Team LiB HEXT ¥

Absolute OpenBSD: UNIX for the Practical Paranoid

by Michael W. Lucas ISBN:1886411999
ABSOLUTE
OPENBSD No Starch Press© 2003
,r-"‘:'-b — This book takes readers through the intricacies of the OpenBSD platform, and teaches them how to
o

f'i L]

St

manage the system with friendly explanations, background information, troubleshooting
suggestions, and copious examples.

Table of Contents

IAbsolute OpenBSD?UNIX for the Practical Paranoid

Introduction

hapter

Additional Help

Installation Preparations

hapter Dedicated Installation

Multiboot Installation

hapter §

Post-Install Setup

hapter §

Startup and Booting

hapter Managing Users

Networking
Internet Connections
- Additional Security Features
hapter 11 - Basic Kernel Configuration
- Building Custom Kernels
] - Add-On Software
hapter 14 - /ETC
- Disk and File System Management
- Upgrading OpenBSD
h - Basic Packet Filtering

> > > > > > > > > > >
ISCI N [SUR I (VR I <) | D ISUI FSV | <] 1S QD QD
O O @) @) @) O @) @) O @) O O
= = = = = = = = = = = =
D [©) D @ D D D @ D D D D
= = — = = = — = = — = =

= = [= = = Q Q0 = A @]

) I N)
1

More Packet Filtering

Appendix A

Managing PF
i386 Kernel Configuration Choices

App H - PF Example Configurations

>
=y
®
o
<
S
=
S

D

>
I |

ist of Tableg
Team LiB

Back Cover

This straightforward, practical, and complete guide to mastering the powerful and complex OpenBSD operating system, is
for the experienced UNIX user who wants to add OpenBSD to his or her repertoire. The author assumes a knowledge of
basic UNIX commands, design, and permissions. The book takes you through the intricacies of the platform and teaches
how to manage your system, offering friendly explanations, background information, troubleshooting suggestions, and
copious examples throughout.

About the Author

Michael W. Lucas, author of Absolute BSD, has been working with BSD-based operating systems since the late 1980s. His
column, “Big Scary Daemons,” for the O'Reilly Report is in its third year. He has worked for several years as a consultant
specializing in security, intrusion response, and network management.

Absolute OpenBSD—UNIX for the Practical Paranoid

by Michael W. Lucas

="

g
NO STARCH

PRESS

San Francisco
Copyright © 2003 by Michael W. Lucas.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

<3

12345678910-06050403

Printed on recycled paper in the United States of America

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Publisher: William Pollock

Managing Editor: Karol Jurado

Cover and Interior Design: Octopod Studios
Copyeditor: Kenyon Brown

Compositor: Wedobooks

Proofreader: Stephanie Provines

Distributed to the book trade in the United States by Publishers Group West, 1700 Fourth Street, Berkeley, CA 94710;
phone: 800-788-3123; fax: 510-658-1834.

Distributed to the book trade in Canada by Jacqueline Gross & Associates, Inc., One Atlantic Avenue, Suite 105,
Toronto, Ontario M6K 3E7 Canada; phone: 416-531-6737; fax 416-531- 4259.

For information on translations or book distributors outside the United States, please contact No Starch Press, Inc.
directly:

No Starch Press, Inc.

555 De Haro Street, Suite 250, San Francismﬁ%mﬁ

phone: 415-863-9900; fax: 415-863-9950; <jnfo@nostarch.com>; http://www.nostarch.conl

The information in this book is distributed on an "As Is" basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person

or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in it.

mailto:info@nostarch.com
http://www.nostarch.com

Library of Congress Cataloguing-in-Publication Data

Lucas, Michael W., 1967-
Absolute OpenBSD: UNIX for the practical paranoid / Michael W. Lucas.
p. cm.

Includes index.

ISBN 1-886411-99-9

1. OpenBSD (Electronic resource) 2. Operating systems (Computers) 3. UNIX (Computer file) I. Title.
QA76.9.063L835 2003

005.4'32--dc21

2003000473

For Elizabeth, who brings spring's rich warm sunlight into darkest night

ACKNOWLEDGMENTS

OpenBSD is quite a trip, and the OpenBSD community even more so. Since starting this book, I've talked with more
practical and professional paranoids than | knew existed outside of politics. It's been my privilege to work with some of
the best computer security people in the world. Best of all, these people care about their work, and the impact it has on
average people such as our parents and friends.

The following people all provided feedback on one or more chapters of this book, or answered specific questions on
frequently-misunderstood aspects of OpenBSD, and as such deserve my heartfelt thanks. Some of them are
OpenBSD crown princes, and others are just users who were trying to figure out what their computer was actually
doing. What I've done right is thinks to them, and what I've done wrong is my own fault. They are, in alphabetical
order: Shawn Carroll, Chris Cappuccio, Dave Feustel, Thorsten Glaser, Daniel Hartmeier, Jason Houx, Volker
Kindermann, Anil Madhavapeddy, U.N. Owen (aka dreamwvr), Francisco Luis Roque, Srebrenko Sehic, Matt
Simonsen, Sam Smith, Duncan Matthew Stirling, Peter Werner, and Jason Wright.

A special thanks goes out to Theo de Raadt, for taking time out of his fiendishly busy schedule to provide special
insight into the innards of OpenBSD, for not holding back when | goofed, and especially for sticking to his standards of
freedom, despite everything the world has to say on that subject.

When an author says something like, "Hold the presses! OpenBSD just added a whole slew of functionality and | have
to rewrite huge sections of the book you were planning to ship out tomorrow," the editor is supposed to respond with
dire threats involving chainsaws. The folks at No Starch just say, "Well, get to work then." | have been forced to report
to the Secret Author Cabal that Bill and Karol are patient, kind, and thoughtful enough to resist our best techniques for
driving publishers into Lovecraftian madness.

Eiz f]f[ff fff ?[fff Tf Ilf e fine staff and volunteers of the School of Chinese Martial Arts in Berkley, Michigan
(http://www.ZenMartialArts.conj). They have absolutely nothing to do with computers, but they have an awful lot to do
with me not making dire threats involving chainsaws. Somehow, the Five Ways to Become a Great Martial Artist
turned out to be the same as the Five Ways to Write a Great Computer Book — | just never knew it before.

And finally, for Liz, and not just for catching the pet rats before they can stash seeds in server cases.

Michael Lucas
Saint Clair Shores, Ml
May 2003

http://www.ZenMartialArts.com

Chapter 0: Introduction

Overview

The very quick path to a quiescent pager? OpenBSD.

Welcome to Absolute OpenBSD! This book is an introductory text to general management of the OpenBSD server
operating system. OpenBSD is a member of the BSD family of operating systems and is widely regarded as the most
secure operating system available anywhere, under any licensing terms. It's widely used by Internet service providers,
embedded systems manufacturers, and anyone who needs security and stability. If you're an experienced UNIX
systems administrator who wants to add OpenBSD to your repertoire, this book is for you!

By the time you finish this book you should be comfortable on an OpenBSD system. You will understand how to
manage, upgrade, and patch computers running OpenBSD. You'll also have a basic understanding of OpenBSD's
software, security, and network management features.

What Is BSD?

AT&T employees created UNIX in the early 1970s. At the time, the monster telephone company was forbidden to
compete in the computer industry. The telecommunications company used UNIX internally, but could not transform it
into a commercial product. As such, AT&T was willing to license the UNIX software and its source code to universities
for a nominal fee. This worked well for all parties: AT&T got a few pennies and a generation of computer scientists
who cut their teeth on AT&T technology, the universities avoided high operating system license fees, and the students
were able to dig around inside the source code and see how computers really worked.

Compared to some of the other operating systems of the time, the original UNIX wasn't very good. But all these
students had the source code for it and could improve the parts that they didn't like. If an instructor found a certain bug
particularly vexing, he could assign his students the job of fixing it. If a university network engineer, professor, or
student needed a feature, he could use the source code to quickly implement it. As the Internet grew in the early
1980s, these additions and features were exchanged between universities in the form of patches. The Computer
Science Research Group (CSRG) at the University of California, Berkeley, acted as a central clearinghouse for these
patches. The CSRG distributed these patches to anyone with a valid AT&T source code license. The resulting
collection of patches became known as the Berkeley Software Distribution, or BSD.

This continued for a long, long time. If you look at the copyright for any BSD-derived code, you will see the following
text.

Copyright 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
The Regents of the University of California. All rights reserved.

Fifteen years of continuous development by the brightest students of the best computer science programs in the world,
moderated by the faculty of one of the top technical schools in the country. That's more than a lifetime in software
development. As you might imagine, the result was pretty darn good — almost everyone who used UNIX was really
using BSD. The CSRG was quite surprised, near the end of these years, when it found that it had replaced almost all
of the original AT&T code!

BSD Goes Public

In the early 1990s, the CSRG's funding started to run out. The University of California had to decide what to do with all
this wonderful source code it owned. The simplest thing would have been to drop the original tapes down a well and

pretend that the CSRG had never happened. In keeping with the spirit of academic freedom, however, it released the
entire BSD collection to the public under an extremely liberal license. The license can be summarized like this:

B Don't claim you wrote this.
B Dpon't sue us if it breaks.
B Don't use our name to promote your product.

Compare this with the software license found on almost any commercial operating system. The BSD license is much
easier to understand and unobjectionable to almost anyone. Anyone in the world can take the BSD code and use it for
any purpose they like, from desktop computers to self-guided lawnmowers. Not surprisingly, many computer
manufacturers jumped right on BSD. Not only was the code free, but also every computer science graduate for the last
15 years was familiar with it.

AT&T UNIX

As the CSRG was merrily improving AT&T's product, AT&T was doing its own UNIX development work to meet its
internal needs. As AT&T developers implemented features, they also evaluated patches that came from the CSRG.
When they liked a chunk of BSD code, they incorporated it wholesale into AT&T UNIX, then turned around and
relicensed the result back to the universities, who used it as the basis for their next round of work.

This somewhat incestuous relationship kept going for many years, until the grand AT&T breakup. Suddenly, the
telecommunications giant was no longer forbidden to dabble in commercial computing. Thanks to years of
development, and that generation of computer scientists who knew it, UNIX abruptly looked like a solidly marketable
product. Berkeley's release of the BSD code met with great displeasure from AT&T and instigated one of the most
famous computer-related lawsuits of all time.

After some legal wrangling, the case was settled out of court. The Berkeley lawyers proved that most of the code in
dispute originated in BSD, not in original AT&T UNIX. Only a half-dozen files were original AT&T property, while the
rest of the operating system belonged to the CSRG and its contributors. As if that wasn't bad enough, AT&T had even
removed the original Berkeley copyright statement from the files it had appropriated from the CSRG! AT&T went away
and sulked for a while, finally releasing System V UNIX. The CSRG removed disputed files and released BSD
4.4-Lite2, a complete collection of CSRG code utterly unencumbered by any AT&T copyrights.

BSD 4.4-Lite2, also known just as "Lite 2," is the grandfather of all modern BSD software. This code was not usable
out of the box, and it required some tweaks and additions to function. Various groups of programmers, such as BSDi,
the NetBSD Project, and the FreeBSD Project, took it on themselves to make this code usable and to maintain it. Each
project was independently managed.

What Is OpenBSD?

OpenBSD's founder, Theo de Raadt, started as a NetBSD developer several years ago. He had several strong
disagreements, on many fronts, with the NetBSD developers about how the operating system should be developed.
Eventually, he went out on his own and founded the OpenBSD Project, attracting quite a few like-minded developers
to work with him. The OpenBSD team introduced several ideas into the open-source OS world that are now taken for
granted, such as public access to the CVS repository and commit logs.

The OpenBSD team quickly established an identity of its own as a security-focused group and is now one of the
best-known types of open-source BSD. Today, major companies such as Adobe Systems rely on OpenBSD to provide
a reliable, secure operating system.

Today, OpenBSD is a BSD-based UNIX-like operating system with a fanatical attention to security, correctness,
usability, and freedom. It runs on many different sorts of hardware including the standard "Intel PC" (i386), the
Macintosh (mac68k and macppc), Sun's Sparc (sparc and sparc64), Compag's Alpha (alpha), and more. OpenBSD
puts almost all its efforts into security features, security debugging, and code correctness. The OpenBSD folks have
demonstrated that correct code has a much lower chance of failing, and hence greater security. While some other
BSDs focus on different goals, OpenBSD strives to be the ultimate secure operating system.

The OpenBSD team continually improves the operating system to enhance its security, stability, and freedom. This
includes everything from the actual code in the operating system, to the online manual (which has a nearly legendary
quality in the free software community), to the debugging and development environment, to the continuous software
license auditing.

Other BSDs

So, what are these other versions of BSD, anyway? The main variants are NetBSD, FreeBSD, Mac OS X, and
BSD/OS.

NetBSD

NetBSD is the direct ancestor of OpenBSD and was written to run on as many different types of hardware as possible.
OpenBSD maintains much of this platform-independent design, but doesn't support all of the platforms NetBSD does.

FreeBSD

FreeBSD is the most popular open-source BSD. While the FreeBSD team considers security important, security is not
its reason for eating, sleeping, and breathing as it is for the OpenBSD folks.

Mac OS X

The latest version of the Macintosh operating system is based on BSD. OpenBSD makes a comfortable and
full-featured desktop for a computer professional, but may scare your grandparents. If you want a very friendly,
candy-coated desktop that you can put down in front of grandma, but want power and flexibility under the hood, you
might check it out. The source code for the graphic interface of Mac OS X is not available, but you can get the source
code for the BSD layer and the Mach kernel from Apple.

BSD/OS

BSD/OS is a commercial, closed-source operating system produced by Wind River that greatly resembles the
open-source BSDs. Some hardware manufacturers will not release specifications for their hardware unless the
recipient signs a non-disclosure agreement (NDA). These NDAs are anathema to any open-source development
project. Wind River will sign these NDAs and include reliable drivers for this hardware in BSD/OS.

If you need to run particular server-grade hardware, and it isn't supported under OpenBSD or any other open-source
BSD, you might investigate BSD/OS.

OpenBSD Users

OpenBSD is more than just a collection of bits on CD-ROM. It's also a community of users, developers, and
contributors. This community can be a bit of a culture shock for anyone who doesn't know what to expect.

Many other open-source operating systems place large amounts of effort into growing their user bases and bringing
new people into the UNIX fold. The OpenBSD community doesn't. Most open-source UNIX-like operating systems do
a lot of pro-UNIX advocacy. Again, OpenBSD doesn't. Some of the communities that have grown up around these
operating systems actively welcome new users and do their best to make newbies feel welcome. OpenBSD does not.
They are not trying to be the most popular operating system, just the best at what they do. The OpenBSD developers
know exactly who their target market is: themselves.

The OpenBSD community generally expects users to be advanced computer users. They have written extensive
documentation about OpenBSD, and expect people to be willing to read it. They're not interested in coddling new
UNIX users and will say so if pressed. They don't object to new UNIX users using OpenBSD, but do object to people
asking them for basic UNIX help just because they happen to be running OpenBSD. If you're a new UNIX user, they
will not hold your hand. They will not develop features just to please users. OpenBSD exists to meet the needs of the
developers, and while others are welcome to ride along the needs of the passengers do not steer the project.

OpenBSD Developers

So, how can a group of volunteers scattered all over the world actually create, maintain, and develop an operating
system? Almost all discussion takes place via email and online chat. This can be slower than a face-to-face meeting,
but is the only means by which people everywhere in the world can openly and reasonably communicate. This also
has the advantage of providing a written record of discussions.

OpenBSD has three tiers of developers: the contributors, the committers, and the coordinator.

Contributors

Contributors are OpenBSD users who have the skills necessary to add features to the operating system, fix problems,
or write documentation. Almost anyone can be a contributor. Problems range from a typographical error in the
documentation to a device driver that crashes the system under particular circumstances. Every feature that is
included in OpenBSD is there because some contributor took the time to sit down and write the code for it.
Contributors who submit careful, correct fixes are welcome in the OpenBSD group.

If a contributor submits enough fixes of high enough quality, he may be offered the role of committer.

Committers

Committers are people who have direct access to the central OpenBSD source code repository. Most committers are
skilled programmers who work on OpenBSD in their own time, as a hobby. They can make whatever changes they
deem necessary for their OpenBSD projects, but are answerable to each other and to the project coordinator. They
communicate via a variety of mailing lists, which are available for reading by interested parties. As these mailing lists
are meant for developers to discuss coding and implementation details on, users asking basic questions are either
ignored or asked to be quiet.

A committer's work is frequently available on websites and mailing lists before being integrated into the main
OpenBSD source code collection, allowing interested people to preview their work. While being a committer seems
glamorous, these people also carry a lot of responsibility — if they break the operating system or change something so
that it conflicts with the driving "vision" of the Project, they must fix it. All OpenBSD committers answer to the project
coordinator.

Coordinator

Theo de Raadt started OpenBSD in 1995 and still coordinates the project. He is the final word on how the system
works, what is included in the system and who gets direct access to the repository. He resolves all disputes that
contributors and committers cannot resolve amongst themselves. Theo takes whatever actions are necessary to keep
the OpenBSD Project running smoothly.

Many people have very specific coordination roles within OpenBSD — quite a few architectures have a "point man" for
issues that affect that hardware, the compiler has a maintainer, and so on. These are people who have earned that
position of trust within the community. The only time that Theo acts as the final word is when someone has broken one
of OpenBSD's few rules, such as bringing bad licenses into the source tree or behaving poorly with other committers.

This style of organization, with a central benevolent dictator, avoids a lot of the problems other large open-source
projects have with management boards, core teams, or other structures. When someone decides to work on
OpenBSD, they can either accept Theo's decisions as final or risk conflicting with the main OpenBSD Project. Thanks
to the cooperative nature of OpenBSD development, Theo doesn't have to use that Big Stick nearly as often as one
might think.

| Team LiB |

OpenBSD's Strengths

So, what makes OpenBSD OpenBSD? Why bother with another open-source UNIX-like operating system when there
are many out there, many closely related to OpenBSD? What makes this OS worth a computer, let alone entrusting
with your corporate firewall?

Portability

OpenBSD is designed to run on a wide variety of popular processors and hardware platforms. These platforms
include, but are not limited to: Intel (80386 and compatibles), Alpha, Macintosh (both PowerPC and 68000 models),
almost everything from Sun, and a variety of more obscure platforms. Chances are, any computer you will come
across can run OpenBSD. The OpenBSD team wants to support as many interesting hardware architectures as they
have the hardware and skills to maintain, so more are being added regularly.

Power

OpenBSD runs on hardware that's been obsolete for ten years. This isn't a deliberate design decision — the hardware
was in popular use when OpenBSD was started, and the developers try to maintain speed and compatibility when they
can. People who are running OpenBSD on an ancient VAX quickly catch changes that badly affect system
performance on 486s, while people running modern Pentium 4s would probably never notice. Some of these changes
are required by the advancing nature of the Internet, changes in the tools used to build OpenBSD, and added
functionality in the system, but those that are the result of programming errors or misunderstandings are caught
quickly.

OpenBSD leaves you every scrap of computing power possible to run your applications. In the end, people use
applications and not operating systems. This means that a system with a one-gig disk and a 486 CPU can still make a
solid web server once you install OpenBSD! A low-footprint operating system gives the most bang out of hardware.

Documented

Many free software projects are satisfied with releasing code. Some think that they're going above and beyond by
including a help function in the program itself, available by typing some command-line flag. Others really go all out and
provide a grammatically incorrect and technically vague manual page.

OpenBSD's documentation is expected to be both complete and accurate. The manual pages for system and library
calls are extensive, even when compared to the other BSDs, and include discussions on usage and security. In its
audit of the OpenBSD source code tree, the OpenBSD team found any number of circumstances where people had
used the library interface as the manual page said they should, but the manual page was incorrect! This created both
potential and actual security problems. As such, a documentation error is considered a serious bug and treated as
harshly as any other serious bug.

Free

In keeping with the spirit of the original BSD license, OpenBSD is free for use in any way by anyone. You can use it in
any tool you like, on any computer, for any purpose. Most of today's free software is licensed under terms that require
distributors of software to return any changes back to the project owner. OpenBSD doesn't come with even that minor
requirement. You can take OpenBSD, modify it, and embed it in refrigerators that order replacement food over the

1

Internet, without ever paying the developers a dime. m
OpenBSD is perhaps the freest of the free operating systems. Like every other free UNIX-like operating system, the
source code tree inherited from OpenBSD originally contained a wide variety of programs that shipped under
conditional licenses. Some were free for non-commercial use; some were free if you changed the name once you
made a change to the code; others had a variety of obscure licensing terms, such as indemnifying a third party against

lawsuits. These have been either ripped out or replaced with freely licensed alternatives.

Theo de Raadt said on a mailing list during a discussion of licensing terms:

We know what a free license should say.
It should say
* Copyright foo
* | give up my rights and permit others to:
distribute
sell
give
modify
use
* | retain the right to be known as the author/owner
When it says something else, ask this:
* - is it 100% guaranteed fluff which cannot ever affect anyone?
* - is it giving away even more rights (the author right)?
If not, then it must be giving someone more rights, or by the same token -
taking more rights away from someone else!
Then itis _less_ free than our requirements state!

The OpenBSD Project does a lot of work to guarantee that its licensing is as stringently free as its code is correct.

Correctness

OpenBSD developers strive to implement solutions correctly. This means that they follow UNIX standards such as
POSIX and ANSI in their implementations. They make it a strict rule to write programs in a reliable and secure
manner, following programming's best current practices. Every skilled programmer knows that programs written
correctly are more reliable, predictable, and secure. Many free software producers are satisfied if it compiles and
seems to work, however, and quite a few commercial software companies don't give their programmers time to write
code that correctly. Code in OpenBSD has been made correct by dint of much hard work, and anyone who tries to
introduce incorrect code will be turned away — generally politely, and often with constructive criticism, but turned away
nonetheless. And that brings us to OpenBSD's most well-known claim to fame.

Security

OpenBSD strives to be the most secure operating system in the world. While it can reasonably make that claim now,
it's a position that requires a constant struggle to maintain. People who break into systems are constantly trying new
ways to penetrate computer systems, which means that today's feature may be tomorrow's security hole. As
OpenBSD developers learn of new classes of programming errors and security holes, they scan the entire source tree
for that class of problem and fix them before anyone even knows how they might be exploited. The history of computer
security shows that users cannot be expected to patch or maintain their own systems; those systems must be secure
out of the box. OpenBSD's goal is to eliminate those problems before they exist.

mIf you work at a company implementing such technology, please base it on OpenBSD. | do not want my refrigerator
to be hacked and find 4,000 gallons of sour cream on my doorstep the next day!

OpenBSD Security

Even though OpenBSD is tightly secured, computers running OpenBSD are still broken into. That might seem
contradictory, but in truth it means that the person running the computer didn't understand computer security.

OpenBSD has many integrated security features, but people frequently assume that these features handle security for
everything that can be installed on the computer. A moment's thought will show that this really isn't possible. No
operating system can protect itself from the computer operator's mistakes. An OS can protect itself from problems in
installed software to a limited extent, but ultimately the responsibility for security is in the hands of the administrator.

Consider a web server program running on OpenBSD. OpenBSD will provide the server with a stable, reliable
platform, and will do as the server program asks, within the permissions the systems administrator has assigned to it.
If the systems administrator has set up the server in a careful and correct manner, something going wrong with the
web server will not endanger the operating system. If the sysadmin has integrated the web server with OpenBSD or
has chosen to let the web server run with unrestricted privileges, the web server can inflict almost unrestricted damage
to the computer software. If an intruder breaks into such a web server, they can use that integration and high
permissions setting to lever their way into the operating system itself.

If such a break-in happens, is it OpenBSD's fault? Obviously not. The systems administrator is expected to follow
basic security precautions when installing and configuring programs. No operating system can protect itself from an
ignorant or careless sysadmin.

Ultimately, security is the responsibility of the systems administrator. Throughout this book, we will discuss some of the
basic security precautions you should be taking when installing and running programs. We will also discuss the
advanced security features OpenBSD offers in order to protect itself and help in your systems administration duties.

OpenBSD's Uses

So, OpenBSD has all these nifty features, abilities, and strengths. Where does it fit into your "computing strategy"?
That ultimately depends on what your strategy is and where you need it. OpenBSD can be used anywhere you need a
solid, reliable, and secure system. | recommend OpenBSD for any of three different uses: on the desktop, as a server,
or as a network management device.

Desktop

If you need a powerful desktop with all the features you'd expect from a complete UNIX-like workstation, OpenBSD will
do nicely. Desktop GUIs, office suites, web browsers, and other programs an average user likes on a computer are
available. OpenBSD supports a variety of development tools, application environments, network servers, and other
features needed by programmers and web developers. If you're a network administrator OpenBSD supports packet
sniffers, traffic analyzers, and all the other programs you might have come to rely upon.

Server

If you're serving web pages, handling email, providing LDAP services, or offering any sort of network services to
clients, OpenBSD can help you. It's a cheap and reliable platform. Once it's set up, it just works. Web servers,
database servers, and more all work under OpenBSD. And, of course, it's secure, which you cannot underestimate on
today's Internet.

Network Management

OpenBSD makes an excellent firewall, bridge, or traffic shaper. You can use it to support intrusion detection software,
web proxies, or traffic monitors. The integrated PF firewall provides state-of-the-art network connection management
and control and strips out many dangerous types of traffic before they even reach your servers. Of course, OpenBSD
can do all this as cheaply and reliably as it can do anything else.

Who Should Read This Book?

This book is written for an experienced UNIX user or system administrator who is interested in adding OpenBSD
mastery to his repertoire. It assumes you're familiar with programs and commands such as tail(1), chmod(1), ping(8),
and so on. In many cases we'll discuss programs that you may be familiar with, but might be slightly different on
OpenBSD.

For maximum benefit, you should have a system on which to install OpenBSD. OpenBSD will coexist with another
operating system, if properly installed. While this is excellent for learning purposes, if you're going to use OpenBSD in
a production environment you should dedicate a machine to it. We'll discuss both installation methods. Our installation
examples will be written for the i386, or "standard PC," but will work almost identically on any hardware platform. (You
may need to look at hardware-specific resources for information on how to handle your hardware, however; for
example, the method for booting off of CD-ROM varies from platform to platform.)

Most people think that OpenBSD is not the easiest UNIX-like operating system, or the easiest version of BSD, or even
the easiest version of open-source BSD. It doesn't have handy "wizards" that walk you through each stage of the
configuration process. It has very few menu-driven front ends. Once you're familiar with how the system works,
though, such wizards only get in the way. The OpenBSD developers and support groups are not really interested in
helping rank UNIX beginners and usually refuse to answer basic UNIX questions.

To really understand OpenBSD you need to be willing to learn, experiment, and spend some time accumulating
understanding. The good news is, OpenBSD merely shows you what other operating systems conceal. Much of this
knowledge can be directly applied to other versions of BSD, other UNIX-like operating systems, and even completely
foreign operating systems such as Microsoft's Windows platforms.

Contents Overview

Here's a brief description of what you'll find in the next several chapters.

, Additional Information Resources, discusses the system documentation available both in the installed
system and on the World Wide Web. You might need this information to complete your installation tasks, so we
present it up front.

, Installation Preparations, discusses the steps necessary to install OpenBSD on an i386 (aka "standard
PC"). We will discuss both standalone and shared-system installs, as well as some basic tasks you should take care of
when you finish the install.

, Installation Walkthrough, carries you through every step of the installation process. While the installer is
very simple and powerful, it assumes a certain level of knowledge about computer hardware and about OpenBSD that
you may not yet possess. You will get all the skills you need to install OpenBSD here.

, Multiboot Installation, teaches you how to install OpenBSD on a system with another operating system
such as Linux, FreeBSD, or any version of Microsoft Windows. With this information, you should be able to install
OpenBSD with any operating system of your choice.

hapter §, Post-Install Configuration, discusses some of the steps experienced systems administrators probably want
to take once after installing an OpenBSD system. We also discuss the main system configuration settings found in

letc/rc.conf.

hapter €, System Startup, covers the OpenBSD booting process. The various files used by the booting process are
documented, and management of the boot process.

hapter 7, Managing Users, discusses how to add, remove, and restrict users in OpenBSD, as well as giving them
basic privileges with the integrated sudo tool.

hapter §, Networking, reviews some of the basics of the Internet standard TCP/IP protocol and cover some of
OpenBSD's tools for examining and trouble-shooting the network.

hapter 9, Network Connections, teaches you how to connect to the Internet via dialup and via Ethernet.

hapter 10, Additional Security Features, describes general OpenBSD security tools such as securelevels and
systrace.

hapter 11|, Basic Kernel Configuration, describes the various tools available to configure your kernel. Unlike many
other free UNIX-like operating systems, OpenBSD does not require the administrator to recompile the kernel. Instead,
a variety of other tools are available for kernel tweaking.

hapter 13, Kernel Compilation, discusses how to recompile the kernel in those rare incidents when you must.

hapter 13, Additional Software, describes OpenBSD's add-on software management tools. We learn how to compile
your own software in a manner consistent with OpenBSD's tools and how to check and remove installed software.

hapter 14, Upgrading OpenBSD, describes the various methods an administrator can use to upgrade an installed
OpenBSD system.

hapter 15, Disks, discusses OpenBSD's disk management systems and routines, including mounting disk images
and encrypted file systems.

hapter 1§, /etc, describes each of the major files in /etc that have not been covered earlier in the book and how you
might want to use each.

hapter 17, Packet Filtering, documents OpenBSD's integrated packet filtering engine, PF. We present real-world

traffic filtering situations and how they should be handled.

, More Packet Filtering, covers network address translation, bandwidth management, and a variety of other
nifty tricks that can the PF engine can perform for you.

, Managing PF, introduces the tools you can use to control the PF system and other tools that work with PF
to allow a network administrator a great deal of control over a network.

discusses the common kernel features available for x86 (standard PC) hardware.
Finally, gives several examples of PF usage in a variety of network types.

Okay, enough boring stuff. On to OpenBSD!

Chapter 1: Additional Help

Overview

Countless documents:
man pages, web, and HOWTOs:
If you can find them.

So, now that you've bought this book, you might think that you possess all the information you will ever need about
OpenBSD. You hold in your hands the ultimate repository of all OpenBSD wisdom and acumen, and once you master
its contents you will be lord and master of all that OpenBSD has to offer. Right?

Sorry, no. Even if you could find a book prepared by someone with a thorough and total mastery of OpenBSD, he
could not possibly cover everything there is to know in a single book. OpenBSD may be less than a decade old, but
UNIX has been kicking around the block for 30 years. BSD has been around for 25 years. OpenBSD builds on three
decades of tradition, knowledge, and power. You won't master it with any single book. You might master it with a room
full of books and a few years time, if you give up trivial things like friendship and bathing in favor of study. (Actually, if
you give up bathing, friendship will give itself up.)

The OpenBSD community maintains a wide variety of information sources. Some are integrated with OpenBSD itself,
such as the man pages. The OpenBSD Project, such as the main OpenBSD website and the various mailing lists
hosted at OpenBSD.org, maintains others. Still more users and devotees of OpenBSD maintain other websites,
mailing lists, and documentation projects. The flood of available information can be overwhelming to experienced
users, let alone new users. The goal of this chapter is to take you by the hand and lead you through some of it.

OpenBSD Community Support

If you have only worked with commercial UNIX before, you might find OpenBSD's support process a little surprising.
There is no toll-free number to call and no vendor to escalate within. No, you may not speak to a manager. There isn't
one. And there's a good reason for that; the management is you.

Commercial operating systems, such as those provided by Microsoft, conceal their inner workings. The only access
you have to the operating system is the options presented by the GUI, plus a few command-line tools that are almost
an afterthought. If you want to learn more about how your operating system works, you cannot. When something
breaks, you can either live with it or make offerings to the vendor to make the problem go away. Even if you do pay for
help, the people on the other end of the phone frequently know little more than you do.

OpenBSD, on the other hand, is completely open. You can view the source code. You can view object code, if you
want to. You have manual pages, and FAQs, and all sorts of instructions and documentation that enable you to help
yourself. You also have access to the CVS logs via the Web and via CVS itself. These logs describe every change that
has ever been made to every part of the system so you can back out changes, understand the motivations behind
changes, and even contact the people who have most recently updated the component you're interested in and ask
them why a particular change was made. You have the opportunity to learn about the operating system in exquisite,
excruciating detail. The OpenBSD developers have gone to a lot of trouble to answer basic questions for you in their
existing documentation — and they expect you to use it.

If you want to learn about OpenBSD, you need to make the jump from eating what you're served to reading the
cookbook and creating your own dinner. If you're willing to learn from what is provided, you will develop skills both in
solving problems and in OpenBSD, and you'll make some friends in the OpenBSD community in the process. If you
want to use OpenBSD and don't have the time or inclination to learn, invest in a commercial support contract. Many
different vendors support OpenBSD; check the OpenBSD website for details.

If you aren't interested in learning or buying a support contract, then OpenBSD is simply not for you.

"The Code Is Fine; What's Wrong with You?"

In most cases, people do not have problems with OpenBSD itself. The software runs, and it runs well. Most problems
people have with OpenBSD come from their own understanding, or lack thereof. When a program behaves
unexpectedly, you probably have a gap in your own comprehension of how things work. Your goal in resolving
problems should be to improve your knowledge so you can make the system behave, as you require. Other people
make OpenBSD work correctly, and you can too.

You might find that a problem is quite real, however. You might uncover a bug in OpenBSD, or learn that you have bad
hardware, or discover that a third-party tool really does crash under particular circumstances. You cannot be certain
you've found a bug until you understand correct behavior — not just how you think the system works, but how it really
does work. You must learn how the system should behave and why, so you can identify real bugs when you find them.

For example, before writing this book | had never used an OpenBSD machine to display a serial console. All of my
UNIX boxes are hooked up to a rusty old Livingston terminal server. Most people aren't stuck with that many serial
consoles, however, and want to use a null modem cable between two OpenBSD machines and have each serve as
the terminal for the other's console. (We cover serial consoles in.) From reading the manual page, it
seemed simple enough; once the cable is attached and the test machine is configured to dump its console out the
serial port, become root on your display machine and type "tip tty00," and the other machine's console should appear
in the terminal window. This didn't work.

The question then became, "Am | doing it wrong, or is something wrong with my hardware, or is there a bug in
OpenBSD?" Swapping systems around showed that the command worked on other OpenBSD machines, just not on
this test box. Further tests with a serial mouse and a modem showed that the serial port on the test machine was bad.
| originally planned to do all of the tests for this book on a Pentium 166 to make the point that OpenBSD works well on

older hardware m, but wound up purchasing a brand-new AMD 1800 instead.

Had the serial port not been bad, and if | had taken the correct steps, | might have actually found an OpenBSD bug.
Once you have confirmed that an actual bug exists, and have narrowed down the bug to a precise problem, be sure to
notify the OpenBSD development team with sendbug(1). A good bug report includes all possible information about the
problem, a description of the problem, a way to replicate the problem on other systems, and a suggested fix with
source code.

OpenBSD has three main information sources: man pages, websites, and mailing lists. To understand why your
system behaves a certain way in particular circumstances, you may need to check all three.

mThat point has now become, "OpenBSD runs well on older hardware that hasn't been burned out after years of
abuse."

Man Pages

Man pages, short for "manual,” are the original way of presenting UNIX documentation. While man pages have a
reputation for being obtuse, difficult to read, or incomplete, the OpenBSD manual pages are quite informative.

The OpenBSD team considers man pages to be the final word in system documentation. They are expected to be
correct. Errors in man pages are considered serious bugs and are dealt with as quickly as possible and as forcefully as
necessary. As such, you can expect that the man page will be correct and complete. Man pages should be your first
line of attack in learning how something works.

A man page is not a tutorial. It explains how something works, not what to type to make particular effects happen. You
need to be able to assemble the pieces given by the man page into the tool that you want. If you want a tutorial you
need to look at the FAQ, articles on third-party websites, and this book. If you find a tutorial that does exactly what you
want, be sure to understand what you're doing as well as what you're typing; otherwise, you'll be stuck when
something breaks.

