period of time; they are invaluable for
figuring out just how much significance to attach to any particular period of trouble
after the fact. When the system has been down for two days, no one will care that it has
been up 98% of the time it was supposed to be over the last six months, but it will mat-
ter once things have stabilized again.

It’s also a good idea to document how you spend your time caring for the system, divid-
ing the time into broad categories (system maintenance, user support, routine activi-
ties, system enhancement), as well as how much time you spend doing so, especially
during crises. You’ll be amazed by the bottom line.

Bad or flaky hardware

Check the obvious first. The first thing to do when there is a device failure is to see if
there is a simple problem that is easily fixed. Is the device plugged in and turned on?
Have any cables connecting it to the system come loose? Does it have the correct
SCSIID (if applicable)? Is the SCSI chain terminated? You get the idea.

Try humoring the device. Sometimes devices are just cranky and can be coaxed back
to life. For example, if a disk won’t come on line, try power-cycling it. If that doesn’t
work, try shutting off the power to the entire system. Then power up the devices one
by one, beginning with peripherals and ending with the CPU if possible, waiting for
each one to settle down before going on to the next device. Sometimes this approach
works on the second or third try even after failing on the first. When you decide
you've had enough, call field service. When you use this approach, once you’ve

176 | Chapter4: Startup and Shutdown

turned the power off, leave it off for a minute or so to allow the device’s internal
capacitors to discharge fully.

Device failures. If a critical hardware device fails, there is not much you can do
except call field service. Failures can occur suddenly, and the first reboot after the
system power has been off often stresses marginal devices to the point that they
finally fail.

Unreadable filesystems on working disks

You can distinguish this case from the previous one by the kind of error you get. Bad
hardware usually generates error messages about the hardware device itself, as a
whole. A bad filesystem tends to generate error messages later in the boot process,
when the operating system tries to access it.

Bad root filesystem. How you handle this problem depends on which filesystem is
damaged. If it is the root filesystem, then you may be able to recreate it from a boota-
ble backup/recovery tape (or image on the network) or by booting from alternate
media (such as the distribution tape, CD-ROM, or diskette from which the operat-
ing system was installed), remaking the filesystem and restoring its files from backup.
In the worst case, you’ll have to reinstall the operating system and then restore files
that you have changed from backup.

Restoring other filesystems. On the other hand, if the system can still boot to single-
user mode, things are not nearly so dire. Then you will definitely be able to remake
the filesystem and restore its files from backup.

Damage to non-filesystem areas of a disk

Damaged boot areas. Sometimes, it is the boot partition or even the boot blocks of
the root disk that are damaged. Some Unix versions provide utilities for restoring
these areas without having to reinitialize the entire disk. You’ll probably have to boot
from a bootable backup tape or other distribution media to use them if you discover
the problem only at boot time. Again, the worst-case scenario is having to reinstall
the operating system.

Corrupted partition tables. On PCs, it is possible to wipe out a disk’s partition tables
if a problem occurs while you are editing them with the fdisk disk partitioning util-
ity. If the power goes off or fdisk hangs, the disk’s partition information can be
incorrect or wiped out entirely. This problem can also happen on larger systems as
well, although its far less common to edit the partition information except at installa-
tion (and often not even then).

The most important thing to do in this case is not to panic. This happened to me on
a disk where I had three operating systems installed, and I really didn’t want to have
to reinstall all of them. The fix is actually quite easy: simply rerun fdisk and recreate
the partitions as they were before, and all will be well again. However, this does

Troubleshooting: Handling Crashes and Boot Failures | 177

mean that you need to have complete, detailed, and accessible (e.g., hardcopy)
records of how the partitions were set up.

Incompatible hardware

Problems with a new device. Sometimes, a system hangs when you try to reboot it
after adding new hardware. This can happen when the system does not support the
type of device that you’ve just added, either because the system needs to be reconfig-
ured to do so or because it simply does not support the device.

In the first case, you can reconfigure the system to accept the new hardware by build-
ing a new kernel or doing whatever else is appropriate on your system. However, if
you find out that the device is not supported by your operating system, you will
probably have to remove it to get the system to boot, after which you can contact the
relevant vendors for instructions and assistance. It usually saves time in the long run
to check compatibility before purchasing or installing new hardware.

Problems after an upgrade. Hardware incompatibility problems also crop up occa-
sionally after operating system upgrades on systems whose hardware has not
changed, due to withdrawn support for previously supported hardware or because of
undetected bugs in the new release. You can confirm that the new operating system
is the problem if the system still boots correctly from bootable backup tapes or
installation media from the previous release. If you encounter sudden device-related
problems after an OS upgrade, contacting the operating system vendor is usually the
best recourse.

Device conflicts. On PCs, devices communicate with the CPU using a variety of meth-
ods: interrupt signals, DMA channels, I/O addresses/ports, and memory addresses
(listed in decreasing order of conflict likelihood). All devices that operate at the same
time must have unique values for the items relevant to it (values are set via jumpers
or other mechanisms on the device or its controller or via a software utility provided
by the manufacturer for this purpose). Keeping detailed and accurate records of the
settings used by all of the devices on the system will make it easy to select appropri-
ate ones when adding a new device and to track down conflicts should they occur.

System configuration errors

Errors in configuration files. This type of problem is usually easy to recognize. More
than likely, you’ve just recently changed something, and the boot process dies at a
clearly identifiable point in the process. The solution is to boot to single-user mode
and then correct the erroneous configuration file or reinstall a saved, working ver-
sions of it.

Unbootable kernels. Sometimes, when you build a new kernel, it won’t boot. There
are at least two ways that this can occur: you may have made a mistake building or
configuring the kernel, or there may be bugs in the kernel that manifest themselves

178 | Chapter4: Startup and Shutdown

on your system. The latter happens occasionally when updating the kernel to the lat-
est release level on Linux systems and when you forget to run lilo after building a
new kernel.

In either case, the first thing to do is to reboot the system using a working, saved ker-
nel that you’ve kept for just this contingency. Once the system is up, you can track
down the problem with the new kernel. In the case of Linux kernels, if you’re con-
vinced that you haven’t made any mistakes, you can check the relevant newsgroups
to see if anyone else has seen the same problem. If no information is available, the
best thing to do is wait for the next patch level to become available (it doesn’t take
very long) and then try rebuilding the kernel again. Frequently, the problem will dis-
appear.

Errors in initialization files are a very common cause of boot problems. Usually, once
an error is encountered, the boot stops and leaves the system in single-user mode.
The incident described in Chapter 3 about the workstation that wouldn’t boot ended
up being a problem of this type. The user had been editing the initialization files on
his workstation, and he had an error in the first line of /etc/rc (I found out later). So
only the root disk got mounted. On this system, /usr was on a separate disk parti-
tion, and the commands stored in /bin used shared libraries stored under /usr. There
was no 1s, no cat, not even ed.

As T told you before, I remembered that echo could list filenames using the shell’s
internal wildcard expansion mechanism (and it didn’t need the shared library). 1
typed:

echo /etc/xc*

and found out there was an rc.dist file there. Although it was probably out of date, it
could get things going. I executed it manually:

. /etc/rc.dist

The moral of this story is, of course, test, test, test. Note once more that obsessive
prudence is your best hope every time.

Troubleshooting: Handling Crashes and Boot Failures | 179

CHAPTER 5
TCP/IP Networking

Since very few computers exist in isolation, managing networks is an inextricable
part of system administration. In fact, in some circles, the designations “system
administrator” and “network administrator” are more or less synonymous.

This chapter provides an overview of TCP/IP networking on Unix systems. It begins
with a general discussion of TCP/IP concepts and procedures and then covers basic
network configuration for client systems, including the variations and quirks of each
of our reference operating systems. There are other discussions of network-related
topics throughout the remainder of the book, including in-depth treatments of net-
work security issues in Chapter 7 and coverage of administering and configuring net-
work facilities and services in Chapter 8.

For a book-length discussion of TCP/IP networking, consult Craig Hunt’s excellent
book, TCP/IP Network Administration (O’Reilly & Associates).

Understanding TCP/IP Networking

The term “TCP/IP” is shorthand for a large collection of protocols and services that
are used for internetworking computer systems. In any given implementation, TCP/IP
encompasses operating system components, user and administrative commands and
utilities, configuration files, and device drivers, as well as the kernel and library sup-
port upon which they all depend. Many of the basic TCP/IP networking concepts are
not operating system—specific, so we’ll begin this chapter by considering TCP/IP net-
working in a general way.

Figure 5-1 depicts an example TCP/IP network including several kinds of network
connections. Assuming that these computers are in reasonably close physical prox-
imity to one another, this network would be classed as a local area network (LAN)."

