
FreeBSD Porter’s Handbook

The FreeBSD Documentation Project

FreeBSD Porter’s Handbook
by The FreeBSD Documentation Project

Published April 2000
Copyright © 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 The FreeBSD Documentation Project

FreeBSD is a registered trademark of The FreeBSD Foundation.

UNIX is a registered trademark of The Open Group in the US and other countries.

Sun, Sun Microsystems, SunOS, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and

other countries.

Apple and QuickTime are trademarks of Apple Computer, Inc., registered in the U.S. and other countries.

Macromedia and Flash are trademarks or registered trademarks of Macromedia, Inc. in the United States and/or other countries.

Microsoft, Windows, and Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or

other countries.

PartitionMagic is a registered trademark of PowerQuest Corporation in the United States and/or other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations

appear in this book, and the FreeBSD Project was aware of the trademark claim, the designations have been followed by the ’™’ symbol.

Redistribution and use in source (SGML DocBook) and ’compiled’ forms (SGML, HTML, PDF, PostScript, RTF and so forth) with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (SGML DocBook) must retain the above copyright notice, this list of conditions
and the following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript, RTF and other
formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Important: THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Table of Contents
1 Introduction..1
2 Making a port yourself ..2
3 Quick Porting ...3

3.1 Writing the Makefile ..3
3.2 Writing the description files ..3

3.2.1 pkg-descr ...3
3.2.2 pkg-plist ...4

3.3 Creating the checksum file ..5
3.4 Testing the port..5
3.5 Checking your port with portlint ...6
3.6 Submitting the port..6

4 Slow Porting..7
4.1 How things work ...7
4.2 Getting the original sources...8
4.3 Modifying the port ..8
4.4 Patching ...9
4.5 Configuring..10
4.6 Handling user input ...10

5 Configuring the Makefile...11
5.1 The original source..11
5.2 Naming ..11

5.2.1 PORTNAME and PORTVERSION ...11
5.2.2 PORTREVISION and PORTEPOCH ...11
5.2.3 PKGNAMEPREFIX and PKGNAMESUFFIX ..13
5.2.4 LATEST_LINK...13
5.2.5 Package Naming Conventions ..14

5.3 Categorization ...15
5.3.1 CATEGORIES...16
5.3.2 Current list of categories...16
5.3.3 Choosing the right category..20
5.3.4 Proposing a new category ...20
5.3.5 Proposing reorganizing all the categories ...21

5.4 The distribution files..22
5.4.1 DISTVERSION/DISTNAME ...22
5.4.2 MASTER_SITES ..22
5.4.3 EXTRACT_SUFX ..23
5.4.4 DISTFILES ...23
5.4.5 EXTRACT_ONLY ..23
5.4.6 PATCHFILES...24
5.4.7 Multiple distribution files or patches from different sites and subdirectories (MASTER_SITES:n) 24
5.4.8 DIST_SUBDIR...29
5.4.9 ALWAYS_KEEP_DISTFILES ...30

5.5 MAINTAINER ...30
5.6 COMMENT..31

iii

5.7 Dependencies ..31
5.7.1 LIB_DEPENDS...31
5.7.2 RUN_DEPENDS...31
5.7.3 BUILD_DEPENDS ..32
5.7.4 FETCH_DEPENDS ..32
5.7.5 EXTRACT_DEPENDS ..33
5.7.6 PATCH_DEPENDS ..33
5.7.7 USE_*..33
5.7.8 Minimal version of a dependency...34
5.7.9 Notes on dependencies ...34
5.7.10 Circular dependencies are fatal...35

5.8 MASTERDIR ...35
5.9 Manpages ..36
5.10 Info files...37
5.11 Makefile Options ...37

5.11.1 Knobs..37
5.11.2 OPTIONS ...38
5.11.3 Feature auto-activation..40

5.12 Specifying the working directory ..40
5.12.1 WRKSRC ...40
5.12.2 NO_WRKSUBDIR ..41

5.13 CONFLICTS ...41
5.14 Installing files ..41

5.14.1 INSTALL_* macros ...41
5.14.2 Stripping Binaries ...41
5.14.3 Installing a whole tree of files...42
5.14.4 Install additional documentation...42
5.14.5 Subdirectories under PREFIX ..44

6 Special considerations..45
6.1 Shared Libraries ..45
6.2 Ports with distribution restrictions ..45

6.2.1 NO_PACKAGE...45
6.2.2 NO_CDROM ...46
6.2.3 NOFETCHFILES ..46
6.2.4 RESTRICTED...46
6.2.5 RESTRICTED_FILES..46

6.3 Building mechanisms ..47
6.3.1 Parallel ports building...47
6.3.2 make, gmake, and imake ...47
6.3.3 configure script ...47
6.3.4 Using scons ...48

6.4 Using GNU autotools ..48
6.4.1 Introduction...48
6.4.2 libtool ...49
6.4.3 libltdl ...49
6.4.4 autoconf and autoheader..49
6.4.5 automake and aclocal ..50

iv

6.5 Using GNU gettext..50
6.5.1 Basic usage ...50
6.5.2 Optional usage ..51
6.5.3 Handling message catalog directories ..51

6.6 Using perl..51
6.7 Using X11 ...52

6.7.1 X.Org components ..53
6.7.2 Ports that require Motif...54
6.7.3 X11 fonts ..54
6.7.4 Getting fake DISPLAY using Xvfb ...54
6.7.5 Desktop entries ...55

6.8 Using GNOME..55
6.9 Using KDE ..55

6.9.1 Variable definitions ...55
6.9.2 Ports that require Qt..56
6.9.3 Component selection (Qt 4.x only)...57
6.9.4 Additional considerations ...58

6.10 Using Java ...58
6.10.1 Variable definitions ...59
6.10.2 Building with Ant ...61
6.10.3 Best practices ..61

6.11 Web applications, Apache and PHP ..62
6.11.1 Apache ..62
6.11.2 Web applications...63
6.11.3 PHP...63
6.11.4 PEAR modules..64

6.12 Using Python ...64
6.13 Using Tcl/Tk...65
6.14 Using Emacs..66
6.15 Using Ruby..66
6.16 Using SDL...67
6.17 Using wxWidgets..68

6.17.1 Introduction...68
6.17.2 Version selection...68
6.17.3 Component selection ..69
6.17.4 Unicode...70
6.17.5 Detecting installed versions ..71
6.17.6 Defined variables ..71
6.17.7 Processing in bsd.port.pre.mk ...72
6.17.8 Additional configure arguments ...72

6.18 Using Lua ...73
6.18.1 Introduction...73
6.18.2 Version selection...73
6.18.3 Component selection ..74
6.18.4 Detecting installed versions ..75
6.18.5 Defined variables ..76
6.18.6 Processing in bsd.port.pre.mk ...76

6.19 Using Xfce...77

v

6.20 Using databases ...78
6.21 Starting and stopping services (rc scripts)...78

6.21.1 Stopping services at deinstall..80

7 Advanced pkg-plist practices..81
7.1 Changing pkg-plist based on make variables...81
7.2 Empty directories ..81

7.2.1 Cleaning up empty directories ..81
7.2.2 Creating empty directories..82

7.3 Configuration files ...82
7.4 Dynamic vs. static package list ...82
7.5 Automated package list creation ...83

8 The pkg-* files..85
8.1 pkg-message ...85
8.2 pkg-install ...85
8.3 pkg-deinstall ...85
8.4 pkg-req..86
8.5 Changing the names of pkg-* files...86
8.6 Making use of SUB_FILES and SUB_LIST ..86

9 Testing your port ..88
9.1 Running make describe ..88
9.2 Portlint ...88
9.3 Port Tools ..88
9.4 PREFIX and DESTDIR ...88
9.5 Tinderbox ..89

10 Upgrading ...90
11 Ports security ..92

11.1 Why security is so important...92
11.2 Fixing security vulnerabilities ...92
11.3 Keeping the community informed...92

11.3.1 The VuXML database...93
11.3.2 A short introduction to VuXML ...93
11.3.3 Testing your changes to the VuXML database ...96

12 Dos and Don’ts ...98
12.1 Introduction ...98
12.2 WRKDIR ..98
12.3 WRKDIRPREFIX ...98
12.4 Differentiating operating systems and OS versions ..98
12.5 __FreeBSD_version values ...99
12.6 Writing something after bsd.port.mk..126
12.7 Use the exec statement in wrapper scripts ...127
12.8 UIDs and GIDs..127
12.9 Do things rationally ...128
12.10 Respect both CC and CXX...128
12.11 Respect CFLAGS ..128
12.12 Threading libraries ..129
12.13 Feedback..129

vi

12.14 README.html ...129
12.15 Marking a port not installable with BROKEN, FORBIDDEN, or IGNORE...129

12.15.1 Variables ...130
12.15.2 Implementation Notes...131

12.16 Marking a port for removal with DEPRECATED or EXPIRATION_DATE ...131
12.17 Avoid use of the .error construct ...131
12.18 Usage of sysctl...132
12.19 Rerolling distfiles ..132
12.20 Necessary workarounds...132
12.21 Miscellanea..133

13 A Sample Makefile...134
14 Keeping Up ...136

14.1 FreshPorts..136
14.2 The Web Interface to the Source Repository...136
14.3 The FreeBSD Ports Mailing List...136
14.4 The FreeBSD Port Building Cluster on pointyhat.FreeBSD.org ..136
14.5 The FreeBSD Port Distfile Survey ..137
14.6 The FreeBSD Ports Monitoring System..137

vii

List of Tables
5-1. The USE_* variables ..34
5-2. Common WITH_* and WITHOUT_* variables ..38
6-1. Variables for ports related to gmake ..47
6-2. Variables for ports that use configure ..47
6-3. Variables for ports that use scons ..48
6-4. Variables for ports that use perl...52
6-5. Variables for ports that use X ..53
6-6. Variables for depending on individual parts of X11..53
6-7. Variables for ports that use KDE ...55
6-8. Variables for ports that use Qt ...56
6-9. Additional variables for ports that use Qt 4.x..56
6-10. Available Qt4 library components ...57
6-11. Available Qt4 tool components ...57
6-12. Available Qt4 plugin components ...57
6-13. Variables that may be set by ports that use Java..59
6-14. Variables provided to ports that use Java...59
6-15. Constants defined for ports that use Java...61
6-16. Variables for ports that use Apache ...62
6-17. Useful variables for porting Apache modules ...62
6-18. Variables for ports that use PHP..63
6-19. Most useful variables for ports that use Python ..65
6-20. The most useful variables for ports that use Tcl/Tk ...66
6-21. Useful variables for ports that use Ruby..66
6-22. Selected read-only variables for ports that use Ruby ..67
6-23. Variables to select wxWidgets versions ..68
6-24. Available wxWidgets versions ..69
6-25. wxWidgets version specifications...69
6-26. Variables to select preferred wxWidgets versions ..69
6-27. Available wxWidgets components..69
6-28. Available wxWidgets dependency types...70
6-29. Default wxWidgets dependency types ..70
6-30. Variables to select Unicode in wxWidgets versions ...70
6-31. Variables defined for ports that use wxWidgets..72
6-32. Legal values for WX_CONF_ARGS ..73
6-33. Variables to select Lua versions..73
6-34. Available Lua versions..73
6-35. Lua version specifications...74
6-36. Variables to select preferred Lua versions ..74
6-37. Available Lua components..74
6-38. Available Lua dependency types...74
6-39. Default Lua dependency types..75
6-40. Variables defined for ports that use Lua..76
6-41. Variables for ports using databases..78
12-1. __FreeBSD_version values ...100

viii

Chapter 1 Introduction
The FreeBSD ports collection is the way almost everyone installs applications ("ports") on FreeBSD. Like
everything else about FreeBSD, it is primarily a volunteer effort. It is important to keep this in mind when reading
this document.

In FreeBSD, anyone may submit a new port, or volunteer to maintain an existing port if it is unmaintained—you do
not need any special commit privileges to do so.

1

Chapter 2 Making a port yourself
So, you are interested in making your own port or upgrading an existing one? Great!

What follows are some guidelines for creating a new port for FreeBSD. If you want to upgrade an existing port, you
should read this and then read Chapter 10.

When this document is not sufficiently detailed, you should refer to /usr/ports/Mk/bsd.port.mk, which all port
Makefiles include. Even if you do not hack Makefiles daily, it is well commented, and you will still gain much
knowledge from it. Additionally, you may send specific questions to the FreeBSD ports mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports).

Note: Only a fraction of the variables (VAR) that can be overridden are mentioned in this document. Most (if not
all) are documented at the start of /usr/ports/Mk/bsd.port.mk; the others probably ought to be. Note that this
file uses a non-standard tab setting: Emacs and Vim should recognize the setting on loading the file. Both vi(1)
and ex(1) can be set to use the correct value by typing :set tabstop=4 once the file has been loaded.

2

Chapter 3 Quick Porting
This section tells you how to do a quick port. In many cases, it is not sufficient, so you will have to read further on
into the document.

First, get the original tarball and put it into DISTDIR, which defaults to /usr/ports/distfiles.

Note: The following assumes that the software compiled out-of-the-box, i.e., there was absolutely no change
required for the port to work on your FreeBSD box. If you needed to change something, you will have to refer to
the next section too.

3.1 Writing the Makefile

The minimal Makefile would look something like this:

New ports collection makefile for: oneko
Date created: 5 December 1994
Whom: asami
#
$FreeBSD$
#

PORTNAME= oneko
PORTVERSION= 1.1b
CATEGORIES= games
MASTER_SITES= ftp://ftp.cs.columbia.edu/archives/X11R5/contrib/

MAINTAINER= asami@FreeBSD.org
COMMENT= A cat chasing a mouse all over the screen

MAN1= oneko.1
MANCOMPRESSED= yes
USE_IMAKE= yes

.include <bsd.port.mk>

See if you can figure it out. Do not worry about the contents of the $FreeBSD$ line, it will be filled in automatically
by CVS when the port is imported to our main ports tree. You can find a more detailed example in the sample
Makefile section.

3.2 Writing the description files
There are two description files that are required for any port, whether they actually package or not. They are
pkg-descr and pkg-plist. Their pkg- prefix distinguishes them from other files.

3

Chapter 3 Quick Porting

3.2.1 pkg-descr

This is a longer description of the port. One to a few paragraphs concisely explaining what the port does is sufficient.

Note: This is not a manual or an in-depth description on how to use or compile the port! Please be careful if you
are copying from the README or manpage; too often they are not a concise description of the port or are in an
awkward format (e.g., manpages have justified spacing). If the ported software has an official WWW homepage,
you should list it here. Prefix one of the websites with WWW: so that automated tools will work correctly.

The following example shows how your pkg-descr should look:

This is a port of oneko, in which a cat chases a poor mouse all over
the screen.
:
(etc.)

WWW: http://www.oneko.org/

3.2.2 pkg-plist

This file lists all the files installed by the port. It is also called the “packing list” because the package is generated by
packing the files listed here. The pathnames are relative to the installation prefix (usually /usr/local or
/usr/X11R6). If you are using the MANn variables (as you should be), do not list any manpages here. If the port
creates directories during installation, make sure to add @dirrm lines to remove them when the package is deleted.

Here is a small example:

bin/oneko
lib/X11/app-defaults/Oneko
lib/X11/oneko/cat1.xpm
lib/X11/oneko/cat2.xpm
lib/X11/oneko/mouse.xpm
@dirrm lib/X11/oneko

Refer to the pkg_create(1) manual page for details on the packing list.

Note: It is recommended that you keep all the filenames in this file sorted alphabetically. It will make verifying the
changes when you upgrade the port much easier.

Note: Creating a packing list manually can be a very tedious task. If the port installs a large numbers of files,
creating the packing list automatically might save time.

There is only one case when pkg-plist can be omitted from a port. If the port installs just a handful of files, and
perhaps directories, the files and directories may be listed in the variables PLIST_FILES and PLIST_DIRS,
respectively, within the port’s Makefile. For instance, we could get along without pkg-plist in the above oneko
port by adding the following lines to the Makefile:

4

Chapter 3 Quick Porting

PLIST_FILES= bin/oneko \
lib/X11/app-defaults/Oneko \
lib/X11/oneko/cat1.xpm \
lib/X11/oneko/cat2.xpm \
lib/X11/oneko/mouse.xpm

PLIST_DIRS= lib/X11/oneko

Of course, PLIST_DIRS should be left unset if a port installs no directories of its own.

The price for this way of listing port’s files and directories is that you cannot use command sequences described in
pkg_create(1). Therefore, it is suitable only for simple ports and makes them even simpler. At the same time, it has
the advantage of reducing the number of files in the ports collection. Please consider using this technique before you
resort to pkg-plist.

Later we will see how pkg-plist and PLIST_FILES can be used to fulfill more sophisticated tasks.

3.3 Creating the checksum file
Just type make makesum. The ports make rules will automatically generate the file distinfo.

If a file fetched has its checksum changed regularly and you are certain the source is trusted (i.e. it comes from
manufacturer CDs or documentation generated daily), you should specify these files in the IGNOREFILES variable.
Then the checksum is not calculated for that file when you run make makesum, but set to IGNORE.

3.4 Testing the port
You should make sure that the port rules do exactly what you want them to do, including packaging up the port.
These are the important points you need to verify.

• pkg-plist does not contain anything not installed by your port

• pkg-plist contains everything that is installed by your port

• Your port can be installed multiple times using the reinstall target

• Your port cleans up after itself upon deinstall

Recommended test ordering

1. make install

2. make package

3. make deinstall

4. pkg_add package-name

5. make deinstall

6. make reinstall

7. make package

5

Chapter 3 Quick Porting

Make sure that there are not any warnings issued in any of the package and deinstall stages. After step 3, check
to see if all the new directories are correctly deleted. Also, try using the software after step 4, to ensure that it works
correctly when installed from a package.

The most thorough way to automate these steps is via installing the ports tinderbox. This maintains jails in which
you can test all of the above steps without changing the state of your running system. Please see
ports/ports-mgmt/tinderbox for more information.

3.5 Checking your port with portlint

Please use portlint to see if your port conforms to our guidelines. The ports-mgmt/portlint program is part
of the ports collection. In particular, you may want to check if the Makefile is in the right shape and the package is
named appropriately.

3.6 Submitting the port
First, make sure you have read the DOs and DON’Ts section.

Now that you are happy with your port, the only thing remaining is to put it in the main FreeBSD ports tree and make
everybody else happy about it too. We do not need your work directory or the pkgname.tgz package, so delete
them now. Next, simply include the output of shar ‘find port_dir‘ in a bug report and send it with the
send-pr(1) program (see Bug Reports and General Commentary
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/contributing/contrib-how.html#CONTRIB-GENERAL)
for more information about send-pr(1)). Be sure to classify the bug report as category ports and class
change-request (Do not mark the report confidential!). Also add a short description of the program you
ported to the “Description” field of the PR and the shar to the “Fix” field.

Note: You can make our work a lot easier, if you use a good description in the synopsis of the problem report.
We prefer something like “New port: <category>/<portname> <short description of the port>” for new ports
and “Update port: <category>/<portname> <short description of the update>” for port updates. If you stick to
this scheme, the chance that someone will take a look at your PR soon is much better.

One more time, do not include the original source distfile, the work directory, or the package you built with make

package.

After you have submitted your port, please be patient. Sometimes it can take a few months before a port is included
in FreeBSD, although it might only take a few days. You can view the list of ports waiting to be committed to
FreeBSD (http://www.FreeBSD.org/cgi/query-pr-summary.cgi?category=ports).

Once we have looked at your port, we will get back to you if necessary, and put it in the tree. Your name will also
appear in the list of Additional FreeBSD Contributors
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/contributors/contrib-additional.html) and other files. Isn’t
that great?!? :-)

6

Chapter 4 Slow Porting
Ok, so it was not that simple, and the port required some modifications to get it to work. In this section, we will
explain, step by step, how to modify it to get it to work with the ports paradigm.

4.1 How things work
First, this is the sequence of events which occurs when the user first types make in your port’s directory. You may
find that having bsd.port.mk in another window while you read this really helps to understand it.

But do not worry if you do not really understand what bsd.port.mk is doing, not many people do... :->

1. The fetch target is run. The fetch target is responsible for making sure that the tarball exists locally in
DISTDIR. If fetch cannot find the required files in DISTDIR it will look up the URL MASTER_SITES, which is
set in the Makefile, as well as our main FTP site at ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/distfiles/, where we
put sanctioned distfiles as backup. It will then attempt to fetch the named distribution file with FETCH, assuming
that the requesting site has direct access to the Internet. If that succeeds, it will save the file in DISTDIR for
future use and proceed.

2. The extract target is run. It looks for your port’s distribution file (typically a gzip’d tarball) in DISTDIR and
unpacks it into a temporary subdirectory specified by WRKDIR (defaults to work).

3. The patch target is run. First, any patches defined in PATCHFILES are applied. Second, if any patch files named
patch-* are found in PATCHDIR (defaults to the files subdirectory), they are applied at this time in
alphabetical order.

4. The configure target is run. This can do any one of many different things.

1. If it exists, scripts/configure is run.

2. If HAS_CONFIGURE or GNU_CONFIGURE is set, WRKSRC/configure is run.

3. If USE_IMAKE is set, XMKMF (default: xmkmf -a) is run.

5. The build target is run. This is responsible for descending into the port’s private working directory (WRKSRC)
and building it. If USE_GMAKE is set, GNU make will be used, otherwise the system make will be used.

The above are the default actions. In addition, you can define targets pre-something or post-something, or put
scripts with those names, in the scripts subdirectory, and they will be run before or after the default actions are
done.

For example, if you have a post-extract target defined in your Makefile, and a file pre-build in the scripts
subdirectory, the post-extract target will be called after the regular extraction actions, and the pre-build script
will be executed before the default build rules are done. It is recommended that you use Makefile targets if the
actions are simple enough, because it will be easier for someone to figure out what kind of non-default action the
port requires.

The default actions are done by the bsd.port.mk targets do-something. For example, the commands to extract a
port are in the target do-extract. If you are not happy with the default target, you can fix it by redefining the
do-something target in your Makefile.

7

Chapter 4 Slow Porting

Note: The “main” targets (e.g., extract, configure, etc.) do nothing more than make sure all the stages up to
that one are completed and call the real targets or scripts, and they are not intended to be changed. If you want
to fix the extraction, fix do-extract, but never ever change the way extract operates!

Now that you understand what goes on when the user types make, let us go through the recommended steps to create
the perfect port.

4.2 Getting the original sources
Get the original sources (normally) as a compressed tarball (foo.tar.gz or foo.tar.Z) and copy it into DISTDIR.
Always use mainstream sources when and where you can.

You will need to set the variable MASTER_SITES to reflect where the original tarball resides. You will find
convenient shorthand definitions for most mainstream sites in bsd.sites.mk. Please use these sites—and the
associated definitions—if at all possible, to help avoid the problem of having the same information repeated over
again many times in the source base. As these sites tend to change over time, this becomes a maintenance nightmare
for everyone involved.

If you cannot find a FTP/HTTP site that is well-connected to the net, or can only find sites that have irritatingly
non-standard formats, you might want to put a copy on a reliable FTP or HTTP server that you control (e.g., your
home page).

If you cannot find somewhere convenient and reliable to put the distfile we can “house” it ourselves on
ftp.FreeBSD.org; however, this is the least-preferred solution. The distfile must be placed into
~/public_distfiles/ of someone’s freefall account. Ask the person who commits your port to do this. This
person will also set MASTER_SITES to MASTER_SITE_LOCAL and MASTER_SITE_SUBDIR to their freefall
username.

If your port’s distfile changes all the time without any kind of version update by the author, consider putting the
distfile on your home page and listing it as the first MASTER_SITES. If you can, try to talk the port author out of
doing this; it really does help to establish some kind of source code control. Hosting your own version will prevent
users from getting “checksum mismatch” errors, and also reduce the workload of maintainers of our FTP site.
Also, if there is only one master site for the port, it is recommended that you house a backup at your site and list it as
the second MASTER_SITES.

If your port requires some additional ‘patches’ that are available on the Internet, fetch them too and put them in
DISTDIR. Do not worry if they come from a site other than where you got the main source tarball, we have a way to
handle these situations (see the description of PATCHFILES below).

4.3 Modifying the port
Unpack a copy of the tarball in a private directory and make whatever changes are necessary to get the port to
compile properly under the current version of FreeBSD. Keep careful track of everything you do, as you will be
automating the process shortly. Everything, including the deletion, addition, or modification of files should be doable
using an automated script or patch file when your port is finished.

If your port requires significant user interaction/customization to compile or install, you should take a look at one of
Larry Wall’s classic Configure scripts and perhaps do something similar yourself. The goal of the new ports
collection is to make each port as “plug-and-play” as possible for the end-user while using a minimum of disk space.

8

Chapter 4 Slow Porting

Note: Unless explicitly stated, patch files, scripts, and other files you have created and contributed to the
FreeBSD ports collection are assumed to be covered by the standard BSD copyright conditions.

4.4 Patching
In the preparation of the port, files that have been added or changed can be picked up with a diff(1) for later feeding
to patch(1). Each patch you wish to apply should be saved into a file named patch-* where * indicates the
pathname of the file that is patched, such as patch-Imakefile or patch-src-config.h. These files should be
stored in PATCHDIR (usually files/, from where they will be automatically applied. All patches must be relative to
WRKSRC (generally the directory your port’s tarball unpacks itself into, that being where the build is done). To make
fixes and upgrades easier, you should avoid having more than one patch fix the same file (e.g., patch-file and
patch-file2 both changing WRKSRC/foobar.c).

Please only use characters [-+._a-zA-Z0-9] for naming your patches. Do not use any other characters besides
them. Do not name your patches like patch-aa or patch-ab etc, always mention path and file name in patch
names.

Do not put RCS strings in patches. CVS will mangle them when we put the files into the ports tree, and when we
check them out again, they will come out different and the patch will fail. RCS strings are surrounded by dollar ($)
signs, and typically start with $Id or $RCS.

Using the recurse (-r) option to diff(1) to generate patches is fine, but please take a look at the resulting patches to
make sure you do not have any unnecessary junk in there. In particular, diffs between two backup files, Makefiles
when the port uses Imake or GNU configure, etc., are unnecessary and should be deleted. If you had to edit
configure.in and run autoconf to regenerate configure, do not take the diffs of configure (it often grows to
a few thousand lines!); define USE_AUTOTOOLS=autoconf:261 and take the diffs of configure.in.

Also, try to minimize the amount of non-functional whitespace changes in your patches. It is common in Open
Source world that projects share large amount of code base, but obey different style and indenting rules. If you take
working piece of functionality from one project to fix similar area in another, please be careful: the resulting line
patch may be full of non-functional changes. It does not only increase the size of the CVS repository but makes it
hard to find out what had exactly caused the problem and what did you change at all.

If you had to delete a file, then you can do it in the post-extract target rather than as part of the patch.

Simple replacements can be performed directly from the port Makefile using the in-place mode of sed(1). This is
very useful when you need to patch in a variable value. Example:

post-patch:
@${REINPLACE_CMD} -e ’s|for Linux|for FreeBSD|g’ ${WRKSRC}/README
@${REINPLACE_CMD} -e ’s|-pthread|${PTHREAD_LIBS}|’ ${WRKSRC}/configure

Quite often, there is a situation when the software being ported, especially if it is primarily developed on Windows®,
uses the CR/LF convention for most of its source files. This may cause problems with further patching, compiler
warnings, scripts execution (/bin/sh^M not found), etc. To quickly convert all files from CR/LF to just LF, add
USE_DOS2UNIX=yes to the port Makefile. A list of files to convert can be specified:

USE_DOS2UNIX= util.c util.h

9

Chapter 4 Slow Porting

If you want to convert a group of files across subdirectories, DOS2UNIX_REGEX can be used. Its argument is a find
compatible regular expression. More on the format is in re_format(7). This option is useful for converting all files of
a given extension, for example all source code files leaving binary files intact:

USE_DOS2UNIX= yes
DOS2UNIX_REGEX= .*\.(c|cpp|h)

4.5 Configuring
Include any additional customization commands in your configure script and save it in the scripts subdirectory.
As mentioned above, you can also do this with Makefile targets and/or scripts with the name pre-configure or
post-configure.

