

 FOR PERSONAL, NON-COMMERCIAL USE ONLY

NOTE TO THE READER

In the 25 years since this book was published, the electronic files used to produce the

camera-ready copy have been lost to the bit-bucket. Other than scanning in page images,

there’s no good way to provide an electronic copy of exactly what you could have

purchased at the bookstore. To provide something better than a bunch of page images, I

had to go back to my original troff manuscript files, which were themselves almost lost

to technological obsolescence. I owe a special debt of gratitude to Curt Freeland, who
managed to get an old Exabyte tape drive working long enough to read in an 8mm tape

archive that contained the only remaining usable copy of these files.

This document is the result of importing the original troff manuscript files into

Microsoft® Word, and then applying appropriate paragraph styles and fonts to make the

text look reasonably similar to the original book. I didn’t try to reproduce the original

format in every detail, but it’s pretty close. With regard to content, numerous copy-

editing changes were made during the original production process that I have no record

of, other than in the printed book itself. I tried to catch as many of these as I could by

comparing this document to the book side-by-side, but I may have missed a few. The

index has been omitted; use the search function.

Please note that I have not made any attempt to update the text to match current UNIX

(or Linux) systems. While most of the material is still accurate, you should expect to
encounter some (usually minor) differences in include file locations, names of constants,

and so forth. Appendix A, Calling FORTRAN From C describes compilers that are no

longer in use. The details may be different for whatever compilers you’re using.

Appendix C, Reading Kernel Data Structures, was written before the development of

multi-processor systems and dynamically-loaded kernel modules. Although the general

concepts are still accurate, the programming details are somewhat different on modern

systems.

This document is for your personal, non-commercial use only. You may also use it as a

bibliographic reference in any works that you are writing. Any commercial use of this

document, including printing and distribution to groups of people (such as a classroom)

is prohibited without my prior written permission.

I hope you find the information in this book useful, even if it’s older than some of you

who are reading it. In 1989, UNIX had only been commercially available for a handful

of years, and the open source movement was in its infancy—if you needed new

functionality, you couldn’t buy it or download it—instead, you had to write it yourself.

If nothing else, this book provides a historical look at how those of us who were around

back then did just that.

David A. Curry
August 2014

 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Using C on the UNIX System
A Guide to System Programming

David A. Curry

O’Reilly & Associates, Inc.

981 Chestnut Street

Newton, MA 02164

 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Using C on the UNIX System–A Guide to System Programming

By David A. Curry

Nutshell Series Editor Tim O’Reilly

Copyright © 1985, 1987, 1988 Purdue Research Foundation

Internet Download Edition Copyright © 2008, 2009, 2012, 2014 David A. Curry

Additional material copyright © 1989 O’Reilly & Associates, Inc.
All rights reserved.

Printed in the United States of America

Nutshell Handbook is a trademark of O’Reilly & Associates, Inc.

UNIX is a registered trademark of AT&T

SunWindows is a trademark of Sun Microsystems, Inc. The X Window

System is a trademark of the Massachusetts Institute of Technology.

This documentation is based in part on the Fourth Berkeley Software

Distribution under license from The Regents of the University of California.

First Printing: January 1989

First Internet Download Edition: April 2009

Second Internet Download Edition: August 2014

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the use

of the information contained herein.

Please address comments and questions in care of the author.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY iii

TABLE OF CONTENTS

Preface .. xiii

Documentation Conventions ... xiv

Acknowledgements ... xv

Chapter 1 Introduction ... 1

System Calls vs. Library Routines ... 2

Versions of UNIX ... 2

Error Handling .. 3

Chapter 2 The Standard I/O Library .. 5

File Pointers .. 5

Opening and Creating Files.. 6

Closing Files ... 7

Reading and Writing Files ... 7
The getc and putc Routines ... 7
The fgets and fputs Routines ... 9
The fread and fwrite Routines ... 10
The fscanf and fprintf Routines ... 12

The sscanf and sprintf Routines .. 14

Moving Around in Files... 14

Chapter 3 Low-Level I/O .. 17

File Descriptors ... 17

Opening and Creating Files.. 17
Opening and Creating Files on Older UNIX Systems 18

Closing Files ... 18

Reading and Writing Files ... 19

Moving Around in Files... 20

Duplicating File Descriptors .. 23

Converting File Descriptors to File Pointers ... 23

Chapter 4 Files and Directories .. 25

File System Concepts .. 25

iv FOR PERSONAL, NON-COMMERCIAL USE ONLY

Ordinary Files .. 25
Directories .. 25
Special Files ... 26
Removable File Systems ... 26
Device Numbers ... 27
I-Numbers, the I-List, and I-Nodes .. 27

Hard Links .. 28
Symbolic Links.. 28

Determining the Accessibility of a File .. 28

Getting Information From an I-Node.. 29

Reading Directories ... 31

Modifying File Attributes .. 37

Miscellaneous File System Routines .. 38
Changing Directories .. 38
Deleting and Truncating Files ... 38
Making Directories ... 39
Linking and Renaming Files ... 39
Symbolic Links .. 39
The umask Value .. 40

Chapter 5 Device I/O Control... 41

The Version 7 and Berkeley UNIX ioctl .. 42
Line Disciplines.. 42
The sgttyb Structure.. 43
The tchars Structure .. 45
The ltchars Structure ... 45
The Local Mode Word .. 46
The winsize Structure ... 46
Miscellaneous Operations ... 47

The System V ioctl .. 50
c_iflag .. 51
c_oflag ... 51
c_cflag ... 52
c_lflag .. 52
c_cc.. 52

The fcntl System Call .. 55

Non-Blocking I/O .. 56
The select System Call .. 56

 FOR PERSONAL, NON-COMMERCIAL USE ONLY v

Chapter 6 Information About Users .. 61

The Login Name ... 61

The User Id ... 61

The Group Id ... 63
The Berkeley UNIX Group Mechanism .. 63

Reading the Password File ... 64

Reading the Group File .. 65

Reading the utmp File.. 66

Chapter 7 Telling Time and Timing Things 69

Telling Time ... 69
Obtaining the Time ... 69
Timezones .. 70
Converting the Time to ASCII .. 70
Time Differences .. 71

Sleeping and Alarm Clocks.. 71
Sleeping ... 71
The Alarm Clock .. 72
Interval Timers ... 72

Process Timing .. 73

Changing File Times ... 74

Chapter 8 Processing Signals ... 75

Overview of Signal Handling... 75
Resetting Signals .. 76
Restarting System Calls .. 76

The Signals ... 76

Sending Signals ... 78

Catching and Ignoring Signals ... 79
Ignoring Signals ... 79
Catching Signals ... 80

Using Signals for Timeouts.. 84
The setjmp and longjmp Routines ... 84

The New Berkeley UNIX Signal Mechanism ... 86
Handler Calling Conventions .. 87
The Signal Mask... 87
The Signal Stack... 88

vi FOR PERSONAL, NON-COMMERCIAL USE ONLY

Chapter 9 Executing Programs .. 93

The system Library Routine ... 93

Executing Programs Directly ... 94
Creating Processes .. 94
Executing Programs .. 94
Waiting for Processes to Terminate ... 96

Redirecting Input and Output ... 98

Setting Up Pipelines .. 100
The popen Library Routine ... 100
Creating Pipes Directly ... 100

Chapter 10 Job Control .. 103

Preliminary Concepts .. 103
The Controlling Terminal ... 103
Process Groups ... 104
System Calls... 104

ioctl ... 105
setpgrp .. 105
killpg ... 105
wait3 ... 105

The JOB and PROC Data Types ... 106

Job Control in the Shell ... 106
Setting Up for Job Control .. 106
Executing a Program .. 107
Stopping a Job .. 107
Backgrounding a Job .. 108
Foregrounding a Job ... 109
The jobs Command... 110
Waiting for Jobs ... 110
Asynchronous Process Notification ... 113

Job Control Outside the Shell .. 113

Important Points .. 114

Chapter 11 Interprocess Communication 117

Berkeley UNIX IPC .. 117
The socket System Call... 118
The bind System Call.. 119
The send and recv System Calls .. 120
The listen System Call .. 120

 FOR PERSONAL, NON-COMMERCIAL USE ONLY vii

The shutdown System Call.. 121
Connection-Based Sockets .. 121

The accept System Call .. 121
The connect System Call .. 121

Connectionless Sockets... 122
The sendto System Call.. 122
The recvfrom System Call.. 122
Connecting Datagram Sockets.. 122

A Small Client Program .. 122
A Small Server Program ... 124

System V IPC .. 126
Message Queues ... 127

The msgget System Call... 128
The msgctl System Call ... 128
The msgsnd and msgrcv System Calls .. 128

Semaphores .. 132
The semget System Call ... 132
The semctl System Call.. 132
The semop System Call.. 133

Shared Memory .. 134
The shmget System Call... 135
The shmctl System Call ... 135
The shmat System Call .. 135
The shmdt System Call .. 136

Chapter 12 Networking .. 139

Addresses .. 139

Translating Hostnames Into Network Numbers .. 140

Obtaining Port Numbers .. 141

Network Byte Order .. 141

Networking System Calls .. 142

Chapter 13 The File System.. 151

Disk Terminology ... 151

The “Standard” UNIX File System .. 153

The Berkeley Fast File System... 160

Reading Data Blocks From the File System ... 169

Chapter 14 Miscellaneous Routines ... 173

Resource Limits .. 173

viii FOR PERSONAL, NON-COMMERCIAL USE ONLY

The getrlimit System Call ... 173
The setrlimit System Call .. 174

Obtaining Resource Usage Information .. 175

Manipulating Byte Strings ... 177
The bcmp and memcmp Library Routines ... 177
The bcopy and memcpy Library Routines ... 177
The bzero and memset Library Routines ... 177

Environment Variables .. 178

The Current Working Directory ... 178

Searching for Characters in Strings .. 178

Determining Whether a File is a Terminal .. 179
The isatty Library Routine .. 179
The ttyname Library Routine .. 179
The /dev/tty Device .. 179

Printing Error Messages .. 179
The perror Library Routine ... 179
The psignal Library Routine ... 180

Sorting Arrays in Memory ... 180

Appendix A Calling FORTRAN From C 183

Data Representation .. 183

Procedure Naming ... 184
Naming C Routines to be Called From FORTRAN 184
Naming FORTRAN Routines to be Called From C 184

Returning Values from Functions .. 185
Integer, Logical, Real, Double Precision ... 185
Complex and Double Complex ... 185
Character Strings .. 186

Passing Arguments .. 186
Integers, Floats (Reals), and Doubles .. 186
Characters and Logicals .. 187
Character Strings .. 187
Functions.. 188
Overall Argument Sequence ... 188

Input and Output ... 188
From C Programs ... 188
From FORTRAN Programs .. 189

Libraries .. 189

 FOR PERSONAL, NON-COMMERCIAL USE ONLY ix

Further Information ... 189

Appendix B Using Berkeley UNIX Pseudo Terminals 191

Appendix C Reading Kernel Data Structures 197

Appendix D Berkeley UNIX Directory Compatibility Routines ... 201

Appendix E Interval Timer Version of nap() 205

Bibliography .. 207

Colophon ... 209

 FOR PERSONAL, NON-COMMERCIAL USE ONLY xi

EXAMPLES

Example 2-1. append-char—append one file to another character by character 7

Example 2-2. append-line—append one file to another line by line.............................. 9

Example 2-3. append-buf—append one file to another a buffer-full at a time 11

Example 2-4. factorial—compute the factorial of a number 13

Example 2-5. fseekdemo—demonstrate the use of the fseek routine 15

Example 3-1. append-ll—append one file to another using the low-level interface 19

Example 3-2. lseekdemo—demonstrate the use of the lseek system call 21

Example 4-1. listfiles1—list the names of the files in the current directory 32

Example 4-2. listfiles2—list the names of the files in the current directory 33

Example 4-3. ls—an “ls”-like program ... 34

Example 5-1. pager1—simple file paginator (Berkeley/V7 systems).......................... 48

Example 5-2. pager2—simple file paginator (System V version) 53

Example 5-3. select—program to demonstrate the select system call 57

Example 6-1. who—show who's on the system ... 67

Example 7-1. cputime—measure cpu time used by a section of code 74

Example 8-1. ignoreint—a program which ignores the interrupt signal 79

Example 8-2. ouch1—prints “ouch” when an interrupt is received............................. 80

Example 8-3. ouch2—prints “ouch” when an interrupt is received............................. 81

Example 8-4. ouch3—prints “ouch” when an interrupt is received............................. 83

Example 8-5. timeout—program to demonstrate a timeout routine 84

Example 8-6. sigblock—demonstrate use of the sigblock routine 88

Example 8-7. sigstack—demonstrate use of the signal stack 89

Example 9-1. ezshell—a simple shell program .. 96

Example 9-2. execute—spawn a process and execute a program 99

Example 9-3. mailer—open a pipe to the mail command and send mail 101

Example 10-1. setupjc—set up for job control... 106

Example 10-2. stop—stop a job .. 108

Example 10-3. bg—background a job ... 109

Example 10-4. fg—foreground a job ... 109

Example 10-5. waitfor—wait for a process to finish .. 110

Example 11-1. unix-client—client program to demonstrate UNIX domain sockets .. 122

xii FOR PERSONAL, NON-COMMERCIAL USE ONLY

Example 11-2. unix-server—server program to demonstrate UNIX domain sockets. 124

Example 11-3. mq-server—server program to demonstrate message queues 129

Example 11-4. mq-client—client program to demonstrate message queues 130

Example 11-5. shm-server—server program to demonstrate shared memory 136

Example 11-6. shm-client—client program to demonstrate shared memory 137

Example 12-1. inet-client—a client program to demonstrate Internet domain sockets

 .. 143

Example 12-2. inet-server—a server program to demonstrate Internet domain sockets

 .. 145

Example 12-3. daytime—contact the “daytime” datagram service 147

Example 13-1. sumdisk-sysv—summarize the disk usage for System V systems 155

Example 13-2. sumdisk-bsd—summarize the disk usage for Berkeley systems 164

Example 13-3. read_blocks—read data blocks from the raw disk 169

Example 14-1. setlim—change resource limits .. 174

Example 14-2. qsort—demonstrate qsort routine ... 180

Example B-1. ptyopen—open a pseudo-tty and execute a process on it.................... 192

Example C-1. kmem—demonstrate how to read kernel memory.............................. 198

 FOR PERSONAL, NON-COMMERCIAL USE ONLY xiii

Preface

This book is intended for the person who wants to become a systems programmer for the

UNIX operating system. Nearly all of the system calls and library routines provided by

the operating system are discussed, and numerous examples of “real world” applications

have been provided. The main focus of the discussion is on the 4.2BSD and 4.3BSD

releases of UNIX from the University of California at Berkeley. Where serious

differences exist however, both the Berkeley and AT&T System V environments are
described.

The chapters have been organized in a “bottom up” fashion, presenting first the methods

and routines for performing simple tasks, and then moving on to complex operations that

build on the earlier information.

Chapter 1, Introduction, presents some introductory concepts and terminology. It also

briefly describes the error handling mechanism used by the routines in the standard I/O

library.

Chapter 2, The Standard I/O Library, and Chapter 3, Low Level I/O, present the high-

and low-level input and output mechanisms provided for the programmer.

Methods of manipulating ordinary files and directories are described in Chapter 4, Files

and Directories, and operations on special device files are presented in Chapter 5, Device

I/O Control.

Chapter 6, Information About Users, describes how to obtain information about the users

of the system.

Chapter 7, Telling Time and Timing Things, describes the method for obtaining the time

of day, as well as how to time various events.

Chapter 8, Processing Signals, describes both the Berkeley and System V signal and

interrupt mechanisms.

Chapter 9, Executing Programs, describes methods for executing other programs,

including setting up pipes, and Chapter 10, Job Control, describes job control

mechanisms for controlling those programs.

Using C on the UNIX System

xiv FOR PERSONAL, NON-COMMERCIAL USE ONLY

Chapter 11, Interprocess Communication, describes both Berkeley sockets and the

System V shared memory, message queues, and semaphore mechanisms.

Chapter 12, Networking, describes the mechanisms for intermachine communication

using TCP/IP.

Chapter 13, The File System, provides information on the internal organization of the

UNIX file system.

Chapter 14, Miscellaneous Routines, covers a variety of miscellaneous shorter topics,

including reading and setting resource limits, access to environment variables, and the

use of perror for error handling.

The appendices provide information on some specialized topics that are not often used

by the systems programmer, but are nevertheless good to know. Appendix A presents

information on how to call FORTRAN subroutines from a C program, and vice versa.

Appendix B describes the use of Berkeley UNIX pseudo terminals. The method for

reading data structures from operating system memory is presented in Appendix C.

Appendices D and E provide implementations of the Berkeley UNIX directory routines

and an interval timer version of a “nap” function which sleeps for sixtieths of a second.

A modest background is required to understand the material in this book. The reader is

expected to be fluent in the C programming language including the more advanced

concepts such as structures and pointers. Good familiarity with the organization and use

of the UNIX operating system is also a must. Although not necessary, familiarity with

data structures and algorithms such as those used for sorting and searching will be useful.

The examples in the book are nearly all complete, working programs that should be

entered and experimented with to gain a complete understanding of the material.*

Documentation Conventions

For the most part the conventions followed in this book should be obvious, but for the

sake of clarity, we’ll review them here. This handbook uses italics, constant-width

and constant-italic text to emphasize special words:

* If you are a UUNET subscriber, you need not type in the examples, but can copy them to your system with

the following command:

uucp uunet!~uucp/nutshell/usingC/examples.shar.Z usr/spool/uucppublic

The file is a compressed shell archive. To restore the files once you have retrieved the archive, type:

uncompress examples.shar

sh examples.shar

For more information on UUNET, see the Nutshell Handbooks Managing UUCP and Usenet and Using UUCP

and Usenet.

[April 2009 update] The examples are available from the author’s web site, http://www.bitsinthewind.com.

Preface

 FOR PERSONAL, NON-COMMERCIAL USE ONLY xv

Italics are used for the names of all UNIX utilities, directories, and

filenames, and to emphasize new terms and concepts when they

are first introduced.

Constant

Width

is used for system calls, library routines, sample code fragments

and examples. A reference in explanatory text to a word or item

used in an example or code fragment is also shown in constant
width font.

Constant

Italics

are used in code fragments to represent general terms that require

context-dependent substitution. For example, in describing the

syntax of a system call, args means that a call would take some

appropriate arguments. Obviously, since all variable names are

arbitrary, the use of courier italic instead of courier is a fine

distinction. We use it only when we think it will make things

clearer.

function(n) is a reference to a man page in section n of the UNIX

Programmer’s Manual. For example, tty(4) refers to a page called

tty in Section 4.

Acknowledgements

An early draft of this book was originally prepared while I was a systems programmer

at Purdue, and was in fact first “published” by Purdue for use on campus in 1985. It was

significantly revised and expanded in 1987 for 4.2 and 4.3BSD, at which point I brought

it to the attention of Tim O’Reilly. It was then further revised and adapted for publication

as a Nutshell Handbook.

I am grateful to Clem Cole, Kent De La Croix, Jeff Schwab, and Dave Taylor for taking
the time to read the book and make comments and suggestions. Without their help,

several parts of this manuscript would have been a real mess. I would also like to thank

Debbie Huffman of the Purdue Research Foundation for wading through the paperwork

to get this book published. I’d also like to thank Kate Gibson, Daniel Gilly, Tom Scanlon,

Sue Willing and Donna Woonteiler, of the production staff at O’Reilly & Associates,

who made all the last minute edits to the book, created the index, and did all the other

things necessary to make a manuscript into a finished book. Finally, I am especially

grateful to Tim O’Reilly, who was willing to take a chance with me.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 1

Chapter 1
Introduction

Over the past several years, the use of the UNIX operating system has become

widespread as workstations and personal computers that use UNIX have become cheaper

and more powerful. Several books have been published on the use of UNIX, and on the

use of the C programming language, which is the primary language used with UNIX.

However, very little has been written about programming in C specifically for the UNIX

operating system.

As a result, those wanting to write systems programs under UNIX have had to learn the

hard way, by perusing the often inadequate documentation provided with the operating

system, and by examining the source code of existing utilities. Although that is a good

way to discover some of the more intricate and clever ways of doing things, it really isn’t

a satisfactory way to get started.

This book is an attempt to remedy that situation. It discusses in detail the use of most of

the system calls and library routines available to the C programmer on the UNIX

operating system.

It is not intended to be an introduction to C programming, nor can it really be considered

an “advanced C programming guide.” Rather, it has been written for the person interested

in learning to become a “systems programmer” for the UNIX operating system. The
student who wishes to work for a university computer center, a systems programmer

unfamiliar with UNIX who must now write programs for a UNIX PC or workstation, a

bulletin board operator using a UNIX system to support his operation, and the researcher

interested in writing his own tools to perform his work will find the material presented

in this book useful.

The reader is expected to be fluent in C programming, including the more advanced

concepts such as structures and pointers. The ideal reader will have been programming

in C for at least six months, and will have had at least a minimal introduction to data

structures and computer algorithms such as those used for sorting and searching. A junior

(or perhaps a sophomore) in a college-level computer sciences curriculum should have

no trouble with the concepts presented here.

Using C on the UNIX System

2 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Throughout this book small, heavily commented examples have been provided to

demonstrate how the various routines being discussed are actually used. You will benefit

by actually typing these examples in, compiling them, executing them, and then

experimenting with them in order to observe first-hand how they operate.

System Calls vs. Library Routines

Before discussing the library routines and system calls provided by the UNIX system, a

few preliminaries must be gotten out of the way. First, the difference between a system

call and a library routine needs to be explained. These terms are often used incorrectly,

even by those people who should know better.

A system call is just what its name implies—a request for the operating system to do

something on behalf of the user’s program. For example, read is a system call which
asks the operating system to fill a buffer with data stored on a disk drive (or other device).

Since great chaos would result if everyone were able to access devices whenever they

pleased, this service must be requested of the operating system, which (often

transparently) keeps track of all requests dealing with each device.

A library routine, on the other hand, does not usually need the operating system to

perform its work. An example of a library routine is the sin function, which computes

the sine of an angle expressed in radians. Since this is done simply by summing a finite

series, the operating system is not needed.

In order to avoid confusion, when the difference is unimportant, this book will use the

word routine to describe either a system call or a library routine.

Versions of UNIX

The main focus of the book is on the 4.2BSD and 4.3BSD releases of UNIX from the

University of California at Berkeley.* Although System V is usually taken to be the

“standard” UNIX, there are several reasons for discussing the Berkeley environment.
Some of these are:

 Most university and government computer centers that use UNIX use Berkeley

UNIX, rather than System V. There are several reasons for this, but perhaps the two

most significant are that Berkeley UNIX provides networking capabilities that until

recently (Release 3.0) were completely unavailable in System V, and that Berkeley

* The 4.3BSD release is virtually identical to 4.2BSD as far as the material in this book is concerned. For the

sake of simplicity, we will use the term “Berkeley UNIX,” rather than the official, but more cumbersome

“Berkeley Software Distribution, 4.x,” when the difference is unimportant. When we need to be specific, we

will refer to these releases as 4.2BSD and 4.3BSD, respectively. Generally, any new functionality introduced

in 4.2BSD remains the same in 4.3BSD.

Introduction

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 3

UNIX is much more suited to a research environment, which requires a faster file

system, better virtual memory handling, and a larger variety of programming

languages.

 Sun Microsystems, with the largest installed base of UNIX workstations, uses a

Berkeley-based operating system. Although it is true that Sun has been moving

toward System V compatibility, their operating system is still much more like
Berkeley UNIX than anything else. Other vendors, such as IBM, also provide

releases of Berkeley UNIX for their university workstation customers.

 Older UNIX variants, such as Version 7 from Bell Laboratories and early versions

of Xenix and Venix, are much closer to the Berkeley programming environment

than the System V environment. Most of the material presented in this book, unless

it refers to Berkeley-specific items, applies equally well to these older systems.

Much of the material presented in books on System V will not.

Of course, System V is also quite widely used. For this reason, in the areas where System

V differs greatly from Berkeley UNIX, both environments are discussed. This is

especially true in Chapter 5, Device I/O Control, and in Chapter 11, Interprocess

Communication. In these chapters, complete descriptions of both the Berkeley and
System V environments, with examples, are provided.

Error Handling

A few words must be said about error handling. All of the routines in the Standard I/O

Library (see Chapter 2, The Standard I/O Library) return one of the predefined constants

EOF or NULL when an error occurs. Other library routines usually return either −1 or 0
on error (depending on what the type of their return value is), although some routines

may return several different values indicating one of several different errors. Unlike

library routines, system calls are identical in the way they indicate that an error has

occurred. Every system call returns the value −1 when an error occurs, and most return

0 on successful completion (unless they are returning some other integer value). Further,

the external integer errno is set to a number indicating exactly which error occurred.

The “values” of these errors are defined in the include file errno.h, and may be easily

printed out using the perror library routine (described in Chapter 14, Miscellaneous
Routines).

In newer versions of UNIX such as System V and 4.3BSD, the Standard I/O (stdio)

routines all set errno properly so that perror can be used in conjunction with them.

Unfortunately, earlier versions of stdio did not properly set errno. perror cannot be
used with these earlier routines.

Errors are important. Good programs are those which do not die a horrible death in the

face of an unexpected error. The idea behind this is simply Murphy’s Law: if anything

Using C on the UNIX System

4 FOR PERSONAL, NON-COMMERCIAL USE ONLY

can go wrong, it will. Programs should be prepared for this inevitability by checking the

return codes from all system calls and library routines whose failure will cause problems.

Nonetheless, in order to save space and emphasize the important parts of the code, many

of the examples in this book do not always check return codes as should be done in real

life. The examples should be taken as demonstrations of the functions being discussed,

not as complete examples of good UNIX programming practice.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 5

Chapter 2
The Standard I/O Library

A programmer learning C is usually taught to use the routines in the Standard I/O Library

(stdio)* to perform input and output (I/O). These routines perform so-called high-level

input and output. That is, the routines perform three important functions for the

programmer:

 Buffering is performed automatically. Rather than reading or writing data a few

bytes at a time, the routines perform the actual input or output in large “chunks” of
several thousand bytes at a time. (The size of the buffer is generally specified by the

constant BUFSIZ, defined in the include file stdio.h.) The routines seem to read or

write in small units, but the data is actually saved in a buffer. This buffering is
internal to the routines, and is invisible to the programmer.

 Input and output conversions are performed. For example, when using the printf

routine to print an integer (with %d), the character representation of that integer is

actually printed. Similarly, when using scanf, the character representation of an
integer is converted into its numeric value.

 Input and output are automatically formatted. That is, it is possible to use field

widths and the like to print numbers and strings in any desired format.

This chapter provides a review of the more commonly used routines contained in the
Standard I/O Library.

File Pointers

In the Standard I/O Library, a file is called a stream, and is described by a pointer to an

object of type FILE, called a file pointer. The FILE data type is defined in the include
file stdio.h, which should be included before using any of the stdio routines. There are

* Pronounced “studio.”

Using C on the UNIX System

6 FOR PERSONAL, NON-COMMERCIAL USE ONLY

three predefined file pointers, stdin, stdout, and stderr. These refer to the standard
input (keyboard), standard output (terminal screen), and standard error output,

respectively.

Most of the stdio routines require that a file pointer referring to an open stream be passed

to them. However, when reading from the standard input or writing to the standard

output, stdio provides “shorthand” routines that assume one of these streams rather than

requiring them to be specified. Table 2-1 shows these routines and their equivalents.

Table 2-1. Shorthand routines for standard input and output.

Shorthand Equivalent
getchar() fgetc(stdin), getc(stdin)

gets(buf) fgets(buf, BUFSIZ, stdin)

printf(args) fprintf(stdout, args)

putchar(c) fputc(c, stdout), putc(c, stdout)

puts(buf) fputs(buf, stdout)

scanf(args) fscanf(stdin, args)

Opening and Creating Files

In order to read from or write to a file, that file must first be opened for reading or writing

(or both). The fopen routine is used for this purpose. fopen takes two arguments: a
character string containing the name of the file to open, and a character string describing

how that file should be opened. It returns a pointer to an open stream of type FILE, or

the constant NULL if the file could not be opened.

The second argument to fopen may take on one of the following values:

r The file will be opened for reading only. The file must already exist if this is to

succeed.

w The file will be opened for writing only. If the file does not exist, it will be

created as an empty file. If the file does exist, the contents of the file will be

destroyed.

a The file will be opened for writing only. If the file does not exist, it will be

created as an empty file. If the file does exist however, the contents of that file

will not be destroyed. Instead, any data written to the file will be appended to

the end, rather than overwriting the existing data.

Additionally, a plus sign (+) may be appended to one of the above letters, causing the

file to be opened for both reading and writing. Note however that specifying r+ requires

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 7

that the file already exist and does not destroy any data in the file, while specifying w+

or a+ will create the file if it does not exist.*

Closing Files

The fclose routine is used to close an open stream. fclose takes a single argument,
the file pointer referring to the stream to be closed. When called, this routine flushes the

buffers for the stream, and performs some other internal cleanup functions. 0 is returned

on success; the constant EOF is returned if an error occurs.

Reading and Writing Files

The Standard I/O Library provides several ways to read and write data to and from a file.

The getc and putc Routines

The simplest way to read and write data is one character (byte) at a time. This is done by

using the getc and putc routines. getc accepts a single argument, a file pointer
referring to a stream open for reading. It returns the next character read from that stream,

or the constant EOF when the end of the file has been reached. putc accepts two
arguments, a character to be written, and a file pointer referring to a stream open for

writing. It places that character onto the stream and returns 0 if it succeeds, or EOF if an
error occurs.

It is important to note here that although getc and putc process one character at a time,
the stdio library routines do not actually issue system calls to read and write from the

disk each time the routines are called. Instead, the library buffers these characters

internally, and only issues a system call once every several thousand characters. Thus,

processing even extremely large files is still very efficient.

Example 2-1 shows a small program that appends one file onto another. The first

argument specifies the name of the file to be copied, and the second file specifies the

name of a file to be appended to. If the file to be appended to does not exist, it will be
created.

Example 2-1. append-char—append one file to another character by character

#include <stdio.h>

main(argc, argv)

int argc;

* Some older versions of the Standard I/O Library do not support the “+” mechanism. All versions of the library

currently being sold do support it, however.

Using C on the UNIX System

8 FOR PERSONAL, NON-COMMERCIAL USE ONLY

char **argv;

{

 int c;

 FILE *from, *to;

 /*

 * Check our arguments.

 */

 if (argc != 3) {

 fprintf(stderr, "Usage: %s from-file to-file\n", *argv);

 exit(1);

 }

 /*

 * Open the from-file for reading.

 */

 if ((from = fopen(argv[1], "r")) == NULL) {

 perror(argv[1]);

 exit(1);

 }

 /*

 * Open the to-file for appending. If to-file does

 * not exist, fopen will create it.

 */

 if ((to = fopen(argv[2], "a")) == NULL) {

 perror(argv[2]);

 exit(1);

 }

 /*

 * Now read characters from from-file until we

 * hit end-of-file, and put them onto to-file.

 */

 while ((c = getc(from)) != EOF)

 putc(c, to);

 /*

 * Now close the files.

 */

 fclose(from);

 fclose(to);

 exit(0);

}

For brevity, and to emphasize the information being discussed in this chapter, Example

2-1 (and the following examples) violates one of the more important UNIX conventions.

This convention dictates that in any program where it makes sense, the program should

operate on both named files, or on its standard input and output. The text formatting

programs tbl, eqn, nroff, and troff are good examples of programs that do this. Given a

list of filenames, these programs will open the files and process the data in them.

However, if no filenames are given, these programs will read data from their standard

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 9

input. This allows the programs to operate as filters, so that they can be invoked

individually or as part of a pipeline (see Chapter 9, Executing Programs).

The fgets and fputs Routines

Another way to read and write files provided by the Standard I/O Library allows the

programmer to process data a line at a time. A line is defined as a string of zero or more

characters terminated by a new-line character. The fgets function accepts three
arguments: a pointer to a character buffer to be filled, an integer specifying the size of

the buffer, and a file pointer referring to a stream open for reading. A pointer to the filled

buffer is returned on success, or the constant NULL is returned when end-of-file is
reached. The buffer will be filled with one line of characters, including the new-line

character, and will be terminated with a null character. fputs accepts two arguments, a
pointer to a null-terminated string of characters, and a file pointer referring to a stream

open for writing. It returns 0 on success, or the constant EOF if an error occurs.

Example 2-2 shows another version of our program to append one file to another; this

version does it a line at a time. The constant BUFSIZ is defined in the include file stdio.h,
and is configured to be an optimum size for the system. Unless you need a particular

size, this is a good value to use whenever you are working with stdio.

Example 2-2. append-line—append one file to another line by line

#include <stdio.h>

main(argc, argv)

int argc;

char **argv;

{

 FILE *from, *to;

 char line[BUFSIZ];

 /*

 * Check our arguments.

 */

 if (argc != 3) {

 fprintf(stderr, "Usage: %s from-file to-file\n", *argv);

 exit(1);

 }

 /*

 * Open the from-file for reading.

 */

 if ((from = fopen(argv[1], "r")) == NULL) {

 perror(argv[1]);

 exit(1);

 }

 /*

 * Open the to-file for appending. If to-file does

Using C on the UNIX System

10 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * not exist, fopen will create it.

 */

 if ((to = fopen(argv[2], "a")) == NULL) {

 perror(argv[2]);

 exit(1);

 }

 /*

 * Now read a line at a time from the from-file,

 * and write it to the to-file.

 */

 while (fgets(line, BUFSIZ, from) != NULL)

 fputs(line, to);

 /*

 * Now close the files.

 */

 fclose(from);

 fclose(to);

 exit(0);

}

The fread and fwrite Routines

The Standard I/O Library also provides a method to read and write data without dividing

it up into characters or lines. This is usually desirable when working with files which do

not consist of only text, but also includes arbitrary binary data. The fread function
accepts four arguments: a pointer to an array of some data type (characters, integers,

structures, etc.), an integer indicating the size of one array element in bytes, an integer

indicating the number of array elements to read, and a file pointer referring to a stream

open for reading. It returns the number of array elements actually read in, or 0 on end-

of-file. The fwrite function also accepts four arguments, as described above for fread.
It returns the number of array elements actually written, or 0 on error.

The advantage to using a routine like fread or fwrite lies primarily in the ability to
impose a structure on the input or output stream not provided by the stdio routines

themselves. For example, if a file contains 100 binary floating-point numbers, the easiest

way to read these in would be to use something like the code segment shown below:

FILE *fp;

float numbers[100];

.....

fread(numbers, sizeof(float), 100, fp);

.....

Example 2-3 shows still another version of our file appending program; this version

copies the data a buffer-full of characters at a time.

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 11

Example 2-3. append-buf—append one file to another a buffer-full at a time

#include <stdio.h>

main(argc, argv)

int argc;

char **argv;

{

 int n;

 FILE *from, *to;

 char buf[BUFSIZ];

 /*

 * Check our arguments.

 */

 if (argc != 3) {

 fprintf(stderr, "Usage: %s from-file to-file\n", *argv);

 exit(1);

 }

 /*

 * Open the from-file for reading.

 */

 if ((from = fopen(argv[1], "r")) == NULL) {

 perror(argv[1]);

 exit(1);

 }

 /*

 * Open the to-file for appending. If to-file does

 * not exist, fopen will create it.

 */

 if ((to = fopen(argv[2], "a")) == NULL) {

 perror(argv[2]);

 exit(1);

 }

 /*

 * Note that we only write the number of characters fread

 * read in, rather than always writing BUFSIZ characters.

 */

 while ((n = fread(buf, sizeof(char), BUFSIZ, from)) > 0)

 fwrite(buf, sizeof(char), n, to);

 /*

 * Now close the files.

 */

 fclose(from);

 fclose(to);

 exit(0);

}

Using C on the UNIX System

12 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The fscanf and fprintf Routines

Other than dividing data into units of characters or lines, the routines described in the

previous sections do not interpret the data they manipulate. Sometimes however, more

interpretation of the data is necessary.

As you probably know, the internal representation of data in the computer is not

generally human-readable. For example, the number 10 is represented internally as a

series of (usually) 32 bits:

00000000000000000000000000001010

However, when this number is to be printed on a line printer or terminal screen, it must

be converted to the two ASCII characters ‘1’ and ‘0’, which have completely different
bit patterns:

1: 00110001

0: 00110000

Likewise, in order to read in a number from the keyboard, the characters that represent

that number to a human must be converted into the internal representation of that number

in order for the computer to deal with it.

The fscanf routine accepts a variable number of arguments. The first argument is a file
pointer referring to a stream open for reading. The second argument is a character string

that specifies the format of the input data. The rest of the arguments are pointers to the

data objects that are to be filled. fscanf reads characters from the stream, converts them
into various internal representations as specified by the format string, and stores them in

the data objects.

The format string may contain:

 Blanks, tabs, and new-line characters, which match optional white space in the input.

 An ordinary character (other than ‘%’), which must match the next input character.

 A conversion specification, consisting of a ‘%’ character followed by a conversion

character.

A conversion specification indicates how the next input field is to be interpreted; the

result is placed in the corresponding argument. Some of the more common conversion

characters are:*

d A decimal integer is expected; the corresponding argument should be a pointer

to an integer.

* See the manual for the complete list.

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 13

f A floating-point number is expected; the corresponding argument should be a

pointer to an object of type float.

s A character string is expected; the corresponding argument should point to a

character array large enough to hold the string plus a terminating null character.

The input field is terminated by a space or new-line character.

For example, to read in the string:

123 Hello 45.678

the call:

fscanf("%d %s %f", &intvar, stringvar, &floatvar)

could be used. fscanf returns the number of input items matched, or the constant EOF
when end-of-file has been reached.

The fprintf routine also accepts a variable number of arguments. The first argument
is a file pointer to a stream open for writing, the second is again a format string, and the

following arguments are the objects to be printed. Ordinary (non-‘%’) characters in the

format string are copied to the output stream. A ‘%’ character specifies that the

corresponding argument is to be converted; the conversion characters are the same as

those described for fscanf.

Example 2-4 shows a small program that asks you to enter a number, and then computes

the factorial of that number and prints it out. This example uses the printf and scanf

routines, which assume the use of the streams stdout and stdin, rather than requiring
the streams to be passed as arguments.

Example 2-4. factorial—compute the factorial of a number

#include <stdio.h>

main()

{

 int n, m;

 printf("Enter a number: ");

 scanf("%d", &n);

 m = fact(n);

 printf("The factorial of %d is %d.\n", n, m);

 exit(0);

}

fact(n)

Using C on the UNIX System

14 FOR PERSONAL, NON-COMMERCIAL USE ONLY

int n;

{

 if (n == 0)

 return(1);

 return(n * fact(n-1));

}

The sscanf and sprintf Routines

Stdio also provides the ability to “print” formatted data into a character string, and to

“read” formatted data from a character string. The sscanf and sprintf routines are

identical to fscanf and fprintf, except that instead of taking a file pointer as their

first argument, they take a character string. sscanf will copy characters from the

character string, converting them according to its second argument. sprintf will place
a formatted copy of its arguments into the character string. The uses of these functions

are endless.

Moving Around in Files

It is often necessary to move to a specific location in a file before reading or writing data.

For example, if a file contains several fixed-size items indexed by number, it may be
easier to skip over unwanted records to read or write the desired record, rather than

reading and processing all the records preceding the desired one.

The Standard I/O Library routine for moving around in a file is called fseek. It accepts
three arguments: a file pointer to an open stream, a long integer specifying the number

of bytes to move, called an offset, and an integer indicating from where in the file the

offset is to be taken. If the third argument is 0, the offset is taken from the beginning of

the file. If it is 1, the offset is taken from the current location in the file. If the third

argument is 2, the offset is taken from the end of the file.