* You may wonder whether this is one LAN or two LANS. In fact, the term LAN is not precisely defined, and
usage varies.

180

In contrast, a wide area network (WAN) consists of multiple LANSs, often widely sep-
arated geographically (see Figure 5-5, later in this chapter). Different physical net-
work types are also characteristic of the LAN/WAN distinction (e.g., Ethernet versus
frame relay).

Each computer system on the network is known as a host™ and is identified by both a
name and an IP address (more on these later). Most of the hosts in this example have
a permanent name and IP address. However, two of them, italy and chile, have their
IP address dynamically assigned when they first connect to the network (typically, at
boot time), using the DHCP facility (indicated by the highlighted final element in the
IP address).

10.1.1.1 Dialup 10.1.1.100
brazil ppP chile
Wireless 4 10.1.1.101
bridge italy

10.1.1.3
usa

: et duncan hamlet
s ; | 10121 E | 10.1.26 I
: : 10.1.1.5
T] england =
10.1.1.6
greece hal
10.1.2.5
10118 :
russia iago puck
10.1.2.3 10.1.2.4

FDDI

10.1.1.2
spain

E

10.1.1.4
canada

Ela

CRICIE

Figure 5-1. TCP/IP local area network

If I am logged in to, say, spain (either by direct connection or via a modem), spain is
said to be the local system, and brazil is a remote system with respect to processes
running on spain. A system that performs a task for a remote host is called a server;
the host for whom the task is performed is called the client. Thus, if I request a file
from brazil, that system is a server for the client spain during that transfer.

* The term node is sometimes used as a synonym for host in non-Unix networking lexicons.

Understanding TCP/IP Networking | 181

In our example, the network is divided into two subnets that communicate via the
host romeo. The systems named for countries are all connected to an Ethernet back-
bone, and those named for Shakespearean characters are connected via FDDI.

The host romeo serves as a gateway between the two subnets. It is part of both sub-
nets and passes data from one to the other. In this case, the gateway is a computer
with two network interfaces (adapters). However, it is probably more common to
use a special-purpose computer known as a router for this purpose.

The host named italy connects to the network using a wireless connection. The wire-
less bridge (colored black in the illustration) accepts wireless connections and con-
nects their originating computers to the hosts in the LAN by serving as the conduit
to the Ethernet.

Host chile connects to the network by dialing up a modem connected to brazil, using
the PPP facility. Unlike a regular dialup session, which simply starts a normal login
session on the server, dialup networking connections like this one allow full network
participation by the dialing-in host, as if that computer were directly connected to
the network. Once the initial connection is made, the fact that the connection actu-
ally goes through brazil will be transparent to users on chile.

Finally, the illustration shows Unix disk sharing via the Network File System (NFS)
facility. NFES allows TCP/IP hosts to share disks, with remote filesystems merged into
the local directory tree. Users on canada and greece potentially have access to four disk
drives, even though both systems only have three disks physically connected to them.

Media and Topologies

TCP/IP networks can run over a variety of physical media. Traditionally, most net-
works have used some sort of coaxial cable (thick or thin), twisted pair cable, or fiber
optic cable. Network adapters provide the interface between a computer and the
physical medium comprising the network connection. In hardware terms, they usu-
ally consist of a single board. Network adapters support one or more communica-
tion protocols, which specify how the computers use the physical medium to
exchange data. Most protocols are not media-specific.

For example, Ethernet communications can be carried over all four of the media
types mentioned previously, and FDDI networks can run over either fiber optic or
twisted pair cable. Such protocols specify networking characteristics, such as the
structure of the lowest level data unit, the way that data moves from host to host
across the physical medium, how multiple simultaneous network accesses are han-
dled, and the like. Currently, Ethernet accounts for more than 80% of all networks.

Figure 5-2 illustrates the various types of connectors you may see on Ethernet net-
work cables. These days, the one at the bottom is the most prevalent: unshielded
twisted pair (UTP) cable with an RJ-45 connector. The type of cable required for
100 Mb/sec communication is known as Category 5. Category SE cable is used for
1000 Mb/sec (Gigabit) Ethernet.

182 | Chapter5: TCP/IP Networking

Figure 5-2. Ethernet connectors

The other items in Figure 5-2 illustrate older cable types, which you may still run
into. The top item is the most common connector for RG-11 coax. The middle two
items are connectors used for RG-58 coax (Thinnet). The upper item in the pair is a
simple connector. The lower item illustrates the tap design used for a computer con-
nector. The connector is part of a T junction attached to the coaxial cable. In the
illustration, there is a terminator on the right side of the tap, but a continuation of
the cable could also be placed there.

Table 5-1 summarizes some useful characteristics of the various Ethernet media. Note
that the maximum cable length for UTP at any speed is 100 meters. Longer distances
require fiber optic cable, of which there are two main varieties. Single-mode fiber
equipment is technically more complex than multimode fiber because it uses a laser
to force the light traveling within the cable to a single frequency (“mode”), making
the optical system and the connectors much more expensive to produce. However,

Understanding TCP/IP Networking | 183

single-mode fiber also works reliably for cable lengths measured in kilometers instead
of just meters.

Table 5-1. Popular media characteristics

Media Ethernet type Speed Maximum length
RG-11 coax Thicknet (10Base5) 10 Mb/sec 500m

RG-58 coax Thinnet (10Base2) 10 Mb/sec 180 m

Category 3 UTP 10BaseT 10 Mb/sec 100m

Category 5 UTP 100BaseTX 100 Mb/sec 100 m
Single-mode fiber 100BaseFX 100 Mb/sec 20 km

Category SEUTP Gigabit (1000BaseT) 1Gh/sec 100 m
Single-mode fiber 1000BaseLX 1 Gh/sec 3km

Multimode fiber 1000BaseSX 1Gb/sec 440m

Wireless 802.11b2 11 Mb/sec 100 m

2 Not an Ethernet medium.

All of the hosts within a given network segment—a portion of the network separated
from the rest by switches or routers—use the same type of Ethernet. Connecting seg-
ments with different characteristics requires special hardware that can use both types
and translate between them.

Identifying network adapters

All network adapters have a Media Access Control (MAC) address, which is a numeri-
cal identifier that is globally unique to that individual adapter. For Ethernet devices,
MAC addresses are 48-bit values expressed as twelve hexadecimal digits, usually
divided into colon-separated pairs: for example, 00:00:8:23:31:al. There are thus
over 280 trillion distinct MAC addresses (which ought to be enough, even for us).

MAC addresses were formerly referred to as Ethernet addresses and are occasionally
called hardware addresses. The first 24 bits of the MAC address is a hardware ven-
dor—specific prefix called an Organizationally Unique Identifiier (OUI). Knowing the
OUI can be helpful if you ever have to figure out which device corresponds to a spe-
cific MAC address. OUIs are assigned by the IEEE, which maintains the master data-
base of OUI-to-vendor mappings.

You can find the MAC address for an adapter on a Unix system using these
commands:”

* The term network interface is commonly used as a synonym for network adapter (as in NIC). In the Unix
world, an interface is really a logical entity consisting of an adapter plus its operating system level configu-
ration. On AIX systems, adapters and interfaces have different names (e.g., ent0 and en0, respectively).

184 | Chapter5: TCP/IP Networking

AIX entstat adapter (for Ethernet adapters)

FreeBSD ifconfig interface

HP-UX lanscan

Linux ifconfig interface

Solaris ifconfig interface (must be run as root)
Tru64 ifconfig -v interface

There is also a special network interface present on every computer, known as the
loopback interface. There is no physical network adapter corresponding to the loop-
back interface, but even so, it is sometimes called the loopback device. The loopback
interface allows a computer to send network packets to itself: implemented in soft-
ware, it intercepts the packets and redirects them back to the local host, as if they
had arrived from an external source.

Hosts within a local area network can be connected in a variety of arrangements
known as topologies. For example, the 10.1.1 subnet in Figure 5-1 uses a bus topol-
ogy in which each host taps into a backbone, which is standard for coax Ethernet
networks. Often, the backbone is not a cable at all but merely a junction point where
connections from the various hosts on the network converge, commonly known as a
hub or a switch, depending on its capabilities. The 10.1.2 subnet uses a ring topology.

One of the fundamental characteristics of Ethernet is also illustrated in the diagram.
Each host on an Ethernet is logically connected to every other host: to communicate
with any other host, a system sends a message out on the Ethernet, where it arrives at
the target host directly. By contrast, for the other network, messages between dun-
can and puck must be handled by two other hosts first. At typical network speeds,
however, this difference is not significant.