4.6 Handling user input
If your port requires user input to build, configure, or install, you must set IS_INTERACTIVE in your Makefile.
This will allow “overnight builds” to skip your port if the user sets the variable BATCH in his environment (and if the
user sets the variable INTERACTIVE, then only those ports requiring interaction are built). This will save a lot of
wasted time on the set of machines that continually build ports (see below).

It is also recommended that if there are reasonable default answers to the questions, you check the
PACKAGE_BUILDING variable and turn off the interactive script when it is set. This will allow us to build the
packages for CDROMs and FTP.

10

Chapter 5 Configuring the Makefile
Configuring the Makefile is pretty simple, and again we suggest that you look at existing examples before starting.
Also, there is a sample Makefile in this handbook, so take a look and please follow the ordering of variables and
sections in that template to make your port easier for others to read.

Now, consider the following problems in sequence as you design your new Makefile:

5.1 The original source
Does it live in DISTDIR as a standard gzip’d tarball named something like foozolix-1.2.tar.gz? If so, you can
go on to the next step. If not, you should look at overriding any of the DISTVERSION, DISTNAME, EXTRACT_CMD,
EXTRACT_BEFORE_ARGS, EXTRACT_AFTER_ARGS, EXTRACT_SUFX, or DISTFILES variables, depending on how
alien a format your port’s distribution file is. (The most common case is EXTRACT_SUFX=.tar.Z, when the tarball
is condensed by regular compress, not gzip.)

In the worst case, you can simply create your own do-extract target to override the default, though this should be
rarely, if ever, necessary.

5.2 Naming
The first part of the port’s Makefile names the port, describes its version number, and lists it in the correct category.

5.2.1 PORTNAME and PORTVERSION

You should set PORTNAME to the base name of your port, and PORTVERSION to the version number of the port.

5.2.2 PORTREVISION and PORTEPOCH

5.2.2.1 PORTREVISION

The PORTREVISION variable is a monotonically increasing value which is reset to 0 with every increase of
PORTVERSION (i.e. every time a new official vendor release is made), and appended to the package name if non-zero.
Changes to PORTREVISION are used by automated tools (e.g. pkg_version(1)) to highlight the fact that a new
package is available.

PORTREVISION should be increased each time a change is made to the port which significantly affects the content or
structure of the derived package.

Examples of when PORTREVISION should be bumped:

• Addition of patches to correct security vulnerabilities, bugs, or to add new functionality to the port.

• Changes to the port Makefile to enable or disable compile-time options in the package.

• Changes in the packing list or the install-time behavior of the package (e.g. change to a script which generates
initial data for the package, like ssh host keys).

11

Chapter 5 Configuring the Makefile

• Version bump of a port’s shared library dependency (in this case, someone trying to install the old package after
installing a newer version of the dependency will fail since it will look for the old libfoo.x instead of libfoo.(x+1)).

• Silent changes to the port distfile which have significant functional differences, i.e. changes to the distfile requiring
a correction to distinfo with no corresponding change to PORTVERSION, where a diff -ru of the old and new
versions shows non-trivial changes to the code.

Examples of changes which do not require a PORTREVISION bump:

• Style changes to the port skeleton with no functional change to what appears in the resulting package.

• Changes to MASTER_SITES or other functional changes to the port which do not affect the resulting package.

• Trivial patches to the distfile such as correction of typos, which are not important enough that users of the package
should go to the trouble of upgrading.

• Build fixes which cause a package to become compilable where it was previously failing (as long as the changes
do not introduce any functional change on any other platforms on which the port did previously build). Since
PORTREVISION reflects the content of the package, if the package was not previously buildable then there is no
need to increase PORTREVISION to mark a change.

A rule of thumb is to ask yourself whether a change committed to a port is something which everyone would benefit
from having (either because of an enhancement, fix, or by virtue that the new package will actually work at all), and
weigh that against that fact that it will cause everyone who regularly updates their ports tree to be compelled to
update. If yes, the PORTREVISION should be bumped.

5.2.2.2 PORTEPOCH

From time to time a software vendor or FreeBSD porter will do something silly and release a version of their
software which is actually numerically less than the previous version. An example of this is a port which goes from
foo-20000801 to foo-1.0 (the former will be incorrectly treated as a newer version since 20000801 is a numerically
greater value than 1).

In situations such as this, the PORTEPOCH version should be increased. If PORTEPOCH is nonzero it is appended to the
package name as described in section 0 above. PORTEPOCH must never be decreased or reset to zero, because that
would cause comparison to a package from an earlier epoch to fail (i.e. the package would not be detected as out of
date): the new version number (e.g. 1.0,1 in the above example) is still numerically less than the previous version
(20000801), but the ,1 suffix is treated specially by automated tools and found to be greater than the implied suffix
,0 on the earlier package.

Dropping or resetting PORTEPOCH incorrectly leads to no end of grief; if you do not understand the above discussion,
please keep after it until you do, or ask questions on the mailing lists.

It is expected that PORTEPOCH will not be used for the majority of ports, and that sensible use of PORTVERSION can
often pre-empt it becoming necessary if a future release of the software should change the version structure.
However, care is needed by FreeBSD porters when a vendor release is made without an official version number —
such as a code “snapshot” release. The temptation is to label the release with the release date, which will cause
problems as in the example above when a new “official” release is made.

For example, if a snapshot release is made on the date 20000917, and the previous version of the software was
version 1.2, the snapshot release should be given a PORTVERSION of 1.2.20000917 or similar, not 20000917, so that
the succeeding release, say 1.3, is still a numerically greater value.

12

Chapter 5 Configuring the Makefile

5.2.2.3 Example of PORTREVISION and PORTEPOCH usage

The gtkmumble port, version 0.10, is committed to the ports collection:

PORTNAME= gtkmumble
PORTVERSION= 0.10

PKGNAME becomes gtkmumble-0.10.

A security hole is discovered which requires a local FreeBSD patch. PORTREVISION is bumped accordingly.

PORTNAME= gtkmumble
PORTVERSION= 0.10
PORTREVISION= 1

PKGNAME becomes gtkmumble-0.10_1

A new version is released by the vendor, numbered 0.2 (it turns out the author actually intended 0.10 to actually
mean 0.1.0, not “what comes after 0.9” - oops, too late now). Since the new minor version 2 is numerically less
than the previous version 10, the PORTEPOCH must be bumped to manually force the new package to be detected as
“newer”. Since it is a new vendor release of the code, PORTREVISION is reset to 0 (or removed from the Makefile).

PORTNAME= gtkmumble
PORTVERSION= 0.2
PORTEPOCH= 1

PKGNAME becomes gtkmumble-0.2,1

The next release is 0.3. Since PORTEPOCH never decreases, the version variables are now:

PORTNAME= gtkmumble
PORTVERSION= 0.3
PORTEPOCH= 1

PKGNAME becomes gtkmumble-0.3,1

Note: If PORTEPOCH were reset to 0 with this upgrade, someone who had installed the gtkmumble-0.10_1

package would not detect the gtkmumble-0.3 package as newer, since 3 is still numerically less than 10.
Remember, this is the whole point of PORTEPOCH in the first place.

5.2.3 PKGNAMEPREFIX and PKGNAMESUFFIX

Two optional variables, PKGNAMEPREFIX and PKGNAMESUFFIX, are combined with PORTNAME and PORTVERSION

to form PKGNAME as ${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION}. Make sure this
conforms to our guidelines for a good package name. In particular, you are not allowed to use a hyphen (-) in
PORTVERSION. Also, if the package name has the language- or the -compiled.specifics part (see below), use
PKGNAMEPREFIX and PKGNAMESUFFIX, respectively. Do not make them part of PORTNAME.

13

Chapter 5 Configuring the Makefile

5.2.4 LATEST_LINK

In some cases, several versions of a program may be present in the ports collection at the same time. Both the index
build and the package build system need to be able to see them as different, independent ports, although they may all
have the same PORTNAME, PKGNAMEPREFIX, and even PKGNAMESUFFIX. In those cases, the optional LATEST_LINK
variable should be set to a different value for all ports except the “main” one — see the editors/vim5 and
editors/vim ports, and the www/apache* family for examples of its use. Note that how to choose a “main”
version — “most popular”, “best supported”, “least patched”, and so on — is outside the scope of this handbook’s
recommendations; we only tell you how to specify the other ports’ versions after you have picked a “main” one.

5.2.5 Package Naming Conventions

The following are the conventions you should follow in naming your packages. This is to have our package directory
easy to scan, as there are already thousands of packages and users are going to turn away if they hurt their eyes!

The package name should look like [language[_region]]-name[[-]compiled.specifics]-version.numbers.

The package name is defined as ${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION}.
Make sure to set the variables to conform to that format.

1. FreeBSD strives to support the native language of its users. The language- part should be a two letter
abbreviation of the natural language defined by ISO-639 if the port is specific to a certain language. Examples
are ja for Japanese, ru for Russian, vi for Vietnamese, zh for Chinese, ko for Korean and de for German.

If the port is specific to a certain region within the language area, add the two letter country code as well.
Examples are en_US for US English and fr_CH for Swiss French.

The language- part should be set in the PKGNAMEPREFIX variable.

2. The first letter of the name part should be lowercase. (The rest of the name may contain capital letters, so use
your own discretion when you are converting a software name that has some capital letters in it.) There is a
tradition of naming Perl 5 modules by prepending p5- and converting the double-colon separator to a hyphen;
for example, the Data::Dumper module becomes p5-Data-Dumper.

3. Make sure that the port’s name and version are clearly separated and placed into the PORTNAME and
PORTVERSION variables. The only reason for PORTNAME to contain a version part is if the upstream distribution
is really named that way, as in the textproc/libxml2 or japanese/kinput2-freewnn ports. Otherwise,
the PORTNAME should not contain any version-specific information. It is quite normal for several ports to have
the same PORTNAME, as the www/apache* ports do; in that case, different versions (and different index entries)
are distinguished by the PKGNAMEPREFIX, PKGNAMESUFFIX, and LATEST_LINK values.

4. If the port can be built with different hardcoded defaults (usually part of the directory name in a family of ports),
the -compiled.specifics part should state the compiled-in defaults (the hyphen is optional). Examples are
papersize and font units.

The -compiled.specifics part should be set in the PKGNAMESUFFIX variable.

5. The version string should follow a dash (-) and be a period-separated list of integers and single lowercase
alphabetics. In particular, it is not permissible to have another dash inside the version string. The only exception
is the string pl (meaning “patchlevel”), which can be used only when there are no major and minor version
numbers in the software. If the software version has strings like “alpha”, “beta”, “rc”, or “pre”, take the first
letter and put it immediately after a period. If the version string continues after those names, the numbers should
follow the single alphabet without an extra period between them.

14

Chapter 5 Configuring the Makefile

The idea is to make it easier to sort ports by looking at the version string. In particular, make sure version
number components are always delimited by a period, and if the date is part of the string, use the yyyy.mm.dd

format, not dd.mm.yyyy or the non-Y2K compliant yy.mm.dd format.

Here are some (real) examples on how to convert the name as called by the software authors to a suitable package
name:

Distribution
Name

PKGNAMEPREFIX PORTNAME PKGNAMESUFFIX PORTVERSION Reason

mule-2.2.2 (empty) mule (empty) 2.2.2 No changes
required

EmiClock-1.0.2 (empty) emiclock (empty) 1.0.2 No uppercase
names for single
programs

rdist-1.3alpha (empty) rdist (empty) 1.3.a No strings like
alpha allowed

es-0.9-beta1 (empty) es (empty) 0.9.b1 No strings like
beta allowed

mailman-2.0rc3 (empty) mailman (empty) 2.0.r3 No strings like rc
allowed

v3.3beta021.src (empty) tiff (empty) 3.3 What the heck was
that anyway?

tvtwm (empty) tvtwm (empty) pl11 Version string
always required

piewm (empty) piewm (empty) 1.0 Version string
always required

xvgr-2.10pl1 (empty) xvgr (empty) 2.10.1 pl allowed only
when no
major/minor
version numbers

gawk-2.15.6 ja- gawk (empty) 2.15.6 Japanese language
version

psutils-1.13 (empty) psutils -letter 1.13 Papersize
hardcoded at
package build time

pkfonts (empty) pkfonts 300 1.0 Package for 300dpi
fonts

If there is absolutely no trace of version information in the original source and it is unlikely that the original author
will ever release another version, just set the version string to 1.0 (like the piewm example above). Otherwise, ask
the original author or use the date string (yyyy.mm.dd) as the version.

15

Chapter 5 Configuring the Makefile

5.3 Categorization

5.3.1 CATEGORIES

When a package is created, it is put under /usr/ports/packages/All and links are made from one or more
subdirectories of /usr/ports/packages. The names of these subdirectories are specified by the variable
CATEGORIES. It is intended to make life easier for the user when he is wading through the pile of packages on the
FTP site or the CDROM. Please take a look at the current list of categories and pick the ones that are suitable for
your port.

This list also determines where in the ports tree the port is imported. If you put more than one category here, it is
assumed that the port files will be put in the subdirectory with the name in the first category. See below for more
discussion about how to pick the right categories.

5.3.2 Current list of categories

Here is the current list of port categories. Those marked with an asterisk (*) are virtual categories—those that do not
have a corresponding subdirectory in the ports tree. They are only used as secondary categories, and only for search
purposes.

Note: For non-virtual categories, you will find a one-line description in the COMMENT in that subdirectory’s
Makefile.

Category Description Notes
accessibility Ports to help disabled users.
afterstep* Ports to support the AfterStep

(http://www.afterstep.org) window
manager.

arabic Arabic language support.
archivers Archiving tools.
astro Astronomical ports.
audio Sound support.
benchmarks Benchmarking utilities.
biology Biology-related software.
cad Computer aided design tools.
chinese Chinese language support.
comms Communication software. Mostly software to talk to your serial

port.
converters Character code converters.
databases Databases.
deskutils Things that used to be on the desktop

before computers were invented.

16

Chapter 5 Configuring the Makefile

Category Description Notes
devel Development utilities. Do not put libraries here just because

they are libraries—unless they truly do
not belong anywhere else, they should
not be in this category.

dns DNS-related software.
docs* Meta-ports for FreeBSD

documentation.
editors General editors. Specialized editors go in the section

for those tools (e.g., a
mathematical-formula editor will go in
math).

elisp* Emacs-lisp ports.
emulators Emulators for other operating systems.Terminal emulators do not belong

here—X-based ones should go to x11

and text-based ones to either comms or
misc, depending on the exact
functionality.

finance Monetary, financial and related
applications.

french French language support.
ftp FTP client and server utilities. If your port speaks both FTP and

HTTP, put it in ftp with a secondary
category of www.

games Games.
geography* Geography-related software.
german German language support.
gnome* Ports from the GNOME

(http://www.gnome.org) Project.
gnustep* Software related to the GNUstep

desktop environment.
graphics Graphics utilities.
hamradio* Software for amateur radio.
haskell* Software related to the Haskell

language.
hebrew Hebrew language support.
hungarian Hungarian language support.
ipv6* IPv6 related software.
irc Internet Relay Chat utilities.
japanese Japanese language support.

17

Chapter 5 Configuring the Makefile

Category Description Notes
java Software related to the Java language. The java category shall not be the

only one for a port. Save for ports
directly related to the Java language,
porters are also encouraged not to use
java as the main category of a port.

kde* Ports from the K Desktop
Environment (KDE)
(http://www.kde.org) Project.

kld* Kernel loadable modules.
korean Korean language support.
lang Programming languages.
linux* Linux applications and support

utilities.
lisp* Software related to the Lisp language.
mail Mail software.
math Numerical computation software and

other utilities for mathematics.
mbone MBone applications.
misc Miscellaneous utilities Basically things that do not belong

anywhere else. If at all possible, try to
find a better category for your port
than misc, as ports tend to get
overlooked in here.

multimedia Multimedia software.
net Miscellaneous networking software.
net-im Instant messaging software.
net-mgmt Networking management software.
net-p2p Peer to peer network applications.
news USENET news software.
palm Software support for the Palm™

(http://www.palm.com/) series.
parallel* Applications dealing with parallelism

in computing.
pear* Ports related to the Pear PHP

framework.
perl5* Ports that require Perl version 5 to

run.
plan9* Various programs from Plan9

(http://www.cs.bell-
labs.com/plan9dist/).

polish Polish language support.

18

Chapter 5 Configuring the Makefile

Category Description Notes
ports-mgmt Ports for managing, installing and

developing FreeBSD ports and
packages.

portuguese Portuguese language support.
print Printing software. Desktop publishing tools (previewers,

etc.) belong here too.
python* Software related to the Python

(http://www.python.org/) language.
ruby* Software related to the Ruby

(http://www.ruby-lang.org/) language.
rubygems* Ports of RubyGems

(http://www.rubygems.org/) packages.
russian Russian language support.
scheme* Software related to the Scheme

language.
science Scientific ports that do not fit into

other categories such as astro,
biology and math.

security Security utilities.
shells Command line shells.
spanish* Spanish language support.
sysutils System utilities.
tcl* Ports that use Tcl to run.
textproc Text processing utilities. It does not include desktop publishing

tools, which go to print.
tk* Ports that use Tk to run.
ukrainian Ukrainian language support.
vietnamese Vietnamese language support.
windowmaker* Ports to support the WindowMaker

window manager.
www Software related to the World Wide

Web.
HTML language support belongs here
too.

x11 The X Window System and friends. This category is only for software that
directly supports the window system.
Do not put regular X applications here;
most of them should go into other
x11-* categories (see below). If your
port is an X application, define
USE_XLIB (implied by USE_IMAKE)
and put it in the appropriate category.

x11-clocks X11 clocks.
x11-drivers X11 drivers.
x11-fm X11 file managers.

19

Chapter 5 Configuring the Makefile

Category Description Notes
x11-fonts X11 fonts and font utilities.
x11-servers X11 servers.
x11-themes X11 themes.
x11-toolkits X11 toolkits.
x11-wm X11 window managers.
xfce* Ports related to the Xfce

(http://www.xfce.org/) desktop
environment.

zope* Zope (http://www.zope.org/) support.

5.3.3 Choosing the right category

As many of the categories overlap, you often have to choose which of the categories should be the primary category
of your port. There are several rules that govern this issue. Here is the list of priorities, in decreasing order of
precedence:

• The first category must be a physical category (see above). This is necessary to make the packaging work. Virtual
categories and physical categories may be intermixed after that.

• Language specific categories always come first. For example, if your port installs Japanese X11 fonts, then your
CATEGORIES line would read japanese x11-fonts.

• Specific categories are listed before less-specific ones. For instance, an HTML editor should be listed as www
editors, not the other way around. Also, you should not list net when the port belongs to any of irc, mail,
mbone, news, security, or www, as net is included implicitly.

• x11 is used as a secondary category only when the primary category is a natural language. In particular, you
should not put x11 in the category line for X applications.

• Emacs modes should be placed in the same ports category as the application supported by the mode, not in
editors. For example, an Emacs mode to edit source files of some programming language should go into lang.

• Ports which install loadable kernel modules should have the virtual category kld in their CATEGORIES line.

• misc should not appear with any other non-virtual category. If you have misc with something else in your
CATEGORIES line, that means you can safely delete misc and just put the port in that other subdirectory!

• If your port truly does not belong anywhere else, put it in misc.

If you are not sure about the category, please put a comment to that effect in your send-pr(1) submission so we can
discuss it before we import it. If you are a committer, send a note to the FreeBSD ports mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports) so we can discuss it first. Too often, new ports are imported
to the wrong category only to be moved right away. This causes unnecessary and undesirable bloat in the master
source repository.

5.3.4 Proposing a new category

As the Ports Collection has grown over time, various new categories have been introduced. New categories can either
be virtual categories—those that do not have a corresponding subdirectory in the ports tree— or physical

20

Chapter 5 Configuring the Makefile

categories—those that do. The following text discusses the issues involved in creating a new physical category so
that you can understand them before you propose one.

Our existing practice has been to avoid creating a new physical category unless either a large number of ports would
logically belong to it, or the ports that would belong to it are a logically distinct group that is of limited general
interest (for instance, categories related to spoken human languages), or preferably both.

The rationale for this is that such a change creates a fair amount of work
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/committers-guide/#ports) for both the committers and also
for all users who track changes to the Ports Collection. In addition, proposed category changes just naturally seem to
attract controversy. (Perhaps this is because there is no clear consensus on when a category is “too big”, nor whether
categories should lend themselves to browsing (and thus what number of categories would be an ideal number), and
so forth.)

Here is the procedure:

1. Propose the new category on FreeBSD ports mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports). You should include a detailed rationale for the new
category, including why you feel the existing categories are not sufficient, and the list of existing ports proposed
to move. (If there are new ports pending in GNATS that would fit this category, list them too.) If you are the
maintainer and/or submitter, respectively, mention that as it may help you to make your case.

2. Participate in the discussion.

3. If it seems that there is support for your idea, file a PR which includes both the rationale and the list of existing
ports that need to be moved. Ideally, this PR should also include patches for the following:

• Makefiles for the new ports once they are repocopied

• Makefile for the new category

• Makefile for the old ports’ categories

• Makefiles for ports that depend on the old ports

• (for extra credit, you can include the other files that have to change, as per the procedure in the Committer’s
Guide.)

4. Since it affects the ports infrastructure and involves not only performing repo-copies but also possibly running
regression tests on the build cluster, the PR should be assigned to the Ports Management Team
<portmgr@FreeBSD.org>.

5. If that PR is approved, a committer will need to follow the rest of the procedure that is outlined in the
Committer’s Guide
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/committers-guide/article.html#PORTS).

Proposing a new virtual category should be similar to the above but much less involved, since no ports will actually
have to move. In this case, the only patches to include in the PR would be those to add the new category to the
CATEGORIES of the affected ports.

5.3.5 Proposing reorganizing all the categories

Occasionally someone proposes reorganizing the categories with either a 2-level structure, or some other kind of
keyword structure. To date, nothing has come of any of these proposals because, while they are very easy to make,
the effort involved to retrofit the entire existing ports collection with any kind of reorganization is daunting to say the

21

Chapter 5 Configuring the Makefile

very least. Please read the history of these proposals in the mailing list archives before you post this idea;
furthermore, you should be prepared to be challenged to offer a working prototype.

5.4 The distribution files
The second part of the Makefile describes the files that must be downloaded in order to build the port, and where
they can be downloaded from.

5.4.1 DISTVERSION/DISTNAME

DISTNAME is the name of the port as called by the authors of the software. DISTNAME defaults to
${PORTNAME}-${PORTVERSION}, so override it only if necessary. DISTNAME is only used in two places. First, the
distribution file list (DISTFILES) defaults to ${DISTNAME}${EXTRACT_SUFX}. Second, the distribution file is
expected to extract into a subdirectory named WRKSRC, which defaults to work/${DISTNAME}.

Some vendor’s distribution names which do not fit into the ${PORTNAME}-${PORTVERSION}-scheme can be
handled automatically by setting DISTVERSION. PORTVERSION and DISTNAME will be derived automatically, but
can of course be overridden. The following table lists some examples:

DISTVERSION PORTVERSION

0.7.1d 0.7.1.d
10Alpha3 10.a3
3Beta7-pre2 3.b7.p2
8:f_17 8f.17

Note: PKGNAMEPREFIX and PKGNAMESUFFIX do not affect DISTNAME. Also note that if WRKSRC is equal to
work/${PORTNAME}-${PORTVERSION} while the original source archive is named something other than
${PORTNAME}-${PORTVERSION}${EXTRACT_SUFX}, you should probably leave DISTNAME alone— you are better
off defining DISTFILES than having to set both DISTNAME and WRKSRC (and possibly EXTRACT_SUFX).

5.4.2 MASTER_SITES

Record the directory part of the FTP/HTTP-URL pointing at the original tarball in MASTER_SITES. Do not forget the
trailing slash (/)!

The make macros will try to use this specification for grabbing the distribution file with FETCH if they cannot find it
already on the system.

It is recommended that you put multiple sites on this list, preferably from different continents. This will safeguard
against wide-area network problems. We are even planning to add support for automatically determining the closest
master site and fetching from there; having multiple sites will go a long way towards helping this effort.

If the original tarball is part of one of the popular archives such as X-contrib, GNU, or Perl CPAN, you may be able
refer to those sites in an easy compact form using MASTER_SITE_* (e.g., MASTER_SITE_XCONTRIB,

22

Chapter 5 Configuring the Makefile

MASTER_SITE_GNU and MASTER_SITE_PERL_CPAN). Simply set MASTER_SITES to one of these variables and
MASTER_SITE_SUBDIR to the path within the archive. Here is an example:

MASTER_SITES= ${MASTER_SITE_XCONTRIB}
MASTER_SITE_SUBDIR= applications

These variables are defined in /usr/ports/Mk/bsd.sites.mk. There are new entries added all the time, so make
sure to check the latest version of this file before submitting a port.

The user can also set the MASTER_SITE_* variables in /etc/make.conf to override our choices, and use their
favorite mirrors of these popular archives instead.

5.4.3 EXTRACT_SUFX

If you have one distribution file, and it uses an odd suffix to indicate the compression mechanism, set
EXTRACT_SUFX.

For example, if the distribution file was named foo.tgz instead of the more normal foo.tar.gz, you would write:

DISTNAME= foo
EXTRACT_SUFX= .tgz

The USE_BZIP2 and USE_ZIP variables automatically set EXTRACT_SUFX to .tar.bz2 or .zip as necessary. If
neither of these are set then EXTRACT_SUFX defaults to .tar.gz.

Note: You never need to set both EXTRACT_SUFX and DISTFILES.

5.4.4 DISTFILES

Sometimes the names of the files to be downloaded have no resemblance to the name of the port. For example, it
might be called source.tar.gz or similar. In other cases the application’s source code might be in several different
archives, all of which must be downloaded.

If this is the case, set DISTFILES to be a space separated list of all the files that must be downloaded.

DISTFILES= source1.tar.gz source2.tar.gz

If not explicitly set, DISTFILES defaults to ${DISTNAME}${EXTRACT_SUFX}.

5.4.5 EXTRACT_ONLY

If only some of the DISTFILES must be extracted—for example, one of them is the source code, while another is an
uncompressed document—list the filenames that must be extracted in EXTRACT_ONLY.

DISTFILES= source.tar.gz manual.html
EXTRACT_ONLY= source.tar.gz

If none of the DISTFILES should be uncompressed then set EXTRACT_ONLY to the empty string.

23

Chapter 5 Configuring the Makefile

EXTRACT_ONLY=

5.4.6 PATCHFILES

If your port requires some additional patches that are available by FTP or HTTP, set PATCHFILES to the names of the
files and PATCH_SITES to the URL of the directory that contains them (the format is the same as MASTER_SITES).

If the patch is not relative to the top of the source tree (i.e., WRKSRC) because it contains some extra pathnames, set
PATCH_DIST_STRIP accordingly. For instance, if all the pathnames in the patch have an extra foozolix-1.0/ in
front of the filenames, then set PATCH_DIST_STRIP=-p1.

Do not worry if the patches are compressed; they will be decompressed automatically if the filenames end with .gz

or .Z.

If the patch is distributed with some other files, such as documentation, in a gzip’d tarball, you cannot just use
PATCHFILES. If that is the case, add the name and the location of the patch tarball to DISTFILES and
MASTER_SITES. Then, use the EXTRA_PATCHES variable to point to those files and bsd.port.mk will
automatically apply them for you. In particular, do not copy patch files into the PATCHDIR directory—that directory
may not be writable.

Note: The tarball will have been extracted alongside the regular source by then, so there is no need to explicitly
extract it if it is a regular gzip’d or compress’d tarball. If you do the latter, take extra care not to overwrite
something that already exists in that directory. Also, do not forget to add a command to remove the copied patch
in the pre-clean target.