To move to the end of a file, the call:

fseek(fp, 0L, 2)

should be used.* To move to the beginning of the file, the call:

fseek(fp, 0L, 0)

may be used, or equivalently, the rewind routine may be used. rewind takes a single
argument, a file pointer to an open stream.

* An integer followed by an ‘L’ indicates a long integer to the C compiler.

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 15

To find out the current location in a file, the ftell routine should be used. ftell
accepts a single argument, a file pointer to an open stream, and returns a long integer

indicating the offset from the beginning of the file.

Example 2-5 shows a small program that creates a data file with one record for each of

five users. In order to demonstrate the use of fseek, the program writes the file
backwards, that is, the last record is written first, and the first record is written last. This

is somewhat pointless in practice, but serves to demonstrate the appropriate concepts.

You should enter this program and execute it. Then try to write a program which will

read the records from the file in the order 3, 0, 2, 1, 4 and print them out.*

Example 2-5. fseekdemo—demonstrate the use of the fseek routine

#include <stdio.h>

struct record {

 int uid;

 char login[8];

};

char *logins[] = { "user1", "user2", "user3",

 "user4", "user5" };

main()

{

 int i;

 FILE *fp;

 struct record rec;

 /*

 * Open the data file for writing.

 */

 if ((fp = fopen("datafile", "w")) == NULL) {

 perror("datafile");

 exit(1);

 }

 /*

 * For each user, going backwards...

 */

 for (i=4; i >= 0; i--) {

 /*

 * Create the record.

 */

 rec.uid = i;

 strcpy(rec.login, logins[i]);

 /*

* HINT: change the fwrite to fread in the putrec function, and then call it with each of the values above.

Don't forget to change the call to fopen to open the file for reading.

Using C on the UNIX System

16 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * Output the record. Notice we pass the

 * address of the structure.

 */

 putrec(fp, i, &rec);

 }

 fclose(fp);

 exit(0);

}

/*

 * putrec - write the record in the i'th position.

 */

putrec(fp, i, r)

int i;

FILE *fp;

struct rec *r;

{

 /*

 * Seek to the i'th position from the beginning

 * of the file.

 */

 fseek(fp, (long) i * sizeof(struct record), 0);

 /*

 * Write the record. We want to write one

 * object the size of a record structure.

 */

 fwrite(r, sizeof(struct record), 1, fp);

}

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 17

Chapter 3
Low-Level I/O

As discussed in the previous chapter, the Standard I/O Library provides a wealth of

different methods for reading and writing data efficiently and easily. However, the tasks

performed by these routines, namely buffering and input/output conversion, are not

always desirable. For example, when performing input and output directly to and from a

device such as a tape drive, the programmer needs to be able to determine the buffer

sizes to be used, rather than letting the stdio routines do it.

And of course, routines do exist that provide that level of control. The Standard I/O

Library is simply a user-friendly interface to the system calls described in this chapter,

which we will call the low-level interface.

File Descriptors

Recall that in the Standard I/O Library, a file is referred to by a file pointer. When using

the low-level interface, a file is referred to using a file descriptor, which is simply a small

integer. As with stdio, there are three pre-defined file descriptors, 0, 1, and 2, which refer
to the standard input, standard output, and standard error output respectively.

Unlike the Standard I/O Library, which provides a “shorthand” set of routines to deal

with the standard input and output, all the low-level I/O routines require that a valid file

descriptor be passed to them.

Opening and Creating Files

The open routine is used to open a file for reading and/or writing, or to create it. open
takes three arguments: a character string containing the name of the file to open, an

integer specifying how the file is to be opened, and an integer mode for use when creating

a file (see below). It returns an integer file descriptor on success, or −1 if the file could

not be opened. The second argument to open is made up of various constants ORed

Using C on the UNIX System

18 FOR PERSONAL, NON-COMMERCIAL USE ONLY

together. These constants, shown below, are defined in the include file sys/file.h on

Berkeley systems, and sys/fcntl.h on System V systems:

O_RDONLY Open the file for reading only.

O_WRONLY Open the file for writing only.

O_RDWR Open the file for reading and writing.

O_APPEND Append to the file when writing, rather than starting at the beginning.

O_CREAT Create the file if it does not exist. The mode should be given as the third

argument.

O_TRUNC Truncate the file to zero length if opened for writing.

O_EXCL Return error if the file is to be created and already exists.

O_NDELAY Do not block on open. (This will be explained later.)

If the O_CREAT option is given, the third argument should contain the mode with which
the file should be created. This mode specifies the access permissions on the file, and is

described in more detail in Chapter 4, Files and Directories.

Opening and Creating Files on Older UNIX Systems

On pre-4.2BSD and pre-System V versions of UNIX, the open system call only accepts

two arguments, a character string containing the name of the file to be opened, and an

integer indicating how the file is to be opened. If the integer is equal to 0 the file is
opened for reading, if it is equal to 1 the file is opened for writing, and if it is equal to 2

the file is opened for reading and writing. If the file does not exist, the open fails, and −1

is returned.

The creat system call is used to create a file. This call also accepts two arguments, the
name of the file to be created, and the mode with which to create the file. If the call

succeeds, a file descriptor open for writing is returned, otherwise −1 is returned.

Note that there is no facility to open the file for appending—the lseek system call (see
below) must be used to move to the end of the file in order to do this.

Closing Files

The close system call is used to close an open file. close takes a single argument, the
file descriptor referring to the file to be closed. 0 is returned on success; −1 is returned if

an error occurs.

Low-level I/O

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 19

Reading and Writing Files

Now that we can open and close files, the next thing to do is read and write data to and

from that file. There is only one way to read from a file using the low-level interface,

and likewise, only one way to write to a file—a buffer-full at a time.

The size of the buffer is left up to the programmer, and it is his or her responsibility to

use an appropriate value. For example, if the programmer reads or writes characters one

at a time, instead of in units of a few thousand, the operating system will access the disk

(or other device) once for each character (and the program will run very slowly!).*

The read system call takes three arguments: a file descriptor open for reading, a pointer
to a buffer of data to be filled, and an integer indicating the number of bytes to be read.

It returns the number of bytes actually read, or −1 on error. If end-of-file has been

reached, 0 is returned.

The write system call also takes three arguments: a file descriptor open for writing, a
pointer to a buffer of data to be written, and an integer indicating the number of bytes to

be written. It returns the number of bytes actually written, or −1 on error.

Example 3-1 shows a low-level version of our file appending program. Note that because

read and write cause the system to access the disk each time they are called, it is
important for the programmer to specify reasonably large buffer sizes or else his or her

program (and the system) will run very slowly. Try experimenting with large and small

buffer sizes to get a feel for the difference (you may need to use a file of five or ten

thousand characters to really appreciate the difference).

Example 3-1. append-ll—append one file to another using the low-level interface

/*

 * Change <sys/file.h> to <sys/fcntl.h> if you're on System V.

 */

#include <sys/file.h>

main(argc, argv)

int argc;

char **argv;

{

 int n;

 int from, to;

 char buf[1024];

 /*

 * Check our arguments. Note that to write the error

 * message we can't just use "%s" as we did in Example

 * 2-3; we have to write each string separately.

 */

* Actually, this is not strictly true since I/O to some devices is buffered internally by the operating system.

Using C on the UNIX System

20 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 if (argc != 3) {

 write(2, "Usage: ", 7);

 write(2, *argv, strlen(*argv));

 write(2, " from-file to-file\n", 19);

 exit(1);

 }

 /*

 * Open the from-file for reading.

 */

 if ((from = open(argv[1], O_RDONLY)) < 0) {

 perror(argv[1]);

 exit(1);

 }

 /*

 * Open the to-file for appending. If to-file does

 * not exist, open will create it with mode 644

 * (-rw-r--r--). Note that we specify the mode

 * in octal, not decimal

 */

 if ((to = open(argv[2], O_WRONLY|O_CREAT|O_APPEND, 0644)) < 0) {

 perror(argv[2]);

 exit(1);

 }

 /*

 * Now read a buffer-full at a time from the from-file,

 * and write it to the to-file. Note that we only

 * write the number of characters read read in,

 * rather than always writing 1024 characters.

 */

 while ((n = read(from, buf, sizeof(buf))) > 0)

 write(to, buf, n);

 /*

 * Now close the files.

 */

 close(from);

 close(to);

 exit(0);

}

Moving Around in Files

As mentioned before, it is often necessary to move to a specific location in a file before

reading or writing data.

The low-level routine for moving around in a file is called lseek. Like the stdio fseek,
it accepts three arguments: a file descriptor to an open file, a long integer specifying the

number of bytes to move, called an offset, and an integer indicating from where in the

file the offset is to be taken. The third argument is usually specified as one of the

Low-level I/O

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 21

constants defined in sys/file.h on Berkeley UNIX or sys/fcntl.h on System V. On older

systems, these constants are not defined, and the values show in parentheses should be

used instead.

If the third argument is L_SET (0), the offset is taken from the beginning of the file. If it

is L_INCR (1), the offset is taken from the current location in the file. Finally, if the third

argument is L_XTND (2), the offset is taken from the end of the file. lseek returns the
new offset from the beginning of the file.

To move to the end of a file, the call:

lseek(fd, 0L, L_XTND)

should be used. To move to the beginning of the file, the call:

lseek(fd, 0L, L_SET)

may be used. There is no low-level rewind routine.

To find out the current location in a file, the call:

lseek(fd, 0L, L_INCR)

should be used. This tells lseek to move zero places away from the current location in

the file, and lseek will return the “new” offset. There is no low-level ftell routine.

Example 3-2 shows the low-level version of Example 2-5, which wrote records for each

of five users. Note the similarities between the two programs. As before, you should
enter this program and execute it. Then try to write a program which will read the records

from the file in the order 3, 0, 2, 1, 4 and print them out.

Example 3-2. lseekdemo—demonstrate the use of the lseek system call

/*

 * If you're on System V, change <sys/file.h> to <sys/fcntl.h>.

 */

#include <sys/file.h>

struct record {

 int uid;

 char login[8];

};

char *logins[] = { "user1", "user2", "user3",

 "user4", "user5" };

main()

{

Using C on the UNIX System

22 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 int i, fd;

 struct record rec;

 /*

 * Open the data file for writing.

 */

 if ((fd = open("datafile", O_WRONLY | O_CREAT, 0644)) < 0) {

 perror("datafile");

 exit(1);

 }

 /*

 * For each user, going backwards...

 */

 for (i=4; i >= 0; i--) {

 /*

 * Create the record.

 */

 rec.uid = i;

 strcpy(rec.login, logins[i]);

 /*

 * Output the record. Notice we pass the

 * address of the structure.

 */

 putrec(fd, i, &rec);

 }

 close(fd);

 exit(0);

}

/*

 * putrec - write the record in the i'th position.

 */

putrec(fd, i, r)

int i, fd;

struct rec *r;

{

 /*

 * Seek to the i'th position from the beginning

 * of the file.

 */

 lseek(fd, (long) i * sizeof(struct record), L_SET);

 /*

 * Write the record. We want to write one

 * object the size of a record structure.

 */

 write(fd, r, sizeof(struct record));

}

Low-level I/O

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 23

Duplicating File Descriptors

Occasionally it is necessary to have more than one file descriptor referring to the same

file. This is common when forking and executing new processes.* To obtain a new file

descriptor which refers to the same file that fd does, the call:

fd2 = dup(fd)

should be used. fd2 will now refer to the same file, and will be at the same position in

the file as fd. dup returns −1 if an error occurs.

An alternate form of the call allows the programmer to select which file descriptor he or
she wishes to refer to the file. For example, suppose that standard input should be

connected to a given disk file referred to by fd (this is how the shell handles the ‘<’

redirect). The call:

dup2(fd, 0)

will cause file descriptor 0 to be closed if in use, and then joined to the file to which fd

refers. This call is not available in System V, where it has been replaced by fcntl

(described in Chapter 4, Files and Directories). Berkeley UNIX has both dup2 and

fcntl.†

A fairly common code segment seen in UNIX source code looks like:

close(0);

dup(fd);

This tends to confuse new programmers, since it appears that the return value from dup
is being ignored. Actually, the programmer is relying on a feature of the UNIX system

which says that a file descriptor is always allocated as the lowest-numbered available

descriptor. Thus, in the segment above, since the file descriptor 0 was just closed, it will

be allocated on the dup call, thus effectively performing exactly the same task as the call

to dup2, above. This practice of relying on operating system internals is arguably poor;

however it does occur often in the real world.

Converting File Descriptors to File Pointers

Sometimes it is desirable to convert an existing low-level file descriptor referring to an

open file into something that can be used with the Standard I/O Library. For example,

the pipe system call, described in Chapter 9, returns a file descriptor connected to the

* See Chapter 9, Executing Programs.
† Because the POSIX standard specifies it, dup2 has been returned in System V Release 3.0.

Using C on the UNIX System

24 FOR PERSONAL, NON-COMMERCIAL USE ONLY

output stream of another program. If this program prints nothing but a list of numbers, it

would be useful to be able to use fscanf to read them in.

The stdio routine fdopen takes two arguments: a file descriptor referring to an open file,
and a character string indicating how the file descriptor is to be used. This second

argument is exactly identical to the second argument used with fopen. fdopen returns
a file pointer whose stream refers to the same file as the file descriptor, or the constant

NULL on failure.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 25

Chapter 4
Files and Directories

File System Concepts

Before describing the many system calls and library routines available for manipulating

files and directories, it is necessary to provide a brief overview of the UNIX file system.

Ordinary Files

A file contains whatever information a user places in it. Unlike other operating systems,

no format is imposed on a regular file (e.g., sequential, random access, etc.). Instead, a

regular file is considered simply as a sequence of bytes, and these bytes may be read and
written in any way the programmer desires. Certain programs expect a file to be in a

specific format; for example the assembler generates an object file in a specific format,

and the loader expects that format as input. The important feature to note is that the

structure of files is controlled by the programs that access them, not by the operating

system.

Directories

Directories provide the mapping between the names of files and the files themselves,

thus inducing a structure on the file system as a whole. A directory contains a number of

files; it may also contain subdirectories which in turn contain more files. A directory

behaves exactly like an ordinary file when read, though it may not be written by

unprivileged (non-super-user) programs.

The operating system maintains several directories for its own use; one of these is the

root directory. All files in the file system can be found by tracing a path through a chain

of directories starting at the root until the desired file is reached.

When the name of a file is specified to the system, it may be in the form of a path name,

which is a sequence of filenames separated by slashes. Any filename but the one

following the last slash must be the name of a directory. If the sequence begins with a
slash, the search begins in the root directory; otherwise the search begins in the

Using C on the UNIX System

26 FOR PERSONAL, NON-COMMERCIAL USE ONLY

program’s current directory. As limiting cases, the name “/” refers to the root directory

and a null filename (e.g., /a/b/) refers to the directory whose name precedes it. Two

slashes together (“//”) are interpreted as a single slash.

Each directory always has at least two entries.* The name “.” in each directory refers to

the directory itself. Thus a program may read its current directory, without knowing its

name, by opening the file “.”. By convention, the name “..” refers to the parent of the
directory in which it appears, that is, to the directory in which the current directory was

created. A program may move from its current directory to the root directory by

constantly changing its directory to “..”. As a limiting case, when in the root directory

the name “..” is a circular link to the root.

Special Files

Special files are one of the most unusual aspects of the UNIX file system. Each I/O
device (disk drive, tape drive, terminal, etc.) is associated with at least one such file. To

user programs, special files look just like any other file,† but requests to read or write

result in activation of the associated device. For example, a program wishing to write on

a magnetic tape might open the file /dev/mt. Requests to read and write on this file will

cause the tape to move and data to be read or written at the appropriate density, etc. By

a long-standing UNIX convention, entries for special files reside in the directory /dev,

but there is nothing in the operating system that requires or enforces this.

Removable File Systems

It is not necessary that the entire file system hierarchy be stored on the same device, even

though the root of the file system always resides in the same place (so that it may be

located at system startup time). The mount system call (and the associated user
command) takes two arguments: the name of a special file whose associated storage

volume (e.g., a disk pack) has the structure of an independent file system containing its

own directory hierarchy, and the name of an existing (ordinary) file or directory. The

effect of this call is to replace a leaf of the directory tree with the subtree stored on the

special file. All references to the (previously) ordinary file or directory now cause a

reference to the tree stored on the new device. Note that the concept of files and

directories must be preserved when mounting; a directory tree cannot be mounted on a

file and vice versa.

A slight problem exists with terminology here—the entire directory hierarchy, starting
with the root, is technically what is termed the file system. However, in common usage,

each mounted directory tree is also referred to as a file system. Thus the definition

becomes recursive—“the file system is composed of files, directories, and mounted file

* This is not actually a requirement, but is true unless the directory is created in an unusual fashion.
† This is not strictly true, but for the purposes of this discussion it is accurate enough.

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 27

systems.” Fortunately, however, it is usually easy to infer which meaning is intended

from the context in which it is used.

Device Numbers

Each special file on the system is associated with two device numbers. The major device

number informs the operating system which device type is to be used when the filename

is referenced. Each type of device has an operating system-resident section of code called

a “device driver” which operates on that type of device. The minor device number is

passed to the device driver. This number is used to determine which physical device is

to be used. For example, the minor device number is used to determine which disk drive

on a multiple-drive controller is to be accessed, which partition of a disk drive is to be

used, or if a tape drive should be rewound when the requested operation has been

completed. Several devices (e.g., disk drives of the same type) may have the same major
device number, but they will all have different minor device numbers. (The method for

obtaining the major and minor device numbers of a special file will be described shortly.

I-Numbers, the I-List, and I-Nodes

As mentioned above, directories provide the mapping between the names of files and the

files themselves. A directory is made up of a series of structures; each structure contains

the name of a file and a pointer to the file itself. This pointer is an integer called the i-
number (for index number) of the file. When the file is accessed, its i-number is used as

an index into a system table (the i-list) where the entry for the file (the i-node) is stored.

The i-node contains a description of the file:

 The user and group ids of its owner.

 Its protection.

 The physical disk addresses for the file contents.

 Its size.

 Time of creation, last use, and last modification.

 The number of links to the file; that is, the number of times it appears in directories.

 A tag indicating the file type (directory, regular file, or special file).

The system maintains a separate i-list for each mounted directory tree; thus it is possible

for several files in the file system to have the same i-number. By using the major and

minor device numbers associated with the special file of the directory tree in conjunction

with an i-number, each file in the file system can be uniquely determined.*

* This unfortunately breaks down somewhat when using networked file systems. With a networked file system,

it is also necessary to know which machine the file is stored on if a file is to be uniquely determined.

Using C on the UNIX System

28 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Hard Links

It is possible to have more than one name refer to the same file by making a link to that

file. This link is handled in the file system simply by making a new entry in the directory

with the new name and the i-number of the file. This type of link is commonly called a

hard link. Note that because i-numbers are not unique across file systems, it is not

possible to link across them. It is possible, though, to have the same file referred to in

different directories on the same file system; for example /a/b/c and /a/d/e/f may be links

to the same file. Regardless of how many hard links there are to a file, though, there is

still only one i-node describing that file.

Symbolic Links

In 4.2BSD, a new type of file called a symbolic link was introduced. A symbolic link

acts as a pointer to another file (its link). This is accomplished in the file system by

creating a file with the link’s name which contains the path name of the file the link

points to. Because i-numbers are not involved in symbolic links, these links may be used

to link across mounted file systems. This provides an extra degree of flexibility (at a very

minor cost in speed) that hard links do not provide.

A different way to explain the difference between hard links and symbolic links is to say

that because symbolic links are not evaluated until run time, they are more flexible. But
because hard links are evaluated at link time, they require less processing time.

Because some of the more advanced parts of the file system, as well as some of the finer

details of the system in general, have not been covered here, this description is far from

complete. However, it should provide you with enough of an idea of the structure of the

UNIX file system to follow the discussion in the remaining sections of this chapter.

Determining the Accessibility of a File

To determine if a file is accessible to a program, the access system call may be used.

This call takes two arguments: the first is a character string containing the path name to

the file in question, the second is a small integer. The integer’s value determines which
access permission is to be checked, and is specified as one of the constants defined in

sys/file.h: F_OK for existence of the file, X_OK for execute (search) access, W_OK for write

access, and R_OK for read access.* These values may be ORed together to check for more
than one access permission. The call returns 0 if the program has the given access

permissions, otherwise −1 is returned and errno is set to the reason for failure. This call
is somewhat useful in that it makes checking for a specific permission easy, however it

* On older systems, these constants are not defined, and the values 0, 1, 2, and 4, respectively, should be used

instead.

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 29

only answers the question “do I have this permission?” it cannot answer the question

“what permissions do I have?”

Getting Information From an I-Node

The system call used for obtaining the information stored in an i-node is called stat. It
takes two arguments: a character string containing the name of the file of interest, and a

pointer to a structure of type stat. An alternative form of the call, fstat, takes an open

file descriptor in place of the character string;* information is given about the file referred

to by the file descriptor. 4.2BSD added a third form of the call, lstat, which is used

with symbolic links. Simply, stat follows symbolic links providing information about

what they point to, while lstat provides information about the link itself. The calls are
identical when used on other types of files. All the calls return 0 on success and −1 on

failure; setting the errno variable to the error condition.

The stat structure is defined in the include file sys/stat.h, along with several constants.
The file sys/types.h must be included also, to provide the type definitions used in the

structure. The stat structure varies slightly among different versions (and different
ports) of UNIX. There is however, a common set of structure elements present in all

versions of the structure. These are shown below:

struct stat {

 dev_t st_dev;

 ino_t st_ino;

 u_short st_mode;

 short st_nlink;

 short st_uid;

 short st_gid;

 dev_t st_rdev;

 off_t st_size;

 time_t st_atime;

 time_t st_mtime;

 time_t st_ctime;

};

The elements of this structure serve the following purposes:

st_dev The major and minor device numbers of the device which the i-node is

stored on. These are stored in either half of the word, and may be

accessed using the major and minor macros defined in sys/types.h.

st_ino The i-node number.

* Note that this is counter-intuitive: other I/O routines whose name starts with ‘f’ expect a file pointer; this one

expects the low-level file descriptor.

Using C on the UNIX System

30 FOR PERSONAL, NON-COMMERCIAL USE ONLY

st_mode A set of bits encoding the type of file and the access permissions it has.

st_nlink The number of hard links to the file, including the file itself (a file with

no links will have the value 1 in this field). Symbolic links to the file

are not counted here (nor anywhere else).

st_uid The user id of the owner of the file.

st_gid The group id of the file (for permission checks).

st_rdev The type of device if the i-node is that of a device (special) file.

st_size The size of the file in bytes.

st_atime The last time the file was accessed (read or executed), stored in

standard UNIX time format.*

st_mtime The last time the file was modified (written).

st_ctime The last time the i-node was changed. This time is updated whenever

the file’s mode is changed, the file’s access or modification times are

updated, etc. This is not the file’s creation time, as many programs and

documents incorrectly state.

Most of these fields are relatively self-explanatory, and are usually just used “as is” by

the programs which deal with them. However, the st_mode field is important in that it
contains both the type and mode of the file. This information is extracted from this field

by ANDing the value stored there with various constants defined in sys/stat.h:

S_IFMT This constant extracts the type bits from the mode word. The mode

should be ANDed with this, and then compared against the various type
constants:

S_IFDIR Directory.

S_IFCHR Character special (raw) device.

S_IFBLK Block special (buffered) device.

S_IFREG Regular file.

S_IFMPC Multiplexed character special (Version 7 only).

S_IFMPB Multiplexed block special (Version 7 only).

S_IFLNK Symbolic link (Berkeley UNIX only).

S_IFSOCK Socket (Berkeley UNIX only).

S_IFIFO FIFO buffer (System V only).

* See Chapter 7, Telling Time and Timing Things.

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 31

S_ISUID If the result of ANDing this bit with the mode is non-zero, the file has

the set-user-id bit set.

S_ISGID If the result of ANDing this bit with the mode is non-zero, the file has

the set-group-id bit set.

S_ISVTX If the result of ANDing this bit with the mode is non-zero, the file has

the “sticky bit” set. This means that the text of the program (the bit is
meaningless on non-program files) will be saved on the swap disk even

though nobody is running it. This idea came about under Version 6

UNIX on the PDP-11 to make often-used programs load faster; with the

onset of paging systems it is more or less obsolete.

S_IREAD By ANDing this value directly with the mode, it may be determined if

the owner of the file has read permission (if the result of the operation

is non-zero). By shifting the constant to the right 3 places (or shifting

the mode left 3 places) ANDing, the group read permission may be

checked. By shifting six places, world read permission may be checked.

S_IWRITE Like S_IREAD, this bit checks the write permissions on the file.

S_IEXEC Like S_IREAD, this bit checks the execute permissions on the file if it
is a non-directory file. If the file is a directory, this bit implies

permission to search the directory (i.e., access files contained in the

directory).

Don’t worry if the previous pages seem a little overwhelming. After the next section on

reading directories, an example program will be presented which looks like the standard

system program ls. This program demonstrates the use of the stat structure, and should
make things much clearer.

Reading Directories

As mentioned previously, a directory is simply a special file that contains i-

number/filename pairs. With the exception of 4.2 and 4.3BSD, all versions of the UNIX

system limit filenames to 14 characters. These short filenames make for a simple

directory format, so we’ll look at a program to read directories on non-BSD systems first.

A program to read the directories containing longer Berkeley-style filenames will be

shown afterwards.

A directory contains structures of type direct, defined in the include file sys/dir.h (once
again, sys/types.h must be included to define the types used in the structure):

#define DIRSIZ 14

struct direct {

Using C on the UNIX System

32 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 ino_t d_ino;

 char d_name[DIRSIZ];

};

It should be noted that the name of the file, d_name, is not guaranteed to be null-
terminated; programs should always be careful of this. Files which have been deleted

will have i-numbers (d_ino) equal to zero; these should in general be skipped over when

reading the directory. A directory is read by simply opening it and reading structures
either one at a time or all at once. Example 4-1 shows a small program that simply opens

the current directory and prints the names of all the files it contains. (Remember, this

program will only work on non-Berkeley UNIX systems.)

Example 4-1. listfiles1—list the names of the files in the current directory

#include <sys/types.h>

#include <sys/dir.h>

#include <stdio.h>

main()

{

 FILE *fp;

 struct direct dir;

 if ((fp = fopen(".", "r")) == NULL) {

 perror("current directory");

 exit(1);

 }

 /*

 * Read directory entries. Since we're reading

 * entries one at a time, we use the fread routine,

 * which buffers them internally. Don't use the

 * low-level read to do things this way, since

 * reading very small quantities of data (16 bytes)

 * at a time is very inefficient.

 */

 while (fread(&dir, sizeof(dir), 1, fp) != EOF) {

 /*

 * Skip removed files.

 */

 if (dir.d_ino == 0)

 continue;

 /*

 * Make sure we print no more than DIRSIZ

 * characters.

 */

 printf("%.*s\n", DIRSIZ, dir.d_name);

 }

 fclose(fp);

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 33

 exit(0);

}

In 4.2BSD, the 14-character limit on filenames was removed and filenames were allowed
to be much longer.* Obviously, storing directories in the same fixed-size format would

be quite inefficient, since filenames are seldom extremely long. Instead, the directory

entry is stored as a variable-length record, and a special set of library routines have been

provided to read directories. Public-domain versions of these routines are available on

most newer UNIX systems, and should always be used in order to write portable code.

As an aid to portability, a listing of these routines is provided in Appendix D, Berkeley

UNIX Directory Compatibility Routines, for use on older systems that do not already

provide them.

Even with all these changes, the directory structure is still defined in sys/dir.h on

Berkeley UNIX. The filename in this structure is always guaranteed to be null-terminated

(which is not the case on non-Berkeley UNIX systems). To read a directory, the user

declares a pointer of type DIR, similar to stdio’s FILE pointer. The opendir routine

opens the directory given as argument and returns a pointer of this type or NULL if the

directory cannot be opened. The readdir routine returns a pointer to a directory entry,

or NULL on end-of-file. The closedir routine closes the directory file. In addition, the

seekdir and rewinddir routines are provided to change the current location and reset

the location to zero in the directory. The scandir routine provides an alternative to
reading the directory entries one at a time; it reads the entire directory into memory and

sorts the entries using user-supplied selection and sorting routines. Example 4-2 shows

the use of these routines to print the names of the files in the current directory.

Example 4-2. listfiles2—list the names of the files in the current directory

#include <sys/types.h>

#include <sys/dir.h>

#include <stdio.h>

main()

{

 DIR *dp;

 struct direct *dir;

 if ((dp = opendir(".")) == NULL) {

 fprintf(stderr, "cannot open directory.\n");

 exit(1);

 }

 /*

 * Read entries...

 */

* Usually, the limit is 256 characters.

Using C on the UNIX System

34 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 while ((dir = readdir(dp)) != NULL) {

 /*

 * Skip removed files.

 */

 if (dir->d_ino == 0)

 continue;

 printf("%s\n", dir->d_name);

 }

 closedir(dp);

 exit(0);

}

In order to consolidate the information provided in the preceding sections, Example 4-3

shows a program similar in function to the standard UNIX program ls. This program will

perform an ls -asl on each of its named arguments. If the argument is a directory, the

contents of that directory will be listed. For simplicity’s sake the program prints the user

id and group id of the owner of each file rather than digging up the login and group
names. Also, the directory is simply printed in the order it is read, the filenames are not

sorted, and the directory is simply printed in the order it is read. The directory reading

routines of Berkeley UNIX are used in the example; you should be able to change this

yourself if necessary.

Example 4-3. ls—an “ls”-like program

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/dir.h>

#include <stdio.h>

char *modes[] = {

 "---", "--x", "-w-", "-wx",

 "r--", "r-x", "rw-", "rwx"

};

main(argc, argv)

int argc;

char **argv;

{

 struct stat sbuf;

 /*

 * If no arguments, list current directory.

 */

 if (argc < 2) {

 list(".");

 exit(0);

 }

 /*

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 35

 * Process arguments.

 */

 while (--argc) {

 /*

 * See what the file is.

 */

 if (stat(*++argv, &sbuf) < 0) {

 perror(*argv);

 continue;

 }

 /*

 * If it's a directory we list it,

 * otherwise just print the info about

 * the file.

 */

 if ((sbuf.st_mode & S_IFMT) == S_IFDIR)

 list(*argv);

 else

 printout(".", *argv);

 }

 exit(0);

}

/*

 * list - read a directory and list the files it

 * contains.

 */

list(name)

char *name;

{

 DIR *dp;

 struct direct *dir;

 /*

 * Open the directory.

 */

 if ((dp = opendir(name)) == NULL) {

 fprintf(stderr, "%s: cannot open.\n", name);

 return;

 }

 /*

 * For each entry...

 */

 while ((dir = readdir(dp)) != NULL) {

 /*

 * Skip removed files.

 */

 if (dir->d_ino == 0)

 continue;

 /*

 * Print it out.

Using C on the UNIX System

36 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 */

 printout(name, dir->d_name);

 }

 closedir(dp);

}

/*

 * printout - print out the information about

 * a file.

 */

printout(dir, name)

char *dir, *name;

{

 int i, j;

 char perms[10];

 struct stat sbuf;

 char newname[1024];

 /*

 * Make full path name, so

 * we have a legal path.

 */

 sprintf(newname, "%s/%s", dir, name);

 /*

 * At this point we know the file exists,

 * so this won't fail.

 */

 stat(newname, &sbuf);

 /*

 * Print size in kbytes.

 */

 printf("%5d ", (sbuf.st_size + 1023) / 1024);

 /*

 * Get the file type. For convenience (and to

 * make this example universal), we ignore the

 * other types which are version-dependent.

 */

 switch (sbuf.st_mode & S_IFMT) {

 case S_IFREG: putchar('-'); break;

 case S_IFDIR: putchar('d'); break;

 case S_IFCHR: putchar('c'); break;

 case S_IFBLK: putchar('b'); break;

 default: putchar('?'); break;

 }

 /*

 * Get each of the three groups of permissions

 * (owner, group, world). Since they're just

 * bits, we can count in binary and use this

 * as a subscript (see the modes array, above).

 */

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 37

 *perms = NULL;

 for (i=2; i >= 0; i--) {

 /*

 * Since we're subscripting, we don't

 * need the constants. Just get a

 * value between 0 and 7.

 */

 j = (sbuf.st_mode >> (i*3)) & 07;

 /*

 * Get the perm bits.

 */

 strcat(perms, modes[j]);

 }

 /*

 * Handle special bits which replace the 'x'

 * in places.

 */

 if ((sbuf.st_mode & S_ISUID) != 0)

 perms[2] = 's';

 if ((sbuf.st_mode & S_ISGID) != 0)

 perms[5] = 's';

 if ((sbuf.st_mode & S_ISVTX) != 0)

 perms[8] = 't';

 /*

 * Print permissions, number of links,

 * user and group ids.

 */

 printf("%s%3d %5d/%-5d ", perms, sbuf.st_nlink, sbuf.st_uid,

 sbuf.st_gid);

 /*

 * Print the size of the file in bytes,

 * and the last modification time. The

 * ctime routine converts a time to ASCII;

 * it is described in Chapter 7, Telling

 * Time and Timing Things.

 */

 printf("%7d %.12s ", sbuf.st_size, ctime(&sbuf.st_mtime)+4);

 /*

 * Finally, print the filename.

 */

 printf("%s\n", name);

}

Modifying File Attributes

The chmod system call is used to change the mode of a file. It takes two arguments: a
character string containing the name of the file to change, and the new mode to set given

Using C on the UNIX System

38 FOR PERSONAL, NON-COMMERCIAL USE ONLY

as an integer. A similar call, fchmod, which takes an open file descriptor in place of a
filename, is provided in Berkeley UNIX. The mode is conventionally specified in octal,

which lets each digit represent one group of permissions (owner, group, world). The calls

return −1 and set the errno variable if the file does not exist or is not owned by the user
running the program, or 0 on success.

The chown system call is used to change file ownership. It takes three arguments: a
character string containing the name of the file to be changed, an integer containing the

new user id to set, and an integer containing the new group id to set. Berkeley UNIX also

provides the call fchown, which takes an open file descriptor in place of the filename.
This call is normally restricted to the super-user. It returns 0 on success; −1 is returned

and errno is set if the call fails.

Miscellaneous File System Routines

The rest of this chapter is devoted to the “little” routines which don’t fit into their own

section but are nevertheless important.

Changing Directories

A program can change its current working directory with the chdir system call. It takes
a single argument, the path name of the new directory. −1 is returned if the program

cannot change into the directory, and errno is set to the reason for failure.

Berkeley UNIX and System V each provide routines to obtain the path names of the

current working directory; these are discussed in Chapter 13, The File System.

Deleting and Truncating Files

Files can be deleted using the unlink system call. It takes a single argument, the name

of the file to be deleted. −1 is returned if the file cannot be removed, and errno is set to
the error condition. To remove a file, the user running the program must be able to write

in the directory containing the file. He does not need write permission on the file itself.

unlink will not delete directories. To remove a directory on UNIX systems prior to
4.2BSD and System V Release 3.0, the rmdir system program must be executed;* there

is no system call to do so. In 4.2BSD, rmdir was turned into a system call taking a single
argument, the name of the directory to be removed. −1 is returned if an error occurs, and

errno will be set to the reason for failure. The rmdir system call was added to System
V in Release 3.0, and is called the same way. Note that only empty directories may be

removed.

* See Chapter 9, Executing Programs.

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 39

In Berkeley UNIX, the truncate system call may be used to truncate a file to a given
size. The call takes two arguments: the name of the file to be truncated and the number

of bytes the file should be truncated to. If the file is smaller than this, nothing is done (it

is not extended to that size). An alternate form of the call, ftruncate, which takes an
open file descriptor in place of the filename, is also available.

Making Directories

On UNIX systems prior to 4.2BSD and System V Release 3.0, the mkdir system program

must be executed to create a directory. In 4.2BSD, mkdir was turned into a system call.

It takes two arguments: the name of the directory to be created, and the mode the

directory should be given. −1 is returned if an error occurs, and errno will be set to the

reason for failure. The mkdir system call was added to System V in Release 3.0, and is
called in the same fashion.

Linking and Renaming Files

To make a hard link to a file, the link system call is used. This call takes two arguments:
the name of the file to be linked to, and the name of the link to be created. −1 is returned

if the link cannot be made, and errno is set to the error condition. It is not possible to
make links across mounted file systems.

To rename a file on non-Berkeley systems, a series of link and unlink calls are used,
as follows:

unlink(newfile);

link(oldfile, newfile);

unlink(oldfile);

This only works if the old and new files are in the same file system; cross-file system

moves must be done by copying the file in place of linking. Directories may be linked;
but they must be empty, and the user doing the linking must have super-user privileges.

In general, directories should be linked using symbolic links, not hard links.

To rename a file under Berkeley UNIX, the rename system call should be used instead.

rename guarantees that one instance of the file will always exist, even if the system

crashes in the middle of the operation. It takes two arguments: the name of the file to be
moved, and the name it should be moved to. As above, this only works on moves that do

not cross file system boundaries.

Symbolic Links

In 4.2BSD, symbolic links were added to the file system. These links are simply

“pointers” to files; they are not hard links. Unlike hard links, they may cross file system

boundaries. To create a symbolic link, the symlink call is used. It takes two arguments:

Using C on the UNIX System

40 FOR PERSONAL, NON-COMMERCIAL USE ONLY

the name of the file to be pointed to, and the name of the link itself. −1 is returned and

errno is set on error.

To find out what a symbolic link points to, the readlink system call is used. This call
takes three arguments: the name of the link, a pointer to a character buffer to store the

name of the pointed-to file in, and the size of the buffer. The number of bytes placed in

the buffer is returned on success; this number is important because the buffer is not null-

terminated. −1 is returned if the call fails and errno is set to the error condition.

It should be noted that access permissions are ignored on symbolic links; even a mode 0

(l---------) symbolic link can be used by anyone, and can be read by anyone using

readlink. This is to avoid the problem of differing modes on the symbolic link and the
file it points to.

The umask Value

When a file is created with creat or the three-argument open, a mode is supplied for
the file to be created with. Invisibly to the user, this mode is modified by the program’s

umask. The umask is a number just like the mode, except it indicates permissions to be

turned off rather than on. For example, if the program’s umask is 0022 and a file is

created mode 0666, the actual mode of the file will be computed as:

file_mode = create_mode & ~umask;

so the actual mode of this file will be:

0666 & ~0022 = 0666 & 0755 = 0644

The umask value only affects creation modes of files and directories; the modes supplied

to the chmod call are not affected.

Most systems have a default umask value of 0 or 022. The umask may be changed with

the umask system call, which takes the new value as an argument and returns the old
value.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 41

Chapter 5
Device I/O Control

Controlling input and output devices is an important topic for several reasons. Some

examples include:

 When prompting for a password, it is normally desirable to prevent the computer

from echoing (printing) the characters typed and thus giving the password away.

 Many people like to adjust various input control characters on their terminal, such

as the “erase,” “kill,” and “interrupt” characters.

 Programs accessing the magnetic tape device often need to rewind the tape, skip

over files on the tape, take the tape drive off-line, etc.

All versions of the UNIX operating system provide one “catch-all” system call for

controlling input and output at the device level. This call is ioctl. It takes three
arguments: an open file descriptor referring to the device or file in question,* a constant

representing the operation to be performed, and an argument for the operation to use.

The argument is often given as a pointer to something; depending on the operation

“something” is either a structure or a long integer.