Networking protocols may include a required topology as part of their specification,
as in the 10.1.2 subnet in Figure 5-1. For example, full FDDI networks are com-
posed of two counter-rotating rings (two duplicate rings through which data flows in
opposite directions), an arrangement designed to enable a network to easily bypass
breaks in one ring and to scale well as network load increases.

A w
< Although T've used FDDI quite a bit here for illustration purposes,
.‘s‘ general-purpose FDDI networks are pretty rare. FDDI is currently
Y ;‘ used in storage area networks (SANSs) to interconnect the storage

media (disks) and the one or two hosts to which they are attached.

The Ethernet protocol is based on a communication strategy known as Carrier Sense
Multiple Access/Collision Detection (CSMA/CD). On an Ethernet, a device that
wants to transmit a message is able to determine if any other device is already using
the medium (carrier sense). In other words, a device waits until there is a lull in activ-
ity before trying to “talk.” If two or more devices both start to talk at the same time,
both of them stop (collision detection), and they each wait a semi-random amount of

Understanding TCP/IP Networking | 185

time before trying again in the hopes of avoiding a second collision. “Multiple
access” refers to the fact that any host is able to use the communication medium.

This is a lightweight protocol that works very well for most common networking
uses. Its one disadvantage is that it does not perform as well under heavy loads as do
some other topologies (e.g., token rings). In fact, under heavy network loads, the
overhead caused by frequent collisions and the resulting wait times can become a sig-
nificant factor in actual network throughput (although this is less true of current
UTP-based 100 Mb networks than it is of older, coax-based 10 Mb networks).

Protocols and Layers

Network communication is organized as a series of layers. With the exception of the
layer referring to the physical transmission medium, these layers are logical or con-
ceptual rather than literal or physical, and they are implemented in the networking
software running on computers and other network devices. Every network message
moves down through the layers on its originating system, travels across the physical
medium, and then moves up through the same stack of layers on the destination sys-
tem. In addition, as it passes through various network devices, it may travel partway
up and down the stack (as we’ll see).

No discussion of any network architecture is complete without at least a brief men-
tion of the Open Systems Interconnection (OSI) Reference Model. This description
of networking has seldom been the basis of actual network implementations, but it
can be quite helpful in clearly identifying the distinct functions necessary for net-
work communications to occur. Things are not really divided up according to its
specification in real networks, because many of the distinct communication phases
and functions that it identifies are handled equally well or more efficiently by a sin-
gle network layer (with correspondingly lower overhead). The OSI Reference Model
is probably best thought of as an after-the-fact, generalized, logical description of
network communications.

Figure 5-3 lists the layers in the OSI Reference Model and those actually used in
TCP/IP implementations, including the most important protocols defined for each
layer.

When a network operation is initiated by a user command or program, it travels
down the protocol stack on the local host (via software), across the physical medium
to the destination host, and then back up the protocol stack on the remote host to
the proper recipient process. For example, a network transmission originating from a
user program like rcp moves down the stack on the local system from the Applica-
tion layer to Network Access layer, travels across the wire to the destination system,
and then moves up the stack from the Network Access layer to the Application layer,
finally communicating with a daemon process in the latter. Replies to this message
travel the same route in reverse.

186 | Chapter5: TCP/IP Networking

05l TCP/IP
Application layer Application layer
Specifies how application programs interface to | Handles everything else. TCP/IP network services
the network and provides services to them. (generally implemented as daemons) and end
user applications have to perform the jobs of the
. 0S| Presentation Layer and part of its
Presentation layer Session Layer.
Specifies data representation to applications.
The many protocols include NFS, DNS, FTP, Telnet,
SSH,HTTP and so on.
Session layer
(reates, manages and terminates Transport layer
network connections. Manages all aspects of data delivery, including
session initiation, error control and sequence
Transport layer checking.
Handles error control and sequence checking
for data moving across the network. TCP and UDP protocols.
Internet layer
Network layer Responsible for data addressing, transmission,
Responsible for data addressing, routingand | fouting, and packet fragmentation
communications flow control. and reassembly.
IP and ICMP protocols.
Data link layer Network access layer
Defines access methods for the physical medium | Specifies procedures for transmitting data across
via network adapters and their associated the network, including how to access the
device drivers. physical medium.
Physical layer .) Ethernet and ARP protocols (although not
Specifies the physical medium’s operating actually part of TCP/IP).
characteristics.

Figure 5-3. Idealized and real network protocol stacks

Each network layer is equipped to handle data in particular predefined units. The
traditional names of these units for the two main transport protocols are listed in
Table 5-2.

Table 5-2. Traditionale network data unit names

Layer TCP Protocol UDP Protocol
Application stream message
Transport segment packet
Internet datagram

Network Access frame

a To complicate things even further, current usage seems to be moving
toward calling the UDP transport layer unita “datagram” and the IP layer
data unit a “packet.”

The term packet is also used generically to refer to any network transmission (includ-
ing in this book).

Understanding TCP/IP Networking | 187

On the originating end, each layer adds a header to the data it receives from the layer
above it until the data reaches the bottom layer for transmission; this process is
called encapsulation. Similarly, on the receiving end, each layer strips off its own
header before passing the data to the next higher layer (combining multiple units
together if appropriate), so that what is finally received is the same as what was origi-
nally sent.

In addition, network data may in some cases be divided into parts that are transmit-
ted separately, a process known as fragmentation. For example, different network
hardware and media types have somewhat different characteristics that can give rise
to different values of the maximum transmission unit (MTU) network parameter: the
largest data unit that can be transmitted across a network segment. As it travels, if a
packet encounters a network segment that has a lower MTU than the one in use
where it originated, it is fragmented for transmission and reassembled at the other
end. A typical MTU for an Ethernet segment is 1500 bytes.

A more typical example occurs when a higher-level protocol passes more data than
will fit into a lower-level protocol packet. The data in a UDP packet can easily be
larger than the largest IP datagram, so the data would need to be divided into multi-
ple datagrams for transmission.

These are some of the most important lower-level protocols in the TCP/IP family:

ARP
The Address Resolution Protocol specifies how to determine the corresponding
MAC address for an IP address. It operates at the Network Access layer. While
this protocol is required by TCP/IP networking, it is not actually part of the
TCP/IP suite.

IP
The Internet Protocol manages low-level data transmission, routing, and frag-
mentation/reassembly. It operates at the Internet layer.

TCP
The Transmission Control Protocol provides reliable network communication
sessions between applications, including flow control and error detection and
correction. It operates at the Transport layer.

UDP
The User Datagram Protocol provides “connectionless” communication between
applications. In contrast to TCP, data transmitted using UDP is not delivery-ver-
ified; if expected data fails to arrive, the application simply requests it again.
UDP operates at the Transport layer.

We'll consider other protocols when we look at network services in Chapter 8.

188 | Chapter5: TCP/IP Networking

Ports, Services, and Daemons

Network operations are performed by a variety of network services, consisting of the
software and other facilities needed to perform a specific type of network task. For
example, the ftp service performs file transfer operations using the FTP protocol; the
software program that does the actual work is the FTP daemon (whose actual name
varies).

A service is defined by the combination of a transport protocol—TCP or UDP—and
a port: a logical network connection endpoint identified by a number. The TCP and
UDP port numbering schemes are part of the definition of these protocols.

v
NN

Port numbers need be unique only within a given transport protocol.
TCP and UDP each define a unique set of ports, even though they use
1+ the same port numbers. However, recent practice is to assign both the
UDP and TCP ports to standard services.

Various configuration files in the /etc directory indicate the standard mappings
between port numbers and TCP/IP services:

* Jetc/protocols lists the protocol numbers assigned to the various transport proto-
cols in the TCP/IP family. Although this list is large, most systems need to use
only the TCP, UDP, and ICMP protocols.

* Jetc/services lists the port numbers assigned to the various TCP and UDP services.

Individual TCP/IP connections are defined by a pair of host-port combinations, each
known as a socket, which is unique during the connection’s lifetime: source IP
address, source port, destination IP address, destination port (as seen from the cli-
ent’s point of view). For example, when a user first connects to a remote host using
ssh, it contacts that computer on the standard port 22 (such ports are commonly
referred to as well-known ports). The process is assigned a random (dynamically
allocated or ephemeral) port which is used as the source (outgoing) port by the cli-
ent. Multiple simultaneous ssh sessions on the destination system are possible using
this scheme since each one will have a different source port/source IP address combi-
nation and thus a unique socket.

For example, the first ssh connection might use port 2222 as the source port. The
next ssh connection might use port 3333. In this way, the messages intended for the
two sessions can be easily distinguished, even if they came from the same user on the
same remote system.