Manual Sections

The OpenBSD manual is divided into nine sections. Each man page appears in only one section. These sections are
sometimes called volumes, a relic of the day when the manual was small enough to realistically be printed and
distributed. Roughly speaking, these sections are:

1 General Commands

2 System Calls and Error Numbers

3 C Libraries

3p Perl Libraries

4 Devices and Device Drivers

5 File Formats and Configuration Files
6 Game Instructions

7 Miscellaneous Information

8 System Maintenance Commands

9 Kernel Internals

When reading man pages, you'll usually see the section number in parenthesis after the command, like this: panic(9).
This represents both the name of the command, library, or interface (panic) and the section where the man page for
that can be found (9). When you see something in this format, you can check the man page for detailed information.
Almost every topic has a man page. Some commands or topics have multiple man pages of the same name, in
different sections.

You can view man pages with man(1). If you know the section number, give it and then the name of the program. For
example, to see the manual page for the standard network utility ping(8), enter:

man ping

In response, you should see something like this:

PING(8) OpenBSD System Manager's Manual ~ PING(8)

NAME
ping - send ICMP ECHO_REQUEST packets to network hosts

SYNOPSIS
ping [-DdfLngRrv] [-c count] [-I ifaddr] [-i wait] [-] preload] [-p
pattern] [-s packetsize] [-t ttl] [-w maxwait] host

DESCRIPTION

ping uses the ICMP protocol's mandatory ECHO_REQUEST datagram to elicit
an ICMP ECHO_REPLY from a host or gateway. ECHO_REQUEST datagrams
(*"pings") have an IP and ICMP header, followed by a ““struct timeval"

and then an arbitrary number of ““pad" bytes used to fill out the pack-

et. The options are as follows:

-c count
Stop after sending count ECHO_REQUEST packets.

-D Set the Don't Fragment bit.

-d Setthe SO_DEBUG option on the socket being used.

You can now learn huge amounts about pinging hosts on the Internet, just by understanding this document. If you
need more information, you can look at some of the other man pages referenced by ping(8) to build an in-depth picture
of the system.

Navigating Man Pages

Once you're in a man page, hitting the space bar will take you forward one full screen. If you don't want to go that far,
hitting the ENTER key will scroll down one line. If you go to far, and want to back up, hitting "b" will take you back one
screen. To search within a man page for a word, type / followed by the word. You'll jump down to the first appearance
of that word. Typing n subsequently will jump you to the next occurrence of that word.

This assumes that you're using the default OpenBSD pager, more(1). If you're using a different pager, you'll have to
use the syntax that pager requires. If you don't know what a pager is, then don't worry about it.

Finding Man Pages

One frequent complaint about man pages is that it's difficult to find a man page that covers a topic you're interested in.
There's certainly truth to this — many OpenBSD questions can be answered by a simple "read man such-and-such."
The problem is finding the correct such-and-such for what you want to know. You can perform basic keyword searches
with apropos(1) and whatis(1). Apropos(1) searches for any man page name or description that includes the word
you're interested in. Whatis(1) only matches whole words. For example, if you are interested in the ping command, you
might try:

apropos ping

Net::Ping (3p) - check a remote host for reachability

Text::Wrap (3p) - line wrapping to form simple paragraphs

boot (8/Alpha) - Alpha system bootstrapping procedures

boot (8/Amiga) - amiga-specific system bootstrapping procedures

Well, the first command looks somewhat like the standard ping command, but it's in section 3p of the manual — it's a
Perl library! The next three matches have nothing to do with ping, but if you examine them closely you'll see that the
letters "ping" appear in each of them, encapsulated within the words "wrapping" and "bootstrapping." Depending on the
term you're looking for, apropos can give you far too much irrelevant information.

A similar search with whatis(1) gives the following.

whatis ping
ping (8) - send ICMP ECHO_REQUEST packets to network hosts
#

That's more like it! You may find that such a narrow search isn't enough for some terms, however. Experiment with

apropos(1) and whatis(1) until you're comfortable with them, and you should be able to fipnd just about any topic you
like. Between the search functions, and the SEE ALSO sections within man pages (see 'Man Page Contentg"), you

can generally find the information you need.

Note The apropos command is the same as "man -k" (for "keyword search"), and the whatis command is the same as
"man -f* (for "full word search").

Section Numbers and Man

You might find cases where the man page you want has the same name as a man page in some other section of the
manual, especially as you add additional software to your OpenBSD machines. In those cases, specifying the section
number is the only way to get the exact page you want. Without giving a section number, you'll get the man page of
that name with the lowest section number. You can specify a section number before the name of the command, i.e.:

man 8 ping

While this example is rather trivial (a "ping" man page only appears in one section of the manual), we'll look in some
other cases where it isn't.

Man Page Contents

Man pages have a variety of section headers. While just about any subsection can appear in a man page, several are
standard. (See mdoc(7) for a partial list of standard section names, as well as other man page standards.) Like book
authors, man page authors try to arrange their content in a manner that makes sense for the program they're
describing. Still, you will see some standard headings.

B NAME tells you the names of a program or utility. Some programs have multiple names — for
example, the vi(1) text editor is also available as view(1) or ex(1). The man page lists all of these
names.

B SYNOPSIS lists the possible command-line options and their arguments, or how a library call is
accessed. Frequently, you'll find that this header is enough to spark your memory and remind you of
a flag you've used before that caused the program to behave appropriately.

B DESCRIPTION contains a brief synopsis of the program or feature. The contents of this section vary
depending on the topic, as programs, files, and interfaces all have very different documentation
requirements.

B OPTIONS describes a program's command-line options and their effects.

B BUGS describes known failure conditions, weird behavior, and how to make the program fail in
general. This is a great time-saver. Many times I've had a problem with a command only to find that
behavior, and sometimes a workaround, listed in the BUGS section. Honesty is a wonderful thing in
computing products.

B SEE ALSO is traditionally the last section in a man page. OpenBSD is an interrelated whole; every
command has ties to other commands. In an ideal world you would read every man page and be able
to hold an integrated image of the system in your head. Because most of us cannot do that, this
section provides directions to related man pages.

You now know what you need to navigate the integrated help system. Now let's look at some information resources
elsewhere than your computer.

Man Pages on the Web

The manual pages are also available on INWW.ODenBSD.OI’Cl and its mirrors. While your system has only the man
pages for your release and architecture of OpenBSD, the manual available on the website includes all previous

versions of OpenBSD and all architectures. If you want to see differences in the boot process between i386 and
Alpha platforms, you can easily compare the manual pages on the website. Similarly, you can see which release

http://www.OpenBSD.org

certain commands were first documented in and how those commands have changed over time.

Team LiB m HEXT ¥

www.OpenBSD.org

The OpenBSD website contains a variety of information useful for general OpenBSD administration, installation, and
management. The most useful portions are the FAQ and the platform-specific hardware support documents, but the
site as a whole contains much useful information. From the front page you see links describing how to access the
source code, the CVS repository, the bug reporting system, and other documentation. Information is added regularly,
so take a look, and see what they have!

Website Mirrors

Many people mirror the OpenBSD website across the world. In most cases, you can find a mirror for a country by

i code.OpenBSD.org. For example, the main British mirror is located at

any exceptions to this rule, however; for example, the main United States
. Other mirrors have completely different URLs.

http://www.uk.OpenBSD.or
mirror is at |

The website mirrors are linked off the bottom of the main OpenBSD website, and hence at the bottom of each mirror
site. | recommend that you pick a mirror that responds quickly for you, and bookmark it. The mirror sites are generally
underused, while the main site is quite heavily accessed.

The OpenBSD FAQ

The OpenBSD FAQ is the repository of frequently asked questions about OpenBSD. While much of the information in
there is duplicated in the manual pages, the FAQ presents the knowledge in an easier-to-follow format. Unlike many
f}f[fﬁjs you might be familiar with, the OpenBSD FAQ includes extensive tutorial information. For example,
Chapter 4 of the FAQ contains the full, detailed installation process. Other chapters discuss other features of the
system or problems you may encounter. If you're having a problem, or want to know how some major port of
OpenBSD works, definitely check the FAQ!

http://www.uk.OpenBSD.org/
http://www.usa.OpenBSD.org/

Other Websites

Many people maintain websites dedicated to OpenBSD, or related to OpenBSD, or generally useful to the OpenBSD
Project. Any time you have a problem or are trying to understand something, check out these sites for more
information. Read third-party documentation carefully and skeptically, however. Anyone can put up a website, and that
person can say anything on that site. Tutorials and articles outside of the OpenBSD Project may contain erroneous
information, or tutorials that only work in the author's particular situation.

Here are a few popular ones at the time | write this.

Google BSD (Lttp://WWW.qooqu.com/bsd}): The Google search engine is one of the most powerful
support tools for OpenBSD — or for any piece of software, actually. Google has indexed not only the
main OpenBSD website, but also a variety of OpenBSD mailing list archives, third-party websites, and
newsgroups. Google is your friend. If you ask someone for help, they will almost always point you to
Google. Use it.

Monkey.org (Lttp://www.monkev.orq/openbsd_l): This is one of the oldest OpenBSD sites, and a fair
chunk of the material here is somewhat dated as of this writing. It contains searchable archives of the
OpenBSD mailing lists, which are very valuable. We'll discuss the mailing lists a little later.

Daemon News (l]ttp:llwww.daemonnews.orqj): Daemon News provides a daily news board and
monthly ezine devoted to all things BSD, including OpenBSD. Much of the information presented at
Daemon News is quite applicable to OpenBSD.

BSD Forums (http://www.bsdforums.orq;{): BSD Forums indexes news stories about all sorts of BSD
and hosts discussion threads about the articles.

The OpenBSD Journal (I1ttp://www.deadlv.oqu): This website contains articles, comments, and
questions related to OpenBSD. It is an excellent resource for all things OpenBSD.

O'Reilly Network BSD Developer Center (Lttp://WWW.onIamp.com/bsd,I): This O'Reilly-sponsored site
hosts a variety of OpenBSD and general BSD articles, including the column Big Scary Daemons by
yours truly.

http://www.google.com/bsd/
http://www.monkey.org/openbsd/
http://www.daemonnews.org/
http://www.bsdforums.org/
http://www.deadly.org/
http://www.onlamp.com/bsd/

Mailing Lists

You can find a variety of mailing lists dedicated to OpenBSD, run by both the official OpenBSD project and various
third parties. We'll discuss what lists exist and how to use them to best advantage.

The Main Mailing Lists

OpenBSD has quite a few mailing lists for public use. All mailing lists are accessible to the public. Some of the lists are
a little more private than others, however. Each major hardware platform has a mailing list, but discussion on those
lists is strictly limited to people who are either actively developing that platform or sending bug reports for that
platform. They aren't of much use to the average OpenBSD user, unless you're tracking problems in a development
version of OpenBSD. Here, we're just going to cover the mailing lists that are useful for the average user.

n <|announce@0penBSD.or(J>: This is a very low-volume, moderated list that only has important news
about the OpenBSD Project. This list receives at least one message every six months, when a new
version of OpenBSD comes out.

u <Isecuritv-announce@OpenBSD.or(J>: This mailing list contains security announcements for
OpenBSD. When the OpenBSD team learns of a security flaw in OpenBSD, they post a notification

and a fix to this mailing list. If you are running an OpenBSD machine plugged into the Internet, you
must subscribe to this list. We'll see more about this in Chapter 14].

u <lnisc@OpenBSD.or(J>: This list is for general OpenBSD discussion and user questions. While this is
the "miscellaneous" list, it still has strict rules for acceptable messages. We'll discuss how to usefully
post to an OpenBSD mailing list later this chapter.

u <lech@OpenBSD.och>: This list is for in-depth technical discussions, such as code discussion and
protocol analysis. This is a useful list to subscribe to, but you p ! post here unless
you are a developer. As a good rule of thumb, if your post to <gech@OpenBSD.org> doesn't contain a

code diff, you're on the wrong mailing list.

Subscribing to a Mailing List

penBSD uses the Majordo
ajordomo@QOpenBSD.ord

subscribe mailing-list-name

o mailing list manager. To subscribe to a mailing list, send a message to
> containing the following:

For example, to subscribe to the misc list, you would send

subscribe misc

OpenBSD's majordomo requires that all subscription requests be verified. You will receive a message of instructions
back. Be sure to follow those instructions to complete your subscription!

Other Official Lists

If you want to become more deeply involved in the OpenBSD community, you might well wonder what other official
OpenBSD mailing lists exist. T he lists that currently exist is to ask the mailserver; it'll tell
you. Just send a message to <najordomo@OpenBSD.org> containing the single word:

lists

You will receive a reply giving the name of each OpenBSD mailing list and its purpose.

Note If you want to learn more 3 iling list manager and what other information you can get, send
the single word "help" to Jma’ordomo OpenBSD.org>.

mailto:announce@OpenBSD.org
mailto:security-announce@OpenBSD.org
mailto:misc@OpenBSD.org
mailto:tech@OpenBSD.org
mailto:tech@OpenBSD.org
mailto:majordomo@OpenBSD.org
mailto:majordomo@OpenBSD.org
mailto:majordomo@OpenBSD.org

Non @OpenBSD.org Mailing Lists

Eﬂmg_ﬂmmdmmmgﬂﬁj_f all OpenBSD-related mailing lists hosted by third parties at
ttp://Awww.OpenBSD.org/mail.htm|. This includes a variety of lists in languages other than English, as well as some

very narrow, special-purpose lists. One particular mailing list | highly recommend for less experienced UNIX
aﬁmﬁ@&m&m&mﬁ.ﬁmmwjt To subscribe, send a message to
<ppenbsd-newbies-subscribe @sfobug.org>.

Using the Mailing Lists

Now that you have a subscription to an appropriate OpenBSD mailing list (hopefully misc, and definitely
security-announce), you can go and ask all your questions on that mailing list. You won't make any friends, though,
and you may even be told to shut up and go away. That's mainly for two reasons: discussion topics are permitted only
within a narrow range, and the lists are there to be read and not posted to.

Unless you're in a truly unique situation or really on the bleeding edge of OpenBSD development, someone has
probably struggled with your problem before. They've probably posted a message to the mailing lists before. They
probably got an answer. That answer probably hasn't changed. The quickest way to get an answer to your question is
to find that previous message. That's where the mailing list archives come in.

You can find a variety of mailing list archives on the Net at places such as Geocrawler d1ttp://www.qeocrawler.com}).
By far, the easiest way to get access to the mailing list archives is to use a powerful search engine such as Google.
Carefully choosing your search terms will get results very quickly.

http://www.OpenBSD.org/mail.html
mailto:openbsd-newbies-subscribe@sfobug.org
http://www.geocrawler.com/

Using OpenBSD Problem-Solving Resources

Let's pick a common question and use the OpenBSD resources to solve it. We'll use several different methods to find
an answer. One topic that comes up frequently is that of hardware-accelerated cryptography: how does it work, and
what does OpenBSD do to support it? Here's how you find information on this topic from each of the information
sources the OpenBSD Project provides.

www.OpenBSD.org

If you look at the main page of the OpenBSD website, you'll find a link pointing to "Integrated Crypto." That leads you
in turn to "Cryptographic Hardware Support.” Read, learn, and enjoy.

Man Pages

If you just type "man cryptography” you won't get any matches; there is no "cryptography" man page. It's frequently
called "crypto," however, and if you try "man crypto” you'll get something.

crypto(3) OpenSSL crypto(3)

NAME
crypto - OpenSSL cryptographic library

SYNOPSIS

DESCRIPTION
The OpenSSL crypto library implements a wide range of
cryptographic algorithms used in various Internet stan-
dards. The services provided by this library are used by
the OpenSSL implementations of SSL, TLS and S/MIME, and
they have also been used to implement SSH, OpenPGP, and
other cryptographic standards.

OVERVIEW
libcrypto consists of a number of sub-libraries that

Well, that's not what we want. It's nice to have OpenSSL documentation on a system that includes OpenSSL, but it
doesn't answer our question. You might give up here, but that's not what you want to do either. Notice that this manual
this page falls in Section 3. Information on hardware belongs in Section 4 of the manual. When multiple man pages
share a name, and you don't give man(1) a section number, the page in the lowest section number is displayed. Try
"apropos crypto" to look for all the man pages that include the word "crypto.” You'll notice the following.

crypto (3) - OpenSSL cryptographic library
crypto (4) - hardware crypto access driver
crypto (9) - API for cryptographic services in the kernel

There are three different crypto man pages, each in a different section. Crypto(3) is for programmers who want to use
the OpenSSL cryptographic interface; crypto(9) is for programmers who want to access crypto routines within the
kernel; and crypto(4) is for cryptographic accelerator hardware. Type "man 4 crypto" and you'll see what you want.

CRYPTO(4) OpenBSD Programmer's Manual CRYPTO(4)

NAME
crypto - hardware crypto access driver

SYNOPSIS
pseudo-device crypto [count]

DESCRIPTION
The crypto driver provides userland applications access to hardware cryp-
to support via the kernel. The /dev/crypto device node primarily oper-
ates in an ioctl(2) based model, permitting a variety of applications to
guery device capabilities, submit transactions, and get results.

If count given in the specification, and is greater than 0, a maximum of

You may have to wade through some dense technical information, but everything you need to know is right here.

Checking the Internet

Go to Google and enter "OpenBSD crypto hardware support.” On the day | wrote this, the first page of results gave me
a direct link to the relevant OpenBSD web page, a link to a mailing list archive result, and a couple of third-party web
pages discussing OpenBSD's hardware crypto support.

Mailing for Help

If the mailing list archives, a web search, the OpenBSD FAQ, the OpenBSD website, man pages, and other assorted
resources do not answer your question, you can ask for help. The OpenBSD mailing lists are read by a variety of very
knowledgeable and skilled computer professionals. Many of these people enjoy working with OpenBSD and want to
help new users. These same people have also frequently spent a great deal of time making OpenBSD information
available on the Internet and even answering the same question dozens or hundreds of times.

Look at all the ways we just explored to get information on cryptographic hardware support in OpenBSD. Most topics
have information readily available in the same manner. People who read the OpenBSD mailing lists, and answer
questions on them, spent their time writing and distributing all that information. Documenting all this was a lot of work.
Now imagine their reaction when they receive a piece of email asking about cryptographic hardware support. The
people who write those emails have just confirmed that they want their hand held, or they're either unwilling or unable
to read the available documentation, or they have the intelligence of a brick. The writer is obviously not ready to use
OpenBSD. At best, he will be ignored. At worst, some experienced OpenBSD person who wrote all those docs would
probably take offense at his hard work being so utterly discounted and flame the questioner badly enough that his
monitor will need three months in the Mayo Clinic Burn Unit.

Keep that in mind before you send an email. Have you really checked everywhere? Are there any other words you can
search under? Performing a few extra searches with different keywords is much faster than composing a useful piece
of email and has a very good chance of returning an answer.

Discussion Topics

If you are familiar with another free UNIX, you might find OpenBSD's mailing lists a little shocking. OpenBSD users are
advanced computer users, almost by definition. If an advanced UNIX user tries to debug a problem with a piece of
software, he is generally expected to know enough to ask the responsible party. On support lists for other free
UNIX-like operating systems, users are welcome to ask questions on dang near any topic about any piece of software
that runs on their chosen platform. The people on these support lists do their best to help out. These support lists,
manned by volunteers and dedicated to providing around-the-clock response to whatever question you might ask, are
provided by projects that are interested in taking over the world. Remember, though, that isn't the OpenBSD Project's
goal.

The OpenBSD folks will happily assist you with problems with OpenBSD, but software that happens to be running on
OpenBSD is another matter. You may be able to get help from an OpenBSD list, if someone on that list happens to
use the same software you're having trouble with, but you shouldn't count on it. If you're having trouble porting your
preferred window manager to OpenBSD because of some differences in OpenBSD's libc, the OpenBSD people would
love to talk to you. If you can't configure your window manager the way you'd like, then you need to talk to the people
responsible for your window manager.

Contents of Help Requests

Before you send an email, think about the problem you are trying to solve. What question should you actually be
asking here? Define the problem as narrowly as possible. Suppose you cannot connect to your Internet service
provider. Is the problem that the internal modem dials, but the ISP rejects your connection requests? Does your
modem not dial? Is it detected at all? Each of these is a very different problem, with a different solution. That's the
problem you want to solve.

Now that you know what the problem is, you need to gather any and all the information related to the problem. You will
include this information in your email. This should include:

B The version of OpenBSD you are running.

B vour hardware platform.

B Any error output. Be sure to check in /var/log/messages as well as your terminal.

B var/run/dmesg.boot

B A complete, but narrow, problem description.
Formatting Help Requests

Quite a few OpenBSD users @ use a text-based email reader such as mutt. (Quite a few also use graphic-friendly mail
readers, mind you.) These are very powerful programs for handling large amounts of email, but they do not display
HTML messages. If you are using a graphic mail client such as Microsoft Outlook, send your mail in plain text. What's
more, be sure to wrap your text at 72 columns. Sending mail in HTML, or without decent line wrapping, is simply an
invitation to have your email discarded unread.

This may seem harsh, but you need to consider to whom you're writing. Most email clients are simply not suited to
handle thousands of messages a day, scattered across dozens of mailing lists and several dozen discussions, in a
manner accessible to a human mind. Even the most popular Windows-based email clients, such as Microsoft Outlook,
cannot perform such fundamental tasks as discussion threading. | receive thousands of email messages a day, and
many OpenBSD developers are in even worse straits. We simply cannot cope without competent mail tools, and
HTML is not a necessary part of a competent mail tool. Presentation of a large number of messages in a sensible
order is necessary.

On a similar note, most attachments are unnecessary. You do not need to PGP sign your email, and those
business-card attachments just demonstrate that you really shouldn't be running OpenBSD. On a similar note, be sure
to not use a long signature line. The "standard" for email signatures allows for four lines of text, no more. Long ASCII
art signatures, even really nifty ones featuring the official OpenBSD Blowfish, are Right Out.

s0. do not send your message to multiple mailing lists. At this point, ld almost certainly go to
isc@QpenBSD ord>. Most especially, do not cross-post between <misc@OpenBSD.org> and

ech@OpenBSD.org>!

A

A

Finally, use a good subject line. Many people who receive those thousands of email messages decide what messages
to read based entirely on the subject line. Moderately advanced mail readers allow the reader to delete entire
discussions based on subject line. Something like "Problem with OpenBSD" will be ignored by the vast majority of
people. A subject line like "Internal modem not recognized at boot" will attract readers who are familiar with that sort of
problem, and who are best able to help you. Some mail readers do even more sophisticated threading based upon the
mail message headers; if you want to start a new discussion on a mailing list, it's best to compose the message from
scratch rather than replying to an existing message.

Sending Your Email

Finally, put all of your information together and send your question with relevant documentation to
<misc@0OpenBSD.ord>. Yes, there are other mailing lists for discussing OpenBSD, but people who post questions or
problems to them are almost overwhelmingly told to go ask on misc@ instead. You might be referred to another
mailing list, but it's much better to post a message to a specific list if that message starts with "The people on misc@
recommended | ask this here."

It's easy to let frustration turn a simple request into a rampaging demand for immediate assistance. Remember to be
polite; the people who are receiving your message may decide to help you out of the goodness of their hearts, but they
are under no obligation to do so. If you want someone to be obliged to help you, get a support contract.

Also remember, the reason you're having a problem is because of something you do not understand. You're seeking
enlightenment. If you ask someone to fix your problem for you, you're going to get a poor response.

Responding to Email

Your answer may be a brief note with a URL, or even just two words: "man such-and-such." If that's what you get,

mailto:misc@OpenBSD.org
mailto:misc@OpenBSD.org
mailto:tech@OpenBSD.org
mailto:misc@OpenBSD.org

that's where you need to go. Don't go asking for more detail. If you have a question about the contents of the
reference you're given, or if you're confused by the reference, treat that as another problem. Narrow down the source
of your confusion and ask about it. Man pages and tutorials are not perfect, and it's possible that some parts seem to
be mutually exclusive or contradictory if you don't fully comprehend them.

Finally, follow through. If you're asked for more information, provide it. If you don't know how to provide it, treat that as
another problem. Go back to the beginning of this chapter and try to figure it out. The bottom line is, if you develop a
reputation as someone who doesn't follow up on requests for more information, you won't even get a first reply.

ow that you know how to get more help on OpenBSD, let's proceed to the installation that's discussed in the
Chaptel.

@In fact, quite a few users of other free UNIX-like operating systems use this sort of mail reader as well. This advice
applies equally well to most parts of the free software community. Personally, when | get an email that is unreadable in
plain text, | assume that the person who sent it is either ignorant or rude. Ignorant people have nothing to tell me, and |
don't have time for rude people. If you are using a graphic mail client such as Microsoft Outlook, send your mail in plain
text. What's more, be sure to wrap your text at 72 columns. Sending mail in HTML, or without decent line wrapping, is
simply an invitation to have your email discarded unread.

Chapter 2: Installation Preparations

Overview

| am script kiddie.
Windows is warm and tasty,
blowfish goes down hard.

A successful OpenBSD installation requires the OpenBSD software, supported hardware, and a bit of thought about
how you want your installed machine to look and behave. A developer's multiboot laptop will have very different
requirements than a dedicated firewall, which will look completely different than a Web server. Proper preparations will
make your OpenBSD installation quick and easy.

We're going to spend a great deal of time on the requirements, considerations, and decisions you need to make before
installing OpenBSD. Once you know what you have to do, the actual install process is quite simple. Many of the
problems people have installing OpenBSD come from not understanding their many choices.

The instructions given in this chapter cover almost all situations, but the final word on installing OpenBSD is the install
document included in the release. For example, before installing OpenBSD on an i386, you must read INSTALL.i386
for that release!

Note If you have trouble, be sure to check the other documentation discussed in for people with similar
problems.

OpenBSD Hardware

OpenBSD supports a wide variety of hardware architectures: i386, Alpha, 32- and 64-bit Sparc, both the 68000 and

owerPC varieties of Macintosh, and a variety of less well-known platforms. Take a look at
http://www.OpenBSD.org/plat.htm| for a full list of supported platforms. This page contains links to a page for each
hardware platform, in which the state of hardware support is discussed in full detail. For example, the i386 page gives
,fp'ﬂall i386-compatible hardware supported in the latest development version of OpenBSD, -current (see
Ehapter 14).

This chapter covers the i386 platform, (aka "80386-compatible" or "Standard PC"), which includes the 386, 486, and
Pentium lines and their descendants. They're the most common machines, and you probably have one sitting around
you could use to learn on. In fact, even old systems can run OpenBSD; you probably have something in a back closet
that would do nicely. Many of the examples in this book were performed on a Pentium 166 with 48MB RAM and a
stack of 2GB hard disks. (The extra hard disks weren't necessary, but | had them, and a computer can always use
more disk space.) We're going to cover installing OpenBSD on both a dedicated machine and on a few varieties of
dual-boot systems.

Although OpenBSD will work on ancient hardware, that hardware needs to be in good shape. If your old Pentium box
kept crashing because it has bad RAM, it won't behave any better with OpenBSD than it does with its current OS.
Also, OpenBSD will be most useful with certain minimum hardware configurations. Here are some basic
recommendations, based on my own experiences. These are all i386-based; if you have some other hardware
platform, you can draw on these and make your own comparisons.

Proprietary Hardware

Some hardware vendors over the last ten years thought that it was a good idea to keep their hardware interfaces
secret, so that competitors wouldn't be able to copy their designs. This has generally proven to be a bad idea; a flood
of commodity parts has largely trampled this sort of hardware in recent years.

Developing device drivers for a piece of hardware without the interface specifications is quite difficult. Some hardware
can be supported well without full documentation, such as Intel's EtherExpress network cards, and is common enough
to make struggling through the lack of documentation worthwhile. Other hardware simply cannot be supported without
full and complete documentation, such as Sun's Ultra-SPARC Il processor.

If an OpenBSD developer has specifications for a piece of hardware and interest in that same hardware, he'll probably
implement support for it. If not, that hardware won't work. In most cases, unsupported proprietary hardware can be
replaced with better and less expensive open versions.

Processor

Your brand of processor is really irrelevant. OpenBSD doesn't care if it's running on an Intel, AMD, or IBM, or even an
old Cyrix or one of those nifty Transmeta processors. It simply probes the CPU on booting and uses whatever chip
features it recognizes. I've run very effective firewalls on 486 machines, easily handling a T1 of traffic. Still, | would
recommend that you get 100 MHz or faster CPU. Some of the demonstrations in this book take less than 15 minutes
on modern AMD1800+ and days on a 25 MHz 486.

Although OpenBSD will run on a multiple-processor system, it will only use one processor. If you have a choice
between an SMP system and one with a single processor, you may as well just use the single-CPU machine for
OpenBSD.

Memory (RAM)

Memory is good, and the more memory you have the happier you will be. In fact, adding RAM will do more than

http://www.OpenBSD.org/plat.html

anything else to accelerate your system. You should have at least 16MB of RAM at a bare minimum, and preferably at
least 32. Mind you, if you can get a couple of gigs of RAM in your system, OpenBSD will take full advantage of it.

Most weird crashes and unexplainable problems can be traced back to bad memory, so be certain that the memory
you are using is good. Memory is the most likely failure point in an old machine.

Hard Drives

Hard drives can be a big performance bottleneck. While IDE drives are cheaper than bricks, they can slow down your
system roughly as well as bricks can. A SCSI disk system can transfer data to and from each and every drive on the
SCSI bus at the full speed of the SCSI controller, while an IDE controller splits its available throughput between the
drives on the bus. Also, a SCSI controller can have up to 15 drives, while an IDE controller can have no more than 2.
In a throughput competition, I'll back 15 drives moving at full speed against 2 drives moving at an average of
half-speed any day.

Still, if all you have are IDE drives, you can do some things to alleviate these problems. Most important, put your hard
disks on separate controllers! Many systems now have a hard drive on one IDE controller and a CD-ROM on the
other. When you add a second hard drive, put it on the same controller as the CD-ROM drive. You probably won't be
using the CD-ROM nearly as often as you use the hard drive, after all, and this will reduce contention on each IDE
channel.

You'll be happiest with at least 1GB of disk on your system, though I'm assuming in this book that you have at least
10GB of disk. If you have a smaller disk, you'll want to be careful to clean up after yourself. For example, at one point |
recommend keeping old source code around for later use; if you don't have enough disk space, don't do that!

Getting OpenBSD

Before you proceed much further, let's talk about how you can get OpenBSD. OpenBSD is available on CD-ROM and
over the Internet.

CD-ROMs
You can purchase OpenBSD CD-ROMs dire he OpenBSD Project or from any number of online vendors. Just
go to the OpenBSD website and look for the '[Getting OpenBSO" link. The OpenBSD Project will be happy to sell you

CD-ROMs and assorted other OpenBSD merchandise, such as T-shirts and posters.

The main OpenBSD distribution point is in Canada, which may be a problem for those of you in other countries. You
can get OpenBSD from a variety of resellers, many of which are listed on the OpenBSD ordering page. Pick a vendor
in your country and you can save on customs duties — or, at least, you can pick a vendor on your same continent and
save on shipping charges!

CD-ROM Layout

Each of the CD-ROMs contain the software for a few hardware platforms. For example, in the OpenBSD 3.2 CD-ROM
set, disk 1 contains the i386 and Alpha software, disk 2 contains the VAX and MacPPC software, and disk 3 contains
the Sparc and Sparc64 software. You'll find some extra tidbits scattered throughout all the CD-ROMSs, however, so you
can't just get by with one disk. For example, the operating system source code is kept on disk 3 in this particular
release. Here's a look at the contents of the first CD-ROM.

3.2/
HARDWARE
PACKAGES
PORTS
README
TRANS.TBL
song32.mp3

The 3.2 directory contains the actual software of OpenBSD 3.2. Almost anything you want to install your software is in
this directory.

The HARDWARE file gives a brief overview of the hardware this release of OpenBSD supports. It makes an excellent
quick reference if you're wondering about hardware support for your particular machine or architecture.

The PACKAGES file gives instructions for installing precompiled software packages on OpenBSD. We cover this
information in more detail in Chapter 13.

@e PORTS file gives instruction for compiling your own software from the ports collection, also discussed in

The README file gives valuable pointers to information elsewhere on the CD-ROM. While I've made every effort to be
complete in this book, if you have any trouble at all always refer to the documentation for the release of OpenBSD
you're working with!

Finally, the song32.mp3 file contains a song written to celebrate this OpenBSD release. (It might not be technically
necessary, but it's certainly fun.)

Finding OpenBSD on the Net

You can install OpenBSD directly from the Internet, over HTTP or FTP. Every bit of OpenBSD is available this way,
from programs to source code to add-on packages. You can download the entirety of OpenBSD piecemeal or just

grab the entire software distribution from the FTP site. Installing via FTP or HTTP is one of the most popular ways to
get OpenBSD.

What you will not find on the Internet is a set of official OpenBSD I1SO images of any release. The OpenBSD Project
uses CD-ROM sales to fund OpenBSD development, and it would really prefer that if you want a CD-ROM, you
purchase one. The disk images of the official install CD-ROMs is copyrighted by Theo de Raadt. The OpenBSD team
adds some extras to the CD-ROM package, such as stickers and artwork, to make it more appealing.

With a bit of searching, you will find OpenBSD ISO images on various Internet sites. Some of these are duplicates of
the official ISO images, and are distributed in violation of Theo's copyright. This is not only illegal in most parts of the
world, it's also just plain rude. Other ISO images on the Net are releases built by third parties who are not OpenBSD
team members. While the release process is well documented, it still isn't a very simple operation. You're welcome to
grab one of these ISO images and try to use it, but you should be warned that they have not been through the usual
OpenBSD quality assurance process. Also, any joker can put up an ISO image, but you have no way to really know
that such an image doesn't contain a Trojan, backdoor, or other booby trap unless you thoroughly audit the image and
compare it against an official OpenBSD install. If you're going to go to that amount of trouble, you might as well shell
out a few dollars and purchase an official CD-ROM anyway, or just try a FTP install!

FTP Install Sites

The main OpenBSD FTP site is at the University of Alberta, in Calgary, Canada. You can expect that the students are
using all the bandwidth they can get for educational purposes, without sparing a thought for your OpenBSD needs.
This makes the main FTP site slower that you might like. Fortunately, OpenBSD is mirrored all over the world.

Go to the OpenBSD website and check the "FTP" link. This will bring up a whole list of mirror sites in a variety of
formats — FTP, HTTP, AFS, and so on. The list includes mirrors on every continent, including places such as Peru,
Thailand, and Lithuania. There's almost certainly one closer to you than the University of Alberta.

OpenBSD FTP/HTTP Layout

No matter how you get OpenBSD over the network, you'll find the distribution site laid out much like this.

laor

3.1/

3.2/

3.3/

% OpenSSH/
: README
7 distfiles/
ftplist

The numbered directories are for the various releases of OpenBSD. Above, we see that this FTP site contains
versions 3.0, 3.1, 3.2, and 3.3. You'll only have one release directory on a CD-ROM, of course — the directory for the
release you have.

The @ OpenSSH directory contains the OpenBSD team's implementation of SSH, which has been adopted by many
different software projects, both free and commercial (i.e., Solaris). OpenBSD includes OpenSSH, and so you really
don't have to worry about getting it separately.

The README file contains very basic information about obtaining OpenBSD and where to get more information on
the software.

The ™ distfile directory contains the source code of a great deal of add-on OpenBSD software. Not all mirror sites carry
this directory, as it's quite large.

Team LiB A FREWIOUS | [MEXT »

The OpenBSD Release

If you look within the release directory on either the FTP site or the CD-ROM, you'll see the following:

B A directory for each architecture OpenBSD supports. (On CD-ROM, this is scattered between
different disks.)

B A "packages" directory containing precompiled software for this release (see .)
B A "ports.tar.gz" file containing the compressed ports tree (see .)

B A compressed file containing the source code of the X Window System for this release.

B A "tools" directory containing installation tools.

Take a look through your CD-ROM or FTP site, and make sure you can find the directory for your hardware
architecture. I'll be using the i386 directory in the rest of this chapter; if you're on a different hardware platform,
substitute the correct architecture directory everywhere.

Choosing Your Install Method

While OpenBSD is available via CD-ROM and on the Net, you have an even wider range of choices for installation.
The fastest and easiest way to install is from an OpenBSD CD-ROM. This eliminates many network issues that can
complicate what should be a simple install.