Version 7 and the Berkeley versions of UNIX use the same operation constants and third

arguments, and code is generally portable between these versions (although several

features added by Berkeley will not be available on Version 7 systems). In System V, on

the other hand, AT&T has completely redone the operations and their arguments. The

purpose of this was to make everything work the same way, and to centralize many

functions. Unfortunately, this means that code using ioctl will not be portable between
System V and any other version of UNIX, and vice versa.

Two other calls often used in older versions of UNIX for controlling terminal modes are

gtty (get tty modes) and stty (set tty modes). These are not available at all in System

* Depending on the operation being performed, the file descriptor may be required to be open for reading and/or

writing. It is usually safe to assume that a file descriptor open for writing will be accepted.

Using C on the UNIX System

42 FOR PERSONAL, NON-COMMERCIAL USE ONLY

V; they are provided as compatibility library routines in Berkeley UNIX. Their function

is duplicated exactly by the TIOCGETP and TIOCSETP ioctl operations; they will not

be discussed further. Another system call, fcntl, was added in System V and 4.2BSD

to attempt to remove the file operations from ioctl. This call is discussed following the

sections on ioctl.

Discussion of the ioctl system call has been divided into two main parts: the first
describes the Version 7/Berkeley UNIX version, the second describes the System V

version. For simplicity, only terminal I/O control will be described. Once the basic

concepts are understood, they may easily be extended to other devices.

The Version 7 and Berkeley UNIX ioctl

Version 7 and Berkeley versions of UNIX have two structures available for modifying

terminal modes. The Berkeley versions also have a third structure and a 32-bit word for

controlling the added features in their terminal driver. These structures are described in

the following sections, along with the various operation codes which use them.

The definitions of the structures and the operations are contained in the include file

sys/ioctl.h; sys/types.h should also be included.* For all operations, ioctl returns 0 if

the call succeeds. If it fails, −1 is returned and errno is set to the error condition.

Line Disciplines

In Berkeley UNIX, many features such as job control, etc. have been incorporated into

a second version of the terminal (tty) driver. The original tty driver, which is basically

identical to the Version 7 driver, is called the “old” tty driver while the new version is

called (obviously) the “new” tty driver. It is possible to choose among several line

disciplines to use when communicating over serial lines; the tty drivers are two of these

disciplines.

To determine which line discipline is currently in use, the call:

ioctl(fd, TIOCGETD, &ldisc)

should be used, where fd is an open file descriptor referring to a serial line (e.g., a

terminal), and ldisc is a long integer. Following the call, the value of ldisc may be
compared against the constants:

OTTYDISC The “old” tty discipline. This discipline is more or less identical to the

Version 7 tty driver.

* On some older systems it may be necessary to include sgtty.h as well as the other files; newer systems permit

inclusion of either file (the files include each other).

Device I/O Control

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 43

NTTYDISC The “new” tty discipline. This discipline has everything the old

discipline has, and also supports job control, command line redraw, etc.

NETLDISC The Berknet line discipline. This is essentially obsolete as of 4.2BSD,

but is still around. (Berknet was a set of protocols for joining several

machines together into a primitive network using serial data lines. The

software provided facilities for file transfer and remote job execution.
Berknet was superseded by TCP/IP (see Chapter 12, Networking),

which is both faster and more robust.

There are several other disciplines available, but they vary from site to site and version

to version. To set the line discipline, the call:

ioctl(fd, TIOCSETD, &ldisc)

should be used. In this case, ldisc should contain the value associated with the desired
new discipline.

In the following discussion, it may be assumed that anything which works with the old

tty driver will work on both Version 7 and Berkeley UNIX systems. Further, unless the

new tty driver implements the function differently (line kill, for example), all old tty

driver operations work equally well on the new tty driver. Those functions described as

only working with the new tty driver will only work on Berkeley UNIX systems, and

only if the line discipline is set to NTTYDISC.

The sgttyb Structure

The sgttyb structure is used by both the old and new tty drivers to set the input and
output baud rates, the erase and line kill characters, and many of the more often used

terminal modes. The structure is defined as follows:

struct sgttyb {

 char sg_ispeed; /* input speed */

 char sg_ospeed; /* output speed */

 char sg_erase; /* erase character */

 char sg_kill; /* kill character */

 short sg_flags; /* mode flags */

};

sg_ispeed and sg_ospeed have values from the set of constants B0, B50, B75, …,

B300, …, B4800, B9600. The sg_flags word has 16 bits which represent various
modes. If the bit is set the mode is on, otherwise it is off. The operations using this

structure are:

TIOCGETP Get the current modes.

TIOCSETP Set the modes to those in the structure pointed to by the third argument.

Note that all elements must be “filled in;” the easiest way to do this is

Using C on the UNIX System

44 FOR PERSONAL, NON-COMMERCIAL USE ONLY

to use TIOCGETP to get the current modes, modify that structure, and
then set the new modes.

TIOCSETN The same as TIOCSETP, except that the input and output queues are not
flushed when the request is performed. This version is necessary to

keep output from disappearing, which is often desired.

The sg_flags word is used to set various modes; the full set of them is described in
tty(4). Some of the more common (and interesting) ones are:

ECHO When set, the operating system will print to the terminal screen all

characters typed on the terminal keyboard. When not set, nothing is

printed and the cursor does not move. This is useful for prompting for

passwords, etc.

RAW When set, all input processing is disabled. This means that characters

may have their eighth bit set (which can confuse stdio routines, since the

negative character can get sign-extended into −1). In addition, input is

not buffered; all reads from the terminal will return as soon as a character

is typed rather than waiting until a carriage return is typed. In RAW mode,

all special characters (erase, kill, interrupt, etc.) lose their special

meanings and will not perform those functions.

CBREAK When set, some of the input processing is turned off. Characters are still

returned as 7-bit ASCII (eighth bit is zero), and the interrupt character

still works. The erase and kill characters are disabled, and reads still

return as soon as a character is typed. In general it is usually preferable

to use CBREAK over RAW, since the interface is somewhat cleaner.

CRMOD If not set, the system will accept either carriage return or line feed as a

command line terminator. It will map the carriage return into a line feed

character for the reading process, and will echo a carriage return and a

line feed on output. If set, this mapping is disabled, and a carriage return

will simply be sent to the reading process as is, and the system will only

echo the character typed instead of mapping one into the other.

The conventional way to turn on a mode is to OR the constant for that mode into the

flags word. To turn off a mode the complement of the constant for that mode is ANDed

with the flags word. For example, to turn ECHO on and RAW off, the code segment:

flags |= ECHO;

flags &= ~RAW;

might be used. A complete example of this is given later in Example 5-1.

Device I/O Control

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 45

The tchars Structure

The tchars structure is used by both the old and new tty drivers to set the interrupt,

quit, start, stop, and end-of-file characters. The structure is defined as:

struct tchars {

 char t_intrc; /* interrupt */

 char t_quitc; /* quit */

 char t_startc; /* start output */

 char t_stopc; /* stop output */

 char t_eofc; /* end-of-file */

 char t_brkc; /* input delimiter */

};

The associated operation constants are:

TIOCGETC Get the current settings.

TIOCSETC Set new characters. Note that all elements of the structure should be

filled in.

By setting any of the elements of the structure to −1, that character is effectively

undefined until it is reset to something else. This is one way of making a process

uninterruptible from the keyboard. This convention of setting things to −1 is also true for

the sgttyb and ltchars structures.

The ltchars Structure

The ltchars structure is used by the new tty driver to set the extra control characters
for suspend, delayed suspend, reprint command line, flush output, erase word, and quote

next character. The structure is defined as:

struct ltchars {

 char t_suspc; /* stop process signal */

 char t_dsuspc; /* delayed stop process */

 char t_rprntc; /* reprint line */

 char t_flushc; /* flush output (toggle) */

 char t_werasc; /* word erase */

 char t_lnextc; /* literal next char */

};

The associated operation constants are:

TIOCGLTC Get the current settings.

TIOCSLTC Set new characters. Note that all elements of the structure should be

filled in.

Using C on the UNIX System

46 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The Local Mode Word

The additional modes available in the new tty driver* are set in the local mode word. This

word is similar in function to the sg_flags word in the sgttyb structure, and is simply

a 32-bit integer passed to ioctl with one of the operation constants discussed below.

Some of the more useful modes are:

LCRTBS Perform a backspace when the erase character is typed, instead of
erasing the character.

LCRTERA Perform backspacing for CRT terminals by printing “backspace space

backspace” for each character, thus erasing it on the screen.

LCRTKILL Perform line kills by erasing the entire line using the “backspace space

backspace” method. This is different from the old tty driver; which

simply echoes a new line.

LCTLECH Print input control characters (except the erase and kill characters) as

^X, where X is the control character. Normally, the character is just

echoed as is (e.g., ‘^G’, the bell character, beeps, etc.).

LTOSTOP When this mode is set, and a background process tries to write to the

terminal, it is stopped via a signal† and cannot write to the terminal until

it is placed in the foreground. This is relatively useless unless the user
is using csh or another shell that understands job control.

The associated operation constants are:

TIOCLGET Get the current mode word.

TIOCLSET Set the mode word to the new value.

TIOCLBIS Set the ‘1’ bits of the argument in the mode word. The argument is

ORed with the current value of the mode word and the result stored in

the mode word.

TIOCLBIC Clear the ‘1’ bits of the argument in the mode word. The complement

of the argument is ANDed with the current value of the mode word and

the result stored in the mode word.

The winsize Structure

In 4.3BSD, support for windowing systems such as SunWindows®, the X Window

System, and the software for the Teletype 5620 terminal was added to the terminal driver.

This includes a new structure which defines the size of a window. Programs such as vi

* In Berkeley UNIX, many of these modes have been back-ported to the old tty driver, although this is not

documented anywhere.
† See Chapter 10, Job Control.

Device I/O Control

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 47

and more use the information about window size to determine the number of rows and

columns on the “screen.” The structure is defined as:

struct winsize {

 unsigned short ws_row; /* character size */

 unsigned short ws_col;

 unsigned short ws_xpixel; /* pixel size */

 unsigned short ws_ypixel;

};

The associated operation codes are TIOCGWINSZ to get the current window size, and

TIOCSWINSZ to set a new window size. When getting the window size, if either ws_row

or ws_col is zero in the returned structure, the entire structure should be ignored, as no
window size has been set (i.e., the terminal is probably not running a window package).

When a window’s size is changed, either by you (using a mouse or other device) or by a

program, all programs in the terminal’s process group are sent the SIGWINCH signal
indicating a size change.* This enables editors and the like to re-format the screen

according to the new size.

Miscellaneous Operations

The following operation constants are also available. There are several more, but they

are rather special-purpose and not described here.

TIOCFLUSH Flush all characters remaining in the input and output queues. This is

primarily useful for discarding any “typeahead” the user may have

entered.

TIOCEXCL Set exclusive-use on the file referred to by the file descriptor. This file

does not have to be a terminal. When exclusive-use is set, all opens of
that file will be denied until the current process closes the file.

TIOCNXCL Clear exclusive-use on the file referred to by the file descriptor. This

should always be used by processes setting exclusive-use before they

exit.

TIOCSTI Put the character pointed to by the third argument onto the input queue

of the terminal referred to by the file descriptor. This effectively

“pretends” that the user typed this character. Because this is a potential

security hole, there are several restrictions (which vary from site to

site) on its use.

* See Chapter 8, Processing Signals, and Chapter 10, Job Control.

Using C on the UNIX System

48 FOR PERSONAL, NON-COMMERCIAL USE ONLY

FIONREAD The number of characters available to read from the file descriptor is

returned in the third argument. This is useful for determining if the

user has typed something without executing a read (which would

“block” waiting for you to type something if you hadn’t already).

Example 5-1 shows a small program which turns off ECHO and turns on CBREAK, and
then prints screenfuls of the files named on its command line. The program pauses after

each screenful and waits for you to type any character to continue. Because the terminal

is in CBREAK mode, the read will return immediately. When all files have been displayed,
the program resets the terminal modes and exits. This is a primitive version of the

Berkeley UNIX more and System V pg commands. Note that the tchars structure is
used to “turn off” the interrupt character while the program is in use; this prevents you

from interrupting out of the program and leaving the terminal in an undesirable state.*

Example 5-1. pager1—simple file paginator (Berkeley/V7 systems)

#include <sys/ioctl.h>

#include <stdio.h>

main(argc, argv)

int argc;

char **argv;

{

 struct sgttyb sgo, sgn;

 struct tchars tco, tcn;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s file [file ...]\n", *argv);

 exit(1);

 }

 /*

 * In real life we'd check the return values of

 * these, since if the input is redirected from

 * a file they will fail. We are assuming the

 * terminal is always connected to the standard

 * input.

 */

 ioctl(0, TIOCGETP, &sgo);

 ioctl(0, TIOCGETC, &tco);

 sgn = sgo;

 sgn.sg_flags &= ~ECHO; /* turn off ECHO */

 sgn.sg_flags |= CBREAK; /* turn on CBREAK */

 tcn = tco;

 tcn.t_intrc = -1; /* disable int key */

* This is not the way it is done in real life; see Chapter 8, Processing Signals.

Device I/O Control

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 49

 /*

 * Set the new modes. Again we ignore return

 * values.

 */

 ioctl(0, TIOCSETP, &sgn);

 ioctl(0, TIOCSETC, &tcn);

 while (--argc)

 more(*++argv);

 /*

 * Reset the old tty modes.

 */

 ioctl(0, TIOCSETP, &sgo);

 ioctl(0, TIOCSETC, &tco);

 exit(0);

}

/*

 * more - display the file.

 */

more(file)

char *file;

{

 FILE *fp;

 int line;

 char linebuf[1024];

 if ((fp = fopen(file, "r")) == NULL) {

 perror(file);

 return;

 }

 /*

 * Print 22 lines at a time.

 */

 for (;;) {

 line = 1;

 while (line < 22) {

 /*

 * If end-of-file, let them hit a key one

 * more time and then go back.

 */

 if (fgets(linebuf, sizeof(linebuf), fp) == NULL) {

 fclose(fp);

 prompt();

 return;

 }

 fwrite(linebuf, 1, strlen(linebuf), stdout);

 line++;

 }

 prompt();

Using C on the UNIX System

50 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 }

}

/*

 * prompt - prompt for a character.

 */

prompt()

{

 char answer;

 printf("Type any character for next page: ");

 answer = getchar();

 putchar('\n');

}

There are many, many more things which may be done with the ioctl system call,
including magnetic tape manipulation, network routing changes, etc. All of the

operations are described in the various manual pages contained in Section 4 of the UNIX

Programmer’s Manual. The operations described here are all documented in tty(4).

The System V ioctl

The System V version of ioctl is completely incompatible with the ioctl supplied
with most other versions of UNIX. It uses a single structure for all operations; this

structure is defined in the include file termio.h:

#define NCC 8

struct termio {

 unsigned short c_iflag; /* input modes */

 unsigned short c_oflag; /* output modes */

 unsigned short c_cflag; /* control modes */

 unsigned short c_lflag; /* local modes */

 char c_line; /* line discipline */

 unsigned char c_cc[NCC]; /* control chars */

};

The associated ioctl operation constants are:

TCGETA Get the current settings.

TCSETA Set the new modes from the structure pointed to by the argument.

TCSETAW Wait for output to drain before setting the new modes. This is often

needed at low baud rates to prevent disappearing output.

TCSETAF Wait for the output to drain, and then flush the input queue and set the

new modes.

Each element of the structure is described separately below.

Device I/O Control

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 51

c_iflag

This field describes the basic terminal input control. There are several flags that can be

set and cleared in this field. Unlike Version 7 and Berkeley UNIX flags words, System

V often uses two separate bits to indicate the “on” and “off” of a single feature. The code

naively assumes that you will not set both the “on” and “off” flags; results in this case

are undefined.

The conventional way to turn on a mode is to OR the constant for that mode into the

flags word. To turn off a mode the complement of the constant for that mode is ANDed

with the flags word. For example, to turn ISTRIP on and IGNCR off, the code segment:

flags |= ISTRIP;

flags &= ~IGNCR;

might be used. A complete example is given later in Example 5-2.

Some of the more important bits for c_iflag are:

BRKINT If set, then the BREAK key will generate an interrupt signal just as

(conventionally) the DEL key does.

IGNBRK The inverse of BRKINT.

ISTRIP Strip (set to zero) the eighth bit off all input characters. If not set, the

eighth bit is passed through exactly as received.

INLCR If set, line feed is mapped to carriage return on input.

ICRNL If set, carriage return is mapped to line feed on input.

IGNCR If set, carriage return is ignored on input.

IXON Enables start/stop (usually ‘^S’/’^Q’) output flow control. All start/stop

characters are ignored with respect to actually passing them to a

program. If IXANY is set, then any character will restart the output,

otherwise only ‘^Q’ will restart it.

c_oflag

This field specifies the system’s treatment of output. Some of the more important bits

are:

OPOST If set, the rest of the flags in this field take effect. If not set, all output is

passed straight through to the terminal; this set of modes will be ignored.

ONLCR Map line feed to carriage return-line feed on output.

OCRNL Map carriage return to line feed on output.

Using C on the UNIX System

52 FOR PERSONAL, NON-COMMERCIAL USE ONLY

c_cflag

This field describes the hardware control of the terminal. This is where baud rate, parity,

etc. are all set. There are constants for all these features defined; see the include file or

the termio(7) manual page for their values.

c_lflag

This is used by the line discipline to control terminal functions. Some of the modes
provided are:

ISIG If set, the INTR, SWTCH, and QUIT (see below) characters have their

normal meanings and cause interrupts to be generated. If not set, these
characters have no special meaning.

ICANON If set, canonical input processing is enabled. This means that characters

are buffered until a carriage return (line feed) is typed, and the character

erase and line kill functions work as normal. If not set, then read requests

return “immediately” with single characters. Actually, values for min

and time should be placed in the VMIN and VTIME elements of the c_cc

array when turning off ICANON. A read will not be satisfied until at least

min characters have been received or the timeout value time (in tenths

of seconds) has been reached between characters. To emulate the

Version 7 and Berkeley UNIX RAW or CBREAK modes, min should be 1

and time should be 0.

ECHO If set, characters are printed as they are typed. If not set, nothing is

printed. This is useful for prompting for passwords and the like.

ECHOE If set, character erase is echoed as “backspace space backspace.”

ECHOK If set, a line feed is echoed after a kill character is typed.

c_cc

This array holds the values of the various special characters. It is subscripted with the

constants VINTR, VQUIT, VERASE, VKILL, VEOF, VEOL, and VSWTCH, which should have

the obvious meanings. The VSWTCH character is for System V’s layer-based job control
facility. The start and stop characters may not be changed and may not be disabled. All

the other characters may be changed or disabled (by setting them to −1) at will. This

problem with the start and stop characters causes problems for several programs such as

text editors.

Example 5-2 shows a small program that turns off ECHO and ICANON, and then prints
screenfuls of the files named on its command line. The program pauses after each

screenful and waits for you to type any character to continue. Because the terminal is not

in ICANON mode, the read will return immediately. When all files have been displayed,

Device I/O Control

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 53

the program resets the terminal modes and exits. Again, this is a primitive version of the

Berkeley UNIX more and System V pg commands. Note that the interrupt character in

c_cc is set to −1 to “turn it off” while the program is in use; this prevents you from
interrupting out of the program and leaving the terminal in an undesirable state.*

Example 5-2. pager2—simple file paginator (System V version)

#include <termio.h>

#include <stdio.h>

main(argc, argv)

int argc;

char **argv;

{

 struct termio tio, tin;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s file [file ...]\n", *argv);

 exit(1);

 }

 /*

 * In real life we'd check the return value of

 * this, since if the input is redirected from a

 * file it will fail. We are assuming the

 * terminal is always connected to the standard

 * input.

 */

 ioctl(0, TCGETA, &tio);

 tin = tio;

 tin.c_lflag &= ~ECHO; /* turn off ECHO */

 tin.c_lflag &= ~ICANON; /* turn off ICANON */

 /*

 * Emulate CBREAK mode.

 */

 tin.c_cc[VMIN] = 1;

 tin.c_cc[VTIME] = 0;

 /*

 * Set the new modes. Again we ignore return

 * values.

 */

 ioctl(0, TCSETA, &tin);

 while (--argc)

 more(*++argv);

 /*

* This is not the way it is done in real life; see Chapter 8, Processing Signals.

Using C on the UNIX System

54 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * Reset the old tty modes.

 */

 ioctl(0, TCSETA, &tio);

 exit(0);

}

/*

 * more - display the file.

 */

more(file)

char *file;

{

 FILE *fp;

 int line;

 char linebuf[1024];

 if ((fp = fopen(file, "r")) == NULL) {

 perror(file);

 return;

 }

 /*

 * Print 22 lines at a time.

 */

 for (;;) {

 line = 1;

 while (line < 22) {

 /*

 * If end-of-file, let them hit a key one

 * more time and then go back.

 */

 if (fgets(linebuf, sizeof(linebuf), fp) == NULL) {

 fclose(fp);

 prompt();

 return;

 }

 fwrite(linebuf, 1, strlen(linebuf), stdout);

 line++;

 }

 prompt();

 }

}

/*

 * prompt - prompt for a character.

 */

prompt()

{

 char answer;

 printf("Type any character for next page: ");

 answer = getchar();

Device I/O Control

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 55

 putchar('\n');

}

There are a few more options available in the System V ioctl not described here, but
they are fairly special-purpose. The material described in this section is fully covered in

the System V manual in Section 7.

The fcntl System Call

In UNIX System V, the fcntl system call was added to the system to handle file control

operations. This call replaced the dup2 system call, as well as handling other operations.

In 4.2BSD, fcntl was added to be compatible with System V. Unfortunately, the two
versions of the call are only partially compatible. The System V version provides

functions that the Berkeley one does not (file locking), and the Berkeley version provides

functions that the System V one does not (asynchronous I/O through the use of signals).

For this reason, the call will only be discussed in a general sense here.

fcntl takes three arguments: a file descriptor referring to an open file (fd), a constant

indicating the requested operation, and an integer argument used for various purposes

(arg). It returns any of several values depending on the operation requested, but if the

call fails −1 is always returned and errno is set to the error which occurred. The

operation constants are defined in the include file fcntl.h, and are very briefly described
below. Some of the concepts mentioned below will be described in later chapters; also

see the documentation on fcntl in Section 2 of the UNIX Programmer’s Manual.

F_DUPFD Provide a duplicate file descriptor; this replaces dup2 on System V.

F_GETFD Get the file’s close-on-exec flag. 0 in the low-order bit means the file

will stay open, 1 means it will be closed.*

F_SETFD Set the file's close-on-exec flag to arg.

F_GETFL Get file status flags. The flags are described in fcntl(2).

F_SETFL Set file status flags to arg. The flags are described in fcntl(2).

F_GETOWN Get process group to receive SIGIO and SIGURG signals about fd

(Berkeley UNIX only).†

F_SETOWN Set process group to receive SIGIO and SIGURG signals about fd

(Berkeley UNIX only).

* See Chapter 9, Executing Programs.
† See Chapter 8, Processing Signals.

Using C on the UNIX System

56 FOR PERSONAL, NON-COMMERCIAL USE ONLY

F_GETLK Get first lock on file which blocks type described in the flock-type

structure pointed to by arg (System V only).

F_SETLK Set or clear a file segment lock according to flock-type structure

pointed to by arg (System V only).

F_SETLKW A blocking version of F_SETLK (System V only).

The System V version of the operating system has no equivalent to the F_GETOWN and

F_SETOWN feature.

Non-Blocking I/O

Normally, when a process issues a read, that process is blocked until there is something

to read. That is, the process essentially goes to sleep until the read returns either the data
read in, end-of-file, or an error. This is not always desirable, however. By using either

the F_SETFL operation of fcntl, or in Berkeley versions of UNIX the FIONBIO ioctl

operation, it is possible to make reads (and other operations on the file descriptor) return

an error immediately if the operation would block.* If this occurs, errno is set to

EWOULDBLOCK.

This is not a terribly clean way of doing things. It usually provides several unexpected

problems which the programmer must deal with. In 4.2BSD the need for non-blocking

I/O was not entirely eliminated, but the select system call was added to the system.
This system call provides a much cleaner way of doing several things that used to require

the use of non-blocking I/O.

The select System Call

The select system call is used to perform I/O multiplexing—that is, it enables the
programmer to manage reading and writing to several file descriptors at once without

“blocking” indefinitely on any of the operations. select is used by the programmer to
check the status of his open file descriptors before operating on them. For example, if

the program continuously prints information to the screen, but should also process any

input the user types, the program can use select to poll the terminal, and when
characters are present to be read, it can read them in and process them.

select takes five arguments: nfds, an integer which indicates the number of file

descriptors to be checked, readfds, writefds, and exceptfds, which are pointers to

file descriptor sets indicating which file descriptors are to be checked to see if they are

ready for reading, ready for writing, or have some exceptional condition pending,

respectively, and timeout, a pointer to a structure of type timeval. The first nfds

* In System V, passing the O_NDELAY option to open will also set non-blocking I/O. In Berkeley UNIX, this

flag will cause the open not to block, but any I/O performed on the file will still block.

Device I/O Control

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 57

descriptors are checked in each set (i.e., descriptors 0 through nfds−1). On return,

select replaces the given descriptor sets with subsets consisting of those descriptors
that are ready for the requested operation.

In 4.2BSD, file descriptor sets were represented by long integers (32 bits). File descriptor

i was to be checked if the ith bit of the integer was equal to one. Thus, to set readfds

to check the file descriptors fd1 and fd2, the code segment:

long readfds;

readfds = 0;

readfds |= (1 << fd1);

readfds |= (1 << fd2);

would be used. In 4.3BSD, a special data type, fd_set, was defined in sys/types.h. This
data type is able to handle more than 32 file descriptors. In addition, special macros were

defined to manipulate this data type: FD_ZERO(&fdset) initializes a descriptor set

fdset to the null set. FD_SET(fd, &fdset) adds the file descriptor fd to the set fdset,

while FD_CLR(fd, &fdset) removes fd from the set fdset. FD_ISSET(fd, &fdset)

is non-zero if fd is a member of set fdset, zero otherwise.

If timeout is a non-null pointer, it specifies the maximum amount of time to wait for

the select operation to complete. If it is a null pointer, the select will block
indefinitely (i.e., it won’t return until one of the file descriptors being asked about is

ready for whatever operation is being checked). In order to effect a poll, timeval should

point to a zero-valued timeval structure.

Any of readfds, writefds, and exceptfds may be given as null pointers if no

descriptors are of interest.

select returns the number of ready descriptors that are contained in all the descriptor

sets, or −1 on failure (errno will contain the reason for failure). If the time limit expires,

then select returns 0.

Example 5-3 shows a program which waits 15 seconds for the user to type something. If

nothing is typed, the program will assume a default response. An alternative way to

perform this function without using select is discussed in Chapter 8, Processing
Signals.

Example 5-3. select—program to demonstrate the select system call

#include <sys/types.h>

#include <sys/time.h>

#include <stdio.h>

main()

{

Using C on the UNIX System

58 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 int n, nfds;

 char buf[32];

 fd_set readfds;

 struct timeval tv;

 /*

 * We will be reading from standard input (file

 * descriptor 0), so we want to know when the

 * user has typed something.

 */

 FD_ZERO(&readfds);

 FD_SET(0, &readfds);

 /*

 * Set the timeout for 15 seconds.

 */

 tv.tv_sec = 15;

 tv.tv_usec = 0;

 /*

 * Prompt for input.

 */

 printf("Type a word; if you don't in 15 ");

 printf("seconds I'll use \"WORD\": ");

 fflush(stdout);

 /*

 * Now call select. We pass NULL for

 * writefds and exceptfds, since we

 * aren't interested in them.

 */

 nfds = select(1, &readfds, NULL, NULL, &tv);

 /*

 * Now we check the results. If nfds is zero,

 * then we timed out, and should assume the

 * default. Otherwise, if file descriptor 0

 * is set in readfds, that means that it is we

 * ready to be read, and we can read something

 * from it.

 */

 if (nfds == 0) {

 strcpy(buf, "WORD");

 }

 else {

 if (FD_ISSET(0, &readfds)) {

 n = read(0, buf, sizeof(buf));

 buf[n-1] = '\0';

 }

 }

 printf("\nThe word is: %s\n", buf);

 exit(0);

}

Device I/O Control

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 59

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 61

Chapter 6
Information About Users

Several pieces of information are maintained about each user of the system. Most of this

information is stored in the password file, /etc/passwd, and the group file, /etc/group.

This chapter describes each piece of information, what the operating system uses it for,

and how programs can access and change it.

The Login Name

Each user of the system is given a unique login name. This name consists of up to eight

characters; usually only lower-case alphabetics and numerics are permitted. A user uses

his login name to identify himself to the system when logging in. Login names are also

used when sending electronic mail, to label output printed on the line printer, etc. The

operating system kernel does not use the login name for anything; it is only used by user-

level programs.

To obtain the login name of the user executing a program, the program may use the

getlogin routine. This routine returns a pointer to a character string containing the

user’s login name, or NULL on failure. It should be noted that getlogin obtains the login
name by searching /etc/utmp for the terminal it is running on, and returning the login

name logged in on that terminal. This method is often prone to error, for example, if the

user executing the program has logged off, or if he has changed his effective user id (see

below). System V provides the cuserid function in place of getlogin, which is much
less error-prone. Another method of obtaining the login name, searching the

environment, is described in Chapter 14, Miscellaneous Routines.

The User Id

Each process in the system has associated with it two integer numbers called the real

user id and the effective user id. These numbers are used by the operating system kernel

Using C on the UNIX System

62 FOR PERSONAL, NON-COMMERCIAL USE ONLY

to determine the process’s access permissions, record accounting information, etc. The

real user id always identifies the user executing the process. Only the super-user may

change his real user id, thus becoming another user. The effective user id is used to

determine the process’s permissions. Normally, the effective user id is equal to the real

user id. By changing its effective user id, a process gains the permissions associated with

the new user id (and, at least temporarily, loses those associated with its real user id).* A
user id is always unique, and refers to only one user of the system.

A program uses the getuid and geteuid system calls to obtain its real and effective

user ids, respectively. Both calls simply return the associated id as an integer; no errors
can occur.

The real and effective user ids are changed using the setuid system call. This call takes

a single argument, the new user id to be used. −1 is returned on error, and errno is set
to the reason for failure. The real and effective user ids are set according to the following

rules:

 If the effective user id of the calling process is super-user, the real user id and
effective user id are set to the new user id. This permits the super-user to

permanently change his identity.

 If the effective user id of the calling process is not super-user, but its real user id is

equal to the new value, the effective user id is set to the new value. This permits a

process to regain the permissions of the user executing it after application of the

third rule, below.

 If the effective user id of the calling process is not super-user, but the saved set-user-

id of the process is equal to the new value, the effective user id is set to the new

value. This permits a process to temporarily execute with the permissions of a user

other than the one executing the program. The program may regain its original

permissions using the second rule, above.

It is important to note that executing a set-user-id program does not automatically give

the program the permissions of the user owning the program; the program itself must

request these permissions.

In 4.2BSD, the setuid call was replaced by setreuid. This call takes two arguments,
the desired real and effective user ids to be set. If either argument is equal to −1, that

value will not be changed. In order to maintain backward compatibility, setuid is
provided as a library routine. It is easily implemented as:

setuid(uid)

int uid;

{

* This change is usually invisible to users, and is used by system programs like the printer or mailer software

to temporarily gain permissions a normal user does not have.

Information About Users

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 63

 return(setreuid(uid, uid));

}

The Group Id

In addition to the real and effective user ids, the operating system associates a real group

id and an effective group id with each process. These numbers are entirely analogous to

the real and effective user ids, with the exception that they do not uniquely identify a

specific user. Instead, several users may be members of the same group, permitting them

to have access to files owned by that group while denying others access.

To obtain its real and effective group ids, a program may use the getgid and getegid

system calls respectively. The real and effective group ids may be set using setgid; this

call is entirely analogous to setuid, including the rules used to determine which id to

set. As with setuid, setgid was replaced in 4.2BSD with the setregid call.

The Berkeley UNIX Group Mechanism

In Version 7, System V, and Berkeley versions prior to 4.2BSD, a user could be a

member of only one group at a time. In order to change groups, he was required to
execute the newgrp command, which would change his group id and execute a new shell.

This was eliminated in 4.2BSD; a user is now in all his or her groups at once, and

processes he or she executes have the permissions associated with all the groups instead

of only one at a time.

In order to manipulate the new group mechanism, two new system calls have been

provided. getgroups takes two arguments, a pointer to an array of integers and the
number of elements in that array. The number of elements is passed as the first argument.

It returns the number of groups the calling process is in; the group ids of these groups

are placed in the array. −1 is returned if an error occurs, and errno will indicate the

problem. setgroups also takes two arguments, the number of groups to place the
calling process in, and a pointer to an array of integers containing the group ids of those

groups. 0 is returned if all went well, otherwise −1 is returned and errno is set to the

cause of the error. The number of groups may not exceed the constant NGROUPS, defined

in sys/param.h.* Only the super-user may set new groups.

A library routine, initgroups, is also provided for use in programs such as login. This

routine is called with two arguments: a login name and a base group id. It reads the group

file searching for groups whose members include the given login name. It then calls

setgroups with the group ids of these groups and the base group id. The base group id

is normally the user’s group id obtained from the password file, although this is not a

requirement.

* In the 4.2BSD setgroups documentation, this constant is incorrectly called NGRPS.

Using C on the UNIX System

64 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Reading the Password File

The password file contains almost all the information commonly maintained about each

user of the system. Normally this file resides in /etc/passwd. Each line in the file

describes a separate user. The line is divided into several colon-separated fields;

additionally the pw_gecos field (see below) is subdivided into several comma-separated
fields.* The include file pwd.h describes the format of the password file to programs:

struct passwd {

 char *pw_name;

 char *pw_passwd;

 int pw_uid;

 int pw_gid;

 int pw_quota;

 char *pw_comment;

 char *pw_gecos;

 char *pw_dir;

 char *pw_shell;

};

The fields are:

pw_name The user’s login name.

pw_passwd The user’s encrypted password. Passwords are encrypted using the

crypt library routine, not described in this book.

pw_uid The user’s numeric user id.

pw_gid The user’s numeric group id. This is conventionally called the user’s

login group, and is the group he is made a member of when he logs

in.

pw_quota This field is unused.

pw_comment This field is unused.

pw_gecos The user’s full name and other personal data. This field consists of

four comma-separated subfields. By convention the first field is the

user’s name; an ampersand (‘&’) character is used to stand for the

login name. Thus, a user whose login name is “smith” and whose full

name is John Nesmith could be represented as “John Ne&”. The

second field is the user’s office telephone number. The third is his or

her office room number, and the last is his or her home telephone
number. Any or all of these fields may be left blank.

* For simplicity, this book will describe the Berkeley UNIX format of pw_gecos. The reader should be aware

that this field’s format often varies to support local needs.

Information About Users

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 65

pw_dir The user’s home directory.

pw_shell The name of the program to execute when the user logs in. This is

conventionally called his or her login shell. If left blank, the program

/bin/sh is assumed.

Several routines are provided to read the password file; all of them return a pointer to a

structure of type passwd, or NULL on end-of-file or error (“entry not found” is considered
an error). The pointer returned points to static data which is overwritten with each call;

programs must copy the data into another structure if it is to be saved. The getpwent
routine returns the next entry in the password file, reading sequentially from the

beginning. getpwuid takes a numeric user id as an argument and returns the entry for

that user id. getpwnam takes a pointer to a string containing a login name as an argument,
and returns the entry for that login name.

The routines setpwent and endpwent are used to open and close the password file,

respectively. These should be used to “reset” the getpwent routine. 4.3BSD provides a

routine, setpwfile, which takes the name of an alternate password file as an argument;
it is useful when reading other files of the same format. System V performs this function

in a different way; the fgetpwent routine takes an open file pointer as an argument and
reads a password entry from that file. Note that this does not permit the use of the

getpwuid and getpwnam routines as the Berkeley UNIX method does.

The getpw routine is often used in older code to read the password file. This routine is

made obsolete by getpwuid, but is still provided for backward compatibility. It takes
two arguments, an integer user id and a pointer to a character array. On successful return,

the character array will contain a copy of the password file line for that user id and the

routine returns 0. If the user id is not found, the routine returns non-zero.

Reading the Group File

The group file, /etc/group, also contains lines of colon-separated fields. These lines are

described by the group structure, defined in the include file grp.h:

struct group {

 char *gr_name;

 char *gr_passwd;

 int gr_gid;

 char **gr_mem;

};

The fields are:

gr_name The name of the group.

Using C on the UNIX System

66 FOR PERSONAL, NON-COMMERCIAL USE ONLY

gr_passwd The encrypted password for the group. This field is almost always left

blank. If non-blank, then the newgrp command prompts for a password

before permitting a user to change to this group. Because of the new

group mechanism, this field is meaningless in Berkeley UNIX.

gr_gid The numeric group id of the group.

gr_mem Pointers to the login names of the members of the group. The list is
null-terminated.

The routines to read the group file are patterned directly after those to read the password

file. All the routines return a pointer to a structure of type group or NULL on error. The

routines are called getgrent, getgrgid, and getgrnam. The routines setgrent and

endgrent are also available, although setgrfile and fgetgrent do not exist.

Reading the utmp File

The file /etc/utmp contains a record of all users currently logged in on the system.* This

file is usually ordered by tty number; each record is a structure of type utmp. This
structure is defined in the include file utmp.h:

struct utmp {

 char ut_line[8]; /* tty name */

 char ut_name[8]; /* user id */

 long ut_time; /* time on */

};

The fields are:

ut_line The terminal name the user is logged in on. Concatenating this with

“/dev/” produces a legitimate path name. It is not guaranteed to be null-

terminated.

ut_name The user’s login name. It is not guaranteed to be null-terminated. If

ut_name[0] is null, the terminal is not logged in.

ut_time The time the terminal was logged in, in standard UNIX time format.†

The structure described above is a common subset among all versions of UNIX. In

Berkeley UNIX another field, ut_host, contains the name of the remote host for users
logged in through the network.

The conventional way to read /etc/utmp is to simply open it and read in structures. On

non-System V systems, this is done using either low-level I/O or the stdio routines.

* System V has modified this file to store all sorts of other information. This will not be discussed here.
† See Chapter 7, Telling Time and Timing Things.

Information About Users

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 67

System V, because it has extended the purpose of utmp, has provided a set of library

routines to read the file, although using them is not required. Briefly, getutent returns

a pointer to a structure of type utmp, the next one in the file. getutline takes a pointer

to a utmp structure as an argument, and returns a pointer to a structure whose ut_line

field matches that of the argument structure. The setutent and endutent routines are

also available, as are some routines not described here.

The file /usr/adm/wtmp (on System V, this has been moved to /etc) contains a record of

all users who have ever logged in on the system. Reading from the beginning, an entry

whose ut_name field is non-zero indicates a login. An entry whose ut_name field is
null indicates the time that terminal was logged off. There are other entries with special

login names indicating system reboots, shutdowns, etc.; these are version-specific. For

more information about them, see the manual page for wtmp(5).

Example 6-1 shows a program that reads /etc/utmp, and for every user logged in prints

out their login name, their full name, the terminal they are logged in on, and the time

they logged in.

Example 6-1. who—show who's on the system

#include <stdio.h>

#include <utmp.h>

#include <pwd.h>

#define UTMP "/etc/utmp"

#define NAMELEN 8

main()

{

 FILE *fp;

 struct utmp u;

 struct passwd *p;

 char tmp[NAMELEN+1];

 struct passwd *getpwnam();

 if ((fp = fopen(UTMP, "r")) == NULL) {

 perror(UTMP);

 exit(1);

 }

 /*

 * For each entry...