Most standard services usually use ports below 1024, and such ports are restricted to
root (at least on Unix systems). Table 5-3 lists some common services and their asso-
ciated ports. In most cases, both the TCP and UDP ports are assigned to the service;
for the few exceptions, the protocol follows the port number (as in /etc/services
entries). The shaded portion of the table contains port numbers for commonly used
services from non-Unix operating systems.

Understanding TCP/IP Networking | 189

Table 5-3. Important services and their associated ports

Service Port(s) Service Port(s)
FTP 21 (also 20), NetBIOS 137-139
990 (secure; also 989) SAMBA
SSH 22 SRC (AIX) 200/udp
TELNET 23,992 (secure) Remote Exec 512/tep
SMTP 25, 465 (secure) Remote Login 513/tep
DNS 53 Remote Shell 514/tcp
DHCP (BOOTP) 67 (server), 68 (client) SYSLOG 514/udp, 601 (reliable)
TFTP 69 LPD 515
FINGER 79 ROUTE 520
HTTP 80, 443 (secure) NFS 2049, 4045/udp (Solaris)
Kerberos 88,749-50 RSYNC 873
POP-2 109 m 6000-19, 6063, 7100 (fonts)
POP-3 110, 995 (secure) AppleTalk 201-208
RPC m IPX 213
NTP 123 SMB 445
IMAP 143 (v2), 220 (v3), QuickTime 458
993 (v4 secure)
SNMP 161,162 (traps) Active Directory 3268, 3269 (secure)
Global Catalog
LDAP 389, 636 (secure) America Online 5190-5193

Administrative Commands

Unix operating systems include a number of generic TCP/IP user commands that
may be used to display various network-related information, including the following:

hostname
Display the name of the local system
ifconfig
Display information about network interfaces (also configure them)
ping
Perform a simple network connectivity test
arp
Display or modify the IP-to-MAC address-translation tables

netstat
Display various network usage statistics

route
Display or modify the static routing tables

190 | Chapter5: TCP/IP Networking

traceroute
Determine the route to a specified target host

nslookup
Determine IP address-to-hostname and other translations produced by the
Domain Name Service

We'll see examples of many of these commands later in this chapter.

A Sample TCP/IP Conversation

All of these concepts will come together when we look at a sample TCP/IP conversa-
tion. We'll consider what must happen in order for the following command to be
successfully executed:

hamlet> finger chavez@greece

Login name: chavez In real life: Rachel Chavez
Directory: /home/chem/new/chavez Shell: /bin/csh

On since Apr 28 08:35:42 on pts/3 from puck

No Plan.

This finger command causes a network connection to be formed between the hosts
hamlet and greece, and more specifically between the finger client process running
on hamlet and the fingerd daemon on greece (which will be started by greece’s inetd
process).

The finger service uses the TCP transport protocol (number 6) and port 79. TCP
connections are always created via a three-step handshaking process. Here is a dump
of the packet corresponding to Step 1, in which the most important fields have been

highlighted:”

ETH: ====(60 bytes recd on en0)====Sun Apr 28 13:38:27 1996
ETH: [32:21:a6:el:7f:c1 18:33:e4:2a:43:2d] type 800 (IP)
IP: < SRC = 192.168.2.6 (hamlet)
IP: < DST = 192.168.1.6 (greece)

IP: 1ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=56107, ip_off=0
IP: ip_ttl=60, ip_sum=f84, ip p = 6 (TCP)

TCP: <source port=1031, destination port=79(finger)>

TCP: th_seq=d83ab201, th_ack=0

TCP: th_off=6, flags<SYN>

TCP: th win=16384, th sum=3577, th_urp=0 data in ASCII
data: 00000000 020405b4 [.... |

Each line of this packet display is labeled with the protocol that created it: ETH lines
were created at the Ethernet level (Network Access layer), IP lines by the IP protocol
(Internet layer), and TCP lines by the TCP protocol (Transport layer).

Lines labeled as data are used by whatever layer is sending data in the packet. The
data is dumped in hex and ASCII (the latter at the extreme right between the two

*

Slightly modified from that created with AIX’s iptrace and ipreport utilities.

Understanding TCP/IP Networking | 191

vertical bars). In this case, the data consists of TCP options (negotiating a maximum
segment length of 1460 bytes) and not finger-related data.

The initial ETH line is actually created by the packet dumping software, and it lists
the date and time of the message. The actual data from the packet begins with the
second ETH line, which lists the MAC addresses of the two hosts.

The IP lines indicate that the packet comes from the TCP transport protocol (ip_p),
as well as its source and destination hosts. The TCP header indicates the destination
port, allowing the network service to be identified. The th_seq field in this header
indicates the sequence number for this packet. The TCP protocol requires that all
packets be acknowledged by the receiving host (although not necessarily individu-
ally). The SYN flag (for synchronize) by itself indicates an attempt to create a new
network connection, and in this case, the sequence number is an initial sequence
number for the conversation. It will be incremented by one for each byte of data
transmitted.

Here are the next two packets in the sequence, which complete the handshake:

ETH: ====(60 bytes trans on en0)====Sun Apr 28 13:38:27 1996
ETH: [18:33:e4:2a:43:2d -> 32:21:a6:el:7f:cl] type 800 (IP)
IP: < SRC = 192.168.1.6 > (greece)

IP: < DST 192.168.2.6 > (hamlet)

IP: 1ip v=4, ip hl=20, ip tos=0, ip len=44, ip id=54298, ip off=0
IP: ip_ttl=60, ip_sum=1695, ip_p = 6 (TCP)

TCP: <source port=79(finger), destination port=1031 >

TCP: th_seq=d71b9601, th_ack=d83ab202

TCP: th_off=6, flags<SYN | ACK>

TCP: th win=16060, th sum=c98c, th_urp=0

data: 00000000 020405b4 [.... |

ETH: ====(60 bytes recd on en0)====Sun Apr 28 13:38:27 1996
ETH: [32:21:a6:e1:7f:c1 -> 18:33:e4:2a:43:2d] type 800 (IP)
IP: < SRC = 192.168.2.6 > (hamlet)

IP: < DST = 192.168.1.6 > (greece)

IP: 1ip v=4, ip hl=20, ip tos=0, ip len=40, ip id=56108, ip off=0

IP: ip_ttl=60, ip_sum=87, ip p = 6 (TCP)

TCP: <source port=1031, destination port=79(finger) >

TCP: th_seq=d83ab202, th_ack=d71b9602

TCP: th_off=5, flags<ACK>

TCP: th win=16060, th sum=e149, th urp=0
In the packet with sequence number d71b9601, sent from greece back to hamlet, both
the SYN and ACK (acknowledge) flags are set. The ACK is the acknowledgement of
the previous packet, and the SYN establishes communication from greece to hamlet.
The contents of the th_ack field indicate the last byte of data that has been received
(one byte so far). The th_seq field indicates greece’s starting sequence number. The
next packet simply acknowledges greece’s SYN, and the connection is complete.

Now we are ready to get some work done (packets are abbreviated from here on):

IP: < SRC = 192.168.2.6 > (hamlet)
IP: < DST = 192.168.1.6 > (greece)

192 | Chapter5: TCP/IP Networking

TCP: <source port=1031, destination port=79(finger) >
TCP: th_seg=d83ab202, th_ack=d71b9602

TCP: th_off=5, flags<PUSH | ACK>

TCP: th _win=16060, th sum=4c86, th_urp=0

data: 00000000 61656(65 656E3A29 | chavez

This packet sends the data “chavez” to fingerd on greece (the final characters don’t
print); user data is indicated by the presence of the PUSH flag. In this case, the data
is from the Application layer. The packet also acknowledges the previous packet
from greece. This data is passed up the various network layers, to be delivered ulti-
mately to fingerd.

greece acknowledges this packet and eventually sends fingerd’s response:

IP: < SRC = 192.168.1.6 > (greece)

IP: < DST = 192.168.2.6 > (hamlet)

TCP: <source port=79(finger), destination port=1031 >

TCP: th_seq=d71b9602, th_ack=d83ab20c

TCP: th_off=5, flags<PUSH | ACK>

TCP: th_win=16060, th_sum=e29b, th urp=0

data: |Login name: chavez ..In real life: Rachel Chavez..Director|
data: |y: /home/chem/new/chavez ..Shell:/bin/csh. On since Apr 28|
data: | 08:35:42 on pts/3 from puck..No Plan...

The output from the finger command constitutes the data in this packet (the hex
version is omitted). The packet also acknowledges data received from hamlet (10
bytes since the previous packet).