If you don't have an OpenBSD CD-ROM, but you do have an Ethernet connection to the Internet, FTP installs are an
excellent choice. If you choose to install from a reasonably close mirror site, and you have sufficient bandwidth, FTP
installs are quite fast and reliable.

You can also install over HTTP. You're stuck with the inherent limitations of the HTTP protocol when installing via the
Web; HTTP does not include the error-correcting protocols found in FTP. You might use this if you're behind a
Web-only proxy server or if your closest mirror only speaks HTTP.

You can also install from a local FAT or EXT2 file system, such as found on many Microsoft or Linux machines. Your
system must be partitioned properly for this to work (see) This would allow you to "upgrade” part of your
system to OpenBSD, which is especially useful on multiple-boot systems. To do this, just download the parts you need
from the release directory on a FTP server. If you're not sure which parts you need, you can safely download the
entire release directory for your architecture — it'll take up a little more room, but will ensure you have everything you
might need.

Finally, you can download the files you need and make your own local OpenBSD install server.

Local Installation Servers

One reason ISOs are popular is that you can reuse them to install many machines at the cost of a single download. If
you want to install a few (or many!) OpenBSD machines without buying a CD-ROM, and yet without using up
bandwidth for each install, just download the entire release directory for your architecture. If you copy these files to a

local FTP or HTTP i server, you can install any number of machines from these files. All you need to know is how to
connect to this server, and any user names and password required to access it.

You only need to download the directories for the architectures you need ou know e

J xactly what you want to install,
you only need to download the installation sets you plan to install (see "Pistribution Sets

)

mSome architectures also support installs over NFS, but not all of them, so we won't cover it here.

Distribution Sets

Each architecture directory contains a variety of documents and files containing instructions and programs applicable
to that type of hardware. For example, in the 3.1/i386 directory you'll see several INSTALL documents and a tutorial on
the i386 boot architecture.

You'll also see several compressed files with names like comp31.tgz, misc31.tgz, and so on. These files are
distribution sets, or compressed chunks of OpenBSD. Each distribution set contains a subsection of OpenBSD. By
choosing the distribution sets you install, you can choose how much functionality your OpenBSD system will have. For
example, the documentation is kept in a separate distribution set. If you're short on space and have documentation
elsewhere, you might choose to save a little space and not install them on this machine. If this is a secure machine,
you probably don't want a compiler on it. And if this is your experimental "learning OpenBSD" machine, you probably
want to install everything.

Each distribution set has a name and a version number. For example, one distribution set of OpenBSD in release 3.1
is base32.tgz. In the next release, these same tools will be called base33.tgz.

Here are the distribution sets for OpenBSD. You'll find these on all architectures, unless noted in the architecture's
release notes. If this is your first OpenBSD install, take a moment to decide which distribution sets you need. If at all
possible, install them all while you're learning the OS. You can always trim them down in future installs.

bsd

This small distribution set contains the kernel. The kernel is important. The installer will complain if you don't have it
and issue all sorts of dire warnings. Worse, your new system will not boot without it.

baseXX.tgz

This contains OpenBSD's core programs, all the things that make OpenBSD UNIXish. All the programs in /bin, /sbin,
{usr/bin, and /usr/shin, the system libraries, and the miscellaneous programs you expect to find on a UNIX system are
in this distribution set. Without this distribution set, your OpenBSD system will not work at all.

etcXX.tgz

You might guess that this distribution set contains the /etc/ directory, but it also contains assorted other files and
directories that are required by the system, such as /var/log, as well as root's home directory. You must install this
distribution set if you want your OpenBSD system to actually run.

manXX.tgz

If you need the manual pages for the programs in the base and the etc set, install this distribution set. The manual
pages for other sets are installed with the distribution set.

compXX.tgz

This distribution contains C, C++, and Fortran compilers, tools, and the associated toolchain for each. It also includes
the manual pages and documentation for the compilers. You will want this set if you plan to develop or compile
software on this system. You need this set to use the ports collection. While this distribution set isn't large, you might
choose to not install in on a secure machine such as a firewall. (Intruders are generally delighted to find a properly
configured compiler on a firewall; such tools make a hacker's life much easier.)

gameXX.tgz

This distribution set contains a variety of simple games and documentation for them, based on games originally
distributed in the BSD 4.4-Lite software collection. Some of these, such as fortune(1), are considered UNIX classics,
and old farts won't be happy unless they're installed. Others, such as rogue(6), have more advanced versions
available as a port or a package. You don't really need this, unless you want to see what us old farts called "computer
games" back in the day.

miscXX.tgz

This contains dictionary files and typesettable documentation. If this system is intended as a desktop, you probably
want these. If it's a server, you probably don't need them.

xbaseXX.tgz
This contains the core of XFree86, such as programs, headers, libraries, and so on. If you want to use X, you need
this. Although you might not have a console or monitor on this system, remember that X will allow programs on this
server to display on a workstation. These functions will not work without this distribution set.

xbaseXX.tgz
This contains the fonts for XFree86. If you plan to use X on a local display, install this.

xservXX.tgz
This contains all of the XFree86 video card drivers. If you plan to use X on a local display, install this.

xsharexXX.tgz

XFree86's documentation and text files are included in this distribution set. If you're one of those few people who know
everything there is to know about XFree86, you can get by without this.

Partitioning

The most difficult part of installing OpenBSD is deciding how to partition your hard drive. When you don't know how
partitions work, choosing a partition layout can be troublesome. Unlike many installers that have fancy menus or
graphic tools, OpenBSD's installer expects you to know how to use low-level disk management tools.

Partitions are logical subsections of a hard drive. Different partitions can be handled in different ways and can even
have different file systems or different operating systems on them. We're going to discuss partitioning for both
single-OS and multiple-OS installs.

Note Get a piece of paper to make some notes about your partitioning. Start by writing down the size of your hard disk.
This is the amount of space you have to divide between your partitions. Write down the size of every partition you
want and the order in which you want those partitions to lie. This will make installing OpenBSD much easier!

Why Partition?

Partitioning might seem like a pain; why should you bother? Many commercial operating systems allow you to simply
have one large partition over your entire hard disk, giving you a single 80-gig partition. What are the advantages of
partitioning?

Different operating systems have different partition types and different requirements for disk layout. A Microsoft
operating system simply cannot recognize an OpenBSD disk format and will insist upon formatting it before using it.
Although OpenBSD can mount partitions designed for most other popular operating systems, do not put the main
OpenBSD system programs on a foreign partition. Let each OS run on its own section of disk. If you want to have

multiple operating systems on your machine, you must partition.

But when you're running a dedicated OpenBSD machine, why should you bother to split up your hard drive? On a
physical level, different parts of the disk move at different speeds. By putting frequently accessed data on the fastest
parts of the disk, you can improve system performance. The only way to arrange this is by using partitions. Also, the
operating system handles each partition separately. This means that you can configure each partition differently or set
it to use different rules. The root partition is the only partition that should have device nodes, for example, so you can
tell other partitions to not recognize device nodes. Partitions that contain user data should not have setuid programs,
and you might not even want to allow them to have programs at all. Separate partitions enforce that easily. You want
the main system configuration directory to be unchangeable, so an intruder or a clumsy user cannot alter it? That's
trivial with separate partitions. If one partition is damaged, chances are that damage will not extend to other partitions.
You can boot the system using the intact partitions and attempt to recover the data on the damaged partition. Finally,
correct use of partitioning can enhance security. Not only will hackers have a more difficult time if they do break into
your machine, but your own users will find it more difficult to accidentally damage the system. Before partitioning a
hard drive, decide what the system will be used for. Is this a mail server? A Web server? A desktop machine? We'll
discuss the requirements for each partition for different types of servers.

Standalone OpenBSD Partitioning

If you're installing a dedicated OpenBSD machine, you don't have to worry about sharing the hard drive with another
operating system. This simplifies the partitioning process — you only have to worry about OpenBSD's requirements.

The main partitions you'll need to consider are / (root), swap space, /tmp, /var, /usr, and /home. If you forget to create
any of these partitions, the installer will put the files that should go in the partitions into your root partition. This will
quickly fill up your root partition!

Root

The root partition holds the main system configuration files and the most essential UNIX utilities needed to get a
computer into single-user mode. Your system should have fast access to its root file system, so put it first on the disk.
Because it holds only these basic utilities and configuration files it doesn't need to be large; on a modern hard drive, |
find a 500MB root partition comfortably roomy. | would recommend no smaller than 50MB for a root partition. (You
could scrape by with a few megabytes smaller; the exact minimum size varies with the version of OpenBSD.)

If you're familiar with other some other UNIX-like operating systems, such as some distributions of Linux, you might be
used to simply using a single large root partition and putting everything on it. This is a bad idea for a variety of
reasons. With a partition safely constraining your log files, a process or user gone amok cannot fill your entire drive;
while it could fill a partition, you would still be able to create and edit files on other partitions, giving you the flexibility
you need to address the actual problem. Also, with a single partition, you cannot control where files are put on the
disk. This hurts performance. Damage to the disk is probably spread across many different files in unrelated parts of
the system, which means that your chances of recovering from a damaged disk or file system problems drop
dramatically.

Root Limitations

Over the years, i386 systems have been expanded time and time again to surpass their own limits. They're based
upon an architecture that could originally handle a maximum of 640KB of RAM, after all! The OpenBSD kernel —
indeed, all modern operating system kernels — work around these limits in a manner mostly transparent to the user,
but when the system is first booting you're trapped with the BIOS limitations.

Many old i386 systems have a 504MB limit on hard drives, on which the BIOS cannot get at anything beyond the first
504MB of data on a disk. If your BIOS cannot find your operating system kernel in that first 504MB, it cannot boot the
system. Check your hardware manual; if it makes any references to a 504MB limit, this affects you. You absolutely
must place your entire root partition within the first 504MB of disk.

Additionally, for some time i386 systems had a similar (not identical) 8GB limit. OpenBSD still obeys that 8GB limit.
Even if your system is not susceptible to the 504MB limit, your entire root partition must be completely contained within
the first 8GB of disk.

Of course, if you follow my advice and make your root partition 500MB you will never have to worry about either of
these restrictions and the potential damage that they can inflict.

If you break these rules, your system will probably appear to work. The second you upgrade your system, or move the
file /bsd, the computer will quite probably refuse to boot. Save yourself much pain; make the root partition 500MB, and
the first partition on the disk, and this problem will never affect you.

Swap Space

The next partition on your drive should be swap space, the disk space used by virtual memory. When your computer
fills its physical memory, it will start to move information that has been sitting idle in memory into swap. If things go
well, your system will almost never need swap space, but if you do need it, it needs to be fast.

So, how much swap space do you need? This is a matter of long debates between sysadmins. The short answer is, "It
depends on the system." General wisdom says that you should have at least twice as much swap as you have
physical memory. This isn't a bad rule, so long as you understand that it's very general. More won't hurt. Less might, if
your system runs out of RAM.

If you find that you need more swap space, you should probably buy more memory instead. If that's not an option, you
can use a regular file as a swap file. Still, if you have a reasonable amount of disk space, simply assigning an amount
of swap equal to twice the amount of RAM you have is sensible.

You should also consider possible future upgrades. If a computer has 500MB of RAM today, but you plan to upgrade it
to 3GB of RAM in a couple of months, perhaps assigning 6GB of disk space to swap is a good idea. After all, if you
can afford three gigs of RAM and you have the hardware to manage it, certainly that much disk is not an issue!

Swap Splitting

If you have multiple disks, you can vastly improve the efficiency of your swap space by splitting it among multiple
drives. Put the first swap partition on the second-outermost ring of the drive with your root partition, and other swap
space on the outermost edge of their drives. This splits reads and writes among multiple disk controllers.

For swap splitting to work best, however, the drives must be SCSI. If you have IDE drives, the drives need to be on
different IDE controllers. Remember, each IDE controller splits its total data throughput among all the connected hard
drives. If you have two hard drives on the same IDE controller and you're accessing both drives simultaneously, each
disk will average half as fast as it would if you were running it alone. The major bottleneck in using swap space is data
throughput speed, and you won't gain speed by creating contention on your IDE bus.

Itmp

The /tmp directory is system-wide temporary space. If you do not create a separate /tmp partition, it will be included on
your root partition. This means that your system-wide temporary space will be subject to the same conditions as the
rest of your root drive. This probably isn't what you want, especially if you plan to mount your root partition read-only!

Requirements for a /tmp directory are generally a matter of opinion — after all, you can always just use a chunk of
space in your home directory as temporary space. On a modern hard drive, | like to have at least 500MB in a /tmp
directory. Automated software installers frequently want to extract files in /tmp, and having to work around these
installers when /tmp fills up is possible but tedious.

Ivar

The /var partition contains frequently changing logs, mail spools, temporary run files, the default website, and so on. If
your server is a Web server, your website logs will go to this partition, and you may need to make it 1GB or more. On a
small "generic Internet mail/Web server," I'll frequently give /var 20 percent of my remaining disk space. If the server
handles only email or databases, I'll kick this up to 70 percent or more, or just assign a space to the remaining
partitions and throw everything else | have on /var. If you're really cramped for space, you might assign as little as
30MB to /var. (Again, actual minimum requirements vary depending on your version of OpenBSD.)

lusr

The /usr partition holds the operating system programs, system source code, compilers and libraries, and other little
details like that. Much of this changes only when you upgrade your system.

On a modern hard drive, | recommend using about 6GB on your /usr partition. This should be more than sufficient for
all the contents of /usr and just about any add-on packages you might desire, and should also leave room for any
OpenBSD source you might want to install. Without the X Window System, you could make /usr as small as 200MB. If
you need X, you should assign /usr at least 350MB.

/home

The /home partition is where users keep their files. If you have more disk space than is good for you, assign it here.
Your home directory will quickly fill up with all sorts of stuff that you'll be tripping across years from now.

The /home partition can easily be the last on your disk; it doesn't need to be fast. It also doesn't need to be large; the
only files on the drive will be the ones that you need.

Note If you've been adding this up, you should notice that it's entirely possible to have a complete OpenBSD system
(without the X Window System) in less than 300MB. Just for kicks, compare that to the amount of space a
minimal install of Windows XP requires or the size of an minimal Solaris 9 box installation. Your complete install,
with all your user programs, may be far larger than 300MB — but all that space is used up because of things you
specifically want, not OS overhead.

Multiple Hard Drives

If you have a second hard drive of comparable quality to your main drive, you can m se of it with proper
planning. First, use the outer edge of the drive for swap, as discussed earlier in the '{Swa Splitting" section. Use the

rest of the drive to segregate your data from your operating system. Do this by assigning the remainder of the drive to
the partition that stores files for whatever your server does the most of. If it's a Web server, make the second drive
mww or /home. If it's a mail server, use it for /var or /var/mail. If it's a network logging host, assign the second drive to
Ivar/log.

In general, segregating your operating system from the data you're serving increases system efficiency. Like all rules
of thumb, this is debatable. But no sysadmin will tell you that this is an actively bad idea, while one can argue
endlessly about what the "absolute best" idea is.

If you have no idea what your system will be for, make your second drive /usr and split your first hard drive amongst
Ivar, /tmp, /, and swap space.

If your second drive is much slower than your main system drive, don't bother using it. Not only will its performance be
poor, chances are that it is much older than your main drive and far more likely to fail.

If you need to install more than one operating system on your computer, an extra hard drive is an excellent and easy
way to do that.

Multiple OS Partitioning

Many people need to run multiple operating systems on one computer, and OpenBSD allows you to do that. By far,
the easiest way to do this is to install a hard drive in your computer for each operating system. This allows you to use
each OS's native disk tools without risking tramping on your other operating system. In this day of dirt-cheap
hundred-gig hard drives, however, this is an added complication for many people who simply want to divide up their
hard disk appropriately.

When you divide up a single hard disk between multiple operating systems, you fall into another level of partitioning,
known as MBR (Master Boot Record) partitions. The boundaries of these partitions are stored in the Master Boot
Record on a disk, and are managed by tools such as UNIX fdisk(8), DOS fdisk, or Microsoft's Disk Administrator. Any
operating system can see MBR partitions; they may not recognize that one of these patrtitions is designated for
OpenBSD, but they realize that this is a discrete section of disk. Within these large partitions, you create smaller
OpenBSD-specific partitions for /home, /usr, and so on.

The fdisk tools allow you to, say, take your 80GB disk and designate the first 20GB for OpenBSD, the second 20GB
for Microsoft Windows XP, the third 20GB for FreeBSD, and the last chunk for Linux, should you wish. You then use
each OS's native tools to manage those chunks of disk space. You would then use a separate "boot manager" to
choose between operating systems at boot time.

When you decide where to put disk space for any one OS, you need to allow for OpenBSD's boot limitations. Just
because you have multiple operating systems on a hard drive doesn't mean that you can ignore the 504MB limit or the
8GB limit. If you have enough disk space to install more than one operating system, chances are your system does
not suffer from the 504MB limit. Still, the OpenBSD root partition must be contained entirely within the first 8GB of disk,
not the first 8GB of disk space assigned to OpenBSD. In most cases, this means that OpenBSD must be the first
operating system on your disk. Also, OpenBSD on a hard disk must be a single contiguous section; you cannot
dedicate the first 20GB of your hard drive to OpenBSD, have a 20GB Microsoft partition, and have a 40GB OpenBSD
partition to round out your disk.

Put your OpenBSD partition first on the disk, and you won't have any problems. We discuss multiboot partitioning and
installation at length in Chapter 4.

Team LiB m HEXT F

Disk Sectors

You need to be aware of disk sectors to use the installation tool. We'll discuss sectors in more detail in , but
for now you just need to be aware that a sector is a tiny section of a disk. Each sector has a number. Sector O is at the
beginning of the disk, and the sectors are numbered sequentially until the end of the disk.

Partitions can be defined by the sectors that they occupy. On most disks, the Master Boot Record takes up the first 62
sectors. The next partition would start at sector 63 and go on for a size you indicate.

[« rrsviovs [exi)

Team LiB m HEXT F

Decisions Complete!

You now know where to get OpenBSD and which method you will use to install it. You should know which distribution
sets you want to install on your first machine and how you want to divide your hard disk. These are the most difficult
issues you will face in installing OpenBSD. Hopefully, you have a piece of paper with your decisions noted; if so, the

only real thinking you will ce during the installation is which key to press to get your desired result. We're
going to cover that in the pext chapte

s

Chapter 3: Dedicated Installation

Overview

Bootable floppy,
CD-ROM or FTP,
hard drive comes to life

Armed with your OpenBSD software and a computer with supported hardware, you are now ready to face an actual
installation. We will cover a full installation on the i386 architecture via CD-ROM and FTP/HTTP. (We'll cover installing
from a hard disk in as you won't be using that method unless you're using multiple operating systems.) You
may or may not need to use a floppy disk to boot your system, so be sure you have one handy just in case.

If OpenBSD is one of several operating systems you plan to install on this machine, you still need to read this chapter.
While the .covers the issues involved with sharing a hard drive between OpenBSD and several other
operating systems, it does not discuss actually installing OpenBSD! You'll want to understand OpenBSD's standalone
installation process before beginning to install on a multiboot system.

Before you install, be absolutely certain that any data you have on this machine is backed up elsewhere! When you
install OpenBSD and use the entire hard drive, as we're doing in this chapter, you will reformat the hard disk; you'll
lose any data on the hard drive.

The first thing you need to do is check your hardware and prepare your BIOS.

Hardware Setup

Before you even begin, be sure OpenBSD supports your hardware! You can find the supported hardware list for the
most recent version of OpenBSD on i386 at http://www.OpenBSD.org/i386.htm|, or on the FTP site or CD-ROM in the
release directory as i386/INSTALL.i386. These documents include lists of hardware that is supported at this time.

The devices on the hardware compatibility lists are frequently identified by chipset, not by the vendor. After all, when
you buy a computer the network card is frequently just listed as a "10/100 Ethernet," not an "Intel i8255x-based PCI
Ethernet card.”" To make matters worse, many vendors use identical hardware under a separate brand name or use
different hardware under the same brand name. For example, Linksys is famous for having four very different cards all
called the EtherLink. You might have to dig in the hardware manual for this information, or ask your vendor. If nothing
else, you can just try to install and see if everything works. The boot-time messages will give you a great deal of
information on what sort of hardware you have.

BIOS Setup

Before you try to install, confirm that your system's BIOS is properly configured. Because every BIOS is slightly
different, | won't go over exact instructions on how to configure. Most computer systems tell you how to access the
system BIOS when you first boot the computer and include a simple menu-driven system to make changes. Consult
your motherboard manual if you have any problems.

First, set "Plug and Play OS" to NO. This tells your BIOS to do some basic hardware setup, rather than relying upon
the OS to do everything. Modern versions of Microsoft Windows expect to handle hardware setup. OpenBSD takes
advantage of the BIOS' ability to configure the hardware itself. Many PCI devices will work poorly if you do not set this
option!

Also configure your boot device. If you are installing from CD-ROM, set your boot device to CD-ROM, then floppy disk,
then hard drive. (If your CD-ROM boot gives you trouble, you can use a floppy disk as a fallback.) If you are installing
from some other media, your first boot device should be the floppy disk and the hard disk second.

http://www.OpenBSD.org/i386.html

Making a Boot Floppy

If you do not have an OpenBSD CD-ROM, or if your hardware does not boot from CD-ROM, you need to start your
install with a boot floppy. The OpenBSD boot floppy actually contains a very small subset of OpenBSD, including just
the tools needed to recognize your hardware, format your disks, and download and extract the appropriate distribution
sets in the correct locations.

You'll find a few boot floppy images in the architecture release directory. The purpose of these images may change
over time, so confirm in the release install document if you have any trouble. Each name includes the release number
— for example, the images for OpenBSD 3.4 will be named floppy34.fs, floppy34B.fs, and floppy34C.fs. Download the
disk image that most closely describes your system; you only need one.

floppyXX.fs This image is for the most common i386 hardware. This will boot your average
workstation or low-end server.

floppyXXB.fs This image is for high-end servers. It includes gigabit Ethernet cards, SCSI, and RAID
drivers.

floppyXXC.fs This image is for laptops and other PCMCIA/Cardbus systems.

Once you have the appropriate image file, you'll need to copy it onto a floppy disk. You cannot use basic file
system-level copying, such as Windows drag and drop. These are image files, meaning that they include the file
system and not just the files on the file system.

Creating Floppies on UNIX

If you're already running a UNIX-like system, dd(1) is the only command you need. You also need to know your floppy
drive's device name, which is probably /dev/fd0, /dev/floppy, or /dev/rfd0. Once you have that, you just tell dd(1) to
copy the image to the disk in that device. If the device name was /dev/fdOc, you'd enter

dd if=floppy33B.fs of=/dev/fd0Oc
to write the floppy33B.fs image to floppy disk.

If dd(1) runs for a while and then gives an error, you may have a bad floppy disk. Floppies tend to go bad very easily,
and you should try another one. If dd gives you an error immediately or exits silently without writing to the floppy disk,
you probably need to specify a different floppy device driver.

Creating Floppies on Windows 9x

If you're running a Microsoft Windows 9x-based operating system, such as Windows Me, Windows 98, or Windows 95,
you'll need a program to copy the disk images. Microsoft doesn't provide one, but OpenBSD does, which you'll find in
the "tools" directory of the release directory. The program fdimage.exe is specifically designed for these older
Microsoft operating systems and does not work on Windows NT-based operating systems.

Fdimage.exe is a free program that can copy disk images and is quite easy to use. For example, to copy the floppy
image floppy33.fs to the floppy in your a: drive, enter the following at a DOS prompt:

C:>fdimage floppy33.fs a:
The floppy will churn for a while, and finally spit out an OpenBSD boot floppy.

Windows 9x has restrictions on filenames; each filename is restricted to eight characters, with a three-character
extension after a period. While the GUI desk-top displays long filenames, these are actually aliases for the names
available in DOS mode. The names of floppyXXB.fs and floppyXXC.fs are nine characters long, with a two-character
extension. This means that Windows will rename these files to something its innards can accept, retaining these

names as aliases visible in the GUI. At a DOS prompt, however, you'll need to find out what DOS calls your floppy
image before you can boot it. The file floppy33B.fs may well be called something like floppy~1.fs.

Again, if you have trouble, your floppy is probably bad.

Creating Boot Floppies on Modern Microsoft Systems

If your computer is running Windows NT or one of its descendants (such as Windows 2000, Windows XP, Windows
2003, and so on), fdimage.exe will not work. OpenBSD includes a program for this, ntrw.exe, in the tools directory of
the release directory. Like fdimage.exe, ntrw.exe is designed to copy a disk image to a disk. Windows NT-based
systems do not rewrite filenames, so you should be able to open a command prompt and just type:

C:> ntrw floppy33C.fs a:

If it doesn't work, you probably have a bad floppy disk.

Booting

Put your boot media in the drive and power up your system. You should see the usual BIOS messages go flashing

past and then the OpenBSD boot prompt.

boot>

If you should need to interrupt the boot process
discuss various reasons to interrupt the boot in
seconds, the boot messages will follow.

booting fdOa:/bsd: +173028=0x43d3e4 start=0xd01
entry point at 0x100020

Copyright (c) 1982, 1986, 1989, 1991, 1993

Eéha:ter 6

00020

ason, you can enter the appropriate commands here. We'll
, as well as elsewhere in the book. If you wait for five

Copyright (c) 1995-2002 OpenBSD. All rights reserved. http://www.OpenBSD.org
The Regents of the University of California. All rights reserved.

At this point, device driver messages will start to flow past, as OpenBSD probes your hardware and assigns drivers to

all the system components that it recognizes.

The Install Program

The OpenBSD installer is just a shell script that calls programs to download files, format disks, and in general prepare
your system for use. It might not be pretty, but it is extremely fast and in educated hands it is extremely powerful.

Note The installer changes very slightly between releases of OpenBSD. Some of the words may change, and some of
the questions may be rearranged. The following was prepared with a prerelease version of OpenBSD 3.3. Do not
blindly follow these directions; instead, use them as examples!

Once the boot messages pass, you'll see the following text:

erase "?, werase W, kill *U, intr ~C, status T
(Dnstall, (U)pgrade or (S)hell? i

We'll examine the "Upgrade" option in . The "Shell" command will drop you into a command line, where you
could work with the few commands available on the boot disk. We want the "Install" option now, however. Hit "i* and
then ENTER. The installer will display a welcome message and a few basic instructions.

Welcome to the OpenBSD/i386 3.2 install program.

This program will help you install OpenBSD in a simple and rational way. At

any prompt except password prompts you can run a shell command by typing
'Ifoo’, or escape to a shell by typing 'I'. Default answers are shown in [J's

and are selected by pressing RETURN. At any time you can exit this program by
pressing Control-C and then RETURN, but quitting during an install can leave
your system in an inconsistent state.

Specify terminal type: [vt220]

If you're using a standard i386 keyboard and monitor, just press ENTER as the default. If you have an unusual
terminal hooked up to your i386 system, you're probably one of those old hands and know exactly what terminal type
you have. If you're a new user who hooked up some ancient unidentified dust-covered piece-of-crud terminal you
found in a disused laboratory at the back of the abandoned fertilizer plant because you thought it would be nifty, stop
now and get a standard monitor and keyboard. While that antediluvian console will probably work, your first install is
not the time to try it!

Do you wish to select a keyboard encoding table? [n]

A keyboard-encoding table allows you to remap your keyboard from the standard U.S. QWERTY style to that used in
some other language. Entering "y" will give you an option to choose one. Most readers of this book will be perfectly
comfortable with the standard QWERTY keyboard, so just hit ENTER to take the default.

IS YOUR DATA BACKED UP? As with anything that modifies disk contents, this
program can cause SIGNIFICANT data loss.

It is often helpful to have the installation notes handy. For complex disk
configurations, relevant disk hardware manuals and a calculator are useful.

Proceed with install? [n] y

This is your last chance to save any data that might be on your hard drive. If you're not sure about the quality of your
backup, just hit ENTER to take the default and abort the installation. If you're certain you do not need any data on your
hard drive, enter "y" to continue.

Disk Setup

The first thing the installer actually does is allow you to partition your disks.

You will now initialize the disk(s) that OpenBSD will use. To enable all
available security features you should configure the disk(s) to allow the
creation of separate filesystems for /, /tmp, /var, /usr, and /home.

Available disks are: sd0 sd1 Wdo.ﬂ
Which one is the root disk? (or done) [done] wdO

Note that the installer has identified the disks attached to this system. OpenBSD found three disks, Which it calls sdO,
sd1, and wdO0. Any drive beginning with "sd" is a SCSI disk, while any drive beginning with "wd" is an IDE drive. Count
the drives that the installer found; is that the number of drives you have in this machine? If not, then OpenBSD did not
find all of your hard drives. You probably have an unsupported hard drive controller.

In this example, we're going to use the IDE drive for the operating system and the SCSI drives for database files and
home directories. Type "wd0" and press ENTER.

Do you want to use *all* of wd0 for OpenBSD? [no] yes

If you want to share a single hard drive between multiple operating systems, take a look at the . Right
now, enter "yes" here.

Creating OpenBSD Partitions

The install program will now guide you through creating partitions on your disk. This is perhaps the most complicated
part of installing OpenBSD. Get out your scratch sheet where you wrote down how you wanted to divide your disk. You
will need it here.

You will now create an OpenBSD disklabel inside the OpenBSD MBR
partition. The disklabel defines how OpenBSD splits up the MBR partition
into OpenBSD partitions in which filesystems and swap space are created.

The offsets used in the disklabel are ABSOLUTE, i.e. relative to the
start of the disk, NOT the start of the OpenBSD MBR partition.

A disklabel defines OpenBSD partitions within an MBR patrtition. The entire disk is designated as a single MBR
partition, as we dedicated the disk to OpenBSD. A small chunk of the disk will be allocated to the Master Boot Record,
however, and the installer tells you how many sectors it occupies.

using MBR partition 3: type A6 off 63 (0x3f) size 39179889 (0x255d671)

Treating sectors 63-39179952 ﬂ as the OpenBSD portion of the disk.
You can use the 'b' command to change this.

Initial label editor (enter '?' for help at any prompt)
>

One important fact here is that the installer tells you how many fl sectors are available on the MBR partition. Because
we have dedicated this disk to OpenBSD, we know that there are 39179953 sectors on this disk — remember,
computers start numbering at zero! We can use all but the first 62 sectors.

You're now at a command prompt within OpenBSD's disklabel(8) tool. This tool has its own command set, which you
can view by entering a question mark at the disklabel prompt. We're going to examine some of the basic commands
here.

Understanding a Disklabel

The "p" command prints the disklabel as it currently appears. A disklabel contains two basic sets of information: some
physical information about the disk and information about the partitioning of the MBR partition. Let's look at the
physical information first. While it doesn't usually have a direct impact upon the installation process, you may need to
know how to read it if something goes wrong.

>p

device: /dev/rdecE
type: ESDIE

disk: ESDI/IDE diskE
label: SAMSUNG SV2011H
bytes/sector: 512
sectors/track: 63 &
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 16383

total sectors: 39179952
free sectors: 39179889 &
rpm: 3600 E

Your first entry is the disk's §l device name, shown as /dev/rwdOc in this example. The middle of the name, wdo0, is the
disk name. The leading "r* means that we're addressing the disk in raw mode, while the tailing "c" means that we're
examining the "c" partition. "c" is the OpenBSD partition name used for the whole MBR disk.

Adding Partitions

This IDE drive is 20GB, and | want to divide it as follows.

B 500MB root

B 500MB swap

B 10GB /usr

B 9GB /var
| don't have a /home partition on this drive; | plan to put it on one of the SCSI drives.
To add a partition, enter "a". This will drop you into an interactive dialog.

The important thing to remember here is that partitions are created on the disk in the order that you create them in the
disklabel. You want your root partition to be first on the disk, so you need to create it first. (Remember, if you put your
root partition further in the disk you might break the 8GB limit!)

>a
partition: [a]

Traditionally, the first partition on a disk is the "a" partition. Hit ENTER to take the default.
offset: [63]

The offset is the number of sectors from the beginning of the disk this partition begins. Remember, sectors 0—62 are
used by the Master Boot Record. The installer is smart enough to know this, and presents a default that picks up
where the last partition left off. Hit ENTER to accept it.

size: [39179889] 500M

By default, the installer presents you with the number of sectors remaining on the disk as your partition size. This is
useful for the very last partition on the disk, but it's not what you want to use here.

The default unit here is in sectors. Rather than having to convert the partition size you want into sectors, however, the
installer recognizes the following abbreviations for sizes:

B b for bytes

B ¢ for cylinders

B for kilobytes

B m for megabytes
B g for gigabytes

Here, we tell the system to create a 500MB partition. Partitions can only be created along cylinder boundaries, so the
installer will round it off to the nearest cylinder unless you happen to enter a value that exactly matches a cylinder.

FS type: [4.2BSD]

You can either choose a 4.2BSD file system, or "swap." The installer knows that the "a" traditionally needs a file
system, so it defaults.

mount point: [none] /

>

We want this first partition to be our root partition, so enter a slash. The partition is created, and you are dropped back
to the disklabel prompt. Swap space is next on the list.

>alfl

partition: [b] E

Writing a Label to the Disk

Write new label?: [y]

You'll get one last chance to change your mind. Once you write a new disklabel, recovering any data on the disk will
become extremely difficult! You should have backed up any vital data on this disk before starting the install, but this is
a good time to confirm you didn't, say, microwave the backup tape. Hit ENTER to continue.

The root filesystem will be mounted on wdOa.

wdOb will be used for swap space.
Mount point for wdOd (size=10485720k), none or done? [/usr]

You have a final chance to set the mount point for your partitions. The mount point you chose is in the default, but if
you want to rearrange things, you can do it here. Hit ENTER to go on. The installer will cycle through all of the
partitions on the disk, asking you to confirm their mount points.

Mount point for wdOe (size=8080128k), none or done? [/var]
Mount point for wd0d (size=10485720k), none or done? [/usr] done

When you have confirmed all of your mount points, the installer starts asking you where you want to mount your disks
again at the beginning of the list! This might seem annoying, but think about it. If you realized on your last partition that
you had made an error on the mount point, you might need to rearrange earlier partitions. Enter "done" to end the
loop, and proceed to the next disk.

Subsequent Disks

If you have more than one hard drive, the installer dumps you back at the beginning of the hard drive dialog.

Available disks are: sd0 sd1.
Which one do you wish to initialize? (or done) [done] sd0

If your other hard drives will not be used for OpenBSD, you can enter "done" here to proceed. Otherwise, choose the
hard disk you want to work on next. The disklabel process works exactly the same, with some slight modifications in
the partitioning process. This hard drive is going to be one large partition, mounted on /database. While "a" is
traditionally the root partition, you can only have one root partition per operating system! It's perfectly safe to assign
the "a" partition to /database, and on the third drive you can assign it to /home without a problem.

Other Disklabel Operations

The disklabel editor is extraordinarily powerful and will let you do many things. Most of these functions should never be
necessary, but are available if you need them. disklabel(8) also has many functions that are not intended for use when
installing a system, but are useful when working with disks on a running system.

Expert Mode

Expert mode gives the advanced UNIX user access to some of the less-frequently tweaked options in the disklabel
setup, such as the ability to change the block and fragment size. Most people do not need this, and would actually find
the options simply clutter. (It's not as if disklabel isn't complicated enough already!)

Access expert mode by entering a capital X at a disklabel prompt. You won't see anything immediately, but it will make
other commands produce more output and provide more options.

Changing Basic Drive Parameters

You remember all that stuff at the top of the disklabel that recorded basic physical characteristics of the drive? You can
change all that. This is almost never necessary — in fact, if you think of doing it as a solution to a problem, you're
probably on the completely wrong track.

If you enter "e", the disklabel program will walk you through each entry on the upper part of the disklabel. The existing
values will be presented as defaults, allowing you to quickly walk through the variables until you reach the one you
want to change.

>e

Changing device parameters for /dev/rwdOc:
disk type: [ESDI]

label name: [SAMSUNG SV2011H]

Edit this information at your own risk! You can render your disk unbootable or your partitions unusable by changing this
information. Certain parts of the disklabel describe physical characteristics of the hard drive, and by changing them
you are lying to your computer. Computers do not like being lied to and will go utterly ballistic if they catch you lying
about basic hardware.

