
The Complete FreeBSD®

If you find errors in this book, please report them to Greg Lehey <grog@Free-
BSD.org> for inclusion in the errata list.

The Complete FreeBSD®

Fourth Edition

Tenth anniversary version, 24 February 2006

Greg Lehey

The Complete FreeBSD®

by Greg Lehey <grog@FreeBSD.org>

Copyright © 1996, 1997, 1999, 2002, 2003, 2006 by Greg Lehey. This book is licensed under the Creative
Commons “Attribution-NonCommercial-ShareAlike 2.5” license. The full text is located at
http://creativecommons.org/licenses/by-nc-sa/2.5/legalcode. You are free:

• to copy, distribute, display, and perform the work

• to make derivative works

under the following conditions:

• Attribution. You must attribute the work in the manner specified by the author or licensor.

• Noncommercial. You may not use this work for commercial purposes.

This clause is modified from the original by the provision:

You may use this book for commercial purposes if you pay me the sum of USD 20 per copy printed (whether sold or not).
You must also agree to allow inspection of printing records and other material necessary to confirm the royalty sums.

The purpose of this clause is to make it attractive to negotiate sensible royalties before printing.

• Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only
under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.

• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Parts of this book are derived from the FreeBSD online handbook, which is subject to the BSD documentation
license reproduced on page xxxiv.

FreeBSD® is currently a registered trade mark of FreeBSD Inc. and Wind River Systems Inc. Changes are
planned; see http://www.FreeBSD.org/ for up-to-date information.

UNIX® is currently a registered trade mark of The Open Group. For more information, see
http://www.rdg.opengroup.org/public/tech/unix/trademark.html. As used in this book, UNIX refers to the
operating system development that predated the registration of the UNIX trademark.

Significant portions copyright © 1993, 1994, 1995 FreeBSD Inc.

Portions copyright © 1994, 1995 The XFree86 Project, Inc.

The Berkeley daemon on the cover of the print version was included with kind permission of M. Kirk
McKusick.

This book was written in troff and formatted on 25 February 2006 with GNU groff Version 1.19 running under
FreeBSD 6.0-CURRENT.

foo

βfoo

, page v

Contents

Foreword ... xxiv

Preface to the free edition ... xxvii
Building the book... xxix
The status of this book .. xxx

Preface .. xxxi
The fourth edition... xxxi
Conventions used in this book .. xxxii

Describing the keyboard ... xxxiii
Acknowledgments .. xxxiv

Book reviewers ... xxxv
How this book was written... xxxvi

1: Introduction ... 1
How to use this book... 1
FreeBSD features .. 4
Licensing conditions ... 6
A little history ... 7

The end of the UNIX wars ... 9
Other free UNIX-like operating systems .. 9

FreeBSD and Linux ... 10
FreeBSD system documentation ... 12

Reading online documentation.. 12
The online manual ... 13
GNU info ... 15

Other documentation on FreeBSD.. 16
The FreeBSD community ... 17

v

vi Contents

Mailing lists... 17
How to follow up to a question ... 20
Unsubscribing from the mailing lists ... 20
User groups .. 20
Reporting bugs .. 21

The Berkeley daemon .. 21

2: Before you install ... 25
Using old hardware ... 26

Device drivers ... 27
PC Hardware ... 28
How the system detects hardware ... 29
Configuring ISA cards... 29
PCMCIA, PC Card and CardBus .. 30

PC Card and CardBus cards ... 31
Universal Serial Bus.. 31
Disks .. 32
Disk data layout... 33

PC BIOS and disks .. 33
Disk partitioning ... 34
Block and character devices ... 36

Making the file systems... 39
Disk size limitations.. 39
Display hardware .. 40
The hardware ... 41

The keyboard .. 41
The mouse .. 41
The display board and monitor ... 42
Laptop hardware ... 42

Compaq/Digital Alpha machines .. 42
The CD-ROM distribution .. 43

Installation CD-ROM... 43
Live File System CD-ROM .. 46
CVS Repository CD-ROM ... 46
The Ports Collection CD-ROMs.. 46

3: Quick installation .. 47
Making things easy for yourself.. 47
FreeBSD on a disk with free space ... 48
FreeBSD shared with Microsoft.. 49
Configuring XFree86 .. 50

The Complete FreeBSD" vii

4: Shared OS installation... 51
Separate disks.. 51
Sharing a disk.. 52
Sharing with Linux or another BSD.. 52
Repartitioning with FIPS... 52

Repartitioning—an example ... 54

5: Installing FreeBSD ... 59
Installing on the Intel i386 architecture .. 59
Booting to sysinstall .. 60

Kinds of installation .. 61
Setting installation options.. 62
Partitioning the disk .. 63

Shared partitions ... 66
Defining file systems ... 67

What partitions? .. 68
How much swap space? ... 70
File systems on shared disks ... 75

Selecting distributions ... 75
Selecting the installation medium ... 76
Performing the installation.. 77
Installing on an Alpha system... 78
Upgrading an old version of FreeBSD.. 79
How to uninstall FreeBSD .. 79
If things go wrong ... 80

Problems with sysinstall... 80
Problems with CD-ROM installation ... 80
Can’t boot... 80
Incorrect boot installation... 81
Geometry problems ... 81
System hangs during boot .. 82
System boots, but doesn’t run correctly ... 82
Root file system fills up.. 82
Panic .. 83
Fixing a broken installation .. 84

Alternative installation methods.. 85
Preparing boot floppies .. 85
Booting from floppy .. 86
Installing via ftp .. 86
Installing via ftp .. 87
Installing via NFS ... 88
Installing from a Microsoft partition.. 88
Creating floppies for a floppy installation... 89

viii Contents

6: Post-installation configuration .. 91
Installing additional software .. 92

Instant workstation .. 93
Changing the default shell for root .. 94

Adding users.. 94
Setting the root password ... 95

Time zone.. 95
Network services ... 97

Setting up network interfaces.. 98
Other network options ... 99

Startup preferences.. 100
Configuring the mouse .. 101
Configuring X.. 102

Desktop configuration.. 108
Additional X configuration ... 108

Rebooting the new system ... 109

7: The tools of the trade ... 111
Users and groups ... 112
Gaining access... 113
The KDE desktop.. 116

The Desktop Menu .. 116
The fvwm2 window manager .. 118

Starting fvwm2 ... 119
Changing the X display... 120

Selecting pixel depth.. 121
Getting a shell ... 121

Shell basics... 122
Options .. 122
Shell parameters.. 123
Fields that can contain spaces ... 125

Files and file names... 125
File names and extensions .. 126
Relative paths.. 126
Globbing characters... 126
Input and output .. 127
Environment variables ... 128
Command line editing.. 131
Command history and other editing functions .. 133
Shell startup files ... 135
Changing your shell... 136

Differences from Microsoft... 138
Slashes: backward and forward ... 138

The Complete FreeBSD" ix

Tab characters ... 138
Carriage control characters ... 139

The Emacs editor... 139
Stopping the system .. 141

8: Taking control ... 143
Users and groups ... 144

Choosing a user name .. 144
Adding users... 145

The super user ... 146
Becoming super user ... 147
Adding or changing passwords ... 147

Processes ... 148
What processes do I have running? ... 149
What processes are running? .. 149

Daemons .. 150
cron ... 151
Processes in FreeBSD Release 5 ... 152
top ... 152

Stopping processes .. 154
Timekeeping .. 155

The TZ environment variable.. 155
Keeping the correct time .. 156

Log files... 157
Multiple processor support.. 159
PC Card devices .. 159

devd: The device daemon ... 159
Removing PC Card devices .. 161
Alternate PC Card code.. 161
Configuring PC Card devices at startup ... 161

Emulating other systems ... 162
Emulators and simulators ... 162

Emulating Linux.. 163
Running the Linux emulator ... 163
Linux procfs ... 164
Problems executing Linux binaries.. 164

Emulating SCO UNIX .. 164
Emulating Microsoft Windows ... 165

Accessing Microsoft files ... 165

x Contents

9: The Ports Collection ... 167
How to install a package ... 168
Building a port... 169

Installing ports during system installation .. 169
Installing ports from the first CD-ROM ... 169
Installing ports from the live file system CD-ROM ... 169
Getting new ports .. 170
What’s in that port? ... 172
Getting the source archive .. 173
Building the port ... 174
Port dependencies.. 174

Package documentation... 174
Getting binary-only software .. 175
Maintaining ports .. 176
Upgrading ports... 176

Using portupgrade ... 176
Controlling installed ports... 178
Submitting a new port ... 180

10: File systems and devices ... 181
File permissions .. 181
Mandatory Access Control.. 186
Links .. 186
Directory hierarchy ... 187

Standard directories ... 187
File system types ... 190

Soft updates .. 191
Snapshots ... 191

Mounting file systems ... 192
Mounting files as file systems ... 193
Unmounting file systems .. 194

FreeBSD devices ... 195
Overview of FreeBSD devices .. 195

Virtual terminals.. 197
Pseudo-terminals ... 197

11: Disks .. 199
Adding a hard disk .. 199

Disk hardware installation .. 200
Formatting the disk.. 203

Using sysinstall ... 204

The Complete FreeBSD" xi

Doing it the hard way .. 209
Creating a partition table .. 210
Labelling the disk .. 214
bsdlabel .. 215
Problems running bsdlabel ... 215

Creating file systems ... 216
Mounting the file systems... 217

Moving file systems .. 217
Recovering from disk data errors .. 218

12: The Vinum Volume Manager ... 221
Vinum objects.. 221

Mapping disk space to plexes ... 222
Data integrity .. 223
Which plex org anization? ... 224

Creating Vinum drives .. 225
Starting Vinum .. 225
Configuring Vinum .. 226

The configuration file... 226
Creating a file system... 227
Increased resilience: mirroring.. 228
Adding plexes to an existing volume ... 229
Adding subdisks to existing plexes .. 230
Optimizing performance .. 232
Resilience and performance.. 233

Vinum configuration database... 235
Installing FreeBSD on Vinum ... 236
Recovering from drive failures .. 240

Failed boot disk... 241
Migrating Vinum to a new machine .. 241
Things you shouldn’t do with Vinum .. 241

13: Writing CD-Rs... 243
Creating an ISO-9660 image... 243

Testing the CD-R... 245
Burning the CD-R ... 246

Burning a CD-R on an ATA burner ... 246
Burning a CD-R on a SCSI burner .. 248

Copying CD-ROMs ... 250

xii Contents

14: Tapes, backups and floppy disks .. 251
Backing up your data .. 251

What backup medium? .. 252
Tape devices ... 252
Backup software.. 253
tar .. 253

Using floppy disks under FreeBSD... 256
Formatting a floppy ... 256
File systems on floppy ... 257
Microsoft file systems .. 258
Other uses of floppies .. 258
Accessing Microsoft floppies.. 259

15: Printers.. 263
Printer configuration.. 264

Testing the printer.. 265
Configuring /etc/printcap.. 265
Remote printing .. 266
Spooler filters.. 267

Starting the spooler ... 268
Testing the spooler .. 268
Troubleshooting .. 269
Using the spooler... 270

Removing print jobs .. 271
PostScript .. 271

Viewing with gv .. 272
Printing with ghostscript .. 273
Which driver? ... 274

PDF ... 276

16: Networks and the Internet .. 277
Network layering... 279

The link layer.. 280
The network layer.. 281
The transport layer .. 281
Port assignment and Internet services .. 283
Network connections ... 284

The physical network connection.. 285
Ethernet ... 286

How Ethernet works .. 287
Finding Ethernet addresses ... 289

The Complete FreeBSD" xiii

What systems are on that Ethernet? ... 290
Address classes ... 290
Unroutable addresses ... 291

Wireless LANs .. 291
How wireless networks coexist ... 293
Encryption .. 293

The reference network ... 294

17: Configuring the local network ... 297
Network configuration with sysinstall .. 297
Manual network configuration .. 299

Describing your network .. 300
Checking the interface configuration ... 301
The configuration files ... 302

Automatic configuration with DHCP.. 302
DHCP client ... 302
DHCP server... 303
Starting dhcpd... 304

Configuring PC Card networking cards .. 304
Detaching network cards .. 306

Setting up wireless networking ... 306
What we can do now.. 307

Routing .. 307
Adding routes automatically ... 309
Adding routes manually ... 309

ISP’s route setup.. 310
Looking at the routing tables... 311

Flags .. 312
Packet forwarding ... 313
Configuration summary... 313

18: Connecting to the Internet .. 315
The physical connection.. 315
Establishing yourself on the Internet... 317

Which domain name? .. 317
Preparing for registration.. 318
Registering a domain name .. 318
Getting IP addresses .. 318

Choosing an Internet Service Provider ... 319
Who’s that ISP?... 319

Questions to ask an ISP.. 319
Making the connection.. 323

xiv Contents

19: Serial communications... 325
Terminology .. 326
Asynchronous and synchronous communication.. 326

Asynchronous communication.. 326
Synchronous communication.. 327

Serial ports .. 327
Connecting to the port.. 328
When can I send data? ... 330

Modems ... 330
Modem speeds .. 331
Data compression .. 331
The link speed... 332
Dialing out.. 333

Modem commands .. 333
Dialing out manually ... 335
Dialing out—an example.. 336
Dialing in ... 338

20: Configuring PPP... 339
Quick setup.. 340
How PPP works ... 340

The interfaces ... 340
Dialing ... 341
Negotiation ... 341
Who throws the first stone? .. 342
Authentication .. 343
Which IP addresses on the link?.. 344
The net mask for the link.. 346
Static and dynamic addresses.. 346
Setting a default route .. 347
Autodial ... 347

The information you need to know ... 347
Setting up user PPP ... 348

Setting up user PPP: the details... 349
Negotiation ... 350
Requesting LQR.. 351
Authentication .. 351
Dynamic IP configuration .. 352
Running user PPP.. 353
How long do we stay connected? .. 353
Automating the process.. 354
Actions on connect and disconnect.. 355
If things go wrong ... 355

The Complete FreeBSD" xv

Setting up kernel PPP.. 355
Authentication .. 356
Dialing ... 357
Who throws the first stone? .. 358
Dynamic IP configuration .. 358
Running kernel PPP... 358
Automating the process.. 359
Timeout parameters ... 359
Configuration summary.. 359
Actions on connect and disconnect.. 360

Things that can go wrong.. 361
Problems establishing a connection ... 361

21: The Domain Name Service ... 363
Domains and zones ... 364

Zones ... 365
Setting up a name server ... 365
Passive DNS usage.. 366
Name server on a standalone system .. 366
Name server on an end-user network .. 368

The SOA record .. 368
The A records ... 369
The NS records ... 370
Nicknames.. 370
The MX records .. 370
The HINFO records ... 371
Putting it all together ... 371

Reverse lookup.. 372
The distant view: the outside world ... 373
The named.conf file ... 373

Slave name servers .. 376
The next level down: delegating zones ... 377

china.example.org ... 377
example.org with delegation ... 378

Messages from named... 379
Upgrading a Version 4 configuration .. 380
Looking up DNS information ... 381
Checking DNS for correctness.. 382
DNS security ... 383

xvi Contents

22: Firewalls, IP aliasing and proxies .. 385
Security and firewalls .. 386

ipfw: defining access rules.. 386
Actions... 388
Writing rules... 388
Configuration files ... 389
Trying it out.. 393

IP aliasing.. 393
IP aliasing software ... 394
natd.. 395

Proxy servers ... 396
Installing squid .. 397

Starting squid.. 398
Browser proxy configuration... 399

Setting proxy information for ftp .. 399

23: Network debugging .. 401
How to approach network problems ... 401
Link layer problems .. 402
Network layer problems.. 406
traceroute ... 407

High packet loss .. 410
tcpdump ... 411

Packet loss revisited... 412
Transport and application layers ... 414
Ethereal ... 414

24: Basic network access: clients... 417
The World Wide Web .. 418
Web browsers .. 418
ssh .. 419
Access without a password ... 420

Creating and distributing keys... 421
Authenticating automatically .. 422
Setting up X to use ssh... 423

ssh tunnels ... 424
Tunneling X.. 425
Other uses of tunnels ... 425

Configuring ssh ... 425
Summary of files in ˜/.ssh... 428

Troubleshooting ssh connections .. 428

The Complete FreeBSD" xvii

telnet .. 430
Secure telnet ... 431
Using telnet for other services .. 431

Copying files ... 432
scp ... 432
ftp .. 433

Specifying file names as URIs ... 434
Other ftp commands .. 434
mget... 435
prompt ... 435
reget... 436
user .. 436

sftp ... 437
rsync .. 437

Copying directory hierarchies ... 438
Using an rsync server .. 440
The Network File System.. 441
NFS client.. 442

Mounting remote file systems ... 442
Where to mount NFS file systems ... 444
Mounting NFS file systems automatically .. 445

NFS strangenesses... 445
No devices .. 445
Just one file system.. 446

25: Basic network access: servers ... 447
Running servers from inetd ... 448
Configuring ftpd .. 450

anonymous ftp .. 450
Restricting access and logging .. 452

Running sshd... 453
rsyncd .. 454
Setting up a web server ... 455

Configuring apache.. 455
The configuration file... 456
httpd.conf ... 456
Virtual hosts.. 457
Log file format .. 459
Access control... 460
Apache modules.. 462
Proxy web servers ... 462
Caching .. 462
Running apache... 462

NFS server ... 463

xviii Contents

/etc/exports ... 463
Samba .. 464

Installing the Samba software ... 465
smbd and nmbd: the Samba daemons .. 466
The configuration file... 466
Setting passwords.. 469
Testing the installation ... 469
Displaying Samba status .. 470

26: Electronic mail: clients .. 471
Mail formats .. 471
Mail user agents .. 472

mail ... 472
Other MUAs ... 473

Files, folders or directories?.. 473
mutt ... 474

Creating a new message .. 477
Replying to a message .. 478
Using folders ... 480
Deleting messages... 481
Tagging messages.. 481
Configuring mutt ... 481

Colours in mutt ... 483
Mail aliases.. 484
Mail headers .. 484

How to send and reply to mail .. 487
Using MIME attachments .. 489

27: Electronic mail: servers .. 491
How mail gets delivered .. 492

MTA files ... 492
Who gets the mail? .. 493

Postfix .. 493
Configuring postfix.. 494
Host and domain names ... 495
Relaying mail.. 496
Aliases revisited .. 496

Rejecting spam.. 498
Rejecting known spam domains .. 500
Rejecting sites without reverse lookup ... 501
Rejecting listed sites .. 501
Recognizing spoofed messages ... 501

The Complete FreeBSD" xix

Sender restrictions: summary.. 501
Running postfix at boot time ... 502

Talking to the MTA ... 502
Downloading mail from your ISP ... 503

POP: the Post Office Protocol ... 504
popper: the server .. 504
fetchmail: the client ... 504

Mailing lists: majordomo .. 505

28: XFree86 in depth.. 507
X configuration: the theory ... 507

How TVs and monitors work.. 508
How monitors differ from TVs ... 510
How to fry your monitor .. 510
The CRT controller.. 511
The XF86Config mode line .. 513

XF86Config ... 516
The server layout... 517
The Files section ... 517
The ServerFlags section ... 518
The Module section ... 518
The InputDevice section... 519
The Monitor section .. 519
The Device section .. 520
The Screen section .. 521

Multiple monitors and servers ... 523
Multiple servers .. 523

X in the network .. 524
Multiple monitors across multiple servers .. 525
Stopping X ... 525

29: Starting and stopping the system... 527
Starting the system .. 528
Things you can do before booting... 529
What are you going to boot? ... 529

Loader commands ... 530
loader.conf.. 532
Loading other modules at boot time .. 532
Automatic kld load .. 533

Running the kernel .. 533
Single-user mode... 540

Password protecting single-user mode ... 541

xx Contents

Shutting down and rebooting the system .. 541
FreeBSD without disks ... 542
Network booting.. 543

Setting up the file systems .. 544
Building a diskless kernel... 544
Configuring TFTP ... 544
Configuring DHCP .. 545
Other Ethernet bootstraps ... 546
Configuring the machine .. 547
Sharing system files between multiple machines... 548

Disk substitutes ... 549

30: FreeBSD configuration files ... 551
/etc/rc.conf ... 552

Our /etc/rc.conf ... 565
Files you need to change ... 566

/etc/exports ... 566
/etc/fstab... 566
/etc/group ... 568
/etc/namedb/named.conf .. 568
/etc/mail ... 569
/etc/master.passwd... 569

Files you might need to change... 569
/etc/crontab ... 569
/etc/csh.cshrc, /etc/csh.login, /etc/csh.logout .. 569
/etc/dhclient.conf... 569
/etc/disktab ... 569
/etc/ftpusers .. 570
/etc/hosts .. 570
/etc/hosts.equiv ... 570
/etc/hosts.lpd... 570
/etc/inetd.conf ... 570
/etc/login.access .. 570
/etc/login.conf ... 571
/etc/motd .. 572
/etc/newsyslog.conf ... 572
/etc/nsswitch.conf.. 572
/etc/pccardd.conf ... 573
/etc/periodic.conf... 573
/etc/printcap .. 573
/etc/profile .. 573
/etc/rc.firewall ... 573
/etc/resolv.conf.. 573
/etc/syslog.conf ... 573

The Complete FreeBSD" xxi

/etc/ttys .. 574
/boot/device.hints .. 575

Files you should not change.. 576
/etc/gettytab .. 576
/etc/manpath.config ... 577
/etc/netconfig .. 577
/etc/networks .. 577
/etc/passwd ... 577
/etc/protocols .. 577
/etc/pwd.db ... 577
/etc/rc ... 577
/etc/rc.i386.. 577
/etc/rc.network and /etc/rc.network6.. 578
/etc/rc.pccard .. 578
/etc/rc.serial .. 578
/etc/shells ... 578
/etc/services .. 578
/etc/spwd.db.. 578
/etc/termcap .. 578
/etc/periodic .. 578

Obsolete configuration files... 579
/etc/host.conf .. 579
/etc/named.boot... 579
/etc/netstart ... 579
/etc/sysconfig .. 579

31: Keeping up to date .. 581
FreeBSD releases and CVS... 581

Symbolic names or tags ... 582
FreeBSD releases .. 582

FreeBSD-RELEASE ... 583
FreeBSD-STABLE .. 583
Security fix releases ... 583
FreeBSD-CURRENT .. 583

Getting updates from the Net .. 585
CVSup ... 585
Which CVSup server?.. 587
Running cvsup .. 587
Getting individual releases ... 587

Creating the source tree... 588
Release tags .. 588
Updating an existing tree.. 591
Using a remote CVS tree.. 591

xxii Contents

32: Updating the system software .. 593
Upgrading kernel and userland ... 595
Upgrading the kernel ... 597
Upgrading the boot files .. 598
Upgrading the configuration files.. 599

Merging the password file .. 600
Merging /etc/group.. 602
Mergemaster, second time around... 603

33: Custom kernels.. 607
Building a new kernel ... 608
Configuring I/O devices .. 609
The kernel build directory ... 609
The configuration file .. 610

Naming the kernel ... 611
Kernel options... 612
Multiple processors ... 613
Debug options ... 614

Preparing for upgrades .. 617
Building and installing the new kernel .. 617

Rebooting ... 619
Making device nodes... 620
Kernel loadable modules... 620
sysctl .. 621
Living with FreeBSD-CURRENT .. 622

Build kernels with debug symbols... 622
Solving problems in FreeBSD-CURRENT .. 622

Analyzing kernel crash dumps .. 623
Climbing through the stack... 625
Finding out what really happened ... 626

A: Bibliography ... 628
Books on BSD... 628
Users’ guides... 629
Administrators’ guides .. 629
Programmers’ guides .. 630
Hardware reference ... 630
The 4.4BSD manuals .. 631
Getting FreeBSD on CD-ROM ... 631

The Complete FreeBSD" xxiii

B: The evolution of FreeBSD ... 635
FreeBSD Releases 1 and 2 .. 635
FreeBSD Release 3 ... 635
The CAM SCSI driver... 636
Kernel loadable modules... 637
The ELF object format .. 637

What happened to my libraries? .. 638
FreeBSD Version 4.. 640
No more block devices .. 642
New ATA (IDE) disk driver .. 643
New console driver.. 643
FreeBSD Release 5 ... 643

Index .. 645

xxiv Contents

(foreword.mm), page xxiv

Foreword

I hav e been a long time developer of the Berkeley Software Distributions (BSD). My
involvement started in 1976, at the University of California at Berkeley. I got drawn in as
an office-mate of Bill Joy, who single-handedly wrote the code for BSD and then started
handling its release. Bill went on to run the Computer Systems Research Group (CSRG)
which developed and released the first fully complete BSD distributions. After Bill’s
departure to become a founder of Sun Microsystems, I eventually rose to head the CSRG
and oversee the release of the freely redistributable 4.4BSD-Lite. The 4.4BSD-Lite
distribution forms the basis for all the freely distributable variants of BSD today as well
as providing many of the utilities found in Linux and commercial UNIX distributions.

With the release of 4.4BSD-Lite, the University of California at Berkeley ceased further
BSD development. After considering the strengths and weaknesses of different BSD
development groups, I decided to do my continued development in FreeBSD because it
had the largest user community. For the past ten years, therefore, I have been a member of
the FreeBSD developer team.

I hav e always felt that it is important to use your own product. For this reason, I have
always run BSD everywhere: on my workstation, on my Web/file/mail/backup server, on
my laptop, and on my firewall. By necessity, I hav e to find tools to do my job that will run
on my BSD systems. It may be easier to just run Windows and PowerPoint to do your
presentations, but there are an ever increasing number of fine alternatives out there that
run on FreeBSD such as the open source OpenOffice.org suite or MagicPoint.

In the old days, there were not very many people working on the BSD software. This
constraint on BSD development made it easy to keep up with what BSD could do and
how to manage your system. But the last decade has seen an exponential growth in the
open source movement. The result has been a huge increase in the number of people
working on FreeBSD and an even larger increase in the number of applications and tools
that have been ported to run on FreeBSD. It has become a more than full time job just to
keep track of all the system capabilities, let alone to figure out how to use them all.

Greg Lehey has done a wonderful job with this book of helping those of us that want to
fully utilize the FreeBSD system to do so without having to devote our entire lives
figuring how. He has gone through and figured out each of the different tasks that you

xxiv

The Complete FreeBSD xxv

might ask your system to do. He has identified the software that you need to do the task.
He explains how to configure it for your operational needs. He tells you how to monitor
the resulting subsystem to make sure it is working as desired. And, he helps you to
identify and fix problems that arise.

The book starts with the basics of getting the FreeBSD system up and running on your
hardware, including laptops, workstations, and servers. It then explains how to customize
an installation for your personal needs. This personalization includes downloading and
operating the most important of the more than 8000 software packages in the FreeBSD
ports collection. The book also includes a very comprehensive set of systems
administration information, including the setup and operation of printers, local and
external networking, the domain name system, the NFS and Samba remote filesystems,
electronic mail, web surfing and hosting, and dial-up for FAX, remote login, and point-to-
point network connections.

In short, this book provides everything you need to know about the FreeBSD system from
the day you first pick up the software through the day you have a full suite of machines.
It covers your complete range of computing needs. There is a reason that this book is so
popular: as its title says, it is The Complete FreeBSD. I am very happy to see this revision
which once again fulfills that mandate.

Marshall Kirk McKusick
Berkeley, California
February 2003

(10-years.mm), page xxvii

Preface to the
free edition

On Friday, 14 October 1995, I received a visit from a number of people from Walnut
Creek CDROM, with whom I had published a CD-ROM of ported free software. This
experience had also prompted me to write a book, “Porting UNIX Software”. At the time
of the visit, O’Reilly and Associates were in the course of publishing the book, and I
showed the final drafts to Jack Velte and Greg Long. They were very interested, and Jack
said “Can’t you write a book about how to install FreeBSD? Doesn’t need to be long,
just about 50 pages or so.”

At the time I had installed FreeBSD on a couple of machines, but my operating system of
choice was BSD/OS. The idea sounded like fun, though, and so I quickly hacked
together a few pages. Jack and Greg liked what they saw, and so we went ahead. I had
gained some experience with using groff while writing “Porting UNIX Software”, and as
the result of some production issues that I had had with that book, we agreed that I would
do the entire formatting and supply the book in PostScript format.

On 24 February 1996, little over 4 months later, I submitted the final draft of a book
which I called “Running FreeBSD 2.1”, and which Walnut Creek called “Installing And
Running FreeBSD”. That’s the way it was printed, as those of you who have this book
can confirm.

The book was a great success. Of course, it was a little more than 50 pages; in fact, a
total of 322 pages, including 54 pages of man pages from the FreeBSD distribution.
Despite this, Jack wasn’t happy: “Those Linux books have over 1000 pages! This looks
like nothing. What can you do? We need something yesterday!”.

Well, I had started the trend with the first edition. I added many more man pages, a little
more editorial content, and 5 months later, on 19 July, I submitted the next version. We
had now agreed on the title: “The Complete FreeBSD”, with only 844 pages still shy of
the 1000 page mark. 542 of those pages were man pages. Given the extreme time
constraints, I’m still surprised that I managed so much.

From then on, I had more time to work on the book, and the material evolved in a more

xxvii

xxviii Preface to the free edition

orderly manner. I formatted the second (or was that third?) edition on 29 November
1997, now with a whopping 1,766 pages (of which only 1,108 were man pages; that still
left 658 pages of real content). Jack was finally pleased.

That proved to be too much, though. People complained that the book was unwieldy, and
after all, man pages are intended to be read online. We agreed that printing lots of man
pages was also a waste of money. When the third edition appeared, on 17 May 1999, it
was slimmer: only 808 pages, still including 126 pages of man pages chosen because they
could be of use when the machine wasn’t running.

Changes were afoot in the industry, though. Jack left Walnut Creek, and later Bob Bruce
merged Walnut Creek CDROM with BSDI. Shortly after that, they were taken over by
Wind River Systems, who were ambivalent about the book. Round this time I convinced
Andy Oram, my editor at O’Reilly, to publish the book. The fourth edition finally
appeared in O’Reilly’s “Community Press” series in May 2003. It had 718 pages and—
oh wonder!—none of them were man pages.

That’s the current status. Looking at those dates, you’ll see that as time went on, each
edition was further from its predecessor. There are several reasons for this: the material is
mainly there, there are now other books on FreeBSD out there, and I don’t hav e the time.

Still, I think that “The Complete FreeBSD” is a unique book, and it’s probably worth
maintaining. But I can’t do it myself. So: I’m making the sources available under the
“Creative Commons” license (the book itself has been under this license since the
O’Reilly edition).

You can find all about the Creative Commons license at their web site,
http://creativecommons.org/. Creative Commons offer a number of alternative license
forms. This book is licensed under the “Attribution-NonCommercial-ShareAlike 2.5”
license. The full text is located at http://creativecommons.org/licenses/by-nc-
sa/2.5/legalcode (and requires that you reproduce this URI if you redistribute the work).
The summary at http://creativecommons.org/licenses/by-nc-sa/2.5/ may be more intelli-
gible:

You are free:

• to copy, distribute, display, and perform the work

• to make derivative works

under the following conditions:

• Attribution. You must attribute the work in the manner specified by the author or
licensor.

• Noncommercial. You may not use this work for commercial purposes.

• Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

The Complete FreeBSD xxix

• For any reuse or distribution, you must make clear to others the license terms of this
work.

• Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

I explicitly modify one aspect of this license:

You may use this book for commercial purposes if you pay me the sum of USD 20 per copy
printed (whether sold or not). You must also agree to allow inspection of printing records and
other material necessary to confirm the royalty sums.

This is a ridiculously high royalty, of course; if you really want to make commercial
copies, please contact me and we’ll come to a reasonable sum. The purpose of this clause
is simply to ensure that you do contact me before printing.

Building the book
As it says on the flyleaf, this book was written in troff and formatted on 25 February 2006
with GNU groff Version 1.19 running under FreeBSD 6.0-CURRENT. It uses a set of
macros which I derived from the groff mm macros. I’ve been working on them and the
current version of the build process for more than 10 years, and it’s a mess. I use the
framework for most of my document processing, and one of the things I need to do is to
fix it; I’m doing this in the background. At some later date I will hopefully be able to
replace the current build mechanism.

In the meantime, a few pointers:

• There are two directories, tools and Book. Their purposes should be self-evident.

• Currently you need to run make in tools before building the book. This should
change.

• The default Makefile target builds the entire book. The resulting PostScript file will
be located in complete/book.ps.

• The build process uses Emacs.

• The macros are in the file tools/tmac.Mn. The only documentation of the extended
macros is in the comments in that file.

Please don’t bother to modify these macros, nor to document them. If you feel like
doing that, please contact me and I’ll give you the latest version, which is noticeably
different.

• If you don’t like the Makefile or some other aspect of the build, and you feel like
fixing it, don’t bother either. I have a vastly improved version which I can give you;
it’s just not quite up to building the book yet.

xxx Preface to the free edition

• The files are maintained with RCS. If you like, you can check out any past version,
ev en before the first edition 10 years ago.

• The RCS directory also contains some chapters which were determined to be
uninteresting for the fourth edition, in particular chapters about SLIP, ISBN, UUCP
and faxes. It should be relatively trivial to re-include them in the book, and I may do
so in the future.

The status of this book
This book currently has effectively the same content as the fourth edition. I hav e changed
the formatting somewhat: O’Reilly asked for a layout which I found ugly. You can set
this version by modifying the macro file tmac.Mn and reverting this change:

--- tmac.Mn 2003/10/04 04:53:11 1.19
+++ tmac.Mn 2006/02/18 23:35:24
@@ -3185,7 +3185,7 @@
.\" Set style
.\" 1: O’Reilly’s community press style (Helvetica headings, Times body, no
italics)
.\" 2: Approximately O’Reilly’s nutshell style (Garamond, italic headings)
-.nr *doc*style* 1
+.nr *doc*style* 2
.\" Chapter heading
.de Chapter
.ds Section*title

The comments are no longer quite accurate: the book will format in the Garamond font
set if you have it; otherwise it will fall back to Times Roman: Garamond is a commercial
font, so I can’t distribute it.

I’ve made some changes, but many more are needed. If you want to help, please let me
know. I can’t guarantee money (that would require another print run), but I can guarantee
recognition in the preface.

Greg Lehey
Echunga, South Australia
24 February 2006

(preface.mm), page xxxi

Preface

In this chapter:
• The four th edition
• Conventions used in

this book
• Acknowledgments
• How this book was

wr itten

In this chapter:
• The four th edition
• Conventions used in

this book
• Acknowledgments
• How this book was

wr itten

FreeBSD is a high-performance operating system derived from the Berkeley Software
Distribution (BSD), the version of UNIX developed at the University of California at
Berkeley between 1975 and 1993. FreeBSD is not a UNIX clone. Historically and
technically, it has greater rights than UNIX System V to be called UNIX. Leg ally, it may
not be called UNIX, since UNIX is now a registered trade mark of The Open Group.

This book is intended to help you get FreeBSD up and running on your system and to
familiarize you with it. It can’t do everything, but plenty of UNIX books and online
documentation are available, and a large proportion of them are directly applicable to
FreeBSD. In the course of the text, I’ll repeatedly point you to other documentation.

I’m not expecting you to be a guru, but I do expect you to understand the basics of using
UNIX. If you’ve come from a Microsoft background, I’ll try to make the transition a
little less rocky.

The fourth edition
This book has already had quite a history. Depending on the way you count, this is the
fourth or fifth edition of The Complete FreeBSD: the first edition of the book was called
Installing and Running FreeBSD, and was published in March 1996. The next edition
was called ‘‘The Complete FreeBSD’’, first edition. The first three editions were
published by Walnut Creek CDROM, which ceased publishing activities in 2000. This is
the first edition to be published by O’Reilly and Associates.

During this time, FreeBSD has changed continually, and it’s difficult for a book to keep
up with the change. This doesn’t mean that FreeBSD has changed beyond recognition,
but people have done a great job of working away those little rough edges that make the
difference between a usable operating system and one that is a pleasure to use. If you
come to FreeBSD from System V, you’ll certainly notice the difference.

During the lifetimes of the previous editions of this book, I realised that much of the text
becomes obsolete very quickly. For example, in the first edition I went to a lot of trouble
to tell people how to install from an ATAPI CD-ROM, since at the time the support was a

xxxi

xxxii Preface

little wobbly. Almost before the book was released, the FreeBSD team improved the
support and rolled it into the base release. The result? Lots of mail messages to the
FreeBSD-questions mailing list saying, ‘‘Where can I get ATAPI.FLP?’’. Even the
frequently posted errata list didn’t help much.

This kind of occurrence brings home the difference in time scale between software
releases and book publication. FreeBSD CD-ROMs are released several times a year. A
new edition of a book every year is considered very frequent, but it obviously can’t hope
to keep up with the software release cycle. As a result, this book contains less time-
sensitive material than previous editions. For example, the chapter on building kernels no
longer contains an in-depth discussion of the kernel build parameters. They change too
frequently, and the descriptions, though correct at the time of printing, would just be
confusing. Instead, the chapter now explains where to find the up-to-date information.

Another thing that we discovered was that the book was too big. The second edition
contained 1,100 pages of man pages, the FreeBSD manual pages that are also installed
online on the system. These printed pages were easier to read, but they had two
disadvantages: firstly they were slightly out of date compared to the online version, and
secondly they weighed about 1 kilogram (2.2 lbs). The book was just plain unwieldy, and
some people reported that they had physically torn out the man pages from the book to
make it more manageable. As a result, the third edition had only the most necessary man
pages.

Times have changed since then. At the time, The Complete FreeBSD was the only
English-language book on FreeBSD. Now there are several—see Appendix A,
Bibliography, for more detail. In particular, the FreeBSD online handbook is available
both in printed form and online at http://www.freebsd.org/handbook/index.html, so I hav e
left much of the more time-sensitive issues out of this book. See the online handbook
instead. Alternatively, you can print out the man pages yourself—see page 15 for details.

It’s very difficult to find a good sequence for presenting that material in this book. In
many cases, there is a chicken and egg problem: what do you need to know first?
Depending on what you need to do, you need to get information in different sequences.
I’ve spent a lot of time trying to present the material in the best possible sequence, but
inevitably you’re going to find that you’ll have to jump through one of the myriad page
cross references.

Conventions used in this book
In this book, I use bold for the names of keys on the keyboard. We’ll see more about this
in the next section.

I use italic for the names of UNIX utilities, directories, file names and URIs (Uniform
Resource Identifier, the file naming technology of the World Wide Web), and to
emphasize new terms and concepts when they are first introduced. I also use this font for
comments in the examples.

Conventions used in this book xxxiii

I use constant width in examples to show the contents of files, the output from
commands, program variables, actual values of keywords, for mail IDs, for the names of
Internet News newsgroups, and in the text to represent commands.

I use constant width italic in examples to show variables for which context-
specific substitutions should be made. For example, the variable filename would be
replaced by an actual file name.

I use constant width bold in examples to show commands or text that would be
typed in literally by the user.

In this book, I recommend the use of the Bourne shell or one of its descendents (sh, bash,
pdksh, ksh or zsh). sh is in the base system, and the rest are all in the Ports Collection,
which we’ll look at in chapter 9. I personally use the bash shell. This is a personal
preference, and a recommendation, but it’s not the standard shell: the traditional BSD
shell is the C shell (csh), which FreeBSD has replaced with a fuller-featured descendent,
tcsh. In particular, the standard installation sets the root user up with a csh. See page
136 for details of how to change the shell.

In most examples, I’ll show the shell prompt as $, but it doesn’t normally matter which
shell you use. In some cases, however, it does:

• Sometimes you need to be super-user, the user who can do anything. If this is
necessary, I indicate it by using the prompt #.

• Sometimes the commands only work with the Bourne Shell and derivatives (zsh,
bash), and they won’t work with csh, tcsh and friends. In these cases I’ll show the
csh alternative with the standard csh prompt %.

In the course of the text I’ll occasionally touch on a subject that is not of absolute importance, but
that may be of interest. I’ll print such notes in smaller text, like this.

Describing the keyboard
One of the big differences between UNIX and other operating systems concerns the way
they treat so-called ‘‘carriage control codes.’’ When UNIX was written, the standard
interactive terminal was still the Teletype model KSR 35. This mechanical monstrosity
printed at 10 characters per second, and the carriage control characters really did cause
physical motion of the carriage. The two most important characters were Carriage
Return, which moved the carriage (which carried the print head) to the left margin, and
Line Feed , which turned the platen to advance the paper by the height of a line. To get to
the beginning of a new line, you needed to issue both control characters. We don’t hav e
platens or carriages any more, but the characters are still there, and in many systems,
including Microsoft, a line of text is terminated by a carriage return character and a line
feed character. UNIX only uses a ‘‘new line’’ character, which corresponds to the line
feed. This difference sometimes gives rise to confusion. We’ll look at it in more detail
on page 267.

xxxiv Preface

It’s surprising how many confusing terms exist to describe individual keys on the
keyboard. My favourite is the any key (‘‘Press any key to continue’’). We won’t
be using the any key in this book, but there are a number of other keys whose names need
understanding:

• The Enter or Return key. I’ll call this ENTER.

• Control characters (characters produced by holding down the Ctrl key and pressing a
normal keyboard key at the same time). I’ll show them as, for example, Ctrl-D in the
text, but these characters are frequently echoed on the screen as a caret (ˆ) followed
by the character entered, so in the examples, you may see things like ˆD.

• The Alt key, which Emacs aficionados call a META key, works in the same way as
the Ctrl key, but it generates a different set of characters. These are sometimes
abbreviated by prefixing the character with a tilde (˜) or the characters A-. I
personally like this method better, but to avoid confusion I’ll represent the character
generated by holding down the Alt key and pressing D as Alt-D.

• NL is the new line character. In ASCII, it is Ctrl-J, but UNIX systems generate it
when you press the ENTER key. UNIX also refers to this character as \n, a usage
which comes from the C programming language.

• CR is the carriage return character, in ASCII Ctrl-M. Most systems generate it with
the ENTER key. UNIX also refers to this character as \r—again, this comes from
the C programming language.

• HT is the ASCII horizontal tab character, Ctrl-I. Most systems generate it when the
TAB key is pressed. UNIX and C also refer to this character as \t.

Acknowledgments
This book is based on the work of many people, first and foremost the FreeBSD
documentation project. Years ago, I took significant parts from the FreeBSD handbook,
in particular Chapter 7, The tools of the trade. The FreeBSD handbook is supplied as
online documentation with the FreeBSD release—see page 12 for more information. It is
subject to the BSD documentation license, a variant of the BSD software license.

Redistribution and use in source (SGML DocBook) and ‘compiled’ forms (SGML,
HTML, PDF, PostScript, RTF and so forth) with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code (SGML DocBook) must retain the above copyright
notice, this list of conditions and the following disclaimer as the first lines of this
file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF,
PostScript, RTF and other formats) must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

Acknowledgments xxxv

This documentation is provided by the FreeBSD Documentation Project ‘‘as is’’ and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed. In no
ev ent shall the FreeBSD Documentation Project be liable for any direct, indirect,
incidental, special, exemplary, or consequential damages (including, but not limited
to, procurement of substitute goods or services; loss of use, data, or profits; or
business interruption) however caused and on any theory of liability, whether in
contract, strict liability, or tort (including negligence or otherwise) arising in any way
out of the use of this documentation, even if advised of the possibility of such
damage.

Book reviewers
This book wouldn’t be the same without the help of a small group of dedicated critics
who tried out what I said and pointed out that it didn’t work. In particular, I’d like to
thank Jack Velte of Walnut Creek CDROM, who had the idea of this book in the first
place, Jordan Hubbard and Gary Palmer for tearing the structure and content apart
multiple times, and also Bob Bishop, Julian Elischer, Stefan Esser, John Fieber, Glen
Foster, Poul-Henning Kamp, Michael Smith, and Nate Williams for valuable contribu-
tions (‘‘What, you expect new users to know that you have to shut down the machine
before powering it off?’’).1 Finally, special thanks to Josef Möllers, Andreas Ritter, and
Jack Velte, who put early drafts of this book through its paces and actually installed
FreeBSD with their help.

The second edition had much more review than the first. A number of dedicated
reviewers held through for several months as I gradually cranked out usable copy. In
particular, special thanks to Annelise Anderson, Sue Blake, Jonathan M. Bresler, William
Bulley, Mike Cambria, Brian Clapper, Paul Coyne, Lee Crites, Jerry Dunham, Stefan
Esser, Patrick Gardella, Gianmarco Giovannelli, David Kelly, Andreas Klemm, Andrew
MacIntyre, Jonathan Michaels, Jörg Micheel, Marco Molteni, Charles Mott, Jay D.
Nelson, Daniel J. O’Connor, Andrew Perry, Kai Peters, Wes Peters, Mark Prior, Guido
van Rooij, Andrew Rutherford, Thomas Vickery and Don Wilde.

Many of the second edition reviewers came back for the third edition. In addition, thanks
to John Birrell for his help with the Alpha architecture, and Michael A. Endsley for
ferreting out bugs, some of which had been present since the days of Installing and
Running FreeBSD.

The following people helped with the fourth edition: Nelson H. F. Beebe
<beebe@math.utah.edu>

The following people helped with the fourth edition: Annelise Anderson, Jonathan
Arnold, Sue Blake, Doug Barton, Brian Clapper, Jerry Dunham, Matt Geddes, Jeremiah
Gowdy, Daniel B. Hemmerich, Justin Heath, Peter N. M. Hansteen, Paul A. Hoadley, Ed
Irvine, John Lind, Johannes Lochmann, Warner Losh, Yin Cheung ‘Yogesh’ Mar,
Andrew MacIntyre, Jonathan Michaels, Ove Ruben R. Olsen, Hiten Pandya, Linh Pham,
Daniel Phillips, Siegfried P Pietralla. Stephen J. Roznowski, Dan Shearer and Murray

1. See page 541 for details on how to shut down the system.

xxxvi Preface

Stokely.

In addition, my thanks to the people at O’Reilly and Associates, particularly Andy Oram,
with whom I had discussed this project for years before he was finally able to persuade
O’Reilly that it was a good idea. Subsequently it was Andy who coordinated seeing this
rather unusual project through O’Reilly channels. Emma Colby designed the cover, and
David Futato provided specifications, advice, and examples for the format. Linley Dolby
proofread the document after I thought it was ready, and found tens of mistakes on nearly
ev ery page, ensuring that the book is better than its predecessors.

Finally, thanks to David Lloyd for the loan of an ATA CD-R drive while writing the ATA
section of Chapter 13, Writing CD-Rs.

How this book was written
This book was written and typeset entirely with tools supplied as standard with the
FreeBSD system, including the Ports Collection. The text of this book was written with
the GNU Emacs editor, and it was formatted on 25 February 2006 with the GNU groff
text formatter, Version 1.19, and some heavily modified mm macros. The process was
performed under FreeBSD 6.0-CURRENT. Even the development versions of FreeBSD
are stable enough to perform heavy-duty work like professional text formatting.

The source files for this book are kept under RCS, the Revision Control System (see the
man page rcs(1)). Here are the RCS Version IDs for the chapters of this particular book.

$Id: title.complete,v 4.4 2006/02/23 23:18:13 grog Exp $
$Id: preface.mm,v 4.21 2003/05/25 09:02:19 grog Exp grog $
$Id: introduction.mm,v 4.26 2003/06/30 06:47:54 grog Exp grog $
$Id: concepts.mm,v 4.21 2003/04/02 06:37:12 grog Exp grog $
$Id: quickinstall.mm,v 4.11 2003/04/09 19:26:40 grog Exp grog $
$Id: shareinstall.mm,v 4.12 2003/04/09 19:26:50 grog Exp grog $
$Id: install.mm,v 4.24 2004/03/09 01:31:12 grog Exp grog $
$Id: postinstall.mm,v 4.15 2003/12/15 00:52:31 grog Exp grog $
$Id: unixref.mm,v 4.16 2003/04/02 06:41:29 grog Exp grog $
$Id: unixadmin.mm,v 4.14 2003/10/09 06:06:31 grog Exp grog $
$Id: ports.mm,v 4.12 2003/04/02 06:43:08 grog Exp grog $
$Id: filesys.mm,v 4.17 2003/04/02 06:43:57 grog Exp grog $
$Id: disks.mm,v 4.19 2003/06/29 02:54:00 grog Exp grog $
$Id: vinum.mm,v 4.20 2003/06/29 04:33:42 grog Exp grog $
$Id: burncd.mm,v 4.14 2003/06/29 04:33:03 grog Exp grog $
$Id: tapes.mm,v 4.12 2003/06/29 03:06:33 grog Exp grog $
$Id: printers.mm,v 4.18 2003/06/30 23:43:32 grog Exp grog $
$Id: netintro.mm,v 4.16 2003/04/02 06:48:55 grog Exp grog $
$Id: netsetup.mm,v 4.21 2003/06/29 09:05:45 grog Exp grog $
$Id: isp.mm,v 4.10 2003/04/02 03:09:55 grog Exp grog $
$Id: modems.mm,v 4.10 2003/04/02 03:11:02 grog Exp grog $
$Id: ppp.mm,v 4.14 2003/04/02 08:14:21 grog Exp grog $
$Id: dns.mm,v 4.19 2003/04/02 08:43:25 grog Exp grog $
$Id: firewall.mm,v 4.13 2003/06/29 04:25:08 grog Exp grog $
$Id: netdebug.mm,v 4.17 2003/04/03 02:04:14 grog Exp grog $
$Id: netclient.mm,v 4.19 2003/08/13 23:58:56 grog Exp grog $
$Id: netserver.mm,v 4.19 2003/04/09 20:42:40 grog Exp grog $

How this book was written xxxvii

$Id: mua.mm,v 4.16 2003/08/24 02:07:18 grog Exp grog $
$Id: mta.mm,v 4.17 2003/08/24 02:07:59 grog Exp grog $
$Id: xtheory.mm,v 4.15 2003/08/19 03:34:24 grog Exp grog $
$Id: starting.mm,v 4.24 2003/08/07 22:48:18 grog Exp grog $
$Id: configfiles.mm,v 4.19 2003/06/29 04:32:34 grog Exp grog $
$Id: current.mm,v 4.18 2003/06/29 04:29:20 grog Exp grog $
$Id: upgrading.mm,v 4.14 2003/11/17 05:28:23 grog Exp grog $
$Id: building.mm,v 4.19 2005/01/28 21:24:16 grog Exp grog $
$Id: biblio.mm,v 4.8 2003/06/29 06:27:59 grog Exp grog $
$Id: evolution.mm,v 4.13 2003/04/02 04:59:47 grog Exp grog $
$Id: tmac.Mn,v 1.20 2006/02/18 23:35:23 grog Exp $

(introduction.mm), page 1

1
Introduction

In this chapter:
• How to use this book
• FreeBSD features
• Licensing conditions
• A little history
• Other free UNIX-like

operating systems
• FreeBSD system

documentation
• Other documentation

on FreeBSD
• The FreeBSD

community
• Mailing lists
• The Berkeley

daemon

In this chapter:
• How to use this book
• FreeBSD features
• Licensing conditions
• A little history
• Other free UNIX-like

operating systems
• FreeBSD system

documentation
• Other documentation

on FreeBSD
• The FreeBSD

community
• Mailing lists
• The Berkeley

daemon

FreeBSD is a free operating system derived from AT&T’s UNIX operating system.1 It
runs on the following platforms:

• Computers based on the Intel i386 CPU architecture, including the 386, 486 and
Pentium families of processors, and compatible CPUs from AMD and Cyrix.

• The Compaq/Digital Alpha processor.

• 64 bit SPARC machines from Sun Microsystems.

• In addition, significant development efforts are going towards porting FreeBSD to
other hardware, notably the Intel 64 bit architecture and the IBM/Motorola PowerPC
architecture.

This book describes the released versions of FreeBSD for Intel and Alpha processors.
Current support for SPARC 64 processors is changing too fast for it to be practical to give
details specific to this processor, but nearly everything in this book also applies to SPARC
64.

How to use this book
This book is intended for a number of different audiences. It attempts to present the
material without too many forward references. It contains the following parts:

1. FreeBSD no longer contains any AT&T proprietary code, so it may be distributed freely. See page 7 for
more details.

1

2 Chapter 1: Introduction

1. The first part, Chapters 1 to 6, tells you how to install FreeBSD and what to do if
things go wrong.

2. Chapters 7 to 15 introduce you to life with FreeBSD, including setting up optional
features and system administration.

3. Chapters 16 to 27 introduce you to FreeBSD’s rich network support.

4. Finally, Chapters 28 to 33 look at system administration topics that build on all the
preceding material.

In more detail, we’ll discuss the following subjects:

• In the rest of this chapter, we’ll look at what FreeBSD is, what you need to run it, and
what resources are available, including FreeBSD’s features and history, how it
compares to other free UNIX-like operating systems, other sources of information
about FreeBSD, the world-wide FreeBSD community, and support for FreeBSD. In
addition, we’ll look at the BSD’s daemon emblem.

• Chapter 2, Before you install, discusses the installation requirements and theoretical
background of installing FreeBSD.

• Chapter 3, Quick installation, presents a quick overview of the installation process. If
you’re reasonably experienced, this may be all you need to install FreeBSD.

• In Chapter 4, Shared OS installation, we’ll look at preparing to install FreeBSD on a
system that already contains another operating system.

• In Chapter 5, Installing FreeBSD, we’ll walk through a typical installation in detail.

• Chapter 6, Post-installation configuration, explains the configuration you need to do
after installation to get a complete functional system.

• Chapter 7, The tools of the trade, presents a number of aspects of FreeBSD that are of
interest to newcomers (particularly from a Microsoft environment). We’ll look at
setting up a ‘‘desktop,’’ the concept of users and file naming. We’ll also consider the
basics of using the shell and editor, and how to shut down the machine.

• Chapter 8, Taking control, goes into more detail about the specifics of working with
UNIX, such as processes, daemons, timekeeping and log files. We’ll also look at
features unique to FreeBSD, including multiple processor support, removable I/O
devices and emulating other systems.

• Chapter 9, The Ports Collection, describes the thousands of free software packages
that you can optionally install on a FreeBSD system.

• Chapter 10, File systems and devices, contains information about the FreeBSD
directory structure and device names. You’ll find the section on device names
(starting on page 195) interesting even if you’re an experienced UNIX hacker.

• Chapter 11, Disks, describes how to format and integrate hard disks, and how to
handle disk errors.

How to use this book 3

• Managing disks can be a complicated affair. Chapter 12, The Vinum Volume
Manager, describes a way of managing disk storage.

• In Chapter 13, Writing CD-Rs, we’ll look at how to use FreeBSD to write CD-Rs.

• FreeBSD provides professional, reliable data backup services as part of the base
system. Don’t ever let yourself lose data because of inadequate backup provisions.
Read all about it in Chapter 14, Tapes, backups and floppy disks.

• Chapter 15, Printers, describes the BSD spooling system and how to use it both on
local and networked systems.

• Starting at Chapter 16, Networks and the Internet, we’ll look at the Internet and the
more important services.

• Chapter 17, Configuring the local network, describes how to set up local networking.

• Chapter 18, Connecting to the Internet, discusses the issues in selecting an Internet
Service Provider (ISP) and establishing a presence on the Internet.

• Chapter 19, Serial communications, discusses serial hardware and the prerequisites
for PPP and SLIP communications.

• In Chapter 20, Configuring PPP, we look at FreeBSD’s two PPP implementations
and what it takes to set them up.

• In Chapter 21, The Domain Name Service, we’ll consider the use of names on the
Internet.

• Security is an increasing problem on the Internet. In Chapter 22, Fire walls, IP
aliasing and proxies, we’ll look at some things we can do to improve it. We’ll also
look at IP aliasing, since it goes hand-in-hand with firewalls, and proxy servers.

• Networks sometimes become notworks. In Chapter 23, Network debugging, we’ll
see what we can do to solve network problems.

• Chapter 24, Basic network access: clients, describes the client viewpoint of network
access, including Web browsers, ssh, ftp, rsync and nfs clients for sharing file
systems between networked computers.

• Network clients talk to network servers. We’ll look at the corresponding server
viewpoint in Chapter 25, Basic network access: servers.

• Despite the World Wide Web, traditional two-way personal communication is still
very popular. We’ll look at how to use mail clients in Chapter 26, Electronic mail:
clients.

• Mail servers are an important enough topic that there’s a separate Chapter 27,
Electronic mail: servers.

• In Chapter 28, XFree86 in depth, we’ll look at the theory behind getting X11
working.

4 Chapter 1: Introduction

• Chapter 29, Starting and stopping the system, describes how to start and stop a
FreeBSD system and all the things you can do to customize it.

• In Chapter 30, Fr eeBSD configuration files, we’ll look at the more common
configuration files and what they should contain.

• In Chapter 31, Keeping up to date, we’ll discuss how to ensure that your system is
always running the most appropriate version of FreeBSD.

• FreeBSD keeps changing. We’ll look at some aspects of what that means to you in
Chapter 32, Updating the system software.

• Chapter 33, Custom kernels, discusses optional kernel features.

• Appendix A, Bibliography, suggests some books for further reading.

• Appendix B, The evolution of FreeBSD, describes the changes that have taken place
in FreeBSD since it was introduced nearly ten years ago.

FreeBSD features
FreeBSD is derived from Berkeley UNIX , the flavour of UNIX developed by the
Computer Systems Research Group at the University of California at Berkeley and
previously released as the Berkeley Software Distribution (BSD) of UNIX.

UNIX is a registered trademark of the Open Group, so legally, FreeBSD may not be called UNIX.
The technical issues are different, of course; make up your own mind as to how much difference
this makes.

Like commercial UNIX, FreeBSD provides you with many advanced features, including:

• FreeBSD uses preemptive multitasking with dynamic priority adjustment to ensure
smooth and fair sharing of the computer between applications and users.

• FreeBSD is a multi-user system: many people can use a FreeBSD system
simultaneously for unrelated purposes. The system shares peripherals such as
printers and tape drives properly between all users on the system.

Don’t get this confused with the ‘‘multitasking’’ offered by some commercial
systems. FreeBSD is a true multi-user system that protects users from each other.

• FreeBSD is secure. Its track record is borne out by the reports of the CERT, the
leading organization dealing with computer security. See http://www.cert.org for
more information. The FreeBSD project has a team of security officers concerned
with maintaining this lead.

• FreeBSD is reliable. It is used by ISPs around the world. FreeBSD systems regularly
go several years without rebooting. FreeBSD can fail, of course, but the main causes
of outages are power failures and catastrophic hardware failures.

FreeBSD features 5

• FreeBSD provides a complete TCP/IP networking implementation. This means that
your FreeBSD machine can interoperate easily with other systems and also act as an
enterprise server, providing vital functions such as NFS (remote file access) and
electronic mail services, or putting your organization on the Internet with WWW,
FTP, routing and firewall services. In addition, the Ports Collection includes software
for communicating with proprietary protocols.

• Memory protection ensures that neither applications nor users can interfere with each
other. If an application crashes, it cannot affect other running applications.

• FreeBSD includes the XFree86 implementation of the X11 graphical user interface.

• FreeBSD can run most programs built for versions of SCO UNIX and UnixWare,
Solaris, BSD/OS, NetBSD, 386BSD and Linux on the same hardware platform.

• The FreeBSD Ports Collection includes thousands of ready-to-run applications.

• Thousands of additional and easy-to-port applications are available on the Internet.
FreeBSD is source code compatible with most popular commercial UNIX systems
and thus most applications require few, if any, changes to compile. Most freely
available software was developed on BSD-like systems. As a result, FreeBSD is one
of the easiest platforms you can port to.

• Demand paged virtual memory (VM) and ‘‘merged VM/buffer cache’’ design
efficiently satisfies applications with large appetites for memory while still maintain-
ing interactive response to other users.

• The base system contains a full complement of C, C++ and FORTRAN development
tools. All commonly available programming languages, such as perl, python and
ruby, are available. Many additional languages for advanced research and develop-
ment are also available in the Ports Collection.

• FreeBSD provides the complete source code for the entire system, so you have the
greatest degree of control over your environment. The licensing terms are the freest
that you will find anywhere (‘‘Hey, use it, don’t pretend you wrote it, don’t complain
to us if you have problems’’). Those are just the licensing conditions, of course. As
we’ll see later in the chapter, there are plenty of people prepared to help if you run
into trouble.

• Extensive online documentation, including traditional man pages and a hypertext-
based online handbook.

FreeBSD is based on the 4.4BSD UNIX released by the Computer Systems Research
Group (CSRG) at the University of California at Berkeley. The FreeBSD Project has
spent many thousands of hours fine-tuning the system for maximum performance and
reliability. FreeBSD’s features, performance and reliability compare very favourably
with those of commercial operating systems.

Since the source code is available, you can easily customize it for special applications or
projects, in ways not generally possible with operating systems from commercial
vendors. You can easily start out small with an inexpensive 386 class PC and upgrade as

6 Chapter 1: Introduction

your needs grow. Here are a few of the applications in which people currently use
FreeBSD:

• Internet Services: the Internet grew up around Berkeley UNIX. The original TCP/IP
implementation, released in 1982, was based on 4.2BSD, and nearly every current
TCP/IP implementation has borrowed from it. FreeBSD is a descendent of this
implementation, which has been maintained and polished for decades. It is the most
mature and reliable TCP/IP available at any price. This makes it an ideal platform for
a variety of Internet services such as FTP servers, World Wide Web servers,
electronic mail servers, USENET news servers, DNS name servers and firewalls.
With the Samba suite, you can replace a Microsoft file server.

• Education: FreeBSD is an ideal way to learn about operating systems, computer
architecture and networking. A number of freely available CAD, mathematical and
graphic design packages also make it highly useful to those whose primary interest in
a computer is to get other work done.

• Research: FreeBSD is an excellent platform for research in operating systems as well
as other branches of computer science, since the source code for the entire system is
available. FreeBSD’s free availability also makes it possible for remote groups to
collaborate on ideas or shared development without having to worry about special
licensing agreements or limitations on what may be discussed in open forums.

• X Window workstation: FreeBSD makes an excellent choice for an inexpensive
graphical desktop solution. Unlike an X terminal, FreeBSD allows many applications
to be run locally, if desired, thus relieving the burden on a central server. FreeBSD
can even boot ‘‘diskless,’’ making individual workstations even cheaper and easier to
administer.

• Software Development: The basic FreeBSD system comes with a full complement of
development tools including the renowned GNU C/C++ compiler and debugger.

Licensing conditions
As the name suggests, FreeBSD is free. You don’t hav e to pay for the code, you can use
it on as many computers as you want, and you can give away copies to your friends.
There are some restrictions, however. Here’s the BSD license as used for all new
FreeBSD code:

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

Licensing conditions 7

This software is provided by the FreeBSD project ‘‘as is’’ and any express or implied
warranties, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose are disclaimed. In no event shall the FreeBSD
project or contributors be liable for any direct, indirect, incidental, special, exemplary,
or consequential damages (including, but not limited to, procurement of substitute
goods or services; loss of use, data, or profits; or business interruption) however
caused and on any theory of liability, whether in contract, strict liability, or tort
(including negligence or otherwise) arising in any way out of the use of this software,
ev en if advised of the possibility of such damage.

The last paragraph is traditionally written in ALL CAPS, for reasons which don’t seem to
have anything to do with the meaning. Older versions of the license also contained
additional clauses relating to advertising.

A little history
FreeBSD is a labour of love: big commercial companies produce operating systems and
charge lots of money for them; the FreeBSD project produces a professional-quality
operating system and gives it away. That’s not the only difference.

In 1981, when IBM introduced their Personal Computer, the microprocessor industry was
still in its infancy. They entrusted Microsoft to supply the operating system. Microsoft
already had their own version of UNIX, called XENIX, but the PC had a minimum of 16
kB and no disk. UNIX was not an appropriate match for this hardware. Microsoft went
looking for something simpler. The ‘‘operating system’’ they chose was correspondingly
primitive: 86/DOS, a clone of Digital Research’s successful CP/M operating system,
written by Tim Paterson of Seattle Computer Products and originally called QDOS
(Quick and Dirty Operating System). At the time, it seemed just the thing: it ran fine
without a hard disk (in fact, the original PC didn’t have a hard disk, not even as an
option), and it didn’t use up too much memory. The only thing that they really had to do
was to change the name. IBM called its version PC-DOS, while Microsoft marketed its
version under the name MS-DOS.

By this time, a little further down the US West Coast, the Computer Systems Research
Group (CSRG) of the University of California at Berkeley had just modified AT&T’s
UNIX operating system to run on the new DEC VAX 11/780 machine, which sported
virtual memory, and had turned their attention to implementing some new protocols for
the ARPANET: the so-called Internet Protocols. The version of UNIX that they had
developed was now sufficiently different from AT&T’s system that it had been dubbed
Berkeley UNIX .

As time went on, both MS-DOS and UNIX evolved. Before long, MS-DOS was
modified to handle hard disks—not well, but it handled them, and for the PC users, it was
so much better than what they had before that they ignored the inefficiencies. After all,
the PC gav e you your own hard disk on your desk, and you didn’t hav e to share it with all
the other people in the department. Microsoft even tried to emulate the UNIX directory

8 Chapter 1: Introduction

structure, but succeeded only in implementing the concept of nested directories. At
Berkeley, they were developing a higher performance disk subsystem, the Fast File
System, now known as the UNIX File System.

By the late 80s, it was evident that Microsoft no longer intended to substantially enhance
MS-DOS. New processors with support for multitasking and virtual memory had
replaced the old Intel 8088 processor of the IBM PC, but they still ran MS-DOS by
emulating the 8088 processor, which was now completely obsolete. The 640 kB memory
limit of the original PC, which once appeared bigger than anybody would ever need,
became a serious problem. In addition, people wanted to do more than one thing at a
time with their computers.

A solution to both problems was obvious: move to the 32 bit address mode of the new
Intel 80386 processor and introduce real multitasking, which operating systems on larger
machines had had for decades. Of course, these larger machines were only physically
larger. The average PC of 1990 had more memory, more disk and more processing power
than just about any of the large computers of the 70s. Nevertheless, Microsoft didn’t
solve these problems for its ‘‘Windows’’ platform until much later, and the solutions still
leave a lot to be desired.

UNIX, on the other hand, was a relatively mature operating system at the time when the
PC was introduced. As a result, Microsoft-based environments have had little influence
on the development of UNIX. UNIX development was determined by other factors:
changes in legal regulations in the USA between 1977 and 1984 enabled AT&T first to
license UNIX to other vendors, noticeably Microsoft, who announced XENIX in 1981,
and then to market its own version of UNIX. AT&T developed System III in 1982, and
System V in 1983. The differences between XENIX and System V were initially small,
but they grew: by the mid-80s, there were four different versions of UNIX: the Research
Version, used almost only inside AT&T, which from the eighth edition on derived from
4.1cBSD, the Berkeley Software Distribution (BSD) from Berkeley, the commercial
System V from AT&T, and XENIX, which no longer interested Microsoft, and was
marketed by the company that had developed it, the Santa Cruz Operation, or SCO.

One casualty of UNIX’s maturity was the CSRG in Berkeley. UNIX was too mature to
be considered an object of research, and the writing was on the wall: the CSRG would
close down. Some people decided to port Berkeley UNIX to the PC—after all, SCO had
ported its version of UNIX to the PC years earlier. In the Berkeley tradition, however,
they wanted to give it away. The industry’s reaction was not friendly. In 1992, AT&T’s
subsidiary USL (UNIX Systems Laboratories) filed a lawsuit against Berkeley Software
Design, Inc. (BSDI), the manufacturer of the BSD/386 operating system, later called
BSD/OS, a system very similar to FreeBSD. They alleged distribution of AT&T source
code in violation of licence agreements. They subsequently extended the case to the
University of California at Berkeley. The suit was settled out of court, and the exact
conditions were not all disclosed. The only one that became public was that BSDI would
migrate their source base to the newer 4.4BSD-Lite sources, a thing that they were
preparing to do in any case. Although not involved in the litigation, it was suggested to
FreeBSD that they should also move to 4.4BSD-Lite, which was done with the release of
FreeBSD release 2.0 in late 1994.

A little history 9

Now, in the early 21st century, FreeBSD is the best known of the BSD operating systems,
one that many consider to follow in the tradition of the CSRG. I can think of no greater
honour for the development team. It was developed on a shoestring budget, yet it
manages to outperform commercial operating systems by an order of magnitude.

The end of the UNIX wars
In the course of the FreeBSD project, a number of things have changed about UNIX. Sun
Microsystems moved from a BSD base to a System V base in the late 80s, a move that
convinced many people that BSD was dead and that System V was the future. Things
turned out differently: in 1992, AT&T sold USL to Novell, Inc., who had introduced a
product based on System V.4 called UnixWare. Although UnixWare has much better
specifications than SCO’s old System V.3 UNIX, it was never a success, and Novell
finally sold their UNIX operation to SCO. SCO itself was then bought out by Caldera
(which recently changed its name back to SCO), while the ownership of the UNIX trade
mark has passed to the Open Group. System V UNIX is essentially dead: current
commercial versions of UNIX have evolved so far since System V that they can’t be
considered the same system. By contrast, BSD is alive and healthy, and lives on in
FreeBSD, NetBSD, OpenBSD and Apple’s Mac OS X.

The importance of the AT&T code in the earlier versions of FreeBSD was certainly
overemphasized in the lawsuit. All of the disputed code was over 10 years old at the
time, and none of it was of great importance. In January 2002, Caldera released all
‘‘ancient’’ versions of UNIX under a BSD license. These specifically included all
versions of UNIX from which BSD was derived: the first to seventh editions of Research
UNIX and 32V, the predecessor to 3BSD. As a result, all versions of BSD, including
those over which the lawsuit was conducted, are now freely available.

Other free UNIX-like operating systems
FreeBSD isn’t the only free UNIX-like operating system available—it’s not even the best-
known one. The best-known free UNIX-like operating system is undoubtedly Linux, but
there are also a number of other BSD-derived operating systems. We’ll look at them first:

• 386/BSD was the original free BSD operating system, introduced by William F. Jolitz
in 1992. It never progressed beyond a test stage: instead, two derivative operating
systems arose, FreeBSD and NetBSD. 386/BSD has been obsolete for years.

• NetBSD is an operating system which, to the casual observer, is almost identical to
FreeBSD. The main differences are that NetBSD concentrates on hardware
independence, whereas FreeBSD concentrates on performance. FreeBSD also tries
harder to be easy to understand for a beginner. You can find more information about
NetBSD at http://www.NetBSD.org.

• OpenBSD is a spin-off of NetBSD that focuses on security. It’s also very similar to
FreeBSD. You can find more information at http://www.OpenBSD.org.

10 Chapter 1: Introduction

• Apple computer introduced Version 10 (X) of its Mac OS in early 2001. It is a big
deviation from previous versions of Mac OS: it is based on a Mach microkernel with
a BSD environment. The base system (Darwin) is also free. FreeBSD and Darwin
are compatible at the user source code level.

You could get the impression that there are lots of different, incompatible BSD versions.
In fact, from a user viewpoint they’re all very similar to each other, much more than the
individual distributions of Linux, which we’ll look at next.

FreeBSD and Linux
In 1991, Linus Torvalds, then a student in Helsinki, Finland, decided he wanted to run
UNIX on his home computer. At that time the BSD sources were not freely available,
and so Linus wrote his own version of UNIX, which he called Linux.

Linux is a superb example of how a few dedicated, clever people can produce an
operating system that is better than well-known commercial systems developed by a large
number of trained software engineers. It is better even than a number of commercial
UNIX systems.

Obviously, I prefer FreeBSD over Linux, or I wouldn’t be writing this book, but the
differences between FreeBSD and Linux are more a matter of philosophy rather than of
concept. Here are a few contrasts:

Table 1-1: Differences between FreeBSD and Linux

FreeBSD is a direct descendent of the
original UNIX, though it contains no
residual AT&T code.

Linux is a clone and never contained any
AT&T code.

FreeBSD is a complete operating system,
maintained by a central group of software
developers under the Concurrent Versions
System which maintains a complete histo-
ry of the project development. There is
only one distribution of FreeBSD.

Linux is a kernel, personally maintained by
Linus Torvalds and a few trusted compan-
ions. The non-kernel programs supplied
with Linux are part of a distribution, of
which there are several. Distributions are
not completely compatible with each other.

The FreeBSD development style empha-
sizes accountability and documentation of
changes.

The Linux kernel is maintained by a small
number of people who keep track of all
changes. Unofficial patches abound.

The kernel supplied with a specific release
of FreeBSD is clearly defined.

Linux distributions often have subtly differ-
ent kernels. The differences are not always
documented.

Other free UNIX-like operating systems 11

FreeBSD aims to be a stable production
environment.

Many versions of Linux are still ‘‘bleeding
edge’’ dev elopment environments. This is
changing rapidly, howev er.

As a result of the centralized development
style, FreeBSD is straightforward and
easy to install.

The ease of installation of Linux depends
on the distribution. If you switch from one
distribution of Linux to another, you’ll
have to learn a new set of installation tools.

FreeBSD is still relatively unknown, since
its distribution was initially restricted due
to the AT&T lawsuits.

Linux did not have any lawsuits to contend
with, so for some time it was thought to be
the only free UNIX-type system available.

As a result of the lack of knowledge of
FreeBSD, relatively little commercial
software is available for it.

A growing amount of commercial software
is becoming available for Linux.

As a result of the smaller user base,
FreeBSD is less likely to have drivers for
brand-new boards than Linux.

Just about any new board will soon have a
driver for Linux.

Because of the lack of commercial appli-
cations and drivers for FreeBSD, Free-
BSD runs most Linux programs, whether
commercial or not.

Linux appears not to need to be able to run
FreeBSD programs.

FreeBSD is licensed under the BSD li-
cense—see page 6. There are very few
restrictions on its use.

Linux is licensed under the GNU General
Public License. Further details are at
http://www.gnu.org/licenses/gpl.html. By
comparison with the BSD license, it impos-
es significant restrictions on what you can
do with the source code.

FreeBSD has aficionados who are pre-
pared to flame anybody who dares suggest
that it’s not better than Linux.

Linux has aficionados who are prepared to
flame anybody who dares suggest that it’s
not better than FreeBSD.

In summary, Linux is also a very good operating system. For many, it’s better than
FreeBSD.

12 Chapter 1: Introduction

FreeBSD system documentation
FreeBSD comes with a considerable quantity of documentation which we’ll look at in the
following few pages:

• The FreeBSD Documentation Project maintains a collection of ‘‘books,’’ documents
in HTML or PDF format which can also be accessed online. They’re installed in the
directory hierarchy /usr/share/doc.

• The traditional UNIX document format is man pages, individual documents
describing specific functionality. They’re short and to the point of being cryptic, but
if you know what you’re looking for, they hav e just the right amount of detail.
They’re not a good introduction.

• The GNU project introduced their own document format, GNU info. Some GNU
programs have no other form of documentation.

Reading online documentation
You’ll find a number of HTML documents in the directory /usr/share/doc/en/books:

• /usr/share/doc/en/books/faq/index.html contains the FreeBSD FA Q (Fr equently
Asked Questions). It’s just what it says it is: a list of questions that people frequently
ask about FreeBSD, with answers of course.

• /usr/share/doc/en/books/fdp-primer/index.html is a primer for the Fr eeBSD Docu-
mentation Project,

• /usr/share/doc/en/books/handbook/index.html is the FreeBSD online handbook. It
contains a lot of information specifically about FreeBSD, including a deeper
discussion of many topics in this book.

• /usr/share/doc/en/books/porters-handbook/index.html is a handbook for contributors
to the FreeBSD Ports Collection, which we’ll discuss in Chapter 9, The Ports
Collection.

• /usr/share/doc/en/books/ppp-primer/index.html contains a somewhat dated document
about setting up PPP. If you have trouble with Chapter 20, Configuring PPP, you
may find it useful.

In addition to the directory /usr/share/doc/en/books, there’s also a directory
/usr/share/doc/en/articles with a number of shorter items of documentation.

Note the component en in the pathnames above. That stands for English. A number of
these books are also installed in other languages: change en to de for a German version,
to es for Spanish, to fr for French, to ja for Japanese, to ru for Russian, or to zh for
Chinese. Translation efforts are continuing, so you may find documentation in other
languages as well.

FreeBSD system documentation 13

If you’re running X, you can use a browser like mozilla to read the documents. If you
don’t hav e X running yet, use lynx. Both of these programs are included in the CD-ROM
distribution. To install them, use sysinstall, which is described on page 92.

lynx is not a complete substitute for complete web browsers such as mozilla: since it is
text-only, it is not capable of displaying the large majority of web pages correctly. It’s
good enough for reading most of the FreeBSD online documentation, however.

In each case, you start the browser with the name of the document, for example:

$ lynx /usr/share/doc/en/books/handbook/index.html
$ mozilla /usr/share/doc/en/books/handbook/index.html &

Enter the & after the invocation of mozilla to free up the window in which you invoke it:
mozilla opens its own window.

If you haven’t installed the documentation, you can still access it from the Live
Filesystem CD-ROM. Assuming the CD-ROM is mounted on /cdrom, choose the file
/cdrom/usr/share/doc/en/books/handbook/index.html.

Alternatively, you can print out the handbook. This is a little more difficult, and of course
you’ll lose the hypertext references, but you may prefer it in this form. To format the
handbook for printing, you’ll need a PostScript printer or ghostscript. See page 271 for
more details of how to print PostScript.

The printable version of the documentation doesn’t usually come with the CD-ROM
distribution. You can pick it up with ftp (see page 433) from
ftp://ftp.FreeBSD.ORG/pub/FreeBSD/doc/, which has the same directory structure as
described above. For example, you would download the handbook in PostScript form
from ftp://ftp.FreeBSD.ORG/pub/FreeBSD/doc/en/books/handbook/book.ps.bz2.

The online manual
The most comprehensive documentation on FreeBSD is the online manual, usually
referred to as the man pages. Nearly every program, file, library function, device or
interface on the system comes with a short reference manual explaining the basic
operation and various arguments. If you were to print it out, it would run to well over
8,000 pages.

When online, you view the man pages with the command man. For example, to learn
more about the command ls, type:

$ man ls
LS(1) FreeBSD Reference Manual LS(1)

NAME
ls - list directory contents

SYNOPSIS
ls [-ACFLRTacdfiloqrstu1] [file ...]

DESCRIPTION
For each operand that names a file of a type other than directory, ls

14 Chapter 1: Introduction

displays its name as well as any requested, associated information. For
each operand that names a file of type directory, ls displays the names.

(etc)

In this particular example, with the exception of the first line, the text in constant
width bold is not input, it’s the way it appears on the screen.

The online manual is divided up into sections numbered:

1. User commands

2. System calls and error numbers

3. Functions in the C libraries

4. Device drivers

5. File formats

6. Games and other diversions

7. Miscellaneous information

8. System maintenance and operation commands

9. Kernel interface documentation

In some cases, the same topic may appear in more than one section of the online manual.
For example, there is a user command chmod and a system call chmod(). In this case,
you can tell the man command which you want by specifying the section number:

$ man 1 chmod

This command displays the manual page for the user command chmod. References to a
particular section of the online manual are traditionally placed in parentheses in written
documentation. For example, chmod(1) refers to the user command chmod, and
chmod(2) means the system call.

This is fine if you know the name of the command and forgot how to use it, but what if
you can’t recall the command name? You can use man to search for keywords in the
command descriptions by using the -k option, or by starting the program apropos:

$ man -k mail
$ apropos mail

Both of these commands do the same thing: they show the names of the man pages that
have the keyword mail in their descriptions.

Alternatively, you may browse through the /usr/bin directory, which contains most of the
system executables. You’ll see lots of file names, but you don’t hav e any idea what they
do. To find out, enter one of the lines:

FreeBSD system documentation 15

$ cd /usr/bin; man -f *
$ cd /usr/bin; whatis *

Both of these commands do the same thing: they print out a one-line summary of the
purpose of the program:

$ cd /usr/bin; man -f *
a2p(1) - Awk to Perl translator
addftinfo(1) - add information to troff font files for use with groff
apply(1) - apply a command to a set of arguments
apropos(1) - search the whatis database
...etc

Printing man pages

If you prefer to have man pages in print, rather than on the screen, you can do this in two
different ways:

• The simpler way is to redirect the output to the spooler:

$ man ls | lpr

This gives you a printed version that looks pretty much like the original on the screen,
except that you may not get bold or underlined text.

• You can get typeset output with troff :

$ man -t ls | lpr

This gives you a properly typeset version of the man page, but it requires that your
spooling system understand PostScript—see page 271 for more details of printing
PostScript, even on printers that don’t understand PostScript.

GNU info
The Free Software Foundation has its own online hypertext browser called info. Many
FSF programs come with either no man page at all, or with an excuse for a man page
(gcc, for example). To read the online documentation, you need to browse the info files
with the info program, or from Emacs with the info mode. To start info, simply type:

$ info

In Emacs, enter CTRL-h i or ALT-x info. Whichever way you start info, you can get
brief introduction by typing h, and a quick command reference by typing ?.

16 Chapter 1: Introduction

Other documentation on FreeBSD
FreeBSD users have access to probably more top-quality documentation than just about
any other operating system. Remember that word UNIX is trademarked. Sure, the
lawyers tell us that we can’t refer to FreeBSD as UNIX, because UNIX belongs to the
Open Group. That doesn’t make the slightest difference to the fact that nearly every book
on UNIX applies more directly to FreeBSD than any other flavour of UNIX. Why?

Commercial UNIX vendors have a problem, and FreeBSD doesn’t help them: why should
people buy their products when you can get it free from the FreeBSD Project (or, for that
matter, from other free UNIX-like operating systems such as NetBSD, OpenBSD and
Linux)? One obvious reason would be ‘‘value-added features.’’ So they add features or
fix weak points in the system, put a copyright on the changes, and help lock their
customers in to their particular implementation. As long as the changes are really useful,
this is legitimate, but it does make the operating system less compatible with ‘‘standard
UNIX,’’ and the books about standard UNIX are less applicable.

In addition, many books are written by people with an academic background. In the
UNIX world, this means that they are more likely than the average user to have been
exposed to BSD. Many general UNIX books handle primarily BSD, possibly with an
additional chapter on the commercial System V version.

In Appendix A, Bibliography, you’ll find a list of books that I find worthwhile. I’d like to
single out some that I find particularly good, and that I frequently use myself:

• UNIX Power Tools, by Jerry Peek, Tim O’Reilly, and Mike Loukides, is a superb
collection of interesting information, including a CD-ROM. Recommended for
ev erybody, from beginners to experts.

• UNIX for the Impatient, by Paul W. Abrahams and Bruce R. Larson, is more similar
to this book, but it includes a lot more material on specific products, such as shells
and the Emacs editor.

• The UNIX System Administration Handbook, by Evi Nemeth, Garth Snyder, Scott
Seebass, and Trent R. Hein, is one of the best books on systems administration I have
seen. It covers a number different UNIX systems, including an older version of
FreeBSD.

There are also many active Internet groups that deal with FreeBSD. Read about them in
the online handbook.

Other documentation on FreeBSD 17

The FreeBSD community
FreeBSD was developed by a world-wide group of developers. It could not have
happened without the Internet. Many of the key players have nev er even met each other
in person; the main means of communication is via the Internet. If you have any kind of
Internet connection, you can participate as well. If you don’t hav e an Internet connection,
it’s about time you got one. The connection doesn’t hav e to be complete: if you can
receive email, you can participate. On the other hand, FreeBSD includes all the software
you need for a complete Internet connection, not the very limited subset that most PC-
based ‘‘Internet’’ packages offer you.

Mailing lists
As it says in the copyright, FreeBSD is supplied as-is, without any support liability. If
you’re on the Internet, you’re not alone, however. Liability is one thing, but there are
plenty of people prepared to help you, most for free, some for fee. A good place to start
is with the mailing lists. There are a number of mailing lists that you can join. Some of
the more interesting ones are:

• FreeBSD-questions@FreeBSD.org is the list to which you may send general
questions, in particular on how to use FreeBSD. If you have difficulty understanding
anything in this book, for example, this is the right place to ask. It’s also the list to
use if you’re not sure which is the most appropriate.

• FreeBSD-newbies@FreeBSD.org is a list for newcomers to FreeBSD. It’s intended
for people who feel a little daunted by the system and need a bit of reassurance. It’s
not the right place to ask any kind of technical question.

• FreeBSD-hackers@FreeBSD.org is a technical discussion list.

• FreeBSD-current@FreeBSD.org is an obligatory list for people who run the
development version of FreeBSD, called FreeBSD-CURRENT.

• FreeBSD-stable@FreeBSD.org is a similar list for people who run the more recent
stable version of FreeBSD, called FreeBSD-STABLE. We’ll talk about these versions
on page 582. Unlike the case for FreeBSD-CURRENT users, it’s not obligatory for
FreeBSD-STABLE users to subscribe to FreeBSD-stable.

You can find a complete list of FreeBSD mailing lists on the web site, currently at
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/eresources.html. This
address is part of the online handbook and may change when the handbook is modified;
follow the link Mailing Lists from http://www.FreeBSD.org/ if it is no longer valid, or if
you can’t be bothered typing in the URI.

The mailing lists are run by mailman (in the Ports Collection). Join them via the web
interface mentioned above. You will receive a mail message from mailman asking you to
confirm your subscription by replying to the message. You don’t need to put anything in

18 Chapter 1: Introduction

the reply: the reply address is used once only, and you’re the only person who will ever
see it, so the system knows that it’s you by the fact that you replied at all. You also have
the option of confirming via a web interface with a specially generated URI. Similar
considerations apply in this case.

FreeBSD mailing lists can have a very high volume of traffic. The FreeBSD-questions
mailing list, for example, has thousands of subscribers, and many of them are themselves
mailing lists. It receives over a hundred messages every day. That’s about a million
messages a day in total for just one mailing list, so when you sign up for a mailing list, be
sure to read the charter. You can find the URI from the mailman confirmation message.
It’s also a good idea to ‘‘lurk’’ (listen, but not say anything) on the mailing list a while
before posting anything: each list has its own traditions.

When submitting a question to FreeBSD-questions, consider the following points:

1. Remember that nobody gets paid for answering a FreeBSD question. They do it of
their own free will. You can influence this free will positively by submitting a well-
formulated question supplying as much relevant information as possible. You can
influence this free will negatively by submitting an incomplete, illegible, or rude
question. It’s perfectly possible to send a message to FreeBSD-questions and not get
an answer even if you follow these rules. It’s much more possible to not get an
answer if you don’t.

2. Not ev erybody who answers FreeBSD questions reads every message: they look at
the subject line and decide whether it interests them. Clearly, it’s in your interest to
specify a subject. ‘‘FreeBSD problem’’ or ‘‘Help’’ aren’t enough. If you provide no
subject at all, many people won’t bother reading it. If your subject isn’t specific
enough, the people who can answer it may not read it.

3. When sending a new message, well, send a new message. Don’t just reply to some
other message, erase the old content and change the subject line. That leaves an In-
Reply-To: header which many mail readers use to thread messages, so your message
shows up as a reply to some other message. People often delete messages a whole
thread at a time, so apart from irritating people, you also run a chance of having the
message deleted unread.

4. Format your message so that it is legible, and PLEASE DON’T SHOUT!!!!!. It’s
really painful to try to read a message written full of typos or without any line breaks.
A lot of badly formatted messages come from bad mailers or badly configured
mailers. The following mailers are known to send out badly formatted messages
without you finding out about them:

Eudora
exmh
Microsoft Exchange
Microsoft Internet Mail
Microsoft Outlook
Netscape

Mailing lists 19

As you can see, the mailers in the Microsoft world are frequent offenders. If at all
possible, use a UNIX mailer. If you must use a mailer under Microsoft environments,
make sure it is set up correctly. Try not to use MIME: a lot of people use mailers
which don’t get on very well with MIME.

For further information on this subject, check out http://www.lemis.com/email.html.

5. Make sure your time and time zone are set correctly. This may seem a little silly,
since your message still gets there, but many of the people you are trying to reach get
several hundred messages a day. They frequently sort the incoming messages by
subject and by date, and if your message doesn’t come before the first answer, they
may assume they missed it and not bother to look.

6. Don’t include unrelated questions in the same message. Firstly, a long message tends
to scare people off, and secondly, it’s more difficult to get all the people who can
answer all the questions to read the message.

7. Specify as much information as possible. This is a difficult area: the information you
need to submit depends on the problem. Here’s a start:

• If you get error messages, don’t say ‘‘I get error messages’’, say (for example) ‘‘I
get the error message No route to host’’.

• If your system panics, don’t say ‘‘My system panicked’’, say (for example) ‘‘my
system panicked with the message free vnode isn’t’’.

• If you have difficulty installing FreeBSD, please tell us what hardware you have,
particularly if you have something unusual.

• If, for example, you have difficulty getting PPP to run, describe the configuration.
Which version of PPP do you use? What kind of authentication do you have? Do
you have a static or dynamic IP address? What kind of messages do you get in the
log file? See Chapter 20, Configuring PPP, for more details in this particular
case.

8. If you don’t get an answer immediately, or if you don’t even see your own message
appear on the list immediately, don’t resend the message. Wait at least 24 hours. The
FreeBSD mailer offloads messages to a number of subordinate mailers around the
world. Usually the messages come through in a matter of seconds, but sometimes it
can take sev eral hours for the mail to get through.

9. If you do all this, and you still don’t get an answer, there could be other reasons. For
example, the problem is so complicated that nobody knows the answer, or the person
who does know the answer was offline. If you don’t get an answer after, say, a week,
it might help to re-send the message. If you don’t get an answer to your second
message, though, you’re probably not going to get one from this forum. Resending
the same message again and again will only make you unpopular.

20 Chapter 1: Introduction

How to follow up to a question
Often you will want to send in additional information to a question you have already sent.
The best way to do this is to reply to your original message. This has three advantages:

1. You include the original message text, so people will know what you’re talking about.
Don’t forget to trim unnecessary text, though.

2. The text in the subject line stays the same (you did remember to put one in, didn’t
you?). Many mailers will sort messages by subject. This helps group messages
together.

3. The message reference numbers in the header will refer to the previous message.
Some mailers, such as mutt, can thread messages, showing the exact relationships
between the messages.

There are more suggestions, in particular for answering questions, at
http://www.lemis.com/questions.html. See also Chapter 26, Electronic mail: clients for
more information about sending mail messages. You may also like to check out the
FreeBSD web site at http://www.FreeBSD.org/ and the support page at
http://www.FreeBSD.org/support.html.

In addition, a number of companies offer support for FreeBSD. See the web page
http://www.FreeBSD.org/commercial/consulting_bycat.html for some possibilities.

Unsubscribing from the mailing lists
There’s a lot of traffic on the mailing lists, particularly on FreeBSD-questions. You
may find you can’t take it and want to get out again. Again, you unsubscribe from the list
either via the web or via a special mail address, not by sending mail to the the list. Each
message you get from the mailing lists finishes with the following text:

freebsd-questions@freebsd.org mailing list
http://lists.freebsd.org/mailman/listinfo/freebsd-questions
To unsubscribe, send any mail to "freebsd-questions-unsubscribe@freebsd.org"

Don’t be one of those people who send the unsubscribe request to the mailing list instead.

User groups
But how about meeting FreeBSD users face to face? There are a number of user groups
around the world. If you live in a big city, chances are that there’s one near you. Check
http://www.FreeBSD.org/support.html#user for a list. If you don’t find one, consider
taking the initiative and starting one.

In addition, USENIX holds an annual conference, the BSDCon, which deals with
technical aspects of the BSD operating systems. It’s also a great opportunity to get to
know other users from around the world. If you’re in Europe, there is also a BSDCon
Europe, which at the time of writing was not run by USENIX. See
http://www.eurobsdcon.org for more details.

Mailing lists 21

Reporting bugs
If you find something wrong with FreeBSD, we want to know about it, so that we can fix
it. To report a bug, use the send-pr program to send it as a mail message.

There used to be a web form at http://www.FreeBSD.org/send-pr.html, but it has been
closed down due to abuse.

The Berkeley daemon
The little daemon at the right symbolizes BSD. It is
included with kind permission of Marshall Kirk McKusick,
one of the leading members of the former Computer
Sciences Research Group at the University of California at
Berkeley, and owner of the daemon’s copyright. Kirk also
wrote the foreword to this book.

The daemon has occasionally given rise to a certain amount
of confusion. In fact, it’s a joking reference to processes that
run in the background—see Chapter 8, Taking control, page
150, for a description. The outside world occasionally sees
things differently, as the following story indicates:

Newsgroups: alt.humor.best-of-usenet
Subject: [comp.org.usenix] A Great Daemon Story

From: Rob Kolstad <kolstad@bsdi.com>
Newsgroups: comp.org.usenix
Subject: A Great Daemon Story

Linda Branagan is an expert on daemons. She has a T-shirt that sports the daemon in
tennis shoes that appears on the cover of the 4.3BSD manuals and The Design and
Implementation of the 4.3BSD UNIX Operating System by S. Leffler, M. McKusick, M.
Karels, J. Quarterman, Addison Wesley Publishing Company, Reading, MA 1989.

She tells the following story about wearing the 4.3BSD daemon T-shirt:

Last week I walked into a local ‘‘home style cookin’ restaurant/watering hole’’ in
Te xas to pick up a take-out order. I spoke briefly to the waitress behind the counter,
who told me my order would be done in a few minutes.

So, while I was busy gazing at the farm implements hanging on the walls, I was
approached by two ‘‘natives.’’ These guys might just be the original Texas rednecks.

‘‘Pardon us, ma’am. Mind if we ask you a question?’’

Well, people keep telling me that Texans are real friendly, so I nodded.

‘‘Are you a Satanist?’’

Well, at least they didn’t ask me if I liked to party.

‘‘Uh, no, I can’t say that I am.’’

22 Chapter 1: Introduction

‘‘Gee, ma’am. Are you sure about that?’’ they asked.

I put on my biggest, brightest Dallas Cowboys cheerleader smile and said, ‘‘No, I’m
positive. The closest I’ve ever come to Satanism is watching Geraldo.’’

‘‘Hmmm. Interesting. See, we was just wondering why it is you have the lord of
darkness on your chest there.’’

I was this close to slapping one of them and causing a scene—then I stopped and
noticed the shirt I happened to be wearing that day. Sure enough, it had a picture of a
small, devilish-looking creature that has for some time now been associated with a
certain operating system. In this particular representation, the creature was wearing
sneakers.

They continued: ‘‘See, ma’am, we don’t exactly appreciate it when people show off
pictures of the devil. Especially when he’s lookin’ so friendly.’’

These idiots sounded terrifyingly serious.

Me: ‘‘Oh, well, see, this isn’t really the devil, it’s just, well, it’s sort of a mascot.

Native: ‘‘And what kind of football team has the devil as a mascot?’’

Me: ‘‘Oh, it’s not a team. It’s an operating—uh, a kind of computer.’’

I figured that an ATM machine was about as much technology as these guys could
handle, and I knew that if I so much as uttered the word ‘‘UNIX’’ I would only make
things worse.

Native: ‘‘Where does this satanical computer come from?’’

Me: ‘‘California. And there’s nothing satanical about it really.’’

Somewhere along the line here, the waitress noticed my predicament—but these guys
probably outweighed her by 600 pounds, so all she did was look at me sympathetically
and run off into the kitchen.

Native: ‘‘Ma’am, I think you’re lying. And we’d appreciate it if you’d leave the
premises now.’’

Fortunately, the waitress returned that very instant with my order, and they agreed that
it would be okay for me to actually pay for my food before I left. While I was at the
cash register, they amused themselves by talking to each other.

Native #1: ‘‘Do you think the police know about these devil computers?’’

Native #2: ‘‘If they come from California, then the FBI oughta know about ’em.’’

They escorted me to the door. I tried one last time: ‘‘You’re really blowing this all out
of proportion. A lot of people use this ‘kind of computers.’ Universities, researchers,
businesses. They’re actually very useful.’’

Big, big, big mistake. I should have guessed at what came next.

Native: ‘‘Does the government use these devil computers?’’

Me: ‘‘Yes.’’

Another big boo-boo.

Native: ‘‘And does the government pay for ’em? With our tax dollars?’’

The Berkeley daemon 23

I decided that it was time to jump ship.

Me: ‘‘No. Nope. Not at all. Your tax dollars never entered the picture at all. I
promise. No sir, not a penny. Our good Christian congressmen would never let
something like that happen. Nope. Never. Bye.’’

Te xas. What a country.

The daemon tradition goes back quite a way. As recently as 1996, after the publication of
the first edition of this book, the following message went through the FreeBSD-chat
mailing list:

To: "Jonathan M. Bresler" <jmb@freefall.freebsd.org>
Cc: obrien@antares.aero.org (Mike O’Brien),

joerg_wunsch@uriah.heep.sax.de,
chat@FreeBSD.org, juphoff@tarsier.cv.nrao.edu

Date: Tue, 07 May 1996 16:27:20 -0700
Sender: owner-chat@FreeBSD.org

> details and gifs PLEASE!

If you insist. :-)

Sherman, set the Wayback Machine for around 1976 or so (see Peter Salus’ A
Quarter Century of UNIX for details), when the first really national UNIX meeting was
held in Urbana, Illinois. This would be after the ‘‘forty people in a Brooklyn
classroom’’ meeting held by Mel Ferentz (yeah I was at that too) and the more-or-less
simultaneous West Coast meeting(s) hosted by SRI, but before the UNIX Users Group
was really incorporated as a going concern.

I knew Ken Thompson and Dennis Ritchie would be there. I was living in
Chicago at the time, and so was comic artist Phil Foglio, whose star was just beginning
to rise. At that time I was a bonded locksmith. Phil’s roommate had unexpectedly
split town, and he was the only one who knew the combination to the wall safe in their
apartment. This is the only apartment I’ve ever seen that had a wall safe, but it sure did
have one, and Phil had some stuff locked in there. I didn’t hold out much hope, since
safes are far beyond where I was (and am) in my locksmithing sphere of competence,
but I figured ‘‘no guts no glory’’ and told him I’d giv e it a whack. In return, I told him,
he could do some T-shirt art for me. He readily agreed.

Wonder of wonders, this safe was vulnerable to the same algorithm that Master
locks used to be susceptible to. I opened it in about 15 minutes of manipulation. It
was my greatest moment as a locksmith and Phil was overjoyed. I went down to my
lab and shot some Polaroid snaps of the PDP-11 system I was running UNIX on at the
time, and gav e it to Phil with some descriptions of the visual puns I wanted: pipes,
demons with forks running along the pipes, a ‘‘bit bucket’’ named /dev/null, all that.

What Phil came up with is the artwork that graced the first decade’s worth of
‘‘UNIX T-shirts,’’ which were made by a Ma and Pa operation in a Chicago suburb.
They turned out transfer art using a 3M color copier in their basement. Hence, the
PDP-11 is reversed (the tape drives are backwards) but since Phil left off the front
panel, this was hard to tell. His trademark signature was photo-reversed, but was

24 Chapter 1: Introduction

recopied by the T-shirt people and ‘‘re-forwardized,’’ which is why it looks a little
funny compared to his real signature.

Dozens and dozens of these shirts were produced. Bell Labs alone accounted for
an order of something like 200 for a big picnic. However, only four (4) REAL
originals were produced: these have a distinctive red collar and sleeve cuff. One went
to Ken, one to Dennis, one to me, and one to my then-wife. I now possess the latter
two shirts. Ken and Dennis were presented with their shirts at the Urbana conference.

People ordered these shirts direct from the Chicago couple. Many years later,
when I was living in LA, I got a call from Armando Stettner, then at DEC, asking
about that now-famous artwork. I told him I hadn’t talked to the Illinois T-shirt makers
in years. At his request I called them up. They’d folded the operation years ago and
were within days of discarding all the old artwork. I requested its return, and duly
received it back in the mail. It looked strange, seeing it again in its original form, a
mirror image of the shirts with which I and everyone else were now familiar.

I sent the artwork to Armando, who wanted to give it to the Ultrix marketing
people. They came out with the Ultrix poster that showed a nice shiny Ultrix machine
contrasted with the chewing-gum-and-string PDP-11 UNIX people were familiar with.
They still have the artwork, so far as I know.

I no longer recall the exact contents of the letter I sent along with the artwork. I
did say that as far as I knew, Phil had no residual rights to the art, since it was a ‘work
made for hire’, though nothing was in writing (and note this was decades before the
new copyright law). I do not now recall if I explicitly assigned all rights to DEC.
What is certain is that John Lassiter’s daemon, whether knowingly borrowed from the
original, or created by parallel evolution, postdates the first horde of UNIX daemons by
at least a decade and probably more. And if Lassiter’s daemon looks a lot like a Phil
Foglio creation, there’s a reason.

I hav e never scanned in Phil’s artwork; I’ve hardly ever scanned in anything, so I
have no GIFs to show. But I have some very very old UNIX T-shirts in startlingly
good condition. Better condition than I am at any rate: I no longer fit into either of
them.

Mike O’Brien
creaky antique

Note the date of this message: it appeared since the first edition of this book. Since then,
the daemon image has been scanned in, and you can find a version at
http://www.mckusick.com/beastie/shirts/usenix.html.

(concepts.mm), page 25

2
Before you

install

In this chapter:
• Using old hardware
• PC Hardware
• How the system

detects hardware
• Configur ing ISA

cards
• PCMCIA, PC Card

and CardBus
• Universal Serial Bus
• Disks
• Disk data layout
• Making the file

systems
• Disk size limitations
• Display hardware
• The hardware
• Compaq/Digital

Alpha machines
• The CD-ROM

distr ibution

In this chapter:
• Using old hardware
• PC Hardware
• How the system

detects hardware
• Configur ing ISA

cards
• PCMCIA, PC Card

and CardBus
• Universal Serial Bus
• Disks
• Disk data layout
• Making the file

systems
• Disk size limitations
• Display hardware
• The hardware
• Compaq/Digital

Alpha machines
• The CD-ROM

distr ibution

FreeBSD runs on just about any modern PC, Alpha or 64 bit SPARC machine. You can
skip this chapter and the next and move to chapter 3, and you’ll have a very good chance
of success. Nevertheless, it makes things easier to know the contents of this chapter
before you start. If you do run into trouble, it will give you the background information
you need to solve the trouble quickly and simply.

FreeBSD also runs on most Intel-based laptops; in general the considerations above apply
for laptops as well. In the course of the book we’ll see examples of where laptops require
special treatment.

Most of the information here applies primarily to Intel platforms. We’ll look at the
Compaq Alpha architecture on page 42. The first release of FreeBSD to support the
SPARC 64 architecture is 5.0, and support is still a little patchy. At the time of going to
press, it’s not worth describing, since it will change rapidly. The instructions on the CD-
ROM distribution are currently the best source of information on running FreeBSD on
SPARC 64.

25

26 Chapter 2: Before you install

Using old hardware
FreeBSD runs on all relatively recent machines. In addition, a lot of older hardware that
is available for a nominal sum, or even for free, runs FreeBSD quite happily, though you
may need to take more care in the installation.

FreeBSD does not support all PC hardware: the PC has been on the market for over 20
years, and it has changed a lot in that time. In particular:

• FreeBSD does not support 8 bit and 16 bit processors. These include the 8086 and
8088, which were used in the IBM PC and PC-XT and clones, and the 80286, used in
the IBM PC-AT and clones.

• The FreeBSD kernel no longer supports ST-506 and ESDI drives. You’re unlikely to
have any of these: they’re now so old that most of them have failed. The wd driver
still includes support for them, but it hasn’t been tested, and if you want to use this
kind of drive you might find it better to use FreeBSD Release 3. See page 32 to find
out how to identify these drives. You can get Release 3 of FreeBSD from
ftp://ftp.FreeBSD.org/pub/FreeBSD/releases/i386/3.x-STABLE. You’ll have to per-
form a network installation.

• Memory requirements for FreeBSD have increased significantly in the last few years,
and you should consider 16 MB a minimum size, though nobody has recently
checked whether it wouldn’t install in, say, 12 MB. FreeBSD Release 3 still runs in 4
MB, though you need 5 MB for installation.

If you’re planning to install FreeBSD on an old machine, consider the following to be an
absolute minimum:

• PC with 80386 CPU, Alpha-based machine with SRM firmware.

• 16 MB memory (Intel) or 24 MB (Alpha).

• 80 MB free disk space (Intel). Nobody has tried an installation on an Alpha or
SPARC machine with less than 500 MB, though you can probably reduce this value
significantly.

You don’t absolutely need a keyboard and display board: many FreeBSD machines run
server tasks with neither keyboard nor display. Even then, though, you may find it
convenient to put a display board in the machine to help in case you run into trouble.

When I say absolute minimum, I mean it. You can’t do very much with such a minimal
system, but for some purposes it might be adequate. You can improve the performance of
such a minimal system significantly by adding memory. Before you go to the trouble to
ev en try such a minimal installation, consider the cost of another 16 MB of memory. And
you can pick up better machines than this second-hand for $50. Is the hassle worth it?

To get full benefits from a desktop or laptop FreeBSD system (but not from a machine
used primarily as a server), you should be running the X Window system. This uses more
memory. Consider 32 MB a usable minimum here, though thanks to FreeBSD’s virtual

Using old hardware 27

memory system, this is not such a hard limit as it is with some other systems.

The speed of a virtual memory-based system such as FreeBSD depends at least as much on
memory performance as on processor performance. If you have, say, a 486DX-33 and 16 MB of
memory, upgrading memory to 32 MB will probably buy you more performance than upgrading
the motherboard to a Pentium 100 and keeping the 16 MB memory. This applies for a usual mix
of programs, in particular, programs that don’t perform number crunching.

Any SPARC 64 machine runs FreeBSD acceptably, as the machines are relatively new. If
you’re running Intel or Alpha, consider the following the minimum for getting useful
work done with FreeBSD and X:

• PC with 80486DX/2-66, or Alpha-based machine

• 32 MB memory (i386) or 64 MB (Alpha)

• SVGA display board with 2 MB memory, 1024x768

• Mouse

• 200 MB free disk space

Your mileage may vary. During the review phase of an earlier edition of this book, one of the
reviewers stated that he was very happy with his machine, which has a 486-33 processor, 16 MB
main memory, and 1 MB memory on his display board. He said that it ran a lot faster than his
Pentium 100 at work, which ran Microsoft. The moral: if your hardware doesn’t measure up to the
recommended specification, don’t be discouraged. Try it out anyway.

Beyond this minimum, FreeBSD supports a large number of other hardware components.

Device drivers
The FreeBSD kernel is the only part of the system that can access the hardware. It
includes device drivers, which control the function of peripheral devices such as disks,
displays and network boards. When you install new hardware, you need a driver for it.

There are two ways to get a driver into the kernel: you can build a kernel that includes the
driver code, or you can load a driver module (Kernel Loadable Module or kld) into the
kernel at run time. Not all drivers are available as klds. If you need one of these drivers,
and it’s not included in the standard kernel, you have to build a new kernel. We look at
building kernels in Chapter 33.

The kernel configuration supplied with FreeBSD distributions is called GENERIC after the
name of the configuration file that describes it. It contains support for most common
devices, though support for some older hardware is missing, usually because it conflicts
with more modern drivers. For a full list of currently supported hardware, read the web
page http://www.FreeBSD.org/releases/ and select the link Hardware Notes for the
release you’re interested in. This file is also available on installed FreeBSD systems as
/usr/share/doc/en_US.ISO_8859-1/books/faq/hardware.html. It is also available in other
languages; see the subdirectories of /usr/share/doc.

28 Chapter 2: Before you install

PC Hardware
This section looks at the information you need to understand to install FreeBSD on the
i386 architecture. In particular, in the next section we’ll look at how FreeBSD detects
hardware, and what to do if your hardware doesn’t correspond to the system’s
expectations. On page 32 we’ll see how FreeBSD and other PC operating systems handle
disk space, and how to set up your disk for FreeBSD.

Some of this information also applies to the Alpha and SPARC 64 architectures. We’ll
look at the differences for the Alpha architecture on page 42. Currently the SPARC 64
implementation is changing too fast to describe it in a meaningful manner.

Since the original PC, a number of hardware standards have come, and some have gone:

• The original PC had an 8 bit bus. Very few of these cards are still available, but they
are compatible with the ISA bus (see the next item).

• The PC AT, introduced in 1984, had a 16 bit 80286 processor. To support this
processor, the bus was widened to 16 bits. This bus came to be known as the Industry
Standard Arc hitecture, or ISA. This standard is still not completely dead, and many
new motherboards support it. Most older motherboards have a number of ISA slots.

• The ISA bus has a number of severe limitations, notably poor performance. This
became a problem very early. In 1985, IBM introduced the PS/2 system, which
addressed this issue with a new bus, the so-called Microchannel Architecture or MCA.
Although successful for IBM, MCA was not adopted by other manufacturers, and
FreeBSD does not support it at all. IBM no longer produces products based on
MCA.

• In parallel to MCA, other manufacturers introduced a bus called the Extended
Industry Standard Arc hitecture, or EISA. As the name suggests, it is a higher-
performance extension of ISA, and FreeBSD supports it. Like MCA, it is obsolete.

• EISA still proved to be not fast enough for good graphics performance. In the late
80s, a number of local bus solutions appeared. They had better performance, but
some were very unreliable. FreeBSD supported most of them, but you can’t rely on
it. It’s best to steer clear of them.

• Finally, in the early 1990s, Intel brought out a new bus called Peripheral Component
Interconnect, or PCI. PCI is now the dominant bus on a number of architectures.
Most modern PC add-on boards are PCI.

Compared to earlier buses, PCI is much faster. Most boards have a 32 bit wide data
bus, but there is also a 64 bit PCI standard. PCI boards also contain enough
intelligence to enable the system to configure them, which greatly simplifies
installation of the system or of new boards.

• Modern motherboards also have an AGP (Accelerated Graphics Port) slot specifical-
ly designed to support exactly one graphic card. As the name implies, it’s faster even
than PCI, but it’s optimized for graphics only. FreeBSD supports it, of course;

PC Hardware 29

otherwise it couldn’t run on modern hardware.

• Most laptops have provision for external plug-in cards that conform to the PC Card
(formerly called PCMCIA) or CardBus standards. These cards are designed to be
inserted into and removed from a running system. FreeBSD has support for these
cards; we’ll look at them in more detail on page 30.

• More and more, the basic serial and parallel ports installed on early PCs are being
replaced by a Universal Serial Bus or USB. We’ll look at it on page 31.

How the system detects hardware
When the system starts, each driver in the kernel examines the system to find any
hardware that it might be able to control. This examination is called probing. Depending
on the driver and the nature of the hardware it supports, the probe may be clever enough
to set up the hardware itself, or to recognize its hardware no matter how it has been set
up, or it may expect the hardware to be set up in a specific manner in order to find it. In
general, you can expect PCI drivers to be able to set up the card to work correctly. In the
case of ISA or EISA cards, you may not be as lucky.

Configuring ISA cards
ISA cards are rapidly becoming obsolete, but sometimes they’re still useful:

• ISA graphics cards are very slow in comparison with modern graphic cards, but if
you just want a card for maintenance on a server machine that normally doesn’t
display anything, this is an economical alternative.

• Some ISA disk controllers can be useful, but they are sharply limited in performance.

• ISA Ethernet cards may be a choice for low-volume networking.

• Many ISA serial cards and built-in modems are still available.

Most ISA cards require some configuration. There are four main parameters that you
may need to set for PC controller boards:

1. The port address is the address of the first of possibly several control registers that the
driver uses to communicate with the board. It is normally specified in hexadecimal,
for example 0x320.

If you come from a Microsoft background, you might be more used to the notation 320H.
The notation 0x320 comes from the C programming language. You’ll see a lot of it in UNIX.

Each board needs its own address or range of addresses. The ISA architecture has a
sharply limited address range, and one of the most frequent causes of problems when
installing a board is that the port addresses overlap with those of another board.

Beware of boards with a large number of registers. Typical port addresses end in
(hexadecimal) 0. Don’t rely on being able to take any unoccupied address ending in

30 Chapter 2: Before you install

0, though: some boards, such as Novell NE2000 compatible Ethernet boards, occupy
up to 32 registers—for example, from 0x320 to 0x33f. Note also that a number of
addresses, such as the serial and parallel ports, often end in 8.

2. Boards use an Interrupt Request, also referred to as IRQ, to get the attention of the
driver when a specific event happens. For example, when a serial interface reads a
character, it generates an interrupt to tell the driver to collect the character. Interrupt
requests can sometimes be shared, depending on the driver and the hardware. There
are even fewer interrupt requests than port addresses: a total of 15, of which a number
are reserved by the motherboard. You can usually expect to be able to use IRQs 3, 4,
5, 7, 9, 10, 11 and 12. IRQ 2 is special: due to the design of the original IBM PC/AT,
it is the same thing as IRQ 9. FreeBSD refers to this interrupt as IRQ 9.

As if the available interrupts weren’t already restricted enough, ISA and PCI boards
use the same set of interrupt lines. PCI cards can share interrupt lines between
multiple boards, and in fact the PCI standard only supports four interrupts, called
INTA, INTB, INTC and INTD. In the PC architecture they map to four of the 15 ISA
interrupts. PCI cards are self-configuring, so all you need to do is to ensure that PCI
and ISA interrupts don’t conflict. You normally set this up in a BIOS setup menu.

3. Some high-speed devices perform Direct Memory Access, also known as DMA, to
transfer data to or from memory without CPU intervention. To transfer data, they
assert a DMA Request (DRQ) and wait for the bus to reply with a DMA Acknowledge
(DACK). The combination of DRQ and DACK is sometimes called a DMA Channel.
The ISA architecture supplies 7 DMA channels, numbered 0 to 3 (8 bit) and 5 to 7
(16 bit). The floppy driver uses DMA channel 2. DMA channels may not be shared.

4. Finally, controllers may have on-board memory, sometimes referred to as I/O memory
or IOmem. It is usually located at addresses between 0xa0000 and 0xeffff.

If the driver only looks at specific board configurations, you can set the board to match
what the driver expects, typically by setting jumpers or using a vendor-supplied
diagnostic program to set on-board configuration memory, or you can build a kernel to
match the board settings.

PCMCIA, PC Card and CardBus
Laptops don’t hav e enough space for normal PCI expansion slots, though many use a
smaller PCI card format. It’s more common to see PC Card or CardBus cards, though.
PC Card was originally called PCMCIA, which stands for Personal Computer Memory
Card International Association: the first purpose of the bus was to expand memory.
Nowadays memory expansion is handled by other means, and PC Card cards are usually
peripherals such as network cards, modems or disks. It’s true that you can insert compact
flash memory for digital cameras into a PC Card adapter and access it from FreeBSD, but
ev en in this case, the card looks like a disk, not a memory card.

The original PC Card standard already has one foot in the grave: it’s a 16 bit bus that

PCMCIA, PC Card and CardBus 31

doesn’t work well with modern laptops. The replacement standard has a 32 bit wide bus
and is called CardBus. The cards look almost identical, and most modern laptops support
both standards. In this book I’ll use use the term PC Card to include CardBus unless
otherwise stated. FreeBSD Release 5 includes completely new PC Card code. It now
supports both 16 bit PC Card and 32 bit CardBus cards.

PC Card offers one concept that conventional cards don’t: the cards are hot swappable.
You can insert them and remove them in a running system. This poses a number of
potential problems, some of which are only partially solved.

PC Card and CardBus cards
PC Card and CardBus both use the same form factor cards: they are 54 mm wide and at
least 85 mm long, though some cards, noticeably wireless networking cards, are up to
120 mm long and project beyond the casing of the laptop. The wireless cards contain an
antenna in the part of the card that projects from the machine.

PC Card cards can have one of three standard thicknesses:

• Type 1 cards are 3.3 mm thick. They’re very uncommon.

• Type 2 cards are 5 mm thick. These are the most common type, and most laptops
take two of them.

• Type 3 cards are 10.5 mm thick. In most laptops you can normally insert either one
type 3 card or two type 2 cards.

The GENERIC FreeBSD kernel contains support for PC Card, so you don’t need to build a
new kernel.

Universal Serial Bus
The Universal Serial Bus (USB) is a new way of connecting external peripherals,
typically those that used to be connected by serial or parallel ports. It’s much faster than
the old components: the old serial interface had a maximum speed of 115,200 bps, and
the maximum you can expect to transfer over the parallel port is about 1 MB/s. By
comparison, current USB implementations transfer data at up to 12 Mb/s, and a version
with 480 Mb/s is in development.

As the name states, USB is a bus: you can connect multiple devices to a bus. Currently
the most common devices are mid-speed devices such as printers and scanners, but you
can connect just about anything, including keyboards, mice, Ethernet cards and mass
storage devices.

32 Chapter 2: Before you install

Disks
A number of different disks have been used on PCs:

• ST-506 disks are the oldest. You can recognize them by the fact that they hav e two
cables: a control cable that usually has connections for two disks, and a thinner data
cable that is not shared with any other disk. They’re just about completely obsolete
by now, but FreeBSD Release 3 still supports them with the wd driver. These disks
are sometimes called by their modulation format, Modified Frequency Modulation or
MFM. A variant of MFM that offers about 50% more storage is RLL or Run Length
Limited modulation. From the operating system point of view, there is no difference
between MFM and RLL.

• ESDI (Enhanced Small Device Interface) disks were designed to work around some
of the limitations of ST-506 drives. They also use the same cabling as ST-506, but
they are not hardware compatible, though most ESDI controllers understand ST-506
commands. They are also obsolete, but the wd driver in FreeBSD Release 3 supports
them, too.

• IDE (Integrated Device Electronics), now frequently called ATA (AT Attachment), is
the current low-cost PC disk interface. It supports two disks connected by a single 40
or 80 conductor flat cable. The connectors for both cables are the same, but the 80
conductor cable is needed for the 66 MHz, 100 MHz and 133 MHz transfer rates
supported by recent disk drives.

All modern IDE disks are so-called EIDE (Enhanced IDE) drives. The original IDE
disks were limited by the PC BIOS standard to a size of 504 MB (1024 * 16 * 63 *
512, or 528,482,304 bytes). EIDE drives exceed this limit by several orders of
magnitude.

A problem with older IDE controllers was that they used programmed I/O or PIO to
perform the transfer. In this mode, the CPU is directly involved in the transfer to or
from the disk. Older controllers transferred a byte at a time, but more modern
controllers can transfer in units of 32 bits. Either way, disk transfers use a large
amount of CPU time with programmed I/O, and it’s difficult to achieve the transfer
rates of modern IDE drives, which can be as high as 100 MB/s. During such
transfers, the system appears to be unbearably slow: it ‘‘grinds to a halt.’’

To solve this problem, modern chipsets offer DMA transfers, which almost
completely eliminate CPU overhead. There are two kinds of DMA, each with
multiple possible transfer modes. The older DMA mode is no longer in use. It
handled transfer rates between 2.1 MB/s and 16.7 MB/s. The newer UDMA (Ultra
DMA) mode supports transfer rates between 16.7 MB/s and 133 MB/s. Current disks
use UDMA33 (33 MHz transfer rate), which is the fastest rate you can use with a 40
conductor cable, and UDMA66 (66 MHz), UDMA100 (100 MHz) and UDMA-133
(133 MHz) with an 80 conductor cable. To get this transfer rate, both the disk and the
disk controller must support the rate. FreeBSD supports all UDMA modes.

Disks 33

Another factor influencing IDE performance is the fact that most IDE controllers and
disks can only perform one transfer at a time. If you have two disks on a controller,
and you want to access both, the controller serializes the requests so that a request to
one drive completes before the other starts. This results in worse performance than
on a SCSI chain, which does not have this restriction. If you have two disks and two
controllers, it’s better to put one disk on each controller. This situation is gradually
changing, so when choosing hardware it’s worth checking on current support for
tagged queueing, which allows concurrent transfers.

• SCSI is the Small Computer Systems Interface. It’s usually pronounced ‘‘scuzzy.’’ It
is used for disks, tapes, CD-ROMs and also other devices such as scanners and
printers. The SCSI controller is more correctly called a host adapter. Like IDE,
SCSI has evolved significantly over time. SCSI devices are connected by a single flat
cable, with 50 conductors (‘‘narrow SCSI,’’ which connects a total of 8 devices) or 68
conductors (‘‘wide SCSI,’’ which also connects up to 16 devices). Some SCSI
devices have subdevices, for example CD-ROM changers.

SCSI drives hav e a reputation for much higher performance than IDE. This is mainly
because nearly all SCSI host adapters support DMA, whereas in the past IDE
controllers usually used programmed I/O. In addition, SCSI host adapters can
perform transfers from multiple units at the same time, whereas IDE controllers can
only perform one transfer at a time. Typical SCSI drives are still faster than IDE
drives, but the difference is nowhere near as large as it used to be. Narrow SCSI can
support transfer rates of up to 40 MB/s (Ultra 2), and wide SCSI can support rates of
up to 320 MB/s (Ultra 320). These speeds are not necessarily faster than IDE: you
can connect more than seven times as many devices to a wide SCSI chain.

Disk data layout
Before you install FreeBSD, you need to decide how you want to use the disk space
available to you. If desired, FreeBSD can coexist with other operating systems on the
Intel platform. In this section, we’ll look at the way data is laid out on disk, and what we
need to do to create FreeBSD file systems on disk.

PC BIOS and disks
The basics of disk drives are relatively straightforward: data is stored on one or more
rotating disks with a magnetic coating similar in function to the coating on an audio tape.
Unlike a tape, however, disk heads do not touch the surface: the rotating disk produces an
air pressure against the head, which keeps it floating very close to the surface. The disk
has (usually) one read/write head for each surface to transfer data to and from the
system. People frequently talk about the number of heads, not the number of surfaces,
though strictly speaking this is incorrect: if there are two heads per surface (to speed up
access), you’re still interested in the number of surfaces, not the number of heads.

While transferring data, the heads are stationary, so data is written on disks in a number

34 Chapter 2: Before you install

of concentric circular tracks. Logically, each track is divided into a number of sectors,
which nowadays almost invariably contain 512 bytes. A single positioning mechanism
moves the heads from one track to another, so at any one time all the tracks under the
current head position can be accessed without repositioning. This group of tracks is
called a cylinder.

Since the diameter of the track differs from one track to the other, so does the storage
capacity per track. Nevertheless, for the sake of simplicity, older drives, such as ST-506
(MFM and RLL) drives, had a fixed number of sectors per track. To perform a data
transfer, you needed to tell the drive which cylinder, head and sector to address. This
mode of addressing is thus called CHS addressing.

Modern disks have a varying number of sectors per track on different parts of the disk to
optimize the storage space, and for the same reason they normally store data on the disk
in much larger units than sectors. Externally, they translate the data into units of sectors,
and they also optionally maintain the illusion of ‘‘tracks’’ and ‘‘heads,’’ though the values
have nothing to do with the internal organization of the disk. Nevertheless, BIOS setup
routines still give you the option of specifying information about disk drives in terms of
the numbers of cylinders, heads and sectors, and some insist on it. In reality, modern disk
drives address sectors sequentially, so-called Logical Block Addressing or LBA. CHS
addressing has an additional problem: various standards have limited the size of disks to
504 MB or 8 GB. We’ll look at that in more detail on page 39.

SCSI drives are a different matter: the system BIOS normally doesn’t know anything
about them. They are always addressed in LBA mode. It’s up to the host adapter to
interrogate the drive and find out how much space is on it. Typically, the host adapter has
a BIOS that interrogates the drive and finds its dimensions. The values it determines may
not be correct: the PC BIOS 1 GB address limit (see page 39) might bite you. Check
your host adapter documentation for details.

Disk partitioning
The PC BIOS divides the space on a disk into up to four partitions, headed by a partition
table. For Microsoft systems, each partition may be either a primary partition that
contains a file system (a ‘‘drive’’ in Microsoft terminology), or an extended partition that
contains multiple file systems (or ‘‘logical partitions’’).

FreeBSD does not use the PC BIOS partition table directly. It maintains its own
partitioning scheme with its own partition table. On the PC platform, it places this
partition table in a single PC BIOS partition, rather in the same way that a PC BIOS
extended partition contains multiple ‘‘logical partitions.’’ It refers to PC BIOS partitions
as ‘‘slices.’’

This double usage of the word partition is really confusing. In this book, I follow BSD usage, but
I continue to refer to the PC BIOS partition table by that name.

Partitioning offers the flexibility that other operating systems need, so it has been adopted
by all operating systems that run on the PC platform. Figure 2-1 shows a disk with all
four slices allocated. The Partition Table is the most important data structure. It contains

Disk data layout 35

information about the size, location and type of the slices (PC partitions). The PC BIOS
allows one of these slices to be designated as active: at system startup time, its bootstrap
record is used to start the system.

The partition table of a boot disk also contains a Master Boot Record (MBR), which is
responsible for finding the correct slice and booting it. The MBR and the partition table
take up the first sector on disk, and many people consider them to be the same thing. You
only need an MBR on disks from which you boot the system.

Master Boot Record
Partition Table

Partition (slice) 1
/dev/da0s1

Partition (slice) 2
/dev/da0s2

Partition (slice) 3
/dev/da0s3

Partition (slice) 4
/dev/da0s4

Figure 2-1: Partition table

PC usage designates at least one slice as the primary partition, the C: drive. Another
slice may be designated as an extended partition that contains the other ‘‘drives’’ (all
together in one slice).

UNIX systems have their own form of partitioning which predates the PC and is not
compatible with the PC method. As a result, all versions of UNIX that can coexist with
Microsoft implement their own partitioning within a single slice (PC BIOS partition).
This is conceptually similar to an extended partition. FreeBSD systems define up to eight
partitions per slice. They can be used for the following purposes:

• A partition can be a file system, a structure in which UNIX stores files.

• It can be used as a swap partition. FreeBSD uses virtual memory: the total addressed
memory in the system can exceed the size of physical memory, so we need space on
disk to store memory pages that don’t fit into physical memory. Swap is a separate
partition for performance reasons: you can use files for swap, like Microsoft does, but
it is much less efficient.

• The partition may be used by other system components. For example, the Vinum
volume manager uses special partitions as building blocks for volumes. We’ll look at
Vinum on page 221.

• The partition may not be a real partition at all. For example, partition c refers to the
entire slice, so it overlaps all the rest. For obvious reasons, the partitions that
represent file systems and swap space (a, b, and d through h) should not overlap.

36 Chapter 2: Before you install

Block and character devices
Traditional UNIX treats disk devices in two different ways. As we have seen, you can
think of a disk as a large number of sequential blocks of data. Looking at it like this
doesn’t giv e you a file system—it’s more like treating it as a tape. UNIX calls this kind
of access raw access. You’ll also hear the term character device.

Normally, of course, you want files on your disk: you don’t care where they are, you just
want to be able to open them and manipulate them. In addition, for performance reasons
the system keeps recently accessed data in a buffer cache. This involves a whole lot more
work than raw devices. These devices are called block devices.

By contrast with UNIX, Linux originally did not have character disk devices. Starting
with Release 4.0, FreeBSD has taken the opposite approach: there are now no user-
accessible block devices any more. There are a number of reasons for this:

• Having two different names for devices is confusing. In older releases of FreeBSD,
you could recognize block and character devices in an ls -l listing by the letters b
and c at the beginning of the permissions. For example, in FreeBSD 3.1 you might
have seen:

$ ls -l /dev/rwd0s1a /dev/wd0s1a
crw-r----- 1 root operator 3, 131072 Oct 31 19:59 /dev/rwd0s1a
brw-r----- 1 root operator 0, 131072 Oct 31 19:59 /dev/wd0s1a

wd is the old name for the current ad disks. The question is: when do you use which
one? Even compared to UNIX System V, the rules were different.

• Nearly all access to disk goes via the file system, and user-accessible block devices
add complication.

• If you write to a block device, you don’t automatically write to the disk, only into
buffer cache. The system decides when to write to disk. If there’s a problem writing
to disk, there’s no way to notify the program that performed the write: it might even
already have finished. You can demonstrate this very effectively by comparing the
way FreeBSD and Linux write to a floppy disk. It takes 50 seconds to write a
complete floppy disk—the speed is determined by the hardware, so the FreeBSD
copy program finishes after 50 seconds. With Linux, though, the program runs only
for a second or two, after which it finishes and you get your prompt back. In the
meantime, the system flushes the data to floppy: you still need to wait a total of 50
seconds. If you remove the floppy in this time, you obviously lose data.

The removal of block devices caused significant changes to device naming. In older
releases of FreeBSD, the device name was the name of the block device, and the raw
(character) device had the letter r at the beginning of the name, as shown in the example
above.

Let’s look more carefully at how BSD names its partitions:

Disk data layout 37

• Like all other devices, the device nodes, the entries that describe the devices, are
stored in the directory /dev. Unlike traditional UNIX and older releases of FreeBSD,
FreeBSD Release 5 includes the device file system or devfs, which creates the device
nodes automatically, so you don’t need to worry about creating them yourself.

• Next comes the name of the driver. As we hav e seen, FreeBSD has drivers for IDE
and friends (ad), SCSI disks (da) and floppy disks (fd). For SCSI disks, we now
have the name /dev/da.

The original releases of FreeBSD had the abbreviation wd for IDE drives. This abbreviation
arose because the most popular of the original MFM controllers were made by Western
Digital. Others claim, however, that it’s an abbreviation for ‘‘Winchester Disk.’’ SCSI disks
were originally abbreviated sd. The name da comes from the CAM standard and is short for
direct access. BSD/OS, NetBSD and OpenBSD still use the old names.

• Next comes the unit number, generally a single digit. For example, the first SCSI
disk on the system would normally be called /dev/da0.

Generally, the numbers are assigned during the boot probes, but you can reserve numbers for
SCSI disks if you want. This prevents the removal of a single disk from changing the
numbers of all subsequent drives. See page 575 for more details.

• Next comes the partition information. The so-called strict slice name is specified by
adding the letter s (for slice) and the slice number (1 to 4) to the disk name. BSD
systems name partitions by appending the letters a to h to the disk name. Thus, the
first partition of the first slice of our disk above (which would typically be a root file
system) would be called /dev/da0s1a.

Some other versions of BSD do not have the same support for slices, so they use a
simpler terminology for the partition name. Instead of calling the root file system
/dev/da0s1a, they refer to it as /dev/da0a. FreeBSD supports this method as well—
it’s called compatibility slice naming. The compatibility slice is simply the first
FreeBSD slice found on the disk, and the partitions in this slice have two different
names, for example /dev/ad0s1a and /dev/ad0a.

• Partition c is an exception: by convention, it represents the whole BSD disk (in this
case, the slice in which FreeBSD resides).

• In addition, NetBSD reserves partition d for the entire disk, including other partitions.
FreeBSD no longer assigns any special significance to partition d.

Figure 2-2 shows a typical layout on a system with a single SCSI disk, shared between
Microsoft and FreeBSD. You’ll note that partition /dev/da0s3c is missing from the
FreeBSD slice, since it isn’t a real partition. Like the PC BIOS partition table, the disk
label contains information necessary for FreeBSD to manage the FreeBSD slice, such as
the location and the lengths of the individual partitions. The bootstrap is used to load the
kernel into memory. We’ll look at the boot process in more detail in Chapter 29.

38 Chapter 2: Before you install

Master Boot Record
Partition Table

Bootstrap

PC BIOS C: drive

PC BIOS D: drive /dev/da0s5

PC BIOS E: drive /dev/da0s6

/dev/da0s3a: / file system

/dev/da0s3b: swap

/dev/da0s3d: unused

/dev/da0s3e: /usr file system

/dev/da0s3f: unused

/dev/da0s3g: unused

/dev/da0s3h: unused

Slice 1 - PC BIOS primary
/dev/da0s1

Slice 2 - PC BIOS extended
/dev/da0s2

Slice 3 - FreeBSD
/dev/da0s3

Figure 2-2: Partition table with FreeBSD file system

Table 2-1 gives you an overview of the devices that FreeBSD defines for this disk.

Table 2-1: Disk partition terminology

Slice name Usage
/dev/da0s1 First slice (PC BIOS C: partition)
/dev/da0s2 Second slice (PC BIOS extended partition)
/dev/da0s3 Third slice (PC BIOS partition), FreeBSD
/dev/da0s5 First drive in extended PC BIOS partition (D:)
/dev/da0s6 Second drive in extended PC BIOS partition (E:)
/dev/da0s3a Third slice (PC BIOS partition), partition a (root file system)
/dev/da0s3b Third slice (PC BIOS partition), partition b (swap space)
/dev/da0s3c Third slice (PC BIOS partition), entire partition
/dev/da0s3e Third slice (PC BIOS partition), partition e (/usr file system)
/dev/da0a Compatibility partition, root file system, same as

/dev/da0s1a
/dev/da0b Compatibility partition, swap partition, same as

/dev/da0s1b
/dev/da0c Whole BSD slice, same as /dev/da0s1c
/dev/da0e Compatibility partition, usr file system, same as

/dev/da0s1e

Disk data layout 39

Making the file systems
Armed with this knowledge, we can now proceed to make some decisions about how to
install our systems. First, we need to answer some questions:

• Do we want to share this disk with any other operating system?

• If so, do we have data on this disk that we want to keep?

If you already have another system installed on the disk, it is best to use that system’s
tools for manipulating the partition table. FreeBSD does not normally have difficulty
with partition tables created by other systems, so you can be reasonably sure that the
other system will understand what it has left. If the other system is Microsoft, and you
have a slice that you don’t need, use the MS-DOS FDISK program to free up enough
space to install FreeBSD. If you don’t hav e a slice to delete, you can use the FIPS
program to create one—see Chapter 5, Installing FreeBSD, page 52.

If for some reason you can’t use MS-DOS FDISK, for example because you’re installing
FreeBSD by itself, FreeBSD also supplies a program called fdisk that manipulates the
partition table. Normally you invoke it indirectly via the sysinstall program—see page
63.

Disk size limitations
Disk storage capacity has grown by several orders of magnitude since FreeBSD was first
released. As it did so, a number of limits became apparent:

• The first was the BIOS 504 MB limit on IDE disks, imposed by their similarity with
ST-506 disks. We discussed this on page 32. FreeBSD works around this issue by
using a loader that understands large disks, so this limit is a thing of the past.

• The next limit was the 1 GB limit, which affected some older SCSI host adapters.
Although SCSI drives always use LBA addressing internally, the BIOS needed to
simulate CHS addressing for Microsoft. Early BIOSes were limited to 64 heads, 32
sectors and 1024 tracks (64 × 32 × 1024 × 512 = 1 GB). This wouldn’t be such a
problem, except that some old Adaptec controllers offer a 1 GB compatibility option.
Don’t use it: it’s only needed for systems that were installed with the old mapping.

• After that, it’s logical that the next limit should come at 2 GB. There are several
different problems here. The only one that affects FreeBSD appears to be a bug in
some IDE controllers, which don’t work beyond this limit. All of them are old, and
IDE controllers don’t cost anything, so if you are sure you have this problem, you can
solve it by replacing the controller. Make sure you get one that supports DMA.

Other systems, including many versions of UNIX System V, hav e problems with this
limit because 231 is the largest number that can be represented in a 32 bit signed
integer. FreeBSD does not have this limitation, as file sizes are represented in 64 bit
quantities.

40 Chapter 2: Before you install

• At 4 GB, some IDE controllers have problems because they convert this to a CHS
mapping with 256 heads, which doesn’t work: the largest number is 255. Again, if
you’re sure this is the cause of problems you may be having, a new controller can
help.

• At 8 GB the CHS system runs out of steam. It can’t describe more than 1024
cylinders, 255 heads or 63 sectors. Beyond this size, you must use LBA
addressing—if your BIOS supports it.

• You’d expect more problems at 16 GB, but in fact the next limitation doesn’t come
until 128 GB. It’s due to the limitations in the original LBA scheme, which had only
28 bits of sector address. The new standard extends this to 48 bits, which should be
sufficient for the next few years. FreeBSD already uses the new standard, so this
limitation has never been an issue.

None of these problems affect FreeBSD directly. The FreeBSD bootstrap no longer uses
the system BIOS, so it is not bound by the restrictions of the BIOS and the controller. If
you use another operating system’s loader, howev er, you could have problems. If you
have the choice, use LBA addressing. Unfortunately, you can’t do so if the disk already
contains software that uses CHS addressing.

Other things to consider are:

• If you have other software already installed on the disk, and you want to keep it, do
not change the drive geometry. If you do so, you will no longer be able to run the
other software.

• Use LBA addressing if your hardware supports it.

• If you have to use CHS, and you don’t hav e any other software on the drive, use the
drive geometry specified on the disk itself or in the manual, if you’re lucky enough to
get a manual with the disk. Many BIOSes remap the drive geometry in order to get
Microsoft to agree to work with the disk, but this can break FreeBSD disk mapping.
Check that the partition editor has these values, and change them if necessary.

• If all else fails, install Microsoft in a small slice at the start of the disk. This creates a
valid partition table for the drive, and the installation software understands it. Once
you have started the installation process, the Microsoft partition has fulfilled its
purpose, and you can delete it again.

Display hardware
For years, UNIX users have worked with a single 80x25 character mode display. Many
people consider this extremely old-fashioned, but in fact the flexibility of the UNIX
system made this quite a good way to work. Still, there’s no doubt of the advantage of a
system that offers the possibility of performing multiple operations at once, and this is
one of the particular advantages of UNIX. But you normally need a terminal to interact
with each task. The best way to do this is with the X Window System. You might also
want to use a desktop, a set of programs that offer commonly used functionality.

Display hardware 41

In many other environments, the GUI and the graphical display are the same thing, and in
some systems, notably Microsoft, there is no clear distinction between the operating
system and the GUI. In UNIX, there are at least four levels of abstraction:

• The kernel runs the computer.

• X interfaces with the kernel and runs the display. It doesn’t display anything itself
except possibly a display background, by default a grey cross-hatch pattern.

• The window manager gives you control over the windows, such as moving, resizing
and iconification (often called minimizing in other systems). It provides the windows
with decorations like frames, buttons and menus.

• The desktop provides commonly used applications and ways of starting them. Many
people get by without a desktop by using window manager functionality.

Why do it this way? Because it gives you more choice. There are dozens of window
managers available, and also several desktops. You’re not locked in to a single product.
This has its down side, though: you must make the choice, and so setting up X requires a
little more thought than installing Microsoft.

The hardware
X runs on almost any hardware. That doesn’t mean that all hardware is equal, of course.
Here are some considerations:

The keyboard
X uses the keyboard a lot more than Microsoft. Make sure you get a good one.

The mouse
X prefers a three-button mouse, though it has provisions for up to five buttons. It can
support newer mice with rollers and side buttons, but most software does not use them.
Some mice, such as the Logitech wireless mouse, require undocumented sequences to
enable some buttons (the thumb button in the case of Logitech). X does not support this
button.

Get the best mouse you can. Prefer a short, light switch. It must have at least three
buttons. Accept no substitutes. Look for one with an easy-to-use middle button.
Frequently mice with both a middle button and a roller make it difficult to use the middle
button: it’s either misplaced, too heavy in action, or requires pressing on the roller (and
thus possibly turning it). All of these prove to be a nuisance over time.

Older mice connected via the serial port or a special card (‘‘bus mouse’’). Nowadays
most mice are so-called PS/2 mice, and USB mice are becoming more popular.

42 Chapter 2: Before you install

The display board and monitor
X enables you to do a lot more in parallel than other windowing environments. As a
result, screen real estate is at a premium. Use as big a monitor as you can afford, and as
high a resolution as your monitor can handle. You should be able to display a resolution
of 1600x1200 on a 21" monitor, 1280x1024 on a 17" monitor, and 1024x768 on a 14"
monitor. Premium quality 21" monitors can display 2048x1536. If that’s not enough,
we’ll look at multiple monitor configurations on page 523.

Laptop hardware
If you have a laptop, you don’t get any choice. The display has a native resolution which
you can’t change. Most laptops display lower resolutions by interpolation, but the result
looks much worse than the native resolution. LCD screens look crisper than CRT
monitors, so you can choose higher resolutions—modern laptops have display resolutions
of up to 1600x1200.

If you’re going to use your laptop for presentations with overhead projectors, make sure
you find one that can display both on the internal screen and also on the external output at
the same time, while maintaining a display resolution of 1024x768: not many overhead
projectors can display at a higher resolution.

Compaq/Digital Alpha machines
FreeBSD also supports computers based on the Compaq (previously Digital) AXP
processor, commonly called Alpha. Much of the information above also applies to the
Alpha; notable exceptions are:

• Much of the PC hardware mentioned above was never supplied with the Alpha. This
applies particularly to older hardware.

• The PC BIOS is very different from the Alpha console firmware. We’ll look at that
below.

• Disk partitioning is different. FreeBSD does not support multiple operating systems
on the Alpha platform.

In this section we’ll look at some additional topics that only apply to the Alpha.

FreeBSD requires the SRM console firmware, which is used by Tru64 (formerly known
as Digital UNIX). It does not work with the ARC firmware (sometimes called
AlphaBIOS) used with Microsoft NT. The SRM firmware runs the machine in 64 bit
mode, which is required to run FreeBSD, while the ARC firmware sets 32 bit mode. If
your system is currently running Tru64, you should be able to use the existing SRM
console.

The SRM console commands differ from one version to another. The commands
supported by your version are described in the hardware manual that was shipped with
your system. The console help command lists all supported console commands. If your

Compaq/Digital Alpha machines 43

system has been set to boot automatically, you must type Ctrl-C to interrupt the boot
process and get to the SRM console prompt (>>>). If the system is not set to boot
automatically, it displays the SRM console prompt after performing system checks.

All SRM console versions support the set and show commands, which operate on
environment variables that are stored in non-volatile memory. The show command lists
all environment variables, including those that are read-only.

Alpha’s SRM is picky about which hardware it supports. For example, it recognizes
NCR SCSI boards, but it doesn’t recognize Adaptec boards. There are reports of some
Alphas not booting with particular video boards. The GENERIC kernel configuration
(/usr/src/sys/alpha/conf/GENERIC) shows what the kernel supports, but that doesn’t
mean that the SRM supports all the devices. In addition, the SRM support varies from
one machine to the next, so there’s a danger that what’s described here won’t work for
you.

Other differences for Alpha include:

• The disk layout for SRM is different from the layout for Microsoft NT. SRM looks
for its bootstrap where Microsoft keeps its partition table. This means that you
cannot share a disk between FreeBSD and Microsoft on an Alpha.

• Most SRM-based Alpha machines don’t support IDE drives: you’re limited to SCSI.

The CD-ROM distribution
The easiest way to install FreeBSD is from CD-ROM. You can buy them at a discount
with the order form at the back of the book, or you can download an ISO image from
ftp.FreeBSD.org and create your own CD-ROM. There are a number of CD-ROMs in a
FreeBSD distribution, but the only essential one is the first one, the Installation CD-
ROM. It contains everything you need to install the system itself. The other CD-ROMs
contain mainly installable packages. Individual releases may contain other data, such as a
copy of the source code repository. We’ll take a more detailed look at the installation
CD-ROM here.

Installation CD-ROM
The Installation CD-ROM contains everything you need to install FreeBSD on your
system. It supplies two categories of installable software:

• The base operating system is stored as gzipped tar archives in the directories base,
boot, catpages, compat1x, compat20, compat21, compat3x, compat4x, des, dict, doc,
games, info, manpages and proflibs. To facilitate transport to and installation from
floppy, the archives hav e been divided into chunks of 1.44 MB. For example, the
only required set is in the files base/base.??, in other words, all files whose names
start with base. and contain two additional characters. This specifically excludes the
files base.inf and base.mtree, which are not part of the archive.

44 Chapter 2: Before you install

• The directory packages/All contains ported, installable software packages as gzipped
tar archives. They are designed to be installed directly on a running system, so they
have not been divided into chunks. Due to size restrictions on the CD-ROM, this
directory does not contain all the packages: others are on additional CD-ROMs.

packages/Latest contains the latest versions of the packages.

packages/All contains a large subset of the Ports Collection. To make it easier for
you to find your way around them, symbolic links to appropriate packages have been
placed in the directories archivers, astro, audio, benchmarks, biology, cad, chinese,
comms, converters, databases, deskutils, devel, editors, emulators, french, ftp, games,
german, graphics, hebrew, irc, japanese, java, korean, lang, mail, math, mbone, misc,
net, news, palm, picobsd, plan9, print, russian, science, security, shells, sysutils,
templates, textproc, ukrainian, vietnamese, www, x11, x11-clocks, x11-fm, x11-fonts,
x11-servers, x11-toolkits and x11-wm. Don’t get the impression that these are
different packages—they are really pointers to the packages in All. You will find a
list of the currently available packages in the file packages/INDEX .

We’ll look at the Ports Collection in more detail in Chapter 9.

Table 2-2 lists typical files in the main directory of the installation CD-ROM.

Table 2-2: The installation CD-ROM

File Contents
ERRATA.TXT A list of last-minute changes. Read this file. It can save

you a lot of headaches.

HARDWARE.TXT A list of supported hardware.

INSTALL.TXT Information about installing FreeBSD.

README.TXT The traditional first file to read. It describes how to use the
other files.

RELNOTES.TXT Release notes.

base Installation directory: the base distribution of the system.
This is the only required directory for installation. See
Chapter 5, Installing FreeBSD, for more detail.

boot Files related to booting, including the installation kernel.

catpages Pre-formatted man pages. See page 13 for more detail.

cdrom.inf Machine-readable file describing the CD-ROM contents for
the benefit of sysinstall.

compat1x Directory containing libraries to maintain compatibility
with Release 1.X of FreeBSD.

The CD-ROM distribution 45

File Contents
compat20 Directory containing libraries to maintain compatibility

with Release 2.0 of FreeBSD.

compat21 Directory containing libraries to maintain compatibility
with Release 2.1 of FreeBSD.

compat22 Directory containing libraries to maintain compatibility
with Release 2.2 of FreeBSD.

compat3x Directory containing libraries to maintain compatibility
with Release 3 of FreeBSD.

compat4x Directory containing libraries to maintain compatibility
with Release 4 of FreeBSD.

crypto Installation directory: cryptographic software.

dict Installation directory: dictionaries.

doc Installation directory: documentation.

docbook.css Style sheet for documentation.

filename.txt A list of all the files on this CD-ROM.

floppies A directory containing installation floppy disk images.

games Installation directory: games.

info Installation directory: GNU info documents.

kernel The boot kernel.

manpages A directory containing the man pages for installation.

packages A directory containing installable versions of the Ports
Collection. See page 168.

ports The sources for the Ports Collection. See Chapter 9, The
Ports Collection, page 167.

proflibs A directory containing profiled libraries, useful for
identifying performance problems when programming.

src A directory containing the system source files.

tools A directory containing tools to prepare for installation from
another operating system.

The .TXT files are also supplied in HTML format with a .HTM suffix.

The contents of the CD-ROM will almost certainly change from one release to another.
Read README.TXT for details of the changes.

46 Chapter 2: Before you install

Live File System CD-ROM
Although the installation CD-ROM contains everything you need to install FreeBSD, the
format isn’t what you’d like to handle every day. The distribution may include a Live File
System CD-ROM, which solves this problem: it contains substantially the same data
stored in file system format in much the same way as you would install it on a hard disk.
You can access the files directly from this CD-ROM.

CVS Repository CD-ROM

One of the disks may also contain the ‘‘CVS Repository.’’ The repository is the master
source tree of all source code, including all update information. We’ll look at it in more
detail in Chapter 31, Keeping up to date, page 581.

The Ports Collection CD-ROMs
An important part of FreeBSD is the Ports Collection, which comprises many thousand
popular programs. The Ports Collection automates the process of porting software to
FreeBSD. A combination of various programming tools already available in the base
FreeBSD installation allows you to simply type make to install a given package. The
ports mechanism does the rest, so you need only enough disk space to build the ports you
want. We’ll look at the Ports Collection in more detail in Chapter 9. The files are spread
over a number of CD-ROMs:

• You’ll find the ports, the instructions for building the packages, on the installation
CD-ROM.

• The base sources for the Ports Collection fill more than one CD-ROM, even though
copyright restrictions mean that not all sources may be included: some source files
are freely distributable on the Net, but may not be distributed on CD-ROM.

Don’t worry about the missing sources: if you’re connected to the Internet, the Ports
Collection automatically retrieves the sources from an Internet server when you type
make.

• You’ll find the most popular packages, the precompiled binaries of the ports, on the
Installation CD-ROM. A full distribution contains a number of other CD-ROMs with
most of the remaining packages.

(quickinstall.mm), page 47

3
Quick

installation

In this chapter:
• Making things easy

for yourself
• FreeBSD on a disk

with free space
• FreeBSD shared with

Microsoft
• Configur ing XFree86

In this chapter:
• Making things easy

for yourself
• FreeBSD on a disk

with free space
• FreeBSD shared with

Microsoft
• Configur ing XFree86

In Chapters 4 to 6 we’ll go into a lot of detail about how to install the system. Maybe this
is too much detail for you. If you’re an experienced UNIX user, you should be able to get
by with significantly less reading. This chapter presents checklists for some of the more
usual kinds of installation. Each refers you to the corresponding detailed descriptions in
Chapters 4 through 6.

On the following pages we’ll look at the simplest installation, where FreeBSD is the only
system on the disk. Starting on page 49 we’ll look at sharing the disk with Microsoft,
and on page 50 we’ll look at how to install XFree86. You may find it convenient to
photocopy these pages and to mark them up as you go along.

Making things easy for yourself
It is probably easier to install FreeBSD than any other PC operating system, including
Microsoft products. Well, most of the time, anyway. Some people spend days trying to
install FreeBSD, and finally give up. That happens with Microsoft’s products as well, but
unfortunately it happens more often with FreeBSD.

Now you’re probably saying, ‘‘That doesn’t make sense. First you say it’s easier to
install, then you say it’s more likely to fail. What’s the real story?’’

As you might expect, the real story is quite involved. In Chapter 2, Before you install, I
went into some of the background. Before you start, let’s look at what you can do to
make the installation as easy as possible:

47

48 Chapter 3: Quick installation

• Use known, established hardware. New hardware products frequently have undocu-
mented problems. You can be sure that they work under Microsoft, because the
manufacturer has tested them in that environment. In all probability, he hasn’t tested
them under any flavour of UNIX, let alone FreeBSD. Usually the problems aren’t
serious, and the FreeBSD team solves them pretty quickly, but if you get the
hardware before the software is ready, you’re the guinea pig.

At the other end of the scale, you can have more trouble with old hardware as well.
It’s not as easy to configure, and old hardware is not as well supported as more recent
hardware.

• Perform a standard installation. The easiest way to install FreeBSD is by booting
from a CD-ROM and installing on an empty hard disk from the CD-ROM. If you
proceed as discussed in Chapter 5, Installing FreeBSD, you shouldn’t hav e any
difficulty.

• If you need to share your hard disk with another operating system, it’s easier to install
both systems from scratch. If you do already have a Microsoft system on the disk,
you can use FIPS (see page 52) to make space for it, but this requires more care.

• If you run into trouble, RTFM.1 I’ve gone to a lot of trouble to anticipate the problems
you might encounter, and there’s a good chance that you will find something here to
help.

• If you do all this, and it still doesn’t work, see page 17 for ways of getting external
help.

FreeBSD on a disk with free space
This procedure applies if you can install FreeBSD without first having to make space on
disk. Perform the following steps:

Boot from CD-ROM. Most systems support booting from CD-ROM, but if yours
doesn’t:

• Create two boot floppies by copying the images /cdrom/floppies/kern.flp and
/cdrom/floppies/mfsroot.flp to 3½" diskettes. Refer to page 89 for more details.

• Insert the CD-ROM in the drive before booting.

• Boot from the kern.flp floppy. After loading, insert the mfsroot.flp floppy when
the system prompts you to do so, then press Enter.

If you have a larger floppy, such as 2.88 MB or LS-120, you can copy the image
/cdrom/floppies/boot.flp to it and boot from it. In this case you don’t need to change
disks.

1. Hackerspeak for ‘‘Read The Manual’’—the F is usually silent.

FreeBSD on a disk with free space 49

Select the Custom installation. Refer to page 60.

What you do in the partition editor depends on whether you want to share the drive
with another operating system or not:

• If you want to use the drive only for FreeBSD, delete any existing slices, and
allocate a single FreeBSD slice that takes up the entire disk. On exiting from the
partition editor, select the Standard MBR. Refer to page 66.

• If you want to share the disk with other systems, delete any unwanted slices and
use them for FreeBSD. On exiting from the partition editor, select the BootMgr
MBR. Refer to page 66.

In the disk label editor, delete any existing UNIX partitions. Create the file systems
manually. If you don’t hav e any favourite layout, create a root file system with 4
GB, a swap partition with at least 512 MB (make sure it’s at least 1 MB larger than
the maximum memory you intend to install in your system). Allocate a /home file
system as large as you like, as long as it can fit on a single tape when backed up. If
you have any additional space, leave it empty unless you know what to use it for.
See page 68 for the rationale of this approach, which is not what sysinstall
recommends.

Install the complete system, including X and the Ports Collection. This requires
about 1 GB of disk space. Refer to page 75 if you want to limit it.

Select CD-ROM as installation medium. Refer to page 76.

Give final confirmation. The system will be installed. Refer to page 77.

After installation, set up at least a user ID for yourself. Refer to page 144.

FreeBSD shared with Microsoft
If you have a disk with Microsoft installed on only part of the disk, and you don’t want to
change the partition layout, you can proceed as in the instructions above. This is pretty
unusual, though: normally Microsoft takes the whole disk, and it’s difficult to persuade it
otherwise. To install FreeBSD on a disk that currently contains a single Microsoft
partition taking up the entire disk, go through the following steps:

Make a backup! There’s every possibility of erasing your data, and there’s
absolutely no reason why you should take the risk.

If you have an old machine with an IDE disk larger than 504 MB, you may run into
problems. Refer to page 32 for further details.

Boot Microsoft and repartition your disk with FIPS. Refer to page 52.

Insert the CD-ROM in the drive before booting.

50 Chapter 3: Quick installation

Shut the machine down and reboot from the FreeBSD CD-ROM. If you have to
boot from floppy, see page 48 for details.

Select the Custom installation.

In the partition editor, delete only the second primary Microsoft partition. The first
primary Microsoft partition contains your Microsoft data, and if there is an extended
Microsoft partition, it will also contain your Microsoft data.

Create a FreeBSD slice in the space that has been freed. Refer to page 63.

On exiting from the partition editor, select the BootMgr MBR. Refer to page 66.

In the disk label editor, delete any existing UNIX partitions. Create the file systems
manually. If you don’t hav e any favourite layout, create a root file system with 4
GB, a swap partition with at least 512 MB (make sure it’s at least 1 MB larger than
the maximum memory you intend to install in your system). Allocate a /home file
system as large as you like, as long as it can fit on a single tape when backed up. If
you have any additional space, leave it empty unless you know what to use it for.
See page 68 for the rationale of this approach, which is not what sysinstall
recommends.

Before leaving the disk label editor, also select mount points for your DOS partitions
if you intend to mount them under FreeBSD. Refer to page 74.

Install the complete system, including X and the Ports Collection. This requires
about 1 GB of disk space. Refer to page 75 if you want to limit it.

Select CD-ROM as installation medium. Refer to page 76.

Give final confirmation. The system will be installed. Refer to page 77.

After installation, set up at least a user ID for yourself. Refer to page 144.

Configuring XFree86
You can configure XFree86 during installation or after reboot.

Make sure your mouse is connected to the system at boot time. Depending on the
hardware, if you connect it later, it may not be recognized.

If you have already rebooted the machine, log in as root and restart sysinstall.

Select the sysinstall Configuration menu, XFree86 and then xf86cfg, and
follow the instructions. See page 102 for further details.

Select the Desktop menu and install the window manager of your choice. See page
108 for further discussion.

(shareinstall.mm), page 51

4
Shared OS
installation

In this chapter:
• Separate disks
• Shar ing a disk
• Shar ing with Linux or

another BSD
• Repar titioning with

FIPS

In this chapter:
• Separate disks
• Shar ing a disk
• Shar ing with Linux or

another BSD
• Repar titioning with

FIPS

In many cases, you won’t want to install FreeBSD on the system by itself: you may need
to use other operating systems as well. In this chapter, we’ll look at what you need to do
to prepare for such an installation. If you’re only running FreeBSD on the machine, you
don’t need to read this chapter, and you can move on to Chapter 5, Installing FreeBSD.

Before you start the installation, read this chapter carefully.
It’s easy to make a mistake, and one of the most frequent results
of mistakes is the total loss of all data on the hard disk.

Currently, only the ia32 (Intel) port of FreeBSD is capable of sharing with other
operating systems. We’ll concentrate on how to share your system with Microsoft,
because that’s both the most difficult and the most common, but most of this chapter
applies to other operating systems as well. You may want to refer to the discussion of
Microsoft and FreeBSD disk layouts on page 34.

Separate disks
The first question is: do you need to share a disk between FreeBSD and the other
operating system? It’s much easier if you don’t hav e to. In this section, we’ll look at
what you need to do.

Many operating systems will only boot from the first disk identified by the BIOS, usually
called the C: disk in deference to Microsoft. FreeBSD doesn’t hav e this problem, so the

51

52 Chapter 4: Shared OS installation

easiest thing is to install FreeBSD on the entire second disk. BIOS restrictions usually
make it difficult to boot from any but the first two disks.

In this case, you don’t really need to do anything special, although it’s always a good idea
to back up your data first. Install FreeBSD on the second disk, and choose the Boot
Manager option in the partition editor (page 64). This will then give you the choice of
booting from the first or second disk. Note that you should not change the order of disks
after such an installation; if you do, the system will not be able to find its file systems
after boot.

Sharing a disk
If you intend to share a disk between FreeBSD and another operating system, the first
question is: is there enough space on the disk for FreeBSD? How much you need
depends on what you want to do with FreeBSD, of course, but for the sake of example
we’ll take 120 MB as an absolute minimum. In the following section, we’ll consider
what to do if you need to change your partitions. If you already have enough space for a
FreeBSD partition (for example, if you have just installed Microsoft specifically for
sharing with FreeBSD, and thus have not filled up the disk), continue reading on page 66.

Sharing with Linux or another BSD
Sharing with other free operating systems is relatively simple. You still need to have
space for FreeBSD, of course, and unlike Microsoft, there are no tools for shrinking
Linux or BSD file systems: you’ll have to remove them or recreate them. You can find
some information about sharing with Linux in the mini-Howto at
http://www.linux.org/docs/ldp/howto/mini/Linux+FreeBSD.html.

NetBSD and OpenBSD file systems and slices are very similar to their FreeBSD
counterparts. They’re not identical, however, and you may find that one of the systems
recognizes the partition of another system and complains about it because it’s not quite
right. For example, NetBSD has a d partition that can go outside the boundary of the
slice. FreeBSD does not allow this, so you get a harmless error message.

Repartitioning with FIPS
Typically, if you’ve been running Microsoft on your machine, it will occupy the entire
disk. If you need all this space, of course, there’s no way to install another operating
system as well. Frequently, though, you’ll find that you have enough free space in the
partition. Unfortunately, that’s not where you want it: you want the space in a new
partition. There are a number of ways to do so:

Repar titioning with FIPS 53

• You can reinstall the software. This approach is common in the Microsoft world, but
FreeBSD users try to avoid it.

• You can use FIPS to shrink a Microsoft partition, leaving space for FreeBSD. FIPS
is a public domain utility, and it is included on the FreeBSD CD-ROM.

• If you can’t use FIPS, use a commercial utility like PartitionMagic. This is not
included on the CD-ROMs, and we won’t discuss it further.

In the rest of the section, we’ll look at how to shrink a partition with FIPS. If you do it
with PartitionMagic, the details are different, but the principles are the same. In
particular:

Before repartitioning your disk, make a backup. You can shoot
yourself in the foot with this method, and the result will almost
invariably be loss of data.

If you’ve been running Microsoft on your system for any length of time, the data in the
partition will be spread all around the partition. If you just truncate the partition, you’ll
lose a lot of data, so you first need to move all the data to the beginning of the partition.
Do this with the Microsoft defragmentation utility. Before proceeding, consider a few
gotchas:

• The new Microsoft partition needs to be big enough to hold not only the current data,
but also anything you will want to put in it in the future. If you make it exactly the
current size of the data, it will effectively be full, and you won’t be able to write
anything to it.

• The second partition is also a Microsoft partition. To install FreeBSD on it, you need
to convert it into a FreeBSD partition.

• FIPS may result in configuration problems with your Microsoft machine. Since it
adds a partition, any automatically assigned partitions that follow will have a different
drive letter. In particular, this could mean that your CD-ROM drive will ‘‘move.’’
After you delete the second Microsoft partition and change it into a FreeBSD
partition, it will ‘‘move’’ back again.

For further information, read the FIPS documentation in /cdrom/tools/fips.doc. In
particular, note these limitations:

• FIPS works only with Hard Disk BIOSes that use interrupt 0x13 for low-level hard
disk access. This is generally not a problem.

• FIPS does not split partitions with 12 bit FATs, which were used by older versions of
Microsoft. These are less than 10 MB in size and thus too small to be worth splitting.

• FIPS splits only Microsoft partitions. The partition table and boot sector must
conform to the MS-DOS 3.0+ or Windows 95 conventions. This is marked by the
system indicator byte in the partition table, which must have the value 4 (16 bit sector
number) or 6 (32 bit sector number). In particular, it will not split Linux or Windows
2000 and later partitions.

54 Chapter 4: Shared OS installation

• FIPS does not yet work on extended Microsoft partitions.

• FIPS needs a free partition entry. It will not work if you already have four partitions.

• FIPS will not reduce the original partition to a size of less than 4085 clusters,
because this would involve rewriting the 16 bit FAT to a 12 bit FAT .

Repartitioning—an example
In this section, we’ll go through the mechanics of repartitioning a disk. We’ll start with a
disk containing a single, complete Microsoft system.

First, run the Microsoft error check utility on the partition you want to split. Make sure
no ‘‘dead’’ clusters remain on the disk.

Next, prepare a bootable floppy. When you start FIPS, you will be given the opportunity
to write backup copies of your root and boot sector to a file on drive A:. These will be
called ROOTBOOT.00x, where x represents a digit from 0 to 9. If anything goes wrong
while using FIPS, you can restore the original configuration by booting from the floppy
and running RESTORRB.

If you use FIPS more than once (this is normally not necessary, but it might happen), your floppy
will contain more than one ROOTBOOT file. RESTORRB lets you choose which configuration
file to restore. The file RESTORRB.000 contains your original configuration. Try not to confuse
the versions.

Before starting FIPS you must defragment your disk to ensure that the space to be used
for the new partition is free. If you’re using programs like IMAGE or MIRROR, note that
they store a hidden system file with a pointer to your mirror files in the last sector of the
hard disk. You must delete this file before using FIPS. It will be recreated the next time
you run MIRROR. To delete it, in the root directory enter:

C\:> attrib -r -s -h image.idx for IMAGE
C\:> attrib -r -s -h mirorsav.fil for MIRROR

Then delete the file.

If FIPS does not offer as much disk space for creation of the new partition as you expect,
this may mean that:

• You still have too much data in the remaining partition. Consider making the new
partition smaller or deleting some of the data. If you delete data, you must
defragment and run FIPS again.

• There are hidden files in the space of the new partition that have not been moved by
the defragmentation program. Make sure which program they belong to. If a file is a
swap file of some program (for example NDOS) it is possible that it can be safely
deleted (and will be recreated automatically later when the need arises). See your
manual for details.

Repar titioning with FIPS 55

If the file belongs to some sort of copy protection, you must uninstall the program to
which it belongs and reinstall it after repartitioning.

If you are running early versions of MS-DOS (before 5.0), or
another operating system, such OS/2, or you are using pro-
grams like Stacker, SuperStor, or Doublespace, read the FIPS
documentation for other possible problems.

Running FIPS

After defragmenting your Microsoft partition, you can run FIPS:

C:\> D: change to CD-ROM
D:\> cd \tools make sure you’re in the tools directory
D:\tools\> fips and start the FIPS program
... a lot of copyright information omitted
Press any key do what the computer says
Which Drive (1=0x80/2=0x81)?

The message Which Drive may seem confusing. It refers to BIOS internal numbering.
Don’t worry about it: if you want to partition the first physical drive in the system, (C:),
enter 1, otherwise enter 2. Like the BIOS, FIPS handles only two hard disks.

If you start FIPS under Windows, it will complain and tell you to boot from a floppy
disk. It won’t stop you from continuing, but it is a Bad Idea to do so.

Next, FIPS reads the root sector of the hard disk and displays the partition table:

| | Start | | End | Start |Number of|
Part.|bootable|Head Cyl. Sector|System|Head Cyl. Sector| Sector |Sectors | MB
-----+--------+----------------+------+----------------+--------+---------+----
1 | yes | 1 0 1| 0ch| 239 2047 63| 63| 40083057|19571
2 | no | 0 0 0| 00h| 0 0 0| 0| 0| 0
3 | no | 0 0 0| 00h| 0 0 0| 0| 0| 0
4 | no | 0 0 0| 00h| 0 0 0| 0| 0| 0

This shows that only the first partition is occupied, that it is bootable, and that it occupies
the whole disk (19571 MB, from Cylinder 0, Head 1, Sector 1 to Cylinder 2047, Head
238, Sector 63). It also claims that this makes 40083057 sectors. It doesn’t: the cylinder
number has been truncated, and FIPS complains about a partition table inconsistency,
which it fixes. After this, we have:

| | Start | | End | Start |Number of|
Part.|bootable|Head Cyl. Sector|System|Head Cyl. Sector| Sector |Sectors | MB
-----+--------+----------------+------+----------------+--------+---------+----
1 | yes | 1 0 1| 0ch| 239 2650 63| 63| 40083057|19571
2 | no | 0 0 0| 00h| 0 0 0| 0| 0| 0
3 | no | 0 0 0| 00h| 0 0 0| 0| 0| 0
4 | no | 0 0 0| 00h| 0 0 0| 0| 0| 0

Don’t worry about the ‘‘bootable’’ flag here—we’ll deal with that in the FreeBSD
installation. First, FIPS does some error checking and then reads and displays the boot
sector of the partition:

56 Chapter 4: Shared OS installation

Checking boot sector ... OK
Press any Key do what it says
Bytes per sector: 512
Sectors per cluster: 32
Reserved sectors: 32
Number of FATs: 2
Number of rootdirectory entries: 0
Number of sectors (short): 0
Media descriptor byte: f8h
Sectors per FAT: 9784
Sectors per track: 63
Drive heads: 240
Hidden sectors: 63
Number of sectors (long): 40083057
Physical drive number: 80h
Signature: 29h

After further checking, FIPS asks you if you want to make a backup floppy. Enter your
formatted floppy in drive A: and make the backup. Next, you see:

Enter start cylinder for new partition (35 - 2650):
Use the cursor keys to choose the cylinder, <enter> to continue
Old partition Cylinder New Partition
258.4 MB 35 19313.4 MB

Use the Cursor Left and Cursor Right keys to adjust the cylinder number at which the
new partition starts. You can also use the keys Cursor Up and Cursor Down to change
in steps of ten cylinders. FIPS updates the bottom line of the display to show the new
values selected. Initially, FIPS chooses the smallest possible Microsoft partition, so
initially you can only increase the size of the old partition (with the Cursor Right key).
When you’re happy with the sizes, press Enter to move on to the next step.

