
How to Build a FreeBSD-STABLE Firewall with
IPFILTER

Applicable to: FreeBSD 4.6
Updated: Sep 3, 2002
Author: Marty Schlacter
Source URL:
http://www.schlacter.net/public/FreeBSD-STABLE_and_IPFILTER.html

This howto walks you through the process of building one of the most stable and
secure firewalls available - a FreeBSD-STABLE firewall with IPFILTER. As a part of
the installation process, all services will be disabled except OpenSSH, which will
have its access controlled via TCP-Wrappers. The firewall will be configured to log
through the syslog facility, but will have its own firewall log files (rather than filling
up /var/log/messages). We'll add VESA support into the kernel so that we can use
132x43 screen resolutions, as well as compile support into the kernel for a second
ISA Ethernet card if you have one. After we add a warning banner to the system,
we'll make BASH the default shell for root, perform a rudimentary setup for root's
BASH environment, and redirect root's email to your "normal" account so that the
root account on the firewall itself doesn't fill up. Next, we'll download, compile,
install, and configure Tripwire, as well as install cvsup so that your ports collection
stays up to date. And, lastly, we'll modify the /etc/fstab entries so that some of
your partitions are mounted 'nosuid', 'noexec', or 'ro' so that your installation is as
secure as possible.

This is an all-encompassing how-to, and should take most of a complete day to
complete, but when you're finished, you'll not only have a great firewall, but will
be better able to compare and contrast FreeBSD/IPFILTER to Linux/IPTABLES or
OpenBSD/PF so that you can consider the pros/cons of each on their merits...and
that learning process is what all of this about anyway. So, grab a cup of coffee, sit
down with that old Pentium, and get ready to broaden your horizons.

Before we start, I'd like to thank Dan O'Connor for the work he put in on his great
site, FreeBSD Cheat Sheets, since it was his great site that gave me the
motivation to start this howto. You will undoubtedly see some of his tips and tricks
sprinkled throughout this document. For those of you that are new to FreeBSD, I
highly recommend his site. His site is a little out of date, due to changing priorities
in his life, but the info on his site is still very applicable to any version of FreeBSD
4.X.

In addition, there have been several other people on the Internet who have given
me great suggestions & and feedback on this HOWTO. The majority (if not all) of
their comments have been incporporated into this document in some form or
another. There are too many to list here by name, but (rest assured) the Open
Source community has helped to make this the best document it can be.

And, as always, before performing this procedure, I highly recommend that you
review the Installing FreeBSD chapter of the FreeBSD Handbook.

Network Schematic & System Configuration

The intent of this document is to show you how to build a firewall for your home

network. Just to make sure that we're "working off the same sheet of music"
here's a quick ASCII-schematic of what our notional home network will look like -
to include device names for the Ethernet interfaces. In addition, I'm including a
quick synopsis of the configuration of my own hardware - so that you can use it as
a reference point throughout this procedure.

 Notional Network Schematic Machine Configuration
 -------------------------- ---------------------

 ISP / Internet - 200MHz Pentium-MMX (overclocked
 (UNTRUSTED) - 96MB EDO RAM
 | - 4GB UDMA/33 hard drive
 | - 2-button serial mouse
 --------- - S3 Virge/DX (4MB)
 | Cable | - NE2000-compatible ISA Ethernet
 | Modem | - no CD-ROM drive

 |
 |
 ed0 |

 | xx.xx.xx.xx |
 | |
 | FreeBSD |
 | Firewall |
 | |
 | 192.168.1.1 |

 ed1 |
 |
 |

 | 10BaseT |
 | Hub |

 | | | | |
 | | | | |
 Internal Network
 (TRUSTED)

Installing FreeBSD

To build the most stable and security-patched system you can, you'll want to
make sure you're running the latest version of FreeBSD-STABLE. For those of you
new to FreeBSD, the STABLE branch is the version of the operating system that
has all of the latest patches, bugfixes, and enhancements after the previous
release was made. In fact, there's actually two different versions of the STABLE
branch...one that has all of the patches, bugfixes, and enhancements, and a
second that only has the bugfixes and patches (no enhancements). The second
version is usually more stable than the first, but not always so. For a production
firewall, you'll probably want to install the 2nd version of STABLE (without the
enhancements), but it's ultimately your call.

If you've installed FreeBSD-4.6 from CD-ROM (either one that your purchased or
'burned' from a downloaded ISO image), you probably installed 4.6-RELEASE,
which is (simplistically) nothing more than a version of the 4.X branch that was
exhaustively tested, burned to CD-ROM and made available for sale. After the

release date of 4.6-RELEASE, the 4.6 tree continued to evolve & be patched (for
security reasons) after that point. Since there's no way the folks at FreeBSD.org
can burn & sell CD-ROMs for each day's version of the 4.6 tree, 4.6-RELEASE is
the only one made available for sale on CD, and subsequent snapshots of the 4.6
tree are only available on-line and are labelled '4.6-STABLE'. Once 4.6-STABLE is
sufficiently enhanced/patched (perhaps 4-6 months later), the code enters a
freeze and will officially become the 'RELEASE' version of the next FreeBSD
release (say, 4.7-RELEASE...or 5.0-RELEASE). If you're installing FreeBSD 4.6 well
after the release date, you will definitely want to install 4.6-RELEASE, and then
immediately update your kernel and binaries to 4.6-STABLE.

So, what are the benefits of upgrading to 4.6-STABLE rather than staying with
4.6-RELEASE? Well, the biggest answer (if you're building a firewall, like we are
here) is that all of the security patches have been applied to the O/S and the
associated applications. To use a prior baseline of FreeBSD (4.2) as an example,
FreeBSD-4.2-RELEASE (which was released in November 2000) uses
OpenSSH-2.2.0, which is a great product but also has a remote buffer overflow
that wasn't discovered until early February, 2001. If a hacker exploited this
vulnerability on your 4.2-RELEASE box, they would gain remote root access and
ruin your day. The relevant info on this vulnerability can be found on
SecurityFocus' website. When you upgraded to FreeBSD-4.2-STABLE (if you were
following this HOWTO in mid-March of 2001), by comparison, you would have
gotten FreeBSD-4.2-RELEASE with all of the patches applied after the November
2000 release...so your system would have OpenSSH-2.3.0 (not OpenSSH-2.2.0)
which is not vulnerable to the remote buffer overflow. So upgrading to the latest
snapshot from the STABLE branch saves you a lot of time associated with loading
individual security-related patches after your OS load is finished. For a complete
listing of security-related patches, see the FreeBSD Security Information page.

OK, now that we've talked about the benefits of FreeBSD-STABLE, let's get to
work...the installation...

Inventory your computer hardware and ensure that it is compatible with
FreeBSD. The latest compatibility list (for the 4.6 baseline) can be found in
the FreeBSD 4.6 Hardware Notes.

1.

Verify that you have at least 1.1G available on your hard drive. After the
initial install of FreeBSD (the first section of this document), you will have
taken up about 350M. After downloading the latest kernel sources, and
updating your ports tree, you will have taken up about 650M (depending on
the number of ports sections you wish to keep up to date). And, finally, after
you finish installing & compiling tripwire and recompiling the kernel, you will
have taken up about 1.1G. Which directories are the biggest disk space
hogs? /usr/obj (& sub-directories) takes up about 377MB. /usr/src (&
sub-directories) takes up about 350MB. /usr/ports (& sub-directores) takes
up about 160MB. All other directories take up less than 90MB apiece.

2.

Download the boot floppy images:

FTP to ftp://ftp.freebsd.org/ A.

Change directory into
/pub/FreeBSD/releases/i386/4.6-RELEASE/floppies

B.

3.

Download the kern.flp and mfsroot.flp images & store them in your
/tmp directory (on Linux or FreeBSD) or c:\windows\temp directory
(for Windows), depending on what system you're downloading from.

C.

Download the floppy creation tools if you're a DOS/Windows users.

FTP to ftp://ftp.freebsd.org/A.

Change directory into /pub/FreeBSD/tools B.

Download the program, fdimage.exe, and store it in the same directory
that you used, above.

C.

260.

Create Boot Floppies

If you're using Linux or FreeBSD, use the dd command as follows, and
create one floppy from the kern.flp image, and another disk from the
mfsroot.flp image.

[root@yoursys /tmp]# dd if=/tmp/kern.flp of=/dev/fd0
2880+1 records in
2880+0 records out
1474560 bytes transferred in 49.931306 secs (30135 bytes/sec)

A.

If you're using DOS/Windows, use the fdimage program that you
downloaded. Just like with Linux, make one floppy from the kern.flp
image, and another one from the mfsroot.flp image.

C:\WINDOWS\TEMP>fdimage kern.flp A:
C:\WINDOWS\TEMP>fdimage mfsroot.flp A:

B.

261.

On the FreeBSD machine, insert the kernel floppy (kern.flp) in your floppy
drive and boot from it. When prompted, insert the 'MFS root' floppy
(mfsroot.flp).

262.

Run the kernel configuration utility in full-screen visual mode to clear any
conflicts and ensure the kernel matches your hardware. For example,
remove SCSI controllers if you don't have any, etc. On my system (where I
don't have any SCSI controllers or a PS/2 mouse), here's the only active
drivers I left enabled (I deleted the rest):

Storage:

 ATA/ATAPI compatible disk controller ata0 14 0x1f0

 ATA/ATAPI compatible disk controller ata1 15 0x170

 Floppy disk controller fdc0 6 0x3f0

Networks:

 NE1000,NE2000,3C503,WD/SMC80xx Ethernet
adapters ed0 10 0x280

Communications:

 Parallel Port chipset ppc0 7

 8250/16450/16550 Serial port sio0 4 0x3f8

 8250/16450/16550 Serial port sio1 3 0x2f8

Input:

263.