Deleting Existing Partitions

If you find that you have made a mistake on a partition, you might just want to blow it away. Delete partitions with the
"d" command.

>d

partition to delete: [] e
>

That's it! There are no warnings, no prompts, no "are you sure?" dialog boxes, so be sure before you enter the
partition letter!

Modifying Existing Partitions

You can modify an existing partition with the "m" command. Disklabel will walk you through each of the values you
entered when creating the disk, offering your original values as defaults and giving you an opportunity to change them.
As usual, just hit ENTER to take the defaults.

In most cases, it's easier to just delete and recreate the partitions. In this example, though, we correct a very obvious

mistake with the mount point of the partition.

>m

partition to modify: [] a
FS type: [4.2BSD]
offset: [63]

size: [1024065]
mount point: [/usr] /

>

Deleting Existing Disklabels

You might screw up the disklabel badly enough that you just want to erase it all and start over. Or, you might be
recycling disks from another operating system, and want to clear away any old disklabels or partitioning information.
That's very easy to do with the "z" command.

>Z
>

Again, there is no chance to change your mind. Disklabel assumes that if you entered "z" you meant "z", and that's
that. If you want an "Are You Sure?" prompt, get another operating system.

Online Help

You can enter a single question mark (?) to get a brief listing of disklabel commands.

If you want more detailed help, the "M" command will display the man page for disklabel(8).

Final Disk Configuration

Once you have labeled all of your disks, you'll see the following message:

Done - no available disks found.
You have configured the following partitions and mount points:

wdOa /

wd0d /usr
wdOe /var
sdOa /database
sd1d /home

Take one last look at your disks, and confirm that this is where you want your partitions. While the partitioning process
made recovery of data difficult, the next step will make recovery darn near impossible.

The next step creates a filesystem on each partition, ERASING existing data.
Are you really sure that you're ready to proceed? [n] y

The default is to not proceed. Hit "y" here to go on, and you'll see messages much like this for each of your partitions.

/devirwdOa: 1024064 sectors in 1016 cylinders of 16 tracks, 63 sectors
500.0MB in 64 cyl groups (16 c/g, 7.88MB/g, 1920 i/g)

Once all of your partitions have been formatted, you'll see the mount point and mount option information for each
partition.

/dev/wdOa on /mnt type ffs (rw, asynchronous, local, ctime=Sun Oct 13 12:59:20

2002)

/dev/sdOa on /mnt/database type ffs (rw, asynchronous, local, nodev, nosuid,
ctime=Sun Oct 13 12:59:20 2002)

penBSD 3.2 and later mounts everything but / nodev and nosuid. Thanks to the systrace mechanism
(Ehapter 10), setuid programs are not necessary on OpenBSD.

Network Setup

Now that you have disks to write information on, the installer will prompt you for networking information.

Enter system hostname (short form, e.g. 'foo'): openbsdtest

If you've been around networks for any length of time, you've probably seen host names that include a domain name,
such as "laptop.BlackHelicopters.org." This is not the style of host name the installer wants to see here! Just enter the
machine's name within the domain: For example, this system's full name is "openbsdtest.BlackHelicopters.org" so |
enter "openbsdtest.”

Even if your system is not on a network, it needs to have a local host name.

Configure the network? [y]

If you are installing from CD-ROM and don't want to bother with the network right now, you can hit "n." | recommend
that you configure the network while you're in the install program; however, it's much simpler for a new user to do it
here than to go back and configure it later.

If any interface will be configured by DHCP, you should not enter
information that will be supplied via DHCP, e.g. the DNS domain name.

Enter DNS domain name (e.g. 'bar.com’): [my.domain] BlackHelicopters.org

If your network has a DHCP server, just hit ENTER here.

Available interfaces are: fxp0 fxp1l.
Which one do you wish to initialize? (or done) [fxp0]

If you only have one network card, just hit ENTER. Multiple network cards require a bit more thought.

If Your System Has Multiple Network Cards

While your driver names and device numbers will vary, if you have two identical network cards you may have difficulty
determining which physical card has which interface name. My test computer has two identical network cards. These
particular cards use the "fxp" driver and are numbered 0 and 1. There is no way to look at the hardware and identify
which is which. If you are installing over the network, you must configure the card that is attached into the network!
Trying to install any software over the network is extraordinarily frustrating when you aren't plugged in. It is very
difficult to tell which card it is from the information presented within the installer or even on the command line.

This is one place where a shell escape comes in very handy. You can escape to a command shell with CONTROL -C,
or run a single shell command by putting an exclamation point in front of it. The "ifconfig -a mmand will tell you
which network card is hooked up to the network. (We discuss ifconfig at some length in and , but
for right now just run the command as a single shell command. Network interfaces that are not plugged in or that have
failed for some other reason will have a "media" line that says "no carrier," while cards that have plugged in and are
talking to the network will have a "media" line that says how they are connected.

lifconfig -a
100: flags=8008<LOOPBACK,MULTICAST> mtu 33224
fxp0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
address: 00:02:b3:63:e4:1d
media: Ethernet autoselect (100baseTX full-duplex)
status: active ﬂ
fxpl: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500
address: 00:02:b3:63:e3:ec
media: Ethernet autoselect (none)
status: no carrierE

The il fxp0 card is connected to the network at 100 megabits full duplex and is active, while the fxpl card is not

connected and hence has "no carrier." You want to configure the fxp0 card, so enter "fxp0."

IP address for fxp0 (or ‘'dhcp’)? 192.168.1.250

We have an IP address for this system, but entering will make the system get IP address and domain
information from the DHCP server.

Symbolic (host) name? [openbsdtest]

We want to use the same host name, so hit ENTER here.

Netmask? [255.255.255.0]

If you have a netmask other than 255.255.255.0, enter it here. Otherwise, hit ENTER.

The default media for fxp0 is
media: Ethernet autoselect (100baseTX full-duplex)
Do you want to change the default media? [n]

Media options tell a network card how to connect to the network. In this case, the card seems to have picked up the
network connection automatically. If you have an older network card, this may not work so seamlessly; you may need
to tell your card to use the 10baseT connector instead of the BNC attachment, for example, or to use full-duplex
instead of half-duplex. You'll have to look at the OpenBSD manual page for your card. You might think this would be
difficult to do before you have OpenBSD installed, but don't forget that the manual pages are available on the
OpenBSD website.

You can repeat the process for the other network card or just enter "done" to tell the installer you have finished
configuring network cards. The installer will then ask you for the default route on your network and the IP address of
your primary nameserver.

Enter IP address of default route: [none] 192.168.1.1
Enter IP address of primary nameserver: [none] 192.168.1.5
Would you like to use the nameserver now? [y]

The next question might seem curious — if you have your network configured, why would you need to do more
configuration?

Do you want to do more, manual, network configuration? [n] y

If you're an experienced network administrator, you've probably seen networks where your could only connect to the
Internet if you had a particular secondary route set, or where multiple DNS servers were required. This also gives
anyone who wants to install over a network an opportunity to test their network configuration. If you have a problem
with network installs, this will make your life simpler.

Testing Network Connectivity

If you take the option to do additional network configuration, you'll be dropped at a command prompt with a small
selection of UNIX tools to work with. Even a simple test, such as "ping," will confirm your system is talking to the
network. Try to ping the host you plan to install OpenBSD from or your default gateway. While not all the standard
UNIX commands are available on the install disk, quite a few basic tools are.

Type 'exit' to return to install.

ping 192.168.1.1

PING 192.168.1.1 (192.168.1.1): 56 data bytes

64 bytes from 192.168.1.1: icmp_seq=0 ttI=64 time=0.366 ms
64 bytes from 192.168.1.1: icmp_seq=1 ttI=64 time=0.171 ms
AC--- 192.168.1.1 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/std-dev = 0.171/0.268/0.366/0.098 ms

This indicates that the system can ping the default gateway, 192.168.1.1. Hit CONTROL-C to interrupt the ping. If, on
the other hand, you issue the command and see nothing for several seconds, you have a connectivity problem.

#ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1): 56 data bytes

---192.168.1.1 ping statistics ---
3 packets transmitted, O packets received, 100% packet loss
#

Again, hit CONTROL-C to interrupt the test.

In this case, confirm your IP address and default gateway are correct. Do you have a link light? Do basic network
troubleshooting to identify the problem, and perhaps carefully inspect the output of the ifconfig command to try to
identify any problems.

Once you know you're on the network, return to the installer by typing "exit".

exit

Team LiB m HEXT F

Root Password

The installer will now ask you for your root password. Your root password should be several characters long and
include a mix of upper and lower case alphanumeric characters and symbols.

Password for root account (will not echo):
Password (again):

Be sure you remember the root password! While it can be recovered by booting into single-user mode, you don't really
want to go through that hassle to cover your own mistakes.

s

Installation Media

Now that you have a network connection and a disk to put files on, you can tell the system where to install from.

You will now specify the location and names of the install sets you want to
load. You will be able to repeat this step until all of your sets have been
successfully loaded. If you are not sure what sets to install, refer to the
installation notes for details on the contents of each.

Sets can be located on a (m)ounted filesystem; a (c)drom, (d)isk or (t)ape
device; or a (Ntp, (n)fs or (h)ttp server.
Where are the install sets you want to use? (m, c, f, etc.) f

In this chapter, we will discuss installations over the network (FTP and HTTP), and installations from CD-ROM. The
"mo i tem" and "disk" installs are more commonly used in a multiple-boot installation, so we'll cover them in
the pext chaptell. (And if you know how to prepare an OpenBSD installation tape, you probably don't need this tutorial!)

CD-ROM Installs

If you're installing from CD-ROM, you probably booted off of it. If you had to boot off a floppy disk, be certain that your
CD-ROM is in the computer before proceeding! If you enter "c" to choose CD-ROM media, you'll see the following
message:

The following CD-ROM devices are installed on your system.
Please make sure the CD is in the CD-ROM drive and select
the device containing the CD with the installation sets:

cdoﬂ
Which CD-ROM contains the installation media? [cdO] E

Enter the directory relative to the mount point that contains
the file: [3.2/i386] §

You almost certainly have only il one CD-ROM drive installed. If you have multiple CD-ROM drives, they will be
named cd0, cdl, cd2, and so on. You may have to look at the system's boot-time messages to determine which drive
is which. Enter the name of your CD-ROM drive in the @ appropriate space. The installer knows which on the CD-ROM
the architecture's distribution directory can be found, but if this is a custom CD-ROM not created by the OpenBSD
team you may need to g enter a custom path.

That's it! You're now ready to go.

Network Installs

On any sort of network install, from any source, the installer will ask you several basic questions:
B \What server is the installation media found on?
B Where on this server is the installation media?
B What are my logon and password to access this resource?

You'll want to have these answers available before you start. The FTP and HTTP install processes are almost
identical, so we're only going to cover FTP. In most cases the questions are exactly the same, except for the scripts
saying "HTTP" instead of "FTP." If you have a choice, use FTP. (FTP is a more reliable protocol for transferring large
amounts of data than HTTP.)

HTTP/FTP proxy URL? (e.g. 'http://proxy:8080', or 'none’) [none]

If you are behind a FTP or HTTP proxy server, you can enter the URL here. If you aren't, just hit ENTER.

Do you want a list of potential ftp servers? [y]

The installer can fetch a list of mirror sites for the release you are installing. If you already know which OpenBSD
mirror site you are going to use, you will have an opportunity later to enter it directly. Otherwise, you should probably
take a look at the list of servers.

E 1 E ftp://ftp.openbsd.org/pub/OpenBSD E Alberta, Canada
2 ftp://ftp.openbsd.org.ar/pub/OpenBSD Buenos Aires, Argentina
3 ftp://mirror.aarnet.edu.au/pub/OpenBSD Canberra, Australia

Each line is an official OpenBSD mirror for this release and includes an index number, a URL, and a physical

location. If you're not certain which mirror is closest on the network, choose a mirror that is physically close. [
Remember the index number for your closest mirror. In my case, this looks best.

66 ftp://ftp3.usa.openbsd.org/pub/OpenBSD Boulder, CO, USA

At the end of the server list, the installer asks you which mirror to use. If you had previously chosen a particular mirror
or have a local FTP server you're using, you could enter that host name here. Otherwise, just enter the server number.

Server IP address, hostname, or list#? [] 66
Using ftp://ftp3.usa.openbsd.org/pub/OpenBSD
Does the server support passive mode ftp? [y]

Passive mode FTP is a more modern version of the FTP protocol, designed to cooperate with packet-filtering firewalls.
Some very old FTP servers do not support passive mode FTP properly, however. Almost all public OpenBSD mirrors
support passive mode FTP; if you have problems getting the software from a particular server, however, you might try
setting this to "no."

Server directory? [pub/OpenBSD/3.2/i386] pub/OpenBSD/3.2/i386

If you entered a number from the FTP server list, the installer remembers which directory of the FTP server the
software can be found in. Otherwise, enter the full path to the architecture's release directory here.

Login? [anonymous]

OpenBSD mirrors generally allow anonymous access. If you are installing from a local mirror, you might need to enter
a username and password here.

mln an ideal world, before starting you would have identified your closest mirror with ping(8) and traceroute(8). But I'm
not about to walk you through these commands for every operating system that you might have!

Distribution Sets

Now that you know where you are installing from, you can choose what to install. The installer will present a list of all
the distribution sets available in this version of OpenBSD.

The following sets are available. Enter a filename, ‘all' to select
all the sets, or 'done’. You may de-select a set by prepending a '-'
to its name.

[X] base32.tgz
[X] etc32.tgz
[X] misc32.tgz
[X] comp32.tgz
[X] man32.tgz
[X] game32.tgz
[1 xbase32.tgz
[1 xshare32.tgz
[] xfont32.tgz
[1xserv32.tgz
[X] bsd

File Name? (or 'done") [xbase32.tgz] all

The defaults shown are a reasonable choice for a server without the X Window System. If you're satisfied with these
choices, you can just enter "done". To install a complete set of OpenBSD, including X, enter the name "all." If you want
something in between, such as adding one distribution set to the list, type its name.

File Name? (or 'done') [xbase32.tgz] xshare32.tgz

To remove a distribution set, enter its name with a leading -.

File Name? (or 'done’) [xbase32.tgz] -man32.tgz

After each modification, the installer will present you with an updated lists of distribution sets it will install. When you're
happy with the list, type "done" and ENTER. You'll get a final chance to change your mind.

Ready to install sets? [y]

Hit ENTER, and the installer will begin writing OpenBSD from the installation media onto your hard drive. You'll see a
message much like this for each distribution set you chose to install.

Getting etc32.tgz ...
54% | | 793 KB 00:04 ETA

This will go very quickly if you're installing from CD-ROM, and at network speeds otherwise.

Once the distribution sets you chose are installed, you'll have an opportunity to change your mind and add more
distribution sets. This can be useful if a network site you installed from did not have all the sets you needed or if
network issues prevented you from downloading them.

Extract more sets? [n]

Custom Installation Sets and Scripts

If you have downloaded the installation sets to a local FTP server or have built some other local installation media, the
OpenBSD installer allows you to add your own custom files or scripts to the install process. This is very useful if you
have a "standard build" for your network and want to replicate one set of changes to every freshly installed machine.

The installation script looks for a set called "siteXX.tgz" in the same directory as the other distribution sets. Replace the
"XX" with the release name — for example, a custom site file for OpenBSD 3.3 would be called "site33.tgz." This file is

using the standard xvpf options, allowing the

a standard gzipped tar file rooted in /. This file is ex]
administrator to add custom files or packages (see [Chapter 13) to every system installed with that set.
As a final step in the install process, the installer will look for a shell script called /install.site. If such a script is found, it

is run as the last stage of the install process. You can use this to remove unwanted programs, install other software or
any other actions desired. The easiest way to get /install.site onto your new system is to include it in siteXX.tgz.

Final Installation Steps

Hang on, you're almost there! Now that you have the files on your disk, you just need to answer a few last questions.

Do you expect to run the X Window System? [y]

Answering "y" enables the kernel settings for running an X server locally. If you plan to have the GUI running on this
system, answer "y." If you are using this machine without a GUI, answer "n". You can use X remotely on this system
without a GUI, you simply cannot run the local XFree86 server.

Saving configuration files......done.

Generating initial host.random file done.
What timezone are you in? (*?" for list) [US/Pacific]

The installer will easily set your initial time zone for you. If you don't know your correct time zone, enter a question
mark. The installer will list the time zones it knows of and allow you to choose one. OpenBSD expects the BIOS clock
to be set in UCT.

After choosing your time zone, you will see a flurry of messages as the install rebuilds device nodes, installs
bootblocks, and in general cleans up after itself. Finally, you will see the completion message.

CONGRATULATIONS! Your OpenBSD install has been successfully completed!
To boot the new system, enter halt at the command prompt. Once the

system has halted, reset the machine and boot from the disk.

halt

Enter the word "halt," and the system will shut itself down. Do not just power off the computer! You want to shut the
system down gracefully.

syncing disks... done

The operating system has halted.
Please press any key to reboot.

One press of the ANY key, and your system will reboot into OpenBSD!

Chapter 4. Multiboot Installation

Highlights

Blowfish and penguin
arguing over fridge space
roommates most vexing

As hard drives grow larger and larger, it's becoming more and more common to have multiple operating systems on a
single disk. You can do this fairly simply with OpenBSD, if you follow a few basic guidelines. While you wouldn't do this
on a network server, you might on your desktop or laptop, especially when migrating between operating systems.
Sharing a disk between operating has two distinct problems. First, you have to divide the disk between the operating
systems. Second, you must have a method to tell the computer which operating system to boot. We'll deal with both of
these.

We're going to discuss the techniques, problems, and issues when sharing a hard drive between OpenBSD and any of
four other popular operating systems: Windows XP Professional, Windows 98, Linux, and FreeBSD. The concepts are
useful for other operating systems, however. If you want to multiboot, say, BeOS or NetBSD on your OpenBSD
system, you can use the information given here as a guideline and probably do it without too much trouble.

Dual-Boot Install Overview

Careful planning is essential when installing two operating systems on a single hard drive. Each operating system has
restrictions on where it may lie on the disk, and you must satisfy those restrictions for every OS you install. For
example, Windows 98 expects to be the first operating system on the disk, but OpenBSD's root partition expects to be
within the first 8GB. This can make life difficult. Consider the restrictions on each operating system, and figure out a
method you can meet them while still getting both operating systems on one drive. Write down your partitioning needs
before starting an install.

You then need to create MBR partitions for each operating system, using the appropriate tool for that OS. Once you
know where these MBR partitions belong, you can start to install your operating systems. Operating systems should
be installed in the order that they go on disk — if Windows XP is the first operating system on your disk, install that
first. This allows you to use each operating system's native tools to create the MBR partition for that operating system.
Not all operating systems work well within MBR partitions created by another operating system: For example, the
Windows XP installer will see partitions created by OpenBSD, but may choke when attempting to put a file system on
them.

Once you have all of your operating systems on the disk, install a boot manager to control the OS you want to start at
boot time.

Note Each additional operating system adds complexity to the installation and disk partitioning process. Be prepared to
reinstall the various operating systems a few times until you have everything set up as you like. Do not load any
data on your computer until you have every operating system installed and every partition formatted the way you
want!

MBR Partitions

In we discussed OpenBSD partitions and briefly mentioned MBR partitions. You didn't need to worry about
MBR partitions unless you wanted to have multiple operating systems on one computer. The Master Boot Record
includes some basic disk partitioning information, marking the locations of up to four partitions.

These partitions are used for different purposes in different operating systems. Windows-based operating systems use
these as "logical drives." If you're old enough, you'll remember when a Windows 95 computer could only have a 2GB
C: drive, and if you had a larger disk you needed to split it up into logical drives. At one point | had Windows C:, D:, E:,
and F: drives on one 8GB hard drive!

OpenBSD, Linux, and FreeBSD all like to support more than four partitions on a drive. They have to have their own
partitioning scheme within a single MBR partition. For example, when you have a dedicated OpenBSD machine with
five partitions (/, swap, /tmp, /var, /usr, and home), these partitions are all subdivisions of a single MBR partition. That
MBR partition just happens to fill the whole disk. OpenBSD partitions need to go within a single MBR partition.

Dedicate a single MBR partition to each operating system on a hard drive. (If you need more than four operating
systems, you need to invest in a commercial product that will let you do so.)

A Dozen Different fdisks

Every operating system includes tools to manage MBR partitions. Unfortunately, every operating system handles MBR
partitions in a slightly different manner. More unfortunately, most of these tools are named "[disl." Each tool operates
differently, and while some of them look similar or have a common heritage they are not guaranteed to be
interoperable. The upshot of all this is that you should create the MBR partitions used by an operating system by the
operating system's native tools. When you're installing a dual-boot OpenBSD/XP system, use OpenBSD's fdisk(8) to
create the MBR partitions only for OpenBSD and use the Windows XP installer to create the partition for Windows XP.
Do not use the OpenBSD fdisk tool to create Windows XP partitions, and do not try to create OpenBSD partitions with
XP! This might look workable, but minor differences between fdisk implementations might make the partition unusable.

Because this is an OpenBSD book, we'll focus on OpenBSD's fdisk. Check the documentation for the other operating
systems you're using for details on their fdisk implementations. The concepts are the same, but many of the details
differ.

Dual-Boot Installation Restrictions

Various operating systems have restrictions on how they may be placed on the disk. Here is a brief overview of these
restrictions for the operating systems discussed here. Note that this sort of information may change rapidly, especially
for the open-source operating systems! Also, if you search the Internet, you will find suggestions for getting around all
of these limitations. Most of these suggestions are very complicated and unsupportable, and if | recommended them
my email would be flooded by people who couldn't make them work. Others cost money. Feel free to seek out these
methods and try them yourself, but you're on your own.

OpenBSD
B The root partition must be completely contained within the first 8GB of disk.

B There can only be one OpenBSD MBR partition per hard disk.

Windows (Any Version)

B Must be the first operating system on the hard drive.

Linux, FreeBSD

B None.

Suggested Combinations

Windows operating systems, both 9x-based and NT-based, must go first on the hard drive. | suggest giving these
operating systems a C: drive of 7GB or smaller. (Remember, early versions of Windows only support 2GB drives, so
this won't be a problem.) If you put a 500MB OpenBSD root file system directly after your Windows partition, you can
easily fit it within the 8GB limit. Subsequent OpenBSD file systems should follow immediately afterward. Because
OpenBSD can only use a single MBR partition, you need put all your OpenBSD patrtitions immediately after that. If you
have disk space left you can add a third MBR partition to the hard drive after your OpenBSD install and use this for a
Windows D: drive or even install Linux or FreeBSD for a triple-boot system.

When installing OpenBSD with FreeBSD or Linux, | recommend putting OpenBSD first on the hard drive and installing
the other operating systems further out on the disk.

Windows NT/2000/XP Installs

When you install Windows NT-based operating system, the installer will ask you how much disk space to use on your
drive. (This question is the Windows fdisk and disklabel tool, all in one.) Tell it 7GB or less, and Windows will create an
appropriate MBR patrtition for itself.

If you wish to access your Windows files when running OpenBSD, format this Windows file system as FAT32.
OpenBSD cannot read NTFS partitions. As you find yourself growing more comfortable with OpenBSD, you will
probably find yourself booting into Windows less and less frequently, and being able to access that disk space is nice.
I know people who started off with dual-boot systems, but finally converted their Windows partitions into MP3 storage
without having to reinstall.

Do not attempt to lay out your OpenBSD patrtition, or subsequent Windows partitions, with the Windows installer! You
will quite possibly confuse OpenBSD, Windows, or both. Similarly, do not attempt to create Windows NT partitions
(even FAT32 ones) with the OpenBSD installer. Once you have both Windows and OpenBSD installed, you can go in
and create additional Windows logical drives.

Windows 9x installs

While early editions of Windows 95 only handled 2GB partitions, most later versions handle large hard drives just fine
and automatically take over all the disk space they can get. Most versions do not ask you how much they should get,
as it's obvious that anyone who is running Windows wants to dedicate their whole machine to it, right? You must use a
tool such as fips.exe to resize your hard drive.

OpenBSD includes fips.exe in the "tools" directory under the release directory. The documentation included with
fips.exe is fairly good, and Windows 9x is becoming increasingly rare among the people likely to be installing dual-boot
systems, so we aren't going to go into any detail on how to make it work. Just read the instructions and follow them
precicely.

Remember, make your Windows 9x partition no larger than 7.5GB; you want to have enough room to get an OpenBSD
root partition on your system!

Linux/FreeBSD Installs

If you are sharing a hard drive between OpenBSD and Linux, install OpenBSD first. Both Linux and FreeBSD can
recognize OpenBSD partitions and will easily work around them.

Linux can read OpenBSD file systems, if you have a Linux kernel that supports BSD disklabels. Similarly, OpenBSD
can read EXT2FS file systems. OpenBSD also recognizes file systems from FreeBSD 4 or earlier, and FreeBSD
recognizes OpenBSD file systems. If you want to dual-boot FreeBSD 5 or later with OpenBSD, you need to create
your FreeBSD partitions as UFS1. OpenBSD does not support FreeBSD's UFS2. In any of these combinations, you
may have to edit the OpenBSD, Linux, or FreeBSD disklabels to include the sector information for the other operating
system partitions to actually be able to mount those partitions, however.

Hard Disk Geometry

"Rectangular, with rounded corners."

Sorry, that's not the geometry we mean. Disk geometry generally refers to the layout of the disks internally. If you open
the case of a hard drive you'll find a stack of round disks, commonly called platters. They're covered with a layer of
magnetic material that extends from the middle of the disk to the outer edge. When the disk drive is on, these disks
spin at thousands of revolutions per minute (rpm). (This is the rpm count you'll see on the box and in advertising, and
has a great deal to do with the performance of an individual disk.)

You will also see a head on each side of each platter. The head moves between the center of the disk and the edge so
it can read data from the hard drive beneath it. A fairly typical new hard drive has 16 heads. That's enough for 8
platters, with a head on each side. So, we can read from 16 different locations on the platters simultaneously, so long
as the data you want happens to be on different sides of different platters. Every head has a unique number, starting
with 0.

Each platter has a number of circular tracks, or tracks, arranged much like the growth rings in a tree. These tracks hold
data as a string of Os and 1s. A head moves over a particular track at a certain distance from the center of the disk and
reads this data as the platter spins by beneath it. When you request data from a different track, the head shifts its
position and lets that track rotate past beneath it.

If you stack the particular tracks from all the platters on top of one another, you have a cylinder. For example, the
innermost track of each platter forms one cylinder, numbered 0. The next-innermost forms cylinder 1. The 3,022nd
track of each platter forms cylinder number 3021. Many operating systems expect to find that MBR partitions
encompass complete cylinders and get quite upset if they don't.

Each track is broken up into segments, called sectors, which can each hold 512 bytes of data. Each sector within a
track has a unique number, starting with 1. What's more, every sector on a hard drive has a unique number. If a
particular hard drive has 39,179,952 sectors, you can expect to find each with a number 0 through 39,179,951. Many
tools expect to address hard disks by sector numbers. When part of a disk goes bad, smart disks mark the affected
sectors and don't use them.

So, sectors combine into tracks, which are arranged in rings on each platter. Tracks can be stacked into cylinders, and
they all combine to make up the hard drive. This all seems simple enough, and it would be, if you could reliably use
this information.

Over the years, various limitations have been hit in both hard disk and operating system design. We touched upon the
504MB and 8GB limits in . These limits could only be avoided by tricking the system BIOS and/or operating

system. If the most popular operating system can only accept 63 sectors per track, but the hard drives your company
manufactures have 126 sectors per track, you have a problem — unless, of course, you teach your hard drive to lie. If
you claim you have half as many sectors per track, but you have twice as many platters, you can make the problem go
away. Everything still adds up to the same number of sectors, after all, and all the tools can still find a unique
sector-by-sector number. By the time hard drive information reaches the operating system, it has quite possibly been
through one or more of these translations.

When you have only one operating system on a hard drive, this works fine. If your operating system receives or
performs a slightly different translation on the disk, however, the translated geometry will not precisely match. The
individual sector numbers will still match, but cylinder boundaries may not be the same within the translated geometry.
Because many operating systems expect their MBR partitions to begin and end on a cylinder boundary, this is a
problem. This is why we use only an operating system's native tools to create MBR partitions for that OS.

Now that you understand the hardware and the translations it undergoes, let's look at how to manage these partitions.

Using fdisk During an Install

For this example, I'm dividing a 20GB IDE hard drive between Windows XP and OpenBSD. The first 7GB of the hard
drive hold a standard install of Windows XP, on a FAT32 file system. | want to put an 8GB OpenBSD install
immediately after that. Prepare your hardware as you normally would, and boot off your OpenBSD installation disk.
The install process is identical up until the point you see the disk usage menu.

Available disks are: sd0 sd1 wdO.
Which one is the root disk? (or done) [done] wdO
Do you want to use *all* of wd0 for OpenBSD? [no]

We don't want to use the whole hard drive for OpenBSD, so take the default. This brings up a whole new tool,
OpenBSD's interactive fdisk(8).

Reading MBR Partitions

After a few instructions, the installer will fire up fdisk(8) and automatically print out your partitioning from the Master
Boot Record. The top of fdisk's output contains some basic disk geometry information.

Disk: wd0 geometry: Jl 2438/ B 255/8 63 [[} 39166470 Sectors]

This line describes what fdisk(8) believes is the disk geometry in the number of cylinders, heads, and sectors a disk
has. According to fdisk(8), this disk has | 2438 cylinders (numbered 0 through 2,437), ¥ 255 heads (numbered O
through 254), and & 63 sectors per cylinder. If you compare this information to what the physical label on the hard
drive says, it almost certainly won't match. That's all right — it's just been translated. One interesting thing to note is
that fdisk(8) reports that this hard drive has the same # total number of sectors as every other tool reports, however.

A little beneath that, you get a table describing the MBR partitions themselves.

Starting Ending LBA Info:
#:id CH S-C H S[start: size]

*No:BosEol1B1-Beo1f254f 63 63: 1432991718 wings FAT-32
1: 0000 0- 0 007 0: 0] unused
2: 00000- 0 00] 0: 0] unused
3: 00000- 0 00] 0: 0] unused

This isn't nearly as confusing as it looks at first glance. The first column gives the il MBR partition number, between 0
and 3. We then see the 2 Partition ID. This is a unique hex number used to identify the type of file system on the
partition. Partition ID 0xOB represents FAT32.

fdisk then prints the cylinder, [head, and g} sector where this partition begins. The first partition on this disk begins

on cylinder 0, head 1, sector 1 — the beginning of the disk. [

The next three columns show the cylinder, head, and sector where this partition ends. Compare these numbers to the
total number of cylinders, heads, and sectors in the drive. This disk has 2,438 cylinders, of which we are using E 892.
Within cylinder number 891, we are using up through head [254 (all of the heads) and E sector 63 (all of the sectors).
This Windows partition completely fills the first 2,438 cylinders. We say that such a partition ends on a cylinder
boundary. All of your partitions should begin and end on a cylinder boundary.

At the end of the line, we have theE partition type in clear English. We could get this information by looking up partition
ID 0x0B in a table, but it's certainly convenient to print it here.

Finally, fdisk presents a command prompt.

fdisk: 1>

We want to create a new MBR partition, immediately following the existing FAT32 partition.

Creating MBR Partitions

Actually entering the values for a new MBR is easy enough, once you know which keys to press. And OpenBSD's
online help (available by entering a question mark) is clear enough on telling you which keys to press. Figuring out
which numbers you want to enter is the hard part! To create a new partition, we have to tell fdisk(8) where the partition
starts, where it ends, and what sort of partition it is. Let's tackle the easy one first: the partition type.

OpenBSD Partition Type

All OpenBSD partitions have a partition ID of A6. You can install OpenBSD on partitions of other partition IDs, but you
might have some problems with doing that and have to hack around some assumptions in the operating system. Don't
doit.

Partition Beginning

We know that the previous partition ends at the end of cylinder number 891. Our new partition should begin at the
beginning of cylinder 892. This would be head 0, sector 1, cylinder 892.

Partition Ending

Our new partition should end on a cylinder boundary. This means that it will end on some cylinder, head 254, sector
63. But which cylinder?

Here, you have to resort to some basic math. No, stop screaming; it isn't that bad: Just get out your calculator. This
hard drive has 2,591 cylinders and can hold about 20GB, or 20,000MB. Each cylinder holds roughly the same amount
of data. 20,000MB divided by 2591 cylinders equals a little over 7.719MB/cylinder. Dividing the desired partition size in
megabytes by the actual MB/cylinder ratio shows that we need 1,036 cylinders for OpenBSD. The first partition goes
through partition 891. 891 + 1036 = 1,927, so our OpenBSD partition will end on cylinder 1,927.

Editing a MBR Partition

Armed with this information, we can create a new OpenBSD partition. Enter "edit" and the number of the partition you
want to edit.

fdisk: 1>e 1
Partition id ('0' to disable) [0 - FF]: [0] (? for help) AGE
Do you wish to edit in CHS mode? [n] y E

First enter the fl partition type, A6 for OpenBSD. If you're curious, you can enter a question mark and see a list of the
myriad of partition types OpenBSD's fdisk(8) recognizes. fdisk(8) will then ask you if you want to edit the MBR partition
table in CHS (cylinder/head/sector) mode. If you don't want to use CHS, you'll have to figure out which sector your first
cylinder starts on and your last cylinder ends on. You don't want to do that. Enter "y" /.

You'll then be prompted for the starting and ending cylinder information.

BIOS Starting cylinder [0 - 2437]: [0] 892
BIOS Starting head [0 - 254]: [0] O

BIOS Starting sector [1 - 63]: [0] 1

BIOS Ending cylinder [0 - 2437]: [0] 1927
BIOS Ending head [0 - 254]: [0] 254
BIOS Ending sector [1 - 63]: [0] 63
fdisk:*1>

Note that the fdisk prompt has changed and now displays an asterisk. This means that you have changed the MBR

partition and that your changes have not yet been saved to the disk. You could type "exit" now, and fdisk would quit
without saving your changes. That wouldn't help us install OpenBSD, but you could do that if you made an error and
didn't know how to recover.

Once you have created an OpenBSD partition, go back and view the MBR partition table with the "print" command.

fdisk:*1> print
Disk: wd0 geometry: 2438/255/63 [39166470 Sectors]
Offset: 0 Signature: 0XAA55
Starting Ending LBA Info:
#.id C HS- C HS[start: size]

*0:0B 0 11-89125463[63: 14329917] Win95 FAT-32

1: A6 892 01 -1927 254 63 [14329980: 16643340] OpenBSD
2:00 000-000[O: O0O]unused

3:00000-000[O0: O]unused

fdisk:*1>

The new OpenBSD partition shows up! Double-check your work, and make sure this is what you want the system
partitioning to look like.

Set Active Partition

One of your partitions needs to be marked "active," meaning that when the system boots the BIOS will hand control of
the system over to the operating system on that partition. (We'll use boot loaders to get around this later, but for now
you need to use it.) Set your OpenBSD partition to be active during the install, so you can boot into OpenBSD after the
install and make sure you actually have a working system before proceeding. Use the fdisk command "flag" and a
partition number to mark a partition as active.

fdisk: 1> flag 1

Partition 1 marked active.

fdisk: *1>

If your OpenBSD partition is not partition 1, enter the proper partition number.

Completing fdisk

Once you are satisfied with your fdisk configuration, enter "quit" to leave fdisk(8) and write your changes to the MBR.

> quit
Writing current MBR to disk.

fdisk will print out your MBR partition information one last time, and then the install program proceeds to the disklabel
section.

[l]CyIinder 0, head 0, sector 1 is the Master Boot Record itself.

Other fdisk Options

fdisk has many other options, some of which are not particularly useful while installing. Here are some of the fdisk
options you might find useful at this time. For a complete list of possibilities, see fdisk(8).

Starting Over

If you find that you've completely ruined the MBR partition table and you just want to start over, the "reinit" command
removes all the MBR partitions that currently exist. It then creates a single OpenBSD partition that spans the whole
drive, as partition ID 3. This will, of course, obliterate any other operating system on your hard drive.