5.4.7 Multiple distribution files or patches from different sites and subdirectories
(MASTER_SITES:n)

(Consider this to be a somewhat “advanced topic”; those new to this document may wish to skip this section at first).

This section has information on the fetching mechanism known as both MASTER_SITES:n and MASTER_SITES_NN.
We will refer to this mechanism as MASTER_SITES:n hereon.

A little background first. OpenBSD has a neat feature inside the DISTFILES and PATCHFILES variables which
allows files and patches to be postfixed with :n identifiers. Here, n can be both [0-9] and denote a group
designation. For example:

DISTFILES= alpha:0 beta:1

In OpenBSD, distribution file alpha will be associated with variable MASTER_SITES0 instead of our common
MASTER_SITES and beta with MASTER_SITES1.

This is a very interesting feature which can decrease that endless search for the correct download site.

Just picture 2 files in DISTFILES and 20 sites in MASTER_SITES, the sites slow as hell where beta is carried by all
sites in MASTER_SITES, and alpha can only be found in the 20th site. It would be such a waste to check all of them
if the maintainer knew this beforehand, would it not? Not a good start for that lovely weekend!

Now that you have the idea, just imagine more DISTFILES and more MASTER_SITES. Surely our “distfiles survey
meister” would appreciate the relief to network strain that this would bring.

24

Chapter 5 Configuring the Makefile

In the next sections, information will follow on the FreeBSD implementation of this idea. We improved a bit on
OpenBSD’s concept.

5.4.7.1 Simplified information

This section tells you how to quickly prepare fine grained fetching of multiple distribution files and patches from
different sites and subdirectories. We describe here a case of simplified MASTER_SITES:n usage. This will be
sufficient for most scenarios. However, if you need further information, you will have to refer to the next section.

Some applications consist of multiple distribution files that must be downloaded from a number of different sites. For
example, Ghostscript consists of the core of the program, and then a large number of driver files that are used
depending on the user’s printer. Some of these driver files are supplied with the core, but many others must be
downloaded from a variety of different sites.

To support this, each entry in DISTFILES may be followed by a colon and a “tag name”. Each site listed in
MASTER_SITES is then followed by a colon, and the tag that indicates which distribution files should be downloaded
from this site.

For example, consider an application with the source split in two parts, source1.tar.gz and source2.tar.gz,
which must be downloaded from two different sites. The port’s Makefile would include lines like Example 5-1.

Example 5-1. Simplified use of MASTER_SITES:n with 1 file per site

MASTER_SITES= ftp://ftp.example1.com/:source1 \
ftp://ftp.example2.com/:source2
DISTFILES= source1.tar.gz:source1 \
source2.tar.gz:source2

Multiple distribution files can have the same tag. Continuing the previous example, suppose that there was a third
distfile, source3.tar.gz, that should be downloaded from ftp.example2.com. The Makefile would then be
written like Example 5-2.

Example 5-2. Simplified use of MASTER_SITES:n with more than 1 file per site

MASTER_SITES= ftp://ftp.example1.com/:source1 \
ftp://ftp.example2.com/:source2
DISTFILES= source1.tar.gz:source1 \
source2.tar.gz:source2 \
source3.tar.gz:source2

5.4.7.2 Detailed information

Okay, so the previous section example did not reflect your needs? In this section we will explain in detail how the
fine grained fetching mechanism MASTER_SITES:n works and how you can modify your ports to use it.

1. Elements can be postfixed with :n where n is [^:,]+, i.e., n could conceptually be any alphanumeric string but
we will limit it to [a-zA-Z_][0-9a-zA-Z_]+ for now.

Moreover, string matching is case sensitive; i.e., n is different from N.

25

Chapter 5 Configuring the Makefile

However, the following words cannot be used for postfixing purposes since they yield special meaning:
default, all and ALL (they are used internally in item ii). Furthermore, DEFAULT is a special purpose word
(check item 3).

2. Elements postfixed with :n belong to the group n, :m belong to group m and so forth.

3. Elements without a postfix are groupless, i.e., they all belong to the special group DEFAULT. If you postfix any
elements with DEFAULT, you are just being redundant unless you want to have an element belonging to both
DEFAULT and other groups at the same time (check item 5).

The following examples are equivalent but the first one is preferred:

MASTER_SITES= alpha

MASTER_SITES= alpha:DEFAULT

4. Groups are not exclusive, an element may belong to several different groups at the same time and a group can
either have either several different elements or none at all. Repeated elements within the same group will be
simply that, repeated elements.

5. When you want an element to belong to several groups at the same time, you can use the comma operator (,).

Instead of repeating it several times, each time with a different postfix, we can list several groups at once in a
single postfix. For instance, :m,n,o marks an element that belongs to group m, n and o.

All the following examples are equivalent but the last one is preferred:

MASTER_SITES= alpha alpha:SOME_SITE

MASTER_SITES= alpha:DEFAULT alpha:SOME_SITE

MASTER_SITES= alpha:SOME_SITE,DEFAULT

MASTER_SITES= alpha:DEFAULT,SOME_SITE

6. All sites within a given group are sorted according to MASTER_SORT_AWK. All groups within MASTER_SITES

and PATCH_SITES are sorted as well.

7. Group semantics can be used in any of the following variables MASTER_SITES, PATCH_SITES,
MASTER_SITE_SUBDIR, PATCH_SITE_SUBDIR, DISTFILES, and PATCHFILES according to the following
syntax:

a. All MASTER_SITES, PATCH_SITES, MASTER_SITE_SUBDIR and PATCH_SITE_SUBDIR elements must be
terminated with the forward slash / character. If any elements belong to any groups, the group postfix :n

must come right after the terminator /. The MASTER_SITES:n mechanism relies on the existence of the
terminator / to avoid confusing elements where a :n is a valid part of the element with occurrences where
:n denotes group n. For compatibility purposes, since the / terminator was not required before in both
MASTER_SITE_SUBDIR and PATCH_SITE_SUBDIR elements, if the postfix immediate preceding character
is not a / then :n will be considered a valid part of the element instead of a group postfix even if an element
is postfixed with :n. See both Example 5-3 and Example 5-4.

Example 5-3. Detailed use of MASTER_SITES:n in MASTER_SITE_SUBDIR

MASTER_SITE_SUBDIR= old:n new/:NEW

• Directories within group DEFAULT -> old:n

• Directories within group NEW -> new

26

Chapter 5 Configuring the Makefile

Example 5-4. Detailed use of MASTER_SITES:n with comma operator, multiple files, multiple sites and
multiple subdirectories

MASTER_SITES= http://site1/%SUBDIR%/ http://site2/:DEFAULT \
http://site3/:group3 http://site4/:group4 \
http://site5/:group5 http://site6/:group6 \
http://site7/:DEFAULT,group6 \
http://site8/%SUBDIR%/:group6,group7 \
http://site9/:group8
DISTFILES= file1 file2:DEFAULT file3:group3 \
file4:group4,group5,group6 file5:grouping \
file6:group7
MASTER_SITE_SUBDIR= directory-trial:1 directory-n/:groupn \
directory-one/:group6,DEFAULT \
directory

The previous example results in the following fine grained fetching. Sites are listed in the exact order they
will be used.

• file1 will be fetched from

• MASTER_SITE_OVERRIDE

• http://site1/directory-trial:1/

• http://site1/directory-one/

• http://site1/directory/

• http://site2/

• http://site7/

• MASTER_SITE_BACKUP

• file2 will be fetched exactly as file1 since they both belong to the same group

• MASTER_SITE_OVERRIDE

• http://site1/directory-trial:1/

• http://site1/directory-one/

• http://site1/directory/

• http://site2/

• http://site7/

• MASTER_SITE_BACKUP

• file3 will be fetched from

• MASTER_SITE_OVERRIDE

• http://site3/

27

Chapter 5 Configuring the Makefile

• MASTER_SITE_BACKUP

• file4 will be fetched from

• MASTER_SITE_OVERRIDE

• http://site4/

• http://site5/

• http://site6/

• http://site7/

• http://site8/directory-one/

• MASTER_SITE_BACKUP

• file5 will be fetched from

• MASTER_SITE_OVERRIDE

• MASTER_SITE_BACKUP

• file6 will be fetched from

• MASTER_SITE_OVERRIDE

• http://site8/

• MASTER_SITE_BACKUP

8. How do I group one of the special variables from bsd.sites.mk, e.g., MASTER_SITE_SOURCEFORGE?

See Example 5-5.

Example 5-5. Detailed use of MASTER_SITES:n with MASTER_SITE_SOURCEFORGE

MASTER_SITES= http://site1/ ${MASTER_SITE_SOURCEFORGE:S/$/:sourceforge,TEST/}
DISTFILES= something.tar.gz:sourceforge

something.tar.gz will be fetched from all sites within MASTER_SITE_SOURCEFORGE.

9. How do I use this with PATCH* variables?

All examples were done with MASTER* variables but they work exactly the same for PATCH* ones as can be seen
in Example 5-6.

28

Chapter 5 Configuring the Makefile

Example 5-6. Simplified use of MASTER_SITES:n with PATCH_SITES.

PATCH_SITES= http://site1/ http://site2/:test
PATCHFILES= patch1:test

5.4.7.3 What does change for ports? What does not?

i. All current ports remain the same. The MASTER_SITES:n feature code is only activated if there are elements
postfixed with :n like elements according to the aforementioned syntax rules, especially as shown in item 7.

ii. The port targets remain the same: checksum, makesum, patch, configure, build, etc. With the obvious
exceptions of do-fetch, fetch-list, master-sites and patch-sites.

• do-fetch: deploys the new grouping postfixed DISTFILES and PATCHFILES with their matching group
elements within both MASTER_SITES and PATCH_SITES which use matching group elements within both
MASTER_SITE_SUBDIR and PATCH_SITE_SUBDIR. Check Example 5-4.

• fetch-list: works like old fetch-list with the exception that it groups just like do-fetch.

• master-sites and patch-sites: (incompatible with older versions) only return the elements of group
DEFAULT; in fact, they execute targets master-sites-default and patch-sites-default respectively.

Furthermore, using target either master-sites-all or patch-sites-all is preferred to directly checking
either MASTER_SITES or PATCH_SITES. Also, directly checking is not guaranteed to work in any future
versions. Check item iii.ii for more information on these new port targets.

iii. New port targets

i. There are master-sites-n and patch-sites-n targets which will list the elements of the respective
group n within MASTER_SITES and PATCH_SITES respectively. For instance, both
master-sites-DEFAULT and patch-sites-DEFAULT will return the elements of group DEFAULT,
master-sites-test and patch-sites-test of group test, and thereon.

ii. There are new targets master-sites-all and patch-sites-all which do the work of the old
master-sites and patch-sites ones. They return the elements of all groups as if they all belonged to
the same group with the caveat that it lists as many MASTER_SITE_BACKUP and MASTER_SITE_OVERRIDE

as there are groups defined within either DISTFILES or PATCHFILES; respectively for
master-sites-all and patch-sites-all.

5.4.8 DIST_SUBDIR

Do not let your port clutter /usr/ports/distfiles. If your port requires a lot of files to be fetched, or contains a
file that has a name that might conflict with other ports (e.g., Makefile), set DIST_SUBDIR to the name of the port
(${PORTNAME} or ${PKGNAMEPREFIX}${PORTNAME} should work fine). This will change DISTDIR from the
default /usr/ports/distfiles to /usr/ports/distfiles/DIST_SUBDIR, and in effect puts everything that is
required for your port into that subdirectory.

29

Chapter 5 Configuring the Makefile

It will also look at the subdirectory with the same name on the backup master site at ftp.FreeBSD.org. (Setting
DISTDIR explicitly in your Makefile will not accomplish this, so please use DIST_SUBDIR.)

Note: This does not affect the MASTER_SITES you define in your Makefile.

5.4.9 ALWAYS_KEEP_DISTFILES

If your port uses binary distfiles and has a license that requires that the source code is provided with packages
distributed in binary form, e.g. GPL, ALWAYS_KEEP_DISTFILES will instruct the FreeBSD build cluster to keep a
copy of the files specified in DISTFILES. Users of these ports will generally not need these files, so it is a good idea
to only add the source distfiles to DISTFILES when PACKAGE_BUILDING is defined.

Example 5-7. Use of ALWAYS_KEEP_DISTFILES.

.if defined(PACKAGE_BUILDING)
DISTFILES+= foo.tar.gz

ALWAYS_KEEP_DISTFILES= yes
.endif

When adding extra files to DISTFILES, make sure you also add them to distinfo. Also, the additional files will
normally be extracted into WRKDIR as well, which for some ports may lead to undesirable sideeffects and require
special handling.

5.5 MAINTAINER

Set your mail-address here. Please. :-)

Note that only a single address without the comment part is allowed as a MAINTAINER value. The format used should
be user@hostname.domain. Please do not include any descriptive text such as your real name in this entry—that
merely confuses bsd.port.mk.

The maintainer is responsible for keeping the port up to date, and ensuring the port works correctly. For a detailed
description of the responsibilities of a port maintainer, refer to the The challenge for port maintainers
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/contributing-ports/maintain-port.html) section.

Changes to the port will be sent to the maintainer of a port for review and approval before being committed. If the
maintainer does not respond to an update request after two weeks (excluding major public holidays), then that is
considered a maintainer timeout, and the update may be made without explicit maintainer approval. If the maintainer
does not respond within three months, then that maintainer is considered absent without leave, and can be replaced as
the maintainer of the particular port in question. Exceptions to this are anything maintained by the Ports Management
Team <portmgr@FreeBSD.org>, or the Security Officer Team <security-officer@FreeBSD.org>. No
unauthorized commits may ever be made to ports maintained by those groups.

We reserve the right to modify the maintainer’s submission to better match existing policies and style of the Ports
Collection without explicit blessing from the submitter. Also, large infrastructural changes can result in a port being
modified without the maintainer’s consent. These kinds of changes will never affect the port’s functionality.

30

Chapter 5 Configuring the Makefile

The Ports Management Team <portmgr@FreeBSD.org> reserves the right to revoke or override anyone’s
maintainership for any reason, and the Security Officer Team <security-officer@FreeBSD.org> reserves the
right to revoke or override maintainership for security reasons.

5.6 COMMENT

This is a one-line description of the port. Please do not include the package name (or version number of the
software) in the comment. The comment should begin with a capital and end without a period. Here is an example:

COMMENT= A cat chasing a mouse all over the screen

The COMMENT variable should immediately follow the MAINTAINER variable in the Makefile.

Please try to keep the COMMENT line less than 70 characters, as it is displayed to users as a one-line summary of
the port.

5.7 Dependencies
Many ports depend on other ports. There are seven variables that you can use to ensure that all the required bits will
be on the user’s machine. There are also some pre-supported dependency variables for common cases, plus a few
more to control the behavior of dependencies.

5.7.1 LIB_DEPENDS

This variable specifies the shared libraries this port depends on. It is a list of lib:dir[:target] tuples where lib is
the name of the shared library, dir is the directory in which to find it in case it is not available, and target is the
target to call in that directory. For example,

LIB_DEPENDS= jpeg.9:${PORTSDIR}/graphics/jpeg

will check for a shared jpeg library with major version 9, and descend into the graphics/jpeg subdirectory of your
ports tree to build and install it if it is not found. The target part can be omitted if it is equal to DEPENDS_TARGET

(which defaults to install).

Note: The lib part is a regular expression which is being looked up in the ldconfig -r output. Values such as
intl.[5-7] and intl are allowed. The first pattern, intl.[5-7], will match any of: intl.5, intl.6 or intl.7.
The second pattern, intl, will match any version of the intl library.

The dependency is checked twice, once from within the extract target and then from within the install target.
Also, the name of the dependency is put into the package so that pkg_add(1) will automatically install it if it is not on
the user’s system.

5.7.2 RUN_DEPENDS

This variable specifies executables or files this port depends on during run-time. It is a list of path:dir[:target]
tuples where path is the name of the executable or file, dir is the directory in which to find it in case it is not

31

Chapter 5 Configuring the Makefile

available, and target is the target to call in that directory. If path starts with a slash (/), it is treated as a file and its
existence is tested with test -e; otherwise, it is assumed to be an executable, and which -s is used to determine if
the program exists in the search path.

For example,

RUN_DEPENDS= ${LOCALBASE}/etc/innd:${PORTSDIR}/news/inn \
xmlcatmgr:${PORTSDIR}/textproc/xmlcatmgr

will check if the file or directory /usr/local/etc/innd exists, and build and install it from the news/inn
subdirectory of the ports tree if it is not found. It will also see if an executable called xmlcatmgr is in the search
path, and descend into the textproc/xmlcatmgr subdirectory of your ports tree to build and install it if it is not
found.

Note: In this case, innd is actually an executable; if an executable is in a place that is not expected to be in the
search path, you should use the full pathname.

Note: The official search PATH used on the ports build cluster is

/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin:/usr/X11R6/bin

The dependency is checked from within the install target. Also, the name of the dependency is put into the
package so that pkg_add(1) will automatically install it if it is not on the user’s system. The target part can be
omitted if it is the same as DEPENDS_TARGET.

5.7.3 BUILD_DEPENDS

This variable specifies executables or files this port requires to build. Like RUN_DEPENDS, it is a list of
path:dir[:target] tuples. For example,

BUILD_DEPENDS=
unzip:${PORTSDIR}/archivers/unzip

will check for an executable called unzip, and descend into the archivers/unzip subdirectory of your ports tree
to build and install it if it is not found.

Note: “build” here means everything from extraction to compilation. The dependency is checked from within the
extract target. The target part can be omitted if it is the same as DEPENDS_TARGET

32

Chapter 5 Configuring the Makefile

5.7.4 FETCH_DEPENDS

This variable specifies executables or files this port requires to fetch. Like the previous two, it is a list of
path:dir[:target] tuples. For example,

FETCH_DEPENDS=
ncftp2:${PORTSDIR}/net/ncftp2

will check for an executable called ncftp2, and descend into the net/ncftp2 subdirectory of your ports tree to
build and install it if it is not found.

The dependency is checked from within the fetch target. The target part can be omitted if it is the same as
DEPENDS_TARGET.

5.7.5 EXTRACT_DEPENDS

This variable specifies executables or files this port requires for extraction. Like the previous, it is a list of
path:dir[:target] tuples. For example,

EXTRACT_DEPENDS=
unzip:${PORTSDIR}/archivers/unzip

will check for an executable called unzip, and descend into the archivers/unzip subdirectory of your ports tree
to build and install it if it is not found.

The dependency is checked from within the extract target. The target part can be omitted if it is the same as
DEPENDS_TARGET.

Note: Use this variable only if the extraction does not already work (the default assumes gzip) and cannot be
made to work using USE_ZIP or USE_BZIP2 described in Section 5.7.7.

5.7.6 PATCH_DEPENDS

This variable specifies executables or files this port requires to patch. Like the previous, it is a list of
path:dir[:target] tuples. For example,

PATCH_DEPENDS=
${NONEXISTENT}:${PORTSDIR}/java/jfc:extract

will descend into the java/jfc subdirectory of your ports tree to extract it.

The dependency is checked from within the patch target. The target part can be omitted if it is the same as
DEPENDS_TARGET.

5.7.7 USE_*

A number of variables exist in order to encapsulate common dependencies that many ports have. Although their use
is optional, they can help to reduce the verbosity of the port Makefiles. Each of them is styled as USE_*. The usage

33

Chapter 5 Configuring the Makefile

of these variables is restricted to the port Makefiles and ports/Mk/bsd.*.mk and is not designed to encapsulate
user-settable options — use WITH_* and WITHOUT_* for that purpose.

Note: It is always incorrect to set any USE_* in /etc/make.conf. For instance, setting

USE_GCC=3.2

would adds a dependency on gcc32 for every port, including gcc32 itself!

Table 5-1. The USE_* variables

Variable Means
USE_BZIP2 The port’s tarballs are compressed with bzip2.

USE_ZIP The port’s tarballs are compressed with zip.

USE_BISON The port uses bison for building.

USE_CDRTOOLS The port requires cdrecord either from
sysutils/cdrtools or sysutils/cdrtools-cjk,
according to the user’s preference.

USE_GCC The port requires a specific version of gcc to build. The
exact version can be specified with value such as 3.2. The
minimal required version can be specified as 3.2+. The
gcc from the base system is used when it satisfies the
requested version, otherwise an appropriate gcc is
compiled from ports and the CC and CXX variables are
adjusted.

Variables related to gmake and the configure script are described in Section 6.3, while autoconf, automake and
libtool are described in Section 6.4. Perl related variables are described in Section 6.6. X11 variables are listed in
Section 6.7. Section 6.8 deals with GNOME and Section 6.9 with KDE related variables. Section 6.10 documents
Java variables, while Section 6.11 contains information on Apache, PHP and PEAR modules. Python is discussed
in Section 6.12, while Ruby in Section 6.15. Section 6.16 provides variables used for SDL applications and finally,
Section 6.19 contains information on Xfce.

5.7.8 Minimal version of a dependency

A minimal version of a dependency can be specified in any *_DEPENDS variable except LIB_DEPENDS using the
following syntax:

p5-Spiffy>=0.26:${PORTSDIR}/devel/p5-Spiffy

The first field contains a dependent package name, which must match the entry in the package database, a comparison
sign, and a package version. The dependency is satisfied if p5-Spiffy-0.26 or newer is installed on the machine.

34

Chapter 5 Configuring the Makefile

5.7.9 Notes on dependencies

As mentioned above, the default target to call when a dependency is required is DEPENDS_TARGET. It defaults to
install. This is a user variable; it is never defined in a port’s Makefile. If your port needs a special way to handle
a dependency, use the :target part of the *_DEPENDS variables instead of redefining DEPENDS_TARGET.

When you type make clean, its dependencies are automatically cleaned too. If you do not wish this to happen,
define the variable NOCLEANDEPENDS in your environment. This may be particularly desirable if the port has
something that takes a long time to rebuild in its dependency list, such as KDE, GNOME or Mozilla.

To depend on another port unconditionally, use the variable ${NONEXISTENT} as the first field of BUILD_DEPENDS
or RUN_DEPENDS. Use this only when you need to get the source of the other port. You can often save compilation
time by specifying the target too. For instance

BUILD_DEPENDS= ${NONEXISTENT}:${PORTSDIR}/graphics/jpeg:extract

will always descend to the jpeg port and extract it.

5.7.10 Circular dependencies are fatal

Important: Do not introduce any circular dependencies into the ports tree!

The ports building technology does not tolerate circular dependencies. If you introduce one, you will have someone,
somewhere in the world, whose FreeBSD installation will break almost immediately, with many others quickly to
follow. These can really be hard to detect; if in doubt, before you make that change, make sure you have done the
following: cd /usr/ports; make index. That process can be quite slow on older machines, but you may be able
to save a large number of people—including yourself— a lot of grief in the process.

5.8 MASTERDIR

If your port needs to build slightly different versions of packages by having a variable (for instance, resolution, or
paper size) take different values, create one subdirectory per package to make it easier for users to see what to do, but
try to share as many files as possible between ports. Typically you only need a very short Makefile in all but one of
the directories if you use variables cleverly. In the sole Makefile, you can use MASTERDIR to specify the directory
where the rest of the files are. Also, use a variable as part of PKGNAMESUFFIX so the packages will have different
names.

This will be best demonstrated by an example. This is part of japanese/xdvi300/Makefile;

PORTNAME= xdvi
PORTVERSION= 17
PKGNAMEPREFIX= ja-
PKGNAMESUFFIX= ${RESOLUTION}
:
default
RESOLUTION?= 300
.if ${RESOLUTION} != 118 && ${RESOLUTION} != 240 && \

${RESOLUTION} != 300 && ${RESOLUTION} != 400

35

Chapter 5 Configuring the Makefile

@${ECHO_MSG} "Error: invalid value for RESOLUTION: \"${RESOLUTION}\""
@${ECHO_MSG} "Possible values are: 118, 240, 300 (default) and 400."
@${FALSE}

.endif

japanese/xdvi300 also has all the regular patches, package files, etc. If you type make there, it will take the
default value for the resolution (300) and build the port normally.

As for other resolutions, this is the entire xdvi118/Makefile:

RESOLUTION= 118
MASTERDIR= ${.CURDIR}/../xdvi300

.include "${MASTERDIR}/Makefile"

(xdvi240/Makefile and xdvi400/Makefile are similar). The MASTERDIR definition tells bsd.port.mk that
the regular set of subdirectories like FILESDIR and SCRIPTDIR are to be found under xdvi300. The
RESOLUTION=118 line will override the RESOLUTION=300 line in xdvi300/Makefile and the port will be built
with resolution set to 118.

5.9 Manpages
The MAN[1-9LN] variables will automatically add any manpages to pkg-plist (this means you must not list
manpages in the pkg-plist—see generating PLIST for more). It also makes the install stage automatically
compress or uncompress manpages depending on the setting of NOMANCOMPRESS in /etc/make.conf.

If your port tries to install multiple names for manpages using symlinks or hardlinks, you must use the MLINKS
variable to identify these. The link installed by your port will be destroyed and recreated by bsd.port.mk to make
sure it points to the correct file. Any manpages listed in MLINKS must not be listed in the pkg-plist.

To specify whether the manpages are compressed upon installation, use the MANCOMPRESSED variable. This variable
can take three values, yes, no and maybe. yes means manpages are already installed compressed, no means they are
not, and maybe means the software already respects the value of NOMANCOMPRESS so bsd.port.mk does not have
to do anything special.

MANCOMPRESSED is automatically set to yes if USE_IMAKE is set and NO_INSTALL_MANPAGES is not set, and to no

otherwise. You do not have to explicitly define it unless the default is not suitable for your port.

If your port anchors its man tree somewhere other than MANPREFIX, you can use the MANPREFIX to set it. Also, if
only manpages in certain sections go in a non-standard place, such as some perl modules ports, you can set
individual man paths using MANsectPREFIX (where sect is one of 1-9, L or N).

If your manpages go to language-specific subdirectories, set the name of the languages to MANLANG. The value of this
variable defaults to "" (i.e., English only).

Here is an example that puts it all together.

MAN1= foo.1
MAN3= bar.3
MAN4= baz.4
MLINKS= foo.1 alt-name.8
MANLANG= "" ja
MAN3PREFIX= ${PREFIX}/share/foobar

36

Chapter 5 Configuring the Makefile

MANCOMPRESSED= yes

This states that six files are installed by this port;

${MANPREFIX}/man/man1/foo.1.gz
${MANPREFIX}/man/ja/man1/foo.1.gz
${PREFIX}/share/foobar/man/man3/bar.3.gz
${PREFIX}/share/foobar/man/ja/man3/bar.3.gz
${MANPREFIX}/man/man4/baz.4.gz
${MANPREFIX}/man/ja/man4/baz.4.gz

Additionally ${MANPREFIX}/man/man8/alt-name.8.gz may or may not be installed by your port. Regardless, a
symlink will be made to join the foo(1) manpage and alt-name(8) manpage.

If only some manpages are translated, you can use several variables dynamically created from MANLANG content:

MANLANG= "" de ja
MAN1= foo.1
MAN1_EN= bar.1
MAN3_DE= baz.3

This translates into this list of files:

${MANPREFIX}/man/man1/foo.1.gz
${MANPREFIX}/man/de/man1/foo.1.gz
${MANPREFIX}/man/ja/man1/foo.1.gz
${MANPREFIX}/man/man1/bar.1.gz
${MANPREFIX}/man/de/man3/baz.3.gz

5.10 Info files
If your package needs to install GNU info files, they should be listed in the INFO variable (without the trailing
.info), one entry per document. These files are assumed to be installed to PREFIX/INFO_PATH. You can change
INFO_PATH if your package uses a different location. However, this is not recommended. These entries contain just
the path relative to PREFIX/INFO_PATH. For example, lang/gcc33 installs info files to PREFIX/INFO_PATH/gcc33,
and INFO will be something like this:

INFO= gcc33/cpp gcc33/cppinternals gcc33/g77 ...

Appropriate installation/de-installation code will be automatically added to the temporary pkg-plist before
package registration.