 Keyboard atkbd0 1

 Syscons console driver sc0

Multimedia:

Miscellaneous:

 Math coprocessor npx0 13 0xf0

Note: If you have PCI-based Ethernet cards, you can delete all of the
network cards in the list - yours will be found and configured automatically.
If you're on the other end of the scale (like me) and you have two old
NE2000-compliant ISA network cards, you'll only be able to configure one of
them at this time (ed0). After your installation is complete, you'll have to
build a custom kernel & add in a "placeholder" for the 2nd generic ISA card,
and then run through the kernel configuration utility again after you reboot.
We'll do this at the end of this document.

Hit 'Q' then 'Y' to save your changes and exit.

From the main menu, choose a 'Standard' installation. 380.

In the FDISK Partition Editor, first 'D' delete any disk slices that already
exist, then choose 'A' to use the entire disk. This will let FreeBSD take the
entire disk and eliminate the need for a bootloader. Press 'Q' to continue.

381.

Now, you will now be presented with the Install Boot Manager for drive...
screen. Select 'Standard' to install a standard MBR (no boot manager).
After all, you won't be dual-booting this machine...it's your firewall.
Therefore, you won't need a boot loader.

382.

In the Disklabel Editor, create the following partitions, then choose 'Q' to
continue. Note that I'm using a 4GB hard drive. You can decrease the sizes
of the partitions if you don't have a 4GB hard drive for your system. The
/usr/local and /usr/home partitions can go as low as 64MB since this won't
be a common-user system and there won't be a lot of user-specific files or
binaries...but the /usr partition should never go below 650MB since that's
where all of your kernel source code and ports tree is located. Here's a
partition scheme if you have a 4GB drive:

256MB swap partition (or at least 2x your RAM)
128MB file system mounted as /
512MB file system mounted as /tmp
512MB file system mounted as /var
1,500MB file system mounted as /usr
640MB file system mounted as /usr/local
500MB file system mounted as /usr/home (...the remainder of the
hard drive)

Here's a partition scheme if you only have one of those old 1.1 GB drives.
People have reported success when using this partitioning scheme on a drive
this small. But, as always, 'caveat emptor'. You'll probably run out of space if
you're not careful. One recommendation is to not install the ports collection
at all. That'll save about 160MB in the /usr partition. Another
recommendation is to only re-compile the kernel and not all of the system
binaries (i.e. only run the "build kernel" command when you get to the
appropriate section at the end of this howto). Apply security-related patches

383.

to the system binaries manually by following the directions for each patch
listed on the FreeBSD Security Information page. Yes, it's a pain...but if your
hard drive is too small, then it's too small...

128MB swap partition
128MB file system mounted as /
64MB file system mounted as /tmp
64MB file system mounted as /var
640MB file system mounted as /usr
64MB file system mounted as /usr/local
32MB file system mounted as /usr/home

Choose "Kern-Developer" as the Distribution you want to install by
highlighting it and pressing the 'space' bar. Remember, this is going to
become a gateway/firewall system, and you'll need the kernel source code to
recompile IPFILTER into the kernel. Also, you don't need (or want) X
Windows running on it.

424.

Select "Yes" to install the FreeBSD ports collection. 425.

Arrow back up to "<<< X Exit" and hit the 'space' bar to exit the
Distribution Menu

426.

Select either an FTP or FTP Passive install (depending on what your current
network's firewall will support).

427.

Either select the "Primary Site (ftp.freebsd.org)" or select a FTP site in your
country nearest your location. Arrow down to your selection and press
[Enter].

428.

Select your Ethernet card as the network interface to install from (e.g. "ed0"
if you're using a generic NE2000-compatible ISA card).

429.

Select "no" for IPv6 config 430.

Select "yes" for DHCP configuration if your network card is directly
connected to your cable modem, etc. Select "no" if you're on a pre-existing
network, then enter your interface configuration information manually - host
name, domain name, IPv4 gateway IP address, name server IP address,
IPv4 address, and netmask.

431.

At the "Last Chance" warning, select "yes".

(System Installs...If the FTP site that you chose isn't heavily loaded, the
install can take as little as 22 minutes (with a cable modem). If your FTP site
is heavily loaded, the install can take as long as 2 hours...or longer...)

432.

Miscellaneous configuration:

Do you want this machine to function as a gateway? Yes A.

Do you want to configure inetd and simple internet services? No B.

Do you want to have anonymous FTP access to this machine? No C.

433.

Do you want to configure this machine as an NFS Server: No D.

Do you want to configure this machine as an NFS Client: No E.

Select "No" when asked "Do you want to select a default security
profile for this host". This will select the "Medium" setting. We will
change this to the "Extreme - Very restrictive security settings" at the
end of this procedure - after we recompile the kernel, etc.

F.

Select "No" when asked to modify the system console configuration.G.

Select "Yes" when asked "Would you like to set this machine's time
zone now?" Then, select "No" when asked if your machine's CMOS
clock is set to UTC. Then select the appropriate time zone - by region,
country, and then the applicable time zone.

H.

Select "No" when asked if you'd like to install Linux Binary support. I.

Select "Yes" when asked if your system has a non-USB mouse attached
to it (unless, of course, you don't...)

J.

Make the following configuration changes for the mouse configuration,
then enable it & test it, then select "Exit" to return to the previous
menu. Note that I have a 2-button serial mouse - that's why I'm using
COM1 and 3-button emulation:

Type: Auto
Port: COM1
Flags: -3

K.

When asked to browse the FreeBSD packages collection, select "Yes",
and then install the following packages. Note that these package
preferences are just my own personal preferences. If you're a firewall
'purist' (which means you take a more minimalistic approach when
configuring firewalls - for security reasons) then the only package you'll
need to install is cvsup (so that you can get the latest copy of the
source & ports, etc.) If you're like me, I like using lynx to access the
web, mutt to read email, and bash as my shell. Even though I don't
use the firewall as a common-user machine, I consider those three
programs "necessities" for me. Your usage patterns will vary.
Regardless of what my own preferences are, please substitute, add, or
delete as you see fit...it's your firewall after all...

WWW - lynx-ssl-2.8.4.1b_1
Mail - mutt-1.2.5.1_1
Net - cvsup-without-gui-16.1f
Shells - bash-2.0.5a
FTP - ncftp-3.1.2

Then tab over and select "Install", select "OK" to confirm your choices

(Packages are installed...takes about 60 seconds)

L.

Select "Yes" when asked if you want to add any additional user
accounts. Since this is a firewall, not a common user machine, we

M.

won't need many, but you will need at least one. The main reason
we're adding at least one other user account is so that we can set up
SSH so that it does not allow remote root logins. Instead, you must
SSH to the firewall as the user, and then 'su' to root.

Select "User - Add a new user to the system" on the User and group
management dialog box. Then enter the login id, password, and full
name. Make sure you put a '0' in the member groups box. This will put
your new user in the 'wheel' group so that they can 'su' to root. Also
put /usr/local/bin/bash in for their default shell. When finished, select
'OK', and then 'X - Exit'

N.

Set the 'root' password: ****** O.

When asked if you'd like to visit the General Configuration menu to set
any last options, select "Yes" and configure the following options:

Networking:
 - Disable "inetd - This machine wants to run the inet
daemon" ... then select "No" to confirm
 - Enable "ntpdate - Select a clock-synchronization server"
... then select a server near you

Then select Exit and return to the previous menu, and then tab over
and select "Exit Install"

P.

Select OK when asked if you're sure you want to exit the install &
reboot the system. Remove your floppy disk (probably the mfsroot
disk) and your system will reboot.

(System reboots...)

Q.

Upgrading to -STABLE, Compiling IPFILTER into the kernel, &
Configuring the System

Now that you have FreeBSD-RELEASE installed on the system, we need to spend a
few hours upgrading to FreeBSD-STABLE, adding in IPFILTER support, as well as
finishing the rest of the configuration. Here's what we're going to do in this section
(in no particular order):

Configure cvsup and update your source tree & ports collection
Upgrade to FreeBSD-STABLE
Compile IPFILTER into the kernel and configure IPFILTER, IPNAT, and IPMON
Configure IPMON so that it logs to syslog, but modify syslog so that the
firewall messages get their own file and then update newsyslog so that the
firewall's logs get rotated
Install and configure Tripwire
Compile VESA support into the kernel and change our screen resolution is
132x43
Configure syslogd so that it won't accept connections from other machines
(i.e. prevent it from being a 'listening' service)
Add support for (and configure) a 2nd Ethernet interface (if you have 2 ISA
cards)
Configure TCP-Wrappers so that access to SSH is locked down to your local

network only
Configure SSH so that it will only accept SSH sessions from IPv4 systems
and rejects connections from users it doesn't have the DSA key for
Disable unused services in inetd (just in case it accidentally gets turned on
later)
Add a warning banner
Make BASH the default shell for 'root' & configure root's BASH environment
Redirect root's email to your "normal" account so that it doesn't back up on
the firewall.
Modify the /etc/fstab so that some of the partitions are mounted 'nosuid',
'noexec', or 'ro' to lock the system down even further.
Increase the kernel's security level to "2" (Extreme)

In order to save time, I'm going to do some steps in what will appear to be an
"out of order" sequence. This is being done on purpose so that we will minimize
the number of re-boots you'll have to do. In fact, the goal is to configure the
system, then recompile the kernel & system binaries, and when the system
reboots, you're done. That's it.