Disable a Partition

If you have an MBR partition configured and you don't want to use it, you need to either change it to a valid
configuration or disable it. In many cases, disabling the partition is the easiest thing to do. You'll frequently encounter
this when you're reinstalling every operating system on a computer. For example, when installing various combinations
of OpenBSD and Windows late one night when the caffeine had just run out, | found myself with the following

ludicrous MBR partition table.

#:id C HS- C HS[start: size]

0:0Cfl001-77623963[0: 11748240] Win95 FAT32L

1: A6 777 0 1- 1813 239 63 [11748240: 15679440] OpenBSD

2:0C 1814 0 1 - § 2590 239 63 [27427680 11748240] Win95 FAT32L
*3: A6B011-0250023963[63: 39175857] OpenBSD

Look closely at the l start cylinder for MBR partition 0, and compare that to the start partition for MBR partition 3.
They're identical. Similarly, the g ending cylinder for MBR patrtition ID 2 and MBR partition ID 3 are identical. Partition
3 contains partitions 1 and 3 — and, if you look closely, partition 1 as well. In this case, there's no room for partition 3,
and it would be best to just disable it so it doesn't interfere with anything. Edit the partition, and set the partition 1D to 0
to disable it.

fdisk:*1> edit 3
Starting Ending LBA Info:
#id C HS- C HS[start: size]

*3:A6 0 11-259023963[63: 39175857] OpenBSD
Partition id ('0' to disable) [0 - FF]: [A6] (? for help) O
Partition 3 is disabled.

fdisk:*1>

If you go back and look at the partition table, all the entries within partition 3 are now set to 0.

Disklabel on Multiboot Systems

When you are only using part of a hard drive for OpenBSD, you need to handle your OpenBSD partitions a little
differently. Before you start to divide up your new MBR partition, take a look at the disklabel you're starting with.

>Pp

total sectors: 39179952
free sectors: 16643340 lu
rpm: 3600

16 partitions:
size offset fstype [fsize bsize cpg]
 a: 16643340 14329980 unused 0 O
7 c: 39179952 0 unused 0 O

i: 14329917 63 MSDOS

Normally, on an empty disk, you'll see that the total number of sectors equals the free sectors. You haven't installed
any OpenBSD partitions on this disk, but the total sectors and # free sectors are most certainly not equal.
disklabel(8) has found the FAT32 MBR partition and adjusted the free space appropriately. Later on, you'll also see the
4 "c" partition that represents the whole disk is just what you would expect in a dedicated OpenBSD system.

There's also an g "i" partition with a file system type of MSDOS. Although this appears at the bottom of the disklabel, it
has an offset of 63, so it's at the beginning of the disk. This is your Windows installation. You might want to make a

note of the disklabel partition letter, as it will come en you want to access that disk from OpenBSD, or you
can read the disklabel later with disklabel(8). (See for details.)

You also automatically get an "a" partition, of the same size as the free space available on the system. The "a"
partition is normally the root partition, but it's assigned a size that fills the entire MBR partition you've set aside for
OpenBSD! Remember, your root partition must fit entirely within the first 8GB of disk, so you're going to need to
re-create this partition with a proper size.

Note A bit of addition will show that the existing partitions do not use up all the space available on this disk. We still
don't have an MBR partition at the end of this disk for the second chunk of Windows space. After completing the
OpenBSD install, we'll boot into Windows XP and use the Disk Manager MMC snap-in to partition and format the
unpartitioned space.

So, start by deleting the "a" partition created by fdisk, and then add a new "a" partition.

>da

>aa

offset: [14329980]

size: [16643340] f 500M

Rounding to nearest cylinder: 1023876
FS type: [4.2BSD]

mount point; [none] /
>

Here, we see that disklabel understands the i offset from the Windows partition, and it knows how many sectors are
available in the OpenBSD partition. Other than the unusual offset, this looks exactly like creating a root partition in a
dedicated OpenBSD system.

The rest of the install process is absolutely identical to the standard OpenBSD install. Once you're finished, however,
you'll need to find a way to tell your computer which operating system to boot. That's the job of a boot manager, as
we'll see shortly.

Installing from a Foreign File System Partition

OpenBSD can be installed from files on a partition dedicated to another operating system. You could install Windows
XP in the first 7GB of your hard drive, download the distribution directory (or desired files thereof) into a directory on
your Windows install, and use that as an installation source. Here, we're going to install OpenBSD from files
downloaded on a Windows NT 4.0 install and stored in the directory c: obsd.

During the installation dialog, you will see the familiar installation set selection question:

Sets can be located on a (m)ounted filesystem; a (c)drom, E (d)isk or (t)ape
device; or a (Ntp, (n)fs or (h)ttp server.

Where are the install sets you want to use? (m, c, f, etc.) d

The Ml disk option allows you to install from an existing disk. Choose it, and you'll see the following menu:

Available disks are: sd0 sd1 wdO.
Which one contains the install sets? (or done) [sd0]

That installer sure likes to assume drive sd0, doesn't it? My Windows install is on drive wd0, so enter that. You'll be
shown a complete list of the partitions on this drive.

The following partitions have been found on wdO:

a: 1024002 8193150 4.2BSD 1024 8192 16 # (Cyl. 8128*- 9143)

b: 1208592 9217152 swap # (Cyl. 9144 - 10342)

€:39179952 0 unused O 0 #(Cyl. 0-38868)

d: 12582864 10425744 4.2BSD 1024 8192 16 # (Cyl. 10343 - 22825)
e: 2097648 23008608 4.2BSD 1024 8192 16 # (Cyl. 22826 - 24906)
f: 14060214 25106256 4.2BSD 1024 8192 16 # (Cyl. 24907 - 38855%)
i: 8193087 63 MSDOS E # (Cyl. 0*- 8128%)

Partition? [a]

The only annoying thing here is that you have already created OpenBSD partitions by this point, and you'll have to sort
through them all. Still, the MSDOS file system is easy to find amidst all this. It's on partition "i," so enter that.

As OpenBSD cannot identify all sorts of file systems automatically, you will have to choose the file system type on that
partition. The should work for most cases, but you may have to explicitly enter "msdos" if you have a
problem. You can easily install from MSDOS, Linux, and UFS partitions with the installer.

The following filesystem types are supported:

default (deduced from the disklabel)

ffs

msdos

Which filesystem type? [default]

The installer will then ask you which directory you placed the installation sets on.

Enter the pathname where the sets are stored (or '?") /obsd

At this point, the installer will pick up the installation sets, and you can proceed normally.

Boot Managers

A boot manager is a program that controls which operating system boots on a computer. Previously, we used an active
partition to tell the BIOS the partition to hand control to. A boot manager allows you to choose on the fly the partition
you want to use. A computer with only one operating system on it does not need a boot manager, but if you've
installed more than one OS you'll need one.

We're going to discuss GAG, the Graphical Boot Manager. GAG really is an acronym for Graphical Boot Manager —
in Spanish, the author's native language. The program is astonishingly simple to manage and quite pretty to look at,
and it works perfectly to boot any number of operating systems, including OpenBSD.

If you have a preferred boot manager that you are experienced with, use it! Linux and FreeBSD both include excellent
boot managers, and the Windows NT boot manager can be used to handle OpenBSD partitions with a bit of research.
| generally find that GAG is the simplest way to go for dual-boot OpenBSD/ Windows systems, however.

Finding GAG

GAG has a home page, at Lttp://www.rastersoft.com/qaqenq.htnl. You can find documentation here, as well as a
variety of links to booting resources. Just download the zip file and uncompress it. You'll find a copy of the GAG
license (GPL), a directory containing the GAG source code, a disk image, and rawrite.exe, the Windows program to
burn a disk image to floppy.

The GAG disk image, disk.dsk, is a boot floppy image, much like_the OpenBSD install disk. You can copy this image to
a disk with any of the tools you used to create the boot floppy in [Chapter 4. You should have your OpenBSD system
up and running, so here's how to do it in OpenBSD.

dd if=disk.dsk of=/dev/fdOc

Once you have the bootable floppy, boot from it. It should very quickly present you with a text-based menu system.
You can find extensive documentation in the instructions available through this menu. Check out the instructions, and
then hit the "install GAG" option ("4" in GAG 4.1). You'll have a chance to choose your keyboard layout, and your
language, then GAG will bring up a nice graphic menu with two options:

Boot from Floppy Disk
Key 1

Set up GAG
Key S

You want to tell GAG about your system, so hit "S." This will bring up another text-based menu, with the "command
letter" being highlighted in red. Choose "Add an Operating System," and you'll see a list of options much like this.

A Boot from floppy
B O0Bh MS-Windows FAT32
C A6h OpenBSD

Hit "B" to tell GAG about your Windows system. It will ask you for a description to show on boot, and offer you a choice
of graphic logos to choose from. You can repeat the process for to configure GAG to load OpenBSD as well, and even
use the cute little blowfish logo.

When you're done, be certain to tell GAG to save the setup in the hard disk.
The next time you boot, you will get a graphic menu offering you both operating systems on your hard drive.

Note | found that Windows XP complained the first time it booted after installing GAG. The problem goes away on
subsequent reboots, so don't worry too much about it.

http://www.rastersoft.com/gageng.htm

You can also configure GAG to load a default operating system and to boot that default after a certain number of
seconds, or just about anything you would like.

Congratulations! You now have a full dual-boot system.

Team LiB m HEXT ¥

Chapter 5: Post-Install Setup

Overview

It fills the hard drive,
looking quite dumb and clunky.
Thought you were done? Ha!

So you have OpenBSD installed, you've ejected the install floppy, and you've hit a key to reboot the machine and bring
up the operating system for the first time. A bare-bones UNIX system is actually pretty boring; while powerful, it
doesn't actually do much of anything. Here are some of the basic steps you should take after an install to establish a
firm platform for later work. Any experienced system administrator will want to jump right into things such as correct the
system time zone, set a default gateway, install basic mail aliases, and so on. If you know what these basic things are
and just want to get your system up and on your network in a hurry, this is for you.

OpenBSD has a general configuration file that controls which of its integrated programs run and how they function.
We'll discuss this system, /etc/rc.conf, in some detail.

Basic Configuration

OpenBSD includes a very nice afterboot(8) manual page that gives much good advice for new systems administrators.
Some of that advice gives an overview of material that we'll cover later in this book, while some of it only applies to
particular situations or network environments. You should skim afterboot(8) on your version of OpenBSD, as it has lots
of pointers to things you might want to set up. Here, we'll cover the steps that should be done on every OpenBSD
system.

All of the steps here must be performed as root. We'll discuss creating additional users in and how to avoid
use of the root account whenever possible. That's not necessary yet, however.

Time Zone

All of the time zones OpenBSD supports are in the /usr/share/zoneinfo directory tree. You'll find quite a few time zone
names in this directory. You'll also find several subdirectories for various countries or continents, each containing
either city names or local time zones. Find the file for the time zone you like or for a city whose time zone you share.

To set the time zone, just create a new symbolic link to the file from /etc/localtime.
In -fs /usr/share/zoneinfo/America/Detroit /etc/localtime

OpenBSD also supports POSIX-style time zones, which have their own rules. Those time zone files are stored in
lusr/share/zoneinfo/Etc. Do not use POSIX times unless you are absolutely certain you understand them.

Date

Now that you have a time zone, set the correct date. OpenBSD supports programs such as xntpd(8) and ntpdate(8),
but does not include them by default. OpenBSD does include rdate(8), if you have a time server accessible from your
network. (This may not be an option behind a firewall, of course.) You might have to set the date by hand.

Date(1) can be used to set the system date. Confirm that you know the current year, month, day of the month, and
time (in 24-hour format). To give them to date(1), just run them all together in order. In the following example, we set
the date to the year 2002, month of August, day 16 of the month, and 1:24 p.m. (13:24).

date 200208161324
Fri Aug 16 13:24:00 EDT 2002
#

Fortunately, date(1) spits out the date as it understands it, so you can check your work easily.

If you have access to a NTP server, you can set the time with rdate(8). While rdate(8) is generally used for older time
protocols, OpenBSD's rdate(8) will speak to a NTP server if you use the -n flag.

rdate -n timeserver.company.com
Set Host Name

You can set the system's host name in /etc/myname. For example, my test system is called
openbsdtest.AbsoluteOpenBSD.com.

cat /etc/myname
openbsdtest.AbsoluteOpenBSD.com
#

Ethernet Interface Configuration

If you have installed OpenBSD over the network, your Ethernet network card is already set up and working. If you

installed from CD-RO bably want to configure any network cards in the system. (If you want to connect to a
network via PPP, see [Chapter 9.) For a complete list of cards recognized by your installed OpenBSD system, run
ifconfig -a.

If you're not familiar with Ethernet, IP addresses, default routes, and so on, you probably want to wait to configure your
network until you read and B. This section is meant for experienced systems administrators who already
know what they want to do, and just need to know which files to touch to do it. For a complete description of the
configuration options for your version of OpenBSD, check hostname.if(5).

Each Ethernet card has its own configuration file, named /etc/hostname. interfacename. For example, the network
card fxpl has a configuration file named /etc/hostname.fxpl. The format of the file is very simple when using IPv4
addresses:

inetE ipaddress E netmask E broadcastaddress H options

This string is used as an argument to ifconfig(8).

The IP address §} is standard dotted-quad notation, such as 10.8.3.250.

The netmask can be given in dotted-quad format (255.255.255.0) or in hexadecimal (0xffffff00).

The broadcast address gives you an option to hard-code the broadcast address on this network. If you put in the
word NONE instead of an address, however, OpenBSD will compute the correct broadcast address from the IP
address and the netmask you gave earlier.

Finally, the E options can be any valid arguments at the end of an ifconfig(8) statement. If you don't want any options,
you can set this to the word NONE.

For example, if you wanted to give the fxpl card an IP address of 192.168.1. 250, without any extra options and letting
OpenBSD figure out its own netmask, you would use the following entry in /etc/hostname.fxp1l.

192.168.1.250 255.255.255.0 NONE NONE

The next time you reboot, the system will get the network information from this file and configure your interfaces
appropriately.

For more complicated uses of /etc/hostname.interfacename, take a look at .

DHCP

If this machine is a DHCP client, you can just put the string in /etc/hostname.interface.
Default Gateway

To set your default gateway on an Ethernet network, just place the IP address of the default gateway on a single line
in /etc/mygate. This file should have no other entries. On your next reboot, the system will read this file and by default
route packets to this IP.

Nameservice

If you want to contact other machines on the Internet from your OpenBSD machine, you probably want to configure
your DNS client. Configure DNS resolution in /etc/resolv.conf.

The first line of /etc/resolv.conf tells the computer its local domain name. Label the domain name with the "domain”
keyword.

Nameservers can appear on subsequent lines, each labeled with an IP address. Remember to use an IP address for a
nameserver, not a host name. (It's very difficult to use a nameserver to look up a host name when you cannot find the
nameserver!) When you're finished, /etc/resolv.conf should look something like this.

domain AbsoluteOpenBSD.com
nameserver 192.168.8.33

We discuss /etc/resolv.conf in greater detail in .

Mail Aliases

Every standard OpenBSD system sends status emails on a regular basis. If you're on a middle-sized network, you
probably have central systems administration email accounts that go to the proper people. Edit the mail aliases file,
/etc/mail/ aliases, to direct those emails to that central account.

In /etc/mail/aliases, you'll see a section that looks like this.

Well-known aliases -- these should be filled in!
root:

manager:

dumper:

Remove the leading pound sign from each of the * "manager," and "dumper" lines. Then put in your correct email
address after the colon.

Well-known aliases -- these should be filled in!
root: support@AbsoluteOpenBSD.com
manager: support@AbsoluteOpenBSD.com
dumper: support@AbsoluteOpenBSD.com

Once you have done this, run newaliases(8) without any arguments to update the aliases database. Emails will now
start going to the appropriate accounts.

Testing your Work

Once you have everything set up, reboot your system. After the reboot, log in and confirm that everything worked
correctly. Generally speaking, if you follow the steps above you should get sensible answers from date(1), uname(1)
should return the correct host name, and you should be able to ping sites on the Internet by name.

Integrated Program Configuration

OpenBSD includes a wide variety of programs that have been hooked into the operating system, for ease of
management. These are programs that both are widely useful and can be secured in a sensible manner. These
programs are enabled, disabled, and (to some extent) configured via /etc/rc.conf.

When the OpenBSD kernel finishes its initial system setup and hands control of the system over to userland, init(8)
runs the shell script /etc/rc. This script starts all the programs that are integrated with the system and performs general
system configuration, such as configuring network interfaces and starting servers. It also has hooks to identify
programs that you add commonly, but which are not part of the base system. When /etc/rc finishes, the system is
considered "fully booted" and is ready for general use.

[etc/rc.conf contains shell script variable assignments. These assignments control what /etc/rc runs and the
command-line options those programs receive. Each variable assignment has three legitimate values: a NO in all
upper case, empty quote marks ("), or command-line flags in quote marks ("-D"). Each variable looks something like
this:

ftpd_flags=NO # for non-inetd use: "-D"

A NO means that this particular piece of functionality is not enabled. In our example above, the FTP server is not
running in standalone mode.

If you just use empty quote marks, /etc/rc will try to start the program controlled by that variable without any
command-line arguments. This may or may not be appropriate, depending on the program you're trying to run.

Anything withi ote marks is used as command-line arguments to the program run by /etc/rc.conf. If the program
has typical "Hefaull" flags, they're usually given in the comment after the variable assignment. In our example above, if
we were to enable ftpd in standalone mode, "-D" would be a sensible value for this flag.

/etc/rc Daemon Configuration

The /etc/rc script only performs command-line configuration. It does not affect any configuration files used by the
programs it starts. For example, OpenBSD includes the Apache web server. /etc/rc.conf contains command-line
arguments used to start the httpd process, but it does not affect the httpd.conf file used by Apache. Edit a daemon's
configuration files appropriately before enabling it!

Common /etc/rc.conf Assignments

The following are the /etc/rc.conf entries found in an OpenBSD 3.2 system. They may differ slightly from the flags
found in your particular release of OpenBSD. If you come across an unfamiliar variable, check /etc/rc to see what it
does.

This section deliberately does not list all possible options to each variable. Check the manual page for the program the
variable starts for specific details. This section merely gives a few basic pointers on what is available and hints about
things you might want to look at.

Routing Options

The following options configure OpenBSD's routing management, for both IPv4 and IPv6.

routed_flags

This enables the routing daemon, routed(8). Routed(8) handles RIP (version 1 and 2) and IRDP routing. If you need
anything more complicated than routed(8), you probably want to install gated(8).

mrouted_flags

This controls the multicast routing daemon, turning your OpenBSD system into a multicast router. Under normal
(non-multicast) environments, you do not want to enable this! For multicast routing to work properly, be sure to enable
multicast_router later in this file.

multicast_host

This tells the system that it will support multicasting. Multicasting is a very tricky process, and if you're really interested
in it read /etc/netstart for details on how this variable is used.

multicast_router

If you set this to YES, OpenBSD will look for a multicast router running on the local system. If this entry is set to an
interface name, OpenBSD will look for a multicast router outside that interface.

gated

This manages the gated(8) routing program. Note that gated is not installed by default; you must install it before using
it.

gated_flags
This gives any flags to gated(8), if you install and run it.
Packet Filtering

These variables control the behavior of the integrated packet filter, pf(4). We go into great detail about pf(4) in
Chapters 17-19.

pf

If you are using packet filtering or NAT, set this to YES.

pf_rules

This points to the file containing all the packet filter rules, /etc/pf.conf by default.

pflogd_flags

This gives additional flags to be given to pflog(8). The pflog program starts automatically if pf(4) is enabled.
Diskless Clients

The following variables control OpenBSD's support for servers for various sorts of diskless clients.

bootparamd_flags

This enables and manages rpc.bootparamd(8). If you provide boot information to diskless clients from this machine,
you want this.

rbootd_flags

This enables the remote booting protocol used by diskless HP workstations. Take a look at rbootd(8) for details.

mopd_flags

mopd services bootfile requests from MOP diskless clients (generally, older DEC workstations).

Time Management

OpenBSD supports two different styles of time server, timed(8) and ntpd(8). Timed is older, but is in] ith
OpenBSD. Ntpd is newer and used more widely, but is an add-on; we install ntpd in our example in Chapter 13. Both
must run very early in the startup process, so they have hooks in /etc/rc.

The two protocols are not interchangeable!

rdate_flags

You can run rdate(8) at boot, to set the system time from a central time server. If you want to use this, put the name or
IP address of your rdate server in quotes here. Do not confuse this with ntpdate(8), however; it is a different program,
and does not interoperate with Network Time Protocol!

timed_flags

The timed(8) program is used to synchronize time on a network. This is different than ntpd. However, do not confuse
the two; they do not interoperate!

ntpdate_flags

This enables setting the system clock from a central time server via Network Time Protocol. If you want to use ntpdate,
give this variable the value of the NTP server you want to update from.

ntpd
This starts and the ntpd continuous time synchronization client.
Daemons

The following variables control the assorted network daemons integrated with OpenBSD.

sshd_flags=

This manages the ssh daemon, sshd(8). You will find the global configuration files in /etc/ssh (see).

named_flags

This enables and configures the nameserver, good old-fashioned ISC BIND. Setting this to two empty quotes starts
the nameserver in the default configuration. Note that OpenBSD includes BIND version 8. This version of BIND
supports the most commonly used functionality and has been independently audited by the OpenBSD team. You're
welcome to install a newer version of BIND, if you need it.

named_user

named(8) should run as a regular user, not as root. The default user, called "named," is good for almost all
circumstances.

named_chroot

This is the directory where named(8) should chroot after starting. The default, /var/named, is fine for just about any
installation.

sendmail_flags

This enables and gives command-line options to sendmail(8). By default, OpenBSD's sendmail listens only on the
localhost address.

httpd_flags

OpenBSD includes the Apache web server. Note that in normal use on OpenBSD, Apache is run in a chroot
environment. To have Apache not chroot, use the "-u" flag. This is not recommended.

dhcpd_flags

This enables and starts the DHCP server daemon, dhcpd(8). It is configured via /etc/dhcpd.conf.

Ipd_flags
This starts and configures the Line Printer Daemon.
ftpd_flags

If you only have a few FTP connections, you can choose to run ftpd(8) out of inetd. Set this variable to "-D" if you want
ftpd(8) to run in standalone mode. This is suitable if your server is primarily a FTP server.

inetd

This starts and manages the inetd server. See for some hints on running inetd.

identd_flags

This starts and configures the identification daemon identd(8). While it's most commonly used out of inetd(8), you can
run it in standalone mode by giving this variable the proper flags.

rwhod
If you set this to YES, OpenBSD will start rwhod(8) upon boot.

syslogd_flags

This starts and configures the system logger, syslogd(8).

wsmoused_flags

When set to empty quotes, this turns on PS/2 or USB mice in console mode. You can highlight, cut, and paste in a
text-mode console with console mice. See moused(8) for other possible options.

IPv6 features

/etc/rc.conf includes several variables for IPv6 and related features. Although we aren't covering IPv6 in this book, we'll
mention these here just so you have some sort of clue what they mean when you stumble across them.

isakmpd_flags

This manages the other IPSec key management daemon, isakmpd(8).

rtadvd_flags

This enables and configures router advertisements for IPv6 routing.

route6d_flags

Route6d supports RIP over IPv6. If you need to route RIP over IPv6, you want this. Be sure to enable IPv6 packet
forwarding if you want this!

rtsold_flags=NO

rtsold(8) helps a system find an IPv6 router. Set this to the name of your network interface if you want to use it. Be
sure to set the sysctl net.inet6.ip6.aceept_rtadv to 1 if you enable this (see [Chapter 11)).

NFS

While you need to configure NFS in /etc/exports, /etc/rc.conf tells the system how to start a variety of programs and
services that support NFS.

nfs_server

If you set this to YES, OpenBSD will start the NFS server.

lockd

If you set this to YES, OpenBSD will start rpc.lockd(8). You need to have the NFS server enabled to run this properly.

amd

This starts and configures the automounter daemon, amd(8).

amd_dir

This variable gives the location where amd(8)-mounted directories are mounted.

amd_master

This variable points to the file containing amd(8)'s master map.

portmap

Set this to YES to enable portmap(8). If you are using NFS in almost any way, you want this.

nfsd_flags

This gives any flags to the server-side NFS request services, nfsd(8). Nfsd starts automatically if the machine is
configured as a NFS server.

AFS configuration

OpenBSD has considerable support for AFS. If you're not using AFS, you can leave all of these settings unchanged.

afs

This enables mounting and running AFS file systems. For this to work, you must also set afs_mount_point and
afs_device.

afs_mount_point

This is the directory where AFS files are mounted.

afs_device

This is the device name used by afsd(8).

afsd_flags

These are extra flags handed to afsd(8). Afsd runs automatically if you set afs=YES.
Kerberos Setup

OpenBSD includes Kerberos version V.

krb5 master_kdc

This enables the Kerberos V ("Heidmal") domain controller server.

krb5_slave_kdc

This enables the Kerberos V slave domain controller server.
Miscellaneous Variables
The following is a catch-all of other variables that appear in /etc/rc.conf.
rarpd_flags
This enables and manages the rarpd(8) daemon, which provides a TCP wrappers-style service for MAC addresses.
apmd_flags
This starts and configures the Advanced Power Management daemon, apmd(8).

xdm_flags

This manages the xdm(1) X display manager.

check_quotas

When set to YES, OpenBSD will regularly limit users' disk usage as described in quota(1).

savecore_flags

This gives options to savecore(8), should the system find a kernel dump upon rebooting after a panic.

ypserv_flags

This gives any flags to the ypserv(8) information services daemon. Ypserv starts automatically if YP services are
configured.

yppasswdd_flags

This allows you to hand any flags to the yppasswd daemon. Yppasswd starts automatically if YP services are
configured.

shlib_dirs

Put extra directories to be included by Idconfig(8) during boot here.

Team LiB m HEXT F

Installing the Source Code

At various points, we'll refer to the OpenBSD system source code. | recommend installing it immediately, as it will save
you minor annoyance later.

The source code is available on one of the CD-ROMs in the set. If you installed OpenBSD via FTP, you can also
download the source code via FTP. You can find the source code on the same FTP server you installed OpenBSD
from, in the release directory, as a file called "src.tar.gz." Just extract this directory under /usr/src.

cd Jusr/src
tar -xzvpf srcsys.tar.gz

[« erevious e o

Team LiB m HEXT F

Installing the Ports Collection

You will almost certainly want the OpenBSD ports collection. For details why, see . You can grab the ports
collection from the CD-ROM or from the FTP server you installed from as a file called "ports.tar.gz." Extract this under
lusr.

#cd Jusr
tar -xzvpf ports.tar.gz

[« rrsviovs [exi)

Team LiB m HEXT F

Further Setup

Now that you have the system basically configured, you'll probably have a few other tasks you want to accomplish.
Refer to the rest of this book, the OpenBSD FAQ, and the manual pages to learn how to proceed.

[« erevious e o

Chapter 6: Startup and Booting

Overview

Single-user mode
unscheduled in the nighttime?
Something just went "boom!"

Now that you have performed some basic configuration of your OpenBSD system, we're going to look at the startup
process. To properly manage any computer platform, you must understand its booting system.

In general, when a computer boots it fires up the built-in operating system, or BIOS. The BIOS figures out little things
like what hard drives are attached, what sort of CPU is installed, how much memory is available, and so on, then loads
a minimal boot handling program from one of the hard drives. On i386 systems, this is where the Master Boot Record
comes in; other hardware platforms have their own method of bootstrapping the operating system. This boot loader
finds and starts the kernel, and the kernel starts the operating system, attaches device drivers to hardware, and
performs other operating system setup. Finally, the kernel starts init(8), which starts various processes and enables
the user programs, network interfaces, daemons, and so on. Large chunks of this cannot be managed — nobody
actually configures init(8)! However, many parts of the process can be managed.

First we'll discuss OpenBSD's cross-platform booting process. At the end of that section you'll understand how
single-user mode works and why it's there, plus the most useful of the things you can do at the boot loader. Then we'll
learn how to set up and use a serial console, a vital task for remote system administration. While some hardware
integrates serial console support into the hardware, the i386 platform doesn't. Setting up a serial console is fairly
straightforward, as is accessing the serial console from another computer.

Much of what people consider "Isvstem confiquratiorl" is actually handled by the shell script /etc/rc, which is started by
init(8). All sorts of system features, file systems, and daemons are configured during this process. While we discussed
the various options available in /etc/rc.conf in the previous chaptel, we didn't touch on how those options are actually
used. We'll explain how the configuration process works, and the OpenBSD configuration options that are available
out-of-the-box.

Lastly, we'll discuss how to automatically start or stop programs when the system boots and shuts down.

Boot Configuration

When your hardware's BIOS finishes counting onboard memory and finding all the system hard drives, it will pass
control of the system to the boot loader. The boot loader is a small program that handles initial system configuration
and booting the kernel. OpenBSD provides the ability to interrupt the booting process, configure the system before it
boots, and adjust your kernel settings, or even boot an alternate kernel. This program is documented in boot(8), but
we'll cover some of the basic functions here.

Boot Prompt

When your hardware hands control of the boot process over to the OpenBSD partition, you'll see a prompt much like
this.

boot>

The boot loader runs from the BIOS bootstrap loader, and provides very rudi-mentary configuration abilities. The boot
program'’s main purpose is to load the kernel into memory and start it. The boot loader loads the kernel, waits for five
seconds, and starts the kernel. Because this runs before the kernel starts, the boot program gives you the opportunity
to issue pre-booting instructions to the kernel.

Delaying the Boot

Once this prompt has been idle for five seconds, the system will boot! If you're not exactly sure what you're doing, you
might want to tell it to delay the boot for a little longer. You can do this by increasing the timeout value.

boot> set timeout 60
boot>

This tells OpenBSD to boot after being idle for 60 seconds, which is not an unreasonable delay when you're poking
around the boot loader trying to figure out what you want to do! Now, let's look at some more useful functions than
slowing your system down.

Booting Single-User

Single-user mode is the earliest point where your OpenBSD system can give you a command prompt. At this point the
kernel has probed all the hardware, attached drivers to hardware it's going to acknowledge, and started init(8). No file
systems are mounted, except for a read-only root partition. The network is not started, no daemons are running,
security is not implemented, and file system permissions are ignored. You get a bare-naked command prompt on a
minimally running system.

To boot into single-user mode, use the -s flag on the boot command.

boot> boot -s

Why would you want to use single-user mode? Suppose you've upgraded a program on your system, and it now
crashes your computer on every boot, before you can log in. A computer can easily get caught in a panic loop where it
crashes and restarts until someone manually intervenes and shuts down the offending program. You might have a disk
go bad, and crash the system before the boot can finish. Perhaps you made some stupid mistake i iguring your
Ehagter 1d). Any of

system, and now it just won't finish booting at all, or perhaps you need to clear some file flags (see
these require intervention before the boot finishes.

Generally speaking, you want a fully functional file system before doing much of anything in single-user mode. If your
system crashed, you'll have to check the file system consistency before mounting any file systems. The following

[will clean and mount all of your file systems. (fsck(8) and mount(8) have many more options; check out
Chagter 13 for the most common ones or the man page for the full gory details.)

fsck -p

mount -a

Once you're in single-user mode and have your file systems mounted, all of the usual command-line functions should
be available. You can edit configuration files, start and stop programs, and generally do whatever you like. What
exactly you want to do depends on exactly what your problem is.

Starting the Network in Single-User Mode

The shell script /etc/netstart can start the network while in single-user mode. You could go and run all the appropriate
commands by hand, but /etc/netstart will read the appropriate /etc/ files and do all the grunt work for you. You need to
explicitly run this script through sh(1).

/bin/sh /etc/netstart

Of course, if network configuration problems are why you're running in single-user mode, this script will only re-create
your problem!

Booting in Kernel Configuration Mode
The -c flag to boot makes the system come up in kernel configuration mode. This allows you to change some of a

kernel's built-in constants. We'll discuss this at great length in Chapter 11]. For now, you just need to know that the
mode exists so that other examples here make some sort of sense.

Booting Alternate Kernels

You can chogse to boot a kernel other than /bsd. You might need this if you're building your own kernel, as discussed
in Chapter 11]. Just give the boot command the full path to the kernel you want to boot. For example, if your kernel in
/bsd is faulty and you need to boot off your known-good /bsd. GENERIC kernel, do the following:

boot> boot /bsd.GENERIC
This should get your system up and running and let you install a proper kernel in /bsd.

You can use any other boot flags with this. For example, boot -s /bsd. GENERIC will boot the GENERIC kernel in
single-user mode.

Booting from an Alternate Hard Disk

You might have multiple OpenBSD installs on different hard disks on one computer, for either testing or redundancy
purposes. By default, OpenBSD boots from the first disk it finds. If you have four IDE disks, for example, it boots from
the first disk on the first IDE controller. You could have a separate root partition installed on another disk, with a
separate /etc/fstab pointing to emergency /usr and /var partitions.

To tell the boot loader to use a root partition on another drive give the full path to the kernel you want to boot, including
the device name of the drive the root partition is on. This is much like booting an alternate kernel, just adding the hard
drive device name as part of the path. Here, we boot the kernel /bsd.old on the "a" partition (traditionally root) on the
third IDE hard disk, also known as "wd2a." (If you have four IDE disks, this is the master drive on the second
controller.)

boot> boot wd2a:/bsd.old

The OpenBSD installer will do its very best to put the root partition on the "a" partition, but if you managed to put it
elsewhere you will have to enter the proper partition here.

Other Useful Boot Commands

If you forget which kernels you have on a system, the "“Is" command lists all the files in the root directory. You can list
other directories on the root partition by giving a full path, i.e., "Is /etc."

The "boot" command by itself will boot the system immediately, without waiting for the five-second timeout. Similarly,

the "reboot" command tells the system to do a warm boot.

The "help" command lists all available boot loader commands, including the less frequently used ones that we don't
discuss here. If you want truly detailed help with the boot loader, however, you should go read the boot(8) man page.

Finally, you can combine the boot flags to achieve exactly the effects you want. To boot an old kernel in single-user
mode, you would do this:

boot> boot -s /bsd.old

/etc/boot.conf

The /etc/boot.conf file allows you to permanently reconfigure the system's booting process. Entries in this file are
parsed before you get the boot prompt, so you have the opportunity to override anything you enter in this file.
Commands here are parsed and processed automatically.

You can tell your OpenBSD system to boot a different kernel every time giving the command here. If /etc/boot.conf
contains the following, your system will automatically boot using the kernel file /bsd.CUSTOM:

boot /bsd.CUSTOM

You can change the boot prompt timeout by setting it here as well. For example, if a five-second delay is just too long
and you want barely enough time to hit the spacebar and start typing before the system boots, you might set your
timeout to two seconds.

set timeout 2

By far, however, the most popular use of /etc/boot.conf is to configure a serial console.

Serial Consoles

All these nifty boot functions let you do some pretty useful things in trouble situations, but how are you supposed to
use them if your server isn't right in front of you? If your computer is on the other side of the country or wedged
uncomfortably behind the last ten years of payroll records in the basement storeroom, and you want to perform some
low-level hardware maintenance, a serial console will make your life far more pleasant.

A true serial console allows you to run a serial cable between two computers and have complete access to the
hardware BIOS, the early operating system boot messages, and startup processes. One computer (the client) will be
able to see all the messages that appear on the console of the booting machine (the server). This makes remote
system management much easier. Serial consoles are invaluable when you're trying to debug a system crash — the
debugging messages come over the serial port where they can be captured easily, rather than displayed on a glass
screen to be copied by hand.

Real UNIX hardware (such as HP and Sparc) has a serial console capability. Most i386 hardware does not support
this functionality. A very few Intel mother-boards, such as the L440GX, do support serial consoles, but it's a feature
you must specifically shop around for.

Because i386 hardware is the most common these days, that lack is something of a problem. Fortunately, it's possible
to work around this and build a highly functional serial console anyway. While OpenBSD's i386 serial console doesn't
give you access to the hardware BIOS, it does let you interface with the OpenBSD boot process. You could also
choose to install an actual hardware serial console.

Hardware Serial Console

Nothing any operating system can do will give you access to the i386 BIOS messages across a serial port. This stuff
happens before the operating system starts and before the hard drive even starts to spin up.