Be very sure you’re happy before you continue. If you make the
first partition too small, there is no way to make it larger again.
On the other hand, if you make it too large, you can split it
again and then use fdisk or MS-DOS FDISK to remove the
superfluous partitions.

In this example, we choose equal-sized partitions:

Old partition Cylinder New Partition
251.5 MB 511 251.5 MB

(pressed Enter)
| | Start | | End | Start |Number of|

Part.|bootable|Head Cyl. Sector|System|Head Cyl. Sector| Sector |Sectors | MB
-----+--------+----------------+------+----------------+--------+---------+----
1 | yes | 0 0 1| 06h| 15 511 63| 0| 515088| 251
2 | no | 0 512 1| 06h| 15 1023 63| 0| 515088| 251
3 | no | 0 0 0| 00h| 0 0 0| 0| 0| 0
4 | no | 0 0 0| 00h| 0 0 0| 0| 0| 0

Do you want to continue or reedit the partition table (c/r)? c

To ensure that the partition is recognized, reboot immediately. Make sure to disable all
programs that write to your disk in CONFIG.SYS and AUTOEXEC.BAT before
rebooting. It might be easier to to rename the files or to boot from floppy. Be particularly
careful to disable programs like MIRROR and IMAGE, which might get confused if the

Repar titioning with FIPS 57

partitioning is not to their liking. After rebooting, use CHKDSK or Norton Disk Doctor
to make sure the first partition is OK. If you don’t find any errors, you may now reboot
with your normal CONFIG.SYS and AUTOEXEC.BAT. Start some programs and make
sure you can still read your data.

After that, you have two valid Microsoft partitions on your disk. We’ll look at what to do
with them in the next chapter. The specific differences from a dedicated install are on
page 66, but you’ll need to start from the beginning of the chapter to do the install.

(install.mm), page 59

5
Installing
FreeBSD

In this chapter:
• Booting from CD-

ROM
• Installing on the Intel

i386 architecture
• Booting to sysinstall
• Setting installation

options
• Partitioning the disk
• Defining file systems
• Selecting

distr ibutions
• Selecting the

installation medium
• Perfor ming the

installation
• Installing on an Alpha

system
• Upgrading an old

version of FreeBSD
• How to uninstall

FreeBSD
• If things go wrong
• Alter native

installation methods

In this chapter:
• Booting from CD-

ROM
• Installing on the Intel

i386 architecture
• Booting to sysinstall
• Setting installation

options
• Partitioning the disk
• Defining file systems
• Selecting

distr ibutions
• Selecting the

installation medium
• Perfor ming the

installation
• Installing on an Alpha

system
• Upgrading an old

version of FreeBSD
• How to uninstall

FreeBSD
• If things go wrong
• Alter native

installation methods

In the previous chapters, we’ve looked at preparing to install FreeBSD. In this chapter,
we’ll finally do it. If you run into trouble, I’ll refer you back to the page of Chapter 2
which discusses this topic. If you want to install FreeBSD on the same disk as Microsoft
or another operating system, you should have already read Chapter 4, Shared OS
installation.

The following discussion relates primarily to installation on the i386 architecture. See
page 78 for differences when installing on the AXP (‘‘Alpha’’) processor.

Installing on the Intel i386 architecture
To install FreeBSD you need the software in a form that the installation software
understands. You may also need a boot diskette. Nowadays you will almost invariably
install from CD-ROM, so we’ll assume that medium. On page 85, we’ll look at some
alternatives: installation from floppy disk or via the network.

The first step in installing FreeBSD is to start a minimal version of the operating system.
The simplest way is to boot directly from the installation CD-ROM. If your system
doesn’t support this kind of boot, boot from floppy. See page 85 for more details.

The description in this chapter is based on a real-life installation on a real machine.
When you install FreeBSD on your machine, a number of things will be different,

59

60 Chapter 5: Installing FreeBSD

depending on the hardware you’re running, the way you’re installing the software and the
release of FreeBSD you’re installing. Nevertheless, you should be able to recognize what
is going on.

Booting from CD-ROM is mainly a matter of setting up your system BIOS and possibly
your SCSI BIOS. Typically, you perform one of the following procedures:

• If you’re booting from an IDE CD-ROM, you enter your system BIOS setup routines
and set the Boot sequence parameter to select CD-ROM booting ahead of hard disk
booting, and possibly also ahead of floppy disk booting. A typical sequence might be
CDROM,C,A.

• On most machines, if you’re booting from a SCSI CD-ROM, you also need a host
adapter that supports CD-ROM boot. Set up the system BIOS to boot in the
sequence, say, SCSI,A,C. On typical host adapters (such as the Adaptec 2940
series), you set the adapter to enable CD-ROM booting, and set the ID of the boot
device to the ID of the CD-ROM drive.

These settings are probably not what you want to use for normal operation. If you leave
the settings like this, and there is a bootable CD-ROM in your CD-ROM drive, it always
boots from that CD-ROM rather than from the hard disk. After installation, change the
parameters back again to boot from hard disk before CD-ROM. See your system
documentation for further details.

Booting to sysinstall
The boot process itself is very similar to the normal boot process described on page 528.
After it completes, though, you are put into the sysinstall main menu.

Figure 5-1: Main installation menu

Booting to sysinstall 61

Figure 5-1 shows the main sysinstall menu. sysinstall includes online help at all stages.
Simply press F1 and you will get appropriate help. Also, if you haven’t been here before,
the Doc menu gives you a large part of the appropriate information from the handbook.

Kinds of installation
To get started, select one of Standard, Express or Custom. The names imply that the
Standard installation is the best way to go, the Express installation is for people in a
hurry, and Custom installation is for when you want to specify exactly what is to be done.

In fact, the names are somewhat misleading. There isn’t really that much difference
between the three forms of installation. They all perform the same steps:

• Possibly set up options.

• Set up disk partitions, which we’ll discuss in the next section.

• Set up file systems and swap space within a FreeBSD slice, which we start on page
67.

• Choose what you want to install, which we discuss on page 75.

• Choose where you want to install it from. We’ll look at this on page 76.

• Actually install the software. We’ll treat this on page 77.

We looked at disk partitions and file systems on page 34. We’ll look at the other points
when we get to them.

So what’s the difference between the kinds of installation?

• The Standard installation takes you through these steps in sequence. Between each
step, you get a pop-up window that tells you what is going to happen next.

• The Express installation also takes you through these steps in sequence. The main
difference is that you don’t get the pop-up window telling you what is going to
happen next. This can save a little time. If you do want the information, similar
information is available with the F1 key.

• The Custom installation returns you to its main menu after each step. It’s up to you
to select the next step. You can also select another step, or go back to a previous one.
Like the Express installation, you don’t get the pop-up information window, but you
can get more information with the F1 key.

The big problem with Standard and Express installations is that they don’t let you back
up: if you pass a specific step and discover you want to change something, you have to
abort the installation and start again. With the Custom installation, you can simply go
back and change it. As a result, I recommend the Custom installation. In the following
discussion, you won’t see too much difference: the menus are the same for all three
installation forms.

62 Chapter 5: Installing FreeBSD

Figure 5-2: Custom Installation options

Setting installation options
The first item on the menu is to set installation options. There’s probably not too much
you’ll want to change. About the only thing of interest might be the editor ec, which is a
compromise between a simple editor for beginners and more complicated editors like vi.
If you’re planning to edit anything during the installation, for example the file
/etc/exports, which we’ll look at on page 566, you may prefer to set an editor with which
you are familiar. Select the fields by moving the cursor to the line and pressing the space
bar.

Figure 5-3: Installation options

Setting installation options 63

Partitioning the disk
The first installation step is to set up space for FreeBSD on the disk. We looked at the
technical background in Chapter 2, on page 39. In this section only, we’ll use the term
partition to refer to a slice or BIOS partition, because that’s the usual terminology.

Even if your disk is correctly partitioned, select the Partition menu: the installation
routines need to enter this screen in order to read the partition information from the disk.
If you like what you see, you can leave again immediately with q (quit), but you must
first enter this menu. If you have more than one disk connected to your machine, you will
next be asked to choose the drives that you want to use for FreeBSD.

Figure 5-4: Disk selection menu

This screen shows entries for each drive that sysinstall has detected; in this example, the
system has one ATA (IDE) drive, /dev/ad0, and one SCSI drive, da0. You only get this
screen if you have at least two drives connected to your machine; otherwise sysinstall
automatically goes to the next screen.

If you intend to use more than one disk for FreeBSD, you have the choice of setting up all
disks now, or setting the others up after the system is up and running. We’ll look at the
latter option in Chapter 11, on page 199.

To select the disk on which you want to install FreeBSD, move the cursor to the
appropriate line and press the space bar. The screen you get will probably look like
Figure 5-5. Table 5-1 explains the meanings of the columns in this display. The first
partition contains the Master Boot Record, which is exactly one sector long, and the
bootstrap, which can be up to 15 sectors long. The partitioning tools use the complete
first track: in this case, the geometry information from BIOS says that it has 63 sectors
per track.

In this case, the Microsoft file system uses up the whole disk except for the last track,
1008 sectors (504 kB) at the end of the disk. Clearly there’s not much left to share. We
have the option of removing the Microsoft partition, which we’ll look at here, or we can
shorten it with FIPS. We looked at FIPS in Chapter 4, page 52, and we’ll look at what
to do with the resultant layout on page 66.

64 Chapter 5: Installing FreeBSD

Figure 5-5: Partition editor menu

Don’t forget that if you remove a partition, you lose all the data
in it. If the partition contains anything you want to keep, make
sure you have a readable backup.

You remove the partition with the d command. After this, your display looks like:

The next step is to allocate a FreeBSD partition. There are two ways to do this: if you
want to have more than one partition on the drive (for example, if you share the disk with
another operating system), you use the c (create) command. We’ll look at that on page
66. In this case, though, you want to use the entire disk for FreeBSD, so you choose the
a option. The resultant display is effectively the same as in Figure 5-5: the only
difference is that the Desc field now shows freebsd instead of fat.

That’s all you need to do here: leave fdisk by pressing the q key.

Don’t use the W (Write Changes) command here. It’s intended
for use only once the system is up and running.

Partitioning the disk 65

Table 5-1: fdisk information

Column Description

Offset The number of the first sector in the partition.

Size The length of the partition in sectors.

End The number of the last sector in the partition.

Name Where present, this is the device name that FreeBSD assigns to the partition.
In this example, only the second entry has a name.

Ptype The partition type. Partition type 6 is the Master Boot Record, which is
exactly one track long (note that the header says that this drive has 63 sectors
per track). Type 2 is a regular partition.

Desc A textual description of the kind of partition. fat stands for File Allocation
Table, a central part of the Microsoft disk space allocation strategy.

Subtype The partition subtype. This corresponds to the descriptive text.

Flags Can be one or more of the following characters:

= The partition is correctly aligned.
> The partition finishes after cylinder 1024, which used to cause problems
for Microsoft.
A This is the active (bootable) partition.
B The partition employs BAD144 bad-spot handling.
C This is a FreeBSD compatibility partition.
R This partition contains a root file system.

On a PC, the next screen asks what kind of boot selector (in other words, MBR) you
want. You don’t get this on an Alpha.

Figure 5-6: Boot selector menu

66 Chapter 5: Installing FreeBSD

If you plan to have only one operating system on this disk, select Standard. If you are
sharing with another operating system, you should choose BootMgr instead. We’ll look
at this in more detail in the section on booting the system on page 529. Exit by pressing
the tab key until the OK tab is highlighted, then press Enter.

Table 5-2: MBR choices

Choice Description

BootMgr Install the FreeBSD boot manager in the MBR. This will enable you
choose which partition to boot every time you start the system.

Standard Use a standard MBR. You will be able to boot only from the active
partition.

None Don’t change the MBR. This is useful if you already have another boot
manager installed. If no MBR is installed, though, you won’t be able to
boot from this disk.

Shared partitions
If you are installing on a disk shared with another operating system, things are a little
different. The section continues the example started in Chapter 4. When you enter the
partition editor, you will see something like:

Figure 5-7: Shared partitions

This display shows the two Microsoft partitions, ad0s1 and ad0s2, which is what you see
after using FIPS; if you have just installed Microsoft on one partition, the partition ad0s2
will not be present. If it is, you first need to remove it. Be very careful to remove the
correct partition. It’s always the second of the two partitions, in this case ad0s2.

Partitioning the disk 67

Remove the partition by moving the highlight to the second partition and pressing d.
After this, the display looks like:

The next step is to allocate a FreeBSD partition with the c command. The menu asks for
the size of the partition, and suggests a value of 35899920 sectors, the size of the unused
area at the end. You can edit this value if you wish, but in this case it’s what you want, so
just press ENTER. You get another window asking you for the partition type, and
suggesting type 165, the FreeBSD partition table. When you accept that, you get:

The new partition now has a partition type 8 and subtype 165 (0xa5), which identifies it
as a FreeBSD partition.

After this, select a boot method as described on page 66 and exit the menu with the q
command. There are two operating systems on the disk, so select the BootMgr option.

Defining file systems
The next step is to tell the installation program what to put in your FreeBSD partition.
First, we’ll look at the simple case of installing FreeBSD by itself. On page 75 we’ll look
at what differences there are when installing alongside another operating system on the
same disk.

When you select Label, you get the screen shown in Figure 5-8.

Figure 5-8: Label editor menu

68 Chapter 5: Installing FreeBSD

What partitions?
In this example, you have 20 GB of space to divide up. How should you do it? You don’t
have to worry about this issue, since sysinstall can do it for you, but we’ll see below why
this might not be the best choice. In this section we’ll consider how UNIX file systems
have changed over the years, and we’ll look at the issues in file system layout nowadays.

When UNIX was young, disks were tiny. At the time of the third edition of UNIX, in
1972, the root file system was on a Digital RF-11, a fixed head disk with 512 kB. The
system was growing, and it was no longer possible to keep the entire system on this disk,
so a second file system became essential. It was mounted on a Digital RK03 with 2 MB
of storage. To quote from a paper published in the Communications of the ACM in July
1974:

In our installation, for example, the root directory resides on the fixed-head
disk, and the large disk drive, which contains user’s files, is mounted by the
system initialization program...

As time went on, UNIX got bigger, but so did the disks. By the early 80s, disks were
large enough to put / and /usr on the same disk, and it would have been possible to
merge / and /usr, but they didn’t, mainly because of reliability concerns. Since that time,
an additional file system, /var, has come into common use for frequently changed data,
and just recently sysinstall has been changed to create a /tmp file system by default.
This is what sysinstall does if you ask it to partition automatically:

Figure 5-9: Default file system sizes

It’s relatively simple to estimate the size of the root file system, and sysinstall’s value of
128 MB is reasonable. But what about /var and /tmp? Is 256 MB too much or too little?
In fact, both file systems put together would be lost in the 18.7 GB of /usr file system.
Why are things still this way? Let’s look at the advantages and disadvantages:

Defining file systems 69

• If you write to a file system and the system crashes before all the data can be written
to disk, the data integrity of that file system can be severely compromised. For
performance reasons, the system doesn’t write everything to disk immediately, so
there’s quite a reasonable chance of this happening.

• If you have a crash and lose the root file system, recovery can be difficult.

• If a file system fills up, it can cause lots of trouble. Most messages about file systems
on the FreeBSD-questions mailing list are complaining about file systems filling
up. If you have a large number of small file systems, the chances are higher that one
will fill up while space remains on another.

• On the other hand, some file systems are more important than others. If the /var file
system fills up (due to overly active logging, for example), you may not worry too
much. If your root file system fills up, you could have serious problems.

• In single-user mode, only the root file system is mounted. With the classical layout,
this means that the only programs you can run are those in /bin and /sbin. To run
other programs, you must first mount the file system on which they are located.

• It’s nice to keep your personal files separate from the system files. That way you can
upgrade a system much more easily.

• It’s very difficult to estimate in advance the size needs of some file systems. For
example, on some systems /var can be very small, maybe only 2 or 3 MB. It’s
hardly worth making a separate file system for that much data. On the other hand,
other systems, such as ftp or web servers, may have a /var system of 50 or 100 GB.
How do you choose the correct size for your system?

• When doing backups, it’s a good idea to be able to get a file system on a single tape.

In the early days of UNIX, system crashes were relatively common, and the damage they
did to the file systems was relatively serious. Times have changed, and nowadays file
system damage is relatively seldom, particularly on file systems that have little activity.
On the other hand, disk drives hav e grown beyond most peoples’ wildest expectations.
The first edition of this book, only six years ago, showed how to install on a 200 MB
drive. The smallest disk drives in current production are 20 GB in size, more than will fit
on many tapes.

As a result of these considerations, I have changed my recommendations. In earlier
editions of this book, I recommended putting a small root file system and a /usr file
system on the first (or only) disk on the system. /var was to be a symbolic link to
/usr/var.

This is still a valid layout, but it has a couple of problems:

• In the example we’re looking at, /usr is about 19 GB in size. Not many people have
backup devices that can write this much data on a single medium.

• Many people had difficulty with the symbolic link to /usr/var.

70 Chapter 5: Installing FreeBSD

As a result, I now recommend:

• Make a single root file system of between 4 and 6 GB.

• Do not have a separate /usr file system.

• Do not have a separate /var file system unless you have a good idea how big it
should be. A good example might be a web server, where (contrary to FreeBSD’s
recommendations) it’s a good idea to put the web pages on the /var file system.

• Use the rest of the space on disk for a /home file system, as long as it’s possible to
back it up on a single tape. Otherwise make multiple file systems. /home is the
normal directory for user files.

This layout allows for easy backup of the file systems, and it also allows for easy
upgrading to a new system version: you just need to replace the root file system. It’s not
a perfect fit for all applications, though. Ultimately you need to make your own
decisions.

How much swap space?
Apart from files, you should also have at least one swap partition on your disk. It’s very
difficult to predict how much swap space you need. The automatic option gav e you 522
MB, slightly more than twice the size of physical memory. Maybe you can get by with
64 MB. Maybe you’ll need 2 GB. How do you decide?

It’s almost impossible to know in advance what your system will require. Here are some
considerations:

• Swap space is needed for all pages of virtual memory that contain data that is not
locked in memory and that can’t be recreated automatically. This is the majority of
virtual memory in the system.

• Some people use rules of thumb like ‘‘2.5 times the size of physical memory, or 64
MB, whichever is bigger.’’ These rules work only by making assumptions about your
workload. If you’re using more than 2.5 times as much swap space as physical
memory, performance will suffer.

• Known memory hogs are X11 and integrated graphical programs such as Netscape
and StarOffice. If you use these, you will probably need more swap space. Older
UNIX-based hogs such as Emacs and the GNU C compiler (gcc) are not in the same
league.

• You can add additional swap partitions on other disks. This has the additional
advantage of balancing the disk load if your machine swaps a lot.

• About the only ways to change the size of a swap partition are to add another
partition or to reinstall the system, so if you’re not sure, a little bit more won’t do any
harm, but too little can really be a problem.

Defining file systems 71

• If your system panics, and memory dumping is enabled, it will write the contents of
memory to the swap partition. This will obviously not work if your swap partition is
smaller than main memory. Under these circumstances, the system refuses to dump,
so you will not be able to find the cause of the problems.

The dump routines can only dump to a single partition, so you need one that is big
enough. If you have 512 MB of memory and two swap partitions of 384 MB each,
you still will not be able to dump.

• Even with light memory loads, the virtual memory system slowly pages out data in
preparation for a possible sudden demand for memory. This means that it can be
more responsive to such requests. As a result, you should have at least as much swap
as memory.

A couple of examples might make this clearer:

1. Some years ago I used to run X , StarOffice, Netscape and a whole lot of other
memory-hungry applications on an old 486 with 16 MB. Sure, it was really slow,
especially when changing from one application to another, but it worked. There was
not much memory, so it used a lot of swap.

To view the current swap usage, use pstat. Here’s a typical view of this machine’s
swap space:

$ pstat -s
Device 1024-blocks Used Avail Capacity Type
/dev/da0s1b 122880 65148 57668 53% Interleaved

2. At the time of writing I run much more stuff on an AMD Athlon with 512 MB of
memory. It has lots of swap space, but what I see is:

$ pstat -s
Device 1024-blocks Used Avail Capacity Type
/dev/ad0s1b 1048576 14644 1033932 1% Interleaved

It’s not so important that the Athlon is using less swap: it’s using less than 3% of its
memory in swap, whereas the 486 used 4 times its memory. In a previous edition of this
book, I had the example of a Pentium with 96 MB of memory, which used 43 MB of
swap. Look at it from a different point of view, and it makes more sense: swap makes up
for the lack of real memory, so the 486 was using a total of 80 MB of memory, the
Pentium was using 140 MB, and the Athlon is using 526 MB. In other words, there is a
tendency to be able to say ‘‘the more main memory you have, the less swap you need.’’

If, however, you look at it from the point of view of acceptable performance, you will
hear things like ‘‘you need at least one-third of your virtual memory in real memory.’’
That makes sense from a performance point of view, assuming all processes are relatively
active. And, of course, it’s another way of saying ‘‘take twice as much swap as real
memory.’’

72 Chapter 5: Installing FreeBSD

In summary: be generous in allocating swap space. If you have the choice, use more. If
you really can’t make up your mind, take 512 MB of swap space or 1 MB more than the
maximum memory size you are likely to install.

For the file systems, the column Mount now shows the mount points, and the Newfs
column contains the letters UFS1 for UNIX File System, Version 1, and the letter Y,
indicating that you need to create a new file system before you can use it. At this point,
you have two choices: decide for yourself what you want, or let the disk label editor do it
for you. Let’s look at both ways:

Creating the file systems

With these considerations in mind, we’ll divide up the disk in the following manner:

• 4 GB for the root file system, which includes /usr and /var

• 512 MB swap space

• The rest of the disk for the /home file system

To create a file system, you press c. You get a prompt window asking for the size of the
file system, and offering the entire space. Enter the size of the root file system:

Figure 5-10: Specifying partition size

When you press ENTER, you see another prompt asking for the kind of partition. Select
A File System:

Defining file systems 73

Figure 5-11: Selecting partition type

When you press ENTER, you see another prompt asking for the mount point for the file
system. Enter / for the root file system, after which the display looks like:

Figure 5-12: Allocated root file system

It’s not immediately obvious at this point that soft updates are not enabled for this file
system. Press s to enable them, after which the entry in the Newfs column changes from
UFS1 to UFS1+S. See page 191 for reasons why you want to use soft updates.

Next, repeat the operation for the swap partition and the /home file system, entering the
appropriate values each time. Don’t change the value offered for the length of /home:
just use all the remaining space. At the end, you have:

74 Chapter 5: Installing FreeBSD

Figure 5-13: Completed partition allocation

You don’t need to enable soft updates for /home; that happens automatically.

That’s all you need to do. Exit the menu by pressing q.

Where you are now

At this point in the installation, you have told sysinstall the overall layout of the disk or
disks you intend to use for FreeBSD, and whether or how you intend to share them with
other operating systems. The next step is to specify how you want to use the FreeBSD
partitions. First, though, we’ll consider some alternative scenarios.

Second time through

If you have already started an installation and aborted it for some reason after creating the
file systems, things will look a little different when you get to the label editor. It will find
the partitions, but it won’t know the name of the mount points, so the text under Mount
will be <none>. Under Newfs, you will find an asterisk (*) instead of the text UFS1 Y.
The label editor has found the partitions, but it doesn’t know where to mount the file
systems. Before you can use them, you must tell the label editor the types and mount
points of the UFS partitions. To do this:

• Position the cursor on each partition in turn.

• Press m (Mount). A window pops up asking for the mount point. Enter the name, in
this example, first /, then press Enter. The label editor enters the name of the mount
point under Mount, and under Newfs it enters UFS1 N—it knows that this is a UFS
file system, so it just checks its consistency and doesn’t overwrite it. Repeat this
procedure for /home, and you’re done. If you are sharing your disk with another
system, you can also use this method to specify mount points for your Microsoft file
systems. Select the Microsoft partition and specify the name of a mount point.

Defining file systems 75

• Unless you are very sure that the file system is valid, and you really want to keep the
data in the partitions, press t to specify that the file system should be created. The
text UFS1 N changes to UFS1 Y. If you leave the N there, the commit phase will
check the integrity of the file system with fsck rather than creating a new one.

File systems on shared disks
If you have another operating system on the disk, you’ll notice a couple of differences. In
particular, the label editor menu of Figure 5-8 (on page 68) will not be empty: instead,
you’ll see something like this:

Be careful at this point. The file system shown in the list is the active Microsoft
partition, not a FreeBSD file system. The important piece of information here is the fact
that we have 17529 MB of free space on the disk. We’ll create the file systems in that
free space in the same way we saw on page 72.

Selecting distributions
The next step is to decide what to install. Figure 5-14 shows you the menu you get when
you enter Distributions. A complete installation of FreeBSD uses about 1 GB of space,
so there’s little reason to choose anything else. Position the cursor on the line All, as
shown, and press the space bar.

Why press the space bar when so far you have been pressing ENTER? Because in this particular
menu, ENTER will return you to the upper level menu or simply continue to the media selection
menu, depending on the type of installation you’re doing. It’s one of the strangenesses of
sysinstall.

Next, sysinstall asks you if you want to install the Ports Collection. We’ll look at the
Ports Collection in Chapter 9. You don’t hav e to install it now, and it takes much more
time than you would expect from the amount of space that it takes: the Ports Collection
consists of over 150,000 very small files, and copying them to disk can take as long as the
rest of the installation put together. On the other hand, it’s a lot easier to do now, so if
you have the time, you should install them.

Whatever you answer to this question, you are returned to the distribution menu of Figure
5-14. Select Exit, and you’re done selecting your distributions.

Earlier versions of sysinstall asked you questions about XFree86 at this point. Nowadays you do
that after completing the installation.

76 Chapter 5: Installing FreeBSD

Figure 5-14: Distribution selection menu

Where you are now

Now sysinstall knows the layout of the disk or disks you intend to use for FreeBSD, and
what to put on them. Next, you specify where to get the data from.

Selecting the installation medium
The next thing you need to specify is where you will get the data from. Where you go
now depends on your installation medium. Figure 5-15 shows the Media menu. If you’re
installing from anything except an ftp server or NFS, you just need to select your medium
and then commit the installation, which we look at on page 77. If you’re installing from
media other than CD-ROM, see page 85.

At this point, sysinstall knows everything it needs to install the software. It’s just waiting
for you to tell it to go ahead.

Selecting the installation medium 77

Figure 5-15: Installation medium menu

Performing the installation
So far, everything you have done has had no effect on the disk drives. If you change your
mind, you can just abort the installation, and the data on your disks will be unchanged.
That changes completely in the next step, which you call committing the installation.
Now is the big moment. You’ve set up your partitions, decided what you want to install
and from where. Now you do it.

If you are installing with the Custom installation, you need to select Commit explicitly.
The Standard installation asks you if you want to proceed:

Last Chance! Are you SURE you want continue the installation?

If you’re running this on an existing system, we STRONGLY
encourage you to make proper backups before proceeding.
We take no responsibility for lost disk contents!

When you answer yes, sysinstall does what we’ve been preparing for:

• It creates the partitions and disk partitions.

• It creates the file system structures in the file system partitions, or it checks them,
depending on what you chose in the label editor.

• It mounts the file systems and swap space.

• It installs the software on the system.

78 Chapter 5: Installing FreeBSD

After the file systems are mounted, and before installing the software, sysinstall starts
processes on two other virtual terminals.1 On /dev/ttyv1 you get log output showing you
what’s going on behind the scenes. You can switch to it with ALT-F2. Right at the
beginning you’ll see a whole lot of error messages as sysinstall tries to initialize every
device it can think of. Don’t worry about them, they’re normal. To get back to the install
screen, press ALT-F1.

In addition, after sysinstall mounts the root file system, it starts an interactive shell on
/dev/ttyv3. You can use it if something goes wrong, or simply to watch what’s going on
while you’re installing. You switch to it with ALT-F4.

After installing all the files, sysinstall asks:

Visit the general configuration menu for a chance to set
any last options?

You really have the choice here. You can answer Yes and continue, or you can reboot:
the system is now runnable. In all probability, though, you will have additional
installation work to do, so it’s worth continuing. We’ll look at that in the following
chapter.

Installing on an Alpha system
Installing FreeBSD on an Alpha (officially Compaq AXP) has a few minor differences
due to the hardware itself. In principle, you perform the same steps to install FreeBSD on
the Alpha architecture that you perform for the Intel architecture. See page 42 for some
differences.

The easiest type of installation is from CD-ROM. If you have a supported CD-ROM
drive and a FreeBSD installation CD for Alpha, you can start the installation by building
a set of FreeBSD boot floppies from the files floppies/kern.flp and floppies/mfsroot.flp as
described for the Intel architecture on page 85. Use the CD-ROM marked ‘‘Alpha
installation.’’ From the SRM console prompt, insert the kern.flp floppy and type the
following command to start the installation:

>>>boot dva0

Insert the mfsroot.flp floppy when prompted and you will end up at the first screen of the
install program. You can then continue as for the Intel architecture on page 59.

To install over the Net, fetch the floppy images from the ftp site, boot as above, then
proceed as for the Intel architecture.

1. See page 197 for an explanation of virtual terminals.

Installing on an Alpha system 79

Once the install procedure has finished, you will be able to start FreeBSD/Alpha by
typing something like this to the SRM prompt:

>>>boot dkc0

This instructs the firmware to boot the specified disk. To find the SRM names of disks in
your machine, use the show device command:

>>>show device
dka0.0.0.4.0 DKA0 TOSHIBA CD-ROM XM-57 3476
dkc0.0.0.1009.0 DKC0 RZ1BB-BS 0658
dkc100.1.0.1009.0 DKC100 SEAGATE ST34501W 0015
dva0.0.0.0.1 DVA0
ewa0.0.0.3.0 EWA0 00-00-F8-75-6D-01
pkc0.7.0.1009.0 PKC0 SCSI Bus ID 7 5.27
pqa0.0.0.4.0 PQA0 PCI EIDE

This example comes from a Digital Personal Workstation 433au and shows three disks
attached to the machine. The first is a CD-ROM called dka0 and the other two are disks
and are called dkc0 and dkc100 respectively.

You can specify which kernel file to load and what boot options to use with the -file
and -flags options to boot:

>>>boot -file kernel.old -flags s

To make FreeBSD/Alpha boot automatically, use these commands:

>>>set boot_osflags a
>>>set bootdef_dev dkc0
>>>set auto_action BOOT

Upgrading an old version of FreeBSD
Paradoxically, upgrading an old version of FreeBSD is more complicated than installing
from scratch. The reason is that you almost certainly want to keep your old
configuration. There’s enough material in this topic to fill a chapter, so that’s what I’ve
done: see Chapter 31, for more details on how to upgrade a system.

How to uninstall FreeBSD
What, you want to remove FreeBSD? Why would you want to do that?

Seriously, if you decide you want to completely remove FreeBSD from the system, this is
no longer a FreeBSD issue, it’s an issue of whatever system you use to replace it. For
example, on page 63 we saw how to remove a Microsoft partition and replace it with
FreeBSD; no Microsoft software was needed to remove it. In the same way, you don’t
need any help from FreeBSD if you want to replace it with a different operating system.

80 Chapter 5: Installing FreeBSD

If things go wrong
In this section, we’ll look at the most common installation problems. Many of these are
things that once used to happen and haven’t been seen for some time: sysinstall has
improved considerably, and modern hardware is much more reliable and easy to
configure. You can find additional information on this topic in the section Known
Hardware Problems in the file INSTALL.TXT on the first CD-ROM.

Problems with sysinstall
sysinstall is intended to be easy to use, but it is not very tolerant of errors. You may well
find that you enter something by mistake and can’t get back to where you want to be. In
case of doubt, if you haven’t yet committed to the install, you can always just reboot.

Problems with CD-ROM installation
If you select to install from CD-ROM, you may get the message:

No CD-ROM device found

This might even happen if you have booted from CD-ROM! The most common reasons
for this problem are:

• You booted from floppy and forgot to put the CD-ROM in the drive before you
booted. Sorry, this is a current limitation of the boot process. Restart the installation
(press Ctrl-Alt-DEL or the reset button, or power cycle the computer).

• You are using an ATAPI CD-ROM drive that doesn’t quite fit the specification. In
this case you need help from the FreeBSD developers. Send a message to FreeBSD-
questions@FreeBSD.org and describe your CD-ROM as accurately as you can.

Can’t boot
One of the most terrifying things after installing FreeBSD is if you find that the machine
just won’t boot. This is particularly bad if you have important data on the disk (either
another operating system, or data from a previous installation of FreeBSD).

At this point, seasoned hackers tend to shrug their shoulders and point out that you still
have the backup you made before you did do the installation. If you tell them you didn’t
do a backup, they tend to shrug again and move on to something else.

Still, all is probably not lost. The most frequent causes of boot failure are an incorrect
boot installation or geometry problems. In addition, it’s possible that the system might
hang and never complete the boot process. All of these problems are much less common
than they used to be, and a lot of the information about how to address them is a few
years old, as they hav en’t been seen since.

If things go wrong 81

Incorrect boot installation
It’s possible to forget to install the bootstrap, or even to wipe it the existing bootstrap.
That sounds like a big problem, but in fact it’s easy enough to recover from. Refer to the
description of the boot process on page 529, and boot from floppy disk or CD-ROM.
Interrupt the boot process with the space bar. You might see:

BTX loader 1.00 BTX version is 1.01
BIOS drive A: is disk0
BIOS drive C: is disk1
BIOS drive D: is disk1
BIOS 639kB/130048kB available memory

FreeBSD/i386 bootstrap loader, Revision 0.8
(grog@freebie.example.com, Thu Jun 13 13:06:03 CST 2002)
Loading /boot/defaults/loader.conf

Hit [Enter] to boot immediately, or any other key for command prompt.
Booting [kernel] in 6 seconds... press space bar here
ok unload unload the current kernel
ok set currdev=disk1s1a and set the location of the new one
ok load /boot/kernel/kernel load the kernel
ok boot then start it

This boots from the drive /dev/ad0s1a, assuming that you are using IDE drives. The
correspondence between the name /dev/ad0s1a and disk1s1a goes via the information at
the top of the example: BTX only knows the BIOS names, so you’d normally be looking
for the first partition on drive C:. After booting, install the correct bootstrap with
bsdlabel -B or boot0cfg, and you should be able to boot from hard disk again.

Geometry problems
Things might continue a bit further: you elect to install booteasy, and when you boot, you
get the Boot Manager prompt, but it just prints F? at the boot menu and won’t accept any
input. In this case, you may have set the hard disk geometry incorrectly in the partition
editor when you installed FreeBSD. Go back into the partition editor and specify the
correct geometry for your hard disk. You may need to reinstall FreeBSD from the
beginning if this happens.

It used to be relatively common that sysinstall couldn’t calculate the correct geometry for
a disk, and that as a result you could install a system, but it wouldn’t boot. Since those
days, sysinstall has become a lot smarter, but it’s still barely possible that you’ll run into
this problem.

If you can’t figure out the correct geometry for your machine, and even if you don’t want
to run Microsoft on your machine, try installing a small Microsoft partition at the
beginning of the disk and install FreeBSD after that. The install program sees the
Microsoft partition and tries to infer the correct geometry from it, which usually works.
After the partition editor has accepted the geometry, you can remove the Microsoft
partition again. If you are sharing your machine with Microsoft, make sure that the
Microsoft partition is before the FreeBSD partition.

Alternatively, if you don’t want to share your disk with any other operating system, select

82 Chapter 5: Installing FreeBSD

the option to use the entire disk (a in the partition editor). You’re less likely to have
problems with this option.

System hangs during boot
A number of problems may lead to the system hanging during the boot process. All the
known problems have been eliminated, but there’s always the chance that something new
will crop up. In general, the problems are related to hardware probes, and the most
important indication is the point at which the boot failed. It’s worth repeating the boot
with the verbose flag: again, refer to the description of the boot process on page 529.
Interrupt the boot process with the space bar and enter:

Hit [Enter] to boot immediately, or any other key for command prompt.
Booting [kernel] in 6 seconds... press space bar here
ok set boot_verbose set a verbose boot
ok boot then continue

This flag gives you additional information that might help diagnose the problem. See
Chapter 29 for more details of what the output means.

If you’re using ISA cards, you may need to reconfigure the card to match the kernel, or
change the file /boot/device.hints to match the card settings. See the example on page
609. Older versions of FreeBSD used to have a program called UserConfig to perform
this function, but it is no longer supported.

System boots, but doesn’t run correctly
If you get the system installed to the point where you can start it, but it doesn’t run quite
the way you want, don’t reinstall. In most cases, reinstallation won’t help. Instead, try to
find the cause of the problem—with the aid of the FreeBSD-questions mailing list if
necessary—and fix the problem.

Root file system fills up
You might find that the installation completes successfully, and you get your system up
and running, but almost before you know it, the root file system fills up. This is relatively
unlikely if you follow my recommendation to have one file system for /, /usr and /var,
but if you follow the default recommendations, it’s a possibility. It could be, of course,
that you just haven’t made it big enough—FreeBSD root file systems have got bigger
over the years. In the first edition of this book I recommended 32 MB ‘‘to be on the safe
side.’’ Now adays the default is 128 MB.

On the other hand, maybe you already have an 128 MB root file system, and it still fills
up. In this case, check where you have put your /tmp and /var file systems. There’s a
good chance that they’re on the root file system, and that’s why it’s filling up.

If things go wrong 83

Panic
Sometimes the system gets into so much trouble that it can’t continue. It should notice
this situation and stop more or less gracefully. You might see a message like:

panic: free vnode isn’t

Syncing disks 14 13 9 5 5 5 5 5 5 5 giving up

dumping to dev 20001 offset 0
dump 16 32 48 64 80 96 112 128 succeeded
Automatic reboot in 15 seconds - press a key on the console to abort
Reboooting...

Just because the system has panicked doesn’t mean that you should panic too. It’s a sorry
fact of life that software contains bugs. Many commercial systems just crash when they
hit a bug, and you never know why, or they print a message like General protection
fault, which doesn’t tell you very much either. When a UNIX system panics, it usually
gives you more detailed information—in this example, the reason is free vnode isn’t. You
may not be any the wiser for a message like this (it tells you that the file system handling
has got confused about the current state of storage on a disk), but other people might. In
particular, if you do get a panic and you ask for help on FreeBSD-questions, please
don’t just say ‘‘My system panicked, what do I do?’’ The first answer—if you get one—
will be ‘‘What was the panic string?’’ The second will be ‘‘Where’s the dump?’’

After panicking, the system tries to write file system buffers back to disk so that they
don’t get lost. This is not always possible, as we see on the second line of this example.
It started off with 14 buffers to write, but it only managed to write 9 of them, possibly
because it was confused about the state of the disk. This can mean that you will have
difficulties after rebooting, but it might also mean that the system was wrong in its
assumptions about the number of buffers needed to be written.

In addition to telling you the cause of the panic, FreeBSD will optionally copy the current
contents of memory to the swap file for post-mortem analysis. This is called dumping the
system, and is shown on the next two lines. To enable dumping, you need to specify
where the dump should be written. In /etc/defaults/rc.conf, you will find:

dumpdev="NO" # Device name to crashdump to (if enabled).

To enable dumping, put something like this in /boot/loader.conf :

dumpdev="/dev/ad0s1b"

This enables the dumps to be taken even if a panic occurs before the system reads the
/etc/rc.conf file. Make sure that the name of the dumpdev corresponds to a swap
partition with at least as much space as your total memory. You can use pstat to check
this:

84 Chapter 5: Installing FreeBSD

pstat -s
Device 1024-blocks Used Avail Capacity Type
/dev/ad0s1b 51200 50108 1028 98% Interleaved
/dev/da0s1b 66036 51356 14616 78% Interleaved
/dev/da2s1b 204800 51220 153516 25% Interleaved
Total 321844 152684 169160 47%

As long as this machine doesn’t hav e more than about 192 MB of memory, it will be
possible to take a dump on /dev/da2s1b.

In addition, ensure that you have a directory called /var/crash. After rebooting, the
system first checks the integrity of the file systems, then it checks for the presence of a
dump. If it finds one, it copies the dump and the current kernel to /var/crash.

It’s always worth enabling dumping, assuming your swap space is at least as large as your
memory. You can analyze the dumps with gdb—see page 623 for more details.

To get the best results from a dump analysis, you need a debug kernel. This kernel is
identical to a normal kernel, but it includes a lot of information that can be used for dump
analysis. See page 614 for details of how to build a debug kernel. You never know when
you might run into a problem, so I highly recommend that you use a debug kernel at all
times. It doesn’t hav e any effect on the performance of the system.

Fixing a broken installation
A really massive crash may damage your system to such an extent that you need to
reinstall the whole system. For example, if you overwrite your hard disk from start to
finish, you don’t hav e any other choice. In many cases, though, the damage is repairable.
Sometimes, though, you can’t start the system to fix the problems. In this case, you have
two possibilities:

• Boot from the second CD-ROM (Live Filesystem). It will be mounted as the root file
system.

• Boot from the Fixit floppy. The Fixit floppy is in the distribution in the same
directory as the boot diskette, floppies. Just copy floppies/fixit.flp to a disk in the
same way as described for boot diskettes on page 85. To use the fixit floppy, first
boot with the boot diskette and select ‘‘Fixit floppy’’ from the main menu. The Fixit
floppy will be mounted under the root MFS as /mnt2.

In either case, the hard disks aren’t mounted; you might want to do repair work on them
before any other access.

Use this option only if you have a good understanding of the system installation process.
Depending on the damage, you may or may not be successful. If you have a recent
backup of your system, it might be faster to perform a complete installation than to try to
fix what’s left, and after a reinstallation you can be more confident that the system is
correctly installed.

If things go wrong 85

Alternative installation methods
The description at the beginning of this chapter applied to the most common installation
method, from CD-ROM. In the following sections we’ll look at the relatively minor
differences needed to install from other media. The choices you have are, in order of
decreasing attractiveness:

• Over the network. You have the choice of ftp or NFS connection. If you’re
connected to the Internet and you’re not in a hurry, you can load directly from one of
the distribution sites described in the FreeBSD handbook.

• From a locally mounted disk partition, either FreeBSD (if you have already installed
it) or Microsoft.

• From floppy disk. This is only for masochists or people who really have almost no
hardware: depending on the extent of the installation, you will need up to 250 disks,
and at least one of them is bound to have an I/O error. And don’t forget that a CD-
ROM drive costs a lot less than 250 floppies.

Preparing boot floppies
If your machine is no longer the youngest, you may be able to read the CD-ROM drive,
but not boot from it. In this case, you’ll need to boot from floppy. If you are using 1.44
MB floppies, you will need two or three of them, the Kernel Disk and the MFS Root Disk
and possibly the Drivers Disk to boot the installation programs. If you are using 2.88
MB floppies or a LS-120 disk, you can copy the single Boot Disk, which is 2.88 MB
long, instead of the kernel and MFS root disks. The images of these floppies are on the
CD-ROM distribution in the files floppies/kern.flp, floppies/mfsroot.flp, floppies/driv-
ers.flp and floppies/boot.flp respectively. If you have your CD-ROM mounted on a
Microsoft system, they may be called FLOPPIES\KERN.FLP, FLOPPIES\MFS-
ROOT.FLP, FLOPPIES\DRIVERS.FLP and FLOPPIES\BOOT.FLP respectively. The
bootstrap does not recover bad blocks, so the floppy must be 100% readable.

The way you get the boot disk image onto a real floppy depends on the operating system
you use. If you are using any flavour of UNIX, just perform something like:

dd if=/cdrom/floppies/kern.flp of=/dev/fd0 bs=36b

change the floppy

dd if=/cdrom/floppies/mfsroot.flp of=/dev/fd0 bs=36b
change the floppy

dd if=/cdrom/floppies/drivers.flp of=/dev/fd0 bs=36b

This assumes that your software is on CD-ROM, and that it is mounted on the directory
/cdrom. It also assumes that your floppy drive is called /dev/fd0. This is the FreeBSD
name as of Release 5.0, and it’s also the name that Linux uses. Older FreeBSD and other
BSD systems refer to it as /dev/fd0c.

The dd implementation of some versions of UNIX, particularly older System V variants,
may complain about the option bs=36b. If this happens, just leave it out. It might take

86 Chapter 5: Installing FreeBSD

up to 10 minutes to write the floppy, but it will work, and it will make you appreciate
FreeBSD all the more.

If you have to create the boot floppy from Microsoft, use the program FDIMAGE.EXE,
which is in the tools directory of the first CD-ROM.

Booting from floppy
In almost all cases where you don’t boot from CD-ROM, you’ll boot from floppy, no
matter what medium you are installing from. If you are installing from CD-ROM, put the
CD-ROM in the drive before booting. The installation may fail if you boot before
inserting the CD-ROM.

Boot the system in the normal manner from the first floppy (the one containing the
kern.flp image). After loading the kernel, the system will print the message:

Please insert MFS root floppy and press enter:

After you replace the floppy and press enter, the boot procedure carries on as before.

If you’re using the 2.88 MB image on a 2.88 MB floppy or an LS-120 drive, you have
ev erything you need on the one disk, so you don’t get the prompt to change the disk.
Depending on your hardware, you may later get a prompt to install additional drivers
from the driver floppy.

Installing via ftp
The fun way to install FreeBSD is via the Internet, but it’s not always the best choice.
There’s a lot of data to transfer, and unless you have a really high-speed, non-overloaded
connection to the server, it could take forever. On the other hand, of course, if you have
the software on another machine on the same LAN, and the system on which you want to
install FreeBSD doesn’t hav e a CD-ROM drive, these conditions are fulfilled, and this
could be for you. Before you decide, though, read about the alternative of NFS
installation below: if you don’t hav e an ftp server with the files already installed, it’s a lot
easier to set up an NFS installation.

There are two ftp installation modes you can use:

• Regular ftp mode does not work through most firewalls but will often work best with
older ftp servers that do not support passive mode. Use this mode if your connection
hangs with passive mode.

• If you need to pass through firewalls that do not allow incoming connections, try
passive ftp.

Whichever mode of installation and whichever remote machine you choose, you need to
have access to the remote machine. The easiest and most common way to ensure access
is to use anonymous ftp. If you’re installing from another FreeBSD machine, read how to
install anonymous ftp on page 450. This information is also generally correct for other
UNIX systems.

Alter native installation methods 87

Setting up the ftp server

Put the FreeBSD distribution in the public ftp directory of the ftp server. On BSD
systems, this will be the home directory of user ftp, which in FreeBSD defaults to
/var/spool/ftp. The name of the directory is the name of the release, which in this
example we’ll assume to be 5.0-RELEASE. You can put this directory in a subdirectory
of /var/spool/ftp, for example /var/spool/ftp/FreeBSD/5.0-RELEASE, but the only
optional part in this example is the parent directory Fr eeBSD.

This directory has a slightly different structure from the CD-ROM distribution. To set it
up, assuming you have your distribution CD-ROM mounted on /cdrom, and that you are
installing in the directory /var/spool/ftp/FreeBSD/5.0-RELEASE, perform the following
steps:

cd /var/spool/ftp/FreeBSD/5.0-RELEASE
mkdir floppies
cd floppies
cp /cdrom/floppies/* . don’t omit the . at the end
cd /cdrom the distribution directory on CD-ROM
tar cf - . | (cd /var/spool/ftp/FreeBSD/5.0-RELEASE; tar xvf -)

This copies all the directories of /cdrom into /var/spool/ftp/FreeBSD/5.0-RELEASE. For
a minimal installation, you need only the directory base. To just install base rather than
all of the distribution, change the last line of the example above to:

mkdir base
cp /cdrom/base/* base

Installing via ftp
On page 77 we saw the media select menu. Figure 5-16 shows the menu you get when
you select FTP or FTP Passive. To see the remainder of the sites, use the PageDown
key. Let’s assume you want to install from presto, a system on the local network. presto
isn’t on this list, of course, so you select URL. Another menu appears, asking for an ftp
pathname in the URL form ftp://hostname/pathname. hostname is the name of the
system, in this case presto.example.org, and pathname is the path relative to the
anonymous ftp directory, which on FreeBSD systems is usually /var/spool/ftp. The
install program knows its version number, and it attaches it to the name you supply.

You can change the version number from the options menu, for example to install a snapshot of a
newer release of FreeBSD.

In this case, we’re installing Release 5.0 of FreeBSD, and it’s in the directory
/var/spool/ftp/pub/FreeBSD/5.0-RELEASE. sysinstall knows the 5.0-RELEASE, so you
enter only ftp://presto.example.org/pub/FreeBSD. The next menu asks you to configure
your network. This is the same menu that you would normally fill out at the end of the
installation—see page 98 for details.

This information is used to set up the machine after installation, so it pays to fill out this
information correctly. After entering this information, continue with Commit (on page
77).

88 Chapter 5: Installing FreeBSD

Figure 5-16: Selecting ftp server

Installing via NFS
If you’re installing from a CD-ROM drive on another system in the local network, you
might find an installation via ftp too complicated for your liking. Installation is a lot
easier if the other system supports NFS. Before you start, make sure you have the CD-
ROM mounted on the remote machine, and that the remote machine is exporting the file
system (in System V terminology, exporting is called sharing). When prompted for the
name of the directory, specify the name of the directory on which the CD-ROM is
mounted. For example, if the CD-ROM is mounted on directory /cdrom on the system
presto.example.org, enter presto.example.org:/cdrom . That’s all there is to it!

Older versions of FreeBSD stored the distribution on a subdirectory dists. Newer versions store it
in the root directory of the CD-ROM.

Next, you give this information to sysinstall, as shown in Figure 5-17. After entering this
information, sysinstall asks you to configure an interface. This is the same procedure
that you would otherwise do after installation—see page 98. After performing this
configuration, you continue with Commit (on page 77).

Installing from a Microsoft partition
On the Intel architecture you can also install from a primary Microsoft partition on the
first disk. To prepare for installation from a Microsoft partition, copy the files from the
distribution into a directory called C:\FREEBSD. For example, to do a minimal
installation of FreeBSD from Microsoft using files copied from a CD-ROM, copy the
directories floppies and base to the Microsoft directories C:\FREEBSD\FLOPPIES and
C:\FREEBSD\BIN respectively. You need the directory FLOPPIES because that’s where
sysinstall looks for the boot.flp, the first image in every installation.

Alter native installation methods 89

Figure 5-17: Specifying NFS file system

The only required directory is base. You can include as many other directories as you
want, but be sure to maintain the directory structure. In other words, if you also wanted
to install XF86336 and manpages, you would copy them to C:\FREEBSD\XF86336 and
C:\FREEBSD\MANPAGES.

Creating floppies for a floppy installation
Installation from floppy disk is definitely the worst choice you have. You will need
nearly 50 floppies for the minimum installation, and about 250 for the complete
installation. The chance of one of them being bad is high. Most problems on a floppy
install can be traced to bad media, or differences in alignment between the media and the
drive in which they are used, so:

Before starting, format all floppies in the drive you intend to
use, even if they are preformatted.

The first two floppies you’ll need are the Kernel floppy and the MFS Root floppy, which
were described earlier.

In addition, you need at minimum as many floppies as it takes to hold all files in the base
directory, which contains the binary distribution. Read the file LAYOUT.TXT paying
special attention to the ‘‘Distribution format’’ section, which describes which files you
need.

If you’re creating the floppies on a FreeBSD machine, you can put ufs file systems on the
floppies instead:

90 Chapter 5: Installing FreeBSD

fdformat -f 1440 fd0.1440
bsdlabel -w fd0.1440 floppy3
newfs -t 2 -u 18 -l 1 -i 65536 /dev/fd0

Next, copy the files to the floppies. The distribution files are split into chunks that will fit
exactly on a conventional 1.44MB floppy. Copy one file to each floppy. Make very sure
to put the file base.inf on the first floppy; it is needed to find out how many floppies to
read.

The installation itself is straightforward enough: follow the instructions starting on page
63, select Floppy in the installation medium menu on page 76, then follow the prompts.

(postinstall.mm), page 91

6
Post-

installation
configuration

In this chapter:
• Installing additional

software
• Adding users
• Time zone
• Networ k ser vices
• Star tup preferences
• Configur ing the

mouse
• Configur ing X
• Rebooting the new

system

In this chapter:
• Installing additional

software
• Adding users
• Time zone
• Networ k ser vices
• Star tup preferences
• Configur ing the

mouse
• Configur ing X
• Rebooting the new

system

In the last chapter we looked at the installation of the basic system, up to the point where
it could be rebooted. It’s barely possible that this could be enough. Almost certainly,
though, you’ll need to perform a number of further configuration steps before the system
is useful. In this chapter we roughly follow the final configuration menu, but there are a
few exceptions. The most important things to do are:

• Install additional software.

• Create accounts for normal users.

• Set up networking support.

• Configure the system to start all the services you need.

• Configure the X Window System and desktop.

In this chapter, we’ll concentrate on getting the system up and running as quickly as
possible. Later on in the book we’ll go into more detail about these topics.

At the end of the previous chapter, we had a menu asking whether we wanted to visit the
‘‘last options’’ menu. If you answer YES, you get the configuration menu shown in
Figure 6-1. If you have rebooted the machine, log in as root and start sysinstall. Then
select Configure, which gets you into the same menu.

91

92 Chapter 6: Post-installation configuration

Figure 6-1: Configuration menu

As the markers under the word Networking indicate, this menu is larger than the
window in which it is displayed. We’ll look at some of the additional entries below.
Only some of these entries are of interest in a normal install; we’ll ignore the rest.

There may be some reasons to deviate from the sequence in this chapter. For example, if
your CD-ROM is mounted on a different system, you may need to set up networking
before installing additional software.

Installing additional software
The first item of interest is Packages. These are some of the ports in the Ports
Collection, which we’ll look at in more detail in Chapter 9.

The Ports Collection contains a large quantity of software that you may want to install.
In fact, there’s so much that just making up your mind what to install can be a
complicated process: there are over 8,000 ports in the collection. Which ones are worth
using? I recommend the following list:

• acroread is the Acrobat reader, a utility for reading and printing PDF files. We look
at it briefly on page 276.

• bash is the shell recommended in this book. We’ll look at it in more detail on page
113. Other popular shells are tcsh and csh, both in the base system.

• cdrecord is a utility to burn SCSI CD-Rs. We’ll discuss it in chapter Chapter 13,
Writing CD-Rs. You don’t need it if you have an IDE CD-R drive.

Installing additional software 93

• Emacs is the GNU Emacs editor recommended in this book. We’ll look at it on page
139. Other popular editors are vi (in the base system) and vim (in the Ports
Collection).

• fetchmail is a program for fetching mail from POP mailboxes. We look at it on page
504.

• fvwm2 is a window manager that you may prefer to a full-blown desktop. We look at
it on page 118.

• galeon is a web browser. We’ll look at it briefly on page 418.

• ghostscript is a PostScript interpreter. It can be used to display PostScript on an X
display, or to print it out on a non-PostScript printer. We’ll look at it on page 273.

• gpg is an encryption program.

• gv is a utility that works with ghostscript to display PostScript on an X display. It
allows magnification and paging, both of which ghostscript does not do easily. We’ll
look at it on page 273.

• ispell is a spell check program.

• kde is the desktop environment recommended in this book. We’ll look at it in more
detail in Chapter 7, The tools of the trade.

• mkisofs is a program to create CD-R images. We look at it in chapter Chapter 13,
Writing CD-Rs.

• mutt is the mail user agent (MUA, or mail reader) recommended in Chapter 26,
Electronic mail: clients.

• postfix is the mail transfer agent (MTA) recommended in chapter Chapter 27,
Electronic mail: servers.

• xtset is a utility to set the title of an xterm window. It is used by the .bashrc file
installed with the instant-workstation package.

• xv is a program to display images, in particular jpeg and gif.

Why do I recommend these particular ports? Simple: because I like them, and I use most
of them myself. That doesn’t mean they’re the only choice, though. Others prefer the
Gnome window manager to kde, or the pine or elm MUAs to mutt, or the vim editor to
Emacs. This is the stuff of holy wars. See http://catb.org/˜esr/jargon/html/H/holy-
wars.html for more details.

Instant workstation
The ports mentioned in the previous section are included in the misc/instant-workstation
port, which installs typical software and configurations for a workstation and allows you
to be productive right away. At a later point you may find that you prefer other software,
in which case you can install it.

94 Chapter 6: Post-installation configuration

It’s possible that the CD set you get will not include instant-workstation. That’s not such
a problem. Due to space restrictions, some CD distributions include instant-workstation-
lite instead. If that’s not there either, just install the individual ports from this list. You
can also do this if you don’t like the list of ports.

Changing the default shell for root
After installation, you may want to change the default shell for existing users to bash. If
you have installed instant-workstation, you should copy the file /usr/lo-
cal/share/dot.bashrc to root’s home directory and call it .bashrc and .bash_profile.
First, start

presto# cp /usr/local/share/dot.bashrc .bashrc
presto# ln .bashrc .bash_profile
presto# bash
=== root@presto (/dev/ttyp2) ˜ 1 -> chsh

The last command starts an editor with the following content:

#Changing user database information for root.
Login: root
Password:
Uid [#]: 0
Gid [# or name]: 0
Change [month day year]:
Expire [month day year]:
Class:
Home directory: /root
Shell: /bin/csh
Full Name: Charlie &
Office Location:
Office Phone:
Home Phone:
Other information:

Change the Shell line to:

Shell: /usr/local/bin/bash

Note that the bash shell is in the directory /usr/local/bin; this is because it is not part of
the base system. The standard shells are in the directory /bin.

Adding users
A freshly installed FreeBSD system has a number of users, nearly all for system
components. The only login user is root, and you shouldn’t log in as root. Instead you
should add at least one account for yourself. If you’re transferring a master.passwd file
from another system, you don’t need to do anything now. Otherwise select this item and
then the menu item User, and fill out the resulting menu like this:

Adding users 95

Figure 6-2: Adding a user

You should not need to enter the fields UID and Home directory: sysinstall does this
for you. It’s important to ensure that you are in group wheel so that you can use the su
command to become root, and you need to be in group operator to use the shutdown
command.

Don’t bother to add more users at this stage; you can do it later. We’ll look at user
management in Chapter 8, on page 112.

Setting the root password
Next, select Root Password. We’ll talk about passwords more on page 144. Select this
item to set the password in the normal manner.

Time zone
Next, select the entry time zone. The first entry asks you if the machine CMOS clock
(i.e. the hardware clock) is set to UTC (sometimes incorrectly called GMT, which is a
British time zone). If you plan to run only FreeBSD or other UNIX-like operating
systems on this machine, you should set the clock to UTC. If you intend to run other
software that doesn’t understand time zones, such as many Microsoft systems, you have
to set the time to local time, which can cause problems with daylight savings time.

96 Chapter 6: Post-installation configuration

Figure 6-3: Time zone select menu: USA

The next menu asks you to select a ‘‘region,’’ which roughly corresponds with a
continent. Assuming you are living in Austin, TX in the United States of America, you
would select America -- North and South and then (after scrolling down) United
States of America. The next menu then looks like this: Select Central Time and
select Yes when the system asks you whether the abbreviation CST sounds reasonable.

This particular step is relatively cumbersome. You may find it easier to look in the
directory /usr/share/zoneinfo after installation. There you find:

cd /usr/share/zoneinfo/
ls
Africa Australia Etc MET WET
America CET Europe MST posixrules
Antarctica CST6CDT Factory MST7MDT zone.tab
Arctic EET GMT PST8PDT
Asia EST HST Pacific
Atlantic EST5EDT Indian SystemV

If you want to set the time zone to, say, Singapore, you could enter:

cd Asia/
ls
Aden Chungking Jerusalem Novosibirsk Tehran
Almaty Colombo Kabul Omsk Thimbu
Amman Dacca Kamchatka Phnom_Penh Tokyo
Anadyr Damascus Karachi Pyongyang Ujung_Pandang
Aqtau Dili Kashgar Qatar Ulaanbaatar
Aqtobe Dubai Katmandu Rangoon Ulan_Bator
Ashkhabad Dushanbe Krasnoyarsk Riyadh Urumqi
Baghdad Gaza Kuala_Lumpur Saigon Vientiane
Bahrain Harbin Kuching Samarkand Vladivostok
Baku Hong_Kong Kuwait Seoul Yakutsk
Bangkok Hovd Macao Shanghai Yekaterinburg
Beirut Irkutsk Magadan Singapore Yerevan

Time zone 97

Bishkek Istanbul Manila Taipei
Brunei Jakarta Muscat Tashkent
Calcutta Jayapura Nicosia Tbilisi
cp Singapore /etc/localtime

Note that the files in /usr/share/zoneinfo/Asia (and the other directories) represent
specific towns, and these may not correspond with the town in which you are located.
Choose one in the same country and time zone.

You can do this at any time on a running system.

Network services

Figure 6-4: Network services menu

The next step is to configure your networking equipment. Figure 6-4 shows the Network
Services Menu. There are a number of ways to get to this menu:

• If you’re running the recommended Custom installation, you’ll get it automatically
after the end of the installation.

• If you’re running the Standard and Express installations, you don’t get it at all: after
setting up your network interfaces, sysinstall presents you with individual items from
the Network Services Menu instead.

98 Chapter 6: Post-installation configuration

• If you’re setting up after rebooting, or if you missed it during installation, select
Configure from the main menu and then Networking.

The first step should always be to set up the network interfaces, so this is where you find
yourself if you are performing a Standard or Express installation.

Setting up network interfaces
Figure 6-5 shows the network setup menu. On a standard 80x25 display it requires
scrolling to see the entire menu. If you installed via FTP or NFS, you will already have
set up your network interfaces, and sysinstall won’t ask the questions again. The only
real network board on this list is xl0, the Ethernet board. The others are standard
hardware that can also be used as network interfaces. Don’t try to set up PPP here;
there’s more to PPP configuration than sysinstall can handle. We’ll look at PPP
configuration in Chapter 20.

Figure 6-5: Network setup menu

In our case, we choose the Ethernet board. The next menu asks us to set the internet
parameters. Figure 6-6 shows the network configuration menu after filling in the values.
Specify the fully qualified local host name; when you tab to the Domain: field, the
domain is filled in automatically. The names and addresses correspond to the example
network that we look at in Chapter 16, on page 294. We hav e chosen to call this machine
presto, and the domain is example.org. In other words, the full name of the machine is
presto.example.org. Its IP address is 223.147.37.2. In this configuration, all access to
the outside world goes via gw.example.org, which has the IP address 223.147.37.5.
The name server is located on the same host, presto.example.org. The name server isn’t
running when this information is needed, so we specify all addresses in numeric form.

Networ k ser vices 99

What happens if you don’t hav e a domain name? If you’re connecting to the global
Internet, you should go out and get one—see page 318. But in the meantime, don’t fake
it. Just leave the fields empty. If you’re not connecting to the Internet, of course, it
doesn’t make much difference what name you choose.

Figure 6-6: Network configuration menu

As is usual for a class C network, the net mask is 255.255.255.0. You don’t need to fill
in this information—if you leave this field without filling it in, sysinstall inserts it for
you. Normally, as in this case, you wouldn’t need any additional options to ifconfig.

Other network options
It’s up to you to decide what other network options you would like to use. None of the
following are essential, and none need to be done right now, but you may possibly find
some of the following interesting:

• inetd allows connections to your system from outside. We’ll look at it in more detail
on page 448. Although it’s very useful, it’s also a security risk if it’s configured
incorrectly. If you don’t want to accept any connections from outside, you can
disable inetd and significantly reduce possible security exposures.

• NFS client. If you want to mount NFS file systems located on other machines, select
this box. An X appears in the box, but nothing further happens. See Chapters 24 and
25 for further details of NFS.

• NFS server. If you want to allow other systems to mount file systems located on this
machine, select this box. You get a prompt asking you to create the file /etc/exports,
which describes the conditions under which other systems can mount the file systems
on this machine. You must enter the editor, but there is no need to change anything at
this point. We’ll look at /etc/exports in more detail on page 463.

100 Chapter 6: Post-installation configuration

• ntpdate and ntpd are programs that automatically set the system time from time
servers located on the Internet. See page 156 for more details. If you wish, you can
select the server at this point.

• rwhod broadcasts information about the status of the systems on the network. You
can use the ruptime program to find the uptime of all systems running rwhod, and
rwho to find who is running on these systems. On a normal-sized display, you need
to scroll the menu down to find this option.

• You don’t need to select sshd: it’s already selected for you. See page 453 for further
details of ssh and sshd.

You don’t need to specify any of the remaining configuration options during
configuration. See the online handbook for further details.

Startup preferences
The next step of interest is the Startup submenu, which allows you to choose settings
that take effect whenever you start the machine. See Chapter 29 for details of the startup
files.

Figure 6-7: Startup configuration menu

Star tup preferences 101

The most important ones are:

• Select APM if you’re running a laptop. It enables you to power the system down in
suspend to RAM or suspend to disk mode, preserving the currently running system,
and to resume execution at a later date.

• If you have USB peripherals, select usbd to enable the usbd daemon, which
recognizes when USB devices are added or removed.

• named starts a name daemon. Use this if you’re connecting to the Internet at all, even
if you don’t hav e a DNS configuration: the default configuration is a caching name
server, which makes name resolution faster. Just select the box; you don’t need to do
anything else. We’ll look at named in Chapter 21.

• Select lpd, the line printer daemon, if you have a printer connected to the machine.
We’ll look at lpd in Chapter 15.

• Select linux if you intend to run Linux binaries. This is almost certainly the case,
and by default the box is already ticked for you.

• Select SVR4 and SCO if you intend to run UNIX System V.4 (SVR4) or SCO
OpenDesktop or OpenServer (SCO) binaries respectively.

Configuring the mouse
FreeBSD detects PS/2 mice at boot time only, so the mouse must be plugged in when you
boot. If not, you will not be able to use it. To configure, select Mouse from the
configuration menu. The menu in Figure 6-8 appears.

Figure 6-8: Mouse menu

102 Chapter 6: Post-installation configuration

With a modern PS/2 mouse, you don’t need to do any configuration at all. You just
enable the mouse daemon or moused. Select the menu item Enable: you have the
chance to move the mouse and note that the cursor follows. The keys don’t work in this
menu: select Yes and exit the menu. That’s all you need to do.

If you’re running a serial mouse, choose the item Select mouse port and set it to
correspond with the port you have; if you have an unusual protocol, you may also need to
set it with the Type menu. For even more exotic connections, read the man page for
moused and set the appropriate parameters.

Configuring X
You should have installed X along with the rest of the system—see page 75. If you
haven’t, install the package x11/XFree86. In this section, we’ll look at what you need to
do to get X up and running.

X configuration has changed a lot in the course of time, and it’s still changing. The
current method of configuring X uses a program called xf86cfg, which is still under
development, and it shows a few strangenesses. Quite possibly the version you get will
not behave identically with the following description. The differences should be
relatively clear, howev er.

Figure 6-9: xf86cfg main menu

The configuration is stored in a file called XF86Config, though the directory has changed
several times in the last few years. It used to be in /etc/X11/XF86Config or

Configur ing X 103

/etc/XF86Config, but the current preferred place is /usr/X11R6/lib/X11/XF86Config. The
server looks for the configuration file in multiple places, so if you’re upgrading from an
earlier version, make sure you remove any old configuration files. We’ll look at the
contents of the file in detail in Chapter 28. In this section, we’ll just look at how to
generate a usable configuration.

From the configuration menu, select XFree86 and then xf86cfg. There is a brief delay
while xf86cfg creates an initial configuration file, then you see the main menu of Figure
6-9. This application runs without knowing what the hardware is, so the rendering is
pretty basic. The window on the left shows the layout of the hardware, and the window
on the right is available in case your mouse isn’t working. Select the individual
components with the mouse or the numeric keypad. For example, to configure the
mouse, select the image at top left:

Figure 6-10: xf86cfg mouse menu

In all likelihood that won’t be necessary. The configuration file that xf86cfg has already
created may be sufficient, so you could just exit and save the file. You’ll probably want to
change some things, though. In the following, we’ll go through the more likely changes
you may want to make.

Configuring the keyboard

You can select a number of options for the keyboard, including alternative key layouts.
You probably won’t need to change anything here.

Figure 6-11: xf86cfg keyboard menu

104 Chapter 6: Post-installation configuration

Describing the monitor

Probably the most important thing you need to change are the definitions for the monitor
and the display card. Some modern monitors and most AGP display cards supply the
information, but older devices do not. In this example we’ll configure a Hitachi CM813U
monitor, which does not identify itself to xf86cfg. Select the monitor image at the top
right of the window, then Configure Monitor(s). You see:

xf86cfg doesn’t know anything about the monitor, so it assumes that it can only display
standard VGA resolutions at 640x480. The important parameters to change are the
horizontal and vertical frequencies. You can select one of the listed possibilities, but
unless you don’t know your’s monitor specifications, you should set exactly the
frequencies it can do. In this case, the monitor supports horizontal frequencies from 31
kHz to 115 kHz and vertical frequencies from 50 Hz to 160 Hz, so that’s what we enter.
At the same time, we change the identifier to indicate the name of the monitor:

Figure 6-12: xf86cfg monitor menu

Configur ing X 105

Select OK to return to the previous menu.

Configuring the display card

xf86cfg recognizes most modern display cards, including probably all AGP cards, so you
probably don’t need to do anything additional to configure the display card. If you find
that the resultant configuration file doesn’t know about your card, you’ll have to select the
card symbol at the top of the screen. Even if the card has been recognized, you get this
display:

The only indication you have that xf86cfg has recognized the card (here a Matrox G200)
is that it has selected mga for the driver name. If you need to change it, scroll down the
list until you find the card:

Figure 6-13: xf86cfg card select menu

106 Chapter 6: Post-installation configuration

Selecting display resolutions

The display resolution is defined by Mode Lines, which we’ll look at in detail on page
513. The names relate to the resolution they offer. By default, xf86cfg only gives you
640x480, so you’ll certainly want to add more. First, select the field at the top left of the
screen:

Figure 6-14: xf86cfg configuration selection

From this menu, select Configure ModeLine. You see:

Figure 6-15: xf86cfg mode line menu

If you pass the cursor over the image of the screen, you’ll see this warning:

Figure 6-16: xf86cfg mode line warning

Take it seriously. We’ll look at this issue again in Chapter 28 on page 510. For an initial
setup, you shouldn’t use this interface. Instead, select Add standard VESA mode at the
top. We get another menu:

Configur ing X 107

Figure 6-17: xf86cfg VESA mode lines

Select the resolutions you want with the highest frequency that your hardware can handle.
In this case, you might select 1024x768 @ 85 Hz, because it’s still well within the range
of the monitor. Answer Yes to the question of whether you want to add it. You can
select as many resolutions as you want, but the ModeLine window does not show them.

You can also use the ModeLine window to tune the display, but it’s easier with another
program, xvidtune. We’ll look at those details in Chapter 28.

Finally, select Quit at the bottom right of the display. You get this window:

Figure 6-18: xf86cfg quit

When you answer Yes, you get a similar question asking whether you want to save the
keyboard definition. Once you’ve done that, you’re finished.

108 Chapter 6: Post-installation configuration

Desktop configuration
Next, select Desktop from the Configuration menu. You get this menu:

Figure 6-19: Desktop select menu

Which one do you install? You hav e the choice. If you know what you want, use it.
There are many more window managers than shown here, so if you don’t see what you’re
looking for, check the category x11-wm in the Ports Collection. The select menu gives
you the most popular ones: Gnome, Afterstep, Enlightenment, KDE, Windowmaker and
fvwm2. In this book, we’ll consider the KDE desktop and the fvwm2 window manager.
KDE is comfortable, but it requires a lot of resources. Gnome is similar in size to KDE.
By contrast, fvwm2 is much faster, but it requires a fair amount of configuration. We’ll
look at KDE and fvwm2 in Chapter 7.

Additional X configuration
At this point, we’re nearly done. A few things remain to be done:

• Decide how you want to start X. You can do it explicitly with the startx command,
or you can log in directly to X with the xdm display manager. If you choose startx,
you don’t need to do any additional configuration.

• For each user who runs X, create an X configuration file.

Configur ing X 109

Configuring xdm

To enable xdm, edit the file /etc/ttys. By default it contains the following lines:

ttyv8 "/usr/X11R6/bin/xdm -nodaemon" xterm off secure

Using an editor, change the text off to on:

ttyv8 "/usr/X11R6/bin/xdm -nodaemon" xterm on secure

If you do this from a running system, send a HUP signal to init to cause it to re-read the
configuration file and start xdm:

kill -1 1

This causes an xdm screen to appear on /dev/ttyv8. You can switch to it with Alt-F9.

User X configuration

If you’re starting X manually with startx, create a file .xinitrc in your home directory.
This file contains commands that are executed when X starts. Select the line that
corresponds to your window manager or desktop from the following list, and put it in
.xinitrc:

startkde for kde
exec gnome-session for Gnome
fvwm2 for fvwm2

If you’re using xdm, you put the same content in the file .xsession in your home
directory.

Rebooting the new system
When you get this far, you should have a functional system. If you’re still installing from
CD-ROM, you reboot by exiting sysinstall. If you have already rebooted, you exit
sysinstall and reboot with:

shutdown -r now

Don’t just press the reset button or turn the power off. That can cause data loss. We’ll
look at this issue in more detail on page 541.

(unixref.mm), page 111

7
The tools of

the trade

In this chapter:
• Users and groups
• Gaining access
• The KDE desktop
• The fvwm2 window

manager
• Changing the X

display
• Getting a shell
• Files and file names
• Differences from

Microsoft
• The Emacs editor
• Stopping the system

In this chapter:
• Users and groups
• Gaining access
• The KDE desktop
• The fvwm2 window

manager
• Changing the X

display
• Getting a shell
• Files and file names
• Differences from

Microsoft
• The Emacs editor
• Stopping the system

So now you have installed FreeBSD, and it successfully boots from the hard disk. If
you’re new to FreeBSD, your first encounter with it can be rather puzzling. You probably
didn’t expect to see the same things you know from other platforms, but you might not
have expected what you see either:

FreeBSD (freebie.example.org) (ttyv0)

login:

If you have installed xdm, you’ll at least get a graphical display, but it still asks you to log
in and provide a password. Where do you go from here?

There isn’t space in this book to explain everything there is about working with FreeBSD,
but in the following few chapters I’d like to make the transition easier for people who
have prior experience with Microsoft platforms or with other flavours of UNIX. You can
find a lot more information about these topics in UNIX for the Impatient, by Paul W.
Abrahams and Bruce R. Larson, UNIX Power Tools, by Jerry Peek, Tim O’Reilly, and
Mike Loukides, and UNIX System Administration Handbook, by Evi Nemeth, Garth
Snyder, Scott Seebass, and Trent R. Hein. The third edition of this book also covers
FreeBSD Release 3.2. See Appendix A, Bibliography, for more information.

If you’ve come from Microsoft, you will notice a large number of differences between
UNIX and Microsoft, but in fact the two systems have more in common than meets the
eye. Indeed, back in the mid-80s, one of the stated goals of MS-DOS 2.0 was to make it
more UNIX-like. You be the judge of how successful that attempt was, but if you know

111

112 Chapter 7: The tools of the trade

the MS-DOS command-line interface, you’ll notice some similarities in the following
sections.

In this chapter, we’ll look at FreeBSD from the perspective of somebody with computer
experience, but with no UNIX background. If you do have a UNIX background, you may
still find it interesting.

If you’re coming from a Microsoft platform, you’ll be used to doing just about everything
with a graphical interface. In this book I recommend that you use X and possibly a
desktop, but the way you use it is still very different. FreeBSD, like other UNIX-like
systems, places much greater emphasis on the use of text. This may seem primitive, but
in fact the opposite is true. It’s easier to point and click than to type, but you can express
yourself much more accurately and often more quickly with a text interface.

As a result, the two most important tools you will use with FreeBSD are the shell and the
editor. Use the shell to issue direct commands to the system, and the editor to prepare
texts. We’ll look at these issues in more detail in this chapter. In Chapter 8, Taking
control, we’ll look at other aspects of the system. First, though, we need to get access to
the system.

Users and groups
Probably the biggest difference between most PC operating systems and FreeBSD also
takes the longest to get used to: FreeBSD is a multi-user, multi-tasking system. This
means that many people can use the system at once, and each can do several things at the
same time. You may think ‘‘Why would I want to do that?.’’ Once you’ve got used to
this idea, though, you’ll never want to do without it again. If you use the X Window
System, you’ll find that all windows can be active at the same time—you don’t hav e to
select them. You can monitor some activity in the background in another window while
writing a letter, testing a program, or playing a game.

Before you can access a FreeBSD system, you must be registered as a user. The
registration defines a number of parameters:

• A user name, also often called user ID. This is a name that you use to identify
yourself to the system.

• A password, a security device to ensure that other people don’t abuse your user ID.
To log in, you need to specify both your user ID and the correct password. When you
type in the password, nothing appears on the screen, so that people looking over your
shoulder can’t read it.

It might seem strange to go to such security measures on a system that you alone use.
The incidence of Internet-related security problems in the last few years has shown
that it’s not strange at all, it’s just common sense. Microsoft systems are still subject
to a never-ending series of security exploits. FreeBSD systems are not.

Users and groups 113

• A shell, a program that reads in your commands and executes them. MS-DOS uses
the program COMMAND.COM to perform this function. UNIX has a large choice of
shells: the traditional UNIX shells are the Bourne shell sh and the C shell csh, but
FreeBSD also supplies bash, tcsh, zsh and others. I personally use the bash shell,
and the examples in this book are based on it.

• A home directory. The system can have multiple users, so each one needs a separate
directory in which to store his private files. Typically, users have a directory
/home/username, where username is the name they use to log in. When you log in
to the system, the shell sets the current directory to your home directory. In it, you
can do what you want, and normally it is protected from access by other users. Many
shells, including the bash shell used in these examples, use the special notation ˜
(tilde) to represent the name of the home directory.

• A group number. UNIX collects users into groups who have specific common access
permissions. When you add a user, you need to make him a member of a specific
group, which is entered in the password information. Your group number indirectly
helps determine what you are allowed to do in the system. As we’ll see on page 181,
your user and group determine what access you have to the system. You can belong
to more than one group.

Group numbers generally have names associated with them. The group names and
numbers are stored in the file /etc/group. In addition, this file may contain user IDs
of users who belong to another group, but who are allowed to belong to this group as
well.

If you find the concept of groups confusing, don’t worry about them. You can get by
quite happily without using them at all. You’ll just see references to them when we
come to discuss file permissions. For further information, look at the man page for
group(5).

By the time you get here, you should have defined a user name, as recommended on page
94. If you haven’t, you’ll have to log in as root and create one as described there.

Gaining access
Once you have a user name, you can log in to the system. Already you have a choice:
FreeBSD offers both virtual terminals and the X Window System. The former displays
plain text on the monitor, whereas the latter uses the system’s graphics capabilities. Once
running, you can switch from one to the other, but you have the choice of which interface
you use first. If you don’t do anything, you get a virtual terminal. If you run xdm, you
get X.

It’s still relatively uncommon to use xdm, and in many instances you may not want X at
all, for example if you’re running the system as a server. As a result, we’ll look at the
‘‘conventional’’ login first.

If you’re logging in on a virtual terminal, you’ll see something like this:

114 Chapter 7: The tools of the trade

login: grog
Password: password doesn’t show on the screen
Last login: Fri Apr 11 16:30:04 from canberra
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regents of the University of California. All rights reserved.

FreeBSD 5.0-RELEASE (FREEBIE) #0: Tue Dec 31 19:08:24 CST 2002

Welcome to FreeBSD!

You have mail.
erase ˆH, kill ˆU, intr ˆC, status ˆT
Niklaus Wirth has lamented that, whereas Europeans pronounce his name
correctly (Ni-klows Virt), Americans invariably mangle it into
(Nick-les Worth). Which is to say that Europeans call him by name, but
Americans call him by value.
=== grog@freebie (/dev/ttyv0) ˜ 1 ->

There’s a lot of stuff here. It’s worth looking at it in more detail:

• The program that asks you to log in on a terminal window is called getty. It reads in
your user ID and starts a program called login and passes the user ID to it.

• login asks for the password and checks your user ID.

• If the user ID and password are correct, login starts your designated shell.

• While starting up, the shell looks at a number of files. See the man page for your
particular shell for details of what they are for. In this case, though, we can see the
results: one file contains the time you last logged in, another one contains the
Message of the day (/etc/motd), and a third one informs you that you have mail. The
shell prints out the message of the day verbatim—in this case, it contains information
about the name of the kernel and a welcome message. The shell also prints
information on last login time (in this case, from a remote system) and whether you
have mail.

• The line ‘‘erase ˆH, kill ˆU, intr ˆC, status ˆT’’ looks strange. It’s
telling you the current editing control characters. We’ll look at these on page 131.
At this point, the shell changes the current directory to your home directory. There is
no output on the screen to indicate this.

• The shell runs the fortune program, which prints out a random quotation from a
database of ‘‘fortune cookies.’’ In this case, we get a message about Niklaus Wirth,
the inventor of the Pascal programming language.

• Finally, the last line is a prompt, the information that tells you that the shell is ready
for input.

The prompt illustrates a number of things about the UNIX environment. By default, sh
and friends prompt with a $, and csh and friends prompt with a %. You can change it to
just about anything you want with the UNIX shells. You don’t hav e to like my particular
version, but it’s worth understanding what it’s trying to say.

The first part, ===, is just to make it easier to find in a large list on an X display. An
xterm window on a high resolution X display can contain up to 120 lines, and searching
for command prompts can be non-trivial.

Gaining access 115

Next, grog@freebie is my user ID and the name of system on which I am working, in
the RFC 2822 format used for mail IDs. Multiple systems and multiple users can all be
present on a single X display. This way, I can figure out which user I am and what
system I am running on.

/dev/ttyv0 is the name of the terminal device. This can sometimes be useful.

˜ is the name of the home directory. Most shells, but not all of them, support this
symbolism.

1 is the prompt number. Each time you enter a command, it is associated with this
number, and the prompt number is incremented. One way to re-execute the command is
to enter !!1 (two exclamation marks and the number of the command). We’ll look at
more comfortable ones on page 131.

To start X from a virtual terminal shell, use the startx command:

$ startx

If you use xdm, you bypass the virtual terminals and go straight into X. Enter your user
name and password to the login prompt or the xdm login screen, and press Enter. If you
use the xdm login, you’ll go straight into X.

Figure 7-1: KDE display

116 Chapter 7: The tools of the trade

Either way, assuming that you’ve installed and configured kde, you’ll get a display
similar to that in Figure 7-1. This example includes four windows that are not present on
startup. On startup the central part of the screen is empty. We’ll look at the windows
further below.

The KDE desktop
KDE is a complicated system, and good documentation is available at
http://www.kde.org/documentation/. Once you have KDE running, you can access the
same information via the help icon on the panel at the bottom (the life ring icon). The
following description gives a brief introduction.

The KDE display contains a number of distinct areas. At the top is an optional menu, at
the bottom an almost optional panel, and the middle of the screen is reserved for
windows.

The Desktop Menu
The Desktop Menu is at the very top of the screen. It provides functionality that is not
specific to a particular application. Select the individual categories with the mouse. For
example, the New menu looks like this:

Figure 7-2: KDE desktop menu

As the menu indicates, you can use these menus to create new files.

The Panel

At the bottom of the screen is the panel, which consists of a number of fields. The left-
hand section is used for starting applications.

The stylized letter K at the extreme left is the Application Starter. When you select it, a

The KDE desktop 117

long vertical menu appears at the left of the screen and allows you to start programs
(‘‘applications’’) or access just about any other function.

Next comes an icon called ‘‘show desktop.’’ This is a convenient way to iconify all the
windows currently on the desktop.

The remaining icons on this part of the panel represent various applications.

• The konsole terminal emulator.

• The command center, which you use to configure KDE.

• The help system.

• Access to the home directory with the browser konqueror.

• Access to the Web, also with the browser konqueror.

• The Kmail MUA.

• The KWord word processor, which can understand Microsoft Word documents.

• The Kspread spreadsheet.

• The Kpresenter presentation package.

• The Kate editor.

The next section of the panel contains some control buttons and information about the
current desktop layout:

The section at the left shows the current contents of four screens, numbered 1 to 4.
Screen 1 is the currently displayed screen; you can select one of the others by moving the
cursor in the corresponding direction, or by selecting the field with the mouse.

To the right of that are icons for the currently active windows. The size expands and
contracts depending on the number of different kinds of window active. If you select one
of these icons with the left mouse button, it will iconify or deiconify (‘‘minimize’’ or
‘‘maximize’’) the window. If you have multiple xterms active, you will only have one
icon. In this case, if you select the icon, you will get another pop-up selection menu to
allow you to choose the specific window.

The right part of the panel contains a further three fields:

118 Chapter 7: The tools of the trade

• The first one shows a stylized padlock (for locking the session when you leave the
machine; unlock by entering your password) and a stylized off switch, for logging out
of the session.

• The next section shows a stylized power connector, which displays the current power
status of the machine, and a clipboard.

• The right side shows a digital clock.

Probably the most useful part of this section of the panel is not very obvious: the right-
pointing arrow allows you to remove the panel if you find it’s in the way. The entire
panel is replaced by a single left-pointing arrow at the extreme right of the display.

Using the mouse

By default, kde only uses the left and the right mouse buttons. In general, the left button
is used to select a particular button, and the right button is used for an auxiliary menu.

Manipulating windows

You’ll notice that each window has a frame around it with a number of features. In X
terminology, they’re called decorations. Specifically:

• There’s a title bar with the name of the program. If you select the bar itself, you raise
the window above all others. If you hold down the button on the title bar, you can
move the window.

• At the left of the title bar there is an X logo. If you select this logo, you get a menu
of window operations.

• At the right of the title bar, there are three buttons that you can select. The left one
iconifies the window, the middle one maximizes the window, making it take up the
entire screen, and the one on the right kills the application. If the window is already
maximized, the middle button restores it to its previous size.

• You can select any corner of the window, or any of the other edges, to change the size
of the window.

The fvwm2 window manager
If you come from a conventional PC background, you shouldn’t hav e much difficulty
with KDE. It’s a relatively complete, integrated environment. But it isn’t really UNIX.
If you come from a UNIX environment, you may find it too all-encompassing. You may
also find that there are significant delays when you start new applications.

UNIX has a very different approach to windows. There is no desktop, just a window
manager. It takes up less disk space, less processor time, and less screen real estate. By
default, XFree86 comes with the twm window manager, but that’s really a little primitive.
With modern machines, there’s no reason to choose such a basic window manager. You
may, howev er, find that fvwm2 is more your style than KDE.

The fvwm2 window manager 119

Starting fvwm2
Like KDE, you install fvwm2 from the Ports Collection. It’s not designed to work
completely correctly out of the box, though it does work. As with KDE, the first thing
you need to do is to create a .xsession or .xinitrc file, depending on whether you’re
running xdm. It must contain at least the line:

fvwm2

Start X the same way you did for KDE. This time you see, after starting the same
applications as before:

This picture shows both similarities with and differences from KDE. The similarities
include:

• Each window has a frame and a title. The exact form of the decorations is different,
but the purpose is the same. There is no ‘‘close application’’ button: for most UNIX
applications, you should get the program to exit rather than killing it.

• There is a task bar at the bottom right, taking up only half the width of the screen.
The currently active window (the xterm at the left in this example) is highlighted.

• The default fvwm2 display also has four screens, and the task bar shows the position
of the windows on the task bar.

120 Chapter 7: The tools of the trade

Still, there are a number of differences as well:

• Unless you have a top-end machine, it’s much faster in what it does.

• The background (the root window) doesn’t hav e any pattern; it’s just a grey cross-
hatch.

• You can move from one screen to the other using the cursor, and windows can
overlap. In this example, the galeon web browser window goes down to the screen
below, and the Emacs window goes over all four screens, as the display on the task
bar shows. With KDE, the only way to display the rest of these windows is to move
the window.

• Paradoxically, you can do a lot more with the mouse. On the root window, the left
mouse button gives you a menu for starting various programs, both locally and
remotely, and also various window utilities. The middle button gives you direct
access to the window manipulation utilities, and the right button gives a drop-down
list to select any of the currently active windows:

The menus above show one of the problems: look at those system names on the left
submenu (dopey, snoopy and friends). They don’t exist on our sample network, and the
chance of them existing on your network are pretty low as well. They’re hard-coded in
the sample configuration file, /usr/X11R6/etc/system.fvwm2rc. To use fvwm2 effectively,
you’ll have to modify the configuration file. The best thing to do is to make a copy of
/usr/X11R6/etc/system.fvwm2rc in your own directory, as ˜/.fvwm2/.fvwm2rc. Then you
can have lots of fun tweaking the file to do exactly what you want it to do. Clearly, KDE
is easier to set up.

Changing the X display
When you set up your XF86Config file, you may have specified more than one
resolution. For example, on page 107 we selected the additional resolution 1024x768
pixels. When you start X, it automatically selects the first resolution, in this case
640x480. You can change to the previous resolution (the one to the left in the list) by
pressing the Ctrl-Alt-Keypad - key, and to the following resolution (the one to the right
in the list) with Ctrl-Alt-Keypad +. Ke ypad + and Ke ypad - refer to the + and - symbols
on the numeric keypad at the right of the keyboard; you can’t use the + and - symbols on

Changing the X display 121

the main keyboard for this purpose. The lists wrap around: in our example, if your
current resolution is 640x480, and you press Ctrl-Alt-Keypad -, the display changes to
1024x768. It’s a very good idea to keep the default resolution at 640x480 until you have
debugged your XF86Config parameters: 640x480 almost always works, so if your display
is messed up, you can just switch back to a known good display with a single keystroke.

Selecting pixel depth
You can configure most display boards to display a number of different pixel depths (a
different number of bits per pixel, which translates to a different number of colours).
When you start X, however, it defaults to 8 bits per pixel (256 colours), which is a very
poor rendition. To start it with a different number, specify the number of planes. For
example, to start with 32 bits per pixel (4,294,967,296 colours), enter:

$ startx -- -bpp 32

With older display boards, which had relatively limited display memory, there was a
tradeoff between maximum resolution and maximum pixel depth. Modern display cards
no longer have this limitation. We’ll look at this issue in more detail on page 522.

Getting a shell
As we saw at the beginning of the chapter, your main tools are the shell and the editor,
and that’s what we saw on the sample screens. But when you start X, they’re not there:
you need to start them.

In KDE, you have two ways to start a terminal window:

• You can select the icon showing a monitor with a shell in front of it, third from the
left at the bottom of the example above. This starts the konsole terminal emulator.

• You can start an xterm by pressing Alt-F2. You see a window like the one in the
centre left of Figure 7-1, enter the text xterm (as shown) and press Run or the Enter
key.

Obviously the first is the intended approach, and it’s easier. Nev ertheless, I recommend
using xterm at least until you’re sure you want to stick with kde: there are some subtle
differences, and konsole is intended to work with kde only. If you do stick with KDE,
you should change the configuration of the konsole button to start xterm instead; that’s
relatively straightforward.

In fvwm2, you start an xterm from the left mouse menu, as shown above.

122 Chapter 7: The tools of the trade

Shell basics
The most basic thing you can do with the shell is to start a program. Consider program
names to be commands: like you might ask somebody to ‘‘wash the dishes’’ or ‘‘mow the
lawn,’’ you can tell the shell to ‘‘remove those files’’:

$ rm file1 file2 file3

This starts a program called rm (remove), and gives it a list of three file names to
remove.

If you’re removing a whole lot of files, this could take a while. Consider removing the
entire directory hierarchy /usr/obj, which is created when building a new version of the
system (see page 595). This directory hierarchy contains about 15,000 files and
directories, and it’ll take a while to remove it. You can do this with the following
command:

rm -rf /usr/obj &

In this example, we have a couple of options led in by a hyphen (-) and also the character
& at the end of the line.

• The r option tells rm to recursively descend into subdirectories. If you didn’t
specify this, it would remove all files in the directory /usr/obj and then exit,
complaining that it can’t delete directories.

• The f (force) option tells rm to continue on error; otherwise if anything goes wrong,
it will stop.

• The & character at the end of the line tells the shell (not rm) to continue after starting
the program. It can run for some time, and there’s no need to wait for it.

Options
In the previous example, we saw a couple of options. By convention, they come between
the command name and other parameters, and they’re identified because they start with a
hyphen character (-). There’s a lot of variation, though, depending on the individual
program.

• Sometimes, as in the previous example, options consist of a single letter and can
often be joined together.

• Some programs, like tar and ps, don’t insist on the hyphen lead-in. In Chapter 8,
we’ll see the command:

ps waux

Getting a shell 123

This command could equally well be written:

ps -waux

You may also come across programs that refuse to accept the hyphen at all.

• Sometimes options can have values. For example, in Chapter 23 we’ll see:

tcpdump -i ppp0 host hub.freebsd.org

Here, ppp0 is an argument to the i option. In some cases, it must be written with a
space; in others, it must be written without a space; and in others again, it can be
written either way. Pay attention to this detail when reading man pages.

• In other cases, they can be keywords, in which case they need to be written
separately. The GNU project is particularly fond of this kind of option. For example,
when building the system you may see compiler invocations like these:

cc -O -pipe -Dinline=rpcgen_inline -Wall -Wno-format-y2k -Wno-uninitialized \
-D__FBSDID=__RCSID -c /usr/src/usr.bin/rpcgen/rpc_main.c

With the exception of the last parameter, all of these texts are options, as the hyphen
suggests.

• Options are specific to particular commands, though often several commands attempt
to use the same letters to mean the same sort of thing. Typical ones are v for verbose
output, q for quiet output (i.e. less than normal).

• Sometimes you can run into problems when you supply a parameter that looks like an
option. For example, how do you remove a file called -rf? There are a number of
solutions for this problem. In this example, you could write:

$ rm ./-rf

This is an alternative file naming convention that we’ll look at again on page 126.

Shell parameters
When you invoke a program with the shell, it first parses the input line before passing it
to the program: it turns the line into a number of parameters (called arguments in the C
programming language). Normally the parameters are separated by white space, either a
space or a tab character. For example, consider the previous example:

$ rm file1 file2 file3

the program receives four arguments, numbered 0 to 3:

124 Chapter 7: The tools of the trade

Table 7-1: Program arguments

Argument Value
0 rm
1 file1
2 file2
3 file3

What happens if you want to pass a name with a space? For example, you might want to
look for the text ‘‘Mail rejected’’ in a log file. UNIX has a standard program for
looking for text, called grep. The syntax is:

grep expression files

Argument 1 is the expression; all additional arguments are the names of files to search.
We could write:

$ grep Mail rejected /var/log/maillog

but that would try to look for the text Mail in the files rejected (probably causing an error
message that the file did not exist) and /var/log/maillog (where just about every line
contains the text Mail). That’s not what we want. Instead, we do pretty much what I
wrote above:

$ grep "Mail rejected" /var/log/maillog

In other words, if we put quote characters "" around a group of words, the shell will
interpret them as a single parameter. The first parameter that is passed to grep is Mail
rejected, not "Mail rejected".

This behaviour of the shell is a very good reason not to use file names with spaces in
them. It’s perfectly legitimate to embed spaces into UNIX file names, but it’s a pain to
use. If you want to create a file name that contains several words, for example
All files updated since last week, consider changing the spaces to underscores:
All_files_updated_since_last_week.

It’s even more interesting to see what happens when you pass a globbing character to a
program, for example:

$ cc -o foo *.c

This invocation compiles all C source files (*.c) and creates a program foo. If you do this
with Microsoft, the C compiler gets four parameters, and it has to find the C source files
itself. In UNIX, the shell expands the text *.c and replaces it with the names of the
source files. If there are thirty source files in the directory, it will pass a total of 33
parameters to the compiler.

Getting a shell 125

Fields that can contain spaces
The solution to the ‘‘Mail rejected’’ problem isn’t ideal, but it works well enough as long
as you don’t hav e to handle fields with blanks in them too often. In many cases, though,
particularly in configuration files, fields with blanks are relatively common. As a result, a
number of system configuration files use a colon (:) as a delimiter. This looks very
confusing at first, but it turns out not to be as bad as the alternatives. We’ll see some
examples in the PATH environment variable on page 130, in the password file on page
144, and in the login class file on page 571.

Files and file names
Both UNIX and Microsoft environments store disk data in files, which in turn are placed
in directories. A file may be a directory: that is, it may contain other files. The
differences between UNIX and Microsoft start with file names. Traditional Microsoft file
names are rigid: a file name consists of eight characters, possibly followed by a period
and another three characters (the so-called file name extension). There are significant
restrictions on which characters may be used to form a file name, and upper and lower
case letters have the same meaning (internally, Microsoft converts the names to UPPER
CASE). Directory members are selected with a backslash (\), which conflicts with other
meanings in the C programming language—see page 138 for more details.

FreeBSD has a very flexible method of naming files. File names can contain any
character except /, and they can be up to 255 characters long. They are case-sensitive:
the names FOO, Foo and foo are three different names. This may seem silly at first, but
any alternative means that the names must be associated with a specific character set.
How do you upshift the German name ungleichmäßig? What if the same characters
appear in a Russian name? Do they still shift the same? The exception is because the /
character represents directories. For example, the name /home/fred/longtext-with-a-long-
name represents:

1. First character is a /, representing the root file system.

2. home is the name of a directory in the root file system.

3. fred is the name of a directory in /home.

4. The name suggests that longtext-with-a-long-name is probably a file, not a directory,
though you can’t tell from the name.

As a result, you can’t use / in a file name. In addition, binary 0s (the ASCII NUL
character) can confuse a lot of programs. It’s almost impossible to get a binary 0 into a
file name anyway: that character is used to represent the end of a string in the C
programming language, and it’s difficult to input it from the keyboard.

Case sensitivity no longer seems as strange as it once did: web browsers have made
UNIX file names more popular with Uniform Resource Indicators or URIs, which are
derived from UNIX names.

126 Chapter 7: The tools of the trade

File names and extensions
The Microsoft naming convention (name, period and extension) seems similar to that of
UNIX. UNIX also uses extensions to represent specific kinds of files. The difference is
that these extensions (and their lengths) are implemented by convention, not by the file
system. In Microsoft, the period between the name and the extension is a typographical
feature that only exists at the display level: it’s not part of the name. In UNIX, the period
is part of the name, and names like foo.bar.bazzot are perfectly valid file names. The
system doesn’t assign any particular meaning to file name extensions; instead, it looks for
magic numbers, specific values in specific places in the file.

Relative paths
Every directory contains two directory entries, . and .. (one and two periods). These are
relative directory entries: . is an alternative way to refer to the current directory, and ..
refers to the parent directory. For example, in /home/fred, . refers to /home/fred, and ..
refers to /home. The root directory doesn’t hav e a parent directory, so in this directory
only, .. refers to the same directory. We’ll see a number of cases where this is useful.1

Globbing characters
Most systems have a method of representing groups of file names and other names,
usually by using special characters for representing an abstraction. The most common in
UNIX are the characters *, ? and the square brackets []. UNIX calls these characters
globbing characters. The Microsoft usage comes from UNIX, but the underlying file
name representation makes for big differences. Table 7-2 gives some examples.

Table 7-2: Globbing examples

Name Microsoft meaning UNIX meaning
CONFIG.* All files with the name CONFIG,

no matter what their extension.
All files whose name starts with
CONFIG., no matter what the rest
is. Note that the name contains a
period.

CONFIG.BA? All files with the name CONFIG
and an extension that starts with
BA, no matter what the last
character.

All files that start with CON-
FIG.BA and have one more char-
acter in their name.

* Depending on the Microsoft ver-
sion, all files without an extension,
or all files.

All files.

. All files with an extension. All files that have a period in the
middle of their name.

1. Interestingly, the Microsoft file systems also have this feature.

Files and file names 127

foo[127] In older versions, invalid. In new-
er versions with long file name
support, the file with the name
foo[127].

The three files foo1, foo2 and
foo7.

Input and output
Most programs either read input data or write output data. To make it easier, the shell
usually starts programs with at least three open files:

• Standard input, often abbreviated to stdin, is the file that most programs read to get
input data.

• Standard output, or stdout, is the normal place for programs to write output data.

• Standard error output, or stderr, is a separate file for programs to write error
messages.

With an interactive shell (one that works on a terminal screen, like we’re seeing here), all
three files are the same device, in this case the terminal you’re working on.

Why two output files? Well, you may be collecting something important, like a backup
of all the files on your system. If something goes wrong, you want to know about it, but
you don’t want to mess up the backup with the message.

Redirecting input and output

But of course, even if you’re running an interactive shell, you don’t want to back up your
system to the screen. You need to change stdout to be a file. Many programs can do this
themselves; for example, you might make a backup of your home directory like this:

$ tar -cf /var/tmp/backup ˜

This creates (option c) a file (option f) called /var/tmp/backup, and includes all the files
in your home directory (˜). Any error messages still appear on the terminal, as stderr
hasn’t been changed.

This syntax is specific to tar. The shell provides a more general syntax for redirecting
input and output streams. For example, if you want to create a list of the files in your
current directory, you might enter:

$ ls -l
drwxr-xr-x 2 root wheel 512 Dec 20 14:36 CVS
-rw-r--r-- 1 root wheel 7928 Oct 23 12:01 Makefile
-rw-r--r-- 5 root wheel 209 Jul 26 07:11 amd.map
-rw-r--r-- 5 root wheel 1163 Jan 31 2002 apmd.conf
-rw-r--r-- 5 root wheel 271 Jan 31 2002 auth.conf
-rw-r--r-- 1 root wheel 741 Feb 19 2001 crontab
-rw-r--r-- 5 root wheel 108 Jan 31 2002 csh.cshrc
-rw-r--r-- 5 root wheel 482 Jan 31 2002 csh.login

(etc)

128 Chapter 7: The tools of the trade

You can redirect this output to a file with the command:

$ ls -l > /var/tmp/etclist

This puts the list in the file /var/tmp/etclist. The symbol > tells the shell to redirect stdout
to the file whose name follows. Similarly, you could use the < to redirect stdin to that
file, for example when using grep to look for specific texts in the file:

$ grep csh < /var/tmp/etclist
-rw-r--r-- 5 root wheel 108 Jan 31 2002 csh.cshrc
-rw-r--r-- 5 root wheel 482 Jan 31 2002 csh.login
-rw-r--r-- 5 grog lemis 110 Jan 31 2002 csh.logout

In fact, though, there’s a better way to do that: what we’re doing here is feeding the
output of a program into the input of another program. That happens so often that there’s
a special method of doing it, called pipes:

$ ls -l | grep csh
-rw-r--r-- 5 root wheel 108 Jan 31 2002 csh.cshrc
-rw-r--r-- 5 root wheel 482 Jan 31 2002 csh.login
-rw-r--r-- 5 grog lemis 110 Jan 31 2002 csh.logout

The | symbol causes the shell to start two programs. The first has a special file, a pipe, as
the output, and the second has the same pipe as input. Nothing gets written to disk, and
the result is much faster.

A typical use of pipes are to handle quantities of output data in excess of a screenful.
You can pipe to the less1 program, which enables you to page backward and forward:

$ ls -l | less

Another use is to sort arbitrary data:

$ ps aux | sort -n +1

This command takes the output of the ps command and sorts it by the numerical (-n)
value of its second column (+1). The first column is numbered 0. We’ll look at ps on
page 148.

Environment variables
The UNIX programming model includes a concept called environment variables. This
rather unusual sounding name is simply a handy method of passing relatively long-lived
information of a general nature from one program to another. It’s easier to demonstrate
the use than to describe. Table 7-3 takes a look at some typical environment variables.
To set environment variables from Bourne-style shells, enter:

1. Why less? Originally there was a program called more, but it isn’t as powerful. less is a new program with
additional features, which proves beyond doubt that less is more.

Files and file names 129

$ export TERM=xterm

This sets the value of the TERM variable to xterm. The word export tells the shell to
pass this information to any program it starts. Once it’s exported, it stays exported. If the
variable isn’t exported, only the shell can use it.

Alternatively, if you want to set the variable only once when running a program, and then
forget it, you can set it at the beginning of a command line:

$ TERM=xterm-color mutt

This starts the mutt mail reader (see page 474) with xterm’s colour features enabled.

For csh and tcsh, set environment variables with:

% setenv TERM xterm

To start a process with these variables, enter:

% env xterm-color mutt

Table 7-3: Common environment variables

Name Purpose
BLOCKSIZE The size of blocks that programs like df count. The default is 512 bytes,

but it’s often more convenient to use 1024 or even 1048576 (1 MB).

DISPLAY When running X, the name of the X server. For a local system, this is
typically unix:0. For remote systems, it’s in the form
system-name:server-number.screen-number. For the system bum-
ble.example.org, you would probably write bumble.example.org:0.

EDITOR The name of your favourite editor. Various programs that start editors
look at this variable to know which editor to start.

HOME The name of your home directory.

LANG The locale that you use. This should be the name of a directory in
/usr/share/locale.

MAIL Some programs use this variable to find your incoming mail file.

MANPATH A list of path names, separated by colons (:), that specifies where the man
program should look for man pages. A typical string might be
/usr/share/man:/usr/local/man, and specifies that there are man
pages in each of the directories /usr/share/man and /usr/local/man.

NTAPE The name of the non-rewinding tape device. See page 252 for more
details.

130 Chapter 7: The tools of the trade

Name Purpose
PATH A list of path names, separated by colons (:), that specifies where the shell

should look for executable programs if you specify just the program name.

PS1 In Bourne-style shells, this is the prompt string. It’s usually set to $, but
can be changed. See page 114 for a discussion of a possible prompt for
bash.

PS2 In Bourne-style shells, this is the prompt string for continuation lines. It’s
usually set to >.

SHELL The name of the shell. Some programs use this for starting a shell.

TAPE The name of the rewinding tape device. See page 252 for more details.

TERM The type of terminal emulation you are using. This is very important:
there is no other way for an application to know what the terminal is, and
if you set it to the wrong value, full-screen programs will behave
incorrectly.

TZ Time zone. This is the name of a file in /usr/share/zoneinfo that describes
the local time zone. See the section on timekeeping on page 155 for more
details.

Note particularly the PATH variable. One of the most popular questions in the FreeBSD-
questions mailing list is ‘‘I have compiled a program, and I can see it in my directory,
but when I try to run it, I get the message ‘‘command not found.’’ This is usually
because PATH does not include the current directory.

It’s good practice not to have your current directory or your home directory in the PATH: if you do,
you can be subject to security compromises. For example, somebody could install a program
called ps in the directory /var/tmp. Despite the name, the program might do something else, for
example remove all files in your home directory. If you change directory to /var/tmp and run ps,
you will remove all files in your home directory. Obviously much more subtle compromises are
possible.

Instead, run the program like this:

$./program

You should set your PATH variable to point to the most common executable directories.
Add something like this to your .profile file (for Bourne-style shells):

PATH=/usr/bin:/usr/local/bin:/usr/sbin:/bin:/sbin:/usr/X11R6/bin
export PATH

This variable is of great importance: one of the leading problems that beginners have is to
have an incorrect PATH variable.

Files and file names 131

Printing out environment variables

So you can’t start a program, and you’re wondering whether your PATH environment
variable is set correctly. You can find out with the echo command:

$ echo $PATH
/bin:/usr/bin

The $ at the beginning of $PATH tells the shell to substitute the value of the environment
variable for its name. Without this, the shell has no way of knowing that it’s an
environment variable, so it passes the text PATH to echo, which just prints it out.

If you want to print out all the environment variables, use the printenv command:

$ printenv | sort
BLOCKSIZE=1048576
CLASSPATH=/usr/local/java/lib:/usr/local/java/lib/classes.zip:/home/grog/netscape/
CVSROOT=/home/ncvs
DISPLAY=freebie:0
EDITOR=emacs
HOME=/home/grog
PAGER=less
PATH=.:/usr/bin:/usr/sbin:/bin:/sbin:/usr/X11R6/bin:/usr/local/bin:/usr/local/sbin
XAUTHORITY=/home/grog/.Xauthority

This example sorts the variables to make it easier to find them. In all probability, you’ll
find many more variables.

Command line editing
Typing is a pain. If you’re anything like me, you’re continually making mistakes, and
you may spend more time correcting typing errors than doing the typing in the first place.
It’s particularly frustrating when you enter something like:

$ groff -rex=7.5 -r$$ -rL -rW -rN2 -mpic tmac.M unixerf.mm
troff: fatal error: can’t open ‘unixerf.mm’: No such file or directory

This command should create the PostScript version of this chapter, but unfortunately I
messed up the name of the chapter: it should have been unixref.mm, and I typed
unixerf.mm.

Yes, I know this looks terrible. In fact, UNIX has ways to ensure you almost never need to write
commands like this. The command I really use to format this chapter is ‘‘make unixref’’.

It would be particularly frustrating if I had to type the whole command in again. UNIX
offers a number of ways to make life easier. The most obvious one is so obvious that you
tend to take it for granted: the Backspace key erases the last character you entered. Well,
most of the time. What if you’re running on a machine without a Backspace key? You
won’t hav e that problem with a PC, of course, but a lot of workstations have a DEL key
instead of a Backspace key. UNIX lets you specify what key to use to erase the last
character entered. By default, the erase character really is DEL, but the shell startup
changes it and prints out a message saying what it has done:

132 Chapter 7: The tools of the trade

erase ˆH, kill ˆU, intr ˆC, status ˆT

in the example on page 113. ˆH (Ctrl-H) is an alternative representation for Backspace.

The three other functions kill, intr, and status perform similar editing functions.
kill erases the whole line, and intr stops a running program.

More correctly, intr sends a signal called SIGINT to the process. This normally causes a
program to stop.

You’ll notice that it is set to Ctrl-C, so its function is very similar to that of the MS-DOS
Break key. status is an oddball function: it doesn’t change the input, it just displays a
statistics message. bash doesn’t in fact use it: it has a better use for Ctrl-T.

In fact, these control characters are just a few of a large number of control characters that
you can set. Table 7-4 gives an overview of the more common control characters. For a
complete list, see the man page stty(1).

Table 7-4: Terminal control characters

Name Default Function
CR \r Go to beginning of line. Normally, this also terminates input (in

other words, it returns the complete line to the program, which
then acts on the input).

NL \n End line. Normally, this also terminates input.

INTR Ctrl-C Generate a SIGINT signal. This normally causes the process to
terminate.

QUIT Ctrl-| Generate a SIGQUIT signal. This normally causes the process to
terminate and core dump, to sav e a copy of its memory to disk for
later analysis.

ERASE DEL Erase last character. FreeBSD sets this to Backspace on login, but
under some unusual circumstances you might find it still set to
DEL.

KILL Ctrl-U Erase current input line.

EOF Ctrl-D Return end-of-file indication. Most programs stop when they
receive an EOF.

STOP Ctrl-S Stop output. Use this to examine text that is scrolling faster than
you can read.

START Ctrl-Q Resume output after stop.

SUSP Ctrl-Z Suspend process. This key generates a SIGTSTP signal when
typed. This normally causes a program to be suspended. To
restart, use the fg command.

Files and file names 133

Name Default Function
DSUSP Ctrl-Y Delayed suspend. Generate a SIGTSTP signal when the character

is read. Otherwise, this is the same as SUSP.

REPRINT Ctrl-R Redisplay all characters in the input queue (in other words,
characters that have been input but not yet read by any process).
The term "print" recalls the days of harcopy terminals. Many
shells disable this function.

DISCARD Ctrl-O Discard all terminal output until another DISCARD character
arrives, more input is typed or the program clears the condition.

To set these characters, use the stty program. For example, if you’re used to erasing the
complete input line with Ctrl-X, and specifying an end-of-file condition with Ctrl-Z, you
could enter:

$ stty susp \377 kill ˆX eof ˆZ

You need to set SUSP to something else first, because by default it is Ctrl-Z, so the
system wouldn’t know which function to perform if you press ˆZ.

The combination \377 represents the character octal 377 (this notation comes from the C
programming language, and its origin is lost in the mists of time, back in the days when UNIX ran
on PDP-11s). This character is the ‘‘null’’ character that turns off the corresponding function.
System V uses the character \0 for the same purpose.

In this particular case, ˆX really does mean the character ˆ followed by the letter X, and
not Ctrl-X, the single character created by holding down the Control character and
pressing X at the same time.

Command history and other editing functions
Nowadays, most shells supply a command history function and additional functionality
for editing it. We’ll take a brief look at these features here—for more details, see the man
pages for your shell.

Shell command line editing has been through a number of evolutionary phases. The
original Bourne shell supplied no command line editing at all, though the version
supplied with FreeBSD gives you many of the editing features of more modern shells.
Still, it’s unlikely that you’ll want to use the Bourne shell as your shell: bash, ksh, and
zsh are all compatible with the Bourne shell, but they also supply better command line
editing.

The next phase of command line editing was introduced with the C shell, csh. By
modern standards, it’s also rather pitiful. It’s described in the csh man page if you really
want to know. About the only part that is still useful is the ability to repeat a previous
command with the !! construct. Modern shells supply command line editing that
resembles the editors vi or Emacs. In bash, sh, ksh, and zsh you can make the choice by
entering:

134 Chapter 7: The tools of the trade

$ set -o emacs for Emacs-style editing
$ set -o vi for vi-style editing

In tcsh, the corresponding commands are:

% bind emacs
% bind vi

Normally you put one of these commands in your startup file.

In Emacs mode, you enter the commands simply by typing them in. In vi mode, you
have to press ESC first. Table 7-5 shows an overview of the more typical Emacs-style
commands in bash. Many other shells supply similar editing support.

As the name suggests, the Emacs editor understands the same editing characters. It also
understands many more commands than are shown here. In addition, many X-based
commands, including web browsers, understand some of these characters.

Table 7-5: Emacs editing characters

Key Function
Ctrl-A Move to the beginning of the line.
LeftArrow Move to previous character on line.
Ctrl-B Move to previous character on line (alternative).
Ctrl-D Delete the character under the cursor. Be careful with this character:

it’s also the shell’s end-of-file character, so if you enter it on an empty
line, it stops your shell and logs you out.

Ctrl-E Move to the end of the line.
RightArrow Move to next character on line.
Ctrl-F Move to next character on line (alternative).
Ctrl-K Erase the rest of the line. The contents are saved to a ring buffer of

erased text and can be restored, possibly elsewhere, with Ctrl-Y.
Ctrl-L Erase screen contents (shell) or redraw window (Emacs).
DownArrow Move to next input line.
Ctrl-N Move to next input line (alternative).
UpArrow Move to previous input line.
Ctrl-P Move to previous input line (alternative).
Ctrl-R Incremental search backward for text.
Ctrl-S Incremental search forward for text.
Ctrl-T Transpose the character under the cursor with the character before the

cursor.
Ctrl-Y Insert previously erased with Ctrl-K or Alt-D.
Ctrl-_ Undo the last command.
Alt-C Capitalize the following word.
Alt-D Delete the following word.
Alt-F Move forward one word.
Alt-L Convert the following word to lower case.

Files and file names 135

Key Function
Alt-T Transpose the word before the cursor with the one after it.
Alt-U Convert the following word to upper case.
Ctrl-X Ctrl-S Save file (Emacs only).
Ctrl-X Ctrl-C Exit the Emacs editor.

You’ll note a number of alternatives to the cursor keys. There are two reasons for them:
firstly, the shell and Emacs must work on systems without arrow keys on the keyboard.
The second reason is not immediately obvious: if you’re a touch-typer, it’s easier to type
Ctrl-P than take your hands away from the main keyboard and look for the arrow key.
The arrows are good for beginners, but if you get used to the control keys, you’ll never
miss the arrow keys.

File name completion

As we have seen, UNIX file names can be much longer than traditional Microsoft names,
and it becomes a problem to type them correctly. To address this problem, newer shells
provide file name completion. In Emacs mode, you typically type in part of the name,
then press the Tab key. The shell checks which file names begin with the characters you
typed. If there is only one, it puts in the missing characters for you. If there are none, it
beeps (rings the ‘‘terminal bell’’). If there are more than one, it puts in as many letters as
are common to all the file names, and then beeps. For example, if I have a directory
docco in my home directory, I might enter:

=== grog@freebie (/dev/ttyp4) ˜ 14 -> cd docco/
=== grog@freebie (/dev/ttyp4) ˜/docco 15 -> ls
freebsd.faq freebsd.fbc freeware
=== grog@freebie (/dev/ttyp4) ˜/docco 16 -> emacs freebeepbsd.fbeepaq

Remember that my input is in constant width bold font, and the shell’s output is in
constant width font. On the first line, I entered the characters cd doc followed by a
Tab character, and the shell completed with the text co/. On the last line, I entered the
characters emacs f and a Tab. In this case, the shell determined that there was more
than one file name that started like this, so it added the letters ree and rang the bell. I
entered the letter b and pressed Tab again, and the shell added the letters sd.f and
beeped again. Finally, I added the letters aq to complete the file name freebsd.faq.

Command line completion in vi mode is similar: instead of pressing Tab, you press ESC
twice.

Shell startup files
As we saw above, there are a lot of ways to customize your shell. It would be
inconvenient to have to set them every time, so all shells provide a means to set them
automatically when you log in. Nearly every shell has its own startup file. Table 7-6
gives an overview.

136 Chapter 7: The tools of the trade

Table 7-6: Shell startup files

Shell startup file
bash .profile, then .bashrc
csh .login on login, always .cshrc
sh .profile
tcsh .login on login, always .tcshc, .cshrc if .tcshrc not found

These files are shell scripts—in other words, straight shell commands. Figure 7-3 shows
a typical .bashrc file to set the environment variables we discussed.

umask 022
export BLOCKSIZE=1024 # for df
export CVSROOT=/src/ncvs
export EDITOR=/opt/bin/emacs
export MANPATH=/usr/share/man:/usr/local/man
export MOZILLA_HOME=/usr/local/netscape
export PAGER=less
export PATH=/usr/bin:/usr/local/bin:/usr/sbin:/bin:/sbin:/usr/X11R6/bin
PS1="=== \u@\h (‘tty‘) \w \# -> "
PS2="\u@\h \w \! ++ "
export SHELL=/usr/local/bin/bash
export TAPE=/dev/nsa0 # note non-rewinding as standard
if ["$TERM" = ""]; then
export TERM=xterm

fi
if ["$DISPLAY" = ""]; then
export DISPLAY=:0

fi
/usr/games/fortune # print a fortune cookie

Figure 7-3: Minimal .bashrc file

It would be tedious for every user to put settings in their private initialization files, so the
shells also read a system-wide default file. For the Bourne shell family, it is /etc/profile,
while the C shell family has three files: /etc/csh.login to be executed on login,
/etc/csh.cshrc to be executed when a new shell is started after you log in, and
/etc/csh.logout to be executed when you stop a shell. The start files are executed before
the corresponding individual files.

In addition, login classes (page 571) offer another method of setting environment
variables at a global level.

Changing your shell
The FreeBSD installation gives root a C shell, csh. This is the traditional BSD shell, but
it has a number of disadvantages: command line editing is very primitive, and the script
language is significantly different from that of the Bourne shell, which is the de facto
standard for shell scripts: if you stay with the C shell, you may still need to understand
the Bourne shell. The latest version of the Bourne shell sh also includes some command
line editing. See page 133 for details of how to enable it.

Files and file names 137

If you want to stay with a csh-like shell, you can get better command line editing with
tcsh, which is also in the base system. You can get both better command line editing and
Bourne shell syntax with bash, in the Ports Collection.

If you have root access, you can use vipw to change your shell, but there’s a more
general way: use chsh (Change Shell). Simply run the program. It starts your favourite
editor (as defined by the EDITOR environment variable). Here’s an example before:

#Changing user database information for velte.
Shell: /bin/csh
Full Name: Jack Velte
Location:
Office Phone:
Home Phone:

You can change anything after the colons. For example, you might change this to:

#Changing user database information for velte.
Shell: /usr/local/bin/bash
Full Name: Jack Velte
Location: On the road
Office Phone: +1-408-555-1999
Home Phone:

chsh checks and updates the password files when you save the modifications and exit the
editor. The next time you log in, you get the new shell. chsh tries to ensure you don’t
make any mistakes—for example, it won’t let you enter the name of a shell that isn’t
mentioned in the file /etc/shells—but it’s a very good idea to check the shell before
logging out. You can try this with su, which you normally use to become super user:

bumble# su velte
Password:
su-2.00$ note the new prompt

You might hear objections to using bash as a root shell. The argument goes something
like this: bash is installed in /usr/local/bin, so it’s not available if you boot into single-
user mode, where only the root file system is available. Even if you copy it to, say, /bin,
you can’t run it in single-user mode because it needs libraries in /usr/lib.

In fact, this isn’t a problem. If you install the system the way I recommend in Chapter 5,
/usr is on the root file system. Even if it isn’t, though, you don’t hav e to use bash in
single-user mode. When you boot to single-user mode, you get a prompt asking you
which shell to start, and suggesting /bin/sh.

138 Chapter 7: The tools of the trade

Differences from Microsoft
If you’re coming from a Microsoft background, there are a few gotchas that you might
trip over.

Slashes: backward and forward
/ (slash) and \ (backslash) are confusing. As we’ve seen, UNIX uses / to delimit
directories. The backslash \ is called an escape character. It has several purposes:

• You can put it in front of another special character to say ‘‘don’t interpret this
character in any special way.’’ We’ve seen that the shell interprets a space character
as the end of a parameter. In the previous example we changed Mail rejected to
"Mail rejected" to stop the shell from interpreting it. We could also have written:
Mail\ rejected.

A more common use for this quoting is to tell the shell to ignore the end of a line. If
a command line in a shell script gets too long, you might like to split it up into several
lines; but the shell sees the end of a line as a go-ahead to perform the command. Stop
it from doing so by putting a backslash immediately before the end of the line:

$ grep \
"Mail rejected" \
/var/log/maillog

Don’t put any spaces between the \ and the end of the line; otherwise the shell will
interpret the first space as a parameter by itself, and then it will interpret the end of
line as the end of the command.

• In the C programming language, the backslash is used to represent several control
characters. For example, \n means ‘‘new line.’’ This usage appears in many other
places as well.

• Using \ as an escape character causes problems: how do we put a \ character on a
line? The answer: quote it. Write \\ when you mean \. This causes particular
problems when interfacing with Microsoft: if you give a Microsoft path name to a
shell, it needs the doubled backslashes: C:\\WINDOWS.

Tab characters
We’v e seen that the shell treats ‘‘white space,’’ either spaces or tab characters, as the
same. Unfortunately, some other programs do not. make, sendmail and syslogd make a
distinction between the two kinds of characters, and they all require tabs (not spaces) in
certain places. This is a real nuisance, because hardly any editor makes a distinction
between them.

Differences from Microsoft 139

Carriage control characters
In the olden days, the standard computer terminal was a Teletype, a kind of computer-
controlled electric typewriter. When the carriage, which contained the print head, got to
the end of a line, it required two mechanical operations to move to the beginning of the
next line: the carriage return control character told it to move the carriage back to the
beginning of the line, and the line feed character told it turn the platen to the next line.

Generations of computer systems emulated this behaviour by putting both characters at
the end of each text line. This makes it more difficult to recognize the end of line, it uses
up more storage space, and normally it doesn’t buy you much. The implementors of
UNIX decided instead to use a single character, which it calls the new line character. For
some reason, they chose the line feed to represent new line, though the character
generated by Enter is a carriage return. As we saw above, the C programming language
represents it as \n.

This causes problems transferring data between FreeBSD and Microsoft, and also when
printing to printers that still expect both characters. We’ll look at the file transfer issues
on page 260 and the printer issues on page 267.

The Emacs editor
Apart from the shell, your second most important tool is the editor, a program that creates
and changes texts. Another divergence of concept between UNIX and Microsoft
environments is that UNIX gives you a choice of editors in just about anything you do.
Microsoft products frequently try to redefine the whole environment, so if you change
mailers, you may also have to change the editor you use to write mail. This has a
profound effect on the way you work. In particular, the Microsoft way makes it
uninteresting to write a really good editor, because you can’t use it all the time.

The standard BSD editor is vi, about which people speak with a mixture of admiration,
awe and horror. vi is one of the oldest parts of BSD. It is a very powerful editor, but
nobody would say that it is easy to learn. There are two reasons to use vi:

1. If you’re already an experienced vi hacker, you probably won’t want to change.

2. If you do a lot of work on different UNIX systems, you can rely on vi being there.
It’s about the only one on which you can rely.

If, on the other hand, you don’t know vi, and you only work on systems whose software
you can control, you probably shouldn’t use vi. Emacs is much easier to learn, and it is
more powerful than vi.

140 Chapter 7: The tools of the trade

Figure 7-4: Emacs main menu

When running under X, Emacs displays its own window (vi uses an xterm under these
circumstances). As a result, if you start Emacs from an xterm, you should use the &
character to start it in the background:

$ emacs &

Figure 7-4 shows the resulting display. As you can see, the first thing that Emacs offers
you is a tutorial. You should take it. You’ll also notice the menu bars at the top.
Although they look primitive compared to graphics toolbars, they offer all the
functionality of graphics-oriented menus. In addition, they will tell you the keystrokes
that you can use to invoke the same functions. Figure 7-5 gives an example of the Files
menu.

There is a lot of documentation for Emacs, much of it on line. The complete Emacs
handbook is available via the info mode of Emacs, which is described in the tutorial. If
that’s not enough, read Learning GNU Emacs, by Debra Cameron, Bill Rosenblatt and
Eric Raymond.

The Emacs editor 141

Figure 7-5: Emacs files menu

Stopping the system
To stop X, press the key combination Ctrl-Alt-Backspace, which is deliberately chosen
to resemble the key combination Ctrl-Alt-Delete used to reboot the machine. Ctrl-Alt-
Backspace stops X and returns you to the virtual terminal in which you started it. If you
run from xdm, it redisplays a login screen.

To stop the system, use the shutdown program. To do so, you need to be a member of
group operator.

By default, KDE uses the halt program. Only root can use this program, so you should
reconfigure KDE to use shutdown. After this, you can shut down from KDE with the
keystroke combination Ctrl-Alt-PageDown.

(unixadmin.mm), page 143

8
Taking control

In this chapter:
• Users and groups
• The super user
• Processes
• Daemons
• Stopping processes
• Timekeeping
• Log files
• Multiple processor

suppor t
• PC Card devices
• Emulating other

systems
• Emulating Linux
• Emulating SCO UNIX
• Emulating Microsoft

Windows

In this chapter:
• Users and groups
• The super user
• Processes
• Daemons
• Stopping processes
• Timekeeping
• Log files
• Multiple processor

suppor t
• PC Card devices
• Emulating other

systems
• Emulating Linux
• Emulating SCO UNIX
• Emulating Microsoft

Windows

In Chapter 7 we saw the basics of working with FreeBSD. In this part of the book, we’ll
look at some more system-specific issues. This chapter discusses the following topics:

• UNIX is a multi-user operating system. We’v e already skimmed over creating user
accounts, but on page 144 we’ll look at it in more detail.

• Not all users are created equal. In particular, the system administration login root
has power over all other users. We’ll look at root on page 146.

• UNIX implements multi-tasking via a mechanism called processes. We’ll look at
them on page 148.

• Timekeeping is extremely important in a networking system. If your system has the
wrong time, it can cause all sorts of strange effects. On page 155 we’ll look at how to
ensure that your system is running the correct time.

• A number of events are of interest in keeping a machine running smoothly. The
system can help by keeping track of what happens. One mechanism for this is log
files, files that contain information about what has happened on the machine. We’ll
look at them on page 157.

• On page 159, we’ll look at how FreeBSD handles systems with more than one
processor. This is also called Symmetrical Multi-Processor or SMP support.

• Nearly every modern laptop has as special bus for plugin cards. It used to be called
PCMCIA, an acronym for the rather unlikely name Personal Computer Memory Card
International Association. Now adays it’s called PC Card. It was later upgraded to a
32 bit bus called CardBus. We’ll look at how FreeBSD supports PC Card and
CardBus on page 159.

143

144 Chapter 8: Taking control

• Starting on page 162, we’ll look at FreeBSD’s support for emulating other operating
systems.

• Other aspects of FreeBSD are so extensive that we’ll dedicate separate chapters to
them. We’ll look at them in Chapters 9 to 15.

• Starting and stopping the system is straightforward, but there are a surprising number
of options. Many of them are related to networking, so Chapter 29 is located after the
networking section.

Users and groups
We’v e already looked at users in Chapter 7. In this chapter, we’ll take a deeper look.

In traditional UNIX, information about users was kept in the file /etc/passwd. As the
name suggests, it included the passwords, which were stored in encrypted form. Any
user could read this file, but the encryption was strong enough that it wasn’t practical to
decrypt the passwords. Nowadays processors are much faster, and it’s too easy to crack a
password. As a result, FreeBSD keeps the real information in a file called /etc/mas-
ter.passwd, and for performance reasons it also makes it available in database form in
/etc/pwd.db and /etc/spwd.db. None of these file are user-readable. /etc/passwd remains
for compatibility reasons: some third-party programs access it directly to get information
about the environment in which they are running.

Choosing a user name
So what user name do you choose? User names are usually related to your real name and
can be up to eight characters long. Like file names, they’re case-sensitive. By
convention, they are in all lower case, even when they represent real names. Typical
ways to form a user name are:

• First name. In my personal case, this would be greg.

• Last name (lehey).

• First name and initial of last name (gregl).

• Initial of first name, and last name (glehey).

• Initials (gpl).

• Nickname (for example, grog).

I choose the last possibility, as we will see in the following discussion.

Users and groups 145

Adding users
We’v e already seen how to use sysinstall to create a user. It’s not the only way. There
are at least two other methods. One is the program adduser:

adduser
Use option ‘‘-verbose’’ if you want see more warnings & questions
or try to repair bugs.

Enter username [a-z0-9]: yana
Enter full name []: Yana Lehey
Enter shell bash csh date no sh [bash]: accept the default
Uid [1000]: accept the default
Enter login class: default []: accept the default
Login group yana [yana]: home
Login group is ‘‘home’’. Invite yana into other groups: no
[no]: wheel to be able to use su
Enter password []: no echo
Enter password again []: no echo

Name: yana
Password: ****
Fullname: Yana Lehey
Uid: 1000
Gid: 1001 (home)
Class:
Groups: home wheel
HOME: /home/yana
Shell: /bin/bash
OK? (y/n) [y]: accept the default
Added user ‘‘yana’’
Add another user? (y/n) [y]: n

An alternative way of adding or removing users is with the vipw program. This is a more
typical UNIX-hackish approach: vipw starts your favourite editor and allows you to edit
the contents of the file /etc/master.passwd. After you have finished, it checks the contents
and rebuilds the password database. Figure 8-1 shows an example.

Figure 8-1: vipw display

146 Chapter 8: Taking control

You might be wondering why would you ever want to do things this way, and you might
find it funny that most experienced UNIX administrators prefer it. The reason is that you
get more of an overview than with a peephole approach that graphical environments give
you, but of course you need to understand the format better. It’s less confusing once you
know that each line represents a single user, that the lines are divided into fields (which
may be empty), and that each field is separated from the next by a colon (:). Table 8-1
describes the fields you see on the line on which the cursor is positioned. You can read
more about the format of /etc/master.passwd in the man page passwd(5).

Table 8-1: /etc/master.passwd format

Field Meaning
yvonne User name.

(gibberish) Encrypted password. When adding a new user, leave this field empty
and add it later with the passwd program.

1005 User number.

1001 Group number.

(empty) Login class, which describes a number of parameters for the user.
We’ll look at it in Chapter 29, on page 571. This field is not included
in /etc/passwd.

0 Password change time. If non-0, it is the time in seconds after which
the password must be changed. This field is not included in
/etc/passwd.

0 Account expiration time. If non-0, it is the time in seconds after which
the user expires. This field is not included in /etc/passwd.

Yvonne Lehey The so-called gecos field, which describes the user. This field is used
by a number of programs, in particular mail readers, to extract the real
name of the user.

/home/yvonne The name of the home directory.

/bin/bash The shell to be started when the user logs in.

The super user
FreeBSD has a number of privileged users for various administration functions. Some
are just present to be the owners of particular files, while others, such as daemon and
uucp, exist to run particular programs. One user stands above all others, however: root
may do just about anything. The kernel gives root special privileges, and you need to
become root to perform a number of functions, including adding other users. Make sure
root has a password if there is any chance that other people can access your system (this
is a must if you have any kind of dialup access). Apart from that, root is a user like any
other, but to quote the man page su(1):

The super user 147

By default (unless the prompt is reset by a startup file) the super user prompt is
set to # to remind one of its awesome power.

Becoming super user
Frequently when you’re logged in normally, you want to do something that requires you
to be root. You can log out and log in again as root, of course, but there’s an easier
way:

$ su become super user
Password: as usual, it doesn’t echo
root prompt

To use su, you must be a member of the group wheel. Normally you do this when you
add the user, but otherwise just put the name of the user at the end of the line in
/etc/group:

wheel:*:0:root,grog add the text in bold face

BSD treats su somewhat differently from System V. First, you need to be a member of the group
wheel, and secondly BSD gives you more of the super user environment than System V. See the
man page for further information.

Having a single root password is a security risk on a system where multiple people
know the password. If one of them leaves the project, you need to change the password.
An alternative is the sudo port (/usr/ports/security/sudo). It provides fine-grained access
to root privileges, all based on the user’s own password. Nobody needs to know the
root password. If a user leaves, you just remove his account, and that cancels his access.

Adding or changing passwords
If your system has any connection with the outside world, it’s a good idea to change your
password from time to time. Do this with the passwd program. The input doesn’t look
very interesting:

$ passwd
Changing local password for yana.
Old password: doesn’t echo
New password: doesn’t echo
Retype new password: doesn’t echo
passwd: rebuilding the database...
passwd: done

You hav e to enter the old password to make sure that some passer-by doesn’t change it
for you while you’re away from your monitor, and you have to enter the new password
twice to make sure that you don’t mistype and lock yourself out of your account. If this
does happen anyway, you can log in as root and change the password: root doesn’t
have to enter the old password, and it can change anybody’s password. For example:

148 Chapter 8: Taking control

passwd yana
Changing local password for yana.
New password: doesn’t echo
Retype new password: doesn’t echo
passwd: rebuilding the database...
passwd: done

In this case, you specify the name of the user for whom you change the password.

If you are changing the root password, be careful: it’s easy enough to lock yourself out
of the system if you mess things up, which could happen if, for example, you mistyped
the password twice in the same way (don’t laugh, it happens). If you’re running X, open
another window and use su to become root. If you’re running in character mode, select
another virtual terminal and log in as root there. Only when you’re sure you can still
access root should you log out.

If you do manage to lose the root password, all may not be lost. Reboot the machine to
single-user mode (see page 540), and enter:

mount -u / mount root file system read/write
mount /usr mount /usr file system (if separate)
passwd root change the password for root
Enter new password:
Enter password again:
ˆD enter ctrl-D to continue with startup

If you have a separate /usr file system (the normal case), you need to mount it as well,
since the passwd program is in the directory /usr/bin. Note that you should explicitly
state the name root: in single-user mode, the system doesn’t hav e the concept of user
IDs.

Processes
As we have seen, UNIX is a multi-user, multi-tasking operating system. In particular,
you can run a specific program more than once. We use the term process to refer to a
particular instance of a running program. Each process is given a process ID, more
frequently referred to as PID, a number between 0 and 99999 that uniquely identifies it.
There are many things that you might like to know about the processes that are currently
running, such as:

• How many processes are running?

• Who is running the processes?

• Why is the system so slow?

• Which process is blocking my access to the modem?

Your primary tool for investigating process behaviour is the ps (process status)
command. It has a large number of command options, and it can tell you a whole lot of
things that you will only understand when you have inv estigated how the kernel works,
but it can be very useful for a number of things. Here are some typical uses:

Processes 149

What processes do I have running?
After starting a large number of processes in a number of windows under X, you
probably can’t remember what is still running. Maybe processes that you thought had
stopped are still running. To display a brief summary of the processes you have running,
use the ps command with no options:

$ ps
PID TT STAT TIME COMMAND
187 p0 Is+ 0:01.02 -bash (bash)
188 p1 Ss 0:00.62 -bash (bash)
453 p1 R+ 0:00.03 ps

This display shows the following information:

• The PID of the process.

• TT is short for teletype, and shows the last few letters of the name of the controlling
terminal, the terminal on which the process is running. In this example, the terminals
are /dev/ttyp0 and /dev/ttyp1.

• STAT shows the current process status. It’s inv olved and requires a certain amount of
understanding of how the kernel runs to interpret it—see the man page for ps for
more details.

• TIME is the CPU time that the process has used in minutes, seconds and hundredths
of a second. Note that many other UNIX systems, particularly System V, only show
this field to the nearest second.

• COMMAND is normally the command you entered, but don’t rely on this. In the next
section, you’ll see that sendmail has changed its COMMAND field to tell you what it is
doing. You’ll notice that the command on the last line is the ps that performs the
listing. Due to some complicated timing issue in the kernel, this process may or may
not appear in the listing.

What processes are running?
There are many more processes in the system than the list above shows. To show them
all, use the a option to ps. To show daemons as well (see the next section for a definition
of daemon), use the x option. To show much more detail, use the u or l options. For
example:

$ ps waux
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 12 95.7 0.0 0 12 ?? RL 1Jan70 1406:43.85 (idle: cpu0)
root 11 95.1 0.0 0 12 ?? RL 1Jan70 1406:44.64 (idle: cpu1)
root 1 0.0 0.0 708 84 ?? ILs 1Jan70 0:09.10 /sbin/init --
root 12 0.0 0.0 0 12 ?? WL 1Jan70 15:04.95 (swi1: net)
root 13 0.0 0.0 0 12 ?? WL 1Jan70 21:30.29 (swi6: tty:sio clock)
root 15 0.0 0.0 0 12 ?? DL 1Jan70 2:17.27 (random)
root 18 0.0 0.0 0 12 ?? WL 1Jan70 0:00.00 (swi3: cambio)
root 20 0.0 0.0 0 12 ?? WL 1Jan70 0:00.00 (irq11: ahc0 uhci0++)
root 21 0.0 0.0 0 12 ?? WL 1Jan70 39:00.32 (irq5: rl0)
root 22 0.0 0.0 0 12 ?? WL 1Jan70 7:12.92 (irq14: ata0)
root 23 0.0 0.0 0 12 ?? WL 1Jan70 0:47.99 (irq15: ata1)

150 Chapter 8: Taking control

root 24 0.0 0.0 0 12 ?? DL 1Jan70 0:00.08 (usb0)
root 25 0.0 0.0 0 12 ?? DL 1Jan70 0:00.00 (usbtask)
root 26 0.0 0.0 0 12 ?? DL 1Jan70 0:00.07 (usb1)
root 27 0.0 0.0 0 12 ?? DL 1Jan70 0:00.08 (usb2)
root 340 0.0 0.1 1124 280 ?? S 18Dec02 16:41.11 nfsd: server (nfsd)
root 375 0.0 0.0 1192 12 ?? Ss 18Dec02 0:01.70 /usr/sbin/lpd
daemon 408 0.0 0.0 1136 152 ?? Ss 18Dec02 0:11.41 /usr/sbin/rwhod
root 420 0.0 0.1 2648 308 ?? Ss 18Dec02 0:04.20 /usr/sbin/sshd
root 491 0.0 0.1 2432 368 ?? Ss 18Dec02 0:38.61 /usr/local/sbin/httpd
root 551 0.0 0.0 1336 12 ?? Ss 18Dec02 0:02.71 /usr/sbin/inetd -wW
root 562 0.0 0.0 1252 216 ?? Is 18Dec02 0:15.50 /usr/sbin/cron
root 572 0.0 0.0 1180 8 v2 IWs+ - 0:00.00 /usr/libexec/getty Pc
www 582 0.0 0.0 2432 8 ?? IW - 0:00.00 /usr/local/sbin/httpd
grog 608 0.0 0.1 1316 720 v0 I 18Dec02 0:00.04 -bash (bash)
root 2600 0.0 0.0 1180 8 v1 IWs+ - 0:00.00 /usr/libexec/getty Pc
root 33069 0.0 0.3 5352 1716 ?? Ss 29Dec02 0:01.30 xterm -name xterm
grog 33081 0.0 0.1 1328 752 p8 Is+ 29Dec02 0:00.09 /usr/local/bin/bash

This list is just an excerpt. Even on a freshly booted system, the real list of processes will
be much larger, about 50 processes.

We’v e seen a number of these fields already. The others are:

• USER is the real user ID of the process, the user ID of the person who started it.

• %CPU is an approximate count of the proportion of CPU time that the process has
been using in the last few seconds. This is the column to examine if things suddenly
get slow.

• %MEM is an approximate indication of the amount of physical memory that the process
is using.

• VSZ (virtual size) is the amount of virtual memory that the process is using, measured
in kilobytes.

• RSS (resident segment size) is the amount of physical memory currently in use,
measured in kilobytes.

• STARTED is the time or date when the process was started.

In addition, a surprising number of processes don’t hav e a controlling terminal. They are
daemons, and we’ll look at them in the next section.

Daemons
A significant part of the work in a FreeBSD system is performed by daemons. A daemon
is not just the BSD mascot described on page 21—it’s also a process that goes around in
the background and does routine work such as sending mail (sendmail), handling
incoming Internet connections (inetd), or starting jobs at particular times (cron).

To quote the Oxford English Dictionary: Demon Also dæmon. ME [In form, and in sense I, a. L.
dæmon (med. L. demon)...] 1a. In ancient Greek mythology (= δα ίµων): A supernatural being of
a nature intermediate between that of gods and men, an inferior divinity, spirit, genius (including
the souls of deceased persons, esp deified heros). Often written dæmon for distinction.

Daemons 151

You can recognize daemons in a ps waux listing by the fact that they don’t hav e a
controlling terminal—instead you see the characters ??. Each daemon has a man page
that describes what it does.

Normally, daemons are started when the system is booted and run until the system is
stopped. If you stop one by accident, you can usually restart them. One exception is init,
which is responsible for starting other processes. If you kill it, you effectively kill the
system. Unlike traditional UNIX systems, FreeBSD does not allow init to be killed.

cron
One of the more useful daemons is cron, named after Father Time. cron performs
functions at specific times. For example, the system runs the script /etc/periodic/daily
ev ery day at 2:00 am, the script /etc/periodic/weekly ev ery Saturday at 3:30 am, and the
script /etc/periodic/monthly on the first day of every month at 5:30 am.

To tell cron to perform a function at a particular time, you need a file called a crontab.
The system keeps the real crontab where you can’t get at it, but you can keep a copy. It’s
a good idea to call it crontab as well.

Let’s look at the format of the default system crontab, located in /etc/crontab:

/etc/crontab - root’s crontab for FreeBSD
#
$Id: crontab,v 1.10 1995/05/27 01:55:21 ache Exp $
From: Id: crontab,v 1.6 1993/05/31 02:03:57 cgd Exp
#
SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin
HOME=/var/log
#
#minute hour mday month wday who command
#
*/5 * * * * root /usr/libexec/atrun
#
rotate log files every hour, if necessary
#0 * * * * root /usr/bin/newsyslog
#
do daily/weekly/monthly maintenance
0 2 * * * root /etc/daily 2>&1
30 3 * * 6 root /etc/weekly 2>&1
30 5 1 * * root /etc/monthly 2>&1
#
time zone change adjustment for wall cmos clock,
See adjkerntz(8) for details.
1,31 0-4 * * * root /sbin/adjkerntz -a

As usual, lines starting with # are comments. The others have sev en fields. The first five
fields specify the minute, the hour, the day of the month, the month, and the day of the
week on which an action should be performed. The character * means ‘‘every.’’ Thus, 0
2 * * * (for /etc/daily) means ‘‘0 minutes, 2 o’clock (on the 24 hour clock), every day
of the month, every month, every weekday.’’

Field number six is special: it only exists in /etc/crontab, not in private crontabs. It
specifies the user for whom the operation should be performed. When you write your
own crontab file, don’t use this field.

152 Chapter 8: Taking control

The remaining fields define the operation to be performed. cron doesn’t read your shell
initialization files. In particular, this can mean that it won’t find programs you expect it to
find. It’s a good idea to put in explicit PATH definitions, or specify an absolute pathname
for the program, as is done in this example. cron mails the output to you, so you should
check root’s mail from time to time.

To install or list a crontab, use the crontab program:

$ crontab crontab install a crontab
$ crontab -l list the contents of an installed crontab
DO NOT EDIT THIS FILE - edit the master and reinstall.
(crontab installed on Wed Jan 1 15:15:10 1997)
(Cron version -- $Id: crontab.c,v 1.7 1996/12/17 00:55:12 pst Exp $)
0 0 * * * /home/grog/Scripts/rotate-log

Processes in FreeBSD Release 5
Some of the processes in the example above are specific to FreeBSD Release 5:

• FreeBSD Release 5 has an idle process to use up the excess processor time and
perform certain activities needed when no process is active. This example machine
has two processors, so there are two of them:

root 12 95.7 0.0 0 12 ?? RL 1Jan70 1406:43.85 (idle: cpu0)
root 11 95.1 0.0 0 12 ?? RL 1Jan70 1406:44.64 (idle: cpu1)

• A number of the processes have names starting with irq or swi:

root 12 0.0 0.0 0 12 ?? WL 1Jan70 15:04.95 (swi1: net)
root 13 0.0 0.0 0 12 ?? WL 1Jan70 21:30.29 (swi6: tty:s
root 18 0.0 0.0 0 12 ?? WL 1Jan70 0:00.00 (swi3: cambi
root 20 0.0 0.0 0 12 ?? WL 1Jan70 0:00.00 (irq11: ahc0
root 21 0.0 0.0 0 12 ?? WL 1Jan70 39:00.32 (irq5: rl0)
root 22 0.0 0.0 0 12 ?? WL 1Jan70 7:12.92 (irq14: ata0)
root 23 0.0 0.0 0 12 ?? WL 1Jan70 0:47.99 (irq15: ata1)

These processes handle hardware interrupts (irq) or software interrupts (swi). The
text which follows gives an idea of which devices or software services they support.

top
Another tool for investigating system performance is top, which shows a number of
performance criteria, including the status of the processes are using the most resources.
Start it with the number of processes you want displayed. Figure 8-2 gives an example.

Daemons 153

$ top -S 10
last pid: 3992; load averages: 0.59, 0.17, 0.06 up 0+23:54:49 17:25:13
87 processes: 3 running, 73 sleeping, 8 waiting, 3 lock
CPU states: 10.2% user, 0.0% nice, 18.8% system, 1.7% interrupt, 69.4% idle
Mem: 43M Active, 36M Inact, 31M Wired, 7460K Cache, 22M Buf, 2996K Free
Swap: 512M Total, 512M Free

PID USER PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND
12 root -16 0 0K 12K RUN 0 23.7H 55.32% 55.32% idle: cpu0
11 root -16 0 0K 12K CPU1 1 23.7H 54.49% 54.49% idle: cpu1

2854 grog 97 0 4940K 3932K *Giant 1 0:04 3.88% 3.86% xterm
20 root -64 -183 0K 12K WAIT 1 0:08 0.83% 0.83% irq14: ata0

2925 root 96 0 712K 608K select 1 0:01 0.15% 0.15% make
3193 grog 96 0 2220K 1304K CPU0 0 0:01 0.15% 0.15% top
3783 root 96 0 520K 416K select 1 0:00 0.10% 0.05% make
167 root 96 0 13876K 2112K select 0 1:02 0.00% 0.00% xcpustate
25 root -68 -187 0K 12K WAIT 0 0:28 0.00% 0.00% irq9: xl0
110 root 96 0 1528K 956K select 1 0:26 0.00% 0.00% ntpd

Figure 8-2: top display

By default, the display is updated every two seconds and contains a lot of information
about the system state:

• The first line gives information about the last PID allocated (you can use this to
follow the number of processes being created) and the load average, which gives
information about how many processes are waiting to be scheduled.

• The next line gives an overview of process statistics, and in what state they are. A
process waits for external events to complete; it waits on a lock if some other process
has a kernel resource which it wants.

• The third line shows the percentage of time used in user mode, in system (kernel)
mode and by interrupts.

• The fourth line shows memory usage.

• The fifth line shows swap statistics. When swapping activity occurs, it also appears
on this line.

• The remaining lines show the ten most active processes (because the parameter 10
was specified on the command line). The -S option tells top to include system
processes, such as the idle and the interrupt processes. The state can be:

• RUN, when the process is waiting for a processor to run on.

• CPU0 or CPU1, when the process is actively executing.

• *lock, where lock is the name of a kernel lock. In this example, the xterm is
waiting on the lock Giant.

• A wait string, which indicates an event on which the process is waiting.

See the man page top(1) for more details.

154 Chapter 8: Taking control

Stopping processes
Sometimes you may find that you want to stop a currently running process. There are a
number of ways to do this, but the easiest are:

• If the process is running on a terminal, and it’s accepting input, hitting the EOF key
(usually Ctrl-D) will often do it.

• If EOF doesn’t do it, try the INTR key (usually Ctrl-C).

• If the process is ignoring INTR, or if it is not associated with a terminal, use the kill
command. For example, to find who is using all the CPU time, use ps and look at
the %CPU field:

ps waux | grep cron
root 105 97.3 1.1 236 340 ?? Is 9:11AM 137:14.29 cron

Here, cron is using 97% of the CPU time, and has accumulated over 2 hours of CPU
time since this morning. It’s obviously sick, and we should put it out of its misery.
To stop it, enter:

kill 105

This command sends a signal called SIGTERM (terminate) to the process. This signal
gives the process time to tidy up before exiting, so you should always try to use it
first. The 105 is cron’s PID, which we got from the ps command.

If the process doesn’t go away within a few seconds, it’s probably ignoring SIGTERM.
In this case, you can use the ultimate weapon:

kill -9 105

The -9 is the number of SIGKILL, a signal that cannot be caught or ignored. You can
find a list of the signals and their numeric values in /usr/include/sys/signal.h, which is
part of the software development package.

FreeBSD also has a script called killall. As the name implies, it kills a group of
processes, by name. If you find that you have, say, a whole lot of runaway sendmail
processes, you might save the day by writing:

killall sendmail

As we’ll see elsewhere, you can also use killall to send a signal to a single process when
you know that only one is present. For example, to cause inetd to re-read its
configuration file, you could write:

killall -1 inetd

Stopping processes 155

Timekeeping
FreeBSD is a networking system, so keeping the correct time is more important than on a
standalone system. Apart from the obvious problem of keeping the same time as other
local systems, it’s also important to keep time with systems in other time zones.

Internally, FreeBSD keeps the time as the number of seconds since the epoch, the
beginning of recorded history: 00:00:00 UTC, 1 January 1970. UTC is the international
base time zone, and means Universal Coordinated Time, despite the initials. It
corresponds very closely, but not exactly, to Greenwich Mean Time (GMT), the local
time in England in the winter. It would be inconvenient to keep all dates in UTC, so the
system understands the concept of time zones. For example, in Walnut Creek, CA, the
time zone in the winter is called PST (Pacific Standard Time), and in the summer it is
PDT (Pacific Daylight Time). FreeBSD comes with a set of time zone description files in
the directory hierarchy /usr/share/zoneinfo. We’ve already seen on page 95 that when
you install the system, it stores information about the local time zone in the file
/etc/localtime. If you move time zones, you should change the time zone, not the time,
either by running the tzsetup program, or simply by copying the file. For example, if you
travel with a laptop from Adelaide, South Australia, to San Francisco CA, you would do:

cp /usr/share/zoneinfo/America/Los_Angeles /etc/localtime

When you get home again, you would do:

cp /usr/share/zoneinfo/Australia/Adelaide /etc/localtime

At no time do you need to change the date or time directly.

Why Los_Angeles and not San_Francisco? The developers of the time zone package
chose the largest city in the time zone. You need to have a certain understanding of the
time zones to choose the correct one.

The TZ environment variable
An alternate means of describing the time zone is to set the environment variable TZ,
which we looked at on page 128. You might use this form if you’re connected to a
remote system in a different time zone, or maybe just to find the time at some other place.
For example, in Adelaide, SA I might find:

$ date
Sun Apr 14 13:31:15 CST 2002
$ TZ=America/Los_Angeles date
Sat Apr 13 21:01:15 PDT 2002

Set the TZ variable to the name of the time zone info file in the /usr/share/zoneinfo
hierarchy. For example, the value of TZ for Berlin, Germany is Europe/Berlin in
FreeBSD.

156 Chapter 8: Taking control

This is not the same as the usage of the TZ variable in UNIX System V. System V
doesn’t hav e the time zone definition files in /usr/share/zoneinfo, so the TZ variable tells
it information about the time zone. If you were using System V in Berlin, you would set
your TZ variable to MEZ1MSZ2, indicating time zone names and offsets from UTC.

Keeping the correct time
If you’re connected to the Internet on a reasonably regular basis, there are a number of
programs which can help you synchronize your time via the ntp (Network Time Protocol)
service.

A number of systems around the world supply time information via the ntp service. Look
at http://www.eecis.udel.edu/˜mills/ntp/servers.html to find one near you.

Your choice of program depends on the nature of your connection to the Internet. If
you’re connected full time, you’ll probably prefer ntpd, which keeps the system
synchronized. Otherwise you can use ntpdate, which you can run as you feel like it.

ntpd

ntpd performs periodic queries to keep the system synchronized with a time server.
There are many ways to run it—see the man page ntpd(8). In most cases, you can set up
one system on the network to connect to an external time reference, and the other systems
on the same Ethernet can get the time information from the first system.

To get the time from an external source and broadcast it to the other systems on the
network, create a file /etc/ntp.conf with a content like this:

server 227.21.37.18 this address is invalid; check what’s near you
driftfile /etc/ntp.drift
broadcast 223.147.37.255

The first line defines the server. The value in this example is invalid , so don’t try to use
it. It’s important to get one near you: network delays can significantly impair the
accuracy of the results. ntpd uses the file /etc/ntp.drift to record information about the
(in)accuracy of the local system’s clock. You only need the final line if you have other
systems on the network which wait for a broadcast message. It specifies the broadcast
address for the network and also tells ntpd to broadcast on this address.

After setting up this file, you just need to start ntpd:

ntpd

To ensure that ntpd gets started every time you reboot, make sure that you have the
following lines in /etc/rc.conf :

ntpd_enable="YES" # Run ntpd Network Time Protocol (or NO).

The comment on the first line is misleading: the value of ntpd_enable must be YES.
You don’t need any flags. You put exactly the same text in the /etc/rc.conf on the other

Timekeeping 157

machines, and simply omit the file /etc/ntp.conf. This causes ntpd on these machines to
monitor broadcast messages.

In previous versions of FreeBSD, ntpd was called xntpd, so you may find things like
xntpd_enable in your /etc/rc.conf. If you do, you’ll have to change the name.

ntpdate

If you connect to the Internet infrequently, ntpd may become discouraged and not keep
good time. In this case, it’s better to use ntpdate. Simply run it when you want to set the
time:

ntpdate server

You can’t use both ntpdate and ntpd at the same time: they both use the same port. ntpd
takes quite some time to synchronize, and if the time is wildly out, it won’t even try, so
it’s often a good idea to run ntpdate on startup and then start ntpd manually.

Log files
Various components of FreeBSD report problems or items of interest as they happen. For
example, there can always be problems with mail delivery, so a mail server should keep
some kind of record of what it has been doing. If hardware problems occur, the kernel
should report them. If somebody tries to break into the machine, the components affected
should report the fact.

FreeBSD has a generalized system for logging such events. The syslogd daemon takes
messages from multiple sources and writes them to multiple destinations, usually log files
in the directory /var/log. You can change this behaviour by modifying the file
/etc/syslog.conf. See syslog.conf(5) for further details. In addition to syslogd, other
programs write directly to files in this directory. The following files are of interest:

• XFree86.0.log contains the log file for the last (or current) X session started on
display 0. This is a prime source of information if you run into problems with X.

• auth.log contains information about user authentication. For example, you might
see:

Dec 10 10:55:11 bumble su: grog to root on /dev/ttyp0
Dec 10 12:00:19 bumble sshd[126]: Server listening on :: port 22.
Dec 10 12:00:19 bumble sshd[126]: Server listening on 0.0.0.0 port 22.
Dec 10 12:06:52 bumble sshd[167]: Accepted publickey for grog from 223.147.37.80
port 49564 ssh2
Dec 10 12:06:58 bumble su: BAD SU grog to root on /dev/ttyp0

The first line is a successful su invocation; the last line is an unsuccessful one
(because the password was mistyped). The messages at 12:00:19 are from sshd
startup, and the message at 12:06:52 is a successful remote login with ssh.

158 Chapter 8: Taking control

• cron is a log file for cron. It’s relatively uninteresting:

Jan 5 16:00:00 bumble newsyslog[2668]: logfile turned over
Jan 5 16:05:00 bumble /usr/sbin/cron[2677]: (root) CMD (/usr/libexec/atrun)
Jan 5 16:05:00 bumble /usr/sbin/cron[2678]: (root) CMD (/usr/libexec/atrun)
Jan 5 16:10:00 bumble /usr/sbin/cron[2683]: (root) CMD (/usr/libexec/atrun)

If you have problems with cron, that could change rapidly.

• dmesg.today and dmesg.yesterday are created by a cron job at 2 am every day. The
dmesg message buffer wraps around, overwriting older entries, so they can be of use.

• lastlog is a binary file recording last login information. You don’t normally access it
directly.

• maillog contains information about mail delivery.

• messages is the main log file.

• The files mount.today and mount.yesterday show the currently mounted file systems
in the format needed for /etc/fstab.

• The file ppp.log contains information on PPP connections. We look at it on page
353.

• The files setuid.today and setuid.yesterday contain a list of setuid files. The daily
security check compares them and sends a mail message if there are any differences.

• The file vinum_history contains information about vinum activity.

• The file wtmp contains information about logins to the system. Like lastlog, it’s in
binary form. See utmp(5) for the format of both lastlog and wtmp.

A number of the more important log files are kept through several cycles. As the example
above shows, cron runs the newsyslog command every hour. newsyslog checks the size
of the files, and if they are larger than a certain size, it renames the old ones by giving
them a numerical extension one higher than the current one, then renames the base file
with an extension .0 and compresses it. The result looks like this:

-rw-r--r-- 1 root wheel 31773 Jan 5 13:01 messages
-rw-r--r-- 1 root wheel 8014 Jan 2 01:00 messages.0.bz2
-rw-r--r-- 1 root wheel 10087 Dec 15 14:00 messages.1.bz2
-rw-r--r-- 1 root wheel 9940 Dec 3 17:00 messages.2.bz2
-rw-r--r-- 1 root wheel 9886 Nov 16 11:00 messages.3.bz2
-rw-r--r-- 1 root wheel 9106 Nov 5 18:00 messages.4.bz2
-rw-r--r-- 1 root wheel 9545 Oct 15 17:00 messages.5.bz2

newsyslog has a configuration file /etc/newsyslog.conf, which we discuss on page 572.

Log files 159

Multiple processor support
FreeBSD Release 5 can support most current Intel and AMD multiprocessor mother-
boards with the ia32 architecture. It also supports some Alpha, SPARC64 and Intel ia64
motherboards. Documentation on SMP support is currently rather scanty, but you can find
some information at http://www.freebsd.org/˜fsmp/SMP/SMP.html.

The GENERIC kernel does not support SMP, so you must build a new kernel before you
can use more than one processor. The configuration file /usr/src/sys/i386/conf/GENERIC
contains the following commented-out entries:

To make an SMP kernel, the next two are needed
#options SMP # Symmetric MultiProcessor Kernel
#options APIC_IO # Symmetric (APIC) I/O

For other platforms, you don’t need APIC_IO. See Chapter 33 for information on how to
build a new kernel.

PC Card devices
As we have already seen, PC Card devices are special because they can be hot-plugged.
They are also intended to be recognized automatically. Starting with Release 5, FreeBSD
recognizes card insertion and removal in the kernel and invokes the appropriate driver to
handle the event. When you insert a card you will see something like this on the system
console:

ata2 at port 0x140-0x14f irq 11 function 0 config 1 on pccard0
ad4: 7MB <LEXAR ATA FLASH> [251/2/32] at ata2-master BIOSPIO

This is a compact flash memory card, which the system sees as an ATA disk. The kernel
has created the necessary structures, but it can’t know how to mount the device, for
example. We’ll look at what we can do about this in the next section.

devd: The device daemon
The device daemon, devd, provides a way to run userland programs when certain kernel
ev ents happen. It is intended to handle userland configuration of PC Card devices such as
Ethernet cards, which it can do automatically. We’ll look at this automatic usage on page
304.

devd reads the kernel event information from the device /dev/devctl and processes it
according to rules specified in the configuration file /etc/devd.conf, which is installed
with the system. If you want to use it for other devices, you must modify /etc/devd.conf.
This file contains a number of sections, referred to as statements in the man page:

160 Chapter 8: Taking control

• The options statement describes file paths and a number of regular expressions
(patterns) to look for in the messages it reads from /dev/devctl.

• attach statements specify what action to perform when a device is attached. For
example:

attach 0 {
device-name "$scsi-controller-regex";
action "camcontrol rescan all";

};

The device-name entry uses the regular expression $scsi-controller-regex to
recognize the name of a SCSI controller in the attach message. The action entry
then specifies what action to take when such a device is attached to the system. In
this case, it runs the camcontrol program to rescan the SCSI buses and recognize any
new devices that have been added.

Multiple attach statements can match a specific event, but only one will be executed.
The order in which they are checked is specified by a priority, a numerical value after
the keyword action. The statements are checked in order of highest to lowest
numerical priority.

• detach statements have the same syntax as attach statements. As the name suggests,
they are executed when a device is detached.

It’s not always possible or necessary to perform any actions when a device is
removed. In the case of SCSI cards, there is no detach statement. We’ll look at this
issue in more detail below.

• Finally, if the kernel was unable to locate a driver for the card, it generates a no match
ev ent, which is handled by the nomatch statement.

So what does devd do when we insert the compact flash card? By default, nothing. The
AT A driver recognizes and configures the card. It would be nice to get devd to mount it
as well. That’s relatively simple:

• Ensure that you have an entry for the device in /etc/fstab. Digital cameras create a
single MS-DOS file system on flash cards. An appropriate entry in /etc/fstab for this
device might be:

/dev/ad4s1 /camera msdos rw,noauto 0 0

This is a removable device, so you should use the noauto keyword to stop the system
trying to mount it on system startup.

• In the options section of /etc/devd.conf, add an expression to recognize the names of
AT A controllers:

PC Card devices 161

set ata-controller-regex
"ata[0-9]+";

• Add an attach section for the device:

attach 0 {
device-name "$ata-controller-regex";
action "mount /camera";

};

• Restart devd:

killall devd
devd

After this, the file system will be automatically mounted when you insert the card.

Removing PC Card devices
The next thing we’d like to do is to unmount the file system when you remove the flash
card. Unfortunately, that isn’t possible. Unmounting can involve data transfer, so you
have to do it before you remove the card. If you forget, and remove the card without
unmounting, the system may panic next time you try to access the card.

After unmounting, you can remove the card. On the console you’ll see something like:

ad4: removed from configuration
ad4: no status, reselecting device
ad4: timeout sending command=e7 s=ff e=04
ad4: flushing cache on detach failed
ata2: detached

Alternate PC Card code
The PC Card implementation described here, called NEWCARD, is new in FreeBSD
Release 5. At the time of writing, the older implementation, called OLDCARD, is still
included in the system. It’s possible that you might have an older card that is supported
by OLDCARD but not by NEWCARD. In that case, you will need to build a kernel with
OLDCARD support. Check the NOTES files in /usr/src/sys/conf and
/usr/src/sys/arch/conf, where arch is the architecture of your system, and the man pages
pccardd and pccard.conf.

Configuring PC Card devices at startup
A number of entries in /etc/rc.conf relate to the use of PC Card devices, but nearly all of
them are for OLDCARD. You only need one for NEWCARD:

devd_enable="YES"

This starts devd at system startup.

162 Chapter 8: Taking control

Emulating other systems
A large number of operating systems run on Intel hardware, and there is a lot of software
that is available for these other operating systems, but not for FreeBSD.

Emulators and simulators
There are a number of ways to execute software written for a different platform. The
most popular are:

• Simulation is a process where a program executes the functions that are normally
performed by the native instruction set of another machine. They simulate the low-
level instructions of the target machine, so simulators don’t hav e to run on the same
kind of machine as the code that they execute. A good example is the port
emulators/p11, which simulates a PDP-11 minicomputer, the machine for which most
early versions of UNIX were written.

Simulators run much more slowly than the native instruction set: for each simulated
instruction, the simulator may execute hundreds of machine instructions. Amusingly,
on most modern machines, the p11 emulator still runs faster than the original
PDP-11: modern machines are over 1,000 times faster than the PDP-11.

• In general, emulators execute the program instructions directly and only simulate the
operating system environment. As a result, they hav e to run on the same kind of
hardware, but they’re not noticeably slower than the original. If there is any
difference in performance, it’s because of differences between the host operating
system and the emulated operating system.

• Another use for the term emulator is where the hardware understands a different
instruction set than the native one. Obviously this is not the kind of emulator we’re
talking about here.