5.11 Makefile Options
Some large applications can be built in a number of configurations, adding functionality if one of a number of
libraries or applications is available. Examples include choice of natural (human) language, GUI versus
command-line, or type of database to support. Since not all users want those libraries or applications, the ports
system provides hooks that the port author can use to control which configuration should be built. Supporting these
properly will make users happy, and effectively provide 2 or more ports for the price of one.

37

Chapter 5 Configuring the Makefile

5.11.1 Knobs

5.11.1.1 WITH_* and WITHOUT_*

These variables are designed to be set by the system administrator. There are many that are standardized in
ports/KNOBS

(http://www.freebsd.org/cgi/cvsweb.cgi/ports/KNOBS?rev=HEAD&content-type=text/x-cvsweb-markup) file.

When creating a port, do not make knob names specific to a given application. For example in Avahi port, use
WITHOUT_MDNS instead of WITHOUT_AVAHI_MDNS.

Note: You should not assume that a WITH_* necessarily has a corresponding WITHOUT_* variable and vice versa.
In general, the default is simply assumed.

Note: Unless otherwise specified, these variables are only tested for being set or not set, rather than being set to
some kind of variable such as YES or NO.

Table 5-2. Common WITH_* and WITHOUT_* variables

Variable Means
WITHOUT_NLS If set, says that internationalization is not needed, which

can save compile time. By default, internationalization is
used.

WITH_OPENSSL_BASE Use the version of OpenSSL in the base system.

WITH_OPENSSL_PORT Installs the version of OpenSSL from
security/openssl, even if the base is up to date.

WITHOUT_X11 If the port can be built both with and without X support,
then it should normally be built with X support. If this
variable is defined, then the version that does not have X
support should be built instead.

5.11.1.2 Knob naming

It is recommended that porters use like-named knobs, for the benefit of end-users and to help keep the number of
knob names down. A list of popular knob names can be found in the KNOBS
(http://www.freebsd.org/cgi/cvsweb.cgi/ports/KNOBS?rev=HEAD&content-type=text/x-cvsweb-markup) file.

Knob names should reflect what the knob is and does. When a port has a lib-prefix in the PORTNAME the lib-prefix
should be dropped in knob naming.

38

Chapter 5 Configuring the Makefile

5.11.2 OPTIONS

5.11.2.1 Background

The OPTIONS variable gives the user who installs the port a dialog with the available options and saves them to
/var/db/ports/portname/options. Next time when the port has to be rebuild, the options are reused. Never
again you will have to remember all the twenty WITH_* and WITHOUT_* options you used to build this port!

When the user runs make config (or runs make build for the first time), the framework will check for
/var/db/ports/portname/options. If that file does not exist, it will use the values of OPTIONS to create a
dialogbox where the options can be enabled or disabled. Then the options file is saved and the selected variables
will be used when building the port.

If a new version of the port adds new OPTIONS, the dialog will be presented to the user, with the saved values of old
OPTIONS prefilled.

Use make showconfig to see the saved configuration. Use make rmconfig to remove the saved configuration.

5.11.2.2 Syntax

The syntax for the OPTIONS variable is:

OPTIONS= OPTION "descriptive text" default ...

The value for default is either ON or OFF. Multiple repetitions of these three fields are allowed.

OPTIONS definition must appear before the inclusion of bsd.port.pre.mk. The WITH_* and WITHOUT_* variables
can only be tested after the inclusion of bsd.port.pre.mk.

5.11.2.3 Example

Example 5-8. Simple use of OPTIONS

OPTIONS= FOO "Enable option foo" On \
BAR "Support feature bar" Off

.include <bsd.port.pre.mk>

.if defined(WITHOUT_FOO)
CONFIGURE_ARGS+= --without-foo
.else
CONFIGURE_ARGS+= --with-foo
.endif

.if defined(WITH_BAR)
RUN_DEPENDS+= bar:${PORTSDIR}/bar/bar
.endif

.include <bsd.port.post.mk>

39

Chapter 5 Configuring the Makefile

5.11.3 Feature auto-activation

When using a GNU configure script, keep an eye on which optional features are activated by auto-detection.
Explicitly disable optional features you do not wish to be used by passing respective --without-xxx or
--disable-xxx in CONFIGURE_ARGS.

Example 5-9. Wrong handling of an option

.if defined(WITH_FOO)
LIB_DEPENDS+= foo.0:${PORTSDIR}/devel/foo
CONFIGURE_ARGS+= --enable-foo
.endif

In the example above, imagine a library libfoo is installed on the system. User does not want this application to use
libfoo, so he toggled the option off in the make config dialog. But the application’s configure script detects the
library present in the system and includes its support in the resulting executable. Now when user decides to remove
libfoo from the system, the ports system does not protest (no dependency on libfoo was recorded) but the application
breaks.

Example 5-10. Correct handling of an option

.if defined(WITH_FOO)
LIB_DEPENDS+= foo.0:${PORTSDIR}/devel/foo
CONFIGURE_ARGS+= --enable-foo
.else
CONFIGURE_ARGS+= --disable-foo
.endif

In the second example, the library libfoo is explicitly disabled. The configure script does not enable related features
in the application, despite library’s presence in the system.

5.12 Specifying the working directory
Each port is extracted in to a working directory, which must be writable. The ports system defaults to having the
DISTFILES unpack in to a directory called ${DISTNAME}. In other words, if you have set:

PORTNAME= foo
PORTVERSION= 1.0

then the port’s distribution files contain a top-level directory, foo-1.0, and the rest of the files are located under that
directory.

There are a number of variables you can override if that is not the case.

5.12.1 WRKSRC

The variable lists the name of the directory that is created when the application’s distfiles are extracted. If our
previous example extracted into a directory called foo (and not foo-1.0) you would write:

WRKSRC= ${WRKDIR}/foo

40

Chapter 5 Configuring the Makefile

or possibly

WRKSRC= ${WRKDIR}/${PORTNAME}

5.12.2 NO_WRKSUBDIR

If the port does not extract in to a subdirectory at all then you should set NO_WRKSUBDIR to indicate that.

NO_WRKSUBDIR= yes

5.13 CONFLICTS

If your package cannot coexist with other packages (because of file conflicts, runtime incompatibility, etc.), list the
other package names in the CONFLICTS variable. You can use shell globs like * and ? here. Packages names should
be enumerated the same way they appear in /var/db/pkg. Please make sure that CONFLICTS does not match this
port’s package itself, or else forcing its installation with FORCE_PKG_REGISTER will no longer work.

Note: CONFLICTS automatically sets IGNORE, which is more fully documented in Section 12.15.

When removing one of several conflicting ports, it is advisable to retain the CONFLICTS entries in those other ports
for a few months to cater for users who only update once in a while.

5.14 Installing files

5.14.1 INSTALL_* macros

Do use the macros provided in bsd.port.mk to ensure correct modes and ownership of files in your own
*-install targets.

• INSTALL_PROGRAM is a command to install binary executables.

• INSTALL_SCRIPT is a command to install executable scripts.

• INSTALL_KLD is a command to install kernel loadable modules. Some architectures don’t like it when the
modules are stripped, therefor use this command instead of INSTALL_PROGRAM.

• INSTALL_DATA is a command to install sharable data.

• INSTALL_MAN is a command to install manpages and other documentation (it does not compress anything).

These are basically the install command with all the appropriate flags.

41

Chapter 5 Configuring the Makefile

5.14.2 Stripping Binaries

Do not strip binaries manually unless you have to. All binaries should be stripped, but the INSTALL_PROGRAM macro
will install and strip a binary at the same time (see the next section).

If you need to strip a file, but do not wish to use the INSTALL_PROGRAM macro, ${STRIP_CMD} will strip your
program. This is typically done within the post-install target. For example:

post-install:
${STRIP_CMD} ${PREFIX}/bin/xdl

Use the file(1) command on the installed executable to check whether the binary is stripped or not. If it does not say
not stripped, it is stripped. Additionally, strip(1) will not strip a previously stripped program; it will instead exit
cleanly.

5.14.3 Installing a whole tree of files

Sometimes, there is a need to install a big number of files, preserving their hierarchical organization, ie. copying over
a whole directory tree from WRKSRC to a target directory under PREFIX.

Two macros exists for this situation. The advantage of using these macros instead of cp is that they guarantee proper
file ownership and permissions on target files. The first macro, COPYTREE_BIN, will set all the installed files to be
executable, thus being suitable for installing into PREFIX/bin. The second macro, COPYTREE_SHARE, does not set
executable permissions on files, and is therefore suitable for installing files under PREFIX/share target.

post-install:
${MKDIR} ${EXAMPLESDIR}
(cd ${WRKSRC}/examples/ && ${COPYTREE_SHARE} * ${EXAMPLESDIR})

This example will install the contents of examples directory in the vendor distfile to the proper examples location of
your port.

post-install:
${MKDIR} ${DATADIR}/summer
(cd ${WRKSRC}/temperatures/ && ${COPYTREE_SHARE} "June July August" ${DATADIR}/summer/)

And this example will install the data of summer months to the summer subdirectory of a DATADIR.

Additional find arguments can be passed via the third argument to the COPYTREE_* macros. For example, to install
all files from the first example except Makefiles, one can use the following command.

post-install:
${MKDIR} ${EXAMPLESDIR}
(cd ${WRKSRC}/examples/ && \
${COPYTREE_SHARE} * ${EXAMPLESDIR} "! -name Makefile")

Note that these macros does not add the installed files to pkg-plist. You still need to list them.

5.14.4 Install additional documentation

If your software has some documentation other than the standard man and info pages that you think is useful for the
user, install it under PREFIX/share/doc. This can be done, like the previous item, in the post-install target.

42

Chapter 5 Configuring the Makefile

Create a new directory for your port. The directory name should reflect what the port is. This usually means
PORTNAME. However, if you think the user might want different versions of the port to be installed at the same time,
you can use the whole PKGNAME.

Make the installation dependent on the variable NOPORTDOCS so that users can disable it in /etc/make.conf, like
this:

post-install:
.if !defined(NOPORTDOCS)
${MKDIR} ${DOCSDIR}
${INSTALL_MAN} ${WRKSRC}/docs/xvdocs.ps ${DOCSDIR}
.endif

Here are some handy variables and how they are expanded by default when used in the Makefile:

• DATADIR gets expanded to PREFIX/share/PORTNAME.

• DATADIR_REL gets expanded to share/PORTNAME.

• DOCSDIR gets expanded to PREFIX/share/doc/PORTNAME.

• DOCSDIR_REL gets expanded to share/doc/PORTNAME.

• EXAMPLESDIR gets expanded to PREFIX/share/examples/PORTNAME.

• EXAMPLESDIR_REL gets expanded to share/examples/PORTNAME.

Note: NOPORTDOCS only controls additional documentation installed in DOCSDIR. It does not apply to standard
man pages and info pages. Things installed in DATADIR and EXAMPLESDIR are controlled by NOPORTDATA and
NOPORTEXAMPLES, respectively.

These variables are exported to PLIST_SUB. Their values will appear there as pathnames relative to PREFIX if
possible. That is, share/doc/PORTNAME will be substituted for %%DOCSDIR%% in the packing list by default, and so
on. (See more on pkg-plist substitution here.)

All conditionally installed documentation files and directories should be included in pkg-plist with the
%%PORTDOCS%% prefix, for example:

%%PORTDOCS%%%%DOCSDIR%%/AUTHORS
%%PORTDOCS%%%%DOCSDIR%%/CONTACT
%%PORTDOCS%%@dirrm %%DOCSDIR%%

As an alternative to enumerating the documentation files in pkg-plist, a port can set the variable PORTDOCS to a
list of file names and shell glob patterns to add to the final packing list. The names will be relative to DOCSDIR.
Therefore, a port that utilizes PORTDOCS and uses a non-default location for its documentation should set DOCSDIR
accordingly. If a directory is listed in PORTDOCS or matched by a glob pattern from this variable, the entire subtree of
contained files and directories will be registered in the final packing list. If NOPORTDOCS is defined then files and
directories listed in PORTDOCS would not be installed and neither would be added to port packing list. Installing the
documentation at PORTDOCS as shown above remains up to the port itself. A typical example of utilizing PORTDOCS

looks as follows:

PORTDOCS= README.* ChangeLog docs/*

43

Chapter 5 Configuring the Makefile

Note: The equivalents of PORTDOCS for files installed under DATADIR and EXAMPLESDIR are PORTDATA and
PORTEXAMPLES, respectively.

You can also use the pkg-message file to display messages upon installation. See the section on using
pkg-message for details. The pkg-message file does not need to be added to pkg-plist.

5.14.5 Subdirectories under PREFIX

Try to let the port put things in the right subdirectories of PREFIX. Some ports lump everything and put it in the
subdirectory with the port’s name, which is incorrect. Also, many ports put everything except binaries, header files
and manual pages in a subdirectory of lib, which does not work well with the BSD paradigm. Many of the files
should be moved to one of the following: etc (setup/configuration files), libexec (executables started internally),
sbin (executables for superusers/managers), info (documentation for info browser) or share (architecture
independent files). See hier(7) for details; the rules governing /usr pretty much apply to /usr/local too. The
exception are ports dealing with USENET “news”. They may use PREFIX/news as a destination for their files.

44

Chapter 6 Special considerations
There are some more things you have to take into account when you create a port. This section explains the most
common of those.

6.1 Shared Libraries
If your port installs one or more shared libraries, define a USE_LDCONFIG make variable, which will instruct a
bsd.port.mk to run ${LDCONFIG} -m on the directory where the new library is installed (usually PREFIX/lib)
during post-install target to register it into the shared library cache. This variable, when defined, will also
facilitate addition of an appropriate @exec /sbin/ldconfig -m and @unexec /sbin/ldconfig -R pair into
your pkg-plist file, so that a user who installed the package can start using the shared library immediately and
de-installation will not cause the system to still believe the library is there.

USE_LDCONFIG= yes

If you need, you can override the default directory by setting the USE_LDCONFIG value to a list of directories into
which shared libraries are to be installed. For example if your port installs shared libraries into PREFIX/lib/foo and
PREFIX/lib/bar directories you could use the following in your Makefile:

USE_LDCONFIG= ${PREFIX}/lib/foo ${PREFIX}/lib/bar

Please double-check, often this is not necessary at all or can be avoided through -rpath or setting LD_RUN_PATH

during linking (see lang/moscow_ml for an example), or through a shell-wrapper which sets LD_LIBRARY_PATH
before invoking the binary, like www/mozilla does.

When installing 32-bit libraries on 64-bit system, use USE_LDCONFIG32 instead.

Try to keep shared library version numbers in the libfoo.so.0 format. Our runtime linker only cares for the major
(first) number.

When the major library version number increments in the update to the new port version, all other ports that link to
the affected library should have their PORTREVISION incremented, to force recompilation with the new library
version.

6.2 Ports with distribution restrictions
Licenses vary, and some of them place restrictions on how the application can be packaged, whether it can be sold
for profit, and so on.

Important: It is your responsibility as a porter to read the licensing terms of the software and make sure that the
FreeBSD project will not be held accountable for violating them by redistributing the source or compiled binaries
either via FTP/HTTP or CD-ROM. If in doubt, please contact the FreeBSD ports mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports).

In situations like this, the variables described in the following sections can be set.

45

Chapter 6 Special considerations

6.2.1 NO_PACKAGE

This variable indicates that we may not generate a binary package of the application. For instance, the license may
disallow binary redistribution, or it may prohibit distribution of packages created from patched sources.

However, the port’s DISTFILES may be freely mirrored on FTP/HTTP. They may also be distributed on a CD-ROM
(or similar media) unless NO_CDROM is set as well.

NO_PACKAGE should also be used if the binary package is not generally useful, and the application should always be
compiled from the source code. For example, if the application has configuration information that is site specific hard
coded in to it at compile time, set NO_PACKAGE.

NO_PACKAGE should be set to a string describing the reason why the package should not be generated.

6.2.2 NO_CDROM

This variable alone indicates that, although we are allowed to generate binary packages, we may put neither those
packages nor the port’s DISTFILES onto a CD-ROM (or similar media) for resale. However, the binary packages and
the port’s DISTFILES will still be available via FTP/HTTP.

If this variable is set along with NO_PACKAGE, then only the port’s DISTFILES will be available, and only via
FTP/HTTP.

NO_CDROM should be set to a string describing the reason why the port cannot be redistributed on CD-ROM. For
instance, this should be used if the port’s license is for “non-commercial” use only.

6.2.3 NOFETCHFILES

Files defined in the NOFETCHFILES variable are not fetchable from any of the MASTER_SITES. An example of such
a file is when the file is supplied on CD-ROM by the vendor.

Tools which check for the availability of these files on the MASTER_SITES should ignore these files and not report
about them.

6.2.4 RESTRICTED

Set this variable alone if the application’s license permits neither mirroring the application’s DISTFILES nor
distributing the binary package in any way.

NO_CDROM or NO_PACKAGE should not be set along with RESTRICTED since the latter variable implies the former
ones.

RESTRICTED should be set to a string describing the reason why the port cannot be redistributed. Typically, this
indicates that the port contains proprietary software and that the user will need to manually download the
DISTFILES, possibly after registering for the software or agreeing to accept the terms of an EULA.

6.2.5 RESTRICTED_FILES

When RESTRICTED or NO_CDROM is set, this variable defaults to ${DISTFILES} ${PATCHFILES}, otherwise it is
empty. If only some of the distribution files are restricted, then set this variable to list them.

46

Chapter 6 Special considerations

Note that the port committer should add an entry to /usr/ports/LEGAL for every listed distribution file, describing
exactly what the restriction entails.

6.3 Building mechanisms

6.3.1 Parallel ports building

The FreeBSD ports framework supports parallel building using multiple make sub-processes, which allows SMP
systems to utilize all of their available CPU power, allowing port builds to be faster and more effective.

This is achieved by passing -jX flag to make(1) running on vendor code. Unfortunately, not all ports handle parallel
building well. Therefore it is required to explicitly enable this feature by adding MAKE_JOBS_SAFE=yes somewhere
below the dependency declaration section of the Makefile.

Another option for controlling this feature from the maintainer’s point of view is the MAKE_JOBS_UNSAFE=yes
variable. It is used when a port is known to be broken with -jX and a user forces the use of multi processor
compilations for all ports in /etc/make.conf with the FORCE_MAKE_JOBS=yes variable.

6.3.2 make, gmake, and imake

If your port uses GNU make, set USE_GMAKE=yes.

Table 6-1. Variables for ports related to gmake

Variable Means
USE_GMAKE The port requires gmake to build.

GMAKE The full path for gmake if it is not in the PATH.

If your port is an X application that creates Makefile files from Imakefile files using imake, then set
USE_IMAKE=yes. This will cause the configure stage to automatically do an xmkmf -a. If the -a flag is a problem
for your port, set XMKMF=xmkmf. If the port uses imake but does not understand the install.man target,
NO_INSTALL_MANPAGES=yes should be set.

If your port’s source Makefile has something else than all as the main build target, set ALL_TARGET accordingly.
Same goes for install and INSTALL_TARGET.

6.3.3 configure script

If your port uses the configure script to generate Makefile files from Makefile.in files, set
GNU_CONFIGURE=yes. If you want to give extra arguments to the configure script (the default argument is
--prefix=${PREFIX} --infodir=${PREFIX}/${INFO_PATH} --mandir=${MANPREFIX}/man

--build=${CONFIGURE_TARGET}), set those extra arguments in CONFIGURE_ARGS. Extra environment variables
can be passed using CONFIGURE_ENV variable.

Table 6-2. Variables for ports that use configure

47

Chapter 6 Special considerations

Variable Means
GNU_CONFIGURE The port uses configure script to prepare build.

HAS_CONFIGURE Same as GNU_CONFIGURE, except default configure target
is not added to CONFIGURE_ARGS.

CONFIGURE_ARGS Additional arguments passed to configure script.

CONFIGURE_ENV Additional environment variables to be set for
configure script run.

CONFIGURE_TARGET Override default configure target. Default value is
${MACHINE_ARCH}-portbld-freebsd${OSREL}.

6.3.4 Using scons

If your port uses SCons, define USE_SCONS=yes.

Table 6-3. Variables for ports that use scons

Variable Means
SCONS_ARGS Port specific SCons flags passed to the SCons

environment.

SCONS_BUILDENV Variables to be set in system environment.

SCONS_ENV Variables to be set in SCons environment.

SCONS_TARGET Last argument passed to SCons, similar to MAKE_TARGET.

To make third party SConstruct respect everything that is passed to SCons in SCONS_ENV (that is, most
importantly, CC/CXX/CFLAGS/CXXFLAGS), patch the SConstruct so build Environment is constructed like this:

env = Environment(**ARGUMENTS)

It may be then modified with env.Append and env.Replace.

6.4 Using GNU autotools

6.4.1 Introduction

The various GNU autotools provide an abstraction mechanism for building a piece of software over a wide variety of
operating systems and machine architectures. Within the Ports Collection, an individual port can make use of these
tools via a simple construct:

USE_AUTOTOOLS= tool:version[:operation] ...

At the time of writing, tool can be one of libtool, libltdl, autoconf, autoheader, automake or aclocal.

version specifies the particular tool revision to be used (see devel/{automake,autoconf,libtool}[0-9]+
for valid versions).

48

Chapter 6 Special considerations

operation is an optional extension to modify how the tool is used.

Multiple tools can be specified at once, either by including them all on a single line, or using the += Makefile
construct.

Finally, there is the special tool, called autotools, which is a convenience function to bring in all available versions
of the autotools to allow for cross-development work. This can also be accomplished by installing the
devel/autotools port.

6.4.2 libtool

Shared libraries using the GNU building framework usually use libtool to adjust the compilation and installation
of shared libraries to match the specifics of the underlying operating system. The usual practice is to use copy of
libtool bundled with the application. In case you need to use external libtool, you can use the version provided
by The Ports Collection:

USE_AUTOTOOLS= libtool:version[:env]

With no additional operations, libtool:version tells the building framework to patch the configure script with the
system-installed copy of libtool. The GNU_CONFIGURE is implied. Further, a number of make and shell variables
will be assigned for onward use by the port. See bsd.autotools.mk for details.

With the :env operation, only the environment will be set up.

Finally, LIBTOOLFLAGS and LIBTOOLFILES can be optionally set to override the most likely arguments to, and files
patched by, libtool. Most ports are unlikely to need this. See bsd.autotools.mk for further details.

6.4.3 libltdl

Some ports make use of the libltdl library package, which is part of the libtool suite. Use of this library does
not automatically necessitate the use of libtool itself, so a separate construct is provided.

USE_AUTOTOOLS= libltdl:version

Currently, all this does is to bring in a LIB_DEPENDS on the appropriate libltdl port, and is provided as a
convenience function to help eliminate any dependencies on the autotools ports outside of the USE_AUTOTOOLS
framework. There are no optional operations for this tool.

6.4.4 autoconf and autoheader

Some ports do not contain a configure script, but do contain an autoconf template in the configure.ac file. You
can use the following assignments to let autoconf create the configure script, and also have autoheader create
template headers for use by the configure script.

USE_AUTOTOOLS= autoconf:version[:env]

and

USE_AUTOTOOLS= autoheader:version

which also implies the use of autoconf:version.

49

Chapter 6 Special considerations

Similarly to libtool, the inclusion of the optional :env operation simply sets up the environment for further use.
Without it, patching and reconfiguration of the port is carried out.

The additional optional variables AUTOCONF_ARGS and AUTOHEADER_ARGS can be overridden by the port
Makefile if specifically requested. As with the libtool equivalents, most ports are unlikely to need this.

6.4.5 automake and aclocal

Some packages only contain Makefile.am files. These have to be converted into Makefile.in files using
automake, and the further processed by configure to generate an actual Makefile.

Similarly, packages occasionally do not ship with included aclocal.m4 files, again required to build the software.
This can be achieved with aclocal, which scans configure.ac or configure.in.

aclocal has a similar relationship to automake as autoheader does to autoconf, described in the previous
section. aclocal implies the use of automake, thus we have:

USE_AUTOTOOLS= automake:version[:env]

and

USE_AUTOTOOLS= aclocal:version

which also implies the use of automake:version.

Similarly to libtool and autoconf, the inclusion of the optional :env operation simply sets up the environment
for further use. Without it, reconfiguration of the port is carried out.

As with autoconf and autoheader, both automake and aclocal have optional argument variables,
AUTOMAKE_ARGS and ACLOCAL_ARGS respectively, which may be overriden by the port Makefile if required.

6.5 Using GNU gettext

6.5.1 Basic usage

If your port requires gettext, just set USE_GETTEXT to yes, and your port will grow the dependency on
devel/gettext. The value of USE_GETTEXT can also specify the required version of the libintl library, the
basic part of gettext, but using this feature is strongly discouraged: Your port should work with just the current
version of devel/gettext.

A rather common case is a port using gettext and configure. Generally, GNU configure should be able to
locate gettext automatically. If it ever fails to, hints at the location of gettext can be passed in CPPFLAGS and
LDFLAGS as follows:

USE_GETTEXT= yes
CPPFLAGS+= -I${LOCALBASE}/include
LDFLAGS+= -L${LOCALBASE}/lib

GNU_CONFIGURE= yes
CONFIGURE_ENV= CPPFLAGS="${CPPFLAGS}" \

LDFLAGS="${LDFLAGS}"

50

Chapter 6 Special considerations

Of course, the code can be more compact if there are no more flags to pass to configure:

USE_GETTEXT= yes
GNU_CONFIGURE= yes
CONFIGURE_ENV= CPPFLAGS="-I${LOCALBASE}/include" \

LDFLAGS="-L${LOCALBASE}/lib"

6.5.2 Optional usage

Some software products allow for disabling NLS, e.g., through passing --disable-nls to configure. In that
case, your port should use gettext conditionally, depending on the status of WITHOUT_NLS. For ports of low to
medium complexity, you can rely on the following idiom:

GNU_CONFIGURE= yes

.if !defined(WITHOUT_NLS)
USE_GETTEXT= yes
PLIST_SUB+= NLS=""
.else
CONFIGURE_ARGS+= --disable-nls
PLIST_SUB+= NLS="@comment "
.endif

The next item on your to-do list is to arrange so that the message catalog files are included in the packing list
conditionally. The Makefile part of this task is already provided by the idiom. It is explained in the section on
advanced pkg-plist practices. In a nutshell, each occurrence of %%NLS%% in pkg-plist will be replaced by
“@comment ” if NLS is disabled, or by a null string if NLS is enabled. Consequently, the lines prefixed by %%NLS%%

will become mere comments in the final packing list if NLS is off; otherwise the prefix will be just left out. All you
need to do now is insert %%NLS%% before each path to a message catalog file in pkg-plist. For example:

%%NLS%%share/locale/fr/LC_MESSAGES/foobar.mo
%%NLS%%share/locale/no/LC_MESSAGES/foobar.mo

In high complexity cases, you may need to use more advanced techniques than the recipe given here, such as
dynamic packing list generation.

6.5.3 Handling message catalog directories

There is a point to note about installing message catalog files. The target directories for them, which reside under
LOCALBASE/share/locale, should rarely be created and removed by your port. The most popular languages have
their respective directories listed in /etc/mtree/BSD.local.dist; that is, they are a part of the base system. The
directories for many other languages are governed by the devel/gettext port. You may want to consult its
pkg-plist and see whether your port is going to install a message catalog file for a unique language.

51

Chapter 6 Special considerations

6.6 Using perl

If MASTER_SITES is set to MASTER_SITE_PERL_CPAN, then preferred value of MASTER_SITE_SUBDIR is top-level
hierarchy name. For example, the recommend value for p5-Module-Name is Module. The top-level hierarchy can
be examined at cpan.org (http://cpan.org/modules/by-module/). This keeps the port working when the author of the
module changes.

The exception to this rule is when the relevant directory does not exist or the distfile does not exist in the directory. In
such case, using author’s id as MASTER_SITE_SUBDIR is allowed.

All of the tunable knobs below accept both YES and a version string, like 5.8.0+. Using YES means that the port can
be used with all of the supported Perl versions. If a port only works with specific versions of Perl, it can be indicated
with a version string, specifying a minimal version (e.g. 5.7.3+), a maximal version (e.g. 5.8.0-) or an exact
version (e.g. 5.8.3).