Log in as your non-priveleged user account. If your login was successful, you
should be presented with a 'bash-2.05a$' prompt...indicating that bash was
successfully installed. After you log in, then type 'su' to switch user to root.
Enter the root password.

1.

Make "bash" the default shell for 'root' and perform an initial set up of root's
bash environment.

Use FreeBSD's password file manipulation utility, vipw, to modify root's
default shell. At a root prompt, type vipw. A copy of the /etc/passwd
file will be displayed. Use standard vi editing commands to change
root's default shell from /bin/csh (all of the way at the end of the first
line) to /usr/local/bin/bash. While you're already editing the file, go
ahead and change root's unofficial name 'Charlie &' to 'Super-User' or
any other name that envisions Superman, etc. When you get mail from
root (e.g. from the cron jobs that run every night), it'll now be maked
as coming from 'Super-User' and not 'Charlie &'...just a little bit nicer.
Save & exit.

A.

Verify that your manipulation of the password file was successful. Go
over to your 2nd virtual terminal by hitting <Alt>-F2. When you're at
the 2nd virtual terminal, log in as root. After successfully logged in,
verify that you're presented with the 'bash-2.05#' prompt. If it's
successful, then log out and return to the 1st virtual terminal to
continue working. If it's not successful, then you need to go back to
the previous step and figure out what you did wrong. Remember that
bash is working because you logged in as your user account. You must
have typed in something wrong, or accidentally removed a ':' (colon),
etc. Go back to the first virtual terminal, type 'vipw' and re-edit the
password file to fix your mistake.

B.

Create a .bashrc file in root's home directory (/root) and enter the
following items (as a starting point). After the file has been created,
chmod 600 on it so that it's only readable & writable by root. Then

C.

2.

copy it to your user's home directory (cp /root/.bashrc
/usr/home/username/.bashrc). And, lastly, do a chown on the file in
your user's directory so that they own the file (not root), by doing a
'chown username:groupname /usr/home/username/.bashrc' (and
substitute username & groupname for something appropriate based on
the user you created).

umask 077
PS1="[\u@\h \W]\\$ "
alias ls='ls -alFG'

Create a .bash_profile file in root's home directory and enter the
following items (as a starting point). After the file has been created,
chmod 600 on it so that it's only readable & writable by root. And, just
as in the previous step, copy your new .bash_profile to your user's
home directory and change the owner on it so that the user owns it
(not root).

PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/bin:/usr/local/sbin:$HOM
export PATH
umask 077
PS1="[\u@\h \W]\\$ "
alias ls='ls -alFG'

D.

Test your settings by going over your 2nd virtual terminal by hitting
<Alt>-F2, then logging in as root. Verify that you're using the bash
shell, your cursor line looks different (i.e. it has your userid & current
working directory), and that you get colorized directory listings. Close
out that session and return to your first virtual termial, log out, and
then log back in...and then 'su' to root.

E.

Redirect root's email to your "normal" email account so that it doesn't get
backed up the firewall

Use vi to open the /etc/aliases file for editing. A.

Modify line that says "# root: me@my.domain" by removing the "#"
comment at the beginning of the line, and then modifying the
"me@my.domain" email address so that it points to your "normal"
email address instead. You can either point it to your new user account
(so that the email stays on the machine & can be accessed without
su'ing to root), or redirect it to your 'normal' email account in the office
(so that you don't even have to SSH out to the firewall to see how it's
doing each day).

B.

After saving & exiting, then run the command "newaliases" from the
command prompt to update the email alias database.

C.

1444.

Create & install a warning banner. Use vi to replace your /etc/motd file with
the following text (or some other equivalent legal disclaimer). Make sure
that you add a line that says 'update_motd="NO"' at the end of your
/etc/rc.conf file when you're done...otherwise your changes will be
overwritten each time the system reboots.

* * * * * * * * * * * * W A R N I N G * * * * * * * * * * * * *
THIS SYSTEM IS RESTRICTED TO AUTHORIZED USERS FOR AUTHORIZED USE

1445.

ONLY. UNAUTHORIZED ACCESS IS STRICTLY PROHIBITED AND MAY BE
PUNISHABLE UNDER THE COMPUTER FRAUD AND ABUSE ACT OF 1986 OR

OTHER APPLICABLE LAWS. IF NOT AUTHORIZED TO ACCESS THIS SYSTEM,
DISCONNECT NOW. BY CONTINUING, YOU CONSENT TO YOUR KEYSTROKES

AND DATA CONTENT BEING MONITORED. ALL PERSONS ARE HEREBY
NOTIFIED THAT THE USE OF THIS SYSTEM CONSTITUTES CONSENT TO

MONITORING AND AUDITING.
* * * * * * * * * * * * W A R N I N G * * * * * * * * * * * * *

Copy your warning banner over to your /etc/issue file. This will make the
warning banner visible at the console before the login prompt...so that
people consent to monitoring before they even try to log in:

[root@numa /root]# cp /etc/motd /etc/issue

2721.

Configure cvsup and update your source tree & ports collection.

Note #1: After you configure cvsup and update your source and ports
collection, you will want to re-run cvsup every once in a while to ensure your
sources & ports collection is up-to-date (in case you want to install any new
software). Then, you'll want to recompile your kernel & system binaries to
ensure you are using the latest versions with security patches applied.

Note #2: We are only updating sections of the ports tree that would be
"normal" for a firewall. (i.e. we are not updating the ports collection for
games, X-windows, etc.). This will save disk space by not wasting it on ports
you won't be installing on a firewall. I'll make the assumption that since you
installed packages from the WWW, Mail, Net, and Shells section of the
packages collection during the installation (i.e. when you installed lynx,
etc.), you'll want the same sections of the ports collection kept up to date. In
addition, we'll add to other areas with tools that might be useful on a firewall
- the "security" and "sysutils" areas. Add whichever areas you want, but be
aware that the more you add...the more hard disk space you'll "eat up." To
get a list of which sections of the ports collection are available, do a 'more
/usr/share/examples/cvsup/ports-supfile' and browse through the listings of
individual ports collection names.

[root@numa /root]# cp /usr/src/share/examples/cvsup/stable-supfile
/etc
[root@numa /root]# vi /etc/stable-supfile

- Run the ":set num" command in vi so that
you can see the line numbers on each line of
the file.
- Change line 66 of the file so that it
points cvsup to a CVS server near you. I
change mine to read '*default
host=cvsup2.FreeBSD.org'. Section A.5.7.
(CVSup Sites) of the FreeBSD Handbook will
tell you where the CVSup servers are.
- On line 71, modify the "tag" variable to
correspond to the specific release of the
O/S that you want to track. The default
value of the tag in the example file is
"RELENG_4". This will download the source
code for the O/S which will has all of the
security updates as well as general bugfixes
and feature enhancements. If, however,
you're in a production environment and can't
afford even the slightest risk of feature
enhancements causing problems with your
production configuration, there's a
different value for this tag that's just for

2722.

you. In this case, set the tag to
"RELENG_4_6". This has ONLY the security
fixes...no feature enhancements...so it's
arguably the more stable version of the
4.6-STABLE branch. 95% of sysadmin's should
change the tag to "RELENG_4_6" to track the
security-related "4.6-STABLE" baseline and
not mess with new enhancements which might
impact the system's stability. It's your
system...it's your call... The official
information about tag was disseminated via
the FreeBSD Security Advisories mailing list
on 11 May 2001 (message subject, "Changes to
FreeBSD security support policy").
- Add these lines at the bottom of the file:
 ports-www tag=.
 ports-mail tag=.
 ports-net tag=.
 ports-shells tag=.
 ports-ftp tag=.
 ports-security tag=.
 ports-sysutils tag=.
- ...and other lines for ports collections
you want...

[root@numa /root]# cvsup /etc/stable-supfile

(Source tree is synchronized with CVS server...should
take 30-60 minutes...)

Configure the SSH daemon and your user's DSA key files.

Modify the SSH daemon configuration file, /etc/ssh/sshd_config, so
that it reads as follows. The modified lines are in bold red text.

This is ssh server systemwide configuration file. See
sshd(8)
for more information

Port 22
Protocol 2
ListenAddress 192.168.1.1 *** Put your internal interface's
address here ***
#ListenAddress :: *** Delete this line ***
HostKey /etc/ssh/ssh_host_key *** Delete this line ***
HostDsaKey /etc/ssh/ssh_host_dsa_key
ServerKeyBits 768
LoginGraceTime 120
KeyRegenerationInterval 3600
PermitRootLogin no
ConnectionsPerPeriod has been deprecated completely

After 3 unauthenticated connections, refuse 50% of the new
ones, and
refuse any more than 10 total.
MaxStartups 3:50:10
Don't read ~/.rhosts and ~/.shosts files
IgnoreRhosts yes
Uncomment if you don't trust ~/.ssh/known_hosts for
RhostsRSAAuthentication
#IgnoreUserKnownHosts yes
StrictModes yes
X11Forwarding no
X11DisplayOffset 10
PrintMotd yes
PrintLastLog yes
KeepAlive yes

Logging

A.

3848.