 */

 while (fread(&u, sizeof(u), 1, fp) != NULL) {

 /*

 * Skip non-logged in ports.

 */

 if (u.ut_name[0] == NULL)

 continue;

Using C on the UNIX System

68 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * Make sure name is null-terminated.

 */

 strncpy(tmp, u.ut_name, NAMELEN);

 /*

 * Skip non-existent users (shouldn't

 * be any).

 */

 if ((p = getpwnam(tmp)) == NULL)

 continue;

 /*

 * Print the line. ctime() converts the time

 * to ASCII format, it is described in Chapter

 * 7, Telling Time and Timing Things. We

 * ignore the format of the gecos field and

 * just print the first 30 characters; in real

 * life we would stop at a comma or some such.

 */

 printf("%-10.8s %-10.8s %-30.30s %s", u.ut_name,

 u.ut_line, p->pw_gecos, ctime(&u.ut_time));

 }

 fclose(fp);

 exit(0);

}

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 69

Chapter 7
Telling Time and Timing

Things

This chapter covers a miscellany of topics unrelated but for the fact that they have to do

with time:

 How the UNIX system keeps track of time.

 How to put processes to sleep.

 How to determine how much CPU time a process uses.

 How to change file modification times.

Telling Time

The UNIX operating system keeps track of the current date and time by storing the

number of seconds which have elapsed since midnight January 1, 1970 UTC

(Coordinated Universal Time, also known as Greenwich Mean Time). This date is

considered the informal “birthday” of the UNIX operating system. The time is stored in

a signed long integer.*

Obtaining the Time

In all versions of UNIX, the time system call may be used to obtain the time of day.
This call is peculiar in that if given the address of a long integer as an argument, it places

the time in that integer and returns it. If, however a null pointer is passed, the time of day

is just returned.

* For those who care, assuming a 32-bit signed integer, UNIX time will break at 03:14:08 January 19, 2038

UTC.

Using C on the UNIX System

70 FOR PERSONAL, NON-COMMERCIAL USE ONLY

In 4.2BSD, time was made into a library routine. It was replaced by the gettimeofday

system call, which returns time in terms of seconds and microseconds. gettimeofday

takes two arguments: a pointer to a structure of type timeval, and a pointer to a structure

of type timezone. These are defined in the include file sys/time.h:*

struct timeval {

 long tv_sec; /* seconds */

 long tv_usec; /* and microseconds */

};

struct timezone {

 int tz_minuteswest; /* mins west of UTC */

 int tz_dsttime; /* dst correction */

};

The field tv_sec is the equivalent of the long integer passed to time. In order to

simplify the rest of this discussion, we will assume the use of time instead of

gettimeofday.

Timezones

Depending on the version of the operating system being used, the timezone is obtainable

in several different ways. In Berkeley UNIX, it is obtained via the gettimeofday

system call. In System V, it is stored as an environment variable, TZ (see Chapter 14,

Miscellaneous Routines). In Version 7 and pre-4.2BSD versions of UNIX, it is obtained

with the ftime system call. Fortunately, however, programs rarely need the timezone
information themselves. The library routines that convert the long integer into an ASCII

date string all obtain the timezone information internally.

Converting the Time to ASCII

Several routines are available to convert the long integer returned by time into an ASCII
date string. With the UNIX operating system, an ASCII date string is a 26-character

string as shown below (‘•’ represents a space character):

Day•Mon•dd•hh:mm:ss•yyyy\n\0

For example, “Mon Dec 19 10:40:37 1988”.

The time of day may be broken into its component parts using the gmtime and

localtime routines. Both routines take a pointer to the long integer as an argument,

and return a pointer to a structure of type tm, defined in the include file time.h:

* The file time.h is constantly moving back and forth between time.h and sys/time.h depending on which release

of the operating system is used. From now on, we will refer to it as time.h, since this is the more often used

location.

Telling Time and Timing Things

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 71

struct tm {

 int tm_sec; /* seconds 0-59 */

 int tm_min; /* minutes 0-59 */

 int tm_hour; /* hours 0-23 */

 int tm_mday; /* day of month 1-31 */

 int tm_mon; /* month 0-11 */

 int tm_year; /* year - 1900 */

 int tm_wday; /* day of week Sun=0 */

 int tm_yday; /* day of year 0-365 */

 int tm_isdst; /* 1 if daylight savings */

};

gmtime returns Coordinated Universal Time, localtime returns the time in the local

time zone. The pointer to the tm structure may then be passed to the asctime routine,
which returns a pointer to the character array containing the ASCII date string. For

convenience, the ctime routine may be used when only the date string is required; it
takes a pointer to the long integer as an argument.

To obtain the abbreviation for the local (or any other) timezone, the timezone routine
should be used. It takes two arguments: the number of minutes west of UTC, and a flag

indicating daylight savings time (non-zero). It returns a pointer to a character array

containing the timezone abbreviation (EST, GMT, etc.).

All the routines described in this section return pointers to static data which is
overwritten on each call.

Time Differences

By using the asctime and gmtime routines, it is possible to convert the difference
between two times to ASCII. For example, to see how long a user was logged in, his

login time can be subtracted from his logout time. This difference can then be taken as

Universal Time, and converted to as ASCII string. The hours, minutes, and seconds fields

of this result will represent the difference between the two times (modulo 24 hours). The

code segment below implements this idea:

session = logouttime - logintime;

printf("%.8s", asctime(gmtime(&session))+11);

Sleeping and Alarm Clocks

Sleeping

Many times it is necessary for a program to “go to sleep” for a period of time. For

example, if some condition must be checked every 20 minutes, the program performs its

checks and then must wait for 20 minutes before checking things again. The simplest

way to do this is to use the sleep system call; it takes a single argument, the number of
seconds to sleep. When that many seconds have elapsed, the call returns.

Using C on the UNIX System

72 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The Alarm Clock

Another common need is to be advised when a given amount of time has elapsed, but to

be able to continue executing. For example, if a program is waiting for something that

“might” happen, it needs to know when it has waited long enough and should give up.

To schedule an alarm, the alarm system call should be used. It takes a single argument,
the number of seconds between “now” and the time the alarm should be delivered. A

value of 0 disables a scheduled alarm; only one alarm may be pending at any one time.

The alarm is delivered in the form of the SIGALRM signal.*

Interval Timers

In 4.2BSD, sleep and alarm were replaced with a more general mechanism called

interval timers. These are maintained in structures of type itimerval, defined in the
include file sys/time.h:

struct itimerval {

 struct timeval it_interval; /* timer interval */

 struct timeval it_value; /* current value */

};

The it_interval field specifies the number of seconds and microseconds before the

timer should expire; if these values are zero the timer is disabled. it_value specifies
the values the timer should be reset to when it expires; if these are zero the timer will not

be reset.

The three timers are accessed using the constants discussed below, also defined in

sys/time.h.

ITIMER_REAL The timer decrements in real (clock on the wall) time. When it

expires, a SIGALRM signal is delivered to the process.

ITIMER_VIRTUAL The timer decrements in process virtual time. It runs only when

the process is executing. When it expires, a SIGVTALRM signal
is delivered to the process.

ITIMER_PROF The timer decrements both in process virtual time and when

the system is executing on behalf of the process. It is designed

to be used by process-profiling programs. When it expires, a

SIGPROF signal is delivered to the process. Because this timer
is capable of interrupting system calls, the process using it

should be prepared to restart these system calls.

The getitimer call takes two arguments: the first is one of the constants above,

indicating which timer to use, and the second is a pointer to an itimerval structure.

* See Chapter 8, Processing Signals.

Telling Time and Timing Things

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 73

The current value of the timer is returned in the structure. If the call succeeds, 0 is

returned; otherwise −1 is returned and errno will contain the reason for failure.

To set an interval timer, setitimer is used. It takes three arguments: one of the

constants above indicating which timer to set, a pointer to an itimerval structure

containing the new values to be set, and a pointer to another itimerval structure, in

which the current setting of the timer will be returned. The third pointer may be null, in
which case the old value is not returned. If the call succeeds 0 is returned; −1 is returned

and errno is set if an error occurs.

Using the real-time interval timer, it is possible to create a routine nap, which sleeps for
sixtieths of a second. This is sometimes desirable when working with devices, etc. Before

4.2BSD, nap had to be implemented locally as a system call. For convenience, a listing

of the interval timer implementation of nap is provided in Appendix E, Interval Timer
Version of nap().

Process Timing

To obtain information about the amount of processor time used by a process, the times

system call may be used. This call takes a single argument, a pointer to a structure of

type tms. This structure is defined in the include file sys/times.h; the inclusion of

sys/types.h is also necessary:

struct tms {

 time_t tms_utime; /* user time */

 time_t tms_stime; /* system time */

 time_t tms_cutime; /* user time, children */

 time_t tms_cstime; /* system time, children */

};

tms_utime and tms_stime contain the number of seconds of user and system time

used by the process itself. tms_cutime and tms_cstime contain the number of seconds
of user and system time used by the process’s children. It should be noted that a process

inherits the time used by its children, so technically the amount of user time used by the

parent process is equal to:

tms_utime - tms_cutime

User time is the time spent by the CPU executing in user mode. This is time spent adding

numbers, comparing, running user-level routines, etc. System time is the time spent by

the CPU executing in kernel mode. This is time spent by the operating system executing

on behalf of the process. Simply put, system time is the amount of time spent doing

system calls, user time is all the other time spent executing.

Using C on the UNIX System

74 FOR PERSONAL, NON-COMMERCIAL USE ONLY

In 4.0 and 4.1BSD, an additional system call, vtimes, was added to provide more

precise information about execution times. In 4.2BSD, times and vtimes were

replaced with the more general getrusage system call (the other calls remain as library

routines for compatibility). Since most of the information returned by getrusage is not

related to process timing, discussion of this call is deferred to Chapter 14, Miscellaneous

Routines.

Example 7-1 shows the proper method to calculate the amount of CPU time required by

a given segment of code:

Example 7-1. cputime—measure cpu time used by a section of code

#include <sys/types.h>

#include <sys/times.h>

main()

{

 struct tms before, after;

 times(&before);

 /* ... place code to be timed here ... */

 times(&after);

 printf("User time: %ld seconds\n", after.tms_utime -

 before.tms_utime);

 printf("System time: %ld seconds\n", after.tms_stime -

 before.tms_stime);

 exit(0);

}

Changing File Times

It is possible to change the access and modification times on a file (but not the i-node

change time) to arbitrary values using the utime system call. This call takes two
arguments: a pointer to the character string containing the name of the file to change,

and a pointer to an array of two long integers containing the new values for the access

and modification times, respectively. The i-node change time will be set to the current

time.

In Berkeley UNIX, utime is now a library routine; it has been replaced by utimes. This

call takes a pointer to an array of two timeval structures instead of two long integers.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 75

Chapter 8
Processing Signals

Signals are “software interrupts” that are delivered to processes to inform them of

abnormal events occurring in their environment. Some signals, such as “floating point

exception,” have direct counterparts in the computer hardware; other signals, such as

“change in child process status,” are purely software-oriented. Most of the standard

UNIX signals cause a process to terminate when they are received. Depending on the

signal, the memory image of the executing process may be placed on the disk in the file
core. This is the familiar core dump; it is often useful when debugging a broken program.

Overview of Signal Handling

The operating system permits a process to do one of three things with signals. Each signal

may be treated individually in one of the following ways:

 The signal may be ignored. This causes the operating system to refrain from

delivering the signal to the process. Programs often ignore the “interrupt” and “quit”

signals, which are the only process-terminating signals you may generate from the
keyboard.

 The signal may be caught. This is also referred to as trapping a signal. Catching a

signal involves specifying to the operating system a user-supplied procedure that

should be called on delivery of the signal. Execution of the process transfers to this

routine when the signal arrives, and when the routine returns it returns to the point

at which it was called; this is described later in this chapter.

 The signal may be set to a default. That is, after informing the operating system that

it wishes to catch or ignore a signal, a process may “change its mind” and restore

the default action of the signal.

In 4.2BSD two very important features of the mechanism were changed in order to

provide a more versatile interface (and one that more closely emulates hardware
interrupts). This change brought about severe criticism from many members of the UNIX

Using C on the UNIX System

76 FOR PERSONAL, NON-COMMERCIAL USE ONLY

community; mostly from those members whose programs broke under the new

mechanism. 4.3BSD has attempted to pacify the objectors to some extent by making the

features selectable.

Resetting Signals

In Version 7, System V, and pre-4.2BSD versions of UNIX, signals that are being caught

are reset to their default actions before the handler routine is called. This means that the

routine must issue another request to catch the signal if all such signals are to be caught.

Conventionally, signal handlers issue a request to ignore the signal as their first

statement, and then issue a new catch request immediately before returning. This

behavior makes it very difficult to write “impenetrable” programs, since by sending

signals rapid-fire at a process it is possible to eventually catch it between the point that

the signal is reset to its default and the process issues another request to ignore the signal.

In 4.2BSD, signals are not reset when they are caught. Rather, when the handler routine

is called, all further occurrences of that signal are blocked until the routine returns. At

that time, the signal is reset to call the handler routine when another signal is delivered.

This change can affect pre-4.2BSD programs which rely on the signal being reset to its

default value after the call or those that preferred to handle each occurrence of the

interrupt separately (even those that arrived while the process was already handling a

previous interrupt).

Restarting System Calls

In the pre-4.2BSD versions of UNIX, a system call in progress when a signal is received

will be aborted. In particular, this can happen during reads and writes to slow devices

such as terminals (but not to fast devices such as disks). When the user’s signal handling

routine returns, the system call will return a −1 as though an error has occurred, and

errno will be set to EINTR. This makes it easy to write code that “times out” when
reading from terminals and so on by using the alarm mechanism alluded to earlier, but

such behavior is not always desirable.

4.2BSD provides restartable system calls. If a process is interrupted during a system call,

the system call will be restarted when the user’s handling routine returns. This behavior

is often desirable, but it caused several programs attempting to “time out” on various

operations to break when 4.2BSD was first released.

4.3BSD permits you to select, on a signal-by-signal basis, whether or not interrupted
system calls will be restarted.

The Signals

Version 7 provided 15 signals. Berkeley UNIX extended that set with 4.0 and 4.1BSD,

until now in 4.3BSD there are 30 signals. System V has added four more signals to the

Processing Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 77

original 15 for a total of 19. Various ports of UNIX by different vendors provide other

signals related to their machines; in particular the real-time versions of UNIX will have

other signals.

The list below names all signals available in the AT&T and Berkeley releases of the

operating system. Signals marked with ♥ cause the process to dump core; those marked

with ♦ are discarded (never delivered) unless the process is catching them. Signals
marked with ♠ cause the process to stop when they are received. Signals marked with ♣

are available only on Berkeley UNIX systems, while signals marked with ○ are available

only under System V.

SIGHUP Hangup. This is sent to processes when their controlling

terminal hangs up the phone line.

SIGINT Interrupt. This is one of the keyboard-generated interrupts.

SIGQUIT ♥ Quit. This is another of the keyboard-generated interrupts.

SIGILL ♥ Illegal Instruction. Not reset when caught on non-4.2BSD

systems.

SIGTRAP ♥ Trace trap. Not reset when caught on non-4.2BSD systems.

SIGIOT ♥ IOT (I/O) trap.

SIGEMT ♥ EMT (emulator) trap.

SIGFPE ♥ Floating point exception (divide by zero, overflow, under-

flow).

SIGKILL Kill. This signal cannot be caught, blocked or ignored.

SIGBUS ♥ Bus error.

SIGSEGV ♥ Segmentation violation.

SIGSYS ♥ Bad argument to system call.

SIGPIPE Write on a pipe with no one to read it.

SIGALRM Alarm clock.

SIGTERM Software termination signal.

SIGURG ♦ ♣ Urgent condition present on socket (4.2 and 4.3BSD).

SIGSTOP ♠ ♣ Stop. This signal cannot be caught, blocked or ignored.

SIGTSTP ♠ ♣ Stop signal generated from keyboard.

SIGCONT ♦ ♣ Continue after a stop. This signal cannot be blocked.

SIGCHLD ♦ ♣ Child process status has changed.

Using C on the UNIX System

78 FOR PERSONAL, NON-COMMERCIAL USE ONLY

SIGTTIN ♠ ♣ Background read attempted from control terminal.

SIGTTOU ♠ ♣ Background write attempted to control terminal.

SIGIO ♦ ♣ I/O possible on a descriptor.

SIGXCPU ♣ CPU time limit exceeded.

SIGXFSZ ♣ File size limit exceeded.

SIGVTALRM ♣ Virtual timer alarm (4.2 and 4.3BSD).

SIGPROF ♣ Profiling timer alarm (4.2 and 4.3BSD).

SIGWINCH ♦ ♣ Window changed size (4.3BSD only).

SIGCLD ♦ ○ Death of a child.

SIGPWR ♦ ○ Power failure.

SIGUSR1 User-defined signal 1 (4.3BSD and System V).

SIGUSR2 User-defined signal 2 (4.3BSD and System V).

Because they are handled somewhat differently than other signals, discussion of

SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, and SIGCONT will be postponed until Chapter
10, Job Control. The rest of this chapter discusses signal handling with respect to

SIGHUP, SIGINT, and SIGALRM.

Sending Signals

The system call used for delivering signals to processes is called kill, and takes two

arguments. The first argument, pid, is an integer indicating the process id of the process

which is to receive the signal. The second argument, sig, is a signal number, as defined

in the previous section. The real or effective user id of the sending process must match

that of the receiving process unless the effective user id of the sender is super-user.

If pid is 0, the signal is sent to all other processes in the sender’s process group.*

If pid is −1, and the effective user id of the sending process is super-user, the signal is

broadcast universally to all processes in the system except system processes and the

process sending the signal. If pid is −1, and the effective user id of the sending process

is not super-user, the signal is broadcast universally to all processes with the same user

id as the sender except the process sending the signal.

If pid is negative, but not equal to −1, the signal is sent to all processes whose process

group id is equal to the absolute value of pid.

* Process groups are described in Chapter 10, Job Control.

Processing Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 79

If sig is 0, no signal is sent, but error checking is performed.* Programs that monitor the

system to make sure that all the appropriate service programs are still operating can make

use of this feature to check that a program (with a known process id) is still running.

Processes may send signals to themselves.

Catching and Ignoring Signals

The system call used to process signals is called signal; it takes two arguments. The

first argument is the name of the signal as shown in the previous section; these constants

are defined in the include file signal.h. The second argument may be one of SIG_DFL to

indicate that the signal should behave in the default manner, SIG_IGN to indicate that
the signal should be ignored, or a pointer to a routine to be called when the signal is

received. The previous “value” of the signal is returned if the call succeeds; −1 is

returned on error and errno will contain a more specific cause for failure.

The bulk of the discussion in this chapter is presented using signal. This routine is truly
a system call on all versions of UNIX except 4.2 and 4.3BSD, where it is provided as a

compatibility library routine. The new 4.2BSD signal mechanism is much more powerful

than the signal interface, however it is also more complex. For this reason, discussion

of the system calls sigvec, sigblock, sigpause, sigsetmask, and sigstack is
deferred until later in the chapter, where the discussion can build on the information

presented about signal.

Ignoring Signals

To ignore a signal, the call:

signal(signame, SIG_IGN)

should be used. This causes all occurrences of the signal to be ignored until the process

resets the action to something else. Example 8-1 shows a small program that ignores the

interrupt signal. This program can be executed, and the interrupt key may be pressed, but

it will have no effect (use the quit key to get out of the program).

Example 8-1. ignoreint—a program which ignores the interrupt signal

#include <signal.h>

main()

{

 signal(SIGINT, SIG_IGN);

* This feature is not available in all versions of the UNIX operating system, although it exists in 4.2BSD,

4.3BSD, and System V.

Using C on the UNIX System

80 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * pause() just suspends the process until a

 * signal is received.

 */

 pause();

}

The standard command interpreters (the Bourne and C shells) issue calls to ignore the

keyboard-generated signals when a process is started in the background. If they didn't,

then striking the interrupt key would terminate background processes as well as the

intended process. This is because signals generated from the keyboard are normally sent

to all processes started from the terminal (the controlling terminal of the process).*

Catching Signals

A signal can be caught and handled by a user routine by supplying a pointer to that

routine in the signal call.† The first time the signal is received, this routine will be
called to process that signal. When the routine (commonly called a signal handler) is

called, it will be passed a single integer argument indicating which signal was received.

This integer can be compared against the constants in signal.h, enabling the programmer

to write general-purpose signal handlers.

Example 8-2 shows a small program that catches the interrupt signal and prints the string

“OUCH” when it is received. On non-Berkeley systems, pressing interrupt a second time

will break out of the program since the signal was not reset.

Example 8-2. ouch1—prints “ouch” when an interrupt is received

#include <signal.h>

main()

{

 /*

 * Declare handler routine so we can use its

 * name.

 */

 extern int handler();

 /*

 * Send signal to handler routine.

 */

 signal(SIGINT, handler);

* Actually, newer versions of the UNIX operating system send signals only to the processes in the controlling

terminal’s process group; this will be described in more detail in Chapter 10, Job Control.
† A pointer to a routine is simply the routine’s name; see Chapter 5 of The C Programming Language by Brian

Kernighan and Dennis Ritchie.

Processing Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 81

 /*

 * Loop here.

 */

 for (;;)

 pause();

}

/*

 * handler - handle the signal.

 */

handler()

{

 /*

 * Users of 4.2 and 4.3BSD systems should un-comment

 * this line, which will make this program

 * behave as if it were on a non-Berkeley system.

 */

 /* signal(SIGINT, SIG_DFL); */

 printf("OUCH\n");

}

Example 8-3 shows the same program with one line of code added to reset the signal.

This program will print “OUCH” every time the interrupt key is pressed. On Berkeley

systems, the two programs will behave identically; the example shows how to make the

program “pretend” it is on a non-4.2BSD system.

Example 8-3. ouch2—prints “ouch” when an interrupt is received

#include <signal.h>

main()

{

 /*

 * Declare handler routine so we can use its

 * name.

 */

 extern int handler();

 /*

 * Send signal to handler routine.

 */

 signal(SIGINT, handler);

 /*

 * Loop here.

 */

 for (;;)

 pause();

}

/*

Using C on the UNIX System

82 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * handler - handle the signal.

 */

handler()

{

 /*

 * Users of 4.2 and 4.3BSD systems should un-comment

 * this line, which will make this program

 * behave as if it were on a non-Berkeley system.

 */

 /* signal(SIGINT, SIG_DFL); */

 printf("OUCH\n");

 /*

 * Reset the signal to come here again.

 */

 signal(SIGINT, handler);

}

Although it works well enough when testing, Example 8-3 has two serious problems that

are not obvious but are important to handle. First, recall that on non-Berkeley systems a

signal is reset to its default action before the user’s routine to handle that signal is
invoked. In the case of Example 8-3, this means that if the user were to press the interrupt

key while the program was in handler, the program would terminate. In this case,
because the handler routine is so short, chances of this happening are small. However, if

the handler routine were to perform some time-consuming computations, the chances of

it being interrupted are very real. The solution, of course, is to add a call to signal on
entry to the handler routine to ignore each signal the handler processes. A simpler

method, and one that permits the handler routine to be used for any given signal, is to

take advantage of the fact that the routine is passed the signal that interrupted the process

as an argument. The improved routine is shown in Example 8-4.

The second problem with Example 8-3 involves the code that causes the interrupt signal

to be caught in the first place. Recall that signals generated from the keyboard are sent

to all processes started from the terminal. The shell takes special care to ignore these

signals in processes started in the background (with the ‘&’). Because the first action of

the program in Example 8-3 undoes this, this program will print “OUCH” even if it is

started in the background. (Try it!)* The solution is to test the current “value” of a signal

before setting it, and change it only if the value is not SIG_IGN. This test is performed
by setting the signal to be ignored, and saving the return value from the call. The

improved program is shown in Example 8-4.

* Because the C-shell (csh) uses process groups, this problem is only present in processes started from the

Bourne shell (sh).

Processing Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 83

Example 8-4. ouch3—prints “ouch” when an interrupt is received

#include <signal.h>

main()

{

 /*

 * Declare handler routine so we can use its

 * name.

 */

 extern int handler();

 /*

 * Send signal to handler routine. Only do so

 * if the signal is not already being ignored.

 */

 if (signal(SIGINT, SIG_IGN) != SIG_IGN)

 signal(SIGINT, handler);

 /*

 * Loop here.

 */

 for (;;)

 pause();

}

/*

 * handler - handle the signal. sig is the signal

 * number which interrupted us.

 */

handler(sig)

int sig;

{

 /*

 * Users of 4.2 and 4.3BSD systems should un-comment

 * this line, which will make this program

 * behave as if it were on a non-Berkeley

 * system (we reset the signal by hand).

 */

 /* signal(sig, SIG_DFL); */

 /*

 * Ignore the signal for the duration of this

 * routine.

 */

 signal(sig, SIG_IGN);

 printf("OUCH\n");

 /*

 * Reset the signal to come here again.

 */

 signal(SIGINT, handler);

}

Using C on the UNIX System

84 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Using Signals for Timeouts

By using the alarm system call, a program can generate timeouts while performing

various functions. For example, a program that wishes to read from a terminal, but give

up after 30 seconds and take a default action, would issue an alarm request for 30

seconds immediately before starting the read. When 30 seconds elapsed, a SIGALRM
signal would be sent to the process.

On non-Berkeley systems, if the alarm signal is sent while the process is trying to read

from the terminal, after the user’s signal handling routine returns the read will return −1

and errno will be set to EINTR. The program can then take its default action. In 4.2BSD
and 4.3BSD, because system calls are restarted, this timeout mechanism fails. When the

user’s signal handler returns, the read will be restarted, and the program will be back

where it was before the alarm was generated. In 4.3BSD it is possible to make signals

interrupt system calls instead of restart them; this is described later in this chapter. For
the general case however, the next section describes the proper way to write timeout

routines that are portable between different versions of the UNIX operating system,

regardless of whether or not interrupted system calls are restarted.

The setjmp and longjmp Routines

The setjmp and longjmp routines provide a program with a method for making a “non-
local goto” to other parts of the program. This is done by saving the contents of the stack,

and later “rewinding” the stack and restoring its contents from the saved information.

setjmp takes a single argument, env, of type jmp_buf. This type is defined in the

include file setjmp.h. longjmp takes two arguments, env and an integer val.

When setjmp is called, it saves the current stack environment in env and returns the

value 0. longjmp restores the stack environment last saved in env. It then returns in

such a way that execution continues as if setjmp had just returned the value val to the

function which invoked setjmp. Needless to say, the function that called setjmp cannot

have returned before the call to longjmp is made, or great havoc will result.

An example should make things clearer. Example 8-5 shows a program which waits 15

seconds for you to type something. If nothing is typed, the program will assume a default

response. The program works by calling setjmp and then scheduling an alarm. When

the setjmp returns the first time, the code inside the if statement will be executed. After

the alarm is delivered, the signal handler issues a call to longjmp and “returns” the value

1 to setjmp. This second return from setjmp will cause the code inside the else
statement to be executed.

Example 8-5. timeout—program to demonstrate a timeout routine

#include <signal.h>

#include <setjmp.h>

Processing Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 85

/*

 * The environment for setjmp.

 */

jmp_buf env;

main()

{

 int i;

 char buf[16];

 extern int timeout();

 /*

 * Inform the system we want to catch the

 * alarm signal.

 */

 signal(SIGALRM, timeout);

 /*

 * The code inside the if gets executed the first

 * time through setjmp, the code inside the else

 * the second time.

 */

 if (setjmp(env) == 0) {

 /*

 * Issue a request for an alarm to be

 * delivered in 15 seconds.

 */

 alarm(15);

 /*

 * Prompt for input.

 */

 printf("Type a word; if you don't in 15 ");

 printf("seconds I'll use \"WORD\": ");

 gets(buf);

 /*

 * Turn off the alarm.

 */

 alarm(0);

 }

 else {

 /*

 * Assume the default.

 */

 strcpy(buf, "WORD");

 }

 printf("\nThe word is: %s\n", buf);

 exit(0);

}

/*

 * timeout - catch the signal.

Using C on the UNIX System

86 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 */

timeout(sig)

int sig;

{

 /*

 * Ignore the signal for the duration of this

 * routine.

 */

 signal(sig, SIG_IGN);

 /*

 * We would perform any timeout-related

 * functions here; in this case there

 * are none.

 */

 /*

 * Restore the action of the alarm signal.

 */

 signal(SIGALRM, timeout);

 /*

 * Return to the main routine at setjmp,

 * and make setjmp return 1.

 */

 longjmp(env, 1);

}

The New Berkeley UNIX Signal Mechanism

The new signal mechanism provided with 4.2BSD is manipulated using the sigvec,

sigblock, sigpause, sigsetmask, and sigstack system calls. signal is
implemented as a routine in the compatibility library. This section describes briefly the

methods for using the new signal mechanism. For a more detailed description, see

Section 2 of the UNIX Programmer’s Manual.

The replacement routine for signal is sigvec. This call takes three arguments: the

signal to be manipulated, a pointer to a structure of type sigvec containing the new
information to be set for the signal, and another pointer to a structure of the same type,

in which the current information about the signal will be returned. Either pointer may be

null, indicating that the structure should not be used. The sigvec structure is defined in
the include file signal.h. In 4.2BSD, the structure is defined as:

struct sigvec {

 int (*sv_handler)();

 int sv_mask;

 int sv_onstack;

};

Processing Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 87

sv_handler is a pointer to the user’s signal handling routine; it is the same as the second

argument to signal. sv_mask is a bit mask of signals to be blocked for the duration of

the signal handler (see below). If sv_onstack is 1, the system will deliver the signal to
the process on a signal stack (see below).

In 4.3BSD, sv_onstack is now called sv_flags. The only two flags that may be used

are SV_ONSTACK, which indicates the signal should be delivered on the signal stack, and

SV_INTERRUPT, which indicates that this signal should interrupt system calls. The latter
is used to make the new signal mechanism behave as in other versions of UNIX.

Handler Calling Conventions

Under the new signal mechanism, a user-defined signal handler is called with three

arguments: an integer indicating the signal received, an integer indicating a code

mapping the signal to a hardware trap, and a pointer to a structure of type sigcontext,
described in signal.h. This structure describes the program context to be restored when

the handler terminates; it contains the previous (before the handler was called) values of

the stack pointer, program counter, etc. The context is for use by handlers which restore

the context themselves as opposed to letting the system do it (an extremely unusual thing

to do). The constants with which the second argument may be compared are somewhat

machine dependent; they are described in sigvec(2) and defined in signal.h.

The Signal Mask

The process signal mask defines the set of signals currently blocked from delivery. If the

ith bit in the mask is a 1, then signal number i is blocked from delivery. The ith bit is set

by ORing in a 1 shifted left i−1 places:

1 << (i - 1)

4.3BSD defines a macro, sigmask, to do this computation.

A signal that is blocked from delivery will be held by the system pending delivery to the

process if the mask ever changes to allow delivery of the signal. Note that blocking a

signal from delivery is not the same thing as ignoring the signal with SIG_IGN; an
ignored signal will be discarded rather than held for possible delivery in the future.

To define a new signal mask, the sigsetmask system call is used. This call takes a

single argument, the new mask to be installed. The old mask is returned. The sigblock
system call adds the mask given as its argument to the current signal mask by ORing the

two masks together. The old mask is returned.

When a signal is delivered to a process, a new signal mask is installed for the duration

of the signal handling routine. This mask is formed by taking the current signal mask,

adding the signal to be delivered, and ORing in the signal mask stored in sv_mask for
this signal.

Using C on the UNIX System

88 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The sigpause system call is similar to pause, which was demonstrated in Example
8-1. It takes a single argument, a signal mask. When called, the new signal mask is

installed and the process is suspended until a signal (one that is not blocked by the new

mask) is received. The old signal mask is then restored and execution is continued.

sigpause is normally used when a process runs in an infinite loop looking for work.

The signal that indicates there is work to do is blocked using sigblock while the process
does its work, and when the work is finished, the process pauses awaiting more work

using sigpause with the mask returned by sigblock. Example 8-6 shows a small
program segment that demonstrates this.

Example 8-6. sigblock—demonstrate use of the sigblock routine

#include <signal.h>

main()

{

 int mask;

 /*

 * Block SIGIO, which will indicate more

 * work to be done.

 */

 mask = sigmask(SIGIO);

 for (;;) {

 /*

 * Go do work.

 */

 dowork();

 /*

 * Pause until we receive a signal.

 * SIGIO is not blocked in mask.

 */

 sigpause(mask);

 }

}

The Signal Stack

It is possible for a program to specify an alternate stack on which signals should be

processed. This may be necessary if receipt of the signal can occur when the process

stack is invalid. For example, if a process runs out of stack space, it must be terminated:

since there is no stack space available, the stack cannot be extended to catch the signal.

Using the alternate signal stack, the process can take the signal on this stack, issue the
appropriate requests to increase the stack size limit, and then return to normal operation

on the regular stack.

Processing Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 89

The signal stack is defined using the sigstack call which takes two arguments, both

pointers to structures of type sigstack. The first structure indicates the new stack to be

defined, the second is used to return information about the current stack. The sigstack
structure is defined in signal.h as:

struct sigstack {

 char *ss_sp;

 int ss_onstack;

};

ss_sp is the stack pointer on the signal stack; when defining a new stack it should point

to the beginning of the memory to be used for the stack. ss_onstack is non-zero if the
process is currently executing on this stack, zero otherwise. The memory to be used for

the signal stack must exist in the process’s data space; i.e., it must be declared using the

brk system call (or equivalently, the alloc family of library routines).

The process indicates to the system on a per signal basis whether that signal should be

taken on the signal stack or the normal process stack. This is done using the sigvec
system call as described previously. When the signal is delivered, the process will be

executing on the signal stack for the duration of the signal handler. If the handler simply

returns, it is best to allow the system to restore the process context from before the signal.

If the handler performs a longjmp or other abnormal method of return, it should restore
the context itself; this may only be done in a machine-dependent manner using assembly

language and other nastiness.

Example 8-7 shows a program which limits its stack size to 50 kilobytes, and then calls
a routine recursively until it runs out of stack space. When it runs out, the process will

receive an illegal instruction signal. The process takes this signal on the signal stack,

increases its stack size limit, and then returns; which permits the routine to continue

recursing. The setrlimit system call is described in Chapter 14, Miscellaneous
Routines.

Example 8-7. sigstack—demonstrate use of the signal stack

#include <sys/types.h>

#include <sys/time.h>

#include <sys/resource.h>

#include <signal.h>

#include <stdio.h>

char *stack; /* pointer to signal stack base */

int tooksig = 0; /* 1 after we take the signal */

main()

{

 extern int x();

 struct sigvec sv;

Using C on the UNIX System

90 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 struct sigstack ss;

 struct rlimit rlimit;

 /*

 * Set stack size limit to 50 kbytes.

 */

 getrlimit(RLIMIT_STACK, &rlimit);

 rlimit.rlim_cur = 50 * 1024;

 if (setrlimit(RLIMIT_STACK, &rlimit) < 0) {

 perror("setrlimit");

 exit(1);

 }

 /*

 * Take illegal instruction and process it with x,

 * on the interrupt stack. For 4.2BSD, change

 * sv_flags to sv_onstack and SV_ONSTACK to 1.

 */

 sv.sv_mask = 0;

 sv.sv_handler = x;

 sv.sv_flags = SV_ONSTACK;

 sigvec(SIGILL, &sv, (struct sigvec *) 0);

 /*

 * Allocate memory for the signal stack. The

 * kernel assumes the addresses grow in the same

 * direction as on the process stack (toward

 * lower addresses, on a VAX).

 */

 if ((stack = (char *) malloc(10240)) == NULL) {

 fprintf(stderr, "Out of memory.\n");

 exit(1);

 }

 /*

 * Issue the call to tell the system about the

 * signal stack. We pass the end of the signal

 * stack, not the beginning, since the stack

 * grows toward lower addresses.

 */

 ss.ss_onstack = 0;

 ss.ss_sp = (caddr_t) stack + 10240;

 if (sigstack(&ss, (struct sigstack *) 0) < 0) {

 perror("sigstack");

 exit(1);

 }

 /*

 * Start using up stack space.

 */

 y();

}

Processing Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 91

y()

{

 /*

 * Take up 5k of stack space.

 */

 char buf[5120];

 printf("%s\n", tooksig ? "Now on extended stack." :

 "On 50k stack.");

 /*

 * Recurse.

 */

 y();

}

/*

 * Handle the signal.

 */

x(sig, code, scp)

int sig, code;

struct sigcontext *scp;

{

 struct rlimit rlimit;

 /*

 * Increase the stack limit to the maximum.

 */

 getrlimit(RLIMIT_STACK, &rlimit);

 rlimit.rlim_cur = rlimit.rlim_max;

 if (setrlimit(RLIMIT_STACK, &rlimit) < 0) {

 perror("setrlimit");

 exit(1);

 }

 tooksig = 1;

 return;

}

Signals play an important role in UNIX programming, and it is important to understand

them. This chapter has attempted to discuss several of the techniques and pitfalls
associated with signal processing; Chapter 10, Job Control, discusses several more

associated with Berkeley UNIX job control.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 93

Chapter 9
Executing Programs

One of the most powerful tools provided for the UNIX programmer is the ability to have

one program execute another. For example, the command interpreter (shell) is a simple

program like any other, which executes programs for the user. It is possible for anyone

to write his or her own shell if he or she doesn’t like the ones provided, and several

people have. This chapter describes the methods used to execute programs from within

other programs.

The system Library Routine

The simplest way to execute a program is by using the system library routine. This
routine takes a single argument, a character string containing the command to be

executed. This command string is passed directly to the UNIX Bourne shell, sh, where

it is executed. Because it is being passed to the shell, the command string used with

system may contain input and output redirection commands, as well as pipe constructs.
The shell reads these commands and builds the appropriate connections between all the

processes.

There are three major problems with system. First, it is not terribly versatile. Commands
may be executed, but the process executing them has no control over the subprocess.

Second, a lot of overhead is required. Before executing the desired command, system
executes a Bourne shell process. Because the shell will immediately be executing

something else, this is a waste of processor time. Third, system is a security hole. In

order to prevent random system cracking, the security problems presented by system
will not be described here. Suffice it to say that a set-user-id (particularly to the super-

user) program should never use system to execute its sub-processes.

Using C on the UNIX System

94 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Executing Programs Directly

The alternative to using system is to create new processes and execute programs

directly. There are three distinct steps to executing programs: creating new processes,

making them execute other programs, and waiting for them to terminate.

In order to execute a program, it is first necessary to create a new process for that program

to run in. A running program creates a new process by making a copy of itself. This copy

is then immediately overlaid with the new program to be executed.

Creating Processes

The system call to create a new process is called fork. When executed, fork will make
a copy of the current process that will have its own data space (i.e., if one process

modifies a variable, it does not affect the variable in the other process), and the two

processes will execute side by side. The process executing the call is called the parent

process; the new process is called the child process. If the call fails, −1 is returned and

the reason for failure is placed in errno.

fork is interesting in that it returns different values to the parent process and to the child

process (this is how they tell themselves apart). fork will return to the parent process

the process id of the child process. fork returns 0 to the child process. With the exception
of this difference of return values, the two processes are now entirely identical.

Executing Programs

The system call used to execute programs is generically called exec. It exists in several

forms described below, but all forms of the call share certain properties.

When an exec succeeds, the calling process is overlaid with the new program. That is,

the memory being used by the caller is freed and the new program is loaded in its place.

This means that once an exec succeeds, there can be no return to the calling process; it

is gone forever. If the call fails, −1 is returned and errno will indicate the reason for
failure.