Table 6-4. Variables for ports that use perl

Variable Means
USE_PERL5 Says that the port uses perl 5 to build and run.

USE_PERL5_BUILD Says that the port uses perl 5 to build.

USE_PERL5_RUN Says that the port uses perl 5 to run.

PERL The full path of perl 5, either in the system or installed
from a port, but without the version number. Use this if
you need to replace “#!”lines in scripts.

PERL_CONFIGURE Configure using Perl’s MakeMaker. It implies
USE_PERL5.

PERL_MODBUILD Configure, build and install using Module::Build. It
implies PERL_CONFIGURE.

Read only variables
PERL_VERSION The full version of perl installed (e.g., 5.8.9).

PERL_LEVEL The installed perl version as an integer of the form
MNNNPP (e.g., 500809).

PERL_ARCH Where perl stores architecture dependent libraries.
Defaults to ${ARCH}-freebsd.

PERL_PORT Name of the perl port that is installed (e.g., perl5).

SITE_PERL Directory name where site specific perl packages go.
This value is added to PLIST_SUB.

Note: Ports of Perl modules, which do not have an official website, should link cpan.org in the WWW line of a
pkg-descr file. The preferred URL form is http://search.cpan.org/dist/Module-Name/ (including the trailing
slash).

52

Chapter 6 Special considerations

6.7 Using X11

6.7.1 X.Org components

The X11 implementation available in The Ports Collection is X.Org. If your application depends on X components,
set USE_XORG to the list of required components. Available components, at the time of writing, are:

bigreqsproto compositeproto damageproto dmx dmxproto evieproto fixesproto

fontcacheproto fontenc fontsproto fontutil glproto ice inputproto kbproto libfs oldx

printproto randrproto recordproto renderproto resourceproto scrnsaverproto sm

trapproto videoproto x11 xau xaw xaw6 xaw7 xaw8 xbitmaps xcmiscproto xcomposite

xcursor xdamage xdmcp xevie xext xextproto xf86bigfontproto xf86dgaproto xf86driproto

xf86miscproto xf86rushproto xf86vidmodeproto xfixes xfont xfontcache xft xi xinerama

xineramaproto xkbfile xkbui xmu xmuu xorg-server xp xpm xprintapputil xprintutil xpr

oto xproxymngproto xrandr xrender xres xscrnsaver xt xtrans xtrap xtst xv xvmc

xxf86dga xxf86misc xxf86vm.

Always up-to-date list can be found in /usr/ports/Mk/bsd.xorg.mk.

The Mesa Project is an effort to provide free OpenGL implementation. You can specify a dependency on various
components of this project with USE_GL variable. Valid options are: glut, glu, glw, gl and linux. For
backwards compatibility, the value of yes maps to glu.

Example 6-1. USE_XORG example

USE_XORG= xrender xft xkbfile xt xaw
USE_GL= glu

Many ports define USE_XLIB, which makes the port depend on all the 50 or so libraries. This variable exists for
backwards compatibility, as it predates modular X.Org, and should not be used on new ports.

Table 6-5. Variables for ports that use X

USE_XLIB The port uses the X libraries. Deprecated - use a list of
X.Org components in USE_XORG variable instead.

USE_IMAKE The port uses imake.

USE_X_PREFIX Deprecated. Today it is equivalent to USE_XLIB and can
be replaced by it freely.

XMKMF Set to the path of xmkmf if not in the PATH. Defaults to
xmkmf -a.

Table 6-6. Variables for depending on individual parts of X11

X_IMAKE_PORT Port providing imake and several other utilities used to
build X11.

X_LIBRARIES_PORT Port providing X11 libraries.

X_CLIENTS_PORT Port providing X clients.

X_SERVER_PORT Port providing X server.

53

Chapter 6 Special considerations

X_FONTSERVER_PORT Port providing font server.

X_PRINTSERVER_PORT Port providing print server.

X_VFBSERVER_PORT Port providing virtual framebuffer server.

X_NESTSERVER_PORT Port providing a nested X server.

X_FONTS_ENCODINGS_PORT Port providing encodings for fonts.

X_FONTS_MISC_PORT Port providing miscellaneous bitmap fonts.

X_FONTS_100DPI_PORT Port providing 100dpi bitmap fonts.

X_FONTS_75DPI_PORT Port providing 75dpi bitmap fonts.

X_FONTS_CYRILLIC_PORT Port providing cyrillic bitmap fonts.

X_FONTS_TTF_PORT Port providing TrueType® fonts.

X_FONTS_TYPE1_PORT Port providing Type1 fonts.

X_MANUALS_PORT Port providing developer oriented manual pages

Example 6-2. Using X11 related variables in port

Use some X11 libraries and depend on
font server as well as cyrillic fonts.
RUN_DEPENDS= ${LOCALBASE}/bin/xfs:${X_FONTSERVER_PORT} \

${LOCALBASE}/lib/X11/fonts/cyrillic/crox1c.pcf.gz:${X_FONTS_CYRILLIC_PORT}

USE_XORG= x11 xpm

6.7.2 Ports that require Motif

If your port requires a Motif library, define USE_MOTIF in the Makefile. Default Motif implementation is
x11-toolkits/open-motif. Users can choose x11-toolkits/lesstif instead by setting WANT_LESSTIF

variable.

The MOTIFLIB variable will be set by bsd.port.mk to reference the appropriate Motif library. Please patch the
source of your port to use ${MOTIFLIB} wherever the Motif library is referenced in the original Makefile or
Imakefile.

There are two common cases:

• If the port refers to the Motif library as -lXm in its Makefile or Imakefile, simply substitute ${MOTIFLIB} for
it.

• If the port uses XmClientLibs in its Imakefile, change it to ${MOTIFLIB} ${XTOOLLIB} ${XLIB}.

Note that MOTIFLIB (usually) expands to -L/usr/X11R6/lib -lXm or /usr/X11R6/lib/libXm.a, so there is
no need to add -L or -l in front.

6.7.3 X11 fonts

If your port installs fonts for the X Window System, put them in LOCALBASE/lib/X11/fonts/local.

54

Chapter 6 Special considerations

6.7.4 Getting fake DISPLAY using Xvfb

Some applications require a working X11 display for compilation to succeed. This pose a problem for machines that
operate headless. When the following variable is used, the build infrastructure will start the virtual framebuffer X
server. The working DISPLAY is then passed to the build.

USE_DISPLAY= yes

6.7.5 Desktop entries

Desktop Entries (Freedesktop standard (http://standards.freedesktop.org/desktop-entry-spec/latest/)) can be easily
created in your port using DESKTOP_ENTRIES variable. These entries do show up in application menus of compliant
desktop environments like GNOME or KDE. The .desktop file will be created, installed, and added to the
pkg-plist automatically. Syntax is:

DESKTOP_ENTRIES= "NAME" "COMMENT" "ICON" "COMMAND" "CATEGORY" StartupNotify

The list of possible categories is available on the Freedesktop website
(http://standards.freedesktop.org/menu-spec/latest/apa.html). The StartupNotify indicates, if the application will
clear the status in startup notification aware environment.

Example:

DESKTOP_ENTRIES= "ToME" "Roguelike game based on JRR Tolkien’s work" \
"${DATADIR}/xtra/graf/tome-128.png" \
"tome -v -g" "Application;Game;RolePlaying" \
false

6.8 Using GNOME
The FreeBSD/GNOME project uses its own set of variables to define which GNOME components a particular port
uses. A comprehensive list of these variables (http://www.FreeBSD.org/gnome/docs/porting.html) exists within the
FreeBSD/GNOME project’s homepage.

6.9 Using KDE

6.9.1 Variable definitions

Table 6-7. Variables for ports that use KDE

USE_KDELIBS_VER The port uses KDE libraries. It specifies the major version
of KDE to use and implies USE_QT_VER of the
appropriate version. The only possible value is 3.

55

Chapter 6 Special considerations

USE_KDEBASE_VER The port uses KDE base. It specifies the major version of
KDE to use and implies USE_QT_VER of the appropriate
version. The only possible value is 3.

6.9.2 Ports that require Qt

Table 6-8. Variables for ports that use Qt

USE_QT_VER The port uses the Qt toolkit. Possible values are 3 and 4;
each specify the major version of Qt to use. Appropriate
parameters are passed to configure script and make.

QT_PREFIX Set to the path where Qt installed to (read-only variable).

MOC Set to the path of moc (read-only variable). Default set
according to USE_QT_VER value.

QTCPPFLAGS Additional compiler flags passed via CONFIGURE_ENV for
Qt toolkit. Default set according to USE_QT_VER.

QTCFGLIBS Additional libraries for linking passed via
CONFIGURE_ENV for Qt toolkit. Default set according to
USE_QT_VER.

QTNONSTANDARD Suppress modification of CONFIGURE_ENV,
CONFIGURE_ARGS, and MAKE_ENV.

Table 6-9. Additional variables for ports that use Qt 4.x

QT_COMPONENTS Specify tool and library dependencies for Qt4. See below
for details.

UIC Set to the path of uic (read-only variable). Default set
according to USE_QT_VER value.

QMAKE Set to the path of qmake (read-only variable). Default set
according to USE_QT_VER value.

QMAKESPEC Set to the path of configuration file for qmake (read-only
variable). Default set according to USE_QT_VER value.

When USE_QT_VER is set, some useful settings are passed to configure script:

CONFIGURE_ARGS+= --with-qt-includes=${QT_PREFIX}/include \
--with-qt-libraries=${QT_PREFIX}/lib \
--with-extra-libs=${LOCALBASE}/lib \
--with-extra-includes=${LOCALBASE}/include

CONFIGURE_ENV+= MOC="${MOC}" CPPFLAGS="${CPPFLAGS} ${QTCPPFLAGS}" LIBS="${QTCFGLIBS}" \
QTDIR="${QT_PREFIX}" KDEDIR="${KDE_PREFIX}"

If USE_QT_VER is set to 4, the following settings are also deployed:

56

Chapter 6 Special considerations

CONFIGURE_ENV+= UIC="${UIC}" QMAKE="${QMAKE}" QMAKESPEC="${QMAKESPEC}"
MAKE_ENV+= QMAKESPEC="${QMAKESPEC}"

6.9.3 Component selection (Qt 4.x only)

When USE_QT_VER is set to 4, individual Qt4 tool and library dependencies can be specified in the QT_COMPONENTS
variable. Every component can be suffixed by either _build or _run, the suffix indicating whether the component
should be depended on at buildtime or runtime, respectively. If unsuffixed, the component will be depended on at
both build- and runtime. Usually, library components should be specified unsuffixed, tool components should be
specified with the _build suffix and plugin components should be specified with the _run suffix. The most
commonly used components are listed below (all available components are listed in _QT_COMPONENTS_ALL in
/usr/ports/Mk/bsd.qt.mk):

Table 6-10. Available Qt4 library components

Name Description
corelib core library (can be omitted unless the port uses nothing

but corelib)

gui graphical user interface library

network network library

opengl OpenGL library

qt3support Qt3 compatibility library

qtestlib unit testing library

script script library

sql SQL library

xml XML library

You can determine which libraries the application depends on, by running ldd on the main executable after a
successful compilation.

Table 6-11. Available Qt4 tool components

Name Description
moc meta object compiler (needed for almost every Qt

application at buildtime)

qmake Makefile generator / build utility

rcc resource compiler (need if the application comes with
*.rc or *.qrc files)

uic user interface compiler (needed if the application comes
with *.ui files created by Qt Designer - in practice, every
Qt application with a GUI)

Table 6-12. Available Qt4 plugin components

57

Chapter 6 Special considerations

Name Description
iconengines SVG icon engine plugin (if the application ships SVG

icons)

imageformats imageformat plugins for GIF, JPEG, MNG and SVG (if
the application ships image files)

Example 6-3. Selecting Qt4 components

In this example, the ported application uses the Qt4 graphical user interface library, the Qt4 core library, all of the
Qt4 code generation tools and Qt4’s Makefile generator. Since the gui library implies a dependency on the core
library, corelib does not need to be specified. The Qt4 code generation tools moc, uic and rcc, as well as the Makefile
generator qmake are only needed at buildtime, thus they are specified with the _build suffix:

USE_QT_VER= 4
QT_COMPONENTS= gui moc_build qmake_build rcc_build uic_build

6.9.4 Additional considerations

If the application does not provide a configure file but a .pro file, you can use the following:

HAS_CONFIGURE= yes

do-configure:
@cd ${WRKSRC} && ${SETENV} ${CONFIGURE_ENV} \

${QMAKE} -unix PREFIX=${PREFIX} texmaker.pro

Note the similarity to the qmake line from the provided BUILD.sh script. Passing CONFIGURE_ENV ensures qmake
will see the QMAKESPEC variable, without which it cannot work. qmake generates standard Makefiles, so it is not
necessary to write our own build target.

Qt applications often are written to be cross-platform and often X11/Unix isn’t the platform they are developed on,
which in turn often leads to certain loose ends, like:

• Missing additional includepaths. Many applications come with system tray icon support, but neglect to look for
includes and/or libraries in the X11 directories. You can tell qmake to add directories to the include and library
searchpaths via the commandline, for example:

${QMAKE} -unix PREFIX=${PREFIX} INCLUDEPATH+=${LOCALBASE}/include \
LIBS+=-L${LOCALBASE}/lib sillyapp.pro

• Bogus installation paths. Sometimes data such as icons or .desktop files are by default installed into directories
which aren’t scanned by XDG-compatible applications. editors/texmaker is an example for this - look at
patch-texmaker.pro in the files directory of that port for a template on how to remedy this directly in the
Qmake project file.

58

Chapter 6 Special considerations

6.10 Using Java

6.10.1 Variable definitions

If your port needs a Java™ Development Kit (JDK) to either build, run or even extract the distfile, then it should
define USE_JAVA.

There are several JDKs in the ports collection, from various vendors, and in several versions. If your port must use
one of these versions, you can define which one. The most current version is java/jdk15.

Table 6-13. Variables that may be set by ports that use Java

Variable Means
USE_JAVA Should be defined for the remaining variables to have any

effect.

JAVA_VERSION List of space-separated suitable Java versions for the port.
An optional "+" allows you to specify a range of versions
(allowed values: 1.1[+] 1.2[+] 1.3[+] 1.4[+]).

JAVA_OS List of space-separated suitable JDK port operating
systems for the port (allowed values: native linux).

JAVA_VENDOR List of space-separated suitable JDK port vendors for the
port (allowed values: freebsd bsdjava sun ibm

blackdown).

JAVA_BUILD When set, it means that the selected JDK port should be
added to the build dependencies of the port.

JAVA_RUN When set, it means that the selected JDK port should be
added to the run dependencies of the port.

JAVA_EXTRACT When set, it means that the selected JDK port should be
added to the extract dependencies of the port.

USE_JIKES Whether the port should or should not use the jikes
bytecode compiler to build. When no value is set for this
variable, the port will use jikes to build if available. You
may also explicitly forbid or enforce the use of jikes (by
setting ’no’ or ’yes’). In the later case, devel/jikes
will be added to build dependencies of the port. In any
case that jikes is actually used in place of javac, then
the HAVE_JIKES variable is defined by bsd.java.mk.

Below is the list of all settings a port will receive after setting USE_JAVA:

Table 6-14. Variables provided to ports that use Java

Variable Value
JAVA_PORT The name of the JDK port (e.g. ’java/jdk14’).

59

Chapter 6 Special considerations

Variable Value
JAVA_PORT_VERSION The full version of the JDK port (e.g. ’1.4.2’). If you

only need the first two digits of this version number, use
${JAVA_PORT_VERSION:C/^([0-9])\.([0-9])(.*)$/\1.\2/}.

JAVA_PORT_OS The operating system used by the JDK port (e.g.
’linux’).

JAVA_PORT_VENDOR The vendor of the JDK port (e.g. ’sun’).

JAVA_PORT_OS_DESCRIPTION Description of the operating system used by the JDK port
(e.g. ’Linux’).

JAVA_PORT_VENDOR_DESCRIPTION Description of the vendor of the JDK port (e.g. ’FreeBSD
Foundation’).

JAVA_HOME Path to the installation directory of the JDK (e.g.
’/usr/local/jdk1.3.1’).

JAVAC Path to the Java compiler to use (e.g.
’/usr/local/jdk1.1.8/bin/javac’ or
’/usr/local/bin/jikes’).

JAR Path to the jar tool to use (e.g.
’/usr/local/jdk1.2.2/bin/jar’ or
’/usr/local/bin/fastjar’).

APPLETVIEWER Path to the appletviewer utility (e.g.
’/usr/local/linux-jdk1.2.2/bin/appletviewer’).

JAVA Path to the java executable. Use this for executing Java
programs (e.g. ’/usr/local/jdk1.3.1/bin/java’).

JAVADOC Path to the javadoc utility program.

JAVAH Path to the javah program.

JAVAP Path to the javap program.

JAVA_KEYTOOL Path to the keytool utility program. This variable is
available only if the JDK is Java 1.2 or higher.

JAVA_N2A Path to the native2ascii tool.

JAVA_POLICYTOOL Path to the policytool program. This variable is
available only if the JDK is Java 1.2 or higher.

JAVA_SERIALVER Path to the serialver utility program.

RMIC Path to the RMI stub/skeleton generator, rmic.

RMIREGISTRY Path to the RMI registry program, rmiregistry.

RMID Path to the RMI daemon program rmid. This variable is
only available if the JDK is Java 1.2 or higher.

JAVA_CLASSES Path to the archive that contains the JDK class files. On
JDK 1.2 or later, this is
${JAVA_HOME}/jre/lib/rt.jar. Earlier JDKs used
${JAVA_HOME}/lib/classes.zip.

HAVE_JIKES Defined whenever jikes is used by the port (see
USE_JIKES above).

60

Chapter 6 Special considerations

You may use the java-debug make target to get information for debugging your port. It will display the value of
many of the forecited variables.

Additionally, the following constants are defined so all Java ports may be installed in a consistent way:

Table 6-15. Constants defined for ports that use Java

Constant Value
JAVASHAREDIR The base directory for everything related to Java. Default:

${PREFIX}/share/java.

JAVAJARDIR The directory where JAR files should be installed.
Default: ${JAVASHAREDIR}/classes.

JAVALIBDIR The directory where JAR files installed by other ports are
located. Default:
${LOCALBASE}/share/java/classes.

The related entries are defined in both PLIST_SUB (documented in Section 7.1) and SUB_LIST.

6.10.2 Building with Ant

When the port is to be built using Apache Ant, it has to define USE_ANT. Ant is thus considered to be the sub-make
command. When no do-build target is defined by the port, a default one will be set that simply runs Ant according
to MAKE_ENV, MAKE_ARGS and ALL_TARGETS. This is similar to the USE_GMAKE mechanism, which is documented
in Section 6.3.

If jikes is used in place of javac (see USE_JIKES in Section 6.10.1), then Ant will automatically use it to build the
port.

6.10.3 Best practices

When porting a Java library, your port should install the JAR file(s) in ${JAVAJARDIR}, and everything else under
${JAVASHAREDIR}/${PORTNAME} (except for the documentation, see below). In order to reduce the packing file
size, you may reference the JAR file(s) directly in the Makefile. Just use the following statement (where
myport.jar is the name of the JAR file installed as part of the port):

PLIST_FILES+= %%JAVAJARDIR%%/myport.jar

When porting a Java application, the port usually installs everything under a single directory (including its JAR
dependencies). The use of ${JAVASHAREDIR}/${PORTNAME} is strongly encouraged in this regard. It is up the
porter to decide whether the port should install the additional JAR dependencies under this directory or directly use
the already installed ones (from ${JAVAJARDIR}).

Regardless of the type of your port (library or application), the additional documentation should be installed in the
same location as for any other port. The JavaDoc tool is known to produce a different set of files depending on the
version of the JDK that is used. For ports that do not enforce the use of a particular JDK, it is therefore a complex
task to specify the packing list (pkg-plist). This is one reason why porters are strongly encouraged to use the
PORTDOCS macro. Moreover, even if you can predict the set of files that will be generated by javadoc, the size of
the resulting pkg-plist advocates for the use of PORTDOCS.

61

Chapter 6 Special considerations

The default value for DATADIR is ${PREFIX}/share/${PORTNAME}. It is a good idea to override DATADIR to
${JAVASHAREDIR}/${PORTNAME} for Java ports. Indeed, DATADIR is automatically added to PLIST_SUB

(documented in Section 7.1) so you may use %%DATADIR%% directly in pkg-plist.

As for the choice of building Java ports from source or directly installing them from a binary distribution, there is no
defined policy at the time of writing. However, people from the FreeBSD Java Project (http://www.freebsd.org/java/)
encourage porters to have their ports built from source whenever it is a trivial task.

All the features that have been presented in this section are implemented in bsd.java.mk. If you ever think that
your port needs more sophisticated Java support, please first have a look at the bsd.java.mk CVS log
(http://www.freebsd.org/cgi/cvsweb.cgi/ports/Mk/bsd.java.mk) as it usually takes some time to document the latest
features. Then, if you think the support you are lacking would be beneficial to many other Java ports, feel free to
discuss it on the FreeBSD Java Language mailing list (http://lists.FreeBSD.org/mailman/listinfo/freebsd-java).

Although there is a java category for PRs, it refers to the JDK porting effort from the FreeBSD Java project.
Therefore, you should submit your Java port in the ports category as for any other port, unless the issue you are
trying to resolve is related to either a JDK implementation or bsd.java.mk.

Similarly, there is a defined policy regarding the CATEGORIES of a Java port, which is detailed in Section 5.3.

6.11 Web applications, Apache and PHP

6.11.1 Apache

Table 6-16. Variables for ports that use Apache

USE_APACHE The port requires Apache. Possible values: yes (gets any
version), 1.3, 2.0, 2.2, 2.0+, etc. Default dependency is
on version 1.3.

WITH_APACHE2 The port requires Apache 2.0. Without this variable, the
port will depend on Apache 1.3. This variable is
deprecated and should not be used anymore.

APXS Full path to the apxs binary. Can be overriden in your
port.

HTTPD Full path to the httpd binary. Can be overriden in your
port.

APACHE_VERSION The version of present Apache installation (read-only
variable). This variable is only available after inclusion of
bsd.port.pre.mk. Possible values: 13, 20, 22.

APACHEMODDIR Directory for Apache modules. This variable is
automatically expanded in pkg-plist.

APACHEINCLUDEDIR Directory for Apache headers. This variable is
automatically expanded in pkg-plist.

APACHEETCDIR Directory for Apache configuration files. This variable is
automatically expanded in pkg-plist.

62

Chapter 6 Special considerations

Table 6-17. Useful variables for porting Apache modules

MODULENAME Name of the module. Default value is PORTNAME.
Example: mod_hello

SHORTMODNAME Short name of the module. Automatically derived from
MODULENAME, but can be overriden. Example: hello

AP_FAST_BUILD Use apxs to compile and install the module.

AP_GENPLIST Also automatically creates a pkg-plist.

AP_INC Adds a directory to a header search path during
compilation.

AP_LIB Adds a directory to a library search path during
compilation.

AP_EXTRAS Additional flags to pass to apxs.

6.11.2 Web applications

Web applications should be installed into PREFIX/www/appname. For your convenience, this path is available both in
Makefile and in pkg-plist as WWWDIR, and the path relative to PREFIX is available in Makefile as WWWDIR_REL.

The user and group of web server process are available as WWWOWN and WWWGRP, in case you need to change the
ownership of some files. The default values of both are www. If you want different values for your port, use
WWWOWN?= myuser notation, to allow user to override it easily.

Do not depend on Apache unless the web app explicitly needs Apache. Respect that users may wish to run your web
app on different web server than Apache.

6.11.3 PHP

Table 6-18. Variables for ports that use PHP

USE_PHP The port requires PHP. The value yes adds a dependency
on PHP. The list of required PHP extensions can be
specified instead. Example: pcre xml gettext

DEFAULT_PHP_VER Selects which major version of PHP will be installed as a
dependency when no PHP is installed yet. Default is 4.
Possible values: 4, 5

IGNORE_WITH_PHP The port does not work with PHP of the given version.
Possible values: 4, 5

USE_PHPIZE The port will be built as a PHP extension.

USE_PHPEXT The port will be treated as a PHP extension, including
installation and registration in the extension registry.

USE_PHP_BUILD Set PHP as a build dependency.

WANT_PHP_CLI Want the CLI (command line) version of PHP.

WANT_PHP_CGI Want the CGI version of PHP.

63

Chapter 6 Special considerations

WANT_PHP_MOD Want the Apache module version of PHP.

WANT_PHP_SCR Want the CLI or the CGI version of PHP.

WANT_PHP_WEB Want the Apache module or the CGI version of PHP.

6.11.4 PEAR modules

Porting PEAR modules is a very simple process.

Use the variables FILES, TESTS, DATA, SQLS, SCRIPTFILES, DOCS and EXAMPLES to list the files you want to
install. All listed files will be automatically installed into the appropriate locations and added to pkg-plist.

Include ${PORTSDIR}/devel/pear/bsd.pear.mk on the last line of the Makefile.

Example 6-4. Example Makefile for PEAR class

PORTNAME= Date
PORTVERSION= 1.4.3
CATEGORIES= devel www pear

MAINTAINER= example@domain.com
COMMENT= PEAR Date and Time Zone Classes

BUILD_DEPENDS= ${PEARDIR}/PEAR.php:${PORTSDIR}/devel/pear-PEAR
RUN_DEPENDS= ${BUILD_DEPENDS}

FILES= Date.php Date/Calc.php Date/Human.php Date/Span.php \
Date/TimeZone.php

TESTS= test_calc.php test_date_methods_span.php testunit.php \
testunit_date.php testunit_date_span.php wknotest.txt \
bug674.php bug727_1.php bug727_2.php bug727_3.php \
bug727_4.php bug967.php weeksinmonth_4_monday.txt \
weeksinmonth_4_sunday.txt weeksinmonth_rdm_monday.txt \
weeksinmonth_rdm_sunday.txt

DOCS= TODO
_DOCSDIR= .

.include <bsd.port.pre.mk>

.include "${PORTSDIR}/devel/pear/bsd.pear.mk"

.include <bsd.port.post.mk>

6.12 Using Python
The Ports Collection supports parallel installation of multiple Python versions. Ports should make sure to use a
correct python interpreter, according to the user-settable PYTHON_VERSION variable. Most prominently, this means
replacing the path to python executable in scripts with the value of PYTHON_CMD variable.

64

Chapter 6 Special considerations

Ports that install files under PYTHON_SITELIBDIR should use the pyXY- package name prefix, so their package
name embeds the version of Python they are installed into.

PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}

Table 6-19. Most useful variables for ports that use Python

USE_PYTHON The port needs Python. Minimal required version can be
specified with values such as 2.3+. Version ranges can
also be specified, by separating two version numbers with
a dash, e.g.: 2.1-2.3

USE_PYDISTUTILS Use Python distutils for configuring, compiling and
installing. This is required when the port comes with
setup.py. This overrides the do-build and
do-install targets and may also override
do-configure if GNU_CONFIGURE is not defined.

PYTHON_PKGNAMEPREFIX Used as a PKGNAMEPREFIX to distinguish packages for
different Python versions. Example: py24-

PYTHON_SITELIBDIR Location of the site-packages tree, that contains
installation path of Python (usually LOCALBASE). The
PYTHON_SITELIBDIR variable can be very useful when
installing Python modules.

PYTHONPREFIX_SITELIBDIR The PREFIX-clean variant of PYTHON_SITELIBDIR.
Always use %%PYTHON_SITELIBDIR%% in pkg-plist

when possible. The default value of
%%PYTHON_SITELIBDIR%% is
lib/python%%PYTHON_VERSION%%/site-packages

PYTHON_CMD Python interpreter command line, including version
number.

PYNUMERIC Dependency line for numeric extension.

PYNUMPY Dependency line for the new numeric extension, numpy.
(PYNUMERIC is deprecated by upstream vendor).