SyslogFacility AUTH
LogLevel VERBOSE
#obsoletes QuietMode and FascistLogging

RhostsAuthentication no
#
For this to work you will also need host keys in
/etc/ssh_known_hosts
RhostsRSAAuthentication no
similar for protocol version 2
HostbasedAuthentication no
#
RSAAuthentication yes

To disable tunneled clear text passwords, change to no here!
PasswordAuthentication no
PermitEmptyPasswords no

Uncomment to disable s/key passwords
ChallengeResponseAuthentication no

To change Kerberos options
#KerberosAuthentication no
#KerberosOrLocalPasswd yes
#AFSTokenPassing no
#KerberosTicketCleanup no

Kerberos TGT Passing does only work with the AFS kaserver
#KerberosTgtPassing yes

CheckMail yes
#UseLogin no

#MaxStartups 10:30:60 *** Delete this line, it's a
duplicate ***
Banner /etc/issue.net
#ReverseMappingCheck yes

Subsystem sftp /usr/libexec/sftp-server

AllowUsers newuser *** Substitute 'newuser' with your
userid ***

Generate an SSH key (version 2) for your user, by performing the
following steps:

[root@numa /root]# su - testuser *** substitute your
non-privileged userid for 'testuser'
[testuser@numa testuser]$ ssh-keygen -d *** then accept the
default DSA key name & enter a passphrase (twice)

B.

Add the public copy of your user's version 2 key to their own
authorized_keys2 file by typing the following steps:

[testuser@numa testuser]$ cd .ssh
[testuser@numa .ssh]$ cat id_dsa.pub > authorized_keys2

C.

By whatever means you choose (floppy, etc.), copy your user's private
& public keys to other systems that you'll be using to SSH to your new
firewall from. By default, the private & public key go into a user's '.ssh'
directory on those systems. Without the private key on those remote
systems, your firewall will not accept connections from them. If you're
new to FreeBSD and need to know how to access the floppy drive,
follow the following steps.

[root@numa root]# mkdir /mnt/floppy *** This
will make an empty mount point to mount the floppy to ***

D.

[root@numa root]# mount -t msdos /dev/fd0 /mnt/floppy ***
Insert a DOS-formatted floppy before you do this ***
[root@numa root]# cd /mnt/floppy
[root@numa floppy]# cp /home/testuser/.ssh/id_dsa* . ***
Copies all of your user's ssh key info to the floppy
[root@numa floppy]# ls *** List
the contents of the floppy to verify the files are there
[root@numa floppy]# cd ..
[root@numa mnt]# umount /mnt/floppy ***
Unmount the floppy

Now that you've copied your user's private & public keys to another
system, remove them from your user's .ssh directory on the firewall.
This is only a precaution so that it can't be stolen by a hacker and
compromised. If you haven't copied it yet (and plan to do it later), then
skip this step until after you've done so.

E.

Open up your /etc/hosts.allow file, delete all of the lines, and ensure
that it reads as follows. Note that 192.168.1.0 is the address space of
your internal network in this example. If you're using a different
internal address space (e.g. 10.10.10.0), then make the appropriate
modifications.

#
hosts.allow access control file for "tcp wrapped"
applications.
#
ALL : localhost 127.0.0.1 : allow
sshd : 192.168.1.0/255.255.255.0 : allow
ALL : ALL : deny

If you want to allow a specific computer on the Internet to
SSH into your
system, replace the 'sshd' line above with one like
this...but subsitute
the X.X.X.X and subnet mask to suit your needs (e.g. one
computer, entire subnet
etc.). Also, make sure you allow inbound SSH from that same
host/subnet
in your /etc/ipf.rules file.
sshd : 192.168.1.0/255.255.255.0 X.X.X.X/255.255.255.255 :
allow

F.

Install and configure Tripwire

First, install gmake from the FreeBSD ports collection:

[root@numa /root]# cd /usr/ports/devel/gmake
[root@numa gmake]# make && make install

A.

Download Tripwire-2.3.1-2 from sourceforge.net. If a new version
exists, then use it instead. The configuration changes itemized, below,
should remain consistent between versions of Tripwire.

[root@numa gmake]# cd /root
[root@numa /root]# lynx
http://prdownloads.sourceforge.net/tripwire

- Use the down-arrow to move through
the hyperlinks until the file,
tripwire-2.3.1-2.tar.gz, is
highlighted, then press [Enter]
- Use the down-arrow to move through
the hyperlinks until you've selected a
mirror site to download from, and then

B.

5706.

arrow over to the "download" hyperlink
for that download site. Hit [Enter]
- When asked if you want to D)ownload
the file, or C)ancel, hit 'd'
- ...file downloads...
- After the file downloads, you'll be
presented with lynx's Download Options
screen. The 'Save to disk' hyperlink is
automatically highlighted in red, so
just hit [Enter].
- Either accept the original filename
by pressing [Enter], or modify the
filename then hit [Enter] to save it.
- After the file is saved, press 'q' to
quit lynx.

[root@numa /root]# tar zxvf tripwire-2.3.1-2.tar.gz

Modify the Makefile so that it will compile for FreeBSD.

Note: that in several of the following steps, I'll be referring to exact line
numbers in the files (some of which are a few hundred lines down). To
identify each line of a text file with a line number in vi, use the ":set
num" command after you've opened the file. The screen will refresh,
and you'll see all of the line numbers down the left side of the screen.

[root@numa /root]# cd tripwire-2.3.1-2/src
[root@numa src]# vi Makefile

- Add a comment at the beginning of
line 82 (SYSPRE = i686-pc-linux)
- Remove the '#' comment delimeter at
the beginning of line 84 (SYSPRE =
i386-unknown-freebsd)
- Save and exit.

C.

Compile Tripwire. On my overclocked Pentium-200MMX, this takes
about 45 minutes.

[root@numa src]# gmake release

D.

Configure and install Tripwire

Open Tripwire's installation configuration file using vi, and edit it
as follows

[root@numa src]# cd ../install/
[root@numa install]# vi install.cfg

- Change line 27 so that it reads
'TWBIN="/usr/local/sbin"'
- Change line 33 so that it reads
'TWMAN="/usr/share/man"'
- Change line 39 so that it reads
'TWDOCS="/usr/share/doc/tripwire"'
- Change line 51 so that it reads
'TWEDITOR="/usr/bin/vi"'
- Change line 88 so that it reads
'TWMAILPROGRAM="/usr/sbin/sendmail
-oi -t"'
- Save and exit.

i.

Open Tripwire's installation script using vi, and edit it as follows

[root@numa install]# vi install.sh

ii.

E.

- Change line 319 so that it
reads
'EULA_PATH="../$TWLICENSEFILE"'
- Change line 491 so that it
reads
'BIN_DIR="../bin/i386-unknown-freebsd_r"'
- Change lines 621-638 so that
they read as follows:
 f1=' ff=$README ; d="/.." ;
dd=$TWDOCS ; rr=0444 '
 f2=' ff=$REL_NOTES ; d="/.."
; dd=$TWDOCS ; rr=0444 '
 f3=' ff=$TWLICENSEFILE ;
d="/.." ; dd=$TWDOCS ; rr=0444 '
 f4=' ff=tripwire ;
d="/../bin/i386-unknown-freebsd_r"
; dd=$TWBIN ; rr=0550 '
 f5=' ff=twadmin ;
d="/../bin/i386-unknown-freebsd_r"
; dd=$TWBIN ; rr=0550 '
 f6=' ff=twprint ;
d="/../bin/i386-unknown-freebsd_r"
; dd=$TWBIN ; rr=0550 '
 f7=' ff=siggen ;
d="/../bin/i386-unknown-freebsd_r"
; dd=$TWBIN ; rr=0550 '
 f8=' ff=TRADEMARK ; d="/.." ;
dd=$TWDOCS ; rr=0444 '
 f9=' ff=policyguide.txt ;
d="/../policy" ; dd=$TWDOCS ;
rr=0444 '
 f10=' ff=twpol.txt ;
d="/../policy" ; dd=$TWPOLICY ;
rr=0640 '
 f11=' ff=twpolicy.4 ;
d="/../man/man4" ; dd=$TWMAN/man4
; rr=0444 '
 f12=' ff=twconfig.4 ;
d="/../man/man4" ; dd=$TWMAN/man4
; rr=0444 '
 f13=' ff=twfiles.5 ;
d="/../man/man5" ; dd=$TWMAN/man5
; rr=0444 '
 f14=' ff=siggen.8 ;
d="/../man/man8" ; dd=$TWMAN/man8
; rr=0444 '
 f15=' ff=tripwire.8 ;
d="/../man/man8" ; dd=$TWMAN/man8
; rr=0444 '
 f16=' ff=twadmin.8 ;
d="/../man/man8" ; dd=$TWMAN/man8
; rr=0444 '
 f17=' ff=twintro.8 ;
d="/../man/man8" ; dd=$TWMAN/man8
; rr=0444 '
 f18=' ff=twprint.8 ;
d="/../man/man8" ; dd=$TWMAN/man8
; rr=0444 '
- Save and exit.

Install Tripwire

[root@numa install]# ./install.sh

- Answer 'y' to continue with the
installation
- Press [Enter] to view the
license agreement...when
complete, type 'accept' and
[Enter]
- The install script will verify
that sendmail and vi are

iii.

installed, then verify that the
tripwire binaries are available,
and then echo back all of the
configuration parameters for the
installation script (e.g. TWBIN,
TWMAN, etc.). If everything looks
good, answer 'y' to continue with
the installation.
- The install script copies all
of the files, the asks you to
enter a new site keyfile
passphrase. Enter it, and then
enter it again when asked to
verify it.
- The install script then asks
you to enter a new local keyfile
passphrase. Enter it, and then
enter it again when asked to
verify it.
- The install script will then
create a signed configuration
file, but will need you to enter
the site passphrase you just set,
above. Enter it.
- The install script will then
create a signed policy file, but
will need you to enter the site
passphrase you just set, above.
Enter it.
- ...installation is complete.