Certain properties of the calling process are retained across an exec. First, all open files
remain open and are referred to by the same file descriptor values, unless a file descriptor

has its “close-on-exec” flag set. (This flag, which is set using the fcntl system call (see
Chatper 5, Device I/O Control), indicates that the file descriptor it is associated with

should be closed in the child process. This is useful when the parent process will be using

files which the child should not have access to.)

Second, any signals being ignored by the calling process will remain ignored in the new

program. Signals that were being trapped, however, will be restored to their default

values (since the handler routines no longer exist). Finally, the real and effective user

and group ids of the calling process are given to the new program, unless the new

Executing Programs

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 95

program has the set-user-id or set-group-id bits set, in which case its effective ids will be

modified.

When a C program is executed, it is called as shown:

main(argc, argv, environ)

int argc;

char *argv[], *environ[];

where argc is the number of arguments including the program name, argv points to a

null-terminated array of pointers to the arguments (the first element, *argv, is the name

of the program), and environ points to a null-terminated array of environment variables

and their values. Each of these array elements has the form NAME=value. The strings in

argv and environ are all null-terminated; the arrays themselves contain null pointers

to indicate the end of the list.

The primary form of the exec call is execve. The call takes three arguments: the first
is a character string containing the path name of the program to be executed. The second

argument is a pointer to the argument list, and the third is a pointer to the environment.

This form of the call is used by the shell to provide environment variables to the

programs it executes.

There are several other forms of exec described below. In all but the execle form of
the call, the new program inherits its environment from the calling process.

execv In this form of the call, the first argument is a character string indicating

the path to the program to be executed. The second is a null-terminated
array of pointers to the argument list; the first argument is conventionally

the program name.

execl In this form of the call, the first argument is again a character string

naming the path to the program to be executed. Following this is a

variable number of arguments, each of which will be given as an

argument to the program. The second argument (first argument to the

program) is conventionally the program name. The list of arguments

should be null-terminated.

execvp Like execv, except that the first argument is searched for in the
program’s search path, and the first existing executable file by that name

is executed.

execlp Like execl, except that the first argument is searched for in the
program’s search path, and the first existing executable file by that name

is executed.

Using C on the UNIX System

96 FOR PERSONAL, NON-COMMERCIAL USE ONLY

execle In this form of the call, the new environment is passed as a null-

terminated array of pointers following the null argument terminating the

argument list.

Waiting for Processes to Terminate

After spawning a new process, the parent process is free to go about its business. The

two processes will be executing at the same time; neither will wait on the other. This is

the way the shell starts up a process in the background; it simply spawns a new process

which executes the new program, and the parent prints another prompt to you.

Unfortunately, the above is not always desirable. Often times the parent cannot continue

until the program the child executes has completed its work. For this reason, the wait

system call is provided. wait takes a single argument, the address of an integer. This

integer will contain the exit status of a child process when the call returns. When wait
is executed, the process is delayed until a signal is received or one of its children exits.

If a child has exited since the last wait, then return is immediate, returning the process
id and exit status of one of the exited children.

Example 9-1 shows a program that reads commands from the terminal and executes them

one at a time, waiting for the command to terminate before prompting for a new

command. It should be noted that the code inside the if in execute is executed only by

the child process. The calls to perror and exit will only be executed if the exec fails,

since there is no return from a successful call to exec. The call to exit is important; if
it wasn’t there, then every time a program could not be executed another child process

would remain. Execution would leave the if, and the child would begin executing the

parent’s code. The return value from wait is checked to insure that the exiting child
process which terminated the wait is indeed the direct child of the parent. This is done

because all processes, whether started by the parent or one of its children, can be waited

on by the parent. If the child were to execute a program which terminated before the

child itself, this would be the first process id returned by the call to wait.

Example 9-1. ezshell—a simple shell program

#include <stdio.h>

main()

{

 char buf[1024];

 char *args[64];

 for (;;) {

 /*

 * Prompt for and read a command.

 */

 printf("Command: ");

Executing Programs

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 97

 if (gets(buf) == NULL) {

 printf("\n");

 exit(0);

 }

 /*

 * Split the string into arguments.

 */

 parse(buf, args);

 /*

 * Execute the command.

 */

 execute(args);

 }

}

/*

 * parse - split the command in buf into

 * individual arguments.

 */

parse(buf, args)

char *buf;

char **args;

{

 while (*buf != NULL) {

 /*

 * Strip whitespace. Use nulls, so

 * that the previous argument is terminated

 * automatically.

 */

 while ((*buf == ' ') || (*buf == '\t'))

 *buf++ = NULL;

 /*

 * Save the argument.

 */

 *args++ = buf;

 /*

 * Skip over the argument.

 */

 while ((*buf != NULL) && (*buf != ' ') && (*buf != '\t'))

 buf++;

 }

 *args = NULL;

}

/*

 * execute - spawn a child process and execute

 * the program.

 */

execute(args)

Using C on the UNIX System

98 FOR PERSONAL, NON-COMMERCIAL USE ONLY

char **args;

{

 int pid, status;

 /*

 * Get a child process.

 */

 if ((pid = fork()) < 0) {

 perror("fork");

 exit(1);

 }

 /*

 * The child executes the code inside the if.

 */

 if (pid == 0) {

 execvp(*args, args);

 perror(*args);

 exit(1);

 }

 /*

 * The parent executes the wait.

 */

 while (wait(&status) != pid)

 /* empty */ ;

}

Redirecting Input and Output

Example 9-1 is useful, perhaps even as a very primitive shell. It reads a command from

you, and then executes it. Unfortunately, there is no way to make the command read

from a file, nor write to one as the real shell does. Fortunately, this is relatively easy to

do.

Chapter 3, Low-Level I/O, described the dup system call, which could be used to obtain
a new file descriptor referring to the same file as its argument. Further, as mentioned

above, files stay open across calls to exec and child processes are identical in every way
to their parents. This implies that to make a process read and write files instead of the

terminal, it is only necessary to open the files and issue the appropriate calls to dup in
the child process.

Example 9-2 shows a modified version of the execute routine from Example 9-1. This
routine takes four arguments: the arguments to the program and file descriptors referring

to the files which should be used as the new program’s standard input, standard output,

and standard error output. If no file is to be used, the caller of execute can simply pass
down 0, 1, or 2 respectively. The program must check, however that it does not

inadvertently close one of these descriptors, since the call to dup would then fail (in other

words, it is not possible to make dup return its argument).

Executing Programs

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 99

Example 9-2. execute—spawn a process and execute a program

execute(args, sin, sout, serr)

char **args;

int sin, sout, serr;

{

 int pid, status;

 /*

 * Get a child process.

 */

 if ((pid = fork()) < 0) {

 perror("fork");

 exit(1);

 }

 /*

 * The child executes the code inside the if.

 */

 if (pid == 0) {

 /*

 * For each of standard input, output,

 * and error output, set the child's

 * to the passed-down file descriptor.

 * Note that we can't just close 0, 1,

 * and 2 since we might need them.

 */

 if (sin != 0) {

 close(0);

 dup(sin); /* will give us fd #0 */

 }

 if (sout != 1) {

 close(1);

 dup(sout); /* will give us fd #1 */

 }

 if (serr != 2) {

 close(2);

 dup(serr); /* will give us fd #2 */

 }

 execvp(*args, args);

 perror(*args);

 exit(1);

 }

 /*

 * The parent executes the wait.

 */

 while (wait(&status) != pid)

 ;

}

Using C on the UNIX System

100 FOR PERSONAL, NON-COMMERCIAL USE ONLY

There is a minor problem with this function: if the program redirects the standard error

output to a file, and then the child cannot execute the new program, the perror call will
write its error message on the file rather than the terminal. There are several ways to

solve this problem; its solution is left as an exercise to you.

Setting Up Pipelines

One of the most powerful features of the UNIX operating system is the ability to constuct

a pipeline of commands. This pipeline is set up such that the output of the first command

is sent to the input of the second, the output of the second command is sent to the input

of the third, and so forth. This eliminates the need to run each command separately,

saving the intermediate results in temporary files.

The popen Library Routine

One way to create a pipe is to use popen. This routine takes two arguments: a character

string containing the command to be executed, and a mode similar to that used with

fopen. It calls the shell to execute the command just as system does, and then returns

a file pointer which may be used to communicate with the process. When the program is

done communicating with the process, it should close the pipe using pclose.

The popen routine has the same disadvantages that system does. For this reason, most
programmers prefer to do their own “plumbing” in programs which will be used often.

Creating Pipes Directly

The system call to create a pipe is called pipe. It takes a single argument, an array of
two integers. If the call succeeds, the array will contain two file descriptors to be used as

the pipe; otherwise −1 is returned and errno indicates the reason for failure. After
creating the pipe, a program should spawn a child process. The parent reads data from

the child on the first descriptor, and writes data to the child on the second descriptor.

Similarly, the child reads data from the parent on the first descriptor, and writes data to

the parent on the second descriptor. It is common for the child to have its standard input

and standard output connected to the first and second descriptors, respectively.

Example 9-3 shows a small program that opens a pipe to the electronic mail program and

sends a message to the person executing it. The fdopen function takes a low-level file
descriptor and a mode as arguments, and returns a stdio file pointer which refers to the

same file. This enables programs to use low-level I/O routines for a time and then convert

to high-level routines. Note that there is no real need for the parent to wait on the child

process to terminate. In fact, deleting the wait has the advantage of making the child
run in the background so that the user doesn’t have to wait for it to finish. You are invited

to modify this program to execute other programs and read from the pipe instead of

writing, or perhaps both.

Executing Programs

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 101

Example 9-3. mailer—open a pipe to the mail command and send mail

#include <stdio.h>

main()

{

 FILE *fp;

 int pid, pipefds[2];

 char *username, *getlogin();

 /*

 * Get the user's name.

 */

 if ((username = getlogin()) == NULL) {

 fprintf(stderr, "Who are you?\n");

 exit(1);

 }

 /*

 * Create the pipe. This has to be done

 * BEFORE the fork.

 */

 if (pipe(pipefds) < 0) {

 perror("pipe");

 exit(1);

 }

 if ((pid = fork()) < 0) {

 perror("fork");

 exit(1);

 }

 /*

 * The child process executes the stuff inside

 * the if.

 */

 if (pid == 0) {

 /*

 * Make the read side of the pipe our

 * standard input.

 */

 close(0);

 dup(pipefds[0]);

 close(pipefds[0]);

 /*

 * Close the write side of the pipe;

 * we'll let our output go to the screen.

 */

 close(pipefds[1]);

 /*

 * Execute the command "mail username".

 */

 execl("/bin/mail", "mail", username, 0);

Using C on the UNIX System

102 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 perror("exec");

 exit(1);

 }

 /*

 * The parent executes this code.

 */

 /*

 * Close the read side of the pipe; we

 * don't need it (and the child is not

 * writing on the pipe anyway).

 */

 close(pipefds[0]);

 /*

 * Convert the write side of the pipe to stdio.

 */

 fp = fdopen(pipefds[1], "w");

 /*

 * Send a message, close the pipe.

 */

 fprintf(fp, "Hello from your program.\n");

 fclose(fp);

 /*

 * Wait for the process to terminate.

 */

 while (wait((int *) 0) != pid)

 ;

 exit(0);

}

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 103

Chapter 10
Job Control

The job control mechanism provided in Berkeley versions of the UNIX system enables

a user to control many processes at once. Coupled with the commands provided by the

C shell (csh) and the new tty driver, the job control mechanism enables you to:

 Suspend an executing job.

 Place that job in the background.

 Continue the job’s execution.

 Return the job to the foreground.

 Cause a background job to be stopped when it attempts output to the terminal.

 Cause a background job to stop when it tries to read from the terminal.

This chapter describes how the various tasks mentioned above can be performed by user

programs. In order to provide a familiar framework on which to base our discussion, we

will describe things in terms of csh commands. Those readers not familiar with csh may

wish to read An Introduction to the C Shell by William Joy in Section 2c (User’s

Supplementary Documents) of the UNIX Programmer’s Manual.

Preliminary Concepts

The Controlling Terminal

When a terminal file (e.g., /dev/tty12) is opened, it causes the opening process to wait

until a connection is established. In practice, user programs rarely open these files
directly; they are opened by the init process and become a user’s standard input and

output files. The first terminal file open in a process becomes the controlling terminal

for that process. The controlling terminal is inherited by a child process during a fork,
even if the control terminal is closed.

Using C on the UNIX System

104 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The file /dev/tty is, in each process, a synonym for the controlling terminal associated

with that process. It is useful for programs that wish to be sure of writing messages on

the terminal no matter how output has been redirected.

Certain processes in the system, usually the daemons started at system boot time, clear

their controlling terminal using the ioctl system call (with TIOCNOTTY as the operation
constant). The reasons for this will become apparent later.

Process Groups

On non-Berkeley versions of the UNIX system, the set of processes which share the

same controlling terminal is defined as a process group. This definition still applies on

Berkeley systems when using sh and the old tty driver. Because neither of these permits

job control, this definition will not be discussed further.

On Berkeley systems, it is possible to place processes into any arbitrary process group

using the setpgrp system call. The C shell uses this call in a straight-forward way; each
shell job constitutes a single process group. Each time it starts a process, csh sets that

process’s process group to the same number as its process id. In the case of a pipeline,

all the processes in the pipeline are placed in the same process group, the process id of

the first process forked (which, as it happens, is the last command in the pipeline).

In addition to associating each process with a process group, each terminal is associated
with a process group called a distinguished process group. Processes that are in a

distinguished process group are considered to be in the “foreground,” and are permitted

to read from the terminal and to receive interrupts generated from the keyboard.

Processes not in a distinguished process group are considered to be in the “background.”

They cannot read from the terminal, and they do not receive interrupts generated from

the keyboard.

The process group associated with a terminal may be obtained using the call:

ioctl(fd, TIOCGPGRP, &pgrp)

where pgrp is an integer and fd refers to the terminal in question. The terminal’s process

group may be changed using the ioctl system call with TIOCSPGRP as the operation
constant.

System Calls

In order to write subroutines that mimic those of csh, it is necessary to first describe a

few of the system calls we will be using. Several of them have been described in detail

in previous chapters, and we will only mention them briefly here to describe what we

plan to use them for.

Job Control

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 105

ioctl

ioctl will be used to initially set the process group of the controlling terminal to the

process group of the shell. This is necessary to allow the shell to print prompts, read from

the terminal, and accept signals. We will also use ioctl to change the process group of

the terminal to permit a job in another process group to access it (thus putting the job in

the foreground).

setpgrp

The setpgrp system call will be used to put each new process into its process group,
and also to place the shell into a process group when it is first invoked.

killpg

killpg is very similar to kill, except that it sends the signal to a process group instead

of a single process. This call is used to send signals to the various process groups the
shell is controlling.

wait3

This call is a much more sophisticated version of the wait system call. It is called as:

wait3(status, options, rusage)

where status is a pointer to type union wait; options is an integer containing

ORed-in bits described below; and rusage is an optional pointer to type struct

rusage. If non-zero, it will be filled in with resource usage statistics about the child
process. The union and the options flags are defined in the include file sys/wait.h; the

other structure is defined in sys/resource.h. As with wait, the process id of the process
whose status is being given is returned, and −1 is returned when there are no processes

that wish to report their status. The flags which can be ORed into options are:

WNOHANG This flag specifies that the call should not block if there are no

processes which wish to report their status. This enables a process

to check for any processes whose status has changed and then go on

to something else if there are none.

WUNTRACED This flag causes children which have been stopped via one of the

signals SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP to have their
status reported also.

There are also three macros defined; each takes a single argument, the union wait
object:

WIFSTOPPED Returns non-zero if the process is stopped.

WIFSIGNALED Returns non-zero if the process exited because of a signal.

Using C on the UNIX System

106 FOR PERSONAL, NON-COMMERCIAL USE ONLY

WIFEXITED Returns non-zero if the process exited of its own accord.

The JOB and PROC Data Types

In the following discussion, we will be presenting several subroutines, each of which

performs a single task related to job control. To avoid complicating the examples, we

have assumed a generic data type called JOB. This data type is used to describe each job,

and contains such information as the command string, the process group number, the

process ids of the processes in the job, and the status of the processes.

Another data type, PROC, will be used to represent a single process within a job. Rather

than explicitly define these data types, we will simply use fields from them as we need

them, and rely on the comments in the code to explain what is being done.

Job Control in the Shell

This section describes the various parts of job control which are handled primarily by

the shell. This includes moving processes from foreground to background and back,
suspending processes in mid-execution, and so on.

Setting Up for Job Control

In order to perform job control, it is necessary to first set up the environment. This set-

up is done by the shell when it is first invoked, and includes setting the shell’s process

group and then setting the terminal’s process group. Example 10-1 shows how this might

be done.

Example 10-1. setupjc—set up for job control

#include <sys/ioctl.h>

int MyPid; /* the shell's process id */

int MyPgrp; /* the shell's process group */

int TermPgrp; /* the terminal's process group */

setup()

{

 /*

 * Obtain shell's process id.

 */

 MyPid = getpid();

 /*

 * Just use pid for process group. This is

 * not a requirement, just convenient. Other

 * ways of picking a process group can be used.

 */

Job Control

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 107

 MyPgrp = MyPid;

 TermPgrp = MyPid;

 /*

 * Set the shell's process group.

 */

 if (setpgrp(MyPid, MyPgrp) < 0) {

 perror("setpgrp");

 exit(1);

 }

 /*

 * Set the terminal's process group.

 */

 if (ioctl(1, TIOCSPGRP, &MyPgrp) < 0) {

 perror("ioctl");

 exit(1);

 }

}

Executing a Program

When executing a program, the shell performs something similar to what is done in

Example 9-2. The actual routine handles more complex things than the example; in

particular, the routine is recursive after a fashion in order to handle building pipelines.

The important thing about executing programs, though, is that after the first child has

been spawned (the child whose process id will become the process group for this job),
the terminal must be placed in this process group. If this is not done, the program will

not be executing in the foreground (though, of course, this is what is wanted if the

command line contained an ampersand on the end). It is not terribly important whether

the parent or the child sets the process group, as long as it gets done. In csh, the parent

shell handles this.

Stopping a Job

There are two ways to stop a job in csh. The first method, using the ‘^Z’ or ‘^Y’ keys on

the terminal, is used to stop the current foreground job and return control to the shell.

(‘^Z’ stops the process immediately. ‘^Y’ does not stop the process until it tries to read

from the terminal.) The second method, the stop shell command, is used to stop processes

that are already in the background.

Stopping a job involves two steps. If the stopped job is already in the background, the

process group of the job must be sent a stop signal. If the job is in the foreground, typing

the stop character on the keyboard causes the system to send the job the stop signal. If

the stopped job was in the foreground, the process group of the terminal must be changed

to the process group of the shell, which allows the shell to print its prompt and read the

next command. Example 10-2 demonstrates the stop subroutine.

Using C on the UNIX System

108 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Example 10-2. stop—stop a job

#include <signal.h>

stop(j)

JOB *j;

{

 /*

 * If the job is already stopped, we don't

 * need to do anything.

 */

 if (j->status & JSTOPPED)

 return;

 /*

 * If the job's process group is not that of the

 * terminal, then the job is in the background

 * and must be sent a stop signal.

 */

 if (j->pgrp != TermPgrp)

 killpg(j->pgrp, SIGSTOP);

 /*

 * Mark the job as stopped.

 */

 j->status |= JSTOPPED;

 /*

 * If the terminal is not in the shell's process

 * group, we need to put it there.

 */

 if (TermPgrp != MyPgrp) {

 ioctl(1, TIOCSPGRP, &MyPgrp);

 TermPgrp = MyPgrp;

 }

}

In this example, we introduced the status field of the job structure, which is used to
keep track of the status of jobs. Later we will see a similar field used to keep track of the

status of each process in a job. The main reason for keeping track of the status of jobs

and processes is not for efficiency, but rather reporting the status of the jobs to the you.

This is shown later in this chapter.

Backgrounding a Job

There are two ways to place a job in the background. The first is by placing an ampersand

(‘&’) at the end of the command string when the command is first entered. Since this

case is handled when the processes are started, and has little if anything to do with job

control, it is not described further here.

The second method, using the bg command, involves sending a “continue” signal to the

job. Because the job is not in the foreground (otherwise the bg command could not have

Job Control

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 109

been read by the shell), no process group manipulation is necessary. Example 10-3 shows

the bg subroutine.

Example 10-3. bg—background a job

#include <signal.h>

bg(j)

JOB *j;

{

 /*

 * If the job is already running,

 * there's no need to start it.

 */

 if (j->status & JRUNNING)

 return;

 /*

 * Start the job.

 */

 killpg(j->pgrp, SIGCONT);

 /*

 * Mark the job as running.

 */

 j->status &= ~JSTOPPED;

 j->status |= JRUNNING;

}

Foregrounding a Job

Bringing a job into the foreground is somewhat more complex than putting it into the

background. Because the job is not in the process group of the terminal, the terminal’s

process group must be changed. Secondly, the job must be started if it is in a stopped

state. Finally, after the job has been placed into the foreground, the shell must wait for it

to complete. This is all shown in Example 10-4.

Example 10-4. fg—foreground a job

#include <sys/ioctl.h>

#include <signal.h>

fg(j)

JOB *j;

{

 /*

 * If the terminal is not in the job's process

 * group, change the process group of the

 * terminal.

 */

 if (j->pgrp != TermPgrp) {

Using C on the UNIX System

110 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 ioctl(1, TIOCSPGRP, &j->pgrp);

 TermPgrp = j->pgrp;

 }

 /*

 * If the job is not running, start it up.

 */

 if (j->status & JSTOPPED) {

 killpg(j->pgrp, SIGCONT);

 j->status &= ~JSTOPPED;

 j->status |= JRUNNING;

 }

 /*

 * Go wait for the job to complete.

 */

 waitfor();

}

The waitfor routine is shown in Example 10-5.

The jobs Command

The jobs command is used in csh to print the status of all running jobs. For the most part,

it simply involves running through the data structures for jobs and processes and printing

out their status flags. This is contrary to what it looks like jobs does, since it is reported

in the output that each process is running, stopped, finished, etc. However, all the status

checking is performed in other parts of the shell, predominantly the waitfor routine,
discussed next.

Waiting for Jobs

The task of waiting for jobs to complete is somewhat more complex in csh than it was

when described in Chapter 9, Executing Programs. First of all, using wait3, not only do
we find out about jobs which have exited, but we also find out about those that have

changed their status (stopped, etc.). The main problem, however, is decoding all this

information and saving it all in the data structures.

The way we do this is as follows: We continue to wait on jobs until either we run out, or

the job currently in the foreground changes its status. As we find out about other

processes, we OR in various flags into their status fields, and also OR in the constant

JNEEDNOTE. Just before we print a prompt, we run through the data structures, and any

job that has JNEEDNOTE in its status flags has its status printed out. Example 10-5 shows

the waitfor routine.

Example 10-5. waitfor—wait for a process to finish

#include <sys/wait.h>

Job Control

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 111

waitfor()

{

 int pid;

 JOB *j;

 PROC *p;

 JOB *findjob();

 union wait status;

 /*

 * As long as we get something's status back...

 */

 while ((pid = wait3(&status, WUNTRACED, 0)) >= 0) {

 /*

 * Find the job structure which has this

 * process.

 */

 j = findjob(pid);

 /*

 * Find the process structure.

 */

 for (p = j->procs; p->pid != pid; p = p->next)

 /* empty */ ;

 /*

 * Find out what happened to the process.

 */

 if (WIFSTOPPED(status)) {

 /*

 * See if we know the reason it was

 * stopped. The w_stopsig element of

 * the structure contains the number

 * of the signal which stopped the

 * process.

 */

 switch (status.w_stopsig) {

 case SIGTTIN:

 p->status |= PTTYINPUT;

 break;

 case SIGTTOU:

 p->status |= PTTYOUTPUT;

 break;

 case SIGSTOP:

 p->status |= PSTOPSIGNAL;

 break;

 default:

 break;

 }

 p->status |= PSTOPPED;

 j->status |= JNEEDNOTE;

 }

 else if (WIFEXITED(status)) {

 /*

 * Normal termination.

Using C on the UNIX System

112 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 */

 if (status.w_retcode == 0)

 p->status |= PDONE;

 else

 p->status |= PEXITED;

 p->exitcode = status.w_retcode;

 /*

 * We're only going to note processes

 * exiting if all the processes in the

 * job are complete.

 */

 if (alldone(j))

 j->status |= JNEEDNOTE;

 }

 else if (WIFSIGNALED(status)) {

 p->status |= PSIGNALED;

 /*

 * Save the termination signal.

 */

 p->termsig = status.w_termsig;

 /*

 * Check for a core dump.

 */

 if (status.w_coredump)

 p->status |= PCOREDUMP;

 /*

 * We're only going to note processes

 * exiting if all the processes in the

 * job are complete.

 */

 if (alldone(j))

 j->status |= JNEEDNOTE;

 }

 /*

 * If this process is the one which was in the

 * foreground, we need to do special things,

 * and then return to the main control section

 * of the shell.

 */

 if (j->pgrp == TermPgrp) {

 /*

 * If the job is stopped, we need to call

 * the stop routine.

 */

 if (WIFSTOPPED(status)) {

 stop(j);

 printf("Stopped\n");

 }

Job Control

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 113

 /*

 * If the job exited or died somehow, we

 * need to regain control of the terminal.

 */

 if (WIFEXITED(status) || WIFSIGNALED(status)) {

 ioctl(1, TIOCSPGRP, &MyPgrp);

 TermPgrp = MyPgrp;

 }

 /*

 * Go back.

 */

 return;

 }

 }

}

Asynchronous Process Notification

By using the notify command supplied by csh, it is possible to find out immediately when
the status of a job changes, rather than waiting until the next prompt is printed. The way

this is done involves catching the SIGCHLD signal in the parent shell. This signal is sent

to a process whenever one of its children changes its status. When no processes require
asynchronous notification, this signal is simply ignored.

The routine in csh that handles asynchronous notification is simply declared as the

handler for the SIGCHLD signal. When it is called, it makes a single call to wait3, since
we are guaranteed to have a process there that has changed status. The rest of the routine

looks very much like the waitfor routine shown in Example 10-5, except that at the

end of the routine a call is made to the routine that prints out the job status fields.

Job Control Outside the Shell

As mentioned previously, processes that are not in the distinguished process group are

not permitted to read from the terminal. Under other versions of UNIX, as well as under

the old tty driver on Berkeley systems, these processes receive an end-of-file when they

attempt to read from the terminal.

Under the new tty driver, however, the process receives a SIGTTIN signal which causes
it to stop. The shell can then be used to place the job in the foreground, and the read can

be satisfied.

Processes are normally allowed to write to the terminal regardless of whether or not they

are in the foreground. Under the new tty driver, if the LTOSTOP bit is set in the local

mode word, then processes that are not in the distinguished process group are stopped

with a SIGTTOU signal when they attempt to write to the terminal. They can then be
moved into the foreground with the shell, at which point they can continue their output.

This is particularly convenient for letting long-running programs run in the background

Using C on the UNIX System

114 FOR PERSONAL, NON-COMMERCIAL USE ONLY

until they are ready to print, and then having them wait until you are ready to see the

output.

Important Points

There are several important points to notice from this chapter and its examples:

 The examples in this chapter are for demonstration purposes only. They will work

well enough as a demonstration, but they would not be suitable for incorporation

into a real shell program. In order to do this, it would be necessary to protect several

areas of the code from interruption by signals (in particular, since the SIGCHLD

handler works on the same data structures as the other routines, SIGCHLD must be
ignored when modifying these structures), built-in commands would have to be

handled specially, such as interruption of shell procedures (stopping a process which

was executed from inside a shell construct such as a foreach loop causes the rest
of the loop to be aborted), and so on.

 Throughout the examples, whenever a process needed to be placed in the same

process group as the terminal, it was always the terminal process group that was

changed. An alternative method would have been to use setpgrp to change the
process group of the process. There is, however, a reason for changing the terminal’s

process group and not the process’s: if the process uses its own process group for

something, and obtains that information via getpgrp, then if the shell changes the
process’s process group that information will no longer be accurate. For this reason,

it is always the terminal’s process group that is changed.

 In Chapter 9, Executing Programs, we mentioned that the shell will ignore SIGINT

and SIGQUIT in processes that it places in the background. This is not desirable
when in a job control environment, since there is no way, when bringing the job into

the foreground, to cause these signals to not be ignored anymore. Fortunately, it is

not necessary to ignore these signals in background processes when working with

the new tty driver. Recall that signals generated from the keyboard are sent only to

the processes in the process group of the terminal. Since background processes are

not in this process group, they will not receive the signal anyway. However, when

they are placed into the forground, the interrupt keys will work correctly, since the

background processes are not ignoring the signals themselves.

 The code shown will not work correctly if the process changes its process group or
if something changes the terminal’s process group. The C shell correctly handles

these cases.

Job control is a very useful feature to have in UNIX systems; unfortunately the

implementation is rather complicated. Generally speaking, there is no way to implement

“part” of job control, it’s an all-or-nothing prospect. Most programs, with the exception

Job Control

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 115

of csh and the Korn shell (ksh), do not handle stopping processes started from them

simply because it requires too much code. The actual csh implementation of job control,

counting only the code to handle manipulation and status printing of processes, requires

about 1200 lines of C code.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 117

Chapter 11
Interprocess Communication

The interprocess communication (IPC) facilities of the UNIX system allow two or more

distinct processes to communicate with each other. We have already discussed one form

of IPC, the pipe. This mechanism allows two related processes (one of which must be a

descendant of the other) to communicate over a two-way byte stream using the read and

write system calls.

The newer versions of UNIX (Berkeley versions starting with 4.2BSD and System V)

provide more powerful IPC facilities that allow two or more completely unrelated

processes to communicate with each other. System V provides three separate forms of

IPC: semaphores, shared memory, and message queues. Each of these mechanisms,

while powerful in its own area, tends to be rather restrictive in the types of uses to which

it can be put. The Berkeley UNIX method, called sockets, provides an interface which is

a generalization of the pipe mechanism already familiar to most UNIX programmers. In
fact, the pipe mechanism is actually implemented in Berkeley UNIX as a pair of

connected sockets. We will discuss the Berkeley UNIX method first since it is the

simplest method to understand. After the basic concepts have been covered, the System

V mechanisms will be discussed.

Berkeley UNIX IPC

Interprocess communication beyond the scope of the pipe mechanism can normally be
described using a client/server model. In this model, one process is called the server; it

is responsible for satisfying requests put to it by the other process, the client. As an

example, consider a program that manages all the printer queues on a machine. This

program would be called a server. When a user prints a file, the printing program (the

client) contacts the server and asks it to put the file into the queue for the specified printer.

The server does this, and then invokes the appropriate program to actually print the file

on the printer.

Using C on the UNIX System

118 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Normally, when a server program is invoked, it asks the operating system for a socket.

When it gets one, it assigns a well-known name to that socket, so that other programs

can ask the operating system to talk to that name (since they will not know the integer

value of the socket itself). After naming the socket, the server listens on the socket for

connection requests from client processes to come in. When a connection request arrives,

the server may accept or reject the connection. If it accepts the connection, the operating
system joins the client and server together at the socket, and the server may read and

write data to and from the socket just as if it were a pipe to the client.

The client begins the process by asking the operating system for a socket, and then asking

that the socket be connected to some other socket having a given name. The operating

system attempts to find a socket with the given name, and if it does, sends the process

listening to that socket a connection request. If that process (the server) accepts the

connection, the operating system joins the two processes together at the socket, and the

client can read and write data to and from the socket just as if it were a pipe to the server.

In the Berkeley UNIX implementation, socket names are simply standard UNIX path

names. For example, in the case of the printer software described above, the server might

listen on the socket called /dev/printer. Currently the IPC mechanism actually creates

entries in the file system for these sockets (i.e., you can see them in directories).

The socket System Call

The socket system call is used to obtain a socket descriptor for performing IPC

operations. It takes three arguments: a domain, a sockettype and a protocol. The

various constants used as arguments to the call are defined in the include file sys/socket.h;

sys/types.h must also be included.

The domain argument specifies to the operating system the domain in which addresses

should be interpreted. This domain imposes certain rules on address formats and their

interpretation. In this chapter, which describes communication between processes on the

same computer, we will be using the UNIX domain, in which addresses are interpreted

as UNIX path names. This domain is specified to socket using the AF_UNIX constant

(the “AF” stands for “address family”). Another important domain, the Internet domain,
is discussed in the next chapter. (4.3BSD provides a third domain, the Xerox NS domain.

This domain will not be discussed in this book.)

The sockettype argument specifies the type of communications channel that should

be used with the socket. There are several types of communications channels available

with Berkeley UNIX IPC, but only two are of interest to the general user:

SOCK_STREAM This type of connection is usually called a virtual circuit. It is a

continuous byte stream which guarantees reliable delivery of data

in the order it was sent. No data can be sent until the circuit has

been established; the circuit then remains intact until the

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 119

conversation is complete. A telephone call is a “real world”

example of a virtual circuit; a UNIX pipe is also a virtual circuit.

SOCK_DGRAM This type of connection is used to send distinct packets of

information called datagrams. Datagrams are not guaranteed to

be delivered in order to the remote side; in fact, they are not

guaranteed to be delivered at all. (This may sound undesirable,
but there are several applications which can make use of

datagrams quite well.) The U.S. Mail system is an example of

datagrams: letters can arrive out of sequence, and some may even

get lost.

The protocol argument allows the programmer to pick which protocol is used to

implement the communications channel. If the protocol argument is given as 0, the

operating system will pick the correct protocol automatically. All the examples in this

book will allow the operating system to choose the protocol.

socket returns an integer file descriptor suitable for use with read and write (after
the socket has been connected to something) as well as the other IPC system calls. If the

socket cannot be created (having too many files open is one of the reasons this call can

fail), −1 is returned and errno is set to the reason for failure.

The bind System Call

The bind system call is used to assign a name to a socket. Until a socket has been given
some type of name (naming schemes vary with the addressing domain being used), it

cannot be addressed by client programs. bind takes three arguments: the socket to be

named (which must have been created with a call to socket), a pointer to the name of
the socket, and the length of the name. It returns 0 if the call succeeds; −1 is returned and

errno is set if it fails.

The second argument to bind is a structure of the generic type sockaddr. For the UNIX

domain, the structure is actually of type sockaddr_un, and is defined in the include file

sys/un.h. The sockaddr_un structure is defined as follows:

struct sockaddr_un {

 short sun_family; /* AF_UNIX */

 char sun_path[108]; /* path name */

};

The sun_family element is set to AF_UNIX, which indicates the addressing family of

the address. sun_path contains the path name of the socket we will be using. As a side

effect of the implementation, the file named in sun_path is actually created when it is

bound. Because of this, whenever the socket’s owner is finished with it it should unlink
the socket, or the next program to attempt to bind its name will receive an error that the

address is already in use.

Using C on the UNIX System

120 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The send and recv System Calls

The send and recv system calls are analogous to read and write, except that they

may only be used with sockets. (The read and write system calls may also be used on
stream sockets; the operating system performs the appropriate translations.) The calls

accept identical arguments to read and write, except that there is a fourth argument
for specifying special options. Two of these options are:

MSG_PEEK By specifying this option in a call to recv, the program can “peek” at
data on the socket without actually “reading” it. That is, although the

buffer is filled with the requested data, a subsequent read or recv call
will receive the same data again. This is sometimes useful for deciding

what to do with received data without having to read it in and deal with

it ahead of time.

MSG_OOB This causes send to send the requested data as out of band data. It also

allows recv to read data which has been sent out of band. When
sending data on a stream connection, the data is transmitted in the order

it was written. If an urgent condition arises, there is no way to inform

the reading process about it immediately, since the reading process

must read and process all the data currently on the socket. Out of band

data is sent outside the normal data stream, effectively “jumping over”

all the data waiting to be read. When it arrives at the reading process,
the process may receive a signal (see Chapter 8, Processing Signals),

and it can be processed immediately. (This is how the rlogin program

flushes output when an interrupt is received.)

The listen System Call

The listencall is used by the server to inform the operating system that connection
requests on a given socket should be delivered to the program. If no program is listening

for connections on the socket, any connection requests to that address will be refused.

listen takes two arguments: the socket to listen on and an integer backlog. The backlog
indicates how many connections can be pending on the socket awaiting acceptance (most

systems limit the size of the backlog to five). This enables a program to have more than

one program connect to it at once; the operating system will queue up the backlog amount

of requests and hand them to the program one at a time. If the server is backed up to the
maximum backlog size, incoming connections will still not be refused. Rather, the

operating system discards the data packets requesting the connection. The purpose of

this is to allow connections to time out rather than be refused, in order that the client may

distinguish between a server that is too busy and a server that is down.

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 121

The shutdown System Call

The shutdown call is used to shut down all or part of a connection on a socket. It takes

two arguments: the socket to be shut down and an integer indicating how to shut the
socket down. If the integer is 0 the socket is shut down for reading; all further reads from

the socket return end-of-file. If the number is 1, the socket is shut down for writing; all

further writes to the socket fail. If the integer is 2, the socket is shut down for both reading

and writing (the connection is effectively terminated).

The close system call may also be used to terminate a connection, with slightly different
results. If the protocol being used by the socket guarantees reliable data delivery, a

close on the socket will block while the operating system attempts to deliver any data

remaining “in transit.” The shutdown call, on the other hand, indicates to the operating

system that this data is not wanted and no effort to deliver it need be made.

Connection-Based Sockets

Sockets of type SOCK_STREAM must be connected before they can be used. This
connection process establishes the circuit that will be used until the connection is

terminated. Two system calls are used to make connections; one by the server and the

other by the client.

The accept System Call

The accept system call is used by the server to accept a connection on a socket. The

socket must first have been listened on. When accept is called, it will block the

process until a connection comes in.* When a connection arrives, accept returns a new

socket descriptor that is connected to the client process. This way the server uses the new

descriptor to converse with the client, and continues accepting connections on the old
socket (the one bound to the well-known address).

accept takes three arguments: the socket to accept connections from, a pointer to a

sockaddr structure for the appropriate domain, and a pointer to an integer. The integer

should contain the size of the sockaddr structure. The sockaddr structure and the
integer will be filled in with the address and address length of the client process when a

connection is accepted. This permits a server to determine exactly which client it is

talking to. If the server is uninterested in the client’s address, the second argument may

be given as a null pointer.

The connect System Call

connect is used by the client process to establish a conversation with a server. It takes

three arguments: an open socket descriptor, a pointer to a sockaddr structure for the
appropriate domain which contains the address to be connected to, and an integer

* Unless the socket has had non-blocking I/O set on it; see Chapter 5, Device I/O Control.

Using C on the UNIX System

122 FOR PERSONAL, NON-COMMERCIAL USE ONLY

indicating the the length of the address. If the call succeeds, 0 is returned; otherwise −1

is returned and errno will contain the reason for failure.

Connectionless Sockets

Sockets that use the SOCK_DGRAM method of communication do not need to be connected

in order to be used. This is because modified versions of send and recv, sendto and

recvfrom, are used to send and receive datagrams.

The sendto System Call

sendto takes six arguments. The first four arguments are the same as those for send: a

socket descriptor, a pointer to a character buffer, the number of bytes to be sent, and a

flags word. The last two arguments are a pointer to a structure of type sockaddr and an

integer indicating the size of the structure. A datagram will be sent to the address

specified in the structure. No confirmation of delivery is needed (or given), since
datagrams are not guaranteed to be delivered.