PYXML Dependency line for XML extension (not needed for
Python 2.0 and higher as it is also in base distribution).

USE_TWISTED Add dependency on twistedCore. The list of required
components can be specified as a value of this variable.
Example: web lore pair flow

USE_ZOPE Add dependency on Zope, a web application platform.
Change Python dependency to Python 2.3. Set
ZOPEBASEDIR containing a directory with Zope
installation.

A complete list of available variables can be found in /usr/ports/Mk/bsd.python.mk.

65

Chapter 6 Special considerations

6.13 Using Tcl/Tk
The Ports Collection supports parallel installation of multiple Tcl/Tk versions. Ports should try to support at least the
default Tcl/Tk version and higher with the USE_TCL and USE_TK variables. It is possible to specify the desired
version of tcl with the WITH_TCL_VER variable.

Table 6-20. The most useful variables for ports that use Tcl/Tk

USE_TCL The port depends on the Tcl library (not the shell).
Minimal required version can be specified with values
such as 84+. Individual unsupported versions can be
specified with the INVALID_TCL_VER variable.

USE_TCL_BUILD The port needs Tcl only during the build time.

USE_TCL_WRAPPER Ports that require the Tcl shell and do not require a
specific tclsh version should use this new variable. The
tclsh wrapper is installed on the system. The user can
specify the desired tcl shell to use.

WITH_TCL_VER User-defined variable that sets the desired Tcl version.

UNIQUENAME_WITH_TCL_VER Like WITH_TCL_VER, but per-port.

USE_TCL_THREADS Require a threaded build of Tcl/Tk.

USE_TK The port depends on the Tk library (not the wish shell).
Implies USE_TCL with the same value. For more
information see the description of USE_TCL variable.

USE_TK_BUILD Analog to the USE_TCL_BUILD variable.

USE_TK_WRAPPER Analog to the USE_TCL_WRAPPER variable.

WITH_TK_VER Analog to the WITH_TCL_VER variable and implies
WITH_TCL_VER of the same value.

A complete list of available variables can be found in /usr/ports/Mk/bsd.tcl.mk.

6.14 Using Emacs
This section is yet to be written.

6.15 Using Ruby

Table 6-21. Useful variables for ports that use Ruby

Variable Description
USE_RUBY The port requires Ruby.

USE_RUBY_EXTCONF The port uses extconf.rb to configure.

USE_RUBY_SETUP The port uses setup.rb to configure.

66

Chapter 6 Special considerations

Variable Description
RUBY_SETUP Set to the alternative name of setup.rb. Common value

is install.rb.

The following table shows the selected variables available to port authors via the ports infrastructure. These variables
should be used to install files into their proper locations. Use them in pkg-plist as much as possible. These
variables should not be redefined in the port.

Table 6-22. Selected read-only variables for ports that use Ruby

Variable Description Example value
RUBY_PKGNAMEPREFIX Used as a PKGNAMEPREFIX to

distinguish packages for different
Ruby versions.

ruby18-

RUBY_VERSION Full version of Ruby in the form of
x.y.z.

1.8.2

RUBY_SITELIBDIR Architecture independent libraries
installation path.

/usr/local/lib/ruby/site_ruby/1.8

RUBY_SITEARCHLIBDIR Architecture dependent libraries
installation path.

/usr/local/lib/ruby/site_ruby/1.8/amd64-freebsd6

RUBY_MODDOCDIR Module documentation installation
path.

/usr/local/share/doc/ruby18/patsy

RUBY_MODEXAMPLESDIR Module examples installation path. /usr/local/share/examples/ruby18/patsy

A complete list of available variables can be found in /usr/ports/Mk/bsd.ruby.mk.

6.16 Using SDL
The USE_SDL variable is used to autoconfigure the dependencies for ports which use an SDL based library like
devel/sdl12 and x11-toolkits/sdl_gui.

The following SDL libraries are recognized at the moment:

• sdl: devel/sdl12

• gfx: graphics/sdl_gfx

• gui: x11-toolkits/sdl_gui

• image: graphics/sdl_image

• ldbad: devel/sdl_ldbad

• mixer: audio/sdl_mixer

• mm: devel/sdlmm

• net: net/sdl_net

• sound: audio/sdl_sound

67

Chapter 6 Special considerations

• ttf: graphics/sdl_ttf

Therefore, if a port has a dependency on net/sdl_net and audio/sdl_mixer, the syntax will be:

USE_SDL= net mixer

The dependency devel/sdl12, which is required by net/sdl_net and audio/sdl_mixer, is automatically
added as well.

If you use USE_SDL, it will automatically:

• Add a dependency on sdl12-config to BUILD_DEPENDS

• Add the variable SDL_CONFIG to CONFIGURE_ENV

• Add the dependencies of the selected libraries to the LIB_DEPENDS

To check whether an SDL library is available, you can do it with the WANT_SDL variable:

WANT_SDL=yes

.include <bsd.port.pre.mk>

.if ${HAVE_SDL:Mmixer}!=""
USE_SDL+= mixer
.endif

.include <bsd.port.post.mk>

6.17 Using wxWidgets
This section describes the status of the wxWidgets libraries in the ports tree and its integration with the ports system.

6.17.1 Introduction

There are many versions of the wxWidgets libraries which conflict between them (install files under the same name).
In the ports tree this problem has been solved by installing each version under a different name using version number
suffixes.

The obvious disadvantage of this is that each application has to be modified to find the expected version. Fortunately,
most of the applications call the wx-config script to determine the necessary compiler and linker flags. The script is
named differently for every available version. Majority of applications respect an environment variable, or accept a
configure argument, to specify which wx-config script to call. Otherwise they have to be patched.

6.17.2 Version selection

To make your port use a specific version of wxWidgets there are two variables available for defining (if only one is
defined the other will be set to a default value):

Table 6-23. Variables to select wxWidgets versions

68

Chapter 6 Special considerations

Variable Description Default value
USE_WX List of versions the port can use All available versions

USE_WX_NOT List of versions the port can not use None

The following is a list of available wxWidgets versions and the corresponding ports in the tree:

Table 6-24. Available wxWidgets versions

Version Port
2.4 x11-toolkits/wxgtk24

2.6 x11-toolkits/wxgtk26

2.8 x11-toolkits/wxgtk28

Note: The versions starting from 2.5 also come in Unicode version and are installed by a slave port named like
the normal one plus a -unicode suffix, but this can be handled with variables (see Section 6.17.4).

The variables in Table 6-23 can be set to one or more of the following combinations separated by spaces:

Table 6-25. wxWidgets version specifications

Description Example
Single version 2.4

Ascending range 2.4+

Descending range 2.6-

Full range (must be ascending) 2.4-2.6

There are also some variables to select the preferred versions from the available ones. They can be set to a list of
versions, the first ones will have higher priority.

Table 6-26. Variables to select preferred wxWidgets versions

Name Designed for
WANT_WX_VER the port

WITH_WX_VER the user

6.17.3 Component selection

There are other applications that, while not being wxWidgets libraries, are related to them. These applications can be
specified in the WX_COMPS variable. The following components are available:

Table 6-27. Available wxWidgets components

Name Description Version restriction

69

Chapter 6 Special considerations

Name Description Version restriction
wx main library none

contrib contributed libraries none

python wxPython (Python bindings) 2.4-2.6

mozilla wxMozilla 2.4

svg wxSVG 2.6

The dependency type can be selected for each component by adding a suffix separated by a semicolon. If not present
then a default type will be used (see Table 6-29). The following types are available:

Table 6-28. Available wxWidgets dependency types

Name Description
build Component is required for building, equivalent to

BUILD_DEPENDS

run Component is required for running, equivalent to
RUN_DEPENDS

lib Component is required for building and running,
equivalent to LIB_DEPENDS

The default values for the components are detailed in the following table:

Table 6-29. Default wxWidgets dependency types

Component Dependency type
wx lib

contrib lib

python run

mozilla lib

svg lib

Example 6-5. Selecting wxWidgets components

The following fragment corresponds to a port which uses wxWidgets version 2.4 and its contributed libraries.

USE_WX= 2.4
WX_COMPS= wx contrib

6.17.4 Unicode

The wxWidgets library supports Unicode since version 2.5. In the ports tree both versions are available and can be
selected with the following variables:

Table 6-30. Variables to select Unicode in wxWidgets versions

70

Chapter 6 Special considerations

Variable Description Designed for
WX_UNICODE The port works only with the Unicode

version
the port

WANT_UNICODE The port works with both versions but
prefers the Unicode one

the port

WITH_UNICODE The port will use the Unicode version the user

WITHOUT_UNICODE The port will use the normal version if
supported (when WX_UNICODE is not
defined)

the user

Warning: Do not use WX_UNICODE for ports that can use both Unicode and normal versions. If you want the port
to use Unicode by default define WANT_UNICODE instead.

6.17.5 Detecting installed versions

To detect an installed version you have to define WANT_WX. If you do not set it to a specific version then the
components will have a version suffix. The HAVE_WX variable will be filled after detection.

Example 6-6. Detecting installed wxWidgets versions and components

The following fragment can be used in a port that uses wxWidgets if it is installed, or an option is selected.

WANT_WX= yes

.include <bsd.port.pre.mk>

.if defined(WITH_WX) || ${HAVE_WX:Mwx-2.4} != ""
USE_WX= 2.4
CONFIGURE_ARGS+=--enable-wx
.endif

The following fragment can be used in a port that enables wxPython support if it is installed or if an option is
selected, in addition to wxWidgets, both version 2.6.

USE_WX= 2.6
WX_COMPS= wx
WANT_WX= 2.6

.include <bsd.port.pre.mk>

.if defined(WITH_WXPYTHON) || ${HAVE_WX:Mpython} != ""
WX_COMPS+= python
CONFIGURE_ARGS+=--enable-wxpython
.endif

71

Chapter 6 Special considerations

6.17.6 Defined variables

The following variables are available in the port (after defining one from Table 6-23).

Table 6-31. Variables defined for ports that use wxWidgets

Name Description
WX_CONFIG The path to the wxWidgets wx-config script (with

different name)

WXRC_CMD The path to the wxWidgets wxrc program (with different
name)

WX_VERSION The wxWidgets version that is going to be used (e.g.,
2.6)

WX_UNICODE If not defined but Unicode is going to be used then it will
be defined

6.17.7 Processing in bsd.port.pre.mk

If you need to use the variables for running commands right after including bsd.port.pre.mk you need to define
WX_PREMK.

Important: If you define WX_PREMK, then the version, dependencies, components and defined variables will not
change if you modify the wxWidgets port variables after including bsd.port.pre.mk.

Example 6-7. Using wxWidgets variables in commands

The following fragment illustrates the use of WX_PREMK by running the wx-config script to obtain the full version
string, assign it to a variable and pass it to the program.

USE_WX= 2.4
WX_PREMK= yes

.include <bsd.port.pre.mk>

.if exists(${WX_CONFIG})
VER_STR!= ${WX_CONFIG} --release

PLIST_SUB+= VERSION="${VER_STR}"
.endif

Note: The wxWidgets variables can be safely used in commands when they are inside targets without the need
of WX_PREMK.

72

Chapter 6 Special considerations

6.17.8 Additional configure arguments

Some GNU configure scripts can not find wxWidgets with just the WX_CONFIG environment variable set,
requiring additional arguments. The WX_CONF_ARGS variable can be used for provide them.

Table 6-32. Legal values for WX_CONF_ARGS

Possible value Resulting argument
absolute --with-wx-config=${WX_CONFIG}

relative --with-wx=${LOCALBASE}

--with-wx-config=${WX_CONFIG:T}

6.18 Using Lua
This section describes the status of the Lua libraries in the ports tree and its integration with the ports system.

6.18.1 Introduction

There are many versions of the Lua libraries and corresponding interpreters, which conflict between them (install
files under the same name). In the ports tree this problem has been solved by installing each version under a different
name using version number suffixes.

The obvious disadvantage of this is that each application has to be modified to find the expected version. But it can
be solved by adding some additional flags to the compiler and linker.

6.18.2 Version selection

To make your port use a specific version of Lua there are two variables available for defining (if only one is defined
the other will be set to a default value):

Table 6-33. Variables to select Lua versions

Variable Description Default value
USE_LUA List of versions the port can use All available versions

USE_LUA_NOT List of versions the port can not use None

The following is a list of available Lua versions and the corresponding ports in the tree:

Table 6-34. Available Lua versions

Version Port
4.0 lang/lua4

5.0 lang/lua50

5.1 lang/lua

73

Chapter 6 Special considerations

The variables in Table 6-33 can be set to one or more of the following combinations separated by spaces:

Table 6-35. Lua version specifications

Description Example
Single version 4.0

Ascending range 5.0+

Descending range 5.0-

Full range (must be ascending) 5.0-5.1

There are also some variables to select the preferred versions from the available ones. They can be set to a list of
versions, the first ones will have higher priority.

Table 6-36. Variables to select preferred Lua versions

Name Designed for
WANT_LUA_VER the port

WITH_LUA_VER the user

Example 6-8. Selecting the Lua version

The following fragment is from a port which can use Lua version 5.0 or 5.1, and uses 5.0 by default. It can be
overriden by the user using WITH_LUA_VER.

USE_LUA= 5.0-5.1
WANT_LUA_VER= 5.0

6.18.3 Component selection

There are other applications that, while not being Lua libraries, are related to them. These applications can be
specified in the LUA_COMPS variable. The following components are available:

Table 6-37. Available Lua components

Name Description Version restriction
lua main library none

tolua Library for accesing C/C++ code 4.0-5.0

ruby Ruby bindings 4.0-5.0

Note: There are more components but they are modules for the interpreter, not used by applications (only by
other modules).

The dependency type can be selected for each component by adding a suffix separated by a semicolon. If not present
then a default type will be used (see Table 6-39). The following types are available:

74

Chapter 6 Special considerations

Table 6-38. Available Lua dependency types

Name Description
build Component is required for building, equivalent to

BUILD_DEPENDS

run Component is required for running, equivalent to
RUN_DEPENDS

lib Component is required for building and running,
equivalent to LIB_DEPENDS

The default values for the components are detailed in the following table:

Table 6-39. Default Lua dependency types

Component Dependency type
lua lib for 4.0-5.0 (shared) and build for 5.1 (static)

tolua build (static)

ruby lib (shared)

Example 6-9. Selecting Lua components

The following fragment corresponds to a port which uses Lua version 4.0 and its Ruby bindings.

USE_LUA= 4.0
LUA_COMPS= lua ruby

6.18.4 Detecting installed versions

To detect an installed version you have to define WANT_LUA. If you do not set it to a specific version then the
components will have a version suffix. The HAVE_LUA variable will be filled after detection.

Example 6-10. Detecting installed Lua versions and components

The following fragment can be used in a port that uses Lua if it is installed, or an option is selected.

WANT_LUA= yes

.include <bsd.port.pre.mk>

.if defined(WITH_LUA5) || ${HAVE_LUA:Mlua-5.[01]} != ""
USE_LUA= 5.0-5.1
CONFIGURE_ARGS+=--enable-lua5
.endif

The following fragment can be used in a port that enables tolua support if it is installed or if an option is selected, in
addition to Lua, both version 4.0.

USE_LUA= 4.0
LUA_COMPS= lua
WANT_LUA= 4.0

75

Chapter 6 Special considerations

.include <bsd.port.pre.mk>

.if defined(WITH_TOLUA) || ${HAVE_LUA:Mtolua} != ""
LUA_COMPS+= tolua
CONFIGURE_ARGS+=--enable-tolua
.endif

6.18.5 Defined variables

The following variables are available in the port (after defining one from Table 6-33).

Table 6-40. Variables defined for ports that use Lua

Name Description
LUA_VER The Lua version that is going to be used (e.g., 5.1)

LUA_VER_SH The Lua shared library major version (e.g., 1)

LUA_VER_STR The Lua version without the dots (e.g., 51)

LUA_PREFIX The prefix where Lua (and components) is installed

LUA_SUBDIR The directory under ${PREFIX}/bin,
${PREFIX}/share and ${PREFIX}/lib where Lua is
installed

LUA_INCDIR The directory where Lua and tolua header files are
installed

LUA_LIBDIR The directory where Lua and tolua libraries are installed

LUA_MODLIBDIR The directory where Lua module libraries (.so) are
installed

LUA_MODSHAREDIR The directory where Lua modules (.lua) are installed

LUA_PKGNAMEPREFIX The package name prefix used by Lua modules

LUA_CMD The path to the Lua interpreter

LUAC_CMD The path to the Lua compiler

TOLUA_CMD The path to the tolua program

Example 6-11. Telling the port where to find Lua

The following fragment shows how to tell a port that uses a configure script where the Lua header files and libraries
are.

USE_LUA= 4.0
GNU_CONFIGURE= yes
CONFIGURE_ENV= CPPFLAGS="-I${LUA_INCDIR}" LDFLAGS="-L${LUA_LIBDIR}"

6.18.6 Processing in bsd.port.pre.mk

If you need to use the variables for running commands right after including bsd.port.pre.mk you need to define

76

Chapter 6 Special considerations

LUA_PREMK.

Important: If you define LUA_PREMK, then the version, dependencies, components and defined variables will not
change if you modify the Lua port variables after including bsd.port.pre.mk.

Example 6-12. Using Lua variables in commands

The following fragment illustrates the use of LUA_PREMK by running the Lua interpreter to obtain the full version
string, assign it to a variable and pass it to the program.

USE_LUA= 5.0
LUA_PREMK= yes

.include <bsd.port.pre.mk>

.if exists(${LUA_CMD})
VER_STR!= ${LUA_CMD} -v

CFLAGS+= -DLUA_VERSION_STRING="${VER_STR}"
.endif

Note: The Lua variables can be safely used in commands when they are inside targets without the need of
LUA_PREMK.

6.19 Using Xfce
The USE_XFCE variable is used to autoconfigure the dependencies for ports which use an Xfce based library or
application like x11-toolkits/libxfce4gui and x11-wm/xfce4-panel.

The following Xfce libraries and applications are recognized at the moment:

• libexo: x11/libexo

• libgui: x11-toolkits/libxfce4gui

• libutil: x11/libxfce4util

• libmcs: x11/libxfce4mcs

• mcsmanager: sysutils/xfce4-mcs-manager

• panel: x11-wm/xfce4-panel

• thunar: x11-fm/thunar

• wm: x11-wm/xfce4-wm

• xfdev: dev/xfce4-dev-tools

The following additional parameters are recognized:

77

Chapter 6 Special considerations

• configenv: Use this if your port requires a special modified CONFIGURE_ENV to find it’s required libraries.

-I${LOCALBASE}/include -L${LOCALBASE}/lib

gets added to CPPFLAGS to CONFIGURE_ENV.

Therefore, if a port has a dependency on sysutils/xfce4-mcs-manager and requires the special CPPFLAGS in
its configure environment, the syntax will be:

USE_XFCE= mcsmanager configenv

6.20 Using databases

Table 6-41. Variables for ports using databases

Variable Means
USE_BDB If variable is set to yes, add dependency on

databases/db41 port. The variable may also be set to
values: 2, 3, 40, 41, 42, 43, 44, 45, 46, or 47. You can
declare a range of acceptable values, USE_BDB=42+ will
find the highest installed version, and fall back to 42 if
nothing else is installed.

USE_MYSQL If variable is set to yes, add dependency on
databases/mysql50-server port. An associated
variable, WANT_MYSQL_VER, may be set to values such as
323, 40, 41, 50, 51 or 60.

USE_PGSQL If set to yes, add dependency on
databases/postgresql82 port. An associated
variable, WANT_PGSQL_VER, may be set to values such as
73, 74, 80, 81, 82, or 83.

6.21 Starting and stopping services (rc scripts)
rc.d scripts are used to start services on system startup, and to give administrators a standard way of stopping,
starting and restarting the service. Ports integrate into the system rc.d framework. Details on its usage can be found
in the rc.d Handbook chapter
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/configtuning-rcd.html). Detailed explanation of
available commands is provided in rc(8) and rc.subr(8). Finally, there is an article
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/rc-scripting) on practical aspects of rc.d scripting.

One or more rc scripts can be installed:

USE_RC_SUBR= doormand

Scripts must be placed in the files subdirectory and a .in suffix must be added to their filename. The only
difference from a base system rc.d script is that the . /etc/rc.subr line must be replaced with the
. %%RC_SUBR%%, because older versions of FreeBSD do not have an /etc/rc.subr file. Standard SUB_LIST

78

Chapter 6 Special considerations

expansions are used too. Use of the %%PREFIX%% and %%LOCALBASE%% expansions is strongly encouraged as well.
More on SUB_LIST in the relevant section.

Prior to FreeBSD 6.1-RELEASE, integration with rcorder(8) is available by using USE_RCORDER instead of
USE_RC_SUBR. However, use of this method is deprecated.

As of FreeBSD 6.1-RELEASE, local rc.d scripts (including those installed by ports) are included in the overall
rcorder(8) of the base system.

Example simple rc.d script:

#!/bin/sh

PROVIDE: doormand
REQUIRE: LOGIN
#
Add the following lines to /etc/rc.conf.local or /etc/rc.conf
to enable this service:
#
doormand_enable (bool): Set to NO by default.
Set it to YES to enable doormand.
doormand_config (path): Set to %%PREFIX%%/etc/doormand/doormand.cf
by default.
#

. %%RC_SUBR%%

name="doormand"
rcvar=${name}_enable

command=%%PREFIX%%/sbin/${name}
pidfile=/var/run/${name}.pid

load_rc_config $name

: ${doormand_enable="NO"}
: ${doormand_config="%%PREFIX%%/etc/doormand/doormand.cf"}

command_args="-p $pidfile -f $doormand_config"

run_rc_command "$1"

The "=" style of default variable assignment is preferable to the ":=" style here, since the former sets a default value
only if the variable is unset, and the latter sets one if the variable is unset or null. A user might very well include
something like

doormand_flags=""

in their rc.conf.local file, and a variable substitution using ":=" would inappropriately override the user’s
intention.

The suffix of the rc script is provided in RC_SUBR_SUFFIX for further use in the port’s Makefile. Current versions
of FreeBSD do not add any suffix to the script name, but older versions used to add .sh suffix.

79

Chapter 6 Special considerations

Note: No new scripts should be added with the .sh suffix. At some point there will be a mass repocopy of all the
scripts that still have that suffix.

6.21.1 Stopping services at deinstall

It is possible to have a service stopped automatically as part of the deinstall routine. We advise using this feature only
when it’s absolutely necessary to stop a service before it’s files go away. Usually, it’s up to the administrator’s
discretion to decide, whether to stop the service on deinstall or not. Also note this affects upgrades, too.

Line like this goes to the pkg-plist:

@stopdaemon doormand

The argument must match the content of USE_RC_SUBR variable.

80

Chapter 7 Advanced pkg-plist practices

7.1 Changing pkg-plist based on make variables
Some ports, particularly the p5- ports, need to change their pkg-plist depending on what options they are
configured with (or version of perl, in the case of p5- ports). To make this easy, any instances in the pkg-plist of
%%OSREL%%, %%PERL_VER%%, and %%PERL_VERSION%% will be substituted for appropriately. The value of
%%OSREL%% is the numeric revision of the operating system (e.g., 4.9). %%PERL_VERSION%% and %%PERL_VER%% is
the full version number of perl (e.g., 5.8.9). Several other %%VARS%% related to port’s documentation files are
described in the relevant section.

If you need to make other substitutions, you can set the PLIST_SUB variable with a list of VAR=VALUE pairs and
instances of %%VAR%% will be substituted with VALUE in the pkg-plist.

For instance, if you have a port that installs many files in a version-specific subdirectory, you can put something like

OCTAVE_VERSION= 2.0.13
PLIST_SUB= OCTAVE_VERSION=${OCTAVE_VERSION}

in the Makefile and use %%OCTAVE_VERSION%% wherever the version shows up in pkg-plist. That way, when
you upgrade the port, you will not have to change dozens (or in some cases, hundreds) of lines in the pkg-plist.

This substitution (as well as addition of any manual pages) will be done between the pre-install and
do-install targets, by reading from PLIST and writing to TMPPLIST (default: WRKDIR/.PLIST.mktmp). So if your
port builds PLIST on the fly, do so in or before pre-install. Also, if your port needs to edit the resulting file, do so
in post-install to a file named TMPPLIST.

Another possibility to modify port’s packing list is based on setting the variables PLIST_FILES and PLIST_DIRS.
The value of each variable is regarded as a list of pathnames to write to TMPPLIST along with PLIST contents. Names
listed in PLIST_FILES and PLIST_DIRS are subject to %%VAR%% substitution, as described above. Except for that,
names from PLIST_FILES will appear in the final packing list unchanged, while @dirrm will be prepended to
names from PLIST_DIRS. To take effect, PLIST_FILES and PLIST_DIRS must be set before TMPPLIST is written,
i.e. in pre-install or earlier.

7.2 Empty directories

7.2.1 Cleaning up empty directories

Do make your ports remove empty directories when they are de-installed. This is usually accomplished by adding
@dirrm lines for all directories that are specifically created by the port. You need to delete subdirectories before you
can delete parent directories.

:
lib/X11/oneko/pixmaps/cat.xpm
lib/X11/oneko/sounds/cat.au
:
@dirrm lib/X11/oneko/pixmaps
@dirrm lib/X11/oneko/sounds
@dirrm lib/X11/oneko

81

Chapter 7 Advanced pkg-plist practices

However, sometimes @dirrm will give you errors because other ports share the same directory. You can use
@dirrmtry to remove only empty directories without warning.

@dirrmtry share/doc/gimp

This will neither print any error messages nor cause pkg_delete(1) to exit abnormally even if
${PREFIX}/share/doc/gimp is not empty due to other ports installing some files in there.

7.2.2 Creating empty directories

Empty directories created during port installation need special attention. They will not get created when installing the
package, because packages only store the files, and pkg_add(1) creates directories for them as needed. To make sure
the empty directory is created when installing the package, add this line to pkg-plist above the corresponding
@dirrm line:

@exec mkdir -p %D/share/foo/templates

7.3 Configuration files
If your port requires some configuration files in PREFIX/etc, do not just install them and list them in pkg-plist.
That will cause pkg_delete(1) to delete files carefully edited by the user and a new installation to wipe them out.

Instead, install sample files with a suffix (filename.sample will work well). Copy the sample file as the real
configuration file, if it does not exist. On deinstall, delete the configuration file, but only if it was not modified by the
user. You need to handle this both in the port Makefile, and in the pkg-plist (for installation from the package).

Example of the Makefile part:

post-install:
@if [! -f ${PREFIX}/etc/orbit.conf]; then \
${CP} -p ${PREFIX}/etc/orbit.conf.sample ${PREFIX}/etc/orbit.conf ; \
fi

Example of the pkg-plist part:

@unexec if cmp -s %D/etc/orbit.conf.sample %D/etc/orbit.conf; then rm -f %D/etc/orbit.conf; fi
etc/orbit.conf.sample
@exec if [! -f %D/etc/orbit.conf] ; then cp -p %D/%F %B/orbit.conf; fi

Alternatively, print out a message pointing out that the user has to copy and edit the file before the software can be
made to work.

7.4 Dynamic vs. static package list
A static package list is a package list which is available in the Ports Collection either as a pkg-plist file (with or
without variable substitution), or embedded into the Makefile via PLIST_FILES and PLIST_DIRS. Even if the
contents are auto-generated by a tool or a target in the Makefile before the inclusion into the Ports Collection by a

82

Chapter 7 Advanced pkg-plist practices

committer, this is still considered a static list, since it is possible to examine it without having to download or
compile the distfile.

A dynamic package list is a package list which is generated at the time the port is compiled based upon the files and
directories which are installed. It is not possible to examine it before the source code of the ported application is
downloaded and compiled, or after running a make clean.

While the use of dynamic package lists is not forbidden, maintainers should use static package lists wherever
possible, as it enables users to grep(1) through available ports to discover, for example, which port installs a certain
file. Dynamic lists should be primarily used for complex ports where the package list changes drastically based upon
optional features of the port (and thus maintaining a static package list is infeasible), or ports which change the
package list based upon the version of dependent software used (e.g. ports which generate docs with Javadoc).