Install a new Tripwire text policy file. Replace the contents of the file
/etc/tripwire/twpol.txt with the following. It is a functional Tripwire
policy configuration file for FreeBSD-4.3, but feel free to edit it based
upon your own special installation & configuration. Note that you'll
have to modify the two items in bold red text to match your
configuration (i.e. your system's hostname and your non-priveleged
username):

@@section GLOBAL
TWROOT="/usr/local";
TWBIN="/usr/local/sbin";
TWPOL="/etc/tripwire";
TWDB="/var/lib/tripwire";
TWSKEY="/etc/tripwire";
TWLKEY="/etc/tripwire";
TWREPORT="/var/lib/tripwire/report";
HOSTNAME=hostname.domain;

@@section FS
SEC_CRIT = $(IgnoreNone)-SHa; # Critical files - we can't
afford to miss any changes.
SEC_SUID = $(IgnoreNone)-SHa; # Binaries with the SUID or SGID
flags set.
SEC_TCB = $(ReadOnly); # Members of the Trusted Computing
Base.
SEC_BIN = $(ReadOnly); # Binaries that shouldn't change
SEC_CONFIG = $(Dynamic); # Config files that are changed
infrequently but accessed often.
SEC_LOG = $(Growing); # Files that grow, but that should never
change ownership.
SEC_INVARIANT = +pug; # Directories that should never change
permission or ownership.
SIG_LOW = 33; # Non-critical files that are of minimal
security impact
SIG_MED = 66; # Non-critical files that are of significant
security impact
SIG_HI = 100; # Critical files that are significant points of
vulnerability

F.

Tripwire Binaries
(rulename = "Tripwire Binaries", severity = $(SIG_HI))
{
 $(TWBIN)/siggen -> $(SEC_TCB);
 $(TWBIN)/tripwire -> $(SEC_TCB);
 $(TWBIN)/twadmin -> $(SEC_TCB);
 $(TWBIN)/twprint -> $(SEC_TCB);
}

Tripwire Data Files - Configuration Files, Policy Files,
Keys, Reports, Databases
(rulename = "Tripwire Data Files", severity = $(SIG_HI))
{
 # NOTE: Removing the inode attribute because when Tripwire
creates a backup
 # it does so by renaming the old file and creating a new one
(which will
 # have a new inode number). Leaving inode turned on for
keys, which shouldn't
 # ever change.

 # NOTE: this rule will trigger on the first integrity check
after database
 # initialization, and each integrity check afterward until a
database update
 # is run, since the database file will not exist before that
point.
 $(TWDB) -> $(SEC_CONFIG) -i;
 $(TWPOL)/tw.pol -> $(SEC_BIN) -i;
 $(TWPOL)/tw.cfg -> $(SEC_BIN) -i;
 $(TWLKEY)/$(HOSTNAME)-local.key -> $(SEC_BIN);
 $(TWSKEY)/site.key -> $(SEC_BIN);

 #don't scan the individual reports
 $(TWREPORT) -> $(SEC_CONFIG) (recurse=0);
}

These files are critical to a correct system boot.
(rulename = "Critical system boot files", severity = 100)
{
 /boot -> $(SEC_CRIT);
 /kernel -> $(SEC_CRIT);
}

These files change the behavior of the root account and also
the authorized_keys2
file for the user we created earlier
(rulename = "Root config files", severity = 100)
{
 /root -> $(SEC_CRIT);
 /root/.bash_history -> $(SEC_LOG);
 /root/.bash_profile -> $(SEC_CRIT);
 /root/.bashrc -> $(SEC_CRIT);
 /home/username/.ssh/authorized_keys2 -> $(SEC_CRIT);
}

Commonly accessed directories that should remain static with
regards to owner and group
(rulename = "Invariant Directories", severity = $(SIG_MED))
{
 / -> $(SEC_INVARIANT) (recurse = 0);
 /etc -> $(SEC_INVARIANT) (recurse = 0);
 /usr/local/etc -> $(SEC_INVARIANT) (recurse = 0);
}

(rulename = "Shell Binaries", severity = $(SIG_HI))
{
 /usr/local/bin/bash -> $(SEC_BIN);
 /bin/csh -> $(SEC_BIN);
 /bin/sh -> $(SEC_BIN);
 /bin/tcsh -> $(SEC_BIN);

}

Rest of critical system binaries
(rulename = "OS executables and libraries", severity =
$(SIG_HI))
{
 /bin -> $(SEC_BIN) (recurse = 1);
 /usr/bin -> $(SEC_BIN) (recurse = 1);
 /usr/lib -> $(SEC_BIN) (recurse = 1);
 /sbin -> $(SEC_BIN) (recurse = 1);
 /usr/sbin -> $(SEC_BIN) (recurse = 1);
}

Local files
(rulename = "User executables and libraries", severity =
$(SIG_MED))
{
 /usr/local/bin -> $(SEC_BIN) (recurse = 1);
 /usr/local/sbin -> $(SEC_BIN) (recurse = 1);
}

Temporary directories
(rulename = "Temporary directories", recurse = false, severity
= $(SIG_LOW))
{
 /usr/tmp -> $(SEC_INVARIANT);
 /var/tmp -> $(SEC_INVARIANT);
 /tmp -> $(SEC_INVARIANT);
}

Include
(rulename = "OS Development Files", severity = $(SIG_MED))
{
 /usr/include -> $(SEC_BIN);
 /usr/local/include -> $(SEC_BIN);
}

Shared
(rulename = "OS Shared Files", severity = $(SIG_MED))
{
 /usr/share -> $(SEC_BIN);
 !/usr/share/man;
 /usr/local/share -> $(SEC_BIN);
}

setuid/setgid root programs
(rulename = "setuid/setgid", severity = $(SIG_HI))
{
 /bin/df -> $(SEC_SUID);
 /bin/rcp -> $(SEC_SUID);
 /sbin/ccdconfig -> $(SEC_SUID);
 /sbin/dmesg -> $(SEC_SUID);
 /sbin/dump -> $(SEC_SUID);
 /sbin/ping -> $(SEC_SUID);
 /sbin/ping6 -> $(SEC_SUID);
 /sbin/rdump -> $(SEC_SUID);
 /sbin/restore -> $(SEC_SUID);
 /sbin/route -> $(SEC_SUID);
 /sbin/rrestore -> $(SEC_SUID);
 /sbin/shutdown -> $(SEC_SUID);
 /usr/bin/at -> $(SEC_SUID);
 /usr/bin/atq -> $(SEC_SUID);
 /usr/bin/atrm -> $(SEC_SUID);
 /usr/bin/batch -> $(SEC_SUID);
 /usr/bin/chfn -> $(SEC_SUID);
 /usr/bin/chpass -> $(SEC_SUID);
 /usr/bin/chsh -> $(SEC_SUID);
 /usr/bin/crontab -> $(SEC_SUID);
 /usr/bin/cu -> $(SEC_SUID);
 /usr/bin/fstat -> $(SEC_SUID);
 /usr/bin/ipcs -> $(SEC_SUID);
 /usr/bin/keyinfo -> $(SEC_SUID);

 /usr/bin/keyinit -> $(SEC_SUID);
 /usr/bin/lock -> $(SEC_SUID);
 /usr/bin/login -> $(SEC_SUID);
 /usr/bin/lpq -> $(SEC_SUID);
 /usr/bin/lpr -> $(SEC_SUID);
 /usr/bin/lprm -> $(SEC_SUID);
 /usr/bin/man -> $(SEC_SUID);
 /usr/bin/netstat -> $(SEC_SUID);
 /usr/bin/nfsstat -> $(SEC_SUID);
 /usr/bin/passwd -> $(SEC_SUID);
 /usr/bin/quota -> $(SEC_SUID);
 /usr/bin/rlogin -> $(SEC_SUID);
 /usr/bin/rsh -> $(SEC_SUID);
 /usr/bin/su -> $(SEC_SUID);
 /usr/bin/systat -> $(SEC_SUID);
 /usr/bin/top -> $(SEC_SUID);
 /usr/bin/uucp -> $(SEC_SUID);
 /usr/bin/uuname -> $(SEC_SUID);
 /usr/bin/uustat -> $(SEC_SUID);
 /usr/bin/uux -> $(SEC_SUID);
 /usr/bin/vmstat -> $(SEC_SUID);
 /usr/bin/wall -> $(SEC_SUID);
 /usr/bin/write -> $(SEC_SUID);
 /usr/bin/ypchfn -> $(SEC_SUID);
 /usr/bin/ypchpass -> $(SEC_SUID);
 /usr/bin/ypchsh -> $(SEC_SUID);
 /usr/bin/yppasswd -> $(SEC_SUID);
 /usr/libexec/sendmail/sendmail -> $(SEC_SUID);
 /usr/libexec/uucp/uucico -> $(SEC_SUID);
 /usr/libexec/uucp/uuxqt -> $(SEC_SUID);
 /usr/local/bin/mutt_dotlock -> $(SEC_SUID);
 /usr/sbin/ifmcstat -> $(SEC_SUID);
 /usr/sbin/iostat -> $(SEC_SUID);
 /usr/sbin/lpc -> $(SEC_SUID);
 /usr/sbin/mrinfo -> $(SEC_SUID);
 /usr/sbin/mtrace -> $(SEC_SUID);
 /usr/sbin/ppp -> $(SEC_SUID);
 /usr/sbin/pppd -> $(SEC_SUID);
 /usr/sbin/pstat -> $(SEC_SUID);
 /usr/sbin/sliplogin -> $(SEC_SUID);
 /usr/sbin/swapinfo -> $(SEC_SUID);
 /usr/sbin/timedc -> $(SEC_SUID);
 /usr/sbin/traceroute -> $(SEC_SUID);
 /usr/sbin/traceroute6 -> $(SEC_SUID);
 /usr/sbin/trpt -> $(SEC_SUID);
}