The recvfrom System Call

recvfrom also takes six arguments. The first four arguments are the same as for recv:
a socket descriptor, a pointer to a character buffer, the number of bytes to be read, and a

flags word. The last two arguments are a pointer to a structure of type sockaddr and a
pointer to an integer. The integer should initially be set to the size of the structure; on

return it will be set to the actual size of the address. When the server issues a call to

recvfrom, the buffer will be filled in with the data from a datagram sent to the server.
Additionally, the structure will be filled in with the address of the process which sent the

datagram.

Connecting Datagram Sockets

A client may use the connect call to connect a datagram socket to a server. Although
this does not actually establish a connection, it enables the client to send datagrams on

the socket without specifying the address each time.

A Small Client Program

Example 11-1 shows a small client program that connects to a pre-defined address and

then reads and writes a few strings. This program can be used to converse with the server
program shown in Example 11-2.

Example 11-1. unix-client—client program to demonstrate UNIX domain sockets

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stdio.h>

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 123

#define NSTRS 3 /* no. of strings */

#define ADDRESS "mysocket" /* addr to connect */

/*

 * Strings we send to the server.

 */

char *strs[NSTRS] = {

 "This is the first string from the client.\n",

 "This is the second string from the client.\n",

 "This is the third string from the client.\n"

};

main()

{

 char c;

 FILE *fp;

 register int i, s, len;

 struct sockaddr_un sun;

 /*

 * Get a socket to work with. This socket will

 * be in the UNIX domain, and will be a

 * stream socket.

 */

 if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {

 perror("client: socket");

 exit(1);

 }

 /*

 * Create the address we will be connecting to.

 */

 sun.sun_family = AF_UNIX;

 strcpy(sun.sun_path, ADDRESS);

 /*

 * Try to connect to the address. For this to

 * succeed, the server must already have bound

 * this address, and must have issued a listen()

 * request.

 *

 * The third argument indicates the "length" of

 * the structure, not just the length of the

 * socket name.

 */

 len = sizeof(sun.sun_family) + strlen(sun.sun_path);

 if (connect(s, &sun, len)) < 0) {

 perror("client: connect");

 exit(1);

 }

 /*

 * We'll use stdio for reading

Using C on the UNIX System

124 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * the socket.

 */

 fp = fdopen(s, "r");

 /*

 * First we read some strings from the server

 * and print them out.

 */

 for (i=0; i < NSTRS; i++) {

 while ((c = fgetc(fp)) != EOF) {

 putchar(c);

 if (c == '\n')

 break;

 }

 }

 /*

 * Now we send some strings to the server.

 */

 for (i=0; i < NSTRS; i++)

 send(s, strs[i], strlen(strs[i]), 0);

 /*

 * We can simply use close() to terminate the

 * connection, since we're done with both sides.

 */

 close(s);

 exit(0);

}

A Small Server Program

Example 11-2 shows a small server program that converses with the client program in

Example 11-1. This program should be started first in the background, and then the client

should be executed.

Example 11-2. unix-server—server program to demonstrate UNIX domain sockets

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stdio.h>

#define NSTRS 3 /* no. of strings */

#define ADDRESS "mysocket" /* addr to connect */

/*

 * Strings we send to the client.

 */

char *strs[NSTRS] = {

 "This is the first string from the server.\n",

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 125

 "This is the second string from the server.\n",

 "This is the third string from the server.\n"

};

main()

{

 char c;

 FILE *fp;

 int fromlen;

 register int i, s, ns, len;

 struct sockaddr_un sun, fsun;

 /*

 * Get a socket to work with. This socket will

 * be in the UNIX domain, and will be a

 * stream socket.

 */

 if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {

 perror("server: socket");

 exit(1);

 }

 /*

 * Create the address we will be binding to.

 */

 sun.sun_family = AF_UNIX;

 strcpy(sun.sun_path, ADDRESS);

 /*

 * Try to bind the address to the socket. We

 * unlink the name first so that the bind won't

 * fail.

 *

 * The third argument indicates the "length" of

 * the structure, not just the length of the

 * socket name.

 */

 unlink(ADDRESS);

 len = sizeof(sun.sun_family) + strlen(sun.sun_path);

 if (bind(s, &sun, len) < 0) {

 perror("server: bind");

 exit(1);

 }

 /*

 * Listen on the socket.

 */

 if (listen(s, 5) < 0) {

 perror("server: listen");

 exit(1);

 }

 /*

 * Accept connections. When we accept one, ns

Using C on the UNIX System

126 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * will be connected to the client. fsun will

 * contain the address of the client.

 */

 if ((ns = accept(s, &fsun, &fromlen)) < 0) {

 perror("server: accept");

 exit(1);

 }

 /*

 * We'll use stdio for reading the socket.

 */

 fp = fdopen(ns, "r");

 /*

 * First we send some strings to the client.

 */

 for (i=0; i < NSTRS; i++)

 send(ns, strs[i], strlen(strs[i]), 0);

 /*

 * Then we read some strings from the client and

 * print them out.

 */

 for (i=0; i < NSTRS; i++) {

 while ((c = fgetc(fp)) != EOF) {

 putchar(c);

 if (c == '\n')

 break;

 }

 }

 /*

 * We can simply use close() to terminate the

 * connection, since we're done with both sides.

 */

 close(s);

 exit(0);

}

System V IPC

System V IPC has three different forms: message queues, semaphores, and shared

memory. None of these forms is as simple and generic as the Berkeley UNIX method,

but each has its place.

The three forms have several characteristics in common. In each, the specific data

structures used are referred to using a key of type key_t. A key is simply a long integer,
and serves to name the specific data structure to be used so that more than one program

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 127

can refer to it. Each program uses this key and a “get” system call to ask the system for

an identifier, much like a file descriptor, to use when performing IPC operations.

Each form of IPC has a permissions structure associated with it. This set of permissions

includes user and group ownership of the mechanism, as well as permissions similar to

file permissions specifying who (owner, group, world) may read and/or write (modify)

that mechanism. To obtain and modify the permissions on a specific mechanism
(including changing the user or group ownership), a control function is called.

Finally, each form of IPC provides various operations functions so that the IPC

mechanism may be used. The message queue operation functions allowe messages to be

sent and received. The semaphore operation function allows semaphores to be

incremented, decremented, and tested for specific values. The shared memory operation

functions allow processes to attach and detach shared memory segments to their address

space.

Message Queues

Message queues are a cross between a virtual circuit and datagrams. Distinct message

“packets” are exchanged between processes using a queue mechanism so that data

arrives in order, but the messages can be received in more or less any order determined

by the receiving process(es).

A message queue is defined by a unique identifier called a queue id, which is usually a

long integer. The queue itself is described by the following structure contained in

sys/msg.h; sys/types.h must also be included:

struct msqid_ds {

 struct ipc_perm msg_perm; /* permissions */

 struct msg *msg_first; /* 1st message */

 struct msg *msg_last; /* last message */

 ushort msg_cbytes; /* # bytes on q */

 ushort msg_qnum; /* # of msgs on q */

 ushort msg_qbytes; /* max # bytes/q */

 ushort msg_lspid; /* last send proc */

 ushort msg_lrpid; /* last recv proc */

 time_t msg_stime; /* last send time */

 time_t msg_rtime; /* last recv time */

 time_t msg_ctime; /* last chg time */

};

The ipc_perm structure defines the permissions on the message queue. It is defined in
the include file sys/ipc.h:

struct ipc_perm {

 ushort uid; /* owner's user id */

 ushort gid; /* owner's group id */

 ushort cuid; /* creators' user id */

 ushort cgid; /* creator's group id */

Using C on the UNIX System

128 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 ushort mode; /* access permissions */

 ushort seq; /* slot sequence number */

 key_t key; /* key (queue name) */

};

The msgget System Call

The msgget system call is used to create a new message queue, or to obtain the queue

id of an existing message queue. It takes two arguments: a key of type key_t specifying

the name of the message queue, and an integer flags word. A key value of IPC_PRIVATE
(zero) indicates that the message queue will be used by this process only; non-zero keys

are used for queues which will be used by more than one process. The flags word is used

to specify the access permissions on the queue; these correspond exactly to normal UNIX

file permissions. Specifying read permission for owner, group, or world allows messages

to be received; specifying write permission allows messages to be sent. If the value

IPC_CREAT is ORed into the flags word, a new message queue will be created with the

name contained in the key; otherwise the call will return the queue id of the existing

message queue whose name matches the key value. If the call succeeds, a queue id is

returned; otherwise −1 is returned and errno is set to the reason for failure.

The msgctl System Call

The msgctl system call is used to get and modify the attributes of an existing message
queue. It takes three arguments: the queue id of the message queue, a command constant,

and a pointer to a structure of type msqid_ds. The valid command constants, defined in
the include file sys/ipc.h, are:

IPC_STAT Place a copy of the current information about the message queue into

the structure.

IPC_SET Set the user id, group id, and mode of the message queue to the values

contained in the msg_perm element of the structure.

IPC_RMID Remove the message queue identified by the queue id from the system

and destroy the message queue. Any operations in progress on the

message queue will fail.

The msgsnd and msgrcv System Calls

The system calls used to send and receive messages on a message queue are msgsnd and

msgrcv. msgsnd takes four arguments: a queue id, a pointer to a structure of type

msgbuf (see below), an integer indicating the size of the message, and a flags word.

msgrcv takes five arguments: a queue id, a pointer to a structure of type msgbuf, an
integer indicating the maximum size of the message to be received, an integer message

type, and a flags word.

The structure used to form a message is declared as follows:

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 129

struct msgbuf {

 long mtype;

 char *mtext;

};

The mtype field may be used by processes using the queue to identify types of messages.

This value must be greater than zero. mtext is a pointer to a buffer of any number of
bytes; the length of this buffer is passed to the routines.

If the flags word contains the constant IPC_NOWAIT, then the msgsnd call will return a
failure code immediately if the message queue is full. Otherwise, the call will block until

the queue is empty enough to receive the message. Likewise, msgrcv will return a failure

code immediately if no messages of the specified type are available, as opposed to
blocking until the requested message arrives.

When receiving messages, the caller must provide a message type argument to msgrcv.
If this argument is zero, the first message on the queue will be returned. If it is greater

than zero, the first message of that type is returned. If it is less than zero, the first message

of a type less than or equal to the absolute value of the specified type is returned.

Example 11-3 shows a server program which creates a message queue and then waits for

a message to be sent to it. After it receives the message, the program will respond with

a message of its own.

Example 11-3. mq-server—server program to demonstrate message queues

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <stdio.h>

#define MSGSZ 128

/*

 * Declare the message structure.

 */

struct msgbuf {

 long mtype;

 char mtext[MSGSZ];

};

main()

{

 int msqid;

 key_t key;

 struct msgbuf sbuf, rbuf;

 /*

 * Create a message queue with "name"

 * 1234.

Using C on the UNIX System

130 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 */

 key = 1234;

 /*

 * We want to let everyone read and

 * write on this message queue, hence

 * we use 0666 as the permissions.

 */

 if ((msqid = msgget(key, IPC_CREAT | 0666)) < 0) {

 perror("msgget");

 exit(1);

 }

 /*

 * Receive a message.

 */

 if (msgrcv(msqid, &rbuf, MSGSZ, 0, 0) < 0) {

 perror("msgrcv");

 exit(1);

 }

 /*

 * We send a message of type 2.

 */

 sbuf.mtype = 2;

 sprintf(sbuf.mtext, "I received your message.");

 /*

 * Send an answer.

 */

 if (msgsnd(msqid, &sbuf, strlen(sbuf.mtext) + 1, 0) < 0) {

 perror("msgsnd");

 exit(1);

 }

 exit(0);

}

Example 11-4 shows a client process that sends a message to the server, and then waits

for a response, and prints it on the screen. Before running this program, start up the server

process in the background.

Example 11-4. mq-client—client program to demonstrate message queues

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <stdio.h>

#define MSGSZ 128

/*

 * Declare the message structure.

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 131

 */

struct msgbuf {

 long mtype;

 char mtext[MSGSZ];

};

main()

{

 int msqid;

 key_t key;

 struct msgbuf sbuf, rbuf;

 /*

 * Get the message queue id for the

 * "name" 1234, which was created by

 * the server.

 */

 key = 1234;

 if ((msqid = msgget(key, 0666)) < 0) {

 perror("msgget");

 exit(1);

 }

 /*

 * We'll send message type 1, the server

 * will send message type 2.

 */

 sbuf.mtype = 1;

 sprintf(sbuf.mtext, "Did you get this?");

 /*

 * Send a message.

 */

 if (msgsnd(msqid, &sbuf, strlen(sbuf.mtext) + 1, 0) < 0) {

 perror("msgsnd");

 exit(1);

 }

 /*

 * Receive an answer of message type 2.

 */

 if (msgrcv(msqid, &rbuf, MSGSZ, 2, 0) < 0) {

 perror("msgrcv");

 exit(1);

 }

 /*

 * Print the answer.

 */

 printf("%s\n", rbuf.mtext);

 exit(0);

}

Using C on the UNIX System

132 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Semaphores

Semaphores are special types of flags used for signalling between two processes. They

are typically used to guard “critical sections” of code that modify shared data structures.

In general, a section of code is written so that it cannot begin until a given semaphore is

equal to a specific value. For example, a program might wait until the semaphore is equal

to zero. Then it would set the semaphore to one and perform some actions with a shared

data structure, and then reset the semaphore to zero. Other processes, also waiting until

the semaphore is equal to zero, are effectively “locked out” from modifying the data

structure while it is in use. When the semaphore becomes equal to zero again, the system

will allow one of the waiting processes to proceed.*

Semaphores are allocated in sets; each set is defined by a unique semaphore id. The

semaphores in a semaphore set are numbered consecutively starting from zero. The sets

themselves are described by a structure of type semid_ds, declared in the include file

sys/sem.h; sys/types.h must also be included:

struct semid_ds {

 struct ipc_perm sem_perm; /* permissions */

 struct sem *sem_base; /* 1st in set */

 ushort sem_nsems; /* # in set */

 time_t sem_otime; /* last op time */

 time_t sem_ctime; /* last chg time */

};

The semget System Call

The semget system call is used to create a new set of semaphores or to obtain the

semaphore id of an existing set. It takes three arguments: a key of type key_t indicating

the numeric name of the semaphore set, the number of semaphores desired, and a flags
word. The flags word is used to specify the access permissions on the semaphore set;

these correspond exactly to normal UNIX file permissions. Specifying read permission

for owner, group, or world allows semaphores to be examined; specifying write

permission allows semaphores to be changed. If the value IPC_CREAT is ORed into the
flags word a new semaphore set will be created with the name contained in the key;

otherwise the call will return the semaphore id of the existing semaphore set whose name

matches the key value. The call returns an integer semaphore id on success; −1 is

returned on failure and errno is set to the reason for failure.

The semctl System Call

The semctl system call is used for examining and changing the values of specific
semaphores in a semaphore set. It takes four arguments: a semaphore id, the number of

* This is a simplified explanation. Semaphores are described in detail in most operating system textbooks.

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 133

the semaphore to examine or change (semnum), a command constant, and a variable of

type union semun, as defined below:

union semun {

 int val;

 struct semid_ds *buf;

 ushort *array;

};

The command constants are as follows:

GETVAL Return the value of the semaphore referred to by semnum.

SETVAL Set the value of the semaphore referred to by semnum to semun.val.

GETPID Return the process id of the last process to perform an operation on

semaphore semnum.

GETNCNT Return the number of processes waiting for the value of semaphore

semnum to become greater than its current value.

GETZCNT Return the number of processes waiting for semaphore semnum to

become equal to zero.

GETALL Place the values for all semaphores in the set into the array pointed to

by semun.array.

SETALL Set all the semaphores in the set to the values contained in the array

pointed to by semun.array.

IPC_STAT Place a copy of the current information about the semaphore set into

the structure pointed to by semun.buf.

IPC_SET Set the user id, group id, and mode of the semaphore set to the values

contained in the sem_perm element of the structure pointed to by

semun.buf.

IPC_RMID Remove the semaphore set identified by the semaphore id from the

system and destroy the semaphore set. Any operations in progress on

the set will fail.

The semop System Call

The semop system call is used to perform operations on semaphores. It takes three

arguments: a semaphore id, a pointer to an array of structures of type struct sembuf,

and an integer giving the number of elements in the array. The sembuf structure is
declared as follows in the include file sys/sem.h; sys/types.h must also be included:

struct sembuf {

Using C on the UNIX System

134 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 short sem_num; /* semaphore number */

 short sem_op; /* semaphore operation */

 short sem_flg; /* operation flags */

};

The structure specifies the number of the semaphore it will be used with, the operation

to be performed on that semaphore, and flags to control the operation.

For each sembuf structure in the array, the semaphore identified by sem_num will be
modified as follows:

 If sem_op is a negative number, and the value of the semaphore is greater than or

equal to its absolute value, the absolute value of sem_op will be subtracted from the
value of the semaphore.

 If sem_op is a negative number and its absolute value is greater than the value of
the semaphore, the process will block until the value of the semaphore becomes

greater than or equal to the absolute value of sem_op. When this occurs, the

semaphore value will be decremented by the absolute value of sem_op.

 If sem_op is equal to zero and the value of the semaphore is also zero, the call will
return immediately.

 If sem_op is equal to zero and the value of the semaphore is non-zero, the process
will block until the value of the semaphore becomes zero.

 If the value of sem_op is greater than zero, the value of sem_op will be added to
the value of the semaphore.

If the value IPC_NOWAIT is ORed into the flags word, the process will not block as

indicated above, but a failure code will be returned immediately by semop.

Shared Memory

Shared memory provides a method for two or more programs to share a segment of

virtual memory and use it as if it were actually part of each program. This is useful,

possibly in conjunction with semaphores, for having multiple processes update the same

data structures.

A shared memory segment is described by a unique identifier called a shared memory

id. The shared memory segment itself is described by a structure of type shmid_ds,
declared in the include file sys/shm.h; sys/types.h must also be included:

struct shmid_ds {

 struct ipc_perm shm_perm; /* permissions */

 int shm_segsz; /* size of seg */

 sde_t shm_seg; /* seg descriptor */

 ushort shm_lpid; /* last shmop */

 ushort shm_cpid; /* pid of creator */

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 135

 ushort shm_nattch; /* cur # attached */

 ushort shm_cnattch; /* # in mem attached */

 time_t shm_atime; /* last shmat time */

 time_t shm_dtime; /* last shmdt time */

 time_t shm_ctime; /* last chg time */

};

The shmget System Call

A shared memory segment is created or accessed using the shmget system call. It takes

three arguments: a key of type key_t specifying the numeric name of the shared memory
segment, an integer indicating the desired size in bytes of the segment, and a flags word.

A key value of IPC_PRIVATE (zero) indicates that the shared memory segment will be
used by this process only (rather pointless); non-zero keys are used for segments which

will be used by more than one process. The flags word is used to specify the access

permissions on the segment; these correspond exactly to normal UNIX file permissions.

Specifying read permission for owner, group, or world allows the memory to be

accessed; specifying write permission allows it to be modified. If the value IPC_CREAT
is ORed into the flags word a new shared memory segment will be created with the name

contained in the key; otherwise the call will return the shared memory id of the existing

segment whose name matches the key value. If the call succeeds an integer shared

memory id is returned; if it fails −1 is returned and errno is set to the reason for failure.

The shmctl System Call

The shmctl system call is used to examine and modify information about a shared
memory segment. It takes three arguments: a shared memory id, a command constant,

and a pointer to a structure of type shmid_ds. The command constants are:

IPC_STAT Place a copy of the current information about the shared memory

segment into the structure.

IPC_SET Set the user id, group id, and mode of the segment to the values

contained in the shm_perm element of the structure.

IPC_RMID Remove the segment identified by the shared memory id from the

system and destroy the segment. Any operations in progress on the

segment will fail.

The shmat System Call

Before a program can use a shared memory segment, it must first attach that segment of

memory to itself. This is done using the shmat system call. shmat takes three

arguments: a shared memory id, a character pointer, and a flags word. Normally, the

character pointer is given as zero; non-zero values may be used for specialized

applications. The flags word may contain the constant SHM_RDONLY to indicate that the

Using C on the UNIX System

136 FOR PERSONAL, NON-COMMERCIAL USE ONLY

segment should be treated as read-only; otherwise the segment will be both readable and

writable.

shmat will return a character pointer containing the address to be used when referring

to the shared memory segment. If the call fails, the value (char *) −1 will be returned,

and errno will contain the reason for failure. Once the memory has been attached, it
may be assigned to or referenced just as if it were normal program memory.

The shmdt System Call

When a program is finished with a shared memory segment it may detach it using the

shmdt system call. This system call takes a single argument, a pointer as returned by

shmat.

Example 11-5 shows a small server program that obtains a shared memory segment, and

puts some data into it for a client process to read. It then waits until the first element of

the segment is changed by the client, indicating that the segment has been read.

Example 11-5. shm-server—server program to demonstrate shared memory

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdio.h>

#define SHMSZ 27

main()

{

 char c;

 int shmid;

 key_t key;

 char *shmat();

 char *shm, *s;

 /*

 * We'll name our shared memory segment

 * "5678".

 */

 key = 5678;

 /*

 * Create the segment.

 */

 if ((shmid = shmget(key, SHMSZ, IPC_CREAT | 0666)) < 0) {

 perror("shmget");

 exit(1);

 }

 /*

 * Now we attach the segment to our data space.

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 137

 */

 if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {

 perror("shmat");

 exit(1);

 }

 /*

 * Now put some things into the memory for the

 * other process to read.

 */

 s = shm;

 for (c = 'a'; c <= 'z'; c++)

 *s++ = c;

 *s = NULL;

 /*

 * Finally, we wait until the other process

 * changes the first character of our memory

 * to '*', indicating that it has read what

 * we put there.

 */

 while (*shm != '*')

 sleep(1);

 exit(0);

}

Example 11-6 shows the client program that reads the shared memory segment and prints
it on the screen, and then changes the first element of the segment so that the server can

exit. Before running this program, the server process should be started in the background.

Example 11-6. shm-client—client program to demonstrate shared memory

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdio.h>

#define SHMSZ 27

main()

{

 int shmid;

 key_t key;

 char *shmat();

 char *shm, *s;

 /*

 * We need to get the segment named

 * "5678", created by the server.

 */

 key = 5678;

Using C on the UNIX System

138 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * Locate the segment.

 */

 if ((shmid = shmget(key, SHMSZ, 0666)) < 0) {

 perror("shmget");

 exit(1);

 }

 /*

 * Now we attach the segment to our data space.

 */

 if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {

 perror("shmat");

 exit(1);

 }

 /*

 * Now read what the server put in the memory.

 */

 for (s = shm; *s != NULL; s++)

 putchar(*s);

 putchar('\n');

 /*

 * Finally, change the first character of the

 * segment to '*', indicating we have read

 * the segment.

 */

 shm = '';

 exit(0);

}

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 139

Chapter 12
Networking

Berkeley UNIX provides an extensive facility for interprocess communication between

processes on different machines. This is done using the Transmission Control Protocol

and Internet Protocol (TCP/IP), as specified by the Defense Advanced Research Projects

Agency (DARPA) for use on their international network, the ARPANET. Although the

most recent release (Release 3.0) of System V UNIX does provide a networking facility,

the Berkeley UNIX facility is in much more widespread use, and is the only facility
discussed in this book.

The Berkeley UNIX networking facilities are based on the socket mechanism, and

work in much the same way as the interprocess communication facility discussed in
Chapter 11, Interprocess Communication. Rather than using the UNIX domain however,

the networking facilities operate in the Internet domain (another networking domain, the

Xerox NS domain provided by 4.3BSD, is not discussed here).

Addresses

In the UNIX domain, the address of a program was specified by using a standard UNIX

path name. In the Internet domain however, this is not viable for two reasons. First,

standard path names do not provide any method for specifying which computer a
program is located on.* Second, not all the computers connected to a network will

necessarily be running the UNIX operating system.

The addresses used in the Internet domain consist of two numbers. The first number is a

32-bit internetwork number of the computer which the program to be accessed resides

on. Each machine on a network, whether it be the global ARPANET or simply a local-

area network, has a unique internetwork number. It should be noted here that although a

network number functions as the name of a machine, it is not the same thing as the

* Some other methods of networking, e.g., Chaosnet, do provide a method for specifying the machine in the

path name.

Using C on the UNIX System

140 FOR PERSONAL, NON-COMMERCIAL USE ONLY

hostname of a machine. A hostname is usually a text string (such as

“intrepid.ecn.purdue.edu” or “sri-nic.arpa”), and is not easily used as a network address

because it does not give any information about how to access the machine itself. Because

the same host can reside on more than one network, it is possible for a single hostname

to be associated with several network numbers. Each network number specifies to the

operating system how to reach the machine by using a different network path.

The second number making up an Internet domain address is a 16-bit port number. Each

networking program on a machine uses a separate port number; the port number is

somewhat similar to the path name used in the UNIX domain. For example, the rlogin

program uses port number 513, and the FTP file transfer server uses port number 21.

Thus, a program wishing to connect to the file transfer server residing on the machine

with network number 12345 would specify the Internet address (12345, 21). Without

using port numbers, it would be difficult for any machine to run more than one network

program at a time. There are other schemes in use besides port numbers, but they will

not be discussed here.

Translating Hostnames Into Network Numbers

As mentioned in the previous section, a hostname cannot function as a network address;

it must be converted to a network number. The relationships between hostnames and

network numbers are stored in the text file /etc/hosts.* To translate hostnames into

network numbers, the gethostbyname library routine is used. This routine takes a
single argument, a character string containing the name of the host to be looked up. It

returns a pointer to a structure of type hostent, as defined in the include file netdb.h:

struct hostent {

 char *h_name; /* name of host */

 char **h_aliases; /* alias list */

 int h_addrtype; /* host addr type */

 int h_length; /* length of addr */

 char **h_addr_list; /* list of addrs */

#define h_addr h_addr_list[0]

};

The h_addr_list element of this structure contains all the network numbers associated

with the hostname. The h_addr “element” is for backward compatibility, but is still

often used in programs that don’t really care which network number they use to access

a machine. If the hostname cannot be found in the database, the constant NULL is

returned.

* Actually, many systems now look up addresses dynamically using name servers, but this is beyond the scope

of this book.

Networking

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 141

Another library routine, gethostbyaddr, exists to look up network numbers and obtain
the hostname associated with them. It also returns a pointer to a structure of type

hostent; the h_name field of this structure will contain the hostname.

Obtaining Port Numbers

Most network services (file transfer, remote login, etc.) programs usually use standard

“well-known” port numbers—that is, port numbers which are the same everywhere, and

are set forth in the specifications of the protocols which use them. This enables a client
program on one machine to contact a server program on any other machine without

having to guess at what port the server resides. Port numbers for “well-known” services

are listed, along with their service names, in the text file /etc/services.

To obtain the port number for a service, the getservbyname library routine is used.
This routine takes two arguments: a character string containing the name of the service

to be looked up, and a character string usually containing either the value tcp or udp.

The second argument is used to specify whether the program wants the port for a virtual

circuit (tcp) or a datagram (udp) connection.* getservbyname returns a pointer to a

structure of type servent, defined in the include file netdb.h:

struct servent {

 char *s_name; /* service name */

 char **s_aliases; /* alias list */

 int s_port; /* port number */

 char *s_proto; /* protocol to use */

};

If the service cannot be found in the database, the constant NULL is returned.

It should be noted that a port does not have to be listed in the database to be used. Any

program may use any port it wants to (provided it’s not already in use), with two

exceptions. The ARPANET administration has decreed that port numbers below 512 are

reserved for services which it approves. Further, Berkeley UNIX imposes the rule that

port numbers below 1024 may only be used by the super-user. Thus, regular user

programs are restricted to port numbers between 1025 and 32767. This should be more

than enough for a long time to come.

Network Byte Order

Before discussing the system calls used for networking, it is necessary to discuss the byte

order of numbers used by the networking software. The method in which integers are

stored in computers varies from vendor to vendor. Some computers store integers with

* UDP stands for User Datagram Protocol, and is one of the DARPA protocols.

Using C on the UNIX System

142 FOR PERSONAL, NON-COMMERCIAL USE ONLY

the most significant bit in the lowest address, while others store them with the most

significant bit in the highest address. Because great chaos would result if two machines

using different byte orders were to try to communicate directly, the network software

requires that all data be exchanged in network byte order.

In order to convert integers to network byte order, two library routines, htons and

htonl, are provided. These convert short and long integers, respectively, from host byte

order to network byte order. Likewise, two other routines, ntohs and ntohl, exist to
convert short and long integers from network byte order to host byte order.

The gethostbyname and getservbyname routines return all the data in their structures
in network byte order.

Networking System Calls

The system calls used to perform networking tasks are the same system calls used for

interprocess communication, described in Chapter 11, Interprocess Communication.
There are a few differences in the parameters passed to these system calls, however.

 The first parameter to socket is now given as AF_INET, which specifies the

Internet domain. The second parameter may still be either SOCK_STREAM or

SOCK_DGRAM.

 The type of sockaddr structure used with accept, bind, connect, sendto, and

recvfrom is now of type sockaddr_in, and is declared in the include file
netinet/in.h:

struct sockaddr_in {

 short sin_family;

 u_short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

The sin_port element of the structure should contain the port number (in network

byte order) to be connected to. The sin_addr element should contain the network
number (in network byte order) of the machine the port resides on.

 A new system call, gethostname, can be used to obtain the name of the host the
program is running on. This routine takes two arguments: a character string to place

the hostname into, and an integer indicating the length of the string.

Examples 12-1 and 12-2 show a small server and client program, respectively. These are

the programs from Examples 11-1 and 11-2 in Chapter 11, converted to use the Internet

domain. Notice that with the exception of how the address is constructed, the programs

are virtually the same.

Networking

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 143

Example 12-1. inet-client—a client program to demonstrate Internet domain sockets

/*

 * Connects to the local host at port 1234.

 */

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <stdio.h>

#define NSTRS 3 /* no. of strings */

/*

 * Strings we send to the server.

 */

char *strs[NSTRS] = {

 "This is the first string from the client.\n",

 "This is the second string from the client.\n",

 "This is the third string from the client.\n"

};

extern int errno;

main()

{

 char c;

 FILE *fp;

 char hostname[64];

 register int i, s;

 struct hostent *hp;

 struct sockaddr_in sin;

 /*

 * Before we can do anything, we need to know

 * our hostname.

 */

 gethostname(hostname, sizeof(hostname));

 /*

 * Next, we need to look up the network

 * address of our host.

 */

 if ((hp = gethostbyname(hostname)) == NULL) {

 fprintf(stderr, "%s: unknown host.\n", hostname);

 exit(1);

 }

 /*

 * Get a socket to work with. This socket will

 * be in the Internet domain, and will be a

 * stream socket.

 */

 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

 perror("client: socket");

Using C on the UNIX System

144 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 exit(1);

 }

 /*

 * Create the address we will be connecting to.

 * We use port 1234 but put it into network

 * byte order. Also, we use bcopy (see section

 * 14.3.2) to copy the network number.

 */

 sin.sin_family = AF_INET;

 sin.sin_port = htons(1234);

 bcopy(hp->h_addr, &sin.sin_addr, hp->h_length);

 /*

 * Try to connect to the address. For this to

 * succeed, the server must already have bound

 * this address, and must have issued a listen()

 * request.

 */

 if (connect(s, &sin, sizeof(sin)) < 0) {

 perror("client: connect");

 exit(1);

 }

 /*

 * We'll use stdio for reading

 * the socket.

 */

 fp = fdopen(s, "r");

 /*

 * First we read some strings from the server

 * and print them out.

 */

 for (i=0; i < NSTRS; i++) {

 while ((c = fgetc(fp)) != EOF) {

 putchar(c);

 if (c == '\n')

 break;

 }

 }

 /*

 * Now we send some strings to the server.

 */

 for (i=0; i < NSTRS; i++)

 send(s, strs[i], strlen(strs[i]), 0);

 /*

 * We can simply use close() to terminate the

 * connection, since we're done with both sides.

 */

 close(s);

Networking

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 145

 exit(0);

}

Example 12-2. inet-server—a server program to demonstrate Internet domain sockets

/*

 * Connects to port 1234 on the local host.

 */

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <stdio.h>

#define NSTRS 3 /* no. of strings */

/*

 * Strings we send to the client.

 */

char *strs[NSTRS] = {

 "This is the first string from the server.\n",

 "This is the second string from the server.\n",

 "This is the third string from the server.\n"

};

extern int errno;

main()

{

 char c;

 FILE *fp;

 int fromlen;

 char hostname[64];

 struct hostent *hp;

 register int i, s, ns;

 struct sockaddr_in sin, fsin;

 /*

 * Before we can do anything, we need

 * to know our hostname.

 */

 gethostname(hostname, sizeof(hostname));

 /*

 * Now we look up our host to get

 * its network number.

 */

 if ((hp = gethostbyname(hostname)) == NULL) {

 fprintf(stderr, "%s: host unknown.\n", hostname);

 exit(1);

 }

 /*

 * Get a socket to work with. This socket will

Using C on the UNIX System

146 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * be in the Internet domain, and will be a

 * stream socket.

 */

 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

 perror("server: socket");

 exit(1);

 }

 /*

 * Create the address that we will be binding to.

 * We use port 1234 but put it into network

 * byte order. Also, we use bcopy (see section

 * 14.3.2) to copy the network number.

 */

 sin.sin_family = AF_INET;

 sin.sin_port = htons(1234);

 bcopy(hp->h_addr, &sin.sin_addr, hp->h_length);

 /*

 * Try to bind the address to the socket.

 */

 if (bind(s, &sin, sizeof(sin)) < 0) {

 perror("server: bind");

 exit(1);

 }

 /*

 * Listen on the socket.

 */

 if (listen(s, 5) < 0) {

 perror("server: listen");

 exit(1);

 }

 /*

 * Accept connections. When we accept one, ns

 * will be connected to the client. fsin will

 * contain the address of the client.

 */

 if ((ns = accept(s, &fsin, &fromlen)) < 0) {

 perror("server: accept");

 exit(1);

 }

 /*

 * We'll use stdio for reading the socket.

 */

 fp = fdopen(ns, "r");

 /*

 * First we send some strings to the client.

 */

 for (i=0; i < NSTRS; i++)

 send(ns, strs[i], strlen(strs[i]), 0);

Networking

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 147

 /*

 * Then we read some strings from the client

 * and print them out.

 */

 for (i=0; i < NSTRS; i++) {

 while ((c = fgetc(fp)) != EOF) {

 putchar(c);

 if (c == '\n')

 break;

 }

 }

 /*

 * We can simply use close() to terminate the

 * connection, since we're done with both sides.

 */

 close(s);

 exit(0);

}

Example 12-3 shows a slightly different program, and also demonstrates the use of

datagrams. This program connects to the daytime service on each machine named on its

command line. daytime is a service supported by most hosts on the ARPANET and

simply returns the current date and time on the host. There is one bug in this example; if

the returned datagram for some reason does not arrive, the program will hang. Normally,

a timeout routine (see Chapter 8, Processing Signals) would be placed around the call to

recvfrom to prevent this.

Example 12-3. daytime—contact the “daytime” datagram service

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <stdio.h>

#define BUFSZ 256

#define SERVICE "daytime"

main(argc, argv)

int argc;

char **argv;

{

 int s, n, len;

 char buf[BUFSZ];

 struct hostent *hp;

 struct servent *sp;

 struct sockaddr_in sin;

 /*

Using C on the UNIX System

148 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * Get a datagram socket in the Internet

 * domain.

 */

 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {

 perror("socket");

 exit(1);

 }

 /*

 * Look up the port number of the service.

 */

 if ((sp = getservbyname(SERVICE, "udp")) == NULL) {

 fprintf(stderr, "%s/udp: unknown service.\n", SERVICE);

 exit(1);

 }

 /*

 * For each host on the command line...

 */

 while (--argc) {

 /*

 * Look up the network number of

 * the host.

 */

 if ((hp = gethostbyname(*++argv)) == NULL) {

 fprintf(stderr, "%s: host unknown.\n", *argv);

 continue;

 }

 /*

 * Build the address of the server on

 * the remote machine.

 */

 sin.sin_family = AF_INET;

 sin.sin_port = sp->s_port;

 bcopy(hp->h_addr, &sin.sin_addr, hp->h_length);

 /*

 * Print the name of the host.

 */

 printf("%s: ", *argv);

 fflush(stdout);

 /*

 * Send a datagram to the server.

 */

 if (sendto(s, buf, BUFSZ, 0, &sin, sizeof(sin)) < 0) {

 perror("sendto");

 continue;

 }

 /*

 * Receive a datagram back.

 */

 len = sizeof(sin);

Networking

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 149

 n = recvfrom(s, buf, sizeof(buf), 0, &sin, &len);

 if (n < 0) {

 perror("recvfrom");

 continue;

 }

 /*

 * Print the datagram.

 */

 buf[n] = NULL;

 printf("%s\n", buf);

 }

 close(s);

 exit(0);

}

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 151

Chapter 13
The File System

Every so often, the need arises to gather a large amount of information about all the files

contained in a single file system. For example, many sites perform disk space accounting,

billing each user for the amount of space he is using on the disk. One method of gathering

this information is to read the top-level directory (the file system mount point), and then

recurse down through all subdirectories of that directory, and then down through all

subdirectories of those directories, and so on. Unfortunately, this method is extremely
slow—it requires a lot of operating system overhead to determine the type of each

directory entry (file, directory, symbolic link, etc.) and to open each and every directory

in the file system.

For this reason, it is usually best to gather the information by reading it directly from the

disk without going through the file system. This involves deciphering the data structures

stored on the disk that keep track of the file system, as well as sometimes reading the

actual data blocks of the files stored in the file system. This chapter provides an

introduction to the techniques used for doing exactly that.

Disk Terminology

Before describing how the file system is laid out on the disk, it is necessary to define

several terms used when discussing disk drives. Without an understanding of these terms,

the rest of this chapter will be meaningless.

A disk drive is usually made up of two parts: (1) the disk pack, on which the actual data

is stored, and (2) the hardware used to transfer the data to and from the disk pack. A disk

pack is made up of several platters, which are similar to phonograph records, stacked

one on top of the other with gaps in between. There are usually about six platters per

disk pack, although this number can vary. Each platter has two surfaces on which

information can be recorded; the outer surfaces of the top and bottom platters are not
used. This provides (for a six-platter pack) ten surfaces on which data can be stored.

Using C on the UNIX System

152 FOR PERSONAL, NON-COMMERCIAL USE ONLY

There is one read/write head for each surface in the disk pack. The heads can move in

and out from the edge to the center of the pack; normally all heads in the disk drive will

move as a unit. During a read/write operation, the heads are held stationary over a given

section of the platters while the disk pack itself rotates at high speed (typically 3000-

4000 rpm). The area that can be read from or written onto by any single stationary head

is called a track. Tracks are thus concentric circles, and each time the platters complete
a revolution an entire track passes under each read/write head. There may be from 100

to 1000 tracks on each surface of a platter. The collection of tracks simultaneously under

a read/write head on the surfaces of all the platters is called a cylinder. For a six-platter

disk pack, each cylinder is made up of ten individual tracks, one from each storage

surface. Tracks are divided into smaller units, called sectors. A sector is the smallest

addressable segment of a track.

Information is recorded on the tracks of a disk surface in blocks. In order to use a disk,

one must specify the track or cylinder number, the sector number which is the start of

the block, and also the surface (head) number. The read/write head assembly is first

positioned to the right cylinder. Before reading or writing can begin, the unit has to wait

until the appropriate sector comes under the read/write head. Once this happens, the

input/output can take place. Thus, there are three factors affecting the disk's input/output
speed: (1) seek time, the amount of time required to position the read/write heads at the

correct cylinder, (2) latency time, the amount of time the disk has to wait for the right

sector to arrive under the heads, and (3) transfer time, the amount of time required to

transfer the data to/from the disk.