Some hardware solutions can work around this by prete ideo board and directing the console out to a
serial port. The best I've seen is the PC Weasel 1 . By putting the Weasel in your computer
and running a null modem cable between the Weasel and another computers serial port you can manipulate the BIOS
remotely, interrupt the boot to come up in single-user mode, and generally muck around with the hardware just as if
you were at the actual keyboard and monitor attached to the system. Other companies do manufacture similar
devices, but they either require proprietary client software or are far more expensive.

Software Serial Console

OpenBSD includes a software serial console. As OpenBSD boots, it decides where to put its console. This defaults to
the monitor and keyboard, but with a few tweaks you can have the console come up on a serial port. The only
hardware requirement is that your system has a serial port. Some systems are increasingly arriving "legacy-free,"
meaning that they lack an ISA bus, serial ports, and even PS/2 ports. My latest laptop had a nasty surprise in lacking
an actual serial port. You might need to buy a PCI serial card for your server if this is the case.

This serial console does not kick in until the OpenBSD boot loader starts, so you will not see the BIOS messages. You
do get a chance to interact with the OpenBSD boot process, which is good enough for most cases — after all, you
presumably made sure that the BIOS was correct before shipping the computer across the country!

Non-i386 Serial Consoles

Every different hardware platform has its own standards for serial consoles. If you're running on one of these
platforms, check your hardware documentation. In general, if your hardware supports serial consoles, you need to set
it up at the hardware level. Your Sparc hardware will support OpenBSD's console just as well as it supports Solaris's
console.

http://www.realweasel.com/

Serial Console Physical Setup

You must have a null modem cable to use a serial console. A regular modem cable will not work! Get the best cable
you can find; if you have an emergency and need the serial console, you're probably not in the mood to deal with line
noise.

Plug one end of the null modem cable into the first serial port on your OpenBSD server. Traditionally, this is the first

COM port. You can use any serial port that is convenient, so long as you remember which port it is. [You can choose
to use any serial port as your serial console. Plug the other end of your null modem cable into an open serial port on
another system. | recommend that you use either another OpenBSD or UNIX system, or a terminal server if you have
a lot of servers that include serial consoles. You can use a Windows system as your serial console terminal, but that
won't give you any remote-control functionality. (Yes, you could use VNC or Windows Terminal Services on the
Windows system, but you're starting to look at a complicated and error-prone setup when a simple 486 running
OpenBSD would do.) In a pinch, on a local system that didn't have a monitor or keyboard, I've used a vt100 emulator
running on my PalmPilot — the screen was cramped, but it worked.

If you have two OpenBSD machines at a remote location and want to use serial consoles on both of them, simply
attach the console cable to the second serial port on the other server. If you have three machines, you can daisy-chain
them into a loop. By combining twos and threes, you should be able to get a serial console on every one of your
systems. I've worked in areas with dozens of UNIX servers tightly packed together, and serial consoles saved a huge
amount of space that monitors and keyboards would have taken up.

Serial Console Client

Before you can test your serial console, you need to configure your client to access the serial console. The key to
setting up your client is to remember the following:

B 9600 baud
B g bits

B o parity
B 1 stop bit

If you can configure your client program to use these settings, the serial console will "just work." Conveniently enough,

these are the default settings on Microsoft's HyperTerm program. (2 If you don't like HyperTerm, you can find any
number of vt100 terminal programs for Microsoft platforms. Even Macintosh and Palm platforms have any number of
free vt100 terminal programs kicking around. If your second computer also runs OpenBSD or, for that matter, almost
any version of open-source UNIX, you can use the OpenBSD terminal program. Because this is an OpenBSD book,
we'll discuss exactly how to do this.

OpenBSD accesses serial lines with tip(1), a program that allows you to connect to a remote system in a manner
similar to telnet. To run tip and have it connect to a remote machine's serial port over a serial cable connected to the
local machine's first serial port, do this:

tip tty00

A port name is shorthand for specifying the settings and speed to be used when accessing a serial port. The file
/etc/remote contains a list of port names for a variety of platforms.

Configuring the Serial Console

You can tell OpenBSD to boot either off the serial console or off the physical console, by an entry in /etc/boot.conf or a
command at the boot prompt. The "set tty" command tells OpenBSD where to put the console. The common choices
are como (for classic i386 COML1), com1 (for classic i386 COM2), or pcO0 (for the physical hardware).

Plug in your serial console and access it from a client machine. Now reboot your test OpenBSD system. At the initial
boot loader prompt, type:

boot> set tty comO

All of a sudden, your physical keyboard won't seem to be doing anything, and nothing else comes across your screen.
On the other hand, your serial console client will abruptly show the boot loader prompt.

1 you type in your serial console client is passed to the OpenBSD boot loader, just as we discussed in '
" earlier. It's just as if you were at the console. You can load alternate kernels, perform preboot
configuration (as discussed in), boot in single-user mode, and do any of the other booting tricks we discuss
in this chapter.

To switch back to the PC's physical console, use the pcO device.

boot> set tty pcO
The keyboard and monitor will work again.
If you want to use the serial console permanently, you can place a "set tty" entry in /etc/boot.conf.

set tty comO

mA surprising number of people go to a lot of trouble to set up a serial port, then either forget which port it is on or
forget which physical port is actually COM1.

[g]I'm refraining from making any comments about how this one of those rare times that Microsoft has done anything
conveniently. That would be too cheap a shot even for me.

Multiuser Startup

We examined /etc/rc.conf in some detail in . Now let's see how those variables are processed by the system.

Whenever your system boots to the point where it can execute userland commands, it runs the shell script /etc/rc. This
script mounts all file systems, brings up the network interfaces, configures device nodes, sets up shared libraries, and
does all the other tasks required to bring a system up to multiuser mode. These are an awful lot of tasks, and some of
them aren't necessary on all systems. The purpose of /etc/rc.conf is to tell /etc/rc what to run, what values to run with,
and what to not bother with. Everything you set in /etc/rc.conf is used in /etc/rc in one way or another. The /etc/rc
system actually has six associated files: /etc/rc, /etc/rc.conf, /etc/rc.local, /etc/rc.securelevel, /etc/netstart, and
letc/rc.shutdown.

letc/rc

Every configuration step on an OpenBSD box, from setting the host name to starting server programs, can be
performed by a simple shell command. As such, /etc/rc is a basic shell script. This script reads in variable assignments
from /etc/rc.conf as well as files such as /etc/myname and /etc/hostname.*, and acts as those variables tell it to. The
/etc/rc script also starts every other /etc/rc script at the appropriate time. When /etc/rc exits, the system fires up getty(8)
and presents login prompts on all the appropriate terminals.

Generally speaking, you should not need to edit /etc/rc unless you are a very experienced systems administrator with
truly unique needs. Editing the other /etc/rc.* files, especially /etc/rc.conf, should do everything you need.

letc/rc.conf

This file contains nothing but variables used by other /etc/rc scripts. We covered it in extreme detail in .
Various other /etc/rc.* scripts use /etc/rc.conf to get their configuration information.

letc/netstart

While the name doesn't look like the others, /etc/netstart is definitely a system startup script. This script reads
letc/hostname.if*, /etc/mygate, and /etc/myname, and uses that information to configure all network functionality:
interfaces, bridges, routing, and so forth. You can run this script in single-user mode to bring up the network without
starting any of the other software that normally starts in multi-user mode.

letc/rc.securelevel

This shell script runs just before the system raises its securelevel (see more about this in), but after the
network is started. Many programs, particularly those that affect the kernel or file systems in some way, will not run
once the securelevel is raised. The examples in the file relate to ntpd(8) and related programs, but you can edit

letc/rc.securelevel to include any programs that must be run before securelevel is raised. If at all possible, however,

yﬁ.ﬁgjﬂ&mﬂﬁﬁnﬁjg local programs from /etc/rc.local. We'll look at adding proper shell commands to these files in
"Editing /etc/rc Scriptd," later in this chapter.

One important detail in /etc/rc.securelevel is the securelevel setting itself. We discuss securelevel in . For
now, just don't touch the line that sets the securelevel unless you're already familiar with BSD and know exactly what
you're getting with securelevels!

letc/rc.local

The /etc/rc.local shell script runs at the very end of system initialization. Once every other system process has been
started, /etc/rc.local runs. This is the usual place to put startup commands for systems such as databases, small
servers, and any other programs you want to run at boot time. You can place your add-on shell commands here, as

discussed in "tditing Jetclrc Scrigti" later in this chapter.

letc/rc.conf.local

In various circumstances, you might not want to edit /etc/rc.conf for each machine. Perhaps you share one rc.conf
amongst several machines, but have a few machines that require particular tweaks. If you're a developer and upgrade
frequently, handling /etc/rc.conf can be tedious. That's where /etc/rc.conf. local comes in.

[etc/rc.conf.local starts off as an empty file. You can put any rc.conf variable assignments you like into this file. Entries
in /etc/rc.conf.local override any values in /etc/rc.conf. For example, /etc/rc.conf contains this line.

identd_flags=NO

Let's suppose you want to change this value without editing the /etc/rc.conf line. You could create a line like the
following in /etc/rc.conf.local.

identd_flags="-b -u nobody -elo"

When /etc/rc runs, it will use the values from /etc/rc.conf.local instead of /etc/rc.conf. This minimizes the number of
changes necessary to /etc/rc.conf and makes upgrading easier.

letc/rc.shutdown

The /etc/rc.shutdown script runs whenever you use reboot(8), halt(8), or a keyboard shutdown (i.e.,
CTRL-ALT-DELETE on i386). The commands here are shut down commands that require specialized shutdown
sequences. Database programs use this feature frequently, which you need to shut down correctly to prevent data
loss.

Editing /etc/rc Scripts

Well, now that you know how the files fit together, what are you supposed to do with them? While OpenBSD's
integrated software is started by /etc/rc, add-on software needs to be started separately. The ports and packages
system tells you how to create these script commands and where to put them. If you install your own software,
however, you need to create a script that handles its startup and shutdown process. Plus, to change an existing
add-on package's startup process, you must understand how the script works.

Port-Based Software Startup

A port (or package) is a pieE fi f?ijfw software that has been configured for OpenBSD. We discuss ports and
packages at great length in [Chapter 13. If your port needs to have a startup sequence added to an /etc/rc script to
work, the installation process will tell you exactly what to add to which /etc/rc file. It should tell you to add some lines of
shell script to either /etc/rc.local or /etc/rc. securelevel. For example, if you install the SNMP port, ucd-snmp, you'll see
the following message at the end of the install process:

| To have snmpd start at boot time, you must have an entry similiar to the
| following in /etc/rc.local.

|
| E if [-x /usr/local/sbin/snmpd]; then

| E /usr/local/sbin/snmpdE -c /etc/snmpd.conf && H echo -n ' snmpd'
| B
|

| This will start snmpd and use /etc/snmpd.conf for the configuration.
| (see snmpd(1) and snmpd.conf(5) for more options)

You can literally just copy the text you're given and add it to /etc/rc.local, and it will work. But understanding what
you're looking at here, and why it works, will make you a better sysadmin. If you want to start your program in a slightly
different manner, you'll have to edit this.

The first line gl checks for the existence of the /usr/local/bin/snmpd file. If that file exists, the script executes the next
lines, up until the § fi (or "finish") entry. If there is no such program, then the rest of this little script is skipped entirely.
The next line has the real meat of the script. The startup system will run # /usr/local/bin/snmpd, with the arguments -C
/etc/snmpd.conf, and it will print to the console 4 "snmpd" so you'll know it started.

It would be simple enough to have a port automatically add its startup information to /etc/rc.local or /etc/rc.securelevel
and save you a step. This could potentially be a security hole, however! For example, | frequently install the net-snmp
package just to get the cool SNMP client tools it includes. | don't want the SNMP server daemon to be running. More
than once, on other UNIX-like operating systems, I've installed this package and completely forgotten about its
daemon portion. My system is running a daemon | don't want it to be running, until | either remember or notice and
manually shut it off. OpenBSD absolutely requires you to enable every daemon that runs on the system, even once
you've installed the binaries for it.

Uninstalls

When you uninstall this piece of software, remove the corresponding startup entry from the /etc/rc script. The script will
not cause even minor problems by being there, but it is rather sloppy to not clean up after yourself.

Custom Software Startup

Suppose you install a piece of software by hand, not using a port or package, and need to have it start automatically?
That's simple enough to deal with. Just write a bit of shell code much like the entry a port gives. Your startup command
doesn't have to bother checking to see if the piece of software is installed, mind you. You could just add the line to

start the program to /etc/rc.local.

lusr/local/sbin/snmpd -c /etc/snmpd.conf

It's not that much harder to add a natification that the program started to your console messages.

lusr/local/sbin/snmpd -c /etc/snmpd.conf && echo -n ' snmpd'

If you stop here, your program will run just fine.

Uninstalls
When you uninstall the program, be sure to remove the matching /etc/rc.local entry.

If you uninstall the program without removing the /etc/rc.local entry, you'll start to see errors on boot complaining that
"lusr/local/sbin/snmpd" does not exist. In my opinion, this is actually desirable behavior — all that the fancy check to
see if a program exists really does is silence warnings when the program is gone, but the /etc/rc.local entry remains.
I'm not sure how anyone could actually exploit such a script check without already having fairly deep access to the
system, but it's sloppy in any event. And sloppiness is the biggest cause of system break-ins.

Chapter 7: Managing Users

Overview

This one can log in,
this other can get email;
never give out root.

While computer attacks over the Internet are the sort of network intrusions that are publicized widely, the greatest
security threats often come from a system's own users. More companies lose vital data thanks to disaffected or
incompetent employees than outside intruders — and incompetence is by far the most common of the two. Giving all
users unrestricted access to the system is not only a bad idea for security reasons, but it will quickly result in an
unstable environment as each user makes conflicting changes and diverts resources toward their own ends.

One of the most common tasks for a systems administrator is adding, removing, and modifying user accounts. Despite
what you might have learned from the Bastard Operator From Hell, the system exists for the users. Proper creation
and management of user accounts is absolutely necessary. In this chapter we will discuss creating, adding, and
editing user accounts, how to give groups of users access to different parts of the system, proper use of the root
password, and how to entirely avoid using the root password.

Single-User Systems

Even if you are the only person using your OpenBSD system, you still need to create a user account for day-to-day
use instead of using the root account. Read your email, surf the Web, and develop your software with your regular
account, not with root. Using root for casual tasks increases your risks from user error and security issues. A careless
keystroke by root can render an entire system unusable, while that same careless keystroke by a regular user will only
generate a "permission denied" error.

If an intruder compromises an account, he can only inflict damage allowed by that user's permissions. If the
compromised account handles your email and your web bookmarks, you may suffer some personal embarrassment. If
that account is root, the intruder can inflict unlimited damage and you will need the install media and backup tapes.
Using a regular account for day-to-day tasks means that you can take extra steps to lock down the root account. If you
plan properly you can even entirely eliminate the need to become root and add another layer of security to your
system.

In short, each operation should be performed with the minimum level of permission necessary. If you don't need root
access to perform a task, don't use it! This is why OpenBSD's web server runs as a separate user, rather than root;
not only does it protect the system from intruders, it protects the system from program errors.

Operating systems that treat every user as the equivalent of root have more problems as a result: the effectiveness of
viruses, unexpected misconfigurations, and even most crashes can be traced back to this behavior. OpenBSD might
be the most secure operating system in the world, but all those fancy security features cannot protect you from poor
sysadmin practices.

Using root for routine tasks also creates bad habits. Under pressure, people do things the way they're used to. If you
habitually use root on your desktop for routine work, when the time comes you need to work on a production system
you'll have to fight with yourself to perform routine tasks properly. This sort of sloppiness is one of the biggest causes
of security breaches. Even on my OpenBSD desktop, where I'm the only person who will ever use it, | do everything as
a regular user specifically to develop and maintain good sysadmin habits.

Keeping all this in mind, it should be clear why you should use a regular account for day-to-day work.

Adding Users

OpenBSD uses many of the standard UNIX password-management programs, such as passwd(8) and vipw(8).
OpenBSD also includes a friendly interactive user-adding program, adduser(8). We'll cover that program first and then
go on to some of the other tools for more advanced uses.

Adding Users Interactively

If you start adduser(8) at the command line, without specifying any options, it drops you into an interactive shell. The
first time you run it, it will ask you a series of questions to determine its default settings. It will save these settings, but
don't worry too much; we'll look at how to change your defaults later. You must have root privileges to run adduser(8).

adduser

Use option “-silent" if you don't want to see all warnings and questions.
Reading /etc/shells E

Check /etc/master.passwd E

Check /etc/group E

Ok, let's go.

Don't worry about mistakes. | will give you the chance later to correct any input.

Whenever adduser starts, it checks the user configuration files. Vital information is kept in /etc/shells,
/etc/master.passwd, and & /etc/group. Once adduser is convinced that your user configuration files are not corrupted, it
will give you a chance to enter the username you want to create. You'll see in brackets the legal characters for
usernames in OpenBSD — specifically, any letter or number, plus the underscore and the dash.

Enter username [a-z0-9_-]: phil

Once you have that, you'll get a chance to enter a real name for the user.

Enter full name []: Philip C.

Next, adduser gives you a chance to choose the users' shell. The list of shells is taken from /etc/shells, with the
addition of the "nologin" option. The default shell is shown in brackets.

Enter shell csh ksh nologin sh [csh]: csh

Now you can choose a uid (user id number). By default, OpenBSD starts numbering uids at 1,000 and takes the first
available uid. You can change this if you wish, but it's generally not necessary.

Uid [1000]:
Login group phil [phil]:

By default, each new user is assigned to a group with the same name as his username. You can assign the user
account to a different group if you wish. If you have other system groups defined and you want this user to be part of
one of these groups, you can enter it here. If you want this user to be able to use the root password, add them to the
wheel group.

Login group is ~“phil”. Invite phil into other groups: guest no
[no]: wheel

Adduser(8) will prompt you for an initial password and then show you your new user so you can double-check your
work. Each field you entered previously is displayed for your approval.

Enter password []:
Enter password again [
Name: phil
Password: ****
Fullname: Philip C.

uid: 1001

Gid: 1001 (phil)
Groups: phil
HOME: /home/phil
Shell: /bin/csh
OK? (y/n) [y]:

At this point, you can cancel the whole thing by hitting "n." If the account looks correct, however, you can hit "y" and let
adduser create the user.

Added user ““phil"
Copy files from /etc/skel to /home/phil

Finally, adduser will ask you if you want to create a second user. You can do that if you wish, or not.

Add another user? (y/n) [y]: n
Goodbye!
#

Congratulations! You have added a user to your system. Now that you know how the process works, let's take a look
at customizing and configuring adduser(8) to give it the defaults you want.

letc/adduser.conf

The first time you run adduser(8), it uses your answers to build its configuration file, /etc/adduser.conf. Value
assignments in this file control adduser(8)'s behavior. If the variable has multiple legitimate values, those values are
surrounded by parentheses. Without further ado, here are the standard things you may set in /etc/adduser.conf. To get
a complete list of things that may be set in adduser.conf, you'll need to read the adduser script.

verbose =1

The verbose flag tells adduser how much detail to give. If you have a verbose of 0, adduser(8) will only present a
minimum of information when run. It will assume that you know it is checking the user files in /etc/, for example, and
hence not bother to tell you about them. The standard is 1. If you want to debug the adduser program itself, you can
set this to 2 for maximum debugging output. | habitually turn this to 0 without a second thought.

encryptionmethod = "blowfish"

OpenBSD supports a variety of encryption schemes for encoding passwords. Blowfish is the OpenBSD standard. If
you want to share your password file with other UNIX-like operating systems, though, set this to "old" to get DES
hashes.

dotdir = "/etc/skel"

All new user accounts get a set of default shell dotfiles. You can use the ones that OpenBSD provides in /etc/skel, or
you can create your own customized for your environment. Any files in this directory will be copied to the user's home
directory, so you can also use this to distribute any other files you like. Be sure that regular users cannot put "extras" in
a directory you specify!

send_message = "no"

On many operating systems, new users automatically receive a welcome or instructional email message. By default,
OpenBSD does not do this. If you put the full path to a file in this variable, however, the contents of that file will be
emailed to each new user. If you set this to no, a message will not be sent. OpenBSD does have a default new user
message in /etc/adduser.message, but you should feel free to create your own.

The adduser message accepts the variables $username and $fullname; this allows you to customize your welcome
message somewhat. (If you're familiar with Perl, you can add your own variables by editing /usr/sbin/adduser.) If you
wish, go ahead and create your own message instead of using the brief and generic default. | generally use an
/etc/adduser.message.local somewhat like this:

$fullname,

Welcome to The Company.

Help is available at 800-555-1212, or online at
http://helpdesk.companyname.com.

Use of this account is governed by our acceptable use policy,

available at http://www.companyname.com/aup.html or on this system in
lusr/local/share/company/aup.

Thank you for your business. We look forward to serving you.

The Company Support Staff.

logfile = "/var/log/adduser”

Adduser will record the history of its actions in the file specified here.

home ="/home"

This variable controls the directory where users' home directories are located. This is one of the first things | take care
of on any OpenBSD system. If you do not specifically create a /home partition, the default will place users' home
directories on the root partition. This is bad, for a variety of reasons. The biggest problem in that your root partition is
limited to 8GB in size, which greatly restricts the amount of user data your system can hold.

If you expect to have a lot of user accounts on your system (i.e., for a web server), you almost certainly want a /home
partition so you can mount it with the appropriate permissions. If you only have systems administrators accounts on
this system, you might want to place user accounts under /usr/home and create a symlink from /home. Both work, but
you should know about your choices.

path = (‘/bin’, 'fusr/bin’, 'lusr/local/bin")

This contains the list of directories that can contain legitimate shells. This covers most standard situations, but if you
find that you're installing shells in some unusual location, you'll want to edit this appropriately.

shellpref = (‘csh’, 'sh’, 'ksh’, 'nologin’)

This is a list of legitimate shells. Adduser will let you choose from any of these when creating a new user.

defaultshell ="csh"

This is the default user shell. It can be any of the shells listed in "shellpref.”

defaultgroup = USER

This is the primary group that the user is a member of. Traditional BSD systems assign each user to a group of the
same name as the username. For example, our "phil" user is automatically a member of the group "phil," which was
created just for him. You might want all users to be part of a separate group, such as "students" or "customers." If
that's the case, you can set that on this line. You can add this user to other groups manually, but this will be the
primary group.

uid_start = 1000
uid_end = 2147483647

These give the range of acceptable user ID numbers, or uids. The default is fine for most cases, but you might want to
use different numbers to interoperate with your other UNIX-like systems.

Adding Users Non-Interactively

You might need or want to add users in a single, longer command. This is common if you have scripts or cron jobs that
add users at regular intervals, for example, or if you're comfortable with remembering long commands with many
options. Adduser's -batch flag enables this. When you use this mode, adduser takes four additional arguments: the
username, the group name, the full name, and the password in encrypted format, much like this:

adduser -batch chris wheel 'Chris B.' loserl

Here we create a user account for Chris, put him in the wheel group, and give him a password that encrypts to the
string "loserl".

Passwords and Batch Mode

If you actually follow the previous example, you'll create the account without a known password! Remember, no
modern UNIX stores its passwords in readable format; instead, it stores a "hash" of the password. If you take the
password and perform some horrible computations on it, you'll create a hash. When you create or change a password,
the system creates this hash and stores it in /etc/master.passwd. When you attempt to log in, the login process takes
your password, generates a hash, and compares the hash of the offered password with the hash in the password file.
If the hashes match, exactly, the login is permitted.

The example above creates an account with a password hash of loserl, not a password of loserl! This isn't even a
legitimate hash, and no entered password will match it. Most of us cannot calculate Blowfish hashes from known text
in our heads; we either need pre-generated encrypted passwords, or we need to enter unencrypted passwords on the
command line and have adduser do the calculation for us, or we must create an account with no password at all.

Creating an account without a password is perhaps the simplest option. The account is disabled until you go back and
enter a password, but this may be acceptable for accounts used to run daemons and services. Simply run adduser in
batch mode, omitting the password.

adduser -batch chris wheel 'Chris B

If you want to enter an unencrypted password on the command line, you can do this with the -unencrypted option. Be
sure you put this option before the -batch option! For example, if | wanted Chris's account to really have a password of
"loserl," | could enter this:

adduser -unencrypted -batch chris wheel '‘Chris B.' loserl

The user now actually has a password of loserl. [l] You might use this inside a script, or at some time when nobody is
around to look over your shoulder.

Generating Pre-hashed Passwords

If you're using this within a script, you probably want to pre-generate hashed passwords. Encrypt(1) does this. By
default, encrypt just gives you a blank line. When you enter a word, it returns the Blowfish-hashed password. You can
enter any number of words, and each will be hashed separately. Hit CONTROL-C to exit encrypt.

encrypt

loserl
$2a$06$RAXEtBODNI6MY67)77m/Bu.JYydNnErTo2cAV0InHg5gkCK1JrbBC
~C

#

If you're just doing one password or using this interactively, you probably want to use encrypt's -p option. This gives
you a non-echoing prompt for a word to be hashed.

encrypt -p

Enter string:
$2a$06$RHWwWSGRFSat8byeBcm6W6.HILKC7Cxi8A2pjqCOhUIBLfHtY60eQK
#

Between these three choices, you should be able to handle passwords in adduser's batch mode in any way you
desire.

Other Adduser Batch Mode Options

When running adduser(8) in batch mode, you have several other options to override the default configuration. | will
frequently set up administrator accounts in one way and user accounts in another, and use different tools to create
each. Frequently, sysadmin accounts are created in adduser's interactive mode — | don't have many systems
administrators on any given system. Someone else running a script that I've written creates user accounts on a routine
basis. You can get a complete list of adduser options by reading adduser(8). These are simply the options | find most
useful.

Note All of these options must appear on the command line before the -batch command. The -batch command tells
adduser that what follows is the actual account information.

The -noconfig option tells adduser to not read the default /etc/adduser.conf. Using this in a script is an excellent way to
make sure administrator-friendly settings in /etc/adduser.conf do not leak into regular user accounts.

The -dotdir option specifies a nonstandard directory where user dotfiles are stored. All files in this directory will be
copied to the user's home directory.

-home tells adduser which directory to create a new users' home directory in. This is not the actual home directory, but
rather the directory where the home directory will be placed. For example, if all of your web server customers have
home directories on the /www partition, you might use -home /www on the batch adduser command line.

Account Limitations
A user account is subject to the following restrictions.

. . 2
B Usernames can contain only lowercase letters, digits, dashes, or underscores. (2
B The full name cannot contain a colon ().

B The user's shell must be listed in /etc/shells.

[l]Mind you, this is an absolutely hideous password, for an extraordinarily wide variety of reasons. But if you're
interested at all in security, you know that already.

E]Technically, you could create a username that contained any character you liked or even multiple identical
usernames — but then you run into all sorts of potential problems. Stick with the defaults unless you know exactly
what you're doing and are prepared to deal with the consequences.

Removing User Accounts

Part of any security policy is the timely removal of user accounts. You can do this with rmuser(8). It will ask me to
confirm both the account name and that | want to delete the user's home directory. Rmuser will also delete any cron
jobs belonging to the user, as well as that user's mail spool. For example, if Chris no longer has access to the system,
| can delete him like this:

rmuser chris
Matching password entry:

chris:*:1002:1002::0:0:Chris S.:/customers/chris:/usr/local/bin/tcsh

Is this the entry you wish to remove? y

Remove user's home directory (/customers/chris)? y

Updating password file, updating databases, done.

Updating group file:Removing group chris -- personal group is empty
done.

Removing user's home directory (/customers/chris): done.

#

Editing Users

OpenBSD supports the classic vipw(8) tool that allows an administrator to directly edit /etc/master.passwd, but for
most cases chpass(1) will do everything you need in a much more friendly way. The only real need for vipw(8) is if you
have damaged the password file somehow.

Any shell user can use chpass(1) to edit their own account information. You might not want to allow users to do this,
however, as one piece of information that chpass(1) allows them to alter is their hashed password. Many regular users
are not equipped to recognize a hashed password; I've seen people whom | believed Should Have Known Better try to
change their password by entering it in the hashed password field. This locks them out until a sysadmin resets their
password to a known value. While you might expect that an ignorant user would be intimidated by that long string of
garbage, and hence decide to not touch it, that doesn't seem to be the case. | have yet to see anyone who is not
intimidated by it a second time, however! As chpass(1) also allows them to change things such as their phone number
and office location, however, you frequently cannot get away with disallowing use by regular users.

As root, you can edit any user's account information by running "chpass username." This brings up a text editor that
displays the account information from /etc/master.passwd. For example, if | run "chpass chris" as root, here's what |
get:

Changing user database information for chris.
Login: chris

Encrypted password:$2a$06$3M221/s4FC8Mv80Q00sPRed9KhzIUUrBD17pOW66TK.BInzP
Uid [#]: 1002

Gid [# or name]: 1002

Change [month day year]:

Expire [month day year]:

Class:

Home directory: /home/chris

Shell: /usr/local/bin/tcsh

Full Name: Chris B.

Office Location:

Office Phone:

Home Phone:

You can make any changes you need here, and they will be reflected appropriately in /etc/master.passwd and
letc/passwd. Chpass(1) doesn't change anything except those files. This means that if you move an account's home

directory in chpass(1), you'll need to manually move the actual home directory. Otherwise, the user will get an
unpleasant surprise when they try to log in!

User Editing Caveats

On OpenBSD systems, /etc/passwd is automatically generated from /etc/ master.passwd via pwd_mkdb(8). Tools

such as chpass(1) and vipw(8) do this automatically. If you're familiar with UNIX versions that allow you to directly edit
letc/passwd, you need to retrain yourself when working on OpenBSD. Not only is your chance of making a mistake

high, but your changes will be overwritten the next time someone uses a standard tool to change user information.

Groups of Users

UNIX classifies users into groups, each group consisting of people who perform similar administrative functions. A
sysadmin can define a group called "www," add the people who edit web pages to that group, and give that group
permission to read and write to web-related files. He could also create a group called "email," add the email
administrators to that file, and set permissions on mail-related files so that users in that group can edit those files.
Using groups in this manner is a powerful and oft-neglected tool for systems management.

What Groups Are You In?

Any user can identify the groups he has been assigned to with id(1). This command tells you which user you are
logged in as and which groups you belong to. It also prints the numerical identifiers for your user ID (uid) and any
groups you are assigned to (gid).

#id

uid=1000(mwlucas) gid=1000(mwlucas) groups=1000(mwlucas), O(wheel)

#

If you are one of those lucky users who may use the root password to become the superuser, id(1) will tell you if you
have done so and are in a root shell. (If you're running several X terminals on a UNIX desktop, it's quite easy to forget
which window has your root shell in it.)

#id

uid=0(root) gid=0(wheel) groups=0(wheel), 2(kmem), 3(sys), 4(tty), 5(operator),

20(staff), 31(guest)

#

As you can see, root is a member of several groups by default. id(1) has several options, but they trim the output
rather than provide additional information. If you want to only know the names of the groups you've been assigned to,
for example, you could use "id -Gn". While this is useful for scripts, id's output is small enough that most people find it
easier to skim the output for desired information than remember the options.

The id(1) command pulls this information from /etc/group.

letc/group

The file /etc/group defines most group information. While the syntax of this file is fairly easy to understand, OpenBSD
also provides some command-line tools to edit it. | generally find the /etc/group syntax simple enough to handle that |
skip the command-line tools. If you're interested, the command-line tools are groupadd(8), groupdel(8), groupinfo(8),
and groupmod(8). In most cases, it's just as easy to edit /etc/group directly. Each line in /etc/group contains four
colon-delimited fields: the group name, the group password, the group ID, and a list of members. Here's a sample
entry:

E wheel: E *: E 0: H root,mwlucas,chris

The Ml group name is a user-friendly name for the group. In our example, the group is named "wheel." Group names

are fairly arbitrary: You could call a certain group of users "bucksnort" if you wished. It's a good idea to choose group
names that give you some idea of what they're for; while you might remember that the group "bucksnort" is intended
for email system managers, will your coworkers understand that? Choose group names that mean something.

The @ second field contains the group's encrypted password. Group passwords encouraged poor security practices, so
most modern UNIXes don't support them. OpenBSD certainly doesn't do anything with group passwords. Some old
software expects to find a password field in /etc/groups, however. Rather than leave this field blank or remove it
entirely, we use an asterisk (*) as a place-holder, as in our example.

The % third field holds the group's unique numeric ID (gid). Many programs use the GID, rather than names, to identify
groups. The "wheel" group has a gid of 0.

Team LiB A FREWIOUS | [MEXT »

User Classes
Each OpenBSD user has a login class that defines limits on that user's access to system resources, how their

environment behaves, and how users in that class authenticate. When you change the characteristics of a class, those
limits affect all users in the class. All login classes are defined in /etc/login.conf.

You can change a user's class by running "chpass username" as root. Just put the class name in the "class" space
provided, as shown in .

The Default Login Class

Whenever you create an account with adduser(8), that user is automatically assigned to the class. The
simplest way to manage login classes is to have the default class be the most commonly used class on your system. If
your computer is an email server with a handful of administrators and several hundred mail users, set up the default
class appropriately for the common case — the mail users. You can manually change the administrator's classes to a
more appropriate one more easily than you can edit all those hundreds of users.

Class Definitions

Each class definition consists of a series of variable assignments. When a user logs in, login(1) uses these variables to
establish the user's resource limits and environment setup. Each entry in the class definition begins and ends with a
colon, although technically, each entry is all one line. The backslash character is a continuation marker, indicating that
the computer should ignore the line break. Humans don't like 500 character lines of text, after all!

The standard /etc/login.conf starts with the class. This gives the average user fairly broad access to the
system. If you're running a modern system with gigabytes of RAM, you might find them too restrictive. If your
OpenBSD box is a Pentium 166, however, these settings will basically give every user unlimited access to all system
resources. If users consuming resources is a serious concern, you might well want to edit these settings. Here's a
sample of the beginning of a login class.

default:\
:path=/ust/bin /bin /usr/sbin /shin /usr/X11R6/bin /usr/local/bin:\
:umask=022:\
:datasize-max=256M:\

There are many more variables in a login class, but this should be enough to give you the idea. You can completely
change a user's experience by assigning him to the class that configures his login environment as you desire.

Some login.conf variables don't have a value; they change account behavior just by their presence. For example, the
"requirehome" variable just needs to be in the class definition to have effect.

:requirehome:\
Legal Values for /etc/login.conf Variables

You can give any of the following values to a login.conf variable assignment.
B Afull path to a text file.
B A comma-separated list of values.
B A number.

B A space-separated list of path names. If a ~ is the first character in a path name, the ~ is replaced by
that particular user's home directory.

B A full path to a program.
B A size, either in bytes (default), kilobytes (k), or megabytes (m).
B Atime, in seconds (default), minutes (m), hours (h), days (d), weeks (w), or years (y).

Some variables, of course, require particular sorts of values. A path to the home directory must be a full path, while the
amount of memory the user may use cannot be a full path. In most cases, the legitimate answers are fairly obvious.

Note On many BSD systems, you must use cap_mkdb(8) to build a database file containing the values in
/etc/login.conf for the changes to take effect. This is not necessary in OpenBSD; programs can parse
/etc/login.conf directly. If you run cap_mkdb(8) on /etc/login.conf once, however, you must either continue to use
it thereafter or remove the database file.

OpenBSD's default /etc/login.conf contains a few different classes of users. If you want an idea of what sort of
restrictions to put on users for various situations, check that file. Here, we're just going to discuss some of the
commonly changed items.

Resource Limits

Resource limits allow you to control how much of the system any one user can tie up at one time. If you have several
hundred users logged in to one machine, and one of those users decides to compile 30MB of source code, that person
can consume far more than his fair share of processor time and memory. By limiting the resources that one user can
monopolize at one time, you can make the system more responsive for less needy users. You can also give different
login classes different resource limits.