(rulename = "Configuration Files", severity = $(SIG_MED))
{
 /etc/hosts -> $(SEC_CONFIG);
 /etc/inetd.conf -> $(SEC_CONFIG);
 /etc/resolv.conf -> $(SEC_CONFIG);
 /etc/syslog.conf -> $(SEC_CONFIG);
 /etc/newsyslog.conf -> $(SEC_CONFIG);
}

(rulename = "Security Control", severity = $(SIG_HI))
{
 /etc/group -> $(SEC_CRIT);
}

(rulename = "Login Scripts", severity = $(SIG_HI))
{
 /etc/csh.login -> $(SEC_CONFIG);
 /etc/csh.logout -> $(SEC_CONFIG);
 /etc/csh.cshrc -> $(SEC_CONFIG);
 /etc/profile -> $(SEC_CONFIG);
}

These files change every time the system boots
(rulename = "System boot changes", severity = $(SIG_HI))
{

 /dev/log -> $(Dynamic);
 /dev/cuaa0 -> $(Dynamic);
 /dev/console -> $(Dynamic);
 /dev/ttyv0 -> $(Dynamic);
 /dev/ttyv1 -> $(Dynamic);
 /dev/ttyv2 -> $(Dynamic);
 /dev/ttyv3 -> $(Dynamic);
 /dev/ttyv4 -> $(Dynamic);
 /dev/ttyv5 -> $(Dynamic);
 /dev/ttyv6 -> $(Dynamic);
 /dev/ttyp0 -> $(Dynamic);
 /dev/ttyp1 -> $(Dynamic);
 /dev/ttyp2 -> $(Dynamic);
 /dev/ttyp3 -> $(Dynamic);
 /dev/ttyp4 -> $(Dynamic);
 /dev/ttyp5 -> $(Dynamic);
 /dev/ttyp6 -> $(Dynamic);
 /dev/urandom -> $(Dynamic);
}

Critical configuration files
(rulename = "Critical configuration files", severity =
$(SIG_HI))
{
 /etc/crontab -> $(ReadOnly);
 /etc/periodic/daily -> $(ReadOnly);
 /etc/periodic/weekly -> $(ReadOnly);
 /etc/periodic/monthly -> $(ReadOnly);
 /etc/periodic/security -> $(ReadOnly);
 /etc/defaults -> $(ReadOnly);
 /etc/fstab -> $(ReadOnly);
 /etc/hosts.allow -> $(ReadOnly);
 /etc/ttys -> $(ReadOnly);
 /etc/gettytab -> $(ReadOnly);
 /etc/protocols -> $(ReadOnly);
 /etc/services -> $(ReadOnly);
 /etc/rc -> $(ReadOnly);
 /etc/rc.conf -> $(ReadOnly);
 /etc/rc.atm -> $(ReadOnly);
 /etc/rc.diskless1 -> $(ReadOnly);
 /etc/rc.diskless2 -> $(ReadOnly);
 /etc/rc.firewall -> $(ReadOnly);
 /etc/rc.firewall6 -> $(ReadOnly);
 /etc/rc.i386 -> $(ReadOnly);
 /etc/rc.isdn -> $(ReadOnly);
 /etc/rc.network -> $(ReadOnly);
 /etc/rc.network6 -> $(ReadOnly);
 /etc/rc.pccard -> $(ReadOnly);
 /etc/rc.resume -> $(ReadOnly);
 /etc/rc.serial -> $(ReadOnly);
 /etc/rc.shutdown -> $(ReadOnly);
 /etc/rc.suspend -> $(ReadOnly);
 /etc/rc.syscons -> $(ReadOnly);
 /etc/rc.sysctl -> $(ReadOnly);
 /etc/motd -> $(ReadOnly);
 /etc/passwd -> $(ReadOnly);
 /etc/master.passwd -> $(ReadOnly);
 /etc/pwd.db -> $(ReadOnly);
 /etc/spwd.db -> $(ReadOnly);
 /etc/rpc -> $(ReadOnly);
 /etc/shells -> $(ReadOnly);
 /etc/ipf.rules -> $(ReadOnly);
 /etc/ipnat.rules -> $(ReadOnly);
 /etc/ssh/sshd_config -> $(ReadOnly);
}

Critical devices
(rulename = "Critical devices", severity = $(SIG_HI), recurse
= false)
{
 /dev/kmem -> $(Device);
 /dev/mem -> $(Device);

 /dev/null -> $(Device);
 /dev/zero -> $(Device);
}

Re-generate the Tripwire policy file and database - Now that you have
a good Tripwire text policy file, we need to actually create the policy
file from it and the Tripwire database itself. To do that, just type the
following commands:

[root@numa /root]# twadmin --create-polfile --cfgfile
/etc/tripwire/tw.cfg /etc/tripwire/twpol.txt
[root@numa /root]# tripwire --init --cfgfile
/etc/tripwire/tw.cfg

 *** Note: You will receive an error that says that two
files do
 not exist yet. These two files are /etc/ipf.rules and
/etc/ipnat.rules.
 That's OK because we haven't created them yet. We
won't until another
 5-10 steps from now. After you have completed this
HOWTO, simply
 re-initialize the tripwire database & everything will
be OK.

G.

Create a cron job to check the integrity of your system every day at
4AM:

[root@numa /root]# cd /etc
[root@numa /etc]# vi crontab

- Add the following line to the file:
 0 4 * * *
 root /usr/local/sbin/tripwire --check
--cfgfile /etc/tripwire/tw.cfg

H.

In the future, when you want to interactively check your system for
changes, and then incorporate those changes into the Tripwire database,
run the following command. After you run it, you'll be presented with a
report of the policy violations. Edit it with vi, leaving an 'x' next to
each policy violation that you want the database updated with. Then edit

& save.

[root@numa /root]# tripwire --check --interactive --cfgfile
/etc/tripwire/tw.cfg

I.

Edit your /etc/rc.conf file so that it's ready for the screen resolution
changes and the IPFILTER modifications we'll make in a few minutes.

Towards the end of the file, there's a line that reads
'sendmail_enable="YES"'. Change it so that it reads
'sendmail_enable="NONE"'.

A.

Add the following lines at the bottom of the file to support 132x43
screen resolution (after we compile VESA support into the kernel, below).

font8x8="/usr/share/syscons/fonts/iso02-8x8.fnt"
allscreens_flags="132x43"

B.

Add the following line at the bottom of the file so that syslog won't log
to remote machines, nor will it accept logs from remote machines. This
still allows syslog to function, but stops it from being a 'listening'
service.

syslogd_flags="-ss"

C.

Add the following line at the bottom of the file so that SSHD only
listens for IPv4 addresses

D.

9259.

sshd_flags="-4"

Add the following lines at the bottom of the file so that IPFILTER,
IPNAT, and IPMON will work correctly after we compile support for it into
the kernel and create the appropriate files, below. The forced use of no
options for ipfilter overrides the default "-E" flag in
/etc/defaults/rc.conf. By overriding this option, you won't get errors
when ipfilter starts up that complain that ipfilter is already running.
The options for ipmon perform the following - D causes it to run as a
daemon, s tells it to log to syslog rather than a file, v tells it to log
the tcp window, ack and sequence fields, and n tells it to map the IP
addresses and port numbers back to hostnames and service names.

ipfilter_enable="YES"
ipfilter_flags=""
ipmon_enable="YES"
ipmon_flags="-Dsvn"
ipnat_enable="YES"

E.

Modify the following line so that your 2nd ISA network card is a valid
network interface. Sometimes, this line may not be present in the
/etc/rc.conf file. If it's not, then add it. Just a reminder that the
device names I'm using here (ed0 & ed1) are for NE2000-compatible ISA
cards. If you're using PCI cards, the device names will be different.

network_interfaces="ed0 ed1 lo0"

F.

Add the following line so that your new 2nd ISA network card is
configured correctly after you recompile the kernel and reboot. Again,
we're assuming that you're using 192.168.1.0 as the internal network (per
the diagram at the beginning of this document):

ifconfig_ed1="inet 192.168.1.1 netmask 255.255.255.0"

G.

Ensure the following two lines are present. If they're not, then add
them. Again, per the diagram at the beginning of this document, ed0 is
your DHCP interface connected to your ISP. And lo0 (as always) is your
loopback address).

ifconfig_lo0="inet 127.0.0.1"
ifconfig_ed0="DHCP"

H.

Reduce your vulnerability to Denial of Service (DoS) or hijack attacks by
dropping ICMP redirect packets. Add the following line to the bottom of
the file:

icmp_drop_redirects="YES"

I.

Create a separate logfile for our firewall logs and another one for our SSHD
authentication log entries. Then edit the newsyslog configuration file so that
your new logfiles are rotated properly.

Create a new file for the firewall and authentication logs with the
following commands:

[root@numa /root]# touch /var/log/firewall_logs
[root@numa /root]# touch /var/log/authlog
[root@numa /root]# chmod 600 /var/log/firewall_logs
[root@numa /root]# chmod 600 /var/log/authlog

A.