All that remains is to close down the connection:

IP: < SRC = 192.168.1.6 > (greece)
IP: < DST = 192.168.2.6 > (hamlet)
TCP: th_off=5, flags<FIN | ACK>

IP: < SRC = 192.168.2.6 > (hamlet)
IP: < DST = 192.168.1.6 > (greece)
TCP: th_off=5, flags<FIN | ACK>

IP: < SRC = 192.168.1.6 > (greece)
IP: < DST = 192.168.2.6 > (hamlet)

TCP: th_off=5, flags<ACK>

The FIN flag indicates that a connection is to be terminated. greece indicates that it is
finished first. hamlet sends its own FIN (also acknowledging that packet), which
greece acknowledges.

Names and Addresses

Every system on a network has a hostname. When fully qualified, this name must be
unique within the relevant naming space. Hostnames let users refer to any computer
on the network by using a short, easily remembered name rather than the host’s net-
work address.

Understanding TCP/IP Networking | 193

Each system on a TCP/IP network also has an IP address that is unique for all hosts
on the network. Systems with multiple network adapters usually have a separate IP
address for each adapter.

When an actual network operation occurs, the hostnames of the systems involved
are used to determine their numerical IP addresses, either by looking them up in a
table or requesting translation from a server designated for this task.

A traditional Internet network address is a sequence of 4 bytes™ (32 bits). Network
addresses are usually written in the form a.b.c.d, where a, b, ¢, and d are all decimal
integers: e.g. 192.168.10.23. Each component is 8 bits long and thus runs from 0 to
255. The address is split into two parts: the first part—highest-order bits—identifies
the local network, specifically those hosts that may be connected directly (without
the need for any routing information. The second part of the IP address (i.e., all
remaining bits) identifies the host within the network.

The size of the two parts vary. The first byte of the address (a) determines the
address type (called its class), and hence the number of bytes allocated to each part.
Table 5-4 gives more specific details about how this scheme traditionally works.

Table 5-4. Traditional Internet address types

Maximum Maximum
Initial Bits Range of a Address class Network part Host part networks hosts/net
0... 1-126 Class A a b.cd 126 16,777,214
10... 128-191 Class B a.b cd 16,384 65,534
10... 192-223 Class C a.b.c d 2,097,152 254
1110... 224-239 Class D Multicast addresses
1. 240-254 Class E Reserved for research

Class A addresses provide millions of hosts per network, since 24 bits can be used for
host addresses: 1 through 224-1 (0 is not allowed as a host address). There are, how-
ever, only a total of 126 of them (these network numbers were typically assigned to
major national networks and very large organizations). At the other extreme, Class C
addresses traditionally support only 254 hosts per network (since only 8 bits are used
for the host address), but there are over two million of them. Class B addresses fall in
between these two types.

Multicast addresses are part of the reserved range of addresses (a=224-254). They
are used to address a group of hosts as a single entity and are designed for applica-
tions such as video conferencing. They are assigned on a temporary basis. Normal IP
addresses are sometimes referred to as unicast addresses in contrast to multicast
addresses.

* More precisely, octets (since standardized bytes are more recent than IP addresses).

194 | Chapter5: TCP/IP Networking

Some values of the various network address bytes have special meanings:

* The address with a host part of 0 refers to the network itself, as in 192.168.10.0.
The 0.0.0.0 network is sometimes used to refer to the local network.

* The 127.0.0.1 address is always assigned to the loopback interface. The remain-
der of the 127.0 network is reserved.

* A host part of all ones defines the broadcast address for the network: the destina-
tion address used when a computer wants to send a query to every host on the
local network. For example, the broadcast address for the network containing
the Class C address 192.168.10.23 is 192.168.10.255, and the broadcast address
for the network containing the Class A address 10.1.12.43 is 10.255.255.255.

Network addresses for networks connected to the Internet must be obtained from
some official source. These days, network addresses for new sites are obtained from
one of the ISPs that is authorized to assign them. Every host that will communicate
directly with a host on the Internet must have an officially assigned IP address.

Networks that are not directly connected to the Internet also use network addresses
that obey the Internet numbering conventions. The following IP address blocks are
reserved for private networks:”

* 10.0.0.0 through 10.255.255.255
* 172.16.0.0 through 172.31.255.255
* 192.168.0.0 through 192.168.255.255

Sites that connect to the Internet via an ISP or other dedicated gateway frequently
use Network Address Translation (NAT) to map internal IP addresses to their exter-
nal (“real”) TP address space. NAT can be performed by a computer and many rout-
ers. It is often used to map a large number of private addresses to a small number of
real IP addresses, often just one.

NAT processes all Internet-bound packets, transforming their original source
addresses into the address appropriate for use on the Internet. This may be done to
translate private addresses to the organization’s actual assigned IP address space or
to conflate/hide the internal network structure from the outside world. It also keeps
track of this mapping data so that it can perform the reverse translation process for
incoming packets (responses).

R
s

So far, we’ve assumed that IP addresses are permanently assigned to
each host within a network, but this need not be true for all hosts
4+ within a network. The Dynamic Host Configuration Protocol (DHCP)
" is a facility that allows IP addresses to be assigned to systems dynami-
cally when they require network access. It is discussed later in this
chapter.

* Traditionally, many sites that were not on the Internet used IP addresses of the form 192.0.x.y or 193.0.x.y.
Some probably still do.

Understanding TCP/IP Networking | 195

Subnets and Supernets

A site can divide its block of addresses—also known as its address space—in any way
that makes sense. For example, consider the block of addresses that begin with 192.
168. Traditionally, this is a Class B address and so would be interpreted as 256 net-
works of 254 hosts each: the networks are 192.168.0.0, 192.168.1.0, 192.168.2.0, ...,
192.168.255.0, and the hosts are numbered 1 through 254 for each network. How-
ever, this is not the only way of dividing the 16 site-specific bits. In this case, the the-
oretical possibilities range from one network with over two million hosts (all 16 bits
are used for the host part) to 16,384 networks of 2 hosts each (only the lowest two
bits are used for the host part, and the remaining 14 bits are used for the subnet).

The number of hosts per subnet is always 27—2 where # is the number
of bits in the host part of the IP address. Why —2? We must exclude
the invalid host addresses consisting of all zeros and all ones.

A subnet mask specifies how the 32-bit IP address is divided between the network
part (including the subnet) and the host part, and all computers participating in a
TCP/IP network have one assigned to them. Computers and other devices on the
same subnet always use the same subnet mask.

The subnet mask is a 32-bit value constructed by placing 1 in each bit location for
the network portion of the IP address and 0 in all the bit locations for the host part of
the address. This results in a string of ones followed by a string of zeros. For exam-
ple, a traditional Class A IP address would use a subnet mask of
11111111000000000000000000000000, conventionally written as 4 period-sepa-
rated decimal integers: 255.0.0.0. Similarly, traditional Class B and Class C addresses
would use a subnet mask of 255.255.0.0 and 255.255.255.0, respectively.

The subnet mask can also be used to further subdivide one network ID among sev-
eral local networks. For example, if you use a subnet mask of 255.255.255.192 for
the network 192.168.10.0, you are making the highest 2 bits of the final address byte
part of the network address (the final byte is 11000000), thereby subdividing the
192.168.10 network into 4 subnets, each of which can have up to 62 hosts on it
(since the host ID is coded into the remaining 6 bits). Contrast this with the normal
interpretation, which yields 256 networks of 254 hosts each.
A w

AN
.

In contrast to host addresses, subnet addresses of all ones or all zeros

LA are | 1

are legal.

©wh a 2
S

You can also use fewer than the standard number of bits for the network part of the
address (this strategy is known as supernetting). For example, for the network
address 192.168.0.0, you could use only 4 bits for the subnet part rather than the
usual 8, yielding 16 subnets of up to 1022 hosts each.

196 | Chapter5: TCP/IP Networking

Memorizing all the powers of 2 from 20 to 216 makes all of this much
easier.

Classless Inter-Domain Routing (CIDR, usually pronounced like apple cider) address-
ing is the more common way of expressing the subnet mask these days.” CIDR
appends a suffix indicating the number of bits in the host part to the IP address. For
example, 192.168.10.212/24 designates a subnet mask of 255.255.255.0, and the /27
suffix specifies a subnet mask of 255.255.255.224.

Table 5-5 shows how this works in detail. In the first example, we divide the 192.
168.10 network into 8 subnets of 30 hosts each. In the second example, we organize
a block of 256 traditional Class C addresses into 64 subnets of 1022 hosts each with
supernetting by assigning the upper 6 bits of the third IP address byte to the network
address, thereby leaving 10 bits for the host part.