Maintainers who prefer dynamic package lists are encouraged to add a new target to their port which generates the
pkg-plist file so that users may examine the contents.

7.5 Automated package list creation
First, make sure your port is almost complete, with only pkg-plist missing.

Next, create a temporary directory tree into which your port can be installed, and install any dependencies.

mkdir /var/tmp/$(make -V PORTNAME)

mtree -U -f $(make -V MTREE_FILE) -d -e -p /var/tmp/$(make -V PORTNAME)

make depends PREFIX=/var/tmp/$(make -V PORTNAME)

Store the directory structure in a new file.

(cd /var/tmp/$(make -V PORTNAME) && find -d * -type d) | sort > OLD-DIRS

Create an empty pkg-plist file:

:>pkg-plist

If your port honors PREFIX (which it should) you can then install the port and create the package list.

make install PREFIX=/var/tmp/$(make -V PORTNAME)

(cd /var/tmp/$(make -V PORTNAME) && find -d * \! -type d) | sort > pkg-plist

You must also add any newly created directories to the packing list.

(cd /var/tmp/$(make -V PORTNAME) && find -d * -type d) | sort | comm -13 OLD-DIRS - | sort -r | sed -e ’s#^#@dirrm #’ >> pkg-plist

Finally, you need to tidy up the packing list by hand; it is not all automated. Manual pages should be listed in the
port’s Makefile under MANn, and not in the package list. User configuration files should be removed, or installed as
filename.sample. The info/dir file should not be listed and appropriate install-info lines should be added
as noted in the info files section. Any libraries installed by the port should be listed as specified in the shared libraries
section.

Alternatively, use the plist script in /usr/ports/Tools/scripts/ to build the package list automatically. The
plist script is a Ruby script that automates most of the manual steps outlined in the previous paragraphs.

The first step is the same as above: take the first three lines, that is, mkdir, mtree and make depends. Then build
and install the port:

83

Chapter 7 Advanced pkg-plist practices

make install PREFIX=/var/tmp/$(make -V PORTNAME)

And let plist create the pkg-plist file:

/usr/ports/Tools/scripts/plist -Md -m $(make -V MTREE_FILE) /var/tmp/$(make -V PORTNAME) > pkg-plist

The packing list still has to be tidied up by hand as stated above.

Another tool that might be used to create an initial pkg-plist is ports-mgmt/genplist. As with any automated
tool, the resulting pkg-plist should be checked and manually edited as needed.

84

Chapter 8 The pkg-* files
There are some tricks we have not mentioned yet about the pkg-* files that come in handy sometimes.

8.1 pkg-message

If you need to display a message to the installer, you may place the message in pkg-message. This capability is
often useful to display additional installation steps to be taken after a pkg_add(1) or to display licensing information.

When some lines about the build-time knobs or warnings have to be displayed, use ECHO_MSG. The pkg-message
file is only for post-installation steps. Likewise, the distinction between ECHO_MSG and ECHO_CMD should be kept in
mind. The former is for printing informational text to the screen, while the latter is for command pipelining.

A good example for both can be found in shells/bash2/Makefile:

update-etc-shells:
@${ECHO_MSG} "updating /etc/shells"
@${CP} /etc/shells /etc/shells.bak
@(${GREP} -v ${PREFIX}/bin/bash /etc/shells.bak; \
${ECHO_CMD} ${PREFIX}/bin/bash) >/etc/shells
@${RM} /etc/shells.bak

Note: The pkg-message file does not need to be added to pkg-plist. Also, it will not get automatically printed if
the user is using the port, not the package, so you should probably display it from the post-install target
yourself.

8.2 pkg-install

If your port needs to execute commands when the binary package is installed with pkg_add(1) you can do this via the
pkg-install script. This script will automatically be added to the package, and will be run twice by pkg_add(1):
the first time as ${SH} pkg-install ${PKGNAME} PRE-INSTALL and the second time as ${SH} pkg-install

${PKGNAME} POST-INSTALL. $2 can be tested to determine which mode the script is being run in. The
PKG_PREFIX environmental variable will be set to the package installation directory. See pkg_add(1) for additional
information.

Note: This script is not run automatically if you install the port with make install. If you are depending on it
being run, you will have to explicitly call it from your port’s Makefile, with a line like PKG_PREFIX=${PREFIX}

${SH} ${PKGINSTALL} ${PKGNAME} PRE-INSTALL.

8.3 pkg-deinstall

This script executes when a package is removed.

85

Chapter 8 The pkg-* files

This script will be run twice by pkg_delete(1). The first time as ${SH} pkg-deinstall ${PKGNAME}

DEINSTALL and the second time as ${SH} pkg-deinstall ${PKGNAME} POST-DEINSTALL.

8.4 pkg-req

If your port needs to determine if it should install or not, you can create a pkg-req “requirements” script. It will be
invoked automatically at installation/de-installation time to determine whether or not installation/de-installation
should proceed.

The script will be run at installation time by pkg_add(1) as pkg-req ${PKGNAME} INSTALL. At de-installation
time it will be run by pkg_delete(1) as pkg-req ${PKGNAME} DEINSTALL.

8.5 Changing the names of pkg-* files
All the names of pkg-* files are defined using variables so you can change them in your Makefile if need be. This
is especially useful when you are sharing the same pkg-* files among several ports or have to write to one of the
above files (see writing to places other than WRKDIR for why it is a bad idea to write directly into the pkg-*
subdirectory).

Here is a list of variable names and their default values. (PKGDIR defaults to ${MASTERDIR}.)

Variable Default value
DESCR ${PKGDIR}/pkg-descr

PLIST ${PKGDIR}/pkg-plist

PKGINSTALL ${PKGDIR}/pkg-install

PKGDEINSTALL ${PKGDIR}/pkg-deinstall

PKGREQ ${PKGDIR}/pkg-req

PKGMESSAGE ${PKGDIR}/pkg-message

Please change these variables rather than overriding PKG_ARGS. If you change PKG_ARGS, those files will not
correctly be installed in /var/db/pkg upon install from a port.

8.6 Making use of SUB_FILES and SUB_LIST

The SUB_FILES and SUB_LIST variables are useful for dynamic values in port files, such as the installation PREFIX

in pkg-message.

The SUB_FILES variable specifies a list of files to be automatically modified. Each file in the SUB_FILES list must
have a corresponding file.in present in FILESDIR. A modified version will be created in WRKDIR. Files defined as
a value of USE_RC_SUBR (or the deprecated USE_RCORDER) are automatically added to the SUB_FILES. For the files
pkg-message, pkg-install, pkg-deinstall and pkg-reg, the corresponding Makefile variable is
automatically set to point to the processed version.

The SUB_LIST variable is a list of VAR=VALUE pairs. For each pair %%VAR%% will get replaced with VALUE in each
file listed in SUB_FILES. Several common pairs are automatically defined: PREFIX, LOCALBASE, DATADIR,
DOCSDIR, EXAMPLESDIR. Any line beginning with @comment will be deleted from resulting files after a variable

86

Chapter 8 The pkg-* files

substitution.

The following example will replace %%ARCH%% with the system architecture in a pkg-message:

SUB_FILES= pkg-message
SUB_LIST= ARCH=${ARCH}

Note that for this example, the pkg-message.in file must exist in FILESDIR.

Example of a good pkg-message.in:

Now it is time to configure this package.
Copy %%PREFIX%%/share/examples/putsy/%%ARCH%%.conf into your home directory
as .putsy.conf and edit it.

87

Chapter 9 Testing your port

9.1 Running make describe

Several of the FreeBSD port maintenance tools, such as portupgrade(1), rely on a database called
/usr/ports/INDEX which keeps track of such items as port dependencies. INDEX is created by the top-level
ports/Makefile via make index, which descends into each port subdirectory and executes make describe

there. Thus, if make describe fails in any port, no one can generate INDEX, and many people will quickly become
unhappy.

Note: It is important to be able to generate this file no matter what options are present in make.conf, so please
avoid doing things such as using .error statements when (for instance) a dependency is not satisfied. (See
Section 12.17.)

If make describe produces a string rather than an error message, you are probably safe. See bsd.port.mk for the
meaning of the string produced.

Also note that running a recent version of portlint (as specified in the next section) will cause make describe to
be run automatically.

9.2 Portlint
Do check your work with portlint before you submit or commit it. portlint warns you about many common
errors, both functional and stylistic. For a new (or repocopied) port, portlint -A is the most thorough; for an
existing port, portlint -C is sufficient.

Since portlint uses heuristics to try to figure out errors, it can produce false positive warnings. In addition,
occasionally something that is flagged as a problem really cannot be done in any other way due to limitations in the
ports framework. When in doubt, the best thing to do is ask on FreeBSD ports mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports).

9.3 Port Tools
The ports-mgmt/porttools program is part of the Ports Collection.

port is the front-end script, which can help you simplify the testing job. Whenever you want to test a new port or
update an existing one, you can use port test to test your port, including the portlint checking. This command
also detects and lists any files that are not listed in pkg-plist. See the following example:

port test /usr/ports/net/csup

88

Chapter 9 Testing your port

9.4 PREFIX and DESTDIR

PREFIX determines the location where the port will install. It is usually /usr/local, or /opt. User can set PREFIX
to anything he wants. Your port must respect this variable.

DESTDIR, if set by user, determines the complete alternative environment, usually a jail, or an installed system
mounted elsewhere than /. A port will actually install into DESTDIR/PREFIX, and register with the package database
in DESTDIR/var/db/pkg. As DESTDIR is handled automatically by the ports infrastructure via calling chroot(8), you
do not need any modifications or any extra care to write DESTDIR-compliant ports.

The value of PREFIX will be set to LOCALBASE (default /usr/local). If USE_LINUX_PREFIX is set, PREFIX will
be LINUXBASE (default /compat/linux).

Avoiding the hard-coding of /usr/local or /usr/X11R6 anywhere in the source will make the port much more
flexible and able to cater to the needs of other sites. For X ports that use imake, this is automatic; otherwise, this can
often be done by simply replacing the occurrences of /usr/local (or /usr/X11R6 for X ports that do not use
imake) in the various Makefiles in the port to read ${PREFIX}, as this variable is automatically passed down to
every stage of the build and install processes.

Make sure your application is not installing things in /usr/local instead of PREFIX. A quick test for this is to do
this is:

make clean; make package PREFIX=/var/tmp/$(make -V PORTNAME)

If anything is installed outside of PREFIX, the package creation process will complain that it cannot find the files.

This does not test for the existence of internal references, or correct use of LOCALBASE for references to files from
other ports. Testing the installation in /var/tmp/$(make -V PORTNAME) to do that while you have it installed
would do that.

The variable PREFIX can be reassigned in your Makefile or in the user’s environment. However, it is strongly
discouraged for individual ports to set this variable explicitly in the Makefiles.

Also, refer to programs/files from other ports with the variables mentioned above, not explicit pathnames. For
instance, if your port requires a macro PAGER to be the full pathname of less, use the compiler flag:

-DPAGER=\"${LOCALBASE}/bin/less\"

instead of -DPAGER=\"/usr/local/bin/less\". This way it will have a better chance of working if the system
administrator has moved the whole /usr/local tree somewhere else.

9.5 Tinderbox
If you’re an avid ports contributor, you might want to take a look at Tinderbox. It is a powerful system for building
and testing ports based on the scripts used on Pointyhat. You can install Tinderbox using ports-mgmt/tinderbox

port. Be sure to read supplied documentation since the configuration is not trivial.

Visit the Tinderbox website (http://tinderbox.marcuscom.com/) for more details.

89

Chapter 10 Upgrading
When you notice that a port is out of date compared to the latest version from the original authors, you should first
ensure that you have the latest port. You can find them in the ports/ports-current directory of the FreeBSD
FTP mirror sites. However, if you are working with more than a few ports, you will probably find it easier to use
CVSup to keep your whole ports collection up-to-date, as described in the Handbook
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/synching.html#CVSUP-CONFIG). This will
have the added benefit of tracking all the ports’ dependencies.

The next step is to see if there is an update already pending. To do this, you have two options. There is a searchable
interface to the FreeBSD Problem Report (PR) database (http://www.FreeBSD.org/cgi/query-pr-summary.cgi?query)
(also known as GNATS). Select ports in the dropdown, and enter the name of the port.

However, sometimes people forget to put the name of the port into the Synopsis field in an unambiguous fashion. In
that case, you can try the FreeBSD Ports Monitoring System (also known as portsmon). This system attempts to
classify port PRs by portname. To search for PRs about a particular port, use the Overview of One Port
(http://portsmon.FreeBSD.org/portoverview.py).

If there is no pending PR, the next step is to send an email to the port’s maintainer, as shown by make maintainer.
That person may already be working on an upgrade, or have a reason to not upgrade the port right now (because of,
for example, stability problems of the new version); you would not want to duplicate their work. Note that
unmaintained ports are listed with a maintainer of ports@FreeBSD.org, which is just the general ports mailing list,
so sending mail there probably will not help in this case.

If the maintainer asks you to do the upgrade or there is no maintainer, then you have a chance to help out FreeBSD
by preparing the update yourself! Please make the changes and save the result of the recursive diff output of the
new and old ports directories (e.g., if your modified port directory is called superedit and the original is in our tree
as superedit.bak, then save the result of diff -ruN superedit.bak superedit). Either unified or context
diff is fine, but port committers generally prefer unified diffs. Note the use of the -N option—this is the accepted way
to force diff to properly deal with the case of new files being added or old files being deleted. Before sending us the
diff, please examine the output to make sure all the changes make sense. To simplify common operations with patch
files, you can use /usr/ports/Tools/scripts/patchtool.py. Before using it, please read
/usr/ports/Tools/scripts/README.patchtool.

If the port is unmaintained, and you are actively using it yourself, please consider volunteering to become its
maintainer. FreeBSD has over 2000 ports without maintainers, and this is an area where more volunteers are always
needed. (For a detailed description of the responsibilities of maintainers, refer to the section in the Developer’s
Handbook (http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/developers-handbook/policies.html#POLICIES-
MAINTAINER).)

The best way to send us the diff is by including it via send-pr(1) (category ports). If you are maintaining the port,
be sure to put [maintainer update] at the beginning of your synopsis line and set the “Class” of your PR to
maintainer-update. Otherwise, the “Class” of your PR should be change-request. Please mention any added
or deleted files in the message, as they have to be explicitly specified to cvs(1) when doing a commit. If the diff is
more than about 20KB, please compress and uuencode it; otherwise, just include it in the PR as is.

Before you send-pr(1), you should review the Writing the problem report
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/problem-reports/pr-writing.html) section in the Problem
Reports article; it contains far more information about how to write useful problem reports.

90

Chapter 10 Upgrading

Important: If your upgrade is motivated by security concerns or a serious fault in the currently committed port,
please notify the Ports Management Team <portmgr@FreeBSD.org> to request immediate rebuilding and
redistribution of your port’s package. Unsuspecting users of pkg_add(1) will otherwise continue to install the old
version via pkg_add -r for several weeks.

Note: Once again, please use diff(1) and not shar(1) to send updates to existing ports!

Now that you have done all that, you will want to read about how to keep up-to-date in Chapter 14.

91

Chapter 11 Ports security

11.1 Why security is so important
Bugs are occasionally introduced to the software. Arguably, the most dangerous of them are those opening security
vulnerabilities. From the technical viewpoint, such vulnerabilities are to be closed by exterminating the bugs that
caused them. However, the policies for handling mere bugs and security vulnerabilities are very different.

A typical small bug affects only those users who have enabled some combination of options triggering the bug. The
developer will eventually release a patch followed by a new version of the software, free of the bug, but the majority
of users will not take the trouble of upgrading immediately because the bug has never vexed them. A critical bug that
may cause data loss represents a graver issue. Nevertheless, prudent users know that a lot of possible accidents,
besides software bugs, are likely to lead to data loss, and so they make backups of important data; in addition, a
critical bug will be discovered really soon.

A security vulnerability is all different. First, it may remain unnoticed for years because often it does not cause
software malfunction. Second, a malicious party can use it to gain unauthorized access to a vulnerable system, to
destroy or alter sensitive data; and in the worst case the user will not even notice the harm caused. Third, exposing a
vulnerable system often assists attackers to break into other systems that could not be compromised otherwise.
Therefore closing a vulnerability alone is not enough: the audience should be notified of it in most clear and
comprehensive manner, which will allow to evaluate the danger and take appropriate actions.

11.2 Fixing security vulnerabilities
While on the subject of ports and packages, a security vulnerability may initially appear in the original distribution or
in the port files. In the former case, the original software developer is likely to release a patch or a new version
instantly, and you will only need to update the port promptly with respect to the author’s fix. If the fix is delayed for
some reason, you should either mark the port as FORBIDDEN or introduce a patch file of your own to the port. In the
case of a vulnerable port, just fix the port as soon as possible. In either case, the standard procedure for submitting
your change should be followed unless you have rights to commit it directly to the ports tree.

Important: Being a ports committer is not enough to commit to an arbitrary port. Remember that ports usually
have maintainers, whom you should respect.

Please make sure that the port’s revision is bumped as soon as the vulnerability has been closed. That is how the
users who upgrade installed packages on a regular basis will see they need to run an update. Besides, a new package
will be built and distributed over FTP and WWW mirrors, replacing the vulnerable one. PORTREVISION should be
bumped unless PORTVERSION has changed in the course of correcting the vulnerability. That is you should bump
PORTREVISION if you have added a patch file to the port, but you should not if you have updated the port to the
latest software version and thus already touched PORTVERSION. Please refer to the corresponding section for more
information.

92

Chapter 11 Ports security

11.3 Keeping the community informed

11.3.1 The VuXML database

A very important and urgent step to take as early as a security vulnerability is discovered is to notify the community
of port users about the jeopardy. Such notification serves two purposes. First, should the danger be really severe, it
will be wise to apply an instant workaround, e.g., stop the affected network service or even deinstall the port
completely, until the vulnerability is closed. Second, a lot of users tend to upgrade installed packages just
occasionally. They will know from the notification that they must update the package without delay as soon as a
corrected version is available.

Given the huge number of ports in the tree, a security advisory cannot be issued on each incident without creating a
flood and losing the attention of the audience by the time it comes to really serious matters. Therefore security
vulnerabilities found in ports are recorded in the FreeBSD VuXML database (http://vuxml.freebsd.org/). The
Security Officer Team members are monitoring it for issues requiring their intervention.

If you have committer rights, you can update the VuXML database by yourself. So you will both help the Security
Officer Team and deliver the crucial information to the community earlier. However, if you are not a committer, or
you believe you have found an exceptionally severe vulnerability, or whatever, please do not hesitate to contact the
Security Officer Team directly as described on the FreeBSD Security Information
(http://www.freebsd.org/security/#how) page.

All right, you elected the hard way. As it may be obvious from its title, the VuXML database is essentially an XML
document. Its source file vuln.xml is kept right inside the port security/vuxml. Therefore the file’s full
pathname will be PORTSDIR/security/vuxml/vuln.xml. Each time you discover a security vulnerability in a
port, please add an entry for it to that file. Until you are familiar with VuXML, the best thing you can do is to find an
existing entry fitting your case, then copy it and use as a template.

11.3.2 A short introduction to VuXML

The full-blown XML is complex and far beyond the scope of this book. However, to gain basic insight on the
structure of a VuXML entry, you need only the notion of tags. XML tag names are enclosed in angle brackets. Each
opening <tag> must have a matching closing </tag>. Tags may be nested. If nesting, the inner tags must be closed
before the outer ones. There is a hierarchy of tags, i.e. more complex rules of nesting them. Sounds very similar to
HTML, doesn’t it? The major difference is that XML is eXtensible, i.e. based on defining custom tags. Due to its
intrinsic structure, XML puts otherwise amorphous data into shape. VuXML is particularly tailored to mark up
descriptions of security vulnerabilities.

Now let’s consider a realistic VuXML entry:

<vuln vid="f4bc80f4-da62-11d8-90ea-0004ac98a7b9"> Ê

<topic>Several vulnerabilities found in Foo</topic> Ë

<affects>

<package>

<name>foo</name> Ì

<name>foo-devel</name>

<name>ja-foo</name>

<range><ge>1.6</ge><lt>1.9</lt></range> Í

<range><ge>2.*</ge><lt>2.4_1</lt></range>

<range><eq>3.0b1</eq></range>

</package>

93

Chapter 11 Ports security

<package>

<name>openfoo</name> Î

<range><lt>1.10_7</lt></range> Ï

<range><ge>1.2,1</ge><lt>1.3_1,1</lt></range>

</package>

</affects>

<description>

<body xmlns="http://www.w3.org/1999/xhtml">

<p>J. Random Hacker reports:</p> Ð

<blockquote
cite="http://j.r.hacker.com/advisories/1">

<p>Several issues in the Foo software may be exploited
via carefully crafted QUUX requests. These requests will
permit the injection of Bar code, mumble theft, and the
readability of the Foo administrator account.</p>

</blockquote>

</body>

</description>

<references> Ñ

<freebsdsa>SA-10:75.foo</freebsdsa> Ò

<freebsdpr>ports/987654</freebsdpr> (10)
<cvename>CAN-2010-0201</cvename> (11)
<cvename>CAN-2010-0466</cvename>

<bid>96298</bid> (12)
<certsa>CA-2010-99</certsa> (13)
<certvu>740169</certvu> (14)
<uscertsa>SA10-99A</uscertsa> (15)
<uscertta>SA10-99A</uscertta> (16)
<mlist msgid="201075606@hacker.com">http://marc.theaimsgroup.com/?l=bugtraq&m=203886607825605</mlist> (17)
<url>http://j.r.hacker.com/advisories/1</url> (18)

</references>

<dates>

<discovery>2010-05-25</discovery> (19)
<entry>2010-07-13</entry> (20)
<modified>2010-09-17</entry> (21)

</dates>

</vuln>

The tag names are supposed to be self-descriptive, so we shall take a closer look only at fields you will need to fill in
by yourself:

Ê This is the top-level tag of a VuXML entry. It has a mandatory attribute, vid, specifying a universally unique
identifier (UUID) for this entry (in quotes). You should generate a UUID for each new VuXML entry (and do
not forget to substitute it for the template UUID unless you are writing the entry from scratch). You can use
uuidgen(1) to generate a VuXML UUID; alternatively, if you are using FreeBSD 4.x, you may install the port
devel/p5-Data-UUID and issue the following command:

perl -MData::UUID -le ’print lc new Data::UUID->create_str’

Ë This is a one-line description of the issue found.

Ì The names of packages affected are listed there. Multiple names can be given since several packages may be
based on a single master port or software product. This may include stable and development branches, localized
versions, and slave ports featuring different choices of important build-time configuration options.

94

Chapter 11 Ports security

Important: It is your responsibility to find all such related packages when writing a VuXML entry. Keep in
mind that make search name=foo is your friend. The primary points to look for are as follows:

• the foo-devel variant for a foo port;

• other variants with a suffix like -a4 (for print-related packages), -without-gui (for packages with X
support disabled), or similar;

• jp-, ru-, zh-, and other possible localized variants in the corresponding national categories of the ports
collection.

Í Affected versions of the package(s) are specified there as one or more ranges using a combination of <lt>,
<le>, <eq>, <ge>, and <gt> elements. The version ranges given should not overlap.

In a range specification, * (asterisk) denotes the smallest version number. In particular, 2.* is less than 2.a.
Therefore an asterisk may be used for a range to match all possible alpha, beta, and RC versions. For instance,
<ge>2.*</ge><lt>3.*</lt> will selectively match every 2.x version while
<ge>2.0</ge><lt>3.0</lt> will obviously not since the latter misses 2.r3 and matches 3.b.

The above example specifies that affected are versions from 1.6 to 1.9 inclusive, versions 2.x before 2.4_1,
and version 3.0b1.

Î Several related package groups (essentially, ports) can be listed in the <affected> section. This can be used if
several software products (say FooBar, FreeBar and OpenBar) grow from the same code base and still share its
bugs and vulnerabilities. Note the difference from listing multiple names within a single <package> section.

Ï The version ranges should allow for PORTEPOCH and PORTREVISION if applicable. Please remember that
according to the collation rules, a version with a non-zero PORTEPOCH is greater than any version without
PORTEPOCH, e.g., 3.0,1 is greater than 3.1 or even than 8.9.

Ð This is a summary of the issue. XHTML is used in this field. At least enclosing <p> and </p> should appear.
More complex mark-up may be used, but only for the sake of accuracy and clarity: No eye candy please.

Ñ This section contains references to relevant documents. As many references as apply are encouraged.

Ò This is a FreeBSD security advisory (http://www.freebsd.org/security/#adv).

(10) This is a FreeBSD problem report (http://www.freebsd.org/support.html#gnats).

(11) This is a Mitre CVE (http://www.cve.mitre.org/) identifier.

(12) This is a SecurityFocus Bug ID (http://www.securityfocus.com/bid).

(13) This is a US-CERT (http://www.cert.org/) security advisory.

(14) This is a US-CERT (http://www.cert.org/) vulnerability note.

(15) This is a US-CERT (http://www.cert.org/) Cyber Security Alert.

(16) This is a US-CERT (http://www.cert.org/) Technical Cyber Security Alert.

(17) This is a URL to an archived posting in a mailing list. The attribute msgid is optional and may specify the
message ID of the posting.

(18) This is a generic URL. It should be used only if none of the other reference categories apply.

(19) This is the date when the issue was disclosed (YYYY-MM-DD).

(20) This is the date when the entry was added (YYYY-MM-DD).

95

Chapter 11 Ports security

(21) This is the date when any information in the entry was last modified (YYYY-MM-DD). New entries must not
include this field. It should be added upon editing an existing entry.

11.3.3 Testing your changes to the VuXML database

Assume you just wrote or filled in an entry for a vulnerability in the package clamav that has been fixed in version
0.65_7.

As a prerequisite, you need to install fresh versions of the ports ports-mgmt/portaudit and
ports-mgmt/portaudit-db.

First, check whether there already is an entry for this vulnerability. If there were such entry, it would match the
previous version of the package, 0.65_6:

% packaudit

% portaudit clamav-0.65_6

Note: To run packaudit, you must have permission to write to its DATABASEDIR, typically /var/db/portaudit.

If there is none found, you get the green light to add a new entry for this vulnerability. Now you can generate a
brand-new UUID (assume it’s 74a9541d-5d6c-11d8-80e3-0020ed76ef5a) and add your new entry to the
VuXML database. Please verify its syntax after that as follows:

% cd ${PORTSDIR}/security/vuxml && make validate

Note: You will need at least one of the following packages installed: textproc/libxml2, textproc/jade.

Now rebuild the portaudit database from the VuXML file:

% packaudit

To verify that the <affected> section of your entry will match correct package(s), issue the following command:

% portaudit -f /usr/ports/INDEX -r 74a9541d-5d6c-11d8-80e3-0020ed76ef5a

Note: Please refer to portaudit(1) for better understanding of the command syntax.

Make sure that your entry produces no spurious matches in the output.

Now check whether the right package versions are matched by your entry:

% portaudit clamav-0.65_6 clamav-0.65_7

Affected package: clamav-0.65_6 (matched by clamav<0.65_7)
Type of problem: clamav remote denial-of-service.
Reference: <http://www.freebsd.org/ports/portaudit/74a9541d-5d6c-11d8-80e3-0020ed76ef5a.html>

1 problem(s) found.

96

Chapter 11 Ports security

Obviously, the former version should match while the latter one should not.

Finally, verify whether the web page generated from the VuXML database looks like expected:

% mkdir -p ~/public_html/portaudit

% packaudit

% lynx ~/public_html/portaudit/74a9541d-5d6c-11d8-80e3-0020ed76ef5a.html

97

Chapter 12 Dos and Don’ts

12.1 Introduction
Here is a list of common dos and don’ts that you encounter during the porting process. You should check your own
port against this list, but you can also check ports in the PR database
(http://www.FreeBSD.org/cgi/query-pr-summary.cgi?query) that others have submitted. Submit any comments on
ports you check as described in Bug Reports and General Commentary
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/contributing/contrib-how.html#CONTRIB-GENERAL).
Checking ports in the PR database will both make it faster for us to commit them, and prove that you know what you
are doing.