Modify your syslog configuration file (/etc/syslog.conf) so that the
IPFILTER logged events (logged with IPMON) are sent to your new separate
firewall log file. Insert the following line at the top of the file:

local0.* /var/log/firewall_logs

Then, add the entry "local0.none" to the line for /var/log/messages. Add
it to the middle of the line, separated from the other entries with a
semi-colon. This will ensure that the firewall log entries don't end up
in /var/log/messages...they'll only go to your firewall log, configured
above.

B.

Insert the following line towards the top of the file so that the SSHDC.

9403.

logged events are sent to a log file called "authlog":

auth.* /var/log/authlog

Modify your newsyslog configuration file (/etc/newsyslog.conf) so that
your new firewall log files get rotated just like the primary syslog file
(/var/log/messages). Add the following new line to the bottom of the
file:

/var/log/firewall_logs 600 14 100 * Z
/var/log/authlog 600 14 100 * Z

D.

Create your IPFILTER and IPNAT rulesets

Using vi, create a new IPFILTER firewall ruleset, /etc/ipf.rules, & add
the following lines to it. Note: The assumption is that ed0 is the
"outside" interface (i.e. connected to your ISP), and ed1 is the
"inside" interface (i.e. connected to your internal network). Also note
that we're not performing egress filtering here. We're blocking all
inbound packets from the internet and allowing all internal network
packets out (and keeping state on them so that they're allowed back in).
After your box is configured to your liking, I heavily recommend
implementing egress filtering.

For those new to egress filtering...all it means is that you only allow
out of your network traffic that you explicitly want to let out. For
example, you'd change the line that allows unrestricted outbound tcp
traffic (the first rule in the ruleset) into 5 or more different rules.
One which allows outbound traffic as long as it's going to port 80
(http). The second allows outbound traffic as long as it's going to port
25 (smtp), etc. Add as many rules as you need to define the outbound
traffic that you're allowing. Then, add a rule before all of these that
blocks all outbound traffic to broadcast addresses (i.e. anything that
ends with a 255...like x.x.x.255). And you'd add another rule that blocks
all outbound traffic if the source address isn't on the 192.168.1.0
network or the IP address of your ed0 interface (the one that's connected
to your ISP). So, you'd be blocking all packets that aren't coming from
your network or your own system. In other words, you know that your users
will only need to go out to web sites, send mail, etc. And they'll never
need to send broadcast packets out to the Internet, etc. And they better
not be spoofing their source IP address. This is only a sample of what
egress filtering is all about. Good (read as 'restrictive') egress
filtering can be quite complex, but is in the best interest of the
Internet because it doesn't allow your box (in the off-chance that it
does get hacked) to be used maliciously for things like "smurf" attacks
and other broadcast amplification attacks (where your system sends out
broadcast packets to a target network to get as many systems to respond
as possible...which eats up their bandwidth). In addition, it lets you
know if you have any systems on the inside of your network that are
trying to access the internet over unauthorized protocols & services
(read as "misbehaving users...").

And as a final note, since we're using IPFILTER's stateful packet
inspection abilities, we don't need to reject traffic spoofing
non-routable or reserved addresses...they'll be blocked automatically
since they don't match a corresponding packet in the state table. If you
do allow certain services into your firewall (say, SSH access from the
Internet so that you can manage the firewall remotely), then you'll have
to add these filters in. To do so, block all incoming traffic on your ed0
interface that claims to have a source IP address of 192.168.0.0/16,
10.0.0.0/8, or any of the other reserved addresses, etc.

Use this IPFILTER ruleset as a starting point. After you have everything
running, add in whatever you want (egress filtering, protection from
non-routable addresses, IP spoofing protection, etc.) to complete the
job. This is only a starting point.

Note: Remember to modify the bold red text (below) so that it matches the
IP address of your ISP's DHCP server

###
Outside Interface

A.

9507.

###

#--
Allow out all TCP, UDP, and ICMP traffic & keep state on it
so that it's allowed back in.
#
If you wanted to do egress filtering...here's where you'd do
it.
You'd change the lines below so that rather than allowing
out any
arbitrary TCP connection, it would only allow out mail,
pop3, and http
connections (for example). So, the first line, below, would
be
replaced with:
pass out quick on ed0 proto tcp from any to any port = 25
keep state
pass out quick on ed0 proto tcp from any to any port =
110 keep state
pass out quick on ed0 proto tcp from any to any port = 80
keep state
...and then do the same for the remaining lines so that you
allow
only specified protocols/ports 'out' of your network
#--
pass out quick on ed0 proto tcp from any to any keep state
pass out quick on ed0 proto udp from any to any keep state
pass out quick on ed0 proto icmp from any to any keep state
block out quick on ed0 all

#---
Block all inbound traffic from non-routable or reserved
address spaces
#---
block in log quick on ed0 from 192.168.0.0/16 to any #RFC
1918 private IP
block in log quick on ed0 from 172.16.0.0/12 to any #RFC
1918 private IP
block in log quick on ed0 from 10.0.0.0/8 to any #RFC
1918 private IP
block in log quick on ed0 from 127.0.0.0/8 to
any #loopback
block in log quick on ed0 from 0.0.0.0/8 to
any #loopback
block in log quick on ed0 from 169.254.0.0/16 to any #DHCP
auto-config
block in log quick on ed0 from 192.0.2.0/24 to
any #reserved for doc's
block in log quick on ed0 from 204.152.64.0/23 to any #Sun
cluster interconnect
block in quick on ed0 from 224.0.0.0/3 to any #Class D
& E multicast

#--
Allow bootp traffic in from your ISP's DHCP server only.
#--
pass in quick on ed0 proto udp from X.X.X.X/32 to any port =
68 keep state

#--
If you wanted to set up a web server or mail server on your
box
(which is outside the scope of this howto), or allow another
system
on the Internet to externally SSH into your firewall, you'd
want to
uncomment the following lines and modify as appropriate. If
you
have other services running that you need to allow external
access
to, just add more lines using these as examples.
#

If the services are on a box on your internal network
(rather than
the firewall itself), you'll have to add both the filter
listed below,
plus a redirect rule in your /etc/ipnat.rules file.
#--
pass in quick on ed0 proto tcp from any to any port = 80
flags S keep state keep frags
pass in quick on ed0 proto tcp from any to any port = 25
flags S keep state keep frags
pass in quick on ed0 proto tcp from X.X.X.X/32 to any port =
22 flags S keep state keep frags

#--
Block and log all remaining traffic coming into the firewall
- Block TCP with a RST (to make it appear as if the service
isn't listening)
- Block UDP with an ICMP Port Unreachable (to make it appear

as if the service isn't listening)
- Block all remaining traffic the good 'ol fashioned way
#--
block return-rst in log quick on ed0 proto tcp from any to any
block return-icmp-as-dest(port-unr) in log quick on ed0 proto
udp from any to any
block in log quick on ed0 all

###
Inside Interface
###

#--
Allow out all TCP, UDP, and ICMP traffic & keep state
#--
pass out quick on ed1 proto tcp from any to any keep state
pass out quick on ed1 proto udp from any to any keep state
pass out quick on ed1 proto icmp from any to any keep state
block out quick on ed1 all

#--
Allow in all TCP, UDP, and ICMP traffic & keep state
#--
pass in quick on ed1 proto tcp from any to any keep state
pass in quick on ed1 proto udp from any to any keep state
pass in quick on ed1 proto icmp from any to any keep state
block in quick on ed1 all

###
Loopback Interface
###

#--
Allow everything to/from your loopback interface so you
can ping yourself (e.g. ping localhost)
#--
pass in quick on lo0 all
pass out quick on lo0 all

Using vi, create a new IPNAT translation ruleset, /etc/ipnat.rules, & add
the following lines to it.

#--
Do 'normal' IP address translation. This line will take all
packets
going out on your external NIC (ed0) that have a source
address coming
from your internal network (192.168.1.0), and translate it
to whatever
IP address your external NIC happens to have at that time
#--
map ed0 192.168.1.0/24 -> 0/32

D.

#--
If you have a system on your internal network that needs to
be
'reachable' by external systems on the internet, you'll need
a rule
similar to the one below. This one takes all inbound http
traffic
(TCP port 80) that hits the firewall's external interface
(ed0) and
redirects it to port 80 on the 192.168.1.50 system on the
internal network.
Simply uncomment the rule, change the IP address and port
number so that
it does what you need. Remember that you have to enable the
corresponding
inbound filter in your /etc/ipf.rules file, too.
#--
rdr ed0 0.0.0.0/0 port 80 -> 192.168.1.50 port 80 tcp

Add "blackhole" support and restrict crontab access/usage

Add "blackhole" support to make your system harder to port-scan. Edit
your /etc/sysctl.conf file and add the following 2 lines to the end of
the file. This will make it much harder for people to port-scan your
system by not sending back telltale RST packets to closed TCP ports on
your system (for example). By setting the TCP blackhole parameter to "2"
it will drop unsolicited packets of any type (SYN, FIN, etc.) to closed
ports. Setting the UDP blackhole parameter to "1" will perform the same
function for UDP (since UDP isn't connection oriented).

net.inet.tcp.blackhole=2
net.inet.udp.blackhole=1

A.

Create the file /var/cron/allow and add the following lines to it. Be
sure to substitute 'newuser' for whatever your non-privileged user
account is. This will only allow the root user and your non-privileged
user account to schedule jobs with cron.

root
newuser

B.

Edit /etc/crontab and remove the 'at' job that runs every 5 minutes. The
'at' command is run commands at a later time (i.e. type in the command
now, and it'll run 20 minutes later, etc.) If you don't use 'at' command
(and chances are, you don't), then you don't need it running every 5
minutes. Hackers might want to use it to schedule a job to help give them
access to your system or download rootkits, etc. So, edit your
/etc/crontab file, and place a '#' at the beginning of the following line
(i.e. comment it out).