Resource limits are frequently tied to each process. If you allow each process to use up to 20MB of RAM, and you
allow each user to start 20 processes, one user could theoretically consume up to 400MB of memory. Here are
several popular resource-limiting login.conf variables.

coredumpsize The maximum size of any core dump

cputime The maximum CPU time any process may use

datasize The maximum memory size of data that can be consumed by one process
filesize The maximum size of any file

stacksize The maximum amount of memory on the stack usable by a process
memoryuse The maximum amount of memory a process can lock

maxproc The maximum number of processes the user can have running

openfiles The maximum number of open files per process

Current and Maximum Resource Limits

The login.conf mechanism supports both advisory (or current) and maximum resource limits. Current limits (-cur) are
generally advisory, and the user can override them at will. This works well on a cooperative system, where multiple
users willingly share resources. Maximum limits (-max) are absolutes, and the user cannot exceed them.

To specify a current limit, add -cur to the limit name. To make a hard limit, add -max. For example, to limit the number
of processes a user can have to 60, but give them a warning when they've used up half the maximum, you could do
this:

:maxproc-cur=30:\

‘maxproc-max=60:\

If you don't specify either -cur or -max, limits are hard limits and cannot be exceeded by the user.

Default Environment Setting

You can also specify default environment settings in /etc/login.conf. This can be better than setting them in a user's
default .cshrc or .profile, as these settings affect all user accounts immediately upon each user's next login. Here are
some common environment settings.

hushlogin If present, no system information is given out during the initial login
ignorenologin If present, the user can log in even when /etc/nologin exists
nologin If present, the user cannot login

path The default search path for programs

priority The default process priority, or niceness

requirehome If present, the user must have a valid home directory to log in
setenv A list of default environment variables

shell The shell given to the user; overrides the one in /etc/passwd

term The default terminal type, if nothing else tries to set a terminal type
umask The default umask

welcome The file containing a message displayed to the user upon login
FTP Options

You can “chroot" FTP users to their home directory via the text file /etc/ftpchroot, but if you have a lot of FTP-only
users you'll be better off using a login class to contain them. It is far more maintainable in the long run. Here are the
FTP-affecting login.conf variables:

ftpchroot If present, a FTP user is automatically chrooted into their login directory (by default, their home
directory)

ftp-dir The full path to a login directory for FTP users, to give several FTP users a common directory

If you chroot FTP users it's a good idea to tell them so with a "welcome" message (as described under "Default
Environment Settings").

Controlling Password and Login Options

You can control various password operations in /etc/login.conf. Unlike the environment setup, many of these can only
be set in this file. OpenBSD also includes some very extensive methods to control how authentication works: see
Authentication. Here are some common options for boring password authentication.

localcipher

This controls the password encryption method. This defaults to blowfish hashing, but you could set this to "old" for
compatibility with the 56-bit DES hashes used in many older versions of UNIX.

login-backoff

This controls how quickly a user can try to log in. After this many login attempts, the login program starts to slow down
how often it offers a login prompt.

passwordcheck

This gives the full path to an external program that will validate new passwords for quality. OpenBSD expects to pass
the password to the program on standard input. The program is expected to return a 0 if the password is adequate or
a 1 if the password is inadequate.

passwordtime

This is the lifetime of a password and can be used to enforce regular password changes.

minpasswordlen

This is the minimum length of a password.
Authentication Methods

You can also choose valid authentication methods in /etc/login.conf. OpenBSD uses "BSD Authentication," which
works in a different manner than the popular Pluggable Authentication Modules used in quite a few open-source
operating systems. You just identify the authentication method you want in /etc/login.conf, and OpenBSD will attempt
to authenticate users by that method. It couldn't be easier than that!

Merely setting an authentication mechanism does not configure the authentication method — it merely tells the system
to use that authentication method. For example, telling OpenBSD to authenticate a certain class of users via Kerberos
V doesn't magically set up a Kerberos domain. Accounts who use a particular authentication method will be locked out
if that authentication mechanism is unavailable.

Some authentication methods are simply not compatible with some protocols, so not all authentication methods work
with all programs that provide logins. For example, while SSH works with cryptocards, it doesn't work with the
password-changing "Ichpass" authentication method. You need to check the man page for each authentication
method for bugs and test unusual combinations.

Some of these authentication methods require additional login.conf variables, which are described in the manual page
for that authentication method. For example, if you want to use Radius authentication, you need to tell login.conf
where to find your Radius server. The manual page that describes the necessary configuration is given in the following
table of common authentication methods. Here are the actual authentication methods supported by OpenBSD's BSD
Authentication.

krb4-or-pwd Try Kerberos 1V, then the local password file (see kerberos(1))

krb5-or-pwd Try Kerberos V, then the local password file (see kerberos(1))

passwd Use the local password file

krb4 Use Kerberos 1V (see kerberos(1))

krb5 Use Kerberos V (see kerberos(1))

chpass Do not log the user in, but instead change their Kerberos password or their local password if

Kerberos is unavailable (see login_chpass(8))

Ichpass Do not log the user in, but instead change their local password (see login_Ilchpass(8))
radius Use Radius authentication (see login_radius(8))

skey Use S/Key (see skey(1))

activ Use ActivCard X9.9 token-based authentication (see login_activ(8))

snk Use Digital Pathways SecureNet Key authentication (see login_snk(8))

token Use a generic X9.9 token authentication (see login_token(8)

Using Authentication Methods

Authentication methods are set by login.conf's auth variable, with a commaseparated list.

:auth=skey,passwd:\

One interesting thing is the ability to specify different authentication methods based on the service the user is
connecting to. You can specify a "service name" after the "auth" keyword, to state that a set of authentication methods

only applies to that particular service. For example, to allow only password authentication for FTP, you could use this:

:auth-ftp=passwd:\

Here are a few of the commonly used authentication services:

auth Default used for all login requests that have no specific service attached
auth-ftp FTP

auth-ssh SSH

auth-su su(1) authentication

For example, you could allow a user to log in with either their local password or S/Key, but if they want to use su(1) to
become root, they must authenticate with S/Key. Here's a snippet from login.conf implementing that:
:auth=passwd,skey:\
:auth-su=skey:\

Note The default /etc/login.conf uses termcap(5) format. Termcap is powerful and flexible, and it can be confusing to
the beginner — entire books have been written about it. The authentication entries in the default login classes use
termcap expansions, but you can easily replace those with explicit declarations as we use in this section.
Investing time in learning termcap(5) will enhance your sysadmin skills, but is beyond our scope here.

The Root Password

UNIX has an all-or-nothing concept of security. While the root user may do absolutely anything, other users may only
do things root permits them to. This one fact has been responsible for a wide number of system intrusions. What's
more, this coarse-grained approach causes any number of problems for system administrators. While you can create
groups and use them to handle permissions for a variety of files, groups don't work well for sysadmin tasks. Only root
can add users; only root can configure the network; only root can install system-wide software. Different people might
handle these tasks separately. But they all need root privileges to do their work, so either you need to trust these
people to stay out of each other's way or you need to configure an add-on access control tool. Only give the root
password to those users you trust. All other users should be given access to particular tasks via sudo(8).

Using the Root Password

The su(1) command allows one user to become another user, if you have that user's password. | could use Chris's
password to access Chris's account, just as if | was him. | could use Phil's password to effectively become Phil. Or, |
could use the root password to become root.

Using su is very straightforward: Just type su, and the system will prompt you for a password. Enter the root password,
and you will have a root shell!

#su
Password:
#

One thing to remember is that su gives you the shell of the user you're switching to. You might not want to do that — if
you're on a system with multiple administrators, someone will not like the shell assigned to root. Do not change
OpenBSD's root shell unless you know all the implications of doing so. Instead, use su's -m flag to keep your current
shell and environment variables. For example, while my preferred shell is tcsh, OpenBSD's root shell is old-fashioned
csh. If I use "su", I will get a csh shell. If | use "su -m", | will get my preferred tcsh shell. If you use "su -m", make sure
that your shell doesn't contain any garbage that can confuse programs run as root. A nonstandard $PATH or
$LD_LIBRARY_PATH environment variable combined with "su -m" can really interfere with your uptime.

Who May Use the Root Password?

Only users who are in the "wheel" group may use the root password. A user who is not in the wheel group cannot use
the root password, even if he has the password. For example, suppose | get very lazy and write the root password on
a sticky note and put it on my monitor. Phil wanders by, sees the password, and decides to give it a try from his
account even though he isn't in the wheel group.

#su

Password:

you are not in group wheel
Sorry

#

What's more, his attempt will be logged in /var/log/authlog.

Jul 1 16:10:15 openbsd su: BAD SU phil to root on /dev/ttypl

As a responsible security administrator, | should be checking my authorization log daily looking for these things. These
errors are mailed to root each day as part of the daily security check, so there really is no excuse for not reading them.

Mind you, anyone who has this root password could walk up to the console and log in directly as root. He could then
add himself to the wheel group if he wanted. This is bad. You could disallow root logins on the console, but you might
need them sometime. The existence of the wheel group does not mean that you can skip hiding your root password!

If you have no users in the wheel group, then only the root account can get root access (without exploiting some sort
of security hole, of course). If you forget to add your first account to the wheel group, you will need to log in to the
console as root and make the necessary changes to /etc/group. If you've disabled root logins on the console, boot into

single-user mode and make the changes.

Using Groups to Avoid Using Root

In addition to being a security concern, the root password distribution policy can cause contention in any organization.
Many sysadmins hate giving out the root password, even to people who are responsible for maintaining part of the
system. If this sort of sysadmin doesn't know how to properly manage the computer, this reluctance can prevent
people from doing their jobs. Many other sysadmins hand out root to dang near anyone who wants it and then
complain when the system becomes unstable. Both attitudes are untenable in the long run, especially when UNIX has
powerful facilities for removing the need to use the root password.

One common situation is where a junior administrator is responsible for a particular portion of the system. I've had
many DNS administrators work under me; these people don't ever install software, recompile the kernel, or do other
low-level system tasks. They just answer emails, update zone files, and reload named. New junior admins frequently
seem to think that they need root access to do this sort of work. By establishing your own groups, consisting of users
who perform similar administrative functions, you can let people do their jobs without the root password. In this section,
we'll implement group-level access control over nameserver files. The same principles apply to any files you should
choose to protect. (Mail and web configuration files are other popular choices for this sort of delegation.)

OpenBSD has reserved user accounts for use by programs integrated with the system. For example, the nameserver
runs under the user account called "named" and the group "named." As we covered earlier, if an intruder compromised
the nameserver, she could only access the system with the privileges of the nameserver user. You can create a group
called "dns" that includes the people who manage your nameserver. Do not use the program user for this sort of work!
While you want programs run by the user named to be able to read files owned by the group "dns," you do not want
the nameserver program to be able to write to files owned by the dns group. This further minimizes the damage a
nameserver daemon compromise could inflict.

The simplest way to create a group to own files is to create a user to own them, and use that user's primary group as
the group of the files. Adduser(8) will let you create a user to own these files. Because we already have a user
"named," we'll call this administrative user "dns." The name isn't that important, but you should choose a name that
you'll be able to remember easily.

adduser -silent

Enter username [a-z0-9_-]: dns

Enter full name [: DNS Administration User
Enter shell csh ksh nologin sh [csh]: nologin

Give your administrative user a shell of "nologin,"” which gives the user the shell of /shin/nologin. Nobody can log in
with this account.

Uid [1001]:

If you want, you could specify a particular uid for these sorts of users. I've been known to choose uid numbers close to
those used by the users for their related programs. For example, named has a uid of 70. | could decide to give dns a
uid of 1,070 to keep some sort of relationship between my private system users and those used by OpenBSD.
Remember, user IDs below 1,000 are reserved for OpenBSD's internal use.

Login group dns [dns]:

Login group is “*dns". Invite dns into other groups: guest no

[no]:

The whole point of this sort of user is that they have their own group. Under no circumstances should you add such an
administrative user to another group!
Enter password []:

Set the password so that user cannot logon? (y/n) [n]: y

Just hit return when you're asked for a password for this user, and adduser will give you a chance to set up the
password so the user cannot log on. This is what you want; this administrative user should never need to log on for

any reason.

Now that you have an administrative owner and a group for it, you can assign ownership of files to that user. A user

and a group own every file. You can see existing file ownership and permissions with “Is -I". k Many new sysadmins
pay close attention to the owner, and to the world permissions, but only skim the group permissions.

#ls -l

total 29

-rw-rw-r-- 1 root wheel 27136 Sep 14 09:36 filel
-rwxrwxr-- 1 root wheel 1188 Sep 14 09:35 file2
#

Here, filel can only be read or written to by root or members of the group wheel, but can be read by anyone. Root or
any member of the group wheel can read file2. If you're in the wheel group, you don't need to become root to edit or
read file2 file; you can just open your text editor and go!

To change the owner of a file, use chown(1). To change a group owner on a file, use chgrp(1). Both take the same
syntax; the name of the new owner and the filename.

chown dns filel
chgrp dns filel

#1s -l filel
-rw-rw-r-- 1 dns dns 27136 Sep 14 09:36 filel
#

This file is owned by the user dns and in the group dns. Anyone who is in the dns group can read and write to this file,
without using the root password. Finally, this file can be read by the nameserver. Add your junior administrators to the
dns group in /etc/group, and abruptly they can edit files owned by the dns group without the root password.

The only thing the DNS administrators might need the root password for now is to restart the nameserver. This is
easily dealt with by setting up a cron job to reload the nameserver on a regular basis. These admins still might want to
reload the nameserver manually on special occasion, however. That's where sudo comes in.

H]If you forget how UNIX permissions work, take a look at Is(1).

Hiding Root with Sudo

While proper use of groups can almost eliminate the need to give out the root password to edit files, that won't help
with certain commands that can only be run by root. You could set up a cron job to, say, reload the nameserver each
day at midnight, but on occasion your DNS administrator might need to restart the nameserver by hand. The ndc(8)
command that's used for nameserver administration can only be run by root. Because root is an all-or-nothing affair,
traditionally people who have had one minor task to perform have needed the root password.

OpenBSD includes the sudo(8) program and its associated tools, which implement fine-grained access control for
commands that can only be run as particular users. With proper setup, the systems administrator can allow others to
run any command as any other user. Sudo(8) is a very powerful tool, and can be configured to allow or restrict almost
anything in any combination. This makes the documentation quite thick, with the result that the documentation tends to
scare off new users. We're going to do a basic sudo setup that will cover almost all uses, but you should be aware that
many more combinations are possible, and are documented in sudo(8) and sudoers(5).

Why Use Sudo?

Other than the obvious fine-grained access control sudo provides, there are a few other benefits to using sudo. One of
the biggest advantages is the command logging. Every sudo(8) command is logged, making it very easy to track who
has done what. Also, once you have sudo(8) configured correctly, the senior sysadmin can change the root password
and not give it out. Nobody should need the root password if they have the correct sudo permissions, after all!
Reducing the number of people who have the root password can help reduce security risk.

Also, sudo(8) can be run on almost all UNIX and UNIX-like operating systems. What's more, a single configuration file
can be used on all of these systems, vastly easing administrator overhead.

Disadvantages to Sudo

By far, the most common disadvantage to sudo(8) is that junior administrators don't like it. If people have traditionally
had root access on a system, they will perceive that they're losing something when the senior administrator
implements sudo(8). The key to overcoming this is to make sure that people have the access that they have to actually
perform the tasks that they're responsible for. If a junior administrator complains that he cannot perform a task, it
means that he has either overreached his responsibilities or he needs more privileges.

The permissions syntax can be confusing until you understand it. Getting everything correct can be difficult the first
time. Once you understand how sudo(8) manages its permissions, however, it's very quick and easy.

Finally, a faulty sudo(8) setup can create security holes. A thoughtless configuration will create holes in the system that
a clever junior administrator can use to actually become root. This problem is best dealt with by a combination of

careful configuration and administrative policy. =l
Overview of Sudo

In short, sudo(8) is a setuid root wrapper that can run other commands as any user. It takes the command you want to
run and compares it to its internal list of permissions and privileges. If sudo's permissions allow that particular user to
run that command as the specified user, sudo runs that command. As root can run commands as any user, sudo can
also run commands as any arbitrary system user. You can use this to give any user the ability to run particular
commands as root, as any other user, or any combination desired.

The sudo system has three pieces. The first is the actual sudo(8) command, the setuid root wrapper. There's also a
configuration file, /etc/sudoers. This file describes who may run what commands as which user and is fully
documented in sudoers(5). Finally, the visudo(8) command allows administrators to edit the sudoers file without risking

corruption of the sudo system. We'll consider each component in turn.

visudo

If the syntax in your sudoers file is incorrect, sudo will not run. If you're relying on sudo to provide access to the
sudoers file and you corrupt the sudoers file, you can simultaneously lock yourself out of root-level activities on the
system and be unable to correct your error. This is bad. Visudo(8) provides some protection against this sort of error.

Much like vipw(8), visudo(8) locks the file so only one person can edit the configuration file at a time. It then opens the
sudo configuration file in an editor (vi(1) by default, but it respects the $EDITOR environment variable). When you exit
the editor, visudo parses the file and confirms that there are no sudo syntax errors. This is not a guarantee that the
configuration will do what you want, merely a confirmation that the file is actually valid. Visudo(8) will accept a
configuration file that says "nobody may do anything via sudo" if the rules are properly formatted.

If visudo finds an error when you exit the editor, it will print out the line number and ask you what you want to do.

visudo
>>> sudoers file: syntax error, line 44 <<<
What now?

Here, we've made an error on line 44. You have three choices: edit the file again, quit without saving any of the
changes you made, or force visudo to write the sudoers file you created.

If you press "e", visudo will send you back to the editor. You can go to the line it complained about, and try to find your
error.

If you enter "x", visudo will quit and revert the configuration file to what it was before you started editing. Your changes
will be lost, but that may be all right. It's better to have the old, working configuration than to have a new, nonfunctional
configuration.

Entering "Q" forces visudo to accept the file, syntax error and all. If your configuration file has incorrect syntax, sudo(8)
will not run. Essentially, you're telling visudo(8) to break sudo(8) until such time as you log in as root to fix the problem.
This is almost certainly not what you want to do!

letc/sudoers

The sudoers file tells sudo who may run which commands as which users. OpenBSD stores the sudoers file as
letc/sudoers. (If you're using this section as a reference for the sudo system on another operating system, finding the
sudoers file is your problem.) Never edit this file directly, even if you think you know exactly what change you want to
make; always use visudo(8).

The various sample sudoers files you'll find on the Internet frequently look horrid and complicated, as they
demonstrate all the nifty things sudo can do. At this stage you don't want to do nifty things — just boring, simple things
like give particular users access to run certain commands. The bare syntax is very simple, however. Each rule entry in
sudoers has the following format:

E username E host= E command
The username is the username of the user who may execute the command or an alias for the username.

The host is the host name of the system where this rule applies. Sudo is designed so you can use one sudoers file
on all of your systems. This allows you to set per-host rules.

The & command space lists the commands this rule applies to. You must have a full path to each command name, or
sudo will not recognize it! (You wouldn't want people to be able to adjust their $PATH variable to access renamed
versions of commands, now would you?)

You can use ALL keyword in any of these fields to match all possible options.

For example, suppose | trust user "chris" to run absolutely any command as root, on any system.

chris ALL = ALL

Giving a single junior sysadmin total control of one of my systems isn't very likely. As Chris works for me, | know what
duties | have assigned him and exactly what commands | want him to be able to run. Suppose Chris is in charge of the
nameserver portion of this system. We control actual editing of the zone files with group permissions, but that won't
help when the nameserver must be started, reloaded, or stopped. Here, I'll give him permission to run just the name
daemon controller program, ndc(8), on any machine.

chris ALL = /usr/sbin/ndc

If I'm sharing this file across several machines, it's quite probable that many of those machines are not even running a
nameserver program. Here, I'll restrict which machine Chris may run this program on to the server called "dns1."

chris dnsl =/usr/sbin/ndc

On the other hand, Chris is the administrator of the email server "maill.” This server is his responsibility, and he can
run any commands on it whatsoever. | can set entirely different permissions for him on the mail server and yet use the
same sudoers file on all the systems.

chris dnsl = /usr/sbin/ndc
chris mail = ALL

Multiple Entries in a Field

You can specify multiple entries in a single field by separating them with commas. Here, I'd like Chris to be able to
mount floppy disks with mount(8), as well as control the nameserver.

chris dnsl = /usr/shin/ndc, /bin/mount

Running Commands as Non-root Users

You can specify a username in parentheses before a command to say that the user can use sudo to run those
commands as that particular user. For example, suppose we have our nameserver set to run as the user "named,"
and all commands to control the server must be run as that user.

chris dnsl = (named) /usr/shin/ndc

letc/sudoer Aliases

As you can imagine, once you have several different machines with multiple administrators with different levels of
privilege, this gets complicated very quickly. When you have a few users with identical privileges, and large lists of
commands that you'd like them to be able to use, maintenance becomes a challenge, as you have to wade through
long lists of users, commands, and machines. Aliases can simplify these tasks and greatly clean up your sudo(8)
configuration.

Basically, an alias is a group of users, hosts, or commands. When a user's duties change, you can just add them to
the appropriate user alias to give them correct privileges. If you want your system operators to be able to back up the
system but not restore data, you can remove restore(8) from their command alias. When you install a new server,
adding the server name to the proper server alias will allow you to instantly give sysadmins the proper permissions to
do their jobs.

An alias must be defined before it can appear in the sudoers file. For that reason, aliases generally appear at the top of
the file. Each alias entry has a label saying what sort of alias it is, a label for the alias, and a list of the members of that
alias.

User Aliases

User aliases are groups of users and are labeled with the string User_Alias. They contain a list of users that are in that
alias.

User_Alias DNSADMINS = chris,mwlucas

The user alias DNSADMINS contains two users, mwlucas and chris.

Run as Aliases

A"run as" alias is a special type of user alias. This lists users that other users can run commands as. We earlier
mentioned that the nameserver could be run as the user "named." The DNS administrator would need to be able to
run commands as that user, and you might have a run as alias for that. Many database applications require their own
user, and run as that user. In many cases, a system administrator responsible for an application would also want to be
able to run system backups as the user "operator”. A run as alias allows you to do exactly that; one user can execute
commands as another user, as ifi names could be listed in parentheses in front of
the command, as described in "Running Commands as Non-root Userd." Or, you could just create a single run as alias
to group these commands. Run as aliases are labeled with Runas_Alias.

Runas_Alias APPADMIN = dbuser,operator

Host Aliases

A host alias is just a list of hosts. It's labeled with the string Host_Alias. A host alias can be defined in terms of host
names, IP addresses, or network blocks. Remember, if you're using host names your sudo configuration could be
vulnerable to DNS problems! Here are examples of all three:

Host_Alias DNSSERVERS = dnsl,dns2,dns3
Host_Alias SECURITYSERVERS =192.168.1.254,192.168.113.254
Host_Alias COMPANYNETWORK = 192.168.1.0/16

Command Aliases

A command alias is a list of commands. They're labeled with the string Cmnd_Alias. Here, we have an alias that
includes all the commands necessary to back up or restore the system to or from tape.

Cmnd_AliasBACKUPS = /bin/mt,/sbin/restore,/sbin/dump

You might have a command alias that includes all the commands in a particular directory. Suppose we have a custom
application that runs as a particular user and places all of its commands in the app user's home directory. Rather than
list all the commands, you can just list a directory and use a wildcard to include everything in the directory.

Cmnd_AliasDBCOMMANDS = /usr/home/dbuser/bin/*

Long Lines

Every entry in /etc/sudoers must be on a single line. This can make the lines very long. If you have a long list of alias
members or rules, you can skip to another line by using the \ character at the end of each incomplete line.

Cmnd_Alias SHELLS = /bin/sh, /bin/csh, /usr/local/bin/ksh, \
lusr/local/bin/tcsh, /usr/local/bin/bash

Using Aliases in /etc/sudoers

To use an alias, just put the alias name in the rule where you would normally list the user, command, or host name.
Here, we've previously defined a user alias DNSADMINS. The users listed in the DNSADMINS alias get to run any
commands at all on all of our servers.

DNSADMINS ALL = ALL

Let's suppose that our user Phil has to manage an application that runs as a particular user. He can run any command
on the system as this application user. We defined a run as alias in the last section for the user alias, APPADMIN, and
an alias for commands needed to run the application, DBCOMMANDS.

phil ALL = (APPADMIN)DBCOMMANDS

As the application administrator, Phil might also have to run backups. We have already given the APPOWNER run as
alias operator privileges, and we have a separate command alias for backup commands. We can combine them all
like this:

phil ALL = (APPOWNER) DBCOMMANDS, (APPOWNER)BACKUPS

This is much simpler to read than what this rule expands to.

phil ALL = (dbuser,operator)/usr/home/dbuser/bin/*\
(dbuser,operator)/bin/mt, (dbuser,operator)/shin/restore,\
(dbuser,operator)/sbin/dump

Some of the permissions granted by sudo in this case are unnecessary — having the database user run as alias is not
necessary for running backups. Still, it's far tighter than just giving Phil the root password! You can also redefine rules
to restrict your users as tightly as you desire.

Nesting Aliases

You can include aliases in aliases. For example, could group the DBCOMMANDS alias and the BACKUPS commands
into a single group of commands.

Cmnd_Alias DBADMINS = BACKUPS,DBCOMMANDS

Using System Groups as User Aliases

Sudo(8) can pull group information from the system and incorporate it into sudoers as a user alias. Rather than
explicitly define a user alias, you can give the OpenBSD group name preceded by a percent sign (%) to indicate it's a
group name.

%wheel ALL =ALL

Anyone in the system's wheel group can issue any command as root, on any server.
Duplicating Alias Names

You can reuse alias names. The user alias DBADMINS is not the same as the command alias DBADMINS. It's quite
possible to have entries like this.

Cmnd_Alias DBAPP = /usr/home/dbuser/bin/*
Host_Alias DBAPP = server8,serverl2,serverl5
RunasAlias DBAPP = dbuser,operator
User_Alias DBAPP = chris,mwlucas

DBAPP DBAPP = (DBAPP) DBAPP

If you do this, anyone who has to debug with your sudo(8) configuration will curse your name at great length. Even if
you consider being cursed as a job perk, things like this tend to result in phone calls during the middle of whatever
scant hours the senior sysadmin is permitted to sleep in.

Using Sudo

Now that you understand how sudo permissions are set, let's look at how to actually use sudo. Tell sudo that your
account has privileges to run any command. (Because any readers of this book should already have root on at least
one system — preferably their OpenBSD test box — this won't be a security issue.)

Sudo and Passwords

The first time you run sudo(8), it will prompt you for a password. Enter the password for your own account, not the root
password. If you give an incorrect password, sudo will insult your typing abilities, mental facilities, or ancestry, and let
you try again. After three incorrect passwords, sudo gives up on you. You'll have to re-enter the command you want to
run.

Once you enter a correct password, sudo(8) records the time. If you run sudo(8) again within five minutes, it won't ask
you for a password. After you don't use sudo for five minutes, however, you must re-authenticate. This makes work
easier when you're issuing a series of commands under sudo, but times out reasonably quickly in case you walk away
from the computer.

Checking Sudo Permissions

When you're a user on a system with sudo, one thing you'll probably want to know is what commands the systems
administrator has permitted you to run. Sudo's -l flag will tell you this:

sudo -

Password:

User mwlucas may run the following commands on this host:
(root) ALL

#

If you had tighter restrictions, they would be displayed.

Running Commands Under Sudo

To run commands via sudo, just put the word "sudo" before the command you actually want to run. For example,
here's how you would become a root by using su via sudo:

#sudo su
Password:
#

Using sudo(8) to become root simply allows the senior sysadmin keep the root password a closely held secret. This
isn't entirely useful, as with unrestricted sudo access junior administrators can change the root password. Still, it's a
start toward keeping the system more secure.

You can run more complicated commands under sudo(8), with all of their regular arguments. For example, "tail -f" is
excellent to view the end of a log file, and to have new log entries appear on the end of the screen. Some log files are
only visible to root — for example, the log that contains sudo access information. You might want to view these logs
without bothering to become root.

sudo tail -f /var/log/authlog

openbsd/usr/src/usr.bin/sudo;sudo tail -f /var/log/secure

Jul 29 13:24:19 openbsd sudo: mwlucas : TTY=ttyp0 ; PWD=/home/mwlucas ; USER=root
; COMMAND-=Iist

Jul 29 13:30:03 openbsd sudo: mwlucas : TTY=ttyp0 ; PWD=/home/mwlucas ; USER=root
; COMMAND-=/usr/bin/tail -f /var/log/authlog

Running Commands as Other Users

You can choose to run commands as a user other than root, if you have the appropriate permissions. For example,
suppose we have our database application where commands must be run as the database user. We saw in
/etc/sudoers how to set up permission to do this. You tell sudo to run as a particular user by using the "-u" flag and a
username. For example, the operator user has the privileges necessary to run dump(8) and back up the system.

sudo -u operator dump /dev/sd0s1

Excluding Commands from ALL

Now that you know the basics of sudo, let's look at a common situation that trips up even experienced systems
administrators. Sometimes you want to disallow users from executing certain commands, but give them access to
every other command. You can try to do this with the "I" operator, but it's not entirely effective. Because it's a popular
setup, however, we'll discuss how this works and then what's wrong with it.

First, define command aliases that contain the forbidden commands. Popular commands to exclude are shells (if you
execute a shell as a user, you become that user) and su(1). Then give your user a command rule that excludes those
aliases with the "I" operator.

Cmnd_Alias SHELLS = /bin/sh,/bin/csh,/usr/local/bin/tcsh
Cmnd_Alias SU = /usr/bin/su
mwlucas ALL = ALL,!SHELLS,!SU

Looks great, doesn't it? And it seems to work.

openbsd~;sudo sh

Password:

Sorry, user mwlucas is not allowed to execute '/bin/sh' as root on openbsd.
openbsd-~;

Remember, sudo uses full paths for all the commands. You're allowing the user to run any command they want,
except for a few that are specified by their full path. All that user needs to do is change their path to one of these
commands to run it! The easiest way to do this is by copying the command to another location.

#id

uid=1000(mwlucas) gid=1000(mwlucas) groups=1000(mwlucas), O(wheel)

cp /bin/sh /tmp/sh

sudo /tmp/sh

#id

uid=0(root) gid=0(wheel) groups=0(wheel), 2(kmem), 3(sys), 4(tty), 5(operator),

20(staff), 31(guest)

#

Hello, root!

This sort of restriction can be bypassed trivially by anyone who understands even the basics of how sudo works. This
problem is well documented in the sudo manual and the other literature. And people still insist upon using it to protect
production systems!

The lesson is: if you have users that you do not trust with unrestricted access to the system, do not exclude
commands from their sudo permissions. Instead, explicitly list the commands that they may use, and leave it at that. If
these users want more access, they will have to ask you for particular commands — and if you don't trust them, you'll
want to know what they're running!

Sudo Logs

All this tracking and accountability is nice, but where does it account to? Sudo messages are logged to /var/log/secure.
Each log message contains a time stamp, the name of the user, the directory where sudo was run, and the command
that was run.

Jul 29 11:21:02 openbsd sudo: chris : TTY=ttypO ; PWD=/home/chris ; USER=root ;
COMMAND-=/sbin/mount /dev/fd0 /mnt

In the worst case, you can backtrack exactly what happened when something breaks. For example, if one of my
systems doesn't reboot correctly because /etc/rc.conf is missing or corrupt, | can check the sudo logs to see who
touched it.

Jul 29 11:34:56 openbsd sudo: chris : TTY=ttypO ; PWD=/home/chris ; USER=root ;
COMMAND=/bin/rm /etc/rc.conf

If everyone had been using su(1) or even using "sudo su" instead of sudo(8) to run each individual command, | would
have had no clue about why the system broke. With sudo(8) logs, once | get this computer up and running again |
know who to blame. In this case, my ability to justifiably scream at Chris until | feel better in and of itself makes sudo(8)
worth implementing.

E]Despite the hopes of managers around the world, technical solutions only work so well at solving administrative
problems. If people refuse to behave, eventually you need to break out the Big Stick and smack them until they get the
idea.

Chapter 8: Networking

Overview

TCP/IP:
Learn how it fits together,
You cannot escape.

BSD is famous for its network performance. In fact, the TCP/IP network protocol itself was first developed in the days
when BSD lived in Berkeley, and BSD was the first major deployment of TCP/IP. Many other operating systems have
chosen to use the BSD network stack because of its high performance and liberal licensing. While other protocols

were considered more exciting during the 1980s, the wide availability of the BSD stack made it the de facto standard.

Many systems administrators today have a vague familiarity with some of the basics of networking, but don't really
understand how it all hangs together. Good sysadmins come from all walks of life, but they all have one thing in
common: They understand the network. Knowing what an IP address really is, how a netmask really works, and what
a port number means is part of what transforms a novice into a professional. We'll cover some of these issues here.

Note TCP/IP is a very dense topic, with many details, "gotchas," and caveats. While this section gives a good
overview, we cannot possibly cover everything. If you want to know more about TCP/IP, pick up one of the big
thick books on the subject. My favorite is Stevens' s TCP/IP lllustrated, volumes 1 through 3.

Network Layers

Every piece of the network is divided into layers. Each layer handles a specific part of the networking process and
interacts only with the layers above and below it to provide a solid connection. New users often have trouble
understanding this and laugh when it's said that layers "simplify" the networking process. We'll go over it in some
detail, but the important thing to remember right now is that each layer only communicates with the layer directly
above it and the layer directly beneath it.

The classic OSI network layer diagram has seven pieces, is exhaustively complete, and covers any situation in any
network protocol. The Internet isn't "every situation" however, and this isn't a book about networking. We're limiting our
discussion to the Internet and other networks that use the same protocols, so we can simplify this somewhat and
divide the network into four layers: the application, the logical protocol, the physical protocol, and the physical layer.

The Physical Layer

At the very bottom we have the physical layer, which includes the network card and the wire, fiber, or radio waves
running out of it. This layer includes the physical box that is a switch, hub, or base station, wires running from that
device to the router, and the fiber that runs from your office to the telephone company. The telephone company switch
is part of the physical layer, as are the transcontinental fibers. If someone can smash, drop, or cut it and
inconvenience you, it's part of the physical layer. From this point on we're going to refer to the physical layer as a
"wire," although it can be just about any sort of hardware.

A piece of wire, or some other physical media for signals to travel over — it's really that simple. If your wire is intact
and meets the requirements of the physical protocol, you're in business. If not, you're hosed. Without a physical layer,
the rest of the network will not function, period, end. One of the functions of Internet routers is to connect one sort of
physical layer to another. The physical layer has no decision-making abilities and no intelligence; everything it does is
dictated by the physical protocol.

The Physical Protocol Layer

The physical protocol layer is where things get interesting. The physical protocol talks over the wire. It encodes
transmissions in the actual ones and zeros that are sent over the physical layer in the appropriate method for that sort
of physical layer. For example, Ethernet uses Media Access Control (MAC) addresses and the Address Resolution
Protocol (ARP); dial-up and wide area networks use the Point-to-Point Protocol (PPP). The physical protocol has to
know how to speak to the physical layer.

While Ethernet and PPP are the most popular physical protocols, you will find many other protocols such as
Asynchronous Transfer Mode (ATM), High Level Data Link Control (HDLC), and Internetwork Packet Exchange (IPX),
as well as combinations such as the PPP over Ethernet used by some home-broadband vendors. While OpenBSD
supports many different physical protocols, it doesn't support them all. If you have some unusual networking
requirements, you will want to investigate whether OpenBSD can support them.

Some physical protocols have been implemented over many different physical layers; for example, Ethernet has been

transmitted over twoax m, coax, cat3, catb, cat7, optical fiber, and radio waves. With minor changes in the device
drivers, the physical protocol can address any sort of physical layer. This is one of the ways in which layers simplify
the network. We will discuss Ethernet and PPP in some detail. Once you understand those, you should be able to
figure out how to use other protocols without too much difficulty.

The physical protocol passes information to and from the physical layer to and from the logical protocol layer.
The Logical Protocol Layer

A computer program intended to run over any sort of network, over any sort of physical layer and physical protocol,
cannot worry about the inner working of the physical protocol or physical layer. The logical protocol provides a

consistent interface to programs that need to access the network, no matter which sort of physical layer it is running
over. The most popular logical protocols are Internet Protocol (IP) and Transmission Control Protocol (TCP). These
protocols provide things such as IP addresses and port operations. When a packet is transmitted, it includes a flag that
identifies which protocol it uses. Logical protocols can work side by side and can even depend upon one another.