The specifications for the Fujitsu M2351 “Eagle” and M2361 “Super Eagle” disks, two

of the more common disks in use in the UNIX community, are shown below. These

drives use two heads per surface instead of one.

Table 13-1. Disk Specifications for Two Common Disks

 Eagle Super Eagle

Unformatted Capacity

 Drive (MB) 474.2 689.8

 Track (KB) 28,160 40,960

Disk Platters
 Diameter (inches) 10.5 10.5

 Number 6 6

Heads
 Drive 20 20

 Surface 2 2

Rotational Speed (RPM) 3,961 3,600

Cylinders 842 842

Transfer Rate (MB/sec) 1.859 2.458

The File System

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 153

 Eagle Super Eagle

Latency (ms) 7.5 8.33

Seek Time (ms)
 Maximum 35 35

 Average 18 18

 Minimum 5 5.5

The “Standard” UNIX File System

There are two principal file systems in use with UNIX: the “standard” file system, which
has existed since UNIX came into being and is used by Version 7, 4.0 and 4.1BSD, and

by System V, and the Berkeley Fast File System, which is used by 4.2 and 4.3BSD.

Because it is simpler to understand, the standard file system is described first.*

In the standard file system developed at Bell Laboratories, each disk drive is divided into

one or more partitions, each of which can contain a file system. A file system never spans

multiple partitions. The file system is described by its super-block, which is a data

structure kept at the “front” of the file system. The super-block contains the basic

parameters of the file system such as the number of data blocks in the file system, the

maximum number of files (i-nodes), and a pointer to the free list, a linked list of all the

free data blocks in the file system.

Within the file system are files. Some files are special, and are distinguished as

directories. These directories contain pointers to other files, some of which may
themselves be directories. Associated with each file in the file system is a descriptive

structure called an i-node. As described in Chapter 4, Files and Directories, the i-node

contains information such as the size of the file, the owner of the file, its last modification

time, and so on. An array of indices that point to the data blocks of the file is also

maintained in the i-node. This array is usually made up of from 8 to 16 elements. The

first n−3 elements contain the addresses of the first n−3 data blocks of the file. The next

element contains the address of a data block which contains nothing but the addresses of

more data blocks. This is called a singly indirect block. The next to last element contains

the address of a doubly indirect block, each address in that block is the address of a block

of singly indirect addresses. The last element of the array contains the address of a triply

indirect block, which contains the addresses of doubly indirect blocks. In a file system
with a block size of 1024 bytes, there are 256 addresses in a singly indirect block, a

doubly indirect block contains the addresses of 256 singly indirect blocks, and a triply

indirect block contains the addresses of 256 doubly indirect blocks.

* The block sizes and data structure sizes of the standard file system vary slightly between different versions

of UNIX. The implementation described here is that of System V.

Using C on the UNIX System

154 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Following the super-block on the disk, one i-node structure for each possible file in the

file system is stored on the disk; typically several i-nodes are stored in each file system

block. After the i-node area, the rest of the disk partition is used for file data blocks. The

super-block is described by a structure of type filsys, defined in the include file
sys/filsys.h. Several other files must also be included; these will be shown in Example

13-1:

struct filsys {

 ushort s_isize; /* i-list size in blocks */

 daddr_t s_fsize; /* volume size in blocks */

 short s_nfree; /* no. addrs in s_free */

 daddr_t s_free[NICFREE]; /* free block list */

 short s_ninode; /* no. i-nodes in s_inode*/

 ushort s_inode[NICINOD]; /* free i-node list */

 char s_flock; /* lock: free list in use*/

 char s_ilock; /* lock: i-list in use */

 char s_fmod; /* modified flag */

 char s_ronly; /* mounted read-only */

 time_t s_time; /* last s-block update */

 short s_dinfo[4]; /* device information */

 daddr_t s_tfree; /* total free blocks */

 ushort s_tinode; /* total free i-nodes */

 char s_fname[6]; /* file system name */

 char s_fpack[6]; /* file system pack name */

 long s_fill[12]; /* spare, unused */

 long s_state; /* file system state */

 long s_magic; /* magic number */

 long s_type; /* type of file system */

};

Most of this information is not needed by programs reading the disk directly; it is only

used by the operating system. The on-disk i-node structure is called dinode, and is

defined in the include file sys/ino.h:

struct dinode {

 ushort di_mode; /* mode and type of file */

 short di_nlink; /* number of links to file */

 ushort di_uid; /* owner's user id */

 ushort di_gid; /* owner's group id */

 off_t di_size; /* number of bytes in file */

 char di_addr[40]; /* disk block addresses */

 time_t di_atime; /* time last accessed */

 time_t di_mtime; /* time last modified */

 time_t di_ctime; /* time i-node last changed */

};

As mentioned previously, one of the reasons to read the raw file system structure rather

than going through the operating system is to calculate disk space usage. Example 13-1

shows a small program that does exactly this. It takes a single argument, the name of a

character-special device that a file system is mounted on. This is usually called the “raw”

The File System

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 155

device, and its name usually starts with an ‘r’, as in /dev/rdk0c. This program is for

System V file systems; if you are using Version 7, 4.0 or 4.1BSD you will need to make

some minor modifications.

Example 13-1. sumdisk-sysv—summarize the disk usage for System V systems

/*

 * Reads the i-node structures from a raw disk

 * device and then sums up the disk usage for

 * each user. Prints out the number of blocks

 * each user is using.

 */

#include <sys/sysmacros.h>

#include <sys/param.h>

#include <sys/filsys.h>

#include <sys/inode.h>

#include <sys/ino.h>

#include <fcntl.h>

#include <stdio.h>

#include <pwd.h>

/*

 * Maximum user id.

 */

#ifndef MAXUID

#define MAXUID 32768

#endif

#define SBSIZE BSIZE /* size of super-block */

#define sblock sb_un.u_sblock

/*

 * The super-block. We allow enough room for

 * a complete disk block.

 */

union {

 char dummy[SBSIZE];

 struct filsys u_sblock;

} sb_un;

int nfiles; /* no. of files in filsys */

char *pname; /* program name (argv[0]) */

char *device; /* name of disk device */

char *filsys; /* name of file system */

size_t blocks[MAXUID]; /* count of blocks used */

struct dinode *dinode; /* will hold the i-nodes */

main(argc, argv)

int argc;

char **argv;

{

Using C on the UNIX System

156 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 int i, fd;

 register ino_t ino;

 register struct dinode *di;

 /*

 * Save the program name and check our arguments.

 */

 pname = *argv;

 if (argc != 2) {

 fprintf(stderr, "Usage: %s raw-disk-device\n", pname);

 exit(1);

 }

 /*

 * Open the device for reading.

 */

 device = *++argv;

 if ((fd = open(device, O_RDONLY)) < 0) {

 perror(device);

 exit(1);

 }

 /*

 * Get the super-block from the device.

 */

 getsblock(fd);

 /*

 * Get the i-node structures from the device.

 */

 getinodes(fd);

 close(fd);

 /*

 * Zero the block counts.

 */

 for (i=0; i < MAXUID; i++)

 blocks[i] = 0;

 /*

 * Add up the number of blocks being used by each

 * user id.

 */

 for (ino=0; ino < nfiles; ino++) {

 /*

 * ROOTINO is the first i-node; skip any

 * before it.

 */

 if (ino < ROOTINO)

 continue;

 di = &dinode[ino];

The File System

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 157

 /*

 * If this is zero, the i-node is free (not

 * in use).

 */

 if ((di->di_mode & IFMT) == 0)

 continue;

 /*

 * Count the number of blocks being used by

 * this file. We round the number of bytes to

 * the next highest multiple of 512.

 */

 blocks[di->di_uid] += (di->di_size + 511) / 512;

 }

 /*

 * Print out what we added up.

 */

 printusage();

 exit(0);

}

/*

 * getsblock - get the super-block from the device referred

 * to by fd.

 */

getsblock(fd)

int fd;

{

 /*

 * Make sure the disk information is current. This

 * causes all disk writes to be scheduled.

 */

 sync();

 /*

 * Read in the super-block. It is stored at file

 * system address SUPERBOFF.

 */

 lseek(fd, (long) SUPERBOFF, 0);

 read(fd, &sblock, SBSIZE);

 /*

 * The number of files (i-nodes) is calculated by

 * multiplying the number of blocks used to hold

 * i-nodes by the number of i-nodes in a block.

 */

 nfiles = sblock.s_isize * INOPB;

 /*

 * Save the name of the file system.

 */

 filsys = sblock.s_fname;

}

Using C on the UNIX System

158 FOR PERSONAL, NON-COMMERCIAL USE ONLY

/*

 * getinodes - read in the i-node structures from the device

 * referred to by fd.

 */

getinodes(fd)

int fd;

{

 register ino_t ino;

 register daddr_t iblk;

 struct dinode *malloc();

 /*

 * Allocate space for them all.

 */

 dinode = malloc(nfiles * sizeof(struct dinode));

 if (dinode == NULL) {

 fprintf(stderr, "%s: out of memory.\n", pname);

 exit(1);

 }

 /*

 * We read in i-nodes a disk block-full at a time.

 * The INOPB constant is the number of i-nodes in

 * a block.

 */

 for (ino = 0; ino < nfiles; ino += INOPB) {

 /*

 * The i-node's disk block number is given by

 * the itod macro.

 */

 iblk = itod(ino);

 /*

 * Read in this block of i-nodes.

 */

 bread(fd, iblk, &dinode[ino], BSIZE);

 }

}

/*

 * bread - read cnt bytes from fd into buf, starting at

 * address bno.

 */

bread(fd, bno, buf, cnt)

daddr_t bno;

char *buf;

int cnt;

{

 int n;

 /*

 * Seek to the proper block. The shifting by BSHIFT

 * converts the block number to a byte address.

The File System

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 159

 */

 lseek(fd, (long) (bno << BSHIFT), 0);

 /*

 * Read in the data.

 */

 if ((n = read(fd, buf, cnt)) != cnt) {

 perror(filsys);

 exit(1);

 }

}

/*

 * printusage - print out the disk usage in blocks.

 */

printusage()

{

 register int i;

 struct passwd *pwd;

 struct passwd *getpwuid();

 printf("%s (%s):\n", device, filsys);

 printf(" Blocks \t User\n");

 for (i=0; i < MAXUID; i++) {

 if (blocks[i] == 0)

 continue;

 /*

 * Look up the login name, and use it if

 * we find it.

 */

 if ((pwd = getpwuid(i)) != NULL)

 printf("%8d\t%s\n", blocks[i], pwd->pw_name);

 else

 printf("%8d\t#%d\n", blocks[i], i);

 }

}

The program begins by opening the raw disk device as an ordinary file. Recall that in

UNIX a device is accessed exactly as an ordinary file would be; and is treated simply as

a stream of bytes. The first thing the program needs is the file system’s super-block; this

is accessed by the getsblock routine, which uses lseek to seek to the start of the super-

block (SUPERBOFF), and then reads it in. The number of files is determined by

multiplying the number of blocks used to store i-nodes, sblock.s_isize, by the

number of i-nodes stored per block, INOPB.

The getinodes routine is used to read in the i-node structures from disk. This is done
by allocating memory for all the i-nodes, and then reading them in from disk a block at

a time. The itod macro converts an i-node number to the disk address of that i-node,

and the bread function reads in data given a disk address.

Using C on the UNIX System

160 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Once the i-nodes have been read in, it is necessary only to move through the array and

tally the blocks in use for each file by user id. If the ANDing of the di_mode element of

the structure with the constant IFMT is 0, the i-node is not in use and can be skipped.

Finally, the printusage routine is used to print out how much space each user is taking
up.

As you may have noticed, the term “block” is used in various contexts and takes on

several different meanings. Technically, a block is usually considered to be 512 bytes.

Most disk drives use this as their physical block size, meaning that a single disk block

takes up 512 bytes. Under Version 7 UNIX, the file system block size was also 512 bytes.

Larger “blocks” are typically described in units of 1024 bytes, or kbytes (short for

kilobyte).

In 4.0BSD and System V, the file system block size was increased to 1024 bytes, or one

kbyte. The disk block size remained 512 bytes (this is a hardware parameter), but now

each file system block referred to two disk blocks, instead of the previous one-to-one

correspondence. There are two advantages to this increase. First, the system can access
data faster, since it now transfers 1024 bytes at a time instead of 512. Second, larger files

can be stored, since each block address now corresponds to twice the number of bytes.

Later releases of System V now also provide a 2 kbyte file system block size; this has

similar advantages over the 1 kbyte block size. However, as we shall see in the next

section, increasing the file system block size without taking other factors into account

can cause problems.

The Berkeley Fast File System

In 4.2BSD, Berkeley worked to redesign the UNIX file system to improve its

performance. The internal organization of the file system is quite different from that of

the standard UNIX file system, but the user interface to the file system was left

unchanged. The result of this effort was the Berkeley Fast File System, which we will

simply call the new file system.

As with the standard file system, the new file system is described by the super-block.

The super-block in the new file system contains much more information than it did

before, and because much of this information is critical, the super-block is replicated in

several places on the disk to prevent catastrophic loss.

Because the maximum file size in the new file system is 232 bytes, the minimum file

system block size is 4096 bytes (4 kbytes). This allows the file’s data blocks to still be
addressed using only two levels of indirection (the indirect blocks). File systems may

have any block size which is a multiple of 4096 bytes, a typical size is 8192 (8 kbytes).

The block size is stored in the super-block, allowing different file systems to use different

block sizes, something which cannot be done with the standard file system.

The File System

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 161

The new file system divides its disk partition into several smaller areas called cylinder

groups. Each cylinder group is made up of one or more consecutive cylinders on the

disk, and contains some bookkeeping information, a redundant copy of the super-block,

space for i-nodes, and information about the data block allocation in the cylinder group.

It is important to note two things here: first, i-nodes are now spread out over the disk,

some in each cylinder group, whereas in the standard file system they are all stored
together. Second, the information about free data blocks is now stored in each cylinder

group, replacing the standard file system’s free list.

As mentioned previously, increasing the file system block size eventually begins to cause

problems. The reason for this is that under the standard file system, the smallest storage

unit is a file system block. Thus, if the block size is 4096, even a file containing only one

byte will use up 4096 bytes on the disk. Since most of the data stored in a typical file

system consists of small files, the amount of disk space wasted by having a large block

size is extreme. Berkeley’s calculations show that using the standard file system, a block

size of 512 bytes wastes 6.9% of the disk, a block size of 1024 bytes wastes 11.8%, a

2048 byte block size wastes 22.4%, and a 4096 byte block size wastes an unacceptable

45.6% of the disk!

The new file system provides a solution to this problem by allowing each file system
block to be further subdivided into one or more fragments. Each block can be broken

into 2, 4, or 8 fragments, each of which is individually addressable. Consecutive

fragments within the same block may be assigned to a single file. Thus, a file which

contains 4097 bytes might utilize one file system block of 4096 bytes and one fragment

of 1024 bytes. This leaves the other three fragments of the fragmented block available

to some other file. The amount of disk space wasted by this scheme is now the same as

that for the standard file system with 1024 byte blocks (assuming 1024 byte fragments),

or 11.8%. There are several other changes made in the new file system which are beyond

the scope of this book. They are described in detail in the paper A Fast File System for

UNIX, by Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler, and Robert S.

Fabry.

The super-block for the Berkeley fast file system is a structure of type fs, and is defined

in the include file sys/fs.h:

struct fs {

 struct fs *fs_link; /* linked list of file sys */

 struct fs *fs_rlink; /* incore super-blocks */

 daddr_t fs_sblkno; /* addr of super-block */

 daddr_t fs_cblkno; /* offset of cyl-block */

 daddr_t fs_iblkno; /* offset of inode-blocks */

 daddr_t fs_dblkno; /* first data after cg */

 long fs_cgoffset; /* cylinder group offset */

 long fs_cgmask; /* used to calc fs_ntrak */

 time_t fs_time; /* last time written */

 long fs_size; /* no. of blocks in fs */

 long fs_dsize; /* no. of data blocks in fs*/

Using C on the UNIX System

162 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 long fs_ncg; /* no. of cylinder groups */

 long fs_bsize; /* size of blocks in fs */

 long fs_fsize; /* size of frags in fs */

 long fs_frag; /* number of frags/block */

/* these are configuration parameters */

 long fs_minfree; /* minimum % free blocks */

 long fs_rotdelay; /* ms for optimal next blk */

 long fs_rps; /* disk revs per second */

/* these fields can be computed from the others */

 long fs_bmask; /* calc of blk offsets */

 long fs_fmask; /* calc of frag offsets */

 long fs_bshift; /* calc of logical blkno */

 long fs_fshift; /* calc number of frags */

/* these are configuration parameters */

 long fs_maxcontig; /* max no. contiguous blks */

 long fs_maxbpg; /* max no. blks/cyl group */

/* these fields can be computed from the others */

 long fs_fragshift; /* block to frag shift */

 long fs_fsbtodb; /* for fsbtodb and dbtofsb */

 long fs_sbsize; /* actual size of super blk*/

 long fs_csmask; /* csum block offset */

 long fs_csshift; /* csum block number */

 long fs_nindir; /* value of NINDIR */

 long fs_inopb; /* value of INOPB */

 long fs_nspf; /* value of NSPF */

 long fs_optim; /* optimization preference */

 long fs_sparecon[5];/* reserved for future use */

/* sizes det. by number of cyl groups and their sizes */

 daddr_t fs_csaddr; /* blk addr cyl grp sum */

 long fs_cssize; /* size of cyl grp sum */

 long fs_cgsize; /* cylinder group size */

/* these fields should be derived from the hardware */

 long fs_ntrak; /* tracks per cylinder */

 long fs_nsect; /* sectors per track */

 long fs_spc; /* sectors per cylinder */

/* this comes from the disk driver partitioning */

 long fs_ncyl; /* cylinders in file system*/

/* these fields can be computed from the others */

 long fs_cpg; /* cylinders per group */

 long fs_ipg; /* i-nodes per group */

 long fs_fpg; /* blocks/group * fs_frag */

/* this data must be re-computed after crashes */

 struct csum fs_cstotal; /* cylinder summary info */

/* these fields are cleared at mount time */

 char fs_fmod; /* super-block modified */

 char fs_clean; /* file system is clean */

 char fs_ronly; /* mounted read-only flag */

 char fs_flags; /* currently unused flag */

 char fs_fsmnt[MAXMNTLEN]; /* name mounted on */

/* these fields retain the current blk allocation info*/

 long fs_cgrotor; /* last cg searched */

 struct csum *fs_csp[MAXCSBUFS]; /* list of fs_cs */

 long fs_cpc; /* cyl per cycle in postbl */

 short fs_postbl[MAXCPG][NRPOS]; /* head of blks */

 long fs_magic; /* magic number */

The File System

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 163

 u_char fs_rotbl[1]; /* list of blks each rot */

/* actually longer */

};

As with the standard super-block, most of the fields in this structure are only used by the

operating system; the average program can ignore them. The on-disk i-node structure is

again of type dinode, but differs slightly from the standard file system version. It is
defined in the include file sys/inode.h:

struct icommon {

 u_short ic_mode; /* mode and type of file */

 short ic_nlink; /* number of links to file */

 uid_t ic_uid; /* owner's user id */

 gid_t ic_gid; /* owner's group id */

 quad ic_size; /* number of bytes in file */

 time_t ic_atime; /* time last accessed */

 long ic_atspare;

 time_t ic_mtime; /* time last modified */

 long ic_mtspare;

 time_t ic_ctime; /* last time i-node changed */

 long ic_ctspare;

 daddr_t ic_db[NDADDR]; /* disk block addresses */

 daddr_t ic_ib[NIADDR]; /* indirect blocks */

 long ic_flags; /* status, unused */

 long ic_blocks; /* blocks actually held */

 long ic_spare[5]; /* reserved, unused */

};

struct dinode {

 union {

 struct icommon di_icom;

 char di_size[128];

 } di_un;

};

There are constants defined to allow the various fields of the dinode structure to be

referred to as di_whatever as in the fashion of the standard file system. Probably the

most important differences between this structure and the one used by the standard file
system are first that the direct and indirect block addresses are now stored in separate

arrays, and second the addition of the di_blocks element. The di_blocks element of
the structure contains the actual number of blocks used by the file. The reason this is

necessary is that files can contain “holes” created by seeking to a large address and then

writing data. These holes will be reflected in the di_size field of the structure even
though they don’t actually take up any disk space.

Example 13-2 shows the program from Example 13-1 modified to use the Berkeley Fast

File System. If you are using a version of UNIX that uses Sun’s Network File System

(NFS), be sure to define the constant NFS when compiling this example. This is necessary
to access the new data structures introduced by Sun.

Using C on the UNIX System

164 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Example 13-2. sumdisk-bsd—summarize the disk usage for Berkeley systems

/*

 * Reads the i-node structures from a raw disk

 * device and then sums up the disk usage for

 * each user. Prints out the number of blocks

 * each user is using.

 *

 * If you are on a Sun workstation or other system using Sun's

 * Network File System (NFS), be sure to define the constant

 * NFS so that the proper files get included.

 */

#ifdef sun

#define NFS 1

#endif

#ifdef NFS

#include <sys/param.h>

#include <sys/time.h>

#include <sys/vnode.h>

#include <ufs/inode.h>

#include <sys/file.h>

#include <ufs/fs.h>

#include <stdio.h>

#include <pwd.h>

#else

#include <sys/param.h>

#include <sys/inode.h>

#include <sys/file.h>

#include <sys/fs.h>

#include <stdio.h>

#include <pwd.h>

#endif

/*

 * Maximum user id.

 */

#ifndef MAXUID

#define MAXUID 32768

#endif

#define sblock sb_un.u_sblock

/*

 * The super block. We allow enough room for

 * a complete disk block.

 */

union {

 struct fs u_sblock;

 char dummy[SBSIZE];

} sb_un;

int nfiles; /* number of files in file system */

The File System

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 165

char *pname; /* program name (argv[0]) */

char *device; /* name of the disk device given */

char *filsys; /* name of the file system on device */

size_t blocks[MAXUID]; /* count of blocks used */

struct dinode *dinode; /* will hold all the i-node structures */

main(argc, argv)

int argc;

char **argv;

{

 int i, fd;

 register ino_t ino;

 register struct dinode *di;

 /*

 * Save the program name and check our arguments.

 */

 pname = *argv;

 if (argc != 2) {

 fprintf(stderr, "Usage: %s raw-disk-device\n", pname);

 exit(1);

 }

 /*

 * Open the device for reading.

 */

 device = *++argv;

 if ((fd = open(device, O_RDONLY)) < 0) {

 perror(device);

 exit(1);

 }

 /*

 * Get the super-block from the device.

 */

 getsblock(fd);

 /*

 * Get the i-node structures from the device.

 */

 getinodes(fd);

 close(fd);

 /*

 * Zero the block counts.

 */

 for (i=0; i < MAXUID; i++)

 blocks[i] = 0;

 /*

 * Add up the number of blocks being used by

Using C on the UNIX System

166 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * each user id.

 */

 for (ino=0; ino < nfiles; ino++) {

 /*

 * ROOTINO is the first i-node; skip any

 * before it.

 */

 if (ino < ROOTINO)

 continue;

 di = &dinode[ino];

 /*

 * If this is zero, the i-node is free (not

 * in use).

 */

 if ((di->di_mode & IFMT) == 0)

 continue;

 /*

 * Count the number of blocks being used by

 * this file.

 */

 blocks[di->di_uid] += di->di_blocks;

 }

 /*

 * Print out what we added up.

 */

 printusage();

 exit(0);

}

/*

 * getsblock - get the super-block from the device

 * referred to by fd.

 */

getsblock(fd)

int fd;

{

 /*

 * Make sure the disk information is current.

 * This causes all disk writes to be scheduled.

 */

 sync();

 /*

 * Read in the super-block. It is stored at file

 * system block number SBLOCK.

 */

 bread(fd, SBLOCK, &sblock, SBSIZE);

 /*

 * The number of files (i-nodes) is calculated by

 * multiplying the number of i-nodes per cylinder

The File System

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 167

 * group by the number of cylinder groups.

 */

 nfiles = sblock.fs_ipg * sblock.fs_ncg;

 /*

 * Save the name of the file system.

 */

 filsys = sblock.fs_fsmnt;

}

/*

 * getinodes - read in the i-node structures from the device

 * referred to by fd.

 */

getinodes(fd)

int fd;

{

 register ino_t ino;

 register daddr_t iblk;

 struct dinode *malloc();

 /*

 * Allocate space for them all.

 */

 dinode = malloc(nfiles * sizeof(struct dinode));

 if (dinode == NULL) {

 fprintf(stderr, "%s: out of memory.\n", pname);

 exit(1);

 }

 /*

 * We read in i-nodes a disk block-full at a time.

 * The INOPB macro returns the number of i-nodes

 * in a block; it uses the super-block to determine

 * the file system block size.

 */

 for (ino = 0; ino < nfiles; ino += INOPB(&sblock)) {

 /*

 * The i-node file system block number is given by

 * the itod macro. The disk block number is computed

 * from the file system block number by the fsbtodb

 * macro.

 */

 iblk = fsbtodb(&sblock, itod(&sblock, ino));

 /*

 * Read in this block of i-nodes.

 */

 bread(fd, iblk, &dinode[ino], sblock.fs_bsize);

 }

}

/*

 * bread - read cnt bytes from fd into buf, starting at

Using C on the UNIX System

168 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * address bno.

 */

bread(fd, bno, buf, cnt)

daddr_t bno;

char *buf;

int cnt;

{

 int n;

 /*

 * Seek to the proper block. The dtob macro converts

 * the block number to a byte address.

 */

 lseek(fd, (long) dtob(bno), L_SET);

 /*

 * Round cnt up to a multiple of the device block size.

 */

 cnt = roundup(cnt, DEV_BSIZE);

 /*

 * Read in the data.

 */

 if ((n = read(fd, buf, cnt)) != cnt) {

 perror(filsys);

 exit(1);

 }

}

/*

 * printusage - print out the disk usage in blocks.

 */

printusage()

{

 register int i;

 struct passwd *pwd;

 printf("%s (%s):\n", device, filsys);

 printf(" Blocks \t User\n");

 for (i=0; i < MAXUID; i++) {

 if (blocks[i] == 0)

 continue;

 /*

 * Look up the login name, and use it if we find it.

 */

 if ((pwd = getpwuid(i)) != NULL)

 printf("%8d\t%s\n", blocks[i], pwd->pw_name);

 else

 printf("%8d\t#%d\n", blocks[i], i);

 }

}

The File System

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 169

Generally, this program is almost identical to Example 13-1. The main differences

involve the units used in some of the addresses, and the methods of converting between

units. In the getsblock routine, the super-block is read using the bread function
instead of doing it directly. This is because the location of the super-block is defined as

a disk block number, not a byte address (granted, we could have converted it in the

previous example). In the getinodes routine, the itod macro returns a file system
block number, not a disk block number. This is then converted to a disk block number

by the fsbtodb macro. Recall that file system blocks can be any multiple of 4096 bytes,
while disk blocks are (usually) 512 bytes. Just below that point, note that the call to

bread uses the fs_bsize element of the super-block structure instead of a defined
constant block size. This is because, as mentioned previously, different file systems on

the same machine can have different block sizes. Finally, note that in bread, the dtob
macro is used to convert disk block numbers to byte offsets, instead of using a shift

directly.

Reading Data Blocks From the File System

For most purposes, the information stored in the on-disk i-node structure is sufficient to
complete whatever task is being performed. Occasionally however, it is necessary to read

the data blocks of the file(s) themselves. For example, the dump program on Berkeley

systems reads the data blocks of each file on the disk in order to back the files up to tape.

The addresses of the data blocks associated with a file are stored in the dinode structure
for that file. The first several addresses are direct addresses of blocks on the disk, they

can be read by passing that address to the bread function of the previous examples. The
next address is that of a singly indirect block. In order to use this block, it is first read in,

and then treated as an array of direct block addresses. Similarly, the doubly indirect block

is read in, and treated as an array of addresses of singly indirect blocks. Each of those

singly indirect blocks is read in, and used as an array of direct block addresses. Finally,

the triply indirect block is read in and treated as an array of addresses of doubly indirect

blocks.

The above scenario readily translates into two small procedures, one to read the direct

blocks of a file, and one to read all the indirect blocks. Example 13-3 shows these

routines as they would be written for the Berkeley Fast File System; little modification

is needed to make them run under System V.

Example 13-3. read_blocks—read data blocks from the raw disk

read_blocks(dp)

struct dinode *dp;

{

 int count;

 register int i, n;

Using C on the UNIX System

170 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 char dblock[MAXBSIZE];

 count = dp->di_size;

 /*

 * For each direct block in the file (NDADDR indicates

 * the number of direct addresses stored)...

 */

 for (i=0; (i < NDADDR) && (count > 0); i++) {

 /*

 * Read in the block from disk. Read in count

 * bytes or a disk block, whichever is less.

 */

 bread(fsbtodb(&sblock, dp->di_db[i]), dblock,

 n = min(count, sblock.fs_bsize));

 count -= n;

 /* process data block ... */

 }

 /*

 * Now start reading the indirect blocks. NIADDR is

 * the number of indirect addresses. Recall that

 * the first indirect address is singly indirect,

 * the second is doubly indirect, and so on.

 */

 for (i=0; (i < NIADDR) && (count > 0); i++)

 read_indirect(dp->di_ib[i], i, &count);

}

/*

 * read_indirect - read the indirect blocks of the file. The

 * level argument indicates our level of

 * indirection; 0 is singly indirect, 1 is

 * doubly indirect, and so on.

 */

read_indirect(blkno, level, count)

ino_t blkno;

int *count;

int level;

{

 register int i, n;

 char dblock[MAXBSIZE];

 daddr_t idblk[MAXBSIZE / sizeof(daddr_t)];

 /*

 * Read in the block from disk.

 */

 if (blkno)

 bread(fsbtodb(&sblock, blkno), idblk, sblock.fs_bsize);

 else

 bzero(idblk, sblock.fs_bsize);

 /*

 * If level is zero, then this block contains disk block

The File System

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 171

 * addresses, since blkno was a singly indirect address.

 * If level is non-zero, then this block contains addresses

 * of more indirect blocks.

 */

 if (level <= 0) {

 /*

 * For each disk block (the NINDIR macro returns

 * the number of indirect addresses in a block)...

 */

 for (i=0; (i < NINDIR(&sblock)) && (*count > 0); i++) {

 /*

 * Read in the block from disk.

 */

 bread(fsbtodb(&sblock, idblk[i]), dblock,

 n = min(*count, sblock.fs_bsize));

 *count -= n;

 /* process data block ... */

 }

 /*

 * Done processing.

 */

 return;

 }

 /*

 * Decrement the level we're at.

 */

 level--;

 /*

 * Handle the next level of indirection by calling

 * ourselves recursively with each address in this

 * block.

 */

 for (i=0; i < NINDIR(&sblock); i++)

 read_indirect(idblk[i], level, count);

}

The bread function is similar to that of Example 13-2, except that it requires a global
file descriptor referring to the raw disk device, since that information is not passed to it

by the calling routines.

Using the material described in this chapter, most functions requiring direct access to the

disk can be performed. The only task which is not so simple is determining the name of
a file given its i-node number. To do this, the program must read all the directory data

blocks stored on the disk, since the file’s name is not stored with the file, but in the file’s

parent directory. To determine the complete path name of a file, this process must be

repeated recursively until the root of the file system is reached. The code to do this is

straight forward, but complex, and too long to present as an example here.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 173

Chapter 14
Miscellaneous Routines

This chapter describes some useful system calls and library routines whose descriptions

don’t fit well into the previous chapters. Many of the routines described here pertain only

to Berkeley UNIX, as it provides many more functions than the other variants.

Resource Limits

Under Berkeley UNIX, each process operates with certain limits on the resources it may

use. These limits prevent processes from creating files that are considered “too large,”

using too much CPU time, and so on.

The getrlimit System Call

The getrlimit system call is used by a process to obtain its current resource limits. It

takes two arguments: a constant indicating the limit to be obtained, and a pointer to a

structure of type rlimit, which will be filled in with the requested values. This structure

is declared in the include file sys/resource.h; the files sys/types.h and sys/time.h must

also be included:

struct rlimit {

 int rlim_cur; /* current (soft) limit */

 int rlim_max; /* maximum value for rlim_cur */

};

The rlim_cur element of this structure indicates the current limit in effect for the

process, rlim_max indicates the maximum value that rlim_cur may take on.

The constants which indicate which limit is to be selected are also defined in

sys/resource.h. They are as follows:

Using C on the UNIX System

174 FOR PERSONAL, NON-COMMERCIAL USE ONLY

RLIMIT_CPU The maximum amount of CPU time, in milliseconds, that the

process may use. If the process exceeds this limit, it will receive

a SIGXCPU signal (see Chapter 8, Processing Signals).

RLIMIT_FSIZE The maximum size, in bytes, of any file the process may create. If

the process attempts to write a file larger than this size, it will

receive a SIGXFSZ signal (see Chapter 8).

RLIMIT_DATA The maximum size, in bytes, of the process’s data segment. This

includes memory allocated at program start-up as well as all

dynamically allocated memory.

RLIMIT_STACK The maximum size, in bytes, that the process’s stack may grow

to. If the process’s stack exceeds this size, the process will receive

a SIGILL signal (see Chapter 8).

RLIMIT_CORE The largest size, in bytes, of a core file that may be created.

RLIMIT_RSS The maximum size, in bytes, to which a process’s resident set size

may grow. This imposes a limit on the amount of physical
memory that a process may use.

The setrlimit System Call

A process may change its limits by using the setrlimit system call. This call also takes
two arguments: a constant indicating the limit to be changed, and a pointer to a structure

of type rlimit containing the new values to be set. Any process may change its current

limits; only the super-user may raise the maximum limits. setrlimit returns 0 if the

call succeeds; −1 is returned if it does not and errno is set to the reason for failure.

The usual method for changing resource limits is shown in Example 14-1.

Example 14-1. setlim—change resource limits

#include <sys/types.h>

#include <sys/time.h>

#include <sys/resource.h>

/*

 * setlim - set the resource limit lim to the value val.

 */

setlim(lim, val)

int lim, val;

{

 struct rlimit rlim;

 /*

 * First get the current limits so we

 * will know the maximum value.

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 175

 */

 getrlimit(lim, &rlim);

 /*

 * Now change the current limit.

 */

 rlim.rlim_cur = val;

 /*

 * Now set the new limit.

 */

 return(setrlimit(lim, &rlim));

}

Obtaining Resource Usage Information

Berkeley UNIX maintains a great deal of information about the resources used by a

process besides the amount of CPU time used. This information is obtained using the

getrusage system call. This call takes two arguments: a constant indicating the

information to be obtained, and a pointer to a structure of type rusage, which will

contain the information on return. The constants, defined in the include file
sys/resource.h, are:

RUSAGE_SELF Obtain the resource usage information for the current process

only.

RUSAGE_CHILDREN Obtain the resource usage information for all terminated

children of the current process.

The rusage structure, also declared in sys/resource.h, is shown below. The files
sys/types.h and sys/time.h must also be included:

struct rusage {

 struct timeval ru_utime;

 struct timeval ru_stime;

 long ru_maxrss;

 long ru_ixrss;

 long ru_idrss;

 long ru_isrss;

 long ru_minflt;

 long ru_majflt;

 long ru_nswap;

 long ru_inblock;

 long ru_oublock;

 long ru_msgsnd;

 long ru_msgrcv;

 long ru_nsignals;

 long ru_nvcsw;

 long ru_nivcsw;

};

Using C on the UNIX System

176 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The fields are interpreted as follows:

ru_utime The total amount of time spent executing in user mode.

ru_stime The total amount of time spent in the system executing on behalf

of the process(es).

ru_maxrss The maximum resident set size utilized (in kilobytes).

ru_ixrss An “integral” value indicating the amount of memory used by the
text segment that was also shared among other processes. This

value is expressed in units of kilobytes × seconds-of-execution and

is calculated by summing the number of shared memory pages in

use each time the internal system clock ticks and then averaging

over one second intervals.

ru_idrss An integral value of the amount of unshared memory residing in

the data segment. Expressed in units of kilobytes × seconds-of-

execution.

ru_isrss An integral value of the amount of unshared memory residing in

the stack segment. Expressed in units of kilobytes × seconds-of-

execution.

ru_minflt The number of page faults serviced without any I/O activity; this
is done by “reclaiming” a page frame from the list of pages

awaiting reallocation.

ru_majflt The number of page faults serviced that required I/O activity.

ru_nswap The number of times the process was “swapped” out of main

memory.

ru_inblock The number of times the file system had to perform input.

ru_oublock The number of times the file system had to perform output.

ru_msgsnd The number of I/O messages sent.

ru_msgrcv The number of I/O messages received.

ru_nsignals The number of signals delivered to the process.

ru_nvcsw The number of times a context switch resulted due to a process
voluntarily giving up the processor before its time slice was

completed. (This is usually done to await the availability of a

resource.)

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 177

ru_nivcsw The number of times a context switch resulted due to a higher

priority process becoming runnable or because the current process

exceeded its time slice.

Manipulating Byte Strings

System V and Berkeley UNIX both provide several library routines for manipulating

arbitrary strings of bytes. Most programmers should be aware of the “standard” string

manipulation routines: strcmp, strcpy, strncmp, and strncpy Although these
routines work fine for strings of printable characters, they do not work well when they

must cross over null bytes and so on. Here we’ll discuss various routines that can be

useful for handling special cases.

The bcmp and memcmp Library Routines

In Berkeley UNIX, the bcmp routine may be used to compare two arbitrary byte strings.

It takes three arguments: two character pointers to the strings to be compared, and an
integer number of bytes to be compared. It returns 0 if the two strings are equal, non-

zero otherwise.

In System V, this function is performed by the memcmp routine, which also takes three

arguments, in the same order. Unlike bcmp, memcmp acts exactly like strcmp, and

returns a value less than, greater than, or equal to 0 indicating that the string pointed to

by the first argument is lexicographically less than, greater than, or identical to the string
pointed to by the second argument.

The bcopy and memcpy Library Routines

In Berkeley UNIX, the bcopy library routine may be used to copy arbitrary byte strings.
It takes three arguments: a character pointer to the source string, a character pointer to

the destination string, and an integer number of bytes to copy. The routine always copies

the requested number of bytes; it does not stop at a null byte as strncpy does.

In System V, the memcpy routine performs the same function. This routine also takes
three arguments: a character pointer to the destination string, a character pointer to the

source string, and an integer number of bytes to copy. Note that memcpy uses the same

argument order for the source and destination strings that strncpy does, while bcopy
reverses the order.

The bzero and memset Library Routines

In Berkeley UNIX, the bzero routine may be used to set an arbitrary number of bytes
to zero. It takes two arguments: a pointer to the memory to be zeroed, and an integer

number of bytes to zero. This routine is useful for zeroing large character arrays,

structures, and so on.

Using C on the UNIX System

178 FOR PERSONAL, NON-COMMERCIAL USE ONLY

System V provides a more generic routine, memset. This routine takes three arguments:
a character pointer to the memory to be set, a character to set each byte of the memory

to, and an integer number of bytes to set. To make memset emulate bzero, the call:

memset(s, '\0', n)

would be used.

Environment Variables

As mentioned in Chapter 9, Executing Programs, each program has an environment

when it is executing. The environment contains several variables of the form

NAME=value. This is where information such as the program’s search path, the user’s

login name, the terminal type, and so on are stored.