Table 5-5. Subnetting and supernetting examples

Subnet Bits Subnet Addressa Broadcast Addressb Host Addresses
Subnetting: subnets of 192.168.10.0/27 (subnet mask: 255.255.255.224)

000 192.168.10.0 192.168.10.31 192.168.10.1-30
001 192.168.10.32 192.168.10.63 192.168.10.33-62
010 192.168.10.64 192.168.10.95 192.168.10.65-94
011 192.168.10.96 192.168.10.127 192.168.10.97-126
100 192.168.10.128 192.168.10.159 192.168.10.129-158
101 192.168.10.160 192.168.10.191 192.168.10.161-190
110 192.168.10.192 192.168.10.223 192.168.10.193-222
m 192.168.10.224 192.168.10.255 192.168.10.225-254
Supernetting: subnets of 192.168.0.0/22 (subnet mask: 255.255.248.0)

000000 192.168.0.0 192.168.3.255 192.168.0.1-3.254
000001 192.168.4.0 192.168.7.255 192.168.4.1-7.254
000010 192.168.8.0 192.168.11.255 192.168.8.1-11.254
111101 192.168.244.0 192.168.247.255 192.168.244.1-247.254

*

CIDR’s primary purpose is not to make notation more compact but to decrease the number of entries in the
routing tables at major Internet hubs. CIDR minimizes the number of routing table entries required per site
(often to just one) by allowing sites to be assigned a block of contiguous IP addresses that can be addresses
via a single CIDR address. While CIDR was developed to address this specific problem arising from the
uncontrolled growth of the Internet, it has also helped to stave off feared address shortages (for example, the
entire traditional Class C address space supports only around 530 million hosts). For more information on
the current status of available Internet address space consumption, consult the report at http://www.caida.
orgloutreach/resources/learn/ipv4space/.

Understanding TCP/IP Networking | 197

Table 5-5. Subnetting and supernetting examples (continued)

Subnet Bits Subnet Addressa Broadcast Addressb Host Addresses
11110 192.168.248.0 192.168.251.255 192.168.248.1-251.254
min 192.168.252.0 192.168.255.255 192.168-252.1-255.254

a Host part=all 0's
b Host part=all 1's

Note that some of the host addresses in the second part of Table 5-5 have 255 as
their last byte. These are legal host addresses with the specified subnet mask since
the entire host part is not all ones (write one of these addresses, say 192.168.0.255/
22, out in binary if you’re not sure). With CIDR addresses, there is nothing special
about the byte boundaries, and classes really are irrelevant.

Table 5-6 lists commonly used CIDR suffixes and their associated subnet masks.

Table 5-6. CIDR suffixes and subnet masks

Suffix Subnet mask Maximum hosts
122 255.255.252.0 1022

123 255.255.254.0 510

124 255.255.255.0 254

25 255.255.255.128 126

126 255.255.255.192 62

127 255.255.255.224 30

/28 255.255.255.240 14

129 255.255.255.248 6

30 255.255.255.252 2

If you’d rather avoid the math, there are tools that can help with these calculations.
Figure 5-4 illustrates the output from a Perl script named ipcalc.pl (this one is from
http://jodies.delipcalc/, written by krischan@jodies.de; there are several versions of the
script by different authors”). It takes a CIDR address as its input and prints a variety
of useful information about the local network that can be derived from it. The Wild-
card field displays the inverted netmask (used by Cisco).

Introducing IPv6 host addresses

At some point in the future, Internet addresses may switch over to the next-genera-
tion design, IPv6 (the current one is IPv4). IPv6 was designed in the 1990s to address
the perceived future shortage of Internet addresses (which fortunately has not yet
arrived). In this brief subsection, we’ll take a look at the major features of IPv6
addresses. All the vendors we are considering support IPv6 addresses.

* For a Palm Pilot version, see http://www.ajw.com (written by Alan Weiner).

198 | Chapter5: TCP/IP Networking

% ipcalc.pl 192.168.14.283-22

Address:
Netmask:
Hildcard:

Network:

HostMin:
HostMax:
Hosts/Net:

dpcalc.pl 192.168.14.2083/27

Address:
Netmask:
Hjldcard:

Network:

Broadcast:

HostMin: | - E 1
HostMax: 1 o | 118 11118
Hosts/Net: (Private Internet RFC 1918>

3 |

Figure 5-4. Output from the ipcalc.pl Script

IPv6 addresses are 128 bits long, expressed as a series of 8 colon-separated 16-bit val-
ues written in hexadecimal, e.g., 1111:2222:3333:4444:5555:6666:7777:8888. Each
value runs from 0x0 to OxFFFF (from O to 65535 in decimal). The network host
boundary is fixed at 64 bits, and there is some additional internal structure defined,
described in Table 5-7.

Table 5-7. IPv6 host address interpretation

Bits Name Purpose (Example use)

1-3 Format Prefix (FP) Address type (unicast, multicast)

4-16 Top-level aggregation ID (TLA D) Highest-level organization (major upstream ISP)

17-24 Reserved

25-48 Next-level aggregation ID (NLA ID) Regional organization (local ISP)

49-64 Site-level aggregation ID (SLA ID) Site-specific subdivision (subnet)

65-128 Interface ID Specific device address: a transformation of the MAC address

As the table indicates, sites get 16 bits for subnetting. The entire initial prefix of 48
bits is provided by the ISP. One advantage of IPv6 is that host addresses may be
automatically derived from the device’s MAC address, so that aspect of host configu-
ration can be eliminated (optionally).

IPv6 allows for backward compatibility with IPv4 by assigning addresses of the form
0:0:0:FFFF:a.b.c.d to IPv4-only devices, where a.b.c.d is the IPv4 address. This is
generally written as ::FFFF:a.b.c.d, where :: replaces a contiguous block of zeros (any
length) in the IPv6 address (but the double colon may be used only once). Finally,
the loopback address is always defined as ::1, and the broadcast address is FF02::1.

Understanding TCP/IP Networking | 199

Connecting Network Segments

At the physical level, individual networks can be organized, subdivided and joined in
a variety of ways, as illustrated in Figure 5-5 (constructed to include many different
connectivity examples and not as a general model for network design).

é)

Subnet A

~
Building 2 LAN
J
Slow, expensive
links
~
Chicago office LAN)

Subnet C

Building 1 LAN
\

Figure 5-5. A wide area network and its component LANs

The Chicago office LAN in the figure is geographically separated from the organiza-
tion’s main site in San Francisco—the Building 1 and Building 2 LANs—and it is
connected to it via relatively slow links. The two LANs at the main site are con-
nected via high-speed fiber optic cable, so that site’s entire network runs at the same
speed, despite the separation of the two buildings. Collectively, these three LANs
comprise the WAN for this organization.

The Building 1 LAN illustrates several hardware networking devices. All the hosts in
Subnet A are connected to devices called hubs. Traditional hubs serve as an Ethernet
backbone, linking all of the connected hosts together. In this case, there are two hubs

200 | Chapter5: TCP/IP Networking

in this network segment, as well as a repeater. The latter device connects hosts that
are farther apart than the maximum cable length, passing all signals from one wire to
the other. Actually, a repeater is also a hub; in this case, it has only two ports. Ether-
net imposes a maximum number of four hubs between the most distant hosts. Sub-
net A follows this rule.

Subnet B is another network segment, connected to the other two subnets by rout-
ers. Although its internal structure is not shown, the various hosts in this subnet are
all connected to hubs or switches. The same is true for the two parts of subnet C.

The two branches of subnet C are connected by a switch, a somewhat more intelli-
gent device than a hub, which selectively passes only the data destined for the other
segment between the two. A hub is just a point where connections come together,
while a switch includes some ability to decide which “side” a given packet is des-
tined for. Two-port switches like the one in the figure are sometimes called bridges.

These days, plain hubs/repeaters are seldom used. Switches are gener-
ally used as the central connector to which individual hosts are
% attached. (I've used hubs in the diagram for illustrative purposes.)
Occasionally, devices that are really switches are labeled as hubs, pre-
sumably for marketing purposes.

More complex switches can handle more than one media type or have the ability to
filter the traffic in a variety of ways, and some are capable of connecting networks of
different types—say, TCP/IP and SNA—by translating or encapsulating the data
from one protocol family to/within the other as it is passed across. These tasks, per-
formed by such devices, overlap those traditionally assigned to routers.

The various subnets and the three local LANs in Figure 5-5 are connected to one
another via routers, a still more sophisticated network linking device that is essentially
a small computer. In addition to selectively handling data based on its destination,
routers also have the ability to determine the current best path to that destination;
finding a path to a destination is known as routing.” The best routers are highly pro-
grammable and can also perform very complex filtering of the data they receive,
accepting or rejecting it based upon criteria specified by the network administrator.