FreeBSD can emulate many other systems to a point where applications written for these
systems will run under FreeBSD. Most of the emulators are in the Ports Collection in the
directory /usr/ports/emulators.

In a number of cases, the emulation support is in an experimental stage. Here’s an
overview:

• FreeBSD will run most BSD/OS programs with no problems. You don’t need an
emulator.

• FreeBSD will also run most NetBSD and OpenBSD executables, though not many
people do this: it’s safer to recompile them under FreeBSD.

• FreeBSD runs Linux executables with the aid of the linux kld (loadable kernel
module). We’ll look at how to use it in the next section.

Emulating other systems 163

• FreeBSD can run SCO COFF executables with the aid of the ibcs2 kld. This support
is a little patchy: although the executables will run, you may run into problems
caused by differences in the directory structure between SCO and FreeBSD. We’ll
look at it on page 164.

• A Microsoft Windows emulator is available. We’ll look at it on page 165.

Emulating Linux
Linux is a UNIX-like operating system that in many ways is very similar to FreeBSD.
We discussed it on page 10. Although it looks very UNIX-like, many of the internal
kernel interfaces are different from those of FreeBSD or other UNIX-based systems. The
Linux compatibility package handles these differences, and most Linux software will run
on FreeBSD. Most of the exceptions use specific drivers that don’t run on FreeBSD,
though there is a considerable effort to minimize even this category.

To install the Linux emulator, you must:

• Install the compatibility libraries. These are in the port /usr/ports/emulators/lin-
ux_base.

• Run the Linux emulator kld, linux.

Running the Linux emulator
Normally you load the Linux emulator when you boot the system. Put the following line
in your /etc/rc.conf :

linux_enable="YES"

If you don’t want to do this for some reason, you can start it from the command line:

kldload linux

You don’t interact directly with the emulator module: it’s just there to supply kernel
functionality, so you get a new prompt immediately when you start it.

linux is a kld, so it doesn’t show up in a ps listing. To check whether it is loaded, use
kldstat:

$ kldstat
Id Refs Address Size Name
1 5 0xc0100000 1d08b0 kernel
2 2 0xc120d000 a000 ibcs2.ko
3 1 0xc121b000 3000 ibcs2_coff.ko
5 1 0xc1771000 e000 linux.ko

This listing shows that the SCO UNIX emulation (ibcs2) has also been loaded.

164 Chapter 8: Taking control

The Linux emulator and many Linux programs are located in the directory hierarchy
/usr/compat/linux. You won’t normally need to access them directly, but if you get a
Linux program that includes libraries destined for /lib, you will need to manually place
them in /usr/compat/linux/lib. Be very careful not to replace any files in the /usr/lib
hierarchy with Linux libraries; this would make it impossible to run FreeBSD programs
that depend on them, and it’s frequently very difficult to recover from such problems.
Note that FreeBSD does not have a directory /lib, so the danger is relatively minor.

Linux procfs
Linux systems have a file system called procfs, or Process File System, which contains
information used by many programs. FreeBSD also has a procfs, but it is completely
different. To be able to run Linux programs which refer to procfs, place the following
entry in your /etc/fstab file:

linproc /compat/linux/proc linprocfs rw 0 0

Problems executing Linux binaries
One of the problems with the ELF format used by older Linux binaries is that they may
contain no information to identify them as Linux binaries. They might equally well be
BSD/OS or UnixWare binaries. That’s normally not a problem, unless there are library
conflicts: the system can’t decide which shared library to use. If you have this kind of
binary, you must brand the executable using the program brandelf. For example, to
brand the StarOffice program swriter3, you would enter:

brandelf -t Linux /usr/local/StarOffice-3.1/linux-x86/bin/swriter3

This example deliberately shows a very old version of StarOffice: it’s not clear that there
are any modern binaries that cause such problems.

Emulating SCO UNIX
SCO UNIX , also known as SCO OpenDesktop and SCO Open Server, is based on UNIX
System V.3.2. This particular version of UNIX was current in the late 1980s. It uses an
obsolete binary format called COFF (Common Object File Format).

Like Linux support, SCO support for FreeBSD is supplied as a loadable kernel module.
It’s not called sco, though: a number of older System V.3.2 systems, including Interactive
UNIX, also support the ibcs21 standard. As a result, the kld is called ibcs2.

Run ibcs2 support like Linux support: start it manually, or modify /etc/rc.conf to start it
automatically at bootup:

1. ibcs2 stands for Intel Binary Compatibility System 2.

Emulating SCO UNIX 165

ibcs2_enable="YES" # Ibcs2 (SCO) emulation loaded at startup (or NO).

Alternatively, load the kld:

kldload ibcs2

One problem with SCO emulation is the SCO shared libraries. These are required to
execute many SCO executables, and they’re not supplied with the emulator. They are
supplied with SCO’s operating systems. Check the SCO license to determine whether
you are allowed to use them on FreeBSD. You may also be eligible for a free SCO
license—see the SCO web site for further details.

Emulating Microsoft Windows
The wine project has been working for some time to provide an emulation of Microsoft’s
Windows range of execution environments. It’s changing continually, so there’s little
point describing it here. You can find up-to-date information at
http://www.winehq.com/about/, and you can install it from the port emulators/wine. Be
prepared for a fair amount of work.

Accessing Microsoft files
Often you’re not as interested in running Microsoft applications as decoding their
proprietary formats. For example, you might get a mail message with an attachment
described only as

[-- Attachment #2: FreeBSD.doc --]
[-- Type: application/octet-stream, Encoding: x-unknown, Size: 15K --]

[-- application/octet-stream is unsupported (use ’v’ to view this part) --]

This attachment has an unspecific MIME type,1 but you might guess that it is Microsoft
Word format because the file name ends in .doc. That doesn’t make it any more legible.
To read it, you need something that understands the format. A good choice is
OpenOffice.org, a clone of Microsoft’s ‘‘Office’’ product. Install from the Ports
Collection (/usr/ports/editors/openoffice).

OpenOffice.org is not a good example of the UNIX way. It breaks a number of
conventions, and in general it’s a lot more difficult to use than normal FreeBSD tools. Its
only real advantage is that you can process Microsoft document formats.

1. See Chapter 26, Electronic mail: clients, page 489, for more information about MIME.

(ports.mm), page 167

9
The Ports
Collection

In this chapter:
• How to install a

package
• Building a port
• Package

documentation
• Getting binary-only

software
• Maintaining ports
• Upgrading ports
• Controlling installed

por ts
• Submitting a new

por t

In this chapter:
• How to install a

package
• Building a port
• Package

documentation
• Getting binary-only

software
• Maintaining ports
• Upgrading ports
• Controlling installed

por ts
• Submitting a new

por t

The Internet is full of free software that is normally distributed in source form. That can
be a problem in itself: the way from the source archive that you get free from the Internet
to the finished, installed, running program on your machine—normally called porting—
can be a long and frustrating one. See my book Porting UNIX Software for more details
of the porting process.

To get a software package up and running on your system, you need to go through most
of these steps:

1. Get the source files on your machine. They are usually contained in an archive, a file
containing a number of other files. Archives used for the ports collection are
generally gzipped tar files, packaged with tar and compressed with gzip, but other
formats are also possible. Whatever the format, you’ll typically use ftp to get them to
your machine.

2. Unpack the archive into a source tree, in this case using gunzip and tar.

3. Configure the package. Most packages include shell scripts to do this. Configuration
performs a threefold adaptation of the package:

1. It adapts it to the system hardware.

2. It adapts it to the software environment you’re running (in this case, FreeBSD).

3. It adapts it to your personal preferences.

167

168 Chapter 9: The Por ts Collection

4. Build the package. For most packages, this involves compiling the source files and
creating executables. The main tool for this purpose is make, which uses a set of
rules, traditionally stored in a file called Makefile, to decide how to build the package.
There is nearly always a Makefile in the sources, but the Ports Collection includes a
second one that controls the build at a higher level.

5. Install the package. This involves mainly copying the executables, configuration files
and documentation created by a build to the correct place in the directory hierarchy.

6. Configure the installed software. This is similar in concept to package configuration,
except that it occurs in the run-time environment. The package configuration may
perform all the necessary configuration for you.

These are a lot of steps, and you’ll often find they’re laid through a minefield: one false
move, and everything blows up. To make porting and installing software easier, the
FreeBSD team created a framework called the Ports Collection, which makes it trivial to
perform these steps. It also provides a method of packaging and installing the resultant
ported software, called packages. The CD-ROM edition of FreeBSD includes a large
number of pre-built packages that can be installed directly.

In this chapter, we’ll consider the following points as they relate to the FreeBSD ports
collection:

• How to install a pre-compiled package. We’ll look at this in the next section.

• What the ports tree is, and how to compile and install (‘‘build’’) a package. We’ll
look at this on page 169.

• How to create and submit a new port, on page 174.

How to install a package
In FreeBSD parlance, a package is simply a special archive that contains those files
(usually executable binary files) that are installed when you build and install a port.
Effectively it’s a snapshot of the port build process that we saw above, taken after step 4
has completed. Compared to the full-blown port, packages are much faster to install—it’s
usually a matter of seconds. On the other hand, they don’t giv e you the choice of
configuration that the complete port does. The distribution CD-ROMs contain a directory
packages with a large number of pre-compiled software packages. Alternatively, you can
find FreeBSD packages on many servers on the Internet—check the online handbook for
some places to look.

To help maintain an overview, both ports and packages are divided into categories. They
are stored in directories named after the category. See the file /usr/ports/INDEX for a
list. For example, emacs under editors is currently in the file packages/edi-
tors/emacs-21.2.tgz, though this name will change with updated versions of emacs. For
the latest version of the packages only, you’ll find another copy without the extension in
packages/Latest/emacs.tgz. To install it, you enter:

How to install a package 169

pkg_add /cdrom/packages/Latest/emacs.tgz

Alternatively, you can install packages from the sysinstall final configuration menu
shown in Figure 6-1 on page 92.

Building a port
The more general way to install third-party software is with a port. The FreeBSD project
uses the term port to describe the additional files needed to adapt a package to build
under FreeBSD. It does not include the source code itself, though the CD-ROM
distribution includes many code archives in the directory /ports/distfiles, spread over
several of the CD-ROMs.

Before you get started with the ports, you need to install the port information on your
system. Normally this will be in /usr/ports. This directory tree is frequently called the
Ports Tree. There are a number of ways to install them.

Installing ports during system installation
The simplest way to install the Ports Collection is when you install the system. When
you choose the components to install, sysinstall offers to install the Ports Collection for
you as well.

Installing ports from the first CD-ROM
The file ports/ports.tgz on the first CD-ROM is a tar archive containing all the ports. If
you didn’t install it during system installation, use the following method to install the
complete collection (about 200 MB). Make sure your CD-ROM is mounted (in this
example on /cdrom), and enter:

cd /usr
tar xzvf /cdrom/ports/ports.tgz

If you only want to extract a single package, say inn, which is in the category news, enter:

cd /usr
tar xzvf /cdrom/ports/ports.tgz ports/news/inn

It takes a surprisingly long time to install the ports; although there isn’t much data in the
archive, there are about 250,000 files in it, and creating that many files takes a lot of disk
I/O.

Installing ports from the live file system CD-ROM
Alternatively, the files are also on the live file system CD-ROM. This is not much of an
advantage for installation, but you may find it convenient to browse through the source
trees in the directory ports on the CD-ROM. Let’s assume you have found a directory
/usr/ports/graphics/hpscan on the CD-ROM, and it is your current working directory.

170 Chapter 9: The Por ts Collection

You can move the data across with the following:

cd /cdrom/ports/graphics
mkdir -p /usr/ports/graphics
tar cf - . | (cd /usr/ports/graphics; tar xvf -)

Getting new ports
What happens when a new version of a port comes out? For example, you’ve been using
Emacs Version 20 forever, and now Version 21.2 becomes available? It’s brand new, so
it’s obviously not on your CD-ROM.

One way to get the port is via ftp. This used to be quite convenient: you could download
a tarball directly and extract it locally. That is unfortunately no longer possible: currently
you must download files a directory at a time. If you’re following the Ports Collection at
all closely, you should consider using cvsup, which can keep your sources up to date
automatically. See Chapter 31, page 585, for more details.

All ports are kept in subdirectories of the URL ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/.
This directory has the following contents:

drwxr-xr-x 6 1006 1006 512 Jun 8 13:18 alpha
drwxr-xr-x 209 1006 1006 401408 May 28 14:08 distfiles
drwxr-xr-x 6 1006 1006 1536 May 28 17:53 i386
drwxr-xr-x 3 1006 1006 512 Apr 6 13:45 ia64
drwxr-xr-x 83 1006 1006 3072 May 20 15:35 local-distfiles
lrwxrwxrwx 1 root wheel 13 Jun 1 2001 packages -> i386/packages
lrwxrwxrwx 1 root wheel 24 Jun 1 2001 ports -> ../FreeBSD-current/ports
lrwxrwxrwx 1 root wheel 5 Jun 1 2001 ports-current -> ports
lrwxrwxrwx 1 root wheel 5 Jun 1 2001 ports-stable -> ports
drwxr-xr-x 4 1006 1006 512 Apr 9 10:37 sparc64

The directories alpha, i386, ia64 and sparc64 contain packages (not ports) for the
corresponding architecture. distfiles contains a large number of the original sources for
the third-party packages; it’s intended as a ‘‘last resort’’ location if you can’t find them at
other locations.

The directory local-distfiles is used by people working on the Ports Collection; you don’t
normally need anything from these directories. The important directories for you are
ports, ports-current and ports-stable. Currently these are really all the same directory,
but things may not remain like that.

Getting back to your emacs port: you would find it in the directory /pub/Free-
BSD/ports/ports/editors/. Note the final / in that directory name: if you leave it out, ftp
prints an error message and exits. Here’s what might happen:

$ ftp ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/ports/editors/
Connected to ftp.beastie.tdk.net.
220 ftp.beastie.tdk.net FTP server (Version 6.00LS) ready.
331 Guest login ok, send your email address as password.
230- The FreeBSD mirror at Tele Danmark Internet.
...much blurb omitted
250 CWD command successful.
250 CWD command successful.
ftp> ls

Building a port 171

229 Entering Extended Passive Mode (|||55649|)
150 Opening ASCII mode data connection for ’/bin/ls’.
total 704
...
drwxr-xr-x 3 1006 1006 512 May 20 10:07 emacs
drwxr-xr-x 4 1006 1006 512 May 20 10:08 emacs20
drwxr-xr-x 4 1006 1006 512 May 20 10:08 emacs20-dl
drwxr-xr-x 4 1006 1006 512 May 20 10:08 emacs20-mule-devel
drwxr-xr-x 3 1006 1006 512 May 20 10:08 emacs21
drwxr-xr-x 2 1006 1006 512 May 20 10:08 eshell-emacs20
...

This shows that your files will be in the directory emacs21. You can get them with the
ftp mget command:

ftp> mget emacs21
mget emacs21/files [anpqy?]? a answer a for all files
Prompting off for duration of mget.
ftp: local: emacs21/files: No such file or directory
ftp: local: emacs21/Makefile: No such file or directory
(etc)

This happens because you need to create the destination directory manually. Try again:

ftp> !mkdir emacs21 create the local directory
ftp> mget emacs21
mget emacs21/files [anpqy?]? a
Prompting off for duration of mget.
229 Entering Extended Passive Mode (|||57074|)
550 emacs21/files: not a plain file.
229 Entering Extended Passive Mode (|||57085|)
150 Opening BINARY mode data connection for ’emacs21/Makefile’ (2185 bytes).
100% |*************************************| 2185 2.34 MB/s 00:00 ETA
226 Transfer complete.
(etc)

You get one of these for each file transferred. But note the error message: not a plain file.
emacs21/files is a directory, so we need to get it separately:

ftp> !mkdir emacs21/files
ftp> mget emacs21/files
mget emacs21/files/patch-lib-src:Makefile.in [anpqy?]? a
Prompting off for duration of mget.
229 Entering Extended Passive Mode (|||57258|)
150 Opening BINARY mode data connection for ’emacs21/files/patch-lib-src:Makefile.in
’ (908 bytes).
100% |*************************************| 908 1.64 MB/s 00:00 ETA
226 Transfer complete.
(etc)

Note that the ftp command specifies the URL of the directory. It must have a trailing /,
otherwise ftp will complain. This form is supported by FreeBSD ftp, but many other ftp
clients will require you to do it in two steps:

ftp ftp.FreeBSD.org
Connected to ftp.beastie.tdk.net.
(etc)
ftp> cd /pub/FreeBSD/ports/ports/editors
250 CWD command successful.

172 Chapter 9: The Por ts Collection

What’s in that port?
One problem with the Ports Collection is the sheer number. It can be difficult just to find
out what they’re supposed to do. If you build all the ports, you’ll be busy for weeks, and
there’s no way you could read all the documentation in one lifetime. Where can you get
an overview? Here are some suggestions. In each case, you should have the directory
/usr/ports as your current working directory.

• There’s an index in /usr/ports/INDEX. If you have updated the ports tree, you can
make the index with the following commands:

cd /usr/ports
make index

index is the name of a target, the part of a rule that identifies it. It’s usually either a
file name or an abbreviation for an operation to perform. We’ll see a number of
make targets in the course of the book.

The index is intended for use by other programs, so it’s written as a single long line
per package, with fields delimited by the vertical bar character (|). Here are two
lines as an example, wrapped over three lines to fit on the page:

mp3asm-0.1.3|/usr/ports/audio/mp3asm|/usr/local|MP3 frame level editor|/usr/port
s/audio/mp3asm/pkg-descr|ports@FreeBSD.org|audio| autoconf213-2.13.000227_1||htt
p://mp3asm.sourceforge.net/
mp3blaster-3.0p8|/usr/ports/audio/mp3blaster|/usr/local|MP3 console ncurses-base
d player|/usr/ports/audio/mp3blaster/pkg-descr|greid@FreeBSD.org|audio|||http://
www.stack.nl/˜brama/mp3blaster.html

You’ll probably want to process it with other tools.

• You can print the index with the following commands:

cd /usr/ports
make print-index | lpr

Note that there are about 1,000 pages of output, which look like this:

Port: zip-2.3_1
Path: /usr/ports/archivers/zip
Info: Create/update ZIP files compatible with pkzip
Maint: ache@FreeBSD.org
Index: archivers
B-deps: unzip-5.50
R-deps:

• You can search for a specific keyword with the search target. For example, to find
ports related to Emacs, you might enter:

cd /usr/ports
make search key=Emacs | less

Pipe the output through less: it can be quite a lot.

Building a port 173

• You can build a series of nearly 10,000 html pages like this:

cd /usr/ports
make readmes

You can then browse them at the URL file:///usr/ports/README.html.

Getting the source archive
You’ll see from the above example that there are not many files in the port. Most of the
files required to build the software are in the original source code archive (the ‘‘tarball’’),
but that’s not part of the port.

There are a number of places from which you can get the sources. If you have a CD-
ROM set, many of them are scattered over the CD-ROMs, in the directory
/cdrom/ports/distfiles on each CD-ROM. The Ports Collection Makefiles look for them
in this directory (another good reason to mount your CD-ROM on /cdrom) and also in
/usr/ports/distfiles.

If you don’t hav e the source tarball, that’s not a problem. Part of the function of the Ports
Collection is to go out on the Net and get them for you. This is completely automatic:
you just type make, and the build process gets the source archive for you and builds it. Of
course, you must be connected to the Internet for this to work.

If you mount your CD-ROM elsewhere (maybe because you have more than one CD-
ROM drive, and so you have to mount the CD-ROM on, say, /cd4), the Makefiles will not
find the distribution files and will try to load the files from the Internet. One way to solve
this problem is to create a symbolic link from /cd4/ports/distfiles to /usr/ports/distfiles.
The trouble with this approach is that you will then no longer be able to load new
distribution files into /usr/ports/distfiles, because it will be on CD-ROM. Instead, do:

cd /cd4/ports/distfiles
mkdir -p /usr/ports/distfiles make sure you have a distfiles directory
for i in *; do
> ln -s /cd4/ports/distfiles/$i /usr/ports/distfiles/$i
> done

If you’re using csh or tcsh, enter:

cd /cd4/ports/distfiles
mkdir -p /usr/ports/distfiles make sure you have a distfiles directory
foreach i (*)
? ln -s /cd4/ports/distfiles/$i /usr/ports/distfiles/$i
? end

This creates a symbolic link to each distribution file, but if the file for a specific port isn’t
there, the Ports Collection can fetch it and store it in the directory.

174 Chapter 9: The Por ts Collection

Building the port
Once you have the skeleton files for the port, the rest is simple. Just enter:

cd /usr/ports/editors/emacs21
make
make install
====>
====> To enable menubar fontset support, define WITH_MENUBAR_FONTSET
====>
>> emacs-21.2.tar.gz doesn’t seem to exist in /usr/ports/distfiles/.
>> Attempting to fetch from ftp://ftp.gnu.org/gnu/emacs/.
===> Extracting for emacs-21.2_1
>> Checksum OK for emacs-21.2.tar.gz.
===> emacs-21.2_1 depends on executable: gmake - found
===> emacs-21.2_1 depends on executable: autoconf213 - not found
===> Verifying install for autoconf213 in /usr/ports/devel/autoconf213
===> Extracting for autoconf213-2.13.000227_2
>> Checksum OK for autoconf-000227.tar.bz2.
===> autoconf213-2.13.000227_2 depends on executable: gm4 - not found
===> Verifying install for gm4 in /usr/ports/devel/m4
===> Extracting for m4-1.4_1
>> Checksum OK for m4-1.4.tar.gz.
===> Patching for m4-1.4_1
===> Applying FreeBSD patches for m4-1.4_1
===> Configuring for m4-1.4_1
creating cache ./config.cache
checking for mawk... no
(etc)

It’s a good idea to perform the make step first: make install does not always build the
package.

Port dependencies
Sometimes, it’s not enough to build a single port. Many ports depend on other ports. If
you have the complete, up-to-date ports tree installed on your system, the Ports
Collection will take care of this for you: it will check if the other port is installed, and if it
isn’t, it will install it for you. For example, tkdesk depends on tk. tk depends on tcl. If
you don’t hav e any of them installed, and you try to build tkdesk, it will recursively
install tk and tcl for you.

Package documentation
Once you have installed your port, you’ll want to use it. In almost every case, that
requires documentation. Most packages have documentation, but unfortunately it’s not
always obvious where it is. In some cases, the port doesn’t install all the documentation.

More generally, there are the following possibilities:

• If the port includes man pages, they will be installed in /usr/X11R6/man if the
package is related to X, and /usr/local/man if they are not. Typically installing the
man pages is the last thing that happens during the installation, so you should see it
on the screen. If not, or if you want to check, you can have a look at the package list:

Package documentation 175

$ cd /var/db/pkg
$ pkg_info -L emacs-21.2_1|grep /man/
/usr/local/man/man1/ctags.1.gz
/usr/local/man/man1/emacs.1.gz
/usr/local/man/man1/etags.1.gz
/usr/local/man/man1/gfdl.1.gz

You don’t need to change the directory to /var/db/pkg, but if you do, you can use file
name completion to finish the name of the package. We use /man/ as the search
string, and not simply man, because otherwise other files might match as well.

• If the package includes GNU info pages, you can use the same method to look for
them:

$ pkg_info -L emacs-21.2_1|grep /info/
/usr/local/info/ada-mode
/usr/local/info/autotype
/usr/local/info/ccmode
/usr/local/info/cl
(many more)

This isn’t normally necessary, though: if you’re using GNU info, the index page will
be updated to include the package.

• If the package includes hardcopy documentation, it may or may not be included in
the port. The Emacs documentation also includes a user’s guide and a programmer’s
guide. The user’s guide, all 640 pages of it, is in the directory man of the Emacs
build directory, but it doesn’t get built during installation. This is typical of most
ports. In this case you’ll have to build the documentation yourself.

Getting binary-only software
A lot of software doesn’t need to be ported. For example, if you want Netscape, you can
just download it from ftp.netscape.com. But how do you install it? Netscape’s
installation procedures are getting better, but they still leave something to be desired.

The answer’s simple: take the port! Although Netscape comes only in binary form, the
port handles getting the correct version and installing it for you. Another advantage to
using a port instead of installing the package manually is that the port installs the
software as a FreeBSD package, which makes it much easier to remove the software later.

This method can be used to install some other software as well, for example StarOffice.
The moral is simple: always check the Ports Collection before getting a software package
from the Net.

176 Chapter 9: The Por ts Collection

Maintaining ports
Once you install a port, you might consider that to be the end of the story. That’s seldom
the case. For example:

• You might need to replace a port with a newer version. How do you do it? We’ll
look at that below.

• One day, you might find your disk fills up, so you go looking for old ports you don’t
use any more. We’ll look at some utility commands on page 178.

Upgrading ports
From time to time, new versions of software will appear. There are a number of
approaches to upgrading:

• You can remove the old version of the port and install a new version. The trouble
here is that removing the old version might remove any configuration files as well.

• You can install a new version without removing the old version. The trouble here is
that you end up with two entries in the packages database /var/db/pkg:

$ pkg_info | grep emacs
emacs-21.1_5 GNU editing macros
emacs-21.2_1 GNU editing macros

Clearly you don’t need emacs-21.1_5 any more. In fact, it’s not complete any more,
because the program /usr/local/bin/emacs has been overwritten by the new version.
But you can’t remove it either: that would remove components of emacs-21.2_1,
which you want to keep. On the other hand, if you don’t remove it, you are left with
nearly 50 MB of disk space used up in the directory /usr/local/share/emacs/21.1.

• You can use portupgrade, a program that does some of the upgrading automatically.
We’ll look at this below.

Using portupgrade
Portupgrade is—what else?—a port. Install it in the usual manner:

cd /usr/ports/sysutils/portupgrade
make install

Before you can perform the upgrade, you should first back up /var/db/pkg, then build a
ports database with pkgdb. A typical build might look like this:

Upgrading ports 177

cd /var/db
tar czvf db.pkg.tar.gz pkg/
pkgdb -F
[Updating the pkgdb <format:bdb1_btree> in /var/db/pkg ... - 181 packages
found (-5 +92) (...).. done]
Checking the origin of AbiWord-1.0.3
Checking the origin of ImageMagick-5.5.1.1
Checking the origin of ORBit-0.5.17
...
Checking the origin of xv-3.10a_3
Checking the origin of zip-2.3_1
Checking for origin duplicates
Checking AbiWord-1.0.3
Checking ImageMagick-5.5.1.1
Stale dependency: ImageMagick-5.5.1.1 -> ghostscript-gnu-7.05_3:
ghostscript-gnu-6.52_4 (score:64%) ? ([y]es/[n]o/[a]ll) [no] y
Fixed. (-> ghostscript-gnu-6.52_4)
Checking ORBit-0.5.17
Checking XFree86-4.2.0_1,1
...
Checking bonobo-1.0.21_1
Stale dependency: bonobo-1.0.21_1 -> ghostscript-gnu-7.05_3:
ghostscript-gnu-6.52_4 ? ([y]es/[n]o/[a]ll) [yes] Enter pressed
Fixed. (-> ghostscript-gnu-6.52_4)
Checking cdrtools-1.11.a28
...
Checking xv-3.10a_3
Checking zip-2.3_1
Regenerating +REQUIRED_BY files
Checking for cyclic dependencies

In this example, the port ghostscript-gnu-7.05_3 had been replaced by the earlier version
ghostscript-gnu-6.52_4, since ghostscript Release 7 has some annoying bugs. The
dialogue shows how pkgdb recognized the discrepancy, and how it recovered from it.

Now you can start the upgrade. To upgrade a specific port, simply specify its base name,
without the version number. This example uses the -v option to show additional
information:

portupgrade -v bison

---> Upgrade of devel/bison started at: Mon, 04 Nov 2002 13:20:52 +1030
---> Upgrading ’bison-1.35_1’ to ’bison-1.75’ (devel/bison)
---> Build of devel/bison started at: Mon, 04 Nov 2002 13:20:52 +1030
... normal port build output
===> Registering installation for bison-1.75
make clean issued by portupgrade
===> Cleaning for libiconv-1.8_2
===> Cleaning for gettext-0.11.5_1
...
---> Removing the temporary backup files
---> Installation of devel/bison ended at: Mon, 04 Nov 2002 13:23:00 +1030 (consume
d 00:00:06)
---> Removing the obsoleted dependencies
---> Cleaning out obsolete shared libraries
---> Upgrade of devel/bison ended at: Mon, 04 Nov 2002 13:23:01 +1030 (consumed 00:
02:08)
---> Reporting the results (+:succeeded / -:ignored / *:skipped / !:failed)

+ devel/bison (bison-1.35_1)

178 Chapter 9: The Por ts Collection

If the port is already up to date, you’ll see something like this:

portupgrade -v perl-5.8.0_3
** No need to upgrade ’perl-5.8.0_3’ (>= perl-5.8.0_3). (specify -f to force)
---> Reporting the results (+:succeeded / -:ignored / *:skipped / !:failed)

- lang/perl5.8 (perl-5.8.0_3)

To upgrade all ports, use the command:

portupgrade -a

Controlling installed ports
We’v e already seen the program pkg_add when installing pre-compiled packages. There
are a number of other pkg_ programs that can help you maintain installed ports, whether
they hav e been installed by pkg_add or by make install from the Ports Collection:

• pkg_info tells you which ports are installed. For example:

$ pkg_info | less
AbiWord-1.0.3 An open-source, cross-platform WYSIWYG word proces
ImageMagick-5.5.1.1 Image processing tools (interactive optional--misc
ORBit-0.5.17 High-performance CORBA ORB with support for the C
XFree86-4.2.0_1,1 X11/XFree86 core distribution (complete, using min
... etc
bash-2.05b.004 The GNU Bourne Again Shell
bison-1.75 A parser generator from FSF, (mostly) compatible w
bonobo-1.0.21_1 The component and compound document system for GNO
cdrtools-1.11.a28 Cdrecord, mkisofs and several other programs to re
... etc
elm-2.4ME+22 ELM Mail User Agent
elm-2.4ME+32 ELM Mail User Agent

Note that the last two entries in this example show that two versions of elm are
installed. This can’t be right; it happens when you install a new version without
removing the old version and without running portupgrade. We’ll discuss this matter
further below.

• If you have the ports tree installed, you can use pkg_version to check whether your
ports are up to date. pkg_version is a little cryptic in its output:

AbiWord-gnome =
ImageMagick <
ORBit <
Wingz =
XFree86 <
...
x2x-1.28 ?

The symbols to the right of the package names have the following meanings:

Controlling installed ports 179

The installed version of the package is current.
< The installed version of the package is older than the current version.
> The installed version of the package is newer than the current version.

This situation can arise with an out-of-date index file, or when testing
new ports.

? The installed package does not appear in the index. This could be due
to an out of date index or a package that has not yet been committed.

* There are multiple versions of a particular software package listed in the
index file.

! The installed package exists in the index but for some reason,
pkg_version was unable to compare the version number of the installed
package with the corresponding entry in the index.

• There are two ways to remove a port: if you’ve built it from source, and you’re in the
build directory, you can write:

make deinstall

Alternatively, you can remove any installed package with pkg_delete. For example,
the list above shows two versions of the elm mail user agent. To remove the older
one, we enter:

pkg_delete elm-2.4ME+22
File ‘/usr/local/man/man1/answer.1’ doesn’t really exist.
Unable to completely remove file ’/usr/local/man/man1/answer.1’
File ‘/usr/local/man/man1/checkalias.1’ doesn’t really exist.
Unable to completely remove file ’/usr/local/man/man1/checkalias.1’
... etc
Couldn’t entirely delete package (perhaps the packing list is
incorrectly specified?)

In this case, it looks as if somebody has tried to remove the files before, so
pkg_delete couldn’t do so.

Another problem with pkg_delete is that it might delete files of the same name that
have been replaced by newer packages. After performing this operation, we try:

$ elm
bash: elm: command not found

Oops! We tried to delete the old version, but we deleted at least part of the new
version. Now we need to install it again.

The moral of this story is that things aren’t as simple as they might be. When you
install a new version of a package, you may want to test it before you commit to
using it all the time. You can’t just go and delete the old version. One possibility
would be to install the new package, and try it out. When you’ve finished testing,
delete both packages and re-install the one you want to keep.

180 Chapter 9: The Por ts Collection

Keeping track of updates

The best way to find out about updates is to subscribe to the FreeBSD-ports mailing
list. That way, you will get notification every time something changes. If you’re tracking
the ports tree with CVSup, you also get the updates to the ports tree automatically.
Otherwise you will have to download the port. In either case, to update your installed
port, just repeat the build.

Submitting a new port
The Ports Collection is constantly growing. Hardly a day goes by without a new port
being added to the list. Maybe you want to submit the next one? If you have something
interesting that isn’t already in the Ports Collection, you can find instructions on how to
prepare the port in the Fr eeBSD Porter’s Handbook. The latest version is available on the
FreeBSD web site, but you’ll also find it on your system as /usr/share/doc/en/porters-
handbook/index.html.

(filesys.mm), page 181

10
File systems
and devices

In this chapter:
• File permissions
• Mandator y Access

Control
• Links
• Director y hierarchy
• File system types
• Mounting file

systems
• FreeBSD devices
• Vir tual ter minals

In this chapter:
• File permissions
• Mandator y Access

Control
• Links
• Director y hierarchy
• File system types
• Mounting file

systems
• FreeBSD devices
• Vir tual ter minals

One of the most revolutionary concepts of the UNIX operating system was its file system,
the way in which it stores data. Although most other operating systems have copied it
since then, including Microsoft’s platforms, none have come close to the elegance with
which it is implemented. Many aspects of the file system are not immediately obvious,
some of them not even to seasoned UNIX users.

We’v e already looked at file naming conventions on page 125. In the next section, we’ll
look at the file system access, structure and hierarchy, and on page 195 we’ll look at how
the file system treats hardware devices as files.

File permissions
A UNIX system may potentially be used by many people, so UNIX includes a method of
protecting data from access by unauthorized persons. Every file has three items of
information associated with it that describe who can access it in what manner:

• The file owner, the user ID of the person who owns the file.

• The file group, the group ID of the group that ‘‘owns’’ the file.

• A list of what the owner, the group and other people can do with the file. The
possible actions are reading, writing or executing.

181

182 Chapter 10: File systems and devices

For example, you might have a program that accesses private data, and you want to be
sure that only you can execute it. You do this by setting the permissions so that only the
owner can execute it. Or you might have a text document in development, and you want
to be sure that you are the only person who can change it. On the other hand, the people
who work with you have a need to be able to refer to the document. You set the
permissions so that only the owner can write it, that the owner and group can read it, and,
because it’s not ready for publication yet, you don’t allow anybody else to access it.

Traditionally, the permissions are represented by three groups of rwx: r stands for read
permission, w stands for write permission, and x stands for execute permission. The three
groups represent the permissions for the owner, the group and others respectively. If the
permission is not granted, it is represented by a hyphen (-). Thus, the permissions for the
program I discussed above would be r-x------ (I can read and execute the program,
and nobody else can do anything with it). The permissions for the draft document would
be rw-r----- (I can read and write, the group can read, and others can’t access it).

Typical FreeBSD file access permissions are rwxr-xr-x for programs and rw-r--r--
for other system files. In some cases, however, you’ll find that other permissions are
required. For example, the file ˜/.rhosts, which is used by some network programs for
user validation, may contain the user’s password in legible form. To help ensure that
other people don’t read it, the network programs refuse to read it unless its permissions
are rw-------. The vast majority of system problems in UNIX can be traced to
incorrect permissions, so you should pay particular attention to them.

Apart from these access permissions, executables can also have two bits set to specify the
access permissions of the process when it is run. If the setuid (set user ID) bit is set, the
process always runs as if it had been started by its owner. If the setgid (set group ID) bit
is set, it runs as if it had been started by its group. This is frequently used to start system
programs that need to access resources that the user may not access directly. We’ll see an
example of this with the ps command on page 185. ls represents the setuid bit by
setting the third letter of the permissions string to s instead of x; similarly, it represents
the setgid bit by setting the sixth letter of the permissions string to s instead of x.

In addition to this access information, the permissions contain a character that describes
what kind of file it represents. The first letter may be a - (hyphen), which designates a
regular file, the letter d for directory, or the letters b or c for a device node. We’ll look at
device nodes in Chapter 11, page 195. There are also a number of other letters that are
less used. See the man page ls(1) for a full list.

To list files and show the permissions, use the ls command with the -l option:

$ ls -l
total 2429
-rw-rw-r-- 1 grog wheel 28204 Jan 4 14:17 %backup%˜
drwxrwxr-x 3 grog wheel 512 Oct 11 15:26 2.1.0-951005-SNAP
drwx------ 4 grog wheel 512 Nov 25 17:23 Mail
-rw-rw-r-- 1 grog wheel 149 Dec 4 14:18 Makefile
-rw-rw-r-- 1 grog wheel 108 Dec 4 12:36 Makefile.bak
-rw-rw-r-- 1 grog wheel 108 Dec 4 12:36 Makefile˜
-rw-rw-r-- 1 grog wheel 0 Dec 4 12:36 depend
-rw-rw-r-- 1 daemon wheel 1474560 Dec 14 17:03 deppert.floppy

File permissions 183

-rwxr-xr-x 1 grog wheel 100 Dec 19 15:24 doio
-rwxrwxr-x 1 grog wheel 204 Dec 19 15:25 doiovm
-rwxrwxr-x 1 grog wheel 204 Dec 19 15:16 doiovm˜
-rwxr-xr-x 1 grog wheel 115 Dec 26 08:42 dovm
-rwxr-xr-x 1 grog wheel 114 Dec 19 15:30 dovm˜
drwxr-xr-x 2 grog wheel 512 Oct 16 1994 emacs
drwxrwxrwx 2 grog wheel 512 Jan 3 14:07 letters

This format shows the following information:

• First, the permissions, which we’ve already discussed.

• Then, the link count. This is the number of hard links to the file. For a regular file,
this is normally 1, but directories have at least 2. We look at links on page 186.

• Next come the names of the owner and the group, and the size of the file in bytes.
You’ll notice that the file deppert.floppy belongs to daemon. This was probably an
accident, and it could lead to problems. Incidentally, looking at the name of the file
and its size, it’s fairly obvious that this is an image of a 3½" floppy, that is to say, a
literal copy of the data on the complete floppy.

• The date is normally the date that the file was last modified. With the -u option to ls,
you can list the last time the file was accessed.

• Finally comes the name of the file. As you can see from this example, the names can
be quite varied.

A couple of the permissions are of interest. The directories all have the x (execute)
permission bit set. This enables accessing (i.e. opening) files in the directory—that’s the
way the term execute is defined for a directory. If I reset the execute permission, I can
still list the names of the files, but I can’t access them.

I am the only person who can access the directory Mail. This is the normal permission
for a mail directory.

Changing file permissions and owners

Often enough, you may want to change file permissions or owners. UNIX supplies three
programs to do this:

• To change the file owner, use chown. For example, to change the ownership of the
file deppert.floppy, which in the list above belongs to daemon, root would enter:

chown grog deppert.floppy

Note that only root may perform this operation.

• To change the file group, use chgrp, which works in the same way as chown. To
change the group ownership to lemis, you would enter:

184 Chapter 10: File systems and devices

chgrp lemis deppert.floppy

chown can also change both the owner and the group. Instead of the two previous
examples, you could enter:

chown grog:lemis deppert.floppy

This changes the owner to grog, as before, and also changes the group to lemis.

• To change the permissions, use the chmod program. chmod has a number of
different formats, but unfortunately the nine-character representation isn’t one of
them. Read the man page chmod(1) for the full story, but you can achieve just about
anything you want with one of the formats shown in table 10-1:

Table 10-1: chmod permission codes

Specification Effect
go-w Deny write permission to group and others

=rw,+X Set the read and write permissions to the usual defaults, but retain
any execute permissions that are currently set

+X Make a directory or file searchable/executable by everyone if it is
already searchable/executable by anyone

u=rwx,go=rx Make a file readable/executable by everyone and writable by the
owner only

go= Clear all mode bits for group and others

g=u-w Set the group bits equal to the user bits, but clear the group write bit

Permissions for new files

None of this tells us what the permissions for new files are going to be. The wrong
choice could be disastrous. For example, if files were automatically created with the
permissions rwxrwxrwx, anybody could access them in any way. On the other hand,
creating them with r-------- could result in a lot of work setting them to what you
really want them to be. UNIX solves this problem with a thing called umask (User
mask). This is a default non-permission: it specifies which permission bits not to allow.

As if this weren’t confusing enough, it’s specified in the octal number system, in which
the valid digits are 0 to 7. Each octal digit represents 3 bits. By contrast, the more
common hexadecimal system uses 16 digits, 0 to 9 and a to f. The original versions of
UNIX ran on machines that used the octal number system, and since the permissions
come in threes, it made sense to leave the umask value in octal.

An example: by default, you want to create files that anybody can read, but only you can
write. You set the mask to 022. This corresponds to the binary bit pattern 000010010.

File permissions 185

The leading 0 is needed to specify that the number is in octal, not to make up three digits. If you
want to set the permissions so that by default nobody can read, you’d set it to 0222. Some shells
automatically assume that the number is octal, so you may be able to omit the 0, but it’s not good
practice.

The permissions are allowed where the corresponding bit is 0:

rwxrwxrwx Possible permissions
000010010 umask
rwxr-xr-x resultant permissions

By default, files are created without the x bits, whereas directories are created with the
allowed x bits, so with this umask, a file would be created with the permissions rw-
r--r--.

umask is a shell command. To set it, just enter:

$ umask 022

It’s preferable to set this in your shell initialization file—see page 135 for further details.

Beware of creating a too restrictive umask. For example, you will get into a lot of trouble
with a umask like 377, which creates files that you can only read, and that nobody else
can access at all. If you disallow the x (executable) bit, you will not be able to access
directories you create, and you won’t be able to run programs you compile.

Making a program executable

File permissions enable one problem that occurs so often that it’s worth drawing attention
to it. Many operating systems require that an executable program have a special naming
convention, such as COMMAND.COM or FOO.BAT, which in MS-DOS denotes a
specific kind of binary executable and a script file, respectively. In UNIX, executable
programs don’t need a special suffix, but they must have the x bit set. Sometimes this bit
gets reset (turned off), for example if you copy it across the Net with ftp. The result
looks like this:

$ ps
bash: ps: Permission denied
$ ls -l /bin/ps
-r--r--r-- 1 bin kmem 163840 May 6 06:02 /bin/ps
$ su you need to be super user to set ps permission
Password: password doesn’t echo
chmod +x /bin/ps make it executable
ps now it works
PID TT STAT TIME COMMAND
226 p2 S 0:00.56 su (bash)
239 p2 R+ 0:00.02 ps
146 v1 Is+ 0:00.06 /usr/libexec/getty Pc ttyv1
147 v2 Is+ 0:00.05 /usr/libexec/getty Pc ttyv2

ˆD exit su
$ ps
ps: /dev/mem: Permission denied hey! it’s stopped working

Huh? It only worked under su, and stopped working when I became a mere mortal
again? What’s going on here?

186 Chapter 10: File systems and devices

There’s a second problem with programs like ps: some versions need to be able to access
special files, in this case /dev/mem, a special file that addresses the system memory. To
do this, we need to set the setgid bit, s, which requires becoming superuser again:

$ su you need to be super user to set ps permission
Password: password doesn’t echo
chmod g+s /bin/ps set the setgid bit
ls -l /bin/ps see what it looks like
-r-xr-sr-x 1 bin kmem 163840 May 6 06:02 /bin/ps
ˆD exit su
$ ps now it still works
PID TT STAT TIME COMMAND
226 p2 S 0:00.56 su (bash)
239 p2 R+ 0:00.02 ps
146 v1 Is+ 0:00.06 /usr/libexec/getty Pc ttyv1
147 v2 Is+ 0:00.05 /usr/libexec/getty Pc ttyv2

In this example, the permissions in the final result really are the correct permissions for
ps. It’s impossible to go through the permissions for every standard program. If you
suspect that you have the permissions set incorrectly, use the permissions of the files on
the Live Filesystem CD-ROM as a guideline.

setuid and setgid programs can be a security issue. What happens if the program called
ps is really something else, a Trojan Horse? We set the permissions to allow it to break
into the system. As a result, FreeBSD has found an alternative method for ps to do its
work, and it no longer needs to be set setgid.

Mandatory Access Control
For some purposes, traditional UNIX permissions are insufficient. Release 5.0 of
FreeBSD introduces Mandatory Access Control, or MAC, which permits loadable kernel
modules to augment the system security policy. MAC is intended as a toolkit for
developing local and vendor security extensions, and it includes a number of sample
policy modules, including Multi-Level Security (MLS) with compartments, and a number
of augmented UNIX security models including a file system firewall. At the time of
writing it is still considered experimental software, so this book doesn’t discuss it further.
See the man pages for more details.

Links
In UNIX, files are defined by inodes, structures on disk that you can’t access directly.
They contain the metadata, all the information about the file, such as owner, permissions
and timestamps. What they don’t contain are the things you think of as making up a file:
they don’t hav e any data, and they don’t hav e names. Instead, the inode contains
information about where the data blocks are located on the disk. It doesn’t know
anything about the name: that’s the job of the directories.

Links 187

A directory is simply a special kind of file that contains a list of names and inode
numbers: in other words, they assign a name to an inode, and thus to a file. More than
one name can point to the same inode, so files can have more than one name. This
connection between a name and an inode is called a link, sometimes confusingly hard
link. The inode numbers relate to the file system, so files must be in the same file system
as the directory that refers to them.

Directory entries are independent of each other: each points to the inode, so they’re
completely equivalent. The inode contains a link count that keeps track of how many
directory entries point to it: when you remove the last entry, the system deletes the file
data and metadata.

Alternatively, symbolic links, sometimes called soft links, are not restricted to the same
file system (not even to the same system!), and they refer to another file name, not to the
file itself. The difference is most evident if you delete a file: if the file has been hard
linked, the other names still exist and you can access the file by them. If you delete a file
name that has a symbolic link pointing to it, the file goes away and the symbolic link
can’t find it any more.

It’s not easy to decide which kind of link to use—see UNIX Power Tools (O’Reilly) for
more details.

Directory hierarchy
Although Microsoft platforms have a hierarchical directory structure, there is little
standardization of the directory names: it’s difficult to know where a particular program
or data file might be. UNIX systems have a standard directory hierarchy, though every
vendor loves to change it just a little bit to ensure that they’re not absolutely compatible.
In the course of its evolution, UNIX has changed its directory hierarchy sev eral times.
It’s still better than the situation in the Microsoft world. The most recent, and probably
most far-reaching changes, occurred over ten years ago with System V.4 and 4.4BSD,
both of which made almost identical changes.

Nearly every version of UNIX prefers to have at least two file systems, / (the root file
system) and /usr, even if they only have a single disk. This arrangement is considered
more reliable than a single file system: it’s possible for a file system to crash so badly that
it can’t be mounted any more, and you need to read in a tape backup, or use programs
like fsck or fsdb to piece them together. We hav e already discussed this issue on page
68, where I recommend having /usr on the same file system as /.

Standard directories
The physical layout of the file systems does not affect the names or contents of the
directories, which are standardized. Table 10-2 gives an overview of the standard
FreeBSD directories; see the man page hier(7) for more details.

188 Chapter 10: File systems and devices

Table 10-2: FreeBSD directory hierarchy

Directory
name Usage
/ Root file system. Contains a couple of system directories and

mount points for other file systems. It should not contain
anything else.

/bin Executable programs of general use needed at system startup
time. The name was originally an abbreviation for binary, but
many of the files in here are shell scripts.

/boot Files used when booting the system, including the kernel and its
associated klds.

/cdrom A mount point for CD-ROM drives.

/compat A link to /usr/compat: see below.

/dev Directory of device nodes. The name is an abbreviation for
devices. From FreeBSD 5.0 onward, this is normally a mount
point for the device file system, devfs. We’ll look at the contents
of this directory in more detail on page 195.

/etc Configuration files used at system startup. Unlike System V, /etc
does not contain kernel build files, which are not needed at
system startup. Unlike earlier UNIX versions, it also does not
contain executables—they hav e been moved to /sbin.

/home By convention, put user files here. Despite the name, /usr is for
system files.

/mnt A mount point for floppies and other temporary file systems.

/proc The process file system. This directory contains pseudo-files that
refer to the virtual memory of currently active processes.

/root The home directory of the user root. In traditional UNIX file
systems, root’s home directory was /, but this is messy.

/sbin System executables needed at system startup time. These are
typically system administration files that used to be stored in /etc.

/sys If present, this is usually a symbolic link to /usr/src/sys, the
kernel sources. This is a tradition derived from 4.3BSD.

/tmp A place for temporary files. This directory is an anachronism:
normally it is on the root file system, though it is possible to
mount it as a separate file system or make it a symbolic link to
/var/tmp. It is maintained mainly for programs that expect to find
it.

/usr The ‘‘second file system.’’ See the discussion above.

FreeBSD directory hierarchy 189

Directory
name Usage
/usr/X11R6 The X Window System.

/usr/X11R6/bin Executable X11 programs.

/usr/X11R6/include Header files for X11 programming.

/usr/X11R6/lib Library files for X11.

/usr/X11R6/man Man pages for X11.

/usr/bin Standard executable programs that are not needed at system start.
Most standard programs you use are stored here.

/usr/compat A directory containing code for emulated systems, such as Linux.

/usr/games Games.

/usr/include Header files for programmers.

/usr/lib Library files. FreeBSD does not have a directory /lib.

/usr/libexec Executable files that are not started directly by the user, for
example the phases of the C compiler (which are started by
/usr/bin/gcc) or the getty program, which is started by init.

/usr/libdata Miscellaneous files used by system utilities.

/usr/local Additional programs that are not part of the operating system. It
parallels the /usr directory in having subdirectories bin, include,
lib, man, sbin, and share. This is where you can put programs
that you get from other sources.

/usr/obj Object files created when building the system. See Chapter 33.

/usr/ports The Ports Collection.

/usr/sbin System administration programs that are not needed at system
startup.

/usr/share Miscellaneous read-only files, mainly informative. Subdirectories
include doc, the FreeBSD documentation, games, info, the GNU
info documentation, locale, internationization information, and
man, the man pages.

/usr/src System source files.

/var A file system for data that changes frequently, such as mail, news,
and log files. If /var is not a separate file system, you should
create a directory on another file system and symlink /var to it.

/var/log Directory with system log files

/var/mail Incoming mail for users on this system

190 Chapter 10: File systems and devices

Directory
name Usage
/var/spool Transient data, such as outgoing mail, print data and anonymous

ftp.

/var/tmp Temporary files.

File system types
FreeBSD supports a number of file system types. The most important are:

• UFS is the UNIX File System.1 All native disk file systems are of this type. Since
FreeBSD 5.0, you have a choice of two different versions, UFS 1 and UFS 2. As the
names suggest, UFS 2 is a successor to UFS 1. Unlike UFS 1, UFS 2 file systems are
not limited to 1 TB (1024 GB) in size. UFS 2 is relatively new, so unless you require
very large file systems, you should stick to UFS 1.

• cd9660 is the ISO 9660 CD-ROM format with the so-called Rock Ridge Extensions
that enable UNIX-like file names to be used. Use this file system type for all CD-
ROMs, even if they don’t hav e the Rock Ridge Extensions.

• nfs is the Network File System, a means of sharing file systems across a network.
We’ll look at it in Chapter 25.

• FreeBSD supports a number of file systems from other popular operating systems.
You mount the file systems with the mount command and the -t option to specify
the file system type. For example:

mount -t ext2fs /dev/da1s1 /linux mount a Linux ext2 file system
mount -t msdos /dev/da2s1 /C: mount a Microsoft FAT file system

Here’s a list of currently supported file systems:

Table 10-3: File system support

File system mount option

CD-ROM cd9660

DVD udf

Linux ext2 ext2fs

Microsoft MS-DOS msdosfs

Microsoft NT ntfs

Novell Netware nwfs

Microsoft CIFS smbfs

1. Paradoxically, although BSD may not be called UNIX, its file system is called the UNIX File System. The
UNIX System Group, the developers of UNIX System V.4, adopted UFS as the standard file system for Sys-
tem V and gav e it this name. Previously it was called the Berkeley Fast File System, or ffs.

File system types 191

Soft updates
Soft updates change the way the file system performs I/O. They enable metadata to be
written less frequently. This can give rise to dramatic performance improvements under
certain circumstances, such as file deletion. Specify soft updates with the -U option when
creating the file system. For example:

newfs -U /dev/da1s2h

If you forget this flag, you can enable them later with tunefs:

tunefs -n enable /dev/da1s2h

You can’t perform this operation on a mounted file system.

Snapshots
One of the problems with backing up file systems is that you don’t get a consistent view
of the file system: while you copy a file, other programs may be modifying it, so what
you get on the tape is not an accurate view of the file at any time. Snapshots are a
method to create a unified view of a file system. They maintain a relatively small file in
the file system itself containing information on what has changed since the snapshot was
taken. When you access the snapshot, you get this data rather than the current data for
the parts of the disk which have changed, so you get a view of the file system as it was at
the time of the snapshot.

Creating snapshots

You create snapshots with the mount command and the -o snapshot option. For
example, you could enter

mount -u -o snapshot /var/snapshot/snap1 /var

This command creates a snapshot of the /var file system called /var/snapshot/snap1.

Snapshot files have some interesting properties:

• You can have multiple snapshots on a file system, up to the current limit of 20.

• Snapshots have the schg flag set, which prevents anybody writing to them.

• Despite the schg flag, you can still remove them.

• They are automatically updated when anything is written to the file system. The view
of the file system doesn’t change, but this update is necessary in order to maintain the
‘‘old’’ view of the file system.

• They look like normal file systems. You can mount them with the md driver. We’ll
look at that on page 193.

Probably the most useful thing you can do with a snapshot is to take a backup of it. We’ll
look at backups on page 253.

192 Chapter 10: File systems and devices

At the time of writing, snapshots are still under development. It’s possible that you might
still have trouble with them, in particular with deadlocks that can only be cleared by
rebooting.

It takes about 30 seconds to create a snapshot of an 8 GB file system. During the last five
seconds, file system activity is suspended. If there’s a lot of soft update activity going on
in the file system (for example, when deleting a lot of files), this suspension time can
become much longer, up to sev eral minutes. To remove the same snapshot takes about
two minutes, but it doesn’t suspend file system activity at all.

Mounting file systems
Microsoft platforms identify partitions by letters that are assigned at boot time. There is
no obvious relation between the partitions, and you have little control over the way the
system assigns them. By contrast, all UNIX partitions have a specific relation to the root
file system, which is called simply /. This flexibility has one problem: you have the
choice of where in the overall file system structure you put your individual file systems.
You specify the location with the mount command. For example, you would typically
mount a CD-ROM in the directory /cdrom, but if you have three CD-ROM drives
attached to your SCSI controller, you might prefer to mount them in the directories /cd0,
/cd1, and /cd2. To mount a file system, you need to specify the device to be mounted,
where it is to be mounted, and the type of file system (unless it is ufs). The mount point,
(the directory where it is to be mounted) must already exist. To mount your second CD-
ROM on /cd1, you enter:

mkdir /cd1 only if it doesn’t exist
mount -t cd9660 -o ro /dev/cd1a /cd1

When the system boots, it calls the startup script /etc/rc, which among other things
automatically mounts the file systems. All you need to do is to supply the information:
what is to be mounted, and where? This is in the file /etc/fstab. If you come from a
System V environment, you’ll notice significant difference in format—see the man page
fstab(5) for the full story. A typical /etc/fstab might look like:

/dev/ad0s1a / ufs rw 1 1 root file system
/dev/ad0s1b none swap sw 0 0 swap
/dev/ad0s1e /usr ufs rw 2 2 /usr file system
/dev/da1s1e /src ufs rw 2 2 additional file system
/dev/da2s1 /linux ext2fs rw 2 2 Linux file system
/dev/ad1s1 /C: msdos rw 2 2 Microsoft file system
proc /proc procfs rw 0 0 proc pseudo-file system
linproc /compat/linux/proc linprocfs rw 0 0
/dev/cd0a /cdrom cd9660 ro 0 0 CD-ROM
presto:/ /presto/root nfs rw 0 0 NFS file systems on other systems
presto:/usr /presto/usr nfs rw 0 0
presto:/home /presto/home nfs rw 0 0
presto:/S /S nfs rw 0 0
//guest@samba/public /smb smbfs rw,noauto 0 0 SMB file system

Mounting file systems 193

The format of the file is reasonably straightforward:

• The first column gives the name of the device (if it’s a real file system), a keyword for
some file systems, like proc, or the name of the remote file system for NFS mounts.

• The second column specifies the mount point. Swap partitions don’t hav e a mount
point, so the mount point for the swap partition is specified as none.

• The third column specifies the type of file system. Local file systems on hard disk are
always ufs, and file systems on CD-ROM are cd9660. Remote file systems are
always nfs. Specify swap partitions with swap, and the proc file system with proc.

• The fourth column contains rw for file systems that can be read or written, ro for file
systems (like CD-ROM) that can only be read, and sw for swap partitions. It can also
contain options like the noauto in the bottom line, which tells the system startup
scripts to ignore the line. It’s there so that you can use the shorthand notation mount
/smb when you want to mount the file system.

• The fifth and sixth columns are used by the dump and fsck programs. You won’t
normally need to change them. Enter 1 for a root file system, 2 for other UFS file
systems, and 0 for everything else.

Mounting files as file systems
So far, our files have all been on devices, also called special files. Sometimes, though,
you may want to access the contents of a file as a file system:

• It’s sometimes of interest to access the contents of a snapshot, for example to check
the contents.

• After creating an ISO image to burn on CD-R, you should check that it’s valid.

• Also, after downloading an ISO image from the Net, you may just want to access the
contents, and not create a CD-R at all.

In each case, the solution is the same: you mount the files as a vnode device with the md
driver.

The md driver creates a number of different kinds of pseudo-device. See the man page
md(4). We use the vnode device, a special file that refers to file system files. Support for
md is included in the GENERIC kernel, but if you’ve built a kernel without the md drive,
you can load it as a kld. If you’re not sure, try loading the kld anyway.

In the following example, we associate a vnode device with the ISO image iso-image
using the program mdconfig:

kldload md load the kld module if necessary
kldload: can’t load md: File exists already loaded or in the kernel
mdconfig -a -t vnode -f iso-image and configure the device
md0 this is the name assigned in directory /dev
mount -t cd9660 /dev/md0 /mnt then mount it

194 Chapter 10: File systems and devices

After this, you can access the image at /mnt as a normal file system. You specify -t
cd9660 in this case because the file system on the image is a CD9660 file system. You
don’t specify this if you’re mounting a UFS file system, for example a snapshot image.

Older versions of FreeBSD used the vn driver, which used different syntax. Linux uses
loop mounts, which FreeBSD doesn’t support.

Unmounting file systems
When you mount a file system, the system assumes it is going to stay there, and in the
interests of efficiency it delays writing data back to the file system. This is also the
reason why you can’t just turn the power off when you shut down the system. If you
want to stop using a file system, you must tell the system about it so that it can flush any
remaining data. You do this with the umount command. Note the spelling of this
command—there’s no n in the command name.

You need to do this even with read-only media such as CD-ROMs: the system assumes it
can access the data from a mounted file system, and it gets quite unhappy if it can’t.
Where possible, it locks removable media so that you can’t remove them from the device
until you unmount them.

Using umount is straightforward: just tell it what to unmount, either the device name or
the directory name. For example, to unmount the CD-ROM we mounted in the example
above, you could enter one of these commands:

umount /dev/cd1a
umount /cd1

Before unmounting a file system, umount checks that nobody is using it. If somebody is
using it, it refuses to unmount it with a message like umount: /cd1: Device busy.
This message often occurs because you have changed your directory to a directory on the
file system you want to remove. For example (which also shows the usefulness of having
directory names in the prompt):

=== root@freebie (/dev/ttyp2) /cd1 16 -> umount /cd1
umount: /cd1: Device busy
=== root@freebie (/dev/ttyp2) /cd1 17 -> cd
=== root@freebie (/dev/ttyp2) ˜ 18 -> umount /cd1
=== root@freebie (/dev/ttyp2) ˜ 19 ->

After unmounting a vnode file system, don’t forget to unconfigure the file:

umount /mnt
mdconfig -d -u 0

The parameter 0 refers to md device 0, in other words /dev/md0.

Mounting file systems 195

FreeBSD devices
UNIX refers to devices in the same manner as it refers to normal files. By contrast to
normal (‘‘regular’’) files, they are called special files. They’re not really files at all:
they’re information about device support in the kernel, and the term device node is more
accurate. Conventionally, they are stored in the directory /dev. Some devices don’t hav e
device nodes, for example Ethernet interfaces: they are treated differently by the ifconfig
program.

Traditional UNIX systems distinguish two types of device, block devices and character
devices. FreeBSD no longer has block devices; we discussed the reasons for this on page
36.

In traditional UNIX systems, including FreeBSD up to Release 4, it was necessary to
create device nodes manually. This caused a number of problems when they didn’t match
what was in the system. Release 5 of FreeBSD has solved this problem with the device
file system, also known as devfs. devfs is a pseudo-file system that dynamically creates
device nodes for exactly those devices that are in the kernel, which makes it unnecessary
to manually create devices.

Overview of FreeBSD devices
Every UNIX system has its own peculiarities when it comes to device names and usage.
Even if you’re used to UNIX, you’ll find the following table useful.

Table 10-4: FreeBSD device names

Device Description

acd0 First ata (IDE) CD-ROM drive.

ad0 First ata (IDE or similar) disk drive. See Chapter 2, page 38, for a
complete list of disk drive names.

bpf0 Berkeley packet filter.

cd0 First SCSI CD-ROM drive.

ch0 SCSI CD-ROM changer (juke box)

console System console, the device that receives console messages. Initially it is
/dev/ttyv0, but it can be changed.

cuaa0 First serial port in callout mode.

cuaia0 First serial port in callout mode, initial state. Note the letter i for initial.

cuala0 First serial port in callout mode, lock state. Note the letter l for lock.

da0 First SCSI disk drive. See Chapter 2, page 38, for a complete list of disk
drive names.

esa0 First SCSI tape drive, eject on close mode.

196 Chapter 10: File systems and devices

Device Description
fd File descriptor pseudo-devices: a directory containing pseudo-devices that,

when opened, return a duplicate of the file descriptor with the same
number. For example, if you open /dev/fd/0, you get another handle on
your stdin stream (file descriptor 0).

fd0 The first floppy disk drive, accessed as a file system.

kmem Kernel virtual memory pseudo-device.

lpt0 First parallel printer.

mem Physical virtual memory pseudo-device.

nsa0 First SCSI tape drive, no-rewind mode.

null The ‘‘bit bucket.’’ Send data to this device if you never want to see it
again.

psm0 PS/2 mouse.

ptyp0 First master pseudo-terminal. Master pseudo-terminals are named
/dev/ptyp0 through /dev/ptypv, /dev/ptyq0 through /dev/ptyqv, /dev/ptyr0
through /dev/ptyrv, /dev/ptys0 through /dev/ptysv, /dev/ptyP0 through
/dev/ptyPv, /dev/ptyQ0 through /dev/ptyQv, /dev/ptyR0 through
/dev/ptyRv and /dev/ptyS0 through /dev/ptySv.

random Random number generator.

sa0 First SCSI tape drive, rewind on close mode.

sysmouse System mouse, controlled by moused. We’ll look at this again on page
519.

tty Current controlling terminal.

ttyd0 First serial port in callin mode.

ttyid0 First serial port in callin mode, initial state.

ttyld0 First serial port in callin mode, lock state.

ttyp0 First slave pseudo-terminal. Slave pseudo-terminals are named /dev/ttyp0
through /dev/ttypv, /dev/ttyq0 through /dev/ttyqv, /dev/ttyr0 through
/dev/ttyrv, /dev/ttys0 through /dev/ttysv, /dev/ttyP0 through /dev/ttyPv,
/dev/ttyQ0 through /dev/ttyQv, /dev/ttyR0 through /dev/ttyRv and
/dev/ttyS0 through /dev/ttySv. Some processes, such as xterm, only look
at /dev/ttyp0 through /dev/ttysv.

ttyv0 First virtual tty. This is the display with which the system starts. Up to 10
virtual ttys can be activated by adding the appropriate getty information in
the file /etc/ttys. See Chapter 19, page 338, for further details.

ugen0 First generic USB device.

ukbd0 First USB keyboard.

ulpt0 First USB printer.

FreeBSD devices 197

Device Description
umass0 First USB mass storage device.

ums0 First USB mouse.

uscanner0 First USB scanner.

vinum Directory for Vinum device nodes. See Chapter 12, for further details.

zero Dummy device that always returns the value (binary) 0 when read.

You’ll note a number of different modes associated with the serial ports. We’ll look at
them again in Chapter 19.

Virtual terminals
As we have seen, UNIX is a multitasking operating system, but a PC generally only has
one screen. FreeBSD solves this problem with virtual terminals. When in text mode,
you can change between up to 16 different screens with the combination of the Alt key
and a function key. The devices are named /dev/ttyv0 through /dev/ttyv15, and
correspond to the keystrokes Alt-F1 through Alt-F16. By default, three virtual terminals
are active: /dev/ttyv0 through /dev/ttyv2. The system console is the virtual terminal
/dev/ttyv0, and that’s what you see when you boot the machine. To activate additional
virtual terminals, edit the file /etc/ttys. There you find:

ttyv0 "/usr/libexec/getty Pc" cons25 on secure
ttyv1 "/usr/libexec/getty Pc" cons25 on secure
ttyv2 "/usr/libexec/getty Pc" cons25 on secure
ttyv3 "/usr/libexec/getty Pc" cons25 off secure

The keywords on and off refer to the state of the terminal: to enable one, set its state to
on. To enable extra virtual terminals, add a line with the corresponding terminal name, in
the range /dev/ttyv4 to /dev/ttyv15. After you have edited /etc/ttys, you need to tell the
system to re-read it in order to start the terminals. Do this as root with this command:

kill -1 1

Process 1 is init —see page 528 for more details.

Pseudo-terminals
In addition to virtual terminals, FreeBSD offers an additional class of terminals called
pseudo-terminals. They come in pairs: a master device, also called a pty (pronounced
pity) is used only by processes that use the interface, and has a name like /dev/ptyp0. The
slave device looks like a terminal, and has a name like /dev/ttyp0. Any process can open
it without any special knowledge of the interface. These terminals are used for network
connections such as xterm, telnet and rlogin. You don’t need a getty for pseudo-
terminals. Since FreeBSD Release 5.0, pseudo-terminals are created as required.

(disks.mm), page 199

11
Disks

In this chapter:
• Adding a hard disk
• Using sysinstall
• Doing it the hard way
• Creating file systems
• Moving file systems
• Recovering from disk

data errors

In this chapter:
• Adding a hard disk
• Using sysinstall
• Doing it the hard way
• Creating file systems
• Moving file systems
• Recovering from disk

data errors

One of the most important parts of running any computer system is handling data on disk.
We hav e already looked at UNIX file handling in Chapter 10. In this chapter, we’ll look
at two ways to add another disk to your system, and what you should put on them. In
addition, we’ll discuss disk error recovery on page 218.

Adding a hard disk
When you installed FreeBSD, you created file systems on at least one hard disk. At a
later point, you may want to install additional drives. There are two ways to do this: with
sysinstall and with the traditional UNIX command-line utilities.

There was a time when it was dangerous to use sysinstall after the system had been
installed: there was a significant chance of shooting yourself in the foot. There’s always a
chance of doing something wrong when initializing disks, but sysinstall has become a lot
better, and now it’s the tool of choice. It’s good to know the alternatives, though. In this
section we’ll look at sysinstall, and on page 209 we’ll see how to do it manually if
sysinstall won’t cooperate.

We’v e been through all the details of disk layout and slices and partitions in Chapter 2, so
I won’t repeat them here. Basically, to add a new disk to the system, you need to:

• Install the disk physically. This usually involves power cycling the machine.

• Barely possibly, format the disk. Without exception, modern disks come pre-
formatted, and you only need to format a disk if it has defects or if it’s ancient. In
many cases the so-called ‘‘format’’ program doesn’t really format at all.

199

200 Chapter 11: Disks

• If you want to share with other operating systems, create a PC style partition table on
the disk. We looked at the concepts on page 63.

• Define a FreeBSD slice (which the PC BIOS calls a ‘‘partition’’).

• Define the partitions in the FreeBSD slice.

• Tell the system about the file systems and where to mount them.

• Create the file systems.

These are the same operations that we performed in Chapter 5.

Disk hardware installation
Before you can do anything with the disk, you have to install it in the system. To do this,
you must normally shut down the system and turn the power off, though high-end SCSI
enclosures allow hot-swapping, changing disks in a running system. If the disk is IDE,
and you already have an IDE disk on the controller, you need to set the second disk as
‘‘slave’’ drive. And you may have to set the first disk as ‘‘master’’ drive: if you only have
one drive, you don’t set any jumpers, but if you have two drives, some disks require you
to set jumpers on both disks. If you don’t do this, the system will appear to hang during
the power-on self test, and will finally report some kind of disk error.

Adding a SCSI disk is more complicated. You can connect up to 15 SCSI devices to a
host adapter, depending on the interface. Many systems restrict the number to 7 for
compatibility with older SCSI interfaces. Typically, your first SCSI disk will have the
SCSI ID 0, and the host adapter will have the SCSI ID 7. Traditionally, the IDs 4, 5, and
6 are reserved for tape and CD-ROM drives, and the IDs 0 to 3 are reserved for disks,
though FreeBSD doesn’t impose any restrictions on what goes where.

Whatever kind of disk you’re adding, look at the boot messages, which you can retrieve
with the dmesg command. For example, if you’re planning to add a SCSI device, you
might see:

sym0: <875> port 0xc400-0xc4ff mem 0xec002000-0xec002fff,0xec003000-0xec0030ff irq 10
at device 9.0 on pci0
sym0: Symbios NVRAM, ID 7, Fast-20, SE, NO parity
sym0: open drain IRQ line driver, using on-chip SRAM
sym0: using LOAD/STORE-based firmware.
sym0: SCAN FOR LUNS disabled for targets 0.
sym1: <875> port 0xc800-0xc8ff mem 0xec001000-0xec001fff,0xec000000-0xec0000ff irq 9
at device 13.0 on pci0
sym1: No NVRAM, ID 7, Fast-20, SE, parity checking
further down...
Waiting 3 seconds for SCSI devices to settle
sa0 at sym0 bus 0 target 3 lun 0
sa0: <EXABYTE EXB-8505SMBANSH2 0793> Removable Sequential Access SCSI-2 device
sa0: 5.000MB/s transfers (5.000MHz, offset 11)
sa1 at sym0 bus 0 target 4 lun 0
sa1: <ARCHIVE Python 28849-XXX 4.CM> Removable Sequential Access SCSI-2 device
sa1: 5.000MB/s transfers (5.000MHz, offset 15)
sa2 at sym0 bus 0 target 5 lun 0
sa2: <TANDBERG TDC 3800 -03:> Removable Sequential Access SCSI-CCS device
sa2: 3.300MB/s transfers
pass4 at sym0 bus 0 target 4 lun 1
pass4: <ARCHIVE Python 28849-XXX 4.CM> Removable Changer SCSI-2 device

Adding a hard disk 201

pass4: 5.000MB/s transfers (5.000MHz, offset 15)
cd0 at sym0 bus 0 target 6 lun 0
cd0: <NRC MBR-7 110> Removable CD-ROM SCSI-2 device
cd0: 3.300MB/s transfers
cd0: cd present [322265 x 2048 byte records]
da0 at sym1 bus 0 target 3 lun 0
da0: <SEAGATE ST15230W SUN4.2G 0738> Fixed Direct Access SCSI-2 device
da0: 20.000MB/s transfers (10.000MHz, offset 15, 16bit), Tagged Queueing Enabled
da0: 4095MB (8386733 512 byte sectors: 255H 63S/T 522C)

This output shows two Symbios SCSI host adapters /dev/(sym0 and /dev/sym1), three
tape drives /dev/(sa0, /dev/sa1 and /dev/sa2), a CD-ROM drive /dev/(cd0), a tape
changer /dev/(pass4), and also a disk drive /dev/da0 on ID 3, which is called a target in
these messages. The disk is connected to the second host adapter, and the other devices
are connected to the first host adapter.

Installing an external SCSI device

External SCSI devices have two cable connectors: one goes towards the host adapter, and
the other towards the next device. The order of the devices in the chain does not have to
have anything to do with the SCSI ID. This method is called daisy chaining. At the end
of the chain, the spare connector may be plugged with a terminator, a set of resistors
designed to keep noise off the bus. Some devices have internal terminators, however.
When installing an external device, you will have to do one of the following:

• If you are installing a first external device (one connected directly to the cable
connector on the backplane of the host adapter), you will have to ensure that the
device provides termination. If you already have at least one internal device, the host
adapter will no longer be at one end of the chain, so you will also have to stop it from
providing termination. Modern SCSI host adapters can decide whether they need to
terminate, but older host adapters have resistor packs. In the latter case, remove these
resistor packs.

• If you are adding an additional external device, you have two choices: you can
remove a cable in the middle of the daisy chain and plug it into your new device. You
then connect a new cable from your device to the device from which you removed the
original cable.

Alternatively, you can add the device at the end of the chain. Remove the terminator
or turn off the termination, and plug your cable into the spare socket. Insert the
terminator in your device (or turn termination on).

You can add external SCSI devices to a running system if they’re hot-pluggable. It might
ev en work if they’re not hot-pluggable, but it’s not strictly the correct thing to do, and
there’s the risk that you might damage something, possibly irreparably. After connecting
the devices, powering them up and waiting for them to come ready, run camcontrol
rescan. For example, if you added a second disk drive to the second host adapter in the
example above, you might see:

202 Chapter 11: Disks

camcontrol rescan 1
da1 at sym1 bus 0 target 0 lun 0
da1: <SEAGATE ST15230W SUN4.2G 0738> Fixed Direct Access SCSI-2 device
da1: 20.000MB/s transfers (10.000MHz, offset 15, 16bit), Tagged Queueing Enabled
da1: 4095MB (8386733 512 byte sectors: 255H 63S/T 522C)
Re-scan of bus 1 was successful

There’s a problem with this approach: note that /dev/da1 has ID 0, and the already
present /dev/da0 has ID 3. If you now reboot the system, they will come up with the
device names the other way round. We’ll look at this issue in more detail in the next
section.

Installing an internal SCSI device

Installing an internal SCSI device is much the same as installing an external device.
Instead of daisy chains, you have a flat band cable with a number of connectors. Find one
that suits you, and plug it into the device. Again, you need to think about termination:

• If you are installing the device at the end of the chain, it should have termination
enabled. You should also disable termination for the device that was previously at the
end of the chain. Depending on the device, this may involve removing the physical
terminators or setting a jumper.

• If you are installing the device in the middle of the chain, make sure it does not have
termination enabled.

In this chapter, we’ll look at two ways of installing a drive in an existing SCSI chain. We
could be in for a surprise: the device ID we get for the new drive depends on what is
currently on the chain. For example, consider our example above, where we have a chain
with a single drive on it:

da0 at sym1 bus 0 target 3 lun 0
da0: <SEAGATE ST15230W SUN4.2G 0738> Fixed Direct Access SCSI-2 device
da0: 20.000MB/s transfers (10.000MHz, offset 15, 16bit), Tagged Queueing Enabled
da0: 4095MB (8386733 512 byte sectors: 255H 63S/T 522C)

This drive on target (ID) 2. If we put our new drive on target 0 and reboot, we see:

da0 at sym1 bus 0 target 0 lun 0
da0: <SEAGATE ST15230W SUN4.2G 0738> Fixed Direct Access SCSI-2 device
da0: 20.000MB/s transfers (10.000MHz, offset 15, 16bit), Tagged Queueing Enabled
da0: 4095MB (8386733 512 byte sectors: 255H 63S/T 522C)
da1 at sym1 bus 0 target 3 lun 0
da1: <SEAGATE ST15230W SUN4.2G 0738> Fixed Direct Access SCSI-2 device
da1: 20.000MB/s transfers (10.000MHz, offset 15, 16bit), Tagged Queueing Enabled
da1: 4095MB (8386733 512 byte sectors: 255H 63S/T 522C)

At first glance, this looks reasonable, but that’s only because both disks are of the same
type. If you look at the target numbers, you’ll notice that the new disk is /dev/da0, not
/dev/da1. The target ID of the new disk is lower than the target ID of the old disk, so the
system recognizes the new disk as /dev/da0, and our previous /dev/da0 has become
/dev/da1.

Adding a hard disk 203

This change of disk ID can be a problem. One of the first things you do with a new disk
is to create new disk labels and file systems. Both offer excellent opportunities to shoot
yourself in the foot if you choose the wrong disk: the result would almost certainly be the
complete loss of data on that disk. Even apart from such catastrophes, you’ll have to edit
/etc/fstab before you can mount any file systems that are on the disk. The alternatives are
to wire down the device names, or to change the SCSI IDs. In FreeBSD 5.0, you wire
down device names and busses by adding entries to the boot configuration file
/boot/device.hints. We’ll look at that on page 575.

Formatting the disk
Formatting is the process of rewriting every sector on the disk with a specific data pattern,
one that the electronics find most difficult to reproduce: if they can read this pattern, they
can read anything. Microsoft calls this a low-level format.1 Obviously it destroys any
existing data, so

If you have anything you want to keep, back it up before
formatting.

Most modern disks don’t need formatting unless they’re damaged. In particular,
formatting will not help if you’re having configuration problems, if you can’t get PPP to
work, or you’re running out of disk space. Well, it will solve the disk space problem, but
not in the manner you probably desire.

If you do need to format a SCSI disk, use camcontrol. camcontrol is a control program
for SCSI devices, and it includes a lot of useful functions that you can read about in the
man page. To format a disk, use the following syntax:

camcontrol format da1

Remember that formatting a disk destroys all data on the disk.
Before using the command, make sure that you need to do so:
there are relatively few cases that call for formatting a disk.
About the only reasons are if you want to change the physical
sector size of the disk, or if you are getting ‘‘medium format
corrupted’’ errors from the disk in response to read and write
requests.

FreeBSD can format only floppies and SCSI disks. In general it is no longer possible to
reformat ATA (IDE) disks, though some manufacturers have programs that can recover
from some data problems. In most cases, though, it’s sufficient to write zeros to the entire
disk:

dd if=/dev/zero of=/dev/ad1 bs=128k

If this doesn’t work, you may find formatting programs on the manufacturer’s web site.
You’ll probably need to run them under a Microsoft platform.

1. Microsoft also uses the term high-level format for what we call creating a file system.

204 Chapter 11: Disks

Using sysinstall
If you can, use sysinstall to partition your disk. Looking at the dmesg output for our
new disk, we see:

da1 at sym1 bus 0 target 0 lun 0
da1: <SEAGATE ST15230W SUN4.2G 0738> Fixed Direct Access SCSI-2 device
da1: 20.000MB/s transfers (10.000MHz, offset 15, 16bit), Tagged Queueing Enabled
da1: 4095MB (8386733 512 byte sectors: 255H 63S/T 522C)

You see the standard installation screen (see Chapter 5, page 60). Select Index, then
Partition, and you see the following screen:

Figure 11-1: Disk selection menu

In this case, we want to partition /dev/da1, so we position the cursor on da1 (as shown)
and press Enter. We see the disk partition menu, which shows that the disk currently
contains three partitions:

• The first starts at offset 0, and has a length of 63. This is not unused, no matter what
the description says. It’s the partition table, padded to the length of a ‘‘track.’’

• The next partition takes up the bulk of the drive and is a Microsoft partition.

• Finally, we hav e 803 sectors left over as a result of the partitioning scheme.
Sometimes this can be much larger—I have seen values as high as 35 MB. This is
the price we pay for compatibility with PC BIOS partitioning.

We want a FreeBSD partition, not a Microsoft partition. At this point, we have a number
of choices:

Using sysinstall 205

Figure 11-2: Disk partition menu

• We can change the partition type (called ‘‘Subtype’’ in the menu). It’s currently 6,
and we would need to change it to 165. Do this with the t command.

• We could delete the partition by positioning the cursor on the partition information
and pressing d, then create a new partition, either with a if we want a single partition,
or with c if we want more than one partition.

• If we’re using this disk for FreeBSD only, we don’t hav e to waste even this much
space. There is an option ‘‘use whole disk for FreeBSD,’’ the so-called ‘‘dangerously
dedicated’’ mode. This term comes partially from superstition and partially because
some BIOSes expect to find a partition table on the first sector of a disk, and they
can’t access the disk if they don’t find one. If your BIOS has this bug, you’ll find this
one out pretty quickly when you try to boot. If it doesn’t fail on the first boot, it
won’t fail, though it’s barely possible that you might have trouble if you move it to a
system with a different BIOS. If you want to use this method, use the undocumented
f command.

To use the whole disk, we first delete the current partition: we press the cursor down key
until it highlights the FreeBSD partition. Then we press d, and the three partitions are
joined into one, marked unused.

206 Chapter 11: Disks

The next step is to create a new partition using the entire disk. If we press f, we get the
following message:

We don’t get this message if we use the a command: it just automatically assumes Yes.
In this case we’ve decided to use the whole disk, so we move the cursor right to No and
press Enter. That gives us a boot manager selection screen:

Using sysinstall 207

This isn’t a boot disk, so we don’t need any boot record, and it doesn’t make any
difference what we select. It’s tidier, though, to select None as indicated. Then we press
q to exit the partition editor, get back to the function index, and select Label. We see:

The important information on this rather empty looking menu is the information at the
top about the free space available. We want to create two partitions: first, a swap partition
of 512 MB, and then a file system taking up the rest of the disk. We press C, and are
shown a submenu offering us all 8386733 blocks on the disk. We erase that and enter
512m, which represents 512 MB. Then we press Enter, and another submenu appears,
asking us what kind of slice it is. We move the cursor down to select A swap
partition:

208 Chapter 11: Disks

Next, we press c again to create a new partition. This time, we accept the offer of the rest
of the space on the disk, 7338157 sectors, we select A file system, and we are
presented with yet another menu asking for the name of the file system. We enter the
name, in this case /S:

After pressing Enter, we see:

Using sysinstall 209

Finally, we press W to tell the disk label editor to perform the function. We get an
additional warning screen:

We’re doing this online, so that’s OK. We select Yes, and sysinstall creates the file
system and mounts both it and the swap partition. This can take quite a while. Don’t try
to do anything with the drive until it’s finished.

Doing it the hard way
Unfortunately, sometimes you may not be able to use the sysinstall method. You may
not have access to sysinstall, or you may want to use options that sysinstall doesn’t offer.
That leaves us with the old way to add disks. The only difference is that this time we need
to use different tools. In the following sections, we’ll look at what we have to do to
install this same 4 GB Seagate drive manually. This time we’ll change the partitioning to
contain the following partitions:

• A Microsoft file system.

• The /newhome file system for our FreeBSD system.

• Additional swap for the FreeBSD system.

We’v e called this file system /newhome to use it as an example of moving file systems to
new disks. On page 217 we’ll see how to move the data across.

210 Chapter 11: Disks

Creating a partition table
The first step is to create a PC BIOS style partition table on the disk. As in Microsoft, the
partitioning program is called fdisk. In the following discussion, you’ll find a pocket
calculator indispensable.

If the disk is not brand new, it will have existing data of some kind on it. Depending on
the nature of that data, fdisk could get sufficiently confused to not work correctly. If you
don’t format the disk, it’s a good idea to overwrite the beginning of the disk with dd:

dd if=/dev/zero of=/dev/da1 count=100
100+0 records in
100+0 records out
51200 bytes transferred in 1 secs (51200 bytes/sec)

We’ll assign 1 GB for Microsoft and use the remaining approximately 3 GB for
FreeBSD. Our resulting partition table should look like:

Master Boot Record
Partition Table

Microsoft primary partition

/dev/da1s2b: FreeBSD swap

/dev/da1s2h: /newhome file system

Slice 1 - Microsoft primary
/dev/da1s1, 1 GB

Slice 2 - FreeBSD
/dev/da1s2, 3 GB

Slice 3 (unused)

Slice 4 (unused)

Figure 11-3: Partition table on second FreeBSD disk

The Master Boot Record and the Partition Table take up the first sector of the disk, but
many of the allocations are track oriented, so the entire first track of the disk is not
available for allocation. The rest, up to the end of the last entire cylinder, can be divided
between the partitions. It’s easy to make a mistake in specifying the parameters, and
fdisk performs as good as no checking. You can easily create a partition table that has
absolutely no relationship with reality, so it’s a good idea to calculate them in advance.
For each partition, we need to know three things:

• The partition type, which fdisk calls sysid. This is a number describing what the
partition is used for. FreeBSD partitions have partition type 165, and modern (MS-
DOS Release 4 and later) Microsoft partitions have type 6.

• The start sector, the first sector in the partition.

• The end sector for the partition.

Doing it the hard way 211

In addition, we need to decide which partition is the active partition, the partition from
which we want to boot. In this case, it doesn’t make any difference, because we won’t be
booting from the disk, but it’s always a good idea to set it anyway.

We specify the partitions we don’t want by giving them a type, start sector and end sector
of 0. Our disk has 8386733 sectors, numbered 0 to 8386732. Partitions should start and
end on a cylinder boundary, and we want the Microsoft partition to be about 1 GB. 1 GB
is 1024 MB, and 1 MB is 2048 sectors of 512 bytes each, so theoretically we want 1024 ×
2048, or 2197152 sectors. Because of the requirement that partitions begin and end on a
‘‘cylinder’’ boundary, we need to find the closest number of ‘‘cylinders’’ to this value.
First we need to find out how big a ‘‘cylinder’’ is. We can do this by running fdisk
without any options:

fdisk da1
******* Working on device /dev/da1 *******
parameters extracted from in-core disklabel are:
cylinders=13726 heads=13 sectors/track=47 (611 blks/cyl)

Figures below won’t work with BIOS for partitions not in cyl 1
parameters to be used for BIOS calculations are:
cylinders=13726 heads=13 sectors/track=47 (611 blks/cyl)

fdisk: invalid fdisk partition table found
Media sector size is 512
Warning: BIOS sector numbering starts with sector 1
Information from DOS bootblock is:
The data for partition 1 is:
<UNUSED>
The data for partition 2 is:
<UNUSED>
The data for partition 3 is:
<UNUSED>
The data for partition 4 is:
sysid 165,(FreeBSD/NetBSD/386BSD)

start 47, size 8386539 (4094 Meg), flag 80 (active)
beg: cyl 0/ head 1/ sector 1;
end: cyl 413/ head 12/ sector 47

You’ll notice that fdisk has decided that there is a FreeBSD partition in partition 4. That
happens even if the disk is brand new. In fact, this is a less desirable feature of fdisk: it
‘‘suggests’’ this partition, it’s not really there, which can be really confusing. This
printout does, however, tell us that fdisk thinks there are 611 sectors per cylinder, so we
divide 2197152 by 611 and get 3423.327 cylinders. We round down to 3423 cylinders,
which proves to be 2091453 sectors. This is the length we give to the first partition.

We use the remaining space for the FreeBSD partition. How much? Well, dmesg tells us
that there are 8386733 sectors, but if you look at the geometry that fdisk outputs, there
are 13726 cylinders with 13 heads (tracks) per cylinder and 47 sectors per track. 13726 ×
13 × 47 is 8386586. This rounding down is the explanation for the missing data at the
end of the disk that we saw on page 204. The best way to calculate the size of the
FreeBSD partition is to take the number of cylinders and multiply by the number of
tracks per cylinder. The FreeBSD partition starts behind the Microsoft partition, so it
goes from cylinder 3423 to cylinder 13725 inclusive, or 10303 cylinders. At 611 sectors
per cylinder, we hav e a total of 6295133 sectors in the partition. Our resulting
information is:

212 Chapter 11: Disks

Table 11-1: sample fdisk parameters

Partition Partition Start Size
number type sector

1 6 1 2091453

2 165 2091453 6295133

3 0 0

4 0 0

Next we run fdisk in earnest by specifying the -i option. During this time, you may see
messages on the console:

da1: invalid primary partition table: no magic

The message no magic doesn’t mean that fdisk is out of purple smoke. It refers to the
fact that it didn’t find the so-called magic number, which identifies the partition table.
We don’t hav e a partition table yet, so this message isn’t surprising. It’s also completely
harmless.

fdisk prompts interactively when you specify the -i flag:

fdisk -i da1
******* Working on device /dev/da1 *******
parameters extracted from in-core disklabel are:
cylinders=13726 heads=13 sectors/track=47 (611 blks/cyl)

Figures below won’t work with BIOS for partitions not in cyl 1
parameters to be used for BIOS calculations are:
cylinders=13726 heads=13 sectors/track=47 (611 blks/cyl)

Do you want to change our idea of what BIOS thinks ? [n] Enter pressed
Media sector size is 512
Warning: BIOS sector numbering starts with sector 1
Information from DOS bootblock is:
The data for partition 1 is:
sysid 165,(FreeBSD/NetBSD/386BSD)

start 0, size 8386733 (4095 Meg), flag 80 (active)
beg: cyl 0/ head 0/ sector 1;
end: cyl 522/ head 12/ sector 47

Do you want to change it? [n] y
Supply a decimal value for "sysid (165=FreeBSD)" [0] 6
Supply a decimal value for "start" [0] Enter pressed
Supply a decimal value for "size" [0] 2091453
Explicitly specify beg/end address ? [n] Enter pressed
sysid 6,(Primary ’big’ DOS (> 32MB))

start 0, size 2091453 (1021 Meg), flag 0
beg: cyl 0/ head 0/ sector 1;
end: cyl 350/ head 12/ sector 47

Are we happy with this entry? [n] y
The data for partition 2 is:
<UNUSED>
Do you want to change it? [n] y
Supply a decimal value for "sysid (165=FreeBSD)" [0] 165
Supply a decimal value for "start" [0] 2091453
Supply a decimal value for "size" [0] 6295133
Explicitly specify beg/end address ? [n] Enter pressed
sysid 165,(FreeBSD/NetBSD/386BSD)

Doing it the hard way 213

start 2091453, size 6295133 (3073 Meg), flag 0
beg: cyl 351/ head 0/ sector 1;
end: cyl 413/ head 12/ sector 47

Are we happy with this entry? [n] y
The data for partition 3 is:
<UNUSED>
Do you want to change it? [n] Enter pressed
The data for partition 4 is:
sysid 165,(FreeBSD/NetBSD/386BSD)

start 47, size 8386539 (4094 Meg), flag 80 (active)
beg: cyl 0/ head 1/ sector 1;
end: cyl 413/ head 12/ sector 47

Do you want to change it? [n] y

The static data for the DOS partition 4 has been reinitialized to:
sysid 165,(FreeBSD/NetBSD/386BSD)

start 47, size 8386539 (4094 Meg), flag 80 (active)
beg: cyl 0/ head 1/ sector 1;
end: cyl 413/ head 12/ sector 47

Supply a decimal value for "sysid (165=FreeBSD)" [165] 0
Supply a decimal value for "start" [47] 0
Supply a decimal value for "size" [8386539] 0
Explicitly specify beg/end address ? [n] Enter pressed
<UNUSED>
Are we happy with this entry? [n] y
Do you want to change the active partition? [n] y
Supply a decimal value for "active partition" [1] 2
Are you happy with this choice [n] y

We haven’t changed the partition table yet. This is your last chance.
parameters extracted from in-core disklabel are:
cylinders=13726 heads=13 sectors/track=47 (611 blks/cyl)

Figures below won’t work with BIOS for partitions not in cyl 1
parameters to be used for BIOS calculations are:
cylinders=13726 heads=13 sectors/track=47 (611 blks/cyl)

Information from DOS bootblock is:
1: sysid 6,(Primary ’big’ DOS (> 32MB))

start 0, size 2091453 (1021 Meg), flag 0
beg: cyl 0/ head 0/ sector 1;
end: cyl 350/ head 12/ sector 47

2: sysid 165,(FreeBSD/NetBSD/386BSD)
start 2091453, size 6295133 (3073 Meg), flag 80 (active)

beg: cyl 351/ head 0/ sector 1;
end: cyl 413/ head 12/ sector 47

3: <UNUSED>
4: <UNUSED>
Should we write new partition table? [n] y

You’ll notice a couple of things here:

• Even though we created valid partitions 1 and 2, which cover the entire drive, fdisk
gave us the phantom partition 4 which covered the whole disk, and we had to remove
it.

• The cylinder numbers in the summary at the end don’t make any sense. We’ve
already calculated that the Microsoft partition goes from cylinder 0 to cylinder 3422
inclusive, and the FreeBSD partition goes from cylinder 3423 to cylinder 13725. But
fdisk says that the Microsoft partition goes from cylinder 0 to cylinder 350 inclusive,
and the FreeBSD partition goes from cylinder 351 to cylinder 413. What’s that all
about?

214 Chapter 11: Disks

The problem here is overflow: once upon a time, the maximum cylinder value was
1023, and fdisk still thinks this is the case. The numbers we’re seeing here are the
remainder left by dividing the real cylinder numbers by 1024.

Labelling the disk
Once we have a valid PC BIOS partition table, we need to create the file systems. We
won’t look at the Microsoft partition in any more detail, but we still need to do some
more work on our FreeBSD slice (slice or PC BIOS partition 2). It’ll make life easier
here to remember a couple of things:

• From now on, we’re just looking at the slice, which we can think of as a logical disk.
Names like disk label really refer to the slice, but many standard terms use the word
disk, so we’ll continue to use them.

• All offsets are relative to the beginning of the slice, not the beginning of the disk.
Sizes also refer to the slice and not the disk.

The first thing we need is the disk (slice) label, which supplies general information about
the slice:

• The fact that it’s a FreeBSD slice.

• The size of the slice.

• The sizes, types and layout of the file systems.

• Some obsolete information about details like rotational speed of the disk and the
track-to-track switching time. This is still here for historical reasons only. It may go
aw ay soon.

The only information we need to input is the kind, size and locations of the partitions. In
this case, we have decided to create a file system on partition h (/dev/da1s2h) and swap
space on partition b (/dev/da1s1b). The swap space will be 512 MB, and the file system
will take up the rest of the slice. This is mainly tradition: traditionally data disks use the
h partition and not the a partition, so we’ll stick to that tradition, though there’s nothing
to stop you from using the a partition if you prefer. In addition, we need to define the c
partition, which represents the whole slice. In summary, the FreeBSD slice we want to
create looks like:

/dev/da1s2b: FreeBSD swap, 512 MB

/dev/da1s2h: /newhome file system, 2.5 GB

Figure 11-4: FreeBSD slice on second disk

Doing it the hard way 215

bsdlabel
The program that writes the disk label used to be called disklabel. As FreeBSD migrated
to multiple platforms, this proved to be too generic: many hardware platforms have their
own disk label formats. For example, FreeBSD on SPARC64 uses the Sun standard
labels. On platforms which use the old BSD labels, such as the PC, the name was
changed to bsdlabel. On SPARC64 it is called sunlabel. On each platform, the
appropriate file is linked to the name disklabel, but some of the options have changed. In
addition, the output format now normally ignores a number of historical relics. It’s not as
warty as fdisk, but it can still give you a run for your money. You can usually ignore
most of the complexity, though. You can normally create a disk label with the single
command:

bsdlabel -w /dev/da1s2 auto

This creates the label with a single partition, c. You can look at the label with bsdlabel
without options:

bsdlabel /dev/da1s2
/dev/da0s2:
8 partitions:
size offset fstype [fsize bsize bps/cpg]
c: 6295133 0 unused 0 0 # "raw" part, don’t edit

At this point, the only partition you have is the ‘‘whole disk’’ partition c. You still need
to create partitions b and h and specify their location and size. Do this with bsdlabel -e,
which starts an editor with the output you see above. Simply add additional partitions:

8 partitions:
size offset fstype [fsize bsize bps/cpg]
c: 6295133 0 unused 0 0 # "raw" part, don’t edit
b: 1048576 0 swap 0 0
h: 5246557 1048576 unused 0 0

You don’t need to maintain any particular order, and you don’t need to specify that
partition h will be a file system. In the next step, newfs does that for you automatically.

Problems running bsdlabel
Using the old disklabel program used to be like walking through a minefield. Things
have got a lot better, but it’s possible that some problems are still hiding. Here are some
of the problems that have been encountered in the past, along with some suggestions
about what to do if you experience them:

• When writing a label (the -w option), you may find:

bsdlabel -w da1s2
bsdlabel: /dev/da1s2c: Undefined error: 0

This message may be the result of the kernel having out-of-date information about the
slice in memory. If this is the case, a reboot may help.

216 Chapter 11: Disks

• No disk label on disk is straightforward enough. You tried to use bsdlabel to
look at the label before you had a label to look at.

• Label magic number or checksum is wrong! tells you that bsdlabel thinks it
has a label, but it’s inv alid. This could be the result of an incorrect previous attempt
to label the disk. It can be difficult to get rid of an incorrect label. The best thing to
do is to repartition the disk with the label in a different position, and then copy
/dev/zero to where the label used to be:

dd if=/dev/zero of=/dev/da1 bs=128k count=1

Then you can repartition again the way you want to have it.

• Open partition would move or shrink probably means that you have
specified incorrect values in your slice definitions. Check particularly that the c
partition corresponds with the definition in the partition table.

• write: Read-only file system means that you are trying to do something
invalid with a valid disk label. FreeBSD write protects the disk label, which is why
you get this message.

• In addition, you might get kernel messages like:

fixlabel: raw partition size > slice size
or
fixlabel: raw partitions offset != slice offset

The meanings of these messages should be obvious.

Creating file systems
Once we have a valid label, we need to create the file systems. In this case, there’s only
one file system, on /dev/da1s2h. Mercifully, this is easier:

newfs -U /dev/da1s2h
/dev/vinum/da1s2h: 2561.8MB (5246556 sectors) block size 16384, fragment size 2048

using 14 cylinder groups of 183.77MB, 11761 blks, 23552 inodes.
with soft updates

super-block backups (for fsck -b #) at:
160, 376512, 752864, 1129216, 1505568, 1881920, 2258272, 2634624, 3010976, 3387328,
3763680, 4140032, 4516384, 4892736

The -U flag tells newfs to enable soft updates, which we looked at on page 191.

Creating file systems 217

Mounting the file systems
Finally the job is done. Well, almost. You still need to mount the file system, and to tell
the system that it has more swap. But that’s not much of a problem:

mkdir /newhome make sure we have a directory to mount on
mount /dev/da1s2h /newhome and mount it
swapon /dev/da1s2b
df show free capacity and mounted file systems
Filesystem 1024-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 19966 17426 944 95% /
/dev/ad0s1e 1162062 955758 113340 89% /usr
procfs 4 4 0 100% /proc
presto:/ 15823 6734 8297 45% /presto/root
presto:/usr 912271 824927 41730 95% /presto/usr
presto:/home 1905583 1193721 521303 70% /presto/home
presto:/S 4065286 3339635 563039 86% /S
/dev/da1s2h 2540316 2 2337090 0% /newhome
pstat -s show swap usage
Device 1K-blocks Used Avail Capacity Type
/dev/ad0s4b 524160 0 524160 0% Interleaved
/dev/da1s2b 524160 0 524160 0% Interleaved
Total 1048320 0 1048320 0%

This looks fine, but when you reboot the system, /newhome and the additional swap will
be gone. To ensure that they get mounted after booting, you need to add the following
lines to /etc/fstab:

/dev/da1s2b none swap sw 0 0
/dev/da1s2h /newhome ufs rw 0 0

Moving file systems
Very frequently, you add a new disk to a system because existing disks have run out of
space. Let’s consider the disk we have just added and assume that currently the files in
/home are physically located on the /usr file system, and that /home is a symbolic link to
/usr/home. We want to move them to the new file system and then rename it to /home.
Here’s what to do:

• Copy the files:

cd /home
tar cf - . | (cd /newhome; tar xvf - 2>/var/tmp/tarerrors)

This writes any error messages to the file /var/tmp/tarerrors. If you don’t do this, any
errors will get lost.

• Check /var/tmp/tarerrors and make sure that the files really made it to the right
place!

218 Chapter 11: Disks

• Remove the old files:

rm -rf /usr/home

• In this case, /home was a symbolic link, so we need to remove it and create a
directory called /home:

rm /home
mkdir /home

You don’t need to do this if /home was already a directory (for example, if you’re
moving a complete file system).

• Modify /etc/fstab to contain a line like:

/dev/da1s2h /home ufs rw 0 0

• Unmount the /newhome directory and mount it as /home:

umount /newhome
mount /home

Recovering from disk data errors
Modern hard disks are a miracle in evolution. Today you can buy a 200 GB hard disk for
under $200, and it will fit in your shirt pocket. Thirty years ago, a typical disk drive was
the size of a washing machine and stored 20 MB. You would need 10,000 of them to
store 200 GB.

At the same time, reliability has gone up, but disks are still relatively unreliable devices.
You can achieve maximum reliability by keeping them cool, but sooner or later you are
going to run into some kind of problem. One kind is due to surface irregularities: the disk
can’t read a specific part of the surface.

Modern disks make provisions for recovering from such errors by allocating an alternate
sector for the data. IDE drives do this automatically, but with SCSI drives you have the
option of enabling or disabling reallocation. Usually reallocation is enabled when you
buy the disk, but occasionally it is not. When installing a new disk, you should check that
the parameters ARRE (Auto Read Reallocation Enable) and AWRE (Auto Write
Reallocation Enable) are turned on. For example, to check and set the values for disk
/dev/da1, you would enter:

camcontrol modepage da1 -m 1 -e

This command will start up your favourite editor (either the one specified in the EDITOR
environment variable, or vi by default) with the following data:

Recovering from disk data errors 219

AWRE (Auto Write Reallocation Enbld): 0
ARRE (Auto Read Reallocation Enbld): 0
TB (Transfer Block): 1
EER (Enable Early Recovery): 0
PER (Post Error): 1
DTE (Disable Transfer on Error): 0
DCR (Disable Correction): 0
Read Retry Count: 41
Write Retry Count: 24

The values for AWRE and ARRE should both be 1. If they aren’t, as in this case, where
AWRE is 0, change the data with the editor, write it back, and exit. camcontrol writes the
data back to the disk and enables the option.

Note the last two lines in this example. They giv e the number of actual retries that this
drive has performed. You can reset these values too if you want; they will be updated if
the drive performs any additional retries.

(vinum.mm), page 221

12
The Vinum

Volume
Manager

In this chapter:
• Vinum objects
• Creating Vinum

dr ives
• Star ting Vinum
• Configur ing Vinum
• Vinum configuration

database
• Installing FreeBSD

on Vinum
• Recovering from

dr ive failures
• Migrating Vinum to a

new machine
• Things you shouldn’t

do with Vinum

In this chapter:
• Vinum objects
• Creating Vinum

dr ives
• Star ting Vinum
• Configur ing Vinum
• Vinum configuration

database
• Installing FreeBSD

on Vinum
• Recovering from

dr ive failures
• Migrating Vinum to a

new machine
• Things you shouldn’t

do with Vinum

Vinum is a Volume Manager, a virtual disk driver that addresses these three issues:

• Disks can be too small.

• Disks can be too slow.

• Disks can be too unreliable.

From a user viewpoint, Vinum looks almost exactly the same as a disk, but in addition to
the disks there is a maintenance program.

Vinum objects
Vinum implements a four-level hierarchy of objects:

• The most visible object is the virtual disk, called a volume. Volumes have essentially
the same properties as a UNIX disk drive, though there are some minor differences.
They hav e no size limitations.

• Volumes are composed of plexes, each of which represents the total address space of
a volume. This level in the hierarchy thus provides redundancy. Think of plexes as
individual disks in a mirrored array, each containing the same data.

221

222 Chapter 12: The Vinum Volume Manager

• Vinum exists within the UNIX disk storage framework, so it would be possible to use
UNIX partitions as the building block for multi-disk plexes, but in fact this turns out
to be too inflexible: UNIX disks can have only a limited number of partitions.
Instead, Vinum subdivides a single UNIX partition (the drive) into contiguous areas
called subdisks, which it uses as building blocks for plexes.

• Subdisks reside on Vinum drives, currently UNIX partitions. Vinum drives can
contain any number of subdisks. With the exception of a small area at the beginning
of the drive, which is used for storing configuration and state information, the entire
drive is available for data storage.

Plexes can include multiple subdisks spread over all drives in the Vinum configuration, so
the size of an individual drive does not limit the size of a plex, and thus of a volume.

Mapping disk space to plexes
The way the data is shared across the drives has a strong influence on performance. It’s
convenient to think of the disk storage as a large number of data sectors that are
addressable by number, rather like the pages in a book. The most obvious method is to
divide the virtual disk into groups of consecutive sectors the size of the individual
physical disks and store them in this manner, rather like the way a large encyclopaedia is
divided into a number of volumes. This method is called concatenation, and sometimes
JBOD (Just a Bunch Of Disks). It works well when the access to the virtual disk is
spread evenly about its address space. When access is concentrated on a smaller area, the
improvement is less marked. Figure 12-1 illustrates the sequence in which storage units
are allocated in a concatenated organization.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Disk 1 Disk 2 Disk 3 Disk 4

Figure 12-1: Concatenated organization

An alternative mapping is to divide the address space into smaller, equal-sized
components, called stripes, and store them sequentially on different devices. For
example, the first stripe of 292 kB may be stored on the first disk, the next stripe on the
next disk and so on. After filling the last disk, the process repeats until the disks are full.
This mapping is called striping or RAID-0,1 though the latter term is somewhat
misleading: it provides no redundancy. Striping requires somewhat more effort to locate

1. RAID stands for Redundant Array of Inexpensive Disks and offers various forms of fault tolerance.

Vinum objects 223

the data, and it can cause additional I/O load where a transfer is spread over multiple
disks, but it can also provide a more constant load across the disks. Figure 12-2
illustrates the sequence in which storage units are allocated in a striped organization.

0

4

8

12

16

20

1

5

9

13

17

21

2

6

10

14

18

22

3

7

11

15

19

23

Disk 1 Disk 2 Disk 3 Disk 4

Figure 12-2: Striped organization

Data integrity
Vinum offers two forms of redundant data storage aimed at surviving hardware failure:
mirroring, also known as RAID level 1, and parity, also known as RAID levels 2 to 5.

Mirroring maintains two or more copies of the data on different physical hardware. Any
write to the volume writes to both locations; a read can be satisfied from either, so if one
drive fails, the data is still available on the other drive. It has two problems:

• The price. It requires twice as much disk storage as a non-redundant solution.

• The performance impact. Writes must be performed to both drives, so they take up
twice the bandwidth of a non-mirrored volume. Reads do not suffer from a
performance penalty: you only need to read from one of the disks, so in some cases,
they can even be faster.

The most interesting of the parity solutions is RAID level 5, usually called RAID-5. The
disk layout is similar to striped organization, except that one block in each stripe contains
the parity of the remaining blocks. The location of the parity block changes from one
stripe to the next to balance the load on the drives. If any one drive fails, the driver can
reconstruct the data with the help of the parity information. If one drive fails, the array
continues to operate in degraded mode: a read from one of the remaining accessible
drives continues normally, but a read request from the failed drive is satisfied by
recalculating the contents from all the remaining drives. Writes simply ignore the dead
drive. When the drive is replaced, Vinum recalculates the contents and writes them back
to the new drive.

In the following figure, the numbers in the data blocks indicate the relative block
numbers.

224 Chapter 12: The Vinum Volume Manager

0

3

6

Parity

12

15

1

4

Parity

9

13

16

2

Parity

7

10

14

Parity

Parity

5

8

11

Parity

17

Disk 1 Disk 2 Disk 3 Disk 4

Figure 12-3: RAID-5 organization

Compared to mirroring, RAID-5 has the advantage of requiring significantly less storage
space. Read access is similar to that of striped organizations, but write access is
significantly slower, approximately 25% of the read performance.

Vinum also offers RAID-4, a simpler variant of RAID-5 which stores all the parity blocks
on one disk. This makes the parity disk a bottleneck when writing. RAID-4 offers no
advantages over RAID-5, so it’s effectively useless.

Which plex organization?
Each plex org anization has its unique advantages:

• Concatenated plexes are the most flexible: they can contain any number of subdisks,
and the subdisks may be of different length. The plex may be extended by adding
additional subdisks. They require less CPU time than striped or RAID-5 plexes,
though the difference in CPU overhead from striped plexes is not measurable. They
are the only kind of plex that can be extended in size without loss of data.

• The greatest advantage of striped (RAID-0) plexes is that they reduce hot spots: by
choosing an optimum sized stripe (between 256 and 512 kB), you can even out the
load on the component drives. The disadvantage of this approach is the restriction on
subdisks, which must be all the same size. Extending a striped plex by adding new
subdisks is so complicated that Vinum currently does not implement it. A striped
plex must have at least two subdisks: otherwise it is indistinguishable from a
concatenated plex. In addition, there’s an interaction between the geometry of UFS
and Vinum that makes it advisable not to have a stripe size that is a power of 2: that’s
the background for the mention of a 292 kB stripe size in the example above.

• RAID-5 plexes are effectively an extension of striped plexes. Compared to striped
plexes, they offer the advantage of fault tolerance, but the disadvantages of somewhat
higher storage cost and significantly worse write performance. Like striped plexes,
RAID-5 plexes must have equal-sized subdisks and cannot currently be extended.
Vinum enforces a minimum of three subdisks for a RAID-5 plex: any smaller number
would not make any sense.

Vinum objects 225

• Vinum also offers RAID-4, although this organization has some disadvantages and no
advantages when compared to RAID-5. The only reason for including this feature
was that it was a trivial addition: it required only two lines of code.

The following table summarizes the advantages and disadvantages of each plex
organization.

Table 12-1: Vinum plex org anizations

Minimum Can Must be
Plex type subdisks add equal Application

subdisks size
concatenated 1 yes no Large data storage with maximum

placement flexibility and moderate
performance.

striped 2 no yes High performance in combination
with highly concurrent access.

RAID-5 3 no yes Highly reliable storage, primarily
read access.

Creating Vinum drives
Before you can do anything with Vinum, you need to reserve disk space for it. Vinum
drive objects are in fact a special kind of disk partition, of type vinum. We’ve seen how to
create disk partitions on page 215. If in that example we had wanted to create a Vinum
volume instead of a UFS partition, we would have created it like this:

8 partitions:
size offset fstype [fsize bsize bps/cpg]
c: 6295133 0 unused 0 0 # (Cyl. 0 - 10302)
b: 1048576 0 swap 0 0 # (Cyl. 0 - 10302)
h: 5246557 1048576 vinum 0 0 # (Cyl. 0 - 10302)

Starting Vinum
Vinum comes with the base system as a kld. It gets loaded automatically when you run
the vinum command. It’s possible to build a special kernel that includes Vinum, but this
is not recommended: in this case, you will not be able to stop Vinum.

226 Chapter 12: The Vinum Volume Manager

FreeBSD Release 5 includes a new method of starting Vinum. Put the following lines in
/boot/loader.conf :

vinum_load="YES"
vinum.autostart="YES"

The first line instructs the loader to load the Vinum kld, and the second tells it to start
Vinum during the device probes. Vinum still supports the older method of setting the
variable start_vinum in /etc/rc.conf, but this method may go away soon.

Configuring Vinum
Vinum maintains a configuration database that describes the objects known to an
individual system. You create the configuration database from one or more configuration
files with the aid of the vinum utility program. Vinum stores a copy of its configuration
database on each Vinum drive. This database is updated on each state change, so that a
restart accurately restores the state of each Vinum object.

The configuration file
The configuration file describes individual Vinum objects. To define a simple volume,
you might create a file called, say, config1, containing the following definitions:

drive a device /dev/da1s2h
volume myvol
plex org concat
sd length 512m drive a

This file describes four Vinum objects:

• The drive line describes a disk partition (drive) and its location relative to the
underlying hardware. It is given the symbolic name a. This separation of the
symbolic names from the device names allows disks to be moved from one location
to another without confusion.

• The volume line describes a volume. The only required attribute is the name, in this
case myvol.

• The plex line defines a plex. The only required parameter is the organization, in this
case concat. No name is necessary: the system automatically generates a name from
the volume name by adding the suffix .px, where x is the number of the plex in the
volume. Thus this plex will be called myvol.p0.

• The sd line describes a subdisk. The minimum specifications are the name of a drive
on which to store it, and the length of the subdisk. As with plexes, no name is
necessary: the system automatically assigns names derived from the plex name by
adding the suffix .sx, where x is the number of the subdisk in the plex. Thus Vinum
gives this subdisk the name myvol.p0.s0

Configur ing Vinum 227

After processing this file, vinum(8) produces the following output:

vinum -> create config1
1 drives:
D a State: up /dev/da1s2h A: 3582/4094 MB (87%)

1 volumes:
V myvol State: up Plexes: 1 Size: 512 MB

1 plexes:
P myvol.p0 C State: up Subdisks: 1 Size: 512 MB

1 subdisks:
S myvol.p0.s0 State: up D: a Size: 512 MB

This output shows the brief listing format of vinum. It is represented graphically in
Figure 12-4.

Subdisk

myvol.p0.s0

Plex 1
myvol.p0

0 MB

512 MB

volume

address

space

Figure 12-4: A simple Vinum volume

This figure, and the ones that follow, represent a volume, which contains the plexes,
which in turn contain the subdisks. In this trivial example, the volume contains one plex,
and the plex contains one subdisk.

Creating a file system
You create a file system on this volume in the same way as you would for a conventional
disk:

newfs -U /dev/vinum/myvol
/dev/vinum/myvol: 512.0MB (1048576 sectors) block size 16384, fragment size 2048

using 4 cylinder groups of 128.02MB, 8193 blks, 16512 inodes.
super-block backups (for fsck -b #) at:
32, 262208, 524384, 786560

228 Chapter 12: The Vinum Volume Manager

This particular volume has no specific advantage over a conventional disk partition. It
contains a single plex, so it is not redundant. The plex contains a single subdisk, so there
is no difference in storage allocation from a conventional disk partition. The following
sections illustrate various more interesting configuration methods.

Increased resilience: mirroring
The resilience of a volume can be increased either by mirroring or by using RAID-5
plexes. When laying out a mirrored volume, it is important to ensure that the subdisks of
each plex are on different drives, so that a drive failure will not take down both plexes.
The following configuration mirrors a volume:

drive b device /dev/da2s2h
volume mirror
plex org concat
sd length 512m drive a

plex org concat
sd length 512m drive b

In this example, it was not necessary to specify a definition of drive a again, because
Vinum keeps track of all objects in its configuration database. After processing this
definition, the configuration looks like:

2 drives:
D a State: up /dev/da1s2h A: 3070/4094 MB (74%)
D b State: up /dev/da2s2h A: 3582/4094 MB (87%)

2 volumes:
V myvol State: up Plexes: 1 Size: 512 MB
V mirror State: up Plexes: 2 Size: 512 MB

3 plexes:
P myvol.p0 C State: up Subdisks: 1 Size: 512 MB
P mirror.p0 C State: up Subdisks: 1 Size: 512 MB
P mirror.p1 C State: initializing Subdisks: 1 Size: 512 MB

3 subdisks:
S myvol.p0.s0 State: up D: a Size: 512 MB
S mirror.p0.s0 State: up D: a Size: 512 MB
S mirror.p1.s0 State: empty D: b Size: 512 MB

Figure 12-5 shows the structure graphically.

In this example, each plex contains the full 512 MB of address space. As in the previous
example, each plex contains only a single subdisk.

Note the state of mirror.p1 and mirror.p1.s0: initializing and empty respectively.
There’s a problem when you create two identical plexes: to ensure that they’re identical,
you need to copy the entire contents of one plex to the other. This process is called
re viving, and you perform it with the start command:

vinum -> start mirror.p1
vinum[278]: reviving mirror.p1.s0
Reviving mirror.p1.s0 in the background
vinum -> vinum[278]: mirror.p1.s0 is up

Configur ing Vinum 229

Subdisk 1

mirror.p0.s0

Plex 1
mirror.p0

Subdisk 2

mirror.p1.s0

Plex 2
mirror.p1

0 MB

512 MB

volume

address

space

Figure 12-5: A mirrored Vinum volume

During the start process, you can look at the status to see how far the revive has
progressed:

vinum -> list mirror.p1.s0
S mirror.p1.s0 State: R 43% D: b Size: 512 MB

Reviving a large volume can take a very long time. When you first create a volume, the
contents are not defined. Does it really matter if the contents of each plex are different?
If you will only ever read what you have first written, you don’t need to worry too much.
In this case, you can use the setupstate keyword in the configuration file. We’ll see an
example of this below.

Adding plexes to an existing volume
At some time after creating a volume, you may decide to add additional plexes. For
example, you may want to add a plex to the volume myvol we saw above, putting its
subdisk on drive b. The configuration file for this extension would look like:

plex name myvol.p1 org concat volume myvol
sd size 1g drive b

To see what has happened, use the recursive listing option -r for the list command:

vinum -> l -r myvol
V myvol State: up Plexes: 2 Size: 1024 MB
P myvol.p0 C State: up Subdisks: 1 Size: 512 MB
P myvol.p1 C State: initializing Subdisks: 1 Size: 1024 MB
S myvol.p0.s0 State: up D: a Size: 512 MB
S myvol.p1.s0 State: empty D: b Size: 1024 MB

230 Chapter 12: The Vinum Volume Manager

The command l is a synonym for list, and the -r option means recursive: it displays all
subordinate objects. In this example, plex myvol.p1 is 1 GB in size, although myvol.p0 is
only 512 MB in size. This discrepancy is allowed, though it isn’t very useful by itself:
only the first half of the volume is protected against failures. As we’ll see in the next
section, though, this is a useful stepping stone to extending the size of a file system.

Note that you can’t use the setupstate keyword here. Vinum can’t know whether the
existing volume contains valid data or not, so you must use the start command to
synchronize the plexes.

Adding subdisks to existing plexes
After adding a second plex to myvol, it had one plex with 512 MB and another with 1024
MB. It makes sense to have the same size plexes, so the first thing we should do is add a
second subdisk to the plex myvol.p0.

If you add subdisks to striped, RAID-4 or RAID-5 plexes, you will change the mapping
of the data to the disks, which effectively destroys the contents. As a result, you must use
the -f option. When you add subdisks to concatenated plexes, the data in the existing
subdisks remains unchanged. In our case, the plex is concatenated, so we create and add
the subdisk like this:

sd name myvol.p0.s1 plex myvol.p0 size 512m drive c

After adding this subdisk, the volume looks like this:

myvol.p0.s0

myvol.p0.s1

Plex 1
myvol.p0

myvol.p1.s0

Plex 2
myvol.p1

0 MB

1024 MB

volume

address

space

Figure 12-6: An extended Vinum volume

Configur ing Vinum 231

It doesn’t look too happy, howev er:

vinum -> l -r myvol
V myvol State: up Plexes: 2 Size: 1024 MB
P myvol.p0 C State: corrupt Subdisks: 2 Size: 1024 MB
P myvol.p1 C State: initializing Subdisks: 1 Size: 1024 MB
S myvol.p0.s0 State: up D: a Size: 512 MB
S myvol.p0.s1 State: empty D: c Size: 512 MB
S myvol.p1.s0 State: stale D: b Size: 1024 MB

In fact, it’s in as good a shape as it ever has been. The first half of myvol still contains the
file system that we put on it, and it’s as accessible as ever. The trouble here is that there
is nothing in the other two subdisks, which are shown shaded in the figure. Vinum can’t
know that that is acceptable, but we do. In this case, we use some maintenance
commands to set the correct object states:

vinum -> setstate up myvol.p0.s1 myvol.p0
vinum -> l -r myvol
V myvol State: up Plexes: 2 Size: 1024 MB
P myvol.p0 C State: up Subdisks: 2 Size: 1024 MB
P myvol.p1 C State: faulty Subdisks: 1 Size: 1024 MB
S myvol.p0.s0 State: up D: a Size: 512 MB
S myvol.p0.s1 State: up D: c Size: 512 MB
S myvol.p1.s0 State: stale D: b Size: 1024 MB
vinum -> saveconfig

The command setstate changes the state of individual objects without updating those of
related objects. For example, you can use it to change the state of a plex to up ev en if all
the subdisks are down. If used incorrectly, it can can cause severe data corruption.
Unlike normal commands, it doesn’t sav e the configuration changes, so you use
saveconfig for that, after you’re sure you have the correct states. Read the man page
before using them for any other purpose.

Next you start the second plex:

vinum -> start myvol.p1
Reviving myvol.p1.s0 in the background
vinum[446]: reviving myvol.p1.s0
vinum -> vinum[446]: myvol.p1.s0 is up some time later
l command for previous prompt
3 drives:
D a State: up /dev/da1s2h A: 3582/4094 MB (87%)
D b State: up /dev/da2s2h A: 3070/4094 MB (74%)
D c State: up /dev/da3s2h A: 3582/4094 MB (87%)

1 volumes:
V myvol State: up Plexes: 2 Size: 1024 MB

2 plexes:
P myvol.p0 C State: up Subdisks: 2 Size: 1024 MB
P myvol.p1 C State: up Subdisks: 1 Size: 1024 MB

3 subdisks:
S myvol.p0.s0 State: up D: a Size: 512 MB
S myvol.p1.s0 State: up D: b Size: 1024 MB
S myvol.p0.s1 State: up D: c Size: 512 MB

232 Chapter 12: The Vinum Volume Manager

The message telling you that myvol.p1.s0 is up comes after the prompt, so the next
command doesn’t hav e a prompt. At this point you have a fully mirrored, functional
volume, 1 GB in size. If you now look at the contents, though, you see:

df /mnt
Filesystem 1048576-blocks Used Avail Capacity Mounted on
/dev/vinum/myvol 503 1 461 0% /mnt

The volume is now 1 GB in size, but the file system on the volume is still only 512 MB.
To expand it, use growfs:

umount /mnt
growfs /dev/vinum/myvol
We strongly recommend you to make a backup before growing the Filesystem

Did you backup your data (Yes/No) ? Yes
new file systemsize is: 524288 frags
Warning: 261920 sector(s) cannot be allocated.
growfs: 896.1MB (1835232 sectors) block size 16384, fragment size 2048

using 7 cylinder groups of 128.02MB, 8193 blks, 16512 inodes.
super-block backups (for fsck -b #) at:
1048736, 1310912, 1573088
mount /dev/vinum/myvol /mnt
df /mnt
Filesystem 1048576-blocks Used Avail Capacity Mounted on
/dev/vinum/myvol 881 1 809 0% /mnt

Optimizing performance
The mirrored volumes in the previous example are more resistant to failure than
unmirrored volumes, but their performance is less: each write to the volume requires a
write to both drives, using up a greater proportion of the total disk bandwidth.
Performance considerations demand a different approach: instead of mirroring, the data is
striped across as many disk drives as possible. The following configuration shows a
volume with a plex striped across four disk drives:

drive c device /dev/da3s2h
drive d device /dev/da4s2h
volume stripe
plex org striped 480k
sd length 128m drive a
sd length 128m drive b
sd length 128m drive c
sd length 128m drive d

When creating striped plexes for the UFS file system, ensure that the stripe size is a
multiple of the file system block size (normally 16 kB), but not a power of 2. UFS
frequently allocates cylinder groups with lengths that are a power of 2, and if you allocate
stripes that are also a power of 2, you may end up with all inodes on the same drive,
which would significantly impact performance under some circumstances. Files are
allocated in blocks, so having a stripe size that is not a multiple of the block size can
cause significant fragmentation of I/O requests and consequent drop in performance. See
the man page for more details.

Configur ing Vinum 233

Vinum requires that a striped plex hav e an integral number of stripes. You don’t hav e to
calculate the size exactly, though: if the size of the plex is not a multiple of the stripe size,
Vinum trims off the remaining partial stripe and prints a console message:

vinum: removing 256 blocks of partial stripe at the end of stripe.p0

As before, it is not necessary to define the drives that are already known to Vinum. After
processing this definition, the configuration looks like:

4 drives:
D a State: up /dev/da1s2h A: 2942/4094 MB (71%)
D b State: up /dev/da2s2h A: 2430/4094 MB (59%)
D c State: up /dev/da3s2h A: 3966/4094 MB (96%)
D d State: up /dev/da4s2h A: 3966/4094 MB (96%)

3 volumes:
V myvol State: up Plexes: 2 Size: 1024 MB
V mirror State: up Plexes: 2 Size: 512 MB
V stripe State: up Plexes: 1 Size: 511 MB

5 plexes:
P myvol.p0 C State: up Subdisks: 1 Size: 512 MB
P mirror.p0 C State: up Subdisks: 1 Size: 512 MB
P mirror.p1 C State: initializing Subdisks: 1 Size: 512 MB
P myvol.p1 C State: up Subdisks: 1 Size: 1024 MB
P stripe.p0 S State: up Subdisks: 4 Size: 511 MB

8 subdisks:
S myvol.p0.s0 State: up D: a Size: 512 MB
S mirror.p0.s0 State: up D: a Size: 512 MB
S mirror.p1.s0 State: empty D: b Size: 512 MB
S myvol.p1.s0 State: up D: b Size: 1024 MB
S myvol.p0.s1 State: up D: c Size: 512 MB
S stripe.p0.s0 State: up D: a Size: 127 MB
S stripe.p0.s1 State: up D: b Size: 127 MB
S stripe.p0.s2 State: up D: c Size: 127 MB
S stripe.p0.s3 State: up D: d Size: 127 MB

This volume is represented in Figure 12-7. The darkness of the stripes indicates the
position within the plex address space: the lightest stripes come first, the darkest last.

Resilience and performance
With sufficient hardware, it is possible to build volumes that show both increased
resilience and increased performance compared to standard UNIX partitions. Mirrored
disks will always give better performance than RAID-5, so a typical configuration file
might be:

drive e device /dev/da5s2h
drive f device /dev/da6s2h
drive g device /dev/da7s2h
drive h device /dev/da8s2h
drive i device /dev/da9s2h
drive j device /dev/da10s2h
volume raid10 setupstate
plex org striped 480k
sd length 102480k drive a
sd length 102480k drive b

234 Chapter 12: The Vinum Volume Manager

Plex 1
stripe.p0

stripe.p0.s0

stripe.p0.s1

stripe.p0.s2

stripe.p0.s3

Figure 12-7: A striped Vinum volume

sd length 102480k drive c
sd length 102480k drive d
sd length 102480k drive e

plex org striped 480k
sd length 102480k drive f
sd length 102480k drive g
sd length 102480k drive h
sd length 102480k drive i
sd length 102480k drive j

In this example, we have added another five disks for the second plex, so the volume is
spread over ten spindles. We hav e also used the setupstate keyword so that all
components come up. The volume looks like this:

vinum -> l -r raid10
V raid10 State: up Plexes: 2 Size: 499 MB
P raid10.p0 S State: up Subdisks: 5 Size: 499 MB
P raid10.p1 S State: up Subdisks: 5 Size: 499 MB
S raid10.p0.s0 State: up D: a Size: 99 MB
S raid10.p0.s1 State: up D: b Size: 99 MB
S raid10.p0.s2 State: up D: c Size: 99 MB
S raid10.p0.s3 State: up D: d Size: 99 MB
S raid10.p0.s4 State: up D: e Size: 99 MB
S raid10.p1.s0 State: up D: f Size: 99 MB
S raid10.p1.s1 State: up D: g Size: 99 MB
S raid10.p1.s2 State: up D: h Size: 99 MB
S raid10.p1.s3 State: up D: i Size: 99 MB
S raid10.p1.s4 State: up D: j Size: 99 MB

This assumes the availability of ten disks. It’s not essential to have all the components on
different disks. You could put the subdisks of the second plex on the same drives as the
subdisks of the first plex. If you do so, you should put corresponding subdisks on
different drives:

Configur ing Vinum 235

plex org striped 480k
sd length 102480k drive a
sd length 102480k drive b
sd length 102480k drive c
sd length 102480k drive d
sd length 102480k drive e

plex org striped 480k
sd length 102480k drive c
sd length 102480k drive d
sd length 102480k drive e
sd length 102480k drive a
sd length 102480k drive b

The subdisks of the second plex are offset by two drives from those of the first plex: this
helps ensure that the failure of a drive does not cause the same part of both plexes to
become unreachable, which would destroy the file system.

Figure 12-8 represents the structure of this volume.

Plex 1
raid10.p0

Plex 2
raid10.p1

.p0.s0

.p0.s1

.p0.s2

.p0.s3

.p0.s4

.p1.s0

.p1.s1

.p1.s2

.p1.s3

.p1.s4

Figure 12-8: A mirrored, striped Vinum volume

Vinum configuration database
Vinum stores configuration information on each drive in essentially the same form as in
the configuration files. You can display it with the dumpconfig command. When reading
from the configuration database, Vinum recognizes a number of keywords that are not
allowed in the configuration files, because they would compromise data integrity. For
example, after adding the second plex to myvol, the disk configuration would contain the
following text:

236 Chapter 12: The Vinum Volume Manager

vinum -> dumpconfig
Drive a: Device /dev/da1s2h

Created on bumble.example.org at Tue Nov 26 14:35:12 2002
Config last updated Tue Nov 26 16:12:35 2002
Size: 4293563904 bytes (4094 MB)

volume myvol state up
plex name myvol.p0 state up org concat vol myvol
plex name myvol.p1 state up org concat vol myvol
sd name myvol.p0.s0 drive a plex myvol.p0 len 1048576s driveoffset 265s state up ple
xoffset 0s
sd name myvol.p1.s0 drive b plex myvol.p1 len 2097152s driveoffset 265s state up ple
xoffset 0s
sd name myvol.p0.s1 drive c plex myvol.p0 len 1048576s driveoffset 265s state up ple
xoffset 1048576s

Drive /dev/da1s2h: 4094 MB (4293563904 bytes)

Drive b: Device /dev/da2s2h
Created on bumble.example.org at Tue Nov 26 14:35:27 2002
Config last updated Tue Nov 26 16:12:35 2002
Size: 4293563904 bytes (4094 MB)

volume myvol state up
plex name myvol.p0 state up org concat vol myvol
plex name myvol.p1 state up org concat vol myvol
sd name myvol.p0.s0 drive a plex myvol.p0 len 1048576s driveoffset 265s state up ple
xoffset 0s
sd name myvol.p1.s0 drive b plex myvol.p1 len 2097152s driveoffset 265s state up ple
xoffset 0s
sd name myvol.p0.s1 drive c plex myvol.p0 len 1048576s driveoffset 265s state up ple
xoffset 1048576s

The obvious differences here are the presence of explicit location information and naming
(both of which are also allowed, but discouraged, for use by the user) and the information
on the states (which are not available to the user). Vinum does not store information
about drives in the configuration information: it finds the drives by scanning the
configured disk drives for partitions with a Vinum label. This enables Vinum to identify
drives correctly even if they hav e been assigned different UNIX drive IDs.

When you start Vinum with the vinum start command, Vinum reads the configuration
database from one of the Vinum drives. Under normal circumstances, each drive contains
an identical copy of the configuration database, so it does not matter which drive is read.
After a crash, however, Vinum must determine which drive was updated most recently
and read the configuration from this drive. It then updates the configuration, if necessary,
from progressively older drives.

Installing FreeBSD on Vinum
Installing FreeBSD on Vinum is complicated by the fact that sysinstall and the loader
don’t support Vinum, so it is not possible to install directly on a Vinum volume. Instead,
you need to install a conventional system and then convert it to Vinum. That’s not as
difficult as it might sound.

Installing FreeBSD on Vinum 237

A typical disk installation lays out disk partitions in the following manner:

da0s3a: / file system

da0s3b: swap

da0s3e: /usr file system

da0s3f: /var file system

da0s3c: entire disk

Figure 12-9: Typical partition layout without Vinum

This layout shows three file system partitions and a swap partition, which is not the
layout recommended on page 68. We’ll look at the reasons for this below.

Each partition corresponds logically to a Vinum subdisk. You could enclose all these
subdisks in a Vinum drive. The only problem is that Vinum stores its configuration
information at the beginning of the drive, and that’s where the root file system is. One
way to solve this problem is to put the swap partition first and make it 265 sectors longer
than needed. You can do this from sysinstall simply by creating the swap partition
before any other partition. Consider installing FreeBSD on a 4 GB drive. Create, in
sequence, a swap partition of 256 MB, a root file system of 256 MB, a /usr file system of
2 GB, and a /var file system to take up the rest. It’s important to create the swap
partition at the beginning of the disk, so you create that first. After installation, the output
of bsdlabel looks like this:

8 partitions:
size offset fstype [fsize bsize bps/cpg]
a: 524288 532480 4.2BSD 2048 16384 94
b: 532215 265 swap
c: 8386733 0 unused 0 0 # "raw" part, don’t edit
e: 4194304 1056768 4.2BSD 2048 16384 89
f: 3135661 5251072 4.2BSD 2048 16384 89

To convert to Vinum, use bsdlabel with the -e (edit label) option to create a volume of
type vinum that maps the c partition:

h: 8386733 0 vinum

238 Chapter 12: The Vinum Volume Manager

After this, you have the following situation:

da0s3b: swap

da0s3a: / file system

da0s3e: /usr file system

da0s3f: /var file system

da0s3c: entire disk da0s3h: vinum drive

Figure 12-10: Partition layout with Vinum

The shaded area at the top of the Vinum partition represents the configuration
information, which cuts into the swap partition. To fix that, we redefine the swap
partition to start after the Vinum configuration information and to be 265 sectors shorter.
The file systems are relatively trivial to recreate: take the size and offset values from the
bsdlabel output above and use them in a Vinum configuration file:

drive rootdev device /dev/da0s2h
volume swap
plex org concat

b: 532215 265 swap
sd len 532215s driveoffset 265s drive rootdev

volume root
plex org concat

a: 524288 532480 4.2BSD 2048 16384 94
sd len 524288s driveoffset 532480s drive rootdev

volume usr
plex org concat

e: 4194304 1056768 4.2BSD 2048 16384 89
sd len 4194304s driveoffset 1056768s drive rootdev

volume var
plex org concat

f: 3135661 5251072 4.2BSD 2048 16384 89
sd len 3135661s driveoffset 5251072s drive rootdev

The comments are the corresponding lines from the bsdlabel output. They show the
corresponding values for size and offset. Run vinum create against this file, and confirm
that you have the volumes /, /usr and /var.

Next, ensure that you are set up to start Vinum with the new method. You should have
the following lines in /boot/loader.conf :

vinum_load="YES"
vinum.autostart="YES"

Then reboot to single-user mode, start Vinum and run fsck against the volumes, using the
-n option to tell fsck not to correct any errors it finds. You should see something like
this:

Installing FreeBSD on Vinum 239

fsck -n -t ufs /dev/vinum/usr
** /dev/vinum/usr (NO WRITE)
** Last Mounted on /usr
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
35323 files, 314115 used, 718036 free (4132 frags, 89238 blocks, 0.4% fragmentation)

If there are any errors, they will probably be because you have miscalculated size or
offset. You’ll see something like this:

fsck -n -t ufs /dev/vinum/usr
** /dev/vinum/usr (NO WRITE)
Cannot find file system superblock
/dev/vinum/usr: CANNOT FIGURE OUT FILE SYSTEM PARTITION

You need to do this in single-user mode because the volumes are shadowing file systems,
and it’s normal for open file systems to fail fsck, since some of the state is in buffer cache.

If all is well, remount the root file system read-write:

mount -u /

Then edit /etc/fstab to point to the new devices. For this example, /etc/fstab might
initially contain:

$Id: fstab,v 1.3 2002/11/14 06:48:16 grog Exp $
Device Mountpoint FStype Options Dump Pass#
/dev/da0s4a / ufs rw 1 1
/dev/da0s4b none swap sw 0 0
/dev/da0s4e /usr ufs rw 1 1
/dev/da0s4f /var ufs rw 1 1

Change it to reflect the Vinum volumes:

$Id: fstab,v 1.3 2002/11/14 06:48:16 grog Exp $
Device Mountpoint FStype Options Dump Pass#
/dev/vinum/swap none swap sw 0 0
/dev/vinum/root / ufs rw 1 1
/dev/vinum/usr /usr ufs rw 1 1
/dev/vinum/var /var ufs rw 1 1

Then reboot again to mount the root file system from /dev/vinum/root. You can also
optionally remove all the UFS partitions except the root partition. The loader doesn’t
know about Vinum, so it must boot from the UFS partition.

Once you have reached this stage, you can add additional plexes to the volumes, or you
can extend the plexes (and thus the size of the file system) by adding subdisks to the
plexes, as discussed on page 229.

240 Chapter 12: The Vinum Volume Manager

Recovering from drive failures
One of the purposes of Vinum is to be able to recover from hardware problems. If you
have chosen a redundant storage configuration, the failure of a single component will not
stop the volume from working. In many cases, you can replace the components without
down time.

If a drive fails, perform the following steps:

1. Replace the physical drive.

2. Partition the new drive. Some restrictions apply:

• If you have hot-plugged the drive, it must have the same ID, the Vinum drive
must be on the same partition, and it must have the same size.

• If you have had to stop the system to replace the drive, the old drive will not be
associated with a device name, and you can put it anywhere. Create a Vinum
partition that is at least large enough to take all the subdisks in their original
positions on the drive. Vinum currently does not compact free space when
replacing a drive. An easy way to ensure this is to make the new drive at least as
large as the old drive.

If you want to have this freedom with a hot-pluggable drive, you must stop Vinum
and restart it.

3. If you have restarted Vinum, create a new drive. For example, if the replacement
drive data3 is on the physical partition /dev/da3s1h, create a configuration file, say
configfile, with the single line

drive data3 device /dev/da3s1h

Then enter:

vinum create configfile

4. Start the plexes that were down. For example, vinum list might show:

vinum -> l -r test
V test State: up Plexes: 2 Size: 30 MB
P test.p0 C State: up Subdisks: 1 Size: 30 MB
P test.p1 C State: faulty Subdisks: 1 Size: 30 MB
S test.p0.s0 State: up PO: 0 B Size: 30 MB
S test.p1.s0 State: obsolete PO: 0 B Size: 30 MB

vinum -> start test.p1.s0
Reviving test.p1.s0 in the background
vinum -> vinum[295]: reviving test.p1.s0 this message appears after the prompt
(some time later)
vinum[295]: test.p1.s0 is up

Recovering from drive failures 241

Failed boot disk
If you’re running your root file system on a Vinum volume, you can survive the failure of
the boot volume if it is mirrored with at least two concatenated plexes each containing
only one subdisk. Under normal circumstances, you can carry on running as if nothing
had happened, but obviously you will no longer be able to reboot from that disk. Instead,
boot from the other disk.

The root file system also has individual UFS partitions, so you have a choice of what you
mount. For example, if your root file system has UFS partitions /dev/da0s4a and
/dev/da1s4a, you can mount either of these partitions or /dev/vinum/root. Nev er mount
more than one of them, otherwise you can cause data corruption.

An even more insidious way to corrupt the root file system is to mount /dev/da0s4a or
/dev/da1s4a and modify it. In this case, the two partitions are no longer the same, but
there’s no way for Vinum to know that. If this happens, you must mark the other subdisk
as crashed with the vinum stop command.

Migrating Vinum to a new machine
Sometimes you might want to move a set of Vinum disks to a different FreeBSD
machine. This is simple, as long as there are no name conflicts between the objects on
the Vinum disks and any other Vinum objects you may already have on the system.
Simply connect the disks and start Vinum. You don’t need to put the disks in any
particular location, and you don’t need to run vinum create: Vinum stores the
configuration on the drives themselves, and when it starts, it locates it accordingly.

Things you shouldn’t do with Vinum
The vinum command offers a large number of subcommands intended for specific
purposes. It’s easy to abuse them. Here are some things you should not do:

• Do not use the resetconfig command unless you genuinely don’t want to see any of
your configuration again. There are other alternatives, such as rm, which removes
individual objects or groups of objects.

• Do not re-run the create command for objects that already exist. Vinum already
knows about them, and the start command should find them.

• Do not name your drives after the disk device on which they are located. The
purpose of having drive names is to be device independent. For example, if you have
two drives a and b, and they are located on devices /dev/da1s1h and /dev/da2s1h
respectively, you can remove the drives, swap their locations and restart Vinum.
Vinum will still correctly locate the drives. If you had called the drives da1 and da2,
you would then see something confusing like this:

242 Chapter 12: The Vinum Volume Manager

2 drives:
D da2 State: up /dev/da1s1h A: 3582/4094 MB (87%)
D da1 State: up /dev/da1s2h A: 3582/4094 MB (87%)

This is clearly not helpful.

• Don’t put more than one drive on a physical disk. Each drive contains two copies of
the Vinum configuration, and both updating the configuration and starting Vinum
slow down as a result. If you want more than one file system to occupy space on a
physical drive, create subdisks, not drives.

(burncd.mm), page 243

13
Writing CD-Rs

In this chapter:
• Creating an

ISO-9660 image
• Bur ning the CD-R
• Copying CD-ROMs

In this chapter:
• Creating an

ISO-9660 image
• Bur ning the CD-R
• Copying CD-ROMs

Under FreeBSD, data on conventional hard disks is stored in the UNIX File System or
UFS format. CD-ROMs and CD-Rs use a different file system, the ISO 9660 format,
which is compatible with other systems. This is not a problem when you mount a CD-
ROM: FreeBSD includes a read-only ISO 9660 file system. When you want to write a
CD-R, however, things are a little more complicated: the medium requires you to write
the entire file system at once, and since the file system is stored in a different format, you
can’t just copy the UFS file system. Instead, you must first create an image of the file
system that you want to put on the CD-R, and then you copy it. We’ll look at these steps
in more detail below.

Creating an ISO-9660 image
The first step is to create the ISO 9660 file system image, frequently simply called an ISO
image. There are a number of ports available in the Ports Collection; here we’ll look at
mkisofs, which is part of the cdrtools port. Installation isn’t quite as straightforward as
you might expect: you need a special flag to install mkisofs:

cd /usr/ports/sysutils/cdrtools
make install -DMKISOFS

mkisofs has a bewildering number of parameters. Here are the important ones:

• The -A option specifies the application ID, a text string written to the header of the
file system to describe the ‘‘application’’ on the image. It can be up to 128 characters
long.

243

244 Chapter 13: Writing CD-Rs

• Use -b if you want to be able to boot from the CD, such as a FreeBSD bootable CD.
In the case of FreeBSD, use the 2.88 MB image floppies/boot.flp which is built as
part of the release process. Note that this file must be in one of the directories
included in the image, and the name is relative to the root directory of the CD.

• The -f option tells mkisofs to follow symbolic links. If you don’t specify this option
and you have symbolic links in the directory from which you create the image, the
resultant CD-ROM image will contain only a symbolic link instead of the file itself.
If the file to which the symbolic link points is below the top-level (root) directory, this
is the preferred way to do things, because it saves space, but if it points outside the
CD-ROM, the file will not appear on the CD-ROM at all. Use this option if you have
symbolic links to files outside the directory that you’re using for the root of the CD-
ROM file system.

• The -J option makes the CD compatible with Microsoft’s Joliet format. You don’t
need it for FreeBSD, but it doesn’t cost much, so it’s a good idea to include it if
there’s a chance the CD will be used in a Microsoft environment.

• Use the -o option to specify the name of the resultant ISO image. This image is the
size of the resultant CD, so it could be up to 700 MB.

• The -p option specifies the preparer ID, another ISO 9660 header field to specify
who made the CD-ROM.

• The -r option specifies the Rock Ridge Extensions that are used to store UNIX file
names. It makes a number of assumptions about permissions and owners; see the
man page for details. It takes no parameters.

• The -T option tells mkisofs to include a translation file TRANS.TBL in each directory
for use by systems that don’t support the Rock Ridge extensions. For each file name
in the directory, TRANS.TBL contains a Microsoft-compatible name (up to eight
characters, a period (.) and up to three more characters). The names bear a slight
resemblance to the original names.

• If you don’t like the name TRANS.TBL, you can specify a different name with the
-table-name option, which implies -T. For example, if you write -table-name
.MAP you will generate names that won’t show up with a normal ls command.

• The -V option specifies the volume ID for the file system. This will normally be
more specific than the application ID; for example, each CD in a set of CDs might
have the same application ID and a different volume ID.

• The final parameters are the names of the directories that will be included in the
image. You can specify multiple directories. In each case, the entire directory
hierarchy will be included.

Creating an ISO-9660 image 245

This is a lot of stuff to type in every time. It’s easier to write a Makefile and use make:

APPLID = "Dummy application"
BOOT =
To make it bootable, put in something like this:
Note that the -b option is there as well
BOOT = "-b floppies/boot.flp"
ISO = /var/tmp/isoimage
PREPARER = "me"
VOLID = "Volume 0000"
DIR = .

cdrom:
mkisofs -A ${APPLID} ${BOOT} -J -o ${ISO} -f \
-p ${PREPARER} -r -T -V ${VOLID} ${DIR}

For example, to make a bootable CD-R of the FreeBSD release, you would first perform
the make world and make release. Assuming that the release directory is /home/release,
you will find the directory trees for the first two CD-ROMs in /home/re-
lease/R/cdrom/disc1 and /home/release/R/cdrom/disc2. You could do this:

make cdrom DIR=/home/release/R/cdrom/disc1
mkisofs -A "Dummy application" -J -o ../iso -table-name .MAP -p "Greg Lehey" -r -T
-V "Volume 0000" .
6.40% done, estimate finish Sun Aug 27 13:34:54 2000
12.79% done, estimate finish Sun Aug 27 13:35:02 2000
19.19% done, estimate finish Sun Aug 27 13:35:05 2000
25.57% done, estimate finish Sun Aug 27 13:35:10 2000
31.97% done, estimate finish Sun Aug 27 13:35:10 2000
38.36% done, estimate finish Sun Aug 27 13:35:10 2000
44.75% done, estimate finish Sun Aug 27 13:35:10 2000
51.15% done, estimate finish Sun Aug 27 13:35:12 2000
57.54% done, estimate finish Sun Aug 27 13:35:12 2000
63.94% done, estimate finish Sun Aug 27 13:35:12 2000
70.34% done, estimate finish Sun Aug 27 13:35:11 2000
76.72% done, estimate finish Sun Aug 27 13:35:13 2000
83.12% done, estimate finish Sun Aug 27 13:35:12 2000
89.52% done, estimate finish Sun Aug 27 13:35:13 2000
95.90% done, estimate finish Sun Aug 27 13:35:13 2000
Total translation table size: 35119
Total rockridge attributes bytes: 59724
Total directory bytes: 104448
Path table size(bytes): 256
Max brk space used 86224
78211 extents written (152 Mb)

The progress reports are rather boring nowadays, considering that the whole process only
takes a couple of minutes, but the summary information at the bottom can be of interest.

Testing the CD-R
So now you have an ISO image. How do you know it’s correct? It’s just a single file, and
it could have just about anything on it. You can burn a CD, of course, but if it’s junk, you
have another coaster. If you’re not sure, it’s better to look inside first. You can do that by
using it as the basis for an md vnode device.

The md driver creates a number of different kinds of pseudo-device. See the man page
md(4) for more details. We use the vnode device, a special file that refers to file system
files. Support for md is included in the GENERIC kernel, but if you’ve built a kernel

246 Chapter 13: Writing CD-Rs

without the md driver, you can load it as a kld. If you’re not sure, try loading the kld
anyway. Then you associate a vnode device with the ISO image iso-image using the
program mdconfig:

kldload md load the kld module if necessary
kldload: can’t load md: File exists already loaded or in the kernel
mdconfig -a -t vnode -f iso-image configure the device
md0 this is the name assigned
mount -t cd9660 /dev/md0 /mnt mount it

After this, you will be able to access the image at /mnt as a normal file system. Don’t
forget to unmount and unconfigure the file when you’re finished:

umount /mnt
mdconfig -d -u 0

Older releases of FreeBSD used the vn driver, which used different syntax.

Burning the CD-R
Once you have created and tested an ISO image, you can copy it to CD-R. For SCSI
burners, you use cdrecord; ATA (IDE) CD-R burners you use burncd. In the following
sections we’ll look at both programs.

Burning a CD-R on an ATA burner
To burn a CD-R in an ATA (or IDE) burner, use burncd, which is part of the base system.
Typically you’ll only have one CD-R burner on the system, so it will be called /dev/acd0.
You’ll have something like this in your dmesg output:

acd0: CD-RW <RWD RW4224> at ata1-slave BIOSPIO

burncd has both flags and commands. For our purposes, the most important flags are:

• The -f device option specifies the device to use for the burning process.

• The -m option tells burncd to close the disk in multisession mode.

• The -q option tells burncd to be quiet and not to print progress messages. In fact,
it’s not very verbose anyway.

• The -s speed option specifies the speed of the burner device. It defaults to 1, so
you’ll save a lot of time using this.

• The -t option specifies a test write: burncd does not actually write on the medium.

• The -v (verbose) option prints a few extra progress messages.

Bur ning the CD-R 247

The most important commands for writing ISO 9660 CD-ROMs are:

• data or mode1 write data tracks, also known as mode1 tracks, for the image files
named on the command line.

• fixate fixates the medium by generating the table of contents. This should be the
last command to burncd.

If burncd doesn’t recognize a command, it assumes it’s a file name. If it does, it assumes
it isn’t a file name. This can be confusing: there are other commands not mentioned in
the list above, for example raw. If you have an ISO file called raw, you’ll have to rename
it before you can burn it with burncd.

Before you start, you should decide on the recording speed. If your machine is fast
enough, use the rated recording speed. In the case of the example machine, that’s an 8x
speed (i.e. it records at eight times the speed at which a normal audio CD is played).
Before you do this, though, you should make sure that your system can keep a sufficient
data rate so that there is always data available to transfer to the CD-R. If it can’t keep up,
you’ll get an underrun, a gap in the data, and your CD-R is worthless (a coaster).

To make sure you don’t make coasters, you should do a test run. The system goes
through all the motions, but it doesn’t actually write anything to the CD-R blank.
Nevertheless, it tests all aspects of the burn, so you must have a valid CD-R blank in the
drive, otherwise the attempt will fail. To test burn an image called iso, enter:

burncd -f /dev/acd0c -t -v -s 8 data iso fixate
adding type 0x08 file iso size 184576 KB 92288 blocks
next writeable LBA 0
addr = 0 size = 189005824 blocks = 92288
writing from file iso size 184576 KB
written this track 6880 KB (3%) total 6880 KB

At this point, burncd overwrites the line with progress indications until it is finished.
Finally, you see:

written this track 184576 KB (100%) total 184576 KB
fixating CD, please wait..
burncd: ioctl(CDRIOCFIXATE): Input/output error

This last line appears a little alarming. It’s not really serious, though: the CD has not
really been written, so it’s not possible to read from it. A number of CD-R drives return
error conditions under these circumstances.

If everything was OK in the test run, you can repeat the command without the -t flag:

burncd -f /dev/acd0c -v -s 8 data iso fixate

The output is identical, but this time you should not get the error message.

248 Chapter 13: Writing CD-Rs

Burning a CD-R on a SCSI burner
If you have a SCSI burner, use cdrecord, which is part of the cdrtools port we installed
on page 243. cdrecord has a rather strange habit of not using device names: instead, it
accesses the device directly by its SCSI parameters (bus, unit and LUN). You can get
these parameters from the dmesg output in /var/run/dmesg.boot, but there’s an easier
way:

cdrecord -scanbus
Cdrecord 1.9 (i386-unknown-freebsd4.1) Copyright (C) 1995-2000 Jörg Schilling
Using libscg version ’schily-0.1’
scsibus0:

0,0,0 0) ’MATSHITA’ ’CD-R CW-7503 ’ ’1.06’ Removable CD-ROM
cdrecord: Warning: controller returns zero sized CD capabilities page.
cdrecord: Warning: controller returns wrong size for CD capabilities page.
cdrecord: Warning: controller returns wrong page 0 for CD capabilities page (2A).

0,1,0 1) ’TEAC ’ ’CD-ROM CD-532S ’ ’1.0A’ Removable CD-ROM
0,2,0 2) *
0,3,0 3) *
0,4,0 4) ’SONY ’ ’SDT-10000 ’ ’0101’ Removable Tape
0,5,0 5) *
0,6,0 6) *
0,7,0 7) *
0,8,0 8) ’QUANTUM ’ ’QM318000TD-SW ’ ’N491’ Disk

This output doesn’t tell you exactly which devices are CD-Rs, and it also doesn’t look at
any except the first SCSI bus. Alternatively, you can use the standard system utility
camcontrol:

camcontrol devlist
<MATSHITA CD-R CW-7503 1.06> at scbus0 target 0 lun 0 (pass0,cd0)
<TEAC CD-ROM CD-532S 1.0A> at scbus0 target 1 lun 0 (pass1,cd1)
<SONY SDT-10000 0101> at scbus0 target 4 lun 0 (sa0,pass2)
<QUANTUM QM318000TD-SW N491> at scbus0 target 8 lun 0 (pass3,da0)
<EXABYTE EXB-8505SMBANSH2 0793> at scbus1 target 1 lun 0 (sa1,pass4)
<Quantum DLT4000 CC1E> at scbus1 target 3 lun 0 (sa2,pass5)
<AIWA GD-8000 0119> at scbus1 target 4 lun 0 (sa3,pass6)
<NRC MBR-7 110> at scbus1 target 6 lun 0 (pass7,cd2)
<NRC MBR-7 110> at scbus1 target 6 lun 1 (pass8,cd3)
<NRC MBR-7 110> at scbus1 target 6 lun 2 (pass9,cd4)
<NRC MBR-7 110> at scbus1 target 6 lun 3 (pass10,cd5)
<NRC MBR-7 110> at scbus1 target 6 lun 4 (pass11,cd6)
<NRC MBR-7 110> at scbus1 target 6 lun 5 (pass12,cd7)
<NRC MBR-7 110> at scbus1 target 6 lun 6 (pass13,cd8)

Either way, you need to recognize the CD-R device, which in this case is relatively easy:
it’s the Matsushita CW-7503 (‘‘MATSHITA’’) at the very beginning of each list. cdrecord
refers to this device as 0,0,0 (bus 0, target 0, LUN 0).

The next thing to look at is the recording speed. If your machine is fast enough, use the
rated recording speed. In the case of the example machine, that’s an 8x speed (i.e. it
records at 8 times the speed at which a normal audio CD is played). Before you do this,
though, you should make sure that your system can keep a sufficient data rate so that
there is always data available when to go on the CD. If you can’t keep up, you’ll get an
underrun, a gap in the data, and your CD-R is worthless (a coaster).

Bur ning the CD-R 249

To make sure you don’t make coasters, you should do a dummy run. The system goes
through all the motions, but it doesn’t actually write anything to the CD-R blank.
Nevertheless, it tests all aspects of the burn, so you must have a valid CD-R blank in the
drive, otherwise the attempt will fail. To burn an image called iso, enter:

cdrecord -dummy -v dev=0,0,0 -speed=8 iso
Cdrecord 1.9 (i386-unknown-freebsd5.0) Copyright (C) 1995-2000 Jörg Schilling
TOC Type: 1 = CD-ROM
scsidev: ’0,0,0’
scsibus: 0 target: 0 lun: 0
Using libscg version ’schily-0.1’
atapi: 0
Device type : Removable CD-ROM
Version : 2
Response Format: 2
Capabilities : SYNC LINKED
Vendor_info : ’MATSHITA’
Identifikation : ’CD-R CW-7503 ’
Revision : ’1.06’
Device seems to be: Generic mmc CD-R.
Using generic SCSI-3/mmc CD-R driver (mmc_cdr).
Driver flags : SWABAUDIO
FIFO size : 4194304 = 4096 KB
Track 01: data 152 MB
Total size: 175 MB (17:22.84) = 78213 sectors
Lout start: 175 MB (17:24/63) = 78213 sectors
Current Secsize: 2048
ATIP info from disk:
Indicated writing power: 5
Is not unrestricted
Is not erasable
ATIP start of lead in: -11080 (97:34/20)
ATIP start of lead out: 335100 (74:30/00)

Disk type: Long strategy type (Cyanine, AZO or similar)
Manuf. index: 11
Manufacturer: Mitsubishi Chemical Corporation
Blocks total: 335100 Blocks current: 335100 Blocks remaining: 256887
RBlocks total: 342460 RBlocks current: 342460 RBlocks remaining: 264247
Starting to write CD/DVD at speed 8 in dummy mode for single session.
Last chance to quit, starting dummy write in 1 seconds.
Waiting for reader process to fill input buffer ... input buffer ready.
Starting new track at sector: 0
Track 01: 0 of 152 MB written (fifo 100%).

At this point, cdrecord overwrites the last line with progress indications until it is
finished. If you’re watching, keep an eye on the fifo information at the end of the line.
This gives you an idea how well the system is keeping up with the burner. If the
utilization drops to 0, you will get an underrun, and the blank would have become a
coaster if this were for real.

Finally, you see:

Track 01: 152 of 152 MB written (fifo 100%).
Track 01: Total bytes read/written: 160176128/160176128 (78211 sectors).
Writing time: 136.918s
Fixating...
WARNING: Some drives don’t like fixation in dummy mode.
Fixating time: 35.963s
cdrecord: fifo had 2523 puts and 2523 gets.
cdrecord: fifo was 0 times empty and 2451 times full, min fill was 96%.

250 Chapter 13: Writing CD-Rs

The summary information at the end shows that at some point the fifo dropped below
100% full, but this is far from being a problem. If, on the other hand, there was a lot of
disk activity at the same time, you might find the fifo level dropping much lower.

When you’re sure that you won’t hav e any problems, you can do the real thing: just
repeat the command without the -dummy option. The output looks almost identical.

Copying CD-ROMs
Frequently you’ll want to make a verbatim copy of another CD. There are copyright
implications here, of course, but many CD-ROMs are not restricted. In particular, you
may make copies of FreeBSD CD-ROMs for your personal use.

CD-ROMs are already in ISO format, of course, so to get a file iso, as in the examples
above, you could just perform a literal copy with dd:

dd if=/dev/cd0c of=iso bs=128k

The bs=128k tells dd to copy in blocks of 128 kB. It’s not strictly necessary, but if you
omit it, it will perform a separate transfer for every sector, and on a slow machine it can
be much less efficient.

There’s an even easier way, though, if you have two CD-ROM drives: you can frequently
copy directly from one drive to the other, without storing on disk at all. To do this, of
course, you need to be very sure that your CD-ROM drive is fast enough. In particular, if
it spins down during the copy, you will almost certainly have underruns and a useless
copy. Be very sure to do a dummy run first. Let’s assume that your second CD-ROM
drive is /dev/cd1c (a SCSI drive). For IDE drives, write:

burncd -f /dev/acd0c -t -v -s 8 data /dev/cd1c fixate

In this example, the -f option indicates that /dev/acd0c is the (IDE) CD-R burner.
/dev/cd1c is the (SCSI) CD-ROM drive with the original CD-ROM. You don’t need to
mount /dev/cd1c, since it’s being accessed as raw data, not a file system.

When you’re sure this will work, remove the -t flag and repeat.

For SCSI, enter

cdrecord -dummy -v dev=0,0,0 -speed=8 /dev/cd1c

When it completes satisfactorily, remove the -dummy and repeat.

(tapes.mm), page 251

14
Tapes, backups

and floppy
disks

In this chapter:
• Backing up your data
• Using floppy disks

under FreeBSD

In this chapter:
• Backing up your data
• Using floppy disks

under FreeBSD

In Chapter 11 we looked at hard disks. In this chapter, we’ll consider how to guard
against data loss, and how to transfer data from one location to another. These are
functions that UNIX traditionally performs with tapes, and we’ll look at them in the next
sections. Because FreeBSD runs on PCs, however, you can’t completely escape floppy
disks, though it would be an excellent idea. We’ll look at floppies on page 256.

Backing up your data
No matter how reliable your system, you are never completely protected against loss of
data. The most common reasons are hardware failure and human error. By comparison,
it’s very seldom that a software error causes data loss, but this, too, can happen.

UNIX talks about archives, which are copies of disk data in a form suitable for writing on
a serial medium such as tape. You can, however, write them to disk files as well, and
that’s what people do when they want to move a source tree from one system to another.
You’ll also hear the term tarball for an archive made by the tar program, which we
discuss below.

251

252 Chapter 14: Tapes, backups and floppy disks

What backup medium?
Traditionally, PCs use floppy disks as a removable storage medium. We’ll look at
floppies below, but you can sum the section up in one statement: don’t use floppy disks.

Floppy disks are particularly unsuited as a backup medium for modern computers.
Consider even a minimal system with a 2 GB hard disk. Storing 2 GB of data on floppies
requires about 1,500 floppies, which, at $0.30 each, would cost you $450. Copying the
data to a floppy takes about 50 seconds per floppy, so the raw backup time would be
about 21 hours, plus the time it takes you to change the floppies, which could easily take
another three or more hours. During this time you have to sit by the computer playing
disk jockey, a total of three days’ work during which you could hardly do anything else.
When you try to read in the data again, there’s a virtual certainty that one of the floppies
has a data error, especially if you read them with a different drive.

By contrast, a single DDS or Exabyte cassette stores several gigabytes and costs about
$6. The backup time for 2 GB is about 90 minutes, and the operation can be performed
completely unattended.

A number of cheaper tape drives are also available, such as Travan tapes. FreeBSD
supports them, but for one reason or another, they are not popular. FreeBSD once used to
have support for ‘‘floppy tape,’’ run off a floppy controller, but these tapes were very
unreliable, and they are no longer supported.

You can also use writeable ‘‘CD-ROMs’’ (CD-Rs) for backup purposes. By modern
standards, the media are small (up to 700 MB), but they hav e the advantage of being
readily accessible on other systems. We looked at CD-Rs in Chapter 13.

Tape devices
FreeBSD tape devices have names like /dev/nsa0 (see page 196). Each letter has a
significance:

• n means non-rewinding. When the process that accesses the tape closes it, the tape
remains at the same position. This is inconvenient if you want to remove the tape
(before which you should rewind it), but it’s the only way if you want to handle
multiple archives on the tape. The name of the corresponding re wind device has no n
(for example, the rewind device corresponding to /dev/nsa0 is /dev/sa0). A rewind
device rewinds the tape when it is closed.

Older releases of FreeBSD used the names /dev/nrsa0 and /dev/rsa0. r stands for raw, in
other words a character device. Since the removal of block devices, this letter is superfluous,
but you might see it occasionally in older documents.

• sa stands for serial access, and is always SCSI. You can also get ATAPI tape drives,
which are called /dev/ast0 and /dev/nast0, and the older QIC-02 interface tapes are
called /dev/wst0 and /dev/nwst0.

• 0 is the unit number. If you have more than one tape, the next will be called
/dev/nsa1, and so on.

Backing up your data 253

Backup software
FreeBSD does not require special ‘‘backup software.’’ The base operating system
supplies all the programs you need. The tape driver is part of the kernel, and the system
includes a number of backup programs. The most popular are:

• tar, the tape archiver, has been around longer than anybody can remember. It is
particularly useful for data exchange, since everybody has it. There are even versions
of tar for Microsoft platforms. It’s also an adequate backup program.

• cpio is an alternative backup program. About its only advantage over tar is that it
can read cpio format archives.

• pax is another alternative backup program. It has the advantage that it can also read
and write tar and cpio archives.

• dump is geared more towards backups than towards archiving. It can maintain
multiple levels of backup, each of which backs up only those files that have changed
since the last backup of the next higher (numerically lower) level. It is less suited
towards data exchange because its formats are very specific to BSD. Even older
releases of FreeBSD cannot read dumps created under FreeBSD Release 5.

• amanda, in the Ports Collection, is another popular backup program.

Backup strategies are frequently the subject of religious wars. I personally find that tar
does everything I want, but you’ll find plenty of people who recommend dump or
amanda instead. In the following section, we’ll look at the basics of using tar. See the
man page dump(8) for more information on dump.

tar
tar, the tape archiver, performs the following functions:

• Creating an archive, which can be a serial device such as a tape, or a disk file, from
the contents of a number of directories.

• Extracting files from an archive.

• Listing the contents of an archive.

tar does not compress the data. The resulting archive is slightly larger than the sum of
the files that it contains, since it also contains a certain amount of header information.
You can, however, use the gzip program to compress a tar archive, and tar invokes it for
you automatically with the -z option. The size of the resultant archives depends strongly
on the data you put in them. JPEG images, for example, hardly compress at all, while
text compresses quite well and can be as much as 90% smaller than the original file.

254 Chapter 14: Tapes, backups and floppy disks

Creating a tar archive

Create an archive with the c option. Unlike most UNIX programs, tar does not require a
hyphen (-) in front of the options. For example, to save your complete kernel source tree,
you could write:

tar cvf source-archive.tar /usr/src/sys
tar: Removing leading / from absolute path names in the archive.
usr/src/sys/
usr/src/sys/CVS/
usr/src/sys/CVS/Root
usr/src/sys/CVS/Repository
usr/src/sys/CVS/Entries
usr/src/sys/compile/
usr/src/sys/compile/CVS/
(etc)

The parameters have the following meaning:

• cvf are the options. c stands for create an archive, v specifies verbose operation (in
this case, this causes tar to produce the list of files being archived), and f specifies
that the next parameter is the name of the archive file.

• source-archive.tar is the name of the archive. In this case, it’s a disk file.

• /usr/src/sys is the name of the directory to archive. tar archives all files in the
directory, including most devices. For historical reasons, tar can’t back up devices
with minor numbers greater than 65536, and changing the format would make it
incompatible with other systems.

The message on the first line (Removing leading / ...) indicates that, although the
directory name was specified as /usr/src/sys, tar treats it as usr/src/sys. This makes
it possible to restore the files into another directory at a later time.