There are many logical protocols. See the file /etc/protocols for a mostly complete list. The ones we're most concerned
with are IP and TCP (already mentioned), Internet Control Message Protocol (ICMP), and User Datagram Protocol
(UDP).

The logical protocol talks to the physical protocol layer and to applications.
Applications

You can call applications another layer of the network. This is anything that the end user sees or any server program.
Web browsers are applications, as are web servers, as are shell prompts and email clients, or compilers, or anything
else. Applications only have to worry about the logical protocol and the application user.

m"Twoax" required two thick pieces of cable for each network connection. | saw this on an IBM System 38 in the fall of

1999, on a system that didn't speak TCP/IP. The moral of the story is: Be careful with what you implement today,
because you may have to live with it for a very long time.

The Life and Times of a Network Request

Now that you understand something about the function of each layer, let's look at how this works in the real world.
Some of this touches on stuff that we'll cover later in this chapter, but if you're reading this book you're probably
conversant enough with networks that you'll be able to follow it. If you have trouble, you may want to read this section
once again after finishing the chapter.

Suppose a user on a computer connected to the Internet via your company's Ethernet wants to look at the Yahoo web
page. The user interfaces with the application and types in the URL. The web browser needs to know how to make
requests of the next layer down, so it translates the host name into an IP address and sends a request for a
connection to TCP port 80 on that IP address down to the logical protocol layer.

The logical protocol layer examines the request it has received from the application. Because the application has
requested a TCP/IP connection, the logical protocol allocates the appropriate system resources for that sort of
connection. The request is broken up into chunks, or packets, to be sent over Internet Protocol.

From here on, the logical protocol doesn't care about the application's actual request; instead, it wants to deliver these
packets to the address required. The Internet Protocol subsystem checks its internal tables to see how to reach the
requested IP address from this computer. It then bundles up the packets, adds on the IP routing information, and
hands the packets to the physical protocol layer.

The physical protocol layer examines the request from the logical protocol layer. The logical protocol doesn't know
anything about the packets it is given; it doesn't know that this is a web request or its final destination. All it knows
about is getting each packet to its destination. The physical protocol just knows that it needs to add its own information
to the packet. This packet-plus-physical-protocol chunk of data is called a frame. Finally, it hands the frame off to the
physical layer for broadcast on the local Ethernet.

The physical layer simply transmits a bunch of zeros and ones over the local network. It has no idea what sort of
protocol is being spoken, or how these numbers may be echoed through a switch, hub, or repeater, but one of the
hosts on this network is presumably the router out of the network.

The physical layer of your router accepts these zeros and ones and hands them up to the physical protocol. The
physical protocol will strip off the Ethernet information and hand the resulting packet up to the logical protocol handler
within the router. The router's logical protocol layer examines the packet, specifically checking the destination address.
Once it knows where the packet is supposed to go, it can consult its internal routing tables and decide how to get the
packet to that destination. It then hands the packet down to a physical protocol layer. This might be another Ethernet
interface, or (more likely) a PPP interface out over a T1.

Your wire can go through various physical changes as your data travels. For example, your T1 line can be aggregated
into a DS3 over fiber, which could then be transformed into an OC192 cross-country link. Thanks to the wonders of
layering and abstraction, you don't need to know about any of these. (2
When your request finally reaches its destination, the computer at the other end of the transaction, it starts a return trip
all the way back up the protocol stack. The physical layer gives each frame to the physical protocol, which does some
basic sanity checking on the frame to be sure it hasn't been corrupted in transit. Once the physical protocol layer is
satisfied that the frame is correct, it removes the physical protocol encapsulation and hands a naked packet up to the
logical protocol.

The logical protocol, in turn, performs its own sanity checking. Remember how the logical protocol broke up the
request into packets for easy handling? Now it assembles the packets into a stream of data. It then hands this stream
of data to the application — in this case, a web server.

The application can process the request and return an answer. This answer descends the protocol stack again and
travels across the network, bouncing up and down various protocol stacks along the way as necessary.

And if this doesn't all happen very, very quickly, your user will call the help desk and complain.

This seems like an awful lot of work, but it's an excellent example of why layering is important. Each layer knows only
what it absolutely must about the layers above and below it, making it possible to swap out the innards of layers if
desired. When a new physical protocol is created, the other layers don't have to care; the logical protocol just hands
the request off to the physical protocol layer and lets that layer do its thing. When you have a new type of network
card, all you need to do is write a driver that interfaces with the physical protocol; the application and logical protocol
layers don't care.

@]Unless, of course, some of it breaks, in which case your managers will want to know exactly what sort of equipment
it is, how long it will take to repair, and why you need it anyway.

Networking Basics

This section introduces the basics of networking in OpenBSD and some tools you need to be able to work well with it.
Some parts are common to all sorts of TCP/ IP networks, such as IP addresses. Others are specific to BSD-based
operating systems, such as mbufs. The power offered by OpenBSD requires more understanding than that needed to
run a point-and-click operating system.

Mbufs

OpenBSD optimizes networking by using mbufs. An mbufis a discrete chunk of kernel memory set aside for
networking. A packet starts off life as a mbuf. Rather than copying the contents of a packet to the next network layer,
each layer passes around a pointer to the mbuf. Copying the data consumes far more time and resources than simply
handing off responsibility for the data while leaving the data itself in the same spot.

Mbufs are carefully designed to not require dramatic changes. When the logical protocol creates an mbuf, it leaves
space at the front and back for physical protocol headers, which further minimizes the amount of copying required. A
packet becomes a frame within the same mbuf.

Those of you who are C programmers should recognize a pointer here. The pointer to the mbuf is handed around,
while the mbuf itself remains constant. The rest of us just need to have a basic idea of what an mbuf is. You'll keep
tripping across mentions of mbufs throughout documentation on the OpenBSD network stack, so it's important to at
least have a vague awareness of them.

How Many Mbufs?

Each kernel allocates a certain number of mbufs. When you run out of mbufs, you can't push more data. This raises
the obvious questions: How many mbufs do you have, and how can you get more?

The netstat(1l) command is a general interface into the network stack. It has many functions that are wildly different.
While this is definitely a deviation from the UNIX philosophy of "small tools that each do one thing well," netstat has
been this way for so long that nobody's really inclined to change it. The "-m" flag to netstat gives some basic mbuf
information.

netstat -m
ﬂ 18 mbufs in use:

E 1 mbuf allocated to packet headers

17 mbufs allocated to socket names and addresses

0/12 mapped pages in use
36 Kbytes allocated to netvvorkE (12% in use)
0 requests for memory denied
0 requests for memory delayed
0 calls to protocol drain routines
#

Here, we see how many mbufs have been used and ¥ what part of the network they're being used for. We also can
see how much of the kernel memory reserved for network operations is in use. This particular system has lots of
kernel memory left and is using very few mbufs.

The number of mbufs a system has is _controlled by the NMBCLUSTERS kernel option. Changing this requires
patching your kernel. Take a look at for some discussion of what this implies. Generally speaking, your

system will complain if it starts running out of mbufs; you will see "mclpool limit reached" messages on the console
and in /var/log/messages.

Bits

As a systems administrator, you're going to start seeing terms like 32-bit and 48-bit more and more frequently. Too
many sysadmins just nod and smile when they see these terms, but don't really understand what they mean. If you're
running OpenBSD, that means you have an interest in security, and there is no security without understanding, so
we're going to briefly discuss bits here.

You probably already know that a computer treats all data as zeros and ones, and that a single one or zero is a bit.
When a protocol specifies a number of bits, it's talking about the number as soon by the computer. A 32-bit number
has 32 digits, all of which are either one or zero. You were probably introduced to binary math, or base 2, back in
elementary school and remembered it just long enough to pass the test. Binary math is simply a different way to work
with the same numbers we see every day.

In decimal math (or base 10), the math we typically use every day to balance our checkbook or figure out how much
over the speed limit we're driving, digits run from 0 to 9. When you want to go above the highest digit you have, you
add a digit on the left and set your current digit to 0. (This is the whole "carry the one" thing you learned many years
ago, and now probably do without conscious thought.) Binary math is exactly the same, except that digits run from 0 to
1. When you want to go above the highest digit you have, you add a digit on the left and set your current digit to 0. It's
the same thing, just with fewer digits.

Here are the first few decimal numbers converted into binary as an example.

Decimal Binary
0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

When you have a 32-bit number, such as an IP address, you have a string of 32 ones and zeros. Ethernet MAC
addresses are 48-bit numbers. Got that? Good.

Just to make things difficult, UNIX also uses hexadecimal numbers in some cases (such as MAC addresses and
netmasks). Hexadecimal numbers are 4 bits long; each digit goes up to 16. This is accomplished by using the
numbers 0 through 9, plus the letters A through F. When you reach the last digit, you reset the current digit to zero and
add a digit to the left of the number. For example, to count to sixteen in hexadecimal you go "1, 2, 3, 4,5, 6, 7, 8, 9, A,
B,C,D, E, F,10."

Numbers in hexadecimal are usually marked with a leading "Ox." The number 0x11 is a hexadecimal number equal to
the decimal number 17, while the number 11 is plain old decimal 11. (If a hex number is not marked by a leading Ox,
it's usually in a place where the output is always in hex numbers.)

When you're working with hexadecimal, decimal, and binary numbers, the simplest thing to do is to break out a
scientific calculator. All modern medium-end or better calculators have functions to convert between the three

systems. Even the Microsoft Windows calculator has that function. If you want to stick with OpenBSD, you can install
lusr/ports/math/hexcalc (see).

IP Addresses and Netmasks

An IP address is a unique 32-bit number assigned to a particular network node. Some IP addresses are more or less
permanent, such as those assigned to servers. Others change as required by the network, such as those used by
dial-up clients. Individual machines on a shared network get adjoining IP addresses; we'll explore what this means a
little later.

Rather than expressing that 32-bit number as a single number, IP addresses are broken up into four 8-bit numbers.
(We'll see why in a little bit.) These numbers are expressed as decimal numbers. While 192.168.1.1 is the same as the
four binary numbers 11000000.10101000.00000001.00000001, or 11000000101010000000000100000001, or even

the hexadecimal c0.a8.1.1 or 0x30052000401, the four decimal numbers are easiest to work with. (3]

If your company is hooking up to the Internet, your ISP will issue you a block of IP addresses. Frequently this is a
small block, say, 16 or 32 IP addresses. If your system is colocated on a server farm, you might only get a few IP
addresses. It all depends upon your needs. The size of your IP block determines your netmask — or, the size of your
netmask determines how many IP addresses you have.

If you've done networking for any length of time, you've seen the netmask 255.255.255.0. You might even know that
the wrong netmask will keep your system from working. In today's world, that simple netmask is becoming less and
less common. To understand why this is, you need to understand something about the history of IP addressing.

Many years ago, IP addresses were issued in blocks of three sizes: class A, class B, and class C. (There were also a
few chunks of class D and class E space, but those really aren't relevant to the discussion.) This terminology has been
obsolete for quite some time, but we'll use it as a starting point.

Class A was very simple: The first of the four numbers in an IP address were fixed. The InterNIC might issue you a
class A like "10.0.0.0." You could assign any of the last three numbers in any manner you liked, but all your IP
addresses began with 10. For example, you could delegate 10.1.0.0 through 10.1.1.255 to your data center, 10.1.2.0
through 10.1.7.255 to your Detroit office, and so on. Only very large companies, such as Ford and Xerox, as well as
influential academic computing institutions such as MIT, received class A blocks.

In a class B block, the first two of the four numbers in the IP address were fixed. Your class B block would look
something like 192.168.0.0. Every IP address you used internally began with the first two numbers 192.168, but you
could assign the last two numbers as you wanted. Many midsized companies got class B blocks.

Similarly, a class C block had the first three numbers fixed. This was the standard for small companies. The ISP would
issue a block like 209.69.178.0 and let you assign the last number as you wanted.

This scheme wasted a lot of IP numbers. Many small companies don't need 256 IP addresses. Many medium-sized
companies need more than 256, but fewer than the 65,000 in a class B block. And almost nobody needs the full 16
million addresses in a class A block. Still, those were the choices. Before the Internet boomed, they were good
enough. Remember, back in the 1980s the thought that private individuals would hook up to the Net from home, for
entertainment, was laughable.

Today, IP addresses are issued by prefix length, commonly called a slash. You will see IP blocks such as
192.168.1.128/25. While this looks confusing, it's merely a way of using classes with much greater granularity. You
know that each number in an IP address is 8 bits long. By using a class, what you're saying is that a certain number of
bits are "fixed" — you cannot change them on your network. A class A address has 8 fixed bits, a class B has 16, and
a class C has 24.

This isn't a class in binary math, so | won't make you draw it out and do the conversion. But think about an IP address
as a string of binary numbers. On your network you can change the bits on the far right, but not the ones on the far left.

There's no reason that the boundary between the two must be on one of those convenient 8-bit lines that separate the
decimal versions of the numbers. A prefix length is simply the number of fixed bits you are stuck with. A /25 means
that you have 25 fixed bits, or one more fixed bit than what used to be called a class C. You can play with 7 bits. In the
following sample, your fixed bits are all ones, and the bits you can change are zeros.

11111111.1112111211.11111111.10000000

It's very simple — if you think in binary. You won't have to work with this every day, but if you don't understand the
underlying binary concepts, the decimal conversion looks like total gibberish. With practice, you'll learn to recognize

some bits of decimal gibberish as legitimate binary conversions.
So, that's the theory. What does this mean in practice?

First of all, blocks of IP addresses are issued in multiples of 2. If you have 4 bits to play with, you have 16 IP
addresses (2*2*2*2=16). If you have 8 bits to play with, you have (2/8) 256 IP addresses. If someone says you have
13 IP addresses, you're either sharing an Ethernet with other people or they're wrong.

A netmask is simply another way of specifying how many bits are fixed. In the computing world, an 8-bit number runs
from 0 to 255. If you have 24 fixed bits, also known as a /24, and formerly known as a class C, your netmask is 24
ones followed by eight zeros: 11111111.11111111.11111111.00000000, or 255.255.255.0. If you've been around a
few networks, that should look familiar. If you have a /25, however, you have 25 fixed bits. This comes to
11111111.11112111.11111111.10000000, or 255.255.255.128.

It's not uncommon to see a host's IP address with its netmask attached, e.g. 192.168.3.4/26. This gives you everything
you need to know to get the host on the network. (Finding the default gateway would be another issue, mind you!)

Computing Netmasks in Decimal

You probably don't want to repeatedly convert from decimal to binary and back. Here's a trick to calculate your
netmask while staying in decimal land.

First, learn how many actual IP addresses you have. This will be a multiple of 2. You'll almost certainly be issued a
network smaller than a /24. Subtract the number of IP addresses you have from 256. This is the last number of your
netmask.

For example, if you have a /26, or 64 IP addresses, the last part of your netmask is (256-64=)192. Your netmask
would be 255.255.255.192.

You still need to use a bit of logic to avoid binary conversions. Figuring out legitimate addresses on your network can
be a bit of a pain. If your IP address is 192.168.1.100/26, you'll need to know that a /26 is 26 fixed bits, or 64 IP
addresses. Look at the last number of your IP address, 100. It certainly isn't between 0 and 63, but it is between 64
and 127. The other hosts on your IP block have IP addresses ranging from 192.168.1.64 to 192.168.1.127.

At this point, | should mention that netmasks are frequently shown in hex numbers. You might feel like throwing up
your hands and giving up the whole thing. To simplify your life, I'm including a table of netmasks, IP information, and
general goodness for /24 and smaller networks.

Table 8-1: Netmasks and IP address conversions

Prefix Binary Mask Decimal Mask Hex Mask Available IPs
124 00000000 0 0x00 256

125 10000000 128 0x80 128

126 11000000 192 0xcO 64

127 11100000 224 0xe0 32

128 11110000 240 0xfo 16

129 11111000 248 0xf8 8

/30 11111100 252 Oxfc 4

/31 11111110 254 Oxfe 2

/32 11111111 255 Oxff 1

Unusable IP Addresses

You now understand how slashes, netmasks, and IP address assignments work together and how, for example, a /28
has 16 IP addresses. Unfortunately, you cannot use all of the IP addresses in a block. The first IP address in any
block is the network number. It's used for internal bookkeeping.

Similarly, the last number in any block of IP addresses is the broadcast address. According to the IP specifications,
every machine on a network is supposed to respond to a request to this address. This allows you to ping the
broadcast address and quickly determine which IP addresses are in use. For example, on a typical /24 network, the
broadcast address is x.y.z.255. In the late 1990s, however, this feature was turned into an attack technique. It's now
disabled by default on most operating systems, including OpenBSD.

In any case, the point is that you cannot assign either the first or last IP address in a network to an interface without
causing some problems on the network. Some systems will fail gracefully; others will not. Go ahead, try it sometime —

preferably after hours, when the network is not in use. A

@Yes, you could say that the decimal numbers are easiest to work with in all cases. But that would just show that you
aren't a real computer person and possibly get you burned at the stake.

wOr during peak usage hours, if you want a good story to tell at your next job.

Basic TCP/IP

TCPI/IP is the general label applies to a whole bunch of different protocols that hold the Internet together. Each
protocol has its own rules and methods. We're going to discuss four protocols here: Internet Protocol, Internet Control
Message Protocol, Transmission Control Protocol, and User Datagram Protocol. You can get a partial list of protocols
in /etc/protocols.

IP

IP provides two basic services: the formation of packets that can be transmitted over TCP/IP networks and the
addressing scheme. We've already discussed both of those in as much detail as we're going to, so I'll leave it here. IP
is protocol number 0.

ICMP

Internet Control Message Protocol is a standard for transmitting routing and availability messages across the Internet.
Tools such as ping(8) and traceroute(8) use ICMP to gather their results. ICMP packets are vital to normal network
behavior, but can be used to gather information about your network. We'll examine how this can be avoided without
breaking basic functions in Chapter 17

UbP

The User Datagram Protocol is arguably the most bare-bones data transfer protocol possible that can run over IP. It
has no error handling, no content verification, and no defense whatsoever against data loss. Despite these drawbacks
UDP can be a good choice for particular sorts of data transfer, and many vital Internet services use it.

When a host transmits data via UDP, it doesn't know if the data ever reaches its destination. Programs that receive
UDP data simply listen to the network and receives what comes that way. When that program receives data via UDP,
it has no way to verify the source of that data. While UDP packets include a source address, this is very easily faked.
This is why UDP is called connectionless.

An application using UDP most often has its own error-correction requirements that don't jibe with those provided by
protocols such as TCP. For example, client DNS queries need to time out within just a few seconds. TCP times
connections out after several minutes. Because a system wants to reject a failed DNS request well before that, UDP is
used.

TCP

Transmission Control Protocol includes such nifty things as error correction and packet recovery. The receiver must
acknowledge every packet sent, or it will be retransmitted. Applications that use TCP can expect reliable data
transmission (unless, of course, something goes wrong at the physical layer).

Unlike UDP, TCP is a connected protocol. For data to be transmitted, the two hosts must set up a channel for data to
flow across. One host requests a connection, the other host responds to the request, and then the first host starts
transmitting. This setup process is known as the three-way handshake. The exact specifics are not important right
now, but you should know that this process happens. It will become quite important when we start talking about packet
filtering in Chapter 17. Similarly, once a data transmission is complete the system must do a certain amount of work to
tear down the connection.

How Protocols Fit Together

You can compare IP, ICMP, TCP, and UDP to sitting with your family at a holiday dinner. IP gives every person at the
table a unique chair. ICMP lets you see the other people at the table, and understanding that to hand the peas to your

doddering Uncle Chris you must pass it by Cousin Phil. TCP is where you hand someone a dish and the other person
must say "thank you" before you will let go. Finally, UDP is like tossing a muffin at Aunt Betty: She might catch it, it
might bounce off her forehead, or it could be snatched out of midair by the dog.

Network Ports

Have you ever noticed that computers have too many ports? Well, we're going to add TCP and UDP ports into the mix.
Protocol ports permit one server to provide many different network services over a single protocol, multiplexing
connections between machines.

When a TCP or UDP packet arrives at a system, it requests delivery to a certain port. Server programs attach, or bind
to ports on a system. For example, Internet mail servers generally bind to TCP port 25. Connections intended for the
mail server will try to connect to port 25. This means that other programs could connect to the same machine on other
ports.

The /etc/services file contains a list of port numbers and the services that they're commonly associated with. It's
possible to run almost any service on any port, but by doing so you'll confuse other Internet hosts that try to connect to
your system. If someone tries to send you email, their mail program will automatically connect to port 25 on your
machine. If your server runs email on port 77, and you have a web server on port 25, that mail will never arrive. What's
more, people will never see the web page on that system.

letc/services has a very simple format, with five columns: the official service name, the port number, the protocol, any
aliases for that service, and comments. For example, one service that could be found on many UNIX hosts was Quote
of the Day, also known as gotd. If you check /etc/services, you'll find the following entry:

gotd 17/tcp quote

The Quote of the Day service runs on TCP and can normally be found on port 17. Many services have both the TCP
and UDP ports of a certain number assigned to them, while others have only one of the protocols. For example, the
"echo" service runs on port 7 of both TCP and UDP.

Many programs read /etc/services to learn which port to bind to. Depending on the program, you may have to edit
letc/services to assign that protocol to the port. The software instructions will generally tell you if this is the case.

Like all standards, the lists in /etc/services can be violated. The SSH daemon, sshd, normally listens on port 22, but
I've run it on port 80 to escape firewalls in some unusual circumstances. This all depends on the program you're using
to provide a service.

Low-Numbered Ports

The ports 1024 and below are called low-numbered ports. These are the ports reserved for core Internet infrastructure
protocols and important services such as DNS, SSH, HTTP, and so on. Their standard port assignment is basically
carved in stone. Only programs that start with root-level privileges can bind to low-numbered ports.

What Ports Are Open?

So, programs bind to ports. The two obvious questions here are, "which ports are open" and "what programs are
listening to each?" You can identify this with netstat(1), the same program we used to check mbuf counts.

General Netstat Hints

Any time you use netstat(1) to look at network information you might want to use the "-n" flag. -n tells netstat to not
perform DNS lookups on the IP addresses it sees. If most of your network connections are to IP addresses with
names cached by your nameserver, then your output will be fairly fast even with DNS lookups. If the system must
perform a DNS lookup for every IP address your command will run very slowly, especially if the network between you
and your DNS server is performing badly.

The "-f* flag allows you to select a protocol family to examine with netstat(1). If you're only interested in IPv4
connections, use "-f inet". Other valid values for -f include inet6 (for IPv6 connections), ipx (Novell IPX), atalk

(AppleTalk), and UNIX (pipes). See netstat(1) for a full list of protocols you can select.

Open Ports and Netstat

Netstat's "-a" flag shows open ports and existing TCP/IP connections. If this machine is an active server, you'll aimost
certainly want to use the "-n" flag to avoid the DNS lookups, and you'll want to use the "-f inet" option to specify IP
connections only. (Try it some time without using either -n or -f, just for your own education.) You'll get a long list back,
with six columns.

The first column, PROTO, gives the protocol that this particular connection or listening port is using. We have several
TCP ports open, as well as a few UDP ports.

The Recv-Q and Send-Q columns show how many bits are waiting to be handled on this connection. If you see that
your system has Recv-Q numbers continually, you know that it cannot process incoming data quickly enough.
Similarly, if the Send-Q column keeps having entries, you know that either the network or the other system in the
connection cannot accept data as quickly as you can send it. While occasional bursts of either Send-Q or Recv-Q
entries are normal, individual entries in these columns should disappear quickly. You need to watch your own system
to learn what is normal and what isn't.

The Local Address column is, as you might guess, an open IP address and port number on the local system. The first
four numbers are the IP address, and the port number is appended with a period. For example, 192.168.1.250.22 is
port 22 on the IP address 192.168.1.250. If this entry is an asterisk, a period, and a port number, it means the system
is listening on all available IP addresses for an incoming connection on that port. That particular line does not show
any active connections, but the system is ready to accept one.

The Foreign Address column shows the address and port number on the remote end of any connection.

Finally, the (state) column shows the status of the TCP handshake. You don't need to know all of the possible TCP
connection states right now; just become familiar with what's normal. ESTABLISHED means that a connection is
complete, and data is quite probably flowing over that connection. LAST_ACK, FIN_WAIT_1, and FIN_WAIT_2 mean
that the connection is closing. SYN_RCVD, ACK, and SYN+ACK are all parts of the normal connection creation
process.

Here we look at the netstat output on a brand-new, out-of-the-box OpenBSD install. I'm using SSH to connect to it, but
it has no custom services running.

netstat -na -f inet

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
ﬂtcp 0 0 192.168.1.250.22 192.168.1.200.49182 ESTABLISHED

tcp 0 0 192.168.1.250.22 192.168.1.200.49181 ETIME_WAIT
tcp 0 O E127.0.0.1.587 *x LISTEN

tcp 0 0 127.0.0.1.25 *x LISTEN

tcp 0 O *.ZZH *x LISTEN

tcp 0 0 *37 *x LISTEN

tcp 0 0 *13 *x LISTEN

tcp 0 0 *113 ** LISTEN

tcp 0 0 127.0.0.1.111 ** LISTEN

tcp 0 0 *x111 ** LISTEN

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
ulp 0 0*700 " x

udp 0 0 *798 **

udp 0 0 *512 **

udp 0 0 127.0.0.1.111 **

udp 0 0 *514 **

udp 0 0 *111 **

#

The first entry shows us an existing TCP connection. The local address is 192.168.1.250.22, meaning that the

remote side of my connection is talking to this machine on port 22 of the IP address 192.168.1.250. The remote
machine is 192.168.1.200, and the connection is coming from port 49182. Finally, we see that this connection is
ESTABLISHED,; data is quite possibly flowing over this right now.

We also see a TCP connection that has terminated ff and is in the final stages of teardown.

The next line & shows a port that's listening on the local host, but on no other IP addresses. Only systems that can
connect to 127.0.0.1 can actually connect to this machine. Because the only machine that can do that is the local host,
this port is only available to the local machine.

Shortly thereafter, we & see that the machine is listening to TCP port 22 on all available IP addresses. Because there
is no remote host and no state, this is a daemon listening for incoming connections.

Near the bottom, we §] see a series of available connections on UDP ports. You should rarely, if ever, see a remote
host running over a UDP connection. They tend to appear very briefly.

What's Listening on Ports?

Now that you know which TCP and UDP ports are open, how can you tell which programs are listening on them?
OpenBSD, like many UNIX-like operating systems, supports the Isof(8) program that helps track down which files are
open. (Although Isof is not integrated with OpenBSD, it's available in /usr/ports/ sysutils/Isof.) Although many people
like Isof, it isn't the only way to get this information out of OpenBSD.

You can look in /etc/services and try to identify the program by the port number. This works well if you're certain that
nobody has been tampering with your system. One fun trick an intruder can try is to run a program on a port that
should be used by another program. You might not think anything about port 80 being open on a web server, as that's
traditionally the port used by web servers. If one IP address has an SSH daemon listening on port 80, you'd never
even notice. The only way to be absolutely sure what daemons are running on which ports is to check it yourself.

OpenBSD includes the fstat(1) program, which lists every open file, pipe, or port on the system and various
information about its state. | highly recommend perusing fstat(1), as it is a terribly useful program in many different
troubleshooting situations. The important thing for us at this moment, however, is that it displays which program is
bound to a port. Let's examine TCP port 25, as shown in our example. According to /etc/services this should be
"smtp," or email. It probably is, but it's definitely a good example to track down. Run fstat(1) and search its output for
port 25. Network ports always appear with a colon before their names, so it's a good idea to include the colon.
(Searching for the number 25 in the list of all open files and their states will generate an awful lot of false positives. Go
ahead, try it sometime.)

fstat | grep ":25'

root Esendmail 29452 4* internet stream tcp 0xe0b40d70 ﬂ 127.0.0.1:25
root sendmail 29452 5* internet6 stream tcp OxeOb59004 [::1]:25

#

At the end of the line we see the IP addresses and port numbers that this connection is listening on, and near the
beginning we see the name of the program that is listening on this port. What do you know; this really is the mail
server program! My nasty paranoid suspicions were unfounded — this time.

If you're not sure what a program listening on a port does, be sure to check its man page.

Configuring Interfaces

Almost all network interface operations are performed with ifconfig(8). This program is a general interface
configuration tool that can be used to examine every network interface on your system. To start with, the "-a" flag will
list every interface on your system and its configuration. An OpenBSD system starts with quite a few interfaces, so
don't be surprised at the length of the output! A typical entry for an Ethernet card looks like this:

fxplﬂ : flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> E mtu 1500 E
media: Ethernet autoselect (10baseT) H
status: active E
inet6 fe80::202:b3ff:fe63:e3ec%fxpl prefixlen 64 scopeid 0x2 E
inet 66.43.114.127 netmask Oxfffff800 broadcast 68.43.111.255 i

Not all interfaces have all the fields, but these are a good sample.

The first thing in any entry is the interface name. The interface name is generally the same as the associated driver
with a number added. In PCI cards, interfaces start numbering at zero and go up. (Some drivers, particularly ISA
drivers, have hard-coded interface numbers depending on the IRQ or memory address of the card, and so may not
start at 0.) Thi , fXxp1, means that this is the second card that uses the fxp driver. For a listing of device
drivers, see AZ;endix j or the kernel configuration file and man pages on your release of OpenBSD.

A base install of OpenBSD includes quite a few network interfaces that you have probably never heard of. Most of
these are software interfaces, created by the kernel for various special purposes. Here's a list of their names, and what
they're for. While we won't cover all of them in this book, it's nice to know exactly what they're for.

loX Loopback interface, for connections to the local machine via the network
pflogX Interface for packet filter logging (se)

sIX SLIP network interface (see sl(8))

pppX Kernel PPP network interface (see pppd(8))

tunX User PPP network interface

encX Encapsulation interface, to filter IPSec traffic via PF (see enc(4))
bridgeX Ethernet bridging interface (see brconfig(8))

vlanX Virtual LAN interface (see vlan(4))

greX Encapsulation with Cisco GRE (see gre(4))

gifX Generic traffic encapsulation interface (see gif(4))

Any interface name that appears in your ifconfig output, but is not listed here, is almost certainly an Ethernet card.

The ¥ flags field gives driver-specific information, such as if the interface is working (the "UP" keyword and if the
interface supports various physical protocol features.

The MTU field, or maximum transmission unit, gives the maximum size of any piece of data that can be sent over
this interface.1500 is a very common MTU.

The media gives the sort of physical connection that is made to an Ethernet card. The sample here shows that the
connection is 10baseT, or common 10-megabit Category 5 Ethernet. You can get a full list of valid media types in by
running "ifconfig -m interfacename,"” and you can see what those media types mean in the network card's man page.
For example, fxp(4) contains full descriptions of the six different valid connection types the card supports.

The [status line indicates if the network card is receiving and sending Ethernet data.

Team LiB A FREWIOUS | [MEXT »

IP Routing

When administering most UNIX-like operating systems, you don't need to understand routing. The network
administrator gives you the IP address of the default route, you put it in the appropriate configuration file, and

everything works like magic. & OpenBSD systems frequently tend to be part of the network infrastructure, however, or
in demilitarized zones where the system must make routing decisions. You really must understand the basics of
routing to administer OpenBSD.

Routing is simply making a decision on where to send a packet. If a computer is directly attached to a network, it
doesn't need to make any decisions. Your OpenBSD system on the Ethernet network 192.168.1.0/24 already knows
how to reach any IP address beginning with 192.168.1; it sends it out that Ethernet. What about an IP address of
209.69.69.12, however? Where should it send those packets?

Many computers use a default route, where they send all packets bound for IP addresses that they don't know about.
This is very common in small office networks, where you have one router or firewall that provides network access for
everyone in the office. Small companies frequently have only one network, and don't need complicated routing. The
company router itself might have a default route pointing to the Internet service provider, who makes all the actual
routing decisions for you.

Routed Internal Network Example

In a more complicated setting, your system will have to make routing decisions. Suppose your network has multiple
routers attached to it, each going to a different network. Machines on your network will have to decide where to send
packets. Here's an example of a fairly common double-firewall situation.

T the i L] L] 4]
el Eutornal e | %2 188 0.0/ 24 sl [Infarmal e 172 16.0.0,/24
et Firenweaal| DMAT rebanoti firawenll Irtarmal naraok
& 192.14B8.0.1 @ 19214680254 @ 17214601
Extarnal Fireweaall Intern] Firenenll Internal firpano
Indernal infartocs Extarnal |'|I¢_'||:-'_1:l_' ndarna |"vur"un:-u

This sort of firewall setup is used whenever servers need different stages of protection. The §l external firewall
provides the outermost layer of protection. Any traffic coming in through the Internet hits this firewall first, and any
traffic leaving the network goes through this firewall last. This firewall probably has fairly liberal traffic-management
rules.

The ¥ demilitarized zone network is for machines that must be somewhat exposed to the Internet. Perhaps you have
intrusion-detection systems here. In many web-farm situations, this is where the actual web servers live. In our
example, the DMZ network uses the IP addresses 192.168.0.0/24.

The internal firewall is very tightly secured device. Only the bare minimum permitted traffic may pass through it. This
firewall is responsible for securing the most vital information on the network.

The internal network holds the most vital, protected information on the network: financial information, customer
databases, or your MP3 collection. In our example, the internal network has the IP addresses 172.16.0.0/24.

Many of the hosts in this network have very simple routing decisions. Anything in the internal network has only one
route to reach anything. If the packet is going to an IP address not in the 192.168.1.1/24 network, it must be sent to the
default gateway on the internal network.

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/No.Starch.Press.Absolute.OpenBSD.UNIX.For.The.Practical.Paranoid.eBook-LiB.chm/8014final/images/fig190%5F01%5F0%2Ejpg

Viewing Routes

physical protocol address for the gateway address. The system knows that the default gateway is this machine, and
that the machine has the physical address. "0:2:16:bf:al:8c". Given this information, it can route packets as it needs
to.

Route Flags

The Flags column indicates how the routes in a system were generated or used. You can find a full listing of all route
flags in route(4) and related manual pages, but some of the common ones are listed in [Table 8-2. You don't need to

understand what each of these flags means at this point. Just be familiar with the flags for each route that normally
appears on your system, and if something different appears, start digging for more information.

Table 8-2: Common route flags

Flag Description

u The route is usable

G This route is a gateway

S This route is static (e.g., not added dynamically by a routing protocol)

L This route is a protocol-to-link-address translation (i.e., the MAC address used to reach an IP
address)

H This route is for a particular host

C This route is used when you dynamically create new routes (e.g., a gateway)

c This route is used for protocol-specific new routes (e.g., how to reach the gateway)

W This route was cloned from another route

Adding Routes

Adding routes is very simple with the "route add" command. All you need to know is the network block you want to
route, the netmask for that block, and the IP address you want them routed to.

#route add 172.16.1.0 -netmask 255.255.255.0 192.168.1.254
add net 172.16.1.0: gateway 192.168.1.254
#

If you go back and look at your routing table, you'll see that route. Packets will start to flow back to your internal
network. Congratulations!

To have this happen automatically at boot, just add the route command to /etc/rc.local.

Deleting Routes

Take a good close look at the route we added in the last example. Our internal network is 172.16.0.0/24, not
172.16.1.0/24. Oops! To delete a route table entry, you just need the network block and the netmask for that block.

route delete 172.16.1.0 -netmask 255.255.255.0
delete net 172.16.1.0
#

Route(8) has many more useful functions; check the man page for full details.

Now that you understand the bare bones of the theory of networking, in the we'll see how this works out
in practice.

@Ignore any rumors about your network administrator occasionally being found in the network room with a knife, a
black cockerel, and a bottle of rum. The truth is far stranger than mere magic.

[« rrsviovs [exi)

Chapter 9: Internet Connections

You have a cable.
If you can connect through it,
victory is yours.

In this chapter, we'll discuss the basics of hooking up to the Internet through two very common methods: dial-up and
Ethernet. OpenBSD supports other methods of network connections, such as PPP over Ethernet, but these two are by
far the most common a