The routers that connect our three locations are arranged so that there are multiple
paths to every destination; losing any one of them will cause no harm to communica-
tions between the two unaffected networks.

Hubs/repeaters, switches/bridges, and routers can be distinguished by where their
operations fall within the TCP/IP protocol stack. Repeaters operate at the Network

* Both common pronunciations of this word are technically correct. However, I still believe that rooting is
something humans do at baseball games and pigs do when looking for truffles. Routing is what partisans do
to occupying armies, and its homonym is what enables packets to travel across a network.

Understanding TCP/IP Networking | 201

Access layer, bridges use the Internet layer,” and routers operate within the Trans-
port layer. A full network host, which obviously supports all four TCP/IP layers, can
thus perform the functions of any of these types of devices. Note that many devices
labeled with one name may actually function like lower-end versions of the next
higher device (e.g., high end switches are simple routers).

Although inexpensive dual-speed (e.g., 10BaseT and 100BaseT)
switches exist, I don’t recommend using them. The network will pro-
vide better performance if you segregate devices by speed and don’t
mix speeds on the same (low-end) switch.t The low-speed switch will
thus be the only low-speed device on the high speed switch.

Adding a New Network Host

To add a new host to the network, you must:

Install networking software and build a kernel capable of supporting network-
ing and the installed networking hardware (if necessary). These days, basic net-
working is almost always installed by default with the operating system, but you
may have to add some features manually.

Physically connect the system to the network and enable the hardware network
interface. Occasionally, on older PC systems, the latter may involve setting
jumpers or switches on the network adapter board or setting low-level system
parameters (usually via the pre-boot monitor program).

Assign a hostname and network address to the system (or find out what has
been assigned by the network administrator). When you add a new host to an
existing network, the unique network address you assign it must fit in with
whatever addressing scheme is already in use at your site. You can also decide to
use DHCP to assign the IP address and other networking parameters dynami-
cally instead of specifying a static address.

Ensure that necessary configuration tasks occur at boot time, including starting
all required networking-related daemons.

Configure name resolution (hostname-to-IP address translation).

Set up any static routes and configure any other routing facilities in use. This
includes defining a default gateway for packets destined beyond the local subnet.

* The smartest switches intrude a tiny bit into the Transport layer.

t One of the book’s technical reviewers notes that this problem occurs only with inexpensive switches and is
not a problem on high quality (higher priced) ones.

202

| Chapter5: TCP/IP Networking

¢ Test the network connection.

* Enable and configure any additional network services that you plan to use on
that computer.

Configuring the Network Interface with ifconfig

The ifconfig command (“if” for interface) is used to set the basic characteristics of
the network adapter, the most important of which is associating an IP address with
the interface. Here are some typical commands:

ifconfig 1loo localhost up

ifconfig etho inet 192.168.1.9 netmask 255.255.255.0
The first command configures the loopback interface, designating it as up (active). In
many versions of ifconfig, up is the default when the first IP address is assigned to an
interface, and thus it is usually omitted.

The second command configures the Ethernet interface on this system, named en0,
assigning it the specified Internet address and netmask.

The second parameter in the second ifconfig command designates the address fam-
ily. Here, inet refers to IPv4; inet6 is used to refer to IPv6. This parameter is optional
and defaults to IPv4.

The first example command above also illustrates the use of a hostname to specify
the IP address. If you do so, the IP address corresponding to the hostname must be
available when the ifconfig command is run, generally because it is in /etc/hosts.

FreeBSD, Solaris, and Tru64 systems allow you to replace the IP address and net-
mask parameters with a CIDR address:

ifconfig tuo 192.168.9.6/24

Ethernet interface names

The loopback interface is almost always named 00 (but Linux calls it simply lo).
Ethernet interface names vary tremendously among systems. Here are some com-
mon names for the first Ethernet interface on the various systems:”

AIX en0

FreeBSD x10, de0, and others (depends on hardware)
HP-UX lan0

Linux eth0

Solaris hme0, dnet0, eri0, leO

Tru64 tu0, In0

* AIX uses different interface names for other networking types: et0 for so-called 803.2 (a related but slightly
different protocol), tr0 for Token Ring etc.

Adding a New Network Host | 203

Download from Wow! eBook <www.wowebook.com>

Other uses of ifconfig

Without any other options, ifconfig displays the configuration of the specified net-
work interface, as in this example:

$ ifconfig etho

en0: flags=c63<UP,BROADCAST,NOTRAILERS,RUNNING, FILTMULTI,MULTICAST>

inet 192.168.1.9 netmask oxffffffoo broadcast 192.168.1.255
You can display the status of all configured network interfaces with ifconfig -a
except under HP-UX. On AIX, FreeBSD, and Tru64 systems, the -1 option can be
used to list all network interfaces:

$ ifconfig -1
en0 enl loo

This system has two Ethernet interfaces installed, as well as the loopback interface.

The HP-UX lanscan command provides similar functionality.

ifconfig on Solaris systems

Solaris systems provide two versions of ifconfig, one in /sbin and another in /usr/
sbin. Their syntax is identical. They differ only in the way in which they attempt to
resolve hostnames specified as arguments. The /sbin version always checks /etc/hosts
before consulting DNS, while the other version uses whatever name resolution order
is specified in the network switch file (discussed below). The former is used at boot
time, when DNS may not be available.

Solaris also requires that an interface be “plumbed” before it is configured, via com-
mands like the following:

ifconfig hmeo plumb

ifconfig hmeo inet 192.168.9.2 netmask + up
The first command sets up the kernel data structures needed for the device to be
used with IP. Other operating systems also perform this setup function, but they do
so automatically when the first IP address is assigned to an interface. The plus sign
parameter to the netmask keyword is shorthand that tells the command to look up
the default netmask for the specified subnet in the file /etc/inet/netmasks. The file has
entries like the following:

#subnet netmask
192.168.9.0 255.255.255.0

Interface configuration at boot time

Table 5-8 lists the configuration files that store the parameters for ifconfig for each
Unix version we are considering and also provides some example entries from the
file, using the first interface of a common type. The third column in the table indi-
cates which boot script actually performs the interface configuration operation and
where in the boot process it occurs.

204 | Chapter5: TCP/IP Networking

Table 5-8. Boot-time network interface configuration

Unix version
AIX

Configuration file

Data is stored in the ODM; use smit mktcpip or the
mktcpip command to modify it (not ifconfig com-
mands).

Boot script (Invoked by)
/sbin/rc.boot (first /etc/inittab entry)

FreeBSD

/Jetc/rc.conf.

hostname="clarissa"
ifconfig x10="192.168.9.2 netmask
255.255.255.0"

/Jetc/rc.network (called from /etc/rc)

HP-UX

/etc/rc.config.d/netconf:

HOSTNAME="acrasia"
INTERFACE_NAME[0]=1ano
IP_ADDRESS[O]:192.168.9.55
SUBNET_MASK[0]=255.255.255.0
INTERFACE_STATE[O]="up"

/sbin/init.d/net (link in /sbin/rc2.d)

Linux (Red Hat)

/Jetc/sysconfig/network-scripts/ifcfg_eth0:

DEVICE=etho
BOOTPROTO=static
IPADDR=192.168.9.220
NETMASK=255.255.255.0
ONBOOT=yes

/etc/sysconfig/network:
HOSTNAME="selene"

/Jetc/init.d/network (link in /etc/rc2.d)

Linux (SuSE 7)

/etc/rc.config:

NETCONFIG="_0" Number of interfaces

IPADDR_0="192.168.9.220"

NETDEV_0="etho"

IFCONFIG 0="192.168.9.220 broadcast
192.0.9.255 netmask 255.255.255.0"

/etc/HOSTNAME:
sabina

/etc/init.d/network (link in /etc/rc2.d)

Linux (SuSE 8)

/etc/sysconfig/network/ifcfg_eth0

BOOTPROTO=static
IPADDR=192.168.9.220
NETMASK=255.255.255.0
STARTMODE=yes

/etc/HOSTNAME:
sabina

/Jetc/init.d/network (link in /etc/rc2.d)

Solaris

/etc/hostname.hme0:
ishtar

/Jetc/init.d/network (link in /sbin/rcS.d)

Tru64

/etc/rc.config:

HOSTNAME="1udwig"

NETDEV_0="tu0"

IFCONFIG 0="192.168.9.73 netmask
255.255.255.0"

NUM_NETCONFIG="1" Number of interfaces

export HOSTNAME NETDEV 0 ...