You can back up to tape in exactly the same way:

tar cvf /dev/nsa0 /usr/src/sys

There is a simpler way, howev er: if you don’t specify a file name, tar looks for the
environment variable TAPE. If it finds it, it interprets it as the name of the tape drive.
You can make things a lot easier by setting the following line in the configuration file for
your shell (.profile for sh, .bashrc for bash, .login for csh and tcsh):

TAPE=/dev/nsa0 export TAPE for sh and bash
setenv TAPE /dev/nsa0 for csh and tcsh

After this, the previous example simplifies to:

tar cv /usr/src/sys

Backing up your data 255

Listing an archive

To list an archive, use the option t:

tar t from tape
usr/src/sys/
usr/src/sys/CVS/
usr/src/sys/CVS/Root
usr/src/sys/CVS/Repository
usr/src/sys/CVS/Entries
usr/src/sys/compile/
usr/src/sys/compile/CVS/
usr/src/sys/compile/CVS/Root
(etc)
tar tvf source-archive.tar from disk
drwxrwxrwx root/bin 0 Oct 25 15:07 1997 usr/src/sys/
drwxrwxrwx root/bin 0 Oct 25 15:08 1997 usr/src/sys/CVS/
-rw-rw-rw- root/wheel 9 Sep 30 23:13 1996 usr/src/sys/CVS/Root
-rw-rw-rw- root/wheel 17 Sep 30 23:13 1996 usr/src/sys/CVS/Repository
-rw-rw-rw- root/bin 346 Oct 25 15:08 1997 usr/src/sys/CVS/Entries
drwxrwxrwx root/bin 0 Oct 27 17:11 1997 usr/src/sys/compile/
drwxrwxrwx root/bin 0 Jul 30 10:52 1997 usr/src/sys/compile/CVS/
(etc)

This example shows the use of the v (verbose) option with t. If you don’t use it, tar
displays only the names of the files (first example, from tape). If you do use it, tar also
displays the permissions, ownerships, sizes and last modification date in a form
reminiscent of ls -l (second example, which is from the disk file source-archive.tar).

Extracting files

To extract a file from the archive, use the x option:

tar xv usr/src/sys/Makefile from tape
usr/src/sys/Makefile confirms that the file was extracted

As with the c option, if you don’t use the v option, tar does not list any file names. If
you omit the names of the files to extract, tar extracts the complete archive.

Compressed archives

You can combine gzip with tar by specifying the z option. For example, to create the
archive source-archive.tar.gz in compressed format, write:

tar czf source-archive.tar.gz /usr/src/sys

You must specify the z option when listing or extracting compressed archives, and you
must not do so when listing or extracting non-compressed archives. Otherwise you get
messages like:

tar tzvf source-archive.tar
gzip: stdin: not in gzip format
tar: child returned status 1
tar tvf source-archive.tar.gz
tar: only read 2302 bytes from archive source-archive.tar.gz

256 Chapter 14: Tapes, backups and floppy disks

Using floppy disks under FreeBSD
I don’t like floppy disks. UNIX doesn’t like floppy disks. Probably you don’t like floppy
disks either, but we occasionally have to liv e with them.

FreeBSD uses floppy disks for one thing only: for initially booting the system on systems
that can’t boot from CD-ROM. We’ve already seen that they’re unsuitable for archival
data storage and data transfer. For this purpose, FreeBSD uses tapes and CD-ROMs,
which are much more reliable, and for the data volumes involved in modern computers,
they’re cheaper and faster.

So why use floppies? The only good reasons are:

• You hav e a floppy drive. You may not have a tape drive. Before you go out and buy
all those floppies, though, consider that it might be cheaper to buy a tape drive and
some tapes instead.

• You need to exchange data with people using Microsoft platforms, or with people
who don’t hav e the same kind of tape as you do.

In the following sections, we’ll look at how to handle floppies under FreeBSD, with
particular regard to coexisting with Microsoft. Here’s an overview:

• Always format floppies before using them on your system for the first time, even if
they’ve been formatted before. We’ll look at that in the next section.

• Just occasionally, you need to create a UNIX file system on floppy. We’ll look at that
on page 257.

• When exchanging with Microsoft users, you need to create a Microsoft file system.
We’ll look at that on page 258.

• When exchanging with other UNIX users, whether FreeBSD or not, use tar or cpio.
We’ll look at how to do that on page 258.

Formatting a floppy
Even if you buy preformatted floppies, it’s a good idea to reformat them. Track
alignment can vary significantly between individual floppy drives, and the result can be
that your drive doesn’t write quite on top of the pre-written tracks. I hav e seen read
failure rates as high as 2% on pre-formatted floppies: in other words, after writing 100
floppies with valuable data, the chances are that two of them have read errors. You can
reduce this problem by reformatting the floppy in the drive in which it is to be written, but
you can’t eliminate it.

On Microsoft platforms, you format floppies with the FORMAT program, which
performs two different functions when invoked on floppies: it performs both a low-level
format, which rewrites the physical sector information, and then it performs what it calls
a high-level format, which writes the information necessary for Microsoft platforms to
use it as a file system. UNIX calls the second operation creating a file system. It’s not

Using floppy disks under FreeBSD 257

always necessary to have a file system on the diskette—in fact, as we’ll see, it can be a
disadvantage. In addition, FreeBSD offers different kinds of file system, so it performs
the two functions with different programs. In this section, we’ll look at fdformat, which
performs the low-level format. We’ll look at how to create a UFS or Microsoft file
system in the next section.

To format a diskette in the first floppy drive, /dev/fd0, you would enter:

$ fdformat /dev/fd0
Format 1440K floppy ‘/dev/fd0’? (y/n): y
Processing --

Each hyphen character (-) represents two tracks. As the format proceeds, the hyphens
change to an F (Format) and then to V (Verify) in turn, so at the end the line reads

Processing VV done.

File systems on floppy
It’s possible to use floppies as file systems under FreeBSD. You can create a UFS file
system on a floppy just like on a hard disk. This is not necessarily a good idea: the UFS
file system is designed for performance, not maximum capacity. By default, it doesn’t
use the last 8% of disk space, and it includes a lot of structure information that further
reduces the space available on the disk. Here’s an example of creating a file system,
mounting it on the directory /A, and listing the remaining space available on an empty
3½" floppy. Since release 5, FreeBSD no longer requires a partition table on a floppy, so
you don’t need to run bsdlabel (the replacement for the older disklabel program).

newfs -O1 /dev/fd0 create a new file system
/dev/fd0: 1.4MB (2880 sectors) block size 16384, fragment size 2048

using 2 cylinder groups of 1.00MB, 64 blks, 128 inodes.
super-block backups (for fsck -b #) at:
32, 2080
mount /dev/fd0 /A mount the floppy on /A
df -k /A display the space available
Filesystem 1024-blocks Used Avail Capacity Mounted on
/dev/fd0 1326 2 1218 0% /A

Let’s look at this in a little more detail:

• newfs creates the UFS file system on the floppy. We use the -O1 flag to force the
older UFS1 format, which leaves more usable space than the default UFS2.

• We hav e already seen mount on page 192. In this case, we use it to mount the floppy
on the file system /A.

• The df program shows the maximum and available space on a file system. By
default, df displays usage in blocks of 512 bytes, an inconvenient size. In this
example we use the -k option to display it in kilobytes. You can set a default block
size via the environment variable BLOCKSIZE. If it had been set to 1024, we would
see the same output without the -k option. See page 128 for more details of
environment variables.

258 Chapter 14: Tapes, backups and floppy disks

The output of df looks terrible! Our floppy only has 1218 kB left for normal user data,
ev en though there is nothing on it and even df claims that it can really store 1326 kB.
This is because UFS keeps a default of 8% of the space free for performance reasons.
You can change this, however, with tunefs, the file system tune program:1

umount /A first unmount the floppy
tunefs -m 0 /dev/fd0 and change the minimum free to 0
tunefs: minimum percentage of free space changes from 8% to 0%
tunefs: should optimize for space with minfree < 8%
tunefs -o space /dev/fd0 change the optimization
tunefs: optimization preference changes from time to space
mount /dev/fd0 /A mount the file system again
df /A and take another look
Filesystem 1024-blocks Used Avail Capacity Mounted on
/dev/fd0 1326 2 1324 0% /A

Still, this is a far cry from the claimed data storage of a Microsoft disk. In fact, Microsoft
disks can’t store the full 1.4 MB either: they also need space for storing directories and
allocation tables. The moral of the story: only use file systems on floppy if you don’t
have any alternative.

Microsoft file systems
To create a Microsoft FAT12, FAT16 or FAT32 file system, use the newfs_msdos
command:

$ newfs_msdos -f 1440 /dev/fd0

The specification -f 1440 tells newfs_msdos that this is a 1.4 MB floppy. Alternatively,
you can use the mformat command:

$ mformat A:

You can specify the number of tracks with the -t option, and the number of sectors with
the -s option. To explicitly specify a floppy with 80 tracks and 18 sectors (a standard
3½" 1.44 MB floppy), you could enter:

$ mformat -t 80 -s 18 A:

mformat is one of the mtools that we look at in the next section.

Other uses of floppies
Well, you could take the disks out of the cover and use them as a kind of frisbee. But
there is one other useful thing you can do with floppies: as an archive medium, they don’t
need a file system on them. They just need to be low-level formatted. For example, to
write the contents of the current directory onto a floppy, you could enter:

1. To quote the man page: You can tune a file system, but you can’t tune a fish.

Using floppy disks under FreeBSD 259

$ tar cvfM /dev/fd0 .
./
.xfmrc
.x6530modkey
.uwmrc
.twmrc
.rnsoft
.rnlast
...etc
Prepare volume #2 for /dev/fd0 and hit return:

Note also the solitary dot (.) at the end of the command line. That’s the name of the
current directory, and that’s what you’re backing up. Note also the option M, which is
short for --multi-volume. There’s a very good chance that you’ll run out of space on a
floppy, and this option says that you have a sufficient supply of floppies to perform the
complete backup.

To extract the data again, use tar with the x option:

$ tar xvfM /dev/fd0
./
.xfmrc
.x6530modkey
.uwmrc
...etc

See the man page tar(1) for other things you can do with tar.

Accessing Microsoft floppies
Of course, most of the time you get data on a floppy, it’s not in tar format: it has a
Microsoft file system on it. We’v e already seen the Microsoft file system type on page
190, but that’s a bit of overkill if you just want to copy files from floppy. In this case, use
the mtools package from the Ports Collection. mtools is an implementation of the MS-
DOS programs ATTRIB, CD, COPY, DEL, DIR, FORMAT, LABEL, MD, RD, READ,
REN, and TYPE under UNIX. To avoid confusion with existing utilities, the UNIX
versions of these commands start with the letter m. They are also written in lower case.
For example, to list the contents of a floppy and copy one of the files to the current
(FreeBSD) directory, you might enter:

$ mdir list the current directory on A:
Volume in drive A is MESSED OS
Directory for A:/

IO SYS 33430 4-09-91 5:00a
MSDOS SYS 37394 4-09-91 5:00a
COMMAND COM 47845 12-23-92 5:22p
NFS <DIR> 12-24-92 11:03a
DOSEDIT COM 1728 10-07-83 7:40a
CONFIG SYS 792 10-07-94 7:31p
AUTOEXEC BAT 191 12-24-92 11:10a
MOUSE <DIR> 12-24-92 11:09a

12 File(s) 82944 bytes free
$ mcd nfs change to directory A:\NFS
$ mdir and list the directory
Volume in drive A is MESSED OS
Directory for A:/NFS

260 Chapter 14: Tapes, backups and floppy disks

. <DIR> 12-24-92 11:03a

.. <DIR> 12-24-92 11:03a
HOSTS 5985 10-07-94 7:34p
NETWORK BAT 103 12-24-92 12:28p
DRIVES BAT 98 11-07-94 5:24p
...and many more

51 File(s) 82944 bytes free
$ mtype drives.bat type the contents of DRIVES.BAT
net use c: presto:/usr/dos
c:
cd \nfs
net use f: porsche:/dos
net use g: porsche:/usr
$ mcopy a:hosts . copy A:HOSTS to local UNIX directory
Copying HOSTS
$ ls -l hosts and list it
-rw-rw-rw- 1 root wheel 5985 Jan 28 18:04 hosts

You must specify the drive letter to mcopy, because it uses this indication to decide
whether the file name is a UNIX or a Microsoft file name. You can copy files from
FreeBSD to the floppy as well, of course.

A word of warning. UNIX uses a different text data format from Microsoft: in UNIX,
lines end with a single character, called Newline, and represented by the characters \n in
the C programming language. It corresponds to the ASCII character Line Feed
(represented by ˆJ). Microsoft uses two characters, a Carriage Return (ˆM) followed by
a Line Feed. This unfortunate difference causes a number of unexpected compatibility
problems, since both characters are usually invisible on the screen.

In FreeBSD, you won’t normally have many problems. Occasionally a program
complains about non-printable characters in an input line. Some, like Emacs, show them.
For example, Emacs shows our last file, drives.bat, like this:

net use c: presto:/usr/dosˆM
c:ˆM
cd \nfsˆM
net use f: porsche:/dosˆM
net use g: porsche:/usrˆM

This may seem relatively harmless, but it confuses some programs, including the C
compiler and pagers like more, which may react in confusing ways. You can remove
them with the -t option of mcopy:

$ mcopy -t a:drives.bat .

Transferring files in the other direction is more likely to cause problems. For example,
you might edit this file under FreeBSD and then copy it back to the diskette. The results
depend on the editor, but assuming we changed all occurrences of the word porsche to
freedom, and then copied the file back to the diskette, Microsoft might then find:

C:> type drives.bat
net use c: presto:/usr/dos

c:
cd \nfs

net use f: freedom:/dos
net use g: freedom:/usr

Using floppy disks under FreeBSD 261

This is a typical result of removing the Carriage Return characters. The -t option to
mcopy can help here, too. If you use it when copying to a Microsoft file system, it
reinserts the Carriage Return characters.

(printers.mm), page 263

15
Printers

In this chapter:
• Pr inter configuration
• Star ting the spooler
• Testing the spooler
• Troubleshooting
• Using the spooler
• PostScr ipt
• PDF

In this chapter:
• Pr inter configuration
• Star ting the spooler
• Testing the spooler
• Troubleshooting
• Using the spooler
• PostScr ipt
• PDF

In this chapter, we’ll look at some aspects of using printers with FreeBSD. As a user, you
don’t access printers directly. Instead, a series of processes, collectively called the
spooler, manage print data. One process, lpr, writes user print data to disk, and another,
lpd, copies the print data to the printers. This method enables processes to write print
data even if the printers are busy and ensures optimum printer availability.

In this section, we’ll look briefly at what you need to do to set up printers. For more
details, look in the online handbook section on printing.

lpd is the central spooler process. It is responsible for a number of things:

• It controls access to attached printers and to printers attached to other hosts on the
network.

• It enables users to submit files to be printed. These submissions are known as jobs.

• It prevents multiple users from accessing a printer at the same time by maintaining a
queue for each printer.

• It can print header pages, also known as banner or burst pages, so users can easily
find jobs they hav e printed in a stack of printouts.

• It takes care of communications parameters for printers connected on serial ports.

• It can send jobs over the network to another spooler on another host.

• It can run special filters to format jobs to be printed for various printer languages or
printer capabilities.

263

264 Chapter 15: Printers

• It can account for printer usage.

Through a configuration file, and by providing the special filter programs, you can enable
the spooler to do all or some subset of the above for a great variety of printer hardware.

This may sound like overkill if you are the only user on the system. It is possible to
access the printer directly, but it’s not a good idea:

• The spooler prints jobs in the background. You don’t hav e to wait for data to be
copied to the printer.

• The spooler can conveniently run a job to be printed through filters to add headers or
convert special formats (such as PostScript) into a format the printer will understand.

• Most programs that provide a print feature expect to talk to the spooler on your
system.

Printer configuration
There are three commonly used ways to connect a printer to a computer:

• Older UNIX systems frequently used serial printers, but they are no longer in
common use. Serial printers seldom transmit more than 1,920 characters per second,
which is too slow for modern printers.

• Most printers are still connected by a parallel port. Parallel ports enable faster
communication with the printer, up to about 100,000 bytes per second. Such speeds
may still not be enough for complex PostScript or bit-mapped images. Most parallel
ports require CPU intervention via an interrupt for each character transmitted, and
100,000 interrupts per second can use the entire processing power of a fast machine.

• More modern printers have USB or Ethernet interfaces, which enable them to connect
to several machines at once at much higher speeds. The load on the host computer is
also much lower.

It’s pretty straightforward to connect a parallel printer. You don’t need to do anything
special to configure the line printer driver lpt: it’s in the kernel by default. All you need
to do is to plug in the cable between the printer and the computer. If you have more than
one parallel interface, of course, you’ll have to decide which one to use. Parallel printer
devices are called /dev/lptn, where n is the number, starting with 0. USB devices have
names like /dev/ulptn. See Table 10-4 on page 195 for further details.

Configuring an Ethernet-connected printer is more complicated. You obviously need an
IP address, which you configure on the printer. Most modern printers then appear like a
remote computer to the spooler. We look at spooling to remote computers on page 266.

Pr inter configuration 265

Testing the printer
When you have connected and powered on a parallel port printer, run the built-in test if
one is supplied: typically there’s a function that produces a printout describing the
printer’s features. After that, check the communication between the computer and the
printer.

lptest > /dev/lpt0

If you have a pure PostScript printer, one which can’t print anything else, you won’t get
any output. Even here, though, you should see some reaction on the status display.

Configuring /etc/printcap
The next step is to configure the central configuration file, /etc/printcap. This file is not
the easiest to read, but after a while you’ll get used to it. Here are some typical entries:

lp|lj|ps|local LaserJet 6MP printer:\
:lp=/dev/lpt0:sd=/var/spool/output/lpd:lf=/var/log/lpd-errs:sh:mx#0:\
:if=/usr/local/libexec/lpfilter:

rlp|sample remote printer:\
:rm=freebie:sd=/var/spool/output/freebie:lf=/var/log/lpd-errs:\
:rp=lp:

Let’s look at this in detail:

• All fields are delimited by a colon (:).

• Continuation lines require a backslash character (\). Note particularly that you
require a colon at the end of a continued line, and another at the beginning of the
following line.

• The first line of each entry specifies a number of names that you can use to specify
this printer when talking to lpr or lpd. The names are separated by vertical bar
symbols |. By tradition, the last name is a more verbose description, and you
wouldn’t normally use it to talk to programs.

• The following fields describe capabilities, descriptions of how to do something.
Capabilities are described by a two-letter keyword and optionally a parameter, which
is separated by a delimiter indicating the type of parameter. If the field takes a string
parameter, the delimiter is =, and if it takes a numeric value, the delimiter is #. You’ll
find a full description in the man page.

• The first entry defines a local printer, called lp, lj, ps and local LaserJet 6MP
printer. Why so many names? lp is the default, so you should have it somewhere.
lj is frequently used to talk to printers that understand HP’s LaserJet language (now
PCL), and ps might be used to talk to a printer that understands PostScript. The final
name is more of a description.

266 Chapter 15: Printers

• The entry lp=/dev/lpt0 tells the spooler the name of the physical device to which
the printer is connected. Remote printers don’t hav e physical devices.

• sd tells the spooler the directory in which to store jobs awaiting printing. This
directory must exist; the spooler doesn’t create it.

• lf=/var/log/lpd-errs specifies the name of a file in which to log errors.

• sh is a flag telling lpd to omit a header page. If you don’t hav e that, every job will
be preceded by a descriptor page. In a small environment, this doesn’t make sense
and is just a waste of paper.

• The parameter mx tells lpd the maximum size of a spool job in kilobytes. If the job is
larger than this value, lpd refuses to print it. In our case, we don’t want to limit the
size. We do this by setting mx to 0.

• if tells lpd to apply a filter to the job before printing. We’ll look at this below.

• In the remote printer entry, rm=freebie tells lpd to send the data to the machine
called freebie. This could be a fully qualified domain name, of course.

• In the remote printer entry, rp=lp tells lpd the name of the printer on the remote
machine. This doesn’t hav e to be the same name as the name on the local machine.

Remote printing
In a network, you don’t need to have a printer on every machine; you can print on another
machine (which may be a printer) on the same network. There are a couple of things to
consider:

• There are two machines involved in remote printing, the client (‘‘local’’) machine and
the server (‘‘remote’’) machine.

• On the client, you specify the name of the server machine with the rm capability, and
you specify the name of the printer with the rp capability. You don’t specify any lp
(device name) capability. A typical entry might look like this:

lp|HP LaserJet 6MP on freebie:\
:rm=freebie:sd=/var/spool/output/freebie:lf=/var/log/lpd-errs:mx#0:

• On the client machine, you must also create the spool directory, /var/spool/out-
put/freebie in the example above.

• On the server machine, you don’t need to do anything special with the /etc/printcap
file. You need an entry for the printer specified in the client machine’s rp entry, of
course.

• On the server machine you must allow spooler access from the client machine. For a
BSD machine, you add the name of the machine to the file /etc/hosts.lpd on a line by
itself.

Pr inter configuration 267

Spooler filters
Probably the least intelligible entry in the configuration file on page 265 was the if entry.
It specifies the name of an input filter, a program through which lpd passes the complete
print data before printing.

What does it do that for? There can be a number of reasons. Maybe you have data in a
format that isn’t fit to print. For example, it might be PostScript, and your printer might
not understand PostScript. Or it could be the other way around: your printer understands
only PostScript, and the input isn’t PostScript.

There’s a more likely reason to require a filter, though: most printers still emulate the old
teletypes, so they require a carriage return character (Ctrl-M or ˆM) to start at the
beginning of the line, and a new line character (Ctrl-J or ˆJ) to advance to the next line.
UNIX uses only ˆJ, so if you copy data to it, you’re liable to see a staircase effect. For
example, ps may tell you:

$ ps
PID TT STAT TIME COMMAND
2252 p1 Ss 0:01.35 /bin/bash
2287 p1 IW 0:04.77 e /etc/printcap
2346 p1 R+ 0:00.05 ps

When you try to print it, however, you get:

PID TT STAT TIME COMMAND
2252 p1 Ss 0:01.35 /bin/bash

2287 p1 IW 0

The rest of the page is empty: you’ve gone off the right margin.

There are a number of ways to solve this problem:

• You may be able to configure your printer to interpret Ctrl-J as both new line and
return, and to ignore Ctrl-M. Check your printer handbook.

• You may be able to issue a control sequence to your printer to tell it to interpret Ctrl-
J as both new line and return to the beginning of the line, and to ignore Ctrl-M. For
example, HP LaserJets and compatibles will do this if you send them the control
sequence ESC&k2G.

• You can write an input filter that transforms the print job into a form that the printer
understands. We’ll look at this option below.

268 Chapter 15: Printers

There are a couple of options for the print filter. One of them, taken from the online
handbook, sends out a LaserJet control sequence before every job. Put the following shell
script in /usr/local/libexec/lpfilter:

#!/bin/sh
printf "\033&k2G" && cat && printf "\f" && exit 0
exit 2

Figure 15-1: Simple print filter

This approach does not work well with some printers, such as my HP LaserJet 6MP,
which can print both PostScript and LaserJet (natural) formats at random. They do this
by recognizing the text at the beginning of the job. This particular filter confuses them by
sending a LaserJet command code, so the printer prints the PostScript as if it were plain
text.

In this kind of situation, the standard filters are no longer sufficient. You can solve the
problem with the port apsfilter, which is in the Ports Collection.

Starting the spooler
As we saw above, the line printer daemon lpd is responsible for printing spooled jobs.
By default it isn’t started at boot time. If you’re root, you can start it by name:

lpd

Normally, howev er, you will want it to be started automatically when the system starts
up. You do this by setting the variable lpd_enable in /etc/rc.conf :

lpd_enable="YES" # Run the line printer daemon

See page 552 for more details of /etc/rc.conf.

You can also add another line referring to the line printer daemon to /etc/rc.conf :

lpd_flags="" # Flags to lpd (if enabled).

You don’t normally need this line. See the man page for lpd for details of the flags.

Testing the spooler
To test the spooler, you can run the lptest program again. This time, however, instead of
sending it directly to the printer, you send it to the spooler:

Testing the spooler 269

$ lptest 80 5 | lpr

The results should look like:

!"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]ˆ_‘abcdefghijklmnop
"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]ˆ_‘abcdefghijklmnopq
#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]ˆ_‘abcdefghijklmnopqr
$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]ˆ_‘abcdefghijklmnopqrs
%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]ˆ_‘abcdefghijklmnopqrst

Tr oubleshooting
Here’s a list of the most common problems and how to solve them.

Table 15-1: Common printer problems

Problem Cause
The printer prints, but the last
page doesn’t appear. The status
shows that the printer still has
data in the buffer. After several
minutes, the last page may
appear.

Your output data is not ejecting the last page. The
printer is configured to either wait for an explicit
eject request (the ASCII Form feed character, Ctrl-
L) or to eject after a certain period of time.

You hav e a choice as to what you do about this.
Usually you can configure the printer, or you could
get the print filter to print a form feed character at
the end of the job. Figure 15-1 already does this—
that’s the printf "\f".

The lines wander off to the right
edge of the paper and are never
seen again.

This is the staircase effect. Refer to page 268 for a
couple of solutions.

Individual characters or whole
sections of text are missing.

This problem occurs almost only on serial printers.
It’s a result of incorrect handshaking—see page 330
and the online handbook for more details.

The output contained completely
unintelligible random characters.

On a serial printer, if the characters appear slowly,
and there’s a predominance of the characters {|}˜,
this probably means that you have set up the
communication parameters incorrectly. Check the
online handbook for a solution. Make sure you
don’t confuse this problem with the following one.

270 Chapter 15: Printers

Problem Cause
The text was legible, but it bore
no relationship to what you want-
ed to print.

One possibility is that you are sending PostScript
output to your printer. See the discussion on page
271 to check if it is PostScript. If it is, your printer
is not interpreting it correctly, either because it
doesn’t understand PostScript, or because it has
been confused (see the discussion on page 268 for
one reason).

The display on the printer shows
that data are arriving, but the
printer doesn’t print anything.

You might be sending normal text to a PostScript
printer that doesn’t understand normal text. In this
case, too, you will need a filter to convert the text to
PostScript—the opposite of the previous problem.

Alternatively, your printer port may not be inter-
rupting correctly. This will not stop the printer from
printing, but it can take up to 20 minutes to print a
page. You can fix this by issuing the following
command, which puts the printer /dev/lpt0 into
polled mode:

lptcontrol -p

You get the message lpr: can-
not create freebie/.seq

You hav e forgotten to create the spool directory
/var/spool/output/freebie.

Using the spooler
Using the spooler is relatively simple. Instead of outputting data directly to the printer,
you pipe it to the spooler lpr command. For example, here is the same print command,
first printing directly to the printer, and secondly via the spooler:

ps waux > /dev/lpt0
$ ps waux | lpr

Note the difference in prompt: you have to be root to write directly to the printer, but
normally anybody can write to the spooler. The spooler creates a job from this data. You
can look at the current print queue with the lpq program:

$ lpq
waiting for lp to become ready (offline ?)
Rank Owner Job Files Total Size
1st grog 313 (standard input) 9151 bytes
2nd grog 30 (standard input) 3319 bytes
3rd yvonne 31 (standard input) 3395 bytes
4th root 0 (standard input) 2611 bytes

Using the spooler 271

The first line is a warning that lpd can’t currently print. Take it seriously. In this
example, the printer was deliberately turned off so that the queue did not change from one
example to the next.

Normally, the job numbers increase sequentially: this particular example came from three
different machines. You can get more detail with the -l option:

$ lpq -l
waiting for lp to become ready (offline ?)

grog: 1st [job 313freebie.example.org]
(standard input) 9151 bytes

grog: 2nd [job 030presto.example.org]
(standard input) 3319 bytes

yvonne: 3rd [job 031presto.example.org]
(standard input) 3395 bytes

root: 4th [job 000bumble.example.org]
(standard input) 2611 bytes

Removing print jobs
Sometimes you may want to delete spool output without printing it. You don’t need to do
this because of a printer configuration error: just turn the printer off, fix the configuration
error, and turn the printer on again. The job should then be printed correctly. But if you
discover that the print job itself contains garbage, you can remove it with the lprm
program. First, though, you need to know the job number. Assuming the list we have
above, we might want to remove job 30:

lprm 30
dfA030presto.example.org dequeued
cfA030presto.example.org dequeued
lpq
waiting for lp to become ready (offline ?)
Rank Owner Job Files Total Size
1st grog 313 (standard input) 9151 bytes
2nd yvonne 31 (standard input) 3395 bytes
3rd root 0 (standard input) 2611 bytes

If the printer is offline, it may take some time for the lprm to complete.

PostScript
We’v e encountered the term PostScript several times already. It’s a Pa g e Description
Language. With it, you can transmit detailed documents such as this book electronically
and print them out in exactly the same form elsewhere.1 PostScript is a very popular
format on the World Wide Web, and web browsers like Netscape usually print in
PostScript format.

1. This is in fact the way this book was sent to the printers.

272 Chapter 15: Printers

Most other document formats describe special print features with escape sequences,
special commands that start with a special character. For example, the HP LaserJet and
PCL formats use the ASCII ESC character (0x1b) to indicate the beginning of an escape
sequence. PostScript uses the opposite approach: unless defined otherwise, the contents
of a PostScript file are commands, and the printable data is enclosed in parentheses.
PostScript documents start with something like:

%!PS-Adobe-3.0
%%Creator: groff version 1.10
%%CreationDate: Fri Oct 31 18:36:45 1997
%%DocumentNeededResources: font Symbol
%%+ font Courier
%%+ font Times-Roman
%%DocumentSuppliedResources: file images/vipw.ps
%%Pages: 32
%%PageOrder: Ascend
%%Orientation: Portrait
%%EndComments
%%BeginProlog

This is the prologue (the beginning) of the PostScript output for this chapter. The
prologue of such a program can be several hundred kilobytes long if it includes
embedded fonts or images. A more typical size is about 500 lines.

You can do a number of things with PostScript:

• You can look at it with gv, which is in the Ports Collection. We’ll look at this option
below.

• Many printers understand PostScript and print it directly. If yours does, you probably
know about it, since it’s an expensive option. In case of doubt, check your printer
manual.

• If your printer doesn’t understand PostScript, you can print with the aid of
ghostscript. The apsfilter port does this for you.

Viewing with gv
gv is part of the instant workstation port that we discussed on page 93. To view a file
with gv, simply start it:

$ gv filename &

If you don’t specify a file name, you get a blank display. You can then open a file
window by pressing o, after which you can select files and display them. Figure 15-2
shows the display of a draft version of this page with an overlaid open window at the top
right. The Open File window contains a field at the top into which you can type the name
of a file. Alternatively, the columns below, with scroll bars, allow you to browse the
current directory and the parent directories.

The window below shows the text of the previous page (roughly) on the right hand side.
Instead of scroll bars, there is a scroll area below the text Save Marked. You can scroll

PostScr ipt 273

the image in all directions by selecting the box with the left mouse button and moving
around. At top left are menu buttons that you can select with the left mouse button. Note
also the button 1.414 at the top of the window: this is the magnification of the image.
You can change it by selecting this button: a menu appears and gives you a range of
magnifications to choose from.

The column to the right of these buttons is a list of page numbers. You can select a page
number with the middle mouse button. You can also get an enlargement display of the
text area around the mouse cursor by pressing the left button.

Figure 15-2: gv display

Printing with ghostscript
If your printer doesn’t support PostScript, you can still print some semblance of the
intended text with the help of ghostscript. The results are very acceptable with modern
laser and inkjet printers, less so with older dot matrix printers.

To print on your particular printer, you first need to find a driver for it in ghostscript. In
this context, the term driver means some code inside ghostscript that converts the data
into something that the printer can print.

We’v e already seen how to use /etc/printcap. In this case, we’ll need an input filter, a
script or program that transforms the PostScript data into a form that the printer
understands. The entry in /etc/printcap is pretty much the same for all printers:

274 Chapter 15: Printers

ps|HP OfficeJet 725 with PostScript:\
:lp=/dev/lpt0:sd=/var/spool/output/colour:lf=/var/log/lpd-errs:sh:mx#0:\
:if=/usr/local/libexec/psfilter:

This entry defines a printer called ps. The comment states that it’s an HP OfficeJet, but
that’s only a comment. Obviously you should choose a comment that matches the printer
you really have.

The printer is connected to /dev/lpt0, the first parallel printer. Spool data is collected in
the directory /var/spool/output/colour. You must create this directory, or printing will
fail, and depending on what you use to print, you may not even see any error messages.
They also don’t appear on the log file, which in this case is /var/log/lpd-errs.

The important entry is in the last line, which refers to the input filter /usr/local/libexec/ps-
filter. This file contains the instructions to convert the PostScript into something that the
printer can understand. For example, for the HP OfficeJet we’re talking about here, it
contains:

#!/bin/sh
/usr/local/bin/gs -sDEVICE=pcl3 -q -sPaperSize=a4 -dNOPAUSE -sOutputFile=- -

These options state:

• Use ghostscript device pcl3. This is the driver to choose for most Hewlett Packard
inkjet printers. We’ll see alternatives for other printers below.

• The output file is stdin (see page 127). By convention, a number of programs use the
character - to represent the stdout stream.

• -q means quiet. Normally ghostscript outputs a message on startup, and it often
outputs other informative messages as well. In this case, we’re using it as a filter, so
we don’t want any output except what we print.

• Don’t pause between pages. If you don’t specify this parameter, ghostscript waits
for a key press at the end of each page.

• The paper size is the international A4 format. By default, ghostscript produces
output for American standard 8.5 × 10 inch ‘‘letter’’ paper.

• The character - by itself tells ghostscript that the input is from stdin. Together with
the output to stdout, this makes ghostscript function as a filter.

Which driver?
The previous example used the driver for the HP DeskJet. Well, to be more precise, it
used one of a plethora of drivers available. You can find more information in the HTML
driver documentation at /usr/local/share/ghostscript/7.05/doc/Devices.htm. The 7.05 in
the name refers to the release of ghostscript, which will change.

The documentation isn’t the easiest to read. It’s probably older than your printer, so
there’s a good chance that it won’t mention your specific printer model. You may need to
experiment a little before you get things working the way you want.

PostScr ipt 275

Printer drivers for DeskJets

There are at least six sets of drivers for HP DeskJets. They’re all described in
Devices.htm, but the following summary may help:

• Hewlett Packard supply their own drivers. In addition to ghostscript, they require
server software that you can install from the Ports collection (/usr/ports/print/hpijs).

• Next come three different independently written drivers for specific models of
DeskJet, probably all now obsolete. If you recognize your printer or something
similar in one of them, that’s a good first choice.

• Next comes the generic pcl3 driver that was used in the example above. It’s not
mentioned in the documentation.

• Finally, uniprint is a completely different driver framework for a number of different
makes of printer. It requires a slightly different command line, and we’ll look at it
separately below.

If you’re using a DeskJet, you have the choice. Unfortunately, there’s no way to know
which is best until you’ve tried them all. Similar considerations apply to other makes of
printer.

uniprint drivers

The uniprint drivers have a somewhat different kind of interface. They’re described
towards the end of the same Devices.htm file. To use them, change the driver
specification as in the following example, that refers to an Epson

#!/bin/sh
/usr/local/bin/gs @stc500ph.upp -q -sPaperSize=a4 -dNOPAUSE -sOutputFile=- - -c quit

The differences here are:

• The name of the driver (stc500ph.upp) is specified differently.

• The line ends with a command to the driver itself (-c quit). The exact meaning is
not documented, though it’s easy to guess.

Which drivers?

Another problem you might encounter is that it’s possible to specify the drivers you want
in your ghostscript executable when you build the port. It’s quite possible that the
drivers described in Devices.htm don’t exist on your system. To find out, run ghostscript
interactively with the -h (help) option:

$ gs -h
GNU Ghostscript 7.05 (2002-04-22)
Copyright (C) 2002 artofcode LLC, Benicia, CA. All rights reserved.
Usage: gs [switches] [file1.ps file2.ps ...]
Most frequently used switches: (you can use # in place of =)
-dNOPAUSE no pause after page | -q ‘quiet’, fewer messages
-g<width>x<height> page size in pixels | -r<res> pixels/inch resolution
-sDEVICE=<devname> select device | -dBATCH exit after last file
-sOutputFile=<file> select output file: - for stdout, |command for pipe,

276 Chapter 15: Printers

embed %d or %ld for page #
Input formats: PostScript PostScriptLevel1 PostScriptLevel2 PDF
Available devices:

x11 x11alpha x11cmyk x11gray2 x11gray4 x11mono x11rg16x x11rg32x md2k
md5k md50Mono md50Eco md1xMono bj10e bj10v bj10vh bj200 bjc600 bjc800
lips2p lips3 lips4 bjc880j lips4v uniprint dmprt epag escpage lp2000
alc8600 alc8500 alc2000 alc4000 lp8800c lp8300c lp8500c lp3000c lp8200c
lp8000c epl5900 epl5800 epl2050 epl2050p epl2120 lp7500 lp2400 lp2200
lp9400 lp8900 lp8700 lp8100 lp7700 lp8600f lp8400f lp8300f lp1900 lp9600s
lp9300 lp9600 lp8600 lp1800 mjc180 mjc360 mjc720 mj500c deskjet djet500
cdeskjet cdjcolor cdjmono cdj550 cdj670 cdj850 cdj880 cdj890 cdj1600
cdj970 laserjet ljetplus ljet2p ljet3 ljet3d ljet4 ljet4d cljet5 cljet5c
cljet5pr lj5mono lj5gray pj pjxl pjxl300 pxlmono pxlcolor pcl3 hpdj ijs
npdl rpdl gdi bmpmono bmpgray bmp16 bmp256 bmp16m bmp32b bmpsep1 bmpsep8
faxg3 faxg32d faxg4 jpeg jpeggray pcxmono pcxgray pcx16 pcx256 pcx24b
pcxcmyk pdfwrite bit bitrgb bitcmyk pbm pbmraw pgm pgmraw pgnm pgnmraw
pnm pnmraw ppm ppmraw pkm pkmraw pksm pksmraw pngmono pnggray png16
png256 png16m psmono psgray psrgb pswrite epswrite tiffcrle tiffg3
tiffg32d tiffg4 tiff12nc tiff24nc tifflzw tiffpack nullpage

Search path:
. : /opt/lib/ghostscript : /opt/lib/ghostscript/fonts :
/opt/lib/ghostscript/garamond : /usr/local/share/ghostscript/7.05/lib :
/usr/local/share/ghostscript/fonts

For more information, see /usr/local/share/ghostscript/7.05/doc/Use.htm.
Report bugs to bug-gs@ghostscript.com, using the form in Bug-form.htm.

PDF
PDF, or Portable Document Format, is a newer format for transferring print documents.
Like PostScript, it comes from Adobe, and it is becoming increasingly important as a
document interchange format on the Internet.

There are two ways to handle PDF:

• Use Acrobat Reader, available in the Ports Collection as /usr/src/print/acroread5.
The 5 refers to the version of Acrobat Reader and may change. Acrobat Reader is
proprietary, but it’s available for free, unfortunately only in binary form. It is quite a
convenient way to view PDF documents, and it can print them in PostScript formats.
This means that you can also use it to convert PDF to PostScript.

• ghostscript also understands PDF, and it is capable of converting between PostScript
and PDF in both directions. ghostscript provides two scripts, pdf2ps and ps2pdf,
which act as a front end to ghostscript to make the job easier.

Unlike PostScript, an editor is available for PDF (Acrobat, the big brother of Acrobat
Reader). Unfortunately, it’s proprietary and not free, and worse still, it’s not available for
FreeBSD.

(netintro.mm), page 277

16
Networks and

the Internet

In this chapter:
• Networ k layering
• The physical networ k

connection
• Ether net
• Wireless LANs
• The reference

networ k

In this chapter:
• Networ k layering
• The physical networ k

connection
• Ether net
• Wireless LANs
• The reference

networ k

In this part of the book we’ll look at the fastest-growing part of the industry: networks,
and in particular the Internet.

The industry has seen many different kinds of network software:

• Years ago, the CCITT started a group of recommendations for individual protocols.
The CCITT is now called the ITU-T, and its data communications recommendations
have not been wildly successful. The best known is probably recommendation X.25,
which still has a large following in some parts of the world. An X.25 package was
available for FreeBSD, but it died for lack of love. If you need it, you’ll need to
invest a lot of work to get it running.

• IBM introduced their Systems Network Architecture, SNA, decades ago. It’s still
going strong in IBM shops. FreeBSD has minimal support for it in the Token Ring
package being developed in FreeBSD-CURRENT.

• Early UNIX machines had a primitive kind of networking called UUCP, for UNIX to
UNIX Copy. It ran over dialup phone lines or dedicated serial connections. System
V still calls this system Basic Networking Utilities, or BNU. Despite its primi-
tiveness, and despite the Internet, there are still some applications where UUCP
makes sense, but this book discusses it no further.

• The Internet Protocols were developed by the US Defense Advanced Research
Projects Agency (DARPA) for its ARPANET network. The software was originally
developed in the early 80s by BBN and the CSRG at the University of California at
Berkeley. The first widespread release was with the 4.2BSD operating system—the

277

278 Chapter 16: Networ ks and the Internet

granddaddy of FreeBSD. After the introduction of IP, the ARPANET gradually
changed its name to Internet.

The Internet Protocol is usually abbreviated to IP. People often refer to it as TCP/IP,
which stands for Tr ansmission Control Protocol/Internet Protocol. In fact, TCP is
just one of many other protocols that run on top of IP. In this book, I refer to the IP
protocol, but of course FreeBSD includes TCP and all the other standard protocols.
The IP implementation supplied with FreeBSD is the most mature technology you
can find anywhere, at any price.

In this part of the book, we’ll look only at the Internet Protocols. Thanks to its
background, FreeBSD is a particularly powerful contender in this area, and we’ll go into
a lot of detail about how to set up and operate networks and network services. In the
chapters following, we’ll look at:

• How the Internet works, which we’ll look at in the rest of this chapter.

• How to set up local network connections in Chapter 17, Configuring the local
network.

• How to select an Internet Service Provider in Chapter 18, Connecting to the Internet.

• How to use the hardware in Chapter 19, Serial communications.

• How to use PPP in Chapter 20, Configuring PPP.

• How to set up domain name services in Chapter 21, The Domain Name Service.

• How to protect yourself from intruders in Chapter 22, Fire walls, IP aliasing and
proxies. This chapter also describes proxy servers and Network Address Translation.

• How to solve network problems in Chapter 23, Network debugging.

• Most network services come in pairs, a client that requests the service, and a server
that provides it. In Chapter 24, Basic network access: clients we’ll look at the client
side of the World Wide Web (‘‘web browser’’), command execution over the net,
including ssh and telnet, copying files across the network, and mounting remote file
systems with NFS.

• In Chapter 25, Basic network access: servers we’ll look at the server end of the same
services. In addition, we’ll look at Samba, a server for Microsoft’s Common Internet
File System, or CIFS.

• Electronic mail is so important that we dedicate two chapters to it, Chapter 26,
Electronic mail: clients and Chapter 27, Electronic mail: servers.

The rest of this chapter looks at the theoretical background of the Internet Protocols and
Ethernet. You can set up networking without understanding any of it, as long as you and
your hardware don’t make any mistakes. This is the approach most commercial systems
take. It’s rather like crossing a lake on a set of stepping stones, blindfolded. In this book,
I take a different approach: in the following discussion, you’ll be inside with the action,
not on the outside looking in through a window. It might seem unusual at first, but once
you get used to it, you’ll find it much less frustrating.

The Complete FreeBSD 279

Network layering
One of the problems with networks is that they can be looked at from a number of
different levels. End-users of PCs access the World Wide Web (WWW), and often
enough they call it the Internet. That’s just plain wrong. At the other end of the scale is
the Link Layer, the viewpoint you’ll take when you first create a connection to another
machine.

Years ago, the International Standards Organization came up with the idea of a seven-
layered model of networks, often called the OSI reference model. Why OSI and not ISO?
OSI stands for Open Systems Interconnect. Since its introduction, it has become clear
that it doesn’t map very well to modern networks. W. Richard Stevens presents a better
layering in TCP/IP Illustrated, Volume 1, page 6, shown here in Figure 16-1.

Application layer

Transport layer

Network layer

Link layer

Figure 16-1: Four-layer network model

We’ll look at these layers from the bottom up:

• The Link layer is responsible for the lowest level of communication, between
machines that are physically connected. The most common kinds of connection are
Ethernet and telephone lines. This is the only layer associated with hardware.

• The Network layer is responsible for communication between machines that are not
physically connected. For this to function, the data must pass through other machines
that are not directly interested in the data. This function is called routing. We’ll look
at how it works in Chapter 17.

• The Tr ansport Layer is responsible for communication between any two processes,
regardless of the machines on which they run.

• The Application Layer defines the format used by specific applications, such as email
or the Web.

280 Chapter 16: Networ ks and the Internet

The link layer
Data on the Internet is split up into packets, also called datagrams, which can be
transmitted independently of each other. The link layer is responsible for getting packets
between two systems that are connected to each other. The most trivial case is a point-to-
point network, a physical connection where any data sent down the line arrives at the
other end. More generally, though, multiple systems are connected to the network, as in
an Ethernet. This causes a problem: how does each system know what is intended for it?

IP solves this problem by including a packet header in each IP packet. Consider the
header something like the information you write on the outside of a letter envelope:
address to send to, return address, delivery instructions. In the case of IP, the addresses
are 32-bit digits that are conventionally represented in dotted decimal notation: the value
of each byte is converted into decimal. The four values are written separated by dots.
Thus the hexadecimal address 0xdf932501 would normally be represented as
223.147.37.1.

UNIX uses the notation 0x in a number to represent a hexadecimal number. The usage comes
from the C programming language.

As we will see in Chapter 23, it makes debugging much easier if we understand the
structure of the datagrams, so I’ll show some of the more common ones in this chapter.
Figure 16-2 shows the structure of an IP header.

Version Type of service Total length in bytes

identification flags fragment offset

Time to live Protocol Header Checksum

Source IP address

Destination IP address

IP Header

length

0 31

0

4

8

12

16

Figure 16-2: IP Header

We’ll only look at some of these fields; for the rest, see TCP/IP Illustrated, Volume 1.

• The Version field specifies the current version of IP. This is currently 4. A newer
standard is IPv6, Version number 6, which is currently in an early implementation
stage. IPv6 headers are very different from those shown here.

• The time to live field specifies how many times the packet may be passed from one
system to another. Each time it is passed to another system, this value is
decremented. If it reaches 0, the packet is discarded. This prevents packets from
circulating in the net for ever as the result of a routing loop.

Networ k layering 281

• The protocol specifies the kind of the packet. The most common protocols are TCP
and UDP, which we’ll look at in the section on the network layer.

• Finally come the source address, the address of the sender, and the destination
address, the address of the recipient.

The network layer
The main purpose of the network layer is to ensure that packets get delivered to the
correct recipient when it is not directly connected to the sender. This function is usually
called routing.

Imagine routing to be similar to a postal system: if you want to send a letter to somebody
you don’t see often, you put the letter in a letter box. The people or machines who handle
the letter look at the address and either deliver it personally or forward it to somebody
else who is closer to the recipient, until finally somebody delivers it.

Have you ever received a letter that has been posted months ago? Did you wonder where
they hid it all that time? Chances are it’s been sent round in circles a couple of times.
That’s what can happen in the Internet if the routing information is incorrect, and that’s
why all packets have a time to live field. If it can’t deliver a packet, the Internet Protocol
simply drops (forgets about) it. You may find parallels to physical mail here, too.

It’s not usually acceptable to lose data. We’ll see how we avoid doing so in the next
section.

The transport layer
The transport layer is responsible for end-to-end communication. The IP address just
identifies the interface to which the data is sent. What happens when it gets there? There
could be a large number of processes using the link. The IP header doesn’t contain
sufficient information to deliver messages to specific users within a system, so two
additional protocols have been implemented to handle the details of communications
between ‘‘end users.’’1 These end users connect to the network via ports, or
communication end points, within individual machines.

TCP

The Tr ansmission Control Protocol, or TCP, is a so-called reliable protocol: it ensures
that data gets to its destination, and if it doesn’t, it sends another copy. If it can’t get
through after a large number of tries (14 tries and nearly 10 minutes), it gives up, but it
doesn’t pretend the data got through. To perform this service, TCP is also connection
oriented: before you can send data with TCP, you must establish a connection, which is
conceptually similar to opening a file.

To implement this protocol, TCP packets include a TCP header after the IP header, as
shown in Figure 16-3. This figure ignores the possible options that follow the IP header.
The offset of the TCP header, shown here as 20, is really specified by the value of the IP

1. In practice, these end users are processes.

282 Chapter 16: Networ ks and the Internet

Header length field in the first byte of the packet. This is only a 4 bit field, so it is
counted in words of 32 bits: for a 20 byte header, it has the value 5.

Version Type of service Total length in bytes

identification flags fragment offset

Time to live Protocol Header Checksum

Source IP address

Destination IP address

source port destination port

sequence number

acknowledgment number

reserved flags window size

TCP checksum urgent pointer

IP Header

length

TCP Header

length

0 31

0

4

8

12

16

20

24

28

32

36

Figure 16-3: TCP Header with IP header

A number of fields are of interest when debugging network connections:

• The sequence number is the byte offset of the last byte that has been sent to the other
side.

• The acknowledgment number is the byte offset of the last byte that has received from
the other side.

• The window size is the number of bytes that can be sent before an acknowledgment is
required.

These three values are used to ensure efficient and reliable transmission of data. For each
connection, TCP maintains a copy of the highest acknowledgment number received from
the other side and a copy of all data that the other side has not acknowledged receiving.
It does not send more than window size bytes of data beyond this value. If it does not
receive an acknowledgment of transmitted data within a predetermined time, usually one
second, it sends all the unacknowledged data again and again at increasingly large
intervals. If it can’t transmit the data after about ten minutes, it gives up and closes the
connection.

Networ k layering 283

UDP

The User Datagram Protocol, or UDP, is different: it’s an unreliable protocol. It sends
data out and never cares whether it gets to its destination or not. So why do we use it if
it’s unreliable? It’s faster, and thus cheaper. Consider it a junk mail delivery agent: who
cares if you get this week’s AOL junk CD-ROM or not? There will be another one in
next week’s mail. Since it doesn’t need to reply, UDP is connectionless: you can just
send a message off with UDP without worrying about establishing a connection first. For
example, the rwhod daemon broadcasts summary information about a system on the
LAN every few minutes. In the unlikely event that a message gets lost, it’s not serious:
another one will come soon.

Version Type of service Total length in bytes

identification flags fragment offset

Time to live Protocol Header Checksum

Source IP address

Destination IP address

IP Header

length

0 31

source port destination port

sequence number checksum

0

4

8

12

16

20

24

Figure 16-4: UDP Header with IP header

Port assignment and Internet services
A port is simply a 16 bit number assigned to specific processes and which represents the
source and destination end points of a specific connection. A process can either request
to be connected to a specific port, or the system can assign one that is not in use.

RFC 1700 defines a number of well-known ports that are used to request specific services
from a machine. On a UNIX machine, these are provided by daemons that listen on this
port number—in other words, when a message comes in on this port number, the IP
software passes it to them, and they process it. These ports are defined in the file
/etc/services. Here’s an excerpt:

284 Chapter 16: Networ ks and the Internet

Network services, Internet style
#
WELL KNOWN PORT NUMBERS
#
ftp 21/tcp #File Transfer [Control]
ssh 22/tcp #Secure Shell Login
ssh 22/udp #Secure Shell Login
telnet 23/tcp
smtp 25/tcp mail #Simple Mail Transfer
smtp 25/udp mail #Simple Mail Transfer
domain 53/tcp #Domain Name Server
domain 53/udp #Domain Name Server
...
http 80/tcp www www-http #World Wide Web HTTP
http 80/udp www www-http #World Wide Web HTTP

This file has a relatively simple format: the first column is a service name, and the second
column contains the port number and the name of the service (either tcp or udp).
Optionally, alternative names for the service may follow. In this example, smtp may also
be called mail, and http may also be called www.

When the system starts up, it starts specific daemons. For example, if you’re running
mail, you may start up sendmail as a daemon. Any mail requests coming in on port 25
(smtp) will then be routed to sendmail for processing.

Network connections
You can identify a TCP connection uniquely by five parameters:

• The source IP address.

• The source port number. These two parameters are needed so that the other end of
the connection can send replies back.

• The destination IP address.

• The destination port number.

• The protocol (TCP).

When you set up a connection, you specify the destination IP address and port number,
and implicitly also the protocol. Your system supplies the source IP address; that’s
obvious enough. But where does the source port number come from? The system
literally picks one out of a hat; it chooses an unused port number somewhere above the
‘‘magic’’ value 1024. You can look at this information with netstat:

$ netstat
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 presto.smtp 203.130.236.50.1825 ESTABLISHED
tcp4 0 0 presto.3312 andante.ssh ESTABLISHED
tcp4 0 0 presto.2593 hub.freebsd.org.ssh ESTABLISHED
tcp4 0 0 presto.smtp www.auug.org.au.3691 ESTABLISHED

As you can see, this is the view on a system called presto. We’ll see presto again in our
sample network below. Normally you’ll see a lot more connections here. For each
connection, the protocol is tcp4 (TCP on IPv4). The first line shows a connection to the
port smtp on presto from port 1825 on a machine with the IP address 203.130.236.50.

Networ k layering 285

netstat shows the IP address in this case because the machine in question does not have
reverse DNS mapping. This machine is sending a mail message to presto. The second
and third lines show outgoing connections from presto to port ssh on the systems
andante and hub.freebsd.org. The last is another incoming mail message from
www.auug.org.au. Graphically, you could display the connection between presto and
www.auug.org.au like this:

presto www
IP 223.147.37.2

Port 25

IP 150.101.248.57

Port 3691TCP

Note that the port number for smtp is 25.

For various reasons, it’s not always possible to connect directly in this manner:

• The Internet standards define a number of IP address blocks as non-routable. In these
cases, we’ll have to translate at least the IP addresses to establish connection. This
technique is accordingly called Network Address Translation or NAT , and we’ll look
at it in Chapter 22, on page 393.

• For security reasons, it may not be advisable to make direct connections to servers via
the Internet. Instead, the only access may be via an encrypted session on a different
port. This technique is called tunneling, and we’ll look at it in Chapter 24, on page
424.

The physical network connection
The most obvious thing about your network connection is what it looks like. It usually
involves some kind of cable going out of your computer,1 but there the similarity ends.
FreeBSD supports most modern network interfaces:

• The most popular choice for Local Area Networks is Ethernet, which transfers data
between a number of computers at speeds of 10 Mb/s, 100 Mb/s or 1000 Mb/s (1
Gb/s). We’ll look at it in the following section.

• An increasingly popular alternative to Ethernet is wireless networking, specifically
local networks based on the IEEE 802.11 standard. We’ll look at them on page 291.

• FDDI stands for Fiber Distributed Data Interface, and was originally run over glass
fibres. In contrast to Ethernet, it ran at 100 Mb/s instead of 10 Mb/s. Nowadays
Ethernet runs at 100 Mb/s as well, and FDDI runs over copper wire, so the biggest
difference is the protocol. FreeBSD does support FDDI, but we won’t look at it here.

• Token Ring is yet another variety of LAN, introduced by IBM. It has never been very
popular in the UNIX world. FreeBSD does have some support for it, but it’s a little
patchy, and we won’t look at it in this book.

1. Maybe it won’t. For example, you might use wireless Ethernet, which broadcasts in the microwave radio
spectrum.

286 Chapter 16: Networ ks and the Internet

• Probably the most common connection to a Wide-Area Network is via a telephone
with a modem or with DSL. Modems have the advantage that you can also use them
for non-IP connections such as UUCP and direct dial up (see page 338), but they’re
much slower than DSL. If you use a modem to connect to the Internet, you’ll almost
certainly use the Point to Point Protocol, PPP, which we look at on page 339. In
some obscure cases you may need to use the Serial Line Internet Protocol, SLIP, but
it’s really obsolete.

• An alternative to ADSL or modem lines is cable networking, which uses TV cable
services to supply Internet connectivity. In many ways, it looks like Ethernet.

• In some areas, Integrated Services Digital Networks (ISDNs) are an attractive
alternative to modems. They are much faster than modems, both in call setup time
and in data transmission capability, and they are also much more reliable. FreeBSD
includes the isdn4bsd package, which was developed in Germany and allows the
direct connection of low-cost German ISDN boards to FreeBSD. In other parts of the
world, ISDN is not cost effective, and it’s also much slower than ADSL and cable.

• In some parts of the world, satellite links are of interest. In most cases, they are
unidirectional: they transfer data from the Internet to your system (the downlink) and
require some other connection to get data back to the Internet (the uplink).

• If you have a large Internet requirement, you may find it suitable to connect to the
Internet via a Leased Line, a telephone line that is permanently connected. This is a
relatively expensive option, of course, and we won’t discuss it here, particularly as
the options vary greatly from country to country and from region to region.

The decision on which WAN connection you use depends primarily on the system you
are connecting to, in many cases an Internet Service Provider or ISP. We’ll look at ISPs
in Chapter 18.

Ethernet

In the early 1970s, the Xerox Company chartered a group of researchers at its Palo Alto
Research Center (PARC) to brainstorm the Office of the Future. This innovative group
created the mouse, the window interface metaphor and an integrated, object-oriented
programming environment called Smalltalk. In addition, a young MIT engineer in the
group named Bob Metcalfe came up with the concept that is the basis of modern local
area networking, the Ethernet. The Ethernet protocol is a low-level broadcast packet-
delivery system that employed the revolutionary idea that it was easier to resend packets
that didn’t arrive than it was to make sure all packets arrived. There are other network
hardware systems out there, IBM’s Token Ring architecture and Fiber Channel, for
example, but by far the most popular is the Ethernet system in its various hardware
incarnations. Ethernet is by far the most common local area network medium. There are
three types:

Ether net 287

1. Originally, Ethernet ran at 10 Mb/s over a single thick coaxial cable, usually bright
yellow in colour. This kind of Ethernet is often referred to as thick Ethernet, also
called 10B5, and the line interface is called AUI. You may also hear the term yellow
string (for tying computers together), though this term is not limited to thick Ethernet.
Thick Ethernet is now obsolete: it is expensive, difficult to lay, and relatively
unreliable. It requires 50 Ω resistors at each end of the cable to transmit signals
correctly. If you leave these out, you won’t get degraded performance: the network
Will Not Work at all.

2. As the name suggests, thin Ethernet is thin coaxial cable, and otherwise quite like
thick Ethernet. It is significantly cheaper (thus the term Cheapernet), and the only
disadvantage over thick Ethernet is that the cables can’t be quite as long. The cable is
called RG58, and the cable connectors are called BNC. Both terms are frequently
used to refer to this kind of connection, as is 10 Base 2. You’ll still see thin Ethernet
around, but since it’s effectively obsolete. Performance is poor, and it’s no cheaper
than 100 Mb/s Ethernet. Like thick Ethernet, all machines are connected by a single
cable with terminators at each end.

3. Modern Ethernets run at up to 1000 Mb/s over multi-pair cables called UTP, for
Unshielded Twisted Pair. Twisted pair means that each pair of wires are twisted to
minimize external electrical influence—after all, the frequencies on a 1000 Mb/s
Ethernet are way up in the UHF range. Unlike coaxial connections, where all
machines are connected to a single cable, UTP connects individual machines to a hub
or a switch, a box that distributes the signals. We’ll discuss the difference between a
hub and a switch on page 288. You’ll also hear the terms 10BaseTP, 100BaseTP and
1000BaseTP.

Compared to coaxial Ethernet, UTP cables are much cheaper, and they are more
reliable. If you damage or disconnect a coaxial cable, the whole network goes down.
If you damage a UTP cable, you only lose the one machine connected to it. On the
down side, UTP requires switches or hubs, which cost money, though the price has
decreased to the point where it’s cheaper to buy a cheap switch and UTP cables rather
than the RG58 cable alone. UTP systems employ a star architecture rather than the
string of coaxial stations with terminators. You can connect many switches together
simply by reversing the connections at one end of a switch-to-switch link. In
addition, UTP is the only medium currently available that supports 100 Mb/s
Ethernet.

How Ethernet works
A large number of systems can be connected to a single Ethernet. Each system has a 48
bit address, the so-called Ethernet address. Ethernet addresses are usually written in
bytes separated by colons (:), for example 0:a0:24:37:0d:2b. All data sent over the
Ethernet contains two addresses: the Ethernet address of the sender and the Ethernet
address of the receiver. Normally, each system responds only to messages sent to it or to
a special broadcast address.

288 Chapter 16: Networ ks and the Internet

You’ll also frequently hear the term MAC address. MAC stands for Media Access
Control and thus means the address used to access the network link layer. For Ethernets I
prefer to use the more exact term Ethernet address.

The fact that multiple machines are on the same network gives rise to a problem:
obviously only one system can transmit at any one time, or the data will be garbled. But
how do you synchronize the systems? In traditional Ethernets, the answer is simple, but
possibly surprising: trial and error. Before any interface transmits, it checks that the
network is idle—in the Ethernet specification, this is called Carrier Sense.
Unfortunately, this isn’t enough: two systems might start sending at the same time. To
solve this problem, while it sends, each system checks that it can still recognize what it is
sending. If it can’t, it assumes that another system has started sending at the same time—
this is called a collision. When a collision occurs, both systems stop sending, wait a
random amount of time, and try again. You’ll see this method referred to as CSMA/CD
(Carrier Sense Multiple Access/Collision Detect).

There are a number of problems with this approach:

• The interface needs to listen while sending, so it can’t receive anything while it’s
sending: it’s running in half-duplex mode. If it could send and receive at the same
time (full-duplex mode), the network throughput could be doubled.

• The more active the network, the more likely collisions will be. This slows things
down too, sometimes to a point where the network hardly transmits any traffic.

• The more systems on the network, the less bandwidth is available for each system.

With the point-to-point connections on a UTP-based network, you would think it would
be possible to change some of this. After all, the connections look pretty much like the
same wire that joins two modems together, and modems don’t hav e collisions, and they
do run in full-duplex mode. The problem is the hub: if you send a packet out to a hub, it
doesn’t know which connector to send it down, so it sends it down all of them, thus
imitating the old Ethernet. To send it just to the destination, it would need to analyze the
Ethernet address in every packet and know where to send it.

This is what a switch does: it learns the Ethernet addresses of each interface on the
network and uses this information to send packets to only the line to which that interface
is connected. There could be more than one if switches are cascaded. This also means
that the line can run in full-duplex mode.

Nowadays the price differential between switches and hubs is very small; go into a
computer market and you’ll see that the prices overlap. If at all possible, buy a switch.

Transmitting Internet data across an Ethernet has another problem. Ethernet evolved
independently of the Internet standards. As a result, Ethernets can carry different kinds
of traffic. In particular, Microsoft uses a protocol called NetBIOS, and Novell uses a
protocol called IPX. In addition, Internet addresses are only 32 bits, and it would be
impossible to map them to Ethernet addresses even if they were the same length. The
result? You guessed it, another header. Figure 16-5 shows an Ethernet packet carrying an
IP datagram.

Ether net 289

Finding Ethernet addresses
So we send messages to Ethernet interfaces by setting the correct Ethernet address in the
header. But how do we find the Ethernet address? All our IP packets use IP addresses.
And it’s not a good solution to just statically assign Ethernet addresses to IP addresses:
first, there would be problems if an interface board or an IP address was changed, and
secondly multiple boards can have the same IP address.

Upper destination address

Rest of destination address

Upper source address

Rest of source address Frame type

Version Type of service Total length in bytes

identification flags fragment offset

Time to live Protocol Header Checksum

Source IP address

Destination IP address

source port destination port

sequence number

acknowledgment number

reserved flags window size

TCP checksum urgent pointer

Data

IP Header

length

TCP Header

length

Figure 16-5: Ethernet frame with TCP datagram

The chosen solution is the Address Resolution Protocol, usually called ARP. ARP sends
out a message on the Ethernet broadcast address saying effectively ‘‘Who has IP address
223.147.37.1? Tell me your Ethernet address.’’ The message is sent on the broadcast
address, so each system on the net receives it. In each machine, the ARP protocol checks
the specified IP address with the IP address of the interface that received the packet. If
they match, the machine replies with the message ‘‘I am IP 223.147.37.1, my Ethernet
address is 00:a0:24:37:0d:2b’’

290 Chapter 16: Networ ks and the Internet

What systems are on that Ethernet?
Multiple systems can be accessed via an Ethernet, so there must be some means for a
system to determine which other systems are present on the network. There might be a
lot of them, several hundred for example. You could keep a list, but the system has to
determine the interface for every single packet, and a list that long would slow things
down. The preferred method is to specify a range of IP addresses that can be reached via
a specific interface. The computer works in binary, so one of the easiest functions to
perform is a logical and. As a result, you specify the range by a network mask: the
system considers all addresses in which a specific set of bits have a particular value to be
reachable via the interface. The specific set of bits is called the interface address.

For example, let’s look forward to the reference network on page 294 and consider the
local network, which has the network address 223.147.37.0 and the netmask
255.255.255.0. The value 255 means that every bit in the byte is set. The logical and
function says ‘‘if a specific bit is set in both operands, set the result bit to 1; otherwise set
it to 0.’’ Figure 16-6 shows how the system creates a network address from the IP
address 223.147.37.5 and the net mask 255.255.255.0.

1 1 0 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 IP address

1 0 0 0 0 0 0 0 0 Net mask

1 1 0 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 Net address

Figure 16-6: Net mask

The result is the same as the IP address for the first three bytes, but the last byte is 0:
223.147.37.0.

This may seem unnecessarily complicated. An easier way to look at it is to say that the 1
bits of the net mask describe which part of the address is the network part, and the 0 bits
describe which part represents hosts on the network.

Theoretically you could choose your network mask bits at random. In practice, it’s clear
that it makes more sense to make network masks a sequence of binary 1 bits followed by
a sequence of binary 0 bits. It has become typical to abbreviate the network mask to the
number of 1 bits. Thus the network mask 255.255.255.0, with 24 bits set and 8 bits not
set, is abbreviated to /24. The / character is always part of the abbreviation.

Address classes
When the Internet Protocols were first introduced, they included the concept of a default
netmask. These categories of address were called address classes. The following classes
are defined in RFC 1375:

Ether net 291

Table 16-1: Address classes

Network Host
Address Network address address Number of

Class range mask bits bits systems
A 0-127 255.0.0.0 /8 24 16777216
B 128-191 255.255.0.0 /16 16 65536
C 192-207 255.255.255.0 /24 8 256
F 208-215 255.255.255.240 /28 4 16
G 216-219 (reserved)
H 220-221 255.255.255.248 /29 3 8
K 222-223 255.255.255.254 /31 1 2
D 224-239 (multicast)
E 240-255 (reserved)

This method is no longer used for specifying net masks, though the software still defaults
to these values, but it is used for allocating networks. In addition you will frequently hear
the term Class C network to refer to a network with 256 addresses in the range 192–223.
This usage goes back to before RFC 1375.

Unroutable addresses
On occasion you may want to have addresses which are not visible on the global Internet,
either for security reasons or because you want to run Network Address Translation (see
page 393). RFC 1918 provides for three address ranges that should not be routed:
10.0.0.0/8 (with last address 10.255.255.255), 172.16.0.0/12 (with last address
172.31.255.255), and 192.168.0.0/16 (with last address
192.168.255.255).

Wireless LANs
An obvious problem with Ethernet is that you need a cable. As more and more machines
are installed, the cabling can become a nightmare. It’s particularly inconvenient for
laptops: the network cable restricts where you can use the machine.

Wireless network cards have been around for some time, but in the last few years they
have become particularly popular. Modern cards are built around the IEEE 802.11 series
of standards.

The 802 series of standards cover almost all networking devices; don’t let the number 802 suggest
wireless networking. Ethernet is 802.3, for example.

They are usually PCMCIA (PC Card) cards, though some PCI cards are also available.
Currently you’re liable to come across the following kinds of cards:

292 Chapter 16: Networ ks and the Internet

• 802.11 FHSS (Fr equency Hopping Spread Spectrum) cards, which run at up to 2
Mb/s. These are now obsolete, but FreeBSD still supports the WebGear Aviator card
with the ray driver.

• 802.11 DSSS (Discrete Sequence Spread Spectrum) cards, which also run at up to 2
Mb/s. These are also obsolete.

• 802.11b DSSS cards, which run at up to 11 Mb/s. They can interoperate with the
slower 802.11 DSSS cards, but not with FHSS cards.

• 802.11a cards, which run at 54 Mb/s. They use a modulation called Orthogonal
Fr equency Division Multiplexing or OFDM, and run in the 5 GHz band. They are not
compatible with older cards. At the time of writing, they hav e not achieved
significant market penetration. FreeBSD does not support them yet, though that may
have changed by the time you read this.

• 802.11g cards are the newest. Like 802.11a, they which run at 54 Mb/s, and they’re
not supported. Again, that may have changed by the time you read this. Like
802.11b, they run in the 2.4 GHz band.

Most current cards are 802.11b and run at up to 11 Mb/s. We’ll concentrate on them in
the rest of this section. They operate in the 2.4 GHz band, which is shared with a number
of other services, including some portable telephones and microwave ovens. This kind of
portable telephone can completely disrupt a wireless network. Interference and range are
serious issues: wireless networks are generally not as reliable as wired networks.

Wireless cards can operate in up to three different modes:

• Normally, they interoperate with an access point, also called a base station. The base
station is normally connected to an external network, so it also doubles as a gateway.
Unlike Ethernets, however, all traffic in the network goes via the base station. This
arrangement is called a Basic Service Set or BSS.

Networks can have multiple base stations which are usually interconnected via a
wired Ethernet. If the machine with the wireless card moves around, the base stations
negotiate with the machine to decide which base station handles the card. In this
manner, the machines can cover large distances without losing network connection.
This arrangement is called an Extended Basic Service Set or EBSS.

This mode of operation, with or without an EBSS, is called managed mode,
infrastructure mode or BSS mode.

• In smaller networks, the cards can interact directly. This mode of operation is called
peer-to-peer mode, ad-hoc mode or IBSS mode (for Independent Basic Service Set).

• Finally, some cards support a method called Lucent demo ad-hoc mode, which some
BSD implementations used to call ad-hoc mode. But it’s not the same as the previous
method, and though the principle is the same, they can’t interoperate. This mode is
not standardized, and there are significant interoperability issues with it, so even if it’s
available you should use IBSS mode.

Wireless LANs 293

How wireless networks coexist
Wireless networks have a number of issues that don’t affect Ethernets. In particular,
multiple networks can share the same geographical space. In most large cities you’ll find
that practically the entire area is shared by multiple networks. This raises a number of
issues:

• There’s only so much bandwidth available. As the number of networks increase, the
throughput drops.

There’s no complete solution to this problem, but it’s made a little easier by the
availability of multiple operating frequencies. Depending on the country, 802.11b
cards can have between 11 and 14 frequency channels. If your area has a lot of traffic
on the frequency you’re using, you may be able to solve the problem by moving to
another frequency. That doesn’t mean that this many networks can coexist in the
same space: as the name spread spectrum indicates, the signal wanders off to either
side of the base frequency, and in practice you can use only three or four distinct
channels.

• Cards on a given network need to have a way to identify each other.

802.11 solves this issue by requiring a network identification, called a Service Set
Identifier or SSID. All networks have an SSID, though frequently base stations will
accept connections from cards that supply a blank SSID. SSIDs don’t offer any
improvement in security: their only purpose is identifying the network.

• Cards on a given network need to protect themselves against snooping by people who
don’t belong to the network.

The 802.11 standard offers a partial solution to this issue by optionally encrypting the
packets. We’ll look at this issue below.

Encryption
As mentioned above, security is a big issue in wireless networks. The encryption
provided is called Wired Equivalent Privacy or WEP, and it’s not very good. Everybody
connecting to the network needs to know the WEP key, so if anybody loses permission to
access the network (for example, when changing jobs), the WEP keys need to be
changed, which is a serious administrative problem. In some cases it’s completely
impractical: if you want to access a wireless network in an airport or a coffee shop (where
they’re becoming more and more common), it’s not practical to use a WEP key. In fact,
nearly all such public access networks don’t use encryption at all.

As if that weren’t bad enough, the WEP algorithm is flawed. Depending on the
circumstances, it can take less than 10 minutes to crack it. Don’t trust it.

So how do you protect yourself? The best solution is, of course, don’t use wireless
networks for confidential work. If you have to use a wireless network, make sure that
anything confidential is encrypted end-to-end, for example with an ssh tunnel, which
we’ll look at on page 424.

294 Chapter 16: Networ ks and the Internet

The reference network
One of the problems in talking about networks is that there are so many different kinds of
network connection. To simplify things, this book bases on one of the most frequent
environments: a number of computers connected together by an Ethernet LAN with a
single gateway to the Internet. Figure 16-7 shows the layout of the network to which we
will refer in the rest of this book.

freebie presto bumble wait

Local Ethernet
Address 223.147.37.0
Domain example.org

• •

•

• •

•

•
•

gw
Router

•
•

modem

•
•

modem

• •

•

router
free-gw

•
•

modem

Connection to network
223.147.38.0 PPP link, net 139.130.136.0

ISP’s Ethernet
Address 139.130.237.0
Domain example.net

•

•

gateway
igw

•
ns

access
point

•
•

andante
laptop•

802.11b wireless net

rl0 dc0

xl0

xl0 fxp0

dc0

tun0

ppp3ppp0

rl0

fddi0

xl0

to Internet

xl0

223.147.37.1 223.147.37.2

192.168.27.1

223.147.37.3 223.147.37.4

223.147.37.5

139.130.136.133

139.130.136.129139.130.136.9

139.130.237.117

139.130.237.65

139.130.249.201

139.130.237.3

wi0 192.168.27.17

Figure 16-7: Reference network

The reference networ k 295

This figure contains a lot of information, which we will examine in detail in the course of
the text:

• The boxes in the top row represent the systems in the local network example.org:
freebie, presto, bumble, and wait.

• The line underneath is the local Ethernet. The network has the address
223.147.37.0. It has a full 256 addresses (‘‘Class C’’), so the network mask is
255.255.255.0.

• The machines on this Ethernet belong to the domain example.org. Thus, the full
name of bumble is bumble.example.org. We’ll look at these names in Chapter 21.

• The connections from the systems to the Ethernet are identified by two values: on the
left is the interface name, and on the right the address associated with the interface
name.

• Further down the diagram is the router, gw. It has two interfaces: dc0 interfaces to
the Ethernet, and tun0 interfaces to the PPP line to the ISP. Each interface has a
different addresses.

• The lower half of the diagram shows part of the ISP’s network. It also has an
Ethernet, and its router looks very much like our own. On the other hand, it
interfaces to a third network via the machine igw. To judge by the name of the
interface, it is a FDDI connection—see page 285 for more details.

• The ISP runs a name server on the machine ns, address 139.130.237.3.

• The ends of the Ethernets are thickened. This represents the terminators required at
the end of a coaxial Ethernet. We talked about them on page 287. In fact this
network is a 100 Mb/s switched network, but they are still conventionally represented
in this form. You can think of the Ethernets as the switches that control each
network.

• presto has a wireless access point connected to it. The diagram shows one laptop,
andante, connected via a NAT interface.

(netsetup.mm), page 297

17
Configuring

the local
network

In this chapter:
• Networ k

configuration with
sysinstall

• Manual networ k
configuration

• Automatic
configuration with
DHCP

• Configur ing PC Card
networ king cards

• Setting up wireless
networ king

• Routing
• ISP’s route setup
• Looking at the

routing tables
• Packet forwarding
• Configuration

summar y

In this chapter:
• Networ k

configuration with
sysinstall

• Manual networ k
configuration

• Automatic
configuration with
DHCP

• Configur ing PC Card
networ king cards

• Setting up wireless
networ king

• Routing
• ISP’s route setup
• Looking at the

routing tables
• Packet forwarding
• Configuration

summar y

In Chapter 16 we looked at the basic concepts surrounding BSD networking. In this
chapter and the following two, we’ll look at what we need to do to configure a network,
first manually, then automatically. Configuring PPP is still a whole lot more difficult
than configuring an Ethernet, and they require more prerequisites, so we’ll dedicate
Chapter 20, to that issue.

In this chapter, we’ll first look at example.org in the reference network on page 294, since
it’s the easiest to set up. After that, we’ll look at what additional information is needed to
configure machines on example.net.

Network configuration with sysinstall
To configure a network, you must describe its configuration to the system. The system
initialization routines that we discussed on page 528 include a significant portion that sets
up the network environment. In addition, the system contains a number of standard IP
configuration files that define your system’s view of the network. If you didn’t configure
the network when you installed your system, you can still do it now. Log in as root and
start sysinstall. Select the Index, then Network Interfaces. You will see the menu
of Figure 17-1, which is the same as in Figure 6-4 on page 97. On a standard 80x25
display it requires scrolling to see the entire menu. The only real network board on this

297

298 Chapter 17: Configuring the local networ k

list is xl0, the Ethernet board. The others are standard hardware that can also be used as
network interfaces.

Figure 17-1: Network setup menu

Choose the Ethernet board, xl0 You get a question about whether you want to use IPv6
configuration. In this book we doesn’t discuss IPv6, so answer No. Next you get a
question about DHCP configuration. We discuss DHCP configuration on page 302. If
you already have a DHCP server set up, you may prefer to answer Yes to this question,
which is all you need to do. If you answer No, the next menu asks us to set the internet
parameters. Figure 17-2 shows the network configuration menu after filling in the values.

Figure 17-2: Network configuration menu

Networ k configuration with sysinstall 299

Specify the fully qualified local host name. When you tab to the Domain: field, the
domain is filled in automatically. We hav e chosen to call this machine presto, and the
domain is example.org. In other words, the full name of the machine is presto.exam-
ple.org. Its IP address is 223.147.37.2. In this configuration, all access to the outside
world goes via gw.example.org, which has the IP address 223.147.37.5. The name
server is located on the same host, presto.example.org. If the name server isn’t running
when this information is needed, we must specify all addresses in numeric form, as
shown.

What happens if you don’t hav e a domain name? If you’re connecting to the global
Internet, you should go out and get one—see page 318. But in the meantime, don’t fake
it. Just leave the fields empty. If you’re not connecting to the Internet, of course, it
doesn’t make much difference what name you choose.

As is usual for a class C network, the net mask is 255.255.255.0. You don’t need to fill
in this information—if you leave this field without filling it in, sysinstall inserts it for
you. Normally, as in this case, you wouldn’t need any additional options to ifconfig.

sysinstall saves configuration information in /etc/rc.conf. When the system starts, the
startup scripts use this information to configure the network. It also optionally starts the
interface immediately. In the next section we’ll look at the commands it uses to perform
this function.

Manual network configuration
Usually FreeBSD configures your network automatically when it boots. To do so, it uses
the configuration files in /etc. So why do it manually? There are several reasons:

• It makes it easier to create and maintain the configuration files if you know what’s
going on behind the scenes.

• It makes it easier to modify something ‘‘on the fly.’’ You don’t hav e to reboot just
because you have changed your network configuration.

• With this information, you can edit the configuration files directly rather than use the
menu interface, which saves a lot of time.

We spend a lot of time discussing this point on the FreeBSD mailing lists. One thing’s for sure:
neither method of configuration is perfect. Both menu-based and text-file–based configuration
schemes offer you ample opportunity to shoot yourself in the foot. But at the moment, the
configuration file system is easier to check if you understand what’s going on. That’s the reason
for the rest of this chapter.

In this section, we’ll look at the manual way to do things first, and then we’ll see how to
put it in the configuration files so that it gets done automatically next time. You can find
a summary of the configuration files and their contents on page 551.

300 Chapter 17: Configuring the local networ k

Describing your network
In Table 16-7 on page 294, we saw that systems connect to networks via network
interfaces. The kernel detects the interfaces automatically when it starts, but you still
need to tell it what interfaces are connected to which networks, and even more
importantly, which address your system has on each network. In addition, if the network
is a broadcast network, such as an Ethernet, you need to specify a range of addresses that
can be reached directly on that network. As we saw on page 290, we perform this
selection with the network mask.

Ethernet interfaces

Once we have understood these concepts, it’s relatively simple to use the ifconfig
program to set them. For example, for the Ethernet interface on system gw, with IP
address 223.147.37.5, we need to configure interface dc0. The network mask is the
standard value for a class C network, 255.255.255.0. That’s all we need to know:

ifconfig dc0 inet 223.147.37.5 netmask 255.255.255.0 up

In fact, this is more than you usually need. The inet tells the interface to use Internet
protocol Version 4 (the default), and up tells it to bring it up (which it does anyway). In
addition, this is a class C network address, so the net mask defaults to 255.255.255.0.
As a result, you can abbreviate this to:

ifconfig dc0 223.147.37.5

Note that this is different from what Linux requires. With Linux you must supply explicit
netmask and broadcast address specifications.

As we saw on page 290, it has become typical to abbreviate net masks to the character /
followed by the number of 1 bits set in the network mask. ifconfig understands this
usage, so if you wanted to set a non-standard network mask of, say, 255.255.255.240,
which has 28 bits set, you could write:

ifconfig dc0 223.147.37.5/28

Point-to-point interfaces

With a point-to-point interface, the software currently requires you to specify the IP
address of the other end of the link as well. As we shall see in Chapter 20, there is no
good reason to do this, but ifconfig insists on it. In addition, we need the network mask
for a non-broadcast medium. The value is obvious:1 you can reach exactly one address at
the other end, so it must be 255.255.255.255. With this information, we could
configure the PPP interface on gw:

ifconfig tun0 139.130.136.133 139.130.136.129 netmask 255.255.255.255

1. Well, you’d think it was obvious. We’ll see on page 346 that some people think it should be something else.

Manual networ k configuration 301

In fact, this is almost never necessary; in Chapter 20 we’ll see that the PPP software
usually sets the configuration automatically.

The loopback interface

The IP protocols require you to use an address to communicate with every system—even
your own system. Theoretically, you could communicate with your system via the an
Ethernet interface, but this is relatively slow: the data would have to go through the
network stack. Instead, there is a special interface for communicating with other
processes in the same system, the loopback interface. Its name is lo0, and it has the
address 127.0.0.1. It’s straightforward enough to configure:

ifconfig lo0 127.0.0.1

In fact, though, you don’t even need to do this much work: the system automatically sets
it up at boot time.

Checking the interface configuration
ifconfig doesn’t just set the configuration: you can also use it to check the configuration.
It’s a good idea to do this after you change something:

$ ifconfig
dc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

inet 223.147.37.5 netmask 0xffffff00 broadcast 223.147.37.255
inet6 fe80::280:c6ff:fef9:d3fa%dc0 prefixlen 64 scopeid 0x1
ether 00:80:c6:f9:d3:fa
media: Ethernet autoselect (100baseTX <full-duplex>)
status: active

lp0: flags=8810<POINTOPOINT,SIMPLEX,MULTICAST> mtu 1500
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384

inet6 ::1 prefixlen 128
inet6 fe80::1%lo0 prefixlen 64 scopeid 0x3
inet 127.0.0.1 netmask 0xff000000

tun0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1500
inet 139.130.136.133 --> 139.130.136.129 netmask 0xffffffff

Other BSD systems require you to write ifconfig -a. to list the configuration of all interfaces, and
FreeBSD still accepts it. Some commercial UNIX systems don’t understand even this flag.

There are a number of things to note here:

• The dc0 interface has both an IPv4 address (inet) and a corresponding IPv6 address
(inet6). It also specifies the Ethernet address (ether 00:80:c6:f9:d3:fa). It is
capable of negotiating 10 Mb/s, 100 Mb/s half duplex and 100 Mb/s full duplex. It’s
connected to a switch, so it’s currently running 100 Mb/s full duplex.

• The interface lp0 is the the PLIP interface for connections via the parallel port. It is
not configured (in other words, it has not been set up for operation).

• We’v e already seen the loopback interface lo0.

• There is also a tun0 interface for PPP.

302 Chapter 17: Configuring the local networ k

The configuration files
The system startup scripts summarize this configuration information in a number of
configuration variables. See Chapter 29 for more details. At the moment, the following
variables are of interest to us:

• hostname is the name of the host. You should have set it when you installed the
system (see page 87). You can also set it manually with the hostname command:

hostname -s gw.example.org

• For each interface, a variable of the form ifconfig_interface contains the
parameters to be passed to ifconfig to configure that interface.

Previously, FreeBSD also required you to set a variable network_interfaces, a list of
the names of the interfaces to be configured. This variable now defaults to the value
auto to specify that all interfaces should be configured. You only need to change it if
you specifically want to exclude an interface from configuration.

For gw, we put the following information in /etc/rc.conf :

hostname="gw.example.org"
ifconfig_dc0="inet 223.147.37.5"

We don’t configure the tun0 interface here; as we’ll see in Chapter 20, the PPP setup
works differently.

Automatic configuration with DHCP
Maintaining the network configurations for a number of machines can be a pain,
especially if they’re laptops that come and go. There’s an alternative for larger networks:
use DHCP, the Dynamic Host Configuration Protocol. DHCP enables a machine to get
configuration information automatically from the network. The concept is expandable,
but typically you get an IP address and net mask and the names of the default name
servers and routers. In terms of the configuration we’ve seen so far, this replaces running
the ifconfig and route programs, and also the file /etc/resolv.conf, which describes the
locations of name servers. We’ll look at it on page 366.

There are two parts to DHCP: the client and the server.

DHCP client
To get a configuration, you run dhclient. In previous releases of FreeBSD, dhclient
printed out information about the addresses it received. In Release 5, it does not print
anything. Simply start it with the name of the interface:

Automatic configuration with DHCP 303

dhclient dc0

To assign an address automatically at boot time, put the special value DHCP in the
ifconfig_dc0 variable:

ifconfig_dc0=DHCP

DHCP server
DHCP requires a server. The server is not included as part of the base system; instead,
install the net/isc-dhcp3 port:

cd /usr/ports/net/isc-dhcp3
make install

To configure dhcpd, edit the configuration file /usr/local/etc/isc-dhcpd.conf. Here’s an
example:

ddns-update-style ad-hoc;

100 Mb/s Ethernet
subnet 223.147.37.0 netmask 255.255.255.0 {
range 223.147.37.90 223.147.37.110;
option domain-name-servers freebie.example.com, presto.example.com;
option domain-name "example.com";
option routers gw.example.com;
option subnet-mask 255.255.255.0;
option broadcast-address 223.147.37.255;
default-lease-time 86400;
max-lease-time 259200;
use-host-decl-names on; use the specified name as host name
host andante {
hardware ethernet 0:50:da:cf:7:35;

}
}

This configuration file tells dhcpd:

• To dynamically allocate IP addresses in the range 223.147.37.90 to
223.147.37.110 (range keyword).

• That the domain name servers are freebie.example.com and andante.example.com.
We’ll look at domain name servers in Chapter 21.

• The net mask and the broadcast address.

The variables default-lease-time and max-lease-time, which are specified in
seconds, determine how long it will be before a system checks its configuration. The
values here represent one day and three days respectively.

use-host-decl-names tells dhcpd to use the name on the host line as the host name
of the system. Otherwise you would need an additional option host-name specifica-
tion for every system. For one machine it doesn’t make much difference, but if you have
twenty such machines, you’ll notice the difference.

304 Chapter 17: Configuring the local networ k

One of the problems with dhcpd is that by default it doesn’t allocate a static IP address.
Theoretically you could attach a laptop to the same DHCP server and get a different
address every time, but in fact dhcpd does its best to keep the same address, and
sometimes you may find it impossible to change its mind. In this configuration file,
though, we have explicitly told dhcpd about andante, which is recognized by its Ethernet
address. This works relatively well for fixed machines, but there’s a problem with laptops
and PC Card: dhcpd recognizes the network interface, not the machine, and if you swap
the interface card, the IP address moves to the new machine.

Starting dhcpd
The dhcpd port installs a sample startup file in the directory /usr/local/etc/rc.d. It’s
called isc-dhcpd.sh.sample, a name which ensures that it won’t get executed. This file
doesn’t normally require any configuration; simply copy it to isc-dhcpd.sh in the same
directory. This enables the system startup to find it and start dhcpd.

To start dhcpd during normal system operation, just run this same script:

/usr/local/etc/rc.d/isc-dhcpd.sh start
Mar 14 15:45:09 freebie dhcpd: Internet Software Consortium DHCP Server V3.0rc10
Mar 14 15:45:09 freebie dhcpd: Copyright 1995-2001 Internet Software Consortium.
Mar 14 15:45:09 freebie dhcpd: All rights reserved.
Mar 14 15:45:09 freebie dhcpd: For info, please visit http://www.isc.org/products/DHCP
Mar 14 15:45:09 freebie dhcpd: Wrote 0 deleted host decls to leases file.
Mar 14 15:45:09 freebie dhcpd: Wrote 0 new dynamic host decls to leases file.
Mar 14 15:45:09 freebie dhcpd: Wrote 14 leases to leases file.
Mar 14 15:45:09 freebie dhcpd: Listening on BPF/xl0/00:50:da:cf:07:35/223.147.37.0/24
Mar 14 15:45:09 freebie dhcpd: Sending on BPF/xl0/00:50:da:cf:07:35/223.147.37.0/24
Mar 14 15:45:09 freebie dhcpd: Sending on Socket/fallback/fallback-net

When you change the configuration file /usr/local/etc/isc-dhcpd.conf, you must restart
dhcpd:

/usr/local/etc/rc.d/isc-dhcpd.sh restart

Configuring PC Card networking cards
We’v e looked at PC Card devices on page 159, but there are some special issues involved
in configuring networking cards. Of course, ifconfig works with PC Card networking
cards in exactly the same way as it does with PCI and ISA cards, but you can’t configure
them in the same manner at startup, because they might not yet be present.

On inserting a PC Card device, you will see something like this on the console:

Manufacturer ID: 01015751
Product version: 5.0
Product name: 3Com Corporation | 3CCFE575BT | LAN Cardbus Card | 001 |
Functions: Network Adaptor, Memory
CIS reading done
cardbus0: Resource not specified in CIS: id=14, size=80
cardbus0: Resource not specified in CIS: id=18, size=80
xl0: <3Com 3c575B Fast Etherlink XL> port 0x1080-0x10bf mem 0x88002400-0x8800247

Configur ing PC Card networ king cards 305

f,0x88002480-0x880024ff irq 11 at device 0.0 on cardbus0
xl0: Ethernet address: 00:10:4b:f8:fd:20
miibus0: <MII bus> on xl0
tdkphy0: <TDK 78Q2120 media interface> on miibus0
tdkphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto

After this, ifconfig shows:

$ ifconfig xl0
xl0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500

ether 00:10:4b:f8:fd:20
media: Ethernet autoselect (100baseTX <full-duplex>)

The card is there, but it’s not configured. FreeBSD uses the devd daemon to perform
userland configuration after a card has been attached. We’v e already looked at devd on
page 159. When devd establishes that the card is a networking card, it calls
/etc/pccard_ether to configure it. In the following, we’ll see how /etc/pccard_ether
configures our xl0 interface. It performs the following steps:

• It reads the configuration from /etc/defaults/rc.conf and /etc/rc.conf.

• If the interface is already up, it exits.

• If a file /etc/start_if.xl0 exists, it executes it. After doing so, it continues.

• It checks whether the variable removable_interfaces exists and contains the
name of the interface, xl0. If not, it continues.

• If the value of ifconfig_xl0 is NO, it exits.

• If the value of ifconfig_xl0 is DHCP, it attempts to set up the interface with DHCP.

• Otherwise it performs the ifconfig commands specified in the variable ifcon-
fig_xl0.

That’s a lot of choice. What do you use when? That depends on what you want to do.
The first thing to note is that nothing happens unless your interface name is in the
variable removable_interfaces, and the variable ifconfig_xl0 exists. The question
is, what do you put in ifconfig_xl0?

In principle, it’s the same as with other network cards: either IP address and other
options, or DHCP. The third alternative is important, though. Let’s consider the case
where you want to start a number of services when the system is connected. You might
want to run ntpdate, then start ntpd and rwhod, and you may want to mount some NFS
file systems. You can do all this at startup with normal network cards, but
/etc/pccard_ether isn’t clever enough to do all that. Instead, create a file called
/etc/start_if.xl0 and give it the following contents:

dhclient xl0
ntpdate freebie
killall ntpd
ntpd &
killall rwhod
rwhod &
mount -t nfs -a

306 Chapter 17: Configuring the local networ k

Don’t forget to start DHCP or otherwise set the IP address, because this method bypasses
the standard startups.

In addition, you put this in /etc/rc.conf :

devd_enable=YES
ifconfig_xl0=NO
removable_interfaces="wi0 xe0 xl0"

The values in the last line only need to include xl0, of course, but it’s good to put in every
interface name that you would possibly use.

Detaching network cards
When you remove a network card, devd invokes /etc/pccard_ether again. The actions
are similar to the one it performs when the card is attached:

• If a file /etc/stop_if.xl0 exists, it is executed.

• If the variable ifconfig_xl0 is set to DHCP, /etc/pccard_ether stops the dhclient
process, which would otherwise loop forever.

• If ifconfig_xl0 contains normal ifconfig parameters, /etc/pccard_ether removes
any static routes for that interface.

If you travel elsewhere with a laptop and suspend the system, make sure you unmount
any NFS file systems first. You can’t do it once you’re no longer connected to the
network, and it’s possible that things will hang trying to access NFS-mounted files.

Setting up wireless networking
We saw in Chapter 16 that wireless cards have a few more tricks up their sleeves than
conventional Ethernets. To set them up correctly, you need to know:

• Does the network you are joining accept connections with a blank SSID? If not, what
is its SSID?

• What mode are you running in? Is it BSS mode, IBSS mode, or Lucent demo ad-
hoc?

• If you’re running in IBSS or Lucent demo ad-hoc mode, you’ll need to know the
frequency (channel) on which the network is running.

• If you’re running in IBSS mode, do you already have an IBSS, or is your machine
going to be the IBSS?

• Are you worried about power consumption? If you’re running in BSS mode, you can
significantly reduce the power consumption of the card by turning on power save
mode, but it can slow some things down.

Setting up wireless networ king 307

• Are you using WEP? If so, what’s the key?

Each of these translates into an ifconfig command. Here are some typical examples:

ifconfig wi0 ssid Example join Example network
ifconfig wi0 media autoselect mediaopt -adhoc set BSS mode
ifconfig wi0 channel 3 select channel 3 (if not in BSS mode)
ifconfig wi0 wepmode on turn encryption on (if using WEP)
ifconfig wi0 wepkey 0x42726f6b21 encryption key (for WEP)

When setting media options, you must also select the media, even if it is unchanged; thus
the media autoselect in the example above.

You hav e a choice of where to put these specifications. For example, if you were
connecting to the Example network, which is IBSS, you could put this in your
/etc/rc.conf :

devd_enable=YES
ifconfig_wi0="192.168.27.4 ssid Example media autoselect mediaopt adhoc \

channel 3 wepmode on wepkey 0x42726f6b21
removable_interfaces="wi0 xe0 xl0"

You don’t need to do anything special to become an IBSS master in an IBSS network: if
there is no master already, and your card supports it, your system will become the IBSS
master.

If, on the other hand, you were connecting to a non-encrypted network, you would not
need the WEP key, and you might enter:

ifconfig_wi0="192.168.27.4 ssid Example media autoselect mediaopt ibss-master channe
l 3 wepmode off"

What we can do now
At this point, we have configured the link layer. We can communicate with directly
connected machines. To communicate with machines that are not directly connected, we
need to set up routing. We’ll look at that next.

Routing
Looking back at our example network on page 294, we’ll reconsider a problem we met
there: when a system receives a normal data packet, what does it do with it? There are
four possibilities:

1. If the packet is a broadcast packet, or if it’s addressed to one of its interface addresses,
it delivers it locally.

2. If it’s addressed to a system to which it has a direct connection, it sends it to that
system.

308 Chapter 17: Configuring the local networ k

3. If it’s not addressed to a system to which it is directly connected, but it knows a
system that knows what to do with the packet, it sends the packet to that system.

4. If none of the above apply, it discards the packet.

Table 17-1: The routing table

Destination Gateway Net mask Type Interface
127.0.0.1 127.0.0.1 255.0.0.0 Host lo0

223.147.37.0 255.255.255.0 Direct dc0

139.130.136.129 139.130.136.133 255.255.255.255 Host tun0

default 139.130.136.129 0.0.0.0 Gateway tun0

These decisions are the basis of routing. The implementation performs them with the aid
of a routing table, which tells the system which addresses are available where. We’v e
already seen the net mask in Chapter 16, on page 290. We’ll see that it also plays a
significant role in the routing decision. Table 17-1 shows a symbolic view of the routing
table for gw.example.org. It looks very similar to the ifconfig output in the previous
section:

• The first entry is the loopback entry: it shows that the local host can be reached by the
interface lo0, which is the name for the loopback interface on all UNIX systems.
Although this entry specifies a single host, the net mask allows for 16,276,778 hosts.
The other addresses aren’t used.

• The second entry is for the local Ethernet. In this case, we have a direct connection,
so we don’t need to specify a gateway address. Due to the net mask
255.255.255.0, this entry accounts for all addresses from 223.147.37.0 to
223.147.37.255.

This entry also emphasizes the difference between the output of ifconfig and the
routing table. ifconfig shows the address of the interface, the address needed to reach
our system. For the Ethernet interface, it’s 223.147.37.5. The routing table shows
the addresses that can be reached from this system, so it shows the base address of the
Ethernet, 223.147.37.0.

• The third entry represents the PPP interface. It is a host entry, like the loopback
entry. This entry allows access to the other end of the PPP link only, so the net mask
is set to 255.255.255.255 (only one system).

• Finally, the fourth entry is the big difference. It doesn’t hav e a counterpart in the
ifconfig listing. It specifies how to reach any address not already accounted for—just
about the whole Internet. In this case, it refers to the other end address of the PPP
link.

And that’s all there is to it! Well, sort of. In our example configuration, we’re hidden in
one corner of the Internet, and there’s only one way out to the rest of the network. Things
look different when you are connected to more than one network. On page 310 we’ll

Routing 309

look at the differences we need for the ISP example.net. In the middle of the Internet,
things are even more extreme. There may be dozens of interfaces, and the choice of a
route for a particular address may be much more complicated. In such an environment,
two problems occur:

• The concept of a default route no longer has much significance. If each interface
carries roughly equal traffic, you really need to specify the interface for each network
or group of networks. As a result, the routing tables can become enormous.

• There are probably multiple ways to route packets destined for a specific system.
Obviously, you should choose the best route. But what happens if it fails or becomes
congested? Then it’s not the best route any more. This kind of change happens
frequently enough that humans can’t keep up with it—you need to run routing
software to manage the routing table.

Adding routes automatically
FreeBSD comes with all the currently available routing software, primarily the daemon
routed. The newer gated used to be included as well, but it is no longer available for
free. It is available from http://www.nexthop.com/products/howto_order.shtml. An
alternative in the Ports Collection is zebra.

All these daemons have one thing in common: you don’t need them. At any rate, you
don’t need them until you have at least two different connections to the Internet, and even
then it’s not sure. As a result, we won’t discuss them here. If you do need to run routing
daemons, read all about them in TCP/IP Network Administration, by Craig Hunt.

From our point of view, howev er, the routing protocols have one particular significance:
the system expects the routing table to be updated automatically. As a result, it is
designed to use the information supplied by the routing protocols to perform the update.
This information consists of two parts:

• The address and netmask of the network (in other words, the address range).

• The address of the gateway that forwards data for this address range. The gateway is
a directly connected system, so it also figures in the routing table.

Adding routes manually
As we saw in the previous section, the routing software uses only addresses, and not the
interface name. To add routes manually, we hav e to give the same information.

The program that adds routes manually is called route. We need it to add routes to
systems other than those to which we are directly connected.

310 Chapter 17: Configuring the local networ k

To set up the routing tables for the systems connected only to our reference network
(freebie, presto, bumble and wait), we could write:

route add default gw

During system startup, the script /etc/rc.network performs this operation automatically if
you set the following variable in /etc/rc.conf :

defaultrouter="223.147.37.5" # Set to default gateway (or NO).

Note that we enter the address of the default router as an IP address, not a name. This
command is executed before the name server is running. We can’t change the sequence
in which we start the processes: depending on where our name server is, we may need to
have the route in place to access the name server.

On system gw, the default route goes via the tun0 interface:

defaultrouter="139.130.136.129" # Set to default gateway (or NO).
gateway_enable="YES" # Set to YES if this host will be a gateway.

This is a PPP interface, so you don’t need a defaultrouter entry; if you did, it would
look like the commented-out entry above. On page 347 we’ll see how PPP sets the
default route.

We need to enable gateway functionality on this system, since it receives data packets on
behalf of other systems. We’ll look at this issue in more depth on page 313.

ISP’s route setup
At the ISP site, things are slightly more complicated than at example.org. Let’s look at
the gateway machine free-gw.example.net. It has three connections, to the global Internet,
to example.org and to another network, biguser.com (the network serviced by interface
ppp0). To add the routes requires something like the following commands:

route add default 139.130.237.65 igw.example.net
route add -net 223.147.37.0 139.130.136.133 gw.example.org
route add -net 223.147.38.0 -iface ppp0 local ppp0 interface

The first line tells the system that the default route is via gw.example.org. The second
shows that the network with the base IP address 223.147.37.0 (example.org) can be
reached via the gateway address 139.130.136.133, which is the remote end of the PPP
link connected via ppp3. In the case of biguser.com, we don’t know the address of the
remote end; possibly it changes every time it’s connected. As a result, we specify the
name of the interface instead: we know it’s always connected via ppp0.

ISP’s route setup 311

The procedure to add this information to /etc/rc.conf is similar to what we did for the
interface addresses:

• The variable static_routes contains a list of the static routes that are to be
configured.

• For each route, a variable corresponding to the route name specified in stat-
ic_routes, with the text route_ prepended. Unlike the interfaces, you can assign
any name you want to them, as long as it starts with route_. It makes sense for them
to be related to the domain name, but they don’t hav e to. For example, we would
have liked to have called our network freebie.org, but there’s a good chance that this
name has been taken, so we called it example.org instead. The old name lives on in
the name of the route, route_freebie. In the case of biguser.com, we hav e called
the route variable route_biguser.

We put the following entries into free-gw’s /etc/rc.conf :

defaultrouter="139.130.237.65" # Set to default gateway (or NO).
static_routes="freebie biguser" # list of static routes
route_freebie="-net 223.147.37.0 139.130.237.129"
route_biguser="-net 223.147.38.0 139.130.237.9"

Looking at the routing tables
You can show the routing tables with the netstat tool. Option -r shows the routing
tables. For example, on freebie you might see:

netstat -r
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default gw UGSc 9 8732 rl0
localhost localhost UH 0 1255 lo0
223.147.37 link#2 UC 0 0
presto 0:0:c0:44:a5:68 UHLW 13 139702 rl0 1151
freebie 0:a0:24:37:d:2b UHLW 3 38698 lo0
wait 0:60:97:40:fb:e1 UHLW 6 1062 rl0 645
bumble 8:0:20:e:2c:98 UHLW 2 47 rl0 1195
gw 0:60:97:40:fb:e1 UHLW 6 1062 rl0 645
broadcast ff:ff:ff:ff:ff:ff UHLWb 2 5788 rl0

There’s a lot to notice about this information:

• The first column is the name of a host or a network to which packets can be sent, or
the keyword default.

• The second column, the gateway, indicates the path to the destination. This field
differs significantly even from older versions of UNIX. It can be the name of a host
(for example, gw), a pointer to an interface (link#2, which means the second
Internet interface; the output from ifconfig is in the same sequence), or an Ethernet
address (8:0:20:e:2c:98). Older versions of UNIX do not use the last two forms.

312 Chapter 17: Configuring the local networ k

• We’ll look at the flags below. The most important ones to note are G (gateway) and H
(host).

• The fields Refs, Use and Expire are only of interest when you’re running a routing
protocol. See the man page netstat(1) for more details.

• Netif is the name of the interface by which the gateway can be reached. In the case
of a link, this is the interface, so the Netif field is empty.

• The order of the entries is not important. The system searches the table for a best fit,
not a first fit.

• The default entry points to gw, as we would expect. The interface, rl0, is the
interface by which gw can be reached.

• You will also get some additional output for IPv6 (‘‘Internet6’’). If you’re not using
IPv6, you can ignore it. If it gets on your nerves, you can limit your view to IPv4 by
entering the command netstat -rfinet. The -f flag specifies which address
family you’re interested in, and inet specifies IPv4.

Flags
Compared to earlier versions of netstat, the current version displays many more flags.
The following table gives you an overview.

Table 17-2: netstat -r flags values

Flag Name Meaning
1 RTF_PROTO1 Protocol specific routing flag 1
2 RTF_PROTO2 Protocol specific routing flag 2
3 RTF_PROTO3 Protocol specific routing flag 3
B RTF_BLACKHOLE Just discard pkts (during updates)
b RTF_BROADCAST The route represents a broadcast address
C RTF_CLONING Generate new routes on use
c RTF_PRCLONING Protocol-specified generate new routes on use
D RTF_DYNAMIC Created dynamically (by redirect)
G RTF_GATEWAY Destination requires forwarding by intermediary
H RTF_HOST Host entry (net otherwise)
L RTF_LLINFO Valid protocol to link address translation
M RTF_MODIFIED Modified dynamically (by redirect)
R RTF_REJECT Host or net unreachable
S RTF_STATIC Manually added
U RTF_UP Route usable
W RTF_WASCLONED Route was generated as a result of cloning
X RTF_XRESOLVE External daemon translates proto to link address

Looking at the routing tables 313

Packet forwarding
We saw above that when a system receives a packet that is not intended for itself, it looks
for a route to the destination. In fact, this is not always the case: by default, FreeBSD just
silently drops the packet. This is desirable for security reasons, and indeed it’s required
by RFC 1122, but if you want to access the Internet via another machine on your local
net, it’s less than convenient.

The rationale for this is that most systems are only connected to one network, and it
doesn’t make sense to have packet forwarding enabled. Earlier systems made this a
kernel option, so that disabling packet forwarding also made the kernel fractionally
smaller. In current versions of FreeBSD, the code is always there, even if it is disabled.

It’s straightforward enough to set up your machine as a router (or gateway): you can set it
with the sysctl command:

sysctl -w net.inet.ip.forwarding=1
net.inet.ip.forwarding: 0 -> 1

In /etc/rc.conf, you can set this with the variable gateway_enable:

gateway_enable="YES" # Set to YES if this host will be a gateway.

Configuration summary
In the course of this chapter, we’ve discussed a number of different configurations. In
this section we’ll summarize the configuration for for free-gw.example.net, since it is the
most complicated. You enter the following information in your /etc/rc.conf :

• Set your host name:

hostname="free-gw.example.net"

• For each interface, specify IP addresses and possibly net masks for each interface on
the machine:

ifconfig_rl0="inet 139.130.237.117"

The PPP interfaces are configured independently, so we won’t look at them here, but
we might need their addresses for static routes. The local interface address for ppp0
is 139.130.136.9, and the local address for ppp3 is 139.130.136.129.

• Decide on a default route. In this case, it is the gateway machine igw.example.net,
with the address 139.130.237.65:

314 Chapter 17: Configuring the local networ k

defaultrouter="139.130.237.65" # Set to default gateway (or NO).

• Decide on other routes. In this case, we have two, to example.org and biguser.com.
List them in the variable static_routes:

static_routes="freebie biguser" # Set to static route list

• For each static route, create a variable describing the route:

route_freebie="-net 223.147.37.0 139.130.136.133"
route_biguser="-net 223.147.38.0 -iface ppp0"

• Enable IP forwarding:

gateway_enable="YES" # Set to YES if this host will be a gateway.

Without the comments, this gives the following entries:

hostname="free-gw.example.net"
ifconfig_rl0="inet 139.130.237.117"
defaultrouter="139.130.237.65" # Set to default gateway (or NO).
static_routes="freebie biguser" # Set to static route list
route_freebie="-net 223.147.37.0 139.130.136.133"
route_biguser="-net 223.147.38.0 -iface ppp0"
gateway_enable="YES" # Set to YES if this host will be a gateway.

For a machine configured with DHCP, you might have:

hostname="andante.example.net"
ifconfig_wi0=DHCP

(isp.mm), page 315

18
Connecting to

the Internet

In this chapter:
• The physical

connection
• Establishing yourself

on the Internet
• Choosing an Internet

Ser vice Provider
• Who’s that ISP?
• Making the

connection

In this chapter:
• The physical

connection
• Establishing yourself

on the Internet
• Choosing an Internet

Ser vice Provider
• Who’s that ISP?
• Making the

connection

To implement the reference network shown in the previous chapter, we need to do a lot of
things that interface with the outside world. They can take some time, so we should look
at them first:

• What kind of physical connection should we use? We’ll consider that in the next
section.

• We may want to register a domain. Many people don’t, but I strongly recommend it.
Find out about that on page 317.

• We may also want to register a network. In our example, we have used the network
223.147.37.0. In real life, we can’t choose our own network: we take what is given
to us. We’ll look at this on page 318.

• We need to find an Internet Service Provider. We’ll look at what that entails on page
319.

The physical connection
Just two or three years ago, the way to connect to the outside world was simple: a phone
line. Since then, things have changed quite a bit, and you may have quite a choice:

• Analogue telephone line connections are still the most common way of connecting
small networks in most countries, but their bandwidth is limited to about 7 kB/s at
best. You can run PPP or SLIP over this kind of line, though nowadays most ISPs

315

316 Chapter 18: Connecting to the Internet

support only PPP.

• ISDN stands for Integrated Systems Digital Network. It’s the new, better, washes-
whiter telephone system that is replacing POTS (Plain Old Telephone Service) in
some countries, notably in Europe. FreeBSD supports ISDN with the isdn4bsd
driver. We won’t look at ISDN further in this book.

• Leased lines form the backbone of the Internet. They’re invariably more expensive
than dialup lines, but they can provide quite high speeds—in the USA, a T1 line will
give you 1,536 kbps, and in the rest of the world an E1 will give you 2,048 kbps.
Leased lines are becoming less interesting, and we won’t look at them in more detail
in this book.

• Cable modems use existing cable TV networks to deliver a high speed connection, up
to several megabits per second. They use the cable as a broadcast medium, rather like
an Ethernet, and suffer from the same load problems: you share the speed with the
other users of the cable. There are also some security issues to consider, but if you
have a cable service in your area, you’ll probably find it superior to telephones. The
cable modem is effectively a bridge between the cable and an Ethernet. From the
FreeBSD point of view, the cable modem looks like just another Ethernet device.

• DSL (Digital Subscriber Line) is the telephone companies’ reaction to cable modems.

Until recently, the L stood for Loop, not Line. A loop is the telco term for the pair of wires
between the exchange (or Central Office) and the subscriber premises.

There are a number of variants on DSL: ADSL (Asynchronous Digital Subscriber
Line) has different speeds for the uplink and the downlink, while SDSL (Symmetric
Digital Subscriber Line) and HDSL (High-speed Digital Subscriber Line) hav e the
same speed in each direction. Speeds and capabilities differ widely from one location
to another. By modifying the way they transmit data over normal phone wires,
including the use of special modems, ADSL can get speeds of up to 6 Mb/s
downstream (towards the end user), and about 640 kbps upstream. HDSL has similar
speeds, but the speed is the same in each direction. In contrast to cable modems, you
don’t hav e to share this bandwidth with anybody. Technical considerations limit the
loop length to about four miles, so even in big cities you may not be able to get it.
Many DSL services are plagued by technical problems. There are a number of
different ways to connect to a DSL service, but most of them involve a conversion to
Ethernet.

• In some parts of the world, satellite connections are a viable alternative. These
usually use a telephone line for outgoing data and a satellite receiver for incoming
data. Pricing varies from very cheap to quite expensive, but if you can’t get cable or
DSL, this might be your only choice.

The physical connection 317

Establishing yourself on the Internet
The first thing you need to decide is the extent of your presence on the Net. There are
various possibilities:

• You could get a dialup service where you use your computer just to connect to the
ISP, and perform network functions such as reading mail and news on the ISP’s
machine (a shell account). It’s a lot faster to perform these functions on your own
machine, and you have all the software you need to do so, so this option isn’t very
desirable. This option is becoming increasingly uncommon.

• You could perform all the functions on your machine, but using names and addresses
assigned to you by the ISP.

• You could perform all the functions on your machine, using addresses assigned to
you by the ISP, but you would use your own domain name.

• You get your own address space and use your own domain name.

Does it matter? That’s for you to decide. It’s certainly a very good idea to have your own
domain name. As time goes on, your email address will become more and more
important. If you get a mail address like 4711@flybynight.net, and Flybynight goes
broke, or you decide to change to a different ISP, your mail address is gone, and you have
to explain that to everybody who might want to contact you. If, on the other hand, your
name is Jerry Dunham, and you register a domain dunham.org, you can assign yourself
any mail address in that domain.

But how do you go about it? One way would be to pay your ISP to do it for you. You
don’t need to do that: it’s easy enough to do yourself on the World-Wide Web. You must
be connected to the Internet to perform these steps. This implies that you should first
connect using your ISP’s domain name, then establish your domain name, and change to
that domain.

Which domain name?
We’ll continue to assume that your name is Jerry Dunham. If you live in, say, Austin,
Te xas, you have a number of domain names you can choose from: dunham.org,
dunham.com, dunham.net, or even dunham.tx.us if you want to use the geographical
domain.

If you live in, say, Capetown, people will probably suggest that you get the domain
dunham.za, the geographical domain for South Africa. The problem with that is that
you are limiting yourself to that country. If you move to, say, Holland, you would have to
change to dunham.nl—a situation only fractionally better than being bound to an ISP.
The same considerations apply to dunham.tx.us, of course.

Your choice of domain name also affects the way you apply. In the following sections, I
assume you take my advice and apply for an organizational rather than a geographical
domain.

318 Chapter 18: Connecting to the Internet

Preparing for registration
Once upon a time, registration was handled by InterNIC, a professional body. Since then
it has been delegated to commercial companies, and the quality of service has suffered
correspondingly: they don’t even appear to know the technical terms. For example, you
may find them referring to a domain name as a ‘‘Web Address.’’ Things are still
deteriorating at the time of writing: additional companies are being allowed to register
domain names, and the field seems to attract a lot of cowboys.

Registering a domain name
The only prerequisites for registering a domain name are:

• The name must be available, though there are some legal implications that suggest
that, though you might be able to register a domain such as microsoft.edu, it might
not be good for you if you do. In fact, microsoft.edu was once registered to the
BISPL business school in Hyderabad, India, presumably not in agreement with
Microsoft.

• You must be able to specify two name servers for it—see Chapter 21 for further
details about name servers.

First, check that the name is available:

$ whois dunham.org
No match for "DUNHAM.ORG".

The InterNIC Registration Services Host contains ONLY Internet Information
(Networks, ASN’s, Domains, and POC’s).
Please use the whois server at nic.ddn.mil for MILNET Information.

Next, try to find a reputable registrar. Immediately after the transfer of registrars from
InterNIC, the only company to offer this service was Network Solutions, but now there
are many. I do not recommend Network Solutions: they’re expensive and incompetent.
If, as I recommend, you set up your mail server to refuse mail from servers without
reverse mapping, you will not be able to communicate with them, since they do not have
reverse DNS on their mail servers, and they use unregistered names for them. Judge for
yourself what this says about their technical competence.

One registrar that many FreeBSD people use is Gandi (http://www.gandi.net/), which is
slightly associated with the FreeBSD project. So far nobody has found anything negative
to say about them. Unlike Network Solutions, their web pages are also relatively simple
to understand.

Getting IP addresses
Once upon a time, it was possible to get IP addresses from InterNIC, but this practice is
now restricted to large allocations for ISPs. Instead, get the addresses from your ISP.
Routing considerations make it impractical to move IP addresses from one place to
another. If you move a long distance, you should expect to change your IP addresses in
the same way as you would change your telephone number.

Establishing yourself on the Internet 319

Choosing an Internet Service Provider
In most cases, you will get your connection to the Internet from an Internet Service
Provider, or ISP. As the name suggests, an ISP will supply the means for you to connect
your system or your local network to the Internet. They will probably also supply other
services: most ISPs can’t liv e on Internet connections alone.

In this chapter we’ll look at the things you need to know about ISPs, and how to get the
best deal. We’ll concentrate on what is still the most common setup, PPP over a dialup
line with a V.90 modem (56 kbps), which will give you a peak data transfer rate of about
7 kB/s.

Who’s that ISP?
As the Internet, and in particular the number of dialup connections, explodes, a large
number of people have had the idea to become involved. In the early days of public
Internet access, many ISPs were small companies run by very technical people who have
seen a market opportunity and have grabbed it. Other ISPs were small companies run by
not-so technical people who have jumped on the bandwagon. Still other ISPs are run by
large companies, in particular the cable TV companies and the telephone companies.
Which is for you? How can you tell to which category an ISP belongs? Do you care?

You should care, of course. Let’s consider what you want from an ISP, and what the ISP
wants. You want a low-cost, high-reliability, high speed connection to the Internet. You
may also want technical advice and value-added services such as DNS (see Chapter 21)
and web pages.

The main priority of a small ISP (or any other ISP, for that matter) is to get a good night’s
sleep. Next, he wants to ensure the minimum number of nuisance customers. After that,
he wants to ensure that he doesn’t go out of business. Only then is he interested in the
same things that you are.

In the last few years, a large number of ISPs have gone out of business, and many more
have merged with other companies. In particular, large companies frequently bought out
small techie ISPs and then ran them into the ground with their incompetence. For a
humorous view of this phenomenon, see the ‘‘User Friendly’’ cartoon series starting at
http://ars.userfriendly.org/cartoons/?id=19980824.

Questions to ask an ISP
So how do you choose an ISP? Don’t forget the value of word-of-mouth—it’s the most
common way to find an ISP. If you know somebody very technical, preferably a
FreeBSD user, who is already connected, ask him—he’ll certainly be able to tell you
about his ISP. Otherwise, a lot depends on your level of technical understanding. It’s
easy to know more about the technical aspects of the Internet than your ISP, but it doesn’t
often help getting good service. Here are a few questions to ask any prospective ISP:

320 Chapter 18: Connecting to the Internet

What kind of connections do you provide?

See the discussion on page 315.

How do you charge? By volume, by connect time, or flat rate?

Once most ISPs charged by connect time: you paid whether you transfer data or not. This
made it unattractive to an ISP to provide good performance, since that would have meant
that you could finish your session more quickly. Now adays, flat rates are becoming more
popular: you pay the same no matter how much you use the service. The disadvantage of
the flat rate is that there is no incentive to disconnect, so you might find it difficult to
establish connections.

When comparing connect time and volume rates, expect an average data transfer rate of
about 600 bytes per second for most connections via a 56 kbps modem. You’ll get up to 7
kB per second with traffic-intensive operations like file downloading, but normally, you’ll be
doing other things as well, and your data rate over the session is more likely to be 600 bytes
per second if you’re reasonably active, and significantly less if not. Faster lines typically
don’t charge by connect time: in particular, DSL lines are permanently connected and thus
charge by data volume or at a flat rate.

Another alternative that is again becoming more popular is a ‘‘download limit.’’ Your flat
monthly fee allows you to download up to a certain amount of data, after which additional
data costs money. This may seem worse than a flat rate, but it does tend to keep people from
abusing the service.

Do you have a cheaper charge for data from your own network?

Many ISPs maintain web proxy caches, ftp archives and network news. If they charge by
volume, some will give you free access to their own net. Don’t overestimate the value of
this free data.

What speed connections do you offer?

ADSL connections have two different rates, a faster one for downloads and a slower one for
the uplink. That’s fine if you’re planning to use the system as a client. If you intend to run
servers on your system, things can look very different.

If you are using a modem connection, they should be the fastest, of course, which are
currently 56 kbps.

What uplink connections do you have?

The purpose of this question is twofold: first, see if he understands the question. An uplink
connection is the connection that the ISP has to the rest of the Internet. If it’s inadequate,
your connection to the Internet will also be inadequate. To judge whether the link is fast
enough, you also need to know how many people are connected at any one time. See the
question about dialup modems below.

How many hops are there to the backbone?

Some ISPs are a long way from the Internet backbone. This can be a disadvantage, but it
doesn’t hav e to be. If you’re connected to an ISP with T3 all the way to the backbone,
you’re better off than somebody connected directly to the backbone by an ISDN Basic Rate
connection. All other things being equal, though, the smaller the number of hops, the better.

Who’s that ISP? 321

How many dialup modems do you have?

This question has two points to make as well. On the one hand, the total bandwidth of these
modems should not exceed the uplink bandwidth by too much—let’s say it shouldn’t be
more than double the uplink bandwidth. On the other hand, you want to be able to get a free
line when you dial in. Nothing is more frustrating than having to try dozens of times before
you can get a connection. This phenomenon also causes people not to disconnect when
they’re finished, especially if there is no hourly rate. This makes the problem even worse.
Of course, the problem depends on the number of subscribers, so ask the next question too.

How many subscribers do you have? What is the average time they connect per
week?

Apart from the obvious information, check whether they keep this kind of statistics. They’re
important for growth.

What’s your up-time record? Do you keep availability statistics? What are they?

ISPs are always nervous to publish their statistics. They’re never as good as I would like.
But if they publish them, you can assume that that fact alone makes them better than their
competitors.

What kind of hardware and software are you running?

This question will sort out the good techie ISPs from the wannabes. The real answers aren’t
quite as important as the way they explain it. Nevertheless, consider that you’ll be better off
with an ISP who also runs FreeBSD or BSD/OS.1 Only small ISPs can afford to use UNIX
machines (including FreeBSD) as routers; the larger ones will use dedicated routers.

Next, in my personal opinion, come other UNIX systems (in decreasing order of preference,
Solaris 2.X, Linux and IRIX), and finally, a long way behind, Windows NT. If you’re
looking for technical support as well, you’ll be a lot better off with an ISP who uses
FreeBSD or BSD/OS. You’ll also be something special to them: most ISPs hate trying to
solve problems for typical Windows users.

How many name servers do you run?

The answer should be at least 2. You’ll probably be accessing them for your non-local name
server information, because that will be faster than sending requests throughout the Internet.

Can you supply primary or secondary DNS for me? How much does it cost?

I strongly recommend using your own domain name for mail. That way, if your ISP folds,
or you have some other reason for wanting to change, you don’t need to change your mail
ID. To do this, you need to have the information available from a name server 24 hours per
day. DNS can generate a lot of traffic, and unless you’re connected to the network 100% of
the time, mail to you can get lost if a system can’t find your DNS information. Even if you
are connected 100% of the time, it’s a good idea to have a backup DNS on the other side of
the link. Remember, though, that it doesn’t hav e to be your ISP. Some ISPs supply free
secondaries to anybody who asks for them, and you might have friends who will also do it
for you.

The ISP may also offer to perform the domain registration formalities for you—for a fee.

1. BSD/OS is a commercial operating system closely related to FreeBSD. If you have a few thousand dollars to
spare, you may even find it better than FreeBSD. Check out http://www.wrs.com/ for further details.

322 Chapter 18: Connecting to the Internet

You can just as easily do this yourself: see page 318 for more details. Check the fee,
though: in some countries, the ISP may get a discount for the domain registration fees. If
it’s big enough, registering via the ISP may possibly be cheaper than doing it yourself.

Can you route a class C network for me? What does it cost?

If you’re connecting a local area network to the Internet, routing information must be
propagated to the Net. ISPs frequently consider this usage to be ‘‘commercial,’’ and may
jack up the prices considerably as a result.

Alternatives to a full class C network are a group of static addresses (say, 8 or 16) out of the
ISP’s own assigned network addresses. There’s no particular problem with taking this route.
If you change ISPs, you’ll have to change addresses, but as long as you have your own
domain name, that shouldn’t be a problem.

Another possibility might be to use IP aliasing. See page 393 for more details.

Can you supply me with a static address? How much does it cost?

It’s highly desirable to have static addresses. See page 346 for more details. Unfortunately,
many ISPs use static IPs to distinguish links for commercial use from those for home use,
and may charge significantly more for a static address.

Do you give complete access to the Internet, or do you block some ports?

This is a complicated question. Many ISPs block services like smtp (mail) or http (web
servers). If they do, you can’t run a mail or web server on your own machines. In the case
of mail, this is seldom a problem: they will provide you with their own mail server through
which you must relay your mail. This also allows the ISP to limit spam, which might
otherwise come from any system within the network.

For http, the situation is different. Usually ISPs charge money for supplying access to their
own web servers. On the other hand, this arrangement can provide much faster web access,
especially if you are connected by a slow link, and you may also save volume charges.
Ultimately it’s a choice you need to make.

Do you have complete reverse DNS?

In previous editions of this book, I didn’t ask this question: it seemed impossible that any
ISP would answer ‘‘no.’’ Unfortunately, times have changed, and a number of ISPs not only
don’t supply DNS, they seem to think it unnecessary. Don’t hav e anything to do with them:
firstly, it shows complete incompetence, and secondly it will cause trouble for you accessing
a number of sites, including sending mail to the FreeBSD mailing lists.

Who’s that ISP? 323

Making the connection
After calling a few ISPs, you should be able to make a decision based on their replies to
these questions. The next step is to gather the information needed to connect. Use Table
18-1 to collect the information you need. See Chapter 20 for information about
authentication, user name and password.

Table 18-1: Information for ISP setup

Information Fill in specific value

IP address of your end of the link

IP address of the other end of the link

Kind of authentication (CHAP, PAP,
login)

User or system name

Password or key

Primary Name Server name

Primary Name Server IP address

Secondary Name Server name

Secondary Name Server IP address

Pop (Mail) Server Name

News Server Name

(modems.mm), page 325

19
Serial

communications

In this chapter:
• Terminology
• Asynchronous and

synchronous
communication

• Ser ial por ts
• Modems
• Modem commands

In this chapter:
• Terminology
• Asynchronous and

synchronous
communication

• Ser ial por ts
• Modems
• Modem commands

UNIX has always had a high level of support for serial lines, but their purpose has
changed dramatically. In the early 70s, the standard ‘‘terminal’’ was a Teletype KSR35, a
10-character-per-second serial printer with keyboard. Early UNIX serial line support was
geared towards supporting these devices, either directly connected, or via a modem.

Even in the early 80s, when 4.2BSD introduced network support, things didn’t change
much: the network support used different hardware. By this time, the Teletypes had been
replaced with glass ttys, in other words serial terminals with a monitor instead of a
printer. The speeds had gone up from the 110 bps of the Teletype to 9600 bps, but the
underlying principles hadn’t changed.

It wasn’t until the last 10 years that the glass ttys were replaced by display boards directly
connected to the system bus, or by other machines connected by Ethernet. The role of the
serial port has changed completely: nowadays, they’re used mainly for mice and dialup
Internet connections.

This change in use has invalidated a few basic concepts. Only a few years ago, the
standard ‘‘high-speed’’ modem was a V.22bis 2400 bps modem, even then too slow for an
Internet connection. The standard data communication line was 56 kb/s, and it was
invariably a leased line. As a result, the Internet grew up assuming that connections were
leased lines, and therefore permanently connected. Even today, the Internet protocols do
not deal well with dialup access.

On the other hand, UUCP did use dialup access. As a result, provisions for dialup access
in UNIX tend to be derived from UUCP. This doesn’t make for smooth integration.

In this chapter, we’ll look at the way FreeBSD handles serial communications, at how
325

326 Chapter 19: Serial communications

modems work, and how the two fit together.

Terminology
Any serial connection has two ends, which may be computers, terminals, printers or
modems. In modem terminology, the computers are Data Terminal Equipment or DTE
(this terminology arose at a time when the device connected to a modem was usually a
terminal), and modems are Data Communication Equipment or DCE. You’ll also
sometimes hear the name dataset for a modem.

Asynchronous and synchronous communica-
tion
There are two different ways to transmit serial data, called synchronous and asynchro-
nous communication. They grew up in different worlds:

Asynchronous communication
Asynchronous communication predates computers. It was originally developed to run
teletypewriters, electrical typewriters that were run off a serial data stream, the best-
known of which were made by the Teletype corporation. These machines were
frequently used to provide a remote transcript of what somebody was typing miles away,
so they would typically print one character at a time, stop, and wait for the next. In the
early days of UNIX, the standard terminal was a Teletype model KSR35, commonly just
called teletype or tty (pronounced ‘‘titty’’).

Here’s a picture of a typical byte encoding:

StartParity

1

D7

1

D6

1

D5

0

D4

1

D3

0

D2

1

D1

1

D0

0

Stop Stop
Bit 1 Bit 2

Figure 19-1: Asynchronous byte encoding

This figure shows an encoding for the letter j, in binary 01101011. We’ll see a number
of things about it:

• Before the character starts, the line is idle, which shows as a high level: this indicates
to the teletype that the line is still connected.

Asynchronous and synchronous communication 327

• First comes a start bit. In the olden days, this bit started the motor of the teletype
mechanism. Now it signals that data is coming.

• Next comes a parity bit. To detect any transmission errors, this character is encoded
with even parity. The parity bit is set to 1 if the character contains an odd number of
bits, and to 0 otherwise, which ensures that the character, including the parity bit,
always has an even number of bits. If a single bit is corrupted during transmission,
the character will arrive with odd parity, and the receiver will detect an error.

• Next come the bits of the character, last bit first. We represent 1 with a low lev el and
0 with a high level.

• Finally come one or two stop bits. The stop bits were originally intended to give the
teletype time to stop the motor, but they are now largely superfluous. You needed two
stop bits for a teletype, but nowadays you should always use one.

• This example also shows something else of importance: there are a number of ways
to encode the character. How many bits? How many stop bits? Odd parity? Even
parity? No parity? Mark parity (always a 1 bit)? Space parity (always a 0 bit)?
How much time from one bit to the next (what bit rate)? They’re all set with the stty
program (see man page stty(1)), but if you set them wrongly, you’ll run into trouble.

• The encoding isn’t very efficient. For every character you send, you also send a start
bit and a stop bit. Most communications no longer use the parity bit, but this still
means that you have a 25% overhead on communication: for every 8 bits, you send
10, and you could send up to 12, as in this example. We’ll see that synchronous
communication doesn’t hav e this problem. Users of synchronous communication
protocols often refer to asynchronous communication as start-stop communication.

Synchronous communication
By contrast with asynchronous communication, synchronous communication comes from
the mainframe world, and it assumes that data does not come one byte at a time. Instead,
it transmits data in blocks. Each block is preceded by one or two SYN characters that tell
the receiver that data is coming, and that enable it to determine the correct orientation of
the bits in the data.

All modern modems use synchronous communication on the phone line, because it is
more efficient, and it’s the basis of protocols such as SNA and X.25, but you will almost
never see any other use of it in UNIX systems.

Serial ports
Nowadays, all PCs come equipped with two serial ports, which are called COM1: and
COM2: in the DOS world. UNIX names are different, and FreeBSD calls these same
devices sio0 and sio1. It’s possible to connect up to four direct serial ports on a
standard PC, but due to the design of the board, each one requires a separate IRQ line. If
you put two serial ports on the same interrupt line, neither of them will work.

328 Chapter 19: Serial communications

The first two devices, sio0 and sio1, normally use the default IRQs 4 and 3. By default,
however, PC manufacturers put COM3: and COM4: also at IRQs 4 and 3. How can this
work? It can’t, if you also have COM1: and COM2: enabled at those IRQs. However,
DOS tends to do only one thing at a time, so you can use different ports at different times
on the same IRQ, as long as the interrupts aren’t enabled on more than one of the ports at
a time. This restriction is unacceptable for UNIX, so we have to put them somewhere
else. The only unused interrupt available to 8-bit boards is IRQ 5, originally intended for
a second parallel printer port.

There’s a very good chance that IRQ 5 will already be occupied. What can you do? If
one of the boards has a 16-bit or better interface, you can check if one of the interrupts 10
to 15 is available. All EISA and PCI boards fit into this category, and so do ISA boards
with two connectors to the motherboard. Unfortunately, a lot of ISA serial cards only
have an 8-bit interface. The only alternative is an intelligent serial board that only
occupies a single interrupt. In this case, you will probably have to build a custom kernel.
See the man page sio(4).

Connecting to the port
Theoretically, a serial line can consist of only three wires: a Receive Data line, often
abbreviated to RxD, a Tr ansmit Data line (TxD), and a Signal Ground line (SG). In fact,
it is possible to get a link to work like this, but there are a number of problems:

• How do we know when the other end is able to accept data? It may be busy
processing data it has already received.

• How do we know when it’s even switched on?

• In the case of a modem, how do we know when it is connected to the modem at the
other end?

We solve these questions, and more, by the use of additional lines. The most common
standard is RS-232, also known as EIA-232, a standard for DCE to DTE connection. In
Europe, it is sometimes confused with the CCITT V.24 standard, though V.24 does not in
fact correspond exactly to RS-232. Most external modems display some of these signals
on LED, but modem manufacturers love to create alternative abbreviations for signal
names. Here are the signals that RS-232 defines, with some of the more common
abbreviations that you may see on external modems.

Ser ial por ts 329

Table 19-1: RS-232 signals and modem LEDs

RS-232 Modem
name Pin LED Purpose
PG 1 Protective ground. Used for electrical grounding only.

TxD 2 TD D1 Transmitted data: data coming from the DTE to the
modem.

RxD 3 RD D2 Received data: data coming from the modem to the DTE.

RTS 4 Request to send. Indicates that the device has data to
output.

CTS 5 Clear to send. Indicates that the device can receive input.

DSR 6 MR PW

ON

Data set ready. Indicates that the modem is powered on
and has passed self-test. On some modems, PW indicates
that power is on, and MR indicates that it is operative.

SG 7 Signal ground. Return for the other signals.

DCD 8 CD M5 Carrier detect. Indicates that the modem has connection
with another modem.

DTR 20 DTR S1 Data terminal ready. Indicates that the terminal or
computer is ready to talk to the modem.

RI 22 AA Ring indicator. Raised by a modem to indicate that an
incoming call is ringing. The AA indicator on a modem will
usually flash when the incoming call is ringing.

AA ‘‘Auto Answer.’’ Indicates that the modem will answer an
incoming call.

HS ‘‘High Speed.’’ Indicates that the modem is running at a
higher speed than its minimum. Individual modems
interpret this differently, but you can assume that something
is wrong if your modem has this indicator and it’s off
during transmission.

MNP Indicates that error correction is active.

OH ‘‘Off hook.’’ Indicates that the modem has some
connection with the phone line.

PW Indicates that modem power is on. May or may not imply
DSR.

The line DCD tells the DTE that the modem has established a connection. We’ll look at
how to use this information on page 335.

In addition to these signals, synchronous modems supply clocks on pins 17 and 19. For
more details about RS-232, see RS-232 Made easy by Martin Seyer.

330 Chapter 19: Serial communications

When can I send data?
There are two ways to determine if the other end is prepared to accept data: hardware
handshaking and software handshaking. Both are also referred to as flow control. In
each case, the handshaking is symmetrical. We’ll look at it from the point of view of the
DTE, because this is the more common viewpoint.

In hardware handshaking, the DCE raises CTS (Clear to Send) when it’s ready to accept
input. The DTE only transmits data when CTS is asserted from the other end. You’ll
often see that the DTE asserts RTS (Request to send) when it wants to send data. This is
a throwback to the days of half-duplex modems, which could only transmit in one
direction at a time: RTS was needed to switch the modem into send mode.

Software handshaking is also called X-on/X-off. The DCE sends a character (X-off, which
corresponds to Ctrl-S) when the buffer is full, and another (X-on, corresponding to Ctrl-
Q) when there is space in the buffer again. You can also use this method on a terminal to
temporarily stop the display of a lot of data, and then restart it. It’s no longer a good
choice for modems.

For hardware handshake to work, your modem must be configured correctly, and you
must have the correct cables. If it isn’t, the symptoms will be very slow response when
transferring large quantities of data: at a higher level, TCP can recover from these
overruns, but it takes at least a second to do so every time. We’ll see how to check that
your modem has the correct kind of flow control on page 333.

Modems
A modem is a device that transfers digital data into a form suitable for transmission over a
transmission line, which is usually a telephone line. Telephone lines are limited to a
frequency of about 3.6 kHz, and this limited the speed of older modems to about 1200
bits per second. Modern modems use many sophisticated techniques to increase the
speed way beyond this. Current modems transmit at 56 kilobits per second.

Let’s consider the modem connection in the reference network on page 294, which is
repeated in figure 19-2. As we can see, there are three connections:

• The connection from the router gw to the local modem, connected at 57,600 bits per
second.

• The connection between the modems, at 56,000 bits per second.

• The connection from the ISP’s modem to his router, at 115,200 bits per second.

You’ll also note another value specified here: the connection between the modems is
2,400 baud. Isn’t a baud the same thing as a bit per second? No, not always. The term
baud is a representation of the frequency of data on a serial line. On the connections
between the systems and the modem, which handle raw digital data, it corresponds to the
bit rate. On the modem line, it doesn’t. Here, it indicates that 2,400 units of data are sent
per second.

Modems 331

Unfortunately, many people use the term baud where bit rate should be used. This didn’t
make any difference in the old days with simple modems where the bit rate and baud rate
were the same, but nowadays it’s confusing.

•

•

gw
Router

•
•

modem

•
•

modem

•

•

ISP
router

Local modem connection, 57,600 bps

PPP link, 56,000 bps, 2400 baud

ISP modem connection, 115,200 bps

DTE

DCE

DCE

DTE

Figure 19-2: Network modem connection

Modem speeds
Tw o factors determine the data transmission speed of a modem: the protocol and the use
of data compression. Table 19-2 on page 332 gives an overview of modem protocols and
their speeds.

Currently, the most popular modem protocol is V.90. V.90 pushes modem technology to
the limit, and it only works when the other end of the link is a digital (ISDN) connection.
You can’t get a 56 kb/s connection with any kind of analogue modem at the other end.
As a result, they’re really only suitable for connection to a large ISP site. In addition, the
actual speed of the connection depends greatly on the telephone line quality, so the
difference between a V.90 and a V.34bis modem may not be as much as it appears.

Data compression
In addition, you usually have a choice of data compression: V.42bis or MNP-5. The
choice depends on what the modem at the other end of the line does. You can set most
modems to negotiate either protocol. These protocols include related error correction
standards, called V.42 or MNP2-4 respectively. If you believe the sales claims, these
compression protocols will give you up to 100% increase in data throughput. Consider
this the upper limit; a lot of data is binary, and when ftp’ing a typical gzipped tar archive,
you will probably get almost no speed improvement.

332 Chapter 19: Serial communications

Data compression has one negative side: it increases the data rate, but it also increases
latency, the time it takes for data to get from the local DTE to the remote DTE. The data
doesn’t take as long on the line, but it spends more time in the modems being compressed
and uncompressed. If you’re running a protocol like PPP that supplies optional
compression in the software, you may find it advantageous to turn off compression.
We’ll look at that again in Chapter 20, Configuring PPP.

Table 19-2: Modem protocols and speeds

Protocol Speed (bps)

Bell 203 300
V.21 300
Bell 212 1200
V.22 1200
V.22bis 2400
V.32 9600
V.32bis 14400
V.34 28800
V.34bis 33600
V.90 56000

The link speed
The standard PC serial hardware can run at speeds that are a fraction of 115,200 bps (in
other words, 115200 divided by a small integer). This gives the following combinations:

Table 19-3: Serial line speeds

Divisor Speed (bps)

1 115200
2 57600
3 38400
4 28800
5 23040
6 19200

You’ll notice that it can’t run at 33600 or 56000 bps. Also, looking at the example above,
you’ll note that all three links run at different speeds. How can that work? Only a few
years ago, it wouldn’t, but modern modems can buffer data. For example, the ISP can
send data to the modem far faster than the modem can send it to the other modem. It
stores the data in internal memory until it can be transmitted. This can also happen at the
other end. If you misconfigure your line so that the local link runs at 9600 bps, things
will still work, but of course the total speed is the speed of the slowest link, in this case
9600 bps.

Modems 333

This flexibility brings a problem with it: the modem can’t know in advance how fast the
connection to the computer is. It needs a way to find out. The modem solves the
question of local line speed by a trick: all commands start with AT or at (you’re not
allowed to mix cases, like aT or At). It can recognize these characters even if they arrive
at the wrong speed, and thus it can establish the speed of the connection.

Dialing out
Nowadays, all modems are capable of dialing. That wasn’t always the case, and in some
old documentation you may find references to an Auto-Call Unit or ACU, which is simply
the dialler part of a modem connected via a separate port. Typically, one ACU could
serve multiple modems.

Nearly every modern modem uses a command set designed by Hayes Corporation, which
is thus called the Hayes Command Set. We’ll look at it in the following section. It is also
sometimes called the AT command set, because nearly all the commands start with the
sequence AT. The CCITT also created an autodial recommendation, V.25, which was
occasionally implemented, but now appears to be dead.

Modem commands
Modern modems store their state in a number of registers, called S registers. The register
use varies somewhat from manufacturer to manufacturer, but most modems have a
number in common. They each store a one-byte value, ranging between 0 and 255.
Here’s a list of the more important ones for a Rockwell V.34 chip set. The name of the
chip set is not the same as the name of the modem. You’ll note that one of the commands
enables you to find out the chip set version, as we’ll see in the example that follows.

Table 19-4: Selected S registers

Register number Purpose

S0 Number of rings until auto-answer. 0 disables auto-answer. Set to 0
for no automatic answer, or 1 for auto-answer.

S2 The escape character, which lets you return from online mode to
command mode. Normally, this character is a +. To return to
command mode, wait a second after any previous input, enter +++, and
wait a second, after which the modem should reply with OK.

S6 The time, in seconds, to wait before blind dialing. If you have set your
modem to not wait for a dial tone (maybe because it doesn’t
understand the dial tone), it will wait this long and then try to dial
anyway.

334 Chapter 19: Serial communications

Register number Purpose

S7 The number of seconds to wait after dialing before DCD must be
asserted (before a connection is established). If this is set too short,
you will not be able to establish a connection. If it’s too long, you will
waste time when there is no answer or the line is busy.

S11 The duration of DTMF (dialing) tones. If these are set incorrectly, the
telephone exchange may not understand the number you dial.

The AT command set tells the modem to do something specific. Here are some of the
more important ones.

Table 19-5: Selected AT commands

Command Meaning

A/ Redial the last number.
ATA Answer an incoming call manually. This is an alternative to auto-answer

by setting S0.

ATDnumber Dial number. This command has a large number of options, but if your
modem is set up correctly, you probably won’t need any of them.

ATEnumber Enable command echo if number is 1, disable it if number is 0. The
setting of this parameter can be important for some chat scripts, which
may not respond correctly otherwise.

ATH0 Disconnect the line.

ATInumber Display modem identification. The values of number vary from one
modem to the next. See the examples below.

ATLnumber Set the speaker volume. number ranges from 0 to 3. 0 means ‘‘speaker
off,’’ 3 is the loudest.

ATMnumber Determine when the speaker is on. 0 means ‘‘always off,’’ 1 means
‘‘speaker on until connect,’’ 2 means ‘‘speaker always on,’’ and 3 means
‘‘speaker off during dialing and receiving.’’

ATO0 Go back online from command mode. You don’t need this command
when dialing: the modem automatically goes online when the connection
is established.

ATP Select pulse dial. If your exchange doesn’t understand DTMF (tone)
dialing, you should set this mode. Never use it if your exchange
understands DTMF: pulse dialing (also known as steam dialing) is much
slower.

ATQnumber If number is 0, suppress result codes (like OK after every command). If
number is 1, enable them. This value can be of importance for chat
scripts.

Modem commands 335

Command Meaning

ATSr=n Set the value of S register r to n.

ATSnumber? Display the contents of an S register. See the example below.

ATT Set tone (DTMF) dialing.

ATVnumber If number is 0, return result codes in numeric form. If it’s 1, return text.
Don’t rely on either form to be consistent from one modem to the next.

ATXnumber Determine the form of the result codes. This depends a lot on the
manufacturer, but it’s important for chat scripts. If you run into trouble,
with chat scripts, check your modem documentation.

ATZ Reset modem configuration to default values.

AT&Knumber Select flow control method. Normally, 3 enables RTS/CTS flow control,
which is what you want.

AT&Rnumber If number is 0, CTS is only asserted if the DTE asserts RTS, even if the
modem is able to receive data. If it’s set to 1, it behaves normally. Make
sure this value is set to 1.

AT&Tnumber Perform modem-specific test number. This command is the origin of the
statement: ‘‘UNIX is a trademark of AT&T in the USA and other
countries. AT&T is a modem test command.’’

AT&V View the current configuration. See the example below.

AT&Wnumber Store the current configuration as profile number. Most external
modems can store two profiles, or configurations. If number is not
specified, write the profile specified in a previous AT&Y command. See
the example below.

AT&Ynumber Decide which profile (0 or 1) will be loaded when the modem is reset,
and which will be written by the command AT&W

Dialing out manually
In this section, we’ll look at what needs to be done to establish a dial-out connection.
You don’t normally do this yourself: some software will do it for you automatically. It’s
useful to know what goes on, though: it can be of immense help in solving connection
problems.

There are two distinct things that you want to do with the modem: first, you send
commands to the modem to set up the link. Once the link is established, you don’t want
to talk to the modem any more, you want to talk to the system at the other end of the link.

In the old days, the system used a separate ACU to establish the connection, and the
solution was simple: the system issued the dialing commands to the ACU and opened the
modem in such a manner that the open did not complete until a connection had been
established. Nowadays, the modem handles both dialing and the establishment of
connection. But to do so, the system has to open the modem before communication has
been established.

336 Chapter 19: Serial communications

The terminal parameter clocal enables communication with a device that is not
asserting DCD (such as a modem that hasn’t established a connection yet). When it
starts, the software sets clocal. When it has finished talking to the modem and wants to
wait for the connection to be established, it resets (turns off) clocal and waits for DCD.
You can check this with the stty command:

stty -f /dev/cuaa2 -a
ppp disc; speed 57600 baud; 0 rows; 0 columns;
lflags: -icanon -isig -iexten -echo -echoe -echok -echoke -echonl

-echoctl -echoprt -altwerase -noflsh -tostop -flusho -pendin
-nokerninfo -extproc

iflags: -istrip -icrnl -inlcr -igncr -ixon -ixoff -ixany -imaxbel ignbrk
-brkint -inpck ignpar -parmrk

oflags: -opost -onlcr -oxtabs
cflags: cread cs8 -parenb -parodd hupcl -clocal -cstopb crtscts -dsrflow

-dtrflow -mdmbuf
cchars: discard = ˆO; dsusp = ˆY; eof = ˆD; eol = <undef>;

eol2 = <undef>; erase = ˆ?; intr = ˆC; kill = ˆU; lnext = ˆV;
min = 1; quit = ˆ\; reprint = ˆR; start = ˆQ; status = ˆT;
stop = ˆS; susp = ˆZ; time = 0; werase = ˆW;

This example, taken when the modem is connected, shows clocal reset. As you can see,
this is indicated by the text -clocal.

There’s a problem here: what if this line is also enabled for dialup? As we shall see on
page 338, there will be a getty process in the process of opening the line. It won’t
succeed until DCD is asserted, so we can dial with no problem. But when the connection
is established, how do we stop getty from being there first?

The FreeBSD solution is to create separate devices for each case. For the second serial
port, sio1, the system creates a file /dev/cuaa1 for dialing out, and /dev/ttyd1 for dialing
in. If cuaa1 is open, an open on ttyd1 does not complete when connection is established.

Dialing out—an example
For an example of what you might look at, let’s consider a manual dialup to an ISP. This
assumes that you are using user PPP (see page 348) and that have an entry ISP in your
/etc/ppp/ppp.conf. If you don’t hav e an entry for an ISP, you can still test the modem, but
in this case you won’t be able to dial. In this case, simply omit the text ISP.

ppp ISP
User Process PPP. Written by Toshiharu OHNO.
Using interface: tun0
Interactive mode
ppp ON freebie> term go into direct connect mode
Enter to terminal mode.
Type ‘˜?’ for help.
at synchronize with the modem
OK
at&v look at the modem profile
ACTIVE PROFILE:
B0 E1 L0 M1 N1 Q0 T V1 W0 X4 Y0 &C1 &D2 &G0 &J0 &K4 &Q5 &R1 &S0 &T5 &X0 &Y0
S00:000 S01:000 S02:043 S03:013 S04:010 S05:008 S06:002 S07:060 S08:002 S09:006
S10:014 S11:090 S12:050 S18:000 S25:005 S26:001 S36:007 S37:000 S38:020 S44:020
S46:138 S48:007 S95:000

STORED PROFILE 0:
B0 E1 L0 M1 N1 Q0 T V1 W0 X4 Y0 &C1 &D2 &G0 &J0 &K4 &Q5 &R1 &S0 &T5 &X0
S00:000 S02:043 S06:002 S07:060 S08:002 S09:006 S10:014 S11:090 S12:050 S18:000

Modem commands 337

S36:007 S37:000 S40:104 S41:195 S46:138 S95:000

STORED PROFILE 1:
B0 E1 L1 M1 N1 Q0 T V1 W0 X4 Y0 &C1 &D2 &G0 &J0 &K3 &Q5 &R1 &S0 &T5 &X0
S00:000 S02:043 S06:002 S07:060 S08:002 S09:006 S10:014 S11:090 S12:050 S18:000
S36:007 S37:000 S40:104 S41:195 S46:138 S95:000

TELEPHONE NUMBERS:
0=T1234567890 1=
2= 3=

OK

The term profile refers to a set of the complete configuration information for the modem.
External modems can usually store two different profiles. Some modems may not have
any stored profiles, or they may have a different number. The AT&V command shows the
current configuration (‘‘active profile’’) and the two stored profiles. The first line reflects
the parameters set with AT commands (for example, L0 means that the command ATL0,
turn off the speaker, has been issued). The next two or three lines reflect the values of the
S registers. In addition, this modem can store up to four telephone numbers, a feature
that is seldom of great interest.

If you look at this profile, you’ll notice that the active profile includes the parameter &K4.
This means ‘‘use XON/XOFF flow control.’’ This is not desirable: it’s better to use
RTS/CTS flow control. To fix it,

at&k3 set RTS/CTS flow control
OK
at&w write the active profile
OK
at&v and check
ACTIVE PROFILE:
B0 E1 L0 M1 N1 Q0 T V1 W0 X4 Y0 &C1 &D2 &G0 &J0 &K3 &Q5 &R1 &S0 &T5 &X0 &Y0
S00:000 S01:000 S02:043 S03:013 S04:010 S05:008 S06:002 S07:060 S08:002 S09:006
S10:014 S11:090 S12:050 S18:000 S25:005 S26:001 S36:007 S37:000 S38:020 S44:020
S46:138 S48:007 S95:000

STORED PROFILE 0:
B0 E1 L0 M1 N1 Q0 T V1 W0 X4 Y0 &C1 &D2 &G0 &J0 &K3 &Q5 &R1 &S0 &T5 &X0
S00:000 S02:043 S06:002 S07:060 S08:002 S09:006 S10:014 S11:090 S12:050 S18:000
S36:007 S37:000 S40:104 S41:195 S46:138 S95:000

STORED PROFILE 1:
B0 E1 L1 M1 N1 Q0 T V1 W0 X4 Y0 &C1 &D2 &G0 &J0 &K3 &Q5 &R1 &S0 &T5 &X0
S00:000 S02:043 S06:002 S07:060 S08:002 S09:006 S10:014 S11:090 S12:050 S18:000
S36:007 S37:000 S40:104 S41:195 S46:138 S95:000

TELEPHONE NUMBERS:
0=T1234567890 1=
2= 3=

OK

The active profile includes the parameter &Y0, so the AT&W command writes back to
stored profile 0.

The AT&V command doesn’t show all the S registers. Some of them relate to the current
state of the modem, and aren’t part of the configuration. For example, my modem
includes an S register S86, the Call Failure Reason Code. If a call fails, it could be
interesting to look at it. To do so:

338 Chapter 19: Serial communications

ats86? show contents of S86
012 Connection dropped by other end

With this background, we can now proceed to establish a connection:

atd1234567 just dial
CONNECT 57600
ppp ON freebie>
PPP ON freebie>

Dialing in
Traditionally, UNIX distinguishes between local serial terminals and terminals connected
by modem by whether they assert the DCD signal. It starts a getty (for Get TTY) process
for each line. getty opens the line, but for modems the line state is set in such a way that
the call to open does not complete until the DCE asserts DCD. This is done by resetting
the flag clocal. If you look at the line state with the stty program, it will show
-clocal if the flag is reset.

To set up a line for dialing in, add information about the line in the file /etc/ttys. The
default file contains a number of lines like:

ttyd0 "/usr/libexec/getty std.9600" unknown off secure

This information has the following meaning:

• The first column is the name of the terminal special file, relative to /dev. In other
words, this entry represents the file /dev/ttyd0.

• The next field consists of the text /usr/libexec/getty std.9600. This is the
invocation for getty: the getty program is /usr/libexec/getty, and it is invoked with the
parameter std.9600. This is a label in the file /etc/gettytab, and describes a standard
9600 bps connection. You’ll probably want to upgrade to std.57600.

• unknown refers to the terminal type. This is the value to which getty sets the
environment variable TERM. If you know that only people with VT100 terminals dial
in, you might change this string to vt100, but you should do this with care. It can
cause a real mess on the screen, and even make it impossible to work with it.

• The remaining fields can occur in any order. off means ‘‘don’t start the getty after
all.’’ If you want to run a getty on this line, change this string to on.

secure means that only people you trust can access this line, so you can allow a
root login on this line. That’s fine for a direct connect terminal in the same room,
for example. It’s not a good idea for a modem to which anybody can dial up. If the
line is not secure, just omit the string.

After changing /etc/ttys, send init (process 1) a HUP signal to tell it to re-read /etc/ttys:

kill -1 1

(ppp.mm), page 339

20
Configuring

PPP

In this chapter:
• Quick setup
• How PPP wor ks
• The infor mation you

need to know
• Setting up user PPP
• Setting up ker nel

PPP
• Things that can go

wrong

In this chapter:
• Quick setup
• How PPP wor ks
• The infor mation you

need to know
• Setting up user PPP
• Setting up ker nel

PPP
• Things that can go

wrong

Tw o protocols support connection to the Internet via modem: SLIP (Serial Line Internet
Protocol) and PPP (Point to Point Protocol). As the name suggests, SLIP supports only
IP. It is an older, less rugged protocol. Its only advantage is that it may be available
where PPP isn’t. If you have the choice, always take PPP: it differs from SLIP in being
able to handle multiple protocols simultaneously, and it’s also used on many DSL links
(PPP over Ethernet or PPPoE). In this chapter, we’ll look only at PPP.

PPP can perform a number of functions:

• It dials and establishes a phone connection if necessary. Strictly speaking, this isn’t
part of the PPP specification, but it is supported by most PPP implementations.

• It performs authentication to ensure that you are allowed to use the connection.

• It performs negotiation to decide what kind of protocol to use over the link. You
might think, ‘‘that’s OK, I’m just using IP,’’ but in fact there are a number of different
ways to transmit IP datagrams over a PPP link. In addition, the other end may be
able to handle non-Internet protocols such as X.25, SNA and Novell’s IPX.

• It can perform line quality monitoring to ensure that the modems are able to
understand each other.

339

340 Chapter 20: Configuring PPP

FreeBSD provides two versions of PPP:

• Traditional BSD implementations of IP are located in the kernel, which makes for
more efficiency. The corresponding implementation of PPP is referred to as kernel
PPP. We’ll look at it on page 355.

• Although kernel PPP is more efficient, it’s also frequently more difficult to debug. As
a result, FreeBSD also supplies an implementation known as user PPP or iijppp, after
the Internet Institute of Japan, which supplied the original base code. It uses the
tunnel driver to pass IP packets up to a user process. It’s easier to configure and
debug, and though it’s not as efficient, the difference is not usually a problem. We’ll
look at this implementation on page 348.

If you have a DSL link, you don’t hav e a choice of version: currently, only User PPP
supports PPPoE.

Quick setup
The following sections go into some detail about how PPP works. It’s not completely
necessary to know it all to set up PPP. If you’re in a hurry, you can move on to the
configuration summaries on page 348 for user PPP, or page 359 for kernel PPP.

How PPP works
The following steps are necessary to set up a PPP connection:

• Set up a serial connection between the two systems. This could be a direct wire
connection, but normally it’s a dialup modem or an ISDN or DSL link.

• For a modem link, establish connection, traditionally called dialing the other end.
The modems then set up a link and assert DCD (Data Carrier Detect) to tell the
machines to which they are connected that the modem connection has been
established.

• Start PPP. PPP selects a network interface to use for this connection.

• The two PPP processes negotiate details like IP address, protocol, and authentication
protocols.

• Establish routes to the systems at the other end of the link.

On the following pages, we’ll look at these points in detail.

The interfaces
Most network interfaces are dedicated to networking. For example, an Ethernet adapter
can’t be used for anything else. Serial lines are different: you could also use them to
connect a mouse or even a remote terminal. There’s another difference, too: you access
serial lines via their device names. You access network interfaces via the ifconfig

How PPP wor ks 341

program, because they don’t usually have device names—in technical jargon, they’re in a
separate name space from files. How do we solve this conflict?

The solution may seem a little surprising: PPP uses two different devices for each
connection. You decide which serial line you want to use, and the software chooses a
network interface for you, though you can override this choice if you’re using user PPP.
For example, your serial line might be called /dev/cuaa0, /dev/cuaa1 or /dev/cuaa2,
while your interface will be called tun0 or tun1 (for user PPP), or ppp0 or ppp1 (for
kernel PPP). It’s possible to connect to a DSL line without PPP, but when you use
PPPoE, you also have two devices, the Ethernet interface and tun0 (Kernel PPP does not
support PPPoE).

The tunnel device uses a device interface called /dev/tunn, where n is a digit, to read and
write to the other side of the corresponding network interface.

User PPP runs in user space, so it does require a device name for the network interface,
for example tun0. It uses this device to read and write to the back end of the tunnel
interface.

Dialing
If you’re running a PPP connection over a dial-up link, you’ll need to establish a
telephone connection, which is still called dialing. That’s a modem function, of course,
and it’s not defined in the PPP standard.

User PPP includes both built-in dialing support and external dialing support, while kernel
PPP supplies only the latter. In practice, the only difference is the way your configuration
files look. We’ll look at these when we discuss the individual implementations.

You don’t need to dial for a DSL connection.

Negotiation
Once the connection is established and the PPP processes can talk to each other, they
negotiate what PPP features they will use.1 The negotiation is successful if the two sides
can agree on a functional subset of the features both would like to hav e.

For each feature of the link, PPP negotiation can perform up to two actions. User PPP
uses the following terms to describe them, viewed from the local end of a link:

• To enable a feature means: ‘‘request this feature.’’

• To disable a feature means: ‘‘do not request this feature.’’

• To accept a feature means: ‘‘if the other side requests this feature, use it.’’

• To deny a feature means: ‘‘if the other side requests this feature, refuse it.’’

Negotiation is successful if each end accepts all the features that the other end has

1. Years ago, you might have first have had to perform a normal UNIX login (‘‘login authentication’’). This
was usually handled by the dialing script (‘‘chat script’’). Microsoft didn’t support this kind of authentica-
tion, so it’s practically obsolete now, though there’s nothing wrong with the idea.

342 Chapter 20: Configuring PPP

enabled. In some cases, however, PPP systems have an alternative. For example, if you
accept PAP and deny CHAP, a router may first request CHAP, and when you deny it, it
may then request PAP. You do this by enabling both PAP and CHAP in your PPP
configuration files.

Who throws the first stone?
The first step in negotiation is to decide which side starts. One of them starts the
negotiation, and the other one responds. If you configure your end incorrectly, one of
these things can happen:

1. You both wait for the other end to start. Nothing happens. After a while, one of you
times out and drops the connection.

2. You both fire away and place your demands, and listen for the other one to reply. The
software should recognize that the other end is talking, too, and recover, but often
enough both ends give up and drop the connection.

3. One side initiates negotiations before the other, and things work normally despite the
misconfiguration. This is the most difficult kind to recognize: sometimes the
connection will work, and sometimes it won’t, apparently dependent on the phase of
the moon.

In general, systems with login authentication also initiate the negotiation. ISPs with PAP
or CHAP authentication tend to expect the end user to start first, because that’s the way
Microsoft does it. It’s easier for debugging to assume that the other end will start. If it
doesn’t, and you have an external modem, you’ll notice that there is no traffic on the line,
and that the line has dropped. Then you can switch to active mode negotiation.

It makes more sense for the called system to start the negotiation: the calling system is
ready to use the link immediately, but the called system often takes a certain amount of
time execute its PPP server program. A common cause of problems is when the server
machine is busy and it takes a while to invoke the PPP process. In this case the caller
sends its initial configuration data and the called system’s tty device may echo it back,
resulting in a lot of confusion at the caller’s end. User PPP can typically survive about
three reflections of this type before getting too confused to recover.

Typical features that require negotiation are:

• What kind of authentication? Login authentication doesn’t count here, because it’s
not part of PPP. You may choose to offer CHAP or PAP negotiation. You may also
require the other end to authenticate itself. You can accept both CHAP and PAP
authentication—that way, you can accept whichever the other end asks for. If the
other end is an ISP, you will probably not be able to authenticate him, but you should
check with the ISP.

A common configuration problem is when a user enables some form of authentication
without first agreeing this with the ISP. For example, very few ISPs perform
authentication from their end (to prove to you that they’re really the ISP you dialed).
You can specify this type of authentication in your configuration file, but if the ISP

How PPP wor ks 343

refuses to authenticate, you will never establish a connection.

• LQR, Link Quality Requests, giv e you an overview of your line quality, if your
modem doesn’t use error correction. If it does use error correction, it will hide any
LQR problems. Occasionally LQR packets can confuse a PPP implementation, so
don’t enable it if you don’t intend to use it.

• Data and header compression. You have a choice here: modern modems offer
various kinds of data compression, and so do the PPP implementations. As we saw
on page 331, modem compression increases the data throughput, but also increases
the latency. If your ISP supports the same kind of data compression as your PPP
software, you might find that it improves matters to disable modem data compression.
Both implementations support Van Jacobson, deflate and Predictor 1 compression,
and kernel PPP also supports BSD compression.

Which do you choose? Van Jacobson compression works at the TCP level. It
compresses only the headers (see page 280 for more details), and the other
compression schemes work at the frame level. You can always enable Van Jacobson
compression. As far as the others are concerned, use whatever the other side offers.
In case of doubt, enable all available compression types and allow PPP to negotiate
the best combination.

Compression negotiation is handled by the Compression Control Protocol, usually
known as CCP. It uses its own protocol number so that it can be distinguished from
other protocols that the remote system might offer, such as IP, X.25, SNA and IPX.

• IP addresses. In many cases, the server machine allocates a dynamic IP address.
We’ll look at the implications below.

• Proxy ARP. Some systems can’t understand being at the other end of a PPP link.
You can fool them by telling the router to respond to ARP requests for machines at
the other end of the link. You don’t need this subterfuge in FreeBSD.

Authentication
Nearly every PPP link requires some kind of identification to confirm that you are
authorized to use the link. On UNIX systems, the authentication traditionally consisted
of the UNIX login procedure, which also allows you to dialup either to a shell or to a PPP
session, depending on what user ID you use. Login authentication is normally performed
by the dial-up chat script.

Microsoft has changed many things in this area. Their platforms don’t normally support
daemons, and in some cases not even multiple users, so the UNIX login method is
difficult to implement. Instead, you connect directly to a PPP server and perform
authentication directly with it. There are two different authentication methods currently
available, PAP (Password Authentication Protocol) and CHAP (Challenge Handshake
Authentication Protocol). Both perform similar functions. From the PPP point of view,
you just need to know which one you are using. Your ISP should tell you this
information, but a surprising number don’t seem to know. In case of doubt, accept either

344 Chapter 20: Configuring PPP

of them.

Just to confuse matters, Microsoft has implemented authentication protocols of its own,
such as MS LanMAN, MS CHAP Version 1 (also known as CHAP type 0x80) and MS
CHAP Version 2, also known as CHAP type 0x81. User PPP supports both kinds.

If you’re using PAP or CHAP, you need to specify a system name and an authentication
key. These terms may sound complicated, but they’re really just a fancy name for a user
name and a password. We’ll look at how to specify these values when we look at the
individual software.

How do you decide whether you use PAP or CHAP? You don’t need to—accept both and
let the other end decide which kind to use.

Which IP addresses on the link?
After passing authentication, you may need to negotiate the addresses on the link. At first
sight, you’d think that the IP addresses on the link would be very important. In fact, you
can often almost completely ignore them. To understand this, we need to consider what
the purpose of the IP addresses is.

An IP address is an address placed in the source or the destination field in an IP packet to
enable the software to route it to its destination. As we saw in Chapter 17, Configuring
the local network, it is not necessarily the address of the interface to which the packet is
sent. If your packet goes through 15 nodes on the way through the Internet, quite a
normal number, it will be sent to 14 nodes whose address is not specified in the packet.

The first node is the router at the other end of the PPP link. This is a point-to-point link,
so it receives all packets that are sent down the line, so you don’t need to do anything
special to ensure it gets them. This is in marked contrast to a router on a broadcast
medium like an Ethernet: on an Ethernet you must specify the IP address of the router for
it to receive the packets.

On an Ethernet, although the IP address in the packets doesn’t mention the router, the Ethernet
headers do specify the Ethernet address of the router as the destination address. Your local system
needs the IP address to determine the Ethernet address with the aid of ARP, the Address Resolution
Protocol.

In either case, except for testing, it’s very unlikely that you will ever want to address a
packet directly to the router, and it’s equally unlikely that the router would know what to
do with most kinds of packets if they are addressed to itself. So we don’t really need to
care about the address.

What if we set up the wrong address for the other end of the link? Look at the router
gw.example.com in the reference network on page 294. Its PPP link has the local
address 139.130.136.133, and the other end has the address 139.130.136.129. What
happens if we get the address mixed up and specify the other end as 139.130.129.136?
Consider the commands we might enter if we were configuring the interface manually
(compare with page 300):

How PPP wor ks 345

ifconfig tun0 139.130.136.133 139.130.129.136 netmask 255.255.255.255
route add default 139.130.129.133

Figure 20-1: Configuring an interface and a route

You need to specify the netmask, because otherwise ifconfig chooses one based on the
network address. In this case, it’s a class B address, so it would choose 255.255.0.0.
This tells the system that the other end of the link is 139.130.129.136, which is
incorrect. It then tells the system to route all packets that can’t be routed elsewhere to
this address (the default route). When such a packet arrives, the system checks the
routing table, and find that 139.130.129.136 can be reached by sending the packet out
from interface tun0. It sends the packet down the line.