*/5 * * * * root /usr/libexec/atrun

C.

Chmod your /etc/crontab file so that it is only readable by root. There's
no need for other users to know what jobs are scheduled to run & when.
It's a firewall, not a common-use workstation.

[root@numa /etc]# chmod 600 /etc/crontab

D.

9654.

Re-compile your kernel & system binaries (i.e. add IPFILTER support, upgrade to
-STABLE, add VESA support, and add support for a 2nd ISA Ethernet card)

Change directory into /usr/src/sys/i386/conf

cd /usr/src/sys/i386/conf

A.

Copy the file GENERIC to a new file - typically named after your hostname
(I'll assume that your hostname is "FIREWALL")

cp GENERIC FIREWALL

B.

Using vi, edit your new file, FIREWALL, and make the following changes: C.

9655.

In line 2 of the file (part of the main comment block) change the
word, GENERIC, to your hostname, FIREWALL.

i.

On line 18 of the file (still part of the main comment block),
change the word, GENERIC, to your hostname, FIREWALL

ii.

On lines 21-24, comment out the "cpu" lines so that only the one
for your specific chip is left. For a Pentium MMX, I commented out
all of them except line 23 - cpu "I586_CPU"

iii.

On line 25, change the value of the ident parameter so that it's
your hostname, FIREWALL

iv.

Starting at about line 32 (right after the line with "options
INET"), add the following 3 new lines to add IPFILTER support into
your firewall and have it automatically block all packets by
default:

options IPFILTER
options IPFILTER_LOG
options IPFILTER_DEFAULT_BLOCK

v.

At about line 135 (immediately following the line "device vga0 at
isa?"), add the following line to add support for VESA video modes
(for 132x43 resolution):

options VESA

vi.

At about line 200, (in the networking portion...right after the
title "ISA Ethernet NICs" and after the line with "device ed0 at
isa? port 0x280 irq 10 iomem 0xd8000"), add the following new line
to add support for a 2nd generic NE2000-compatible ISA Ethernet
card. Pre-configure the IRQ and port to whatever your 2nd ISA
Ethernet card is configured to (to save you a little time after you
reboot):

device ed1 at isa? port 0x280 irq 10 iomem 0xd8000

vii.

After saving your kernel configuration file, FIREWALL, type the following
commands in this order to compile your kernel (assuming your new kernal
name is "FIREWALL"), as well as all system binaries, and install them.
With my old 200MHz Pentium MMX (overclocked to 225MHz) with 96MB of RAM,
the "make buildworld" command took 3 hours (179 minutes) since it
rebuilds all of the system binaries; the "make kernel" command took 30
minutes; and the "make installworld" command took 9 minutes.

[root@numa /]# cd /usr/src
[root@numa src]# echo "KERNCONF=FIREWALL" >> /etc/make.conf
[root@numa src]# make world
[root@numa src]# make kernel

D.

Next, edit your /etc/rc.conf file with vi and change the kernel security level
to "2" (which is the 'Extreme' setting we mentioned all of the way at the

beginning of this HOWTO) by doing the following:

- Modify the line that reads 'kern_securelevel_enable="NO"' and
change the value to "YES"
- Add a line beneath it that reads 'kern_securelevel="2"'

9668.

Lastly, modify the /etc/fstab file with vi so that we can change how each
partition is mounted...to ensure that hackers can do at little as possible if
they (by chance alone) hack the box. Essentially, we're restricting some of the
partitions so that they are 'nosuid', 'noexec', and 'ro'. The original
/etc/fstab should look something like this. Yours might look a little
different...the first column (device names) might be a little different, but

that's OK. The stuff we'll be modifying is in the 4th column.

Device Mountpoint FStype Options Dump Pass#
/dev/ad0s1b none swap sw 0 0
/dev/ad0s1a / ufs rw 1 1

9669.

/dev/ad0s1e /tmp ufs rw 2 2
/dev/ad0s1g /usr ufs rw 2 2
/dev/ad0s1d /usr/home ufs rw 2 2
/dev/ad0s1h /usr/local ufs rw 2 2
/dev/ad0s1f /var ufs rw 2 2
proc /proc procfs rw 0 0

First, copy the original /etc/fstab file to /etc/fstab.original

Then, make another copy of the /etc/fstab file and call it
/etc/fstab.restrictive

Then, modify the /etc/fstab.restrictive file so that it reads as follows:

Device Mountpoint FStype Options Dump
 Pass#
/dev/ad0s1b none swap sw 0 0
/dev/ad0s1a / ufs rw,nosuid 1 1
/dev/ad0s1e /tmp ufs rw,noexec,nosuid,nodev 2 2
/dev/ad0s1g /usr ufs ro 2 2
/dev/ad0s1d /usr/home ufs rw,noexec,nosuid 2 2
/dev/ad0s1h /usr/local ufs ro,nosuid 2 2
/dev/ad0s1f /var ufs rw,noexec,nosuid 2 2
proc /proc procfs rw 0 0

Next, copy your new /etc/fstab.restrictive file and over-write the original
/etc/fstab...so that your "real" fstab file has the restrictive settings, and
you have the two other config files available (the original and restrictive

one).

[root@numa etc]# cp /etc/fstab.restrictive /etc/fstab

Note that this will make adding new software, etc. much more difficult since
/usr and /usr/local are mounted read-only. This means that programs which try
to install their user-land programs in /usr/local/bin will fail during their
install programs. And cvsup...which will try to update the kernel's source code
in /usr/src and the ports in /usr/ports...well, they're now read-only because
they fall under /usr. So, mounting your partitions in a very restrictive way is
a double-edged sword. It limits what the hacker can do on your system, but it
makes software installs and kernel upgrades more difficult (or impossible...if
the partitions are still mounted in a restrictive way).

Given that, if you want to add new software or upgrade the kernel & ports tree

source code, you'll need to
Change the partition's mounting in /etc/fstab back to their original
values by copying your /etc/fstab.original file to /etc/fstab.

a.

Bump the kernel security level back down to "1" by setting the
kern_securelevel paramater in your /etc/rc.conf file, and then

b.

Reboot the machinec.
Update your sources with cvsup, then make buildworld, make kernel, and
make installworld

d.

Then when you're done upgrading, recompiling, and installing, do the steps in

reverse:
Change the partition's mounting in /etc/fstab to their restrictive values
by copying your /etc/fstab.restrictive file to /etc/fstab.

a.

Bump the kernel security level back up to "2" by setting the
kern_securelevel paramater in your /etc/rc.conf file, and then

b.

Reboot the machine c.

This may sound like a pain...I know. But this is your firewall, not a desktop
workstation. This is the price you pay for a VERY, VERY secure machine. If you
want an even more secure machine than this, then you can start setting the
immutable flag on files in the filesystem by using the chflags command with the
schg flag...but that's a whole separate howto in-and-of-itself. For now,
though, you shouldn't need to manipulate immutable flags.

Reboot the machine so we can finish the job...9673.

[root@numa /etc]# shutdown -r now

If the system doesn't reboot, it means that you probably made an error in the
kernel configuration file...possibly setting the wrong type of CPU. DON'T
PANIC. We can still boot the machine so that you can fix the error. To boot
into the original version of the kernel, following the steps, below:

Reboot the machine (power off, then on)A.

When you reboot the machine and get to the part that says:

Hit [Enter] to boot immediately, or any other key for command
prompt.
Booting [kernel] in 9 seconds...

Hit the [space bar] (anything except the "enter" key), and you'll get to
an "ok" prompt.

B.

Type in the following commands (at the "ok" prompt) and you'll boot the
original kernel.

ok unload kernel
ok load kernel.old
/kernel.old text=0xdf...bunch of stuff on the line...
ok boot

C.

After the old kernel boots, then modify your kernel configuration file
and fix whatever was causing the problems, recompile & install, and then
reboot and continue with the next step.

D.

17.

As the system is rebooting, go through the kernel reconfiguration process if
you need to configure your 2nd generic NE2000-compatible ISA Ethernet Card.
Again, you'll only need to do this step if you have a 2nd NE2000-compatible ISA
Ethernet card to configure. If you're using PCI network cards, you won't have
to do this step.

To do this, interrupt the boot process by hitting the [space bar] when
you see the following:

Hit [Enter] to boot immediately, or any other key for command
prompt.
Booting [kernel] in 9 seconds...

A.

Then, at the '>' prompt, type 'boot -c' and hit [Enter]. This will boot
into the Kernel Configuration Utility

B.

Then, at the next '>' prompt (usually "'config>") type 'v' and hit
[Enter] to start the Kernel Configuration Utility in visual mode. This
will drop you off at the step 7 of the first section of this document
(Installing FreeBSD-STABLE). This time, you'll see support for your 2nd
Ethernet card, ed1. Configure the IRQ and Port, then save and continue
booting

C.

18.

After the system comes back up, you'll want to re-generate the Tripwire
database. Since you updated the kernal and all of the system binaries, the
Tripwire database signatures of those files is out of date. If you don't update
the Tripwire database, Tripwire will find thousands of "changes" to the system
binaries when it runs for the first time at 4AM in the morning. To update the
database so that it has signatures for the newest kernel & system binaries,

etc, just type the following command:

[root@numa /root]# tripwire --init --cfgfile /etc/tripwire/tw.cfg

After you do this...you should have a completely working firewall...enjoy!

19.