/sbin/init.d/inet (link in /sbin/rc3.d)

Adding a New Network Host |

205

These files and their entries are quite straightforward and self-explanatory. Multiple
interfaces are configured in the same manner. Parameters for additional interfaces are
defined in the same way as the first one, typically using the next element in the array
(e.g., IP_ADDRESS[1] (HP-UX), NETDEV_1 (Tru64), and the like), corresponding syntax
(e.g., ifconfig x11 for FreeBSD), or an analogous filename (e.g., hostname.hmel for
Solaris or ifcfg_ethl for Linux).

The Solaris /etc/hostname.interface (where interface is the interface name, e.g., hme0)
file merits additional comment. In general, this file requires only a hostname as its
contents, but you can also place specific parameters to ifconfig on additional lines if
desired, as in this example:

kali
192.168.24.37 netmask 255.255.248.192 broadcast 192.168.191.255

Generally, Solaris attempts to locate the system’s IP address automatically by con-
sulting all the available name services, but you can specify specific parameters in this
way if you choose. The /etc/init.d/network script will append each additional line in
turn to ifconfig interface inet to form a complete command, which is then executed
immediately. The hostname still needs to be the first line in the file or other parts of
the script will break.
& w

The file /etc/nodename also contains the hostname of the local host; it
s is used when the system is in standalone mode and in other circum-
1kt stances within the boot scripts. If you decide to change a system’s

" hostname, you’ll need to change it in both /etc/nodename and the /etc/

hostname.* file (as well as in /etc/hosts, DNS and any other directory
service you may be running).

Dynamic IP Address Assignment with DHCP

The Dynamic Host Configuration Protocol (DHCP) facility is used to dynamically
assign IP addresses and configuration settings to network hosts.” This facility is
designed to decrease the amount of individual workstation configuration necessary
for a system to be successfully connected to the network. It is especially suited to
computer systems that change network locations frequently (e.g., laptops).

Never use dynamic addressing for any system that shares any of its
resources—filesystems (via NFS or SAMBA), printers, or other
devices—or provides any network resources (DNS, DHCP, electronic
mail services, and so on). It is OK to use DHCP to assign static
addresses to servers (see “Configuring a DHCP Server” in Chapter 8).

* DHCP is a follow-on to the BOOTP remote booting facility.

206 | Chapter5: TCP/IP Networking

The DHCP facility assigns an IP address to a requesting host for a specified period of
time known as a lease, via a process like the following:

* The requesting (client) system broadcasts a DHCP Discover” message to UDP
port 67. At this point, the system does not need to know anything about the
local network, not even the subnet mask (the source address for this message is
0.0.0.0, and the destination is 255.255.255.255).

* One or more DHCP servers reply with a DHCP Offer message (to UDP port 68),
containing an IP address, subnet mask, server IP address, and lease duration
(and possibly other parameters). The server reserves the offered address until it is
accepted or rejected by the requesting client or a timeout period expires.

* The client selects an offered IP address and broadcasts a DHCP Request mes-
sage. All servers other than the successful one release the pending reservation.

* The selected server sends a DHCP Acknowledge message to the client.t

* When the lease is 50% expired, the client attempts to renew it (via another
DHCP Request). If it cannot do so at that time, it will try when it reaches 87.5%
of the lease period; if the second renewal attempt also fails, the client looks for a
new server. During the lease period, DHCP-assigned parameters persist across
boots on most systems. On some systems, the client tries to extend its lease each
time it boots.

As this description indicates, the DHCP facility depends heavily on broadcast mes-
sages, but it does not generate an inordinate amount of network traffic if it is config-
ured properly. Typical default lease periods are a few hours, but the time period can
be shortened or lengthened as appropriate (see “Configuring a DHCP Server” in
Chapter 8).

DHCP can also be used to assign other parameters related to networking to the cli-
ent, including the default gateway (router), the hostname, and which server(s) to use
for a variety of functions, including DNS, syslog message destination, X fonts, NTP,
and so on. In addition, DHCP clients can request that specific parameters be sup-
plied by the server and optionally reject offers that do not fulfill them. Some clients
can also specify terms for the lease, such as the time period. DHCP additional
parameters are known as options, and they are identified via standard identifying
numbers.

In the remainder of this section, we’ll look at configuring DHCP clients. We’ll dis-
cuss DHCP servers in Chapter 8.

* More precisely, it is a DHCPDISCOVER message, but I've tried to make the text more readable by adding a
space and changing letter case.

T Occasionally, things don’t work out after an offer has been selected. The server also has the option of sending
a Negative Acknowledgement if there is some problem with the request. Also, the client can send a Decline
message to the server if its initial test of the IP address fails. In either case, the client restarts the discovery
process from the beginning.

Adding a New Network Host | 207

Table 5-9 summarizes the various files and settings involved in DHCP client configu-
ration on the various systems we are considering, using the first Ethernet interface of
a common type as an example in each case. The table is followed by discussions of
the specifics for each Unix version.

Table 5-9. DHCP client configuration summary

Item Location and/or configuration

Enable DHCP AIX: ODM; interface stanza (/etc/dhcped.ini)

FreeBSD: ifconfig x10="DHCP" (/etc/rc.conf)

HP-UX: DHCP_ENABLE=1 (/etc/rc.config.d/netconf)

Linux: IFCONFIG_0="dhcpclient"in/etc/rc.config (SuSE7); BOOTPROTO="dhcp"
(ifcfg_ethQ in /etc/sysconfig/network-scripts in Red Hat, /etc/sysconfig/network in SuSE
8)

Solaris: Create /etc/dhcp.hme0

Tru64: IFCONFIG_0="DYNAMIC" (/etc/rc.config)

Additional Configuration Files FreeBSD: /etc/dhclient.conf
Solaris: /etc/default/dhcpagent
Tru64: /etc/join/client.pcy

Primary Command or Daemon AIX: dhcpcd daemon
FreeBSD: dhclient command
HP-UX: dhcpclient daemon
Linux: dhcpcd daemon
Solaris: dhcpagent daemon
Tru64: joinc daemon

Boot Script where DHCP Config- AIX: /etc/rc.tepip

uration Occurs FreeBSD: /etc/rc.network
HP-UX: /sbin/rc
Linux: /etc/init.d/network
Solaris: /etc/init.d/network
Tru64: /sbin/init.d/inet

Automated/ Graphical Configu- AIX: smit usedhcp

ration Tool FreeBSD: sysinstall
HP-UX: SAM
Linux: Linuxconf (Red Hat), YAST2 (SuSE)
Solaris: Solaris Management Console
Tru64: netconfig

Current Lease Information AIX: /usr/tmp/dhcpcd.log
FreeBSD: /var/db/dhclient.leases
HP-UX: /etc/auto_parms.log
Linux: /etc/dhep/dhepcd-eth0.info (Red Hat); /var/lib/dhcpcd/dhcpcd-eth0.info (SuSE)
Solaris: /etc/dhcp/hme0.dhc
Tru64: /etc/join/leases

208 | Chapter5: TCP/IP Networking

AIX

The easiest way to enable DHCP on an AIX system is to use SMIT, specifically the
smit usedhcp command. The resulting dialog is illustrated in Figure 5-6.

= S ________|
Notvork TNTEREIE f
Use DHCP starting lm EI Al ¥
s
Site Class Identifier
Client Identifier
TP Address Lease Time (seconds)(Nuwn.) lauuuui
Requested TP Address li
Server Identifier (ip address) IW
Subnet Mask 255.255.255.0
Time 0ffset(Num.)
P — A
0K Cormand Reset Cancel ?

Figure 5-6. Enabling DHCP with SMIT

As the figure illustrates, SMIT allows you not only to enable DHCP but also to spec-
ify a desired lease length and other DHCP parameters. In this example, we request a
lease length of 30,000 seconds (5 hours), and we also specify a specific DHCP server
to contact (giving its IP address and subnet mask). This second item is not necessary
and in fact is usually omitted; it is included here only for illustrative purposes.

AIX DHCP client configuration consists of three parts:

* Configuring and starting the dhcped daemon, which requests configuration infor-
mation and keeps track of the lease status. In particular, the relevant lines in /etc/
rc.tepip must be activated by removing the initial comment marker:

Start up dhcpcd daemon

start /usr/sbin/dhcpcd "$src_running"

* Adding a stanza for the network interface and other settings to dhcped’s config
file /etc/dhcpcd.ini. Here is an example of this file:

Use 4 log files of 500KB each and log lots of info

numLogFiles 4
logFileSize 500
logFileName

logItem SYSERR
logItem OBJERR
logItem WARNING
logItem EVENT
logItem ACTION

/usr/tmp/dhcped. log

Adding a New Network Host

209

updateDNS "/usr/sbin/dhcpaction '%s' '%s' '%s' '%s' A NONIM
>> /tmp/updns.out 2> &1 " Command is wrapped.
clientid MAC Identify clien