At this point any memory of the address 139.130.129.136 (or, for that matter,
139.130.136.129) is gone. The packet arrives at the other end, and the router examines
it. It still contains only the original destination address, and the router routes it
accordingly. In other words, the router never finds out that the packet has been sent to the
incorrect ‘‘other end’’ address, and things work just fine.

What happens in the other direction? That depends on your configuration. For any
packet to get to your system from the Internet, the routing throughout the Internet must
point to your system. Now how many IP addresses do you have? If it’s only a single IP
address (the address of your end of the PPP link), it must be correct. Consider what
would happen if you accidentally swapped the last two octets of your local IP address:

ifconfig tun0 139.130.133.136 139.130.129.136

If gw sends out a packet with this source address, it does not prevent it from getting to its
destination, because the source address does not play any part in the routing. But when
the destination system replies, it sends it to the address specified in the source field, so it
will not get back.

So how can this still work? Remember that routers don’t change the addresses in the
packets they pass. If system bumble sends out a packet, it has the address
223.147.37.3. It passes through the incorrectly configured system gw unchanged, so
the reply packet gets back to its source with no problems.

In practice, of course, it doesn’t make sense to use incorrect IP addresses. If you don’t
specify an address at either end of the link, PPP can negotiate one for you. What this
does mean, though, is that you shouldn’t worry too much about what address you get.
There is one exception, however: the issue of dynamic addressing. We’ll look at that
below.

346 Chapter 20: Configuring PPP

The net mask for the link
As we saw on page 290, with a broadcast medium you use a net mask to specify which
range of addresses can be addressed directly via the interface. This is a different concept
from routing, which specifies ranges of addresses that can be addressed indirectly via the
interface. By definition, a point-to-point link only has one address at the other end, so the
net mask must be 255.255.255.255.

Static and dynamic addresses
Traditionally, each interface has had a specific address. With the increase in the size of
the Internet, this has caused significant problems: a few years ago, people claimed that
the Internet was running out of addresses. As a solution, Version 6 of the Internet
Protocol (usually called IPv6) has increased the length of an address from 32 bits to 128
bits, increasing the total number of addresses from 4,294,967,296 to 3.4×1038—enough to
assign multiple IP addresses to every atom on Earth (though there may still be a
limitation when the Internet grows across the entire universe). FreeBSD contains full
support for IPv6, but unfortunately that’s not true of most ISPs, so at present, IPv6 is not
very useful. This book doesn’t discuss it further.

ISPs don’t use IPv6 because they hav e found another ‘‘solution’’ to the address space
issue: dynamic IP addresses. With dynamic addresses, every time you dial in, you get a
free IP address from the ISP’s address space. That way, an ISP only needs as many IP
addresses as he has modems. He might have 128 modems and 5000 customers. With
static addresses, he would need 5000 addresses, but with dynamic addresses he only
needs 128. Additionally, from the ISPs point of view, routing is trivial if he assigns a
block of IP addresses to each physical piece of hardware.

Dynamic addresses have two very serious disadvantages:

1. IP is a peer-to-peer protocol: there is no master and no slave. Theoretically, any
system can initiate a connection to any other, as long as it knows its IP address. This
means that your ISP could initiate the connection if somebody was trying to access
your system. With dynamic addressing, it is absolutely impossible for anybody to set
up a connection: there is no way for any other system to know in advance the IP
address that you will get when the link is established.

This may seem unimportant—maybe you consider the possibility of the ISP calling
you even dangerous—but consider the advantages. If you’re travelling somewhere
and need to check on something on your machine at home, you can just connect to it
with ssh. If you want to let somebody collect some files from your system, there’s no
problem. In practice, however, very few ISPs are prepared to call you, though that
doesn’t make it a bad idea.

2. Both versions of PPP support an idle timeout feature: if you don’t use the link for a
specified period of time, it may hang up. Depending on where you live, this may save
on phone bills and ISP connect charges. It only disconnects the phone link, and not
the TCP sessions. Theoretically you can reconnect when you want to continue, and
the TCP session will still be active. To continue the session, however, you need to

How PPP wor ks 347

have the same IP address when the link comes up again. Otherwise, though the
session isn’t dead, you can’t reconnect to it.

Setting a default route
Very frequently, the PPP link is your only connection to the Internet. In this case, you
should set the default route to go via the link. You can do this explicitly with the route
add command, but both versions of PPP can do it for you.

When you set your default route depends on what kind of addressing you’re using. If
you’re using static addressing, you can specify it as one of the configuration parameters.
If you’re using dynamic addressing, this isn’t possible: you don’t know the address at that
time. Both versions have a solution for this, which we’ll look at when we get to them.

Autodial
A PPP link over modem typically costs money. You will normally pay some or even all
of the following charges:

• Telephone call setup charges, a charge made once per call. Unlike the other charges,
these make it advantageous to stay connected as long as possible.

• Telephone call duration charges. In some countries, you pay per time unit (for
example, per minute), or you pay a fixed sum for a variable unit of time.

• ISP connect charges, also per time unit.

• ISP data charges, per unit of data.

Typically, the main cost depends on the connection duration. To limit this cost, both PPP
implementations supply methods to dial automatically and to disconnect when the line
has been idle for a predetermined length of time.

The information you need to know
Whichever PPP implementation you decide upon, you need the following information:

• Which physical device you will use for the connection. For a modem, it’s normally a
serial port like /dev/cuaa0. For PPPoE, it’s an Ethernet adapter, for example xl0.

• If it’s a modem connection, whom are you going to call? Get the phone number
complete with any necessary area codes, in exactly the format the modem needs to
dial. If your modem is connected to a PABX, be sure to include the access code for
an external line.

• The user identification and password for connection to the ISP system.

• The kind of authentication used (usually CHAP or PAP).

In addition, some ISPs may give you information about the IP addresses and network

348 Chapter 20: Configuring PPP

masks, especially if you have a static address. You should have collected all this
information in the table on page 323.

Setting up user PPP
This chapter contains a lot of information about PPP setup. If you’re in a hurry, and you
have a ‘‘normal’’ PPP connection, the following steps may be enough to help you set it
up. If it doesn’t work, just read on for the in-depth explanation.

• Edit /etc/ppp/ppp.conf. Find these lines lines:

papchap:
(comments omitted)
set phone PHONE_NUM only for modem connections
set authname USERNAME
set authkey PASSWORD

Replace the texts PHONE_NUM, USERNAME and PASSWORD with the information
supplied by the ISP. If you’re using PPPoE, remove the set phone line.

• Still in /etc/ppp/ppp.conf, check that the device is correct. The default is /dev/cuaa1.
If you’re connecting to a different serial line, change the device name accordingly. If
you’re running PPPoE, say over the Ethernet interface xl0, change it to:

set device PPPoE:xl0

• Modify /etc/rc.conf. First, check the PPP settings in /etc/defaults/rc.conf. Currently
they are:

User ppp configuration.
ppp_enable="NO" # Start user-ppp (or NO).
ppp_mode="auto" # Choice of "auto", "ddial", "direct" or "dedicated".

For details see man page for ppp(8). Default is auto.
ppp_nat="YES" # Use PPP’s internal network address translation or NO.
ppp_profile="papchap" # Which profile to use from /etc/ppp/ppp.conf.
ppp_user="root" # Which user to run ppp as

Don’t change this file: just add the following line to /etc/rc.conf :

ppp_enable=YES # Start user-ppp (or NO).

• If you have a permanent connection (in other words, you don’t ever want to
disconnect the line), you should also add the following line to /etc/rc.conf :

ppp_mode=ddial # Choice of "auto", "ddial", "direct" or "dedicated".

This tells PPP not to disconnect at all.

• After this, PPP will start automatically on boot and will connect whenever necessary.
If you are not planning to reboot, you can start PPP immediately with the following
command:

Setting up user PPP 349

/usr/sbin/ppp -quiet -auto papchap

If that works for you, you’re done. Otherwise, read on.

Setting up user PPP: the details
The user PPP configuration files are in the directory /etc/ppp. In addition to them, you
probably want to modify /etc/rc.conf to start PPP and possibly to include global Internet
information. The main configuration file is /etc/ppp/ppp.conf. It contains a number of
multi-line entries headed by a label. For example, the default entry looks like:

default:
set log Phase Chat LCP IPCP CCP tun command
ident user-ppp VERSION (built COMPILATIONDATE)

Ensure that "device" references the correct serial port
for your modem. (cuaa0 = COM1, cuaa1 = COM2)
#
set device /dev/cuaa1 device to use

set speed 115200 connect at 115,200 bps
set dial "ABORT BUSY ABORT NO\\sCARRIER TIMEOUT 5 \

\"\" AT OK-AT-OK ATE1Q0 OK \\dATDT\\T TIMEOUT 40 CONNECT"
set timeout 180 # 3 minute idle timer (the default)
enable dns # request DNS info (for resolv.conf)

Let’s look at this entry in detail.

• Note the format: labels begin at the beginning of the line, and other entries must be
indented by one character.

• The line default: identifies the default entry. This entry is always run when PPP
starts.

• The set log line specifies which events to log. This can be helpful if you run into
problems.

• The ident line specifies what identification the system will present to the other end
of the connection. You don’t need to change it.

• The set device line specifies the device that PPP should use to establish the
connection, in this case the second serial port, /dev/cuaa1. For PPPoE connections,
use the name of the Ethernet interface, prepended by the text PPPoE.

set device PPPoE:xl0

• For modem connections, the set speed line sets the speed of the link between the
modem and the computer. Some older PCs had problems at 115,200 bps, but you
shouldn’t hav e any need to change it any more, especially since the next lower speed
for conventional PC hardware is 57,600 bps, which is too slow to use the full
bandwidth when compression is enabled.

350 Chapter 20: Configuring PPP

• Also for modems only, set dial describes a chat script, a series of responses and
commands to be exchanged with the modem.

• enable dns tells PPP to get information about name servers when setting up the
link. If the remote site supplies this information, you don’t need to set it manually.
You should remove this line if you’re running a local name server, which I strongly
recommend. See Chapter 21, The Domain Name Service, for more details.

The default entry alone does not supply enough information to create a link. In
particular, it does not specify who to call or what user name or password to use. In
addition to the default entry, you need an entry describing how to connect to a specific
site. The bare minimum would be the first three set lines of the papchap entry in
ppp.conf:

papchap:
#
edit the next three lines and replace the items in caps with
the values which have been assigned by your ISP.
#

set phone PHONE_NUM
set authname USERNAME
set authkey PASSWORD

set ifaddr 10.0.0.1/0 10.0.0.2/0 255.255.255.0 0.0.0.0
add default HISADDR # Add a (sticky) default route

PPP calls this entry a profile. papchap is the profile supplied in the default installation.
You can change the name, for example to the name of your ISP. This is particularly
useful if you connect to more than one ISP (for example, with a laptop). In these
examples, we’ll stick with papchap.

As the comment states, replace the texts PHONE_NUM, USERNAME and PASSWORD with
your specific information. If you are using PPPoE, replace the set phone line with a
set device line as discussed above.

The last two lines may or may not be needed. The line set ifaddr specifies addresses
to assign to each end of the link, and that they can be overridden. This line is seldom
needed, even for static addressing: the ISP will almost always allocate the correct
address. We’ll look at this issue again below when we discuss dynamic addresses.

Finally, the last line tells ppp to set a default route on this interface when the line comes
up. HISADDR is a keyword specifying the other end of the link. This is the only way to
specify the route for dynamic addressing, but it works just as well for static addressing.
If your primary connection to the Internet is via a different interface, remove this entry.

Negotiation
As we saw on page 342, you need to decide who starts negotiation. By default, user PPP
starts negotiation. If the other end needs to start negotiation, add the following line to
your /etc/ppp/ppp.conf :

set openmode passive

Setting up user PPP 351

User PPP uses four keywords to specify how to negotiate:

• To enable a feature means: ‘‘request this feature.’’

• To disable a feature means: ‘‘do not request this feature.’’

• To accept a feature means: ‘‘if the other side requests this feature, accept it.’’

• To deny a feature means: ‘‘if the other side requests this feature, refuse it.’’

We’ll see examples of this in the following sections.

Requesting LQR
By default, user PPP disables LQR, because it has been found to cause problems under
certain circumstances, but it accepts it for modem lines. If you want to enable it, include
the following line in your dial entry:

enable lqr

Authentication
The configuration file syntax is the same for PAP and CHAP. Normally, your ISP assigns
you both system name and authorization key. Assuming your system name is FREEBIE,
and your key is X4dWg9327, you would include the following lines in your configuration
entry:

set authname FREEBIE
set authkey X4dWg9327

User PPP accepts requests for PAP and CHAP authentication automatically, so this is all
you need to do unless you intend to authenticate the other end, which is not normal with
ISPs.

/etc/ppp/ppp.secret

The PPP system name and authentication key for PAP or CHAP are important data.
Anybody who has this information can connect to your ISP and use the service at your
expense. Of course, you should set the permissions of your /etc/ppp/ppp.conf to
-r-------- and the owner to root, but it’s easy and costly to make a mistake when
changing the configuration. There is an alternative: store the keys in the file
/etc/ppp/ppp.secret. Here’s a sample:

Sysname Secret Key Peer’s IP address
oscar OurSecretKey 192.244.184.34/24
FREEBIE X4dWg9327 192.244.184.33/32
gw localPasswdForControl

352 Chapter 20: Configuring PPP

There are a few things to note here:

• As usual, lines starting with # are comments.

• The other lines contain three values: the system name, the authentication key, and
possibly an IP address.

• The last line is a password for connecting to the ppp process locally: you can connect
to the process by starting:

telnet localhost 3000

The local password entry matches the host name. See the man page ppp(8) for
further details.

Dynamic IP configuration
If you have to accept dynamic IP addresses, user PPP can help. In fact, it provides fine
control over which addresses you accept and which you do not. To allow negotiation of
IP addresses, you specify how many bits of the IP addresses at each end are of interest to
you. For static addresses, you can specify them exactly:

set ifaddr 139.130.136.133 139.130.136.129

You can normally maintain some control over the addressing, for example to ensure that
the addresses assigned don’t conflict with other network connections. The addresses
assigned to you when the link comes up are almost invariably part of a single subnet.
You can specify that subnet and allow negotiation of the host part of the address. For
example, you may say ‘‘I don’t care what address I get, as long as the first three bytes are
139.130.136, and the address at the other end starts with 139.’’ You can do this by
specifying the number of bits that interest you after the address:

set ifaddr 139.130.136.133/24 139.130.136.129/8

This says that you would prefer the addresses you state, but that you require the first 24
bits of the local interface address and the first eight bits of the remote interface address to
be as stated.

If you really don’t care which address you get, specify the local IP address as 0:

set ifaddr 0 0

If you do this, you can’t use the -auto modes, because you need to send a packet to the
interface to trigger dialing. Use one of the previous methods in this situation.

Setting up user PPP 353

Running user PPP
After setting up your PPP configuration, run it like this:

$ ppp
Working in interactive mode
Using interface: tun0
ppp ON freebie> dial papchap this is the name of the entry in ppp.conf
Dial attempt 1 of 1
Phone: 1234567 the phone number
dial OK! modem connection established
login OK! authentication complete
ppp ON freebie> Packet mode. PPP is running
ppp ON freebie>
PPP ON freebie> and the network connection is complete

You’ll notice that the prompt (ppp) changes to upper case (PPP) when the connection is
up and running. At the same time, ppp writes some messages to the log file
/var/log/ppp.log:

Sep 2 15:12:38 freebie ppp[23679]: Phase: Using interface: tun0
Sep 2 15:12:38 freebie ppp[23679]: Phase: PPP Started.
Sep 2 15:12:47 freebie ppp[23679]: Phase: Phone: 1234567
Sep 2 15:13:08 freebie ppp[23679]: Phase: *Connected!
Sep 2 15:13:11 freebie ppp[23679]: Phase: NewPhase: Authenticate
Sep 2 15:13:11 freebie ppp[23679]: Phase: his = c223, mine = 0
Sep 2 15:13:11 freebie ppp[23679]: Phase: Valsize = 16, Name = way3.Adelaide
Sep 2 15:13:11 freebie ppp[23679]: Phase: NewPhase: Network
Sep 2 15:13:11 freebie ppp[23679]: Phase: Unknown protocol 0x8207
Sep 2 15:13:11 freebie ppp[23679]: Link: myaddr = 139.130.136.133 hisaddr = 139.1
30.136.129
Sep 2 15:13:11 freebie ppp[23679]: Link: OsLinkup: 139.130.136.129
Sep 2 15:14:11 freebie ppp[23679]: Phase: HDLC errors -> FCS: 0 ADDR: 0 COMD: 0 PRO
TO: 1

You’ll notice a couple of messages that look like errors. In fact, they’re not: Unknown
protocol 0x8207 means that the other end requested a protocol that ppp doesn’t know
(and, in fact, is not in the RFCs. This is a real example, and the protocol is in fact
Novell’s IPX). The other message is HDLC errors -> FCS: 0 ADDR: 0 COMD: 0
PROTO: 1. In fact, this relates to the same ‘‘problem.’’

How long do we stay connected?
The following entries in /etc/defaults/rc.conf relate to user ppp:

User ppp configuration.
ppp_enable="NO" # Start user-ppp (or NO).
ppp_mode="auto" # Choice of "auto", "ddial", "direct" or "dedicated".

For details see man page for ppp(8). Default is auto.
ppp_nat="YES" # Use PPP’s internal network address translation or NO.
ppp_profile="papchap" # Which profile to use from /etc/ppp/ppp.conf.
ppp_user="root" # Which user to run ppp as

Now our PPP connection is up and running. How do we stop it again? There are two
possibilities:

354 Chapter 20: Configuring PPP

• To stop the connection, but to leave the ppp process active, enter close:

PPP ON freebie> close
ppp ON freebie>

• To stop the connection and the ppp process, enter q or quit:

PPP ON freebie> q
#

There are a couple of problems with this method: first, a connection to an ISP usually
costs money in proportion to the time you are connected, so you don’t want to stay
connected longer than necessary. On the other hand, you don’t want the connection
to drop while you’re using it. User PPP approaches these problems with a
compromise: when the line has been idle for a certain time (in other words, when no
data has gone in either direction during this time), it disconnects. This time is called
the idle timeout, and by default it is set to 180 seconds. You can set it explicitly:

set timeout 300

This sets the idle timeout to 300 seconds (5 minutes).

Automating the process
Finally, setting up the connection this way takes a lot of time. You can automate it in a
number of ways:

• If you have a permanent connection, you can tell user PPP to stay up all the time.
Use the -ddial modifier:

$ ppp -ddial papchap

Again, papchap is the name of the PPP profile. This version dials immediately and
keeps the connection up regardless of whether traffic is passing or not.

• If you want to be able to connect to the Net automatically whenever you have
something to say, use the -auto modifer:

$ ppp -auto papchap

In this case, user PPP does not dial immediately. As soon as you attempt to send data
to the Net, however, it dials automatically. When the line has been idle for the idle
timeout period, it disconnects again and waits for more data before dialing. This only
makes sense for static addresses or when you know that no IP connections remain
alive after the line disconnects.

• Finally, you can just write

$ ppp -background papchap

Setting up user PPP 355

The -background option tells user PPP to dial immediately and stay in the
background. After the idle timeout period, the user PPP process disconnects and
exits. If you want to connect again, you must restart the process.

Actions on connect and disconnect
If you don’t hav e a permanent connection, there are some things that you might like to do
ev ery time you connect, like flush your outgoing mail queue. User PPP provides a
method for doing this: create a /etc/ppp/ppp.linkup with the same format as
/etc/ppp/ppp.conf. If it exists, PPP looks for the profile you used to start PPP (papchap
in our examples) and executes the commands in that section. Use the exclamation mark
(!) to specify that the commands should be performed by a shell. For example, to flush
your mail queue, you might write:

papchap:
! sendmail -q

Similarly, you can create a file /etc/ppp/ppp.linkdown with commands to be executed
when the link goes down. You can find sample files in the directory /usr/share/exam-
ples/ppp.

If things go wrong
Things don’t always work ‘‘out of the box.’’ You could run into a number of problems.
We’ll look at the more common ones on page 361.

Setting up kernel PPP
It makes more sense to run PPP in the kernel than in user space: in the kernel it’s more
efficient and theoretically less prone to error. The implementation has fewer features than
user PPP, and it’s not quite as easy to debug, so it is not used as much.

The configuration files for kernel PPP are in the same directory as the user PPP
configuration files. You can also set up your own ˜/.ppprc file, though I don’t
recommend this: PPP is a system function and should not be manipulated at the user
level.

Kernel PPP uses a daemon called pppd to monitor the line when it is active. Kernel PPP
interface names start with ppp followed by a number. You need one for each concurrent
link. You don’t need to specifically build a kernel for the ppp interface: FreeBSD Release
5 loads the PPP module /boot/kernel/if_ppp.ko dynamically and adds interfaces as
required. This also means that you can no longer check for ppp support with the ifconfig
command. The interface won’t be there until you need it.

Kernel PPP used to provide a number of build options to enable some features, including
the compression options described below. The options are still there, but they’re set by
default, so you don’t need to do anything there either.

356 Chapter 20: Configuring PPP

When kernel PPP starts, it reads its configuration from the file /etc/ppp/options. Here is a
typical example:

Options file for PPPD
defaultroute set the default route here when the line comes up
crtscts use hardware flow control
modem use modem control lines
deflate 12,12 use deflate compression
predictor1 use predictor 1 compression
vj-max-slots 16 Van Jacobson compression slots
user FREEBIE our name (index in password file)
lock create a UUCP lock file

This is quite a short file, but it’s full of interesting stuff:

• The defaultroute line tells the kernel PPP to set the default route via this interface
after it establishes a connection.

• The crtscts line tells it to use hardware flow control (necessary to prevent loss of
characters). You could also specify xonxoff, which uses software flow control, but
hardware flow control is preferable.

• The modem line says to monitor the modem DCD (Carrier detect) line. If the
connection is lost without proper negotiation, the only way that kernel PPP can know
about it is because of the drop in DCD.

• The line deflate tells kernel PPP to request deflate compression, which can increase
the effective bandwidth.

• predictor1 tells PPP to use Predictor 1 compression where possible.

• vj-max-slots specifies how many slots to use for Van Jacobson header compres-
sion. Having more slots can speed things up.

• The user line tells kernel PPP the user ID to use. If you don’t specify this, it takes
the system’s name.

• lock tells kernel PPP to create a UUCP-style lock on the serial line. This prevents
other programs, such as getty, from trying to open the line while it is running PPP.

None of these options are required to run pppd, though you’ll probably need a user entry
to establish connection. It’s a good idea to set the indicated options, however.

Authentication
We’v e seen that /etc/ppp/options contains a user name, but no password. The passwords
are stored in separate files, /etc/ppp/chap-secrets for CHAP, or /etc/ppp/pap-secrets for
PAP. The format of either file is:

username systemname password

Setting up ker nel PPP 357

To match any system name, set systemname to *. For example, to authenticate the
FREEBIE we saw on page 351, we would enter the following in the file:

FREEBIE * X4dWg9327

In addition, you should add a domain line to specify your domain for authentication
purposes:

domain example.org

Dialing
Kernel PPP does not perform dialing, so you need to start a program that does the dialing.
In the following example, we use chat, a program derived from UUCP intended exactly
for this purpose. Some people use kermit, which is in fact a complete communications
program for a PC protocol, to perform this function, but this requires manual
intervention. chat does the whole job for you.

Chat scripts

chat uses a chat script to define the functions to perform when establishing a connection.
See the man page chat(8) for further details. The chat script consists primarily of
alternate expect strings, which chat waits to receive, followed by send strings, which
chat sends when it receives the expect string.

In addition to these strings, the chat script can contain other commands. To confuse
things, they are frequently written on a single line, though this is not necessary: chat
does not pay any attention to line breaks. Our chat script, which we store in
/etc/ppp/dial.chat, looks more intelligible written in the following manner:

Abort the chat script if the modem replies BUSY or NO CARRIER
ABORT BUSY
ABORT ’NO CARRIER’
Wait up to 5 seconds for the reply to each of these
TIMEOUT 5
’’ ATZ
OK ATDT1234567
Wait 40 seconds for connection
TIMEOUT 40
CONNECT

This script first tells chat to abort dial-up on a BUSY or NO CARRIER response from the
modem. The next line waits for nothing (’’) and resets the modem with the command
ATZ. The following line waits for the modem to reply with OK, and dials the ISP.

Call setup can take a while, almost always more than five seconds for real (analogue)
modems, so we need to extend the timeout, in this case to 40 seconds. During this time
we must get the reply CONNECT from the modem.

358 Chapter 20: Configuring PPP

Who throws the first stone?
On page 342 we saw how to specify whether we should start negotiating or whether we
should wait for the other end to start. By default, kernel PPP starts negotiation. If you
want the other end to start, add the keyword passive in your /etc/ppp/options file.

Dynamic IP configuration
By default, kernel PPP performs dynamic address negotiation, so you don’t need to do
anything special for dynamic IP. If you have static addresses, add the following line to
/etc/ppp/conf :

139.130.136.133:139.130.136.129

These are the addresses that you would use on machine gw.example.org to set up the
PPP link in the middle of Figure 16-7 on page 294. The first address is the local end of
the link (the address of the pppn device), and the second is the address of the remote
machine (free-gw.example.net).

Running kernel PPP
To run pppd, enter:

pppd /dev/cuaa1 115200 connect ’chat -f /etc/ppp/dial.chat’

This starts kernel PPP on the serial line /dev/cuaa1 at 115,200 bps. The option connect
tells kernel PPP that the following argument is the name of a program to execute: it runs
chat with the options -f /etc/ppp/dial.chat, which tells chat the name of the chat
file.

After you run pppd with these arguments, the modem starts dialing and then negotiates a
connection with your provider, which should complete within 30 seconds. During
negotiation, you can observe progress with the ifconfig command:

$ ifconfig ppp0
ppp0: flags=8010<POINTOPOINT,MULTICAST> mtu 1500

at this point, the interface has not yet started
$ ifconfig ppp0
ppp0: flags=8810<POINTOPOINT,RUNNING,MULTICAST> mtu 1500

now the interface has been started
$ ifconfig ppp0
ppp0: flags=8811<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1500

inet 139.130.136.133 --> 139.130.136.129 netmask 0xffffffff
now the connection has been established

Setting up ker nel PPP 359

Automating the process
You can automate connection setup and disconnection in a number of ways:

• If you have a permanent connection, you can tell kernel PPP to stay up all the time.
Add the following line to /etc/ppp/options:

persist

If this option is set, kernel PPP dials immediately and keeps the connection up
regardless of whether traffic is passing or not.

• If you want to be able to connect to the Net automatically whenever you have
something to say, use the demand option:

demand

In this case, kernel PPP does not dial immediately. As soon as you attempt to send
data to the net, however, it dials automatically. When the line has been idle for the
idle timeout period, it disconnects again and waits for more data before dialing.

• Finally, you can start kernel PPP without either of these options. In this case, you are
connected immediately. After the idle timeout period, kernel PPP disconnects and
exits. If you want to connect again, you must restart the process.

Timeout parameters
A number of options specify when kernel PPP should dial and disconnect:

• The idle parameter tells kernel PPP to disconnect if the line has been idle for the
specified number of seconds, and if persist (see above) has not been specified. For
example, to disconnect after five minutes, you could add the following line to the
/etc/ppp/options file:

idle 300

• The active-filter parameter allows you to specify which packets to count when
determining whether the line is idle. See the man page for more details.

• The holdoff parameter tells kernel PPP how long to wait before redialing when the
line has been disconnected for reasons other than being idle. If the line is
disconnected because it was idle, and you have specified demand, it dials as soon as
the next valid packet is received.

Configuration summary
To summarize the examples above, we’ll show the kernel PPP versions of the user PPP
examples on page 348. As before, we assume that the reference network on page 294
uses CHAP authentication, and we have to initiate. The /etc/ppp/options looks like:

360 Chapter 20: Configuring PPP

Options file for PPPD
defaultroute set the default route here when the line comes up
crtscts use hardware flow control
modem use modem control lines
domain example.org specify your domain name
persist stay up all the time
deflate 12,12 use deflate compression
predictor1 use predictor 1 compression
vj-max-slots 16 Van Jacobson compression slots
user FREEBIE name to present to ISP
139.130.136.133:139.130.136.129 specify IP addresses of link

/etc/ppp/dial.chat is unchanged from the example on page 357:

Abort the chat script if the modem replies BUSY or NO CARRIER
ABORT BUSY
ABORT ’NO CARRIER’
Wait up to 5 seconds for the reply to each of these
TIMEOUT 5
’’ ATZ
OK ATDT1234567
Wait 40 seconds for connection
TIMEOUT 40
CONNECT

/etc/ppp/chap-secrets contains:

FREEBIE * X4dWg9327

With kernel PPP, there’s no need to disable PAP: that happens automatically if it can’t
find an authentication for FREEBIE in /etc/pap-secrets.

The change for dynamic addressing is even simpler. Remove the line with the IP
addresses from the /etc/ppp/options file:

Options file for PPPD
defaultroute set the default route here when the line comes up
crtscts use hardware flow control
modem use modem control lines
domain example.org specify your domain name
persist stay up all the time
deflate 12,12 use deflate compression
predictor1 use predictor 1 compression
vj-max-slots 16 Van Jacobson compression slots
user FREEBIE name to present to ISP

Actions on connect and disconnect
If you don’t hav e a permanent connection, there are some things that you might like to do
ev ery time you connect, like flush your outgoing mail queue. We’v e seen that user PPP
provides a method for doing this with the /etc/ppp/ppp.linkup and /etc/ppp/ppp.linkdown
files. Kernel PPP supplies similar functionality with /etc/ppp/auth-up and /etc/ppp/auth-
down. Both of these files are shell scripts. For example, to flush your mail queue, you
might put the following line in /etc/ppp/auth-up:

sendmail -q

Setting up ker nel PPP 361

Things that can go wrong
Setting up PPP used to be a pain. Tw o things have made it easier than it used to be.
Firstly, the widespread adoption of dialup Internet connections has consolidated the
procedure, so one size fits nearly everybody. Secondly, the software has had some of the
rough edges taken off, so now it almost works out of the box. Still there are a number of
things that can go wrong.

Problems establishing a connection
The first thing you need to do is to dial the connection. If you have an external modem,
you can follow the process via the indicator LEDs. The following steps occur:

• First, the OH LED (‘‘off hook’’) goes on, indicating that the modem is dialing. If this
doesn’t happen, check the cables and that you’re talking to the right device.

• Next you should see a brief flicker of the RD and TD LEDs. If that doesn’t happen,
you may also have cable problems, or it could be a problem with the chat script.

• When the CD (or DCD) LED goes on, you have a connection to the remote system. If
you don’t get that, check the phone number.

• If you get this far, but you still don’t get a connection, check the system log files. It’s
most likely to be an authentication failure. See page 353 for an example of the
messages from user PPP. Kernel PPP is much less verbose.

(dns.mm), page 363

21
The Domain

Name Service

In this chapter:
• Domains and zones
• Setting up a name

ser ver
• Passive DNS usage
• Name server on a

standalone system
• Name server on an

end-user networ k
• Reverse lookup
• Slave name servers
• The next level down:

delegating zones
• Messages from

named
• Upgrading a Version

4 configuration
• Looking up DNS

infor mation
• Checking DNS for

correctness
• DNS security

In this chapter:
• Domains and zones
• Setting up a name

ser ver
• Passive DNS usage
• Name server on a

standalone system
• Name server on an

end-user networ k
• Reverse lookup
• Slave name servers
• The next level down:

delegating zones
• Messages from

named
• Upgrading a Version

4 configuration
• Looking up DNS

infor mation
• Checking DNS for

correctness
• DNS security

Ever since the beginning of the ARPAnet, systems have had both names and IP addresses.
UNIX systems, as well as many others who have copied the BSD IP implementation,
used the file /etc/hosts to convert between names and addresses. This file contains a list
of IP addresses and the corresponding host names, one per line.

It’s clearly impossible to have an /etc/hosts file that describes the complete Internet.
Even if you had disk space, the number of updates would overload your network. The
solution is a distributed database, the Domain Name System, or DNS. The most common
implementation of DNS is BIND, the Berkeley Internet Name Domain.1 You’ll notice the
word Berkeley in there. BIND is part of BSD, and it’s about the only game in town.
Despite these names, the daemon that performs the resolution is called named (the name
daemon, pronounced ‘‘name-dee’’).

DNS provides the information needed to connect to remote systems in the form of
Resource Records, or RRs. Unfortunately, the names of the records aren’t overly
intuitive.

• A (Address) records translate host names to IP addresses. For example, one A record
tells you that www.FreeBSD.org (currently) has the IP address 216.136.204.117.
These are what most people think of when they hear the name DNS. The name
specified in the A record is called the canonical name of the interface, and it should
be the one to which the PTR record (see below) refers.

1. Does this sound like an acronym in search of a name?

363

364 Chapter 21: The Domain Name Service

• PTR (Pointer) records provide a translation from IP address to name. This process is
also called re verse lookup.

• MX (Mail Exchange) records specify the IP addresses of mail servers for a domain.

• SOA (Start Of Authority) records define zones, which roughly correspond to domains.
We’ll look at the distinction between zones and domains below.

• NS (Name Server) records describe name servers for a zone.

• HINFO (Hardware Information) records describe the hardware and software that
runs on a particular system.

• CNAME (Canonical Name) records describe alternative names for a system.

FreeBSD allows you to use both /etc/hosts and DNS. One reason for this might be to
have name resolution of local hosts at startup time: there’s a chicken-and-egg problem
with mounting NFS file systems before named is running.

The common objections to using DNS include:

• It’s supposedly difficult to set up DNS configuration files.

• DNS supposedly generates a lot of network traffic.

• DNS supposedly causes a dial-on-demand system to dial all the time.

These statements are all untrue. We’ll look at them in the rest of this chapter as we set up
DNS for our reference network.

Domains and zones
In Internet parlance, a domain is a group of names ending with a specific domain name.
We looked at domain names in Chapter 18, Connecting to the Internet, page 318. Note
that, like file names, there are two kinds of domain names:

• A fully qualified domain name (FQDN) ends in a period (.). This domain name
relates to the root domain. (a single period).

• A relative domain name relates to the current domain. You’ll see them occasionally
in the configuration files.

Most times, when you write a domain name, you intend it to be fully qualified. But if
you write it without the terminating period, DNS will frequently append your own
domain name. For example, if you specify a name like freebie.example.org, DNS won’t
find a fully qualified name: it’s a misspelling of freebie.example.org.. As a result, it will
look for the name freebie.example.org.example.org. It won’t find it, of course, but it may
spend a long time trying. The moral is simple: when writing DNS configuration files,
always put a period (full stop) at the end of names that are fully qualified.

Domains and zones 365

Zones
In many ways, a zone is the same thing as a domain: it’s the subset of the DNS name
space that is maintained by a specific set of name servers—in DNS-speak, name servers
are authoritative for the zone. The difference is mainly in the way it’s used. There is one
exception, however: usually, a subdomain will have a different name server. This
subdomain is part of the domain, but not of the zone.

For example, in our reference network, the name servers on freebie and presto are
authoritative for example.org. The owner of the domain might give permission for
somebody, maybe in a different country, to run a subdomain china.example.org, with
name servers beijing.china.example.org and xianggang.china.example.org. Because there
are different name servers, there are two zones: freebie.example.org would be authorita-
tive for the zone example.org, but not for china.example.org. beijing.china.example.org
and xianggang.china.example.org would be authoritative for the zone china.example.org,
but not for example.org.

Setting up a name server
DNS service is supplied by the name daemon, called named. named can be run in a
number of different modes. In this chapter, we’ll concentrate on setting the appropriate
configurations for our reference network. If you want to go further, check the following
documents:

• The BIND Online Documentation, in the source distribution in the directory
/usr/src/contrib/bind/doc/html/index.html.

• TCP/IP Network Administration, by Craig Hunt (O’Reilly).

• DNS and BIND, by Paul Albitz and Cricket Liu (O’Reilly).

In the last few years, BIND has undergone some significant changes, mainly as a result of
abuse on the net. The current release is Version 9, but FreeBSD still ships with Version 8.
The differences are relatively minor: Version 9 introduces a number of new features, but
the contents of this chapter should also apply to Version 9. The previous version was
Version 4, and you’ll still find a lot of old documentation referring to it. There were no
Versions 5, 6 or 7, and the main configuration file changed its format completely in
Version 8; even the name changed. We’ll look at how to convert the formats on page 380.
Before using the documentation above, make sure that it refers to the correct version of
BIND.

366 Chapter 21: The Domain Name Service

Passive DNS usage
Not every system needs to run its own name daemon. If you have another machine on the
same network, you can send requests to it. For example, in the reference network, freebie
and presto may be running name servers. There’s no particular reason for bumble and
wait, both presumably slower machines, to do so as well. Instead, you can tell them to
use the name servers on the other two machines.

To do this, make sure that you don’t enable named in your /etc/rc.conf, and create a file
/etc/resolv.conf with the following contents:

domain example.org
nameserver 223.147.37.1 # freebie
nameserver 223.147.37.2 # presto

Specify the IP addresses, not the names, of the name servers here. This is a classic
chicken-and-egg problem: you can’t access the name server to get its address until you
know its address.

With this file in place, this machine will send all name server requests to freebie or presto.
We’ll look at how to configure them later.

Name server on a standalone system
If you only have a single machine connected to the network, and your own machine is
part of the ISP’s zone, you can use the resolv.conf method as well. This is a fairly typical
situation if you’re using a PPP or DSL link. It’s still not a good idea, however. Every
lookup goes over the link, which is relatively slow. The results of the lookup aren’t
stored anywhere locally, so you can end up performing the same lookup again and again.
DNS has an answer to the problem: save the information locally. You can do this with a
caching-only name server. As the name suggests, the caching-only name server doesn’t
have any information of its own, but it stores the results of any queries it makes to other
systems, so if a program makes the same request again—which happens frequently—it
presents the results much more quickly on subsequent requests. Set up a caching-only
name server like this:

• Either rename or remove /etc/resolv.conf, and create a new one with the following
contents:

nameserver 127.0.0.1 local name server

• Put this line in /etc/rc.conf :

named_enable="YES" # Run named, the DNS server (or NO).

If /etc/rc.conf doesn’t exist, just create one with this content.

Name server on a standalone system 367

• Create a file /etc/namedb/localhost.rev containing:

$TTL 1d
@ IN SOA @host@. root.@host@. (

@date@ ; Serial
1h ; Refresh
5m ; Retry
100d ; Expire
1h) ; Negative cache

IN NS @host@.
1 IN PTR localhost.@domain@.

We’ll look at the meaning of this file in the next section. To create it, you can start
with the file /etc/namedb/PROT O.localhost.rev, which contains a template for this
file. Replace @host@ with the FQDN of your host (freebie.example.org in this
example), @date@ (the serial number) with the date in the form yyyymmddxx, where
xx are a small integer such as 01,1 and @domain@ with example.org.. Make sure that
the FQDNs end with a trailing period. Alternatively, you can run the script
/etc/namedb/make-localhost.

• Edit the file /etc/namedb/named.conf to contain:

options {
directory "/etc/namedb";

forwarders {
139.130.237.3; 139.130.237.17;

};

zone "0.0.127.in-addr.arpa" {
type master;
file "localhost.rev";

};

/etc/namedb/named.conf should already be present on your system as well. It
contains a lot of comments, but at the end there’s a similar zone definition, which you
can edit if you want. The addresses 139.130.237.3 and 139.130.237.17. are the
ISP’s name server addresses. The forwarders line contains up to ten name server
addresses.

• Start named:

ndc start

1. We’ll look at the serial number on page 368.

368 Chapter 21: The Domain Name Service

Name server on an end-user network
Of course, a simple caching-only name server won’t work when you have your own
domain. In fact, most of the authorities who allocate domain names won’t even let you
register an Internet domain unless you specify two functional name servers, and they’ll
check them before the registration can proceed. In this section, we’ll look at what you
need to do to run a ‘‘real’’ name server.

The first thing we need to do is to create a zone file for our zone example.org. We’ll put
it and all other zone files in a directory /etc/namedb and call it /etc/namedb/db.exam-
ple.org after the name of the zone it describes.

The SOA record
The first thing we need is a record describing the Start of Authority. This defines a new
zone. Write:

$TTL 1d
example.org. IN SOA freebie.example.org. grog.example.org. (

2003031801 ; Serial (date, 2 digits version of day)
1d ; refresh
2h ; retry
100d ; expire
1h) ; negative cache expiry

The first line, $TTL 1d, is relatively new. It’s not strictly part of the SOA record, but it’s
now required to fully define the SOA. It specifies the length of time that remote name
servers should cache records from this zone. During this time they will not attempt
another lookup. In older versions of BIND, this value was stored in the last field of the
SOA record below.

The remaining lines define a single SOA record. the name on the left is the name of the
zone. The keyword IN means Internet, in other words the Internet Protocols. The BIND
software includes support for multiple network types, most of which have now been
forgotten. The keyword SOA defines the type of record. freebie.example.org is the master
name server.

The next field, grog.example.org, is the mail address of the DNS administrator. ‘‘Wait a
minute,’’ you may say, ‘‘that’s not a mail address. There should be an @ there, not a..’’
That’s right, but unfortunately DNS uses the @ sign for other purposes, and it would be a
syntax error in this position. So the implementors resorted to this kludge. To generate
the mail ID, replace the first.with an @, to giv e you grog@example.org.

The serial number identifies this version of the zone configuration. Remote name servers
first retreive the SOA record and check if the serial number has incremented before
deciding whether to access the rest of the zone, which could be large. Make sure you
increment this field every time you edit the file. If you don’t, your updates will not
propagate to other name servers. It’s a good idea to use a format that reflects the date, as
here: the format gives four digits for the year, two digits for the month, two for the day,
and two for the number of the modification on a particular day. The serial number in this

Name server on an end-user networ k 369

example shows it to be the second modification to the zone configuration on 18 March
2003.

The remaining parameters describe the timeout characteristics of the zone. Use the
values in the example unless you have a good reason to change them. The data formats
for the records require all times to be specified in seconds, and in previous versions of
BIND, this was the only choice you had. In current versions of BIND, you can use scale
factors like d for day and h for hours in the configuration file. named converts them to
seconds before transmission.

• The refresh time is the time after which a remote name server will check whether the
zone configuration has changed. 1 day is reasonable here unless you change your
configuration several times per day.

• The retry time is the time to wait if an attempt to load the zone fails.

• The expire time is the time after which a slave name server will drop the information
about a zone if it has not been able to reload it from the master name server. You
probably want to make this large.

• In previous versions of BIND, the last field was the minimum time to live. Now the
$TTL parameter sets that value, and the last parameter specifies the negative caching
time. If an authoritative name server (one that maintains the zone) reports that a
record doesn’t exist, it returns an SOA record as well to indicate that it’s authoritative.
The local name server maintains this information for the period of time specified by
this field of the returned SOA record and it doesn’t retry the query until the time has
expired. The only way things can change here is if the remote hostmaster changes
the DNS configuration, so it’s reasonable to keep the negative cache time to about an
hour.

The A records
The most obvious requirement are the IP addresses of the systems on the network. In the
zone example.org, define the A records like this:

localhost IN A 127.0.0.1 local machine, via loopback interface
freebie IN A 223.147.37.1
presto IN A 223.147.37.2
bumble IN A 223.147.37.3
wait IN A 223.147.37.4
gw IN A 223.147.37.5

In practice, as we will see in the completed configuration file, we tend to put the A
records further towards the end of the list, because they are usually the most numerous. It
makes the file easier to read if we put them after the shorter groups of entries.

370 Chapter 21: The Domain Name Service

The NS records
DNS uses a special kind of record to tell where your name servers are. In our case, we’re
running name servers on freebie and presto. We could write:

IN NS freebie.example.org.
IN NS presto.example.org.

This would work just fine, but in fact we’ll do it a little differently, as we’ll see in the next
section.

Nicknames
We’re running a whole lot of services on the reference network, in particular a web server
and an ftp server. By convention, a web server machine is called www, an ftp server is
called ftp, and a name server is called ns. But they’re both running on machines with
different names. What do we do? We giv e our machines nicknames:

www IN CNAME freebie
ftp IN CNAME presto

We’d like to do the same with the name servers, but unfortunately DNS doesn’t like that,
and will complain about your DNS configuration all over the world if you make ns a
CNAME. There’s a good reason for this: if you use CNAME records to define your name
servers, remote systems have to perform two lookups to find the address of the name
server, one to retreive the CNAME and one to get the corresponding A record for the
CNAME. Define new A records for them:

IN NS ns
IN NS ns1

ns IN A 223.147.37.1
ns1 IN A 223.147.37.2

You’ll note that we’re using relative domain names in these examples. They are taken to
be relative to the name that starts the SOA record.

The MX records
As we will see on page 493, you could send mail to hosts listed in an A record, but it’s
not a good idea. Instead, you should have at least two MX records to tell SMTP what to
do with mail for your domain. This method has an added advantage: it allows you to
rename individual machines without having to change the users’ mail IDs. We’ll take this
advice and assume that all mail is sent to user@example.org. In addition, we’ll use the
ISP’s mail server mail.example.net as a backup in case our mail server is down. That
way, when it comes back up, the delivery will be expedited. The resulting MX records
look like:

IN MX 50 bumble.example.org.
IN MX 100 mail.example.net.

Name server on an end-user networ k 371

The numbers 50 and 100 are called preferences. Theoretically you could make them 1
and 2, except that you might want to put others in between. A mail transfer agent sends
mail to the system with the lowest preference unless it does not respond—then it tries the
MX record with the next-lowest preference, and so on.

The HINFO records
Finally, you may want to tell the world about your hardware and this great operating
system you’re running. You can do that with the HINFO record:

freebie IN HINFO "Pentium/133" "FreeBSD 4.0-CURRENT (4.4BSD)"
presto IN HINFO "Pentium II /233" "FreeBSD 3.2 (4.4BSD)"
bumble IN HINFO "Pentium/133" "SCO OpenServer"
wait IN HINFO "Pentium Pro 266" "Microsoft Windows 95%"
gw IN HINFO "486/33" "FreeBSD 3.2 (4.4BSD)"

Of course, telling the world the truth about your hardware also helps crackers choose the
tools to use if they want to break into your system. If this worries you, don’t use HINFO.
It’s still the exception to see HINFO records.

Putting it all together
In summary, our configuration file /etc/namedb/db.example.org looks like:

; Definition of zone example.org
$TTL 1d
example.org. IN SOA freebie.example.org. grog.example.org. (

2003031801 ; Serial (date, 2 digits version of day)
1d ; refresh
2h ; retry
100d ; expire
1h) ; negative cache expiry

; name servers
IN NS ns
IN NS ns1

; MX records
IN MX 50 bumble.example.org.
IN MX 100 mail.example.net.

ns IN A 223.147.37.1
ns1 IN A 223.147.37.2

; Hosts
localhost IN A 127.0.0.1
freebie IN A 223.147.37.1
presto IN A 223.147.37.2
bumble IN A 223.147.37.3
wait IN A 223.147.37.4
gw IN A 223.147.37.5

; nicknames
www IN CNAME freebie
ftp IN CNAME presto

; System information
freebie IN HINFO "Pentium/133" "FreeBSD 4.0-CURRENT (4.4BSD)"
presto IN HINFO "Pentium II/233" "FreeBSD 3.2 (4.4BSD)"
bumble IN HINFO "Pentium/133" "SCO OpenServer"

372 Chapter 21: The Domain Name Service

wait IN HINFO "Pentium Pro 266" "Microsoft Windows 95%"
gw IN HINFO "486/33" "FreeBSD 3.2 (4.4BSD)"

You’ll notice that comment lines start with ;, and not with the more usual #. Also, we
have rearranged the MX records and the A records for the name servers. If we placed the
MX records below the A records for the name servers, they would refer to
ns1.example.org.

That’s all the information we need for our zone example.org. But we’re not done yet—
we need another zone. Read on.

Reverse lookup
It’s not immediately apparent that you might want to perform re verse lookup, to find the
name associated with a specific IP address. In fact, it’s used quite a bit, mainly to confirm
that a system is really who it says it is. Many mail servers, including Fr eeBSD.org, insist
on valid reverse lookup before accepting mail. We’ll look at that in more detail in
Chapter 27, on page 501. It’s not difficult, but many systems, particularly those using
Microsoft, don’t hav e their reverse lookup set up correctly.

/etc/hosts is a file, so you can perform lookup in either direction. Not so with DNS: how
can you know which name server is authoritative for the domain if you don’t know its
name? You can’t, of course, so DNS uses a trick: it fabricates a name from the address.
For the address 223.147.37.4, it creates a domain name 37.147.223.in-addr.arpa. The
digits of the address are reversed, and the last digit is missing: it’s the host part of the
address. It asks the name server for this domain to resolve the name 4.37.147.223.in-
addr.arpa.

To resolve the names, we need another zone. That means another file, which we’ll call
/etc/namedb/example-reverse. It’s not quite as complicated as the forward file:

$TTL 1d
@ IN SOA freebie.example.org. grog.example.org. (

2003022601 ; Serial (date, 2 digits version of day)
1d ; refresh
2h ; retry
100d ; expire
2h) ; negative cache

IN NS ns.example.org.
IN NS ns1.example.org.

1 IN PTR freebie.example.org.
2 IN PTR presto.example.org.
3 IN PTR bumble.example.org.
4 IN PTR wait.example.org.
5 IN PTR gw.example.org.

In this case, the SOA record is identical to that in /etc/namedb/db.example.org, with two
exceptions: instead of the zone name at the beginning of the line, we have the @ symbol,
and the serial number is different—you don’t normally need to update reverse lookup
domains so often. This @ symbol represents the name of the zone, in this case
37.147.223.in-addr.arpa.. We’ll see how that works when we make the

Reverse lookup 373

/etc/named/named.root file below. We also use the same name server entries. This time
they need to be fully qualified, because they are in a different zone.

Finally, we hav e the PTR (reverse lookup) records. They specify only the last digit (the
host part) of the IP address, so this will be prepended to the zone name. The host name at
the end of the line is in fully qualified form, because it’s in another zone. For example, in
fully qualified form, the entry for wait could be written:

4.37.147.223.in-addr.arpa. IN PTR wait.example.org.

The distant view: the outside world
So far, we hav e gone to a lot of trouble to describe our own tiny part of the Internet.
What about the rest? How can the name server find the address of, say, freefall.Free-
BSD.org? So far, it can’t.

What we need now is some information about other name servers who can help us,
specifically the 13 root name servers. These are named A.ROOT-SERVERS.NET. through
M.ROOT-SERVERS.NET.. They are described in a file that you can get from
ftp://ftp.rs.internic.net/domain/named.root if necessary, but you shouldn’t need to: after
installing FreeBSD, it should be present in /etc/namedb/named.root. This file has hardly
changed in years—the names have changed once, but most of the addresses have stayed
the same. Of course, it’s always a good idea to check from time to time.

The named.conf file
So far, we hav e two files, one for each zone for which our name server is authoritative. In
a large system, there could be many more. What we need now is to tell the name server
which files to use. That’s the main purpose of named.conf. There’s already a skeleton in
/etc/namedb/named.conf. With the comments removed, it looks like:

options {
directory "/etc/namedb";
forwarders {

127.0.0.1;
};

zone "." {
type hint;
file "named.root";

};

zone "0.0.127.IN-ADDR.ARPA" {
type master;
file "localhost.rev";

};

zone "domain.com" {
type slave;
file "s/domain.com.bak";
masters {

192.168.1.1;
};

};

374 Chapter 21: The Domain Name Service

zone "0.168.192.in-addr.arpa" {
type slave;
file "s/0.168.192.in-addr.arpa.bak";
masters {

192.168.1.1;
};

};

Each entry consists of a keyword followed by text in braces ({}). These entries have the
following significance:

• The directory entry tells named where to look for the configuration files.

• The first zone is the top-level domain,.. It’s a hint: it tells named to look in the file
named.root in its configuration directory. named.root contains the IP addresses of
the 13 top-level name servers.

• We’v e seen the entry for 0.0.127.IN-ADDR.ARPA already on page 367: it’s the
reverse lookup for the localhost address.

• The hint entry specifies the name of the file describing the root servers (domain.).

• The zone entries for domain.com and 0.168.192.in-addr.arpa define slave name
servers. A slave name server addresses all queries to one of the specified master
name servers. In earlier versions of DNS, a slave name server was called a secondary
name server, and the master name server was called a primary name server. This is
still current usage outside BIND, but you should expect this to change.

This file already contains most of the information we need. The only things we need to
add are the information about the names of our zones and the location of the description
file:

zone "example.org" {
type master;
file "db.example.org";

};

zone "37.147.223.in-addr.arpa" {
type master;
file "example-reverse";

};

When we’ve done that, we can start the name server with ndc, the named control
program:1

ndc start
new pid is 86183

If it’s already running, we can restart it:

ndc reload
Reload initiated.

1. In Release 9 of named it will change its name to rndc.

Reverse lookup 375

Starting or restarting the name server doesn’t mean it will work, of course. If you make a
mistake in your configuration files, it may not work at all. Otherwise it might start, but
refuse to load specific zones. named logs messages with syslog, and if you are using the
standard syslog configuration, the messages will be written to the console and to the file
/var/log/messages. After starting named, you should check what it said. named
produces a number of messages, including:

Mar 18 15:01:57 freebie named[69751]: starting (/etc/namedb/named.conf). named 8.3.
4-REL Wed Dec 18 13:38:28 CST 2002 grog@freebie.example.org:/usr/obj/src/FreeBSD/5-S
TABLE-FREEBIE/src/usr.sbin/named
Mar 18 15:01:57 freebie named[69751]: hint zone "" (IN) loaded (serial 0)
Mar 18 15:01:57 freebie named[69751]: master zone "example.org" (IN) loaded (serial
2003031801)
Mar 18 15:01:57 freebie named[69751]: Zone "0.0.127.in-addr.arpa" (file localhost.re
verse): No default TTL ($TTL <value>) set, using SOA minimum instead
Mar 18 15:01:57 freebie named[69751]: master zone "0.0.127.in-addr.arpa" (IN) loaded
(serial 97091501)
Mar 18 15:01:57 freebie named[69751]: listening on [223.147.37.1].53 (rl0)
Mar 18 15:01:57 freebie named[69751]: listening on [127.0.0.1].53 (lo0)
Mar 18 15:01:57 freebie named[69752]: Ready to answer queries.

Note the warning output for 0.0.127.in-addr.arpa: this is obviously an old-style zone file,
as the serial number also suggests. It doesn’t hav e a $TTL entry, so named defaults to the
old-style behaviour and uses the last field (which used to be called ‘‘minimum’’) of the
SOA record instead. This warning is not very serious, but you probably want a longer
default TTL than you do for caching failed lookups, which is what the field is used for
now.
What you don’t want to see are error messages like:

May 10 14:26:37 freebie named[1361]: db.example.org: Line 28: Unknown type: System.
May 10 14:26:37 freebie named[1361]: db.example.org:28: Database error (System)
May 10 14:26:37 freebie named[1361]: master zone "example.org" (IN) rejected due to
errors (serial 1997010902)

As the last message states, this error has caused the zone to be rejected. Funny: if you
look at line 28 of /etc/namedb/db.example.org, it looks straightforward enough:

System information
freebie IN HINFO "Pentium/133" "FreeBSD 3.0-CURRENT (4.4BSD)"
presto IN HINFO "Pentium II/233" "FreeBSD 2.2.5 (4.4BSD)"

The problem here is that named doesn’t use the standard UNIX convention for
comments: the comment character is a semicolon (;), not a hash mark (#).

Most other configuration errors should be self-explanatory. On page 379 we’ll look at
messages that named produces during normal operation.

376 Chapter 21: The Domain Name Service

Slave name servers
A lot of software relies on name resolution. If for any reason a name server is not
accessible, it can cause serious problems. This is one of the reasons why most registrars
insist on at least two name servers before they will register a domain.

If you run multiple name servers, it doesn’t really matter which one answers. So why a
distinction between master and slave name servers? It’s purely organizational: a master
name server loads its data from the configuration files you create, as we saw above. A
slave name server loads its data from a master name server if it is running. It saves the
information in a private file so that if it is restarted while the master name server isn’t
running, it can reload information about the zones it is serving from this file. This makes
it a lot easier to configure a slave name server, of course; everything we need is in
/etc/namedb/named.conf :

zone "." {
type hint;
file "named.root";

};

zone "example.org" {
type slave;
file "backup.example.org";
masters {

223.147.37.1;
};

};

zone "37.147.223.in-addr.arpa" {
type slave;
file "backup.example-reverse";
masters {

223.147.37.1;
};

};

zone "0.0.127.in-addr.arpa" {
type master;
file "localhost.rev";

};

Although this is a slave name server, there’s no point in being a slave for localhost’s
reverse mapping, so the last entry is still a master.

The numerical address is for freebie.example.org, the name server from which the zone is
to be loaded. We use the numerical address because the name server needs the address
before it can perform resolution. You can specify multiple name servers if you want.
The backup file is the name of the file where the zone information should be saved in case
the name server is restarted when the master name server is not accessible.

Slave name servers 377

The next level down: delegating zones
In the previous example, we configured a name server for a single zone with no subzones.
We did briefly consider what would happen if we created a subdomain china.exam-
ple.org. In this section, we’ll create the configuration files for this subzone and see how
to link it to the parent zone, a process called delegation.

china.example.org
For the subdomain china.example.org, the same considerations apply as in our previous
example: we have a domain without subdomains. Only the names and the addresses
change.

In the following examples, let’s assume that china.example.org has two name servers,
beijing.china.example.org and xianggang.china.example.org. Let’s look at the files we
might have on these systems, starting with /etc/namedb/db.china.example.org:

; Definition of zone china.example.org
$TTL 1d
@ IN SOA beijing.china.example.org. zhang.china.example.org. (

2001061701 ; Serial (date, 2 digits version of day)
1d ; refresh
2h ; retry
100d ; expire
2h) ; negative cache

; name servers
IN NS ns
IN NS ns1

ns IN A 223.169.23.1
ns1 IN A 223.169.23.2
; MX records

IN MX 50 xianggang.china.example.org.
IN MX 70 bumble.example.org.
IN MX 100 mail.example.net.

; Hosts
beijing IN A 223.169.23.1
xianggang IN A 223.169.23.2
shanghai IN A 223.169.23.3
guangzhou IN A 223.169.23.4
gw IN A 223.169.23.5

; nicknames
www IN CNAME shanghai
ftp IN CNAME shanghai

Then, /etc/namedb/china-reverse:

; Definition of zone china.example.org
@ IN SOA beijing.china.example.org. zhang.china.example.org. (

1997090501 ; Serial (date, 2 digits version of day)
86400 ; refresh (1 day)
7200 ; retry (2 hours)
8640000 ; expire (100 days)
86400) ; minimum (1 day)

378 Chapter 21: The Domain Name Service

; name servers
IN NS ns.china.example.org.
IN NS ns1.china.example.org.

; Hosts
1 IN PTR beijing
2 IN PTR xianggang
3 IN PTR shanghai
4 IN PTR guangzhou
5 IN PTR gw

and finally /etc/namedb/named.conf :

zone "." {
type hint;
file "named.root";

};

zone "0.0.127.IN-ADDR.ARPA" {
type master;
file "localhost.rev";

};

zone "china.example.org" {
type master;
file "db.china.example.org";

};

zone "23.169.233.IN-ADDR.ARPA" {
type master;
file "china-reverse";

};

These files look very much like the corresponding files for example.org. The real
difference happens in the configuration for example.org, not for china.example.org. We’ll
look at that next.

example.org with delegation
What does example.org’s name server need to know about china.example.org? You
might think, ‘‘nothing, they’re separate zones,’’ but that’s not completely true. For a
remote name server to find china.example.org, it first goes to example.org, so the parent
domain must maintain enough information to find the child domain. This process is
called delegation. The parent name server maintains NS records (‘‘delegation records’’)
and corresponding A records (‘‘glue records’’) for the child zone. It might also be a good
idea for the name servers for example.org to maintain a secondary name server for china:
that way we can save a lookup to the master name servers for china.example.org most of
the time. To do so, we add the following line to /etc/namedb/named.conf :

zone "china.example.org" {
type slave;
file "backup.china";
masters {

223.169.23.1;
223.169.23.2;

};
};

The next level down: delegating zones 379

zone "23.169.223.in-addr.arpa" {
type slave;
file "backup.china-reverse";
masters {

223.169.23.1;
223.169.23.2;

};
};

We add the following information to /etc/namedb/db.example.org:

@ IN SOA freebie.example.org. grog.example.org. (
1997090501 ; Serial (date, 2 digits version of day)
86400 ; refresh (1 day)
7200 ; retry (2 hours)
8640000 ; expire (100 days)
86400) ; minimum (1 day)

china IN NS ns.china.example.org.
china IN NS ns1.china.example.org.

ns.china IN A 223.169.23.1
ns1.china IN A 223.169.23.2

We changed the information, so we also change the serial number of the SOA record so
that the secondary name servers for example.org will reload the updated information.

We need to specify the addresses of the name servers as well. Strictly speaking they
belong to the zone china, but we need to keep them in the parent zone example.org: these
are the addresses to which we need to send any kind of query.

After changing the configuration like this, we restart the name server:

ndc reload

We check the output, either by looking on the system console or by using the command
tail /var/log/messages. We’ll see something like:

Mar 18 15:23:40 freebie named[69752]: reloading nameserver
Mar 18 15:23:40 freebie named[69752]: master zone "china.example.org" (IN) loaded (s
erial 2001061701)
Mar 18 15:23:40 freebie named[69752]: Forwarding source address is [0.0.0.0].4673
Mar 18 15:23:40 freebie named[69752]: Ready to answer queries.

Messages from named
Once your named is up and running, it may still produce a number of messages. Here
are some examples:

May 10 15:09:06 freebie named[124]: approved AXFR from [223.147.37.5].2872 for "exam
ple.org"
May 10 15:09:06 freebie named[124]: zone transfer of "example.org" (IN) to [192.109.
197.137].2872

380 Chapter 21: The Domain Name Service

These messages indicate that another name server has loaded the zone specified. This
will typically be one of your secondary name servers. This should happen about as often
as you have specified in your refresh parameter for the zone.

Mar 18 19:21:53 freebie named[69752]: ns_forw: query(tsolyani.com) contains our add
ress (freebie.example.org:223.147.37.1) learnt (A=example.org:NS=66.47.255.122)

This message indicates that the server indicated by the A record has asked us to forward a
query whose name server list includes our own names or address(es). This used to be
called a lame delegation. It’s interesting that the address in this (real) message was
a.root-servers.net, one of the 13 base servers for the whole Internet, which was probably
forwarding a query from some other system. The server doesn’t check the validity of the
queries it forwards, so it’s quite possible for them to be in error.

Mar 19 14:53:32 freebie named[13822]: Lame server on ’182.201.184.212.relays.osirus
oft.com’ (in ’relays.osirusoft.com’?): [195.154.210.134].53 ’ns1-relays.osirusoft.c
om’: learnt (A=216.102.236.44,NS=216.102.236.44)

This message indicates that a name server, listed as authoritative for a particular zone, is
in fact not authoritative for that zone.

Sep 14 03:33:18 freebie named[55]: ns_forw: query(goldsword.com) NS points to CNAME
(ns-user.goldsword.com:) learnt (CNAME=199.170.202.100:NS=199.170.202.100)

As we saw above, a name server address should be an A record. The administrator of this
system didn’t know this, and pointed it to a CNAME record.

Sep 14 15:55:52 freebie named[55]: ns_forw: query(219.158.96.202.in-addr.arpa) A RR
negative cache entry (ns.gz.gdpta.net.cn:) learnt (NODATA=202.96.128.68:NS=202.12.28
.129)

This message indicates that the name server has already determined that the name server
specified cannot be found, and has noted that fact in a negative cache entry.

Upgrading a Version 4 configuration
What we’ve seen so far applies to Versions 8 and 9 of named. The previous version was
Version 4 (don’t ask what happened to 5, 6 and 7; until Version 9 came along, there were
rumours that the next version would be 16). Version 8 of named introduced a completely
new configuration file format. If you have an existing DNS configuration from Version 4,
the main configuration file will be called /etc/named.boot or /etc/named/named.boot.
You can convert it to the named.conf format with the script /usr/sbin/named-bootconf :

named-bootconf < /etc/namedb/named.boot > /etc/namedb/named.conf

Upgrading a Version 4 configuration 381

Looking up DNS information
You can use dig, host or nslookup to look up name information. It’s largely a matter of
preference which you use, but you should note that nslookup uses the resolver interface,
which can result in you getting different results from what your name server would get.
The output format of dig gets on my nerves, so I use host. Others prefer dig because it
formulates the queries exactly the same way the name server does, and its output is more
suited as input to named. For example, the command dig @a.root-servers.net .
axfr produces a named.root file that named understands. We’ll look briefly at host.
Here are some examples:

$ host hub.freebsd.org look up an A record
hub.freebsd.org has address 216.136.204.18
hub.freebsd.org mail is handled (pri=10) by mx1.freebsd.org
$ host 216.136.204.18 perform a reverse lookup
18.204.136.216.IN-ADDR.ARPA domain name pointer hub.freebsd.org
$ host ftp.freebsd.org another one
ftp.freebsd.org is a nickname for ftp.beastie.tdk.net this is a CNAME
ftp.beastie.tdk.net has address 62.243.72.50 and the corresponding A record
ftp.beastie.tdk.net mail is handled (pri=20) by mail-in1.inet.tele.dk
ftp.beastie.tdk.net mail is handled (pri=30) by mail-in2.inet.tele.dk
$ host -v -t soa freebsd.org Get an SOA record
Trying null domain
rcode = 0 (Success), ancount=1
The following answer is not authoritative:
freebsd.org 3066 IN SOA ns0.freebsd.org hostmaster.freebsd.org(

103031602 ;serial (version)
1800 ;refresh period
900 ;retry refresh this often
604800 ;expiration period
1800 ;minimum TTL

)
For authoritative answers, see:
freebsd.org 3066 IN NS ns0.freebsd.org
freebsd.org 3066 IN NS ns1.iafrica.com
freebsd.org 3066 IN NS ns1.downloadtech.com
freebsd.org 3066 IN NS ns2.downloadtech.com
Additional information:
ns0.freebsd.org 92727 IN A 216.136.204.126
ns1.iafrica.com 92727 IN A 196.7.0.139
ns1.downloadtech.com 92727 IN A 170.208.14.3
ns2.downloadtech.com 92727 IN A 66.250.75.2
ns2.iafrica.com 22126 IN A 196.7.142.133

There are a number of things to look at in the last example:

• We used the -v (verbose) option to get more information.

• Note the message Trying null domain. This comes because the name supplied
was not a fully qualified domain name: the period at the end was missing. host
decides that it looks like a fully qualified name, so it doesn’t append a domain name
to the name.

• The local name server at example.org already had the SOA record for Fr eeBSD.org in
its cache; as a result, it didn’t need to ask the name server that was authoritative for
the zone. Instead, it tells you that the answer was not authoritative and tells you
where you can get a valid answer.

382 Chapter 21: The Domain Name Service

• The output is in pretty much the same format as we discussed earlier in the chapter,
but there are some numbers in front of IN in all the resource records. These are the
time-to-live values for each individual record, in seconds. You can put these in the
zone files, too, if you want, and they’ll override the TTL value for the zone. In this
printout, they specify how long it will be before the cached entry expires. Try it again
and you’ll see that the value is lower.

To get an answer from one of the authoritative name servers, we simply specify its name
at the end of the request:

$ host -v -t soa freebsd.org. ns0.freebsd.org.
host -v -t soa freebsd.org. ns0.sd.org.
Using domain server:
Name: ns0.freebsd.org
Addresses: 216.136.204.126

rcode = 0 (Success), ancount=1
freebsd.org 3600 IN SOA ns0.freebsd.org hostmaster.freebsd.org(

103031602 ;serial (version)
1800 ;refresh period
900 ;retry refresh this often
604800 ;expiration period
1800 ;minimum TTL

)

This time we specified the names as FQDNs, so the message about the null domain no
longer appears. Also, the TTL value is now the correct value for the record, and it won’t
change. Apart from that, the only difference is the missing message that the answer is not
authoritative. The rest of the printout is the same.

You can also use the -t option to look for a specific record:

$ host -t mx freebsd.org. get the MX records
freebsd.org mail is handled (pri=10) by mx1.freebsd.org
$ host -t hinfo hub.freebsd.org. get HINFO records
$ host -t hinfo freefall.freebsd.org.
freefall.freebsd.org host information Intel FreeBSD

These invocations don’t use the -v (verbose) option, so they’re much shorter. In
particular, hub.freebsd.org doesn’t hav e any HINFO records, so we got no output at all.

Checking DNS for correctness
Several programs are available for diagnosing DNS configuration problems. They’re
outside the scope of this book, but if you’re managing large DNS configurations, take a
look at the collection at http://www.isc.org/ .

Checking DNS for correctness 383

DNS security
named was written at a time when the Internet was run by gentlemen. In the last few
years, a relatively large number of security issues have been found in it. The FreeBSD
project fixes these problems quickly, and you can expect that the version you get will
have no known security issues. That can change, though: keep an eye on the security
advisories from the FreeBSD project and update your name server if necessary.

(firewall.mm), page 385

22
Firewalls, IP
aliasing and

proxies

In this chapter:
• Secur ity and firewalls
• IP aliasing
• Proxy servers
• Installing squid
• Browser proxy

configuration

In this chapter:
• Secur ity and firewalls
• IP aliasing
• Proxy servers
• Installing squid
• Browser proxy

configuration

The Internet was developed by a relatively small community of computer scientists, who
were for the most part responsible people who often did not take security issues very
seriously. Since the Internet has been opened to the general public, three problems have
become evident:

• A large number of people have sought to abuse its relatively lax security.

• The address space is no longer adequate for the number of machines connecting to
the network.

• Much bandwidth is used by people downloading the same web pages multiple times.

What do these problems have to do with each other? Nothing much, but the solutions are
related, so we’ll look at them together. More specifically, we’ll consider:

• How to set up an Internet firewall to keep intruders out of your network.

• Security tools that ensure that nobody can steal your password from a node through
which it passes.

• Tools for IP aliasing, which translate IP addresses to make them appear to come from
the gateway machine. The way this is done makes it impossible to set up connections
from outside, so they also represent a kind of security device.

385

386 Chapter 22: Firewalls, IP aliasing and proxies

• Caching proxy servers, which both address the multiple download issues and provide
some additional security.

Security and firewalls
Recall from Chapter 16 that incoming packets need to connect to an IP port, and that
some process on the machine must accept them. By default, this process is inetd. You
can limit the vulnerability of your machine by limiting the number of services it supports.
Do you need to supply telnet and rlogin services? If not, don’t enable the service. By
default, /etc/inetd.conf no longer enables any services, so this should not be a problem.
Obviously, careful system configuration can minimize your vulnerability, but it also
reduces your accessibility: intruders can’t get in, but neither can the people who need to
access the machine.

A better solution is a tool that passes authorized data and refuses to pass unauthorized
data. Such a tool is called a firewall. In this section, we’ll look at packet filtering
firewalls: the firewall examines each incoming packet and uses a set of predefined walls
to decide whether to pass it unchanged, change it, or simply discard it. An alternative
approach is a proxy firewall, which analyzes each packet and creates new requests based
on its content. On page 396 we’ll look at squid, a caching proxy server that provides
some of this functionality.

FreeBSD supports three different firewalls, ipf, ipfilter and ipfw. We consider ipfw here;
you can find details about ipf and ipfilter and in the respective man pages.

The DEFAULT FreeBSD kernel does not include firewall support. If you wish, you can
build a kernel with firewall support—see the file /usr/src/sys/conf/NOTES for a list of
parameters—but you don’t need to build a new kernel. You can load the KLD
/boot/kernel/ipfw.ko instead:

kldload ipfw
ipfw2 initialized, divert disabled, rule-based forwarding enabled, default to deny
, logging disabled

Before you do so, make sure you have direct local connection to the system. If you start
this command remotely, you will instantly lose access to the system. Read the following
section before loading the firewall.

ipfw: defining access rules
The program ipfw processes access rules for the firewall. Each rule relates to specific
kinds of packet and describes what to do with them. On receiving a packet, ipfw
examines each rule in a predetermined order until it finds one which matches the packet.
It then performs the action that the rule specifies. In most cases, the rule accepts or
denies the packet, so ipfw does not need to continue processing the remaining rules,
though sometimes processing can continue after a match. If no rule matches, the default
is to allow no traffic.

Secur ity and firewalls 387

Table 22-1 shows the keywords you can use to define the packets and the forms that the
IP address range can take:

Table 22-1: ipfw packet types

Keyword Description
ip All IP packets.

tcp TCP packets.

udp UDP packets.

icmp ICMP packets.

service name or number A packet destined for one of the services described in
/etc/services.

src IP address range A packet with a source address that matches IP address. See
below for the interpretation of IP address range.

dst IP address range A packet with a destination address that matches IP address.

via interface All packets going by the specified interface. interface may be
an interface name or an IP address associated with only one
interface.

recv interface All packets arriving by the specified interface. interface may
be an interface name or an IP address associated with only one
interface.

xmit interface All packets going out by the specified interface. interface may
be an interface name or an IP address associated with only one
interface.

IP address This is an IP address. It specifies a match for exactly this
address.

IP address/bits bits is a value between 0 and 32. This form matches the first
bits bits of IP address.

IP address:mask mask is a 32-bit value. This form matches those bits of IP
address specified in mask. This is the same concept as a net
mask—see Chapter 16, page 290, for a description of net
masks.

These options can be combined with a few restrictions:

• The recv interface can be tested on either incoming or outgoing packets, while the
xmit interface can be tested only on outgoing packets. This means that you must
specify the keyword out (and you may not specify in) when you use xmit. You
can’t specify via together with xmit or recv.

388 Chapter 22: Firewalls, IP aliasing and proxies

• A packet that originates from the local host does not have a receive interface. A
packet destined for the local host has no transmit interface.

Actions
When ipfw finds a rule which matches a packet, it performs the specified action. Table
22-2 shows the possibilities.

Table 22-2: Actions on packets

Keyword Description
allow Allow a packet to pass. Stop processing the rules.
deny Discard the packet. Stop processing the rules.
unreach Discard the packet and send an ICMP host unreachable message to the

sender. Stop processing the rules.
reset Discard the packet and send a TCP reset message. This can apply only to

TCP packets. Stop processing the rules.
count Count the packet and continue processing the rules.
divert port Divert the packet to the divert socket bound to port port. See the man

page ipfw(8) for more details. Stop processing the rules.
tee port Send a copy of the packet to the divert socket bound to port port.

Continue processing the rules.
skipto rule Continue processing the rules at rule number rule.

Writing rules
The sequence in which rules are applied is not necessarily the sequence in which they are
read. Instead, each rule can have a line number between 1 and 65534. Rules are applied
from the lowest to the highest line number. If you enter a rule without a line number,
however, it receives a number 100 higher than the previous rule.

The highest-numbered rule is number 65535, which is always present. Normally it has
the form:

65535 deny all from any to any

In other words, if no other rules are present, or they don’t match the packet, ipfw drops
the packet. If you build a kernel with the option IPFIREWALL_DEFAULT_TO_ACCEPT,
this rule changes to its opposite:

65535 allow all from any to any

These two rulesets implicitly illustrate two basic security strategies. You may note
parallels to certain political systems:

• The first takes the attitude ‘‘everything is forbidden unless explicitly allowed.’’

Secur ity and firewalls 389

• The second takes the attitude ‘‘everything is allowed unless explicitly forbidden.’’

It goes without saying that the first policy is safer. If you make a mistake with the first
(more restrictive) ruleset, you’re more likely to lock people out of your system
accidentally than you are to let them in when you don’t want them.

Configuration files
The main configuration file is /etc/rc.firewall. It’s unlikely to match your needs exactly.
There are two possibilities:

• You can edit it to match your requirements.

• You can create your own configuration file with your rules.

Which do you choose? If you’re making only minor modifications, it’s easier to edit it.
If you’re taking things seriously, though, you’ll end up with something that no longer
bears much of a relationship with the original file. Upgrades are easier if you have your
own file.

If you create your own file, you can tell /etc/rc.conf its name, and /etc/rc.firewall will
read it. Either way, the rules are the same. In the following section we’ll go through the
default /etc/rc.firewall file. There’s nothing stopping you from copying them to another
file and editing them to match your requirements.

Reading the file is somewhat complicated by a number of environment variables that are
set in the system startup scripts. We’ll see the important ones below. It’s also helpful to
know that ${fwcmd} gets replaced by the name of the firewall program, /sbin/ipfw. The
other ones are described in /etc/default/rc.conf :

firewall_enable="NO" # Set to YES to enable firewall functionality
firewall_script="/etc/rc.firewall" # Which script to run to set up the firewall
firewall_type="UNKNOWN" # Firewall type (see /etc/rc.firewall)
firewall_quiet="NO" # Set to YES to suppress rule display
firewall_logging="NO" # Set to YES to enable events logging
firewall_flags="" # Flags passed to ipfw when type is a file

To set up the firewall, first decide the kind of profile you need and set the variable
firewall_type accordingly. The current version of /etc/rc.firewall defines four kinds
of usage profile:

• The open profile is effectively a disabled firewall. It allows all traffic. You might use
this if you’re having trouble setting up the firewall and need to disable it temporarily.

• The client profile is a good starting point for a system that does not provide many
publicly accessible services to the Net. We’ll look at it in the next section.

• The simple profile, despite its name, is intended for a system that does provide a
number of publicly accessible services to the Net. We’ll look at it on page 391.

• The closed profile allows only local traffic via the loopback interface.

In addition, you can set firewall_type to the name of a file describing the firewall
configuration.

390 Chapter 22: Firewalls, IP aliasing and proxies

All configurations start with a call to setup_loopback, which adds the following rules:

${fwcmd} add 100 pass all from any to any via lo0
${fwcmd} add 200 deny all from any to 127.0.0.0/8
${fwcmd} add 300 deny ip from 127.0.0.0/8 to any

These rules allow all local traffic and stop traffic coming in with a fake local address.

The client profile

At the beginning of the client profile you’ll find a number of variables you need to set. In
the following example they’re set to match freebie.example.org and our example network:

[Cc][Ll][Ii][Ee][Nn][Tt])
############
This is a prototype setup that will protect your system somewhat against
people from outside your own network.
############

set these to your network and netmask and ip
net="223.147.37.0"
mask="255.255.255.0"
ip="223.147.37.1" freebie.example.org

Figure 22-1: Client profile in /etc/rc.firewall

The first line matches the text client whether written in upper or lower case. Then we
have:

setup_loopback

Allow any traffic to or from my own net.
${fwcmd} add pass all from ${ip} to ${net}:${mask}
${fwcmd} add pass all from ${net}:${mask} to ${ip}

These rules allow any traffic in the local network.

Allow TCP through if setup succeeded
${fwcmd} add pass tcp from any to any established

If a TCP connection has already been established, allow it to continue. Establishing a
TCP connection requires other rules, which we shall see below.

Allow IP fragments to pass through
${fwcmd} add pass all from any to any frag

Fragmented packets are difficult to recognize, and if we block them, strange things might
happen. They’re usually not a significant security risk.

Allow setup of incoming email
${fwcmd} add pass tcp from any to ${ip} 25 setup

Allow setup of outgoing TCP connections only
${fwcmd} add pass tcp from ${ip} to any setup

Secur ity and firewalls 391

Disallow setup of all other TCP connections
${fwcmd} add deny tcp from any to any setup

The preceding three rules allow external systems to establish a TCP connection for
delivering mail (first rule), but nothing else (third rule). The second rule allows setup of
TCP connections to the outside world.

Allow DNS queries out in the world
${fwcmd} add pass udp from ${ip} to any 53 keep-state

Allow NTP queries out in the world
${fwcmd} add pass udp from ${ip} to any 123 keep-state

Everything else is denied as default.

These two rules allow DNS and NTP queries. The keyword keep-state causes ipfw to
build a short-lived dynamic rule matching this particular combination of end points and
protocol. This means that we don’t need to open traffic in the other direction. Previously,
the rule set for DNS queries consisted of these two rules:

$fwcmd add pass udp from any 53 to ${ip}
$fwcmd add pass udp from ${ip} to any 53

This allows all DNS traffic in both directions. By contrast, keep-state allows only the
reply traffic for specific queries to pass the firewall. You don’t need this for TCP—the
established keyword does the same thing— but UDP doesn’t hav e the concept of a
connection, so the firewall needs to keep track of the traffic.

There are no more rules, so the default deny rule prevents any other kind of traffic.

The simple profile

Despite the name, the simple profile is really a (simple) server profile. It assumes that the
machine is a gateway, and that it supplies DNS and NTP services to the outside world
(for example, to the client machine we just looked at). This profile is more appropriate
for the system gw.example.org, so we’ll use its addresses.

set these to your outside interface network and netmask and ip
oif="tun0"
onet="139.130.136.133"
omask="255.255.255.255"
oip="139.130.136.133"

set these to your inside interface network and netmask and ip
iif="ep0"
inet="223.147.37.0"
imask="255.255.255.0"
iip="223.147.37.0"

These addresses and networks correspond to the PPP link and the local ethernet,
respectively.

392 Chapter 22: Firewalls, IP aliasing and proxies

Stop spoofing
${fwcmd} add deny all from ${inet}:${imask} to any in via ${oif}
${fwcmd} add deny all from ${onet}:${omask} to any in via ${iif}

These two rules stop any packets purporting to come from the local network that arrive
via the external network, and any packets purporting to come from the remote network
that arrive via the local interface. These packets would have been faked, an action known
as spoofing.

Stop RFC1918 nets on the outside interface
${fwcmd} add deny all from any to 10.0.0.0/8 via ${oif}
${fwcmd} add deny all from any to 172.16.0.0/12 via ${oif}
${fwcmd} add deny all from any to 192.168.0.0/16 via ${oif}

RFC 1918 defines networks that should not be routed. These rules enforce that
requirement.

At this point in the file there are also some other addresses that should not be routed. A
check is made for address translation, because non-routed addresses are typically used by
NAT environments.

Allow TCP through if setup succeeded
${fwcmd} add pass tcp from any to any established

Allow IP fragments to pass through
${fwcmd} add pass all from any to any frag

Allow setup of incoming email
${fwcmd} add pass tcp from any to ${oip} 25 setup

Allow access to our DNS
${fwcmd} add pass tcp from any to ${oip} 53 setup
${fwcmd} add pass udp from any to ${oip} 53
${fwcmd} add pass udp from ${oip} 53 to any

Allow access to our WWW
${fwcmd} add pass tcp from any to ${oip} 80 setup

These rules add to what we saw for the client profile: in addition to email, we allow
incoming DNS and WWW connections.

Reject&Log all setup of incoming connections from the outside
${fwcmd} add deny log tcp from any to any in via ${oif} setup

Allow setup of any other TCP connection
${fwcmd} add pass tcp from any to any setup

Here, we don’t just reject TCP setup requests from the outside world, we log them as
well.

Allow DNS queries out in the world
${fwcmd} add pass udp from ${oip} to any 53 keep-state

Allow NTP queries out in the world
${fwcmd} add pass udp from ${oip} to any 123 keep-state

Everything else is denied as default.

Secur ity and firewalls 393

Finally, we allow DNS and NTP queries via UDP, and deny everything else from the
outside world.

user-defined profiles

If the profile isn’t one of the recognized keywords, /etc/rc.firewall checks if there’s a file
with that name. If so, it uses it as a command file to pass to ipfw:

elif ["${firewall}" != "NONE" -a -r "${firewall}"]; then
${fwcmd} ${firewall_flags} ${firewall_type}

Note that you can’t put comment lines in the file defined by ${firewall}.

Entries in /etc/rc.conf

When you have decided what kind of firewall configuration best suits your network, note
that fact in /etc/rc.conf. Set the value of firewall_enable to YES to enable the firewall,
and the value of firewall_type to indicate the type of firewall. For our example
network, client is probably the most appropriate type:

firewall_enable="YES" # Set to YES to enable firewall functionality
firewall_script="/etc/rc.firewall" # Which script to set up the firewall
firewall_type="client" # Firewall type (see /etc/rc.firewall)

If you have decided to write your own file rather than modify /etc/rc.firewall, set
firewall_type to the name of the file.

Trying it out
You’ll probably find that your first attempt at firewall configuration won’t be the
optimum. You’ll probably discover requirements that you hadn’t thought of and that are
now being denied by the default rule. Be prepared to spend some time getting everything
to work, and do this at the system console. There’s no good alternative.

IP aliasing
In our reference network on page 294, we assumed that our local network had a valid
assigned IP address. Sometimes, this isn’t possible. In fact, in the Real World it’s pretty
well impossible to get a complete class C network for a system with only five systems on
it. You have the alternative of getting a subset of a class C network (in this case, eight
addresses would do) from your ISP, or using just one address and running software that
makes all traffic from the network to the outside world look as if it’s coming from that
system. The latter approach, called network address translation (NAT) or IP aliasing,
can be significantly cheaper: ISPs often charge good money for additional addresses. On
the down side, NAT restricts you in some ways. Any connection between a machine on a
NAT network and the global Internet must start from the machine on the NAT network,
because the translation doesn’t exist until the connection is set up. This also means that
you can’t connect two machines on different NAT networks.

394 Chapter 22: Firewalls, IP aliasing and proxies

Network address translation involves three machines: one on the global Internet with real
Internet addresses, one on a private subnet with unroutable addresses, and one in the
middle that performs the translation. In our reference network (see page 294), let’s
consider connecting andante, the laptop, to the Internet with presto acting as address
translator. andante is not part of the local network, so it gets an address in one of the
address spaces specified by RFC 1918 (192.168.0.0 to 192.168.255.255,
172.16.0.0 to 172.31.255.255, or 10.0.0.0 to 10.255.255.255). In this example,
it has the address 192.168.27.17, and we can assume that it got this address from a
DHCP server on presto. A connection to a remote web site http://www.FreeBSD.org
might look like this:

andante presto Fr eeBSD
www.

.org

192.168.27.17

2731

192.168.27.1

80

223.147.37.2

3312

216.136.204.117

80

wi0 xl0 dc0

Figure 22-2: Accessing the Web via NAT

In this diagram, the IP addresses are above the boxes, the interface names above the
connection lines, and the port numbers below the connection lines. The connection must
be started by andante, because there is no way to route to it directly from outside the
local link. It finds the address of www.FreeBSD.org (216.136.204.117) and sends it out
its default route, in this case the only interface, wi0. presto gets the packet on interface
xl0 and routes it out through interface dc0.

So far, that’s nothing special—it’s what any router does. The difference is that presto
changes the source address and port number. On the wireless link, andante’s address is
192.168.27.17, and the port number for this connection is 2731. On the remote link,
the IP address becomes 223.147.37.2, presto’s own address, and the port number in
this case is 3312. Theoretically, the ‘‘changed’’ port address could be the same as the
original, since there is no relationship. The destination IP address and port number can’t
change, of course, or the packet would never get to its destination.

On return, the reverse happens: www.FreeBSD.org replies to presto, which recognizes the
port number, converts it to andante’s IP address and source port, and sends it to andante
on the local network.

IP aliasing software
There are a number of ways to perform IP aliasing with FreeBSD. If you’re connecting
to the outside world via User PPP (see Chapter 20, page 348), you can use the -alias
keyword to tell PPP to alias all packets coming from the network to the address of the
tunnel interface. In our reference network, this would be the address 139.130.136.133.

This particular form of IP aliasing has some limitations: it works only for a single User
PPP connection to the outside world, and it’s global in its functionality. One alternative is
the Network Address Translation Daemon, or natd, which uses divert sockets to translate
addresses. It works well in conjunction with the firewall software we looked at above.

IP aliasing 395

natd
To set up natd for the example above, perform the following steps:

• Even if you don’t plan to run an IP firewall, build and boot a custom kernel with the
following options:

options IPFIREWALL
options IPDIVERT

If you are running a firewall, configure the firewall normally, but be sure to include
the IPDIVERT option.

• Make sure your interfaces are running. For example, if you’re running Kernel PPP
and you want to specify ppp0 as your interface, start pppd before starting natd.

• What you do next differs a little depending on whether you are also running a firewall
or not. If you’re not, you’re better off with a separate script, which you might call
/etc/rc.nat, with the following content:

/sbin/ipfw -f flush
/sbin/ipfw add divert natd all from any to any via dc0
/sbin/ipfw add pass all from any to any

• If you want to combine NAT with real firewall rules, you need only the second line of
the previous example. Set up the firewall as described above, and put the NAT line at
the start of the section of /etc/rc.firewall that you have chosen, so that natd sees all
packets before they are dropped by the firewall. After natd translates the IP
addresses, the firewall rules are run again on the translated packet, with the exception
of the divert rules. The client configuration is the most likely one to suit your needs
if you’re using NAT . After the example in figure 22-1 on 390, you might add:

set these to your network and netmask and ip
net="192.0.2.0"
mask="255.255.255.0"
ip="192.0.2.1"

setup_loopback

/sbin/ipfw add divert natd all from any to any via dc0

Allow any traffic to or from my own net.
${fwcmd} add pass all from ${ip} to ${net}:${mask}
${fwcmd} add pass all from ${net}:${mask} to ${ip}

• Add the following to /etc/rc.conf :

firewall_enable=YES
gateway_enable="YES" # Set to YES if this host is a gateway.
natd_enable="YES"
natd_interface="dc0"
firewall_script="/etc/rc.nat" # script for NAT only
firewall_type="client" # firewall type if running a firewall

396 Chapter 22: Firewalls, IP aliasing and proxies

The interface name in the second line, dc0, is the name of the external interface (the
one with the real IP addresses).

If you’re using NAT but not a firewall, you don’t need to specify a firewall_type,
because that relates to /etc/rc.firewall. You do need to specify the name of the script
to run, however.

• Enable your firewall as shown above in the firewall section. If you don’t intend to
reboot now, just run /etc/rc.firewall (or /etc/rc.natd) by hand from the console, and
then start natd:

sh /etc/rc.nat for NAT only
firewall_type=client sh /etc/rc.firewall for NAT and firewall
natd dc0

The expression firewall_type=client tells the Bourne shell to set the value of the
variable firewall just for this command. If you’re using csh or tcsh, use the
following sequence:

(setenv firewall_type=client; sh /etc/rc.firewall)

Never start this script from an X terminal or across the network. If you do, you can
lock yourself out of the session in the middle of the script, causing /etc/rc.firewall to
stop at this point, blocking all accesses to the system.

Proxy servers
For some purposes, a good alternative or adjunct to a packet filtering firewall and NAT is
a proxy server that converts requests for specific protocols. In the example in the
previous section, which was accessing a web server, we could also have run a proxy
server on presto. Particularly in conjunction with web servers, a proxy server has the
advantage that it can cache data locally, thus reducing network load.

There are a couple of other differences between NAT and proxy servers: natd does not
know much about the data it passes. Proxy servers know a lot about it. This makes proxy
servers less suitable as a general security or address translation mechanism. In addition,
the client must know about the proxy server, whereas it does not need to know anything
about NAT and firewalls. A typical connection looks like this:

andante presto Fr eeBSD
www.

.org

192.168.27.17

2731

192.168.27.1

8080

223.147.37.2

3312

216.136.204.117

80

wi0 xl0 dc0

Figure 22-3: Accessing the Web via a proxy server

This looks very similar to Figure 22-1. The only thing that appears to have changed is
the port number on presto’s xl0 interface. In fact, there’s more than that: in Figure 22-1,

Proxy servers 397

andante establishes a connection with www.FreeBSD.org. Here it establishes a
connection with presto.example.org.

Installing squid
A good choice of web proxy server is squid, which is available in the Ports Collection.
Install it in the normal manner:

cd /usr/ports/www/squid
make install

squid is not the easiest thing in the world to set up, and it’s hampered by sub-standard
documentation. The man page is squid(8), but most of the information is in the
configuration file /usr/local/etc/squid/squid.conf. By default, it is set up to do nothing. It
has over 3,000 lines of mostly comments. I suggest the following changes:

• Set the value http_proxy to the number of the port you want to use. By default,
squid uses port 3128, but many proxies use port 8080, and that’s the port that most
web browsers expect too. If you are not running a web server on the machine, you
can also use the http port, 80. Add:

http_port 8080 80

• The variable http_access defines who can access the web server. By default, it
denies all requests except from the local manager, so you must set it if you expect to
get any results from the server. An appropriate setting might be:

acl local src 192.168.27.0/255.255.255.0
acl exampleorg src 223.147.37.0/24

http_access allow local
http_access allow exampleorg

This defines two access control lists, one for the NAT network we looked at in the
previous section (local), and one for the globally visible network 223.147.37.0
(exampleorg). The first acl statement specifies the network in the form ad-
dress/netmask, while the second specifies it with the number of significant bits in the
net mask. The http_access statements then allow access for each of them.

• If you’re using the ftp proxy, it’s probably a good idea to change the default name
with which squid performs anonymous ftp. By default it’s Squid@, but that looks
silly. Change it by setting:

ftp_user squid@example.org

398 Chapter 22: Firewalls, IP aliasing and proxies

• squid doesn’t expect any line of the ftp file listing to be more than 32 characters long.
That’s pretty conservative. You can make it larger like this:

ftp_list_width 120

• By default, squid caches any object less than 4 MB in size on disk. If you’re doing a
lot of ftp work, this can seriously degrade the cache performance for http. You can
reduce it to, say, 256 kB with:

maximum_object_size 256 KB

• The system starts squid as user root, which is not the best for security: proxy
servers are a popular target for intruders on the Internet. You should change it to run
as user and group www:

cache_effective_user www
cache_effective_group www

Starting squid
Before you can start squid, you must first create the cache directories. If not, you can
start it, and it doesn’t complain, but it doesn’t run either. Later you might find something
like this in the log file /var/log/messages:

Dec 21 15:26:51 presto squid[23800]: Squid Parent: child process 23802 started
Dec 21 15:26:53 presto (squid): Failed to verify one of the swap directories
, Check cache.log for details. Run ’squid -z’ to create swap directories
if needed, or if running Squid for the first time.
Dec 21 15:26:53 presto kernel: pid 23802 (squid), uid 65534: exited on signal 6
Dec 21 15:26:53 presto squid[23800]: Squid Parent: child process 23802 exited due to
signal 6
Dec 21 15:26:56 presto squid[23800]: Squid Parent: child process 23805 started

The log files are in /usr/local/squid/log, and the cache files should be in /usr/lo-
cal/squid/cache. To create them, enter:

squid -z
2002/12/21 15:30:35| Creating Swap Directories

Finally, you can start squid:

squid

On system restart, squid will be started automatically from the script in /usr/lo-
cal/etc/rc.d/squid.sh.

Installing squid 399

Browser proxy configuration
As mentioned earlier, proxies aren’t transparent to the application. You hav e to set up
your software to talk to the proxy. To do that, you need to configure the web browser
accordingly. For example, with galeon you select Settings→Preferences→Ad-
vanced→Network and get the following screen:

Figure 22-4: Galeon proxy settings

squid understands the individual protocols that it supports, so it can tell the difference
between, say, an http request on port 8080 and an ftp request on the same port.
Nevertheless, consider whether it’s a good idea to use squid for ftp. It doesn’t speed up
access the first time you fetch the file, and if you access each file only once, you don’t
have any gain through using squid. On the other hand, the ftp data can pollute the cache.

Setting proxy information for ftp
ftp understands proxies, and uses them for non-interactive connections only. Put the
following statement in your .profile file:

export http_proxy=presto.example.org:8080
export ftp_proxy=presto.example.org:8080

(netdebug.mm), page 401

23
Network

debugging

In this chapter:
• How to approach

networ k problems
• Link layer problems
• Networ k layer

problems
• traceroute
• tcpdump
• Tr anspor t and

application layers
• Ethereal

In this chapter:
• How to approach

networ k problems
• Link layer problems
• Networ k layer

problems
• traceroute
• tcpdump
• Tr anspor t and

application layers
• Ethereal

The chances are quite good that you’ll have some problems somewhere when you set up
your network. FreeBSD gives you a large number of tools with which to find and solve
the problem.

In this chapter, we’ll consider a methodology of debugging network problems. In the
process, we’ll look at the programs that help debugging. It will help to have your finger
in Chapter 16 while reading this section.

How to approach network problems
Recall from Chapter 16 that network software and hardware operate on at least four
layers. If one layer doesn’t work, the ones above won’t either. When solving problems,
it obviously makes sense to start at the bottom and work up.

Most people understand this up to a point. Nobody expects a PPP connection to the
Internet to work if the modem can’t dial the ISP. On the other hand, a large number of
messages to the FreeBSD-questions mailing list show that many people seem to think
that once this connection has been established, everything else will work automatically.
If it doesn’t, they’re puzzled.

Unfortunately, the Net isn’t that simple. In fact, it’s too complicated to give a hard-and-
fast methodology at all. Much network debugging can look more like magic than
anything rational. Nevertheless, a surprising number of network problems can be solved
by using the steps below. Even if they don’t solve your problem, read through them.

401

402 Chapter 23: Networ k debugging

They might give you some ideas about where to look.

Link layer problems
To test your link layer, start with ping. ping is a relatively simple program that sends an
ICMP echo packet to a specific IP address and checks the reply. ICMP, is the Internet
Control Message Protocol, is used for error reporting and testing. See TCP/IP
Illustrated, by Richard Stevens, for more information.

A typical ping output might look like:

$ ping bumble
PING bumble.example.org (223.147.37.156): 56 data bytes
64 bytes from 223.147.37.156: icmp_seq=0 ttl=255 time=1.137 ms
64 bytes from 223.147.37.156: icmp_seq=1 ttl=255 time=0.640 ms
64 bytes from 223.147.37.156: icmp_seq=2 ttl=255 time=0.671 ms
64 bytes from 223.147.37.156: icmp_seq=3 ttl=255 time=0.612 ms
ˆC
--- bumble.example.org ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.612/0.765/1.137/0.216 ms

In this case, we are sending the messages to the system bumble.example.org. By default,
ping sends messages of 56 bytes. With the IP header, this makes packets of 64 bytes.
By default, ping continues until you stop it—notice the ˆC indicating that this invocation
was stopped by pressing Ctrl-C.

The information that ping gives you isn’t much, but it’s useful:

• It tells you how long it takes for each packet to get to its destination and back.

• It tells you how many packets didn’t make it.

• It also prints a summary of packet statistics.

But what if this doesn’t work? You enter your ping command, and all you get is:

$ ping wait
PING wait.example.org (223.147.37.4): 56 data bytes
ˆC
--- wait.example.org ping statistics ---
5 packets transmitted, 0 packets received, 100% packet loss

Obviously, something’s wrong here. We’ll look at it in more detail below. This is very
different, however, from this situation:

$ ping presto
ˆC

In the second case, even after some time, nothing happened at all. ping didn’t print the
PING message, and when we hit Ctrl-C there was no further output. This is indicative of
a name resolution problem: ping can’t print the first line until it has found the IP address
of the system, in other words, until it has performed a DNS lookup. If we wait long

Link layer problems 403

enough, it will time out, and we get the message ping: cannot resolve presto:
Unknown host. If this happens, use the IP address, not the name. DNS is an
application, so we won’t try to debug it until we’ve debugged the link and network layers.

If things don’t work out, there are two possibilities:

• If both systems are on the same network, it’s a link layer problem. We’ll look at that
first.

• If the systems are on two different networks, it might be a network layer problem.
That’s more complicated: we don’t know which network to look at. It could be either
of the networks on which the systems are located, or it could also be a problem with
one of the networks on the way. How do you find out where your packets get lost?
First you check the link layer. If it checks out OK, and the problem still exists,
continue with the network layer on page 406.

So what can cause link layer problems? There are a number of possibilities:

• One of the interfaces (source or destination) could be misconfigured. They should
both have the same range of network addresses. For example, the following two
interface configurations cannot talk to each other directly, even if they’re on the same
physical network:

machine 1
dc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

inet 223.147.37.81 netmask 0xffffff00 broadcast 223.147.37.255

machine 2
xl0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500

options=3<RXCSUM,TXCSUM>
inet 192.168.27.1 netmask 0xffffff00 broadcast 192.168.27.255

• If you see something like this on an Ethernet interface, it’s pretty clear that it has a
cabling problem:

xl0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500
options=3<RXCSUM,TXCSUM>
inet 192.168.27.1 netmask 0xffffff00 broadcast 192.168.27.255
media: Ethernet autoselect (none)
status: no carrier

In this case, check the physical connections. If you’re using UTP, check that you
have the right kind of cable, normally a ‘‘straight-through’’ cable. If you accidentally
use a crossover cable where you need a straight-through cable, or vice versa, you will
not get any connection. Also, many hubs and switches have a ‘‘crossover’’ switch
that achieves the same result.

• If you’re on an RG-58 thin Ethernet, the most likely problem is a break in the cabling.
You can check the static resistance between the central pin and the external part of the
connector with a multimeter. It should be approximately 25Ω. If it’s 50Ω, it
indicates that there is a break in the cable, or that one of the terminators has been
disconnected.

404 Chapter 23: Networ k debugging

• If your interface is configured correctly, and you’re using a 10 Mb/s card, check
whether you are using the correct connection to the network. Some older Ethernet
boards support multiple physical connections (for example, both BNC and UTP). For
example, if your network runs on RG58 thin Ethernet, and your interface is set to
AUI, you may still be able to send data on the RG58, but you won’t be able to receive
any.

The method of setting the connection depends on the board you are using. PCI
boards are not normally a problem, because the driver can set the parameters directly,
but ISA boards can drive you crazy. In the case of very old boards, such as the
Western Digital 8003, you may need to set jumpers. In others, you may need to run
the setup utility under DOS, and with others you can set it with the link flags to
ifconfig. For example, on a 3Com 3c509 ‘‘combo’’ board, you can set the connection
like this:

ifconfig ep0 -link0 set BNC
ifconfig ep0 link0 -link1 set AUI
ifconfig ep0 link0 link1 set UTP

This example is correct for the ep driver, but not necessarily for other Ethernet
boards: each board has its own flags. Read the man page for the board for the correct
flags.

• If your interface looks OK, the next thing to do is to see whether you can send data to
other machines on the network. If so, of course, you should continue your search on
the machine that isn’t responding. If none are working, you probably have a cabling
problem.

On a wireless network, you need to check for a number of additional problems. ifconfig
should show something like this:

wi0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
inet6 fe80::202:2dff:fe04:93a%wi0 prefixlen 64 scopeid 0x3
inet 192.168.27.17 netmask 0xffffff00 broadcast 192.168.27.255
ether 00:02:2d:21:54:4c
media: IEEE 802.11 Wireless Ethernet autoselect (DS/11Mbps)
status: associated
ssid "FreeBSD IBSS" 1:""
stationname "FreeBSD WaveLAN/IEEE node"
channel 3 authmode OPEN powersavemode OFF powersavesleep 100
wepmode OFF weptxkey 1
wepkey 2:64-bit 0x123456789a 3:128-bit 0x123456789abcdef123456789ab

There are many things to check here:

• Do you have the same operating mode? This example shows a card operating in BSS
or IBSS mode. By contrast, you might see this:

media: IEEE 802.11 Wireless Ethernet autoselect (DS/11Mbps <adhoc, flag0>)

In this case, the interface is operating in so-called ‘‘Lucent demo ad-hoc’’ mode,
which is not the same thing as ‘‘ad-hoc’’ mode (which in turn is better called IBSS
mode). IBSS mode (‘‘ad-hoc’’) and BSS mode are compatible. IBSS mode and

Link layer problems 405

‘‘Lucent demo ad-hoc’’ mode are not. See Chapter 17, page 306 for further details.

• Is the status associated? The alternative is no carrier. Some cards, including
this one, show no carrier when communicating with a station operating in IBSS
mode, but they nev er show associated unless they are really associated.

• If the card is not associated, check the frequencies and the network name.

• Check the WEP (encryption) parameters to ensure that they match. Note that
ifconfig does not display the WEP key unless you are root.

Your card may show associated ev en if the WEP key doesn’t match. In such a
case, it knows about the network, but it can’t communicate with it.

After checking all these things, you should have a connection. But you may not be home
yet:

• If you have a connection, check if all packets got there. Lost packets could mean line
quality problems. That’s not very likely on an Ethernet, but it’s very possible on a
PPP or DSL link. There’s an uncertainty about dropped packets: you might hit Ctrl-
C after the last packet went out, but before it came back. If the line is very slow, you
might lose multiple packets. Compare the sequence number of the last packet that
returns with the total number returned. If it’s one less, all the packets except the ones
at the end made it.

• Check that each packet comes back only once. If not, there’s definitely something
wrong, or you have been pinging a broadcast address. That looks like this:

$ ping 223.147.37.255
PING 223.147.37.255 (223.147.37.255): 56 data bytes
64 bytes from 223.147.37.1: icmp_seq=0 ttl=255 time=0.428 ms
64 bytes from 223.147.37.88: icmp_seq=0 ttl=255 time=0.785 ms (DUP!)
64 bytes from 223.147.37.65: icmp_seq=0 ttl=64 time=1.818 ms (DUP!)
64 bytes from 223.147.37.1: icmp_seq=1 ttl=255 time=0.426 ms
64 bytes from 223.147.37.88: icmp_seq=1 ttl=255 time=0.442 ms (DUP!)
64 bytes from 223.147.37.65: icmp_seq=1 ttl=64 time=1.099 ms (DUP!)
64 bytes from 223.147.37.126: icmp_seq=1 ttl=255 time=45.781 ms (DUP!)

FreeBSD systems do not respond to broadcast pings, but most other systems do, so
this effectively counts the number of non-BSD machines on a network.

• Check the times. A ping across an Ethernet should take between about 0.2 and 2 ms,
a ping across a wireless connection should take between 2 and 12 ms, a ping across
an ISDN connection should take about 30 ms, a ping across a 56 kb/s analogue
connection should take about 100 ms, and a ping across a satellite connection should
take about 250 ms in each direction. All of these times are for idle lines, and the time
can go up to over 5 seconds for a slow line transferring large blocks of data across a
serial line (for example, ftping a file). In this example, some line traffic delayed the
response to individual pings.

406 Chapter 23: Networ k debugging

Network layer problems
Once we know the link layer is working correctly, we can turn our attention to the next
layer up, the network layer. Well, first we should check if the problem is still with us.

We need additional tools for the network layer. ping is a useful tool for telling you
whether data is getting through to the destination, and if so, how much is getting through.
But what if your local network checks out just fine, and you can’t reach a remote
network? Or if you’re losing 40% of your packets to foo.bar.org, and the remaining ones
are taking up to 5 seconds to get through. Where’s the problem? Based on the recent
‘‘upgrade’’ your ISP performed, and the fact that you’ve had trouble getting to other sites,
you suspect that the performance problems might be occurring in the ISP’s net. How can
you find out?

As we saw while investigating the link layer, a complete failure is often easier to fix than
a partial failure. If nothing at all is getting through, you probably have a routing problem.
Check the routing table with netstat. On bumble, you might see:

$ netstat -r
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default gw UGSc 0 8 xl0
localhost localhost UH 2 525 lo0
223.147.37 link#1 UC 6 0 xl0
sat-gw 00:80:c6:f9:d3:fa UHLW 0 0 xl0 1150
bumble 00:50:da:cf:17:d3 UHLW 0 24 lo0
presto 00:80:c6:f9:a6:c8 UHLW 0 5 xl0 1200
freebie 00:50:da:cf:07:35 UHLW 6 760334 xl0 1159
223.147.37.255 ff:ff:ff:ff:ff:ff UHLWb 1 403 xl0

The default route is via gw, which is correct. The first thing is to ensure that you can
ping gw; that’s a link level issue, so we’ll assume that you can. But what if you try to
ping a remote system and you see something like this?

ping rider.fc.net
PING rider.fc.net (207.170.123.194): 56 data bytes
36 bytes from gw.example.org (223.147.37.5): Destination Host Unreachable
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
4 5 00 6800 c5da 0 0000 fe 01 246d 223.147.37.2 207.170.123.194

36 bytes from gw.example.org (223.147.37.5): Destination Host Unreachable
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
4 5 00 6800 c5e7 0 0000 fe 01 2460 223.147.37.2 207.170.123.194

ˆC
--- rider.fc.net ping statistics ---
2 packets transmitted, 0 packets received, 100% packet loss

These are ICMP messages from gw indicating that it does not know where to send the
data. This is almost certainly a routing problem; on gw you might see something like:

Networ k layer problems 407

$ netstat -r
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
localhost localhost UH 1 123 lo0
free-gw.example.ne exorg-gw.example. UH 23 0 ppp0
223.147.37 link#1 UC 11 0 dc0
sat-gw 00:80:c6:f9:d3:fa UHLW 5 1295329 dc0 1027
bumble 00:50:da:cf:17:d3 UHLW 2 760207 dc0 802
flame 08:00:20:76:6c:7b UHLW 2 426341 dc0 532
wantadilla 00:02:44:17:f8:da UHLW 36 19778224 dc0 1073
presto 00:80:c6:f9:a6:c8 UHLW 1 1122321 dc0 742
freebie 00:50:da:cf:07:35 UHLW 24 3279563 lo0
air-gw 00:00:b4:33:6d:a2 UHLW 4 2484 dc0 653
kimchi 00:00:21:ca:6e:f1 UHLW 0 1 dc0 829
223.147.37.127 link#1 UHLW 0 5 dc0
fumble link#1 UHLW 3 51246373 dc0

The problem here is that there is no default route. Add it with the route command:

route add default free-gw.example.net
netstat -r
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default free-gw.example.ne UGSc 24 5724 ppp0
localhost localhost UH 1 123 lo0
...etc

See Chapter 17, page 309, for more details, including how to ensure that the routes will
be added automatically at boot time.

But what if the routes look right, you don’t get any ICMP messages, and no data gets
through? You don’t always get ICMP messages when the data can’t get through. The
logical next place to look is free-gw.example.net, but there’s a problem with that: as the
administrator of example.org, you don’t hav e access to example.net’s machines. You can
call them up, of course, but before you do you should be reasonably sure it’s their
problem. You can find out more information with traceroute.

traceroute
traceroute sends UDP packets to the destination, but it modifies the time-to-live field in
the IP header (see page 280) so that, initially at any rate, they don’t get there. As we saw
there, the time-to-live field specifies the number of hops that a packet can go before it is
discarded. When it is, the system that discards it should send back an ICMP destination
unreachable message. traceroute uses this feature and sends out packets with time-to-
live set first to one, then to two, and so on. It prints the IP address of the system that
sends the ‘‘destination unreachable’’ message and the time it took, thus giving something
like a two-dimensional ping. Here’s an example to hub.FreeBSD.org:

408 Chapter 23: Networ k debugging

$ traceroute hub.freebsd.org
traceroute to hub.freebsd.org (204.216.27.18), 30 hops max, 40 byte packets
1 gw (223.147.37.5) 1.138 ms 0.811 ms 0.800 ms
2 free-gw.example.net (139.130.136.129) 131.913 ms 122.231 ms 134.694 ms
3 Ethernet1-0.way1.Adelaide.example.net (139.130.237.65) 118.229 ms 120.040 ms
118.723 ms
4 Fddi0-0.way-core1.Adelaide.example.net (139.130.237.226) 171.590 ms 117.911 ms
123.513 ms
5 Serial5-0.lon-core1.Melbourne.example.net (139.130.239.21) 129.267 ms 226.927
ms 125.547 ms
6 Fddi0-0.lon5.Melbourne.example.net (139.130.239.231) 144.372 ms 133.998 ms 13
6.699 ms
7 borderx2-hssi3-0.Bloomington.mci.net (204.70.208.121) 962.258 ms 482.393 ms 7
54.989 ms
8 core2-fddi-1.Bloomington.mci.net (204.70.208.65) 821.636 ms * 701.920 ms
9 bordercore3-loopback.SanFrancisco.mci.net (166.48.16.1) 424.254 ms 884.033 ms
645.302 ms
10 pb-nap.crl.net (198.32.128.20) 435.907 ms 438.933 ms 451.173 ms
11 E0-CRL-SFO-02-E0X0.US.CRL.NET (165.113.55.2) 440.425 ms 430.049 ms 447.340 ms
12 T1-CDROM-00-EX.US.CRL.NET (165.113.118.2) 553.624 ms 460.116 ms *
13 hub.FreeBSD.ORG (204.216.27.18) 642.032 ms 463.661 ms 432.976 ms

By default, traceroute tries each hop three times and prints out the times as they happen,
so if the reponse time is more than about 300 ms, you’ll notice it as it happens. If there is
no reply after a timeout period (default 5 seconds), traceroute prints an asterisk (*).
You’ll also occasionally notice a significant delay at the beginning of a line, although the
response time seems reasonable. In this case, the delay is probably caused by a DNS
reverse lookup for the name of the system. If this becomes a problem (maybe because
the global DNS servers aren’t reachable), you can turn off DNS reverse lookup using the
-n flag.

If you look more carefully at the times in the example above, you’ll see three groups of
times:

1. The times to gw are round 1 ms. This is typical of an Ethernet network.

2. The times for hops 2 to 6 are in the order of 100 to 150 ms. This indicates that the
link between gw.example.org and free-gw.example.net is running PPP over a
telephone line. The delay between free-gw.example.net and Fddi0-0.lon5.Mel-
bourne.example.net is negligible compared to the delay across the PPP link, so you
don’t see much difference.

3. The times from borderx2-hssi3-0.Bloomington.mci.net to hub.FreeBSD.ORG are
significantly higher, between 400 and 1000 ms. We also note a couple of dropped
packets. This indicates that the line between Fddi0-0.lon5.Melbourne.example.net
and borderx2-hssi3-0.Bloomington.mci.net is overloaded. The length of the link
(about 13,000 km) also plays a role: that’s a total distance of 26,000 km, which take
about 85 ms to transfer. If this were a satellite connection, things would be much
slower: the total distance from ground station to satellite and back to the ground is
72,000 km, which takes a total of 240 ms to propagate.

Back to our problem. If we see something like the output in the previous example, we
know that there’s no reason to call up the people at example.net: it’s not their problem.
This might just be overloading on the global Internet. On the other hand, what about
this?

traceroute 409

$ traceroute hub.freebsd.org
traceroute to hub.freebsd.org (204.216.27.18), 30 hops max, 40 byte packets
1 gw (223.147.37.5) 1.138 ms 0.811 ms 0.800 ms
2 * * *
3 * * *
ˆC

You’ve fixed your routing problems, but you still can’t get data off the system. There are
a number of possibilities here:

• The link to the next system may be down. The solution’s obvious: bring it up and try
again.

• gw may not be configured as a gateway. You can check this with:

$ sysctl net.inet.ip.forwarding
net.inet.ip.forwarding: 1

For a router, this value should be 1. If it’s 0, change it with:

sysctl -w net.inet.ip.forwarding=1
net.inet.ip.forwarding: 0 -> 1

See page 313 for further details, including how to ensure that this sysctl is set
correctly when the system starts.

• You may be trying to use a non-routable IP address such as those in the range
192.168.x.x. You can’t do that. If you don’t hav e enough globally visible IP
address, you’ll need to run some kind of aliasing package, such as NAT . See Chapter
22, page 393, for further details.

• Maybe there is something wrong with routing to your network. This is a difficult one
to check, but in the case of the reference network, one possibility is to repeat the
traceroute from the machine gw: gw’s external address on the tun0 interface is
139.130.136.133, which is on the ISP’s network. As a result, they are not affected
by a routing problem for network 223.147.37.x. If this proves to be the case,
contact your ISP to solve it.

• Maybe there is something wrong with the other end; if everything else fails, you may
have to call the admins at example.net ev en if you have no hard evidence that it’s
their problem.

But maybe the data gets one hop further:

$ traceroute hub.freebsd.org
traceroute to hub.freebsd.org (204.216.27.18), 30 hops max, 40 byte packets
1 gw (223.147.37.5) 1.138 ms 0.811 ms 0.800 ms
2 free-gw.example.net (139.130.136.129) 131.913 ms 122.231 ms 134.694 ms
3 * * *
4 * * *
ˆC

In this case, there is almost certainly a problem at example.net. This would be the correct
time to use the telephone.

410 Chapter 23: Networ k debugging

High packet loss
But maybe data is getting through. Well, some data, anyway. Consider this ping
session:

$ ping freefall.FreeBSD.org
PING freefall.FreeBSD.org (216.136.204.21): 56 data bytes
64 bytes from 216.136.204.21: icmp_seq=0 ttl=244 time=496.426 ms
64 bytes from 216.136.204.21: icmp_seq=1 ttl=244 time=491.334 ms
64 bytes from 216.136.204.21: icmp_seq=2 ttl=244 time=479.077 ms
64 bytes from 216.136.204.21: icmp_seq=3 ttl=244 time=473.774 ms
64 bytes from 216.136.204.21: icmp_seq=4 ttl=244 time=733.429 ms
64 bytes from 216.136.204.21: icmp_seq=5 ttl=244 time=644.726 ms
64 bytes from 216.136.204.21: icmp_seq=7 ttl=244 time=490.331 ms
64 bytes from 216.136.204.21: icmp_seq=8 ttl=244 time=839.671 ms
64 bytes from 216.136.204.21: icmp_seq=9 ttl=244 time=773.764 ms
64 bytes from 216.136.204.21: icmp_seq=10 ttl=244 time=553.067 ms
64 bytes from 216.136.204.21: icmp_seq=11 ttl=244 time=454.707 ms
64 bytes from 216.136.204.21: icmp_seq=12 ttl=244 time=472.212 ms
64 bytes from 216.136.204.21: icmp_seq=13 ttl=244 time=448.322 ms
64 bytes from 216.136.204.21: icmp_seq=14 ttl=244 time=441.352 ms
64 bytes from 216.136.204.21: icmp_seq=15 ttl=244 time=455.595 ms
64 bytes from 216.136.204.21: icmp_seq=16 ttl=244 time=460.040 ms
64 bytes from 216.136.204.21: icmp_seq=17 ttl=244 time=476.943 ms
64 bytes from 216.136.204.21: icmp_seq=18 ttl=244 time=514.615 ms
64 bytes from 216.136.204.21: icmp_seq=23 ttl=244 time=538.232 ms
64 bytes from 216.136.204.21: icmp_seq=24 ttl=244 time=444.123 ms
64 bytes from 216.136.204.21: icmp_seq=25 ttl=244 time=449.075 ms
ˆC
--- 216.136.204.21 ping statistics ---
27 packets transmitted, 21 packets received, 22% packet loss
round-trip min/avg/max/stddev = 441.352/530.039/839.671/113.674 ms

In this case, we have a connection. But look carefully at those sequence numbers. At
one point, four packets in a row (sequence 19 to 22) get lost. How high a packet drop
rate is still acceptable? 1% or 2% is probably still (barely) acceptable. By the time you
get to 10%, though, things look a lot worse. 10% packet drop rate doesn’t mean that your
connection slows down by 10%. For every dropped packet, you have a minimum delay
of one second until TCP retries it. If that retried packet gets dropped too—which it will
ev ery 10 dropped packets if you have a 10% drop rate—the second retry takes another
three seconds. If you’re transmitting packets of 64 bytes over a 33.6 kb/s link, you can
normally get about 60 packets through per second. With 10% packet loss, the time to get
these packets through is about eight seconds, a throughput loss of 87.5%.

With 20% packet loss, the results are even more dramatic. Now 12 of the 60 packets have
to be retried, and 2.4 of them will be retried a second time (for three seconds delay), and
0.48 of them will be retried a third time (six seconds delay). This makes a total of 22
seconds delay, a throughput degradation of nearly 96%.

Theoretically, you might think that the degradation would not be as bad for big packets,
such as you might have with file transfers with ftp. In fact, the situation is worse then: in
most cases the packet drop rate rises sharply with the packet size, and it’s common
enough that ftp times out completely before it can transfer a file.

To get a better overview of what’s going on, let’s look at another program, tcpdump.

traceroute 411

tcpdump
tcpdump is a program that monitors a network interface and displays selected
information that passes through it. It uses the Berkeley Packet Filter (bpf), an optional
component of the kernel. It’s included in recent versions of the GENERIC kernel, but it’s
possible to remove it. If you don’t configure the Berkeley Packet Filter, you get a
message like:

tcpdump: /dev/bpf0: device not configured

tcpdump poses a potential security problem: you can use it to read anything that goes
over the network. As a result, you must be root to run it. The simplest way to run it is
without any parameters. This causes tcpdump to monitor and display all traffic on the
first active network interface, normally Ethernet:

tcpdump
tcpdump: listening on ep0
1: 13:27:57.757157 arp who-has wait.example.org tell presto.example.org
2: 13:28:06.740047 0:4c:a5:0:0:0 2:0:0:0:45:0 4011 80:

c93c c06d c589 c06d c5ff 007b 007b 0038
5ccb 1d03 06ee 0000 5613 0000 1093 cb15
2512 b7e2 de6b 0ead c000 0000 0000 0000
0000 0000 0000

3: 13:28:06.740117 freebie.example.org.ntp > 223.147.37.255.ntp: v3 bcast strat 3 p
oll 6 prec -18
4: 13:28:08.004715 arp who-has wait.example.org tell presto.example.org
5: 13:28:10.987453 bumble.example.org.who > 223.147.37.255.who: udp 84
6: 13:28:13.790106 freebie.example.org.6000 > presto.example.org.1089: P 536925467:

536925851(384) ack 325114346 win 17280 <nop,nop,timestamp 155186 1163778,nop,no
p,[|tcp]> (DF)

7: 13:28:13.934336 arp who-has freebie.example.org tell presto.example.org
8: 13:28:13.934444 arp reply freebie.example.org is-at 0:a0:24:37:d:2b
9: 13:28:13.935903 presto.example.org.1089 > freebie.example.org.6000: . ack 536925
851 win 16896 <nop,nop,timestamp 1190189 155186,nop,nop,[|tcp]> (DF)
10: 13:28:13.936313 freebie.example.org.6000 > presto.example.org.1089: P 536925851

:536926299(448) ack 325114346 win 17280 <nop,nop,timestamp 155186 1190189,nop,no
p,[|tcp]> (DF)

This output looks confusing at first. Let’s look at it in more detail:

• The first message shows the interface on which tcpdump listens. By default, it is the
first running interface that it finds. tcpdump searches the list of interfaces in the
sequence that ifconfig -a displays. Generally you can assume that it will find the
primary Ethernet interface. If you want to listen on another interface, specify it on
the command line. For example, to listen on a PPP interface, you would enter

tcpdump -i tun0

• At the beginning of each message is a timestamp, with a resolution of 1 µs. These
times are relatively accurate; you’ll frequently see time differences of less than 1 ms.
In this example, the last two messages are 108 µs apart. These times are important: a
lot of network problems are performance problems, and there’s a big difference in
performance between a net where a reply takes 100 µs and one in which a reply takes
100 ms.

412 Chapter 23: Networ k debugging

• To make things easier, I hav e put a line number in italics at the beginning of each
line. It doesn’t appear in the tcpdump printout.

• Line 1 shows an ARP request: system presto is looking for the Ethernet address of
wait. It would appear that wait is currently not responding, since there is no reply.

• Line 2 is not an IP message at all. tcpdump shows the Ethernet addresses and the
beginning of the packet. We don’t consider this kind of request in this book.

• Line 3 is a broadcast ntp message. We looked at ntp on page 155.

• Line 4 is another attempt by presto to find the IP address of wait.

• Line 5 is a broadcast message from bumble on the rwho port, giving information
about its current load averages and how long it has been up. See the man page
rwho(1) for more information.

• Line 6 is from a TCP connection between port 6000 on freebie and port 1089 on
presto. It is sending 384 bytes (with the sequence numbers 536925467 to
536925851; see page 282), and is acknowledging that the last byte it received from
presto had the sequence number 325114346. The window size is 17280.

• Line 7 is another ARP request. presto is looking for the Ethernet address of freebie.
How can that happen? We’v e just seen that they hav e a TCP connection. In fact,
ARP information expires after 20 minutes. It’s quite possible that all connections
between presto and freebie have been dormant for this period, so presto needs to find
freebie’s IP address again.

• Line 8 is the ARP reply from freebie to presto giving its Ethernet address.

• Line 9 shows a reply from presto on the connection to freebie that we saw on line 6.
It acknowledges the data up to sequence number 536925851, but doesn’t send any
itself.

• Line 10 shows another 448 bytes of data from freebie to presto, and acknowledges
the same sequence number from presto as in line 6.

Packet loss revisited
Getting back to our packet loss problem, the following example shows the result of
communicating on a less-than-perfect ssh connection to hub.FreeBSD.org, specifically
between port 1019 on freebie and port 22, the ssh port, on hub. To make things more
readable, the names have been truncated to freebie and hub. In real-life output, they
would be reported as freebie.example.org and hub.FreeBSD.org. In addition, tcpdump
reports a tos (type of service) field, which has also been removed. It doesn’t interest us
here.

tcpdump -i ppp0 host hub.freebsd.org
14:16:35.990506 freebie.1019 > hub.22: P 20:40(20) ack 77 win 17520 (DF)
14:16:36.552149 hub.22 > freebie.1019: P 77:97(20) ack 40 win 17520 (DF)
14:16:36.722290 freebie.1019 > hub.22: . ack 97 win 17520 (DF)
14:16:39.344229 freebie.1019 > hub.22: P 40:60(20) ack 97 win 17520 (DF)
14:16:41.321850 freebie.1019 > hub.22: P 40:60(20) ack 97 win 17520 (DF)

tcpdump 413

The first line shows freebie sending bytes 20 to 40 of the stream to bub, and also
acknowledging receipt of everything up to byte 77 of the stream from hub. On the next
line, hub sends bytes 77 to 97 and acknowledges receiving up to byte 40 of the stream
from freebie. freebie then sends another 20 bytes and acknowledges what it has received
from hub.

After two seconds, freebie has not received an acknowledgment from hub that its data has
been received, so on the last line it sends the packet again.

14:16:42.316150 hub.22 > freebie.1019: P 97:117(20) ack 60 win 17520 (DF)
14:16:42.321773 freebie.1019 > hub.22: . ack 117 win 17520 (DF)

This is the missing acknowledgment—it came another second later, along with some
more data. freebie acknowledges receiving it, but doesn’t send any more data.

14:16:47.428694 freebie.1019 > hub.22: P 60:80(20) ack 117 win 17520 (DF)
14:16:48.590805 freebie.1019 > hub.22: P 80:100(20) ack 117 win 17520 (DF)
14:16:49.055735 freebie.1019 > hub.22: P 100:120(20) ack 117 win 17520 (DF)
14:16:49.190703 hub.22 > freebie.1019: P 137:157(20) ack 100 win 17520 (DF)

Five seconds later, freebie sends more data, up to byte 120 to hub. hub replies with its
own data an acknowledgment up to byte 100. Unfortunately, the data it sent (bytes 137
to 157) don’t line up with the last previously received data (byte 117 at
14:16:42.316150): bytes 117 to 137 are missing. freebie thus repeats the previous
acknowledgment and then continues sending its data:

14:16:49.190890 freebie.1019 > hub.22: . ack 117 win 17520 (DF)
14:16:49.538607 freebie.1019 > hub.22: P 120:140(20) ack 117 win 17520 (DF)
14:16:49.599395 hub.22 > freebie.1019: P 157:177(20) ack 120 win 17520 (DF)

Here, hub has sent yet more data, now acknowledging the data that freebie sent at
14:16:49.055735. It still hasn’t sent the data in the byte range 117 to 136, so freebie
resends the last acknowledgment again and continues sending data:

14:16:49.599538 freebie.1019 > hub.22: . ack 117 win 17520 (DF)
14:16:49.620506 freebie.1019 > hub.22: P 140:160(20) ack 117 win 17520 (DF)
14:16:50.066698 hub.22 > freebie.1019: P 177:197(20) ack 140 win 17520 (DF)

Again hub has sent more data, still without sending the missing packet. freebie tries yet
again, and then continues sending data:

14:16:50.066868 freebie.1019 > hub.22: . ack 117 win 17520 (DF)
14:16:51.820708 freebie.1019 > hub.22: P 140:160(20) ack 117 win 17520 (DF)
14:16:52.308992 hub.22 > freebie.1019: . ack 160 win 17520 (DF)
14:16:55.251176 hub.22 > freebie.1019: P 117:217(100) ack 160 win 17520 (DF)

Finally, hub resends the missing data, with bytes from 117 to 217. freebie is now happy,
and acknowledges receipt of all the data up to 217. That’s all we transmitted, so after
about 1.5 seconds the two systems exchange final acknowledgments:

414 Chapter 23: Networ k debugging

14:16:55.251358 freebie.1019 > hub.22: . ack 217 win 17420 (DF)
14:16:56.690779 hub.login > freebie.1015: . ack 3255467530 win 17520
14:16:56.690941 freebie.1015 > hub.login: . ack 1 win 17520 (DF)

This connection is less than perfect. Why? You can use traceroute to find out where it’s
happening, but unless the place is within your ISP’s network, you can’t do much about it.

Transport and application layers
If you have got this far, the chances are that things will now work. Problems in transport
layer are rare. About the only things that can still cause problems are the individual
applications. We’ll look at some of these in the relevant chapters.

One particular problem is the Domain Name Service. This is such an integral part of the
Internet Protocols that people tend to forget that it’s really an application. If you get a
timeout accessing a web URL, for example, there’s a good chance that DNS is causing
the problem. Take a look at Chapter 21, The Domain Name Service, for some ideas.

Ethereal
tcpdump is a powerful tool, but the examples above show that the output isn’t the easiest
thing in the world to read. An alternative is ethereal, a program in the Ports Collection
(/usr/ports/net/ethereal) that displays the data in much more detail, as Figure 23-1 shows.

The screen is divided into three windows:

• The top part shows individual packets (numbered 51 to 54 in this example). The line
in inverse video has been selected for display in more detail.

• The middle window shows the full packet. By clicking with the mouse on the boxes
on the left, you can expand or reduce the amount of information being displayed.

• The bottom window shows the raw data as hexadecimal and ASCII.

In practice, you’d probably want to scale the window much larger than in this example.

This image shows part of the password for a telnet login session being returned. It
illustrates one of the reasons you should never use telnet to connect across the Internet.

Ethereal 415

Figure 23-1: ethereal display

(netclient.mm), page 417

24
Basic network
access: clients

In this chapter:
• The Wor ld Wide Web
• Web browsers
• ssh
• Access without a

password
• ssh tunnels
• Configur ing ssh
• Troubleshooting ssh

connections
• telnet
• Copying files
• scp
• ftp
• sftp
• rsync
• Using an rsync

ser ver
• The Networ k File

System
• NFS client
• NFS strangenesses

In this chapter:
• The Wor ld Wide Web
• Web browsers
• ssh
• Access without a

password
• ssh tunnels
• Configur ing ssh
• Troubleshooting ssh

connections
• telnet
• Copying files
• scp
• ftp
• sftp
• rsync
• Using an rsync

ser ver
• The Networ k File

System
• NFS client
• NFS strangenesses

Finally we have set up the network connections, and everything is working. What can we
do with the network? In this part of the book, we’ll take a look at some of the more
important services that make up the application layer.

The Internet protocols perform most services with a pair of processes: a client at one end
of the link that actively asks for services, and a server at the other end of the link that
responds to requests and performs the requested activity. These terms are also used to
describe computer systems, but here we’re talking about processes, not systems. In this
chapter, we’ll look at the client side of things, and in Chapter 25, Basic network access:
servers we’ll look at the corresponding servers.

Probably the single most important network service is the Hypertext Transfer Protocol or
HTTP, the service that web browsers use to access the Web. We’ll look at web browsers
in the next section.

The next most important service is probably the Simple Mail Transfer Protocol or SMTP,
the primary service for sending mail round the Internet. There’s also the Post Office
Protocol or POP, which is used by systems unable to run SMTP. This topic is so
important that we’ll devote Chapters 26 and 27 to it.

To use a remote machine effectively, you need better access than such specialized servers
can give you. The most powerful access is obviously when you can execute a shell on the
remote machine; that gives you effectively the same control over the machine as you have
over your local machine. A number of services are available to do this. In the olden
days, you would use telnet or rlogin to log into another machine. These programs are

417

418 Chapter 24: Basic networ k access: clients

still with us, but security concerns make them effectively useless outside a trusted local
network. We’ll look at them briefly on page 430.

The preferred replacement is ssh, which stands for secure shell. In fact, it’s not a shell at
all, it’s a service to communicate with a remote shell. It encrypts the data sent over the
network, thus making it more difficult for crackers to abuse. We’ll look at it in detail on
page 419.

Another important service is the ability to move data from one system to another. There
are a number of ways of doing this. The oldest programs are rcp and ftp. These
programs have the same security concerns as telnet and rlogin, though ftp still has some
uses. More modern copying programs use scp, which is based on ssh. We’ll look at file
copy programs on page 432. In addition, rsync is a useful program for maintaining
identical copies files on different systems. We’ll look at it on page 437.

A somewhat different approach is the Network File System or NFS, which mounts file
systems from another machine as if they were local. We look at NFS clients on page 441.

The World Wide Web
For the vast majority of the public, the Internet and the World Wide Web are the same
thing. FreeBSD is an important contender in this area. Some of the world’s largest web
sites, including Yahoo! (http://www.yahoo.com/) run FreeBSD. Even Microsoft runs
FreeBSD on its Hotmail service (http://www.hotmail.com/), though they hav e frequently
denied it, and for image reasons they are moving to their own software.

Web bro wsers
A web browser is a program that retrieves documents from the Web and displays them.
The base FreeBSD system does not include a web browser, but a large number are
available in the Ports Collection. All web browsers seem to have one thing in common:
they are buggy. They frequently crash when presented with web pages designed for
Microsoft, and in other cases they don’t display the page correctly. In many cases this is
due to poorly designed web pages, of course.

Currently, the most important web browsers are:

• netscape was once the only game in town, but it’s now showing its age. In addition,
many web sites only test their software with Microsoft, and their bugs cause problems
with netscape.

• mozilla is derived from the same sources as netscape, but comes in source form. It
has now reached the stage where it is less buggy than netscape. A number of other
browsers, such as galeon and skipstone, are based on mozilla. They’re all available
in the Ports Collection. galeon is included in the instant-workstation port described
in Chapter 6.

Web browsers 419

• konqueror is included with the KDE port.

• Opera is a new browser that some people like. The version in the Ports Collection is
free, but it makes up for it by giving you even more advertisements than the web
pages give you anyway. You can buy a version that doesn’t display the advertise-
ments.

• lynx is a web browser for people who don’t use X. It displays text only.

You may note two omissions from this list. Microsoft’s Internet Explorer is not available
for FreeBSD. Not many people have missed it. Also, mosaic, the original web browser,
is now completely obsolete, and it has been removed from the Ports Collection.

In addition to these browsers, StarOffice and OpenOffice include integrated browsers.
You may find you prefer them.

This book does not deal with how to use a web browser: just about everybody knows how
to use one. You can also get help from just about any browser; just click on the text or
icon marked Help or ?.

ssh
ssh is a secure shell, a means of executing programs remotely using encrypted data
transfers. There are a number of different implementations of ssh: there are two different
protocols, and the implementations are complicated both by bugs and license conditions.
FreeBSD comes with an implementation of ssh called OpenSSH, originally developed as
part of the OpenBSD project.

Using ssh is simple:

$ ssh freebie
The authenticity of host ’freebie.example.org (223.147.37.1)’ can’t be established.
DSA key fingerprint is 08:f7:c4:14:48:0b:14:06:0e:2c:93:4b:1f:f6:ce:b5.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ’freebie.example.org’ (DSA) to the list of known hosts.
grog@freebie.example.org’s password: as usual, doesn’t echo
Last login: Mon May 13 14:21:11 2002
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regents of the University of California. All rights reserved.
FreeBSD 5.0-RELEASE (FREEBIE) #3: Sun Jan 5 13:25:02 CST 2003

Welcome to FreeBSD!
$ tty
/dev/ttyp3
$

Once you get this far, you are connected to the machine in almost the same manner as if
you were directly connected. This is particularly true if you are running X. As the output
of the tty command shows, your ‘‘terminal’’ is a pseudo-tty or pty (pronounced ‘‘pity’’).
This is the same interface that you have with an xterm.

420 Chapter 24: Basic networ k access: clients

It’s worth looking in more detail at how the connection is established:

• The first line (The authenticity...) appears once ssh has established preliminary
contact with the remote system. It indicates that you’re connected, but that the local
system has no information about the remote system. Theoretically you could be
connected to a different machine masquerading as the machine you want to connect
to. ssh saves the fingerprint in ˜/.ssh/known_hosts and checks it every time you
connect to that machine thereafter.

• The reference to DSA keys indicates that ssh is using the ssh Version 2 protocol.
We’ll look at the differences between the protocols below.

• The password prompt is for the same password as you would see locally. The
slightly different format is to clarify exactly which password you should enter.
Again, a number of exploits are possible where you might find yourself giving away a
password to an intruder, so this caution is justified.

When you log in via ssh, there’s a chance that your TERM environment variable is set
incorrectly. See table 7-3 on page 130 for more details. Remember that TERM describes
the display at your end of the link. There is no display at the other end, but the other end
needs to know the termcap parameters for your display. If you’re running an xterm, this
shouldn’t be a problem: the name xterm propagates to the other end. If you’re using a
character-oriented display (/dev/ttyvx), however, your TERM variable is probably set to
cons25, which many systems don’t know. If systems refuse to start full-screen modes
when you connect from a virtual terminal, try setting the TERM variable to ansi.

To exit ssh, just log out. If you run into problems, however, like a hung network, you can
also hit the combination Enter ˜. Enter, which always drops the connection.

Access without a password
Sending passwords across the Net, even if they’re encrypted, is not a complete guarantee
that nobody else can get in: there are a number of brute-force ways to crack an encrypted
password. To address this issue, ssh has an access method that doesn’t require
passwords: instead it uses a technique called public key cryptography. You have two
keys, one of which you can give away freely, and the other of which you guard carefully.
You can encrypt or decrypt with either key: data encrypted with the public key can be
decrypted with the private key, and data encrypted with the private key can be decrypted
with the public key.

Once you have these keys in place, you can use the challenge-response method for
authentication. To initiate an ssh connection, ssh sends your public key to the sshd
process on the remote system. The remote system must already have a copy of this key.
It uses it to encrypt a random text, a challenge, which it sends back to your system. The
ssh process on your system decrypts it with your private key, which is not stored
anywhere else, and sends the decrypted key back to the remote sshd. Only your system
can decode the challenge, so this is evidence to the remote sshd that it’s really you.

Access without a password 421

By default, the private key for Version 1 of the protocol is stored in the file ˜/.ssh/identity,
and the public key is stored in the file ˜/.ssh/identity_pub. For Version 2, you have a
choice of two different encryption schemes, DSA and RSA. The corresponding private
and public keys are stored in the files ˜/.ssh/id_dsa, ˜/.ssh/id_dsa.pub, ˜/.ssh/id_rsa and
˜/.ssh/id_rsa.pub respectively. If you have the choice between DSA keys and RSA keys
for protocol Version 2, use DSA keys, which are considered somewhat more secure. You
still should have an RSA key pair in case you want to connect to a system that doesn’t
support DSA keys.

There’s still an issue of unauthorized local access, of course. To ensure that somebody
doesn’t compromise one system and then use it to compromise others, you need a kind of
password for your private keys. To avoid confusion, ssh refers to it as a passphrase. If
ssh finds keys in the ˜/.ssh directory, it attempts to use them:

$ ssh hub
Enter passphrase for key ’/home/grog/.ssh/id_rsa’: (no echo)
Last login: Sat Jul 13 17:27:33 2002 from wantadilla.lemis
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regents of the University of California. All rights reserved.
FreeBSD 5.0-STABLE (HUB) #7: Thu Jun 26 12:44:34 PDT 2003
(etc)

Creating and distributing keys
You create keys with the program ssh-keygen. Here’s an example of generating all three
keys:

$ ssh-keygen -t rsa1
Generating public/private rsa1 key pair.
Enter file in which to save the key (/home/grog/.ssh/identity): (ENTER pressed)
Enter passphrase (empty for no passphrase): (no echo)
Enter same passphrase again: (no echo)
Your identification has been saved in /home/grog/.ssh/identity.
Your public key has been saved in /home/grog/.ssh/identity.pub.
The key fingerprint is:
02:20:1d:50:78:c5:7c:56:7b:1d:e3:54:02:2c:99:76 grog@bumble.example.org
$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/grog/.ssh/id_rsa): (ENTER pressed)
Enter passphrase (empty for no passphrase): (no echo)
Enter same passphrase again: (no echo)
Your identification has been saved in /home/grog/.ssh/id_rsa.
Your public key has been saved in /home/grog/.ssh/id_rsa.pub.
The key fingerprint is:
95:d5:01:ca:90:04:7d:84:f6:00:32:7a:ea:a6:57:2d grog@bumble.example.org
$ ssh-keygen -t dsa
Generating public/private dsa key pair.
Enter file in which to save the key (/home/grog/.ssh/id_dsa): (ENTER pressed)
Enter passphrase (empty for no passphrase): (no echo)
Enter same passphrase again: (no echo)
Your identification has been saved in /home/grog/.ssh/id_dsa.
Your public key has been saved in /home/grog/.ssh/id_dsa.pub.
The key fingerprint is:
53:53:af:22:87:07:10:e4:5a:2c:21:31:ec:29:1c:5f grog@bumble.example.org

422 Chapter 24: Basic networ k access: clients

Before you can use these keys, you need to get the public keys on the remote site in the
file ˜/.ssh/authorized_keys. Older versions of ssh used a second file, ˜/.ssh/autho-
rized_keys2, for protocol Version 2, but modern versions store all the keys in the one file
˜/.ssh/authorized_keys. There are a number of ways to get the keys in these files. If you
already have access to the machine (via password-based authentication, for example), you
can put them there yourself. Typically, though, you’ll have to get somebody else
involved. To make it easier, the public keys are in ASCII, so you can send them by mail.
The three public keys generated above look like this:

1024 35 1101242842742748033454498238668225412306578450520406221165673293206460199556
751223553035331118710873315456577313425763305854786629592671460454493321979564518976
839276314768175285909667395039795936492323578351726210382756436676090411475643317216
92291413130012157442638303275673247163400686283060339457790686649 grog@bumble.exampl
e.org
ssh-dss AAAAB3NzaC1kc3MAAACBAIltWeRXnqD9HqOLn5kugPSWHicJiu1r0I9dHg8F5m2PpmupyRYSmDzs
cAcsxifo50+1yXk3Vf4P1+EDsAwkyqFlujuMVeKoTYcOi1yrnLDWIDiAeIzt1BQ6ONwbXqxwWKCq1eo1tXxO
rTxw84VboHUuq4XFdt+yPJs8QdxLhj+jAAAAFQC1JL+tU19+UR+c45JGom6ae29d7wAAAIAvNgdN6rTitMjD
CglN7Rq3/8WgI1kzh20XURbCe1n2yYsFifcImKb0sUYD2qsB5++gogzsse2IxyIECRCuyCOOFXIQ7WqkvjTp
/T+fuwGPIlho8eeNDRKKABUhHjkuApnoYLIC1O5uyciJ+dIbGaRtGFJr0da7KlkjOLkiv3sR1gAAAIAwgKfW
sRSQJyRZTkKGIHxn3EWTvSicnIRYza+HTaMuMFHMTkNMZBjhei6EoCFpV9B1QB9MlIZgf6WXM2DlmtdUbpm7
KFA669/LZT2LvxbtGP/B++7s0PMs0AgKrKgUxnhVweufMZlPvPPPOz4QS1ZZ5kYhN+lu0S8yuioXYNlDtA==
grog@bumble.example.org
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEA1/W3oa1ZEs58KRWMzsrZWMXzPfwoqQ+Z59p6SJlzhevsXG1P
AVWra2wcRz1utKFBjkDpJfEe+09L7h8VAx1aYCHji50tKI8F8YT8OuWGH+UqF/37Wl292SsXsb8g80yyymSf
xgOM/HegvOuHQu46MfaPj9ddfcgY06z3ufcmXts= grog@bumble.example.org

In the original, each key is on a single line.

Obviously you don’t want anybody messing with your authorized_keys files, so ssh
requires that the files belong to you and are only writeable by you. These two files
typically contain multiple keys; to add a new one, just append it to the end of the file. For
example, if you receive a new key and store it in the file newkey, copy it like this:

$ cat newkey >> ˜/.ssh/authorized_keys

Authenticating automatically
Having to supply the passphrase can become a nuisance and even a serious problem. If
you want to run ssh from scripts, it may not even be possible to supply the passphrase.
ssh has another feature available here: it has an authentication agent that keeps track of
the keys.

The authentication agent is called ssh-agent, and you add keys with ssh-add. Due to the
manner in which it is started, ssh-agent needs to be the ancestor of the shell you are
running, and of the ssh-add command. Otherwise you see error messages like this:

$ ssh-agent
SSH_AUTH_SOCK=/tmp/ssh-cwT9aBbV/agent.42902; export SSH_AUTH_SOCK;
SSH_AGENT_PID=42903; export SSH_AGENT_PID;
echo Agent pid 42903;
$ ssh-add
Could not open a connection to your authentication agent.

Access without a password 423

To solve this problem, execute the agent in your current environment with eval, then run
ssh-add:

$ eval ‘ssh-agent‘
$ ssh-add
Enter passphrase for /home/grog/.ssh/id_rsa: (enter the passphrase)
Identity added: /home/grog/.ssh/id_rsa (/home/grog/.ssh/id_rsa)
Identity added: /home/grog/.ssh/id_dsa (/home/grog/.ssh/id_dsa)
Identity added: /home/grog/.ssh/identity (grog@zaphod.example.org)

You can use ssh-add’s -l flag to list which keys the authentication agent currently knows
about:

$ ssh-add -l
1024 02:20:1d:50:78:c5:7c:56:7b:1d:e3:54:02:2c:99:76 grog@zaphod.example.org (RSA1)
1024 95:d5:01:ca:90:04:7d:84:f6:00:32:7a:ea:a6:57:2d /home/grog/.ssh/id_rsa (RSA)
1024 53:53:af:22:87:07:10:e4:5a:2c:21:31:ec:29:1c:5f /home/grog/.ssh/id_dsa (DSA)

If you’re using a Bourne-style shell such as bash, you can automate a lot of this by
putting the following commands in your .bashrc or .profile file:

if tty > /dev/null; then
ssh-add -l > /dev/null
if [$? -ne 0]; then

eval ‘ssh-agent‘
fi

fi

This first uses the tty command to check if this is an interactive shell, then checks if you
already have an authentication agent. If it doesn’t, it starts one. Don’t start a new
authentication agent if you already have one: you’d lose any keys that the agent already
knows. This script doesn’t add keys, because this requires your intervention and could be
annoying if you had to do it every time you start a shell.

Setting up X to use ssh
If you work with X, you have the opportunity to start a large number of concurrent ssh
sessions. It would be annoying to have to enter keys for each session, so there’s an
alternative method: start X with an ssh-agent, and it will pass the information on to any
xterms that it starts. Add the following commands to your .xinitrc:

eval ‘ssh-agent‘
ssh-add < /dev/null

When you run ssh-add in this manner, without an input file, it runs a program to prompt
for the passphrase. By default it’s /usr/X11R6/bin/ssh-askpass, but you can change it by
setting the SSH_ASKPASS environment variable. /usr/X11R6/bin/ssh-askpass opens a
window and prompts for a passphrase. From then on, anything started under the X
session will automatically inherit the keys.

424 Chapter 24: Basic networ k access: clients

ssh tunnels
Tunneling is a technique for encapsulating an IP connection inside another IP connection.
Why would you want to do that? One reason is to add encryption to an otherwise
unencrypted connection, such as telnet or POP. Another is to get access to a service on a
system that does not generally supply this service to the Internet.

Let’s consider using http first. Assume you are travelling, and you want to access your
private web server back home. Normally a connection to the http port of presto.exam-
ple.com might have the following parameters:

andante presto
IP 192.1.7.245

Port 9132

IP 223.147.37.2

Port 80

But what if the server is firewalled from the global Internet, so you can’t access it
directly? That’s when you need the ssh tunnel. The ssh tunnel creates a local
connection at each end and a separate secure connection across the Internet:

andante

Tunnel A Tunnel B

presto
127.1

4096

192.1.7.245

3312

150.101.248.57

22

127.1

80

The ssh connection is shown in fixed italic font. It looks just like any other ssh
connection. The differences are the local connections at each end: instead of talking to
presto port 80 (http), you talk to port 4096 on your local machine. Why 4096? It’s your
choice; you can use any port above 1024. If you’re on andante, you can set up this tunnel
with the command:

$ ssh -L 4096:presto.example.org:80 presto.example.org

To do the same thing from the presto end, you’d set up a re verse tunnel with the -R
option:

$ ssh -R 4096:presto.example.org:80 andante.example.org

These commands both set up a tunnel from port 4096 on andante to port 80 on the host
presto.example.org. You still need to supply the name of the system to connect to; it
doesn’t hav e to be the same. For example, you might not be able to log in to the web
server, but you could access your machine back home, and it has access to the web server.
In this case, you could connect to your machine at home:

$ ssh -L 4096:presto.example.org:80 freebie.example.org

In addition to setting up the tunnel, ssh can create a normal interactive session. If you
don’t want this, use the -f option to tell ssh to go into the background after
authentication. You can also specify a command to execute, but this is no longer

ssh tunnels 425

necessary for protocol version 2. If you don’t want to execute a command, use the -N
option:

$ ssh -L 4096:presto.example.org:80 presto.example.org -f -N

If you’re running protocol version 1, you can use sleep with an appropriately long
timeout, in this example 1 hour:

$ ssh -L 4096:presto.example.org:80 presto.example.org -f sleep 3600

Tunneling X
Running X clients on the remote machine is special enough that ssh provides a special
form of tunneling to deal with it. To use it, you must tell ssh the location of an
.Xauthority file. Do this by adding the following line to the file ˜/.ssh/environment:

XAUTHORITY=/home/yourname/.Xauthority

The name must be in fully qualified form: ssh does not understand the shortcut ˜/ to
represent your home directory. You don’t need to create ˜/.Xauthority, though: ssh can
do that for you.

Once you have this in place, you can set up X tunneling in two different ways. To start it
from the command line, enter something like:

$ ssh -X -f website xterm

As before, the -f option tells ssh to go into the background. The -X option specifies X
tunneling, and ssh runs an xterm on the local machine. The DISPLAY environment
variable points to the (remote) local host:

$ echo $DISPLAY
localhost:13.1

Other uses of tunnels
Tunneling has many other uses. Another interesting one is bridging networks. For
example, http://unix.za.net/gateway/documentation/networking/vpn/fbsd.html describes
how to set up a VPN (Virtual Private Network) using User PPP and an ssh tunnel.

Configuring ssh
It can be a bit of a nuisance to have to supply all these parameters to ssh, but you don’t
have to: you can supply information for frequently accessed hosts in a configuration file.
On startup, ssh checks for configuration information in a number of places. It checks for
them first in the command-line options, then in you configuration file ˜/.ssh/config, and
finally in the system-wide configuration file /etc/ssh/ssh_config. The way it treats

426 Chapter 24: Basic networ k access: clients

duplicate information is pretty much the opposite of what you’d expect: unlike most other
programs, options found in a configuration file read in later do not replace the options
found in an earlier file. Options on the command line replace those given in
configuration files.

In practice, such conflicts happen less often than you might expect. The file
/etc/ssh/ssh_config, the main configuration file for the system, normally contains only
comments, and by default you don’t even get a local ˜/.ssh/config.

ssh_config can contain a large number of options. They’re all described in the man page
ssh_config(8), but it’s worth looking at some of the more common ones. In this section
we’ll look at some of the more common configuration options.

• The entry Host is special: the options that follow, up to the end of the file or the next
following Host argument, relate only to hosts that match the arguments on the Host
line.

• Optionally, ssh can compress the data streams. This can save a lot of traffic, but it
can also increase CPU usage, so by default it is disabled. You can do this by passing
the -C flag to ssh, but you can also do so by setting Compression yes in the
configuration file.

• You can escape out of an ssh session to issue commands to ssh with the
EscapeChar. By default it’s the tilde character, ˜. Other programs, notably rlogin,
use this character as well, so you may want to change it. You can set this value from
the ssh command line with the -e option.

• To forward an X11 connection, as shown above, you can also set the ForwardX11
variable to yes. This may be useful if you frequently access a remote machine and
require X forwarding. This also sets the DISPLAY environment variable correctly to
go over the secure channel.

• By default, ssh sends regular messages to the remote sshd server to check if the
remote system has gone down. This can cause connections to be dropped on a flaky
connection. Set the KeepAlive option to no to disable this behaviour.

• Use the LocalForward parameter to set up a tunnel. The syntax is similar to that of
the -L option above: on andante, instead of the command line:

$ ssh -L 4096:presto.example.org:80 presto.example.org

you would put the following in your ˜/.ssh/config:

host presto.example.org
LocalForward 4096 presto.example.org:80

Note that the first port is separated from the other two parameters by a space, not a
colon.

Configur ing ssh 427

• Similarly, you can set up a reverse tunnel with the RemoteForward parameter. On
presto, instead of the command line:

$ ssh -R 4096:presto.example.org:80 andante.example.org

you would put the following in your ˜/.ssh/config:

host andante.example.org
RemoteForward 4096 presto.example.org:80

• By default, ssh uses password authentication if it can’t negotiate a key pair. Set
PasswordAuthentication to no if you don’t want this.

• Normally ssh connects to the server on port 22 (ssh). If the remote server uses a
different port, specify it with the Port keyword. You can also use the -p option on
the ssh command line.

• By default, ssh attempts to connect using protocol 2, and if that doesn’t work, it tries
to connect using protocol 1. You can override this default with the Protocol
keyword. For example, to reverse the default and try first protocol 1, then protocol 2,
you would write:

Protocol 1,2

• By default, ssh refuses to connect to a known host if its key fingerprint changes.
Instead, you must manually remove the entry for the system from the
˜/.ssh/known_hosts or ˜/.ssh/known_hosts2 file. This can indicate that somebody is
faking the remote machine, but more often it’s because the remote machine has really
changed its host key, which it might do at every reboot. If this gets on your nerves,
you can add this line to your configuration file:

StrictHostKeyChecking no

This doesn’t stop the warnings, but ssh continues:

@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the DSA host key has just been changed.
The fingerprint for the DSA key sent by the remote host is
95:80:4c:fb:cc:96:1b:36:c5:c9:2b:cb:d1:d4:16:68.
Please contact your system administrator.
Add correct host key in /home/grog/.ssh/known_hosts2 to get rid of this message.
Offending key in /home/grog/.ssh/known_hosts2:39

• ssh assumes that your user name on the remote system is the same as the name on
the local system. If that’s not the case, you can use the User keyword to specify the
remote user name. Alternatively, you can use the format:

$ ssh newuser@remotehost.org

428 Chapter 24: Basic networ k access: clients

Summary of files in ˜/.ssh
In addition to the files we have discussed, you will find two other files in the ˜/.ssh
directory:

• known_hosts contains the key fingerprints of all hosts to which you have connected.
The example on page 419 shows how ssh adds a key.

• random_seed is a seed used to generate the keys.

In summary, then, you can expect the following files in your ˜/.ssh:

drwx------ 2 grog grog 512 Jan 18 21:04 . directory
-rw-r--r-- 1 grog grog 1705 Oct 26 1999 authorized_keys keys
-rw-r--r-- 1 grog grog 844 Jan 27 22:18 authorized_keys2 keys, Version 2 only
-rw-r--r-- 1 grog grog 25 Oct 20 01:35 environment environment for sshd
-rw------- 1 grog grog 736 Jul 19 15:40 id_dsa DSA private key
-rw-r--r-- 1 grog grog 611 Jul 19 15:40 id_dsa.pub DSA public key
-rw------- 1 grog grog 951 Jul 19 15:40 id_rsa RSA private key
-rw-r--r-- 1 grog grog 231 Jul 19 15:40 id_rsa.pub RSA public key
-rw------- 1 grog grog 536 Jul 19 15:39 identity RSA1 private key
-rw-r--r-- 1 grog grog 340 Jul 19 15:39 identity.pub RSA1 public key
-rw------- 1 grog grog 1000 Jul 25 1999 known_hosts list of known hosts
-rw------- 1 grog grog 512 Jul 25 1999 random_seed for key generation

Note particularly the permissions and the ownership of the files and the directory itself.
If they are wrong, ssh won’t work, and it won’t tell you why not. In particular, the
directory must not be group writeable.

Tr oubleshooting ssh connections
A surprising number of things can go wrong with setting up ssh connections. Here are
some of the more common ones:

• After some delay, you get the message:

ssh: connect to address 223.147.37.76 port 22: Operation timed out

This probably means that the remote host is down, or that you can’t reach it due to
network problems.

• You get the message:

ssh: connect to address 223.147.37.65 port 22: Connection refused

This means that the remote host is up, but no sshd is running.

• You hav e set up keys, but you still get a message asking for a password.

This can mean a number of things: your ssh-agent isn’t running, you haven’t added
the keys, the other end can’t find them, or the security on the keys at the other end is
incorrect. You can check the first two like this:

Troubleshooting ssh connections 429

$ ssh-add -l
Could not open a connection to your authentication agent.

This message means that you haven’t run ssh-agent. Do it like this:

$ eval ‘ssh-agent‘
Agent pid 95180
$ ssh-add -l
The agent has no identities.
$ ssh-add
Enter passphrase for /home/grog/.ssh/id_rsa: no echo
Identity added: /home/grog/.ssh/id_rsa (/home/grog/.ssh/id_rsa)
Identity added: /home/grog/.ssh/id_dsa (/home/grog/.ssh/id_dsa)
Identity added: /home/grog/.ssh/identity (grog@freebie.lemis.com)
$ ssh-add -l
1024 02:20:1d:50:78:c5:7c:56:7b:1d:e3:54:02:2c:99:76 grog@zaphod.example.org (RSA1)
1024 95:d5:01:ca:90:04:7d:84:f6:00:32:7a:ea:a6:57:2d /home/grog/.ssh/id_rsa (RSA)
1024 53:53:af:22:87:07:10:e4:5a:2c:21:31:ec:29:1c:5f /home/grog/.ssh/id_dsa (DSA)

In this case, all three keys are set correctly. If you have, say, only an RSA1 (protocol
Version 1) key, and the other end doesn’t support protocol Version 1, ssh will ask for
a password.

• You get a message like this:

@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the DSA host key has just been changed.
The fingerprint for the DSA key sent by the remote host is
95:80:4c:fb:cc:96:1b:36:c5:c9:2b:cb:d1:d4:16:68.
Please contact your system administrator.
Add correct host key in /home/grog/.ssh/known_hosts2 to get rid of this message.
Offending key in /home/grog/.ssh/known_hosts2:39

There are two possible reasons for this message. As the message states, one is that
somebody is trying to intercept the connection, and the other one is that the remote
system has changed its host key. The latter is by far the more common. To fix this
problem, you have two choices:

1. Edit your ˜/.ssh/known_hosts2 file and remove references to the remote system.
The message suggests changing line 39, but you might have more than one key
for this system in this file. If one is wrong, there’s a good chance that any others
will be too, so you should remove all references.

2. Add the following line to your ˜/.ssh/config file:

StrictHostKeyChecking no

It doesn’t remove the warning, but it allows you to connect anyway.

ssh includes debugging options that may help debug problems setting up connections.
Use the -v option, up to three times, to get ssh to display largely undocumented
information about what is going on. The output is pretty verbose; with three -v options
you get nearly 200 lines of information.

430 Chapter 24: Basic networ k access: clients

telnet
As mentioned above, telnet is an older, unencrypted program that connects to a shell on a
remote system. You might find it of use when connecting to a system that doesn’t hav e
ssh. Be very careful not to use valuable passwords, since they are transmitted in the
clear. Apart from that, you use it pretty much in the same way as ssh:

$ telnet freebie
Trying 223.147.37.1...
Connected to freebie.example.org.
Escape character is ’ˆ]’.
login: grog
Password: (no echo)

FreeBSD/i386 (wantadilla.example.org) (ttypj)

Last login: Mon Oct 14 17:51:57 from sydney.example.org
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regents of the University of California. All rights reserved.

FreeBSD 5.0-RELEASE (FREEBIE) #0: Tue Dec 31 19:08:24 CST 2002

You have new mail.
If I have seen farther than others, it is because I was standing on the
shoulders of giants.

-- Isaac Newton

In the sciences, we are now uniquely privileged to sit side by side
with the giants on whose shoulders we stand.

-- Gerald Holton

If I have not seen as far as others, it is because giants were standing
on my shoulders.

-- Hal Abelson

In computer science, we stand on each other’s feet.
-- Brian K. Reid

$ tty
/dev/ttyp9
$

Once you get this far, you are connected to the machine in an almost identical manner as
if you were directly connected. This is particularly true if you are running X. As the
output of the tty command shows, your ‘‘terminal’’ is a pseudo-tty or pty (pronounced
‘‘pity’’). This is the same interface that you will have with an xterm.

It’s worth looking in more detail at how the connection is established:

• The first line (Trying...) appears as soon as telnet has resolved the IP address.

• The next three lines appear as soon as it has a reply from the other end. At this point,
there can be a marked delay before telnet continues. telnet performs a reverse DNS
lookup to find the name of your system. If you get a delay here, it could be an
indication that your reverse lookup is not working correctly. After DNS times out, it
will continue normally, but the delay is a nuisance.

telnet 431

• Logging in is almost exactly the same as logging in locally. Normally you won’t be
able to log in directly as root, unless you have set /dev/ptyx as secure in your
/etc/ttys (see page 197 for further details). It’s not a good idea to set your ptys as
secure. Use su instead if you want to become root.

When you log in via telnet, there’s a good chance that your TERM environment variable
will be set incorrectly. See Table 7-3 on page 130 for more details. TERM describes the
display at your end of the display, not the other end. If you’re running an xterm, this
shouldn’t be a problem: probably the name xterm will propagate to the other end. If
you’re using a character-oriented display (/dev/ttyvx), however, your TERM variable will
probably be set to cons25, which many systems don’t know. If the remote system
refuses to start programs in full-screen modes, try setting the TERM variable to ansi.

To exit telnet, you just log off. If you run into problems, however, like a hung network,
you can also hit Ctrl-] to enter telnet command mode, and from there enter quit:

$ ˆ]
telnet> quit
$

If you hit Ctrl-] by accident, just hit Enter to return to the telnet session.

Secure telnet
Recent releases of FreeBSD telnet include a secure connection option. You can
recognize it by the different messages that appear when you connect:

$ telnet freebie
Trying 223.147.37.1...
Connected to freebie.example.org.
Escape character is ’ˆ]’.
Trying SRA secure login:
User (grog):
Password:
[SRA accepts you]

There’s no particular reason to use this version of telnet; it’s non-standard, and you’re
still better off with ssh.

Using telnet for other services
The way we have used telnet so far, it connects to the default port, telnet (number 23,
as you can see in the file /etc/services). This isn’t the only possibility, though: you can
tell telnet which port to connect to. In Chapter Chapter 27, Electronic mail: servers,
we’ll see how to communicate with sendmail using telnet on port smtp page 502, and
how to communicate with POP on port pop, page 504. There are many other such uses.

432 Chapter 24: Basic networ k access: clients

Copying files
The other basic function involves copying files between systems. The traditional tools
are ftp and rcp. Neither use encryption, so it’s preferable to use scp, a variant of ssh.
Nevertheless, ftp has its uses. About the only use for rcp is on systems that don’t
support scp, or systems where security is not an issue, and scp is so slow that it’s not
practical. The good news: you use rcp in pretty much the same manner as scp: scp was
designed to be compatible with rcp, so you don’t need to learn anything else if you want
to use it.

scp
scp is a variant of ssh used for remote copying. The same access considerations apply
as for ssh. The syntax for copying is similar to the syntax used by NFS: to copy a file
/var/log/messages from presto to the file prestomessages on the local machine, you
might enter:

$ scp presto:/var/log/messages prestomessages

As with ssh, if you need to authenticate as a different user, you can use the form
user@system. scp does not support the -l option to specify the user name.

scp has a number of options reminiscent of cp:

• Use the -p option to preserve modification times and permissions where possible.
Note that this means you can’t use ssh’s -p option to specify an alternative port. scp
uses the -P option for this instead.

• Use the -r option to recursively copy directories.

You don’t hav e to supply full path names to scp; you can write things like:

$ scp remotehost:file .

This looks for a file called file in your home directory on the remote machine and copies
it to your current local directory. Note the difference: there is no way for scp to know a
different remote directory, so relative paths are always relative to the home directory on
that machine.

scp 433

ftp
ftp is the Internet File Transfer Program, and is the standard way to transfer large files
long distances across the Net. It works for small files and short distances too, but you
may find that scp or NFS are better alternatives in these areas.

One serious drawback in duplicating files across the net is that you need to have
permission to access the remote system. Traditionally, you need a user ID to access a
system. Of course, the file server could have a specific user ID without a password, but
that would throw the system open to attack from crackers. ftp solves this problem by
recognizing the special user ftp. This user name used to be anonymous, but it turned
out to be a problem to spell. ftp servers still accept the name anonymous as well. Login
is special: you don’t need a password, but by convention, to help the system
administrators with their bookkeeping, you should enter your real user ID in place of the
password when logging in as ftp. A typical session might look like:

$ ftp ftp.freebsd.org
Connected to ftp.beastie.tdk.net.
cd 220 ftp.beastie.tdk.net FTP server (Version 6.00LS) ready.
331 Guest login ok, send your email address as password.
230- The FreeBSD mirror at Tele Danmark Internet.
More messages omitted
Name (grog): ftp
331 Guest login ok, send ident as password.
Password: password does not echo
230 Guest login ok, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> bin to ensure binary transfer
200 Type set to I.
ftp> cd /pub/FreeBSD/ports/distfiles
250 CWD command successful.
ftp> get xtset-1.0.tar.gz
local: xtset-1.0.tar.gz remote: xtset-1.0.tar.gz
229 Entering Extended Passive Mode (|||58059|)
150 Opening BINARY mode data connection for ’xtset-1.0.tar.gz’ (4239 bytes).
100% |*************************************| 4239 5.49 KB/s 00:00
226 Transfer complete.
4239 bytes received in 00:00 (5.49 KB/s)
ftp> ˆD
221 Goodbye.