To obtain the value of one of these variables, the getenv routine is used. This routine
takes one argument, a character string containing the name of the variable to be returned

(e.g., “TERM”). It returns a pointer to the value of that variable (a character string) if the

variable exists, or the constant NULL if it does not.

The Current Working Directory

Berkeley UNIX provides a library routine that a program may use to obtain the path

name of its current working directory. This routine, getwd, takes a single argument, a
pointer to a character string in which to store the name of the directory. In 4.1BSD, this

routine was stored in the -ljobs library; it has since been moved into the standard C

library. The size of the string should be MAXPATHLEN characters; this constant is defined
in the include file sys/param.h.

System V provides a similar routine, getcwd. This routine takes two arguments, a
pointer to a character string in which to store the name of the directory, and an integer

indicating the length of this string.

Searching for Characters in Strings

All versions of UNIX provide library routines to search for a character in a string. In

Version 7 and the Berkeley distributions this routine is called index; it has been renamed

strchr in System V. Both routines take two arguments, a pointer to a character string
to be searched, and the character to search for. They return a character pointer pointing

to the first occurrence of the character in the string on success, or the constant NULL on
failure.

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 179

index and strchr search the string from the beginning until the first occurrence of the
character is found. To search the string from the end toward the beginning, in order to

locate the last occurrence of the character, the routines rindex (Berkeley UNIX) and

strrchr (System V) should be used instead.

Determining Whether a File is a Terminal

Sometimes it is necessary for a program to know whether it is writing to a terminal or to

a file. For example, the Berkeley UNIX more program does not prompt the user a page

at a time unless it is sending output to a terminal.

The isatty Library Routine

The isatty library routine takes a single argument, an integer file descriptor. It returns
non-zero if the file descriptor refers to a terminal device, and 0 otherwise. Thus, the more

program uses a code segment such as the one shown below to determine whether or not

to prompt the user a page at a time:

if (isatty(1)) /* check standard output */

 printprompt = YES;

else

 printprompt = NO;

The ttyname Library Routine

Programs also sometimes need to know the path name of the terminal they are outputting

to. This can be obtained using the ttyname library routine. It takes a single argument,
an integer file descriptor, and returns a pointer to a character string containing the path

name to the terminal device that file descriptor refers to. If the file descriptor does not

refer to a terminal device, the constant NULL is returned.

The /dev/tty Device

If a program needs to open its controlling terminal, but does not know the name of the

terminal it is running on, it may open the pseudo-device /dev/tty. For each process on the

system, opening this device will actually open that process’s controlling terminal.

Printing Error Messages

The perror Library Routine

Throughout this book, the perror library routine has been used to print error messages
when errors occur. As mentioned previously, whenever a system call (but not a library

Using C on the UNIX System

180 FOR PERSONAL, NON-COMMERCIAL USE ONLY

routine) fails, it returns −1 and sets the external integer errno to a value indicating the
specific error which occurred.

Character strings describing each of these errors are stored in the external array of

character pointers called sys_errlist. Additionally, defined constants allowing the
program to check for specific errors are defined in the include file errno.h.

The perror library routine takes a single argument, a character string. It prints this

string, followed by a colon, followed by the character string from sys_errlist that

describes the error number contained in errno on the standard error output.

The psignal Library Routine

Berkeley UNIX provides another routine similar to perror called psignal. This
routine accepts two arguments: an integer signal number, and a pointer to a character

string. It prints the character string, followed by a colon, followed by a character string

describing the signal on the standard error output. The character strings describing the

signals are contained in the external array of character pointers called sys_siglist.

Sorting Arrays in Memory

Often it is necessary to sort the elements of an array in memory. This is easily done using

the qsort library routine, which uses the quicksort algorithm to sort arbitrary data

structures in memory. It takes four arguments: a pointer to the start of the array, an integer
indicating the number of elements in the array, an integer indicating the size of each

element in bytes, and a pointer to a comparison routine. The comparison routine should

accept two arguments, pointers to two array elements to be compared. It should return

an integer less than, greater than, or equal to zero depending on whether the first element

is considered less than, greater than, or equal to the second element.

Example 14-2 shows a program that reads ten strings from the standard input into an

array and prints them out sorted in ascending and then descending order.

Example 14-2. qsort—demonstrate qsort routine

#include <stdio.h>

#define NSTRS 10 /* number of strings */

#define STRLEN 16 /* length of each string */

char strs[NSTRS][STRLEN]; /* array of strings */

main()

{

 int i;

 extern int compare1(), compare2();

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 181

 /*

 * Prompt the user for NSTRS strings.

 */

 for (i=0; i < NSTRS; i++) {

 printf("Enter string #%d: ", i);

 gets(strs[i]);

 }

 /*

 * Sort the strings into ascending order. There

 * are NSTRS array elements, each one is STRLEN

 * characters long. Note we give the size of

 * the array element, not the length of the

 * string in it.

 */

 qsort(strs, NSTRS, STRLEN, compare1);

 /*

 * Print the strings.

 */

 printf("\nSorted in ascending order:\n");

 for (i=0; i < NSTRS; i++)

 printf("\t%s\n", strs[i]);

 /*

 * Now sort the strings in descending order.

 */

 qsort(strs, NSTRS, STRLEN, compare2);

 printf("\nSorted in descending order:\n");

 for (i=0; i < NSTRS; i++)

 printf("\t%s\n", strs[i]);

 exit(0);

}

/*

 * compare1 - compare a and b, and return less than,

 * greater than, or equal to zero. Since

 * we are comparing character strings, we

 * can just use strcmp to do the work for us.

 */

compare1(a, b)

char *a, *b;

{

 return(strcmp(a, b));

}

/*

 * compare2 - this compares a and b, but is used for

 * sorting in the opposite order. Thus it

 * returns the opposite of strcmp. We can

Using C on the UNIX System

182 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * simulate this by simply reversing the

 * arguments when we call strcmp.

 */

compare2(a, b)

char *a, *b;

{

 return(strcmp(b, a));

}

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 183

Appendix A
Calling FORTRAN From C

The UNIX C and FORTRAN compilers were written to use the same object code format.

This feature permits the programmer to call FORTRAN functions from C programs, and

vice versa. FORTRAN programs can thus use many of the C library functions and system

calls, and C programs can call functions from FORTRAN libraries.

Note that the information in this appendix is based on the Berkeley UNIX C and

FORTRAN compilers on DEC VAX hardware. There may be some differences in
variable sizes and compiler specifics on other hardware or other versions of the operating

system.

Data Representation

The following is a table of corresponding FORTRAN and C variable declarations:

FORTRAN C

integer*2 x short x;

integer x long x;

logical x long x;

real x float x;

double precision x double x;

complex x struct { float real, imag; } x;

double complex x struct { double real, imag; } x;

character*10 x char x[10];

(By the rules of FORTRAN, integer, logical, and real occupy the same amount

of memory.)

Using C on the UNIX System

184 FOR PERSONAL, NON-COMMERCIAL USE ONLY

It should be noted that when dealing with arrays, C arrays are indexed from 0 to N-1,

while FORTRAN arrays are indexed from 1 to N by default. FORTRAN arrays may be

made to index from 0 by declaring them as array(0:N-1) instead of array(N).

One last thing about arrays—C stores arrays in row-major order, while FORTRAN stores

them in column-major order. This means that if a two-dimensional array in C is

subscripted as array[i][j], the same array in FORTRAN would be subscripted as

array(j,i). Likewise, the dimensions of the array would be reversed when declaring
it in the two languages.

Procedure Naming

The FORTRAN compiler appends an underscore character (‘_’) to each user-defined
common block or procedure. The purpose is to avoid conflicts with C procedures and

variables of the same name (most of the FORTRAN libraries are written in C).

Unfortunately, it means the programmer must be careful when naming his or her

procedures.

Naming C Routines to be Called From FORTRAN

In order for a procedure written in C to be callable from a FORTRAN program, its name
must end with an underscore. The underscore is not used in the FORTRAN program by

the programmer, rather it is appended automatically by the compiler. Recall that

FORTRAN procedure names may be no longer than six characters; the underscore is not

counted. For example:

FORTRAN Routine C Routine

integer i

i = 5

call hello

stop

end

hello_() /* note underscore */

{

 printf("Hello, world.\n");

}

Naming FORTRAN Routines to be Called From C

When calling FORTRAN from C, the C program must supply the underscore on the
procedure name. The FORTRAN compiler will add it automatically in the FORTRAN

program. For example:

C Routine FORTRAN Routine

main()

{

 hello_();

}

subroutine hello

print *, 'Hello, world.'

end

Calling FORTRAN from C

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 185

Returning Values from Functions

Integer, Logical, Real, Double Precision

Functions that return integer, logical, real, and double precision values are
simply declared as such and just return their values as defined in the language. For

example:

C Routine FORTRAN Routine

main()

{

 long i;

 long y_();

 i = y_();

}

long x_()

{

 return(5);

}

integer j

integer x

j = x();

stop

end

integer function y()

y = 10

end

Complex and Double Complex

A FORTRAN function that returns complex or double complex is equivalent to a C
routine with an initial argument that points to the place where the return value is to be

stored. For example:

C Routine FORTRAN Routine

typedef struct {

 float r, i;

} complex;

main()

{

 complex i;

 y_(&i);

}

x_(c)

complex *c;

{

 c->r = 1.0;

 c->I = 2.0;

}

complex j

complex x

j = x()

stop

end

complex function y()

y = (1.0, 2.0)

end

Using C on the UNIX System

186 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Character Strings

A character-valued FORTRAN function is equivalent to a C routine with two initial

arguments: a pointer and a length. For example:

C Routine FORTRAN Routine

main()

{

 char i[15];

 y_(i, 15L);

}

x_(s, len)

char *s;

long len;

{

 s[0] = 'a';

 s[1] = 'b';

 ...

 s[14] = 'o';

}

character*15 j

character*15 x

j = x();

stop

end

character*15 function y()

y = 'abcdefghijklmno'

end

Passing Arguments

Unlike C, which allows arguments to procedures to be call-by-value or call-by-reference,

FORTRAN requires all arguments to be call-by-reference. This tends to make calling
FORTRAN from C somewhat inconvenient, since passing a single constant (e.g., 3)

requires declaring a temporary variable, assigning it the value, and passing its address to

the function.

The programmer must also be careful assigning values to procedure parameters—

because they are all passed by address, assignments made inside functions and

subroutines affect the variables in the main program.

Integers, Floats (Reals), and Doubles

These variables are simply passed by address; nothing else need be done. For example:

Calling FORTRAN from C

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 187

C Routine FORTRAN Routine

main()

{

 long a, b, c;

 a = 4;

 b = 5;

 c = 6;

 y_(&a, &b, &c);

}

x_(u, v, w)

long *u, *v, *w;

{

 *u *= 2;

 *v *= 3;

 *w *= 4;

}

integer i, j, k

i = 1

j = 2

k = 3

call x(i, j, k)

stop

end

subroutine(y(u, v, w)

integer u, v, w

u = u * 2

v = v * 3

w = w * 4

end

Following the execution of these programs, a will be 8, b will be 15, c will be 24, i will

be 2, j will be 6, and k will be 12.

Characters and Logicals

Single characters and logical variables are also simply passed by address. The values

0 and 1 correspond to .FALSE. and .TRUE., respectively.

Character Strings

Character strings are also passed by address, however, an additional parameter follows

all the declared parameters. This is a value parameter indicating the size of the character
string. For example:

C Routine FORTRAN Routine

main()

{

 char *i;

 i = "hi there";

 y_(s, 8);

}

x_(s, len)

char *s,

long len;

{

 write(1, s, len);

}

character*15 j

j = 'abcdefghijklmno'

call x(j)

stop

end

subroutine y(s)

character*15 s

write(6,*) s

end

Using C on the UNIX System

188 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Functions

Passing procedures to and from routines is also possible; simply pass the address of the

procedure as if it were a character string, and indicate its length as zero.

Overall Argument Sequence

The overall order of arguments passed to procedures is as follows:

1. Extra arguments for complex and character functions.

2. Pointer to each datum or function.

3. An integer value parameter for each character string or procedure.

For example, the call in:

external f

character*7 s

integer b(3)

call sam(f, b(2), s)

is equivalent to that in:

int f();

char s[7];

long b[3];

sam_(f, &b[1], s, 0, 7);

Input and Output

Input and output from most programs is normally done using the standard input (the

keyboard), standard output (the screen), and the standard error output (also the screen).

In C programs, these “devices” correspond to file descriptors 0, 1, and 2, respectively.

In FORTRAN, they correspond to units 5, 6, and 0.

From C Programs

C programs calling FORTRAN routines that may do input or output should call the

function f_init before anything else. This sets up the FORTRAN I/O library. If this
routine is not called, any reads done by the FORTRAN routines will fail, and any output

will be written to the file fort.unit, where unit is the unit number which was written

to.

Before exiting, a call should be made to f_exit, to flush buffers, close files, etc.

Calling FORTRAN from C

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 189

From FORTRAN Programs

Doing output from C routines called by FORTRAN programs is generally not

recommended. It requires the programmer to rearrange his file descriptors such that

standard input is now 5, and so on. If you must do this, see the manual page on the dup
system call.

Libraries

Several libraries must be loaded when compiling programs that mix languages. In

general, FORTRAN programs that call C routines should be compiled as:

f77 file.f FORTRAN-libraries… -lc

and C programs that call FORTRAN routines should be compiled as:

cc file.c C-libraries… -lU77 -lF77 -lI77 -lm

Further Information

A much more detailed description of the internals of the FORTRAN and C language
systems can be found in the documents shown below.

Feldman, S. J., Weinberger, P. J., and Berkman, J., A Portable Fortran 77 Compiler,

UNIX Programmer’s Supplementary Documents, Volume 1, 4.3 Berkeley Software

Distribution, Virtual VAX-11 Version, April, 1986.

Wasley, David L. and Berkman, J., An Introduction to the f77 I/O Library, UNIX

Programmer’s Supplementary Documents, Volume 1, 4.3 Berkeley Software

Distribution, Virtual VAX-11 Version, April, 1986.

Johnson, S. C., A Tour Through the Portable C Compiler, UNIX System Manager’s

Manual, 4.3 Berkeley Software Distribution, Virtual VAX-11 Version, April, 1986.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 191

Appendix B
Using Berkeley UNIX Pseudo

Terminals

Occasionally it is useful to be able to execute a program on a terminal, but to have the

input and output of that terminal be connected to a program, rather than to a keyboard

and screen. This is how the Berkeley UNIX script program works. script runs a program

(usually a shell) on a terminal, and copies all the input and output to that terminal to a

file called typescript.

The way this is done is by using devices called pseudo terminals. A pseudo terminal is
actually made up of two devices, a master and a slave. The slave device has a name

something like /dev/ttyp0, while the master has a name such as /dev/ptyp0. The last two

characters of the name usually range from ‘p’ through ‘s’ for the first character, and ‘0’

through ‘9’ and ‘a’ through ‘f’ for the second, providing a total of 64 pseudo terminals.

To use a pseudo terminal, the process opens the master side of the device for reading and

writing. It then forks and executes the process to be controlled after making the child

process’s controlling terminal the slave side of the device.* Now, when the process writes

to the master side of the pseudo terminal, the program will receive the data as if it were

typed on a terminal keyboard. When the program prints to its standard output or standard

error output as if it were writing to a terminal screen, the process may read this output

by reading from the master side of the pseudo terminal.

The program shown below implements a subroutine that takes three arguments: a

character string containing a command to be executed, a pointer to a file pointer of type

FILE to be used for sending input to the command, and a pointer to a file pointer of type

FILE to be used for reading output from the command. The routine obtains a pseudo

* Executing programs is discussed in Chapter 9, Executing Programs; the controlling terminal is described in

Chapter 10, Job Control.

Using C on the UNIX System

192 FOR PERSONAL, NON-COMMERCIAL USE ONLY

terminal and sets it up to be used by the command, and then executes the command and

sets up the file pointers to be used. The routine returns 0 if this all succeeds, −1 if it fails.

Example B-1. ptyopen—open a pseudo-tty and execute a process on it

#include <sys/param.h>

#include <sys/ioctl.h>

#include <sys/file.h>

#include <signal.h>

#include <stdio.h>

ptyopen(cmd, ifp, ofp)

char *cmd;

FILE **ifp, **ofp;

{

 int i;

 char *args[16];

 register int tty;

 long ldisc, lmode;

 register char *s, *t;

 struct sgttyb sgttyb;

 struct tchars tchars;

 struct ltchars ltchars;

 char ttybuf[16], ptybuf[16];

 /*

 * Split up the arguments in the command

 * into an argv-like structure.

 */

 i = 0;

 s = cmd;

 while (*s) {

 /*

 * Skip white space.

 */

 while ((*s == ' ') || (*s == '\t'))

 *s++ = NULL;

 args[i++] = s;

 /*

 * Skip over this word to next white space.

 */

 while ((*s != NULL) && (*s != ' ') && (*s != '\t'))

 s++;

 }

 args[i] = NULL;

 /*

 * Get a pseudo-tty. We do this by cycling

 * through all the possible names. The

Using Berkeley UNIX Pseudo Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 193

 * operating system will not allow us to

 * open a master which is already in use,

 * so we simply go until the open succeeds.

 */

 for (s = "pqrs"; *s != NULL; s++) {

 for (t = "0123456789abcdef"; *t != NULL; t++) {

 sprintf(ptybuf, "/dev/pty%c%c", *s, *t);

 if ((tty = open(ptybuf, O_RDWR)) >= 0)

 goto out;

 }

 }

out:

 /*

 * If s and t are NULL, we ran out of

 * pseudo ttys before we found one

 * we can use.

 */

 if ((*s == NULL) && (*t == NULL))

 return(-1);

 /*

 * Change "ptyXX" (master) to "ttyXX" (slave).

 */

 strcpy(ttybuf, ptybuf);

 ttybuf[5] = 't';

 /*

 * Get the modes of the current terminal. We

 * will duplicate these on the pseudo terminal.

 */

 ioctl(0, TIOCGETD, &ldisc);

 ioctl(0, TIOCLGET, &lmode);

 ioctl(0, TIOCGETP, &sgttyb);

 ioctl(0, TIOCGETC, &tchars);

 ioctl(0, TIOCGLTC, <chars);

 /*

 * Fork a child process.

 */

 if ((i = fork()) < 0) {

 close(tty);

 return(-1);

 }

 /*

 * In the child...

 */

 if (i == 0) {

 /*

 * Close all open files.

 */

 for (i=0; i < NOFILE; i++)

 close(i);

Using C on the UNIX System

194 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * Clear the controlling tty. This means

 * that we will not have a controlling

 * tty until we open another terminal

 * device.

 */

 if ((i = open("/dev/tty", O_RDWR)) >= 0) {

 ioctl(i, TIOCNOTTY, 0);

 close(i);

 }

 /*

 * Make our controlling tty the pseudo tty.

 * This happens because we cleared our

 * original controlling terminal above.

 */

 i = open(ttybuf, O_RDWR);

 /*

 * Set stdin, stdout, and stderr to be the

 * pseudo terminal.

 */

 dup2(i, 0);

 dup2(i, 1);

 dup2(i, 2);

 /*

 * Set the pseudo terminal's tty modes to

 * those of the original terminal. We

 * turn off ECHO and CBREAK modes, since

 * we don't want characters "typed" to be

 * printed.

 */

 sgttyb.sg_flags &= ~ECHO;

 sgttyb.sg_flags &= ~CRMOD;

 ioctl(0, TIOCSETD, &ldisc);

 ioctl(0, TIOCLGET, &lmode);

 ioctl(0, TIOCSETP, &sgttyb);

 ioctl(0, TIOCSETC, &tchars);

 ioctl(0, TIOCSLTC, <chars);

 /*

 * Set the process group of the process

 * to be the process group of the

 * terminal.

 */

 ioctl(0, TIOCGPGRP, &i);

 setpgrp(0, i);

 /*

 * Now change the process group of the

 * terminal and process to be the

 * process id; this takes them out

Using Berkeley UNIX Pseudo Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 195

 * of the calling process' process

 * group.

 */

 i = getpid();

 ioctl(0, TIOCSPGRP, &i);

 setpgrp(0, i);

 /*

 * Execute the program.

 */

 execv(*args, args);

 exit(1);

 }

 /*

 * Set up the input and output file pointers

 * so that they can write and read the pseudo

 * terminal.

 */

 *ifp = fdopen(tty, "w");

 *ofp = fdopen(tty, "r");

 return(0);

}

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 197

Appendix C
Reading Kernel Data

Structures

NOTE

The discussion in this section applies to Berkeley UNIX. Although the

principles are the same for System V and Version 7 UNIX, there are

some slight differences that are not discussed here.

Many system programs, such as ps, uptime, w, and so on print out information by reading

data directly from operating system memory. This is done by reading from the device
/dev/kmem, which is essentially a window into the memory being used by the operating

system, called “kernel memory.” Reading from this device actually copies data from

operating system memory into the user’s program. Because much of the information in

operating system memory should be kept private for security reasons, opening the file

/dev/kmem is often restricted to the super-user.

In order to obtain interesting information by reading /dev/kmem, a process must know

the addresses of the data structures it wishes to access. To do this, the nlist library
routine is used. This routine takes two arguments: a character string naming an

executable file (a.out), and a pointer to an array of structures of type nlist. This
structure is declared in the include file nlist.h; sys/types.h must also be included:

struct nlist {

 char *n_name; /* for use when in-core */

 unsigned char n_type; /* type flag, i.e. N_TEXT */

 char n_other; /* unused */

 short n_desc; /* see <stab.h> */

 unsigned long n_value; /* value of this symbol */

};

Before calling nlist, the calling program should set the n_name elements of these

structures to the names of the variables it wants to find. After calling nlist, the

Using C on the UNIX System

198 FOR PERSONAL, NON-COMMERCIAL USE ONLY

n_value elements will contain the addresses in the named file where these variables are
stored.

nlist operates by reading the symbol table in an executable file, which is created by
the compiler. Normally, the information obtained this way is used by debuggers and the

like to modify variable values, etc. However, for reading kernel data structures, the use

is slightly different. Rather than using the addresses obtained to access the executable

program that is the operating system (/vmunix), they are used to access the memory being

used by the operating system by reading /dev/kmem.

The program below accesses /dev/kmem to read the variables _boottime and

_avenrun. The first of these variables is the time the system was last started (“booted”).
The second indicates the load average, an average over time of the number of runnable

processes in the system. Note the types of the variables—there is unfortunately no

standard documentation that describes kernel data structures and which ones are of what

type; this is something that can only be learned by examining the operating system source

code.

Example C-1. kmem—demonstrate how to read kernel memory

#include <sys/param.h>

#include <sys/time.h>

#include <sys/file.h>

#include <nlist.h>

#include <stdio.h>

/*

 * We declare an array of nlist structures,

 * and initialize them to the names of the

 * variables we want. The last entry is

 * to terminate the list.

 */

struct nlist nl[] = {

#define X_BOOTTIME 0

 { "_boottime" },

#define X_AVENRUN 1

 { "_avenrun" },

 { 0 }

};

main()

{

 int kmem;

 char *ctime();

 struct timeval boottime;

 /*

 * _avenrun is an array of three numbers.

 * Most machines use floating point; Sun

 * workstations use long integers.

Reading Kernel Data Structures

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 199

 */

#ifdef sun

 long avenrun[3];

#else

 double avenrun[3];

#endif

 /*

 * Open kernel memory.

 */

 if ((kmem = open("/dev/kmem", O_RDONLY)) < 0) {

 perror("/dev/kmem");

 exit(1);

 }

 /*

 * Read the kernel namelist. If nl[0].n_type is

 * 0 after this, then the call to nlist() failed.

 */

 if ((nlist("/vmunix", nl) < 0) || (nl[0].n_type == 0)) {

 fprintf(stderr, "/vmunix: no namelist\n");

 exit(1);

 }

 /*

 * Read the _boottime variable. We do this by

 * seeking through memory to the address found

 * by nlist, and then reading.

 */

 lseek(kmem, (long) nl[X_BOOTTIME].n_value, L_SET);

 read(kmem, (char *) &boottime, sizeof(boottime));

 /*

 * Read the load averages.

 */

 lseek(kmem, (long) nl[X_AVENRUN].n_value, L_SET);

 read(kmem, (char *) avenrun, sizeof(avenrun));

 /*

 * Now print the system boot time.

 */

 printf("System booted at %s\n", ctime(&boottime.tv_sec));

 /*

 * Print the load averages. Sun workstations use

 * FSCALE to convert the long integers to floating

 * point. The three elements of _avenrun are the

 * load average over the past one, five, and ten

 * minutes.

 */

#ifdef sun

 printf("One minute load average: %.2f\n",

 (double) avenrun[0] / FSCALE);

 printf("Five minute load average: %.2f\n",

 (double) avenrun[1] / FSCALE);

Using C on the UNIX System

200 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 printf("Ten minute load average: %.2f\n",

 (double) avenrun[2] / FSCALE);

#else

 printf("One minute load average: %.2f\n", avenrun[0]);

 printf("Five minute load average: %.2f\n", avenrun[1]);

 printf("Ten minute load average: %.2f\n", avenrun[2]);

#endif

 close(kmem);

 exit(0);

}

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 201

Appendix D
Berkeley UNIX Directory

Compatibility Routines

The code below is a public-domain implementation of the Berkeley UNIX directory

routines described in Chapter 4, Files and Directories. These routines are intended for

use on non-Berkeley UNIX systems, in order to allow the writing of portable code. Users

of Berkeley UNIX systems will not need these routines, since equivalent ones are

provided as part of the operating system.

#include <sys/stat.h>

#include <sys/dir.h>

#include <stdio.h>

#define DIRSIZE(e) (min(strlen(e->d_name), DIRSIZ))

typedef struct {

 int d_fd;

} DIR;

char *malloc();

DIR *

opendir(dir)

char *dir;

{

 struct stat stbuf;

 DIR *dp = (DIR *) malloc(sizeof *dp);

 if ((dp->d_fd = open(dir, 0)) < 0)

 return(0);

 if ((fstat(dp->d_fd, &stbuf) < 0) ||

 ((stbuf.st_mode & S_IFDIR) = 0)) {

 closedir(dp);

 return(0); /* this isn't a directory! */

 }

Using C on the UNIX System

202 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 return(dp);

}

closedir(dp)

DIR *dp;

{

 (void) close(dp->d_fd);

 free((char *) dp);

}

struct direct *

readdir(dp)

DIR *dp;

{

 static struct direct dir;

 do {

 if (read(dp->d_fd, &dir, sizeof(dir)) != sizeof(dir))

 return(0);

 } while (dir.d_ino == 0);

 return(&dir);

}

/*

 * Scandir returns the number of entries or -1 if the

 * directory cannot be opened or malloc fails.

 */

scandir(dir, nmptr, select, compar)

char *dir;

char ***nmptr;

int (*select)();

int (*compar)();

{

 DIR *dirp;

 char **array;

 char **realloc();

 struct direct *ent;

 unsigned int nalloc = 10, nentries = 0;

 if ((dirp = opendir(dir)) == NULL)

 return(-1);

 array = (char **) malloc(nalloc * sizeof (char *));

 if (array == NULL)

 return(-1);

 while ((ent = readdir(dirp)) != NULL) {

 if (select && ((*select)(ent->d_name) == 0))

 continue;

 if (nentries == nalloc) {

 array = realloc(array, (nalloc += 10) * sizeof(char *));

Berkeley UNIX Directory Compatibility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 203

 if (array == NULL)

 return(-1);

 }

 array[nentries] = (char *) malloc(DIRSIZE(ent)+1);

 strncpy(array[nentries], ent->d_name, DIRSIZE(ent));

 array[nentries][DIRSIZE(ent)] = NULL;

 nentries++;

 }

 closedir(dirp);

 if ((nentries + 1) != nalloc)

 array = realloc(array, ((nentries + 1) * sizeof (char *)));

 if (compar != 0)

 qsort(array, nentries, sizeof(char **), compar);

 *nmptr = array;

 array[nentries] = 0; /* guaranteed 0 pointer */

 return(nentries);

}

alphasort(a, b)

char **a, **b;

{

 return(strcmp(*a, *b));

}

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 205

Appendix E
Interval Timer Version of nap()

The code below is an interval timer version (see Chapter 7, Telling Time and Timing

Things) of the nap routine. This routine is much like sleep, except that it works in units
of sixtieths of a second, instead of in units of seconds. This code will work only on

Berkeley UNIX systems.

#include <sys/time.h>

#include <signal.h>

#define setvec(vec, a) \

 vec.sv_handler = a; \

 vec.sv_mask = vec.sv_flags = 0

static int ringring;

nap(n)

unsigned n;

{

 int napx(), omask;

 struct sigvec vec, ovec;

 struct itimerval itv, oitv;

 register struct itimerval *itp = &itv;

 if (n == 0)

 return;

 timerclear(&itp->it_interval);

 timerclear(&itp->it_value);

 if (setitimer(ITIMER_REAL, itp, &oitv) < 0)

 return;

 setvec(ovec, SIG_DFL);

 omask = sigblock(sigmask(SIGALRM));

 itp->it_value.tv_sec = n/60;

 itp->it_value.tv_usec = (n%60)*1000000/60;

Using C on the UNIX System

206 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 if (timerisset(&oitv.it_value)) {

 if (oitv.it_value.tv_sec >= itp->it_value.tv_sec) {

 if (oitv.it_value.tv_sec == itp->it_value.tv_sec &&

 oitv.it_value.tv_usec > itp->it_value.tv_usec)

 oitv.it_value.tv_usec -= itp->it_value.tv_usec;

 oitv.it_value.tv_sec -= itp->it_value.tv_sec;

 }

 else {

 itp->it_value = oitv.it_value;

 /*

 * This is a hack, but we must have time to

 * return from the setitimer after the alarm

 * or else it'll be restarted. And, anyway,

 * sleep never did anything more than this before.

 */

 oitv.it_value.tv_sec = 1;

 oitv.it_value.tv_usec = 0;

 }

 }

 setvec(vec, napx);

 ringring = 0;

 sigvec(SIGALRM, &vec, &ovec);

 setitimer(ITIMER_REAL, itp, (struct itimerval *)0);

 while (!ringring)

 sigpause(omask &~ sigmask(SIGALRM));

 sigvec(SIGALRM, &ovec, (struct sigvec *)0);

 setitimer(ITIMER_REAL, &oitv, (struct itimerval *)0);

 sigsetmask(omask);

}

static int

napx()

{

 ringring = 1;

}

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 207

Bibliography

This bibliography lists a few books and several papers in the UNIX Programmer’s

Manual which discuss many aspects of UNIX programming. Although the references

here are to the 4.3BSD version of the UNIX Programmer’s Manual (UPM), many of the

documents are also contained in other versions as well.

The System V Interface Definition, American Telephone and Telegraph Company, 1986.

UNIX System V Release 2.0 Interprocess Communication Utilities Guide, American
Telephone and Telegraph Company, October, 1984.

Joy, William, Fabry, Robert, Leffler, Samuel, McKusick, M. Kirk, and Karels, Michael,

Berkeley Software Architecture Manual, 4.3BSD Edition, UNIX Programmer’s Manual,

4.3BSD, Programmer’s Supplementary Documents Volume 1, April, 1986.

Kernighan, Brian W. and Pike, Rob, The UNIX Programming Environment, Prentice-

Hall, 1984.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Prentice-

Hall, 1978.

Kernighan, Brian W. and Ritchie, Dennis M., UNIX Programming—Second Edition,

UNIX Programmer’s Manual, 4.3BSD, Programmer’s Supplementary Documents

Volume 2, April, 1986. Originally published in the Version 7 UPM, 1977.

Leffler, Samuel J., Fabry, Robert S., Joy, William N., Lapsley, Phil, Miller, Steve, and
Torek, Chris, An Advanced 4.3BSD Interprocess Communication Tutorial, UNIX

Programmer’s Manual, 4.3BSD, Programmer’s Supplementary Documents Volume 1,

April, 1986.

Ritchie, Dennis M., The UNIX I/O System, UNIX Programmer’s Manual, 4.3BSD,

Programmer’s Supplementary Documents Volume 2, April, 1986. Originally published

in the Version 7 UPM, 1977.

Ritchie, D. M. and Thompson, K., The UNIX Time-Sharing System, UNIX Programmer’s

Manual, 4.3BSD, Programmer’s Supplementary Documents Volume 2, April, 1986.

Originally published in the Version 6 UPM, 1975.

Using C on the UNIX System

208 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Sechrest, Stuart, An Introductory 4.3BSD Interprocess Communication Tutorial, UNIX

Programmer’s Manual, 4.3BSD, Programmer’s Supplementary Documents Volume 1,

April, 1986.

Technical Committee on Operating Systems of the IEEE Comupter Society, IEEE Trial

Use Standard: Portable Operating System for Computer Environments, IEEE, 1986.

Thompson, K., UNIX Implementation, UNIX Programmer’s Manual, 4.3BSD,
Programmer’s Supplementary Documents Volume 2, April, 1986. Originally published

in the Version 7 UPM, 1977.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 209

Colophon

As a result of reader comments, new distribution channels, and our own experimentation,

we have changed our look.

Distinctive covers complement our distinctive approach to UNIX documentation,

breathing personality and life into potentially dry subjects. UNIX and its attendant

programs can be unruly beasts. Nutshell Handbooks help you tame them. If you want to

further interpret or anthropomorphize these beastly covers, be our guest.

Edie Freedman designed this cover and the entire UNIX bestiary that will be appearing

on other Nutshell titles. The animals themselves are adapted from 19th-century

woodcuts.

Linda Lamb designed the page layout for the Nutshell handbooks.

The text of this book is set in Times Roman; headings are Helvetica; examples are

Courier. Text was prepared using the troff text formatter and the devps PostScript filter.

Figures are produced with a Macintosh. Printing is done on an Apple LaserWriter.

The animal featured on the front cover of Using C on the UNIX System is a lion.

	Using C on the UNIX System
	A Guide to System Programming

	Preface
	Documentation Conventions
	Acknowledgements

	Chapter 1 Introduction
	System Calls vs. Library Routines
	Versions of UNIX
	Error Handling

	Chapter 2 The Standard I/O Library
	File Pointers
	Opening and Creating Files
	Closing Files
	Reading and Writing Files
	The getc and putc Routines
	The fgets and fputs Routines
	The fread and fwrite Routines
	The fscanf and fprintf Routines
	The sscanf and sprintf Routines

	Moving Around in Files

	Chapter 3 Low-Level I/O
	File Descriptors
	Opening and Creating Files
	Opening and Creating Files on Older UNIX Systems

	Closing Files
	Reading and Writing Files
	Moving Around in Files
	Duplicating File Descriptors
	Converting File Descriptors to File Pointers

	Chapter 4 Files and Directories
	File System Concepts
	Ordinary Files
	Directories
	Special Files
	Removable File Systems
	Device Numbers
	I-Numbers, the I-List, and I-Nodes
	Hard Links
	Symbolic Links

	Determining the Accessibility of a File
	Getting Information From an I-Node
	Reading Directories
	Modifying File Attributes
	Miscellaneous File System Routines
	Changing Directories
	Deleting and Truncating Files
	Making Directories
	Linking and Renaming Files
	Symbolic Links
	The umask Value

	Chapter 5 Device I/O Control
	The Version 7 and Berkeley UNIX ioctl
	Line Disciplines
	The sgttyb Structure
	The tchars Structure
	The ltchars Structure
	The Local Mode Word
	The winsize Structure
	Miscellaneous Operations

	The System V ioctl
	c_iflag
	c_oflag
	c_cflag
	c_lflag
	c_cc

	The fcntl System Call
	Non-Blocking I/O
	The select System Call

	Chapter 6 Information About Users
	The Login Name
	The User Id
	The Group Id
	The Berkeley UNIX Group Mechanism

	Reading the Password File
	Reading the Group File
	Reading the utmp File

	Chapter 7 Telling Time and Timing Things
	Telling Time
	Obtaining the Time
	Timezones
	Converting the Time to ASCII
	Time Differences

	Sleeping and Alarm Clocks
	Sleeping
	The Alarm Clock
	Interval Timers

	Process Timing
	Changing File Times

	Chapter 8 Processing Signals
	Overview of Signal Handling
	Resetting Signals
	Restarting System Calls

	The Signals
	Sending Signals
	Catching and Ignoring Signals
	Ignoring Signals
	Catching Signals

	Using Signals for Timeouts
	The setjmp and longjmp Routines

	The New Berkeley UNIX Signal Mechanism
	Handler Calling Conventions
	The Signal Mask
	The Signal Stack

	Chapter 9 Executing Programs
	The system Library Routine
	Executing Programs Directly
	Creating Processes
	Executing Programs
	Waiting for Processes to Terminate

	Redirecting Input and Output
	Setting Up Pipelines
	The popen Library Routine
	Creating Pipes Directly

	Chapter 10 Job Control
	Preliminary Concepts
	The Controlling Terminal
	Process Groups
	System Calls
	ioctl
	setpgrp
	killpg
	wait3

	The JOB and PROC Data Types

	Job Control in the Shell
	Setting Up for Job Control
	Executing a Program
	Stopping a Job
	Backgrounding a Job
	Foregrounding a Job
	The jobs Command
	Waiting for Jobs
	Asynchronous Process Notification

	Job Control Outside the Shell
	Important Points

	Chapter 11 Interprocess Communication
	Berkeley UNIX IPC
	The socket System Call
	The bind System Call
	The send and recv System Calls
	The listen System Call
	The shutdown System Call
	Connection-Based Sockets
	The accept System Call
	The connect System Call

	Connectionless Sockets
	The sendto System Call
	The recvfrom System Call
	Connecting Datagram Sockets

	A Small Client Program
	A Small Server Program

	System V IPC
	Message Queues
	The msgget System Call
	The msgctl System Call
	The msgsnd and msgrcv System Calls

	Semaphores
	The semget System Call
	The semctl System Call
	The semop System Call

	Shared Memory
	The shmget System Call
	The shmctl System Call
	The shmat System Call
	The shmdt System Call

	Chapter 12 Networking
	Addresses
	Translating Hostnames Into Network Numbers
	Obtaining Port Numbers
	Network Byte Order
	Networking System Calls

	Chapter 13 The File System
	Disk Terminology
	The “Standard” UNIX File System
	The Berkeley Fast File System
	Reading Data Blocks From the File System

	Chapter 14 Miscellaneous Routines
	Resource Limits
	The getrlimit System Call
	The setrlimit System Call

	Obtaining Resource Usage Information
	Manipulating Byte Strings
	The bcmp and memcmp Library Routines
	The bcopy and memcpy Library Routines
	The bzero and memset Library Routines

	Environment Variables
	The Current Working Directory
	Searching for Characters in Strings
	Determining Whether a File is a Terminal
	The isatty Library Routine
	The ttyname Library Routine
	The /dev/tty Device

	Printing Error Messages
	The perror Library Routine
	The psignal Library Routine

	Sorting Arrays in Memory

	Appendix A Calling FORTRAN From C
	Data Representation
	Procedure Naming
	Naming C Routines to be Called From FORTRAN
	Naming FORTRAN Routines to be Called From C

	Returning Values from Functions
	Integer, Logical, Real, Double Precision
	Complex and Double Complex
	Character Strings

	Passing Arguments
	Integers, Floats (Reals), and Doubles
	Characters and Logicals
	Character Strings
	Functions
	Overall Argument Sequence

	Input and Output
	From C Programs
	From FORTRAN Programs

	Libraries
	Further Information

	Appendix B Using Berkeley UNIX Pseudo Terminals
	Appendix C Reading Kernel Data Structures
	Appendix D Berkeley UNIX Directory Compatibility Routines
	Appendix E Interval Timer Version of nap()
	Bibliography
	Colophon