There are a number of things to note about this transfer:

• The server may have multiple names, and the one you use may not be its canonical
name (the name specified in the server’s DNS A record—see page 363). By
convention, the first part of the name of an ftp server is ftp. Here we connected to the
server with the name ftp.FreeBSD.org, but the canonical name of the server is
ftp.beastie.tdk.net.

• Some versions of ftp transmit in ASCII mode by default: they change every
incidence of the ASCII line feed character (the C language constant \n) to the
sequence \r\n (they prepend an ASCII carriage return character). This permits you
to print the results on normal printers, but makes a terrible mess of binary files.
Transmitting in binary form always works. As the message shows, the FreeBSD ftp

434 Chapter 24: Basic networ k access: clients

server uses binary mode, but it doesn’t harm to enter the bin command. The
message Type set to I. is ftp’s way of telling you that it has set binary
transmission mode.

• The line of **** is an indication of the progress of the transfer. It’s specific to BSD;
other ftp clients don’t show you anything here.

Specifying file names as URIs
This transmission is fairly typical, and it’s the traditional way to do it. FreeBSD has
another method, though, which can be of use: instead of the interactive approach, you can
specify the file name as a URI, and you can use ftp to download HTTP documents from a
web server. For example, the last transfer can be simplified to:

$ ftp ftp://ftp.freebsd.org/pub/FreeBSD/ports/distfiles/xtset-1.0.tar.gz
Connected to ftp.beastie.tdk.net.
220 ftp.beastie.tdk.net FTP server (Version 6.00LS) ready.
331 Guest login ok, send your email address as password.
...
230 Guest login ok, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
200 Type set to I.
250 CWD command successful.
250 CWD command successful.
250 CWD command successful.
250 CWD command successful.
local: xtset-1.0.tar.gz remote: xtset-1.0.tar.gz
229 Entering Extended Passive Mode (|||59779|)
150 Opening BINARY mode data connection for ’xtset-1.0.tar.gz’ (4239 bytes).
100% |*************************************| 4239 5.82 KB/s 00:00
226 Transfer complete.
4239 bytes received in 00:00 (5.81 KB/s)
221 Goodbye.

Note that this method implies anonymous ftp: you don’t hav e to log in.

In the same way, you can download a web page like this:

$ ftp http://www.FreeBSD.org/index.html
Requesting http://www.FreeBSD.org/index.html
100% |*************************************| 26493 12.20 KB/s 00:02
26493 bytes retrieved in 00:02 (12.17 KB/s)

Note that in this case you can’t just specify the URI as http://www.FreeBSD.org/ : you
must specify the real file name.

Other ftp commands
ftp has about sixty commands, some of which can be of use. We’ll look at the most
useful commands in the following sections.

ftp 435

mget
Frequently you need to copy more than a single file. For example, if you currently have
gcc-2.5.0 and want to get gcc-2.5.8, you will discover the following files on the file
server:

ftp> ls
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
-rw-rw-r-- 1 117 1001 43367 Nov 1 02:37 gcc-2.5.0-2.5.2.diff.gz
-rw-rw-r-- 1 117 1001 1010 Nov 1 02:37 gcc-2.5.1-2.5.2.diff.gz
-rw-rw-r-- 1 117 1001 78731 Nov 11 13:53 gcc-2.5.2-2.5.3.diff.gz
-rw-rw-r-- 1 117 1001 13931 Nov 17 09:27 gcc-2.5.3-2.5.4.diff.gz
-rw-rw-r-- 1 117 1001 76271 Nov 27 16:48 gcc-2.5.4-2.5.5.diff.gz
-rw-rw-r-- 1 117 1001 8047 Dec 3 09:22 gcc-2.5.5-2.5.6.diff.gz
-rw-rw-r-- 1 117 1001 5994481 Nov 27 16:49 gcc-2.5.5.tar.gz
-rw-rw-r-- 1 117 1001 10753 Dec 12 19:15 gcc-2.5.6-2.5.7.diff.gz
-rw-rw-r-- 1 117 1001 14726 Jan 24 09:02 gcc-2.5.7-2.5.8.diff.gz
-rw-rw-r-- 1 117 1001 5955006 Dec 22 14:16 gcc-2.5.7.tar.gz
-rw-rw-r-- 1 117 1001 5997896 Jan 24 09:03 gcc-2.5.8.tar.gz
226 Transfer complete.
ftp>

In other words, you have the choice of transferring 6 MB of software in gcc-2.5.8.tar.gz
or seven incremental patch files with a total of less than 250 kB. On the other hand,
copying the diffs requires typing all these long, complicated file names, so you might
decide it’s easier just to duplicate the whole 6 MB.

There is an easier way: mget (multiple get) duplicates files matching a wild card. You
could perform the complete transfer with:

ftp> mget gcc-2*diff.gz
mget gcc-2.5.0-2.5.2.diff.gz?y
200 PORT command successful.
150 Opening BINARY mode data connection for

gcc-2.5.0-2.5.2.diff.gz (43667 bytes).
226 Transfer complete.
43667 bytes received in 19 seconds (2.298 Kbytes/s)
mget gcc-2.5.1-2.5.2.diff.gz?n we don’t need this one
mget gcc-2.5.2-2.5.3.diff.gz?y
200 PORT command successful.
150 Opening BINARY mode data connection for

gcc-2.5.2-2.5.3.diff.gz (78731 bytes).
226 Transfer complete.
78731 bytes received in 33 seconds (2.835 Kbytes/s)
... etc

prompt
Using mget saves a lot of network bandwidth and copies the files faster, but it has one
disadvantage: ftp prompts you for each file name, so you have to wait around to answer
the prompts. If you don’t, ftp disconnects after 15 minutes of inactivity. It would be
simpler to perform all the mgets without any intervention. This is where the prompt
command comes in.

The prompt command specifies whether to issue certain prompts or not—the mget
command is one example. This command is a toggle—in other words, if prompting is on,

436 Chapter 24: Basic networ k access: clients

prompt turns it off, and if prompting is off, prompt turns it on. If prompting is off, the
mget command in the previous example would have gone through with no interruptions.

In the previous example, you don’t really want to transfer the file gcc-2.5.1-2.5.2.diff.gz,
because you don’t need it to perform the patches: you can upgrade from 2.5.0 to 2.5.2
directly with the file gcc-2.5.0-2.5.2.diff.gz. On the other hand, not copying the file would
mean sitting around for the duration of the transfer and answering the prompt for each
file, and the file is only 1 kB long. In this case, it is reasonable to copy it as well—in
other cases, you may need to consider alternatives.

reget
Sooner or later, you will lose a connection in the middle of a transfer. According to
Murphy’s law, this will usually happen with a big file, and it will be shortly before the
transfer is finished. You may be able to save the day with reget, which picks up the
transfer where it left off. The semantics are the same as for get.

Unfortunately, not all versions of ftp have the reget command, and on many systems that
do have the command, it doesn’t work correctly. If you do decide to use it, you should
first make a copy of the partially copied file, in case something goes wrong.

user
Normally, ftp attempts to log in using the user name of the user who started the ftp
program. To make establishing connections easier, ftp checks for a file called .netrc
when performing a login sequence. .netrc contains information on how to log in to
specific systems. A typical .netrc might look like:

machine freebie login grog password foo
machine presto login grog password bar
machine bumble login grog password baz
machine wait login grog password zot
default login ftp password grog@example.org

Lines starting with the keyword machine specify login name (grog in this example) and
password for each system. The last line is the important one: if the system is not
mentioned by name, ftp attempts a login with user name ftp and password
grog@example.org. Though this may be of use with systems you don’t know, it causes
a problem: if you want to connect to a machine without anonymous ftp, you will need to
explicitly tell ftp not to attempt an auto-login. Do this with the -n option:

$ ftp -n ftp.remote.org

The .netrc file is a security risk: it contains all your passwords in readable form. Make
sure it is secured so that only you can read or write it.

ftp is not overly clear about login failures. For example,

ftp 437

$ ftp ftp.tu-darmstadt.de
Connected to ftp.tu-darmstadt.de.
220 rs3.hrz.th-darmstadt.de FTP server (Version 4.1) ready.
331 Password required for grog.
530 Login incorrect.
Login failed.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp>

This error message is not very obvious: although you’re not logged in, you still get the
same prompt, and ftp produces enough verbiage that it’s easy to oversee that the login
attempt failed. To complete the login, use the user command:

ftp> user ftp
331 Guest login ok, send ident as password.
Password: password does not echo
230 Guest login ok, access restrictions apply.

sftp
sftp is yet another ssh-based program. It’s designed to be as compatible as possible with
ftp, so you use it in exactly the same manner. As with other ssh-related commands, you
need to authenticate in an ssh-specific manner. In addition, it has an exec command,
which allows you to run programs on the remote machine.

To use sftp, the remote machine must be able to run the sftp-server server. It is normally
started from sshd. See page 454 for more details.

rsync
Frequently you want to keep identical copies of files on different machines. You can
copy them, of course, but if there are only small changes in large files, this can be
relatively inefficient. You can perform this task more efficiently with rsync, which is
designed to keep identical copies of files on two different systems and to optimize
network bandwidth while doing so. It’s in the Ports Collection. Install in the normal
manner:

cd /usr/ports/net/rsync
make install

By default, rsync uses ssh to perform the transfer, so you need to have ssh configured
correctly. In particular, you should be using ssh-agent authentication.

You can use rsync like scp: the syntax is compatible up to a point. For example, you
could copy a file from a remote system with:

$ rsync presto:/var/log/messages prestomessages

438 Chapter 24: Basic networ k access: clients

You don’t need to install rsync just for that, of course: you can do exactly the same thing
with scp. rsync has one advantage over scp, howev er, even in this case. The first time
you copy the file, there’s no difference. But files like /var/log/messages grow at the end,
and the rest doesn’t change. That’s an ideal situation for rsync: it uses an algorithm that
recognizes common parts of files (not necessarily at the beginning) and optimizes the
transfer accordingly. The first time you run the program, you might see:

$ rsync -v /var/log/messages freebie:/var/tmp
messages
wrote 80342 bytes read 36 bytes 53585.33 bytes/sec
total size is 80255 speedup is 1.00
$ rsync -v /var/log/messages freebie:/var/tmp
messages
wrote 535 bytes read 726 bytes 840.67 bytes/sec
total size is 80255 speedup is 63.64

This example used the option -v to show details of what was transferred; otherwise you
wouldn’t see any output at all. The first time round, the entire file was copied, so there
was no speedup. The second time, though, almost nothing needed to be copied, so the
transfer was over 60 times as fast.

Copying directory hierarchies
rsync has a bewildering number of options for synchronizing directories. Consider the
case where you maintain web pages locally, but your main web server is co-located
somewhere else. After updating the local web pages, you can run a script to update the
remote pages with commands like:

rsync -LHzav --exclude=RCS --exclude="*˜" ˜grog/public_html/* website:htdocs/grog
rsync -LHztpgov --exclude="*˜" website:htdocs

The first rsync command synchronizes the local directory ˜grog/public_html to the
remote directory htdocs/grog on the system website. It includes all subdirectories with
the exception of the RCS directories. The second command synchronizes the top level
web directory only, and not the subdirectories, many of which shouldn’t be maintained on
the remote site. In each case, files ending in ˜ are excluded (these are normally Emacs
backup files), and in the second case the RCS subdirectories are also excluded. Let’s
look more carefully at all those options:

• -L copies symbolic links (which the documentation refers to as ‘‘soft links’’) as
separate files. If you don’t include this option, symbolic links to files within the
directory hierarchy will work, but links outside the hierarchy may be broken
(depending on whether a file of that name exists on the destination system or not). In
this example, a number of files are really located elsewhere, so it makes sense to copy
them as files.

rsync 439

• -H is pretty much the opposite of -L: by default, rsync doesn’t check whether it has
already copied a file, so if it finds another link to it, it will create a new file on the
remote machine. -H tells it to keep track of links and simply create another link to
any file it has already copied on the destination machine. This can only work if the
two links have been copied by the same invocation of rsync.

• The option -z tells rsync to compress data. This can significantly reduce traffic.

• The option -a (‘‘archive’’) is in fact a shorthand notation for a total of seven other
options. We’ll see some of them below. The others are:

• -r: copy subdirectories recursively.

• -l: create symbolic links where necessary. In this example, it’s overruled by the
-L option.

• -D: copy device nodes (only for root).

The other options are -p, -t, -g and -o. We don’t want to copy subdirectories in the
second example, so we state them explicitly. Together, they roughly correspond to
the -p (preserve) option to some other copy programs.

• The option -p tells rsync to set the permissions of the remote copy to be the same as
those of the original file.

• The option -t tells rsync to preserve the modification times of the original file on the
remote copy.

• The option -g tells rsync to set the group ownership of the remote copy to be the
same as those of the original file.

• The option -o tells rsync to set the ownership of the remote copy to be the same as
those of the original file.

• We’v e already seen the -v option: it gives information on what rsync is doing.

When copying directories with rsync, it’s relatively easy to end up with the files in the
wrong directory level: either they’re in the parent directory, or in a subdirectory of the
same name. Consider the following command to synchronize a mail folder to a laptop:

$ cd /home/grog
$ rsync -zHLav presto:/home/grog/Mail Mail

This would seem to duplicate the directory /home/grog/Mail on the remote system to a
directory of the same name on the local system. In fact, it moves the contents of the host
/home/grog/Mail to /home/grog/Mail/Mail on the local machine. To do what you
expect, write:

$ rsync -zHLav presto:/home/grog/Mail .

440 Chapter 24: Basic networ k access: clients

Using an rsync server
The use of rsync that we’ve seen so far doesn’t require a server, but it does require an
ssh. rsync also offers a different means of access that uses a server, rsyncd. This
method is intended more for access to systems for which you don’t hav e a password,
something like anonymous ftp.

We’ll look at setting up an rsync server on page 454. The client side is relatively simple.
Use two colons when referring to the remote system. For example, you might enter:

$ rsync freebie::
This is freebie.example.org. Be gentle.

groggy Greg’s web pages
tivo TiVo staging area

The first line is simply an identification message, referred to as a message of the day in
the documentation. The others represent directory hierarchies that the server makes
available, along with a comment about their purpose. The documentation calls them
modules. As we’ll see on page 454, they correspond to directories on the server machine,
though the names don’t need to be related.

To find out what is in these directories, you can use the following kind of command,
which specifies a particular module, but no destination:

$ rsync freebie::groggy
This is freebie.example.org. Be gentle.

drwxr-xr-x 5632 2002/10/24 12:40:38 .
-rw-r--r-- 3855 2002/03/16 13:51:12 20feb99.html
-rw-r--r-- 2363 2002/03/16 13:51:12 7mar1999.html
-rw-r--r-- 8345 2002/03/16 13:51:12 AOSS-programme-orig.html
-rw-r--r-- 11590 2002/03/16 13:51:12 AOSS-programme.html
-rw-r--r-- 1798 2002/03/16 13:51:12 BSDCon-2002.html
-rw-r--r-- 1953 2002/03/16 13:51:12 Essey-20020222.html
...etc

To transfer a file, specify its name and a destination:

$ rsync -v freebie::groggy/AOSS-programme.html .
This is freebie.example.org. Be gentle.

AOSS-programme.html
wrote 98 bytes read 11744 bytes 23684.00 bytes/sec
total size is 11590 speedup is 0.98

This example uses the -v option to show what rsync has done; without it, there would be
no output.

Using an rsync server 441

If you want to transfer the entire module, use the -r or -a options we looked at above:

$ rsync -r -v freebie::groggy .
This is freebie.example.org. Be gentle.

receiving file list ... done
skipping non-regular file "Images/20001111"
20feb99.html
7mar1999.html
AOSS-programme-orig.html
AOSS-programme.html
BSDCon-2002.html
...etc

The Network File System
The Network File System, or NFS, is the standard way to share UNIX files across a
network.

We’v e already seen that UNIX file systems are accessible in a single tree by mounting
them on a specific directory. NFS continues this illusion across the network.

From a user point of view, there is little difference: you use the same mount command,
and it performs what looks like the same function. For example, if system presto’s
system administrator wants to mount freebie’s file systems /, /usr and /home, he could
enter:

mkdir /freebie
mount freebie:/ /freebie
mount freebie:/usr /freebie/usr
mount freebie:/home /freebie/home

You’ll note how to specify the file systems: the system name, a colon (:), and the file
system name. This terminology predates URIs; nowadays, people would probably write
nfs://freebie/usr.

Note also that you don’t need to create /freebie/usr and /freebie/home: assuming that the
directories /usr and /home exist on once you have mounted /freebie, they will become
visible.

If you look at NFS more closely, things don’t look quite as similar to disks as they do at
first sight. You access local file systems via the disk driver, which is part of the kernel.
You access NFS file systems via the NFS processes.

Older implementations of NFS had a plethora of processes. If you’re used to such
systems, don’t let the lack of processes make you think that there’s something missing.

442 Chapter 24: Basic networ k access: clients

NFS client
You don’t need any particular software to run as an NFS client, but the program nfsiod
greatly improves performance. It’s started at bootup time if you specify
nfs_client_enable="YES" in your /etc/rc.conf, but you can also start it manually if
it’s not running:

nfsiod -n 6

The parameter -n 6 tells nfsiod how many copies of itself to start. The default is four.
Each nfsiod can handle a concurrent I/O request, so if you find that your performance
isn’t what you would like it to be, and the CPU time used by each nfsiod is similar, then
you might like to increase this value. To ensure it’s done automatically at boot time, add
the following to /etc/sysctl.conf :

vfs.nfs.iothreads=6

We’ll look at /etc/rc.conf and /etc/sysctl.conf in more detail in Chapter 29.

Mounting remote file systems
As we’ve seen, we mount NFS files with the same mount command that we use for local
file systems. This is another illusion: mount is just a front-end program that determines
which program to start. In the case of local file systems, it will start mount_ufs, and for
NFS file systems it will start mount_nfs.

There are a number of options you may wish to use when mounting NFS file systems.
Unfortunately, the options that mount_nfs uses are not the same as the options you would
use in /etc/fstab. Here’s an overview:

Table 24-1: NFS mount options

fstab mount_nfs Meaning
option option

bg -b Continue attempting the mount in the background if
it times out on the initial attempt. This is a very
good idea in /etc/fstab, because otherwise the boot
process waits until all mounts have completed. If
you’ve just had a power failure, this can cause
deadlocks otherwise.

nfsv2 -2 Use NFS Version 2 protocol. By default,
mount_nfs tries NFS Version 3 protocol first, and
falls back to Version 2 if the other end can’t handle
Version 3. Don’t use NFS Version 2 unless you
have to.

NFS client 443

fstab mount_nfs Meaning
option option

retry=num -Rnum Retry up to num times before aborting an I/O
operation.

-o ro -o ro Mount the file system for read-only access.

-o rw -o rw Mount the file system for read and write access.

-R num -R num Retry the mount operation up to num times. If you
have chosen soft mounting, fail I/O operations after
num retries. The default value is 10.

-r size -r size Set the read data block size to size bytes. size
should be a power of 2 between 1024 and 32768.
The default value is 8192. Use smaller block sizes
for UDP mounts if you have frequent ‘‘fragments
dropped due to timeout’’ messages on the client.

soft -s If operations on the file system time out, don’t retry
forever. Instead, give up after Retry timeouts. See
option -R.

-t num -t num Time out and retry an operation if it doesn’t
complete with in num/10 seconds. The default
value is 10 (1 second).

tcp -T Use TCP instead of UDP for mounts. This is more
reliable, but slightly slower. In addition, not all
implementations of NFS support TCP transport.

-w size -w size Set the write data block size to size bytes. size
should be a power of 2 between 1024 and 32768.
The default value is 8192. Use smaller block sizes
for UDP mounts if you have frequent ‘‘fragments
dropped due to timeout’’ messages on the server.

Normally, the only options that are of interest are -o ro, if you specifically want to
restrict write access to the file system, and soft, which you should always use.

Purists claim that soft compromises data integrity, because it may leave data on the server
machine in an unknown state. That’s true enough, but in practice the alternative to soft mounting
is to reboot the client machine. This is not only a nuisance, it also compromises data integrity.
The only solution that doesn’t always compromise data integrity is to wait for the server machine
to come back online. It’s unlikely that anybody will wait more than a few hours at the outside for
a server to come back.

A typical mount operation might be:

mount -o soft presto:/usr /presto/usr

444 Chapter 24: Basic networ k access: clients

Where to mount NFS file systems
You can mount an NFS file system just about anywhere you would mount a local file
system. Still, a few considerations will make life easier. In this discussion, we’ll assume
that we have a large number of file systems mounted on freebie, and we want to make
them accessible to presto.

• If you have a ‘‘special’’ file system that you want to mount on multiple systems, it
makes sense to mount it on the same mount point on every system. freebie has two
file systems, /S and /src, which contain source files and are shared between all
systems on the network. It makes sense to mount the file system on the same
directory.

• freebie has a CD-ROM changer, and mounts the disks on /cdrom/1 to /cdrom/7.
presto finds that too confusing, and mounts one of them on /cdrom.

• Some other file systems can’t be mounted in the same place. For example,
freebie:/usr can’t be mounted on /usr. Mount them on directories that match the
system name. For example, mount freebie:/usr on /freebie/usr.

After doing this, you might find the following file systems mounted on freebie:

df
Filesystem 1024-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 30206 26830 960 97% /
/dev/ad0s1e 1152422 1016196 44034 96% /usr
/dev/da0h 931630 614047 243052 72% /src
/dev/da1h 2049812 1256636 629192 67% /home
procfs 4 4 0 100% /proc
/dev/cd0a 656406 656406 0 100% /cdrom/1
/dev/cd1a 664134 664134 0 100% /cdrom/2
/dev/cd2a 640564 640564 0 100% /cdrom/3
/dev/cd3a 660000 660000 0 100% /cdrom/4
/dev/cd4a 525000 525000 0 100% /cdrom/5
/dev/cd5a 615198 615198 0 100% /cdrom/6
/dev/cd6a 278506 278506 0 100% /cdrom/7

On presto, you might see:

df
Filesystem 1024-blocks Used Avail Capacity Mounted on
/dev/da0s1a 29727 20593 6756 75% /
/dev/da0s1e 1901185 742884 1006207 42% /usr
procfs 4 4 0 100% /proc
freebie:/ 30206 26830 960 97% /freebie
freebie:/usr 1152422 1016198 44032 96% /freebie/usr
freebie:/home 2049812 1256638 629190 67% /home
freebie:/src 931630 614047 243052 72% /src
freebie:/S 3866510 1437971 2119219 40% /S
freebie:/cdrom/1 656406 656406 0 100% /cdrom

NFS client 445

Mounting NFS file systems automatically
If you want to mount NFS files automatically at boot time, make an entry for them in the
file /etc/fstab. You can even do this if you don’t necessarily want to mount them: just add
the keyword noauto, and mountall will ignore them at boot time. The advantage is that
you then just need to specify, say,

mount /src

instead of:

mount -s freebie:/src /src

See the description of /etc/fstab on page 566 for more information.

NFS strangenesses
NFS mimics a local file system across the network. It does a pretty good job, but it’s not
perfect. Here are some things that you should consider.

No devices
NFS handles disk files and directories, but not devices. Actually, it handles devices too,
but not the way you would expect.

In a UNIX file system, a device is more correctly known as a device node: it’s an inode
that describes a device in terms of its major and minor numbers (see page 195). The
device itself is implemented by the device driver. NFS exports device nodes in UFS file
systems, but it doesn’t interpret the fact that these devices are on another system. If you
refer to the devices, one of three things will happen:

• If a driver for the specified major number exists on your local system, and the devices
are the same on both systems, you will access the local device. Depending on which
device it is, this could create some subtle problems that could go undetected for quite
a while.

• If a driver for the specified major number exists on your local system, and the devices
are different on the two systems, you will still access the local device with the same
major and minor numbers, if such a device exists. The results could be very
confusing.

• If no driver for the specified major number exists on your local system, the request
will fail. This can still cause considerable confusion.

If the NFS server system runs devfs, the device nodes are not exported. You won’t see
anything unless there are leftover device nodes from before the time of migration to devfs.

446 Chapter 24: Basic networ k access: clients

Just one file system
NFS exports file systems, not directory hierarchies. Consider the example on page 444.
presto has mounted both freebie:/ and freebie:/usr. If it were just to mount freebie:/, we
would see the directory /freebie/usr, but it would be empty.

Things can get even stranger: you can mount a remote file system on a directory that is
not empty. Consider the following scenario:

• You install FreeBSD on system freebie. In single-user mode, before mounting the
other file systems, you create a directory /usr/bin and a file /usr/bin/vi. Since the
/usr file system isn’t mounted, this file goes onto the root file system.

• You go to multi-user mode and mount the other file systems, including the file system
for /usr. You can no longer see the /usr/bin/vi you put there in single-user mode. It
hasn’t gone away, it’s just masked.

• On presto, you mount the file system freebie:/ on /freebie. If you list the contents of
the directory /freebie/usr, you will see the original file vi, and not the contents that
the users on freebie will see.

(netserver.mm), page 447

25
Basic network
access: servers

In this chapter:
• Running servers from

inetd
• Configur ing ftpd
• Running sshd
• rsyncd
• Setting up a web

ser ver
• NFS server
• Samba

In this chapter:
• Running servers from

inetd
• Configur ing ftpd
• Running sshd
• rsyncd
• Setting up a web

ser ver
• NFS server
• Samba

In the previous chapter, we saw how to use clients to access other systems. This is only
half the picture, of course. At the other end of the link, we need servers to provide this
service. For each client, there is a server (a daemon) whose name is usually derived from
the client name by adding a d to it:

Table 25-1: Server daemons for basic services

Client Server

ssh sshd
telnet telnetd
sftp sftp-server
ftp ftpd
rsync rsyncd
(browser) httpd
(NFS) nfsd

In addition to these servers, we look at a few others in other chapters:

• We’v e already looked at X servers briefly in Chapter 8, Taking control, and we’ll see
more in Chapter 28, XFree86 in depth.

• Chapter 21 discussed DNS name servers.

447

448 Chapter 25: Basic networ k access: servers

• Chapter 27 discusses Mail Transport Agents or MTAs, also referred to as mail
servers.

Some servers don’t need any configuration, and about all you need to do is to start them.
Others, like web servers, can be very complicated. None of the complication is related to
FreeBSD. For example, the issues involved in configuring apache are the same whether
you run it with FreeBSD, NetBSD, Linux or Solaris. There are several good books, each
at least the size of this one, on the detailed setup of some of these servers. In this chapter
we’ll look at how to get the servers up and running in a basic configuration, and where to
turn for more information.

Running servers from inetd
If you look at /etc/services, you’ll find that there are over 800 services available, most of
which are only supported on a small number of machines. It’s not always the best idea to
start up a daemon for every possible service you may want to offer. IP supplies an
alternative: inetd, the Internet daemon, sometimes called a super-server, which listens on
multiple ports. When a request arrives on a specific port, inetd starts a daemon specific
to the port. For example, FreeBSD supports anonymous ftp, but most people don’t
receive enough requests to warrant having the ftp daemon, ftpd, running all the time.
Instead, inetd starts an ftpd when a request comes in on port 21.

At startup, inetd reads a configuration file /etc/inetd.conf to determine which ports to
monitor and what to do when a message comes in. Here’s an excerpt:

$FreeBSD: src/etc/inetd.conf,v 1.58 2002/08/09 17:34:13 gordon Exp $
#
Internet server configuration database
#
#ftp stream tcp nowait root /usr/libexec/lukemftpd ftpd -l -r
#ftp stream tcp nowait root /usr/libexec/ftpd ftpd -l
#ftp stream tcp6 nowait root /usr/libexec/ftpd ftpd -l
#telnet stream tcp nowait root /usr/libexec/telnetd telnetd
#telnet stream tcp6 nowait root /usr/libexec/telnetd telnetd
#shell stream tcp nowait root /usr/libexec/rshd rshd
#shell stream tcp6 nowait root /usr/libexec/rshd rshd
#login stream tcp nowait root /usr/libexec/rlogind rlogind
#login stream tcp6 nowait root /usr/libexec/rlogind rlogind
#exec stream tcp nowait root /usr/libexec/rexecd rexecd
#shell stream tcp6 nowait root /usr/libexec/rshd rshd

This file has the following format:

• The first column is the service on which inetd should listen. If it starts with a # sign,
it’s a comment, and inetd ignores it. You’ll note in this example that all the listed
services have been commented out. Unless you run the daemon independently of
inetd, a request for one of these services will be rejected with the message:

Unable to connect to remote host: Connection refused

Running servers from inetd 449

• The next three columns determine the nature of the connection, the protocol to use,
and whether inetd should wait for the process to complete before listening for new
connections. In the example, all the services are TCP, but there are entries both for
tcp (the normal TCP protocol for IP Version 4) and tcp6 (the same service for IP
Version 6).

• The next column specifies the user as which the function should be performed.

• The next column is the full pathname of the program (almost always a daemon) to
start when a message comes in. Alternatively, it might be the keyword internal,
which specifies that inetd should perform the function itself.

• All remaining columns are the parameters to be passed to the daemon.

Older versions of UNIX ran inetd as part of the startup procedure. That isn’t always
necessary, of course, and for security reasons the default installation of FreeBSD no
longer starts it. You can change that by adding the following line to your /etc/rc.conf :

inetd_enable="YES" # Run the network daemon dispatcher (YES/NO).

To enable services in /etc/inetd.conf, it may be enough to remove the comment from the
corresponding line. This applies for most the services in the example above. In some
cases, though, you may have to perform additional steps. For example, lukemftpd, an
alternative ftpd, and nntpd, the Network News Transfer Protocol, are not part of
FreeBSD: they’re in the Ports Collection. Also, nntpd is intended to run as user usenet,
which is not in the base system.

The other daemons are not mentioned in /etc/inetd.conf :

• The preferred way to run sshd is at system startup. As we’ll see, the startup is quite
slow, so it’s not a good idea to run it from /etc/inetd.conf, though it is possible—see
the man page if you really want to.

• sftp-server is the server for sftp. It gets started from sshd.

• httpd, the Apache Web Server, also has quite a long startup phase that makes it
impractical to start it from /etc/inetd.conf. Note also that httpd requires a
configuration file. We’ll look at that on page 455.

• By contrast, it’s perfectly possible to start rsyncd from inetd. It’s not included in the
standard /etc/inetd.conf file because it’s a port. Yes, so are lukemftpd and nntpd. It’s
just a little inconsistent. This is the line you need to put in /etc/inetd.conf to start
rsyncd.

rsync stream tcp nowait root /usr/local/bin/rsync rsync --daemon

The name rsync is not a typo. rsync and rsyncd are the same thing; it’s the
--daemon option that makes rsync run as a daemon.

450 Chapter 25: Basic networ k access: servers

inetd doesn’t notice alterations to /etc/inetd.conf automatically. After modifying the file,
you must send it a SIGHUP signal:

killall -HUP inetd

You can write -1 instead of -HUP. This causes inetd to re-read /etc/inetd.conf.

Instead of starting daemons via inetd, you can start them at boot time. inetd is
convenient for servers that don’t get run very often, but if you make frequent connections,
you can save overhead by running the servers continuously. On the other hand, it’s not
practical to start rshd, rlogind, re xecd or telnetd at boot time: they’re designed to be
started once for each session, and they exit after the first connection closes. We’ll look at
starting the other daemons in the following sections, along with their configuration.

Configuring ftpd
Normally you’ll run ftpd from inetd, as we saw above. If you want to run it directly,
perform the following steps:

• Add the following line in /etc/rc.local:

echo -n ’starting local daemons:’
put your local stuff here
echo " ftpd" && ftpd -D

The option -D tells ftpd to run as a daemon. You will possibly want other options as
well; see the discussion below.

• Comment out the ftp line in /etc/inetd.conf by adding a hash mark (#) in front of it:

ftp stream tcp nowait root /usr/libexec/ftpd ftpd -l

• Either reboot, or cause inetd to re-read its configuration file:

killall -1 inetd send a SIGHUP

If you don’t perform this step, inetd keeps the ftp port open, and ftpd can’t run.

For security reasons, you will probably want to add options such as logging and
anonymous ftp. We’ll look at how to do that in the next two sections.

anonymous ftp
Anonymous ftp gives you a couple of security options:

• It restricts access to the home directory of user ftp. From the point of view of the
remote user, ftp’s home directory is the root directory, and he cannot access any files
outside this directory. Note that this means that you can’t use symbolic links outside
the ftp directory, either.

Configur ing ftpd 451

• It restricts access to the machine generally: the user doesn’t learn any passwords, so
he has no other access to the machine.

In addition, you can start ftpd in such a manner that it will allow only anonymous ftp
connections.

There are a number of preparations for anonymous ftp:

• Decide on a directory for storing anonymous ftp files. The location will depend on
the amount of data you propose to store there. By default, it’s /var/spool/ftp.

• Create a user ftp, with the anonymous ftp directory as the home directory and the
shell /dev/null. Using /dev/null as the shell makes it impossible to log in as user ftp,
but does not interfere with the use of anonymous ftp. ftp can be a member of group
bin or you can create a new group ftp by adding the group to /etc/group. See page
145 for more details of adding users, and the man page group(5) for adding groups.

• Create subdirectories ˜ftp/bin and ˜/ftp/pub. It is also possible to create a directory
for incoming data. By convention its name is ˜ftp/incoming. This is a very bad idea
if you’re connected to the global Internet: it won’t be long before people start using
your system as a server for illicit data. Only use this option if you have some other
method of stopping unauthorized access.

Set the ownership of the directories like this:

dr-xr-xr-x 2 ftp ftp 512 Feb 28 12:57 bin
drwxrwxrwx 2 ftp ftp 512 Oct 7 05:55 incoming
drwxrwxr-x 20 ftp ftp 512 Jun 3 14:03 pub

This enables read access to the pub directory and read-write access to the incoming
subdirectory.

• If you have a lot of files that are accessed relatively infrequently, it’s possible you will
find people on the Net who copy all the files that they see in the directory.
Sometimes you’ll find multiple connections from one system copying all the files in
parallel, which can cause bandwidth problems. In some cases, you might find it more
appropriate to distribute the names individually, and to limit access to reading the
directories. You can do this by setting the permissions of pub and its subdirectories
like this:

d--x--x--x 20 ftp ftp 512 Jun 3 14:03 pub

This allows access to the files, but not to the directory, so the remote user can’t find
the names of the files in the directory.

• Copy the following files to ˜ftp/bin: /usr/bin/compress, /usr/bin/gzip, /usr/bin/gunzip,
/bin/ls, /usr/bin/tar and /usr/bin/uncompress. The view of anonymous ftp users is
restricted to the home directory, so all programs that are to be executed must also be
in this directory.

452 Chapter 25: Basic networ k access: servers

You can (‘‘hard’’) link the files if you want (and if the directory is on the same file
system), but symbolic links will fail, since they contain path names that do not point
to the correct place when running in the anonymous ftp environment.

Restricting access and logging
A number of ftpd options make it easier to control and monitor ftp access:

• The -l option logs each session, whether successful or not, to syslogd with the
facility LOG_FTP. To enable this logging, your /etc/syslog.conf should contain a line
like

ftp.* /var/log/ftpd

In addition, the file /var/log/ftpd must exist. If it doesn’t, create it with:

touch /var/log/ftpd

The -l option has two lev els: if you specify it once, it logs connections only. If you
specify it twice, it also lists the files that are transferred.

• The -S option logs all anonymous transfers to the file /var/log/ftpd.

• You can restrict access to only anonymous ftp with the -A option.

There are a number of other options; see the man page ftpd(8) for further details.

In addition to these options, when a real user establishes a connection, ftpd checks the
user’s shell. If it is not listed in /etc/shells, ftpd will deny the connection. This can be
useful if you don’t want specific users to access the system: give them a different shell,
such as /usr/bin/sh instead of /bin/sh, and ensure that /usr/bin/sh is not in /etc/shells.

Log file format

The format of the log files is a little unusual. You’ll see things like:

Oct 12 16:32:04 freebie ftpd[8691]: ANONYMOUS FTP LOGIN FROM adam.adonai.net, leec@a
donainet
Oct 12 18:33:32 freebie ftpd[9007]: connection from gateway.smith.net.au
Oct 12 18:33:37 freebie ftpd[9007]: ANONYMOUS FTP LOGIN FROM gateway.smith.net.au, m
ike
Oct 12 21:36:28 freebie ftpd[9369]: connection from grisu.bik-gmbh.de
Oct 12 21:36:29 freebie ftpd[9369]: ANONYMOUS FTP LOGIN FROM grisu.bik-gmbh.de, harv
est@
Oct 12 21:36:37 1997!harvest@!grisu.bik-gmbh.de!/pub/cfbsd/README!9228!1
Oct 12 21:37:05 freebie ftpd[9371]: connection from grisu.bik-gmbh.de
Oct 12 21:37:06 freebie ftpd[9371]: ANONYMOUS FTP LOGIN FROM grisu.bik-gmbh.de, harv
est@
Oct 13 09:38:19 freebie ftpd[13514]: connection from 151.197.101.46
Oct 13 09:38:21 freebie ftpd[13514]: ANONYMOUS FTP LOGIN FROM 151.197.101.46, bmc@ho
vercraft.willscreek.com
Oct 13 09:38:58 1997!bmc@hovercraft.willscreek.com!151.197.101.46!/pub/cfbsd/dear-re
viewer!8890!1
Oct 13 09:41:42 1997!bmc@hovercraft.willscreek.com!151.197.101.46!/pub/cfbsd/txt/26-
netdebug.txt.gz!12188!1
Oct 13 09:42:05 1997!bmc@hovercraft.willscreek.com!151.197.101.46!/pub/cfbsd/txt/C-p

Configur ing ftpd 453

ackages.txt.gz!37951!1
Oct 13 09:59:07 freebie ftpd[14117]: connection from 151.197.101.46
Oct 13 09:59:08 freebie ftpd[14117]: ANONYMOUS FTP LOGIN FROM 151.197.101.46, bmc@ho
vercraft.willscreek.com
Oct 13 09:59:24 1997!bmc@hovercraft.willscreek.com!151.197.101.46!/pub/cfbsd/txt/D-b
iblio.txt.gz!1815!1

This log excerpt shows three kinds of message:

• The messages starting with the text connection from occur when an ftp connection
is made. They don’t mean that any permission to access has been given. These
messages are logged by the -l option.

• The ANONYMOUS FTP LOGIN messages show that somebody has logged in
anonymously. The name follows, not always in the required username format. The
standard ftpd does not enforce this requirement; you may find something that does in
the Ports Collection. These messages are logged by the -S option.

• The lines full of ! marks show files being transferred. The ! marks delimit the
fields, which are:

• The year, as an extension of the timestamp.

• The user ID.

• The IP address of the system to which the data is transferred.

• The name of the file transferred.

• The number of bytes transferred.

Running sshd
Normally you start sshd from the system configuration file /etc/rc.conf :

sshd_enable="YES" # Enable sshd

That’s all you need to do for sshd. You can also start it simply with:

sshd

sshd reads a configuration file /etc/ssh/sshd_config. Like its companion
/etc/ssh/ssh_config, it contains mainly commented-out lines showing the default values.
Most of them don’t require change, but the following entries may be of interest:

• Protocol states which ssh protocols to use, and in which order. By default, sshd
tries protocol 2 first, and falls back to protocol 1 if protocol 2 fails. You might
consider setting it to use only protocol 2.

• When PermitRootLogin is set to yes, you can log in as root via ssh. Normally
it’s disabled.

454 Chapter 25: Basic networ k access: servers

• Set PasswordAuthentication to no if you want all access to be via key exchange
(see page 420 for more details).

• If you want to run sftp-server, add the following line to /etc/ssh/sshd_config:

Subsystem sftp /usr/libexec/sftp-server

It should be present by default.

rsyncd
As we’ve seen, rsyncd is just another name for rsync. You don’t need to do any specific
configuration to start it: it gets started from sshd, so all you need to do is to ensure that
sshd gets started.

Starting rsyncd isn’t enough, though: it needs configuration. Create a file /usr/lo-
cal/etc/rsyncd.conf with contents something like this:

motd file = /usr/local/etc/rsyncd.txt
log file = /var/log/rsyncd.log
transfer logging = true

[groggy]
path = /home/grog/public_html
uid = grog
read only = yes
list = yes
comment = Greg’s web pages
hosts allow = 223.147.37.0/24

[tivo]
path = /var/tivo
uid = grog
read only = no
list = yes
comment = TiVo staging area
hosts allow = tivo.example.org

This is the configuration file used in the server examples in Chapter 24. It consists of two
parts: a global part at the beginning, with settings that apply to all modules, and one or
more module parts describing files that the server will supply.

The global options here specify the motd file, a file whose contents are printed when you
list modules (the ‘‘be gentle’’ message in the examples), and that transfers should be
logged to /var/log/rsyncd.log. The log output looks something like this:

2002/10/24 13:31:49 [16398] send presto.example.org [192.109.197.74] groggy () slash
dot/topicscience.gif 1083
2002/10/24 13:31:49 [16398] send presto.example.org [192.109.197.74] groggy () slash
dot/topicsecurity.gif 3034
2002/10/24 13:31:49 [16398] send presto.example.org [192.109.197.74] groggy () slash
dot/topictv.jpg 951
2002/10/24 13:31:49 [16398] send presto.example.org [192.109.197.74] groggy () slide
.pdf 40470
2002/10/24 13:31:49 [16398] send presto.example.org [192.109.197.74] groggy () stock
whip.html 1602

rsyncd 455

The next part of the configuration file describes modules, directory hierarchies that
rsyncd makes available. If you’re used to Microsoft-style configuration files, this will
seem relatively familiar. The module names are enclosed in square brackets ([]), and
they don’t hav e to have any relationship with the name of the directory. In this case we
have two modules. Both have a comment, a descriptive text printed out when you list the
modules, and both allow listing the name of the module (list = yes). In addition:

• Module groggy makes available the directory /home/grog/public_html, my web
pages, for read-only access. rsyncd accesses the module as user grog. Any host on
the 256 address block starting with 223.147.37.0 can access the data.

• Module tivo makes available the directory /var/tivo for read-write access, but only
to the host tivo.example.org. Again rsyncd accesses the data as user grog.

There are a large number of other options for rsyncd, but this example shows the most
important ones. See the man page rsyncd.conf(5) for more information.

Setting up a web server
FreeBSD is a system of choice for running web servers, so it’s not surprising that a large
number are available. Probably the most popular is apache, which is available in the
Ports Collection. Install with:

cd /usr/ports/www/apache13
make install

In future versions, the name apache13 will change. Apache comes with a lot of
documentation in HTML format (of course), which is installed in /usr/lo-
cal/share/doc/apache/manual. You might find it useful to put a symbolic link to it in
your web home directory:

cd /usr/local/www/data
ln -s /usr/local/share/doc/apache/manual apachedoc

After this, you can access the documentation at (for example) http://www.exam-
ple.org/apachedoc/.

Configuring apache
The Apache port uses the following directories:

• The configuration files are in the directory hierarchy /usr/local/etc/apache. The port
installs prototype configuration files, but they need to be modified.

• By default, the web pages are in /usr/local/www/data. This is the ‘‘root’’ directory
for the web pages: the file /usr/local/www/data/foo.html on www.example.org will
have the URL http://www.example.org/foo.html. You may find it a good idea to
change the directory to the /var file system in a location such as /var/www/data.
We’ll look at how to do that with the DocumentRoot entry in the configuration file.

456 Chapter 25: Basic networ k access: servers

• Icons for Apache’s own use are stored in /usr/local/www/icons. You can’t access
these icons by URI, so don’t put your own images here.

• CGI scripts are stored in /usr/local/www/cgi-bin.

The configuration file
The apache configuration file is /usr/local/etc/apache/httpd.conf. Older versions of
apache also used the files /usr/local/etc/apache/access.conf and /usr/lo-
cal/etc/apache/srm.conf. The division between these three files was relatively arbitrary,
and the current recommendation is to not use these files, but to put their content in
/usr/local/etc/apache/httpd.conf instead. See the apache documentation if you need to
change the other files.

httpd.conf
Probably the best way to understand httpd.conf is to read through it. It’s pretty long and
contains a large number of comments. Most entries can be left the way there are, so we
won’t list the entire file here: instead we’ll look at the parameters that may need change.
We’ll look at the system-wide features in the following list, and host-related features in
the next section.

• ServerType states whether you start it from inetd or standalone (the default). It’s
not a good idea to start httpd from inetd, so you should leave this entry unchanged.

• ServerRoot claims to be the path to the configuration files, but in fact the files are
stored in the subdirectory etc/apache of this directory. You shouldn’t need to change
it.

• The comments about ScoreBoardFile suggest that you should check to see if the
system creates one. Don’t bother: FreeBSD doesn’t create this file, and you don’t
need to worry about it.

• The Keep-Alive extension to HTTP, as defined by the HTTP/1.1 draft, allows
persistent connections. These long-lived HTTP sessions allow multiple requests to be
sent over the same TCP connection, and in some cases have been shown to result in
an almost 50% speedup in latency times for HTML documents with lots of images.

• The parameters MinSpareServers, MaxSpareServers, StartServers, Max-
Clients and MaxRequestsPerChild are used for server tuning. The default values
should work initially, but if you have a lot of Web traffic, you should consider
changing them.

• The next area of interest is a large list of modules. A lot of apache functionality is
optional, and you include it by including a module. We’ll look at this in more detail
below.

• The parameter ProxyRequests allows Apache to function as a proxy server. We’ll
look at this in more detail below.

Setting up a web server 457

• The parameters starting with Cache apply only to proxy servers, so we’ll look at
them below as well.

• The Listen parameter defines alternate ports on which Apache listens.

• DirectoryIndex is a list of names that httpd recognizes as the main page
(‘‘index’’) in the directory. Traditionally it’s index.html. This is the means by which
httpd changes a directory name into an index. It searches for the names in the order
specified. For example, if you’re using PHP, DirectoryIndex gets set to the string
index.php index.php3 index.html, and that’s the sequence in which it looks
for a page.

The file ends with a commented out VirtualHost section. We’ll look at it in detail in
the next section, along with a number of parameters that appear elsewhere in the
configuration file, but that relate to virtual hosts.

Virtual hosts
Running and maintaining a web server is enough work that you might want to use the
same server to host several sets of web pages, for example for a number of different
organizations. apache calls this feature virtual hosts, and it offers a lot of support for
them. Theoretically, all your hosts can be virtual, but the configuration file still contains
additional information for a ‘‘main’’ server, also called a ‘‘default’’ server. The default
configuration does not have any virtual servers at all, though it does contain configuration
information.

There’s a good reason to keep the ‘‘main’’ server information: it serves as defaults for all
virtual hosts, which can make the job of adding a virtual host a lot easier.

Consider your setup at example.org: you may run your own web pages and also a set of
pages for biguser.com (see page 310). To do this, you add the following section to
/usr/local/etc/apache/httpd.conf :

<VirtualHost *>
ServerAdmin grog@example.org
DocumentRoot /usr/local/www/biguser where we put the web pages
ServerName www.biguser.com the name that the server will claim to be
ServerAlias biguser.com alternative server name
ErrorLog /var/log/biguser/error_log
TransferLog /var/log/biguser/access_log
Options +FollowSymLinks
Options +SymLinksIfOwnerMatch
</VirtualHost>

If you look at the default configuration file, you’ll find most of these parameters, but not
in the context of a VirtualHost definition. They are the corresponding parameters for
the ‘‘main’’ web server. They hav e the same meaning, so we’ll look at them here.

• ServerAdmin is the mail ID of the system administrator. For the main server, it’s set
to you@your.address, which obviously needs to be changed. You don’t necessarily
need a ServerAdmin for each virtual domain; that depends on how you run the
system.

458 Chapter 25: Basic networ k access: servers

• DocumentRoot is the name of the directory that will become the root of the web
page hierarchy that the server provides. By default, for the main server it’s
/usr/local/www/data, which is not really a very good place for data that changes
frequently. You might prefer to change this to /var/www, as some Linux distributions
do. This is one parameter that you must supply for each virtual domain: otherwise
the domain would have the same content as the main server. In this case, it’s the
location of the files in http://www.example.com/.

• Next you can put information about individual data directories. The default server
first supplies defaults for all directories:

<Directory />
Options FollowSymLinks
AllowOverride None

</Directory>

The / in the first line indicates the local directory to which these settings should
apply. For once, this is really the root directory and not DocumentRoot: they’re
system-wide defaults, and though you don’t hav e to worry about apache playing
around in your root file system, that’s the only directory of which all other directories
are guaranteed to be a subdirectory. The Options directive ensures that the server
can follow symbolic links belonging to the owner. Without this option, symbolic
links would not work. We’ll look at the AllowOverride directive in the discussion
of the .htaccess file below.

There’s a separate entry for the data hierarchy:

<Directory "/usr/local/www/data">
Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
Allow from all

</Directory>

In this case, we have two additional options:

• Indexes allows httpd to display the contents of a directory if no index file, with
a name defined in DirectoryIndex, is present. Without this option, if there is
no index file present, you will not be able to access the directory at all.

• MultiViews allows content-based multiviews, which we don’t discuss here.

Note that if you change the name of the default data directory, you should also
change the name on the Directory invocation.

We’ll look at the remaining entries in more detail when we see them again in the
discussion of the .htaccess file.

• Normally you should set ServerName. For example, www.example.org is a CNAME
for freebie.example.org (see page 370), and if you don’t set this value, clients will
access www.example.org, but the server will return the name freebie.example.org.

Setting up a web server 459

• httpd can maintain two log files, an access log and an error log. We’ll look at them
in the next section. It’s a good idea to keep separate log files for each domain.

• You should have a default VirtualHost entry. People can get quite confused if they
select an invalid name (for example, http://www.big-user.com) and get the (default)
web page for http://www.example.org. The default page should not match any other
host. Instead, it should indicate that the specified domain name is invalid.

• For the same reason, it’s a good idea to have a ServerAlias entry for the same
domain name without initial www. The entry in the example above serves the same
pages for www.biguser.com and biguser.com.

• The directive Options +SymLinksIfOwnerMatch limits following symbolic links
to those links that belong to the same owner as the link. Normally the Options
directive specifies all the options: it doesn’t merge the default options. The + sign
indicates that the option specified should be added to the defaults.

After restarting apache, it handles any requests to www.biguser.com with these
parameters. If you don’t define a virtual host, the server will access the main web pages
(defined by the main DocumentRoot in entry /usr/local/etc/apache/access.conf).

Log file format
httpd logs accesses and errors to the files you specify. It’s worth understanding what’s
inside them. The following example shows five log entries. Normally each entry is all on
a very long line.

p50859b17.dip.t-dialin.net - - name of system, more
[01/Nov/2002:07:06:12 +1030] date of access
"GET /Images/yaoipower.jpeg HTTP/1.1" HTML command
200 status (OK)
19365 length of data transfer

aceproxy3.acenet.net.au - -
[01/Nov/2002:07:35:34 +1030]
"GET /Images/randomgal.big.jpeg HTTP/1.0"
304 - status (cached)

218.24.24.27 - - system without reverse DNS
[01/Nov/2002:07:39:55 +1030]
"GET /scripts/root.exe?/c+dir HTTP/1.0" looking for an invalid file
404 284 status (not found)

218.24.24.27 - -
[01/Nov/2002:07:39:56 +1030]
"GET /MSADC/root.exe?/c+dir HTTP/1.0" 404 282

218.24.24.27 - -
[01/Nov/2002:07:39:56 +1030]
"GET /c/winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404 292

218.24.24.27 - -
[01/Nov/2002:07:40:00 +1030]
"GET /_vti_bin/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir HTTP/1.0"
404 323

460 Chapter 25: Basic networ k access: servers

The fields in the log file are separated by blanks, so empty entries are replaced by a -
character. In this example, the second and third fields are always empty. They’re used
for identity checks and authorization.

To get the names of the clients, you need to specify the HostnameLookups on directive.
This requires a DNS lookup for every access, which can be relatively slow.

Although we specified hostname lookups, the last four entries don’t hav e any name: the
system doesn’t hav e reverse DNS. They come from a Microsoft machine infected with
the Nimda virus and show an attempt to break into the web server. There’s not much you
can do about this virus; it will probably be years before it goes away. Apart from
nuisance value, it has never posed any threat to apache servers.

Access control
Sometimes you want to restrict access to a web server, either for specific directories or for
the web site as a whole. apache has a number of options to limit access. One possibility
is to set options in /usr/local/etc/apache/httpd.conf to cover an individual host, but this is
seldom useful. It’s more likely that you will want to restrict access to specific directories,
and it’s easier to do that in the file .htaccess in the same directory.

For apache to even look at .htaccess, you need to change the configuration file, however:
by default, it disables the use of .htaccess altogether, as we saw above:

<Directory />
Options FollowSymLinks
AllowOverride None

</Directory>

For it to work, you’ll have to change the AllowOverride parameter to some other value.
There are five categories of entries that you can allow in .htaccess files:

1. AuthConfig allows .htaccess to include authorization directives.

2. FileInfo allows the use of directives controlling document types.

3. Indexes allows the use of directives controlling directory indexing.

4. Limit allows the use of directives controlling host access.

5. Options allows the use of directives controlling specific directory features.

You can find more details in /usr/local/share/doc/apache/manual/mod/core.html.

The most common use of the .htaccess is to require that users authorize themselves
before accessing a directory. In this case, the browser will pop up a window like this:

Setting up a web server 461

To achieve this, add something like this to your .htaccess file:

AuthType Basic
AuthName grog
AuthDBUserFile /usr/local/etc/apache/passwd
Require valid-user

This method is similar to normal login authentication. You need a password file, which
you can create and update with dbmmanage:

dbmmanage /usr/local/etc/apache/passwd adduser grog
New password:
Re-type new password:
User grog added with password encrypted to OzREW8Xx5hUAs using crypt
dbmmanage /usr/local/etc/apache/passwd adduser guest
New password:
Re-type new password:
User guest added with password encrypted to hFCYwd23ftHE6 using crypt

This adds passwords for users grog and guest. The AuthName suggests a name to
authenticate, but Require valid-user states that it can be any user. Even if you don’t
care which user logs in, you need to specify an AuthName line. If you do insist that only
user grog can log in, you can write:

Require user grog

This will fail the authentication for any other user. You can also specify a list of users or
groups. For example, you might add the following line:

AuthGroupFile /usr/local/etc/apache/group
Require group bigshots

/usr/local/etc/apache/group might then contain:

bigshots: davidb davidp gordon grog liz malcolm

This will allow any of the users specified on this line to access the directory.

462 Chapter 25: Basic networ k access: servers

Apache modules
apache offers a large quantity of optional functionality, which it provides in the form of
dynamically loadable modules. We’ve seen above that there are two long lists of module
names in /usr/local/etc/apache/httpd.conf; the first starts with LoadModule and tells
httpd which dynamic modules to load. The order is important; don’t change it.

Proxy web servers
Apache is capable of operating as a proxy server: it can accept requests for web pages of
other systems. This can be an alternative to a general IP aliasing package such as natd
(see page 393) if you need it only for web access. It’s also useful in conjunction with
caching.

Unfortunately, by default the current version of Apache does not support proxy servers.
You need to rebuild the package manually after enabling it in the configuration file. See
the file INSTALL in the port build directory for more details. This file will be present
after building Apache from source, and it will have a name like
/usr/ports/www/apache13/work/apache_1.3.23/src/INSTALL. In addition to reinstalling
the server with code for proxy serving, you must set ProxyRequests to On to enable the
proxy server.

Caching
One reason for enabling the proxy server is to cache data requests. Caching keeps pages
requested through the proxy and presents them again if they are requested again. This is
particularly useful if the server serves a large number of people who communicate with
each other and are thus likely to request many of the same pages.

The Cache parameters are commented out by default. If you uncomment them, you
should uncomment them all execpt possibly NoCache. When setting these values, change
the name of the directory CacheRoot. A good name might be /usr/local/www/proxy.

Running apache
When you install apache, it installs the file /usr/local/etc/rc.d/apache.sh, which
automatically starts apache at boot time. If you don’t want to start it automatically,
remove this file. You can start and stop apache manually with the apachectl program,
which takes a command parameter:

apachectl start start httpd
apachectl stop stop httpd
apachectl restart restart httpd, or start if not running
apachectl graceful restart httpd ‘‘gracefully,’ ’ or start if not running
apachectl configtest do a configuration syntax test

The difference between a normal and a ‘‘graceful’’ restart is that the graceful restart waits
for existing connections to complete before restarting the individual server processes.
Unless you’re in a big hurry, use the graceful restart.

Setting up a web server 463

NFS server
A number of processes are needed to provide NFS server functionality:

• The NFS daemon, nfsd, is the basic NFS server.

• The mount daemon, mountd, processes mount requests from clients.

• The NFS lock daemon, rpc.lockd, processes lock requests for NFS file systems.
There are still a lot of problems with this function on all platforms. It’s best to avoid
it if you can.

• The status monitoring daemon, rpc.statd, provides a status monitoring service.

In addition:

• Since NFS uses Remote procedure calls (RPC), the rpcbind daemon must be
running. rpcbind is not part of NFS, but it is required to map RPC port numbers to
IP service numbers. In previous releases of FreeBSD, this function was performed by
the portmap daemon. It has not been renamed, it has been replaced.

• The server needs a file /etc/exports to define which file systems to export and how to
export them. We’ll look at this in the next section.

/etc/exports
A number of security implications are associated with NFS. Without some kind of
authentication, you could mount any file system on the Internet.

NFS was developed at a time when users were relatively trusted. As a result, the security
precautions are not overly sophisticated. /etc/exports describes one file system per line.
The format is:

file system options systems

systems is a list of systems allowed to mount the file system. The only required field is
the name of the file system, but if you’re on the Internet, you should at least limit the
number of systems that can mount your file systems. By default any system on the Net
can mount your file systems.

There are a number of options. Here are the more important ones:

• The -maproot option describes how to treat root. By default, root does not have
special privileges on the remote system. Instead, NFS changes the user ID to user
nobody, which is user 65534 (or -2). You can change this with the -maproot option.
For example, to map root to the real root user for a specific file system, you would
add -maproot=0 to the line describing the file system.

• The -mapall option maps the user IDs of other users. This is relatively uncommon.
See the man page exports(5) for more details.

464 Chapter 25: Basic networ k access: servers

• The -ro option restricts access to read-only.

• The -network option restricts the access to systems on the specified network.

• The -alldirs option allows remote clients to mount any directory in the file system
directly. Without this option, remote clients can only mount the root directory of the
exported file system. We’ll see an example where -alldirs can be of use during the
discussion of diskless booting on page 543.

If you come from a System V background, you’ll notice that the mechanism is different.
/etc/exports corresponds in concept roughly to System V’s /etc/dfs/dfstab file, except
that the share statement does not exist.

Updating /etc/exports

To grant access to a file system, it’s not enough to change the contents of /etc/exports:
you also need to tell mountd that you have done so. You do this by the relatively
common method of sending a hangup signal (SIGHUP) to mountd:

killall -HUP mountd

A typical /etc/exports for presto might be:

/ -maproot=0 presto bumble wait gw
/usr -maproot=0 -alldirs -network 223.147.37.0

This allows root access to both file systems. Only the trusted systems presto, bumble,
wait and gw are allowed to access the root file system, whereas any system on the local
network may access /usr. Remote systems may mount any directory on the /usr file
system directly.

Samba
BSD UNIX and the Internet grew up together, but it took other vendors a long time to
accept the Internet Protocols. In that time, a number of other protocols arose. We’v e
already mentioned X.25 and SNA, currently both not supported by FreeBSD. The
protocols that grew up in the DOS world are more widespread, in particular Novell’s IPX
and Microsoft’s Common Internet File System, or CIFS. CIFS was previously known as
SMB (Server Message Block).

IPX support is relatively rudimentary. FreeBSD includes an IPX routing daemon,
IPXrouted. See the man page IPXrouted(8) for further information. IPX is going out of
use, so it’s unlikely that support for it will improve. By contrast, Microsoft’s CIFS is still
alive and kicking. In the rest of this chapter we’ll look at the standard implementation,
Samba. This chapter describes only the FreeBSD side of the setup; you’ll need to follow
the Microsoft documentation for setting up the Microsoft side of the network.

Samba is a collection of software components that implement the SMB protocol over
TCP/IP. You can use it to interface with all current Microsoft environments. It is part of

Samba 465

the Ports Collection, in /usr/ports/net/samba. You can get more information from Using
Samba, by Jay Ts, Robert Eckstein and David Collier-Brown. At http://samba.org/ you
can get even more information, including support and a mailing list.

Samba includes a number of programs, most of which we don’t touch on here. The ones
we look at are:

• smbd, a daemon that provides file and print services to SMB clients.

• nmbd, which provides name services for NetBIOS.

• smbpasswd, which sets up network passwords for Samba.

• smbclient, a simple ftp-like client that is useful for accessing SMB shared files on
other servers, such as Windows for Workgroups. You can also use it to allow a UNIX
box to print to a printer attached to any SMB server.

• testparm, which tests the Samba configuration file, smb.conf.

• smbstatus tells you who is using the smbd daemon.

Installing the Samba software
Install Samba from the port:

cd /usr/ports/net/samba
make install

This operation installs the Samba binaries in /usr/local/bin, the standard location for
additional binaries on a BSD system, and the daemons smbd and nmbd in /usr/lo-
cal/sbin. These locations are appropriate for FreeBSD, but they are not the locations that
the Samba documentation recommends. It also installs the man pages in /usr/local/man,
where the man program can find them. Finally, it installs a sample configuration file in
/usr/local/etc/smb.conf.default. We’ll look at how to configure Samba below.

There are a number of security implications for the server, since it handles sensitive data.
To maintain an adequate security level,

• Ensure that the software is readable by all and writeable only by root. smbd should
be executable by all. Don’t make it setuid. If an individual user runs it, it runs with
their permissions.

• Put server log files in a directory readable and writable only by root, since they may
contain sensitive information.

• Ensure that the smbd configuration file in /usr/local/etc/smb.conf is secured so that
only root can change it.

The Samba documentation recommends setting the directory readable and writeable
only by root. Depending on what other configuration files you have in /etc/lo-
cal/etc, this could cause problems.

466 Chapter 25: Basic networ k access: servers

smbd and nmbd: the Samba daemons
The main component of Samba is smbd, the SMB daemon. In addition, you need the
Samba name daemon, nmbd, which supplies NetBIOS name services for Samba. smbd
requires a configuration file, which we’ll look at below, while you don’t normally need
one for nmbd. By default, nmbd maps DNS host names (without the domain part) to
NetBIOS names, though it can perform other functions if you need them. In this chapter
we’ll assume the default behaviour. See the man page nmbd(8) for other possibilities.

You hav e two choices of how to run smbd and nmbd: you can start them at boot time
from /usr/local/etc/rc.d/samba.sh, or you can let inetd start them. The Samba team
recommends starting them at boot time

When you install Samba from the Ports Collection, it installs a file /usr/lo-
cal/etc/rc.d/samba.sh.sample. You just need to rename it to /usr/local/etc/rc.d/samba.sh.
As the name suggests, it’s a shell script. You can modify it if necessary, but it’s usually
not necessary.

The man page for smbd gives a number of parameters to specify the configuration file
and the log file. As long as you stick to the specified file names, you shouldn’t need to
change anything: by default, smbd looks for the configuration file at /usr/lo-
cal/etc/smb.conf, and this file contains the names of the other files.

Running the daemons from inetd

To run the daemons from inetd,

• Edit /etc/inetd.conf. You should find the following two lines towards the bottom of
the file with a # in front. Remove the # to show the lines as they are here. If your
/etc/inetd.conf doesn’t contain these lines, add them.

netbios-ssn stream tcp nowait root /usr/local/sbin/smbd smbd
netbios-ns dgram udp wait root /usr/local/sbin/nmbd nmbd
swat stream tcp nowait/400 root /usr/local/sbin/swat swat

swat is an administration tool that we don’t discuss here.

• Either reboot, or send a HUP signal to cause inetd to re-read its configuration file:

killall -1 inetd send a SIGHUP

The configuration file
The Samba configuration file describes the services that the daemon offers. The port
installs a sample configuration file in /usr/local/etc/smb.conf.default. You can use it as
the basis of your own configuration file, which must be called /usr/local/etc/smb.conf :
simply copy the file, and then edit it as described below.

The configuration file is divided into sections identified by a label in brackets. Most
labels correspond to a service, but there are also three special labels: [global], [homes]
and [printers], all of which are optional. We look at them in the following sections.

Samba 467

The [global] section

As the name suggests, the [global] section defines parameters that either apply to the
server as a whole, or that are defaults for the other services. The interesting ones for us
are:

• The workgroup parameter defines the Microsoft workgroup to which this server
belongs. Set it to match the Microsoft environment. In these examples, we’ll
assume:

workgroup = EXAMPLE

• The printing entry specifies what kind of printer support Samba provides. Current
versions of Samba support CUPS. If you are using CUPS (not described in this
book), you don’t need to do anything. Otherwise set:

printcap name = /etc/printcap
printing = bsd

• guest account is the account (in UNIX terms: user ID) to use if no password is
supplied. You probably want to define a guest account, since many Microsoft clients
don’t use user IDs. Ensure that the privileges are set appropriately. Alternatively,
alter the parameter to point to an existing user.

• Modern versions of Microsoft use a simple form of password encryption; older
versions used none. Currently, Samba defaults to no encryption. Set encrypt
passwords to yes.

• Microsoft uses its own version of host name resolution, which doesn’t inv olve DNS.
Optionally, Samba will map Microsoft names to DNS. To enable this option, set dns
proxy to yes.

• By default, the log file is specified as /var/log/log.%m. The text %m is replaced by the
name of the remote machine, so you get one log file per machine. Unfortunately, the
name doesn’t make it clear that this is a Samba log file. It’s better to change this
entry to:

log file = /var/log/samba.log.%m

• socket options is hardly mentioned in the documentation, but it’s very important:
many Microsoft implementations of TCP/IP are inefficient and establish a new TCP
connection more often than necessary. Select the socket options TCP_NODELAY and
IPTOS_LOWDELAY, which can speed up the response time of such applications by
over 95%.

468 Chapter 25: Basic networ k access: servers

The [homes] section

The [homes] section allows clients to connect to their home directories without needing
an entry in the configuration file. If this section is present, and an incoming request
specifies a service that is not defined in the configuration file, Samba checks if it matches
a user ID. If it does, and if the specified password is correct, Samba creates a service that
supplies the user’s home directory.

The following options are of interest in the [homes] section:

• writeable can be yes or no, and specifies whether the user is allowed to write to
the directory.

• create mode specifies the permission bits (in octal) to set for files that are created.

• public specifies whether other users are allowed access to this directory. In
combination with a guest user, this can be a serious security liability.

The [printers] section

The [printers] section describes printing services. It doesn’t need the names of the
printers: if it doesn’t find the specified service, either in the configuration file or in the
[homes] section, if it exists, it looks for them in the /etc/printcap file.

The Samba documentation claims that Samba can recognize BSD printing system
automatically, but this is not always correct. Ensure that you have the following entries:

printing = bsd in the [global] sectionW
print command = lpr -r -P’%p’ ’%s’ in the [printers] sectionW

Note the printable option in the [printers] section: this is the option that
distinguishes between printers (‘‘yes’’) and file shares (‘‘no’’).

Other sections: service descriptions

Samba takes any section name except for [global], [homes] or [printers] as the
definition of a service. A typical example might be:

[ftp]
comment = ftp server file area
path = /var/spool/ftp/pub
read only = yes
public = yes
write list = grog

This entry defines access to the anonymous ftp section. Anybody can read it, but only
user grog can write to it.

Samba 469

Setting passwords
Samba uses a separate password file, /usr/local/private/secrets.tdb. To set up users, use
the smbpasswd command, which copies the information from the system password file:

smbpasswd -a grog
New SMB password:
Retype new SMB password: as usual, no echo
Password changed for user grog.

Testing the installation
Once you have performed the steps described above, you can proceed to test the
installation. First, run testparm to check the correctness of the configuration file:

$ testparm
Load smb config files from /usr/local/etc/smb.conf
Processing section "[homes]"
Processing section "[printers]"
Processing section "[ftp]"
Processing section "[src]"
Processing section "[grog]"
Loaded services file OK.
Press enter to see a dump of your service definitions Press Enter

Global parameters:
lots of information which could be of use in debugging

[homes]
comment = Home Directories
read only = No

[printers]
comment = All Printers
path = /var/spool/samba
guest ok = Yes
printable = Yes
browseable = No

[ftp]
comment = ftp server file area
path = /var/spool/ftp/pub
write list = grog
guest ok = Yes

[grog]
path = /home/grog
valid users = grog
read only = No

As you see, testparm spells out all the parameters that have been created, whether
explicitly or by default. If you run into problems, this is the first place to which to return.

Next, check that you can log inwith smbclient. If you’re running the servers as daemons,
start them now. If you’re starting them from inetd, you don’t need to do anything.

470 Chapter 25: Basic networ k access: servers

$ smbclient -L freebie -U grog
added interface ip=223.147.37.1 bcast=223.147.37.255 nmask=255.255.255.0
Password: as usual, no echo
Domain=[EXAMPLE] OS=[Unix] Server=[Samba 2.2.7a]

Sharename Type Comment
--------- ---- -------
homes Disk Home Directories
ftp Disk ftp server file area
grog Disk
IPC$ IPC IPC Service (Samba Server)
ADMIN$ Disk IPC Service (Samba Server)

Server Comment
--------- -------
FREEBIE Samba Server
PRESTO Samba Server

Workgroup Master
--------- -------
EXAMPLE PRESTO

If you get this far, your password authentication is working. Finally, try to access the
shares. Samba services are specified in Microsoft format: \\system\service. To make
this worse, UNIX interprets the \ character specially, so you would need to repeat the
character. For example, to access the ftp service on freebie, you would have to enter
\\\\freebie\\ftp. Fortunately, smbclient understands UNIX-like names, so you can
write //freebie/ftp instead.

To test, start smbclient from another system:

$ smbclient //freebie/ftp -U grog
added interface ip=223.147.37.1 bcast=223.147.37.255 nmask=255.255.255.0
Password: as usual, no echo
Domain=[EXAMPLE] OS=[Unix] Server=[Samba 2.2.7a]
smb: \> ls
. DR 0 Wed Jan 29 12:06:29 2003
.. D 0 Sat Oct 26 10:36:29 2002
instant-workstation-1.0.tar.gz 9952 Mon Mar 19 11:49:01 2001
xtset-1.0.tar.gz 4239 Mon Aug 5 16:44:14 2002
gpart-0.1h.tbz.tgz 27112 Tue Aug 27 10:07:59 2002

If you get this far, Samba is working. The next step is to attach to the services from the
Microsoft machines. That’s not a topic for this book. Note, however, that Samba only
works with TCP/IP transport, not with NetBEUI.

Displaying Samba status
You can display the status of Samba connections with smbstatus. For example,

$ smbstatus
Samba version 2.2.7a
Service uid gid pid machine

ftp grog example 37390 freebie (223.147.37.1) Mon Mar 31 13:48:13 2003

No locked files

(mua.mm), page 471

26
Electronic

mail: clients

In this chapter:
• Mail for mats
• Mail user agents
• Files, folders or

director ies?
• Creating a new

message
• Replying to a

message
• Using folders
• Deleting messages
• Tagging messages
• Configur ing mutt
• Mail aliases
• Mail headers

In this chapter:
• Mail for mats
• Mail user agents
• Files, folders or

director ies?
• Creating a new

message
• Replying to a

message
• Using folders
• Deleting messages
• Tagging messages
• Configur ing mutt
• Mail aliases
• Mail headers

Electronic mail, usually called email, e-mail or simply mail, is a method of sending
messages to other people on the Net. As with other network services, there are two parts
to mail software:

• The user interface to the mail system is the client, the Mail User Agent, or MUA. It
interacts with the user and handles incoming and outgoing mail. People frequently
use the word mailer when referring to MUAs. In this chapter we’ll look at my
favourite MUA, mutt, and we’ll briefly touch on what others are available.

• The server part is the Mail Transfer Agent, or MTA. As the name suggests, it is
responsible for moving mail from one system to another. We’ll look at MTAs in the
next chapter, Chapter 27, Electronic mail: servers.

Mail formats
Email is defined by a number of Internet standards, the so-called RFCs, or Requests For
Comments. You can browse the RFCs at http://www.faqs.org/rfcs/. Here are the most
important ones.

• RFC 2821 is a recent update to the venerable RFC 821, which dates from the early
1980s. It defines the Simple Mail Transfer Protocol or SMTP. It specifies how to
send mail round the network. For most people it’s not very interesting, but it does
impose some restrictions such as the basic line length limit. Apart from this problem
(which Microsoft abuses), most mail systems adhere to SMTP.

471

472 Chapter 26: Electronic mail: clients

• Similarly, RFC 2822 replaces RFC 822. It defines the basic format of a mail
message. It defines the headers (To:, Cc:, Subject: and so on) and a simple body
made up of US-ASCII text, the message itself. This was fine for when it was written,
but it can’t handle the more complex formats used nowdays, such as images, binary
files or embedded messages. It also can’t handle non-US character sets, which causes
problems in particular in countries like Russia, Israel and Japan.

• RFC 2045, RFC 2046, RFC 2047, RFC 2048 and RFC 2049 together describe the
Multipurpose Internet Mail Extensions, better known as MIME. They define how to
encode non US-ASCII text and attachments so that they can be represented in ASCII
and hence sent by RFC 2822, and also how to divide the single RFC 2822 body into
multiple parts using ASCII separators.

A number of UNIX MUAs have inadequate MIME support. Find one which does the
job properly. On the other hand, if your target audience typically does not use
MIME-aware MUAs, avoid sending MIME messages.

Mail user agents
A mail user agent is a program that interfaces between the user and the mail system. It
allows the user to read, forward and reply to incoming mail, and to send his own mail. It
usually has facilities for creating and maintaining folders, where you can keep received
mail messages. For most UNIX MUAs, a folder is the same thing as a file, but some
MUAs keep mail messages as individual files, and the folder corresponds to a directory.

mail
The oldest MUA you’re likely to meet is mail. It’s a very basic, character-oriented
program, but nevertheless it has its advantages. You can use it in scripts to send mail.
For example, if you have a job running and producing copious output, where you want to
save the output, you might normally write something like:

$ longjob 2>&1 > logfile

This command runs longjob. The sequence 2>&1 redirects the error output to the
standard output, and the > writes them to the file logfile. While this is a good way to
solve the problem, you might find that you have a lot of such jobs, or that you tend to
forget the log files and leave them cluttering up your disks. An alternative is to send mail
to yourself. You can do this with the following command:

$ longjob 2>&1 | mail me

In this case, me is your user ID. When the job finishes, you get a mail message with the
output of the commands. cron (see page 151) uses this method to send you its output.

Mail user agents 473

Other MUAs
mail has a number of limitations: it doesn’t deal very well with long mail messages, it’s
difficult to keep an overview of large quantities of mail, like most people seem to
accumulate, and it can’t handle MIME.

Many more sophisticated MUAs have been written since mail. Some of the more popular
ones, which are also available in the Ports Collection, are:

• elm is one of the oldest full-screen MUAs. Its age is showing: it has a few annoying
problems that make it less desirable now that there’s a choice.

• pine is not elm—that’s what the acronym stands for. It’s quite like elm, nonetheless.

• mutt is also similar to elm and pine. It’s my current favourite, and we’ll look at it in
the next section.

• exmh is built on Rand’s mh MUA. Some people like it, but it seems relatively easy
to configure it to mutilate messages.

• xfmail is an X-based MUA, which you might prefer to the text-based MUAs we’re
talking about here.

• sylpheed is a more recent X-based MUA. You may prefer it to xfmail.

Files, folders or directories?
There are two schools of thought about how to store mail:

• Traditional MUAs represent folders as files. They store all the messages in a folder
in that single file. This is sometimes called the mbox method. mail, elm and pine
do it this way.

• Other MUAs, including exmh, xfmail and sylpheed, represent a folder as a directory.
Each message in the folder is then a file by itself.

• mutt can use either method, but the default is the mbox method.

Which method should you use? Both have their advocates. The directory and file
approach is more robust (if you trash a file, you only lose one message, not all of them),
and it enables you to have the same message in multiple folders. On the other hand, it
also imposes a lot higher overhead. Current versions of ufs, at least on FreeBSD, have a
default block size of 16 kB and a fragment size of 2 kB. That means that all files have a
length that is a multiple of 2 kB, and so the average waste of space is 1 kB. In addition,
each file uses an inode. If you have a lot of mail, this can add up to a lot of wasted space.
For example, I currently have 508,649 saved mail messages, which take up a total of 2.1
GB, almost exactly 4 kB per message. If I stored them in a directory structure, I would
lose about another 500 MB of space, or 25%. The file system on which the messages are
stored is 9.5 GB in size and has 1.2 million inodes; nearly half of them would be used for
the mail messages.

474 Chapter 26: Electronic mail: clients

mutt
In this section, we’ll take a detailed look at mutt. Start it by typing in its name. Like
most UNIX MUAs, mutt runs on a character-oriented terminal, including of course an
xterm. We’ll take a look into my mailbox. By default, when starting it up you get a
display like the one shown in Figure 26-1.

Figure 26-1: mutt main menu

mutt sets reverse video by default. You can change the way it displays things, however.
On page 481 we’ll see how to change it to the style shown in one shown in Figure 26-2.

Figure 26-2: mutt main menu

Files, folders or directories? 475

The display of Figure 26-2 shows a number of things:

• The line at the top specifies the name of the file (‘‘folder’’) that contains the mail
messages (/var/mail/grog), the number of messages in the folder, and its size. It also
states the manner in which the messages are sorted: first by threads, then by date.
We’ll look at threads further down.

• The bottom line gives a brief summary of the most common commands. Each
command is a single character. You don’t need to press Enter.

• The rest of the screen contains index lines, information about the messages in the
folder. The first column gives the message a number, then come some flags:

• In the first column, we can see r next to some messages. This indicates that I
have already replied to these messages.

• In the same column, N signalizes a new message (an unread message that has
arrived after the last invocation of mutt finished).

• The symbol D means that the message has been marked for deletion. It won’t be
deleted until you leave mutt or update the display with the $ command, and until
then you can undelete it with the u command

• The symbol + means that the message is addressed to me, and only to me. We’ll
see below how mutt decides who I am.

• The symbol T means that the message is addressed to me and other people.

• The symbol C means that the message is addressed to other people, and that I
have been copied.

• The symbol F means that the message is from me.

• The symbol * means that the message is tagged: certain operations work on all
tagged messages. We’ll look at that on page 481.

• The next column is the date (in international notation in this example, but it can be
changed).

• The next column is the name of the sender, or, if I’m the sender, the name of the
recipient.

• The next column is the name of the recipient. This is often me, of course, but
frequently enough it’s the name of a mailing list. You’ll notice that this is a column I
have added; it’s not in the default display.

• The next column gives the size of the message. The format is variable: you can
specify number of lines (as in the example), or the size in kilobytes.

• The last column is usually the subject. For messages 56 to 61, it’s a series of line
drawings. This is threading, and it shows a relationship between a collection of
messages on the same topic. Message 56 was the original message in the thread,
message 57 is a reply to message 56, and so on. Messages 60 and 61 are both replies
to message 59. mutt automatically collects all messages in a thread in one place.

476 Chapter 26: Electronic mail: clients

You’ll notice in the example that the lines are of different intensity. In the original, these
are different colours, and they’re a matter of personal choice; they highlight specific kinds
of message. I use different colours to highlight messages on different topics. If you’re
interested in the exact colours, see http://ezine.daemonnews.org/200210/ports.html,
which contains an early version of this text.

The index line for message 52 appears to be in reverse video. In fact, it’s in white on a
blue background, a colour I don’t use for anything else. This is the cursor, which you
can position either with the cursor up and cursor down keys, or with the vi-like
commands j (move down) or k (move up). In the default display, it is in normal video
(i.e. not reversed, or doubly reversed). You can also move between pages with the left
and right cursor commands. Many commands, such as r (reply) or Enter (read), operate
on the message on which the cursor is currently positioned. For example, if you press
Enter at this point, you’ll see a display like that in Figure 26-3.

Figure 26-3: mutt message display

Here, the display has changed to show the contents of the message. The top line now
tells you the sender of the message, the subject, and how much of the message is
displayed, in this case 50%. As before, the bottom line tells you the most common
commands you might need in this context: they’re not all the same as in the menu display.

The message itself is divided into three parts: the first 6 lines are a selection of the
headers. The headers can be quite long. They include information on how the message
got here, when it was sent, who sent it, who it was sent to, and much more. We’ll look at
them in more detail on page 484.

The headers are separated from the message body by an empty line. The first part, which
mutt displays in bold, is quoted text: by putting a > character before each line, the sender
has signalized that the text was written by another person, often the person to whom it is
addressed: this message is a reply, and the text is what he is replying to. Normally there
is an attribution above the text, but it’s missing in this example. We’ll see attributions
below in the section on replying.

Files, folders or directories? 477

If the message is longer than one screen, press SPACE to page down and - (hyphen) to
page up. In general, a 25 line display is inadequate for reading mail. On an X display,
choose as high a window as you can.

Creating a new message
To create a new message, press m. mutt starts your favourite editor for you. How does it
know which one? If you specify the name of the editor in your .muttrc file, or set your
EDITOR environment variable to the name of your editor, it starts that editor; otherwise it
starts vi. On page 481 we’ll look at what to put in .muttrc.

In this case, we start emacsclient. emacsclient isn’t really an editor at all: it simply finds
an Emacs process and latches on to it. This is much faster than starting a new instance of
Emacs: it’s practically instantaneous, whereas even on fast modern machines, starting
Emacs causes a brief delay. To exit the client, you use the key combination c-x c-#.

Figure 26-4: Creating a new message: initial state

Fill out the name of the intended recipient in the appropriate place, and enter the text of
the message below the headers, leaving one line of space. Apart from this, most of the
actions involved in sending a new mail message are the same as those in replying to an
existing message, so we’ll look at both activities together in the next section.

478 Chapter 26: Electronic mail: clients

Replying to a message
To reply to a message, in this case the message shown in Figure 26-3, simply press r.
Before entering any text, the editor screen looks like Figure 26-5.

Figure 26-5: Replying to a message: initial state

You’ll notice that mutt automatically ‘‘quotes’’ the text. The original text started with:

>I think I now understand the problem here. Try the following patch
>and tell me if it solves the problem:
>
>--- vinumio.c 2 May 2002 08:43:44 -0000 1.52.2.6
>+++ vinumio.c 19 Sep 2002 05:10:27 -0000
Tried patch. System no longer reads ad0h/ad2h, but after the second
’vinum start’, the system shows 0 drives (’vinum ld’ lists nothing.)

This message itself starts with quoted text, which indicates that it was written by
somebody else. There should be a line at the top stating who wrote it, but it’s missing
here. The text from the submitter starts with Tried patch. When you reply, howev er,
all this text is quoted again. The first line attributes the text below. You’ll notice that this
reply also includes a selection of headers for the outgoing message. This can be very
convenient if you want to tailor your headers to the message you’re sending, or just to add
other recipients.

This is a reply to a technical question, so I change the From: header to my FreeBSD.org
address and copy the original mailing list. I also remove irrelevant text and add a reply,
as shown in Figure 26-6. It wasn’t necessary to reformat the original text, since it was
relatively short. The quoting method makes lines grow, though, and many MUAs hav e

Replying to a message 479

difficulty with long lines, so it’s a good idea to reformat long paragraphs. See
http://www.lemis.com/email.html for more details.

Figure 26-6: Replying to a message: after editing

In this example, I reply with the r (reply to sender) command. I could also do a group
reply with the g key, which would include all the original recipients, so it wouldn’t be
necessary to add the mailing list again.

Next, I leave the editor with c-x c-# and return to the screen in Figure 26-7. Here I
have another opportunity to change some of the headers before sending the message.
You’ll note what seem to be a couple of additional headers in this display: PGP and Fcc:.
In fact, they’re not headers at all. PGP states what parts of the message, if any, should be
encrypted with pgp or gpg. In this case, Clear (the default) means not to encrypt
anything.

Fcc: is also not a header. It specifies the name of a folder in which to save the outgoing
message. We’ll look at folders in the next section.

After making any further changes to the headers, I send the message with the y
command, after which I return to the previous display.

480 Chapter 26: Electronic mail: clients

Figure 26-7: Replying to a message: ready to send

Using folders
mutt can handle multiple folders. It defaults to your incoming mail folder, sometimes
called an inbox. On BSD, it is a single file in /var/mail with the same name as your user
ID. We saw that above at the top of the index screen: mine is called /var/mail/grog.

mutt stores other folders as single files in the directory ˜/Mail, in other words a
subdirectory of your home directory. Many MUAs use this method, but not all of them:
some use the directory ˜/mail instead. By default, when you write a mail message, the
outgoing message gets copied to a file in this directory. In the previous section, the
Compose menu contained the pseudo-header Fcc: =jbozza. This refers to the file
˜/Mail/jbozza: mutt uses the shorthand = to refer to the mail directory.

To keep incoming mail, you use the s (save) command, which sets a default folder name
from the name of the sender, the same name as when saving sent messages. You can thus
reply a message, saving a copy in the folder, then save the original message, without
explicitly mentioning a folder name at all.

To read messages in a folder, you can tell mutt to read it directly on startup:

$ mutt -f =fred

Alternatively you can change folders with the c command.

Using folders 481

Deleting messages
Once you’ve finished reading a message, you may want to delete it. You can do this by
entering d. The D flag appears on the left of the line, but nothing much else happens. The
message doesn’t get deleted until you exit mutt, or until you enter $.

When you save a message to a folder, it is automatically deleted from the current folder.
If you don’t want to do that, or if you have accidentally deleted a message, you can
undelete it by entering u.

Finished reading a thread? You can delete the entire thread by entering ˆD (Control-D).

Tagging messages
We’v e seen that you can delete an entire thread with a single keystroke. What about other
operations on multiple messages? There are a couple of useful possibilities. You select
the messages under the cursor by entering t. In the example above, messages 51 and 64
are tagged. You can reply to all tagged messages in one reply by pressing ;r. In this
case, mutt ignores the message under the cursor and replies only to the tagged messages,
reply to all people on the To: headers of each message. Similarly, you can do a group
reply to all the tagged messages with ;g, and you can delete them all with ;d.

Configuring mutt
We’v e already see that there are a lot of things that you can change about mutt’s
behaviour. They are described in a file ˜/.muttrc (the file .muttrc in your home
directory). Here are a few of the more interesting entries in my .muttrc:

source /usr/local/etc/Muttrc

The file /usr/local/etc/Muttrc contains the default definitions for running mutt. Put this
at the top of your .muttrc file so that the following definitions can override any previous
definitions. This file also contains a large number of comments about how to set each
variable, and what it does: it’s over 3,000 lines long.

source ˜/.mail_aliases

˜/.mail_aliases is the name of an alias file, a file with abbreviations for frequently used
mail addresses. We’ll look at them on page 484.

set alternates="greg.lehey@auug.org.au|groggy@|grog@|auugexec@|core@free"

This string is a regular expression that mutt uses to determine whether mail is addressed
to me. If it matches, it sets one of the flags discussed above: + if the message is sent only
to me, T if I am mentioned on the To: header, and C if I am mentioned on the Cc: header.

482 Chapter 26: Electronic mail: clients

my_hdr Organization: LEMIS, PO Box 460, Echunga SA 5153, Australia
my_hdr Phone: +61-8-8388-8286

These lines and more become headers in messages I send; you can see them in the
examples above.

set editor=emacsclient

This line overrides the default editor in EDITOR. We’ve already seen the use of
emacsclient.

set pager_index_lines=10

This tells mutt to keep ten lines of the index when displaying a message. Figure 26-8
shows what the display looks like when this is set. Clearly this isn’t much use with a 25
line display. If, on the other hand, you have a larger X display, it can be very convenient
to have a selection of the index at the top of the screen.

set hdr_format="%4C %Z %{%d-%m-%Y} %-20.20L %-15.15t (%4l) %s" # format of the index
set status_on_top # put the status bar at the top
set sort=threads
set date_format="%A, %e %B %Y at %k:%M:%S %Z"

These variables tell mutt how to display the message index. They account for the
difference in layout (but not colour) between the default screen and the custom screen.
hdr_format is a printf -like format string that describes the layout, status_on_top
reverses the information lines at the top and bottom of the display, sort=threads sets a
threaded display by default (you can change it by pressing o), and date_format is set to
international conventions.

Figure 26-8: Reading a message with pager_index_lines set

Configur ing mutt 483

set edit_hdrs # let me edit the message header when composing
set fast_reply # skip initial prompts when replying
set attribution="On %d, %n wrote:"
set charset="iso-8859-15" # character set for your terminal
set sendmail_wait=-1

These variables specify how to write and reply to mail messages:

• edit_hdrs tells mutt to include the headers in the message you write, as shown in
the preceding examples.

• fast_reply tells mutt not to prompt for a number of the headers. This is faster, and
it’s not necessary when you have the headers in the message you’re writing.

• attribution describes the format of the attribution at the beginning of a reply, the text
On Friday, 20 September 2002 at 8:13:44 -0500, Jaime Bozza
wrote: in the example above.

• charset specifies the character set to use for the message. This should correspond
to the character set of the fonts on your display, otherwise things may look strange.
ISO 8859-15 is the new Western European character set that includes the character
for the Euro. You’ll still see many message with the older Western European
character set, ISO 8859-1, which is otherwise very similar.

• Finally, sendmail_wait tells mutt whether it should wait for the mail to be sent
before continuing. This can take some time if your MTA has to perform numerous
DNS lookups before it can send the message. Setting this variable to -1 tells mutt
not to wait.

ignore *
unignore From: Date: To: Cc: Subject: X-Mailer: Resent-From:
hdr_order Date: From: To: Cc: Subject: X-Mailer: Resent-From:

These specifications tell mutt to ignore all headers except for specific ones, and to sort
them in the order specified, no matter what order they occur in in the message.

Colours in mutt
Finally, .muttrc contains definitions to describe the colour of the display. Many of these
are personal preferences, so I’ll just show a couple. Each definition specifies the
foreground colour, then the background colour:

color normal black white

This is the basic default colour, overriding the reverse video shown above.

color hdrdefault brightblack white
color quoted brightblack white

This tells mutt to highlight headers and quoted text in bold.

484 Chapter 26: Electronic mail: clients

color status black yellow

This tells mutt to display the status bars in black on a yellow background.

color index blue white FreeBSD

This tells mutt to display any messages with the text FreeBSD in blue on white, like
messages 48 and 49 in the example above.

There are many more variables you can set to customize your mutt display. Read
/usr/local/etc/Muttrc for more details.

Mail aliases
You’ll find that some people have strange mail IDs: they are unusual, confusing, or just
plain difficult to type. Most MUAs give you the option of setting up aliases, short names
for people you often contact. In mutt, you can put the aliases in the ˜/.muttrc file, or you
can put them in a separate file and tell mutt when to find them in the ˜/.muttrc file, as
illustrated above. The aliases file contains entries like this:

alias questions FreeBSD-questions@FreeBSD.org (FreeBSD Questions)
alias stable FreeBSD Stable Users <FreeBSD-stable@FreeBSD.org>

The format is straightforward:

• First comes the keyword alias. Aliases can be placed in ˜/.muttrc, so the word
alias is used to distinguish them from other commands.

• Next is the alias name (questions and stable in this example).

• Next comes the mail ID in one of two forms: either the name followed by the mail ID
in angle brackets (<>), or the mail ID followed by the name in parentheses (()).

In mutt, you can add aliases to this file automatically with the a command, which offers
default values relating to the current message.

Mail headers
In the message display above we saw only a selection of the mail headers that a message
might contain. Sometimes it’s interesting to look at them in more detail, especially if
you’re having mail problems. To look at the complete headers, press the h key. Figure
26-9 shows the complete headers of our message 52.

• The first line shows the name of the sender and the date it arrived at this machine.
The date is in local time. In this case, the name of the sender is a mailing list, not the
original sender.

Mail headers 485

Figure 26-9: Complete headers

• The next line (Return-Path:) is used to indicate the address to which error
messages should be sent if something goes wrong with delivery. The FreeBSD
mailing lists specify the list owner to avoid spamming senders with multiple error
messages, which can easily happen when you send messages to a large mailing list.

486 Chapter 26: Electronic mail: clients

• The Delivered-To: header specifies the user to whom the message was delivered.

• The next group of headers shows how the message got from the source to the
destination, in reverse chronological order. There are a total of 11 Received:
headers, making up more than half the total number of lines. This is because it went
via a mailing list. Normal mail messages have only one or two Received: headers.

The first Received: header is split over three lines. It shows the most recent step of
the message’s journey to its destination. It shows that it was received from
mx2.freebsd.org by wantadilla.lemis.com, and that wantadilla.lemis.com was running
postfix. It also shows the time the message arrived at wantadilla, Sat, 21 Sep 2002 at
10:23:04. The time zone is 9½ hours ahead of UTC, and the message ID is
195CC81743.

• The following Received: headers trace back to the origin of the message, via
hub.freebsd.org, where it went through three transformations. Before that, it went
through mail1.thinkburst.com, mailgate.thinkburstmedia.com, sigma.geocomm.com
and dhcp00.geocomm.com. By pure coincidence, every one of these systems was
running postfix. Each header contains a message ID, the name of the server and its IP
address. In one case, though, the name looks different:

Received: from mailgate.thinkburstmedia.com (gateway.thinkburstmedia.com [204
.214.64.100])

The first name is the name that the server claims to be, and the second is the name
returned by a reverse DNS lookup of the server IP address.

• The next five headers are the ‘‘normal’’ headers: sender, recipient, copied recipients
and date. This example shows why they are in colour; they can appear in a large
number of different places.

• We’v e just seen eleven different message IDs. So why the header Message-Id:?
That’s exactly the reason: the other eleven IDs are local to the system they pass
through. The line beginning with Message-Id: gives a definitive message ID that
can be used for references.

• The next three headers relate to MIME and describe the version and the manner in
which the message has been encoded (7 bit plain ASCII text).

• The next four headers start with X-. They are official custom headers, and we’ll see
more below. The RFCs deliberately don’t define their meaning. Clearly these ones
are used by Microsoft software to communicate additional information, including the
fact that the MUA that created this mail message was Microsoft Outlook.

• The In-Reply-To: header shows the ID of the message to which this is a reply.
mutt uses this field to thread the messages in the index.

• The next two fields, Importance: is also not defined by the standards. It may be a
Microsoft ‘‘extension.’’ This is not an abuse of the standards: the RFCs allow use of
any undefined header, and the X- convention is only provided to make certain that a
specific set of headers remains undefined.

Mail headers 487

• Next comes the Sender: header is the address of the real sender. Although this
message is From: Jaime Bozza, it was resent from the FreeBSD-stable mailing list.
This header documents the fact.

• The following List- headers are also not defined by the standards. They’re used as
comments by the mailing list software.

• X-Loop is used by the mailing list software to avoid mailing loops. The mailing list
software recognizes an X-Loop header with its own name to mean that it has
somehow sent a message to itself.

• The Precedence: header is used internally by sendmail to determine the order in
which messages should be sent. bulk is a low priority.

• The X-Spam-Status: header is added by spamassassin, which is used to detect
spam. This message has been given a clean bill of health.

• The final headers are added by mutt when it updates the mail folder, for example
when it exits. Other MUAs add similar headers.

The Status: flag is used by the MUA to set flags in the display. The letters each
have their own meaning: R means that the message has been read, and O means that it
is old (in other words, it was already in the mail folder when the MUA last exited).

• The Content-Length: header specifies the approximate length of the message
(without the headers) in bytes. It is used by some MUAs to speed things up.

• The Lines: header states the length of the message in lines.

How to send and reply to mail
In the impersonal world of the Internet, your mail messages are the most tangible thing
about you. Send out a well thought out, clear and legible message, and you leave a good
impression. Send out a badly formulated, badly formatted and badly spelt message, and
you leave a bad impression.

So what’s good and what’s bad? That’s a matter of opinion (and self-expression), of
course. We’ve seen some of the following things already:

• Unless there’s a very good reason, avoid proprietary formats. Most MUAs can
handle them nowadays, but some can’t. For example, some people set up Microsoft
MUAs to use HTML as the standard format. Many other MUAs have difficulty with
HTML, though mutt can display it with the help of a web browser. Microsoft MUAs
are also often configured to send out mail in Microsoft Word format, which is
illegible to just about anybody without a Microsoft system.

• When sending ‘‘conventional’’ mail, ensure that you adhere to the standards. Again,
Microsoft mailers are often bad in this respect: without telling you, they may either
transform paragraphs into one long line, or they break lines into two, one long and
one short. The resulting appearance of the message looks like (taking this paragraph
as an example):

488 Chapter 26: Electronic mail: clients

When sending ‘‘conventional’’ mail, ensure that you adhere to the standards.
Again, Microsoft mailers are often bad in this respect: without telling yo

u, they may either transform paragraphs into one long line, or they break li
nes into two, one long and one short. The resulting appearance of the messa
ge looks like (taking this paragraph as an example):

Figure 26-10: One line per paragraph

When sending ‘‘conventional’’ mail, ensure that you adhere to the
standards.
Again, Microsoft mailers are often bad in this respect: without
telling you,
they may either transform paragraphs into one long line, or they
break lines
into two, one long and one short. The resulting appearance of the
message looks
like (taking this paragraph as an example):

Figure 26-11: Alternate long and short lines

This can happen to you without you knowing. If you get messages from other people
that appear to be garbled, your MUA may be reformatting them on arrival, in which
case it is possibly reformatting them before transmission.

• When replying, ensure that you use a quote convention as shown above. Place your
reply text directly below the part of the text to which you are replying.

• Messages tend to grow as more and more replies get added. If large parts of the
original text are irrelevant, remove them from the reply.

• Leave an empty line between the original text and your reply, and leave a space after
the > quote character. Both make the message more legible. For example, compare
these two fragments:

> rdkeys@csemail.cropsci.ncsu.edu writes:
>>Not to pick at nits.... but, I am still confused as to what EXACTLY
>>is the ‘‘stable’’ FreeBSD. Please enlighten me, and tell me the
>>reasoning behind it.
>OK, I’ll take a shot at this. To really understand what 2.2-STABLE is,
>you have to have some idea of how the FreeBSD team uses ’branches’. In
>particular, we are talking about branches as implemented by the CVS

Figure 26-12: Less legible reply

> rdkeys@csemail.cropsci.ncsu.edu writes:
>> Not to pick at nits.... but, I am still confused as to what EXACTLY
>> is the ‘‘stable’’ FreeBSD. Please enlighten me, and tell me the
>> reasoning behind it.
>
> OK, I’ll take a shot at this. To really understand what 2.2-STABLE is,
> you have to have some idea of how the FreeBSD team uses ’branches’. In
> particular, we are talking about branches as implemented by the CVS

Figure 26-13: More legible reply

Mail headers 489

• What about salutations? You’ll see a lot of messages out there that don’t start with
‘‘Dear Fred,’’ and either aren’t even signed or just have the name of the author. This
looks rather rude at first, but it has become pretty much a standard on the Net.
There’s a chance that this will change in the course of time, but at the moment it’s the
way things are, and you shouldn’t assume any implicit rudeness on the part of people
who write in this manner.

• At the other end of the scale, some people add a standard signature block to each
message. You can do this automatically by storing the text in a file called
˜/.signature. If you do this, consider that it appears in every message you write, and
that it can get on people’s nerves if it’s too long or too scurrile.

• Make sure that your user ID states who you are. It doesn’t make a very good
impression to see mail from foobar@greatguru.net (The greatest guru on
Earth), especially if he happens to make an incorrect statement. There are better
ways to express your individuality.

Using MIME attachments
MIME allows you to attach all sorts of data to a mail message, including images and
sound clips. It’s a great advantage, but unfortunately many people refuse to use it,
perhaps because the UNIX community haven’t got their act together. Credit where
credit’s due, this is one area where Microsoft is ahead of the UNIX crowd.

Nevertheless, you can do a lot of things wrong with MIME attachments. Here are some
of the more common ones, most of which are default for Microsoft MUAs.

• Use HTML attachments only for web pages. Many MUAs allow you to send
messages in text/html format by default. HTML is not an appropriate format for
mail messages: it’s intended for the Web. Of course, if you want to send somebody a
web page, this is the way to do it.

• Don’t use proprietary attachments. From time to time, I get attachments that assume
that I have the same software as the sender. Typical ones are application/octet-
stream with Microsoft proprietary formats (for example, one of the Microsoft Word
formats), and application/mac-binhex40, which is used by Mac MUAs for
images. If the recipients don’t hav e this software, they can’t use the attachment.

• Don’t send multiple copies in different formats. Some MUAs send both a
text/plain and a text/html attachment bundled up in a multipart/alterna-
tive attachment. This wastes space and can cause a lot of confusion.

• Specify the correct attachment type. If you send a web page as an attachment, be
sure that it is specified as text/html. The receiving MUA can use this to display the
attachment correctly. If you specify it, say, as text/plain, the MUA displays it
with all the formatting characters, which doesn’t improve legibility. If you send a .gif
image as image/gif, the MUA can display the image directly. Otherwise the user
needs to save the message and perform possibly complex conversions to see the
image.

490 Chapter 26: Electronic mail: clients

Microsoft-based MUAs frequently make this mistake. You may receive attachments
of the type application/octet-stream, which really describes the encoding, not
the content, but the name might end in .doc, .gif or .jpg. Many MUAs assume
that these attachments are Microsoft Word documents or GIF and JPEG images
respectively. This is contrary to the standards and could be used to compromise the
security of your system.

(mta.mm), page 491

27
Electronic

mail: servers

In this chapter:
• How mail gets

delivered
• Postfix
• Rejecting spam
• Running postfix at

boot time
• Downloading mail

from your ISP
• Mailing lists:

majordomo

In this chapter:
• How mail gets

delivered
• Postfix
• Rejecting spam
• Running postfix at

boot time
• Downloading mail

from your ISP
• Mailing lists:

majordomo

In the previous chapter, we looked at email from a user perspective. The other part of a
mail system is the Mail Transfer Agent, or MTA. As the name suggests, MTAs perform
the transfer of mail from one system to another. Specifically, they perform three related
tasks:

• They send outgoing mail, in other words mail that originates from their system. If the
destination system is not available, they look for an alternative system, and if none is
available, they retry delivery at a later date. Typically an MTA will retry every 30
minutes for five days before giving up.

• They receive incoming mail, possibly for multiple domain names. They may be quite
picky about how they perform this task: since the advent of spam, a number of
techniques have dev eloped. We’ll look at some in the section on postfix
configuration.

• They relay mail. Consider the case where a sending MTA can’t reach the destination
MTA and chooses an alternative. The alternative MTA is called a relay, and it must
be prepared to deliver the mail to the final recipient at a later time. Until a few years
ago, MTAs performed relaying by default, but the advent of spam has changed that
radically.

Mail has been around for a long time now, well over 25 years. In that time, many mail
systems have come and gone. One seems to have been around for ever: the sendmail
MTA. sendmail has an unparalleled reputation. On the one hand, it can do just about
anything, but on the other hand, its configuration file is one of the most arcane ever to be

491

492 Chapter 27: Electronic mail: servers

seen. Still, it’s holding well against the competition, and it is still actively being
developed.

The definitive book on sendmail, called the ‘‘bat book’’ after its cover, was written by
Bryan Costales and others (O’Reilly)—see Appendix A, Bibliography for more details.
It is over 1000 pages long. Obviously this book can’t compete with it.

The good news about sendmail is: it works. It is possible to install sendmail and run it
with no configuration whatsoever. The less good news is that in the past few years it has
been constantly changing, and any information I write here is liable to be out of date by
the time you read it. As a result, I recommend:

If sendmail works for you, use it. If you have difficulties, use
postfix instead.

The following sections show how to configure a mail system using postfix. In general,
sendmail is quite similar. You’ll find every detail in the bat book, and the original
sendmail distribution, available from http://www.sendmail.org/ , contains instructions for
experts.

How mail gets delivered
Ideally, to send mail, the source MTA contact the destination MTA and sends the
message. In practice, this doesn’t always work. Here’s the general method:

• Each time an MTA receives a message not addressed to its system, this MTA collects
all MX records for the destination that are not higher than its own MX record.

• If the MTA finds any MX records, it attempts to send to one of them, starting at the
lowest preference.

• If the lowest MX record points to the MTA’ s own machine, then there’s a mail
misconfiguration: the MTA doesn’t know what to do with it locally, but the MX is
telling it to deliver it locally. When this happens, the MTA reject the message (‘‘mail
loops back to myself’’).

• If there are no MX records at all (which implies that the MTA doesn’t hav e one
either), most, but not all versions of sendmail will look up an A record for the system
name. If they find one, they will try to deliver there, and only there.

• If all else fails, the MTA rejects the message (‘‘can’t find the destination’’).

MTA files
MTAs use three different kinds of files:

• Configuration files tell the MTA what to do. Typical configuration issues include
what name to present to the outside world, and when to accept mail for delivery and
when to reject it. The issue of spam (unsolicited commercial email) makes this quite

How mail gets delivered 493

a complicated issue. postfix keeps its configuration files in the directory /usr/lo-
cal/etc/postfix, and sendmail keeps them in /etc/mail.

• Outgoing postfix mail is stored in the directory hierarchy /var/spool/postfix, while
sendmail currently stores its mail in the hierarchies /var/spool/mqueue and
/var/spool/clientmqueue.

• Incoming mail is stored in the directory /var/mail. Normally each user gets a file that
corresponds to his user name.

Who gets the mail?
According to RFC 2822, a mail ID is something like grog@example.org. This looks
very much like a user ID, the @ sign, and the name of a machine. This similarity is
intended, but it’s still only a similarity. Consider the system manager of example.org. At
different times he might send mail from freebie.example.org, bumble.example.org, and
wait.example.org. If the mail ID were associated with the machine, he would have three
different mail IDs: fred@freebie.example.org, fred@bumble.example.org and
fred@wait.example.org. It would make things a whole lot simpler (and easier to
type) if his mail ID were simply fred@example.org. This name change is called
masquerading.

One way to do this would be to associate the name example.org as a CNAME with one of
the machines—say wait.example.org. This would work, but it would mean that mail
would always have to come from and go to wait.example.org. If for any reason that
machine were inaccessible, the mail would not get through. In practice, it’s possible to
run MTAs on more than one machine. DNS solves this problem with a special class of
record, the MX record (mail exchanger). MX records can point to more than one machine,
so if one machine is not accessible, the mail can be sent to another. We saw how to add
them on page 370. MX records are not directly associated with any particular machine,
though they point to the names of machines that run an MTA.

Postfix
postfix is in the Ports Collection, not the base system, so before you can use it, you must
install it. It is an interactive port: at various points in the installation process it asks for
input. The first is a menu offering optional additional configurations, as shown in Figure
27-1. For the configuration in this book, you don’t need anything in addition to what the
menu suggests; just select OK and continue.

Some time later you get the informational messages:

Added group "postfix".
Added group "maildrop".
Added user "postfix".
You need user "postfix" added to group "mail".
Would you like me to add it [y]? Enter pressed
Done.

494 Chapter 27: Electronic mail: servers

Figure 27-1: Postfix configuration menu

The build continues for a while, and finally you get the information:

Installed HTML documentation in /usr/local/share/doc/postfix
===> Generating temporary packing list
Would you like to activate Postfix in /etc/mail/mailer.conf [n]? y

The output goes on to explain which flags to set in your system configuration file
/etc/rc.conf. In particular, it tells you to set sendmail_enable and finishes by saying
‘‘This will disable Sendmail completely.’’ This may look strange, especially if you don’t
have any sendmail-related entries in /etc/rc.conf. Why should setting sendmail_enable
to YES disable sendmail? Well, it’s a somewhat unfortunate choice of naming, and it’s
possible it will change, but the answer is in the details: sendmail_enable should really
be called something like mail_enable. The other sendmail parameters turn off all
sendmail-related components.

Configuring postfix
postfix requires only one configuration file, /usr/local/etc/postfix/main.cf. This file
contains a large number of comments: with a little experience you can configure it
without any outside help. In this section, we’ll look at some of the entries of interest.

The mail_owner parameter specifies the owner of the Postfix queue
and of most Postfix daemon processes. Specify the name of a user
account THAT DOES NOT SHARE ITS USER OR GROUP ID WITH OTHER ACCOUNTS
AND THAT OWNS NO OTHER FILES OR PROCESSES ON THE SYSTEM. In
particular, don’t specify nobody or daemon. PLEASE USE A DEDICATED USER.
#
mail_owner = postfix

Postfix 495

Older MTAs used to run as root, which made it easier to write exploits transmitted by
mail. Modern MTAs use a dedicated user ID. As we saw above, the postfix user gets
added to your password files when you install it. sendmail uses another user ID, smmsp.
Don’t change this entry.

Host and domain names
A significant portion of the configuration file defines host names. By default, the variable
myhostname is the fully qualified host name of the system, for example freebie.exam-
ple.org. You should normally leave it like that; it’s not identical to the name that will
appear on outgoing mail.

The next variable is mydomain, which defaults to the domain name of the system. Again,
you won’t normally want to change it.

Then comes the variable myorigin, which is the name that appears on outgoing mail. It
defaults to myhostname, which is probably not a good choice. As suggested above, a
better name would be the domain name, mydomain. Make the following changes to
main.cf :

The myorigin parameter specifies the domain that locally-posted
mail appears to come from. The default is to append $myhostname,
which is fine for small sites. If you run a domain with multiple
machines, you should (1) change this to $mydomain and (2) set up
a domain-wide alias database that aliases each user to
user@that.users.mailhost.
#
#myorigin = $myhostname
myorigin = $mydomain

In the original configuration file, the last line is present, but it is ‘‘commented out’’: it
starts with the # character. Just remove this character.

The next variable of interest is mydestination. This is a list of host and domain names
for which the MTA considers itself the final destination (in other words, it accepts mail
for final delivery). By default, it accepts mail addressed to the name of the machine
($myhostname in postfix parlance) and also localhost.$mydomain, the local host
name for this domain. In particular, it does not accept mail addressed to the domain, so if
you send mail as fred@example.org, any reply will bounce. To fix this, add
$mydomain to the list.

You might also want to accept mail for other domains. For example, if you also wanted
to accept mail for beispiel.org, you would add that name here as well. The result might
look like this:

#mydestination = $myhostname, localhost.$mydomain
#mydestination = $myhostname, localhost.$mydomain $mydomain
mydestination = $myhostname, localhost.$mydomain, $mydomain,

beispiel.org

For the mail for beispiel.org to actually be delivered to this machine, the lowest priority
MX record for beispiel.org must point to this host.

496 Chapter 27: Electronic mail: servers

Further down, we’ll see a feature called virtual hosting. This is a way to allocate email
addresses to people without a UNIX account on this machine. It works at the user level,
not the domain name level.

Relaying mail
One of the favourite tricks of spammers is to send their mail via another system to give it
the aura of respectability. This is doubly annoying for the ‘‘other’’ system: first, it gives it
the reputation of being a spammer, and secondly it often incurs expense, either for data
charges or simply from congestion. postfix has a number of tricks to help. The first
specifies which networks to trust: postfix will relay mail coming from these networks.
You could consider this to be ‘‘outgoing’’ mail, though the methods postfix uses don’t
make this assumption. By default, postfix trusts your network and the localhost network
127.0.0.0/8, in other words with a net mask 255.0.0.0. But how does it know the net
mask for your network? There are two possibilities: you tell it, or it guesses.

postfix is pretty simplistic when it comes to guessing. It takes the default net mask for
the address class, so if your IP address is, say, 61.109.235.17 (a ‘‘class A’’ network), it
will accept mail from any network whose first octet is 61. I know of at least 20 sources of
spam in that range. In almost every case, you should specify the network and mask
explicitly:

mynetworks = 223.147.37.0/24, 127.0.0.0/8

This is a good choice where you know the name of the originating networks, for example
systems that expect you to handle the mail connection to the outside world. But what if
you want to accept mail from anywhere addressed to specific domains? Consider this
‘‘incoming’’ mail, though again that’s not the way postfix looks at it. For example,
maybe you’re a backup MX for beispiel.de, so you want to accept any mail sent to that
domain. In that case, you want to relay mail to this domain no matter where it comes
from. For this case, use the relay_domains variable, a list of domain names for which
postfix will always relay. You might put this in your main.cf :

relay_domains = $mydestination, $mydomain, beispiel.de

You can also use the permit_mx_backup variable to accept mail for any domain that
lists you as a secondary MX. This is very dangerous: you don’t hav e any control over
who lists you as a secondary MX, so any spammer could take advantage of this setting
and use you for a relay.

Aliases revisited
On page 484 we looked at how to set up individual aliases for use with mutt. postfix and
sendmail also have an alias facility, this time at the system level. The system installs a
file called /etc/mail/aliases. It’s there by default, so there’s no particular reason to move
it. The default /etc/mail/aliases looks like:

Postfix 497

Basic system aliases -- these MUST be present
MAILER-DAEMON: postmaster
postmaster: root

General redirections for pseudo accounts
bin: root
daemon: root
games: root
ingres: root
nobody: root
system: root
toor: root
uucp: root

Well-known aliases -- these should be filled in!
root:
manager:
dumper:
operator:

root: grog

Each line contains the name of an alias, followed by the name of the user who should
receive it. In this case, mail addressed to the users bin, daemon, games, ingres,
nobody, system, toor and uucp will be sent to root instead. Note that the last line
redefines root to send all mail to a specific user.

You must run the newaliases program after changing /etc/aliases to rebuild the aliases
database. Don’t confuse this with the newalias program, which is part of the elm MUA.

A couple of other uses of aliases are:

• You can also use an alias file for spam protection. If you want to subscribe to a
mailing list, but you are concerned that spammers might get hold of the contents of
the mailing list, you could subscribe as an alias and add something like:

frednospamplease: fred

If you do get spam to that name, you just remove the alias (and remember never to
have any dealings with the operator of the mailing list again).

• Another use of aliases is for majordomo, the mailing list manager we’ll look at on
page 505.

By default, postfix doesn’t hav e a specific alias file. main.cf contains:

#alias_maps = dbm:/etc/aliases
#alias_maps = hash:/etc/aliases
#alias_maps = hash:/etc/aliases, nis:mail.aliases
#alias_maps = netinfo:/aliases

The texts dbm, hash and netinfo describe the kind of lookup to perform. For sendmail
compatibility, we want hash. Assuming you also want to run majordomo, add the line:

alias_maps = hash:/etc/mail/aliases,hash:/usr/local/majordomo/aliases.majordomo

498 Chapter 27: Electronic mail: servers

Rejecting spam
One of the biggest problems with email today is the phenomenon of spam, unsolicited
email. Currently the law and ISPs are powerless against it. Hopefully the community
will find solutions to the problem in the future, but at the moment keeping spam to
manageable proportions is a battle of wits. There are a number of ways to combat it, of
course:

• Reject mail from domains known to be spammers. postfix helps here with a file
called /usr/local/etc/postfix/access, which contains names of domains to reject.

There are a couple of problems with this approach:

• It’s relatively easy to register a domain, so you may find the same spam coming
from a different location.

• It’s relatively easy to spoof a domain name. Mail is regularly relayed, so you
have to go by the name on the From line. But you can forge that, so you often see
mail from yahoo.com or hotmail.com that has never been near those ISPs.
Obviously it doesn’t help to complain to the ISP.

• Of course, if the names are spoofed, you can still find out where the message really
came from from the headers, as we saw on page 484. Or can we? There are two
issues there: firstly, if the message has gone by another system, a relay, you can’t rely
on the headers further back than one hop. Anything beyond that can be forged.

In the olden days, MTAs would accept mail for relaying from any system: they were
so-called open relays. Spammers have found this very useful, and now most systems
have restricted relaying to specific trusted systems. There are still a large number of
open relays on the net, though.

This is a problem that could theoretically happen to you: if your system is an open
relay, you could end up delivering spam without even knowing it. By default, all
current MTAs supplied with FreeBSD refuse to relay, but it’s possible to
(mis)configure them to be open relays. Be aware of the problems.

But what if you get a message like this?

Received: from femail.sdc.sfba.home.com (femail.sdc.sfba.home.com [24.0.95.82])
by wantadilla.lemis.com (Postfix) with ESMTP id BCBFF6ACC0
for <webmaster@lemis.com>; Tue, 19 Jun 2001 13:50:57 +0930 (CST)

Received: from u319 ([24.21.217.142]) by femail2.sdc1.sfba.home.com
(InterMail vM.4.01.03.20 201-229-121-120-20010223) with SMTP
id <20010619042005.FBWM26828.femail2.sdc1.sfba.home.com@u319>;
Mon, 18 Jun 2001 21:20:05 -0700

From: britneyvideo1234@yahoo.com
To:
Subject: stolen britney spears home video!!!
Date: Thu, 19 Jun 2025 13:52:44 -0200

This message has come from the domain home.com, though it’s claiming to come
from yahoo.com, but the IP address of the originating MTA does not resolve to a
name. The format of the Received: headers is:

Rejecting spam 499

announced-name (real-name [real-IP])

The first header is correct: the name it claims to be (femail.sdc.sfba.home.com)
matches the reverse lookup. In the second case though, u319 is not a valid fully-
qualified domain name, and there is no second name: the reverse lookup failed. Some
MTAs use the word unknown in this case, and some even add a warning.

Why should the IP of an MTA not resolve? It’s ideal for spammers, of course: it
makes them almost impossible to trace. In this case, it’s probable that the IP range
belongs to home.com, because they accepted the message for relaying, but the lack of
a valid reverse lookup says nothing for their professionalism.

• A number of commercial and public service sites maintain a list of known spam sites.
You can use them to decide whether to accept a mail message.

• The previous example shows another obvious point: this message has been forged to
appear to come from yahoo.com. All messages that really come from Yahoo! have a
header of this nature:

Received: from web11207.mail.yahoo.com (web11207.mail.yahoo.com [216.136.131.189])
by mx1.FreeBSD.org (Postfix) with SMTP id 4079E43E65
for <freebsd-arch@freebsd.org>; Mon, 7 Oct 2002 10:39:14 -0700 (PDT)
(envelope-from gathorpe79@yahoo.com)

So if you can recognize messages claiming to come from yahoo.com, but without
this kind of header, there’s a good chance that they’re spam.

So how do we use this information to combat spam? postfix helps for the first three, but
we need other tools for the last.

The rules for blocking unwanted messages are not included in /usr/local/etc/post-
fix/main.cf. Instead, they’re in /usr/local/etc/postfix/sample-smtpd.cf. Copy those you
want to the bottom of your /usr/local/etc/postfix/main.cf. Specifically, the variables of
interest are smtpd_helo_restrictions (which relates to the sending MTA, which
could be a relay), and smtpd_sender_restrictions, which relates to the (claimed)
original sender. See sample-xmtpd.cf for details of all possible restrictions. The more
interesting ones are:

• reject_unknown_client: reject the request if the client hostname is unknown, i.e.
if the DNS reverse lookup fails.

• reject_maps_rbl: reject if the client is listed under $maps_rbl_domains. We’ll
discuss this below.

• reject_invalid_hostname: reject hostname with bad syntax.

• reject_unknown_hostname: reject hostname without DNS A or MX record.

• reject_unknown_sender_domain: reject sender domain without A or MX record.
This is probably a forged domain name.

500 Chapter 27: Electronic mail: servers

• check_sender_access maptype:mapname. Look the sender address up in the
specified map and decide whether to reject it. We’ll look at this in more detail below.

• reject_non_fqdn_hostname: reject HELO hostname that is not in FQDN form.

• reject_non_fqdn_sender: reject sender address that is not in FQDN form.

Rejecting known spam domains
If you have identified domains that you would rather not hear from again, use the form
check_sender_access maptype:mapname. By default, the map is stored in /usr/lo-
cal/etc/postfix/access.db. Add the following text to main.cf :

smtpd_sender_restrictions = hash:/usr/local/etc/postfix/access

Note that the .db is missing from the name. Now add this line to the file
/usr/local/etc/postfix/access, creating it if necessary:

spamdomain.com 550 Mail rejected. Known spam site.

This form rejects messages from this domain with SMTP error code 550 and the message
that follows.

As we have seen, postfix reads the file /usr/local/etc/postfix/access.db, not /usr/lo-
cal/etc/postfix/access. Use the postmap program to create or update /usr/local/etc/post-
fix/access.db:

postmap /usr/local/etc/postfix/access

The changes to /usr/local/etc/postfix/main.cf depend on other items as well, so we’ll look
at them at the end of this discussion.

To judge by the name, spamdomain.com is probably a hard-core spam producer. But
there are others, notably large ISPs with little or no interest in limiting spam, and they
also have innocent users who will also be blocked. If you find out about it, you can make
exceptions:

spamdomain.com 550 Mail rejected. Known spam site.
innocent@spamdomain.com OK

Don’t forget to re-run postmap after updating alias. One way is to create a Makefile in
/usr/local/etc/postfix with the following contents:

access.db: access
/usr/local/sbin/postmap access

Then add the following line to /etc/crontab:

1 * * * * root (cd /usr/local/etc/postfix; make) 2>/dev/null >/dev/null

Rejecting spam 501

This checks the files every hour and rebuilds /usr/local/etc/postfix/access.db if necessary.

Rejecting sites without rev erse lookup
A very large number of spam sites don’t hav e reverse lookup on their IP addresses. You
can reject all such mail: after all, it’s misconfigured. Just add the reject_un-
known_sender_domain keyword to the smtpd_sender_restrictions. Unfortunate-
ly, some serious commercial enterprises also don’t hav e reverse lookup. It’s your choice
whether you want to accept mail from them and open the flood gates to spam, or to ignore
them. The FreeBSD project has chosen the latter course: if you don’t hav e reverse
lookup, you will not be able to send mail to FreeBSD.org.

Rejecting listed sites
Another alternative is to reject sites that have been listed on a public list of spam sites,
sometimes referred to as an rbl (Realtime Blackhole List). The example given in the
configuration file is http://www.mail-abuse.org/ , but there are others as well. They
maintain a list of spam sites that you can query before accepting every message.

I don’t like these sites for a number of reasons:

• They slow things down.

• They frequently cost money.

• They hav e a habit of blocking large quantities of address space, including domains
who are not in any way related with the spammers. I don’t know anything about
MAPS, so I can’t comment on whether they do this sort of thing.

If you want to use this kind of service, add the following two lines to your main.cf :

smtpd_client_restrictions = reject_maps_rbl
maps_rbl_domains = rbl.maps.vix.com

The name rbl.maps.vix.com comes from the sample file. Replace it with information
from your rbl supplier.

Recognizing spoofed messages
There’s only so much that postfix can do to restrict spam. The Ports Collection contains
a couple of other useful tools, procmail and spamassassin, which together can reject a
lot of spam. It involves a fair amount of work, unfortunately. Take a look at the ports if
you’re interested.

Sender restrictions: summary
The restrictions above are interdependent. I would recommend rejecting senders based
on address and lack of reverse lookup. To do that, add just the following lines to your
main.cf :

502 Chapter 27: Electronic mail: servers

smtpd_sender_restrictions = reject_unknown_sender_domain,
hash:/usr/local/etc/postfix/access

Running postfix at boot time
By default, the system starts sendmail at boot time. You don’t need to do anything
special. Just set the following parameters in /etc/rc.conf :

sendmail_enable="YES"
sendmail_flags="-bd"
sendmail_outbound_enable="NO"
sendmail_submit_enable="NO"
sendmail_msp_queue_enable="NO"

The flags have the following meanings:

• sendmail_enable is a bit of a misnomer. It should be called mail_enable.

• -bd means become daemon: postfix runs as a daemon and accepts incoming mail.

sendmail uses an additional parameter, usually something like -q30m. This tells
sendmail how often to retry sending mail (30 minutes in this example). postfix
accepts this option but ignores it. Instead, you tell it how often to retry mail (‘‘run the
queue’’) with the queue_run_delay parameter in the configuration file, which is set
to 1000 seconds, about 16 minutes. A retry attempt takes up local and network
resources, so don’t set this value less than about 15 minutes.

• The other parameters are only there to stop the system from running sendmail as
well.

Talking to the MTA
The Simple Mail Transfer Protocol, or SMTP, is a text-based protocol. If you want, you
can talk to the MTA directly on the smtp port. Try this with telnet:

$ telnet localhost smtp
Trying ::1...
telnet: connect to address ::1: Connection refused attempt to connect with IPv6
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’ˆ]’.
220 freebie.example.org ESMTP Postfix on FreeBSD, the professional’s choice
ehlo freebie.example.org say who you are
250-freebie.example.org name
250-PIPELINING and list of available features
250-SIZE 10240000
250-ETRN
250 8BITMIME
mail from: grog@example.org who the mail is from
250 Ok
rcpt to: grog@example.org and who it goes to
250 Ok
data start the message body
354 End data with <CR><LF>.<CR><LF>
Test data The message

Running postfix at boot time 503

. End of message
250 Ok: queued as 684F081471
quit and exit
221 Bye
Connection closed by foreign host.

This rather cumbersome method is useful if you’re having trouble with postfix.

Downloading mail from your ISP
As we discussed before, the Internet wasn’t designed for dialup use. Most protocols
assume that systems are up a large proportion of the time: down time indicates some kind
of failure. This can cause problems delivering mail if you are not permanently connected
to the Internet.

If you have an MX record that points to another system that is permanently connected,
this doesn’t seem to be a problem: the mail will be sent to that system instead. When you
connect, the mail can be sent to you.

How does the mail system know when you connect? Normally it doesn’t. That’s the first
problem. Most systems set up their MTA to try to deliver mail every 30 to 120 minutes.
If you are connected that long, the chances are good that the mail will be delivered
automatically, but you don’t know when.

One possibility here is to tell the remote MTA when you’re connected. You can do this
with the SMTP ETRN command. Telnet to the smtp port on the system where the mail is
queued:

$ telnet mail.example.net smtp
Trying 139.130.237.17...
Connected to mail.example.net.
Escape character is ’ˆ]’.
220 freebie.example.org ESMTP Sendmail 8.8.7/8.8.7 ready at Mon, 5 May 1997
12:55:10 +0930 (CST)

etrn freebie.example.org
250 Queuing for node freebie.example.org started
quit
221 mail.example.net closing connection
Connection closed by foreign host.

The mail starts coming after the message Queuing for node freebie.example.org
started. Depending on how much mail it is, it might take a while, but you don’t need to
wait for it.

Another alternative is the Post Office Protocol, or POP. POP was designed originally for
Microsoft-style computers that can’t run daemons, so they hav e to explicitly request the
other end to download the data. POP is an Internet service, so you need the cooperation
of the other system to run it. We’ll look at POP in the next section.

504 Chapter 27: Electronic mail: servers

POP: the Post Office Protocol
The Post Office Protocol is a means for transferring already-delivered mail to another
site. It consists of two parts, the client and the server. A number of both clients and
servers are available. In this discussion, we’ll look at the server popper and the client
fetchmail, both of which are in the Ports Collection.

popper: the server
Install popper from the Ports Collection in the usual manner:

cd /usr/ports/mail/popper
make install

popper is designed to be started only via inetd. To enable it, edit /etc/inetd.conf. By
default, it contains the following line:

#pop3 stream tcp nowait root /usr/local/libexec/popper popper

This line is commented out with the # character. Remove that character to enable the
service. Then cause inetd to re-read its configuration file:

killall -1 inetd send a SIGHUP

To test the server, telnet to the pop3 port. You can’t do much like this, but at least you
can confirm that the server is answering:

$ telnet localhost pop3
Trying ::1...
telnet: connect to address ::1: Connection refused
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’ˆ]’.
+OK QPOP (version 2.53) at freebie.example.com starting. <11755.1028797120@freebie.
example.com>
quit
+OK Pop server at freebie.example.com signing off.
Connection closed by foreign host.

fetchmail: the client
Install fetchmail from the Ports Collection. To run it, just specify the name of the server
from which you want to load the mail.

$ fetchmail hub
querying hub
Enter mailserver password: doesn’t echo
QPOP (version 2.3) at hub.freebsd.org starting. <27540.876902406@hub.freebsd.org>
5 messages in folder, 4 new messages.
reading message 1...
flushing message 2
reading message 2....
flushing message 3
reading message 3...
flushing message 4

Downloading mail from your ISP 505

reading message 4...
flushing message 5
reading message 5....

fetchmail and popper are relatively simple to use if you have to, but they add another
level of complexity to the mail system, and they require additional work in a system that
is designed to be automatic. In addition, fetchmail is not a speed demon: if you have a
lot of mail to transfer, be prepared to wait much longer than an SMTP MTA would take.

Mailing lists: majordomo
majordomo is a mail list manager. If you run mailing lists, you probably want to use
majordomo: it saves you manually modifying the mailing lists. As usual, you can find
majordomo in the Ports Collection, in the directory /usr/ports/mail/majordomo. When
installing, you’ll notice a message:

To finish the installation, ’su’ to root and type:

make install-wrapper

If not installing the wrapper, type

cd /usr/local/majordomo; ./wrapper config-test

(no ’su’ necessary) to verify the installation.
./install.sh -o root -g 54 -m 4755 wrapper /usr/local/majordomo/wrapper

With the exception of the last line, this comes from the original majordomo installation
procedure. The last line is the port performing the make install-wrapper for you.
You don’t need to do anything else, and you can ignore the messages.

After installation, you still need to perform some configuration:

• Customize /usr/local/majordomo/majordomo.cf. This should be easy enough to read,
and you may not need to change anything. Once you have it up and running, you
might like to consider changing the default_subscribe_policy.

• Define your lists in /usr/local/majordomo/aliases.majordomo. This file contains a
single list, test-l, which you should remove once you have things up and running.

• Ensure that there is a mail user majordomo-owner on the system. The best way to
handle this is to add an entry in /etc/mail/aliases (see page 496):

majordomo-owner: root

Since root should be an alias for your mail ID, this will mean that you get the mail
for majordomo-owner as well. Don’t run postmap or newaliases yet.

• Add /usr/local/majordomo/aliases.majordomo to the list postfix aliases. We looked
at this point above; you need at least the bold text part of the following line in
/usr/local/etc/postfix/main.cf :

506 Chapter 27: Electronic mail: servers

alias_maps = hash:/etc/mail/aliases,hash:/usr/local/majordomo/aliases.majordomo

• Run postmap.

• Restart postfix:

postfix reload

This isn’t absolutely necessary, but it will take postfix a few minutes to notice
otherwise.

That’s all you need to do. You don’t need to start any processes to run majordomo: it
gets started automatically when a mail message is received.

(xtheory.mm), page 507

28
XFree86 in

depth

In this chapter:
• The problem with

boards and monitors
• X configuration: the

theor y
• XF86Config
• Multiple monitors and

ser vers
• X in the networ k

In this chapter:
• The problem with

boards and monitors
• X configuration: the

theor y
• XF86Config
• Multiple monitors and

ser vers
• X in the networ k

The information in Chapter 6 should be enough to get X up and running. There’s a lot
more to X than that, however, enough to fill many books. In this chapter we’ll look at
some of the more interesting topics:

• The next section describes the technical background of running X displays.

• On page 516 we’ll look at setting up the XF86Config file.

• On page 523 we’ll look at using more than one monitor with X.

• On page 524 we’ll look at using X in a network.

X configuration: the theory
Setting up your XF86Config file normally takes a few minutes, but sometimes you can
run into problems that make grown men cry. In the rest of this chapter, we’ll look at the
technical background:

• How display boards and monitors work.

• How to set up XFree86 to work with your hardware.

• How to tune your hardware for maximum display performance.

507

508 Chapter 28: XFree86 in depth

• How to fry your monitor.

I mean the last point seriously: conventional wisdom says that you can’t damage
hardware with a programming mistake, but in this case it is possible. Read the section on
how monitors work, and don’t start tuning until you understand the dangers involved.

How TVs and monitors work
You don’t hav e to be a computer expert to see the similarity between monitors and TVs:
current monitor technology is derived from TV technology, and many older display
boards have modes that can use TVs instead of monitors. Those of us who were on the
microcomputer scene 20 to 25 years ago will remember the joy of getting a computer
display on a portable TV, a ‘‘glass tty’’ connected by a serial line running at 300 or 1200
bps.

There are at least two ways to create pictures on a cathode ray tube: one is derived from
oscilloscopes, where each individual character is scanned by the electron beam, rather
like writing in the sand with your finger. Some early terminals used this technology, but
it has been obsolete for several decades.

TVs and monitors display the picture by scanning equally spaced lines across the entire
screen. Like in a book, the first line starts at the top left of the screen and goes to the top
right. Each successive line starts slightly below the previous line. This continues until
the screen is full. The picture is formed by altering the intensity of the electron beam as
it scans the lines.

To perform this scan, the TV has two deflection units: one scans from left to right, and the
other scans, much more slowly, from top to bottom. Not surprisingly, these units are
called the horizontal and vertical deflection units. You may also encounter the terms line
and frame deflection.

Figure 28-1 shows the resultant pattern.

etc

First scan line
Second scan line

Flyback

X configuration: the theory 509

Figure 28-1: Scanning pattern on the monitor

The tube can only move the electron beam at a finite speed. When the electron beam
reaches the right hand side of the screen, it needs to be deflected back again. This part of
the scan is called the horizontal flyback, and it is not used for displaying picture data.
The actual time that the hardware requires for the flyback depends on the monitor, but it
is in the order of 5% to 10% of the total line scan time. Similarly, when the vertical
deflection reaches the bottom of the screen, it performs a vertical flyback, which is also
not used for display purposes.

It’s not enough to just deflect, of course: somehow you need to ensure that the scanning is
synchronized with the incoming signal, so that the scan is at the top of the screen when
the picture information for the top of the screen arrives. You’ve seen what happens when
synchronization doesn’t work: the picture runs up and down the screen (incorrect vertical
synchronization) or tears away from the left of the screen (incorrect horizontal
synchronization). Synchronization is achieved by including synchronization pulses in the
horizontal and vertical flyback periods. They hav e a voltage level outside the normal
picture data range to ensure that they are recognized as synchronization pulses.

As if that wasn’t enough, the video amplifier, the part of the TV that alters the intensity of
the spot as it travels across the screen, needs time to ensure that the flyback is invisible,
so there are brief pauses between the end of the line and the start of the sync pulse, and
again between the end of the sync pulse and the beginning of the data. This process is
called blanking, and the delays are called the front porch (before the sync pulse) and the
back porch (after the sync pulse). Figure 28-2 depicts a complete scan line.

Sync pulse Back porch Front porch Sync pulse

Picture data

(Reference point) HDE SHR EHR HTRegisters:

Figure 28-2: Scan line and register values

The register information at the bottom of the picture refers to the video controller
registers. We’ll look at how to interpret them on page 511.

That, in a nutshell, is how horizontal deflection works. Vertical deflection works in

510 Chapter 28: XFree86 in depth

almost the same way, just slower, with one minor exception. This basic display
mechanism was developed for TVs in the 1930s, at a time when terms like high-tech (or
ev en electronics) hadn’t even been invented, and even today we’re stuck with the low data
rates that they decided upon in those days. Depending on the country, conventional TVs
display only 25 or 30 frames (pages of display) per second. This would cause an
unpleasant flicker in the display. This flicker is minimized with a trick called interlacing:
instead of displaying the frame in one vertical scan, the odd and even lines are displayed
in two alternating half frames, which doubles the apparent vertical frequency.

How monitors differ from TVs
So how do we apply this to computer displays? Let’s look at the US standard NTSC
system—the international PAL and SECAM systems are almost identical except for the
number of lines and a minor difference in the frequencies. NTSC specifies 525 lines, but
that includes the vertical flyback time, and in fact only about 480 lines are visible. The
aspect ratio of a normal TV is 4:3, in other words the screen is one-third wider than it is
high, so if we want square pixels,1 we need to have one-third more pixels per line. This
means that we can display 640 pixels per line on 480 lines.2 This resolution is normally
abbreviated to ‘‘640x480.’’ PAL and SECAM have lower vertical frequencies, which
allows a nominal 625 lines, of which about 600 are displayed. Either way, these values
have two huge disadvantages: first, the resolution is barely acceptable for modern
graphics displays, and secondly they are interlaced displays. Older PC display hardware,
such as the CGA and some EGA modes, was capable of generating these signal
frequencies, but normal graphic cards can no longer do it. Instead, dedicated TV output
cards are available if that’s what you want to do.

The first problem is interlace: it works reasonably for TVs, but it’s a pain for computer
displays—there’s still more flicker than a real 50 Hz or 60 Hz display. Modern display
boards can still run in interlace mode, but don’t even think about doing so unless you’re
forced to—the resultant picture looks out of focus and is very tiring to read.

The second problem is the resolution: nowadays, 1024x768 is a minimum resolution, and
some monitors display up to 2048x1536 pixels. On the other hand, even 60 Hz refresh
rate is barely adequate: read any marketing literature and you’ll discover that 72 Hz is the
point at which flicker suddenly disappears. To get high-resolution, high refresh rate
displays, you need some very high internal frequencies—we’ll look at that further down.

How to fry your monitor
Remember that a monitor is just a glorified TV? Well, one of the design constraints of
real TVs is that they hav e only a single horizontal frequency and only a single vertical
frequency. This simplifies the hardware design considerably: the horizontal deflection
uses a tuned circuit to create both the deflection frequency and the high voltage required
to run the tube. This circuit is comprised of a transformer (the line transformer) and a
condenser. Run a line transformer even fractionally off its intended frequency and it runs

1. A square pixel is one with the same height and width. They don’t hav e to be that way, but it makes graphics
software much simpler.

2. Does this look familiar?

X configuration: the theory 511

much less efficiently and use more current, which gets converted to heat. If you run a
conventional monitor off spec for any length of time, it will burn out the line transformer.

You don’t hav e to roll your own X configuration to burn out the monitor: 20 years ago,
the standard display boards were CGAs and HDAs,1 and they had different horizontal
frequencies and thus required different monitors. Unfortunately, they both used the same
data connector. If you connected an HDA (18.43 kHz horizontal frequency) to a CGA
monitor (15.75 kHz, the NTSC line frequency), you would soon see smoke signals.

All modern PC monitors handle at least a range of horizontal frequencies. This doesn’t
mean that an out of spec signal can’t damage them—you might just burn out something
else, frequently the power supply. Most better monitors recognize out-of-spec signals
and refuse to try to display them; instead, you get an error display. Unfortunately, there
are plenty of other monitors, especially older or cheaper models, which don’t protect
themselves against out of spec signals. In addition, just because the monitor displays
correctly doesn’t mean that it is running in spec. The moral of the story:

Never run your monitor out of spec. If your display is messed
up, there’s a good chance that the frequencies are out, so turn
off the monitor.

Monitors aren’t the only thing that you can burn out, of course. If you try hard, you can
also burn out chips on some display boards by running them at frequencies that are out of
spec. In practice, though, this doesn’t happen nearly as often.

Another difference between TVs and monitors is the kind of signal they take. A real TV
includes a receiver, of course, so you have an antenna connection, but modern TVs also
have connections for inputs from VCRs, which are usually two audio signals and a video
signal. The video signal contains five important components: the red, green and blue
signals, and the horizontal and vertical sync pulses. This kind of signal is called
composite video. By contrast, most modern monitors separate these signals onto separate
signal lines, and older boards, such as the EGA, even used several lines per colour.
Unfortunately, there is no complete agreement about how these signals should work: the
polarity of the sync pulses can vary, and some boards cheat and supply the sync pulses on
the green signal line. This is mainly of historical interest, but occasionally you’ll come
across a real bargain 20" monitor that only has three signal connections, and you may not
be able to get it to work—this could be one of the reasons.

The CRT controller
The display controller, usually called a CRT (Cathode Ray Tube) controller, is the part of
the display board that creates the signals we’ve just been talking about. Early display
controllers were designed to produce signals that were compatible with TVs: they had to
produce a signal with sync pulses, front and back porches, and picture data in between.
Modern display controllers can do a lot more, but the principles remain the same.

The first part of the display controller creates the framework we’re looking for: the

1. Color Graphics Adapter and Hercules Display Adapter.

512 Chapter 28: XFree86 in depth

horizontal and vertical sync pulses, blanking and picture information, which is
represented as a series of points or dots. To count, we need a pulse source, which also
determines the duration of individual dots, so it is normally called a dot clock. For
reasons lost in history, CRT controllers start counting at the top left of the display, and not
at the vertical sync pulse, which is the real beginning of the display. To define a line to
the horizontal deflection, we need to set four CRTC registers to tell it—see the diagram
on page 509:

• The Horizontal Display End register (HDE) specifies how many dots we want on
each line. After the CRTC has counted this many pixels, it stops outputting picture
data to the display.

• The Start Horizontal Retrace register (SHR) specifies how many dot clock pulses
occur before the sync pulse starts. The difference between the contents of this
register and the contents of the HDE register defines the length of the front porch.

• The End Horizontal Retrace register (EHR) defines the end of the sync pulse. The
width of the sync pulse is the difference between the contents of this register and the
SHR register.

• The Horizontal Total register (HT) defines the total number of dot clocks per line.
The width of the back porch is the difference between the contents of this register and
the EHR register.

In addition, the Start Horizontal Blanking and End Horizontal Blanking registers (SHB
and EHB) define when the video signals are turned off and on. The server sets these
registers automatically, so we don’t need to look at them in more detail.

The control of the vertical deflection is similar. In this case, the registers are Vertical
Display End (VDE), Start Vertical Retrace (SVR), End Vertical Retrace (EVR), Vertical
Total (VT), Start Vertical Blanking (SVB), and End Vertical Blanking (EVB). The values
in these registers are counted in lines.

VGA hardware evolved out of older 8 bit character-based display hardware, which
counted lines in characters, not dot clocks. As a result, all of these registers are 8 bits
wide. This is adequate for character displays, but it’s a problem when counting dots: the
maximum value you can set in any of these registers is 255. The designers of the VGA
resorted to a number of nasty kludges to get around this problem: the horizontal registers
count in groups of 8 dot clocks, so they can represent up to 2048 dot clocks. The vertical
registers overflow into an overflow register. Even so, the standard VGA can’t count
beyond 1024 lines. Super VGAs vary in how they handle this problem, but typically they
add additional overflow bits. To giv e you an idea of how clean the VGA design is,
consider the way the real Vertical Total (total number of lines on the display) is defined
on a standard VGA. It’s a 10 bit quantity, but the first 8 bits are in the VT register, the 9th
bit is in bit 0 of the overflow register, and the 10th bit is in bit 5 of the overflow register.

X configuration: the theory 513

The XF86Config mode line
One of the steps in setting up XFree86 is to define these register values. Fortunately, you
don’t hav e to worry about which bits to set in the overflow register: the mode lines count
in dots, and it’s up to the server to convert the dot count into something that the display
board can understand. A typical Mode line looks like:

Modeline "640x480a" 28 640 680 728 776 480 480 482 494

These ten values are required. In addition, you may specify modifiers at the end of the
line. The values are:

• A label for the resolution line. This must be enclosed in quotation marks, and is used
to refer to the line from other parts of the XF86Config file. Traditionally, the label
represents the resolution of the display mode, but it doesn’t hav e to. In this example,
the resolution really is 640x480, but the a at the end of the label is a clue that it’s an
alternative value.

• The clock frequency, 28 MHz in this example.

• The Horizontal Display End, which goes into the HDE register. This value and all
that follow are specified in dots. The server mangles them as the display board
requires and puts them in the corresponding CRTC register.

• The Start Horizontal Retrace (SHR) value.

• The End Horizontal Retrace (EHR) value.

• The Horizontal Total (HT) value.

• The Vertical Display End (VDE) value. This value and the three following are
specified in lines.

• The Start Vertical Retrace (SVR) value.

• The End Vertical Retrace (EVR) value.

• The Vertical Total (VT) value.

This is pretty dry stuff. To make it easier to understand, let’s look at how we would set a
typical VGA display with 640x480 pixels. Sure, you can find values for this setup in any
release of XFree86, but that doesn’t mean that they’re the optimum for your system. We
want a non-flicker display, which we’ll take to mean a vertical frequency of at least 72
Hz, and of course we don’t want interlace. Our monitor can handle any horizontal
frequency between 15 and 40 kHz: we want the least flicker, so we’ll aim for 40 kHz.

First, we need to create our lines. They contain 640 pixels, two porches and a sync pulse.
The only value we really know for sure is the number of pixels. How long should the
porches and the sync pulses be? Good monitor documentation should tell you, but most
monitor manufacturers don’t seem to believe in good documentation. The documented
values vary significantly from monitor to monitor, and even from mode to mode: they’re
not as critical as they look. Here are some typical values:

514 Chapter 28: XFree86 in depth

Horizontal sync pulse: 1 to 4 µs, front porch 0.18 to 2.1 µs, back porch 1.25 to 3.56 µs.

As we’ll see, the proof of these timing parameters is in the display. If the display looks
good, the parameters are OK. I don’t know of any way to damage the monitor purely by
modifying these parameters, but there are other good reasons to stick to this range. As a
rule of thumb, if you set each of the three values to 2 µs to start with, you won’t go too far
wrong. Alternatively, you could start with the NTSC standard values: the standard
specifies that the horizontal sync pulse lasts for 4.2 to 5.1 µs, the front porch must be at
least 1.27 µs. NTSC doesn’t define the length of the back porch—instead it defines the
total line blanking, which lasts for 8.06 to 10.3 µs. For our purposes, we can consider the
back porch to be the length of the total blanking minus the lengths of the front porch and
the sync pulse. If you take values somewhere in the middle of the ranges, you get a front
porch of 1.4 µs, a sync pulse of 4.5 µs, and total blanking 9 µs, which implies a back
porch of 9 - 1.4 - 4.5 = 3.1 µs.

For our example, let’s stick to 2 µs per value. We hav e a horizontal frequency of 40 kHz,
or 25 µs per line. After taking off our 6 µs for flyback control, we have only 19 µs left for
the display data. To get 640 pixels in this time, we need one pixel every 19 ÷ 640 µs, or
about 30 ns. This corresponds to a frequency of 33.6 MHz. This is our desired dot clock.

The next question is: do we have a dot clock of this frequency? Maybe. This should be
in your display board documentation, but I’ll take a bet that it’s not. Never mind, the
XFree86 server is clever enough to figure this out for itself. At the moment, let’s assume
that you do have a dot clock of 33 MHz.

If you don’t hav e a suitable clock, you’ll have to take the next lower clock frequency that you do
have: you can’t go any higher, since this example assumes the highest possible horizontal
frequency.

You now need to calculate four register values to define the horizontal lines:

• The first value is the Horizontal Display End, the number of pixels on a line. We
know this one: it’s 640.

• You calculate SHR by adding the number of dot clocks that elapse during the front
porch to the value of HDE. Recall that we decided on a front porch of 2 µs. In this
time, a 33 MHz clock counts 66 cycles. So we add 66, right? Wrong. Remember
that the VGA registers count in increments of 8 pixels, so we need to round the width
of the front porch to a multiple of 8. In this case, we round it to 64, so we set SHR to
640 + 64 = 704.

• The next value we need is EHR, which is SHR plus the width of the horizontal
retrace, again 64 dot clocks, so we set that to 704 + 64 = 768.

• The final horizontal value is HT. Again, we add the front porch—64 dot clocks—to
EHR and get 768 + 64 = 832.

At this point, our vestigial mode line looks like:

Modeline "640x480" 28 640 704 768 832

X configuration: the theory 515

Next, we need another four values to define the vertical scan. Again, of the four values
we need, we only know the number of lines. How many lines do we use for the porches
and the vertical sync? As we’ve seen, NTSC uses about 45 lines for the three combined,
but modern monitors can get by with much less. Again referring to the Multisync
manual, we get a front porch of betwwen 0.014 and 1.2 ms, a sync pulse of between 0.06
and 0.113 ms, and a back porch of between 0.54 and 1.88 ms. But how many lines is
that?

To figure that out, we need to know our real horizontal frequency. We were aiming at 40
kHz, but we made a couple of tradeoffs along the way. The real horizontal frequency is
the dot clock divided by the horizontal total, in this case 33 MHz ÷ 832, which gives us
39.66 kHz—not too bad. At that frequency, a line lasts 1÷39660 seconds, or just over 25
µs, so our front porch can range between ½ and 48 lines, our sync pulse between 2 and 5
lines, and the back porch between 10 and 75 lines. Do these timings make any sense?
No, they don’t—they’re just values that the monitor can accept.

To get the highest refresh rate, we can go for the lowest value in each case. It’s difficult
to specify a value of ½, so we’ll take a single line front porch. We’ll take two lines of
sync pulse and 10 lines of back porch. This gives us:

• VDE is 480.

• SVR is 481.

• EVR is 483.

• VT is 493.

Now our mode line is complete:

Modeline "640x480" 28 640 704 768 832 480 481 483 493

Now we can calculate our vertical frequency, which is the horizontal frequency divided
by the Vertical Total, or 39.66 ÷ 493 kHz, which is 80.4 Hz—that’s not bad either. By
comparison, if you use the default value compiled into the server, you get a horizontal
frequency of 31.5 kHz and a vertical frequency of only 60 Hz.

If you know the technical details of your monitor and display board, it really is that
simple. This method doesn’t require much thought, and it creates results that work.

Note that the resultant mode line may not work on other monitors. If you are using a
laptop that you want to connect to different monitors or overhead display units, don’t use
this method. Stick to the standard frequencies supplied by the X server. Many overhead
projectors understand only a very small number of frequencies, and the result of using a
tweaked mode line is frequently that you can’t synchronize with the display, or that it cuts
off a large part of the image.

516 Chapter 28: XFree86 in depth

XF86Config
The main configuration file for XFree86 is called XF86Config. It has had a long and
varied journey through the file system. At the time of writing, it’s located at
/usr/X11R6/lib/X11/XF86Config, but previously it has been put in /etc/X11/XF86Config,
/etc/XF86Config or /usr/X11R6/etc/X11/XF86Config, and the server still looks for it in
many of these places. If you’re upgrading a system, you should ensure that you don’t
have old configuration files in one of the alternative places.

As we saw on page 102, there are a couple of ways to automatically create an
XF86Config file. On that page we saw how to do it with xf86cfg. An alternative way is
to run the X server in configuration mode:

X -configure
XFree86 Version 4.2.0 / X Window System
(protocol Version 11, revision 0, vendor release 6600)
Release Date: 18 January 2002

If the server is older than 6-12 months, or if your card is
newer than the above date, look for a newer version before
reporting problems. (See http://www.XFree86.Org/)

Build Operating System: FreeBSD 5.0-CURRENT i386 [ELF]
Module Loader present
Markers: (--) probed, (**) from config file, (==) default setting,

(++) from command line, (!!) notice, (II) informational,
(WW) warning, (EE) error, (NI) not implemented, (??) unknown.

(==) Log file: "/var/log/XFree86.0.log", Time: Sat Apr 6 13:51:10 2002
List of video drivers:

atimisc
(the list is long, and will change; it’s omitted here)
(++) Using config file: "/root/XF86Config.new"

Your XF86Config file is /root/XF86Config.new

To test the server, run ’XFree86 -xf86config /root/XF86Config.new’

Note that X does not place the resultant configuration file in the default location. The
intention is that you should test it first and then move it to the final location when you’re
happy with it. As generated above, it’s good enough to run XFree86, but you’ll possibly
want to change it. For example, it only gives you a single resolution, the highest it can
find. In this section we’ll look at the configuration file in more detail, and how to change
it.

XF86Config is divided into several sections, as shown in Table 28-1. We’ll look at them
in the order they appear in the generated XF86Config file, which is not the same order as
in the man page.

XF86Config 517

Table 28-1: XF86Config sections

Section Description
ServerLayout Describes the overall layout of the X configuration. X can handle more

than one display card and monitor. This section is the key to the other
sections

Files Sets the default font and RGB paths.

ServerFlags Set some global options.

Module Describes the software modules to load for the configuration.

InputDevice Sets up keyboards, mice and other input devices.

Monitor Describes your monitor to the server.

Device Describes your video hardware to the server.

Screen Describes how to use the monitor and video hardware.

The server layout
The ServerLayout section describes the relationships between the individual hardware
components under the control of an X server. For typical hardware, X -configure
might generate:

Section "ServerLayout"
Identifier "XFree86 Configured"
Screen 0 "Screen0" 0 0
InputDevice "Mouse0" "CorePointer"
InputDevice "Keyboard0" "CoreKeyboard"

EndSection

This shows that the server has one screen and two input devices. The names Mouse0 and
Keyboard0 suggest that they’re a mouse and a keyboard, but any name is valid. These
entries are pointers to sections elsewhere in the file, which must contain definitions for
Screen0, Mouse0 and Keyboard0.

Normally you only have one screen, one mouse and one keyboard, so this section might
seem rather unnecessary. As we will see when we look at multiple monitor
configurations, it’s quite important to be able to describe these relationships.

The Files section
The Files section of the XF86Config file contains the path to the RGB database file,
which should never need to be changed, and the default font path. You may want to add
more font paths, and some ports do so: the FontPath lines in your XF86Config are
concatenated to form a search path. Ensure that each directory listed exists and is a valid
font directory.

518 Chapter 28: XFree86 in depth

The standard Files section looks like:

Section "Files"
RgbPath "/usr/X11R6/lib/X11/rgb"
ModulePath "/usr/X11R6/lib/modules"
FontPath "/usr/X11R6/lib/X11/fonts/misc/"
FontPath "/usr/X11R6/lib/X11/fonts/Speedo/"
FontPath "/usr/X11R6/lib/X11/fonts/Type1/"
FontPath "/usr/X11R6/lib/X11/fonts/CID/"
FontPath "/usr/X11R6/lib/X11/fonts/75dpi/"
FontPath "/usr/X11R6/lib/X11/fonts/100dpi/"

EndSection

If you are running a high-resolution display, this sequence may be sub-optimal. For
example, a 21" monitor running at 1600x1200 pixels has a visible display of
approximately 16" wide and 12" high, exactly 100 dpi (dots per inch, really pixels per
inch). As a result, you’ll probably be happier with the 100 dpi fonts. You can change
this by swapping the last two lines in the section:

FontPath "/usr/X11R6/lib/X11/fonts/100dpi/"
FontPath "/usr/X11R6/lib/X11/fonts/75dpi/"

EndSection

Don’t just remove the 75 dpi fonts: some fonts may be available only in the 75 dpi
directory.

Sometimes the server complains:

Can’t open default font ’fixed’

This is almost certainly the result of an invalid entry in your font path. Try running
mkfontdir in each directory if you are certain that each one is correct. The XF86Config
man page describes other parameters that may be in this section of the file.

The ServerFlags section
The ServerFlags section allows you to specify a number of global options. By default it
is not present, and you will probably not find any reason to set it. See the man page
XF86Config(5) for details of the options.

The Module section
The Module section describes binary modules that the server loads:

Section "Module"
Load "extmod"
Load "xie"
Load "pex5"
Load "glx"
Load "GLcore"
Load "dbe"
Load "record"
Load "type1"

EndSection

XF86Config 519

We won’t look at modules in more detail; see the XFree86 documentation.

The InputDevice section
The InputDevice section specifies each input device, typically mice and keyboards. Older
versions of XFree86 had separate Mouse and Keyboard sections to describe these details.
The default XF86Config looks something like this:

Section "InputDevice"
Identifier "Keyboard0"
Driver "keyboard"

EndSection

Section "InputDevice"
Identifier "Mouse0"
Driver "mouse"
Option "Protocol" "auto"
Option "Device" "/dev/mouse"

EndSection

There’s not much to be said for the keyboard. Previous versions of XFree86 allowed you
to set things like NumLock handling and repeat rate, but the former is no longer needed,
and the latter is easier to handle with the xset program.

Mice are still not as standardized as keyboards, so you still need a Protocol line and a
device name. The defaults shown here are correct for most modern mice; the mouse
driver can detect the mouse type correctly. If you’re using the mouse daemon, moused,
change this entry to the moused device, /dev/sysmouse.

If you’re using a serial mouse or one with only two buttons, and if you’re not using
moused, you need to change the device entries and specify the Emulate3Buttons
option. That’s all described in the man page, but in general it’s easier to use moused.

The Monitor section
Next comes the description of the monitor. Modern monitors can identify themselves to
the system. In that case, you get a section that looks like this:

Section "Monitor"
Identifier "Monitor0"
VendorName "IBM"
ModelName "P260"
HorizSync 30.0 - 121.0
VertRefresh 48.0 - 160.0

This tells the server that the monitor is an IBM P260, that it can handle horizontal
frequencies between 30 kHz and 121 kHz, and vertical frequencies between 48 Hz and
160 Hz. Less sophisticated monitors don’t supply this information, so you might end up
with an entry like this:

520 Chapter 28: XFree86 in depth

Section "Monitor"
Identifier "Monitor0"
VendorName "Monitor Vendor"
ModelName "Monitor Model"

EndSection

This may seem like no information at all, but in fact it does give the identifier. Before
you use it, you should add at least the horizontal and vertical frequency range, otherwise
the server assumes it’s a standard (and obsolete) VGA monitor capable of only 640x480
resolution.

This is also the place where you can add mode lines. For example, if you have created a
mode line as described in the first part of this chapter, you should add it here:

Section "Monitor"
Identifier "right"
VendorName "iiyama"
ModelName "8221T"
HorizSync 24.8 - 94.0
VertRefresh 50.0 - 160.0

ModeLine "640x480" 73 640 672 768 864 480 488 494 530
62 Hz!
ModeLine "800x600" 111 800 864 928 1088 600 604 610 640
143 Hz
ModeLine "1024x768" 165 1024 1056 1248 1440 768 771 781 802
96 Hz
ModeLine "1280x1024" 195 1280 1312 1440 1696 1024 1031 1046 1072 -hsync -vsync
76 Hz
ModeLine "1600x1200" 195 1600 1616 1808 2080 1200 1204 1207 1244 +hsync +vsync
56 Hz!
ModeLine "1920x1440" 200 1920 1947 2047 2396 1440 1441 1444 1483 -hsync +vsync
61 Hz
ModeLine "1920x1440" 220 1920 1947 2047 2448 1440 1441 1444 1483 -hsync +vsync

EndSection

It’s possible to have multiple mode lines for a single frequency, and this even makes
sense. The examples for 1920x1440 above hav e different pixel clocks. If you use this
monitor with a card with a pixel clock that only goes up to 200 MHz, the server chooses
the first mode line. If you use a card with up to 250 MHz pixel clock, it uses the second
and gets a better page refresh rate.

The X server has a number of built-in mode lines, so it’s quite possible to have a
configuration file with no mode lines at all. The names correspond to the resolutions, and
there can be multiple mode lines with the same name. The server chooses the mode line
with the highest frequency compatible with the hardware.

The Device section
The Device section describes the video display board:

Section "Device"
Available Driver options are:-
Values: <i>: integer, <f>: float, <bool>: "True"/"False",
<string>: "String", <freq>: "<f> Hz/kHz/MHz"
[arg]: arg optional
#Option "SWcursor" # [<bool>]
#Option "HWcursor" # [<bool>]

XF86Config 521

#Option "PciRetry" # [<bool>]
#Option "SyncOnGreen" # [<bool>]
#Option "NoAccel" # [<bool>]
#Option "ShowCache" # [<bool>]
#Option "Overlay" # [<str>]
#Option "MGASDRAM" # [<bool>]
#Option "ShadowFB" # [<bool>]
#Option "UseFBDev" # [<bool>]
#Option "ColorKey" # <i>
#Option "SetMclk" # <freq>
#Option "OverclockMem" # [<bool>]
#Option "VideoKey" # <i>
#Option "Rotate" # [<str>]
#Option "TexturedVideo" # [<bool>]
#Option "Crtc2Half" # [<bool>]
#Option "Crtc2Ram" # <i>
#Option "Int10" # [<bool>]
#Option "AGPMode" # <i>
#Option "DigitalScreen" # [<bool>]
#Option "TV" # [<bool>]
#Option "TVStandard" # [<str>]
#Option "CableType" # [<str>]
#Option "NoHal" # [<bool>]
#Option "SwappedHead" # [<bool>]
#Option "DRI" # [<bool>]
Identifier "Card0"
Driver "mga"
VendorName "Matrox"
BoardName "MGA G200 AGP"
BusID "PCI:1:0:0"

EndSection

This example shows a Matrox G200 AGP display board. It includes a number of options
that you can set by removing the comment character (#). Many of these options are
board dependent, and none of them are required. See the X documentation for more
details.

Note particularly the last line, BusID. This is a hardware-related address that tells the X
server where to find the display board. If you move the board to a different PCI slot, the
address will probably change, and you will need to re-run X -configure to find the new
bus ID.

If your display board is older, much of this information will not be available, and you’ll
have to add it yourself. Unlike older monitors, it’s hardly worth worrying about older
boards, though: modern boards have become extremely cheap, and they’re so much faster
than older boards that it’s not worth the trouble.

The Screen section
The final section is the Screen section, which describes the display on a monitor. The
default looks something like this:

Section "Screen"
Identifier "Screen0"
Device "Card0"
Monitor "Monitor0"
SubSection "Display"

Depth 1
EndSubSection
SubSection "Display"

522 Chapter 28: XFree86 in depth

Depth 4
EndSubSection
SubSection "Display"

Depth 8
EndSubSection
SubSection "Display"

Depth 15
EndSubSection
SubSection "Display"

Depth 16
EndSubSection
SubSection "Display"

Depth 24
EndSubSection

EndSection

The first three lines describe the relationship between the screen display, the video board
that creates it, and the monitor on which it is displayed. Next come a number of
subsections describing the possible bit depths that the screen may have. For each display
depth, you can specify which mode lines you wish to use. Modern display hardware has
plenty of memory, so you’ll probably not want to restrict the display depth. On the other
hand, you may want to have multiple mode lines. Your display card and monitor are
good enough to display 2048x1536 at 24 bits per pixel, but occasionally you’ll get images
(in badly designed web pages, for example) so miniscule that you’ll want to zoom in,
maybe going all the way back to 640x480 in extreme cases. You can toggle through the
available resolutions with the key combinations Ctrl-Alt-Numeric + and Ctrl-Alt-
Numeric -. You’re probably not interested in pixel depths lower than 640x480, so your
Screen section might look like:

Section "Screen"
Identifier "Screen0"
Device "Card0"
Monitor "Monitor0"
DefaultDepth 24
SubSection "Display"

Depth 24
Modes "2048x1536" "1600x1200" "1024x768" "640x480"

EndSubSection
EndSection

This section includes a DefaultDepth entry for the sake of example. In this case, it’s
not strictly needed, because there’s only one pixel depth. If there were more than one
Display subsection, it would tell xinit which depth to use by default.

XF86Config 523

Multiple monitors and servers
We’v e seen above that X provides for more than one monitor per server. If you have
multiple display cards and monitors, let the server generate the XF86Config file: it
generates a file that supports all identified devices. The resultant server layout section
might look like this:

Section "ServerLayout"
Identifier "XFree86 Configured"
Screen 0 "Screen0" 0 0
Screen 1 "Screen1" RightOf "Screen0"
Screen 2 "Screen2" RightOf "Screen1"
InputDevice "Mouse0" "CorePointer"
InputDevice "Keyboard0" "CoreKeyboard"

EndSection

The file will also have multiple monitor, device and screen sections. The server can’t
know about the real physical layout of the screen, of course, so you may have to change
the ordering of the screens. When you run the server without any other specifications, it
is assigned server number 0, so these screens will be numbered :0.0, :0.1 and :0.2.

Multiple servers
It’s also possible to run more than one X server on a single system, even if it only has a
single monitor. There can be some good reasons for this: you may share a system
amongst your family members, so each of them can have their own server. Alternatively,
you may have a laptop with a high-resolution display and need to do a presentation on
overhead projectors that can’t handle more than 1024x768 pixels. It’s not practical to
simply switch to a lower resolution, because the overall screen size doesn’t change, and
it’s difficult to avoid sliding the image around when you move the cursor.

For each server, you require one virtual terminal—see page 109 for more details. If
you’re using the same hardware, you can also use the same XF86Config file. The only
difference is in the way in which you start the server. For example, you could start three
X servers, one with the fvwm2 window manager, one with KDE and one with GNOME,
with the following script:

xinit &
xinit .xinitrc-kde -- :1 &
xinit .xinitrc-gnome -- :2 -xf86config XF86Config.1024x768 &

Due to different command line options, you must use xinit here, and not startx. The first
xinit starts a server with the default options: it reads its commands from .xinitrc, it has
the server number 0, and it reads its configuration from the default XF86Config file. The
second server reads its commands from .xinitrc-kde, it has the server number 1, and it
reads its configuration from the default XF86Config file. The third server reads its
commands from .xinitrc-gnome, it has the server number 2, and the configuration file is
XF86Config.1024x768. Assuming that you reserve virtual terminals /dev/ttyv7,
/dev/ttyv8 and /dev/ttyv9 for the servers, you can switch between them with the key
combinations Ctrl-Alt-F8, Ctrl-Alt-F9 and Ctrl-Alt-F10.

524 Chapter 28: XFree86 in depth

X in the network
X is a network protocol. So far we have looked at the server. The clients are the
individual programs, such as xterm, emacs or a web browser, and they don’t hav e to be
on the same machine. A special notation exists to address X servers and screens:

System name:server number.screen number

When looking at X client-server interaction, remember that the server is the software
component that manages the display. This means that you’re always sitting at the server,
not at the client. For example, if you want to start an xterm client on freebie and display
it on presto, you’ll be sitting at presto. To do this, you could type in, on presto,

$ ssh freebie xterm -ls -display presto:0 &

The flag -ls tells xterm that this is a login shell, which causes it to read in the startup
files.

For this to work, you must tell the X server to allow the connection. There are two things
to do:

• Use xhost to specify the names of the systems that have access:

$ xhost freebie presto bumble wait gw

This enables access from all the systems on our reference network, including the one
on which it is run. You don’t need to include your own system, which is enabled by
default, but if you do, you can use the same script on all systems on the network.

• xhost is not a very robust system, so by default startx starts X with the option
-nolisten tcp. This completely blocks access from other systems. If you want to
allow remote clients to access your X server, modify /usr/X11R6/bin/startx, which
contains the text:

listen_tcp="-nolisten tcp"

Change this line to read:

listen_tcp=

This enables remote connections the next time you start the server.

X in the networ k 525

Multiple monitors across multiple servers
We saw above that a server can handle multiple monitors, and a system can handle
multiple servers. One problem with multiple monitors is that most computers can only
handle a small number of display boards: a single AGP board and possibly a number of
PCI boards. But PCI boards are difficult to find nowadays, and they’re slower and have
less memory.

If you have a number of machines located physically next to each other, you have the
alternative of running X on each of them and controlling everything from one keyboard
and mouse. You do this with the x11/x2x port. For example: freebie, presto and bumble
have monitors next to each other, and presto has two monitors. From left to right they are
freebie:0.0, presto:0.0, presto:0.1 and bumble:0.0. The keyboard and mouse are
connected to presto. To incorporate freebie:0.0 and bumble:0.0 in the group, enter these
commands on presto:

$ DISPLAY=:0.0 x2x -west -to freebie:0 &
$ DISPLAY=:0.1 x2x -east -to bumble:0 &

After this, you can move to the other machines by moving the mouse in the
corresponding direction. It’s not possible to continue to a further machine, but it is
possible to connect in other directions (north and south) from each monitor on presto,
which in this case would allow connections to at least six other machines. Before that
limitation becomes a problem, you need to find space for all the monitors.

Stopping X
To stop X, press the key combination Ctrl-Alt-Backspace, which is deliberately chosen
to resemble the key combination Ctrl-Alt-Delete used to reboot the machine. Ctrl-Alt-
Backspace stops X and returns you to the virtual terminal in which you started it. If you
run from xdm, it redisplays a login screen.

(starting.mm), page 527

29
Starting and
stopping the

system

In this chapter:
• Star ting the system
• Things you can do

before booting
• What are you going

to boot?
• Running the ker nel
• Single-user mode
• Shutting down and

rebooting the system
• FreeBSD without

disks
• Networ k booting
• Disk substitutes

In this chapter:
• Star ting the system
• Things you can do

before booting
• What are you going

to boot?
• Running the ker nel
• Single-user mode
• Shutting down and

rebooting the system
• FreeBSD without

disks
• Networ k booting
• Disk substitutes

Before you can run FreeBSD, you need to start it up. That’s normally pretty
straightforward: you turn the machine on, a lot of things scroll off the screen, and about a
minute later you have a login: prompt or an X login window on the screen. Sometimes,
though, the process is of more interest. You hav e a number of options when booting, and
it’s also a source of a number of problems, so it pays to understand it. In this chapter
we’ll look at the following topics:

• In the next section, we’ll look at the startup process in more detail.

• On page 529 we’ll look at how to control the boot process.

• If something goes wrong, and the system doesn’t come up, those messages that
scrolled off the screen are very important. We’ll look at what they mean on page 529.

• It’s not so obvious that you need to adhere to a procedure when shutting down the
system. We’ll look at the hows and whys on page 541.

• There are a number of ways of starting the system for particular applications. On
page 542 we’ll look at how to run FreeBSD without a disk.

527

528 Chapter 29: Starting and stopping the system

Starting the system
When you power up the system, or when you reboot, a number of actions occur before
the system is up and running. Starting the system is usually called ‘‘bootstrapping,’’ after
the story of Baron von Munchhausen pulling himself up by his own bootstraps. The
following sequence describes the sequence on the PC architecture, but there are only
relatively minor differences on other platforms.

• First, the BIOS1 performs tests that check that the machine is working correctly and
determines the hardware configuration. This Power On Self Test or POST has
nothing to do with FreeBSD.

• Next, the BIOS bootstrap loads the Master Boot Record from the first sector of the
first disk on the system (C: in BIOS parlance) into memory and executes it. This
step is the same for all operating systems on PCs.

• It’s up to this bootstrap to decide which operating system to boot. The bootstrap in
the MBR may or may not be part of the FreeBSD system. FreeBSD can install two
different MBRs, as we saw on page 66. The standard MBR works without
intervention, while the boot manager gives you the choice of booting from any
partition on the disk.

• The FreeBSD bootstrap first loads the second-level bootstrap, BTX, from the next 15
sectors on disk and executes it.

• The second-level boot locates the third-level bootstrap, called loader, and loads it into
memory. loader is an intelligent bootstrap component that allows preloading of
multiple kernel components. See the man page loader(8) for more information. By
default, loader locates the kernel, the file /boot/kernel/kernel on the root file system,
and loads it into memory. You can interrupt the loader at this point, for example to
load different or additional files.

• The kernel performs its own tests to look for hardware it knows about. It’s quite
verbose about this, and prints messages about both the hardware it finds and the
hardware it doesn’t find. This operation is called probing. Most kernels are built to
recognize a large selection of hardware, so it’s normal to have more ‘‘not found’’
messages than ‘‘found’’ messages.

• After the probe, the kernel starts two processes. The first, process 0, is the swapper
and is responsible for emergency clearing of memory when the standard virtual
memory algorithms aren’t fast enough.

• Process 1 is called init. As the name suggests, it is responsible for starting up the
system and daemons. When coming up in the default multi-user mode, it spawns a
shell to execute the shell script /etc/rc.

1. More accurately, the system firmware. The firmware is called BIOS (Basic Input/Output System) on the i386
architecture, SRM on the Alpha architecture, and Open Firmware on a number of other architectures.

Star ting the system 529

• /etc/rc first reads in the description files /etc/defaults/rc.conf, which contains defaults
for a number of configuration variables, and /etc/rc.conf, which contains your
modifications to the defaults. It then proceeds to perform the steps necessary to bring
up the system, first starting virtual disk drivers, mounting swap space and checking
the file system integrity if necessary.

• When /etc/rc exits, init reads the file /etc/ttys and starts processes as determined
there. It spends the rest of its life looking after these processes.

Things you can do before booting
You can do a number of things before you boot the system:

• The most obvious thing to do is to decide what you’re going to boot. The boot loader
gives you the chance to load different operating systems or different FreeBSD kernels
and modules. We’ll look at that below.

• You can also set a number of options for the kernel loader, including specification of
hardware and software characteristics. We’ll look at that on page 532.

What are you going to boot?
If you have multiple operating systems on your system, you can use the boot manager
described on page 64, to choose which one to boot. For example, if you have two disks,
the first of which contains four partitions, the first stage of the boot looks something like
this:

F1: FreeBSD
F2: Windows
F3: Linux
F4: FreeBSD
F5: Drive 1

Default: F1

After 10 seconds, the boot manager attempts to load the bootstrap from the default
partition; you can choose any of the selections by pressing the corresponding function
key. If you press F5, you get a menu showing the partitions on the second disk, with F5
to return to the first disk.

If you choose to boot FreeBSD, the bootstrap loaders load, and you see something like:

/ this is a ‘‘twirling baton’’
BTX loader 1.00 BTX version is 1.01
BIOS drive A: is disk0
BIOS drive C: is disk1
BIOS drive D: is disk1
BIOS 639kB/130048kB available memory

530 Chapter 29: Starting and stopping the system

These messages are printed by BTX. If you’re loading from disk, the / character at the
end of the previous line keeps changing through -, \, and | before going back to / again,
giving the impression that the character is rotating. This display, called a twirling baton,
is your indication that the system hasn’t crashed and burned. It’s normal for it to take a
few seconds before the baton starts to twirl.

Next, loader prints its prompt:

FreeBSD/i386 bootstrap loader, Revision 0.8
(grog@freebie.example.com, Thu Jun 13 13:06:03 CST 2002)
Loading /boot/defaults/loader.conf

Hit [Enter] to boot immediately, or any other key for command prompt.
Booting [kernel] in 6 seconds... this counts down from 10 seconds

At this point, you would normally continue with the boot, either by pressing the Enter
key or just waiting the 10 seconds. We’ll see what happens then on page 533.

Sometimes you may want to change software or hardware characteristics. In this case,
you press the ‘‘any other key’’ (by tradition the space bar) and enter commands to the
loader.

Loader commands
There are two ways to communicate with the loader:

• A number of files in the directory /boot on the root file system tell the loader what to
do. Most are not intended to be changed, but you can create a file called
/boot/loader.conf, into which you can enter commands to override the commands in
/boot/defaults/loader.conf. We’ll look at this below.

• In addition, the file /boot/device.hints takes the place of many configuration file
entries and allows you to set hardware characteristics such as information about IRQ,
DMA, I/O address and other settings for the hardware. You can change these values
during booting.

The CD-ROM installation installs /boot/device.hints, but a kernel install does not.
You’ll find it in the conf directory for your architecture. For example,
/usr/src/sys/i386/conf includes the configuration file GENERIC and the correspond-
ing hints file GENERIC.hints. Install it like this:

cp /usr/src/sys/i386/conf/GENERIC.hints /boot/device.hints

The hints file contains entries of the following nature:

hint.sio.0.at="isa"
hint.sio.0.port="0x3F8"
hint.sio.0.flags="0x10"
hint.sio.0.irq="4"
hint.sio.1.at="isa"
hint.sio.1.port="0x2F8"
hint.sio.1.irq="3"
hint.sio.2.at="isa"

What are you going to boot? 531

hint.sio.2.disabled="1"
hint.sio.2.port="0x3E8"
hint.sio.2.irq="5"
hint.sio.3.at="isa"
hint.sio.3.disabled="1"
hint.sio.3.port="0x2E8"
hint.sio.3.irq="9"

These entries describe the serial port configuration. They replace the older method of
hard coding the information in the kernel. For example, the hints above contain the
configuration information contained in these lines of the Release 4 configuration file:

device sio0 at isa? port IO_COM1 flags 0x10 irq 4
device sio1 at isa? port IO_COM2 irq 3
device sio2 at isa? disable port IO_COM3 irq 5
device sio3 at isa? disable port IO_COM4 irq 9

The corresponding line in the Release 5 configuration file is:

device sio # 8250, 16[45]50 based serial ports

More importantly, though, this means that you don’t need to recompile the kernel if
you change the hardware addresses.

• You can enter commands directly to the command prompt.

When you hit the space bar, you get the following prompt:

Type ’?’ for a list of commands, ’help’ for more detailed help.
ok ?
Available commands:
reboot reboot the system
heap show heap usage
bcachestat get disk block cache stats
boot boot a file or loaded kernel
autoboot boot automatically after a delay
help detailed help
? list commands
show show variable(s)
set set a variable
unset unset a variable
more show contents of a file
lsdev list all devices
include read commands from a file
ls list files
load load a kernel or module
unload unload all modules
lsmod list loaded modules
pnpscan scan for PnP devices

The most important of these commands are set, show, load, unload and boot. We’ll
see some examples of their use in the following sections. Note, however, that if you have
accidentally hit the ‘‘any’’ key during boot and just want to continue with the boot, you
just have to enter boot.

532 Chapter 29: Starting and stopping the system

loader.conf
Much of the behaviour of the loader is controlled by entries in /boot/defaults/loader.conf.
You shouldn’t change this file, though: put changes in a file /boot/loader.conf, which may
not exist. There are a large number of possible entries; in /boot/defaults/loader.conf
you’ll see the default values, frequently commented out because the loader already knows
the defaults. Here are some of the more interesting ones:

kernel="kernel"

verbose_loading="NO" # Set to YES for verbose loader output

#autoboot_delay="10" # Delay in seconds before autobooting
#console="vidconsole" # Set the current console
#currdev="disk1s1a" # Set the current device
module_path="/boot/kernel;/boot/modules;/modules" # Set the module search path
#prompt="\${interpret}" # Set the command prompt
#root_disk_unit="0" # Force the root disk unit number
#rootdev="disk1s1a" # Set the root filesystem

• The kernel entry gives the name of the kernel, relative to the kernel directory
/boot/kernel. Sometimes it might be of interest to change this value, for example
when testing.

• console=vidconsole tells the loader where to output its messages. vidconsole is
short for video console; you can also select comconsole if you have a serial terminal
connected to a specified serial port.

• currdev specifies where to look for the root file system. If you have multiple BIOS
partitions on a disk, you can select the correct one with this value.

There are many more options to the loader; read the man page for more details.

Loading other modules at boot time
By default, loader loads only the kernel. That may not be what you want. You might
want to load a different kernel, or you may want to load a kld as well.

There are two ways to do this. If you only want to do this once, you can interrupt the
boot sequence by pressing the space bar, and tell loader what to do:

Booting [kernel] in 6 seconds... this counts down from 10 seconds
(space bar hit)
Type ’?’ for a list of commands, ’help’ for more detailed help.
ok unload not the kernel we wanted
OK load /boot/kernel.old/kernel load the old kernel
/boot/kernel.old/kernel text=0x3e474c data=0x52f00+0x81904 syms=[0x4+0x4cab0+0x4+0x5
b458]
OK load /boot/kernel.old/vinum.ko and the old vinum module
/boot/kernel.old/vinum.ko text=0x149a4 data=0xaf75c+0x164 syms=[0x4+0x11e0+0x4+0xcac]
ok boot then start the kernel
Copyright (c) 1992-2002 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994

The Regents of the University of California. All rights reserved.
FreeBSD 5.0-RELEASE #0: Sat 15 Feb 16:30:26 CST 2003

grog@monorchid.example.org:/usr/src/sys/i386/compile/BUMBLE
Preloaded elf kernel "/boot/kernel.old/kernel" at 0xc072a000.

What are you going to boot? 533

Preloaded elf module "/boot/kernel.old/vinum.ko" at 0xc072a0bc.
Timecounter "i8254" frequency 1193182 Hz
(etc)

This example shows two separate activities: one is changing the kernel from /boot/ker-
nel/kernel to /boot/kernel.old/kernel, and the other is loading the vinum kld. You don’t
need to reload the kernel to load the vinum module.

Automatic kld load
The method described above is cumbersome if you want to load the kld every time you
boot. In this case, it’s easier to add the following line to /boot/loader.conf :

vinum_load="YES"

To see what commands you can use, look in /boot/defaults/loader.conf, where you would
find all normal configuration entries commented out.

...
ccd_load="NO" # Concatenated disk driver
vinum_load="NO" # Concatenated/mirror/raid driver
md_load="NO" # Memory disk driver (vnode/swap/malloc)
...

Don’t change this file; it’s designed to be replaced on upgrade, and any changes would
get lost when you upgrade.

Running the kernel
The next step in the boot process is to run the kernel. This is what happens by default if
you do nothing at the Booting [kernel] prompt, or if you press Enter. If you have
interrupted the boot process, you continue with the command:

ok boot

The following example shows the output of booting an Abit BP6 dual processor
motherboard. This board also has four IDE controllers on board, and the system had two
SCSI host adapters connected to it.

The loader transfers control to the kernel it has preloaded. Messages from the kernel are
in high-intensity text (brighter than normal). This is the most common time to see them,
though they sometimes appear during normal machine operation. These messages also
get copied to the kernel message buffer, and you can retrieve the most recent messages
with the dmesg program. In the course of time, other messages may fill the buffer, and
you will no longer be able to find the boot messages with dmesg, so one of the final steps
in the startup saves the content of the boot messages in the file /var/run/dmesg.boot,
which should always contain the complete startup messages. In the case of laptops, the
message buffer normally does not get cleared on shutdown, not even if the power goes
down, so you may find logs for multiple boots.

534 Chapter 29: Starting and stopping the system

Once it has finished loading, the kernel prints some summary information and then calls
all configured drivers to examine the hardware configuration of the machine on which it
is running. This is called probing for the devices. If you have time, it’s a good idea to
confirm that it’s correct. Much of it appears so quickly that you can’t read it, but once the
boot is complete, you can examine it with the dmesg command. If something goes
wrong, it won’t scroll off the screen. The place where it stops is then of interest.

Under normal circumstances, we see something like:

Copyright (c) 1992-2002 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994

The Regents of the University of California. All rights reserved.
FreeBSD 5.0-RELEASE #0: Sat 15 Feb 16:30:26 CST 2003

grog@monorchid.example.org:/usr/src/sys/i386/compile/BUMBLE
Preloaded elf kernel "/boot/kernel/kernel" at 0xc0663000.

Here the kernel identifies itself with information about the release number, when and
where it was built, and where it was loaded from.

Timecounter "i8254" frequency 1193182 Hz
CPU: Pentium II/Pentium II Xeon/Celeron (467.73-MHz 686-class CPU)
Origin = "GenuineIntel" Id = 0x665 Stepping = 5
Features=0x183fbff<FPU,VME,DE,PSE,TSC,MSR,PAE,MCE,CX8,APIC,SEP,MTRR,PGE,MCA,CMOV,P

AT,PSE36,MMX,FXSR>
real memory = 134217728 (128 MB)
avail memory = 123465728 (117 MB)

The lines above identify the basic hardware. There is one time counter (some
motherboards have two), the CPU is a Celeron, Pentium II or Xeon, and it runs at 466
MHz. This information is relatively reliable. The real memory value is the size of RAM.
Some older systems reserve 1 kB of RAM in real mode, but this should not have any
effect on the value of real memory. Available memory is the memory available to users
after the kernel has been loaded and initialized.

On some older machines, the kernel reports only 16 MB although the system has more
memory. This is due to BIOS incompatibilities, and occurs surprisingly often on big-
name machines. To fix it, build a custom kernel that specifies the memory size
explicitly—see the description of the MAXMEM parameter, which is described in the
verbose configuration file /usr/src/sys/i386/conf/NOTES.

This machine is in fact a multiprocessor with two CPUs, so we see:

Programming 24 pins in IOAPIC #0
IOAPIC #0 intpin 2 -> irq 0
IOAPIC #0 intpin 16 -> irq 10
IOAPIC #0 intpin 17 -> irq 9
IOAPIC #0 intpin 18 -> irq 11
FreeBSD/SMP: Multiprocessor System Detected: 2 CPUs
cpu0 (BSP): apic id: 0, version: 0x00040011, at 0xfee00000
cpu1 (AP): apic id: 1, version: 0x00040011, at 0xfee00000
io0 (APIC): apic id: 2, version: 0x00170011, at 0xfec00000

Running the ker nel 535

The IOAPIC is the I/O Advanced Programmable Interrupt Controller used by SMP
machines only. It reassigns some interrupt requests. This information is provided in case
you need to debug the kernel. None of this appears for a normal machine.

Initializing GEOMetry subsystem
Pentium Pro MTRR support enabled
npx0: <math processor> on motherboard numeric coprocessor, on chip
npx0: INT 16 interface

The GEOMetry subsystem is a disk I/O system that was introduced in FreeBSD Release
5. This processor is a P6 class processor, so it has Memory Type Range Registers or
MTRRs, which are used to optimize memory usage.

Next we look at the other chips on the motherboard, starting with the so-called ‘‘chipset,’’
the processor support chips.

pcib0: <Intel 82443BX (440 BX) host to PCI bridge> at pcibus 0 on motherboard
pci0: <PCI bus> on pcib0
agp0: <Intel 82443BX (440 BX) host to PCI bridge> mem 0xe0000000-0xe3ffffff at devic
e 0.0 on pci0
pcib1: <PCIBIOS PCI-PCI bridge> at device 1.0 on pci0
pci1: <PCI bus> on pcib1

This motherboard has an Intel 82443 BX chipset with two PCI buses. Next we see some
of the devices on the motherboard:

pci1: <Matrox MGA G200 AGP graphics accelerator> at 0.0
isab0: <Intel 82371AB PCI to ISA bridge> at device 7.0 on pci0
isa0: <ISA bus> on isab0 ISA bus
atapci0: <Intel PIIX4 ATA33 controller> port 0xf000-0xf00f at device 7.1 on pci0
ata0: at 0x1f0 irq 14 on atapci0 primary IDE controller
ata1: at 0x170 irq 15 on atapci0 secondary IDE controller
uhci0: <Intel 82371AB/EB (PIIX4) USB controller> port 0xc000-0xc01f irq 10 at device
7.2 on pci0 USB controller
usb0: <Intel 82371AB/EB (PIIX4) USB controller> on uhci0 USB bus
usb0: USB revision 1.0
uhub0: Intel UHCI root hub, class 9/0, rev 1.00/1.00, addr 1
uhub0: 2 ports with 2 removable, self powered
Timecounter "PIIX" frequency 3579545 Hz
pci0: <bridge, PCI-unknown> at device 7.3 (no driver attached)

The system doesn’t know which devices are implemented internally in the chipset, which
are separate chips on the mother board, and which are on plug-in boards. So far it has
found the IDE controllers, but not the disks; it’ll look for them later.

Next we find two Symbios SCSI host adapters:

sym0: <875> port 0xc400-0xc4ff mem 0xec002000-0xec002fff,0xec003000-0xec0030ff irq 1
0 at device 9.0 on pci0
sym0: Symbios NVRAM, ID 7, Fast-20, SE, NO parity
sym0: open drain IRQ line driver, using on-chip SRAM
sym0: using LOAD/STORE-based firmware.
sym0: SCAN FOR LUNS disabled for targets 0.
sym1: <875> port 0xc800-0xc8ff mem 0xec001000-0xec001fff,0xec000000-0xec0000ff irq 9
at device 13.0 on pci0
sym1: No NVRAM, ID 7, Fast-20, SE, parity checking

536 Chapter 29: Starting and stopping the system

The first Symbios adapter is on IRQ 10. It is on ID 7, like most SCSI host adapters, and
it doesn’t support parity. The second board is on IRQ 9 and does support parity, but it
doesn’t hav e a BIOS. This is not a problem for FreeBSD, which doesn’t use the BIOS,
but if it were in the system by itself, the POST would not find it. In this case, the BIOS
on the other Symbios board does in fact find the second host adapter.

dc0: <Macronix 98715AEC-C 10/100BaseTX> port 0xe000-0xe0ff mem
0xe7800000-0xe78000ff irq 11 at device 11.0 on pci0
dc0: Ethernet address: 00:80:c6:f9:a6:c8
miibus0: <MII bus> on dc0
dcphy0: <Intel 21143 NWAY media interface> on miibus0
dcphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto

This is a Macronix Ethernet card with associated PHY interface at IRQ 11.

After that, we return to on-board peripherals, in this case two additional IDE controllers
and legacy ISA peripherals:

atapci1: <HighPoint HPT366 ATA66 controller> port 0xd800-0xd8ff,0xd400-0xd403,0xd000
-0xd007 irq 11 at device 19.0 on pci0
ata2: at 0xd000 on atapci1 Third IDE controller
atapci2: <HighPoint HPT366 ATA66 controller> port 0xe400-0xe4ff,0xe000-0xe003,0xdc00
-0xdc07 irq 11 at device 19.1 on pci0 Fourth IDE controller
ata3: at 0xdc00 on atapci2
orm0: <Option ROMs> at iomem 0xc0000-0xc7fff,0xc8000-0xc87ff on isa0
fdc0: ready for input in output Floppy controller
fdc0: cmd 3 failed at out byte 1 of 3

The floppy driver command failure here is caused by the lack of any floppy drive on this
machine.

atkbdc0: <Keyboard controller (i8042)> at port 0x60,0x64 on isa0
atkbd0: <AT Keyboard> flags 0x1 irq 1 on atkbdc0 keyboard
kbd0 at atkbd0
vga0: <Generic ISA VGA> at port 0x3c0-0x3df iomem 0xa0000-0xbffff on isa0
sc0: <System console> at flags 0x100 on isa0 system console
sc0: VGA <16 virtual consoles, flags=0x300>
sio0 at port 0x3f8-0x3ff irq 4 flags 0x10 on isa0 first serial port
sio0: type 16550A it’s a buffered UART
sio1 at port 0x2f8-0x2ff irq 3 on isa0 second serial port
sio1: type 16550A
sio2 not found at 0x3e8 no more serial I/O ports
sio3 not found at 0x2e8

UNIX starts counting device numbers from 0, whereas Microsoft starts counting from 1.
Devices /dev/sio0 through /dev/sio3 are known as COM1: through COM4: in the
Microsoft world.

ppc0: <Parallel port> at port 0x378-0x37f irq 7 on isa0 parallel port controller
ppc0: Generic chipset (NIBBLE-only) in COMPATIBLE mode
plip0: <PLIP network interface> on ppbus0
lpt0: <Printer> on ppbus0 line printer on parallel port
lpt0: Interrupt-driven port
ppi0: <Parallel I/O> on ppbus0 alternate I/O on the same port

Running the ker nel 537

Next, on this multiprocessor board, we get some SMP-specific messages. The system
tests the IO-APIC, which can sometimes cause problems, and then starts the second
processor:

APIC_IO: Testing 8254 interrupt delivery
APIC_IO: routing 8254 via IOAPIC #0 intpin 2
SMP: AP CPU #1 Launched!

Finally, the system detects the disks connected to this machine:

ad0: 19574MB <WDC WD205BA> [39770/16/63] at ata0-master UDMA33
ad4: 19574MB <WDC WD205BA> [39770/16/63] at ata0-master UDMA66
Waiting 15 seconds for SCSI devices to settle
(noperiph:sym0:0:-1:-1): SCSI BUS reset delivered.
da0 at sym1 bus 0 target 3 lun 0
da0: <SEAGATE ST15230W SUN4.2G 0738> Fixed Direct Access SCSI-2 device
da0: 20.000MB/s transfers (10.000MHz, offset 15, 16bit), Tagged Queueing Enabled
da0: 4095MB (8386733 512 byte sectors: 255H 63S/T 522C)
da1 at sym1 bus 0 target 0 lun 0
da1: <SEAGATE ST15230W SUN4.2G 0738> Fixed Direct Access SCSI-2 device
da1: 20.000MB/s transfers (10.000MHz, offset 15, 16bit), Tagged Queueing Enabled
da1: 4095MB (8386733 512 byte sectors: 255H 63S/T 522C)

Here, we have four disks, one each on the first and third IDE controllers, both as master,
and two on the second SCSI host adapter. There is nothing on the first host adapter.

Finally, the system starts Vinum and mounts the root file system and the swap partition:

Mounting root from ufs:/dev/ad0s1a
vinum: loaded
vinum: reading configuration from /dev/ad0s1h
vinum: updating configuration from /dev/ad4s2h
swapon: adding /dev/ad0s1b as swap device
swapon: /dev/vinum/swap: No such file or directory
Automatic reboot in progress...

At this point, the system is up and running, but it still needs to start some services. The
remaining messages come from processes, not from the kernel, so they are in normal
intensity.

add net default: gateway 223.147.37.5
Additional routing options: tcp extensions=NO TCP keepalive=YES.
routing daemons:.
Mounting NFS file systems.
additional daemons: syslogd
Doing additional network setup: portmap.
Starting final network daemons: rwhod.
setting ELF ldconfig path: /usr/lib /usr/lib/compat /usr/X11R6/lib /usr/local/lib
setting a.out ldconfig path: /usr/lib/aout /usr/lib/compat/aout /usr/X11R6/lib/aout
starting standard daemons: inetd cron
Initial rc.i386 initialization:.
rc.i386 configuring syscons: blank_time.
Local package initialization:.
Additional TCP options:.
Tue Apr 23 13:59:05 CST 2000

At this point, the kernel has finished probing, and it transfers control to the shell script
/etc/rc. From this point on the display is in normal intensity. /etc/rc first reads the

538 Chapter 29: Starting and stopping the system

configuration information in /etc/defaults/rc.conf and /etc/rc.conf (see page 552). Next,
it checks the consistency of the file systems. Normally you’ll see messages like this for
each file system in /etc/fstab:

/dev/da0s1a: FILESYSTEM CLEAN; SKIPPING CHECKS
/dev/da0s1a: clean, 6311 free (367 frags, 743 blocks, 0.9% fragmentation)
/dev/da0s1e: FILESYSTEM CLEAN; SKIPPING CHECKS
/dev/da0s1e: clean, 1577 files, 31178 used, 7813 free (629 frags, 898 blocks, 1.6% fr
agmentation)

If your system has crashed, however, either due to a software or hardware problem, or
because it was not shut down correctly, it will perform a file system check (fsck), which
can take quite a while, up to an hour on very big file systems. You’ll see something like:

WARNING: / was not properly dismounted
/dev/da0s1a: 6311 free (367 frags, 743 blocks, 0.9% fragmentation)

On a large file system, fsck can take a long time to complete, up to several hours in
extreme cases. By default, the system does not need to wait for it to terminate; the fsck
continues in the background. This is a relatively new feature in FreeBSD, so you can turn
it off in case you have problems with it. See page 554 for more details.

Next, /etc/rc invokes the first of three network start invocations. This one initializes the
interfaces, sets the routes and starts the firewall if necessary:

Doing initial network setup: hostname.
dc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

inet 223.147.37.81 netmask 0xffffff00 broadcast 223.147.37.255
inet6 fe80::280:c6ff:fef9:a6c8%dc0 prefixlen 64 scopeid 0x1
ether 00:80:c6:f9:a6:c8
media: autoselect (100baseTX <full-duplex>) status: active
supported media: autoselect 100baseTX <full-duplex> 100baseTX 10baseT/UTP <f

ull-duplex> 10baseT/UTP 100baseTX <hw-loopback> none
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384

inet 127.0.0.1 netmask 0xff000000

add net default: gateway 223.147.37.5
Additional routing options:.
routing daemons:.

In this example, there were no additional routing options and no routing daemons. The
messages accordingly have nothing between the character : and the final period. You’ll
see this relatively frequently.

Next, /etc/rc mounts the network file systems, cleans up /var/run and then starts
syslogd:

Mounting NFS file systems.
Additional daemons: syslogd.

Then it checks if we have a core dump. If so, it tries to save it to /var/crash.

Running the ker nel 539

checking for core dump...savecore: no core dump

Saving the core dump may fail if there isn’t enough space in /var/crash. If this happens,
you can clean up and save the dump later, as long as you haven’t used enough swap space
to overwrite the dump.

Next comes the second pass of the network startup, which starts our choice of named,
ntpdate, ntpd, timed, portmap, ypserv, rpc.ypxfrd, rpc.yppasswdd, ypbind, ypset,
keyserv and rpc.ypupdated:

Doing additional network setup: named xntpd portmap.
starting. named 8.1.2 Sun May 9 13:04:13 CST 1999 grog@freebie.example.org:/usr
/obj/usr.sbin/named
master zone "example.org" (IN) loaded (serial 1997010902)
master zone "37.147.223.in-addr.arpa" (IN) loaded (serial 1996110801)
listening on [223.147.37.149].53 (ep0)
listening on [127.0.0.1].53 (lo0)
Forwarding source address is [0.0.0.0].1063
Ready to answer queries.

With the exception of the first line, all the messages come from named. They may come
in the middle of the first line, rather than waiting for the end of the line.

Next, /etc/rc enables quotas if asked, and then runs the third network pass, which starts
our choice of mountd, nfsd, rpc.lockd, rpc.statd, nfsiod, amd, rwhod and kerberos:

Starting final network daemons: mountd nfsd rpc.statd nfsiod rwhod.

Now we’re almost done. /etc/rc rebuilds a couple of internal databases (for use by the ps
command and some others), then it sets the default paths for ldconfig:

setting ELF ldconfig path: /usr/lib /usr/lib/compat /usr/X11R6/lib /usr/local/lib
setting a.out ldconfig path: /usr/lib/aout /usr/lib/compat/aout
/usr/X11R6/lib/aout
/usr/local/lib/aout

Next, it starts your choice of inetd, cron, printer, sendmail and usbd:

starting standard daemons: inetd cron sendmail.

The last thing that /etc/rc does is to check for other startup files. These could be in the
files specified in the variable local_startup, or in the file /etc/rc.local. In our case,
there are none, so all we see is:

Local package initialization:.

Finally, we’re done. /etc/rc stops, and init processes /etc/ttys, which starts getty
processes on specified terminals. On the console, we see:

540 Chapter 29: Starting and stopping the system

Mon May 13 13:52:00 CST 2002

FreeBSD (freebie.example.org) (ttyv0)

login:

At this point, we’re at the beginning of Chapter 7 (page 111).

Single-user mode
Sometimes it’s inconvenient that multiple users can access the system. For example, if
you’re repartitioning a disk, you don’t want other people walking all over the disk while
you’re doing so. Even if you’re the only user on the system, daemons may be doing
things in the background. To avoid this problem, you can stop the boot process before
most of the daemons have been started and enter single-user mode. To do this, set the
boot_single variable, or specify the -s flag at boot time:

ok boot -s

As soon as the device probes have been completed, the system startup is interrupted, and
you are prompted for a shell. Only the root file system is accessible, and it is mounted
read-only. The reason for this is that the file system may be damaged and require repair
before you can write to it. If you do need to write to the root file system, you should first
check the consistency of the file system with fsck, after which you can mount it with the
-u (update) option. For example,

npx0 on motherboard
npx0: INT 16 interface end of the probes (high intensity display)
Enter pathname of shell or RETURN for sh: hit Enter
erase ˆH, kill ˆU, intr ˆC
fsck -y /dev/ad0s1a check the integrity of the root file system
** /dev/ad0s1a
** Last Mounted on /
** Root file system
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
1064 files, 8190 used, 6913 free (61 frags, 1713 blocks, 0.4% fragmentation)
mount -u / remount root file system read/write
mount /usr mount any other file systems you need

To leave single-user mode and enter multi-user mode, just enter Ctrl-D:

ˆD
Skipping file system checks...
(the rest of the boot sequence)

System V and Linux have the concept of run levels, which are controlled by init. Single-
user mode corresponds to run level 1 or S, and multi-user mode corresponds roughly to
System V run level 3 or Linux run level 4. Nothing corresponds with the other System V
run levels, in particular run level 2, which starts a System V system without networking.

Single-user mode 541

Networking is such an integral part of FreeBSD that this is just not practicable. FreeBSD
init now understands a syntax similar to the System V init. Table 29-1 shows the
supported levels. For example, to read in the /etc/ttys file, you could enter:

init q

Table 29-1: init levels

Level Signal Action

0 SIGUSR2 Halt and turn the power off
1 SIGTERM Go to single-user mode
6 SIGINT Reboot the machine
c SIGTSTP Block further logins
q SIGHUP Rescan the ttys(5) file

You can also enter single-user mode from a running FreeBSD system with the shutdown
command, which we’ll look at in the next section.

Password protecting single-user mode
If you run a secure environment, you could be concerned about the fact that you can start
up in single-user mode without entering a password. That’s the default—normally, if
somebody can access your system console, a password is no longer much use, and it can
be a nuisance—but you can change it. Find this entry in /etc/ttys, and change the word
secure to insecure:

If you want to be asked for password, change "secure" to "insecure" here
console none unknown off insecure

If you do this, you will be in real trouble if you forget the root password.

Shutting down and rebooting the system
FreeBSD uses a number of sophisticated techniques to achieve its high performance. In
particular, when you write data to a disk, the system doesn’t put it on the disk
immediately: it waits for more data to arrive, which reduces the number of disk accesses
by up to several orders of magnitude and thus improves performance dramatically.

The result of turning power off before the data is written is equally dramatic. You may
just lose the data, but if the data is information on a change in file system structure, your
file system will be damaged. To check for this, the system runs a program called fsck
(File System Check) at startup. fsck can repair minor damage, but it’s obviously a better
idea to avoid damage by ensuring that the system is shut down in an orderly way.

542 Chapter 29: Starting and stopping the system

Never stop your machine by just turning off the power. The
results could be devastating.

The correct way to shut a system down is with the shutdown command. To quote the
man page shutdown(8):

Shutdown provides an automated shutdown procedure for super-users to nicely notify users
when the system is shutting down, saving them from system administrators, hackers, and gurus,
who would otherwise not bother with such niceties.

This command has a number of useful options:

• Use the -r option to reboot the computer. You sometimes need to do this, for
example after installing a new kernel.

• Use the -h option to stop the machine. This isn’t the default.

• Without an option, shutdown attempts to put the machine in single-user mode. This
doesn’t always work as well as booting in single-user mode.

• shutdown requires a time parameter to tell it when to actually perform the shutdown.
This is useful in a multi-user environment, but normally you’ll want to shut down
immediately, so shutdown understands the keyword now.

In the normal case, where you want to stop the machine immediately so you can turn the
power off, you type:

shutdown -h now
Feb 4 12:38:36 freebie shutdown: halt by grog:
Feb 4 12:38:39 freebie syslogd: exiting on signal 15
syncing disks... done
The operating system has halted.
Please press any key to reboot.

Be sure to wait for this message before you turn off the power.

FreeBSD without disks
Disks are getting much cheaper and their capacity is continually increasing, so it’s easy to
think that there would never be a reason to want to run FreeBSD without a disk at all.
Still, there are reasons:

• Disks are unreliable. For a machine that you want to keep running for a long time,
the most likely hardware failure is a disk failure.

• Disks are noisy. There are places where you might not want the noise.

• Disks are sensitive. You may not want to place them in some environments.

• You may find systems administration easier if all the configuration files are in one
place.

FreeBSD without disks 543

• The ‘‘sweet spot’’ for hard disk prices, the place where you get the most storage for
your dollar, is currently around 80 GB, about 10 times what it was five years before.
You may not want that much disk space for any one machine, but for a group, it
might make more sense to have a disk for the whole group on one machine.

There are a number of ways to run a system without a disk. You can replace the disk with
something else, such as a flash card, floppy disk or CD-ROM drive, or you can access a
remote disk via a network. We’ll consider network booting in the following section, and
we’ll look at the disk replacement strategy on page 549.

Network booting
Network booting is not a new idea. It was the original reason for Sun’s Network File
System, which we looked at in Chapters 24 and 25. Nowadays people normally use NFS
for additional shared file systems; in the case of net booting, you mount your own private
NFS file system as your root file system. Clearly, the first thing you need to do is to
create this file system.

Next, you need to find a way to boot the system. There are a few possibilities here:

• You can boot a minimal system from floppy disk or CD-ROM and use this to mount
the file systems remotely. This is different from running the system from floppy or
CD-ROM: in this case, the disk device serves effectively as a bootstrap, and the
operating system is located elsewhere.

• You can create a boot PROM for your network card and use that to boot.

• You can use PXE if your card supports it.

Whichever method you use, you need to set up a network interface very early. In Chapter
17 we saw that the network setup is part of the system initialization, and that the
configuration is stored in /etc/rc.conf. For a network boot, the network must be running
before the kernel can be loaded, so that method won’t work here. Instead, we use DHCP,
which we looked at on page 302. We could also use the bootpd daemon, but it’s more
limited, so it’s better to use DHCP.

If you use floppy or CD-ROM, you could theoretically load the bootstrap from that
device. This isn’t the same as the alternative we’ll see on page 549, where we load the
kernel from floppy or CD: here we only load the bootstrap and then load the kernel from
the network. This minor difference has significant implications on the ease of system
administration.

The next step is to actually transfer the data. We do this with TFTP, the Trivial File
Tr ansfer Protocol. As the name suggests, TFTP is a relatively simple replacement for
FTP. In particular, it knows almost nothing about security. If you use TFTP, make sure
that it can’t be accessed from outside your network, for example by using a firewall. The
default firewall rules block TFTP.

544 Chapter 29: Starting and stopping the system

In the following sections we’ll look at the example of setting up bumble.example.org as a
diskless machine.

Setting up the file systems
There are a number of ways to put the files on the NFS server:

• You might copy the files in the root and /usr file systems of the server machine.

• You could install FreeBSD on a separate disk and NFS mount it where the remote
system can access it. By itself, this doesn’t hav e much of an advantage over having a
local disk on the machine, but it’s possible to install a number of systems on a single
disk and have different machines access the different installations.

• You could combine those two methods and copy a freshly installed system to a file
system where you need it.

We’ll look at refining this technique after the system is up and running.

Building a diskless kernel
You still need to build a special kernel for diskless workstations. The following entries in
the configuration file are relevant:

Kernel BOOTP support

options BOOTP # Use BOOTP to obtain IP address/hostname
options BOOTP_NFSROOT # NFS mount root filesystem using BOOTP info
options BOOTP_NFSV3 # Use NFS v3 to NFS mount root
options BOOTP_COMPAT # Workaround for broken bootp daemons.
options BOOTP_WIRED_TO=fxp0 # Use interface fxp0 for BOOTP

Only the first two are required. If you use BOOTP_WIRED_TO, make sure that the interface
name matches the network card you are using.

Build the kernel, as described on page 617. To install, you need to set the DESTDIR
variable to specify the directory in which you want to install the kernel:

make install DESTDIR=/src/nodisk/bumble

Configuring TFTP
Next we need to set up TFTP to deliver the kernel to the system. The first question is
whether the firmware on the Ethernet card can load the kernel directly or not. Some boot
PROMs run in 16 bit 8086 mode, which limits their addressing capability to 640 kB.
That’s too small for any FreeBSD kernel, and if you try to load the kernel directly you’ll
get a message like this:

File transfer error: Image file too large for low memory.

In this case, you’ll need to load a loader, such as pxeboot.

Networ k booting 545

As a minor concession to security, the tftpd daemon refuses to access files outside its
data directory hierarchy, which by convention is called /tftpboot. You can use symbolic
links, however. It makes more sense to have the kernel in the same place as on machines
with disks, namely in /boot/kernel/kernel on the root file system, so we create symbolic
links:

mkdir /tftpboot
ln -s /src/nodisk/bumble/boot/kernel/kernel /tftpboot/kernel.bumble
ln -s /boot/pxeboot /tftpboot/pxeboot

We also need to ensure that we can start the TFTP daemon, tftpd. Unless you’re
constantly booting, there’s no need to have it running constantly: just enable it in
/etc/inetd.conf, which has the following entries in the distribution file:

#tftp dgram udp wait root /usr/libexec/tftpd tftpd -s /tftpboot
#tftp dgram udp6 wait root /usr/libexec/tftpd tftpd -s /tftpboot

These are entries for IPv4 and IPv6 respectively. We enable tftpd by uncommenting the
first line (removing the # character) and sending a HUP signal to inetd:

killall -1 inetd send a SIGHUP

Configuring DHCP
We already looked at dhcpd’s configuration file /usr/local/etc/dhcpd.conf on page 302,
In addition to the information we looked at there, we need to know what file to load,
which system to load it from, and where the root file system is located. For our diskless
system bumble we might add the text in bold to the configuration we saw on page 303:

subnet 223.147.37.0 netmask 255.255.255.0 {
range 223.147.37.90 223.147.37.110;
option domain-name-servers freebie.example.com, presto.example.com;
option domain-name "example.com";
option routers gw.example.com;
option subnet-mask 255.255.255.0;
option broadcast-address 223.147.37.255;
default-lease-time 86400;
max-lease-time 259200;
host sydney {
hardware ethernet 0:50:da:cf:7:35;

}

host bumble {
hardware ethernet 0:50:da:cf:17:d3;
next-server presto.example.com; only if on a different machine
filename "/tftpboot/bumble/kernel.bumble"; for direct booting
filename "/tftpboot/pxeboot"; for PXE
option root-path 223.147.37.1:/src/nodisk/bumble;

}
}

546 Chapter 29: Starting and stopping the system

There are a few things to note here:

• The next-server line tells where the TFTP server is located. If it’s the same as the
machine running the DHCP server, you don’t need this specification.

• As we’ve seen, hardware restrictions may make it impossible to load the kernel
directly. In this case you need to load a loader. The only one that FreeBSD currently
supplies is pxeboot.1 Choose one of the two filename lines.

• You hav e to specify the root path as an IP address, because no name services are
available when the root file system is mounted.

Other Ethernet bootstraps
If your Ethernet card doesn’t hav e a boot ROM, you can make one with the net/etherboot
port, or you can copy the necessary information to a floppy disk or CD-R and use that to
start the bootstrap. In either case, you first build the port and then copy the data to your
selected medium. For example, to create a boot disk for a Compex RL2000 card, a 10
Mb/s PCI NE-2000 clone, you first look up the card in /usr/ports/net/ether-
boot/work/etherboot-5.0.5/src/NIC, where you read:

Compex RL2000
compexrl2000 ns8390 0x11f6,0x1401

This information is mainly for the build process; you just need to know the
compexrl2000, which is the name of the driver.

cd /usr/ports/net/etherboot
make all
cd work/ether*/src
cat bin/boot1a.bin bin32/compexrl2000.lzrom > /dev/fd0

bin/boot1a.bin is a disk bootstrap intended to load and start compexrl2000.lzrom. You
can also put compexrl2000.lzrom in an EPROM. This requires a little more care, and the
information is subject to change. You can find detailed information about how to proceed
at the web site http://etherboot.sourceforge.net/doc/html/documentation.html.

etherboot uses NFS, not TFTP. As a result, things change: you can use absolute path
names, and you can’t use symbolic links. An entry in dhcpd.conf for this method might
look like this:

host bumble {
hardware ethernet 00:80:48:e6:a0:61;
filename "/src/nodisk/bumble/boot/kernel/kernel";
fixed-address bumble.example.org;
option root-path "192.109.197.82:/src/nodisk/bumble";

}

When booting in this manner, you don’t see any boot messages. The boot loader outputs
several screens full of periods, each indicating a downloaded block. It finishes like this:

1. See http://www.freebsd.org/doc/en_US.ISO8859-1/articles/pxe/index.html for documentation for setting up
pxeboot on FreeBSD.

Networ k booting 547

................................done

.

After that, nothing appears on the screen for quite some time. In fact, the boot is
proceeding normally, and the next thing you see is a login prompt.

Configuring the machine
Setting up a diskless machine is not too difficult, but there are some gotchas:

• Currently, locking across NFS does not work properly. As a result, you may see
messages like this:

Dec 11 14:18:50 bumble sm-mta[141]: NOQUEUE: SYSERR(root): cannot flock(/var/run/
sendmail.pid, fd=6, type=2, omode=40001, euid=0): Operation not supported

One solution to this problem is to mount /var as an MD (memory) file system. This
is what currently happens by default, though it’s subject to change: at startup, when
the system detects that it is running diskless (via the sysctl vfs.nfs.disk-
less_valid), it invokes the configuration file /etc/rc.diskless1. This file in turn
causes the file /etc/rc.diskless2 to be invoked later in the startup procedure. Each of
these files adds an MD file system. In the course of time, this will be phased out and
replaced by the traditional configuration via /etc/fstab, but at the moment this file has
no provision for creating MD file systems.

You should probably look at these files carefully: they may need some tailoring to
your requirements.

• It is currently not possible to add swap on an NFS file system. swapon (usually
invoked from the startup scripts) reports, incorrectly:

Dec 11 14:18:46 bumble savecore: 192.109.197.82:/src/nodisk/swap/bumble: No such
file or directory

This, too, will change; in the meantime, it is possible to mount swap on files, even if
they are NFS mounted, but not on the NFS file system itself. This means that the first
of the following entries in /etc/fstab will not work, but the second will:

192.109.197.82:/src/nodisk/swap/bumble none swap sw 0 0
/src/nodisk/swap/bumble none swap sw 0 0
echunga:/src /src nfs rw 0 0

The reason here is the third line: /src/nodisk/swap/bumble is NFS mounted, so this is
a swap-to-file situation. For this to work, you may have to add the following line at
the end of your /etc/rc.diskless2:

swapon -a

548 Chapter 29: Starting and stopping the system

This is because the standard system startup mounts swap before mounting additional
NFS file systems. If you place the swap file on the root file system, it will still work,
but frequently you will want the root file system to be read-only to be able to share it
between several machines.

• If the machine panics, it’s not possible to take a dump, because you have no disk.
The only alternative would be a kernel debugger.

Sharing system files between multiple machines
In many cases, you may have a number of machines that you want to run diskless. If you
have enough disk (one image for each machine), you don’t hav e anything to worry about,
but often it may be attractive to share the system files between them. There are a lot of
things to consider here:

• Obviously, any changeable data specific to a system can’t be shared.

• To ensure that things don’t change, you should mount shared resources read-only.

• Refer to Table 32-1 on page 594 for an overview of FreeBSD installed directories.
Of these directories, only /etc and /usr/local/etc must be specific for a particular
system, though there are some other issues:

• Installing ports, for example, will install ports for all systems. That’s not
necessarily a bad thing, but if you have two systems both installing software in
the same directory, you can expect conflicts. It’s better to designate one system,
possibly the host with the disk, to perform these functions.

• If you share /boot and make some configuration changes, the options will apply
to all systems.

• When building system software, you can use the same /usr/src and /usr/obj
directories as long as all systems maintain the same release of FreeBSD. You can
ev en hav e different kernels: each kernel build directory carries the name of the
configuration file, which by convention matches the name of the system.

The big problem is /etc. In particular, /etc/rc.conf contains information like the system
name. One way to handle this is to have a separate /etc directory for each system. This
may seem reasonable, because /etc is only about 1.5 MB in size. In fact, this implies
mounting the entire root file system with the other top-level directories, and that means
more like 60 MB.

Networ k booting 549

Disk substitutes
The other alternative to network booting is to find a local substitute for the disk. This is
obviously the only alternative for a stand-alone machine. There are a number of
alternatives:

• For really small systems, you can use PicoBSD, a special small version of FreeBSD
that fits on a single floppy disk. It requires a fair amount of memory as RAM disk,
and obviously it’s very limited.

PicoBSD is good for some special applications. As the FreeBSD kernel grows, it’s
becoming more and more difficult to get even the kernel onto a single floppy, let
alone any application software. Still, you can find a number of different configura-
tions in the source tree in /usr/src/release/picobsd. Be prepared for some serious
configuration work.

• Alternatively, you can boot from CD-R or CD-ROM. In this case, you can have up to
700 MB of data, enough for a number of applications. It’s possible to run programs
directly from the CD, but there’s little advantage to having files on CD instead of on
disk. The most likely application for this alternative is for systems where the
reliability of rotating media is insufficient, where the CD is used only for booting,
and after that the system runs from RAM disk.

• Yet another alternative is Flash memory, often abbreviated simply as Flash, which we
looked at in Chapter 8, on page 159. Flash is available in sizes up to several hundred
megabytes, and Compact Flash cards look like disks to their interface. They don’t fit
IDE connectors, but adapters are available.

Flash memory is intended mainly for reading. It is much slower to write than to read,
and it can only take a certain number of write cycles before it fails. Clearly it’s a
candidate for read-only file systems.

(configfiles.mm), page 551

30
FreeBSD

configuration
files

In this chapter:
• /etc/rc.conf
• Files you need to

change
• Files you might need

to change
• Files you should not

change
• Obsolete

configuration files

In this chapter:
• /etc/rc.conf
• Files you need to

change
• Files you might need

to change
• Files you should not

change
• Obsolete

configuration files

One of the outstanding things about UNIX is that all system configuration information is
stored in text files, usually in the directory /etc or its subdirectories. Some people
consider this method primitive by comparison with a flashy GUI configuration editor or a
‘‘registry,’’ but it has significant advantages. In particular, you see the exact system
configuration. With a GUI editor, the real configuration is usually stored in a format that
you can’t read, and even when you can, it’s undocumented. Also, you can see more of
the configuration at a time: a GUI editor usually presents you with only small parts of the
configuration, and it’s difficult to see the relationships (‘‘standing outside and looking in
through a window’’).

In the Microsoft world, one of the most common methods of problem resolution is to
reinstall the system. This is a declaration of bankruptcy: it’s very slow, you’re liable to
cause other problems on the way, and you never find out what the problem was. If you
have problems with your FreeBSD system configuration, don’t reinstall the system. Take
a look at the configuration files, and there’s a good chance that you’ll find the problem
there.

Many configuration files are the same across all versions of UNIX. This chapter touches
on them briefly, but in many case you can get additional information in books such as the
UNIX System Administration Handbook, by Evi Nemeth, Garth Snyder, Scott Seebass,
and Trent R. Hein. In all cases, you can get more information from section 5 of the man

551

552 Chapter 30: FreeBSD configuration files

pages.

In the following section, we’ll first look at /etc/rc.conf, the main configuration file. We’ll
look at the remaining configuration files on page 566.

/etc/rc.conf
/etc/rc.conf is the main system configuration file. In older releases of FreeBSD, this file
was called /etc/sysconfig.

/etc/rc.conf is a shell script that is intended to be the one file that defines the
configuration of your system—that is to say, what the system needs to do when it starts
up. It’s not quite that simple, but nearly all site-dependent information is stored here.
We’ll walk through the version that was current at the time of writing. The files will
change as time goes on, but most of the information will remain relevant.

/etc/rc.conf is completely your work. When you install the system, there is no such file:
you create it, usually implicitly with the aid of sysinstall. The system supplies a script
/etc/defaults/rc.conf that contains default values for everything you might put in
/etc/rc.conf, and which the other configuration files read to get their definitions. When
the system starts, it first reads /etc/defaults/rc.conf. Commands at the end of this file
check for the existence of the file /etc/rc.conf and read it in if they find it, so that the
definitions in /etc/rc.conf override the defaults in /etc/defaults/rc.conf. This makes it
easier to upgrade: just change the file with the defaults, and leave the site-specific
configuration alone. You may still need to change some things, but it’ll be a lot easier.

In this section we’ll walk through /etc/defaults/rc.conf. As we do, we’ll build up two
different /etc/rc.conf files, one for a server and one for a laptop connected with an
802.11b wireless card. To avoid too much confusion, I show the text that goes into
/etc/rc.conf in constant width bold font, whereas the text in /etc/defaults/rc.conf is
in constant width font.

#!/bin/sh
#
This is rc.conf - a file full of useful variables that you can set
to change the default startup behavior of your system. You should
not edit this file! Put any overrides into one of the ${rc_conf_files}
instead and you will be able to update these defaults later without
spamming your local configuration information.
#
The ${rc_conf_files} files should only contain values which override
values set in this file. This eases the upgrade path when defaults
are changed and new features are added.
#
All arguments must be in double or single quotes.
#
$FreeBSD: src/etc/defaults/rc.conf,v 1.159 2002/09/05 20:14:40 gordon Exp $

The claim that all arguments must be in double or single quotes is incorrect. Both this
file and /etc/rc.conf are Bourne shell scripts, and you only need quotes if the values you
include contain spaces. It’s a good idea to stick to this convention, though, in case the

/etc/rc.conf 553

representation changes.

Note the version information on the previous line (1.159). Your /etc/defaults/rc.conf will
almost certainly have a different revision. If you have a CVS repository on line (see
Chapter 31), you can see what is changed with the following commands:

$ cd /usr/src/etc/defaults
$ cvs diff -wu -r1.159 rc.conf

Continuing,

##
Important initial Boot-time options
##
rc_ng="YES" # Set to NO to disable new-style rc scripts.
rc_info="YES" # Enables display of informational messages at boot.
rcshutdown_timeout="30" # Seconds to wait before terminating rc.shutdown

FreeBSD Release 5 has a new method of system startup, called RCng (run commands,
next generation). This method was originally introduced in NetBSD. Don’t change these
values unless you know exactly what you are doing. If you make a mistake, you may find
it impossible to start the system.

swapfile="NO" # Set to name of swapfile if aux swapfile desired.

Normally you set up entries for swap partitions in /etc/fstab. This entry refers only to
swapping on files, not for partitions. It requires the md driver, which we looked at on
page 245.

apm_enable="NO" # Set to YES to enable APM BIOS functions (or NO).
apmd_enable="NO" # Run apmd to handle APM event from userland.
apmd_flags="" # Flags to apmd (if enabled).

These parameters cover APM, Advanced Power Management.

devd_enable="NO" # Run devd, to trigger programs on device tree changes.
pccard_enable="NO" # Set to YES if you want to configure PCCARD devices.
pccard_mem="DEFAULT" # If pccard_enable=YES, this is card memory address.
pccard_beep="2" # pccard beep type.
pccard_ifconfig="NO" # Specialized pccard ethernet configuration (or NO).
pccardd_flags="-z" # Additional flags for pccardd.
pccard_conf="/etc/defaults/pccard.conf" # pccardd(8) config file
pccard_ether_delay="5" # Delay before trying to start dhclient in pccard_ether

These parameters control devd, the device daemon used primarily for hot-pluggable
devices such as USB and PC Card, and pccardd, the daemon for the old PC Card code.
See page 159 for more details of devd, and page 161 for a brief description of pccardd
and the old PC Card code.

If you’re running PC Card devices, you would start devd. That’s what we put in the
/etc/rc.conf for andante:

554 Chapter 30: FreeBSD configuration files

devd_enable="YES"

Next comes a list of directories that are searched for startup scripts:

local_startup="/usr/local/etc/rc.d /usr/X11R6/etc/rc.d" # startup script dirs.
script_name_sep=" " # Change if startup scripts’ names contain spaces

If you come from a System V background, you would expect to find these scripts in the
directories such as /etc/rc2.d.

rc_conf_files="/etc/rc.conf /etc/rc.conf.local"

rc_conf_files is a list of files to read after this file. You’ll recognize /etc/rc.conf,
which we discussed above. /etc/rc.conf.local is an idea that hasn’t completely died, but
there’s a good chance that it will. You’d be best off not to use it until you’re sure it’s
going to stay.

For obvious reasons, this is one entry in /etc/defaults/rc.conf that you can’t override in
/etc/rc.conf. If you really want to search other files, you’ll have to modify /etc/de-
faults/rc.conf. It’s still not a good idea.

fsck_y_enable="NO" # Set to YES to fsck -y if the initial preen fails.
background_fsck="YES" # Attempt to run fsck in the background
extra_netfs_types="NO" # List of network extra filesystem types for delayed

mount at startup (or NO).

On system startup, the system checks the integrity of all file systems. It does this in a
number of steps:

• First, it checks the superblock, the key to the file system, to see whether it was
unmounted before the system stopped. If so, it assumes that the file systems are
consistent and continues with the startup.

• If any file system was not unmounted, the system probably crashed or was turned off
without proper shutdown. The file system could contain inconsistent data, so the
startup scripts run fsck against the file system.

• If you’re running with soft updates and checkpointing, you may be able to perform
the fsck in the background, in other words in parallel with other activities. If you
have a good reason, you can inhibit this behaviour by setting background_fsck to
NO.

• If the file system is badly damaged, the ‘‘standard strength’’ fsck may not be able to
recover the file system. In this case, the normal action is to drop into single-user
mode and let a human take a look at it.

The usual first action of the human is to run fsck with the -y option, meaning ‘‘answer
yes to all questions from fsck’’. If you set fsck_y_enable to YES, the startup scripts
will perform this task for you. It’s still possible that the check will fail, so this is not
enough to ensure that you will always pass fsck, but it helps.

/etc/rc.conf 555

##
Network configuration sub-section
##
Basic network and firewall/security options:
hostname="" # Set this!

hostname is the fully qualified name of the host. Always set it in /etc/rc.conf. See page
302 for more details. In our /etc/rc.conf we’ll put:

hostname="gw.example.org"
hostname="andante.example.org"

Continuing in /etc/defaults/rc.conf,

nisdomainname="NO" # Set to NIS domain if using NIS (or NO).

If you’re using Sun’s NIS, set this. We don’t discuss NIS in this book.

dhcp_program="/sbin/dhclient" # Path to dhcp client program.
dhcp_flags="" # Additional flags to pass to dhcp client.

The settings for the DHCP client, dhclient. Normally you won’t need to change them.
We talked about DHCP on page 302.

firewall_enable="NO" # Set to YES to enable firewall functionality
firewall_script="/etc/rc.firewall" # Which script to run to set up the firewall
firewall_type="UNKNOWN" # Firewall type (see /etc/rc.firewall)
firewall_quiet="NO" # Set to YES to suppress rule display
firewall_logging="NO" # Set to YES to enable events logging

Parameters for the ipfw firewall. See page 389, where we set the following flags in the
/etc/rc.conf for gw:

firewall_enable="YES" # Set to YES to enable firewall functionality
firewall_type="client" # Firewall type (see /etc/rc.firewall)

You don’t normally run firewalls on laptops, though there’s no technical reason why not.
The problem with firewalls on laptops is that the configuration files are dependent on
where the system is located, which makes it a pain for systems that frequently change
locations. As a result, we won’t add any firewall parameters to the /etc/rc.conf for
andante.

ip_portrange_first="NO" # Set first dynamically allocated port
ip_portrange_last="NO" # Set last dynamically allocated port

These values are used to set the numbers of ports that are dynamically allocated.
Normally they won’t need changing.

ipsec_enable="NO" # Set to YES to run setkey on ipsec_file
ipsec_file="/etc/ipsec.conf" # Name of config file for setkey

Parameters for IPSec. We don’t discuss IPSec in this book.

556 Chapter 30: FreeBSD configuration files

natd_program="/sbin/natd" # path to natd, if you want a different one.
natd_enable="NO" # Enable natd (if firewall_enable == YES).
natd_interface="" # Public interface or IPaddress to use.
natd_flags="" # Additional flags for natd.

Parameters for natd. See page 395 for more details. In the example there, we’ll add
these lines to gw’s /etc/rc.conf :

firewall_enable=YES
gateway_enable="YES" # Set to YES if this host is a gateway.
natd_enable="YES"
natd_interface="dc0"
firewall_script="/etc/rc.nat" # script for NAT only
firewall_type="client" # firewall type if running a firewall

Continuing with /etc/defaults/rc.conf,

ipfilter_enable="NO" # Set to YES to enable ipfilter functionality
ipfilter_program="/sbin/ipf" # where the ipfilter program lives
ipfilter_rules="/etc/ipf.rules" # rules definition file for ipfilter, see

/usr/src/contrib/ipfilter/rules for examples
ipfilter_flags="" # additional flags for ipfilter
ipnat_enable="NO" # Set to YES to enable ipnat functionality
ipnat_program="/sbin/ipnat" # where the ipnat program lives
ipnat_rules="/etc/ipnat.rules" # rules definition file for ipnat
ipnat_flags="" # additional flags for ipnat
ipmon_enable="NO" # Set to YES for ipmon; needs ipfilter or ipnat
ipmon_program="/sbin/ipmon" # where the ipfilter monitor program lives
ipmon_flags="-Ds" # typically "-Ds" or "-D /var/log/ipflog"
ipfs_enable="NO" # Set to YES to enable saving and restoring

of state tables at shutdown and boot
ipfs_program="/sbin/ipfs" # where the ipfs program lives
ipfs_flags="" # additional flags for ipfs

These entries define defaults for ipfilter, another firewall package, ipnat, another NAT
package, ipmon, an IP monitor package, and ipfs, a utility for saving the state tables of
ipfilter, ipnat and ipfilter. We don’t discuss any of them in this book.

tcp_extensions="NO" # Disallow RFC1323 extensions (or YES).
log_in_vain="0" # >=1 to log connects to ports w/o listeners.
tcp_keepalive="YES" # Enable stale TCP connection timeout (or NO).
For the following option you need to have TCP_DROP_SYNFIN set in your
kernel. Please refer to LINT and NOTES for details.
tcp_drop_synfin="NO" # Set to YES to drop TCP packets with SYN+FIN

NOTE: this violates the TCP specification
icmp_drop_redirect="NO" # Set to YES to ignore ICMP REDIRECT packets
icmp_log_redirect="NO" # Set to YES to log ICMP REDIRECT packets

These are some of the more obscure IP configuration variables. You can find more about
them in tcp(4) and icmp(4).

network_interfaces="auto" # List of network interfaces (or "auto").
cloned_interfaces="" # List of cloned network interfaces to create.
#cloned_interfaces="gif0 gif1 gif2 gif3" # Pre-cloning GENERIC config.
ifconfig_lo0="inet 127.0.0.1" # default loopback device configuration.
#ifconfig_lo0_alias0="inet 127.0.0.254 netmask 0xffffffff" # Sample alias entry.
#ifconfig_ed0_ipx="ipx 0x00010010" # Sample IPX address family entry.

In previous releases of FreeBSD, you had to set network_interfaces to a list of the

/etc/rc.conf 557

interfaces on the machine. Nowadays the value auto enables the startup scripts to find
them by themselves, so you don’t need to change this variable. You still need to set the
interface addresses, of course. For gw, we add the following entry to /etc/rc.conf :

ifconfig_ed0="inet 223.147.37.5 netmask 255.255.255.0"

We don’t need to do anything here for andante: its Ethernet interface is a PC Card card.
We looked at that on page 304.

If you’re using DHCP, you don’t hav e an address to specify, of course. You still need to
tell the startup scripts to use DHCP, howev er. Do it like this:

ifconfig_ed0="DHCP"

Continuing,

If you have any sppp(4) interfaces above, you might also want to set
the following parameters. Refer to spppcontrol(8) for their meaning.
sppp_interfaces="" # List of sppp interfaces.
#sppp_interfaces="isp0" # example: sppp over ISDN
#spppconfig_isp0="authproto=chap myauthname=foo myauthsecret=’top secret’ hisauthnam
e=some-gw hisauthsecret=’another secret’"
gif_interfaces="NO" # List of GIF tunnels (or "NO").
#gif_interfaces="gif0 gif1" # Examples typically for a router.

Choose correct tunnel addrs.
#gifconfig_gif0="10.1.1.1 10.1.2.1" # Examples typically for a router.
#gifconfig_gif1="10.1.1.2 10.1.2.2" # Examples typically for a router.

These are parameters for the sppp implementation for isdn4bsd and the Generic Tunnel
Interface, both of which we won’t discuss here. See the man pages spp(4) and gif(4) for
more details.

User ppp configuration.
ppp_enable="NO" # Start user-ppp (or NO).
ppp_mode="auto" # Choice of "auto", "ddial", "direct" or "dedicated".

For details see man page for ppp(8). Default is auto.
ppp_nat="YES" # Use PPP’s internal network address translation or NO.
ppp_profile="papchap" # Which profile to use from /etc/ppp/ppp.conf.
ppp_user="root" # Which user to run ppp as

These parameters relate to running user PPP, which we discussed in Chapter 20, on page
348.

Network daemon (miscellaneous)
syslogd_enable="YES" # Run syslog daemon (or NO).
syslogd_program="/usr/sbin/syslogd" # path to syslogd, if you want a different one.
syslogd_flags="-s" # Flags to syslogd (if enabled).
#syslogd_flags="-ss" # Syslogd flags to not bind an inet socket

You should always run syslogd unless you have a very good reason not to. In previous
releases of FreeBSD, syslogd_flags was empty, but security concerns have changed
that, and now by default syslogd is started with the -s flag, which stops syslogd from
accepting remote messages. If you specify the -ss flag, as suggested in the comment,
you will also not be able to log to remote systems.

558 Chapter 30: FreeBSD configuration files

Sometimes it’s very useful to log to a remote system. For example, you might want all
systems in example.org to log to gw. That way you get one set of log files for the entire
network. To do this, you would add the following line at the beginning of
/etc/syslog.conf on each machine:

. @gw

For this to work, add the following to /etc/rc.conf on gw:

syslogd_flags=""

Next come some parameters relating to inetd, the Internet Daemon, sometimes called the
super-server. It’s responsible for starting services on behalf of remote clients.

inetd_enable="NO" # Run the network daemon dispatcher (YES/NO).
inetd_program="/usr/sbin/inetd" # path to inetd, if you want a different one.
inetd_flags="-wW" # Optional flags to inetd

We looked at inetd on page 448. Normally you will want to have it enabled, but you
won’t need to change the flags. Add this line to the /etc/rc.conf for both gw and andante:

inetd_enable="YES"

Continuing, we see:

named_enable="NO" # Run named, the DNS server (or NO).
named_program="/usr/sbin/named" # path to named, if you want a different one.
#named_flags="-u bind -g bind" # Flags for named

These parameters specify whether we should run the name server, and what flags we
should use if we do. See page 366 for more details. Previous versions of named
required a flag to specify the location of the configuration file, but the location FreeBSD
uses has now become the standard, so we no longer need to specify any flags. All we put
in /etc/rc.conf for gw is:

named_enable="YES" # Run named, the DNS server (or NO).

Continuing with /etc/defaults/rc.conf,

kerberos4_server_enable="NO" # Run a kerberos IV master server (or NO).
kerberos4_server="/usr/sbin/kerberos" # path to kerberos IV KDC
kadmind4_server_enable="NO" # Run kadmind (or NO)
kadmind4_server="/usr/sbin/kadmind" # path to kerberos IV admin daemon
kerberos5_server_enable="NO" # Run a kerberos 5 master server (or NO).
kerberos5_server="/usr/libexec/kdc" # path to kerberos 5 KDC
kadmind5_server_enable="NO" # Run kadmind (or NO)
kadmind5_server="/usr/libexec/k5admind" # path to kerberos 5 admin daemon
kerberos_stash="NO" # Is the kerberos master key stashed?

Set these if you want to run Kerberos. We don’t discuss Kerberos in this book.

/etc/rc.conf 559

rwhod_enable="NO" # Run the rwho daemon (or NO).
rwhod_flags="" # Flags for rwhod

Set this if you want to run the rwhod daemon, which broadcasts information about the
system load.

rarpd_enable="NO" # Run rarpd (or NO).
rarpd_flags="" # Flags to rarpd.
bootparamd_enable="NO" # Run bootparamd (or NO).
bootparamd_flags="" # Flags to bootparamd
xtend_enable="NO" # Run the X-10 power controller daemon.
xtend_flags="" # Flags to xtend (if enabled).

These entries relate to the rarpd, bootparamd and the X-10 daemons, which we don’t
discuss in this book. See the respective man pages.

pppoed_enable="NO" # Run the PPP over Ethernet daemon.
pppoed_provider="*" # Provider and ppp(8) config file entry.
pppoed_flags="-P /var/run/pppoed.pid" # Flags to pppoed (if enabled).
pppoed_interface="fxp0" # The interface that pppoed runs on.

pppoed is the PPP Over Ethernet daemon. We discussed it briefly on page 348.

sshd_enable="NO" # Enable sshd
sshd_program="/usr/sbin/sshd" # path to sshd, if you want a different one.
sshd_flags="" # Additional flags for sshd.

sshd is the Secure Shell Daemon which we talked about on page 453. You don’t need to
change anything here to run ssh, but if you want to connect to this system with ssh, you’ll
need to run sshd. In gw’s /etc/rc.conf we put:

sshd_enable="YES"

Next, we see:

amd_enable="NO" # Run amd service with $amd_flags (or NO).
amd_flags="-a /.amd_mnt -l syslog /host /etc/amd.map /net /etc/amd.map"
amd_map_program="NO" # Can be set to "ypcat -k amd.master"

These entries relate to the automounter, which we don’t discuss in this book. See amd(8)
for details.

nfs_client_enable="NO" # This host is an NFS client (or NO).
nfs_access_cache="2" # Client cache timeout in seconds
nfs_server_enable="NO" # This host is an NFS server (or NO).
nfs_server_flags="-u -t -n 4" # Flags to nfsd (if enabled).
mountd_enable="NO" # Run mountd (or NO).
mountd_flags="-r" # Flags to mountd (if NFS server enabled).
weak_mountd_authentication="NO" # Allow non-root mount requests to be served.
nfs_reserved_port_only="NO" # Provide NFS only on secure port (or NO).
nfs_bufpackets="DEFAULT" # bufspace (in packets) for client (or DEFAULT)
rpc_lockd_enable="NO" # Run NFS rpc.lockd needed for client/server.
rpc_statd_enable="NO" # Run NFS rpc.statd needed for client/server.
rpcbind_enable="NO" # Run the portmapper service (YES/NO).
rpcbind_program="/usr/sbin/rpcbind" # path to rpcbind, if you want a different one.
rpcbind_flags="" # Flags to rpcbind (if enabled).
rpc_ypupdated_enable="NO" # Run if NIS master and SecureRPC (or NO).

560 Chapter 30: FreeBSD configuration files

These are flags for NFS. Some of them have changed from previous releases of
FreeBSD. In particular, single_mountd_enable is now called mountd_enable, and
portmap has been replaced by rpcbind, so portmap_enable is now called
rpcbind_enable, portmap_program is now called rpcbind_program and
portmap_flag is now called rpcbind_flags. See page 441. We set the following
values in /etc/rc.conf for gw:

nfs_client_enable="YES" # This host is an NFS client (or NO).
nfs_server_enable="YES" # This host is an NFS server (or NO).

For andante, we enable only the client (the first line). Next, we see:

keyserv_enable="NO" # Run the SecureRPC keyserver (or NO).
keyserv_flags="" # Flags to keyserv (if enabled).

These entries refer to the Secure RPC key server, which we don’t discuss in this book.
See the man pages keyserv(8) for more details.

Network Time Services options:
timed_enable="NO" # Run the time daemon (or NO).
timed_flags="" # Flags to timed (if enabled).
ntpdate_enable="NO" # Run ntpdate to sync time on boot (or NO).
ntpdate_program="/usr/sbin/ntpdate" # path to ntpdate, if you want a different one.
ntpdate_flags="-b" # Flags to ntpdate (if enabled).
ntpd_enable="NO" # Run ntpd Network Time Protocol (or NO).
ntpd_program="/usr/sbin/ntpd" # path to ntpd, if you want a different one.
ntpd_flags="-p /var/run/ntpd.pid" # Flags to ntpd (if enabled).

timed, ntpdate and ntpd are three different ways of synchronizing your machine with the
current date and time. As we saw on page 155, we’ll use ntpd. We add the following
line to /etc/rc.conf for each system:

ntpd_enable="YES" # Run ntpd Network Time Protocol (or NO).

Continuing with /etc/defaults/rc.conf,

Network Information Services (NIS) options: All need rpcbind_enable="YES"
nis_client_enable="NO" # We’re an NIS client (or NO).
nis_client_flags="" # Flags to ypbind (if enabled).
nis_ypset_enable="NO" # Run ypset at boot time (or NO).
nis_ypset_flags="" # Flags to ypset (if enabled).
nis_server_enable="NO" # We’re an NIS server (or NO).
nis_server_flags="" # Flags to ypserv (if enabled).
nis_ypxfrd_enable="NO" # Run rpc.ypxfrd at boot time (or NO).
nis_ypxfrd_flags="" # Flags to rpc.ypxfrd (if enabled).
nis_yppasswdd_enable="NO" # Run rpc.yppasswdd at boot time (or NO).
nis_yppasswdd_flags="" # Flags to rpc.yppasswdd (if enabled).

More parameters for configuring NIS. As mentioned above, this book does not deal with
NIS.

/etc/rc.conf 561

Network routing options:
defaultrouter="NO" # Set to default gateway (or NO).
static_routes="" # Set to static route list (or leave empty).
gateway_enable="NO" # Set to YES if this host will be a gateway.

See page 309 for more information on routing. On gw we add the following line to
/etc/rc.conf :

defaultrouter="139.130.136.133" # Set to default gateway (or NO).
gateway_enable="YES" # Set to YES if this host will be a gateway.

andante gets its routing information from DHCP, so we don’t need to do anything here.

router_enable="NO" # Set to YES to enable a routing daemon.
router="/sbin/routed" # Name of routing daemon to use if enabled.
router_flags="-q" # Flags for routing daemon.
mrouted_enable="NO" # Do multicast routing (see /etc/mrouted.conf).
mrouted_flags="" # Flags for multicast routing daemon.

These parameters relate to the routing daemons routed and mrouted. In the configura-
tions we considered, you don’t need them.

ipxgateway_enable="NO" # Set to YES to enable IPX routing.
ipxrouted_enable="NO" # Set to YES to run the IPX routing daemon.
ipxrouted_flags="" # Flags for IPX routing daemon.

IPX is a Novell proprietary networking protocol designed to be similar to IP. FreeBSD
supplies the daemon IPXrouted (note the capitalization) which handles IPX routing
tables. See the man page IPXrouted(8) for further details.

arpproxy_all="NO" # replaces obsolete kernel option ARP_PROXYALL.
forward_sourceroute="NO" # do source routing
accept_sourceroute="NO" # accept source routed packets to us
ATM interface options:
atm_enable="NO" # Configure ATM interfaces (or NO).
#atm_netif_hea0="atm 1" # Network interfaces for physical interface.
#atm_sigmgr_hea0="uni31" # Signalling manager for physical interface.
#atm_prefix_hea0="ILMI" # NSAP prefix (UNI interfaces only) (or ILMI).
#atm_macaddr_hea0="NO" # Override physical MAC address (or NO).
#atm_arpserver_atm0="0x47.0005.80.999999.9999.9999.9999.999999999999.00"
#atm_scsparp_atm0="NO" # Run SCSP/ATMARP on network interface (or NO).
atm_pvcs="" # Set to PVC list (or leave empty).
atm_arps="" # Set to permanent ARP list (or leave empty).
ISDN interface options: (see also: /usr/share/examples/isdn)
isdn_enable="NO" # Enable the ISDN subsystem (or NO).
isdn_fsdev="NO" # Output device for fullscreen mode
isdn_flags="-dn -d0x1f9" # Flags for isdnd
isdn_ttype="cons25" # terminal type for fullscreen mode
isdn_screenflags="NO" # screenflags for ${isdn_fsdev}
isdn_trace="NO" # Enable the ISDN trace subsystem (or NO).
isdn_traceflags="-f /var/tmp/isdntrace0" # Flags for isdntrace

A few miscellaneous IP options and parameters for ATM and ISDN. This book doesn’t
discuss any of them.

562 Chapter 30: FreeBSD configuration files

Miscellaneous network options:
icmp_bmcastecho="NO" # respond to broadcast ping packets

This parameter relates to the so-called smurf ‘‘denial of service’’ attack: according to the
RFCs, a machine should respond to a ping to its broadcast address. But what happens if
somebody pings a remote network’s broadcast address across the Internet, as fast as he
can? Each system on the remote network will reply, completely overloading the outgoing
Internet interface. Yes, this is silly, but there are silly people out there. If you leave this
parameter as it is, your system will not be vulnerable. See http://www.cert.org/advi-
sories/CA-98.01.smurf.html for more details.

Next come a large number of options for IPv6, the new Internet protocol standard. This
book doesn’t deal with IPv6, and they’re liable to change, so they’re not printed here.
Next, we find:

##
System console options
##
keymap="NO" # keymap in /usr/share/syscons/keymaps/*
keyrate="NO" # keyboard rate to: slow, normal, fast
keybell="NO" # bell to duration.pitch or normal or visual
keychange="NO" # function keys default values
cursor="NO" # cursor type {normal|blink|destructive}
scrnmap="NO" # screen map in /usr/share/syscons/scrnmaps/*
font8x16="NO" # font 8x16 from /usr/share/syscons/fonts/*
font8x14="NO" # font 8x14 from /usr/share/syscons/fonts/*
font8x8="NO" # font 8x8 from /usr/share/syscons/fonts/*
blanktime="300" # blank time (in seconds) or "NO" to turn it off.
saver="NO" # screen saver: Uses /boot/kernel/${saver}_saver.ko

These parameters describe the use of alternate keyboard mappings when using the
standard character-based terminals only. See the files in /usr/share/syscons/keymaps for
key map files, and /usr/share/syscons/fonts for alternate fonts. These parameters have no
effect on the X-based displays that this book assumes. You can enable a screen saver by
setting the variable saver to YES.

moused_enable="NO" # Run the mouse daemon.
moused_type="auto" # See man page for available settings.
moused_port="/dev/psm0" # Set to your mouse port.
moused_flags="" # Any additional flags to moused.
mousechar_start="NO" # if 0xd0-0xd3 default range is occuped in your

language code table, specify alternative range
allscreens_flags="" # Set this vidcontrol mode for all virtual screens
allscreens_kbdflags="" # Set this kbdcontrol mode for all virtual screens

Parameters for moused, a mouse driver for the character-based terminals, and global flags
for virtual screens. If you’re using an X server, you should run moused. On andante, we
add this line to /etc/rc.conf :

moused_enable="YES"

Next follow some definitions for the alternative console driver pcvt, which we don’t look
at here, followed by a section describing the mail configuration:

/etc/rc.conf 563

##
Mail Transfer Agent (MTA) options
##
mta_start_script="/etc/rc.sendmail"

Script to start your chosen MTA
Settings for /etc/rc.sendmail:
sendmail_enable="NO" # Run the sendmail inbound daemon (YES/NO).
sendmail_flags="-L sm-mta -bd -q30m" # Flags to sendmail (as a server)
sendmail_submit_enable="YES" # Start a localhost-only MTA for mail submission
sendmail_submit_flags="-L sm-mta -bd -q30m -ODaemonPortOptions=Addr=localhost"

Flags for localhost-only MTA
sendmail_outbound_enable="YES" # Dequeue stuck mail (YES/NO).
sendmail_outbound_flags="-L sm-queue -q30m" # Flags to sendmail (outbound only)
sendmail_msp_queue_enable="YES" # Dequeue stuck clientmqueue mail (YES/NO).
sendmail_msp_queue_flags="-L sm-msp-queue -Ac -q30m"

Since FreeBSD Release 5, the sendmail MTA is no longer enabled by default. If you
have been running sendmail on an older release of FreeBSD, add an entry to /etc/rc.conf
to keep it running.

##
Miscellaneous administrative options
##
cron_enable="YES" # Run the periodic job daemon.
cron_program="/usr/sbin/cron" # Which cron executable to run (if enabled).
cron_flags="" # Which options to pass to the cron daemon.

Run cron, the daemon responsible for running things at specific times. See page 151 for
a description of cron. Leave this enabled unless you have a good reason not to.

lpd_enable="NO" # Run the line printer daemon.
lpd_program="/usr/sbin/lpd" # path to lpd, if you want a different one.
lpd_flags="" # Flags to lpd (if enabled).

See page 263 for a discussion of printing. In older releases of FreeBSD, lpd_enable
was set to YES. Now, to run lpd, we need to put the following line in /etc/rc.conf for
both gw and adagio:

lpd_enable="YES" # Run the line printer daemon.

Next, we see:

usbd_enable="NO" # Run the usbd daemon.
usbd_flags="" # Flags to usbd (if enabled).

Run usbd, the Universal Serial Bus or USB daemon. See the man pages usbd(8) and
usb(4) for more information.

dumpdev="NO" # Device name to crashdump to (if enabled).
dumpdir="/var/crash" # Directory where crash dumps are to be stored
savecore_flags="" # Used if dumpdev is enabled above, and present.

These parameters specify how to take dumps when the system panics. See page 83 for
details. As mentioned there, it is preferable to set this value in /boot/loader.conf : that
way you can still get a dump if your system panics before reading /etc/rc.conf, so we
don’t change anything here.

564 Chapter 30: FreeBSD configuration files

Continuing with /etc/defaults/rc.conf,

enable_quotas="NO" # turn on quotas on startup
check_quotas="YES" # Check quotas on startup
accounting_enable="NO" # Turn on process accounting
ibcs2_enable="NO" # Ibcs2 (SCO) emulation loaded at startup
ibcs2_loaders="coff" # List of additional Ibcs2 loaders
sysvipc_enable="NO" # Load System V IPC primitives at startup
linux_enable="NO" # Linux binary compatibility loaded at startup
svr4_enable="NO" # SysVR4 emulation loaded at startup
osf1_enable="NO" # Alpha OSF/1 emulation loaded at startup

We don’t discuss quotas or accounting in this book. We looked at the parameters
ibcs2_enable on page 164 and linux_enable on page 163. We also don’t discuss
System V and OSF-1 emulation.

clear_tmp_enable="NO" # Clear /tmp at startup.

In the old days, the startup sequence automatically deleted everything in the file system
/tmp. Sometimes this wasn’t desirable, so now it’s your choice. Change this value to
YES if you want the old behaviour.

Note that if you use a /tmp based on MFS (memory file system), this variable has no
effect. The contents of MFS file systems disappear on reboot.

ldconfig_insecure="NO" # Set to YES to disable ldconfig security checks
ldconfig_paths="/usr/lib/compat /usr/X11R6/lib /usr/local/lib"

shared library search paths
ldconfig_paths_aout="/usr/lib/compat/aout /usr/X11R6/lib/aout /usr/local/lib/aout"

a.out shared library search paths

ldconfig maintains the dynamic library cache required for finding libraries when starting
most processes. Potentially this can be a security issue, and ldconfig makes a number of
security checks before accepting libraries. If you really want to, you can disable these
checks by setting ldconfig_insecure. The two other variables are lists of the
directories that are searched to find ELF and a.out dynamic libraries, respectively. See
page 638 for more details. You would normally not remove anything from these lists, but
you might want to add something.

kern_securelevel_enable="NO" # kernel security level (see init(8)),
kern_securelevel="-1" # range: -1..3 ; ‘-1’ is the most insecure
update_motd="YES" # update version info in /etc/motd (or NO)

The kernel runs with five different levels of security. Any super-user process can raise
the security level, but only init can lower it. The security levels are:

-1. Permanently insecure mode: always run the system in level 0 mode. This is the
default initial value.

0. Insecure mode: the immutable and append-only flags may be turned off. All devices
may be read or written subject to their permissions.

/etc/rc.conf 565

1. Secure mode: the immutable and append-only flags may not be turned off. Disks for
mounted filesystems, /dev/mem and /dev/kmem may not be opened for writing.

2. Highly secure mode. This is the same as secure mode with the addition that disks
may not be opened for writing (except by mount(2)), whether or not they are
mounted. This level precludes tampering with filesystems by unmounting them, but
it also prevents running newfs(8) while the system is multi-user.

3. Network secure mode. This is the same as highly secure mode with the addition that
IP packet filter rules (see page 389) can not be changed and dummynet configuration
can not be adjusted. We don’t discuss dummynet in this book.

To set the secure level to anything except -1, set the variable kern_securelevel to the
value you want, and set kern_securelevel_enable to YES.

start_vinum="NO" # set to YES to start vinum

We looked at Vinum on page 221. There we put the following text into /etc/rc.conf to
start it on booting:

start_vinum="YES" # set to YES to start vinum

Finally we have a few miscellaneous entries:

unaligned_print="YES" # print unaligned access warnings on the alpha
entropy_file="/entropy" # Set to NO disables caching entropy through reboots
entropy_dir="/var/db/entropy" # Set to NO to disable caching entropy via cron.
entropy_save_sz="2048" # Size of the entropy cache files.
entropy_save_num="8" # Number of entropy cache files to save.
harvest_interrupt="YES" # Entropy device harvests interrupt randomness
harvest_ethernet="YES" # Entropy device harvests ethernet randomness
harvest_p_to_p="YES" # Entropy device harvests point-to-point randomness
dmesg_enable="YES" # Save dmesg(8) to /var/run/dmesg.boot

unaligned_print is a diagnostic tool for the Alpha processor; there’s a good chance it
will go away. dmesg_enable saves the boot messages to the file /var/run/dmesg.boot.
Leave it this way; the messages are often useful for reference, and after a certain number
of messages, they get flushed from the kernel internal message buffer.

The other messages are used for configuring entropy harvesting for the random number
devices, /dev/random and /dev/urandom. See random(4) for further details. Under
normal circumstances you shouldn’t change them.

Our /etc/rc.conf
To summarize the changes from the defaults, /etc/rc.conf for gw should now contain the
following entries:

hostname="gw.example.org"
firewall_enable="YES" # Set to YES to enable firewall functionality
firewall_type="client" # Firewall type (see /etc/rc.firewall)
natd_enable="YES" # Enable natd (if firewall_enable == YES).
natd_interface="tun0" # Public interface or IPaddress to use.

566 Chapter 30: FreeBSD configuration files

syslogd_flags="" # Allow logging from other systems
inetd_enable="YES" # Run inetd
named_enable="YES" # Run named, the DNS server (or NO).
sshd_enable="YES" # Enable sshd
nfs_client_enable="YES" # This host is an NFS client (or NO).
nfs_server_enable="YES" # This host is an NFS server (or NO).
ntpd_enable="YES" # Run ntpd Network Time Protocol (or NO).
defaultrouter="139.130.136.133" # Set to default gateway (or NO).
gateway_enable="YES" # Set to YES if this host will be a gateway.
lpd_enable="YES" # Run the line printer daemon.
start_vinum="YES" # set to YES to start vinum

The corresponding /etc/rc.conf for andante should now contain the following entries:

hostname="andante.example.org"
inetd_enable="YES" # Run inetd
nfs_client_enable="YES" # This host is an NFS client (or NO).
ntpd_enable="YES" # Run ntpd Network Time Protocol (or NO).
moused_enable="YES" # Run the mouse daemon
lpd_enable="YES" # Run the line printer daemon.
start_vinum="YES" # set to YES to start vinum

Files you need to change
rc.conf is only part of the story, of course. The /etc directory contains a large number of
other files, nearly all of them relating to the configuration. Some of them, like
/etc/amd.map and /etc/dm.conf, are intended for specific subsystems that we don’t
discuss here. In general, they hav e comments in them to explain their purpose, and they
have a man page in section 5 of the manual.

Most of the files in /etc are intended to be left the way they are. Some, however, will
definitely need changing, and there are others that you may need to change. In this
section we’ll look at the ones you almost certainly need to change, and on page 569 we’ll
look at the ones you may have to change. On page 576 we’ll look at the some of the
more interesting ones you should normally leave alone.

/etc/exports
/etc/exports is a list of file systems that should be NFS exported. We looked at it on page
463. See also the man page exports(5).

/etc/fstab
/etc/fstab contains a list of file systems known to the system. The script /etc/rc starts
mount twice during system startup first to mount the local file systems, and later to
mount the NFS file system. mount will mount all file systems in /etc/fstab unless they
are explicitly excluded.

Here’s a typical /etc/fstab, from host freebie.example.org:

Files you need to change 567

File system Mount point fstype flags
/dev/ad0s1a / ufs rw 1 1
/dev/ad0s1b none swap sw 0 0
/dev/ad0s1e /usr ufs rw 2 2
/dev/da0b none swap sw 0 0
/dev/da0h /src ufs rw 2 2
/dev/da1h /home ufs rw 2 2
/dev/da2b none swap sw 0 0
/dev/da2e /S ufs rw,noauto 2 2
/dev/da3a /mod ufs rw,noauto 0 0
proc /proc procfs rw 0 0
/dev/cd0a /cdrom/1 cd9660 ro,noauto 0 0
/dev/cd1a /cdrom/2 cd9660 ro,noauto 0 0
/dev/cd2a /cdrom/3 cd9660 ro,noauto 0 0
/dev/cd3a /cdrom/4 cd9660 ro,noauto 0 0
/dev/cd4a /cdrom/5 cd9660 ro,noauto 0 0
/dev/cd5a /cdrom/6 cd9660 ro,noauto 0 0
/dev/cd6a /cdrom/7 cd9660 ro,noauto 0 0
/dev/cd7a /cdrom/8 cd9660 ro,noauto 0 0
presto:/ /presto nfs soft,rw,noauto 0 0
presto:/usr /presto/usr nfs soft,rw,noauto 0 0
presto:/home /presto/home nfs soft,rw,noauto 0 0
bumble:/ /bumble nfs soft,rw,noauto 0 0
bumble:/usr /bumble/usr nfs soft,rw,noauto 0 0
wait:/C /C nfs soft,rw,noauto 0 0
wait:/ /wait nfs soft,rw,noauto,tcp 0 0

This information has the following meaning:

• The first column contains either the name of a device (for swap, ufs and cd9660 file
systems), the name of a file system (for NFS file systems), or proc for the proc file
system.

• The lines beginning with # are commented out: mount ignores them completely.

• The second column is either a mount point or the keyword none in the case of a
partition that is not mounted, such as swap.

• The third column is the kind of file system (or swap).

• The fourth column are flags relating to the particular file system being mounted.
We’ll look at them below.

• The fifth column is used by dump(8) to determine how often to dump the file system.
0 means not to dump the file system. dump only understands ufs file systems, so this
field should be 0 for all other file systems.

• The sixth column is the pass number for running fsck at boot time. Again, 0 means
‘‘don’t run fsck.’’ Normally you set pass 1 only for the root file system, and pass 2
for other file systems.

The flags are worth a closer look. Some of the more common are:

568 Chapter 30: FreeBSD configuration files

Table 30-1: Mount flags

Flag Purpose

ro Mount read-only.
rw Mount read/write.
sw Mount as swap.
noauto Don’t mount automatically.
soft For an NFS mount, fail if the request times out. If you don’t specify

this option, NFS will keep retrying for ever.
tcp For NFS only, mount with TCP transport rather than the standard

UDP transport. This feature is supported almost only by BSD
systems—check whether the other end offers TCP transport.

For NFS mount flags, see Chapter 24, page 442.

Why are there so many entries with the noauto keyword? If you don’t bother to mount
them, why bother to mention them?

If file system has an entry in /etc/fstab, mount is clever enough to get all the information
it needs from this file. You just need to specify the name of the mount point or the name
of the special device (for ufs and cd9660) or the remote file system (for NFS). This is
particularly useful for cd9660, the CD file system type. Without an entry in /etc/fstab,
you would have to write something like the following to mount a CD-ROM.

mount -t cd9660 -o ro /dev/cd0a /cdrom

With the entry, you can simplify this to:

mount /cdrom

/etc/group
/etc/group defines the groups known to the system. You normally update it when adding
users, for example with vipw or adduser, though you can also edit it directly. See page
113 for more details.

/etc/namedb/named.conf
/etc/named/named.conf is the main configuration file for named, the Domain Name
Service daemon. We looked at it in Chapter 21. Previous versions of named used a
different form of configuration file stored in /etc/named.boot.

Files you need to change 569

/etc/mail
The directory /etc/mail contains configuration information for some MTAs, including
sendmail.

/etc/master.passwd
/etc/master.passwd is the real password file. Like /etc/group, you update with vipw or
adduser. See page 144 for more details.

Files you might need to change
You don’t need to customize any of the following files to get the system up and running.
You may find it necessary to change them to do specific things, however.

/etc/crontab
/etc/crontab describes the jobs to be performed by cron on behalf of the system. You
don’t hav e to use this file at all; you can use each user’s crontab files instead. Note that
this file has a slightly different format from the other crontab files. A user’s crontab
contains entries like this:

0 0 * * * /home/grog/Scripts/rotate-log

This line runs the script /home/grog/Scripts/rotate-log at midnight every day. If you put
this entry into /etc/crontab, you need to tell cron which user to run it as. Do this by
putting the name of the user before the command:

0 0 * * * grog /home/grog/Scripts/rotate-log

See page 151 for more details about cron.

/etc/csh.cshrc, /etc/csh.login, /etc/csh.logout
These are default initialization files for csh. See the man page csh(1) for more details.

/etc/dhclient.conf
/etc/dhclient.conf describes the client side of DHCP services. Normally it’s empty. We
discussed dhcp on 302.

/etc/disktab
/etc/disktab contains descriptions of disk geometries for disklabel. This is almost
obsolete.

570 Chapter 30: FreeBSD configuration files

/etc/ftpusers
/etc/ftpusers is a list of users who are not allowed to connect to this system using ftp.
It’s a strong contender for the prize for the worst-named file in the system.

/etc/hosts
For a small network, especially if you’re not permanently connected to the Internet, you
have the option of placing the addresses of the systems you want to talk to in a file called
/etc/hosts. This file is simply a list of IP addresses and host names, for example:

Local network host addresses
#
loopback address for all systems
127.1 loopback local localhost
domain example.com.
#
223.147.37.1 freebie freebie.example.org # FreeBSD 3.0
223.147.37.2 presto.example.org presto # 66 MHz 486 (BSD UNIX)

Before the days of DNS, this was the way to resolve IP addresses. It only works locally,
and even there it’s a pain to maintain: you need to propagate every update to every
machine on the network. As we saw in Chapter 21, it’s far preferable to run named, even
if you’re not connected to the Internet.

/etc/hosts.equiv
/etc/hosts.equiv is a list of hosts whose users may use rsh to access this system without
supplying a password. rsh is now obsolete, so it’s unlikely you’ll need to change this
file. See the description of ssh on page 419 for a replacement.

/etc/hosts.lpd
/etc/hosts.lpd is a list of hosts that can use the lpd spooler on this system.

/etc/inetd.conf
/etc/inetd.conf is the configuration file for inetd, the Internet daemon. It dates back to the
original implementation of TCP/IP in 4.2BSD, and the format is the same for all versions
of UNIX. We hav e looked at various modifications to this file throughout the network
part of the book. See the index (inetd.conf) and the man page inetd.conf(5) for further
details. FreeBSD now disables all services by default to limit security exposures, so
there’s a good chance you’ll have to edit this file.

/etc/login.access
/etc/login.access is a file that limits remote access by individual users. We don’t look at
it in more detail here.

Files you might need to change 571

/etc/login.conf
/etc/login.conf describes user parameters set at login time.

In UNIX tradition, root has been the owner of the universe. This is rather primitive, and
the 4.3BSD Net/2 relase introduced login classes, which determine session accounting,
resource limits and user environment settings. Many programs use the database
described in /etc/login.conf to set up a user’s login environment and to enforce policy,
accounting and administrative restrictions. The login class database also provides the
means to authenticate users to the system and to choose the type of authentication.

When creating a user, you may optionally enter a class name, which should match an
entry in /etc/login.conf—see page 146 for more details. If you don’t, the system uses the
entry default for a non-root user. For the root user, the system uses the entry root if it
is present, and default otherwise.

The structure of the login configuration database is relatively extensive. It describes a
number of parameters, many of which can have two values: a current value and a
maximum value. On login, the system sets the values to the -cur (current) value, but the
user may, at his option, increase the value to the -max (maximum) value. We’ll look at
the default entry for an example.

default:\
:passwd_format=md5:\
:copyright=/etc/COPYRIGHT:\
:welcome=/etc/motd:\
:setenv=MAIL=/var/mail/$,BLOCKSIZE=K,FTP_PASSIVE_MODE=YES:\
:path=/sbin /bin /usr/sbin /usr/bin /usr/games /usr/local/sbin /usr/local/bi

n /usr/X11R6/bin ˜/bin:\
:nologin=/var/run/nologin:\
:cputime=unlimited:\
:datasize=unlimited:\
:stacksize=unlimited:\
:memorylocked=unlimited:\
:memoryuse=unlimited:\
:filesize=unlimited:\
:coredumpsize=unlimited:\
:openfiles=unlimited:\
:maxproc=unlimited:\
:sbsize=unlimited:\
:vmemoryuse=unlimited:\
:priority=0:\
:ignoretime@:\
:umask=022:

As in the password file, the fields are delimited by colons (:). In this example, though,
lines are continued by placing a backslash (\) at the end of each line except the last. This
usage is common in UNIX. Unlike Microsoft usage, a backslash is never used to
represent a directory.

572 Chapter 30: FreeBSD configuration files

This entry defines the following parameters:

• passwd_format controls the password format used for new passwords. It takes the
values des, md5 or blf. See the login.conf(5) manual page for more information
about login capabilities.

• Processes may use as much CPU time as they want. If you change this, you can stop
processes that use more than a specific amount of CPU time.

• The current maximum sizes of the user data segment and the stack are set to 64 MB.
The entry doesn’t define maximum values for these parameters.

• The user may lock a maximum of 10 MB of memory per process.

• The total memory use per process may not exceed 100 MB.

• There is no limit on the size of data files or core dump files that the user may create.

• The user may have up to 64 processes.

• Each process may have up to 64 open files. For some programs, this could be a
limitation.

• The user need not have a home directory to log in. The @ symbol specifies that the
preceding symbol (requirehome) should be undefined. As a result, the system does
not require the home directory.

• By default, the umask is set to 022. See page 184 for more details of umask.

• The system uses the default authentication scheme for this user.

See the man page login.conf(5) for further details.

/etc/motd
/etc/motd (message of the day) is a file whose contents are printed out at login. You can
put any message you like in it. See page 114 for an example.

/etc/newsyslog.conf
/etc/newsyslog.conf contains configuration information for the newsyslog command:
which log files to archive, how many copies, and whether to compress. See newsyslog(8)
for further details. If you generate a lot of logging information, you may need to modify
this file to avoid overflowing the file system with your /var/log directory.

/etc/nsswitch.conf
/etc/nsswitch.conf tells the resolver how to perform name resolution. This file format
comes from Solaris and replaces the older /etc/host.conf. It giv es you the flexibility to
use both /etc/hosts and DNS lookups, for example. You specify the lookup sequence for
hostnames with a line like this:

hosts: files dns

Files you might need to change 573

The word hosts here specifies the type of lookup (for host names, not NIS, password
entries or something else). The keyword file represents the /etc/hosts file in this case.
This file is not installed by default; see the man page nsswitch.conf(8) if you need to use
it.

/etc/pccardd.conf
/etc/pccardd.conf and its companion /etc/defaults/pccardd.conf are the configuration
files for pccardd. We looked at them in detail in Chapter 17, on page 304.

/etc/periodic.conf
/etc/periodic.conf controls how to perform the maintenance jobs that cron runs during
the night:

Perform daily/weekly/monthly maintenance.
1 3 * * * root periodic daily
15 4 * * 6 root periodic weekly
30 5 1 * * root periodic monthly

Like /etc/rc.conf, /etc/periodic.conf is an optional file which overrides the default file
/etc/defaults/periodic.conf. You don’t need to change it at all, but you may find it
worthwhile. Read the man page periodic.conf(5) or the file /etc/defaults/periodic.conf
for more details.

/etc/printcap
/etc/printcap describes the printers connected to a system. See page 265 for more
details.

/etc/profile
/etc/profile is a default startup file for Bourne-style shells. See page 130 for more details.

/etc/rc.firewall
/etc/rc.firewall is used to initialize the packet filtering firewall ipfw. See page 389 for
further details.

/etc/resolv.conf
/etc/resolv.conf is used by the resolver library to locate name servers to perform DNS
lookups. See 366 for more details.

/etc/syslog.conf
/etc/syslog.conf is the configuration file for syslogd. See syslogd.conf(5) for further
details.

574 Chapter 30: FreeBSD configuration files

/etc/ttys
/etc/ttys is a file that describes terminals and pseudo-terminals to init. We’ve looked at it
in a number of places: check the index.

Here’s an excerpt from the default /etc/ttys:

This entry needed for asking password when init goes to single-user mode
If you want to be asked for password, change "secure" to "insecure" here
console none unknown off secure

The system console. This is not a real terminal: it can be moved from one device to
another. By default, it corresponds to /dev/ttyv0 (the next entry).

ttyv0 "/usr/libexec/getty Pc" cons25 on secure

This is the first virtual terminal, the one that you get automatically at boot time. To
change to the others, press Alt-Fx, where x is between 1 and 16. This will give you one
of the others:

Virtual terminals
ttyv1 "/usr/libexec/getty Pc" cons25 on secure
ttyv2 "/usr/libexec/getty Pc" cons25 on secure
ttyv3 "/usr/libexec/getty Pc" cons25 on secure
(etc)
ttyv8 "/usr/X11R6/bin/xdm -nodaemon" xterm off secure

Each virtual terminal can support either a login or an X server. The default /etc/ttys
enables getty on the first eight virtual terminals and reserves /dev/ttyv8 for X. If you
don’t enable xdm on this terminal, you start X with startx.

The default kernel supports sixteen virtual terminals, the maximum possible value. The
kernel configuration parameter MAXCONS (defined in /usr/src/sys/conf/NOTES) allows you
to reduce this number.

Serial terminals
ttyd0 "/usr/libexec/getty std.9600" unknown off secure
ttyd1 "/usr/libexec/getty std.9600" unknown off secure
ttyd2 "/usr/libexec/getty std.9600" unknown off secure
ttyd3 "/usr/libexec/getty std.9600" unknown off secure

These are the serial ports on your machine. It doesn’t matter if it contains names that
correspond to non-existent hardware, such as /dev/ttyd3, as long as you don’t try to
enable them.

Pseudo terminals
ttyp0 none network
ttyp1 none network

There’s a whole list of these. The purpose here is to tell network programs the properties
of the terminal: in particular, they’re not secure, which means that you’re not allowed to
log in on them as root.

Files you might need to change 575

/boot/device.hints
The file /boot/device.hints contains configuration information that was previously stored
in the kernel configuration file, and which could not be changed except by building and
running a new kernel. Now it can be set at boot time. For these changes to apply, you
may still need to reboot, but you no longer need a new kernel.

The information in /boot/device.hints consists of structured variables. For example,
consider a third ISA serial I/O port, called /dev/sio2 in FreeBSD. By default, this port
gets IRQ 4, the same as /dev/sio0. This just plain doesn’t work, so you will have to find a
different IRQ. The hints for this device start with the text hint.sio.2. The default
/boot/device.hints contains the following parameters for this device:

hint.sio.2.at="isa"
hint.sio.2.disabled="1"
hint.sio.2.port="0x3E8"
hint.sio.2.irq="5"

In sequence, these ‘‘hints’’ state that the device is connected to the ISA bus, that it is
disabled (in other words, the kernel does not probe for it), that its device registers are at
address 0x3e8, and that it interrupts at IRQ 5. Modern motherboards configure this
device via the BIOS. You may find that on your system it’s more appropriate to run at
IRQ 11. In this case, in /boot/device.hints, you would remove the ‘‘disabled’’ line and
change the irq line:

hint.sio.2.at="isa"
hint.sio.2.port="0x3E8"
hint.sio.2.irq="11"

In some cases, you can change these flags at run time with the kenv command. For
example, to change the flags of the first serial port to 0x90 to run a serial debugger, you
might enter:

kenv hint.sio.0.flags
0x0
kenv hint.sio.0.flags=0x90
hint.sio.0.flags="0x90"

Wiring down SCSI devices

Another example is so-called wiring down SCSI and ATA devices. We looked at this
issue on page 202. By default, FreeBSD assigns SCSI unit numbers in the order in which
it finds the devices on the SCSI bus. If you remove or add a disk drive, the numbers
change, and you may have to modify your /etc/fstab file. To avoid this problem, you can
wire down your SCSI devices so that a given bus, target, and unit (LUN) always come on
line as the same device unit.

The unit assignment begins with the first non-wired down unit for a device type. Units
that are not specified are treated as if specified as LUN 0. For example, if you wire a disk
as sd3, the first non-wired disk is assigned sd4.

576 Chapter 30: FreeBSD configuration files

The following example shows configuration file entries for a system with three Adaptec
2940 class host adapters, one of them with two buses. The first has a disk on ID 0 that we
want to call /dev/da0, the second has a tape on ID 6 that we want to call /dev/sa0, the first
bus of the third adapter has a disk on ID 3 that we want to call /dev/da2, and the second
bus of the third adapter has a disk on ID 1 that we want to call /dev/da1.

hint.scbus.0.at="ahc0" scbus0 is ahc0
hint.scbus.1.at="ahc1" scbus1 is ahc1 bus 0 (only one)
hint.scbus.1.bus="0"
hint.scbus.3.at="ahc2" scbus3 is ahc2 bus 0
hint.scbus.3.bus="0"
hint.scbus.2.at="ahc2" scbus2 is ahc2 bus 1
hint.scbus.2.bus="1"
hint.da.0.at="scbus0" da0 is on scsbus0, target 0, unit 0
hint.da.0.target="0"
hint.da.0.unit="0"
hint.da.1.at="scbus3" da1 is on scsbus3, target 1
hint.da.1.target="1"
hint.da.2.at="scbus2" da2 is on scsbus2, target 3
hint.da.2.target="3"
hint.sa.1.at="scbus1" sa1 is on scsbus1, target 6
hint.sa.1.target="6"

If there are any other devices connected to the host adapters, they are assigned other
names in sequence, starting at /dev/da3 and /dev/sa2.

This arrangement corresponds to the earlier syntax in the kernel configuration file:

controller scbus0 at ahc0 # Single bus device
controller scbus1 at ahc1 bus 0 # Single bus device
controller scbus3 at ahc2 bus 0 # Twin bus device
controller scbus2 at ahc2 bus 1 # Twin bus device
disk da0 at scbus0 target 0 unit 0
disk da1 at scbus3 target 1
disk da2 at scbus2 target 3
tape sa1 at scbus1 target 6
device cd0 at scbus?

Files you should not change
The files in the following section are there as a kind of reference information. Normally
you should not change them, though there might be exceptional circumstances where it
makes sense to change them.

/etc/gettytab
/etc/gettytab describes profiles for getty. You probably don’t need it; check the man page
if you’re interested.

Files you should not change 577

/etc/manpath.config
/etc/manpath.config is a configuration file for man. You don’t usually need to change
this file.

/etc/netconfig
/etc/netconfig is new in FreeBSD Release 5. It is similar to the file of the same name in
UNIX System V, but it’s only used for C library RPC code. In general, you don’t need to
worry about this file unless you’re upgrading from an older release of FreeBSD. If it’s
not here, a number of network functions, including NFS, will not work.

/etc/networks
/etc/networks was once a list of networks in the Internet. Although this sounds like a
good idea, it is almost useless: if you connect to the Internet, you should use a name
server, which supplants this file.

/etc/passwd
/etc/passwd is the old-style password file. It is now present only for programs that
expect to read user information from it, and it no longer contains passwords. Don’t
change this file; the programs vipw, adduser and pwd_mkdb do it automatically. See
page 144 for more details.

/etc/protocols
/etc/protocols is a list of known protocols that run on the IP layer. Consider this file to be
read-only.

/etc/pwd.db
/etc/pwd.db is a machine-readable form of the user database with the passwords
removed. We looked at it on page 144. Like /etc/passwd, it is generated automatically.

/etc/rc
/etc/rc is the main script that starts up the system. It uses the other files whose names
start with /etc/rc to perform specific initialization. See page 528 for more details.

/etc/rc.i386
/etc/rc.i386 is used to initialize features specific to the Intel 386 architecture, such as
SCO and Linux emulation. You don’t normally need to look at or change this file.

578 Chapter 30: FreeBSD configuration files

/etc/rc.network and /etc/rc.network6
The main scripts for starting the network are /etc/rc.network, which in earlier FreeBSD
releases was called /etc/network, and /etc/rc.network6, which starts IPv6 services. You
normally don’t change these files: they read all the necessary definitions from
/etc/rc.conf, and that’s the file you should change.

/etc/rc.pccard
/etc/rc.pccard sets up laptops using the PC Card bus.

/etc/rc.serial
/etc/rc.serial sets default values for serial devices.

/etc/shells
/etc/shells is a list of valid shells, used by ftp and some other programs. ftpd refuses to
open a session for a user whose shell is not mentioned in this file. This prevents people
from starting an ftp session as a daemon, which frequently have no passwords. chpass
will not let you change your shell to a shell not included in this file. See page 452 for
more details. It is usually updated when you install a new shell from the Ports Collection.

/etc/services
/etc/services contains a list of the IP services that this system supports.

/etc/spwd.db
/etc/spwd.db is a machine-readable form of the user database with the passwords intact.
We looked at it on page 144.

/etc/termcap
/etc/termcap (terminal capabilities) describes terminal control sequences. By default,
programs use the value of the TERM environment variable to look up the terminal
capabilities in this database. See page 128 for more details.

/etc/periodic
The directory /etc/periodic contains three directories used by cron at regular intervals:
daily, weekly and monthly. The directories contain a number of files for performing
specific tasks. For example, /etc/periodic/daily contains the following files:

-rwxr-xr-x 5 grog lemis 1269 Apr 26 2001 100.clean-disks
-rwxr-xr-x 4 grog lemis 1449 Nov 21 13:55 110.clean-tmps
-rwxr-xr-x 5 grog lemis 1092 Sep 15 2000 120.clean-preserve
-rwxr-xr-x 5 grog lemis 695 Sep 15 2000 130.clean-msgs
-rwxr-xr-x 5 grog lemis 1056 Sep 15 2000 140.clean-rwho
-rwxr-xr-x 1 grog lemis 595 Jan 9 07:11 150.clean-hoststat
-rwxr-xr-x 5 grog lemis 1742 Nov 15 2001 200.backup-passwd
-rwxr-xr-x 5 grog lemis 996 Sep 15 2000 210.backup-aliases

Files you should not change 579

-rwxr-xr-x 5 grog lemis 679 Sep 15 2000 300.calendar
-rwxr-xr-x 5 grog lemis 1211 May 31 2001 310.accounting
-rwxr-xr-x 5 grog lemis 710 Sep 15 2000 330.news
-rwxr-xr-x 5 grog lemis 516 Jul 26 2002 400.status-disks
-rwxr-xr-x 5 grog lemis 548 Sep 15 2000 420.status-network
-rwxr-xr-x 5 grog lemis 687 Sep 15 2000 430.status-rwho
-rwxr-xr-x 3 grog lemis 1362 Dec 9 07:15 440.status-mailq
-rwxr-xr-x 5 grog lemis 768 Jul 26 2002 450.status-security
-rwxr-xr-x 3 grog lemis 1633 Dec 9 07:15 460.status-mail-rejects
-rwxr-xr-x 1 grog lemis 1489 Jan 7 07:10 470.status-named
-rwxr-xr-x 5 grog lemis 723 Jul 26 2002 500.queuerun
-rwxr-xr-x 5 grog lemis 712 Jun 2 2001 999.local

The files are executed in the order of their names, so the names consist of two parts: a
number indicating the sequence, and a name indicating the function. This method is new
with FreeBSD Release 3. In older releases of FreeBSD, these functions were performed
by files with the names /etc/daily, /etc/weekly and /etc/monthly. See page 151 for more
details of cron.

Obsolete configuration files
In the course of time, a number of configuration files have come and gone. This can be
tricky if you’re updating a system: some old configuration files could remain and either
confuse you by not working the way you expect, or cause incorrect operation by some
side effect of the presence of the file.

/etc/host.conf
/etc/host.conf described the order in which to perform name resolution. It has been
replaced by /etc/nsswitch.conf, which has a different syntax.

/etc/named.boot
Previous versions of named, the DNS daemon, used /etc/named.boot as the main
configuration file. Newer versions use /etc/namedb/named.conf, and the format is very
different.

/etc/netstart
/etc/netstart was a script called by /etc/rc to start up the network. Its name has now been
changed to /etc/rc.network. FreeBSD still includes a file /etc/netstart, but its only
purpose is to start the network in single-user mode.

/etc/sysconfig
/etc/sysconfig was a file that contained all the site-specific configuration definitions. Its
name has been changed to /etc/rc.conf.

(current.mm), page 581

31
Keeping up to

date

In this chapter:
• FreeBSD releases

and CVS
• FreeBSD releases
• Getting updates from

the Net
• Creating the source

tree

In this chapter:
• FreeBSD releases

and CVS
• FreeBSD releases
• Getting updates from

the Net
• Creating the source

tree

FreeBSD is constantly changing. The average time that elapses between changes to the
source tree is in the order of a few minutes. Obviously you can’t keep up to date with
that pace of change.

In the following three chapters we’ll look at how to keep up to date. In this chapter, we’ll
look at:

• FreeBSD releases: how the FreeBSD project comes to terms with the rapid rate of
change, and how it keeps the system stable despite the changes.

• How the system sources are stored, and how you can update them.

In Chapter 32, Updating the system software, we’ll look at how to upgrade FreeBSD to a
new release, with particular reference to upgrades to FreeBSD Release 5, and in Chapter
33, Custom kernels, we’ll look at building special kernels.

FreeBSD releases and CVS
The FreeBSD project keeps the entire operating system sources in a single master source
tree, called a repository, which is maintained by the Concurrent Versions System, or CVS.
It’s included in most multi–CD-ROM distributions of FreeBSD. The repository contains
all versions of FreeBSD back to Release 2.0 and the last release from the Computer
Sciences Research Group of the University of California at Berkeley, 4.4BSD-Lite, upon
which it was based. For copyright reasons FreeBSD Release 1 was not included, because
at the time, as the result of the lawsuits described on page 8, it was not permitted to

581

582 Chapter 31: Keeping up to date

distribute it freely. That situation changed in early 2002, but it’s now too late to include
FreeBSD Release 1 in the repository.

CVS is built on top of the Revision Control System, or RCS. RCS keeps multiple versions
of files, called re visions, in a single RCS file. Each revision has a number indicating its
relationship to the other revisions. The oldest revision has the number 1.1, the next oldest
has the number 1.2, and so on. The RCS file contains the most recent revision of the file
along with instructions for creating any other revision.

In addition to this linear sequence, it’s possible to update a specific revision in more than
one way. The obvious way to update revision 1.2 would create revision 1.3; but it’s also
possible to create branches, which get numbers like 1.2.1.1. Updating revision 1.2.1.1
would create revision 1.2.1.2, and so on. By contrast, the revisions with a two-part
number are collectively called the trunk of the tree.

Symbolic names or tags
In addition to the numeric identifiers, each of which relates only to a single file, RCS
allows you to attach symbolic names to specific revisions. CVS generally calls these
names tags, and that’s the term you’ll see most often. FreeBSD uses tags to indicate the
revisions corresponding to a particular release. For example, in the directory
/usr/src/sys/kern, revision 1.13 of kern_clock.c, revision 1.12 of kern_fork.c and revision
1.21.4.1 of kern_exec.c participate in RELENG_2_1_0_RELEASE. We’ll look at tags in
more detail on page 588.

RCS stores its files either in the same directory as the working files it is tracking, or in a
subdirectory RCS if it exists. To avoid file name conflicts, RCS appends the characters ,v
to the RCS file, so the working file main.c would correspond to the RCS file main.c,v.
For more details of RCS, see the man page.

CVS is an extension to RCS that allows concurrent access, making it more suitable for
projects involving more than one person. Unlike RCS, it stores its RCS files in a separate
directory hierarchy, called a repository. Each directory in the working tree contains a
subdirectory CVS with information on the location of the repository, the revisions of the
working files and a tag if the revision isn’t on the trunk.

If you’re a serious developer, there are a number of advantages to keeping a copy of the
repository. If you’re a casual user, it’s probably overkill.

FreeBSD releases
There are four main versions of FreeBSD, each intended for use by different people:

FreeBSD releases 583

FreeBSD-RELEASE
Fr eeBSD-RELEASE is the latest version of FreeBSD that has been released for general
use. It contains those new features that are stable, and it has been through extensive
testing. You can get it on CD-ROM. FreeBSD-RELEASEs are given a release number
that uniquely identifies them, such as 5.0. There are three or four releases a year. A new
branch is made for each release of FreeBSD.

FreeBSD-STABLE
Fr eeBSD-STABLE is an updated version of FreeBSD-RELEASE to which all possible
bug fixes hav e been applied, to make it as stable as possible. Fixes are made on a daily
basis. It is based on the same source branch as FreeBSD-RELEASE, so it has all the
features and fewer bugs. It may contain additional features, but new features are tested in
the -CURRENT branch first.

Due to the frequent updates, FreeBSD-STABLE is not available on CD-ROM.

Security fix releases
Despite the name, FreeBSD-STABLE is subject to some problems. Every change to a
source tree has the potential to go wrong. In many cases, you’re more interested in
keeping your system running than you are in getting minor bug fixes. FreeBSD also
maintains a second ‘‘stable’’ branch consisting of the release and only very important bug
fixes, including security updates. This branch does not have a well-defined name, but it’s
generally referred to as the security branch.

FreeBSD-CURRENT
Fr eeBSD-CURRENT is the very latest version of FreeBSD, located on the trunk of the
tree. All new dev elopment work is done on this branch of the tree. FreeBSD-CURRENT
is an ever-changing snapshot of the working sources for FreeBSD, including work in
progress, experimental changes and transitional mechanisms that may or may not be
present in the next official release of the software. Many users compile almost daily from
FreeBSD-CURRENT sources, but there are times when the sources are uncompilable, or
when the system crashes frequently. The problems are always resolved, but others can
take their place. On occasion, keeping up with FreeBSD-CURRENT can be a full-time
business. If you use -CURRENT, you should be prepared to spend a lot of time keeping
the system running. The following extract from the RCS log file for /usr/src/Makefile
should give you a feel for the situation:

$ cvs log Makefile
...
revision 1.152
date: 1997/10/06 09:58:11; author: jkh; state: Exp; lines: +41 -13
Hooboy!

Did I ever spam this file good with that last commit. Despite 3
reviewers, we still managed to revoke the eBones fixes, TCL 8.0 support,
libvgl and a host of other new things from this file in the process of
parallelizing the Makefile. DOH! I think we need more pointy hats - this

584 Chapter 31: Keeping up to date

particular incident is worthy of a small children’s birthday party’s worth of
pointy hats. ;-)

I certainly intend to take more care with the processing of aged diffs
in the future, even if it does mean reading through 20K’s worth of them.
I might also be a bit more anal about asking for more up-to-date changes
before looking at them. ;)

This example also shows the list of the symbolic names for this file, and their
corresponding revision numbers. There is no symbolic name for -CURRENT, because it is
located on the trunk. That’s the purpose of the line head:, which shows that at the time
of this example, the -CURRENT revision of this file was 1.270.

So why use -CURRENT? The main reasons are:

• You might be doing development work on some part of the source tree. Keeping
‘‘current’’ is an absolute requirement.

• You may be an active tester, which implies that you’re willing to spend time working
through problems to ensure that FreeBSD-CURRENT remains as sane as possible.
You may also wish to make topical suggestions on changes and the general direction
of FreeBSD.

• You may just want to keep an eye on things and use the current sources for reference
purposes.

People occasionally have other reasons for wanting to use FreeBSD-CURRENT. The
following are not good reasons:

• They see it as a way to be the first on the block with great new FreeBSD features.
This is not a good reason, because there’s no reason to believe that the features will
stay, and there is good reason to believe that they will be unstable.

• They see it as a quick way of getting bug fixes. In fact, it’s a way of testing bug fixes.
Bug fixes will be retrofitted into the -STABLE branch as soon as they hav e been
properly tested.

• They see it as the newest officially supported release of FreeBSD. This is incorrect:
FreeBSD-CURRENT is not officially supported. The support is provided by the
users.

If you do decide to use -CURRENT, read the suggestions on page 622.

Snapshots

FreeBSD-CURRENT is available in the form of ISO (CD-ROM) images. From time to
time, at irregular intervals when the tree is relatively stable, the release team makes a
snapshot release from the -CURRENT source tree. They are also available on CD-ROM
from some vendors; check the online handbook for details. This is a possible alternative
to online updates if you don’t want the absolute latest version of the system.

FreeBSD releases 585

Getting updates from the Net
There are a number of possibilities to keep up with the daily modifications to the source
tree. The first question is: how much space do you want to invest in keeping the sources?
Table 31-1 shows the approximate space required by different parts of the sources. Note
that the repository keeps growing faster than the source tree, because it includes all old
revisions as well.

Table 31-1: Approximate source tree sizes

Component Size (MB)

Repository src/sys 250
Repository src 1000
Repository ports 300
Source tree /usr/src/sys 110
Source tree /usr/src 450
Source tree /usr/ports 200
Object tree /usr/obj 160

The size of /usr/src/sys includes the files involved in a single kernel build. You can
remove the entire kernel build directory, but if you want to be able to analyze a panic
dump, you should keep the kernel.debug file in the kernel build directory. This changes
the size of /usr/src as well, of course. The other object files get built in the directory
/usr/obj. Again, you can remove this directory tree entirely if you want, either with the
rm command or with make clean. Similarly, the size of /usr/ports includes a few
ports. It will, of course, grow extremely large (many gigabytes) if you start porting all
available packages.

If you’re maintaining multiple source trees (say, for different versions), you still only
need one copy of the repository.

CVSup
CVSup is a software package that distributes updates to the repository. You can run the
client at regular intervals—for example, with cron (see page 151) to update your
repository.

To get started with CVSup, you need the following:

• A source tree or repository, which doesn’t hav e to be up to date. This is not
absolutely necessary, but the initial setup will be faster if you do it this way.

• A copy of the cvsup program. Install it with pkg_add from the CD-ROM
(/cdrom/packages/Latest/cvsup.tbz).

586 Chapter 31: Keeping up to date

• A cvsupfile, a command file for cvsup. We’ll look at this below.

• A mirror site from which you can load or update the repository. We’ll discuss this
below as well.

The cvsupfile contains a description of the packages you want to download. You can find
all the details in the online handbook, but the following example shows a reasonably
normal file:

*default release=cvs
*default host=cvsup9.freebsd.org
*default base=/src/cvsup
*default prefix=/home/ncvs
*default delete
*default use-rel-suffix
*default compress
src-all
ports-all
doc-all

The lines starting with *default specify default values; the lines that do not are
collections that you want to track. This file answers these implicit questions:

• Which files do you want to receive? These are the names of the collections in the last
three lines: all of the sources, ports and documentation.

• Which versions of them do you want? By default, you get updates to the repository.
If you want a specific version, you can write:

*default tag=version

version is a release tag that identifies the version you want, or . (a period) to
represent the -CURRENT version. We’ll discuss release tags on page 588.

Alternatively, you might ask for a version as of a specific date. For example:

*default date=97.09.13.12.20

This would specify that you want the version as it was on 13 September 1997 at
12:20. In this case, version defaults to . (a period).

• Where do you want to get them from? Tw o parameters answer this question:
host=cvsup9.freebsd.org specifies the name of the host from which to load the
files, and release=cvs specifies to use the cvs release. The release option is
obsolescent, but it’s a good idea to leave it in there until it is officially removed.

• Where do you want to put them on your own machine? This question is answered by
the line *default prefix=/home/ncvs. We’re tracking the repository in this
example, so this is the name of the repository. If we were tracking a particular
release, we would use *default prefix=/usr. The collections are called doc,
ports and src, so we refer to the parent directory in each case.

Getting updates from the Net 587

• Where do you want to put your status files? This question is answered by the line
*default base=/src/cvsup.

In addition, the file contains three other lines. *default delete means that cvsup may
delete files where necessary. Otherwise you run the risk of accumulating obsolete files.
*default compress enables compression of the data transmitted, and *default use-
rel-suffix specifies how cvsup should handle list files. It’s not well-documented, but
it’s necessary. Don’t worry about it.

Which CVSup server?
In this example, we’ve chosen one of the backup US servers, cvsup9.FreeBSD.org. In
practice, this may not be the best choice. A large number of servers are spread around the
world, and you should choose the one topographically closest to you. This isn’t the same
thing as being geographically closest—I live in Adelaide, South Australia, and some ISPs
in the same city are further away on the Net than many systems in California. Look on
the web site http://www.FreeBSD.org for an up-to-date list.

Running cvsup
cvsup is a typical candidate for a cron job. I rebuild the -CURRENT tree every morning at
3 am. To do so, I have the following entry in /root/crontab:

Get the latest and greatest FreeBSD stuff.
0 3 * * * ./extract-updates

The file /root/extract-updates contains, amongst other things,

cvsup -g -L2 /src/cvsup/cvs-cvsupfile

/src/cvsup/cvs-cvsupfile is the name of the cvsupfile we looked at above. The other
parameters to cvsup specify not to use the GUI (-g), and -L2 specifies to produce
moderate detail about the actions being performed.

Getting individual releases
The example cvsupfile above is useful if you’re maintaining a copy of the repository. If
you just want to maintain a copy of the sources of one version, say Release 5.0, use the
following file instead:

*default tag=RELENG_5_0_0_RELEASE
*default release=cvs
*default host=cvsup9.freebsd.org
*default base=/usr for /usr/doc, /usr/ports, /usr/src
*default prefix=/home/ncvs
*default delete
*default use-rel-suffix
*default compress
src-all

Be careful with tags. They must exist in the repository, or cvsup will replace what you
have with nothing: it will delete all the files. In our original cvsupfile, we had two

588 Chapter 31: Keeping up to date

additional sets, ports-all and doc-all. These sets don’t hav e the same release tags, so
if you left them in this file, you would lose all the files in the /usr/doc and /usr/ports
directory hierarchies.

Creating the source tree
If you’re tracking the repository, you’re not finished yet. Once you have an up-to-date
repository, the next step is to create a source tree. By default, the source tree is called
/usr/src, though it’s very common for /usr/src to be a symbolic link to a source tree on a
different file system. You create the tree with cvs.

Before you check anything out with cvs, you need to know:

1. What do you want to check out? You specify this with a module name, which usually
corresponds with a directory name (for example, src). There are a number of top-
level modules, including doc, ports, src and www.

2. Which version do you want to check out? By default, you get the latest version,
which is FreeBSD-CURRENT. If you want a different version, you need to specify
its tag.

3. Possibly, the date of the last update that you want to be included in the checkout. If
you specify this date, cvs ignores any more recent updates. This option is often
useful when somebody discovers a recently introduced bug in -CURRENT: you check
out the modules as they were before the bug was introduced. You specify the date
with the -D option, as we’ll see below.

Release tags
FreeBSD identifies releases with two or more numbers separated by periods. Each
number represents a progressively smaller increment in the functionality of the release.
The first number is the base release of FreeBSD. The number is incremented only when
significant functionality is added to the system. The second number represents a less
significant, but still important difference in the functionality, and the third number is only
used when a significant bug requires rerelease of an otherwise unchanged release. Before
Release 3 of FreeBSD, a fourth number was sometimes also used.

Tags for released versions of FreeBSD follow the release numbers. For release x.y.z you
would look for the tag RELENG_x_y_ z_RELEASE. For example, to get the current state
of the FreeBSD 5.0 source tree, you would look for the tag RELENG_5_0_0_RELEASE.

Tags for the -STABLE branch are simpler: they just have the release number, for example
RELENG_4. The security branch has an additional number, for example RELENG_4_7.

Some tags diverge from this scheme. In particular, CSRG and bsd_44_lite both refer to
the original 4.4BSD sources from Berkeley. If you feel like it, you can extract this source
tree as well.

Creating the source tree 589

To find out what tags are available, do:

cd $CVSROOT/src
rlog Makefile,v | less
RCS file: /home/ncvs/src/Makefile,v
RCS file: /home/ncvs/src/Makefile,v
Working file: Makefile
head: 1.270
branch:
locks: strict
access list:
symbolic names:

RELENG_5_0_0_RELEASE: 1.271 5.0-RELEASE
...

RELENG_4_7_0_RELEASE: 1.234.2.18 4.7-RELEASE
RELENG_4_7: 1.234.2.18.0.2 4.7 security fixes only
RELENG_4_7_BP: 1.234.2.18 branch point for 4.7
RELENG_4_6_2_RELEASE: 1.234.2.12 4.6.2-RELEASE
RELENG_4_6_1_RELEASE: 1.234.2.12 4.6.1-RELEASE
RELENG_4_6_0_RELEASE: 1.234.2.12 4.6-RELEASE

...
RELENG_4: 1.234.0.2 4-STABLE

...
RELEASE_2_0: 1.30 2.0-RELEASE
BETA_2_0: 1.30
ALPHA_2_0: 1.29.0.2
bsd_44_lite: 1.1.1.1 4.4BSD-Lite
CSRG: 1.1.1

keyword substitution: kv
total revisions: 179; selected revisions: 179
description:

This example shows the same file we saw on page 583. This time we use the rlog
command, which is part of RCS, to look at the revision log. Normally you’d use cvslog,
but that only works in a checked out source tree.

There are a number of ways to tell cvs the name of its repository: if you already have a
CVS subdirectory, it will contain files Root and Repository. The name of the repository
is in Root, not in Repository. When you first check out files, you won’t hav e this
directory, so you specify it, either with the -d option to cvs or by setting the CVSROOT
environment variable. As you can see in the example above, it’s convenient to set the
environment variable, since you can use it for other purposes as well.

The repository contains a number of directories, usually one for each collection you
track. In our case, we’re tracking the source tree and the Ports Collection, so:

• CVSROOT contains files used by CVS. It is not part of the source tree.

• ports contains the Ports Collection.

• src contains the system sources.

The directories ports and src correspond to the directories /usr/ports and /usr/src for a
particular release. To extract the src tree of the most up-to-date version of FreeBSD-
CURRENT, do the following:

590 Chapter 31: Keeping up to date

cd /usr
cvs co src 2>&1 | tee /var/tmp/co.log

To check out any other version, say, everything for Release 4.6, you would enter:

cd /usr
cvs co -r RELENG_4_6_RELEASE src 2>&1 | tee /var/tmp/co.log

If you need to check out an older version, for example if there are problems with the most
recent version of -CURRENT, you could enter:

cvs co -D "10 December 2002" src/sys

This command checks out the kernel sources as of 10 December 2002. During checkout,
cvs creates a subdirectory CVS in each directory. CVS contains four files. We’ll look at
typical values when checking out the version of the directory /usr/src/usr.bin/du for
Release 4.6, from the repository at /home/ncvs:

• Entries contains a list of the files being maintained in the parent directory, along with
their current versions. In our example, it would contain:

/Makefile/1.4.2.1/Sun Jul 2 10:45:29 2000//TRELENG_4_6_0_RELEASE
/du.1/1.15.2.7/Thu Aug 16 13:16:47 2001//TRELENG_4_6_0_RELEASE
/du.c/1.17.2.3/Thu Jul 12 08:46:53 2001//TRELENG_4_6_0_RELEASE
D

Note that cvs prepends a T to the version name.

• Repository contains the name of the directory in the repository that corresponds to the
current directory. This corresponds to $CVSROOT/directory. In our example, it
would contain src/usr.bin/du.

• Root contains the name of the root of the repository. In our example, it would
contain /home/ncvs.

• Ta g contains the version tag of the source tree. This is the RCS tag prefixed by a T.
In this case, it is TRELENG_4_6_0_RELEASE.

cvs co produces a lot of output—at least one line for each directory, and one line for each
file it checks out. Here’s part of a typical output:

U src/usr.sbin/mrouted/rsrr_var.h
U src/usr.sbin/mrouted/vif.c
U src/usr.sbin/mrouted/vif.h
cvs checkout: Updating src/usr.sbin/mrouted/common
U src/usr.sbin/mrouted/common/Makefile
cvs checkout: Updating src/usr.sbin/mrouted/map-mbone
U src/usr.sbin/mrouted/map-mbone/Makefile
cvs checkout: Updating src/usr.sbin/mrouted/mrinfo
U src/usr.sbin/mrouted/mrinfo/Makefile
cvs checkout: Updating src/usr.sbin/mrouted/mrouted
U src/usr.sbin/mrouted/mrouted/Makefile
cvs checkout: Updating src/usr.sbin/mrouted/mtrace
U src/usr.sbin/mrouted/mtrace/Makefile
cvs checkout: Updating src/usr.sbin/mrouted/testrsrr
U src/usr.sbin/mrouted/testrsrr/Makefile

Creating the source tree 591

The flag at the beginning of the line indicates what action cvs took for the file. The
meanings are:

• U means that cvs updated this file. Either it didn’t exist previously, or it was an older
version.

• You won’t normally see P on a local update. It implies that cvs patched the file to
update it. Otherwise it has the same meaning as U.

• ? means that cvs found the file in the directory, but it doesn’t exist in the repository.

• M means that cvs found that the file in your working directory has been modified
since checkout, but it either didn’t need to change it, or it was able to apply the
changes cleanly.

• C found that the file in your working directory has been modified since checkout, and
it needed to change it, but it was not able to apply the changes cleanly. You will have
to resolve the conflicts manually.

After checkout, check the log file for conflicts. For each conflict, you must check the files
manually and possibly recover the contents. See the man page cvs(1) for more details.

Updating an existing tree
Once you have checked out a tree, the ground rules change a little. Next time you do a
checkout, files may also need to be deleted. Apart from that, there isn’t much difference
between checkout and updating. To update the /usr/src directory after updating the
repository, do:

cd /usr/src
cvs update -Pd

Note that this time we can start in /usr/src: we now hav e the CVS/ subdirectories in
place, so cvs knows what to do without being given any more information.

Using a remote CVS tree
A CVS tree takes up a lot of space, and it’s getting bigger all the time. If you don’t check
out very often, you may find it easier to use anonymous CVS, where the tree is on a
different system. FreeBSD provides the server anoncvs.FreeBSD.org for this purpose.

For example, to check out the -CURRENT source tree, perform the following steps:

$ cd /usr go to the parent directory
$ CVSROOT=:pserver:anoncvs@anoncvs.FreeBSD.org:/home/ncvs set the server path
$ cvs login You only need to do this once
Logging in to :pserver:anoncvs@anoncvs.freebsd.org:2401/home/ncvs
CVS password: enter anoncvs; it doesn’t echo
$ cvs co src
cvs server: Updating src
U src/COPYRIGHT
U src/Makefile
U src/Makefile.inc1
(etc)

(upgrading.mm), page 593

32
Updating the

system
software

In this chapter:
• Upgrading ker nel and

user land
• Upgrading the ker nel
• Upgrading the boot

files
• Upgrading the

configuration files
• Merging /etc/group
• Mergemaster,

second time around

In this chapter:
• Upgrading ker nel and

user land
• Upgrading the ker nel
• Upgrading the boot

files
• Upgrading the

configuration files
• Merging /etc/group
• Mergemaster,

second time around

In the previous chapter, we looked at how to get an up-to-date FreeBSD source tree.
Once you have the sources, you can build various components of the system. The main
tool we use for this purpose is make, which we looked at on page 168. The best way to
think of upgrading the system is that everything is a matter of changing files. For the
purposes of this discussion, you can divide the files on your system into the following
categories:

• The userland, that part of the system software that is not the kernel. Unlike some
other operating systems, FreeBSD expects to keep userland and kernel at the same
release level. We’ll look at the interaction between kernel and userland below.

• The kernel. You may build a new kernel without updating the sources, of course, if
you want to add functionality to the kernel. In this chapter we’ll look at upgrading
the kernel in the context of a complete system upgrade. We’ll consider building a
custom kernel in the next chapter, Chapter 33, Custom kernels.

• Support for booting the machine, which is currently performed as a separate step.

• Configuration files relating to your system. Some of them, such as /etc/fstab and
/etc/rc.conf, overlap with the previous category.

593

594 Chapter 32: Updating the system software

• The Ports Collection. This doesn’t hav e to be done at the same time as userland and
kernel, though if you upgrade to a significant new version of FreeBSD, it’s a good
idea to upgrade the ports as well. We looked at upgrading ports on page 178.

• Your own files. They hav e nothing to do with a software upgrade.

You can make upgrading less onerous by planning in advance. Here are some
suggestions:

• Keep system files and user files on different file systems.

• Keep careful records of which configuration files you change, for example with RCS,
the Revision Control System. This proves to be the most complicated part of the
entire upgrade process.

The only files that are upgraded are on the traditional root file system and /usr. No others
are affected by an upgrade. Table 32-1, an abridged version of Table 10-2 on page 188,
gives an overview of where the system files come from.

Table 32-1: FreeBSD directory hierarchy

directory
name Usage Populated by
/bin Executable programs of general use. make world
/boot Files used when booting the system. make install in /usr/src/sys.
/dev Directory of device nodes. System startup (devfs)
/etc Configuration files used at system startup. Install from CD-ROM only,

mergemaster, administrator
/sbin System executables needed at system

startup time.
make world

/usr/X11R6 The X11 windowing system. X-based programs in the
Ports Collection

/usr/bin Standard executable programs that are not
needed at system start.

make world

/usr/compat A directory containing code for emulated
systems, such as Linux.

Ports Collection

/usr/games Games. make world
/usr/include Header files for programmers. make world
/usr/lib Library files. make world
/usr/libexec Executable files that are not started direct-

ly by the user.
make world

/usr/libdata Miscellaneous files used by system utili-
ties.

make world

/usr/local Additional programs that are not part of
the operating system.

Ports collection

/usr/obj Temporary object files created when
building the system.

make world

FreeBSD directory hierarchy 595

directory
name Usage Populated by
/usr/ports The Ports Collection. sysinstall, cvs
/usr/sbin System administration programs that are

not needed at system startup.
make world

/usr/share Miscellaneous read-only files, mainly in-
formative.

make world

/usr/src System source files. sysinstall, cvs

Upgrading kernel and userland
The core part of a system upgrade consists of a synchronized update of both kernel and
userland. It’s relatively simple to do, but depending on the speed of the machine, it may
keep the computer busy for several hours. In general, you build and install the userland
first, then you build and install the kernel.

The traditional way to build the userland is:

cd /usr/src
make world

This operation performs a number of functions, which can be influenced by variables you
pass to make. Without any variables, make world performs the following steps:

• It removes the old build directories and creates new ones. You can skip this step by
setting the NOCLEAN variable. Don’t set NOCLEAN unless you know exactly why you
are doing so, since it can cause inconsistencies that come back to bite you later. In
particular, if you do have problems after building the world in this manner, you
should first go back and perform a complete rebuild without NOCLEAN.

• It rebuilds and installs build tools, including make, the C compiler and the libraries.

• It builds the rest of the system, with the exception of the kernel and the boot tools.

• It installs everything. You can omit this stage by building the buildworld target
instead of world.

It does this by building a number of subtargets. Occasionally, you might find it useful to
build them individually: make world can pose a chicken-and-egg problem. It creates the
userland, and make kernel makes the kernel. Userland and kernel belong together, and if
you upgrade the userland first, you may find that the new userland takes advantage of
differences in the newer version of the kernel. A typical situation is when a new system
call is added to the kernel. In this case, you may find processes exiting with a signal 12
(invalid system call). If this happens, you may have to perform the upgrade with the
sequence:

596 Chapter 32: Updating the system software

make buildworld
make kernel
(reboot)
make installworld

You’ll find information about such requirements in the file /usr/src/UPDATING. Table
32-2 gives an overview of the more useful targets to the top-level Makefile.

Table 32-2: Targets for top-level Makefile

Target Purpose
buildworld Rebuild everything, including glue to help do upgrades.

installworld Install everything built by buildworld.

world Perform buildworld and installworld.

update Update your source tree.

most Build user commands, no libraries or include files.

installmost Install user commands, but not libraries or include files.

reinstall If you have a build server, you can NFS mount the source and object
directories and do a make reinstall on the client to install new
binaries from the most recent build on the server.

buildkernel Build a kernel for your architecture. By default, use the GENERIC
kernel configuration file. You can select a different configuration
file, say MYKERNEL, with:

make buildkernel KERNCONF=MYKERNEL

By default, this target builds all the KLDs (Kernel Loadable
Modules), which significantly increases the time it takes. If you
know that your KLDs will not change, or that you won’t be using
any, you can skip building them by specifying the -DNO_MODULES
flag.

installkernel Install a kernel you have built with buildkernel.

reinstallkernel Install a kernel you have built with buildkernel. Don’t rename
the previous kernel directory to kernel.old. Use this target when the
previous kernel is not worth keeping.

kernel Build and install a kernel.

Another issue is that the system configuration might have changed. For example, in early
2002 the default configuration for sendmail changed. The process added a daemon user
and group, both called smmsp. To install the userland, this user already needed to be
present.

Upgrading ker nel and userland 597

The solution to this issue is called mergemaster, a script that helps you to upgrade the
configuration files. We’ll look at it in more detail below, but at this point you should
know that you need to run it with the -p (pre-build) option:

mergemaster -p

As we’ve seen in table 32-1, the installworld target changes a number of directories.
Sometimes, though, it leaves old binaries behind: it doesn’t remove anything that it
doesn’t replace. The result can be that you end up using old programs that have long
passed their use-by date. One solution to this problem is to look at the last modification
date of each program in the directories. For example, if you see:

$ ls -lrt /usr/sbin
-r-xr-xr-x 1 root wheel 397 Jul 14 11:36 svr4
-r-xr-xr-x 1 root wheel 422 Jul 14 11:29 linux
-r-xr-xr-x 1 root wheel 142080 Jul 13 17:20 sshd
...
-r-xr-xr-x 1 root wheel 68148 Jul 13 17:16 uuchk
-r-xr-xr-x 1 root wheel 6840 Jan 5 2002 ispppcontrol
-r-xr-xr-x 1 root wheel 27996 Apr 21 2001 k5stash
-r-xr-xr-x 1 root wheel 45356 Apr 21 2001 ktutil
-r-xr-xr-x 1 root wheel 11124 Apr 21 2001 kdb_util
-r-xr-xr-x 1 root wheel 6768 Apr 21 2001 kdb_init

It’s fairly clear that the files dated April 2001 have not just been installed, so they must be
out of date. You can use a number of techniques to delete them; one might be:

find . -mtime +10 | xargs rm

This command removes all files in the current directory (.) that are older than 10 days
(+10). Of course, this method will only work if you haven’t installed anything in these
directories yourself. You shouldn’t hav e done so; that’s the purpose of the directory
hierarchy /usr/local, to ensure that you keep system files apart from ports and private
files.

Be careful with /usr/lib: a number of ports refer to libraries in this directory hierarchy,
and if you delete them, the ports will no longer work. In general there’s no problem with
old libraries in /usr/lib, unless they take up too much space, so you’re safer if you don’t
clean out this directory hierarchy.

Note that you need to specify the KERNCONF parameter to all the targets relating to kernel
builds.

Upgrading the kernel
There are two reasons for building a new kernel: it might be part of the upgrade process,
which is what we’ll look at here, or you may build a kernel from your current sources to
add functionality to the system. We’ll look at this aspect in Chapter 33.

598 Chapter 32: Updating the system software

One point to notice is that if you’re upgrading from an older custom configuration file,
you could have a lot of trouble. We’ll see a strategy for minimizing the pain on page 617.
In addition, when upgrading to FreeBSD Release 5 from an older release of FreeBSD,
you need to install a file /boot/device.hints, which you can typically copy from
/usr/src/sys/i386/conf/GENERIC.hints:

cp /usr/src/sys/i386/conf/GENERIC.hints /boot/device.hints

See page 609 for more details.

When upgrading the kernel, you might get error messages like this one:

config GENERIC
config: GENERIC:71: devices with zero units are not likely to be correct

Alternatively, you might get a clearer message:

config GENERIC
../../conf/files: coda/coda_fbsd.c must be optional, mandatory or standard
Your version of config(8) is out of sync with your kernel source.

Apart from that, you might find that the kernel fails to link with lots of undefined
references. This, too, could mean that the config program is out of synchronization with
the kernel modules. In each case, build and install the new version of config:

cd /usr/src/usr.sbin/config
make depend all install clean

You need to make clean at the end since this method will store the object files in non-
standard locations.

Upgrading the boot files
At the time of writing, it’s still necessary to install the files in /boot separately. It’s
possible that this requirement will go away in the future. There are two steps: first you
build and install the boot files in the /boot directory, then you install them on your boot
disk. Assuming your system disk is the SCSI disk /dev/da0, you would perform some of
the following steps.

cd /usr/src/sys build directory
make install build and install the bootstraps
bsdlabel -B da0 Either, for a dedicated disk
bsdlabel -B da0s1 Or, for a PC disk slice
boot0cfg -B da0 Or, booteasy for a dedicated PC disk

If you have a dedicated disk, which is normal on a non-Intel platform, use the first
bsdlabel invocation to install the bootstrap (boot1) at the beginning of the disk.
Otherwise, install boot1 at the beginning of your FreeBSD slice and use boot0cfg to
install the boot0 boot manager at the beginning of the disk.

Upgrading the boot files 599

Upgrading the configuration files
Currently, the system build procedure does not install the configuration files in /etc. You
need to do that separately. There are two possible methods:

• Do it manually:

1. Backup the old configuration files. They’re not very big, so you can probably
make a copy on disk somewhere.

2. Install pristine new configuration files:

cd /usr/src/etc/
make install

3. Compare the files and update the new ones with information from your
configuration.

• Use mergemaster, a semi-automatic method of doing effectively the same thing.

The simple method is: run mergemaster with the options -i and -a, which tell it to run
automatically (in other words, not to stop and ask questions), and to install new files
automatically. That doesn’t mean intelligently: you may run into problems anyway.

mergemaster produces a lot of output, and some of it in the middle is important, so you
should save the output to disk with the tee command. The first time you try, you might
see:

mergemaster -ia 2>&1 | tee -a /var/tmp/merge

*** Creating the temporary root environment in /var/tmp/temproot
*** /var/tmp/temproot ready for use
*** Creating and populating directory structure in /var/tmp/temproot

set - ‘grep "ˆ[a-zA-Z]" /usr/src/etc/locale.deprecated‘; while [$# -gt 0] ; do
for dir in /usr/share/locale /usr/share/nls /usr/local/share/nls; do test -d /va
r/tmp/temproot/${dir} && cd /var/tmp/temproot/${dir}; test -L "$2" && rm -rf "$2";
test -L "$1" && test -d "$1" && mv "$1" "$2"; done; shift; shift; done
mtree -deU -f /usr/src/etc/mtree/BSD.root.dist -p /var/tmp/temproot/
./bin missing (created)
./boot missing (created)
...
./vm missing (created)
mtree -deU -f /usr/src/etc/mtree/BSD.sendmail.dist -p /var/tmp/temproot/
mtree: line 10: unknown user smmsp
*** Error code 1

Stop in /usr/src/etc.

*** FATAL ERROR: Cannot ’cd’ to /usr/src/etc and install files to
the temproot environment

These messages are somewhat misleading. First, the files that are created are all in
/var/tmp/temproot. In addition, the message Cannot ’cd’ to /usr/src/etc does not
refer to any problem with that directory; it’s just an indication that it can’t continue with
the installation due to the previous errors.

600 Chapter 32: Updating the system software

The real issue here is that the user smmsp doesn’t exist. As we saw above, this user was
added some time in 2002 to address some mail security problems. It’s in the new
/etc/master.passwd file, but it’s not in the one on the system. But how do you merge the
two files? One way would to be to use mergemaster with the -p option, but then
mergemaster prompts you for every single file that it finds to be different, usually about
300 of them. In addition, the editing facilities are relatively basic. It’s better to edit the
file in advance with an editor.

Merging the password file
As we saw on page 145, the password file is quite complicated. Depending on how much
work you want to do, you have a couple of possibilities:

• You can choose to completely replace the old /etc/master.passwd with the new one.
This will cause all added user names and passwords to disappear, so unless this is just
a test machine, it’s unlikely you’ll want to follow this path.

• You can take advantage of the fact that, with the exception of root, the distribution
/etc/master.passwd contains no ‘‘real’’ users. You can merge the entries for real
users with the entries in the distribution /etc/master.passwd. This works relatively
well, but it removes the passwords of the system users, so you have to set them again.
We’ll look at how to do that below.

The distribution version of /etc/master.passwd looks something like this:

$FreeBSD: src/etc/master.passwd,v 1.33 2002/06/23 20:46:44 des Exp $
#
root::0:0::0:0:Charlie &:/root:/bin/csh
toor:*:0:0::0:0:Bourne-again Superuser:/root:
...etc

The individual fields are separated by colons (:). We’ll look at only the fields that
interest us in the following expansion. It’s easier to look at if they’re separated by spaces;
numerically, they’re the first, second, eighth, ninth and tenth fields. For a description of
the other fields, see the man page master.passwd(4).

User password GECOS home directory shell
root Charlie & /root /bin/csh
toor * Bourne-again Superuser /root
daemon * Owner of many processes /root /sbin/nologin
operator * System & / /sbin/nologin
bin * Binaries Commands / /sbin/nologin
tty * Tty Sandbox / /sbin/nologin
kmem * KMem Sandbox / /sbin/nologin
games * Games pseudo-user /usr/games /sbin/nologin
news * News Subsystem / /sbin/nologin
man * Mister Man Pages /usr/share/man /sbin/nologin
sshd * Secure Shell Daemon /var/empty /sbin/nologin
smmsp * Sendmail Submission /var/spool/clientmqueue /sbin/nologin
mailnull * Sendmail Default User /var/spool/mqueue /sbin/nologin
bind * Bind Sandbox / /sbin/nologin
xten * X-10 daemon /usr/local/xten /sbin/nologin
pop * Post Office Owner /nonexistent /sbin/nologin
www * World Wide Web Owner /nonexistent /sbin/nologin
nobody * Unprivileged user /nonexistent /sbin/nologin

Upgrading the configuration files 601

The first field is the name of the user. In the course of time, a number of pseudo-users
have been added to reduce exposure to security issues. The main issue in merging the
files is to add these users. If you don’t hav e the user in your current /etc/master.passwd,
you can add the line from the distribution file.

The second field contains the password. In the distribution file, it’s usually *, which
means it needs to be set before you can log in at all. Only root has no password; you
need to be able to log in as root to set passwords. By contrast, in your installed
/etc/master.passwd, you will almost certainly have a password, and in general you will
want to keep it.

The home directory entry has not changed much. You’ll notice directory names like
/nonexistent and /var/empty. The former is a fake, the latter a directory that can’t be
changed. It’s possible that this entry will change from one release to another, and it’s
important to get it correct.

For many accounts, the shell field contains the name /sbin/nologin, which prints the text
‘‘This account is currently not available’’ and exits. Currently only root has a real shell,
but that could change.

To update the /etc/master.passwd, you can use the following method:

• Make a copy of your old /etc/master.passwd!

• Maintain a strict separation of the original lines from the distribution file and your
own entries. This will help you with the next update.

• Copy the entire distribution /etc/master.passwd to the top of your /etc/master.passwd
file. At this point you will have a number of duplicates.

• Check the entries for root. You can probably remove the distribution entry and leave
your entry in the file, preserving the password and shell. In this case, you should
make an exception to the separation between distribution and local additions: due to
the way the name lookups work, if you put user root below user toor (‘‘root’’ spelt
backwards, and the same user with possibly a different shell), all files will appear to
belong to toor instead of to root.

• Check what other entries you have for user ids under 1000. You can probably remove
them all, but if you have installed ports that require their own user ID, you will need
to keep them.

• You should be able to keep all the entries for users with IDs above and including
1000, with the exception of user nobody (ID 65534). Use the entry from the
distribution file for nobody.

Once you have merged the files, you need to run pwd_mkdb to rebuild the password files
/etc/passwd, /etc/pwd.db and /etc/spwd.db. /etc/passwd is gradually going out of use,
but you probably have one on your system, and some ports use it, so it’s preferable to
recreate it. Do this with the -p option to pwd_mkdb:

pwd_mkdb -p /etc/master.passwd

602 Chapter 32: Updating the system software

Merging /etc/group
In addition to /etc/master.passwd, you will probably need to upgrade /etc/group. In this
case, the main issue is to add users to the wheel group. The distribution /etc/group looks
like this:

$FreeBSD: src/etc/group,v 1.27 2002/10/14 20:55:49 rwatson Exp $
#
wheel:*:0:root
daemon:*:1:
kmem:*:2:
sys:*:3:
tty:*:4:
operator:*:5:root
mail:*:6:
bin:*:7:
news:*:8:
man:*:9:
games:*:13:
staff:*:20:
sshd:*:22:
smmsp:*:25:
mailnull:*:26:
guest:*:31:
bind:*:53:
uucp:*:66:
xten:*:67:
dialer:*:68:
network:*:69:
www:*:80:
nogroup:*:65533:
nobody:*:65534:

Again, new groups have appeared for security reasons. Use a similar method to the one
you used for /etc/master.passwd:

• Make a copy of your old /etc/group!

• Maintain a strict separation of the original lines from the distribution file and your
own entries. This will help you with the next update.

• Copy the entire distribution /etc/group to the top of your /etc/group file. At this
point you will have a number of duplicates.

• Check the entries for wheel. You can probably remove the distribution entry and
leave your entry in the file, preserving the users.

• In addition, you may have some users in other groups. For example, installing postfix
adds the user postfix to group mail. You need to preserve these users.

You don’t need to do anything special after updating /etc/group. You can now continue
with mergemaster.

Merging /etc/group 603

Mergemaster, second time around
Before running mergemaster again, you should delete the contents of /var/tmp/temproot.
Otherwise you might see something like:

*** The directory specified for the temporary root environment,
/var/tmp/temproot, exists. This can be a security risk if untrusted
users have access to the system.

mergemaster does not delete the old directories: you should do so yourself. If this file
already exists, mergemaster ignores it and creates a new directory with a name like
/var/tmp/temproot.0917.02.18.06. The numbers are a representation of the date and time
of creation.

mergemaster doesn’t make it easy to remove the /var/tmp/temproot directory. You may
see:

rm -rf /var/tmp/temproot
rm: /var/tmp/temproot/var/empty: Operation not permitted
rm: /var/tmp/temproot/var: Directory not empty
rm: /var/tmp/temproot: Directory not empty

The problem here is that the directory /var/empty has been set immutable. Change that
with the chflags command and try again:

find /var/tmp/temproot|xargs chflags noschg
rm -rf /var/tmp/temproot

Run mergemaster in the same way as before, saving the output. If you haven’t deleted
the old /var/tmp/temproot directory, you might see:

mergemaster -ia 2>&1 | tee -a /var/tmp/merge
*** Creating the temporary root environment in /var/tmp/temproot.1102.15.01.14
*** /var/tmp/temproot.1102.15.01.14 ready for use
*** Creating and populating directory structure in /var/tmp/temproot.1102.15.01.14

set - ‘grep "ˆ[a-zA-Z]" /usr/src/etc/locale.deprecated‘; while [$# -gt 0] ; do
for dir in /usr/share/locale /usr/share/nls /usr/local/share/nls; do test -d /va
r/tmp/temproot.1102.15.01.14/${dir} && cd /var/tmp/temproot.1102.15.01.14/${dir}; t
est -L "$2" && rm -rf "$2"; test -L "$1" && test -d "$1" && mv "$1" "$2"; done;
shift; shift; done

mtree -deU -f /usr/src/etc/mtree/BSD.root.dist -p /var/tmp/temproot.1102.15.01.14/
./bin missing (created)
./boot missing (created)
./boot/defaults missing (created)
./boot/kernel missing (created)
./boot/modules missing (created)
./
...
install -o root -g wheel -m 644 /dev/null /var/tmp/temproot.1102.15.01.14/var/run/u
tmp
install -o root -g wheel -m 644 /usr/src/etc/minfree /var/tmp/temproot.1102.15.01.1
4/var/crash
cd /usr/src/etc/..; install -o root -g wheel -m 444 COPYRIGHT /var/tmp/temproot.110
2.15.01.14/
cd /usr/src/etc/../share/man; make makedb
makewhatis /var/tmp/temproot.1102.15.01.14/usr/share/man

604 Chapter 32: Updating the system software

*** Beginning comparison

*** Temp ./etc/defaults/rc.conf and installed have the same CVS Id, deleting
*** Temp ./etc/defaults/pccard.conf and installed have the same CVS Id, deleting
*** ./etc/defaults/periodic.conf will remain for your consideration

*** Temp ./etc/gnats/freefall and installed have the same CVS Id, deleting
*** Temp ./etc/isdn/answer and installed have the same CVS Id, deleting
*** Temp ./etc/isdn/isdntel.sh and installed have the same CVS Id, deleting

...

*** Comparison complete

*** Files that remain for you to merge by hand:
/var/tmp/temproot.1102.15.01.14/etc/defaults/periodic.conf
/var/tmp/temproot.1102.15.01.14/etc/mail/freebsd.mc
/var/tmp/temproot.1102.15.01.14/etc/mail/freebsd.cf
/var/tmp/temproot.1102.15.01.14/etc/mail/sendmail.cf
/var/tmp/temproot.1102.15.01.14/etc/mail/freebsd.submit.cf
/var/tmp/temproot.1102.15.01.14/etc/mail/mailer.conf
/var/tmp/temproot.1102.15.01.14/etc/mtree/BSD.include.dist
/var/tmp/temproot.1102.15.01.14/etc/mtree/BSD.local.dist
/var/tmp/temproot.1102.15.01.14/etc/mtree/BSD.usr.dist
/var/tmp/temproot.1102.15.01.14/etc/mtree/BSD.var.dist
/var/tmp/temproot.1102.15.01.14/etc/pam.d/su
/var/tmp/temproot.1102.15.01.14/etc/periodic/security/100.chksetuid
/var/tmp/temproot.1102.15.01.14/etc/periodic/security/200.chkmounts
/var/tmp/temproot.1102.15.01.14/etc/periodic/security/500.ipfwdenied
/var/tmp/temproot.1102.15.01.14/etc/periodic/security/600.ip6fwdenied
/var/tmp/temproot.1102.15.01.14/etc/periodic/security/700.kernelmsg
/var/tmp/temproot.1102.15.01.14/etc/rc.d/local
/var/tmp/temproot.1102.15.01.14/etc/crontab
/var/tmp/temproot.1102.15.01.14/etc/inetd.conf
/var/tmp/temproot.1102.15.01.14/etc/motd
/var/tmp/temproot.1102.15.01.14/etc/syslog.conf

*** You chose the automatic install option for files that did not
exist on your system. The following were installed for you:
/etc/periodic/security/510.ipfdenied
/etc/periodic/security/security.functions
/etc/mac.conf

You’re not done yet: there are 21 files above that need looking at. There’s a good chance
that you’ve nev er heard of some of them, let alone changed them. If you know for a fact
that you have nev er changed them, for example if you have religiously kept track of your
changes with RCS, you don’t need to bother: mergemaster errs on the side of safety.
You may have changed others, though. The most obvious one above is /etc/crontab,
which contains system-wide commands to be executed by cron. To compare them, use
diff :

$ diff -wu /etc/crontab /var/tmp/temproot.1102.15.01.14/etc/crontab
--- /var/tmp/crontab Sat Nov 2 16:27:02 2002
+++ /var/tmp/temproot.1102.15.01.14/etc/crontab Sat Nov 2 15:01:16 2002
@@ -1,6 +1,6 @@
/etc/crontab - root’s crontab for FreeBSD
#
-# $FreeBSD: src/etc/crontab,v 1.21 1999/12/15 17:58:29 obrien Exp $
+# $FreeBSD: src/etc/crontab,v 1.31 2001/02/19 02:47:41 peter Exp $
#
SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin
@@ -10,19 +10,18 @@
#
*/5 * * * * root /usr/libexec/atrun

Mergemaster, second time around 605

#
+# save some entropy so that /dev/random can reseed on boot
+*/11 * * * * operator /usr/libexec/save-entropy
+#
rotate log files every hour, if necessary
0 * * * * root newsyslog
#
do daily/weekly/monthly maintenance
-59 1 * * * root periodic daily
-30 3 * * 6 root periodic weekly
+1 3 * * * root periodic daily
+15 4 * * 6 root periodic weekly
30 5 1 * * root periodic monthly
#
time zone change adjustment for wall cmos clock,
-# does nothing if you have UTC cmos clock.
+# does nothing, if you have UTC cmos clock.
See adjkerntz(8) for details.
-# 1,31 0-5 * * * root adjkerntz -a
+1,31 0-5 * * * root adjkerntz -a
-0,30 * * * * build /home/build/build_farm/build_test 2>
/home/build/cron.err
-0 21 * * * root /usr/local/bin/cleanup
-0 7 * * * grog /home/grog/bin/update-FreeBSD-cvs
-1 * * * * root (cd /usr/local/etc/postfix; make) 2
>/dev/null >/dev/null

The lines starting with - show lines only in the old file, which is still in /etc/crontab. The
lines starting with + show lines only in the new file, which is in /var/tmp/temp-
root.1102.15.01.14/etc/crontab. There are a number of changes here: the CVS ID
($FreeBSD$) has changed from 1.21 to 1.31, and the times of the periodic maintenance
have changed. In the meantime, though, you have added other tasks (the bottom four
lines), and you have also commented out the periodic invocation of adjkerntz. These are
the changes you need to make to the new /etc/crontab before you install it.

There’s a simpler possibility here, though: the only real change that would then be left in
/etc/crontab is the change in the starting times for the daily and weekly housekeeping.
Does that matter? If you want, you don’t need to change anything: the old /etc/crontab is
fine the way it is.

There’s a whole list of files that you’re likely to change from the defaults. Here are some
more likely candidates:

• You may find it necessary to change /etc/syslog.conf. If so, you may have to merge
by hand, but it shouldn’t be too difficult.

• You will almost certainly change /etc/fstab. About the only reason why you might
need to merge changes would be if the file format changes, which it hasn’t done for
over 20 years.

• /etc/motd contains the login greeting. There’s nev er a reason to take the new version.

• /etc/inetd.conf can be a problem: as new services are introduced, it changes. At the
same time, you may have added services via ports, or enabled services in the manner
we will see on page 448. You definitely need to merge this one yourself.

606 Chapter 32: Updating the system software

• If you’re using postfix, don’t install the distribution version of /etc/mail/mailer.conf.
It will reenable sendmail, which can cause significant problems.

• If you have changed anything in /etc/sysctl.conf, you’ll need to move the changes to
the new file.

(building.mm), page 607

33
Custom
kernels

In this chapter:
• Building a new ker nel
• Configur ing I/O

devices
• The ker nel build

director y
• The configuration file
• Prepar ing for

upgrades
• Building and

installing the new
kernel

• Making device nodes
• Kernel loadable

modules
• sysctl
• Living with FreeBSD-

CURRENT
• Analyzing ker nel

crash dumps

In this chapter:
• Building a new ker nel
• Configur ing I/O

devices
• The ker nel build

director y
• The configuration file
• Prepar ing for

upgrades
• Building and

installing the new
kernel

• Making device nodes
• Kernel loadable

modules
• sysctl
• Living with FreeBSD-

CURRENT
• Analyzing ker nel

crash dumps

So far, everything we’ve done has been with the standard GENERIC kernel distributed
with FreeBSD. You may find it an advantage to install a custom kernel:

• As we saw in Chapter 2, GENERIC doesn’t support everything that FreeBSD knows
about. For example, if you want to install a Yoyodyne frobulator, you’ll need to
install special support for it.1

• It will take less time to boot because it does not have to spend time probing for
hardware that you do not have.

• A custom kernel often uses less memory. The kernel is the one system component
that must always be present in memory, so unused code ties up memory that would
otherwise be available to the virtual memory system. On a system with limited
RAM, you can save some memory by building a custom kernel, but don’t
overestimate the savings: a minimal kernel might save 500 kB over the GENERIC
kernel supplied with the system.

• In addition, there are several kernel options that you can tune to fit your needs.

• Finally, on page 622 we’ll look at things to think about if you want to run the
-CURRENT version of FreeBSD.

In older releases of BSD, you needed to build a new kernel for just about anything you
wanted to change, even things as simple as a different IRQ for a device. FreeBSD has

1. In fact, the developer working on the Yoyodyne has defected to the Free Software Foundation. See the GNU
General Public License for further details.

607

608 Chapter 33: Custom ker nels

ev olved quite a bit since then, and it’s becoming increasingly less necessary to build a
custom kernel. You will certainly need to do so if you want to enable kernel-wide
options, such as extra consistency checking, but in many cases you have more flexible
alternatives:

• If you just need to add device support, you may be able to load a Kernel Loadable
Module, or kld. See page 620 for more information on klds.

• If you want to change ISA parameters such as I/O address, IRQ or DMA settings, you
no longer need to build a new kernel: the kernel configuration file no longer knows
about such parameters. Instead, they’re in the file /boot/device.hints, that we’ll look
at below.

• A number of kernel options have been replaced by the sysctl interface. For example,
the GENERIC kernel does not perform packet routing by default. In older releases of
FreeBSD, you had to build a new kernel with the option GATEWAY. Now adays you
can turn this feature on and off at will with a sysctl command. We’ll look at sysctls
on page 621.

Configuring a kernel has changed a lot since the early days of FreeBSD, but it’s not done
yet. The information in this chapter represents a snapshot in the evolution of building
kernels. The goal of these changes is to make it unnecessary to build a kernel at all
except to upgrade to a new release.

Building a new kernel
FreeBSD is distributed in source, and building a kernel primarily involves compiling the
source files needed for the kernel. To build a kernel, you perform the following steps:

• Install the system source, if you haven’t already done so. We looked at that in
Chapter 31.

• Define your kernel configuration in a kernel configuration file. This file defines
parameters to use during the build process. We’ll look at how to do this starting on
page 610.

• Change to the directory /usr/src and run make kernel. This builds and installs the
kernel and all modules. We’ll look at it in more detail on page 617, where we’ll also
see alternatives that give more control over the process.

Building a new ker nel 609

Configuring I/O devices
A lot of the configuration file relates to the I/O devices that you may connect to your
machine. In older releases of FreeBSD, it was often necessary to specify some of the
IRQ, DMA channel, board memory, and I/O addresses for the devices you configure,
particularly for ISA boards. Since Release 5 of FreeBSD, this is no longer the case.
Instead, you modify the file /boot/device.hints, which we looked at on page 575.

The kernel installation does not install /boot/device.hints automatically. If it doesn’t
exist, copy it from the configuration directory:

cp -p /usr/src/sys/i386/conf/GENERIC.hints /boot/device.hints

The kernel build directory
The kernel sources are kept in the directory /usr/src/sys. The symbolic link /sys also
points to this directory. There are a number of subdirectories of /usr/src/sys that
represent different parts of the kernel, but for our purposes, the most important of them
are the architecture dependent directories such as /usr/src/sys/i386/conf (for the i386
architecture), /usr/src/sys/alpha/conf (for the Alpha architecture), or
/usr/src/sys/sparc64/conf (for the SPARC64 architecture) where you edit your custom
kernel configuration. In addition, the old style kernel build described below builds the
kernel in the directory /usr/src/sys/i386/compile, /usr/src/sys/alpha/compile or
/usr/src/sys/sparc64/compile respectively. Notice the logical organization of the directo-
ry tree: each supported device, file system, and option has its own subdirectory. In the
rest of this chapter, we’ll look at the i386 architecture. Most of this applies to other
architectures as well.

If your system doesn’t hav e the directory /usr/src/sys, the kernel source has not been
installed. If you have a CD-ROM, the sources are on the first CD-ROM in the directory
/src. To install from the CD-ROM, perform the following steps:

mkdir -p /usr/src/sys
ln -s /usr/src/sys /sys
cd /
cat /cdrom/src/ssys.[a-h]* | tar xzvf -

The symbolic link /sys for /usr/src/sys is not strictly necessary, but it’s a good idea: some
software uses it, and otherwise you may end up with two different copies of the sources.

By definition, the files on CD-ROM are out of date. See Chapter 31 for details of how to
get the current, up-to-date sources.

Next, move to the directory i386/conf and copy the GENERIC configuration file to the
name you want to give your kernel. For example:

610 Chapter 33: Custom ker nels

cd /usr/src/sys/i386/conf
cp GENERIC FREEBIE

Traditionally, this name is in all capital letters and, if you are maintaining multiple
FreeBSD machines with different hardware, it’s a good idea to name it after your
machine’s hostname. In this example we call it FREEBIE.

Now, edit FREEBIE with your favourite text editor. Change the comment lines at the top
to reflect your configuration or the changes you’ve made to differentiate it from
GENERIC:

#
FREEBIE -- My personal configuration file
#
For more information on this file, please read the handbook section on
Kernel Configuration Files:
#
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig-config.html
#
The handbook is also available locally in /usr/share/doc/handbook
if you’ve installed the doc distribution, otherwise always see the
FreeBSD World Wide Web server (http://www.FreeBSD.org/) for the
latest information.
#
An exhaustive list of options and more detailed explanations of the
device lines is also present in the ../../conf/NOTES and NOTES files.
If you are in doubt as to the purpose or necessity of a line, check first
in NOTES.
#
$FreeBSD: src/sys/i386/conf/FREEBIE,v 1.369 2002/10/19 16:54:07 rwatson Exp $

machine "i386"
cpu "I486_CPU"
cpu "I586_CPU"
cpu "I686_CPU"
ident FREEBIE
maxusers 0

The configuration file
The directory /sys/i386/conf contains a number of configuration files:

GENERIC General-purpose configuration file

LINT This file used to be a ‘‘complete’’ configuration file with comments, used for
testing and documentation. Since FreeBSD Release 5, it no longer exists.
You can create it from the files NOTES and /usr/src/sys/conf/NOTES with
the command:

$ make LINT

The configuration file 611

NOTES A complete pseudo-configuration file with copious comments. This file is
descended from LINT, but it also includes device hints. You can’t use it for
building kernels. Instead, create the file LINT as described above.

NOTES contains only platform-specific information. Most of the informa-
tion is in the platform-independent file /usr/src/sys/conf/NOTES.

OLDCARD A configuration file for laptops that use PCCARD controllers. At the time of
writing, PCCARD support has largely been rewritten, but the new code does
not support some of the devices that the old code supports. This
configuration file uses the old PCCARD code instead of the new code.
When the new code is complete, it will go away.

The general format of a configuration file is quite simple. Each line contains a keyword
and one or more arguments. Anything following a # is considered a comment and
ignored. Keywords that contain numbers used as text must be enclosed in quotation
marks.

One of the results of this simplicity is that you can put in options that have absolutely no
effect. For example, you could add a line like this:

options APPLE_MAC_COMPATIBILITY

You can build a kernel with this option. It will make no difference whatsoever. Now it’s
unlikely that you’ll think up a non-existent option like this, but it’s much more possible
that you’ll misspell a valid option, especially finger-twisters like SYSVSHM, with the result
that you don’t compile in the option you wanted. The config program warns if you use
unknown options, so take these warnings seriously.

Kernel options change from release to release, so there’s no point in describing them all
here. In the following sections we’ll look at some of the more interesting ones; for a
complete list, read LINT or the online handbook. See above for details of how to create
LINT.

Naming the kernel
Every kernel you build requires the keywords machine, cpu, and ident. For example,

machine "i386" For i386 architecture
machine "alpha" For alpha architecture
machine "sparc64" For SPARC 64 architecture
cpu "I486_CPU"
cpu "I586_CPU"
cpu "I686_CPU"
ident FREEBIE

612 Chapter 33: Custom ker nels

machine

The keyword machine describes the machine architecture for which the kernel is to be
built. Currently it should be i386 for the Intel architecture, and alpha for the AXP
architecture. Don’t confuse this with the processor: for example, the i386 architecture
refers to the Intel 80386 and all its successors, including lookalikes made by AMD, Cyrix
and IBM.

cpu cpu_type

cpu describes which CPU chip or chips this kernel should support. For the i386
architecture, the possible values are I386_CPU, I486_CPU, I586_CPU and I686_CPU,
and you can specify any combination of these values. For a custom kernel, it is best to
specify only the CPU you have. If, for example, you have an Intel Pentium, use
I586_CPU for cpu_type.

If you’re not sure what processor type you have, look at the output from the dmesg
command when running the GENERIC kernel. For example:

CPU: AMD Athlon(tm) XP processor 1700+ (1462.51-MHz 686-class CPU)
Origin = "AuthenticAMD" Id = 0x662 Stepping = 2
Features=0x383f9ff<FPU,VME,DE,PSE,TSC,MSR,PAE,MCE,CX8,SEP,MTRR,PGE,MCA,CMOV,PAT,PS

E36,MMX,FXSR,SSE>
AMD Features=0xc0480000<<b19>,AMIE,DSP,3DNow!>

This shows that the processor, an AMD Athlon XP, is a ‘‘686 class’’ CPU, so to run a
kernel on this processor, you must set I686_CPU in the config file.

Since Release 5 of FreeBSD, it is no longer possible to build a single kernel with support
for both the 80386 processor and later processors: the code for the later processors is
optimized to use instructions that the 80386 processor does not have. Choose either
I386_CPU or any combination of the others.

ident machine_name

ident specifies a name used to identify the kernel. In the file GENERIC it is GENERIC.
Change this to whatever you named your kernel, in this example, FREEBIE. The value
you put in ident will print when you boot up the kernel, so it’s useful to give a kernel a
different name if you want to keep it separate from your usual kernel (if you want to build
an experimental kernel, for example). As with machine and cpu, enclose your kernel’s
name in quotation marks if it contains any numbers.

This name is passed to the C compiler as a variable, so don’t use names like DEBUG, or
something that could be confused with another machine or CPU name, like vax.

Kernel options
There are a number of global kernel options, most of which you don’t need to change. In
the following section, we’ll look at some of the few exceptions.

The configuration file 613

Configuring specific I/O devices

There are some devices that the GENERIC kernel does not support. In older releases of
FreeBSD, you needed to build a new kernel to support them. This is seldom the case any
more: most devices can be supported by klds. Work is under way to support the
remainder. In case of doubt, look at the file HARDWARE.TXT on the installation CD-
ROM.

maxusers number

This value sets the size of a number of important system tables. It is still included in the
kernel configuration file, but you no longer need build a new kernel to change it. Instead,
you can set it at boot time. For example, you might add the following line to your
/boot/loader.conf file:

maxusers="64"

See 532 for more details of /boot/loader.conf.

maxusers is intended to be roughly equal to the number of simultaneous users you
expect to have on your machine, but it is only used to determine the size of some system
tables. The default value 0 tells the kernel to autosize the tables depending on the amount
of memory on the system. If the autosizing doesn’t work to your satisfaction, change this
value. Even if you are the only person to use the machine, you shouldn’t set maxusers
lower than the default value 32, especially if you’re using X or compiling software. The
reason is that the most important table set by maxusers is the maximum number of
processes, which is set to 20 + 16 * maxusers, so if you set maxusers to one, you
can only have 36 simultaneous processes, including the 18 or so that the system starts up
at boot time, and the 15 or so you will probably create when you start X. Even a simple
task like reading a man page can start up nine processes to filter, decompress, and view it.
Setting maxusers to 32 will allow you to have up to 532 simultaneous processes, which
is normally ample. If, however, you see the dreaded proc table full error when trying to
start another program, or are running a server with a large number of simultaneous users,
you can always increase this number and reboot.

maxusers does not limit the number of users who can log into the machine. It simply sets various
table sizes to reasonable values considering the maximum number of users you will likely have on
your system and how many processes each of them will be running. It’s probable that this
parameter will go away in future.

Multiple processors
FreeBSD 5.0 supports most modern multiprocessor systems. Earlier versions of the
GENERIC kernel did not support them by default. Nowadays GENERIC supports multiple
processors, so you don’t need to do anything special. Look at the option SMP and the
device apic in the configuration file if you’re interested.

614 Chapter 33: Custom ker nels

Debug options
FreeBSD is a very stable operating system. No software is perfect, however, and
sometimes it crashes. When it does, it provides a number of facilities to help fix the
problem. Some of these are dependent on kernel build options.

Even if you have no intention of debugging a kernel problem yourself, you should set
debug symbols when you build a kernel. They cost nothing except disk space, and if you
are short on disk space, you can remove most of the files after the build.

To set the debug symbols, remove the leading # mark from this line in the configuration
file:

makeoptions DEBUG=-g # Build kernel with gdb(1) debug symbols

Under normal circumstances this makes no difference: the build process still installs the
kernel without the debug symbols, and it has no effect on performance. If, however, you
have a crash, the kernel with debug symbols is available in the kernel build directory, in
this case /usr/src/sys/i386/compile/FREEBIE/kernel.debug, to assist analysis of the
problem. Without this file it will be very difficult to find it.

So why is it commented out? Without debug symbols, your build directory will take
about 50 MB of disk space. With debug symbols, it will be about 250 MB. The
FreeBSD Project couldn’t agree to change it.

Other debugging options

If you run into trouble with your system, there are a number of other debugging options
that you can use. The following are the more important ones:

options DDB
options BREAK_TO_DEBUGGER
options DDB_UNATTENDED # Don’t drop into DDB for a panic
options GDB_REMOTE_CHAT # Use gdb remote debugging protocol
options KTRACE
options DIAGNOSTIC
options INVARIANTS
options INVARIANT_SUPPORT
options WITNESS #Enable checks to detect deadlocks and cycles
options WITNESS_SKIPSPIN #Don’t run witness on spinlocks for speed

These options provide support for various debugging features.

DDB

Specify DDB to include the kernel debugger, ddb. If you set this option, you might also
want to set the BREAK_TO_DEBUGGER option,

The configuration file 615

BREAK_TO_DEBUGGER

Use the option BREAK_TO_DEBUGGER if you have installed the kernel debugger and you
have the system console on a serial line.

DDB_UNATTENDED

If you have a panic on a system with ddb, it will not reboot automatically. Instead, it will
enter ddb and give you a chance to examine the remains of the system before rebooting.
This can be a disadvantage on systems that run unattended: after a panic, they would wait
until somebody comes past before rebooting. Use the DDB_UNATTENDED option to cause
a system with ddb to reboot automatically on panic.

GDB_REMOTE_CHAT

ddb supports remote debugging from another FreeBSD machine via a serial connection.
See the online handbook for more details. To use this feature, set the option
GDB_REMOTE_CHAT.

KTRACE

Set KTRACE if you want to use the system call trace program ktrace.

DIAGNOSTIC

A number of source files use the DIAGNOSTIC option to enable extra sanity checking of
internal structures. This support is not enabled by default because of the extra time it
would take to check for these conditions, which can only occur as a result of
programming errors.

INVARIANTS and INVARIANT_SUPPORT

INVARIANTS is used in a number of source files to enable extra sanity checking of
internal structures. This support is not enabled by default because of the extra time it
would take to check for these conditions, which can only occur as a result of
programming errors.

INVARIANT_SUPPORT option compiles in support for verifying some of the internal
structures. It is a prerequisite for INVARIANTS. The intent is that you can set
INVARIANTS for single source files (by changing the source file or specifying it on the
command line) if you have INVARIANT_SUPPORT enabled.

WITNESS and WITNESS_SKIPSPIN

One of the big changes in FreeBSD Release 5 relates to the manner in which the kernel
performs resource locking. As a result, the danger exists of deadlocks, locks that can’t be
undone without rebooting the machine. WITNESS checks for the danger of deadlocks and
warns if it finds a potential deadlock (‘‘lock order reversal’’). This is a very expensive
debugging option: it can slow the machine down by an order of magnitude, so don’t use it
unless you have to.

616 Chapter 33: Custom ker nels

A compromise that doesn’t use quite so much processor power is the combination of
WITNESS with WITNESS_SKIPSPIN, which avoids spin locks. It can still catch most
problems.

The configuration file 617

Preparing for upgrades
When changing the configuration file, consider that it probably won’t be the only time
you make these changes. At some time in the future, you’ll upgrade the system, and
you’ll have to build your custom kernel all over again. But the GENERIC kernel
configuration file will have changed as well. You hav e two choices: incorporate the
modifications to GENERIC into your configuration file, or incorporate your modifications
to the old GENERIC file into the new GENERIC configuration file. It turns out that the
latter path is easier.

To prepare for this approach, try to change as little as possible in the body of the
configuration file. Instead, add all your changes to the end, along with a comment so that
you can readily recognize the changes. For example, you might append:

Added by grog, 24 October 2002
Comment out WITNESS, WITNESS_SKIPSPIN and SCSI_DELAY above

options BREAK_TO_DEBUGGER

options SCSI_DELAY=3000 #Delay (in ms) before probing SCSI

options CAMDEBUG
options MSGBUF_SIZE=81920
options TIMEREQUESTS # watch for delays

device snp #Snoop device - to look at pty/vty/etc..

That won’t be all, of course. Look at that option SCSI_DELAY. That option already
exists in the configuration file (with a value of 15 seconds instead of 3). If you leave
both, config will issue a warning. You need to comment out the first occurrence, as the
comment at the top indicates.

Building and installing the new kernel
The traditional way to build a BSD kernel was, assuming a configuration file called
FREEBIE:

cd /usr/src/sys/i386/conf
config FREEBIE
cd ../compile/FREEBIE
make depend all install

618 Chapter 33: Custom ker nels

At the time of writing, this still works, but it will go away at some time in the future. It
has the disadvantage that you need to know your architecture, and the kernel is built in
the source tree, which is not a good idea. The new kernel build method starts from
/usr/src, the same directory as all other build operations, and it builds the kernel in the
/usr/obj hierarchy.

You’ll need about 250 MB of free space on /usr/obj to build a kernel. If you’re really
tight on space, you can reduce this value to about 50 MB by omitting the makeoptions
DEBUG=-g specification, but if you have problems with the system at some later stage, it
will be much more difficult to find what is causing them.

There are a number of alternative commands for building the kernel:

cd /usr/src
make kernel KERNCONF=FREEBIE build and install kernel and klds
make buildkernel KERNCONF=FREEBIE build kernel and klds
make installkernel KERNCONF=FREEBIE install prebuilt kernel and klds
make reinstallkernel KERNCONF=FREEBIE reinstall kernel and klds
make kernel KERNCONF=FREEBIE -DNO_MODULES build and install kernel only

The easiest way is make kernel, which is subdivided into the buildkernel and
installkernel steps. You can perform these steps individually if you want. If you use
the reinstallkernel target instead of the installkernel target, the /boot/kernel.old
hierarchy remains unchanged. This is useful when a previous kernel build failed to boot.

If you know the klds are not going to change, you can speed things up by not building
them again. Use the -DNO_MODULES flag in combination with any of the other targets to
inhibit building or installing the klds, as shown in the last example. Don’t do this the first
time you build the kernel: if you have mismatches between the kernel and the klds, you
may find it impossible to start the system. On the other hand, if you find the kernel
doesn’t boot, and you want to change the configuration file and rebuild it from the same
sources, you can save some time like this.

The first step in building the kernel is to run the config program. You no longer have to
do this yourself; the buildkernel and kernel targets do it for you. config creates a
directory in which to build the kernel and fills it with the necessary infrastructure, notably
the kernel Makefile and a number of header files.

It’s possible to get error messages at this stage if you have made a mistake in the config
file. If the config command fails when you give it your kernel description, you’ve
probably made a simple error somewhere. Fortunately, config will print the line number
that it had trouble with, so you can quickly find it with an editor. For example:

config: line 17: syntax error

One possibility is that you have mistyped a keyword. Compare it to the entry in the
GENERIC or LINT kernel definitions.

The next step is to compile all the source files and create a kernel and a set of matching
klds. It can take some time, up to an hour on a slow machine. It’s also possible to have
errors, and unfortunately they are usually not self-explanatory. If the make command

Building and installing the new ker nel 619

fails, it usually signals an error in your kernel description that is not obvious enough for
config to catch. A common one is when you omit an entry from the configuration file
which is a prerequisite for an entry which is present. For example, if you have SCSI
disks (device da), you require the scbus device as well, and if you have just about any
kind of Ethernet card, you require the miibus device as well:

device scbus # SCSI bus (required)
device da # Direct Access (disks)

device miibus # MII bus support
device fxp # Intel EtherExpress PRO/100B (82557, 82558)

If you leave scbus or miibus out of the configuration, config will not complain, but the
kernel link phase will fail with lots of unresolved references.

If you can’t resolve the problem after comparing your configuration file with GENERIC,
send mail to questions@FreeBSD.ORG with your kernel configuration, and it should be
diagnosed very quickly. A description of how to interpret these errors has been in the
works for a long time, but currently it’s still deep magic.

Rebooting
Next, shutdown the system and reboot load the new kernel:

shutdown -r now

If the new kernel does not boot, or fails to recognize your devices, don’t panic. Reset the
machine, and when the boot prompt appears, press the space bar to interrupt the boot.
Then boot the old kernel:

Ok unload remove the kernel that the loader has loaded
Ok load /boot/kernel.old/kernel load the previous kernel
Ok boot

When reconfiguring a kernel, it is always a good idea to keep on hand a kernel that is
known to work. There are two points here:

• If your kernel doesn’t boot, you don’t want to save it to kernel.old when you build a
new one. It’s no use, and if the new kernel doesn’t boot either, you’ll be left without
a runnable kernel. In this case, use the reinstallkernel target mentioned above:

make buildkernel KERNCONF=FREEBIE build kernel and klds
make reinstallkernel KERNCONF=FREEBIE reinstall kernel and klds

• You could still make a mistake and type make install, throwing away your last
good kernel. It’s easy enough to end up with a completely unbootable system like
this. It’s a good idea to keep another kernel copy with a name like kernel.save, which
the installation procedure does not touch.

After booting with a good kernel you can check over your configuration file and try to
build it again. One helpful resource is the /var/log/messages file which records, among

620 Chapter 33: Custom ker nels

other things, all of the kernel messages from every successful boot. Also, the dmesg
command prints the most recent kernel messages from the current boot. After some time
the original messages are overwritten, so the system startup procedure saves the messages
at boot time in the file /var/run/dmesg.boot. Note that most laptops maintain the previous
contents of the kernel message buffer when rebooted, so the beginning of the output of
dmesg may relate to an earlier boot. Check through to the end before jumping to
conclusions.

Making device nodes
FreeBSD Release 5 comes with devfs, the device file system. One great advantage of
devfs is that it automatically creates device nodes for the hardware it finds, so you no
longer need to run the /dev/MAKEDEV script supplied with older releases of FreeBSD.

Kernel loadable modules
As we saw at the beginning of the chapter, you may not have to build a new kernel to
implement the functionality you want. Instead, just load it into the running kernel with a
Kernel Loadable Module (kld). The directory /boot/kernel/modules contains a number
of klds. To load them, use kldload. For example, if you wanted to load SCO UNIX
compatibility, you would enter:

kldload ibcs2

This loads the module /boot/kernel/modules/ibcs2.ko. Note that you don’t need to
specify the directory name, nor the .ko extension.

To find what modules are loaded, use kldstat:

kldstat
Id Refs Address Size Name
1 5 0xc0100000 1d08b0 kernel
2 2 0xc120d000 a000 ibcs2.ko
3 1 0xc121b000 3000 ibcs2_coff.ko
5 1 0xc1771000 e000 linux.ko
6 1 0xc177f000 bf000 vinum.ko

You can also unload some klds, but not all of them. Use kldunload for this purpose:

kldunload vinum

You can’t unload a kld which has active resources. In the case of vinum, for example,
you can only unload it when none of its volumes are mounted.

Kernel loadable modules 621

sysctl
sysctl is a relatively new kernel interface that allows access to specific variables in the
kernel. Some of these variables are read-only: you can look, but not touch. Others are
changeable.

sysctl variables are usually referred to simply as sysctls. Each sysctl has a name in
‘‘Management Information Base’’ (MIB) form, consisting of a hierarchical arrangement
of names separated by periods (.). The first component of the name indicates the part of
the kernel to which it relates. The following examples give you an idea of how to use the
sysctl program:

$ sysctl kern.ostype
FreeBSD
$ sysctl kern list all sysctls starting with kern
$ sysctl -a list all sysctls
sysctl net.inet.ip.forwarding=1 turn IP forwarding on
net.inet.ip.forwarding: 0 -> 1

Some of the more interesting sysctls are:

kern.ostype: FreeBSD
kern.osrelease: 5.0-RELEASE
kern.version: FreeBSD 5.0-RELEASE #0: Thu Jan 16 15:03:31 CST 2003

grog@freebie.example.org:/usr/src/sys/GENERIC
kern.hostname: freebie.example.org
kern.boottime: { sec = 1007165073, usec = 570637 } Fri Jan 17 10:34:33 2003
kern.bootfile: /boot/kernel/kernel
kern.init_path: /sbin/init:/sbin/oinit:/sbin/init.bak:/stand/sysinstall
kern.module_path: /boot/kernel;/boot/kernel;/boot/modules;/modules
kern.coredump: 1
kern.corefile: /var/tmp/%N.core
kern.msgbuf: nreach TCP 213.46.243.23:25370 139.130.136.138:25 in via ppp0
net.inet.ip.fw.enable: 1
hw.machine: i386
hw.model: Pentium II/Pentium II Xeon/Celeron
hw.ncpu: 1
hw.byteorder: 1234
hw.physmem: 129949696
hw.usermem: 100556800
hw.pagesize: 4096
hw.floatingpoint: 1
hw.machine_arch: i386
hw.ata.ata_dma: 1
hw.ata.wc: 1
hw.ata.tags: 0
hw.ata.atapi_dma: 0
compat.linux.osname: Linux
compat.linux.osrelease: 2.2.12
compat.linux.oss_version: 198144

Many of these need no description, but some are less obvious:

• kern.msgbuf shows the contents of the kernel message buffer, which is also listed
by the dmesg program.

622 Chapter 33: Custom ker nels

• kern.corefile specifies a template for the name of the core dump file generated
when a process fails. By default the core file ends up in the current working
directory—whatever that might be. By specifying an absolute path name, you can
ensure that any core file will go into a specific directory. The text %N is replaced by
the name of the program.

Living with FreeBSD-CURRENT
Keeping up with FreeBSD-CURRENT requires work on your part. You should be on the
FreeBSD-current@FreeBSD.org mailing list, which you can join via majordomo. See
page 17 for details of how to use majordomo.

Build kernels with debug symbols
FreeBSD-CURRENT is not as stable as the released releases. To prepare yourself for
possible problems, you should build kernels that include debug symbols. The resultant
kernel is about 30 MB in size, but it will make debugging with ddb (the kernel debugger)
or gdb much easier. Even if you don’t intend to do this yourself, the information will be
of great use to anybody you may call in to help. We looked at how to build a debug
kernel on page 614.

Solving problems in FreeBSD-CURRENT
You will run into problems with FreeBSD-CURRENT. When it happens, please first read
the mailing list and possibly the mail archives and see if the problem has been reported.
If it hasn’t, try to investigate the problem yourself. Then send mail to FreeBSD-
current describing the problem and what you have done to solve it.

If you experience a panic, please don’t just send a message to FreeBSD-current saying
‘‘My kernel panics when I type foo.’’ Remember that you’re asking somebody to use
their spare time to look at the problem. Make it easy for them:

1. Update to the absolutely latest sources, unless emails have been warning against this.

2. If you have any local patches, back them out.

3. Recompile, from scratch, your kernel with ddb and with complete symbols (see
above).

4. Report all details from the panic. At an absolute minimum, give all information from
show reg and trace.

5. Try to dump the system.

6. If you’re successful, follow the procedure discussed in the following section to find
out something about how the problem occurred.

If you don’t do at least this, there isn’t much chance that a mail message to FreeBSD-
current will have much effect.

Living with FreeBSD-CURRENT 623

Analyzing kernel crash dumps
When the kernel panics, and you have dumping enabled, you’ll usually see something
like this on the console:

Fatal trap 9: general protection fault while in kernel mode
instruction pointer = 0x8:0xc01c434b
stack pointer = 0x10:0xc99f8d0c
frame pointer = 0x10:0xc99f8d28
code segment = base 0x0, limit 0xfffff, type 0x1b

= DPL 0, pres 1, def32 1, gran 1
processor eflags = interrupt enabled, resume, IOPL = 0
current process = 2638 (find)
interrupt mask = net tty bio cam
trap number = 9
panic: general protection fault

syncing disks... 7
giving up on 6 buffers
Uptime: 17h53m13s

dumping to dev #ad/1, offset 786560
dump ata0: resetting devices .. done

You don’t need to write this information down: it is saved in the dump.

When you reboot, the system startup scripts find that you have a dump in the designated
dump device (see above) and copy it and the current kernel to /var/crash, assuming the
directory exists and there’s enough space for the dump. You’ll see something like this in
the directory:

cd /var/crash
ls -l
-rw-r--r-- 1 root wheel 3 Dec 29 10:09 bounds
-rw-r--r-- 1 root wheel 4333000 Dec 29 10:10 kernel.22
-rw-r--r-- 1 root wheel 5 Sep 17 1999 minfree
-rw------- 1 root wheel 268369920 Dec 29 10:09 vmcore.22

The important files here are kernel.22, which contains a copy of the kernel running when
the crash occurred, and vmcore.22, which contains the contents of memory. The number
22 indicates that the sequence number of the dump. It’s possible to have multiple dumps
in /var/crash. Note that you can waste a lot of space like that.

The file bounds contains the number of the next dump (23 in this case), and minfree
specifies the minimum amount of free space (in kilobytes) to leave on the file system after
you’ve copied the dump. If this can’t be guaranteed, savecore doesn’t sav e the dump.

savecore copies the kernel from which you booted. As we’ve seen, it typically isn’t a
debug kernel. In the example above, we installed /usr/src/sys/i386/conf/FREEBIE/kernel,
but the debug version was /usr/src/sys/i386/conf/FREEBIE/kernel.debug. This is the one
you need. The easiest way to access it is to use a symbolic link:

624 Chapter 33: Custom ker nels

ln -s /usr/src/sys/i386/conf/FREEBIE/kernel.debug .
ls -lL
-rw-r--r-- 1 root wheel 3 Dec 29 10:09 bounds
-rwxr-xr-x 1 grog lemis 16796546 Dec 18 14:21 kernel.debug
-rw-r--r-- 1 root wheel 4333000 Dec 29 10:10 kernel.22
-rw-r--r-- 1 root wheel 5 Sep 17 1999 minfree
-rw------- 1 root wheel 268369920 Dec 29 10:09 vmcore.22

As you can see, it’s much larger.

Next, run gdb against the kernel and the dump:

gdb -k kernel.debug vmcore.22

The first thing you see is a political message from the Free Software Foundation,
followed by a repeat of the crash messages, a listing of the current instruction (always the
same) and a prompt:

#0 dumpsys () at ../../kern/kern_shutdown.c:473
473 if (dumping++) {
(kgdb)

Due to the way C, gdb and FreeBSD work, the real information you’re looking for is
further down the stack. The first thing you need to do is to find out exactly where it
happens. Do that with the backtrace command:

(kgdb) bt
#0 dumpsys () at ../../kern/kern_shutdown.c:473
#1 0xc01c88bf in boot (howto=256) at ../../kern/kern_shutdown.c:313
#2 0xc01c8ca5 in panic (fmt=0xc03a8cac "%s") at ../../kern/kern_shutdown.c:581
#3 0xc033ab03 in trap_fatal (frame=0xc99f8ccc, eva=0)

at ../../i386/i386/trap.c:956
#4 0xc033a4ba in trap (frame={tf_fs = 16, tf_es = 16, tf_ds = 16,

tf_edi = -1069794208, tf_esi = -1069630360, tf_ebp = -912290520,
tf_isp = -912290568, tf_ebx = -1069794208, tf_edx = 10, tf_ecx = 10,
tf_eax = -1, tf_trapno = 9, tf_err = 0, tf_eip = -1071889589, tf_cs = 8,
tf_eflags = 66182, tf_esp = 1024, tf_ss = 6864992})

at ../../i386/i386/trap.c:618
#5 0xc01c434b in malloc (size=1024, type=0xc03c3c60, flags=0)

at ../../kern/kern_malloc.c:233
#6 0xc01f015c in allocbuf (bp=0xc3a6f7cc, size=1024)

at ../../kern/vfs_bio.c:2380
#7 0xc01effa6 in getblk (vp=0xc9642f00, blkno=0, size=1024, slpflag=0,

slptimeo=0) at ../../kern/vfs_bio.c:2271
#8 0xc01eded2 in bread (vp=0xc9642f00, blkno=0, size=1024, cred=0x0,

bpp=0xc99f8e3c) at ../../kern/vfs_bio.c:504
#9 0xc02d0634 in ffs_read (ap=0xc99f8ea0) at ../../ufs/ufs/ufs_readwrite.c:273
#10 0xc02d734e in ufs_readdir (ap=0xc99f8ef0) at vnode_if.h:334
#11 0xc02d7cd1 in ufs_vnoperate (ap=0xc99f8ef0)

at ../../ufs/ufs/ufs_vnops.c:2382
#12 0xc01fbc3b in getdirentries (p=0xc9a53ac0, uap=0xc99f8f80)

at vnode_if.h:769
#13 0xc033adb5 in syscall2 (frame={tf_fs = 47, tf_es = 47, tf_ds = 47,

tf_edi = 134567680, tf_esi = 134554336, tf_ebp = -1077937404,
tf_isp = -912289836, tf_ebx = 672064612, tf_edx = 134554336,
tf_ecx = 672137600, tf_eax = 196, tf_trapno = 7, tf_err = 2,
tf_eip = 671767876, tf_cs = 31, tf_eflags = 582, tf_esp = -1077937448,
tf_ss = 47}) at ../../i386/i386/trap.c:1155

#14 0xc032b825 in Xint0x80_syscall ()
#15 0x280a1eee in ?? ()
#16 0x280a173a in ?? ()

Analyzing ker nel crash dumps 625

#17 0x804969e in ?? ()
#18 0x804b550 in ?? ()
#19 0x804935d in ?? ()
(kgdb)

The rest of this chapter is only of interest to programmers with a good understanding of
C. If you’re not a programmer, this is about as far as you can go. Save this information
and supply it to whomever you ask for help. It’s usually not enough to solve the problem,
but it’s a good start, and your helper will be able to tell you what to do next.

Climbing through the stack
The backtrace outputs information about stack frames, which are built when a function is
called. They’re numbered starting from the most recent frame, #0, which is seldom the
one that interests us. In general, we’ve had a panic, the most important frame is the
function that calls panic:

#3 0xc033ab03 in trap_fatal (frame=0xc99f8ccc, eva=0)
at ../../i386/i386/trap.c:956

The information here is:

• #3 is the frame number. This is a number allocated by gdb. You can use it to
reference the frame in a number of commands.

• 0xc033ab03 is the return address from the call to the next function up the stack
(panic in this case).

• trap_fatal is the name of the function.

• (frame=0xc99f8ccc, eva=0) are the parameter values supplied to trap_fatal.

• ../../i386/i386/trap.c:956 gives the name of the source file and the line
number in the file. The path names are relative to the kernel build directory, so they
usually start with ../../.

In this example, the panic comes from a user process. Starting at the bottom, depending
on the processor platform, you may see the user process stack. You can recognize them
on an Intel platform by the addresses below the kernel base address 0xc0000000. On
other platforms, the address might be different. In general, you won’t get any symbolic
information for these frames, since the kernel symbol table doesn’t include user symbols.

Climbing up the stack, you’ll find the system call stack frame, in this example at frames
14 and 13. This is where the process involved the kernel. The stack frame above (frame
12) generally shows the name of the system call, in this case getdirentries. To
perform its function, getdirentries indirectly calls ffs_read, the function that reads
from a UFS file. ffs_read calls bread, which reads into the buffer cache. To do so, it
allocates a buffer with getblk and allocbuf, which calls malloc to allocate memory
for buffer cache. The next thing we see is a stack frame for trap: something has gone
wrong inside malloc. trap determines that the trap in unrecoverable and calls
trap_fatal, which in turn calls panic. The stack frames above show how the system
prepares to dump and writes to disk. They’re no longer of interest.

626 Chapter 33: Custom ker nels

Finding out what really happened
In general, you start analyzing a panic dump in the stack frame that called panic, but in
the case of the fatal trap that we have here, the most important stack frame is the one
below trap, in this case frame 5. That’s where things went wrong. Select it with the
frame command, abbreviated to f, and list the code with list (or l):

(kgdb) f 5
#5 0xc01c434b in malloc (size=1024, type=0xc03c3c60, flags=0)

at ../../kern/kern_malloc.c:233
233 va = kbp->kb_next;
(kgdb) l
228 }
229 freep->next = savedlist;
230 if (kbp->kb_last == NULL)
231 kbp->kb_last = (caddr_t)freep;
232 }
233 va = kbp->kb_next;
234 kbp->kb_next = ((struct freelist *)va)->next;
235 #ifdef INVARIANTS
236 freep = (struct freelist *)va;
237 savedtype = (const char *) freep->type->ks_shortdesc;
(kgdb)

You might want to look at the local (automatic) variables. Use info local, which you
can abbreviate to i loc:

(kgdb) i loc
type = (struct malloc_type *) 0xc03c3c60
kbp = (struct kmembuckets *) 0xc03ebc68
kup = (struct kmemusage *) 0x0
freep = (struct freelist *) 0x0
indx = 10
npg = -1071714292
allocsize = -1069794208
s = 6864992
va = 0xffffffff <Address 0xffffffff out of bounds>
cp = 0x0
savedlist = 0x0
ksp = (struct malloc_type *) 0xffffffff
(kgdb)

The line where the problem occurs is 233:

233 va = kbp->kb_next;

Look at the structure kbp:

(kgdb) p *kbp
$2 = {
kb_next = 0xffffffff <Address 0xffffffff out of bounds>,
kb_last = 0xc1a31000 "",
kb_calls = 83299,
kb_total = 1164,
kb_elmpercl = 4,
kb_totalfree = 178,
kb_highwat = 20,
kb_couldfree = 3812

}

Analyzing ker nel crash dumps 627

The problem here is that the pointer kb_next is set to 0xffffffff. It should contain a
valid address, but as gdb observes, this isn’t not valid.

So far we have found that the crash is in malloc, and that it’s caused by an invalid
pointer in an internal data structure. malloc is a function that is used many times a
second by all computers. It’s unlikely that the bug is in malloc. In fact, the most likely
cause is that a function that has used memory allocated by malloc has overwritten its
bounds and hit malloc’s data structures.

What do we do now? To quote fortune:

The seven eyes of Ningauble the Wizard floated back to his hood
as he reported to Fafhrd: "I have seen much, yet cannot explain all.
The Gray Mouser is exactly twenty-five feet below the deepest cellar in
the palace of Gilpkerio Kistomerces. Even though twenty-four parts in
twenty-five of him are dead, he is alive.

"Now about Lankhmar. She’s been invaded, her walls breached
everywhere and desperate fighting is going on in the streets, by a
fierce host which out-numbers Lankhmar’s inhabitants by fifty to one --
and equipped with all modern weapons. Yet you can save the city."

"How?" demanded Fafhrd.

Ningauble shrugged. "You’re a hero. You should know."
-- Fritz Leiber, from "The Swords of Lankhmar"

From here on, you’re on your own. If you get this far, the FreeBSD-hackers mailing
list may be interested in giving suggestions.

(biblio.mm), page 628

A
Bibliography

In this chapter:
• Books on BSD
• Users’ guides
• Administrators’

guides
• Programmers’ guides
• Hardware reference
• The 4.4BSD manuals
• Getting FreeBSD on

CD-ROM

In this chapter:
• Books on BSD
• Users’ guides
• Administrators’

guides
• Programmers’ guides
• Hardware reference
• The 4.4BSD manuals
• Getting FreeBSD on

CD-ROM

While the manual pages provide the definitive reference for individual pieces of the
FreeBSD operating system, they are notorious for not illustrating how to put the pieces
together to make the whole operating system run smoothly.

Since the last edition of this book, a number of other books on FreeBSD have appeared.
We’ll look at them first, though you can consider most of them to be an alternative to this
book.

Books on BSD
The following books relate specifically to BSD, most of them to FreeBSD.

Fr eeBSD: An Open-Source Operating System For Your Personal Computer. Annelise
Anderson, The Bit Tree Press, 2001. An introductory book, particularly suitable for
Microsoft users.

Advanced UNIX Programming, by Warren W. Gay. Sams Publishing, 2000. This book
uses FreeBSD as the basis for an in-depth programming course.

The Berkeley UNIX Environment, by R. Nigel Horspool. Prentice-Hall Canada Inc, 1992.
This book predates FreeBSD, but it includes a lot of information for the advanced user.

Absolute BSD, by Michael Lucas. No Starch Press, 2002.

The FreeBSD Corporate Networker’s Guide, by Ted Mittelstaedt. Addison-Wesley, 2001.
An introduction to FreeBSD for Microsoft system administrators.

Fr eeBSD: The Complete Reference, by Roderick W. Smith. McGraw-Hill/Osborne,
2003.

628

Books on BSD 629

The FreeBSD Handbook, edited by Murray Stokely and Nik Clayton. Wind River
systems, 2001. A print version of the online handbook.

Fr eeBSD Unleashed, by Michael Urban and Brian Tiemann. Sams Publishing, 2002. An
introduction to FreeBSD with detailed descriptions of shell programming, Gnome and
Perl programming.

Users’ guides
These books are good general texts. They hav e no particular emphasis on BSD.

UNIX for the Impatient , by Paul W. Abrahams and Bruce R. Larson. Second Edition,
Addison-Wesley, 1996. An excellent not-too-technical introduction to UNIX in general.
Includes a section on X11.

Learning the Unix Operating System: A Concise Guide for the New User, by Jerry Peek,
Grace Todino-Gonguet, John Strang. 5th Edition, O’Reilly & Associates, Inc., 2001. A
good introduction for beginners.

UNIX Power Tools, by Shelley Powers, Jerry Peek, Tim O’Reilly, Mike Loukides,
O’Reilly & Associates, Inc., 3rd Edition October 2002. A superb collection of interesting
information. Recommended for everybody, from beginners to experts.

Administrators’ guides
Building Internet Firewalls, by D. Brent Chapman and Elizabeth Zwicky. O’Reilly &
Associates, Inc., 1995.

DNS and BIND, by Paul Albitz, Cricket Liu. 4th Edition, O’Reilly & Associates, Inc.,
2001

Fire walls and Internet Security: Repelling the Wily Hacker, by William R. Cheswick and
Steven M. Bellovin. Second edition, Addison-Wesley, 2003.

Essential System Administration, by Æleen Frisch. Third edition, O’Reilly & Associates,
Inc., 2003. Includes coverage of FreeBSD 4.7.

TCP/IP Network Administration, by Craig Hunt. Third Edition. O’Reilly & Associates,
2002

UNIX System Administration Handbook, by Evi Nemeth, Garth Snyder, Scott Seebass,
and Trent R. Hein. 3nd edition, Prentice Hall, 2001. An excellent coverage of four real-
life systems, including FreeBSD 3.4.

Managing NFS and NIS, by Hal Stern, Mike Eisler and Ricardo Labiaga. 2nd Edition,
O’Reilly & Associates, Inc., 2001

Using Samba, by Jay Ts, Robert Eckstein and David Collier-Brown. 2nd Edition,
O’Reilly & Associates, Inc., 2003.

630 Chapter A: Bibliography

Programmers’ guides
X Window System Toolkit, by Paul Asente. Digital Press.

The Annotated C++ Reference Manual, by Margaret A. Ellis and Bjarne Stroustrup.
Addison-Wesley, 1990.

C: A Reference Manual, by Samuel P. Harbison and Guy L. Steele, Jr. 3rd edition,
Prentice Hall, 1991.

‘‘Porting UNIX to the 386’’ in Dr. Dobb’s Journal, William Jolitz. January 1991–July
1992.

Porting UNIX Software, by Greg Lehey. O’Reilly & Associates, 1995.

The Design and the Implementation of the 4.4BSD Operating System. Marshall Kirk
McKusick, Keith Bostic, Michael J. Karels, John S. Quarterman. Addison-Wesley,
1996. The definitive description of the 4.4BSD kernel and communications.

The Standard C Library, by P. J. Plauger. Prentice Hall, 1992.

TCP/IP illustrated, by W. Richard Stevens and Gary R. Wright (Volume 2 only).
Prentice-Hall, 1994–1996. A three-volume work describing the Internet Protocols.
Volume 2 includes code from the 4.4BSD-Lite implementation, most of which is very
similar to the FreeBSD implementation.

UNIX Network Programming, by W. Richard Stevens. Prentice-Hall, 1998. A two-
volume introduction to network programming.

Writing Serial Drivers for UNIX, by Bill Wells. Dr. Dobb’s Journal, 19(15), December
1994. pp 68-71, 97-99.

Hardware reference
RS-232 made easy, second edition. Martin D. Seyer, Prentice-Hall 1991. A discussion
of the RS-232 standard.

ISA System Architecture, by Tom Stanley. 3rd edition, Addison-Wesley, 1995.

PCI System Architecture, by Tom Stanley. 3rd edition, Addison-Wesley, 1995.

The Undocumented PC, by Frank Van Gilluwe. Addison-Wesley, 1994.

Hardware reference 631

The 4.4BSD manuals
The original 4.4BSD manual set includes the man pages and a number of documents on
various aspects of programming, user programs and system administration. With a few
minor exceptions, you can find the latest versions in /usr/share/man (the man pages) and
/usr/share/doc (the other documents). If you want the original 4.4BSD versions, you can
check them out of the repository.

If you prefer a bound version, O’Reilly and Associates published the original five-volume
set of documentation for 4.4BSD as released by the CSRG in 1994, including the AT&T
historical documents. Compared to FreeBSD, much of this documentation is severely out
of date, and it’s also out of print, though you should still be able to find it second-hand. It
comprises the following volumes:

• 4.4BSD Programmer’s Reference Manual. These are sections 2, 3, 4 and 5 of the
man pages for 4.4BSD.

• 4.4BSD Programmer’s Supplementary Documents. You can find the latest versions of
most of these documents in /usr/share/doc/psd.

• 4.4BSD User’s Reference Manual. This book contains sections 1, 6 and 7 of the
4.4BSD man pages.

• 4.4BSD User’s Supplementary Documents. You can find the latest versions of most
of these documents in /usr/share/doc/usd.

• 4.4BSD System Manager’s Manual. Contains section 8 of the manual and a number
of other documents. You can find the latest versions of most of these documents in
/usr/share/doc/smm.

Getting FreeBSD on CD-ROM
FreeBSD is available on CD-ROM from a number of suppliers:

Daemon News Mall
560 South State Street, Suite A2
Orem, UT 84058
USA
Phone: +1 800 407-5170
Fax: +1 801 765-0877
Email: sales@bsdmall.com
WWW: http://www.bsdmall.com/

632 Chapter A: Bibliography

Everything Linux
PO Box 243
Croydon NSW 2132
Australia
Phone: 0500 500 368

02 8752 6666
Fax: 02 9712 3977
Email: sales@everythinglinux.com.au
WWW: http://www.everythinglinux.com.au/

FreeBSD Mall, Inc.
3623 Sanford Street
Concord, CA 94520-1405
USA
Phone: +1 925 674-0783
Fax: +1 925 674-0821
Email: <info@freebsdmall.com>
WWW: http://www.freebsdmall.com/

FreeBSD Services Ltd
11 Lapwing Close
Bicester
OX26 6XR
United Kingdom
WWW: http://www.freebsd-services.com/

Hinner EDV
St. Augustinus-Straße 10
D-81825 München
Germany
Phone: (089) 428 419
WWW: http://www.hinner.de/linux/freebsd.html

Ingram Micro
1600 E. St. Andrew Place
Santa Ana, CA 92705-4926
USA
Phone: 1 (800) 456-8000
WWW: http://www.ingrammicro.com/

Getting FreeBSD on CD-ROM 633

The Linux Emporium
Hilliard House, Lester Way
Wallingford
OX10 9TA
United Kingdom
Phone: +44 1491 837010
Fax: +44 1491 837016
WWW: http://www.linuxemporium.co.uk/bsd.html

UNIXDVD.COM LTD
57 Primrose Avenue
Sheffield
S5 6FS
United Kingdom
WWW: http://www.unixdvd.com/

In addition, in the USA Frys Electronics and CompUSA carry boxed sets of FreeBSD
and documentation.

(evolution.mm), page 635

B
The evolution of

FreeBSD

In this chapter:
• FreeBSD Releases 1

and 2
• FreeBSD Release 3
• The CAM SCSI

dr iver
• Kernel loadable

modules
• The ELF object

format
• FreeBSD Version 4
• No more block

devices
• New ATA (IDE) disk

dr iver
• New console driver
• FreeBSD Release 5

In this chapter:
• FreeBSD Releases 1

and 2
• FreeBSD Release 3
• The CAM SCSI

dr iver
• Kernel loadable

modules
• The ELF object

format
• FreeBSD Version 4
• No more block

devices
• New ATA (IDE) disk

dr iver
• New console driver
• FreeBSD Release 5

FreeBSD has been around for ten years. During this time, it has evolved significantly,
and it continues to evolve. In this chapter we’ll look at what has changed, particularly in
more recent times. If you’re planning to install one of the older releases of FreeBSD, for
example on old hardware that is too small for modern releases, refer to Appendix A,
Bibliography, for copies of older editions of this book.

FreeBSD Releases 1 and 2
Release 1.0 of FreeBSD appeared in December 1993. It was substantially an improved
and debugged version of 386/BSD, based on the 4.3BSD Net/2 tape. FreeBSD Release 2
was released in January 1995. The big difference from Release 1 was that it was based
on 4.4BSD Lite, one of the results of the lawsuit we discussed on page 8. There were no
major differences from Release 1.

FreeBSD Release 3
FreeBSD Release 3.0 was released in September 1998. It represented the biggest change
in FreeBSD since the code base was moved to 4.4BSD. A number of new features were
introduced, which made upgrading a little more complicated than is normally the case. In
particular, the following new features were of note:

635

636 Chapter B: The evolution of FreeBSD

• It introduced support for the Compaq/Digital Equipment AXP (also known as
ALPHA) processor.

• On the Intel architecture, FreeBSD supported multiple processors.

• A new SCSI driver, CAM, was introduced. This required some modifications to the
kernel configuration, and the device names changed. At present this means that
FreeBSD device names are different from the NetBSD or OpenBSD names for the
same devices. We’ll look at CAM in more detail below.

• The IDE driver first supported DMA. We discussed DMA on page 32. The entire
IDE driver was replaced in a later release.

• A new console driver was introduced.

• This release of FreeBSD started phasing out loadable kernel modules, described on
page 163. Since then, they hav e been replaced by kernel loadable modules (klds).
Does this sound like word play? Well, there’s a solid technical background: you can
tell the bootstrap to load klds along with the kernel. We’ll look at them below.

• A new, more flexible bootstrap (the program that loads the kernel) was introduced.

• The default object file format changed from a.out to ELF. FreeBSD supported the
ELF format for some time previously, initially to emulate Linux, but now it is the
native format as well. FreeBSD still supports a.out binaries.

The CAM SCSI driver
FreeBSD Release 3.0 included a new SCSI driver, based on the ANSI ratified Common
Access Method or CAM specification, which defines a software interface for talking to
SCSI and ATAPI devices. The FreeBSD driver is not completely CAM compliant, but it
follows many of the precepts of CAM. More importantly, it addresses many of the
shortcomings of the previous SCSI layer and provides better performance and reliability,
and eases the task of adding support for new controllers.

For most users, the most obvious difference between the old SCSI driver and CAM is the
way they named SCSI devices. In the old driver, disks were called sdn, and tapes were
called stn, where n was a small positive number. The CAM driver calls disks dan (for
direct access), and tapes are called san (for serial access).

In addition, a new program, camcontrol, enables you to administrate the SCSI chain at a
more detailed level then previously: for example, it is now possible to add devices to a
chain after the system has started. See the man page for more details.

The CAM SCSI driver 637

Kernel loadable modules
Older releases of FreeBSD supplied Loadable Kernel Modules or LKMs, object files that
could be loaded and executed in the kernel while the kernel was running.

The ELF kernel and the new bootstrap introduced with FreeBSD Release 3 allow you to
load additional modules at boot time. To do so, however, the format of the modules
needed to be changed. To avoid (too much) confusion, the name changed from loadable
kernel module to kernel loadable module (kld).

Table B-1: Differences between LKMs and klds

Parameter LKM kld

Directory /lkm /boot/kernel
Load program modload kldload
Unload program modunload kldunload
List program modstat kldstat

Some other details have changed as well. kldload knows an internal path for finding
klds, so you don’t need to specify the path unless it’s in a non-standard location. It also
assumes that the name of the kld ends in .ko, and you don’t need to specify that either.
For example, to load the Linux emulator as an LKM, you entered:

modload /lkm/linux_mod.o

To load the kld, you enter:

kldload linux

kldload searches for klds in a number of places. Table B-1 shows the default path,
/boot/kernel. If you boot from a different kernel, for example /boot/kernel.old/kernel, the
path will change to /boot/kernel.old. Up to Release 4 of FreeBSD, it searched /modules
as well. At the time of writing, this directory is still in the search path, but it may be
phased out. It’s a bad idea to store kernel code where it might be loaded by different
kernels.

The ELF object format
When UNIX was written, the world was simple. The kernel of the Third Edition of
UNIX, in January 1973, had a little over 7,000 lines of code in total. The FreeBSD 5.0
kernel has approximately 300 times as much code. The original UNIX object format was
correspondingly simple: it had provision for only three data segments. It was named after
the name of the output from the assembler, a.out.

638 Chapter B: The evolution of FreeBSD

In the course of time, binaries required additional features, in particular the ability to link
to dynamic libraries. UNIX System V introduced a new object file format, COFF, but
BSD objected to some of the details of COFF and remained with a.out and used some
rather dirty tricks to link to dynamic libraries. The change to ELF enabled a much
cleaner interface.

Since Release 3, FreeBSD uses ELF as the default executable format, but the Intel port
supported execution of a.out binaries until Release 5. The Alpha port was created after
the change to ELF and does not support a.out at all.

What happened to my libraries?
One detail of the change from a.out to ELF can make life difficult: ELF and a.out
executables need different libraries, each with their own format, but frequently with the
same name. For example, the system now knows the following versions of the standard
C library, which is required by every program:

• libc.a is a static library used for including the library routines into the program at
link time.

• libc_p.a is a static library containing profiled versions of the library routines for
inclusion into the program at link time.

• libc_pic.a is a static library containing position-independent versions of the library
routines for inclusion into the program at link time.

• libc_r.a is a static library containing reentrant versions of the library routines for
inclusion into the program at link time.

• libc.so is a symbolic link to the current version of a dynamic library for linking at
run time. This link is only used for ELF programs.

• libc.so.3 is a version of an ELF dynamic library for linking at run time. The number
3 changes with the release.

• libc.so.3.1 is a version of an a.out dynamic library for linking at run time. The
number 3.1 changes with the release.

Don’t worry if these names don’t make much sense to you; unless you’re writing
programs, all you need to know is that an ELF system uses /usr/lib/libc.so at run time.

/usr/lib contains a large number of libraries. It would be possible, but messy, to find an
alternative arrangement for the name conflicts, and leave the rest of the names unchanged.
Instead, the conversion process moves all a.out libraries to a subdirectory aout, so an
a.out executable now looks for /usr/lib/aout/libc.so.3.0. An ELF executable looks for
/usr/lib/libc.so.3.

But how does the system know to look in a different place? It uses a hints file generated
by the ldconfig program. When the system starts, it takes a list of directory names from
/etc/rc.conf and runs ldconfig to search the directories for a.out libraries and to generate
the hints file. In Release 2 of FreeBSD, the standard /etc/rc.conf contained the following
definition:

The ELF object for mat 639

ldconfig_paths="/usr/lib/compat /usr/X11R6/lib /usr/local/lib" # search paths

In Release 3.0, this changed to:

ldconfig_paths="/usr/lib/compat /usr/X11R6/lib /usr/local/lib"
shared library search paths

ldconfig_paths_aout="/usr/lib/compat/aout /usr/X11R6/lib/aout /usr/local/lib/aout"
a.out shared library search paths

Upgrading from Release 2 of FreeBSD

If you’re still using Release 2, you might run into some minor problems. The following
discussion applies when upgrading to Release 3 or any later release: part of the upgrade
process from Release 2 to Release 3 changes this entry in /etc/rc.conf, so there should be
no problem with normal libraries. A couple of problems may still occur, howev er:

• Some programs refer to library names that are symbolic links. The upgrade process
doesn’t always handle symbolic links correctly, so you may find that the link points to
the wrong place. For example, you might have this in a 2.2.7 system /usr/lib/compat:

/usr/lib/compat:
total 1
-r--r--r-- 1 root wheel 8417 Jan 21 18:37 libgnumalloc.so.2.0
-r--r--r-- 1 root wheel 8398 Jan 21 18:37 libresolv.so.2.0
lrwxr-xr-x 1 root wheel 31 Jan 21 18:36 libtermcap.so.3.0 -> /usr/lib/libte
rmcap.so.2.1
lrwxr-xr-x 1 root wheel 31 Jan 21 18:36 libtermlib.so.3.0 -> /usr/lib/libte
rmlib.so.2.1
-r--r--r-- 1 root wheel 8437 Jan 21 18:37 liby.so.2.0

After updating, you could end up with this:

/usr/lib/compat/aout:
total 1
-r--r--r-- 1 root wheel 8417 Jan 21 18:37 libgnumalloc.so.2.0
-r--r--r-- 1 root wheel 8398 Jan 21 18:37 libresolv.so.2.0
lrwxr-xr-x 1 root wheel 31 Jan 21 18:36 libtermcap.so.3.0 -> /usr/lib/libte
rmcap.so.2.1
lrwxr-xr-x 1 root wheel 31 Jan 21 18:36 libtermlib.so.3.0 -> /usr/lib/libte
rmlib.so.2.1
-r--r--r-- 1 root wheel 8437 Jan 21 18:37 liby.so.2.0

In other words, the libraries have been moved, but the symbolic links are absolute and
still point to the old place. The system doesn’t install absolute symbolic links, so it
doesn’t make any attempt to correct them. You need to fix the problem manually. In
this example, we replace the symbolic links with relative symbolic links:

cd /usr/lib/compat/aout
rm libtermcap.so.3.0
ln -s libtermcap.so.2.1 libtermcap.so.3.0
rm libtermlib.so.3.0
ln -s libtermlib.so.2.1 libtermlib.so.3.0

640 Chapter B: The evolution of FreeBSD

• If you have modified your /etc/rc.conf significantly, the update may fail, and your
a.out hints file will still point to the old locations. In this case edit /etc/rc.conf as
shown above.

cd /usr/X11R6/lib
mkdir aout
cp -p lib* aout

FreeBSD Version 4
FreeBSD Release 4.0 appeared in March 2000. It included a number of significant
changes from Release 3. At the time of writing, FreeBSD Release 4 is still a current
release, in parallel with Release 5.

First, the good news: the differences between Release 3 and Release 4 aren’t as far-
reaching or as complicated as the differences between Release 2 and Release 3. Still,
there are a couple of things that you need to know. There are also a few things that make
installation easier. You can get a blow-by-blow description of the changes from the file
/usr/src/UPDATING. This document discusses the following more important new
features:

• From Release 4, FreeBSD no longer has block devices. See page 642 for more
details.

• The base operating system now includes OpenSSH. This may conflict with the
ports/security/ssh port: the base OpenSSH is installed in /usr/bin and the port goes
into /usr/local/bin. Most paths have /usr/bin in the path before /usr/local/bin, so
problems may arise. If you don’t want OpenSSH, add the following line to
/etc/make.conf :

NO_OPENSSH=yes

You will also need to enable OpenSSH in /etc/rc.conf if you want to run the new
servers. You may need to move your host key and other config files from
/usr/local/etc to /etc/ssh.

OpenSSH has different command line parsing, available options and default settings
from ssh, so you should take some care in its operation. Perform a full audit of all
configuration settings.

• sendmail.cf has moved from /etc/sendmail.cf to /etc/mail/sendmail.cf. In addition to
moving this file, you may need to adjust /etc/rc.conf.

• xntpd has been updated to Revision 4. The name of the daemon has changed from
xntpd to ntpd, so you may need to update your /etc/rc.conf file. The ntp.conf files
are compatible with the old release, unless you are using a local reference clock. You
can find more details about ntp4 at http://www.ntp.org/.

FreeBSD Version 4 641

• There is a new driver for ATA (IDE) drives. See page 643 for more details.

• Release 3 supported both the old and the new names for SCSI devices, for example
/dev/sd0 and /dev/da0. The old names are no longer there in Release 4, so if you’re
upgrading you should check your /etc/fstab and /etc/rc.conf and change the names
where necessary.

• bad144 support for old WD and ESDI drives has been removed.

• The mfs driver has been replaced with the md driver. Accordingly the MFS_ROOT and
MFS_ROOT_SIZE kernel configuration options have been replaced by MD_ROOT and
MD_ROOT_SIZE. See the GENERIC or LINT configuration files for more details.

• Some Ethernet drivers no longer supports hard wired addresses in the config file.
This is part of an on-going process to remove static hardware information from the
kernel and to enable learning it at boot time.

• /var/cron/log has been moved to /var/log/cron to get all the log files in one place.

• User-visible TCP timers are now expressed in units of 1ms, instead of 500ms, so if
you’ve customized any timer values under net.inet.tcp, multiply them by 500 to
preserve TCP’s behavior.

• The bpfilter device has been renamed to bpf.

• Vinum now supports a simplified interface. See the man page vinum(8) for details.

• A new driver, ida, was introduced for the Compaq Smart Raid array.

• The lpt driver has been rewritten using ppbus. See ppbus(4) for details.

• Linux threads options has gone away (they are now standard in the FreeBSD kernel).

• From Release 4, FreeBSD supports PAM (Pluggable Authentication Modules). This
requires a new file /etc/pam.conf. If you don’t hav e this (for example, if you’re
upgrading from an older release of FreeBSD, and you don’t install the file), you’ll get
relatively harmless error messages.

• For improved security, FreeBSD Release 4 runs named as a new user and group, both
called bind.

• The floppy tape driver ft has been removed from the kernel. There is no replacement:
this driver was always very non-standard, and the hardware that it supports is
unreliable and obsolete.

• There are new keyboard and video card drivers. We’ll look at them in more detail on
page 643.

642 Chapter B: The evolution of FreeBSD

No more block devices
From the beginnings of UNIX, users were confused by the fact that a disk drive could
appear in two different ways, either a block device or a character device, also called a raw
disk. For example, your root partition might have been one of these:

$ ls -l /dev/wd0a /dev/rwd0a
crw-r----- 1 root operator 3, 0 Oct 19 1997 /dev/rwd0a
brw-r----- 1 root operator 0, 0 Oct 19 1997 /dev/wd0a

A raw device always accesses the drive directly. As a result, you’re limited to the way the
drive is org anized: the transfer must start on a sector1 boundary and must be an integral
number of sectors long. By contrast, block devices are buffered: instead of accessing the
disk directly, the system transfers data via an area of memory called buffer cache. You
access the copy of the data in buffer cache. This has the advantages that you can access it
much more quickly if it is in cache, and you don’t hav e to pay any attention to sector
boundaries. Still, having two different kinds of device is confusing, and it’s obvious why
we should want to simplify things.

But why are block devices going away, and not the raw disks? Until recently, for
example, Linux didn’t hav e any raw disk access, only block devices. There are a number
of reasons to prefer to keep the raw disks:

• If you want to access disks in an aligned fashion, it’s faster: you don’t hav e to go via
buffer cache. This also saves memory.

• If you have an error on a write to a raw device, you get an error indication
immediately. On a block device, the error may not occur until after the process has
terminated, too late to try to recover.

• The buffer cache isn’t going away, only the device interface. It’s very seldom that
you’ll find a need to access disk devices directly from user context. The most
common access is via a file system or as swap. In the former case, the file system
provides the buffering, and in the latter case it’s counterproductive, since swap always
writes entire pages. The only other access to disk devices is from system programs
like disklabel, newfs and mount, all of which have always accessed the raw device.

For most users, the biggest difference is that you will never use a name like /dev/rda0a
again; instead, it will become /dev/da0a. If you are upgrading, you must run
/dev/MAKEDEV to recreate the device nodes.

Note that in Release 5 of FreeBSD, /dev/MAKEDEV is no longer needed.

1. Data on disk used to be stored in units called sectors. Modern disks store data in a number of different ways,
but this is not visible outside the drive. The externally visible unit of data is still a sector of 512 bytes.

No more block devices 643

New ATA (IDE) disk driver
There is a new driver, ata, for ATA (AT attachment) drives, which were formerly called
IDE. It supports not only disks but also ATAPI CD-ROM and DVD drives, ZIP drives
and tape streamers.

In the process, the name of the devices has changed: disk drives are now called ad, CD-
ROM drives are called acd, LS-120 floppies are called afd, and tapes are called ast.

For a transition period, the wd driver remains available, but you shouldn’t use it unless
you have very good reasons, for example if you have old or unusual hardware that has
trouble with the ad driver.

New console driver
FreeBSD Release 4 includes a new console driver. The configuration file entries have
changed. See the GENERIC configuration file for more details.

FreeBSD Release 5
FreeBSD Release 5 is the latest release of FreeBSD. It has a number of new features,
most of which are transparent to the user. There’s a complete list in the release notes,
which you should certainly read if you’re upgrading the system, but here are some
highlights:

• SMP (symmetric multiprocessor) support has been rewritten from scratch. This will
ultimately give much better performance and scalability, though currently the
performance potential has not been fully realized. We looked at some of the visible
differences on page 148.

• The kqueue ev ent notification facility is a new interface that is able to replace poll
and select. It offers improved performance as well as the ability to report many
different types of events. Support for monitoring changes in sockets, pipes, fifos, and
files are present, as well as for signals and processes.

• A large number of kernel configuration options have been turned into boot-time
tunable variables, and the need to build specific kernels has become much more
seldom.

• The Kernel-Scheduled Entity (KSE) project offers multi-threading in the kernel.

• Support for the 80386 processor has been removed from the GENERIC kernel, as this
code seriously pessimizes performance on other IA32 processors.

The I386_CPU kernel option to support the 80386 processor is now mutually
exclusive with support for other IA32 processors; this should slightly improve
performance on the 80386 due to the elimination of run time processor type checks.

644 Chapter B: The evolution of FreeBSD

Custom kernels that will run on the 80386 can still be built by changing the cpu
options in the kernel configuration file to only include I386_CPU.

• Support has been added for 64 bit SPARC and IA 64 (Itanium) processors.

• The system includes the device file system, or devfs. In older releases of FreeBSD, as
in other versions of UNIX, the directory /dev contained device nodes, entries that
looked like files but which in fact described a possible device on the system. The
problem was that there was no good way to keep the device nodes in sync with the
kernel, and problems occurred where the hardware corresponding to a device node
didn’t exist (a ‘‘Device not configured’’ error), or where the device node correspond-
ing to the hardware did not exist (a ‘‘no such file or directory’’ error). devfs solves
this problem by creating at boot time the device nodes for the hardware the system
finds.

• The disk I/O access system has been rearranged and made more flexible with the
GEOM framework.

• A number of file system enhancements have been made. The standard UFS file
system now supports snapshots and background file system checking after a crash,
significantly reducing reboot time after a crash.

• UFS has been significantly enhanced as UFS2. It supports files larger than 1 TB and
extended file attributes.

• The PCMCIA code has been rewritten and now supports CardBus devices.

• The default kernel no longer supports a.out file format. You can still execute these
files by loading the aout.ko KLD.

• FreeBSD now supports the Advanced Configuration and Power Interface (ACPI), the
replacement for APM.

• It is now possible to increase the size of ufs file systems with the growfs command.

• Vinum now supports the root file system. See Chapter 12 for details.

, page 645

Index

., directory, 126

.., directory, 126
/, directory, 68, 82, 238
˜, directory, 127
˜/, directory, 425
10 Base 2, 287
10B5, 287
10BaseT, 287
386/BSD, 9
5.0-RELEASE, 87
802.11 DSSS, 292
802.11 FHSS, 292
802.11a, 292
802.11b DSSS, 292
802.11g, 292
86/DOS, 7
/A, directory, 257

A
A: drive, 86
A record, DNS, 363, 369
Abrahams, Paul W., 16, 111, 629
Accelerated Graphics Port, 28
accept, PPP negotiation, 341, 351
access point, 292
acd0, device, 246
acd0c, device, 250
acknowledgment number, TCP, 282
ACPI, 644
acroread, command, 92
active partition, 210
ACU, 333
ad-hoc mode, 292
ad0, 63

ad0 (continued)
device, 63

ad0a, device, 37
ad0s1a, device, 37, 81
adding hard disk, 199
adding passwords, 147
adding routes, automatically, 309

manually, 309
adding users, 145
Address, Ethernet, 287

MAC, 287
address class, 290
address family, 312
Address Resolution Protocol, 289, 344
addressing, dynamic, 345
adduser, command, 145, 568–569, 577
adjkerntz, command, 605
ADSL, 316
Advanced Configuration and Power Interface,

644
Advanced Power Management, 553
AGP, 28
Albitz, Paul, 629
alias file, email, 481, 500
aliasing, IP, 322, 385, 393
Alpha, architecture, 42, 636

installing on, 78
amanda, command, 253
amd, daemon, 539
Anderson, Annelise, xxxv, 628
anonymous, user name, 433
anonymous ftp, 433, 450
any, key, xxxiv
a.out, object format, 162, 636–637, 640, 644
apache, configuration file, 456

645

646 Index

apache (continued)
configuring, 455
daemon, 455, 459, 462
running, 462

apachectl, command, 462
apic, device, 613
APM, 553, 644
application layer, problems, 414
apropos, command, 14
ARC, console firmware, 42
archive, 167, 251, 253
argument, shell, 123
Arnold, Jonathan, xxxv
A.ROOT-SERVERS.NET., 373
ARP, 289, 344, 412
ARPANET, 277
Asente, Paul, 630
ast0, device, 252
asynchronous communication, 326
Asynchronous Digital Subscriber Line, 316
AT Attachment, 32
AT command set, 333
AT A, 32
ATTRIB, MS-DOS program, 259
AUI, 287
authentication, challenge-response, 420

PPP, 339
authentication agent, 422
auth.log, file, 157
authoritative name server, 365
Auto-Call Unit, 333
AUTOEXEC.BAT , file, 56–57
AXP, processor, 42, 636

B
backing up your data, 251
backslash, 571
backup file, DNS, 376
backup software, 253
bad144, command, 641
Barton, Doug, xxxv
base, directory, 87–89
base station, 292
base.inf, file, 43, 90
base.mtree, file, 43
bash, command, xxxiii, 92, 94, 113, 129,

132–134, 137, 254, 423
.bash_profile, file, 94
.bashrc, file, 93–94, 136, 254, 423

Basic Input/Output System, 528
Basic Networking Utilities, 277
Basic Service Set, 292
bat book, 491
baton, twirling, 530, 532
baud, definition, 330
becoming super user, 147
Beebe, Nelson H. F., xxxv
beijing.china.example.org, 365, 377
Bellovin, Steven M., 629
Berkeley daemon, 21
Berkeley Internet Name Domain, 363
Berkeley Packet Filter, 411
Berkeley Software Design, 8
Berkeley Software Distribution, 4, 8
Berkeley UNIX, 7
biguser.com, 310–311, 457
/bin, directory, 69, 94, 137
BIND, 363
BIOS, 528
Birrell, John, xxxv
Bishop, Bob, xxxv
bit rate, definition, 331
Blake, Sue, xxxv
blind dialing, modem, 333
block device, 36, 642
BNC, 287
BNU, 277
Book, directory, xxix
/boot, directory, 530, 548, 598
boot disk, 85
boot floppy, preparing, 85
boot manager, 52
boot selector, 64–65
boot sequence, 60
boot0cfg, command, 81, 598
/boot/defaults/loader.conf, file, 530, 532–533
/boot/device.hints, file, 82, 203, 530, 575, 598,

608–609
booteasy, 66, 81
boot.flp, file, 88
booting, from floppy, 86
/boot/kernel, directory, 532, 637
/boot/kernel/if_ppp.ko, file, 355
/boot/kernel/ipfw.ko, file, 386
/boot/kernel/kernel, file, 528, 533, 545
/boot/kernel/modules, directory, 620
/boot/kernel/modules/ibcs2.ko, file, 620
/boot/kernel.old, directory, 618, 637
/boot/kernel.old/kernel, file, 533, 637

The Complete FreeBSD 647

/boot/loader.conf, file, 83, 226, 238, 530,
532–533, 563, 613

BootMgr, 66
bootparamd, daemon, 559
bootpd, daemon, 543
bootstrap, 528
Bostic, Keith, 630
bounds, file, 623
Bozza, Jaime, 487
bpf0, device, 195
Branagan, Linda, 21
branch, CVS, 581
brandelf, command, 164
branding ELF binaries, 164
BREAK_TO_DEBUGGER, kernel option,

614
Bresler, Jonathan M., xxxv
broadcast interface, 300
broadcast packet, 307
browser, web, 418
BSD compression, 343
BSD License, xxxiv
BSDCon, 20
BSDI, 8
bsdlabel, command, 215–216, 237–238, 257,

598
BSS mode, 292
BTX, 528, 530
buffer cache, 36, 642
bugs, reporting, 21
building ports, 169, 174
Bulley, William, xxxv
bumble.example.org, 294–295, 309, 402
burncd, command, 246–247
bus mouse, 41

C
C:, directory, 81
cable, control, 32

data, 32
cable modem, 316
cable networking, 286
caching, web, 462
caching-only name server, 366
call failure reason code, modem, 337
CAM driver, 636
Cambria, Mike, xxxv
camcontrol, command, 160, 201, 203, 219,

248, 636

camera, digital, 159
capability, terminal, 578
CardBus, 29–30
carriage return, character, 139

key, xxxiii
carrier sense, 288
Carrier Sense Multiple Access/Collision De-

tect, 288
CCITT, 277
CD, MS-DOS program, 259
CD-R, coaster, 248

mode1 data, 247
CD-ROM, CVS Repository, 46

Installation, 43
Live File System, 43, 46, 84
mounting, 192

cd0, device, 195
cd1c, device, 250
cd9660, file system, 190, 567
cdrecord, command, 92, 246, 248–249
/cdrom, directory, 13, 85, 87–88, 169, 173,

192
/cdrom/floppies/boot.flp, file, 48
/cdrom/ports/distfiles, directory, 173
/cdrom/tools/fips.doc, file, 53
cdrtools, command, 243, 248
ch0, device, 195
challenge-response authentication, 420
changing passwords, 147
CHAP, 342–344, 351, 356, 359
character, carriage return, 139

control, 138
escape, 138
line feed, 139
new line, 139
slash, 138
SYN, 327
tab, 138

character device, 36, 642
characters, globbing, 126
chat, command, 357–358

expect string, 357
send string, 357

chat script, 350, 357
Cheapernet, 287
Cheswick, William R., 629
chflags, command, 603
chgrp, command, 183
china.example.org, 365, 377
CHKDSK, MS-DOS program, 56–57

648 Index

chmod, command, 14, 184
chown, command, 183–184
chpass, command, 578
CHS, 34
chsh, command, 137
CIFS, 278, 464
Clapper, Brian, xxxv
Class C network, 291
Clayton, Nik, 629
Clear to Send, RS-232 signal, 329–330
client, NFS, 442
clocks, RS-232, 329
CNAME record, DNS, 364
COFF, object format, 164, 637
collection, CVSup, 586
Collier-Brown, David, 465, 629
collision, 288
COM1:, 536
command, acroread, 92

adduser, 145, 568–569, 577
adjkerntz, 605
amanda, 253
apachectl, 462
apropos, 14
bad144, 641
bash, xxxiii, 92, 94, 113, 129, 132–134,

137, 254, 423
boot0cfg, 81, 598
brandelf, 164
bsdlabel, 215–216, 237–238, 257, 598
burncd, 246–247
camcontrol, 160, 201, 203, 219, 248, 636
cdrecord, 92, 246, 248–249
cdrtools, 243, 248
chat, 357–358
chflags, 603
chgrp, 183
chmod, 14, 184
chown, 183–184
chpass, 578
chsh, 137
COMMAND.COM, 113
config, 598, 617–619
cp, 432
cpio, 253, 256
csh, xxxiii, 92, 113–114, 129, 133,

136–137, 173, 254, 396, 569
cvs, 588–591
cvsup, 170, 585–587

command (continued)
dbmmanage, 461
dd, 85, 210, 250
df, 129, 257–258
dhclient, 302, 306, 555
diff, 604
dig, 381
disklabel, 215, 257, 569, 642
dmesg, 158, 200, 204, 211, 246, 248,

533–534, 612, 620
dump, 253, 567
ec, 62
echo, 131
elm, 93, 178–179, 473, 497
emacs, 15–16, 134, 168, 170, 260, 438, 524
Emacs, xxix
emacs, xxxvi
emacsclient, 477, 482
etherboot, 546
ethereal, 414
eval, 423
exmh, 473
fdformat, 257
FDIMAGE.EXE, 86
fdisk, 39, 64, 210–215
fetchmail, 93, 504–505
fg, 132
fortune, 114, 627
fsck, 75, 187, 238–239, 538, 540–541, 554,

567
fsdb, 187
ftp, 3, 13, 167, 170–171, 185, 399, 405,

410, 418, 432–437, 450–452, 570, 578
ftpd, 578
fvwm2, 93, 108, 118–121
galeon, 93, 120, 399, 418
gcc, 15, 70
gdb, 84, 624–625, 627
getty, 114, 188, 195, 197, 336, 338, 356,

539, 574, 576
ghostscript, 13, 93, 273–276
gpg, 93, 479
grep, 124, 128
groff, xxvii, xxix
growfs, 232, 644
gunzip, 167
gv, 93, 272
gzip, 167, 253, 255
halt, 141

The Complete FreeBSD 649

command (continued)
host, 381
hostname, 302
httpd, 459
ifconfig, 99, 195, 299–302, 304–308, 311,

340, 345, 355, 358, 404–405
info, 15, 175
inn, 169
ipfw, 386, 393
ispell, 93
Kate, 117
kde, 93, 116, 118
kenv, 575
kermit, 357
kill, 154
killall, 154
kldload, 620, 637
kldstat, 163, 620
kldunload, 620
Kmail, 117
konqueror, 117, 419
konsole, 117, 121
Kpresenter, 117
ksh, xxxiii, 133
Kspread, 117
ktrace, 615
KWord, 117
ldconfig, 539, 564, 638
less, 128, 172
loader, 530, 532
log, 589
login, 114
lpq, 270
lpr, 263, 265, 270
lprm, 271
lptest, 268
ls, 13, 182–183, 244
lynx, 13, 419
mail, 472–473
mailman, 17
majordomo, 497, 505–506
make, xxix, 138, 168, 172, 174, 245, 593
man, 13–14, 129, 465, 577
mcopy, 260–261
mdconfig, 193, 246
mergemaster, 599–600, 602–604
mformat, 258
mh, 473
mkfontdir, 518

command (continued)
mkisofs, 93, 243–244
more, 128, 260
mosaic, 419
mount, 190–192, 257, 441–442, 566–568,

642
mountall, 445
mount_nfs, 442
mount_ufs, 442
mozilla, 13, 418
mtools, 258–259
mutt, 93, 129, 471, 473–478, 480–484,

486–487, 496
.muttrc, 483
ndc, 374
netscape, 418
netstat, 284–285, 311–312, 406
newalias, 497
newaliases, 497, 505
newfs, 215–216, 257, 642
newfs_msdos, 258
newsyslog, 158, 572
nslookup, 381
ntpdate, 100, 156–157, 305, 539, 560
Opera, 419
PartitionMagic, 53
passwd, 146–148
pax, 253
pdf2ps, 276
pdksh, xxxiii
perl, 5
pgp, 479
pine, 93, 473
ping, 402, 405–407, 410
pkg_add, 178, 585
pkgdb, 176–177
pkg_delete, 179
pkg_info, 178
pkg_version, 178–179
portupgrade, 176, 178
postmap, 500, 505–506
ppp, 350, 353–354
printenv, 131
procmail, 501
ps, 122, 128, 148–149, 154, 163, 182, 186,

267, 539
ps2pdf, 276
pstat, 71, 83
pwd_mkdb, 577, 601

650 Index

command (continued)
pxeboot, 544, 546
python, 5
rcp, 418, 432
RCS, xxx
resetconfig, 241
resolv.conf, 366
rlog, 589
rlogin, 197, 386, 417–418, 426
rm, 122, 585
rndc, 374
route, 302, 309, 407
rsh, 570
rsync, 3, 418, 437–440, 449, 454
ruby, 5
ruptime, 100
rwho, 100, 412
savecore, 623
/sbin/nologin, 601
sco, 164
scp, 418, 432–433, 437–438
send-pr, 21
setgid, 186
sftp, 437, 449
sh, xxxiii, 113–114, 133, 136, 254
shutdown, 95, 141, 541–542
skipstone, 418
sleep, 425
smbclient, 465, 469–470
smbpasswd, 465, 469
smbstatus, 465, 470
spamassassin, 487, 501
ssh, 3, 100, 157, 278, 293, 346, 412,

418–432, 437, 440, 453, 559, 570, 640
ssh-add, 422–423
ssh-agent, 422–423, 428–429, 437
ssh-askpass, 423
ssh-keygen, 421
startx, 108–109, 115, 523–524, 574
stty, 133, 327, 336, 338
su, 95, 137, 147–148, 157, 185
sudo, 147
sunlabel, 215
swapon, 547
swat, 466
sylpheed, 473
sysctl, 313

command (continued)
sysinstall, 13, 39, 44, 49–50, 60–61, 63, 68,

74–78, 80–81, 87–88, 91, 95, 97–99,
109, 145, 169, 199, 204, 209, 236–237,
297, 299, 552, 594

syslog, 375
tar, 122, 127, 167, 251, 253–256, 259
tcl, 174
tcpdump, 410–412, 414
tcsh, xxxiii, 92, 113, 129, 134, 137, 173,

254, 396
tee, 599
telnet, 197, 278, 386, 414, 417–418, 424,

430–431, 502
testparm, 469

command, testparm,
tk, 174
tkdesk, 174
top, 152–153
traceroute, 407–409, 414
troff, 15
tty, 419, 423, 430
tunefs, 191, 258
twm, 118
tzsetup, 155
umask, 184–185, 572
umount, 194
UserConfig, 82
vi, 62, 93, 133, 139–140, 218, 446, 477
vim, 93
vinum, 158, 225–227, 241, 620
vipw, 137, 145, 568–569, 577
wine, 165
X, 516
xf86cfg, 102–106, 516
xfmail, 473
xhost, 524
xinit, 522–523
xset, 519
xterm, 93, 114, 117, 119, 121, 129, 140,

153, 197, 419–420, 423, 425, 430–431,
474, 524

xtset, 93
xv, 93
xvidtune, 107
zsh, xxxiii, 113, 133

command history, 133
command line editing, 131
COMMAND.COM, command, 113
commands, modem, 333

The Complete FreeBSD 651

common Access Method, 636
Common Internet File System, 278, 464
Common Object File Format, 164
communication, asynchronous, 326

start-stop, 327
synchronous, 326–327

community, FreeBSD, 17
compatibility slice name, 37
complete/book.ps, file, xxix
composite video, 511
compression, BSD, 343

data, 343
deflate, 343, 356
header, 343
Predictor 1, 343

concatenation, vinum, 222
Concurrent Versions System, 581
conf, directory, 530
config, command, 598, 617–619
config keyword, machine, 612
config option, BREAK_TO_DEBUGGER,

614
DDB, 614
DDB_UNATTENDED, 614
DIAGNOSTIC, 614
GDB_REMOTE_CHAT, 614
INVARIANTS, 614
INVARIANT_SUPPORT, 614
KTRACE, 614

config1, file, 226
CONFIG.SYS, file, 56–57
configuration database, vinum, 226
configuration file, apache, 456

kernel, 610
network, 302
samba, 466

configuration summary, network, 313
configuration variables, network, 302
conflicts, CVS, 591
connection oriented protocol, 281
console, device, 195
console firmware, ARC, 42

SRM, 42
control cable, 32
control characters, 138
controlling terminal, 149
COPY, MS-DOS program, 259
Coyne, Paul, xxxv
cp, command, 432
cpio, command, 253, 256

cpu cpu_type, 612
CR-R, coaster, 247
create, vinum command, 238
creating a partition table, 210
creating a tar archive, 254
creating file systems, 216
creating the source tree, 588
Crites, Lee, xxxv
cron, 151

daemon, 150–152, 154, 158, 472, 539, 563,
569, 573, 578–579, 585, 604

file, 158
crontab, 151

file, 151–152, 569
cryptography, public key, 420
csh, command, xxxiii, 92, 113–114, 129, 133,

136–137, 173, 254, 396, 569
CSMA/CD, 288
CSRG, 7
Ctrl-Alt-Keypad +, keystroke, 120
Ctrl-Alt-Keypad -, keystroke, 120
CTS, 41

RS-232 signal, 329–330
cuaa0, device, 195, 336, 341, 347
cuaa1, device, 336, 341, 348–349, 358
cuaa2, device, 341
cuaia0, device, 195
cuala0, device, 195
custom installation, 61
CVS, 581

branch, 581
cvs, command, 588–591
CVS, conflict, 591

directory, 582, 589
file, Entries, 590

CVS, file, Repository
CVS, file, Root
CVS, file, Tag

repository, 581
symbolic names, 582
tag, 582, 588
trunk, 581

cvsup, collection, 586
command, 170, 585–587
running, 587
which server?, 587

cvsupfile, 586
file, 587

cylinder, 33

652 Index

D
da0, device, 35, 195, 598, 641
da0a, device, 642
da0s1a, device, 38
da0s1b, device, 38
da0s1e, device, 38
da1, device, 204
da1s2h, device, 216
da2s1b, device, 84
daemon, 150

amd, 539
apache, 455, 459, 462
Berkeley, 21
bootparamd, 559
bootpd, 543
cron, 150–152, 154, 158, 472, 539, 563,

569, 573, 578–579, 585, 604
devd, 159–161, 305–306, 553
dhcpd, 303–304, 545
ftpd, 447–453
gated, 309
httpd, 449, 456–459, 462
inetd, 99, 150, 154, 386, 448–450, 456,

466, 469, 504, 539, 545, 558, 570
init, 109, 151, 188, 197, 338, 528–529,

539–541, 564, 574
IPXrouted, 464, 561
kerberos, 539
keyserv, 539
lpd, 101, 263, 265–268, 271, 563, 570
lukemftpd, 449
mountd, 463–464, 539
moused, 102, 195, 519, 562
mrouted, 561
named, 101, 363–367, 369, 374–375,

379–381, 383, 539, 558, 568, 570, 579,
641

natd, 394–396, 462, 556
nfsd, 463, 539
nfsiod, 442, 539
nmbd, 465–466
nntpd, 449
ntpd, 100, 156–157, 305, 539, 560, 640
pccardd, 553, 573
popper, 504–505
portmap, 463, 539, 560
postfix, 93, 486, 491–503, 505–506, 602,

606
pppd, 355–356, 358

daemon (continued)
pppoed, 559
printer, 539
rarpd, 559
rexecd, 450
rlogind, 447, 450
routed, 309, 561
rpcbind, 463, 560
rpc.lockd, 463, 539
rpc.statd, 463, 539
rpc.yppasswdd, 539
rpc.ypupdated, 539
rpc.ypxfrd, 539
rshd, 447, 450
rsyncd, 440, 449, 454–455
rwhod, 100, 283, 305, 539, 559
sendmail, 138, 149–150, 154, 431, 487,

491–497, 502, 539, 563, 569, 606
sftp-server, 437, 449, 454
smbd, 465–466
squid, 386, 397–399
sshd, 100, 157, 420, 426, 428, 437, 449,

453–454, 559
status monitoring, 463
swapper, 528
syslogd, 138, 157, 452, 538, 557, 573
telnetd, 447, 450
tftpd, 545
timed, 539, 560
usbd, 101, 539, 563
x11/x2x, 525
xdm, 108–109, 111, 113, 115, 119, 141,

525, 574
xntpd, 157, 640
ypbind, 539
ypserv, 539
ypset, 539
zebra, 309

daisy chaining, 201
DARPA, 277
data cable, 32
Data Carrier Detect, RS-232 signal, 329, 340
Data Communication Equipment, 326
data compression, 331, 343

modem, 331
Data Set Ready, RS-232 signal, 329
Data Terminal Equipment, 326
Data Terminal Ready, RS-232 signal, 329
dataset, 326
dbmmanage, command, 461

The Complete FreeBSD 653

DCD, RS-232 signal, 329, 336, 338, 340, 356
DCE, 326
dd, command, 85, 210, 250
ddb, 614
DDB, kernel option, 614
DDB_UNATTENDED, kernel option, 614
debug kernel, 84
debugging, network layer, 406
default route, 347
Defense Advanced Research Projects Agency,

277
deflate compression, 343, 356
deflection, frame, 508

horizontal, 508
line, 508
vertical, 508

deflection unit, 508
degraded mode, vinum, 223
DEL, MS-DOS program, 259
delegation, DNS, 377–378
delegation record, DNS, 378
demo ad-hoc mode, 292
deny, PPP negotiation, 341, 351
deppert.floppy, 183
desktop, 40–41

Gnome, 93
kde, 93

/dev, directory, 195, 338, 594, 644
devctl, device, 159–160
devd, daemon, 159–161, 305–306, 553
devfs, 37, 644
device, acd0, 246

acd0c, 250
ad0, 63
ad0a, 37
ad0s1a, 37, 81
apic, 613
ast0, 252
block, 36
bpf0, 195
cd0a, 195
cd1c, 250
ch0, 195
character, 36
console, 195
cuaa0, 195, 341, 347
cuaa1, 336, 341, 348–349, 358
cuaa2, 341
cuaia0, 195

device (continued)
cuala0, 195
da0, 35, 195, 598, 641
da0a, 642
da0s1a, 38
da0s1b, 38
da0s1e, 38
da1, 204
da1s2h, 216
da2s1b, 84
devctl, 159–160
esa0, 195
fd, 195
fd/0, 195
fd0, 85, 196, 257
fd0a, 195
fd0c, 85, 195
kmem, 196, 565
lpt, 264
lpt0, 196, 269, 274
md0, 194
mem, 186, 196, 565
nast0, 252
nrsa0, 252
nsa0, 196, 252
null, 196, 451
nwst0, 252
overview, 195
ppp0, 341
psm0, 196
ptyp0, 196–197
random, 196, 565
ray, 292
rda0a, 642
rsa0, 252
sa0, 196, 252
sd0, 641
sio0, 336, 536, 575
sysmouse, 196, 519
tty, 196
ttyd0, 196, 336, 338
ttyd1, 336
ttyd3, 574
ttyid0, 196
ttyld0, 196
ttyp0, 149, 196–197
ttyp1, 149
ttyv0, 115, 195–197, 574
ttyv1, 78

654 Index

device (continued)
ttyv15, 197
ttyv2, 197
ttyv3, 78
ttyv4, 197
ttyv8, 109
tun0, 341, 345
tun1, 341
urandom, 565
vinum/root, 239
wst0, 252
xl0, 298, 347–348
zero, 197, 216

device daemon, 553
device driver, 27
device file system, 37, 644
device node, 37, 445, 644

making, 620
Devices.htm, file, 275
/dev/MAKEDEV, file, 642
df, command, 129, 257–258
dhclient, command, 302, 306, 555
DHCP, 302, 543
dhcpd, daemon, 303–304, 545
DIAGNOSTIC, kernel option, 614–615
dialing, 340
diff, command, 604
dig, command, 381
digital camera, 159
Digital Subscriber Line, 316
DIR, MS-DOS program, 259
direct access device, 636
Direct Memory Access, 30
directories, 181
directory, ., 126

.., 126
/, 68, 82, 187–188, 238
˜, 127
˜/, 425
/A, 257
base, 87–89
/bin, 69, 94, 137, 188, 594
Book, xxix
/boot, 188, 530, 548, 594, 598
/boot/kernel, 532, 637
/boot/kernel/modules, 620
/boot/kernel.old, 618, 637
C:, 81

directory (continued)
/cdrom, 13, 85, 87–88, 169, 173, 188, 192
/cdrom/ports/distfiles, 173
/compat, 188
conf, 530
CVS, 582, 589
/dev, 188, 195, 338, 594, 644
docco, 135
/etc, 188, 299, 548, 551, 566, 594, 599
/etc/mail, 493, 569
/etc/namedb, 368
/etc/periodic, 578
/etc/ppp, 349
/etc/ssh, 640
floppies, 88
/freebie, 441
freebie:/, 446
/freebie/home, 441
/freebie/usr, 441, 444, 446
freebie:/usr, 444, 446
ftp, 451
˜ftp/bin, 451
˜ftp/incoming, 451
˜/ftp/pub, 451
˜grog/public_html, 438
/home, 70, 72–74, 126, 188, 217–218
home, 113–114
/home/fred, 126
/home/grog/Mail, 439
/home/grog/Mail/Mail, 439
/home/grog/public_html, 455
/home/ncvs, 590
/home/release, 245
incoming, 451
/lib, 164, 188–189
˜/Mail, 480
˜/mail, 480
manpages, 89
/mnt, 188, 194, 246
/mnt2, 84
/modules, 637
net/etherboot, 546
/newhome, 209, 217–218
/nonexistent, 601
/ports/distfiles, 169
/proc, 188
process, 188
pub, 451
/pub/FreeBSD/ports/ports/editors/, 170

The Complete FreeBSD 655

directory (continued)
RCS, xxx, 582
/root, 188
/sbin, 69, 188, 594
/src, 609
˜/.ssh, 421, 428
/sys, 609
/sys/i386/conf, 610
/tftpboot, 545
/tmp, 68, 82, 564
tools, xxix, 86
/usr, 68–70, 72, 82, 137, 148, 187–188,

217, 237–238, 544, 594
/usr/bin, 14, 148, 189, 594, 640
/usr/compat, 188–189, 594
/usr/compat/linux, 164
/usr/compat/linux/lib, 164
/usr/doc, 588
/usr/games, 189, 594
/usr/home, 217
/usr/include, 189, 594
/usr/lib, 137, 164, 189, 594, 597, 638
/usr/lib/compat, 639
/usr/libdata, 189, 594
/usr/libexec, 189, 594
/usr/local, 189, 594, 597
/usr/local/bin, 94, 137, 465, 640
/usr/local/etc, 548, 640
/usr/local/etc/apache, 455
/usr/local/etc/postfix, 493, 500
/usr/local/etc/rc.d, 304
/usr/local/man, 129, 174, 465
/usr/local/sbin, 465
/usr/local/www/cgi-bin, 456
/usr/local/www/data, 455, 458
/usr/local/www/icons, 456
/usr/local/www/proxy, 462
/usr/obj, 122, 189, 548, 585, 594, 618
/usr/ports, 169, 172, 189, 585, 588–589,

594
/usr/ports/distfiles, 173
/usr/ports/editors/openoffice, 165
/usr/ports/emulators, 162
/usr/ports/emulators/linux_base, 163
/usr/ports/graphics/hpscan, 169
/usr/ports/mail/majordomo, 505
/usr/ports/net/samba, 465
/usr/ports/security/sudo, 147
/usr/sbin, 189, 595

directory (continued)
/usr/share, 189, 595
/usr/share/doc, 12
/usr/share/doc/en/articles, 12
/usr/share/doc/en/books, 12
/usr/share/examples/ppp, 355
/usr/share/locale, 129
/usr/share/man, 129
/usr/share/syscons/fonts, 562
/usr/share/syscons/keymaps, 562
/usr/share/zoneinfo, 96, 129, 155–156
/usr/share/zoneinfo/Asia, 97
/usr/src, 189, 548, 585, 588–589, 591, 595,

618
/usr/src/release/picobsd, 549
/usr/src/sys, 188, 585, 594, 609
/usr/src/sys/alpha/compile, 609
/usr/src/sys/alpha/conf, 609
/usr/src/sys/conf, 161
/usr/src/sys/i386/compile, 609
/usr/src/sys/i386/conf, 530, 609
/usr/src/sys/kern, 582
/usr/src/sys/sparc64/compile, 609
/usr/src/sys/sparc64/conf, 609
/usr/var, 69
/usr/X11R6, 188, 594
/usr/X11R6/bin, 189
/usr/X11R6/include, 189
/usr/X11R6/lib, 189
/usr/X11R6/man, 174, 189
/var, 68–70, 72, 82, 188–189, 191,

237–238, 455, 547
/var/crash, 84, 538–539, 623
/var/db/pkg, 175–176
/var/empty, 601, 603
/var/log, 157, 189, 572
/var/mail, 189, 480, 493
/var/run, 538
/var/spool, 189
/var/spool/clientmqueue, 493
/var/spool/ftp, 87, 451
/var/spool/mqueue, 493
/var/spool/output/colour, 274
/var/spool/output/freebie, 266, 269
/var/spool/postfix, 493
/var/tivo, 455
/var/tmp, 188, 190
/var/tmp/temproot, 599, 603
/var/www, 458

656 Index

directory (continued)
/var/www/data, 455

disable, PPP negotiation, 341, 351
Discrete Sequence Spread Spectrum, 292
disk, adding, 199

recovering from data errors, 218
disk label, specifying, 67
disk slice, 214
disklabel, command, 215, 257, 569, 642
diskless workstation, 543
disks, creating file systems, 63

creating space, 63
formatting, 203
installing hardware, 200
labelling, 214

display manager, 109
distributions, selecting, 75
divert socket, 388
DMA, 30

Acknowledge, 30
Channel, 30
Request, 30

dmesg, command, 158, 200, 204, 211, 246,
248, 533–534, 612, 620

dmesg.today, file, 158
dmesg.yesterday, file, 158
DNS, 363

A record, 363, 369
backup file, 376
CNAME record, 364
delegating zones, 377
delegation, 377–378
delegation record, 378
expire, 369
glue record, 378
HINFO record, 364, 371
lame delegation, 380
MX record, 364, 370
negative cache entry, 380
negative caching, 369
nickname, 370
NS record, 364, 370
origin, 368
PTR record, 364
refresh, 369
Resource Record, 363
retry, 369
reverse lookup, 364, 372
serial number, 368

DNS (continued)
SOA record, 364
Start of Authority record, 368
zone, 364

DNS tools, 381
DNS usage, passive, 366
docco, directory, 135
documentation, online, 16
domain, 364
domain name, 364

fully qualified, 364
registering, 317
relative, 364

Domain Name System, 363
dot clock, 511
double-click, mouse, 41
downloading mail, 503
drive, vinum, 222
driver, 27

CAM, 636
ghostscript, 273
md, 245
tunnel, 340, 355
vn, 246
vnode, 245

drives.bat, file, 260
DSA encryption, 421
DSL, 286, 316
DSR, RS-232 signal, 329
DTE, 326
DTR, RS-232 signal, 329
dump, command, 253, 567
dumpconfig, vinum command, 235
dumping the system, 83
Dunham, Jerry, xxxv, 317
dynamic addressing, 345
Dynamic Host Configuration Protocol, 302
dynamic IP addresses, 346

E
E-mail, 471
E1 line, 316
EBSS, 292
ec, command, 62
echo, command, 131
Eckstein, Robert, 465, 629
EIA-232, 328
EIDE, 32
EISA, 28

The Complete FreeBSD 657

Eisler, Mike, 629
electronic mail, 471
ELF, object format, 162, 636–637
Elischer, Julian, xxxv
Ellis, Margaret A., 630
elm, command, 93, 178–179, 473, 497
emacs, 93

command, 15–16, 134, 168, 170, 260, 438,
524

Emacs, command, xxix
emacs, command, xxxvi
emacsclient, command, 477, 482
Email, 471
email, alias file, 481, 500

folder, 472
group reply, 479
header, 476
threads, 475

emulation, 162
enable, PPP negotiation, 341, 351
encryption, 421
Endsley, Michael A., xxxv
enhanced IDE, 32
Enhanced Small Device Interface, 32
Enter, key, xxxiv
environment variables, 128
epoch, 155
esa0, device, 195
escape, character, 138
escape character, modem, 333
escape sequences, printer, 272
ESDI, 32
Esser, Stefan, xxxv
/etc, directory, 188, 299, 548, 551, 566, 599
/etc/aliases, file, 497
/etc/amd.map, file, 566
/etc/crontab, file, 151, 500, 569, 604–605
/etc/csh.cshrc, file, 136
/etc/csh.login, file, 136
/etc/csh.logout, file, 136
/etc/daily, file, 151, 579
/etc/default/rc.conf, file, 389
/etc/defaults/pccardd.conf, file, 573
/etc/defaults/periodic.conf, file, 573
/etc/defaults/rc.conf, file, 83, 305, 348, 353,

529, 538, 552–556, 558, 560, 564
/etc/devd.conf, file, 159–160
/etc/dhclient.conf, file, 569
/etc/disktab, file, 569
/etc/dm.conf, file, 566

/etc/exports, file, 62, 99, 463–464, 566
/etc/fstab, file, 158, 160, 164, 192, 203,

217–218, 239, 442, 445, 538, 547, 553,
566, 568, 575, 593, 605, 641

/etc/ftpusers, file, 570
/etc/gettytab, file, 338, 576
/etc/group, file, 113, 147, 451, 568–569, 602
/etc/host.conf, file, 572, 579
/etc/hosts, file, 363–364, 372, 570, 572–573
/etc/hosts.equiv, file, 570
/etc/hosts.lpd, file, 266, 570
/etc/inetd.conf, file, 386, 448–450, 466, 504,

545, 570, 605
/etc/local/etc, file, 465
/etc/localtime, file, 155
/etc/login.access, file, 570
/etc/login.conf, file, 571
/etc/mail, directory, 493, 569
/etc/mail/aliases, file, 496, 505
/etc/mail/mailer.conf, file, 606
/etc/mail/sendmail.cf, file, 640
/etc/make.conf, file, 640
/etc/manpath.config, file, 577
/etc/master.passwd, file, 144–146, 569,

600–602
/etc/monthly, file, 579
/etc/motd, file, 114, 572, 605
/etc/namedb, directory, 368
/etc/namedb/china-reverse, file, 377
/etc/namedb/db.china.example.org, file, 377
/etc/namedb/db.example.org, file, 368,

371–372, 375, 379
/etc/namedb/example-reverse, file, 372
/etc/namedb/localhost.rev, file, 367
/etc/namedb/make-localhost, file, 367
/etc/namedb/named.conf, file, 367, 373, 376,

378, 579
/etc/namedb/named.root, file, 373
/etc/named.boot, file, 380, 568, 579
/etc/named/named.boot, file, 380
/etc/named/named.conf, file, 568
/etc/named/named.root, file, 373
/etc/netconfig, file, 577
/etc/netstart, file, 579
/etc/network, file, 578
/etc/networks, file, 577
/etc/newsyslog.conf, file, 158, 572
/etc/nsswitch.conf, file, 572, 579
/etc/ntp.conf, file, 156–157
/etc/ntp.drift, file, 156

658 Index

/etc/pam.conf, file, 641
/etc/pap-secrets, file, 360
/etc/passwd, file, 144, 146, 577, 601
/etc/pccardd.conf, file, 573
/etc/pccard_ether, file, 305–306
/etc/periodic, directory, 578
/etc/periodic.conf, file, 573
/etc/periodic/daily, file, 151, 578
/etc/periodic/monthly, file, 151
/etc/periodic/weekly, file, 151
/etc/ppp, directory, 349
/etc/ppp/auth-down, file, 360
/etc/ppp/auth-up, file, 360
/etc/ppp/chap-secrets, file, 356, 360
/etc/ppp/conf, file, 358
/etc/ppp/dial.chat, file, 357, 360
/etc/ppp/options, file, 356, 358–360
/etc/ppp/pap-secrets, file, 356
/etc/ppp/ppp.conf, file, 336, 348–351, 355
/etc/ppp/ppp.linkdown, file, 355
/etc/ppp/ppp.linkup, file, 355
/etc/ppp/ppp.secret, file, 351
/etc/printcap, 265

file, 265–266, 273, 468, 573
/etc/profile, file, 136, 573
/etc/protocols, file, 577
/etc/pwd.db, file, 144, 577, 601
/etc/rc, file, 192, 566, 577, 579
/etc/rc.conf, file, 83, 156–157, 161, 163–164,

226, 268, 299, 302, 305–307, 310–311,
313, 348–349, 366, 389, 393, 395, 442,
449, 453, 494, 502, 529, 538, 543, 548,
552–563, 565–566, 573, 578–579, 593,
638–641

/etc/rc.conf.local, file, 554
/etc/rc.diskless1, file, 547
/etc/rc.diskless2, file, 547
/etc/rc.firewall, file, 389, 393, 395–396, 573
/etc/rc.i386, file, 577
/etc/rc.local, file, 450, 539
/etc/rc.nat, file, 395
/etc/rc.network, file, 310, 578–579
/etc/rc.network6, file, 578
/etc/rc.pccard, file, 578
/etc/rc.serial, file, 578
/etc/resolv.conf, file, 302, 366, 573
/etc/sendmail.cf, file, 640
/etc/services, file, 283, 387, 431, 448, 578
/etc/shells, file, 137, 452, 578
/etc/spwd.db, file, 144, 578, 601

/etc/ssh, directory, 640
/etc/ssh/ssh_config, file, 425–426
/etc/ssh/sshd_config, file, 453–454
/etc/start_if.xl0, file, 305
/etc/stop_if.xl0, file, 306
/etc/sysconfig, file, 552, 579
/etc/sysctl.conf, file, 442, 606
/etc/syslog.conf, file, 157, 452, 558, 573, 605
/etc/termcap, file, 578
/etc/ttys, file, 109, 195, 197, 338, 431, 529,

539, 541, 574
/etc/weekly, file, 579
/etc/X11/XF86Config, file, 102, 516
/etc/XF86Config, file, 103
etherboot, command, 546
ethereal, command, 414
Ethernet, 279, 285–287

address, 287
interface, 300

eval, command, 423
examining routing table, 311
example.net, 294, 297, 308
example.org, 294–295, 297, 310–311, 365,

368–369, 457
exmh, command, 473
expect string, chat, 357
express installation, 61
Extended Basic Service Set, 292
extended partition, 35

F
FA Q, 12
FA Q/Text, 60
Fast File System, 7, 190
fat, 65
fd, device, 195
fd/0, device, 195
fd0, device, 85, 196, 257
fd0a, device, 195
fd0c, device, 85, 195
FDDI, 285, 295
fdformat, command, 257
FDIMAGE.EXE, command, 86
fdisk, command, 39, 64, 210–215
FDISK, MS-DOS program, 39
Ferentz, Mel, 23
fetchmail, command, 93, 504–505
ffs, 190
fg, command, 132

The Complete FreeBSD 659

Fieber, John, xxxv
file, auth.log, 157

AUTOEXEC.BAT , 56–57
base.inf, 43, 90
base.mtree, 43
.bash_profile, 94
.bashrc, 93–94, 136, 254, 423
/boot/defaults/loader.conf, 530, 532–533
/boot/device.hints, 82, 203, 530, 575, 598,

608–609
boot.flp, 88
/boot/kernel/if_ppp.ko, 355
/boot/kernel/ipfw.ko, 386
/boot/kernel/kernel, 528, 533, 545
/boot/kernel/modules/ibcs2.ko, 620
/boot/kernel.old/kernel, 533, 637
/boot/loader.conf, 83, 226, 238, 530,

532–533, 563, 613
bounds, 623
/cdrom/floppies/boot.flp, 48
/cdrom/tools/fips.doc, 53
complete/book.ps, xxix
config1, 226
CONFIG.SYS, 56–57
cron, 158
crontab, 151–152, 569
cvsupfile, 587
Devices.htm, 275
/dev/MAKEDEV, 642
dmesg.today, 158
dmesg.yesterday, 158
drives.bat, 260
/etc/aliases, 497
/etc/amd.map, 566
/etc/crontab, 151, 500, 569, 604–605
/etc/csh.cshrc, 136
/etc/csh.login, 136
/etc/csh.logout, 136
/etc/daily, 151, 579
/etc/default/rc.conf, 389
/etc/defaults/pccardd.conf, 573
/etc/defaults/periodic.conf, 573
/etc/defaults/rc.conf, 83, 305, 348, 353,

529, 538, 552–556, 558, 560, 564
/etc/devd.conf, 159–160
/etc/dhclient.conf, 569
/etc/disktab, 569
/etc/dm.conf, 566
/etc/exports, 62, 99, 463–464, 566

file (continued)
/etc/fstab, 158, 160, 164, 192, 203,

217–218, 239, 442, 445, 538, 547, 553,
566, 568, 575, 593, 605, 641

/etc/ftpusers, 570
/etc/gettytab, 338, 576
/etc/group, 113, 147, 451, 568–569, 602
/etc/host.conf, 572, 579
/etc/hosts, 363–364, 372, 570, 572–573
/etc/hosts.equiv, 570
/etc/hosts.lpd, 266, 570
/etc/inetd.conf, 386, 448–450, 466, 504,

545, 570, 605
/etc/local/etc, 465
/etc/localtime, 155
/etc/login.access, 570
/etc/login.conf, 571
/etc/mail/aliases, 496, 505
/etc/mail/mailer.conf, 606
/etc/mail/sendmail.cf, 640
/etc/make.conf, 640
/etc/manpath.config, 577
/etc/master.passwd, 144–146, 569, 600–602
/etc/monthly, 579
/etc/motd, 114, 572, 605
/etc/namedb/china-reverse, 377
/etc/namedb/db.china.example.org, 377
/etc/namedb/db.example.org, 368, 371–372,

375, 379
/etc/namedb/example-reverse, 372
/etc/namedb/localhost.rev, 367
/etc/namedb/make-localhost, 367
/etc/namedb/named.conf, 367, 373, 376,

378, 579
/etc/namedb/named.root, 373
/etc/named.boot, 380, 568, 579
/etc/named/named.boot, 380
/etc/named/named.conf, 568
/etc/named/named.root, 373
/etc/netconfig, 577
/etc/netstart, 579
/etc/network, 578
/etc/networks, 577
/etc/newsyslog.conf, 158, 572
/etc/nsswitch.conf, 572, 579
/etc/ntp.conf, 156–157
/etc/ntp.drift, 156
/etc/pam.conf, 641
/etc/pap-secrets, 360

660 Index

file (continued)
/etc/passwd, 144, 146, 577, 601
/etc/pccardd.conf, 573
/etc/pccard_ether, 305–306
/etc/periodic.conf, 573
/etc/periodic/daily, 151, 578
/etc/periodic/monthly, 151
/etc/periodic/weekly, 151
/etc/ppp/auth-down, 360
/etc/ppp/auth-up, 360
/etc/ppp/chap-secrets, 356, 360
/etc/ppp/conf, 358
/etc/ppp/dial.chat, 357, 360
/etc/ppp/options, 356, 358–360
/etc/ppp/pap-secrets, 356
/etc/ppp/ppp.conf, 336, 348–351, 355
/etc/ppp/ppp.linkdown, 355
/etc/ppp/ppp.linkup, 355
/etc/ppp/ppp.secret, 351
/etc/printcap, 265–266, 273, 468, 573
/etc/profile, 136, 573
/etc/protocols, 577
/etc/pwd.db, 144, 577, 601
/etc/rc, 192, 566, 577, 579
/etc/rc.conf, 83, 156–157, 161, 163–164,

226, 268, 299, 302, 305–307, 310–311,
313, 348–349, 366, 389, 393, 395, 442,
449, 453, 494, 502, 529, 538, 543, 548,
552–563, 565–566, 573, 578–579, 593,
638–641

/etc/rc.conf.local, 554
/etc/rc.diskless1, 547
/etc/rc.diskless2, 547
/etc/rc.firewall, 389, 393, 395–396, 573
/etc/rc.i386, 577
/etc/rc.local, 450, 539
/etc/rc.nat, 395
/etc/rc.network, 310, 578–579
/etc/rc.network6, 578
/etc/rc.pccard, 578
/etc/rc.serial, 578
/etc/resolv.conf, 302, 366, 573
/etc/sendmail.cf, 640
/etc/services, 283, 387, 431, 448, 578
/etc/shells, 137, 452, 578
/etc/spwd.db, 144, 578, 601
/etc/ssh/ssh_config, 425–426
/etc/ssh/sshd_config, 453–454
/etc/start_if.xl0, 305

file (continued)
/etc/stop_if.xl0, 306
/etc/sysconfig, 552, 579
/etc/sysctl.conf, 442, 606
/etc/syslog.conf, 157, 452, 558, 573, 605
/etc/termcap, 578
/etc/ttys, 109, 195, 197, 338, 431, 529, 539,

541, 574
/etc/weekly, 579
/etc/X11/XF86Config, 102, 516
/etc/XF86Config, 103
floppies/boot.flp, 85, 244
floppies/drivers.flp, 85
floppies/fixit.flp, 84
floppies/kern.flp, 78, 85
floppies/mfsroot.flp, 78, 85
GENERIC, 530, 612
GENERIC.hints, 530
HARDWARE.TXT, 613
/home, 49–50
/home/grog/Scripts/rotate-log, 569
.htaccess, 458, 460–461
httpd.conf, 456
index.html, 457
INSTALL.TXT, 80
isc-dhcpd.sh, 304
kern_clock.c, 582
kernel.debug, 585
kern.flp, 48, 78, 86
known_hosts, 428
lastlog, 158
LAYOUT.TXT, 89
/lib, 164
libc.a, 638
LINT, 610–611
.login, 254
˜/.mail_aliases, 481
maillog, 158
main.cf, 495–497, 500–501
Makefile, xxix, 168, 245, 618
master.passwd, 94
messages, 158
mfsroot.flp, 48, 78
minfree, 623
mount.today, 158
mount.yesterday, 158
.muttrc, 477, 481
˜/.muttrc, 481, 484
named.conf, 373, 380

The Complete FreeBSD 661

file (continued)
named.root, 374, 381
.netrc, 436
newkey, 422
NOTES, 161, 610
ntp.conf, 640
packages/Latest/emacs.tgz, 168
ppp.log, 158
˜/.ppprc, 355
.profile, 130, 254, 399, 423
random_seed, 428
RCS, 438
README.TXT, 45
Repository, 589
RESTORRB.000, 54
˜/.rhosts, 182
Root, 589
ROOTBOOT, 54
/root/crontab, 587
/root/extract-updates, 587
sample-xmtpd.cf, 499
setuid.today, 158
setuid.yesterday, 158
˜/.signature, 489
smb.conf, 465
˜/.ssh/authorized_keys, 422
˜/.ssh/authorized_keys2, 422
ssh_config, 426
˜/.ssh/config, 425–427, 429
˜/.ssh/environment, 425
˜/.ssh/id_dsa, 421
˜/.ssh/id_dsa.pub, 421
˜/.ssh/identity, 421
˜/.ssh/identity_pub, 421
˜/.ssh/id_rsa, 421
˜/.ssh/id_rsa.pub, 421
˜/.ssh/known_hosts, 420, 427
˜/.ssh/known_hosts2, 427, 429
tmac.Mn, xxx
tools/tmac.Mn, xxix
TRANS.TBL, 244
/usr/bin/gcc, 188
/usr/include/sys/signal.h, 154
/usr/local/etc/apache/access.conf, 456, 459
/usr/local/etc/apache/group, 461
/usr/local/etc/apache/httpd.conf, 456–457,

460, 462
/usr/local/etc/apache/srm.conf, 456
/usr/local/etc/dhcpd.conf, 545

file (continued)
/usr/local/etc/isc-dhcpd.conf, 303–304
/usr/local/etc/Muttrc, 481, 484
/usr/local/etc/postfix/access, 498, 500
/usr/local/etc/postfix/access.db, 500–501
/usr/local/etc/postfix/main.cf, 494,

499–500, 505
/usr/local/etc/postfix/sample-smtpd.cf, 499
/usr/local/etc/rc.d/apache.sh, 462
/usr/local/etc/rc.d/samba.sh, 466
/usr/local/etc/rc.d/samba.sh.sample, 466
/usr/local/etc/rc.d/squid.sh, 398
/usr/local/etc/rsyncd.conf, 454
/usr/local/etc/smb.conf, 465–466
/usr/local/etc/squid/squid.conf, 397
/usr/local/libexec/lpfilter, 268
/usr/local/libexec/psfilter, 274
/usr/local/majordomo/aliases.majordomo,

505
/usr/local/majordomo/majordomo.cf, 505
/usr/local/private/secrets.tdb, 469
/usr/local/share/dot.bashrc, 94
/usr/local/squid/cache, 398
/usr/local/squid/log, 398
/usr/ports/INDEX, 168, 172
/usr/ports/print/hpijs, 275
/usr/sbin/named-bootconf, 380
/usr/share/doc/en/books/faq/index.html, 12
/usr/share/doc/en/books/fdp-primer/in-

dex.html, 12
/usr/share/doc/en/books/handbook/in-

dex.html, 12
/usr/share/doc/en/books/porters-hand-

book/index.html, 12
/usr/share/doc/en/books/ppp-primer/in-

dex.html, 12
/usr/share/doc/en/porters-handbook/in-

dex.html, 180
/usr/src/Makefile, 583
/usr/src/sys/conf/NOTES, 386, 574, 610
/usr/src/sys/i386/compile/FREEBIE/ker-

nel.debug, 614
/usr/src/sys/i386/conf/FREEBIE/kernel,

623
/usr/src/sys/i386/conf/FREEBIE/kernel.de-

bug, 623
/usr/src/sys/i386/conf/GENERIC, 159
/usr/src/sys/i386/conf/GENERIC.hints, 598
/usr/src/sys/i386/conf/NOTES, 534

662 Index

file (continued)
/usr/src/UPDATING, 596, 640
/usr/X11R6/etc/system.fvwm2rc, 120
/usr/X11R6/lib/X11/XF86Config, 103, 516
/var/cron/log, 641
/var/log/cron, 641
/var/log/ftpd, 452
/var/log/lpd-errs, 274
/var/log/maillog, 124
/var/log/messages, 375, 398, 432, 438, 619
/var/log/ppp.log, 353
/var/log/rsyncd.log, 454
/var/mail/grog, 475, 480
/var/run/dmesg.boot, 248, 533, 565, 620
/var/snapshot/snap1, 191
vinum_history, 158
wtmp, 158
.Xauthority, 425
XF86Config, 120, 507, 513, 516–518, 523
XF86Config.1024x768, 523
XFree86.0.log, 157
.xinitrc, 109, 119, 423, 523
.xinitrc-gnome, 523
.xinitrc-kde, 523
.xsession, 109, 119

file allocation table, 65
file group, 181
file name completion, 135
file name extension, 125
file names, 125
file owner, 181
file permissions, 181
file system, 35, 181

creating, 216
floppy, 257
Joliet, 244
mounting, 217
mounting remote, 442
process, 188
root, 187, 192

files, 181
Files, menu, 141
filter, print, 266–267
FIPS, MS-DOS program, 48–49, 52–54, 56,

63, 66
firewall, Internet, 385

ipf, 386
ipfilter, 386, 556
ipfw, 386–388, 391, 393, 555, 573

firewall (continued)
packet filtering, 386
proxy, 386

fixit floppy, 84
flash memory, 159, 549
floppies, directory, 88
floppies/boot.flp, file, 85, 244
floppies/drivers.flp, file, 85
floppies/fixit.flp, file, 84
floppies/kern.flp, file, 78, 85
floppies/mfsroot.flp, file, 78, 85
floppy disk, 256

formatting, 256
floppy image, 183
flow control, 330
flyback, horizontal, 509

vertical, 509
Foglio, Phil, 23
folder, email, 472
format, high-level, 256

low-level, 203, 256
FORMAT, MS-DOS program, 256, 259
formatting, disks, 203

floppy disk, 256
fortune, command, 114, 627
Foster, Glen, xxxv
FQDN, 364
free-gw.example.net, 294, 310, 313
/freebie, directory, 441
freebie:/, directory, 446
freebie.example.org, 294–295, 309, 311,

364–365, 368, 376, 412–413, 470, 566
freebie.example.org.example.org, 364
/freebie/home, directory, 441
/freebie/usr, directory, 441, 444, 446
freebie:/usr, directory, 444, 446
FreeBSD, community, 17

releases, 581
FreeBSD-CURRENT, 583

living with, 622
solving problems in, 622

FreeBSD-RELEASE, 583
FreeBSD-STABLE, 583
FreeBSD.org, 381
freefall.FreeBSD.org, 373
Frequency Hopping Spread Spectrum, 292
Frequently Asked Questions, 12
frisbee, 258
Frisch, Æleen, 629
fsck, command, 75, 187, 238–239, 538,

The Complete FreeBSD 663

540–541, 554, 567
fsdb, command, 187
ftp, anonymous, 433, 450

ASCII transfer, 433
binary transfer, 433
command, 3, 13, 167, 170–171, 185, 399,

405, 410, 418, 432–437, 450–452, 570,
578

directory, 451
passive, 86
user name, 433

˜ftp/bin, directory, 451
ftpd, command, 578

daemon, 447–453
ftp.example.org, 370
˜ftp/incoming, directory, 451
˜/ftp/pub, directory, 451
full-duplex network, 288
fully qualified domain name, 364
fvwm2, command, 93, 108, 118–121

G
galeon, command, 93, 120, 399, 418
Gardella, Patrick, xxxv
gated, daemon, 309
gateway, 309, 311, 313
Gay, Warren W., 628
gcc, command, 15, 70
gdb, command, 84, 624–625, 627
GDB_REMOTE_CHAT, kernel option, 614
gecos, 146
Geddes, Matt, xxxv
GENERIC, file, 530, 612
Generic Tunnel Interface, 557
GENERIC.hints, file, 530
GEOM, 535, 644
getty, command, 114, 188, 195, 197, 336, 338,

356, 539, 574, 576
ghostscript, command, 13, 93, 273–276

driver, 273
printing with, 273

Giovannelli, Gianmarco, xxxv
glass tty, 325
globbing characters, 126
glue record, DNS, 378
Gnome, desktop, 93
Gowdy, Jeremiah, xxxv
gpg, command, 93, 479
GPL, 144

grep, command, 124, 128
groff, command, xxvii, xxix
˜grog/public_html, directory, 438
group, 113
group reply, email, 479
growfs, command, 232, 644
gunzip, command, 167
guru, 542
gv, command, 93, 272

viewing with, 272
gw.example.org, 294, 300, 302, 308
gzip, command, 167, 253, 255

H
hacker, 542
half-duplex network, 288
half-duplex transmission, 330
halt, command, 141
handbook, online, 12
handshaking, hardware, 330

software, 330
Hansteen, Peter N. M., xxxv
Harbison, Samuel P., 630
hard link, 186
hardware for X, 41
hardware handshaking, 330
HARDWARE.TXT, file, 613
Hayes command set, 333
HDSL, 316
head, read/write, 33
header, email, 476
header compression, 343
Heath, Justin, xxxv
Hein, Trent R., 16, 111, 629
Hemmerich, Daniel B., xxxv
high-level format, 256
High-speed Digital Subscriber Line, 316
HINFO record, DNS, 364, 371
hints file, 638
Hoadley, Paul A., xxxv
/home, directory, 70, 72–74, 126, 217–218

file, 49–50
home directory, 113–114
/home/fred, directory, 126
/home/grog/Mail, directory, 439
/home/grog/Mail/Mail, directory, 439
/home/grog/public_html, directory, 455
/home/grog/Scripts/rotate-log, file, 569
/home/ncvs, directory, 590

664 Index

/home/release, directory, 245
horizontal tab, key, xxxiv
Horspool, R. Nigel, 628
host, command, 381
host adapter, 33
hostname, command, 302
.htaccess, file, 458, 460–461
HTTP, 417
httpd, command, 459

daemon, 449, 456–459, 462
httpd.conf, file, 456
http://www.mail-abuse.org/, 501
http://www.sendmail.org/, 492
hub, 287, 413
Hubbard, Jordan, xxxv
hub.FreeBSD.org, 382, 412–413
Hunt, Craig, 629
Hypertext Transfer Protocol, 417

I
ibcs2, kld, 164
IBM, 28
IBSS mode, 292
ICMP, 402
ICMP echo packet, 402
IDE, 32
ident machine_name, 612
idle timeout, 346, 354
ifconfig, command, 99, 195, 299–302,

304–308, 311, 340, 345, 355, 358, 404–405
igw.example.net, 294–295
iijppp, 340
image, floppy, 183

ISO, 243
IMAGE, MS-DOS program, 54, 56
incoming, directory, 451
Independent Basic Service Set, 292
index, mutt, 475
index.html, file, 457
Industry Standard Architecture, 28
inetd, daemon, 99, 150, 154, 386, 448–450,

456, 466, 469, 504, 539, 545, 558, 570
info, command, 15, 175
infrastructure mode, 292
init, daemon, 109, 151, 188, 197, 338,

528–529, 539–541, 564, 574
S command, 540

inn, command, 169
installation, custom, 61

installation (continued)
express, 61
standard, 61

installation CD-ROM, 43
installation medium, selecting, 76
installation support, 17
installing, disk hardware, 200

external SCSI device, 201
from Internet, 86
internal SCSI device, 202
package, 168

installing on Alpha, 78
INSTALL.TXT, file, 80
Integrated Device Electronics, 32
Integrated Services Digital Network, 286, 316
Intel Binary Compatibility System 2, 164
interface, address, 290

checking configuration, 301
Ethernet, 300
loopback, 301, 308
name, 295
point-to-point, 300

interlacing, 509
Internet, 277, 279

satellite connection to, 316
Internet Control Message Protocol, 402
internet daemon, 448
internet explorer, Microsoft, 419
Internet firewall, 385
Internet Institute of Japan, 340
Internet Protocol, 7, 277–278
Internet Service Provider, 286

choosing, 319
interrupt requests, available, 30
INVARIANTS, kernel option, 614
INVARIANT_SUPPORT, kernel option, 614
I/O memory, 30
IOAPIC, 535
IOmem, 30
IP, 278
IP addresses, dynamic, 346

getting, 318
IP aliasing, 3, 322, 385, 393
ipf, firewall, 386
ipfilter, firewall, 386, 556
ipfs, 556
ipfw, command, 386, 393

firewall, 386–388, 391, 393, 555, 573
ipfw packet types, 387
ipmon, 556

The Complete FreeBSD 665

ipnat, 556
IPv6, 280, 346
IPX, 288, 464
IPXrouted, daemon, 464, 561
IRQ, 30
Irvine, Ed, xxxv
ISA, 28
isc-dhcpd.sh, file, 304
ISDN, 286, 316
isdn4bsd, 557
ISO, 279
ISO 9660, 243
ISO image, 243
ISP, 286, 319

questions to ask, 319
ispell, command, 93

J
Jacobson, Van, 343
JBOD, 222
job, spooler, 270
Joliet file system, 244
Jolitz, William F., 630

K
Kamp, Poul-Henning, xxxv
Karels, Michael J., 630
Kate, command, 117
kde, command, 93, 116, 118

desktop, 93
Kelly, David, xxxv
kenv, command, 575
kerberos, daemon, 539
kermit, command, 357
kern_clock.c, file, 582
kernel, 27

build directory, 609
building, 617
configuration file, 608, 610
debugging, 622
FREEBIE, 610, 612
GENERIC, 609–610, 612, 618
LINT, 610
naming, 611
options, 612, 614

kernel loadable module, 27, 607, 620,
636–637

Kernel PPP, 340

Kernel-Scheduled Entity, 643
kernel.debug, file, 585
kern.flp, file, 48, 78, 86
key, any, xxxiv

carriage return, xxxiii
Enter, xxxiv
horizontal tab, xxxiv
new line, xxxiv
Return, xxxiv

keyserv, daemon, 539
keystroke, Ctrl-Alt-Keypad +, 120

Ctrl-Alt-Keypad -, 120
kill, command, 154
killall, command, 154
kld, 27, 162, 225, 607, 620, 636–637

ibcs2, 164
linux, 163

kldload, command, 620, 637
kldstat, command, 163, 620
kldunload, command, 620
Klemm, Andreas, xxxv
Kmail, command, 117
kmem, device, 196, 565
known_hosts, file, 428
Kolstad, Rob, 21
konqueror, command, 117, 419
konsole, command, 117, 121
Kpresenter, command, 117
kqueue, 643
KSE, 643
ksh, command, xxxiii, 133
Kspread, command, 117
ktrace, command, 615
KTRACE, kernel option, 614
KWord, command, 117

L
LABEL, MS-DOS program, 259
labelling disks, 214
Labiaga, Ricardo, 629
lame delegation, DNS, 380
LanManager, 464
laptop, 25
Larson, Bruce R., 16, 111, 629
lastlog, file, 158
latency, modem, 331
LAYOUT.TXT, file, 89
LBA, 34
ldconfig, command, 539, 564, 638

666 Index

leased line, 316
Lehey, Greg, 630, 681

Norman, 145
Yana, 145
Yvonne, 146

less, command, 128, 172
/lib, directory, 164, 188

file, 164
libc.a, file, 638
library files, 638
License, BSD, xxxiv
Lincke, Roland, 183
Lind, John, xxxv
line, E1, 316

leased, 316
Receive Data, 328
Signal Ground, 328
T1, 316
Transmit Data, 328

line feed, xxxiii
character, 139

line quality monitoring, PPP, 339
line transformer, 510
link, count, 183

hard, 186
soft, 187
symbolic, 187

link layer, problems, 401
Link Quality Request, 343
LINT, file, 610–611
Linux, 10, 53, 162
linux, kld, 163
listing a tar archive, 255
Liu, Cricket, 629
Live File System CD-ROM, 43, 46
Live Filesystem, 12
living with FreeBSD-CURRENT, 622
LKM, 637
Lloyd, David, xxxvi
lo0, 301
loadable kernel module, 162, 636–637
loader, bootstrap, 528

command, 530, 532
local area network, 285
local bus, 28
locale, 129
Lochmann, Johannes, xxxv
log, command, 589
logging in, 144
Logical Block Addressing, 34

logical partition, 34
logical unit, SCSI, 201
login, command, 114
.login, file, 254
login class, 571
loop mount, 193
loopback interface, 301, 308
Losh, Warner, xxxv
Loukides, Mike, 16, 111, 629
low-level format, 203, 256
lp0, network interface, 301
lpd, daemon, 101, 263, 265–268, 271, 563,

570
lpq, command, 270
lpr, command, 263, 265, 270
lprm, command, 271
lpt, device, 264
lpt0, device, 196, 269, 274
lptest, command, 268
LQR, 343
ls, command, 13, 182–183, 244
Lucas, Michael, 628
lukemftpd, daemon, 449
LUN, 201, 575
lynx, command, 12–13, 419

M
MAC address, 287
Mac OS X, 10
machine, config keyword, 612
MacIntyre, Andrew, xxxv
mail, command, 472–473
˜/Mail, directory, 480
˜/mail, directory, 480
mail, downloading, 503
mail exchanger, 493
mail relay, 491
Mail Transfer Agent, 471, 491
Mail User Agent, 471–472
˜/.mail_aliases, file, 481
mail.example.net, 370
mailing lists, 17
maillog, file, 158
mailman, command, 17
main.cf, file, 495–497, 500–501
maintaining ports, 176
majordomo, command, 497, 505–506
make, command, xxix, 138, 168, 172, 174,

245, 593

The Complete FreeBSD 667

make clean, 598
make world, 593
Makefile, file, xxix, 168, 245, 618
making device nodes, 620
man, command, 13–14, 129, 465, 577
man page, 13
managed mode, 292
manpages, directory, 89
Mar, Yin Cheung Yogesh’, xxxv
masquerading, MTA, 493
master boot record, 35, 64, 528
master device, 197
master name server, 374
master.passwd, file, 94
maxusers number, 613
MBR, 35, 64–65
MCA, 28
McKusick, Kirk, xxiv, 21, 630
mcopy, command, 260–261
md, driver, 245
MD, MS-DOS program, 259
md0, device, 194
mdconfig, command, 193, 246
mem, device, 186, 196, 565
memory, I/O, 30
menu, media, 76
mergemaster, command, 599–600, 602–604
message of the day, 114, 572
messages, file, 158
Metcalfe, Bob, 286
mformat, command, 258
mfsroot.flp, file, 48, 78
mh, command, 473
Michaels, Jonathan, xxxv
Micheel, Jörg, xxxv
Microchannel Architecture, 28
Microsoft, internet explorer, 419

Windows, 163
Microsoft file systems, 258
microsoft.edu, 318
MIME, 472–473
minfree, file, 623
MIRROR, MS-DOS program, 54, 56
mirror site, 586
mirroring, vinum, 223
Mittelstaedt, Ted, 628
mkfontdir, command, 518
mkisofs, command, 93, 243–244
Möllers, Josef, xxxv
MNP-5, protocol, 331

MNP2-4, protocol, 331
/mnt, directory, 194, 246
/mnt2, directory, 84
mode1 data, 247
modem, 330

blind dialing, 333
cable, 316
call failure reason code, 337
commands, 333
data compression, 331
escape character, 333
latency, 331
protocol, 331
speeds, 331
steam dialing, 334
terminology, 326

/modules, directory, 637
Molteni, Marco, xxxv
more, command, 128, 260
mosaic, command, 419
Mott, Charles, xxxv
mount, command, 190–192, 257, 441–442,

566–568, 642
loop, 193

mountall, command, 445
mountd, daemon, 463–464, 539
mounting, 192

file systems, 217
NFS file system, 444
remote file system, 442

mount_nfs, command, 442
mount.today, file, 158
mount_ufs, command, 442
mount.yesterday, file, 158
mouse, double-click, 41
moused, daemon, 102, 195, 519, 562
mozilla, command, 13, 418
mrouted, daemon, 561
MS-DOS program, ATTRIB, 259

CD, 259
COPY, 259
DEL, 259
DIR, 259
FDISK, 39
FIPS, 48–49, 52–54, 56, 63, 66
FORMAT, 256, 259
LABEL, 259
MD, 259
RD, 259

668 Index

MS-DOS program (continued)
READ, 259
REN, 259

MSCDEX, Microsoft driver, 53
MTA, 471, 491

masquerading, 493
mtools, command, 258–259
MTRR, 535
MUA, 471
multicast, 307
mutt, command, 93, 129, 471, 473–478,

480–484, 486–487, 496
index, 475

.muttrc, command, 483
file, 477, 481

˜/.muttrc, file, 481, 484
MX, preference, 371
MX record, DNS, 364, 370

N
name daemon, 363, 365
name server, authoritative, 365

caching-only, 366
master, 374
primary, 374
secondary, 374
setting up, 365
slave, 374, 376

named, daemon, 101, 363–367, 369, 374–375,
379–381, 383, 539, 558, 568, 570, 579, 641
messages, 379

named.conf, file, 373, 380
named.root, 374

file, 374, 381
nast0, device, 252
NAT, 285
natd, daemon, 394–396, 462, 556
ndc, command, 374
negative cache entry, DNS, 380
negative caching, DNS, 369
negotiation, PPP, 339, 341
Nelson, Jay D., xxxv
Nemeth, Evi, 16, 111, 629
net mask, 290, 308
NetBIOS, 288, 464
NetBSD, 9
net/etherboot, directory, 546
.netrc, file, 436
netscape, command, 418

netstat, command, 284–285, 311–312, 406
network, 277

application layer, 279
Class C, 291
client, 278, 417
configuration, manual, 299
configuration files, 302
configuration summary, 313
configuration variables, 302
datagram, 280
destination address, 281
interface, 300

network, interface, broadcast
network, interface, lp0
network, interface, ppp0
network, interface, setting up
network, interface, sl0
network, interface, tun0

layer, 279
leased line, 286
link layer, 279–280
packet, 280
packet header, 280
port, 281, 283

network, port, well-known
protocol, 281
routing, 281
satellite link, 286
server, 278, 417
services, 97
source address, 281
token ring, 285
transport layer, 279, 281
wide-area, 286

network address translation, 278, 285
Network File System, 190, 418, 441
network layer, debugging, 406

problems, 406
network mask, 290, 300
Network News Transfer Protocol, 449
new line, character, 139

key, xxxiv
newalias, command, 497
newaliases, command, 497, 505
NEWCARD, 161
newfs, command, 215–216, 257, 642
newfs_msdos, command, 258
/newhome, directory, 209, 217–218
newkey, file, 422
newsyslog, command, 158, 572

The Complete FreeBSD 669

nfs, 3, 190
NFS, 418, 433

client, 442
daemon, 463
file system, mounting, 444
lock daemon, 463
server, 463
setting up, 441
strangenesses, 445

nfsd, daemon, 463, 539
nfsiod, daemon, 442, 539
NIC handle, 318
nickname, DNS, 370
nmbd, daemon, 465–466
NNTP, 449
nntpd, daemon, 449
node, device, 445
/nonexistent, directory, 601
NOTES, file, 161, 610
nrsa0, device, 252
NS record, DNS, 364, 370
nsa0, device, 196, 252
ns.example.net, 294
ns.example.org, 370
nslookup, command, 381
ntp, 156, 412
ntp.conf, file, 640
ntpd, daemon, 100, 156–157, 305, 539, 560,

640
ntpdate, command, 100, 156–157, 305, 539,

560
null, device, 196, 451
nwst0, device, 252

O
object format, a.out, 162, 637

COFF, 164, 637
ELF, 162, 637

O’Brien, Mike, 23
O’Connor, Daniel J., xxxv
OFDM, 292
OLDCARD, 161
Olsen, Ove Ruben R., xxxv
online handbook, 12
Open Firmware, 528
open relay, 498
Open Systems Interconnect, 279
OpenBSD, 9, 419
OpenOffice, 419

OpenSSH, 419, 640
Opera, command, 419
options, kernel, 612, 614
Oram, Andy, xxxvi
O’Reilly, Tim, 16, 111, 629
origin, DNS, 368
Orthogonal Frequency Division Multiplexing,

292
OSI, 279
OSI reference model, 279

P
Pacific Daylight Time, 155
Pacific Standard Time, 155
package, installing, 168
packages, directory, 168
packages/All, 44
packages/Latest/emacs.tgz, file, 168
packet filtering firewall, 386
packet forwarding, 313
packet types, ipfw, 387
Page Description Language, 271
Palmer, Gary, xxxv
PAM, 641
Pandya, Hiten, xxxv
panic, 83
PAP, 342–344, 351, 356, 360
parallel port, 264
parameters, shell, 123
PARC, 286
parity bit, 327
parsing, 123
partition, 34, 63

active, 34, 210
disk, 75
logical, 34
type, 210
UNIX, 35

partition table, 34
creating, 63, 210

PartitionMagic, command, 53
passive DNS usage, 366
passphrase, ssh, 421
passwd, command, 146–148
password, 112

adding, 147
changing, 147

Paterson, Tim, 7
pax, command, 253

670 Index

PC Card, 29–30
pccardd, daemon, 553, 573
PCI, 28
PCMCIA, 29–30
pdf2ps, command, 276
pdksh, command, xxxiii
PDT, 155
Peek, Jerry, 16, 111, 629
peer-to-peer mode, 292
Peripheral Component Interconnect, 28
perl, command, 5
permission, setgid, 182

setuid, 182
permissions, file, 181
Perry, Andrew, xxxv
Peters, Kai, xxxv

Wes, xxxv
pgp, command, 479
Pham, Linh, xxxv
Phillips, Daniel, xxxv
PicoBSD, 549
PID, 148
pine, command, 93, 473
ping, command, 402, 405–407, 410
PIO, 32
pity, 197, 419, 430
pkg_add, command, 178, 585
pkgdb, command, 176–177
pkg_delete, command, 179
pkg_info, command, 178
pkg_version, command, 178–179
Plauger, P. J., 630
plex, vinum, 221
PLIP, 301
Pluggable Authentication Modules, 641
point to point, protocol, 286, 339
point-to-point interface, 300
POP, 417, 503
popper, daemon, 504–505
porch, back, 509

front, 509
port, building, 169

FreeBSD definition, 169
serial, 327

port address, 29
porting, 167
portmap, daemon, 463, 539, 560
ports, building, 174

controlling, 178

ports (continued)
dependencies, 174
getting new versions, 170
installing, 169
maintaining, 176
submitting, 180

Ports Collection, 46, 168
ports tree, 169
/ports/distfiles, directory, 169
portupgrade, command, 176, 178
POST, 528
Post Office Protocol, 417, 503
postfix, daemon, 93, 486, 491–503, 505–506,

602, 606
postmap, command, 500, 505–506
PostScript, 271

prologue, 272
POTS, 316
Power On Self Test, 528
PPP, 286, 297, 310, 339

authentication, 339
ppp, command, 350, 353–354
PPP, Kernel, 340

line quality monitoring, 339
negotiation, 339, 341

PPP, negotiation, accept
PPP, negotiation, deny
PPP, negotiation, disable
PPP, negotiation, enable

over Ethernet, 339, 559
User, 340

ppp0, device, 341
network interface, 310

pppd, daemon, 355–356, 358
ppp.log, file, 158
PPPoE, 339–341, 347–350
pppoed, daemon, 559
˜/.ppprc, file, 355
Predictor 1, compression, 343
preference, MX, 371
presto, 464
presto.example.org, 294–295, 309, 365
primary name server, 374
primary partition, 35
print filter, 266–267
printenv, command, 131
printer, daemon, 539

testing, 265
printer configuration, 264
printing with ghostscript, 273

The Complete FreeBSD 671

Prior, Mark, xxxv
probing, 29, 528, 534
problems, application layer, 414

link layer, 401
network layer, 406
transport layer, 414

proc, 567
process, defined, 148

directory, 188
file system, 188
ID, 148
status, 148
stopping, 154

processor, Alpha, 42
Processor, AXP, 42
procfs, 164
procmail, command, 501
profile, 350
.profile, file, 130, 254, 399, 423
programmed I/O, 32
prologue, PostScript, 272
protocol, MNP-5, 331

MNP2-4, 331
modem, 331
point to point, 286
serial line internet, 286
V.25, 333
V.42, 331
V.42bis, 331

proxy ARP, 343
proxy firewall, 386
proxy server, 3, 278
proxy web server, 462
ps, command, 122, 128, 148–149, 154, 163,

182, 186, 267, 539
PS/2 mouse, 41
ps2pdf, command, 276
pseudo-terminal, 197
pseudo-tty, 419, 430
psm0, device, 196
PST, 155
pstat, command, 71, 83
PTR record, DNS, 364
pty, 197, 419, 430
ptyp0, device, 196–197
pub, directory, 451
/pub/FreeBSD/ports/ports/editors/, directory,

170
public key cryptography, 420
pwd_mkdb, command, 577, 601

pxeboot, command, 544, 546
python, command, 5

Q
QDOS, 7
Quarterman, John S., 630
Quick and Dirty Operating System, 7
quoting, 138

R
RAID, 222
RAID-1, 223
RAID-4, 224
RAID-5, 223
random, device, 196, 565
random_seed, file, 428
rarpd, daemon, 559
raw disk, 642
RAWRITE.EXE, MS-DOS command, 89
ray, device, 292
RBL, 501
rcp, command, 418, 432
RCS, 581

command, xxx
directory, xxx, 582
file, 438

RD, MS-DOS program, 259
rda0a, device, 642
READ, MS-DOS program, 259
README.TXT, file, 45
read/write head, 33
real user ID, 150
Realtime Blackhole List, 501
Receive Data line, 328
recovering from disk data errors, 218
Redundant Array of Inexpensive Disks, 222
refresh, DNS, 369
registers, video card, 512
relative domain name, 364
relay, mail, 491
reliable protocol, 281
remote procedure call, 463
removing FreeBSD from disk, 79
removing print jobs, 271
REN, MS-DOS program, 259
reporting bugs, 21
repository, CVS, 581
Repository, file, 589

672 Index

Request to Send, RS-232 signal, 329–330
Research UNIX, 8
resetconfig, command, 241
resolv.conf, 364

command, 366
Resource Record, DNS, 363
RESTORRB, MS-DOS program, 54
RESTORRB.000, file, 54
retry, DNS, 369
Return, key, xxxiv
reverse lookup, DNS, 364, 372
reverse tunnel, 424
Revision Control System, 581
reviving, vinum, 228
rexecd, daemon, 450
RG58, 287
˜/.rhosts, 182, 524

file, 182
RI, RS-232 signal, 329
Ritchie, Dennis, 23
Ritter, Andreas, xxxv
rlog, command, 589
rlogin, command, 197, 386, 417–418, 426
rlogind, daemon, 447, 450
rm, command, 122, 585
rndc, command, 374
Rock Ridge Extensions, 190, 244
Rooij, Guido van, xxxv
root, 148

directory, 138
Root, file, 589
root file system, 187, 192
root name server, 373
ROOTBOOT, file, 54
/root/crontab, file, 587
/root/extract-updates, file, 587
route, 309

command, 302, 309, 407
default, 347

routed, daemon, 309, 561
routing, 279, 307–308, 346

software, 309
table, 308

routing, table, examining
Roznowski, Stephen J., xxxv
RPC, 463
rpcbind, daemon, 463, 560
rpc.lockd, daemon, 463, 539
rpc.statd, daemon, 463, 539
rpc.yppasswdd, daemon, 539

rpc.ypupdated, daemon, 539
rpc.ypxfrd, daemon, 539
RR, 363
RS-232, 328
RS-232 signal, Clear to Send, 329

CTS, 329
Data Carrier Detect, 329
data carrier detect, 340
Data Set Ready, 329
Data Terminal Ready, 329
DCD, 329, 336, 338, 340, 356
DSR, 329
DTR, 329
Request to Send, 329
RI, 329
RTS, 329
RxD, 329
SG, 329
TxD, 329

RSA encryption, 421
rsa0, device, 252
rsh, command, 570
rshd, daemon, 447, 450
rsync, command, 3, 418, 437–440, 449, 454
rsyncd, daemon, 440, 449, 454–455
RTFM, 48
RTS, RS-232 signal, 329–330
ruby, command, 5
run levels, 540
ruptime, command, 100
Rutherford, Andrew, xxxv
rwho, command, 100, 412
rwhod, daemon, 100, 283, 305, 539, 559
RxD, 328

RS-232 signal, 329

S
S registers, modem, 333
sa0, device, 196, 252
Salus, Peter, 23
samba, 278, 464–465

configuration file, 466
displaying status, 470
installing, 465
testing, 469

sample-xmtpd.cf, file, 499
Santa Cruz Operation, 8
satellite, connection to Internet, 316
saveconfig, vinum command, 231

The Complete FreeBSD 673

savecore, command, 623
/sbin, directory, 69, 188
/sbin/nologin, command, 601
Schneider, Wolfram, 145
sco, command, 164
SCO, OpenDesktop, 164

UNIX, 164
scp, command, 418, 432–433, 437–438
screen resolution, changing under X, 120
script, chat, 350, 357
SCSI, 33

direct access device, 636
installing external device, 201
installing internal device, 202
logical unit, 201
serial access, 636
target, 201
target names, 575
terminator, 201
wiring down devices, 575

scuzzy, 33
sd0, device, 641
SDSL, 316
secondary name server, 374
sectors, 33
secure shell, 418–419
Seebass, Scott, 16, 111, 629
selFile, gv window, 272
send string, chat, 357
send-pr, command, 21
sendmail, daemon, 138, 149–150, 154, 431,

487, 491–497, 502, 539, 563, 569, 606
sequence number, TCP, 282
serial access, 636
Serial Line Internet Protocol, 286, 339
serial number, DNS, 368
serial port, 327
Server Message Block, 464
Service Set Identifier, 293
set group, 182
set user ID, 182
setgid, 182

command, 186
setstate, vinum command, 231
setuid, 182, 186
setuid.today, file, 158
setuid.yesterday, file, 158
Seyer, Marty, 329, 630
sftp, command, 437, 449
sftp-server, daemon, 437, 449, 454

SG, RS-232 signal, 329
sh, command, xxxiii, 113–114, 133, 136, 254
Shearer, Dan, xxxv
shell, 113

account, 317
parameters, 123
startup files, 135

shutdown, command, 95, 141, 541–542
signal, 132

SIGHUP, 338
Signal Ground line, 328
˜/.signature, file, 489
Simple Mail Transfer Protocol, 417, 471, 502
single-user mode, 540
sio0, device, 336, 536, 575
skipstone, command, 418
sl0, network interface, 301
slash, character, 138
slave device, 197
slave name server, 374, 376
sleep, command, 425
slice, defined, 34

disk, 75, 214
slice name, compatibility, 37

strict, 37
SLIP, 286, 297, 301, 339
Small Computer Systems Interface, 33
SMB, 464
smbclient, command, 465, 469–470
smb.conf, file, 465
smbd, daemon, 465–466
smbpasswd, command, 465, 469
smbstatus, command, 465, 470
Smith, Michael, xxxv

Roderick W., 628
SMTP, 417, 471, 502
smurf, 562
SNA, 277
snapshot, 584
Snyder, Garth, 16, 111, 629
SOA, DNS record, 368
SOA record, DNS, 364
socket, divert, 388
soft link, 187
software handshaking, 330
solving problems in FreeBSD-CURRENT,

622
source tree, 167

creating, 588

674 Index

source tree (continued)
updating an existing, 591

space, white, 123
spam, 498
spamassassin, command, 487, 501
spoofing, 392
spooler, 263

job, 270
testing, 268
troubleshooting, 269

spooler filter, 267
sppp, 557
squid, daemon, 386, 397–399
/src, directory, 609
SRM, 528

console firmware, 42
ssh, command, 3, 100, 157, 278, 293, 346,

412, 418–432, 437, 440, 453, 559, 570, 640
˜/.ssh, directory, 421, 428
ssh, passphrase, 421
ssh-add, command, 422–423
ssh-agent, command, 422–423, 428–429, 437
ssh-askpass, command, 423
ssh-keygen, command, 421
˜/.ssh/authorized_keys, file, 422
˜/.ssh/authorized_keys2, file, 422
ssh_config, file, 426
˜/.ssh/config, file, 425–427, 429
sshd, daemon, 100, 157, 420, 426, 428, 437,

449, 453–454, 559
˜/.ssh/environment, file, 425
˜/.ssh/id_dsa, file, 421
˜/.ssh/id_dsa.pub, file, 421
˜/.ssh/identity, file, 421
˜/.ssh/identity_pub, file, 421
˜/.ssh/id_rsa, file, 421
˜/.ssh/id_rsa.pub, file, 421
˜/.ssh/known_hosts, file, 420, 427
˜/.ssh/known_hosts2, file, 427, 429
SSID, 293
ST-506, 32
staircase effect, 269
standard installation, 61
Stanley, Tom, 630
StarOffice, 419

package, 164
start bit, 327
Start of Authority, DNS record, 368
start-stop communication, 327
starting the system, 528

startx, command, 108–109, 115, 523–524, 574
status monitoring daemon, 463
steam dialing, modem, 334
Steele, Guy L., 630
Stern, Hal, 629
Stettner, Armando, 24
Stevens, W. Richard, 630
Stokely, Murray, xxxv, 629
stop bit, 327
stopping processes, 154
Strang, John, 629
strangenesses, NFS, 445
strict slice name, 37
string, yellow, 287
striping, vinum, 222
Stroustrup, Bjarne, 630
stty, command, 133, 327, 336, 338
su, command, 95, 137, 147–148, 157, 185
subdisk, vinum, 222
subdomain, 365
submitting a port, 180
sudo, command, 147
sunlabel, command, 215
super user, 146

becoming, 147
support, 17
swap, partition, 35

space, 70
swapon, command, 547
swapper, 528

daemon, 528
swat, command, 466
sylpheed, command, 473
symbolic link, 187
symbolic names, CVS, 582
SYN character, 327
synchronous communication, 326–327
Synchronous Digital Subscriber Line, 316
/sys, directory, 609
sysctl, command, 313
/sys/i386/conf, directory, 610
sysinstall, command, 13, 39, 44, 49–50,

60–61, 63, 68, 74–78, 80–81, 87–88, 91,
95, 97–99, 109, 145, 169, 199, 204, 209,
236–237, 297, 299, 552, 594
using, 60

syslog, command, 375
syslogd, daemon, 138, 157, 452, 538, 557,

573
sysmouse, device, 196, 519

The Complete FreeBSD 675

System V, 8
Systems Network Architecture, 277

T
T1 line, 316
Tab characters, 138
tag, CVS, 582, 588
tagged queueing, 33
tape, archiver, 253

device, 252
tar, command, 122, 127, 167, 251, 253–256,

259
compressed archives, 255
creating an archive, 254
extracting files, 255
listing an archive, 255

tarball, 173, 251
target, SCSI, 201
target names, SCSI, 575
tcl, command, 174
TCP, 281

acknowledgment number, 282
header, 281
sequence number, 282
window size, 282

tcpdump, command, 410–412, 414
TCP/IP, 278
tcsh, command, xxxiii, 92, 113, 129, 134, 137,

173, 254, 396
tee, command, 599
teletype, 149, 326
telnet, command, 197, 278, 386, 414,

417–418, 424, 430–431, 502
telnetd, daemon, 447, 450
terminal, virtual, 197
terminal capability, 578
terminator, Ethernet, 295

SCSI, 201
terminology, modem, 326
testing, printer, 265

spooler, 268
testparm,, command, 465

command, 469
TFTP, 543
/tftpboot, directory, 545
tftpd, daemon, 545
Thompson, Ken, 23
threads, email, 475
Tiemann, Brian, 629

time to live, 280
time zone, 155
time-to-live, UDP field, 407
timed, daemon, 539, 560
timekeeping, 155
timeout, idle, 346, 354
titty, 326
tk, command, 174
tkdesk, command, 174
tmac.Mn, file, xxx
/tmp, directory, 68, 82, 564
Todino-Gonguet, Grace, 629
tools, directory, xxix, 86

DNS, 381
tools/tmac.Mn, file, xxix
top, 152

command, 152–153
Torvalds, Linus, 163
traceroute, command, 407–409, 414
track, 33
transmission, half-duplex, 330
Transmission Control Protocol, 278, 281
Transmit Data line, 328
transport layer, problems, 414
TRANS.TBL, file, 244
Trivial File Transfer Protocol, 543
troff, command, 15
troubleshooting, spooler, 269
trunk, CVS, 581
Ts, Jay, 465, 629
tty, 326, 419

command, 419, 423, 430
device, 196
glass, 325

ttyd0, device, 196, 336, 338
ttyd1, device, 336
ttyd3, device, 574
ttyid0, device, 196
ttyld0, device, 196
ttyp0, device, 149, 196–197
ttyp1, device, 149
ttyv0, device, 115, 195–197, 574
ttyv1, device, 78
ttyv15, device, 197
ttyv2, device, 197
ttyv3, device, 78
ttyv4, device, 197
ttyv8, device, 109
tun0, device, 341, 345

676 Index

tun0 (continued)
network interface, 301

tun1, device, 341
tuna fish, 258
tunefs, command, 191, 258
tunnel, reverse, 424
tunnel driver, 340, 355
tunneling, 285, 424
twirling baton, 530, 532
twisted pair, unshielded, 287
twm, command, 118
TxD, 328

RS-232 signal, 329
tzsetup, command, 155

U
UDMA, 32
UDP, 283
UDP field, time-to-live, 407
UFS, 190, 243, 257, 567
UFS1, 72
UFS2, 644
Ultra DMA, 32
umask, 572

command, 184–185, 572
umount, command, 194
uninstall, 79
Universal Coordinated Time, 155
Universal Serial Bus, 29, 31, 563
UNIX File System, 7, 72, 190, 243
UNIX partitions, 35
UNIX Systems Laboratories, 8
UNIX to UNIX Copy, 277
unreliable protocol, 283
unshielded twisted pair, 287
updating an existing source tree, 591
urandom, device, 565
Urban, Michael, 629
USB, 29, 31, 563

mouse, 41
usbd, daemon, 101, 539, 563
user, 112

adding, 145
groups, 20, 112
ID, 112
mask, 184
name, 112

user, name, anonymous

user (continued)
user, name, ftp

User Datagram Protocol, 283
User PPP, 340
UserConfig, command, 82
Using the spooler, 270
USL, 8
/usr, directory, 68–70, 72, 82, 137, 148,

187–188, 217, 237–238, 544, 594
/usr/bin, directory, 14, 148, 640
/usr/bin/gcc, file, 188
/usr/compat, directory, 188
/usr/compat/linux, directory, 164
/usr/compat/linux/lib, directory, 164
/usr/doc, directory, 588
/usr/home, directory, 217
/usr/include/sys/signal.h, file, 154
/usr/lib, directory, 137, 164, 597, 638
/usr/lib/compat, directory, 639
/usr/local, directory, 597
/usr/local/bin, directory, 94, 137, 465, 640
/usr/local/etc, directory, 548, 640
/usr/local/etc/apache, directory, 455
/usr/local/etc/apache/access.conf, file, 456,

459
/usr/local/etc/apache/group, file, 461
/usr/local/etc/apache/httpd.conf, file, 456–457,

460, 462
/usr/local/etc/apache/srm.conf, file, 456
/usr/local/etc/dhcpd.conf, file, 545
/usr/local/etc/isc-dhcpd.conf, file, 303–304
/usr/local/etc/Muttrc, file, 481, 484
/usr/local/etc/postfix, directory, 493, 500
/usr/local/etc/postfix/access, file, 498, 500
/usr/local/etc/postfix/access.db, file, 500–501
/usr/local/etc/postfix/main.cf, file, 494,

499–500, 505
/usr/local/etc/postfix/sample-smtpd.cf, file,

499
/usr/local/etc/rc.d, directory, 304
/usr/local/etc/rc.d/apache.sh, file, 462
/usr/local/etc/rc.d/samba.sh, file, 466
/usr/local/etc/rc.d/samba.sh.sample, file, 466
/usr/local/etc/rc.d/squid.sh, file, 398
/usr/local/etc/rsyncd.conf, file, 454
/usr/local/etc/smb.conf, file, 465–466
/usr/local/etc/squid/squid.conf, file, 397
/usr/local/libexec/lpfilter, file, 268
/usr/local/libexec/psfilter, file, 274
/usr/local/majordomo/aliases.majordomo, file,

The Complete FreeBSD 677

505
/usr/local/majordomo/majordomo.cf, file, 505
/usr/local/man, directory, 129, 174, 465
/usr/local/private/secrets.tdb, file, 469
/usr/local/sbin, directory, 465
/usr/local/share/dot.bashrc, file, 94
/usr/local/squid/cache, file, 398
/usr/local/squid/log, file, 398
/usr/local/www/cgi-bin, directory, 456
/usr/local/www/data, directory, 455, 458
/usr/local/www/icons, directory, 456
/usr/local/www/proxy, directory, 462
/usr/obj, directory, 122, 548, 585, 618
/usr/ports, directory, 169, 172, 585, 588–589
/usr/ports/distfiles, directory, 173
/usr/ports/editors/openoffice, directory, 165
/usr/ports/emulators, 162

directory, 162
/usr/ports/emulators/linux_base, directory, 163
/usr/ports/graphics/hpscan, directory, 169
/usr/ports/INDEX, file, 168, 172
/usr/ports/mail/majordomo, directory, 505
/usr/ports/net/samba, directory, 465
/usr/ports/print/hpijs, file, 275
/usr/ports/security/sudo, directory, 147
/usr/sbin/named-bootconf, file, 380
/usr/share/doc, directory, 12
/usr/share/doc/en/articles, directory, 12
/usr/share/doc/en/books, directory, 12
/usr/share/doc/en/books/faq/index.html, file,

12
/usr/share/doc/en/books/fdp-primer/in-

dex.html, file, 12
/usr/share/doc/en/books/handbook/index.html,

file, 12
/usr/share/doc/en/books/porters-handbook/in-

dex.html, file, 12
/usr/share/doc/en/books/ppp-primer/in-

dex.html, file, 12
/usr/share/doc/en/porters-handbook/in-

dex.html, file, 180
/usr/share/examples/ppp, directory, 355
/usr/share/locale, directory, 129
/usr/share/man, directory, 129
/usr/share/syscons/fonts, directory, 562
/usr/share/syscons/keymaps, directory, 562
/usr/share/zoneinfo, directory, 96, 129,

155–156
/usr/share/zoneinfo/Asia, directory, 97
/usr/src, directory, 548, 585, 588–589, 591,

618
/usr/src/Makefile, 583

file, 583
/usr/src/release/picobsd, directory, 549
/usr/src/sys, directory, 188, 585, 594, 609
/usr/src/sys/alpha/compile, directory, 609
/usr/src/sys/alpha/conf, directory, 609
/usr/src/sys/conf, directory, 161
/usr/src/sys/conf/NOTES, file, 386, 574, 610
/usr/src/sys/i386/compile, directory, 609
/usr/src/sys/i386/compile/FREEBIE/ker-

nel.debug, file, 614
/usr/src/sys/i386/conf, directory, 530, 609
/usr/src/sys/i386/conf/FREEBIE/kernel, file,

623
/usr/src/sys/i386/conf/FREEBIE/kernel.debug,

file, 623
/usr/src/sys/i386/conf/GENERIC, file, 159
/usr/src/sys/i386/conf/GENERIC.hints, file,

598
/usr/src/sys/i386/conf/NOTES, file, 534
/usr/src/sys/kern, directory, 582
/usr/src/sys/sparc64/compile, directory, 609
/usr/src/sys/sparc64/conf, directory, 609
/usr/src/UPDATING, file, 596, 640
/usr/var, directory, 69
/usr/X11R6/etc/system.fvwm2rc, file, 120
/usr/X11R6/lib/X11/XF86Config, file, 103,

516
/usr/X11R6/man, directory, 174
UTC, time zone, 155
UTP, 287
UUCP, 277, 325

V
V.24, 328
V.25, protocol, 333
V.42, protocol, 331
V.42bis, protocol, 331
Van Gilluwe, Frank, 630
/var, directory, 68–70, 72, 82, 188, 191,

237–238, 455, 547
/var/crash, directory, 84, 538–539, 623
/var/cron/log, file, 641
/var/db/pkg, directory, 175–176
/var/empty, directory, 601, 603
variables, environment, 128
/var/log, directory, 157, 572
/var/log/cron, file, 641

678 Index

/var/log/ftpd, file, 452
/var/log/lpd-errs, file, 274
/var/log/maillog, file, 124
/var/log/messages, file, 375, 398, 432, 438,

619
/var/log/ppp.log, file, 353
/var/log/rsyncd.log, file, 454
/var/mail, directory, 480, 493
/var/mail/grog, file, 475, 480
/var/run, directory, 538
/var/run/dmesg.boot, file, 248, 533, 565, 620
/var/snapshot/snap1, file, 191
/var/spool/clientmqueue, directory, 493
/var/spool/ftp, directory, 87, 451
/var/spool/mqueue, directory, 493
/var/spool/output/colour, directory, 274
/var/spool/output/freebie, directory, 266, 269
/var/spool/postfix, directory, 493
/var/tivo, directory, 455
/var/tmp, directory, 188
/var/tmp/temproot, directory, 599, 603
/var/www, directory, 458
/var/www/data, directory, 455
Velte, Jack, xxxv, 137
vi, command, 62, 93, 133, 139–140, 218, 446,

477
Vickery, Thomas, xxxv
video, blanking, 509

composite, 511
viewing with gv, 272
vim, command, 93
vinum, 35, 221, 565, 641, 644

command, 158, 225–227, 241, 620
concatenation, 222
configuration database, 226
create command, 238
degraded mode, 223
drive, 222
dumpconfig command, 235
mirroring, 223
plex, 221
reviving, 228
saveconfig command, 231
setstate command, 231
striping, 222
subdisk, 222
volume, 221

vinum_history, file, 158
vinum/root, device, 239
vipw, command, 137, 145, 568–569, 577

virtual host, web, 457
virtual terminal, 197
vn, driver, 246
vnode, driver, 245
volume, vinum, 221
volume manager, 221

W
wait.example.org, 294–295, 309
web, browser, 418, 487

caching, 462
virtual host, 457

web server, proxy, 462
setting up, 455

Wells, Bill, 630
WEP, 293
which cvsup server?, 587
white space, 123
wide SCSI, 33
Wilde, Don, xxxv
Williams, Nate, xxxv
window manager, 41
window size, TCP, 282
wine, command, 165
Wired Equivalent Privacy, 293
wireless network, 802.11 DSSS, 292

802.11 FHSS, 292
802.11a, 292
802.11b DSSS, 292
802.11g, 292

wireless networking, 285
wiring down SCSI devices, 575
Wirth, Niklaus, 114
World Wide Web, 279, 418
Wright, Gary R., 630
wst0, device, 252
wtmp, file, 158
WWW, 279
www.example.org, 370, 458

X
X, changing screen resolution, 120

command, 516
hardware, 41
multiple monitors, 523, 525
multiple servers, 523, 525
networking, 524

The Complete FreeBSD 679

X (continued)
stopping, 525

X-on/X-off, 330
x11/x2x, daemon, 525
X.25, 277
.Xauthority, file, 425
xdm, daemon, 108–109, 111, 113, 115, 119,

141, 525, 574
xf86cfg, command, 102–106, 516
XF86Config, Device section, 520

file, 120, 507, 513, 516–518, 523
Files section, 517
InputDevice section, 519
Module section, 518
Monitor section, 519
Screen section, 521
ServerFlags section, 518

XF86Config.1024x768, file, 523
xfmail, command, 473
XFree86.0.log, file, 157
xhost, command, 524
xianggang.china.example.org, 365, 377
xinit, command, 522–523
.xinitrc, file, 109, 119, 423, 523
.xinitrc-gnome, file, 523
.xinitrc-kde, file, 523
xl0, device, 298, 347–348
xntpd, daemon, 157, 640
.xsession, file, 109, 119
xset, command, 519
xterm, command, 93, 114, 117, 119, 121, 129,

140, 153, 197, 419–420, 423, 425,
430–431, 474, 524

xtset, command, 93
xv, command, 93
xvidtune, command, 107

Y
yellow string, 287
ypbind, daemon, 539
ypserv, daemon, 539
ypset, daemon, 539

Z
zebra, daemon, 309
zero, device, 197, 216
zone, 364–365

DNS, 364
zsh, command, xxxiii, 113, 133

About the author

Greg Lehey was born in Australia and went to school in Malaysia and England before studying
Chemistry in Germany and Chemical Engineering in England. He spent most of his professional
career in Germany, where he worked for computer manufacturers such as Univac, Tandem, and
Siemens-Nixdorf, the German space research agency, nameless software houses and a large user.
Finally he worked for himself as a consultant. He returned to Australia in 1997.

In the course of 30 years in the industry he has performed most jobs, ranging from kernel
development to product management, from systems programming to systems administration, from
processing satellite data to programming petrol pumps, from the production of CD-ROMs of ported
free software to DSP instruction set design. Apart from this book, he is also the author of ‘‘Porting
UNIX Software’’ (O’Reilly and Associates, 1995). About the only thing he hasn’t done is writing
commercial applications software. He is available for short-term contracts and can be reached by
mail at grog@FreeBSD.org or grog@lemis.com. Alternatively, browse his home page at
http://www.lemis.com/grog/.

When he can drag himself away from his collection of UNIX workstations, he is involved in
performing baroque and classical woodwind music on his collection of original instruments,
exploring the Australian countryside with his family on their Arabian and Peruvian horses, or
exploring new cookery techniques or ancient and obscure European languages.

681