12.2 WRKDIR

Do not write anything to files outside WRKDIR. WRKDIR is the only place that is guaranteed to be writable during the
port build (see installing ports from a CDROM
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/ports-using.html#PORTS-CD) for an example of
building ports from a read-only tree). If you need to modify one of the pkg-* files, do so by redefining a variable, not
by writing over it.

12.3 WRKDIRPREFIX

Make sure your port honors WRKDIRPREFIX. Most ports do not have to worry about this. In particular, if you are
referring to a WRKDIR of another port, note that the correct location is WRKDIRPREFIXPORTSDIR/subdir/name/work
not PORTSDIR/subdir/name/work or .CURDIR/../../subdir/name/work or some such.

Also, if you are defining WRKDIR yourself, make sure you prepend ${WRKDIRPREFIX}${.CURDIR} in the front.

12.4 Differentiating operating systems and OS versions
You may come across code that needs modifications or conditional compilation based upon what version of Unix it is
running under. If you need to make such changes to the code for conditional compilation, make sure you make the
changes as general as possible so that we can back-port code to older FreeBSD systems and cross-port to other BSD
systems such as 4.4BSD from CSRG, BSD/386, 386BSD, NetBSD, and OpenBSD.

The preferred way to tell 4.3BSD/Reno (1990) and newer versions of the BSD code apart is by using the BSD macro
defined in sys/param.h (http://cvsweb.freebsd.org/src/sys/sys/param.h). Hopefully that file is already included; if not,
add the code:

#if (defined(__unix__) || defined(unix)) && !defined(USG)
#include <sys/param.h>

#endif

98

Chapter 12 Dos and Don’ts

to the proper place in the .c file. We believe that every system that defines these two symbols has sys/param.h. If
you find a system that does not, we would like to know. Please send mail to the FreeBSD ports mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports).

Another way is to use the GNU Autoconf style of doing this:

#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>

#endif

Do not forget to add -DHAVE_SYS_PARAM_H to the CFLAGS in the Makefile for this method.

Once you have sys/param.h included, you may use:

#if (defined(BSD) && (BSD >= 199103))

to detect if the code is being compiled on a 4.3 Net2 code base or newer (e.g. FreeBSD 1.x, 4.3/Reno, NetBSD 0.9,
386BSD, BSD/386 1.1 and below).

Use:

#if (defined(BSD) && (BSD >= 199306))

to detect if the code is being compiled on a 4.4 code base or newer (e.g. FreeBSD 2.x, 4.4, NetBSD 1.0, BSD/386 2.0
or above).

The value of the BSD macro is 199506 for the 4.4BSD-Lite2 code base. This is stated for informational purposes
only. It should not be used to distinguish between versions of FreeBSD based only on 4.4-Lite vs. versions that have
merged in changes from 4.4-Lite2. The __FreeBSD__ macro should be used instead.

Use sparingly:

• __FreeBSD__ is defined in all versions of FreeBSD. Use it if the change you are making only affects FreeBSD.
Porting gotchas like the use of sys_errlist[] vs strerror() are Berkeley-isms, not FreeBSD changes.

• In FreeBSD 2.x, __FreeBSD__ is defined to be 2. In earlier versions, it is 1. Later versions always bump it to
match their major version number.

• If you need to tell the difference between a FreeBSD 1.x system and a FreeBSD 2.x or above system, usually the
right answer is to use the BSD macros described above. If there actually is a FreeBSD specific change (such as
special shared library options when using ld) then it is OK to use __FreeBSD__ and #if __FreeBSD__ > 1 to
detect a FreeBSD 2.x and later system. If you need more granularity in detecting FreeBSD systems since
2.0-RELEASE you can use the following:

#if __FreeBSD__ >= 2
#include <osreldate.h>

if __FreeBSD_version >= 199504
/* 2.0.5+ release specific code here */
endif
#endif

In the hundreds of ports that have been done, there have only been one or two cases where __FreeBSD__ should
have been used. Just because an earlier port screwed up and used it in the wrong place does not mean you should do
so too.

99

Chapter 12 Dos and Don’ts

12.5 __FreeBSD_version values
Here is a convenient list of __FreeBSD_version values as defined in sys/param.h
(http://cvsweb.freebsd.org/src/sys/sys/param.h):

Table 12-1. __FreeBSD_version values

Value Date Release
119411 2.0-RELEASE

199501, 199503 March 19, 1995 2.1-CURRENT

199504 April 9, 1995 2.0.5-RELEASE

199508 August 26, 1995 2.2-CURRENT before 2.1

199511 November 10, 1995 2.1.0-RELEASE

199512 November 10, 1995 2.2-CURRENT before 2.1.5

199607 July 10, 1996 2.1.5-RELEASE

199608 July 12, 1996 2.2-CURRENT before 2.1.6

199612 November 15, 1996 2.1.6-RELEASE

199612 2.1.7-RELEASE

220000 February 19, 1997 2.2-RELEASE

(not changed) 2.2.1-RELEASE

(not changed) 2.2-STABLE after 2.2.1-RELEASE

221001 April 15, 1997 2.2-STABLE after texinfo-3.9

221002 April 30, 1997 2.2-STABLE after top

222000 May 16, 1997 2.2.2-RELEASE

222001 May 19, 1997 2.2-STABLE after 2.2.2-RELEASE

225000 October 2, 1997 2.2.5-RELEASE

225001 November 20, 1997 2.2-STABLE after 2.2.5-RELEASE

225002 December 27, 1997 2.2-STABLE after ldconfig -R merge

226000 March 24, 1998 2.2.6-RELEASE

227000 July 21, 1998 2.2.7-RELEASE

227001 July 21, 1998 2.2-STABLE after 2.2.7-RELEASE

227002 September 19, 1998 2.2-STABLE after semctl(2) change

228000 November 29, 1998 2.2.8-RELEASE

228001 November 29, 1998 2.2-STABLE after 2.2.8-RELEASE

300000 February 19, 1996 3.0-CURRENT before mount(2)
change

300001 September 24, 1997 3.0-CURRENT after mount(2) change

300002 June 2, 1998 3.0-CURRENT after semctl(2) change

300003 June 7, 1998 3.0-CURRENT after ioctl arg changes

300004 September 3, 1998 3.0-CURRENT after ELF conversion

300005 October 16, 1998 3.0-RELEASE

300006 October 16, 1998 3.0-CURRENT after 3.0-RELEASE

100

Chapter 12 Dos and Don’ts

Value Date Release
300007 January 22, 1999 3.0-STABLE after 3/4 branch

310000 February 9, 1999 3.1-RELEASE

310001 March 27, 1999 3.1-STABLE after 3.1-RELEASE

310002 April 14, 1999 3.1-STABLE after C++
constructor/destructor order change

320000 3.2-RELEASE

320001 May 8, 1999 3.2-STABLE

320002 August 29, 1999 3.2-STABLE after
binary-incompatible IPFW and socket
changes

330000 September 2, 1999 3.3-RELEASE

330001 September 16, 1999 3.3-STABLE

330002 November 24, 1999 3.3-STABLE after adding mkstemp(3)
to libc

340000 December 5, 1999 3.4-RELEASE

340001 December 17, 1999 3.4-STABLE

350000 June 20, 2000 3.5-RELEASE

350001 July 12, 2000 3.5-STABLE

400000 January 22, 1999 4.0-CURRENT after 3.4 branch

400001 February 20, 1999 4.0-CURRENT after change in
dynamic linker handling

400002 March 13, 1999 4.0-CURRENT after C++
constructor/destructor order change

400003 March 27, 1999 4.0-CURRENT after functioning
dladdr(3)

400004 April 5, 1999 4.0-CURRENT after
__deregister_frame_info dynamic
linker bug fix (also 4.0-CURRENT
after EGCS 1.1.2 integration)

400005 April 27, 1999 4.0-CURRENT after suser(9) API
change (also 4.0-CURRENT after
newbus)

400006 May 31, 1999 4.0-CURRENT after cdevsw
registration change

400007 June 17, 1999 4.0-CURRENT after the addition of
so_cred for socket level credentials

400008 June 20, 1999 4.0-CURRENT after the addition of a
poll syscall wrapper to libc_r

400009 July 20, 1999 4.0-CURRENT after the change of the
kernel’s dev_t type to struct

specinfo pointer

101

Chapter 12 Dos and Don’ts

Value Date Release
400010 September 25, 1999 4.0-CURRENT after fixing a hole in

jail(2)

400011 September 29, 1999 4.0-CURRENT after the sigset_t
datatype change

400012 November 15, 1999 4.0-CURRENT after the cutover to the
GCC 2.95.2 compiler

400013 December 4, 1999 4.0-CURRENT after adding pluggable
linux-mode ioctl handlers

400014 January 18, 2000 4.0-CURRENT after importing
OpenSSL

400015 January 27, 2000 4.0-CURRENT after the C++ ABI
change in GCC 2.95.2 from
-fvtable-thunks to -fno-vtable-thunks
by default

400016 February 27, 2000 4.0-CURRENT after importing
OpenSSH

400017 March 13, 2000 4.0-RELEASE

400018 March 17, 2000 4.0-STABLE after 4.0-RELEASE

400019 May 5, 2000 4.0-STABLE after the introduction of
delayed checksums.

400020 June 4, 2000 4.0-STABLE after merging libxpg4
code into libc.

400021 July 8, 2000 4.0-STABLE after upgrading Binutils
to 2.10.0, ELF branding changes, and
tcsh in the base system.

410000 July 14, 2000 4.1-RELEASE

410001 July 29, 2000 4.1-STABLE after 4.1-RELEASE

410002 September 16, 2000 4.1-STABLE after setproctitle(3)
moved from libutil to libc.

411000 September 25, 2000 4.1.1-RELEASE

411001 4.1.1-STABLE after 4.1.1-RELEASE

420000 October 31, 2000 4.2-RELEASE

420001 January 10, 2001 4.2-STABLE after combining libgcc.a
and libgcc_r.a, and associated GCC
linkage changes.

430000 March 6, 2001 4.3-RELEASE

430001 May 18, 2001 4.3-STABLE after wint_t introduction.

430002 July 22, 2001 4.3-STABLE after PCI powerstate API
merge.

440000 August 1, 2001 4.4-RELEASE

440001 October 23, 2001 4.4-STABLE after d_thread_t
introduction.

102

Chapter 12 Dos and Don’ts

Value Date Release
440002 November 4, 2001 4.4-STABLE after mount structure

changes (affects filesystem klds).

440003 December 18, 2001 4.4-STABLE after the userland
components of smbfs were imported.

450000 December 20, 2001 4.5-RELEASE

450001 February 24, 2002 4.5-STABLE after the usb structure
element rename.

450004 April 16, 2002 4.5-STABLE after the
sendmail_enable rc.conf(5)
variable was made to take the value
NONE.

450005 April 27, 2002 4.5-STABLE after moving to XFree86
4 by default for package builds.

450006 May 1, 2002 4.5-STABLE after accept filtering was
fixed so that is no longer susceptible to
an easy DoS.

460000 June 21, 2002 4.6-RELEASE

460001 June 21, 2002 4.6-STABLE sendfile(2) fixed to
comply with documentation, not to
count any headers sent against the
amount of data to be sent from the file.

460002 July 19, 2002 4.6.2-RELEASE

460100 June 26, 2002 4.6-STABLE

460101 June 26, 2002 4.6-STABLE after MFC of ‘sed -i’.

460102 September 1, 2002 4.6-STABLE after MFC of many new
pkg_install features from the HEAD.

470000 October 8, 2002 4.7-RELEASE

470100 October 9, 2002 4.7-STABLE

470101 November 10, 2002 Start generated __std{in,out,err}p
references rather than __sF. This
changes std{in,out,err} from a compile
time expression to a runtime one.

470102 January 23, 2003 4.7-STABLE after MFC of mbuf
changes to replace m_aux mbufs by
m_tag’s

470103 February 14, 2003 4.7-STABLE gets OpenSSL 0.9.7

480000 March 30, 2003 4.8-RELEASE

480100 April 5, 2003 4.8-STABLE

480101 May 22, 2003 4.8-STABLE after realpath(3) has
been made thread-safe

480102 August 10, 2003 4.8-STABLE 3ware API changes to
twe.

490000 October 27, 2003 4.9-RELEASE

103

Chapter 12 Dos and Don’ts

Value Date Release
490100 October 27, 2003 4.9-STABLE

490101 January 8, 2004 4.9-STABLE after e_sid was added to
struct kinfo_eproc.

490102 February 4, 2004 4.9-STABLE after MFC of libmap
functionality for rtld.

491000 May 25, 2004 4.10-RELEASE

491100 June 1, 2004 4.10-STABLE

491101 August 11, 2004 4.10-STABLE after MFC of revision
20040629 of the package tools

491102 November 16, 2004 4.10-STABLE after VM fix dealing
with unwiring of fictitious pages

492000 December 17, 2004 4.11-RELEASE

492100 December 17, 2004 4.11-STABLE

492101 April 18, 2006 4.11-STABLE after adding
libdata/ldconfig directories to mtree
files.

500000 March 13, 2000 5.0-CURRENT

500001 April 18, 2000 5.0-CURRENT after adding addition
ELF header fields, and changing our
ELF binary branding method.

500002 May 2, 2000 5.0-CURRENT after kld metadata
changes.

500003 May 18, 2000 5.0-CURRENT after buf/bio changes.

500004 May 26, 2000 5.0-CURRENT after binutils upgrade.

500005 June 3, 2000 5.0-CURRENT after merging libxpg4
code into libc and after TASKQ
interface introduction.

500006 June 10, 2000 5.0-CURRENT after the addition of
AGP interfaces.

500007 June 29, 2000 5.0-CURRENT after Perl upgrade to
5.6.0

500008 July 7, 2000 5.0-CURRENT after the update of
KAME code to 2000/07 sources.

500009 July 14, 2000 5.0-CURRENT after ether_ifattach()
and ether_ifdetach() changes.

500010 July 16, 2000 5.0-CURRENT after changing mtree
defaults back to original variant,
adding -L to follow symlinks.

500011 July 18, 2000 5.0-CURRENT after kqueue API
changed.

500012 September 2, 2000 5.0-CURRENT after setproctitle(3)
moved from libutil to libc.

104

Chapter 12 Dos and Don’ts

Value Date Release
500013 September 10, 2000 5.0-CURRENT after the first SMPng

commit.

500014 January 4, 2001 5.0-CURRENT after <sys/select.h>

moved to <sys/selinfo.h>.

500015 January 10, 2001 5.0-CURRENT after combining
libgcc.a and libgcc_r.a, and associated
GCC linkage changes.

500016 January 24, 2001 5.0-CURRENT after change allowing
libc and libc_r to be linked together,
deprecating -pthread option.

500017 February 18, 2001 5.0-CURRENT after switch from
struct ucred to struct xucred to
stabilize kernel-exported API for
mountd et al.

500018 February 24, 2001 5.0-CURRENT after addition of
CPUTYPE make variable for
controlling CPU-specific
optimizations.

500019 June 9, 2001 5.0-CURRENT after moving
machine/ioctl_fd.h to sys/fdcio.h

500020 June 15, 2001 5.0-CURRENT after locale names
renaming.

500021 June 22, 2001 5.0-CURRENT after Bzip2 import.
Also signifies removal of S/Key.

500022 July 12, 2001 5.0-CURRENT after SSE support.

500023 September 14, 2001 5.0-CURRENT after KSE Milestone
2.

500024 October 1, 2001 5.0-CURRENT after d_thread_t, and
moving UUCP to ports.

500025 October 4, 2001 5.0-CURRENT after ABI change for
descriptor and creds passing on 64 bit
platforms.

500026 October 9, 2001 5.0-CURRENT after moving to
XFree86 4 by default for package
builds, and after the new libc strnstr()
function was added.

500027 October 10, 2001 5.0-CURRENT after the new libc
strcasestr() function was added.

500028 December 14, 2001 5.0-CURRENT after the userland
components of smbfs were imported.

(not changed) 5.0-CURRENT after the new C99
specific-width integer types were
added.

105

Chapter 12 Dos and Don’ts

Value Date Release
500029 January 29, 2002 5.0-CURRENT after a change was

made in the return value of sendfile(2).

500030 February 15, 2002 5.0-CURRENT after the introduction
of the type fflags_t, which is the
appropriate size for file flags.

500031 February 24, 2002 5.0-CURRENT after the usb structure
element rename.

500032 March 16, 2002 5.0-CURRENT after the introduction
of Perl 5.6.1.

500033 April 3, 2002 5.0-CURRENT after the
sendmail_enable rc.conf(5)
variable was made to take the value
NONE.

500034 April 30, 2002 5.0-CURRENT after mtx_init() grew a
third argument.

500035 May 13, 2002 5.0-CURRENT with Gcc 3.1.

500036 May 17, 2002 5.0-CURRENT without Perl in /usr/src

500037 May 29, 2002 5.0-CURRENT after the addition of
dlfunc(3)

500038 July 24, 2002 5.0-CURRENT after the types of some
struct sockbuf members were changed
and the structure was reordered.

500039 September 1, 2002 5.0-CURRENT after GCC 3.2.1
import. Also after headers stopped
using _BSD_FOO_T_ and started
using _FOO_T_DECLARED. This
value can also be used as a
conservative estimate of the start of
bzip2(1) package support.

500040 September 20, 2002 5.0-CURRENT after various changes
to disk functions were made in the
name of removing dependency on
disklabel structure internals.

500041 October 1, 2002 5.0-CURRENT after the addition of
getopt_long(3) to libc.

500042 October 15, 2002 5.0-CURRENT after Binutils 2.13
upgrade, which included new
FreeBSD emulation, vec, and output
format.

500043 November 1, 2002 5.0-CURRENT after adding weak
pthread_XXX stubs to libc, obsoleting
libXThrStub.so. 5.0-RELEASE.

106

Chapter 12 Dos and Don’ts

Value Date Release
500100 January 17, 2003 5.0-CURRENT after branching for

RELENG_5_0

500101 February 19, 2003 <sys/dkstat.h> is empty and should
not be included.

500102 February 25, 2003 5.0-CURRENT after the d_mmap_t
interface change.

500103 February 26, 2003 5.0-CURRENT after taskqueue_swi
changed to run without Giant, and
taskqueue_swi_giant added to run
with Giant.

500104 February 27, 2003 cdevsw_add() and cdevsw_remove()
no longer exists. Appearance of
MAJOR_AUTO allocation facility.

500105 March 4, 2003 5.0-CURRENT after new cdevsw
initialization method.

500106 March 8, 2003 devstat_add_entry() has been replaced
by devstat_new_entry()

500107 March 15, 2003 Devstat interface change; see
sys/sys/param.h 1.149

500108 March 15, 2003 Token-Ring interface changes.

500109 March 25, 2003 Addition of vm_paddr_t.

500110 March 28, 2003 5.0-CURRENT after realpath(3) has
been made thread-safe

500111 April 9, 2003 5.0-CURRENT after usbhid(3) has
been synced with NetBSD

500112 April 17, 2003 5.0-CURRENT after new NSS
implementation and addition of
POSIX.1 getpw*_r, getgr*_r functions

500113 May 2, 2003 5.0-CURRENT after removal of the
old rc system.

501000 June 4, 2003 5.1-RELEASE.

501100 June 2, 2003 5.1-CURRENT after branching for
RELENG_5_1.

501101 June 29, 2003 5.1-CURRENT after correcting the
semantics of sigtimedwait(2) and
sigwaitinfo(2).

501102 July 3, 2003 5.1-CURRENT after adding the
lockfunc and lockfuncarg fields to
bus_dma_tag_create(9).

501103 July 31, 2003 5.1-CURRENT after GCC 3.3.1-pre
20030711 snapshot integration.

107

Chapter 12 Dos and Don’ts

Value Date Release
501104 August 5, 2003 5.1-CURRENT 3ware API changes to

twe.

501105 August 17, 2003 5.1-CURRENT dynamically-linked
/bin and /sbin support and movement
of libraries to /lib.

501106 September 8, 2003 5.1-CURRENT after adding kernel
support for Coda 6.x.

501107 September 17, 2003 5.1-CURRENT after 16550 UART
constants moved from
<dev/sio/sioreg.h> to
<dev/ic/ns16550.h>. Also when
libmap functionality was
unconditionally supported by rtld.

501108 September 23, 2003 5.1-CURRENT after PFIL_HOOKS
API update

501109 September 27, 2003 5.1-CURRENT after adding kiconv(3)

501110 September 28, 2003 5.1-CURRENT after changing default
operations for open and close in
cdevsw

501111 October 16, 2003 5.1-CURRENT after changed layout
of cdevsw

501112 October 16, 2003 5.1-CURRENT after adding kobj
multiple inheritance

501113 October 31, 2003 5.1-CURRENT after the if_xname
change in struct ifnet

501114 November 16, 2003 5.1-CURRENT after changing /bin
and /sbin to be dynamically linked

502000 December 7, 2003 5.2-RELEASE

502010 February 23, 2004 5.2.1-RELEASE

502100 December 7, 2003 5.2-CURRENT after branching for
RELENG_5_2

502101 December 19, 2003 5.2-CURRENT after
__cxa_atexit/__cxa_finalize functions
were added to libc.

502102 January 30, 2004 5.2-CURRENT after change of default
thread library from libc_r to
libpthread.

502103 February 21, 2004 5.2-CURRENT after device driver API
megapatch.

502104 February 25, 2004 5.2-CURRENT after
getopt_long_only() addition.

108

Chapter 12 Dos and Don’ts

Value Date Release
502105 March 5, 2004 5.2-CURRENT after NULL is made

into ((void *)0) for C, creating more
warnings.

502106 March 8, 2004 5.2-CURRENT after pf is linked to the
build and install.

502107 March 10, 2004 5.2-CURRENT after time_t is changed
to a 64-bit value on sparc64.

502108 March 12, 2004 5.2-CURRENT after Intel C/C++
compiler support in some headers and
execve(2) changes to be more strictly
conforming to POSIX.

502109 March 22, 2004 5.2-CURRENT after the introduction
of the bus_alloc_resource_any API

502110 March 27, 2004 5.2-CURRENT after the addition of
UTF-8 locales

502111 April 11, 2004 5.2-CURRENT after the removal of
the getvfsent(3) API

502112 April 13, 2004 5.2-CURRENT after the addition of
the .warning directive for make.

502113 June 4, 2004 5.2-CURRENT after ttyioctl() was
made mandatory for serial drivers.

502114 June 13, 2004 5.2-CURRENT after import of the
ALTQ framework.

502115 June 14, 2004 5.2-CURRENT after changing
sema_timedwait(9) to return 0 on
success and a non-zero error code on
failure.

502116 June 16, 2004 5.2-CURRENT after changing kernel
dev_t to be pointer to struct cdev *.

502117 June 17, 2004 5.2-CURRENT after changing kernel
udev_t to dev_t.

502118 June 17, 2004 5.2-CURRENT after adding support
for CLOCK_VIRTUAL and
CLOCK_PROF to clock_gettime(2)
and clock_getres(2).

502119 June 22, 2004 5.2-CURRENT after changing
network interface cloning overhaul.

502120 July 2, 2004 5.2-CURRENT after the update of the
package tools to revision 20040629.

502121 July 9, 2004 5.2-CURRENT after marking
Bluetooth code as non-i386 specific.

109

Chapter 12 Dos and Don’ts

Value Date Release
502122 July 11, 2004 5.2-CURRENT after the introduction

of the KDB debugger framework, the
conversion of DDB into a backend and
the introduction of the GDB backend.

502123 July 12, 2004 5.2-CURRENT after change to make
VFS_ROOT take a struct thread
argument as does vflush. Struct
kinfo_proc now has a user data
pointer. The switch of the default X
implementation to xorg was also
made at this time.

502124 July 24, 2004 5.2-CURRENT after the change to
separate the way ports rc.d and legacy
scripts are started.

502125 July 28, 2004 5.2-CURRENT after the backout of
the previous change.

502126 July 31, 2004 5.2-CURRENT after the removal of
kmem_alloc_pageable() and the
import of gcc 3.4.2.

502127 August 2, 2004 5.2-CURRENT after changing the
UMA kernel API to allow ctors/inits to
fail.

502128 August 8, 2004 5.2-CURRENT after the change of the
vfs_mount signature as well as global
replacement of PRISON_ROOT with
SUSER_ALLOWJAIL for the suser(9)
API.

503000 August 23, 2004 5.3-BETA/RC before the pfil API
change

503001 September 22, 2004 5.3-RELEASE

503100 October 16, 2004 5.3-STABLE after branching for
RELENG_5_3

503101 December 3, 2004 5.3-STABLE after addition of glibc
style strftime(3) padding options.

503102 February 13, 2005 5.3-STABLE after OpenBSD’s nc(1)
import MFC.

503103 February 27, 2005 5.4-PRERELEASE after the MFC of
the fixes in
<src/include/stdbool.h> and
<src/sys/i386/include/_types.h>

for using the GCC-compatibility of the
Intel C/C++ compiler.

110

Chapter 12 Dos and Don’ts

Value Date Release
503104 February 28, 2005 5.4-PRERELEASE after the MFC of

the change of ifi_epoch from wall
clock time to uptime.

503105 March 2, 2005 5.4-PRERELEASE after the MFC of
the fix of EOVERFLOW check in
vswprintf(3).

504000 April 3, 2005 5.4-RELEASE.

504100 April 3, 2005 5.4-STABLE after branching for
RELENG_5_4

504101 May 11, 2005 5.4-STABLE after increasing the
default thread stacksizes

504102 June 24, 2005 5.4-STABLE after the addition of
sha256

504103 October 3, 2005 5.4-STABLE after the MFC of
if_bridge

504104 November 13, 2005 5.4-STABLE after the MFC of bsdiff
and portsnap

504105 January 17, 2006 5.4-STABLE after MFC of
ldconfig_local_dirs change.

505000 May 12, 2006 5.5-RELEASE.

505100 May 12, 2006 5.5-STABLE after branching for
RELENG_5_5

600000 August 18, 2004 6.0-CURRENT

600001 August 27, 2004 6.0-CURRENT after permanently
enabling PFIL_HOOKS in the kernel.

600002 August 30, 2004 6.0-CURRENT after initial addition of
ifi_epoch to struct if_data. Backed out
after a few days. Do not use this value.

600003 September 8, 2004 6.0-CURRENT after the re-addition of
the ifi_epoch member of struct if_data.

600004 September 29, 2004 6.0-CURRENT after addition of the
struct inpcb argument to the pfil API.

600005 October 5, 2004 6.0-CURRENT after addition of the
"-d DESTDIR" argument to
newsyslog.

600006 November 4, 2004 6.0-CURRENT after addition of glibc
style strftime(3) padding options.

600007 December 12, 2004 6.0-CURRENT after addition of
802.11 framework updates.

111

Chapter 12 Dos and Don’ts

Value Date Release
600008 January 25, 2005 6.0-CURRENT after changes to

VOP_*VOBJECT() functions and
introduction of MNTK_MPSAFE flag
for Giantfree filesystems.

600009 February 4, 2005 6.0-CURRENT after addition of the
cpufreq framework and drivers.

600010 February 6, 2005 6.0-CURRENT after importing
OpenBSD’s nc(1).

600011 February 12, 2005 6.0-CURRENT after removing
semblance of SVID2 matherr()

support.

600012 February 15, 2005 6.0-CURRENT after increase of
default thread stacks’ size.

600013 February 19, 2005 6.0-CURRENT after fixes in
<src/include/stdbool.h> and
<src/sys/i386/include/_types.h>

for using the GCC-compatibility of the
Intel C/C++ compiler.

600014 February 21, 2005 6.0-CURRENT after EOVERFLOW
checks in vswprintf(3) fixed.

600015 February 25, 2005 6.0-CURRENT after changing the
struct if_data member, ifi_epoch, from
wall clock time to uptime.

600016 February 26, 2005 6.0-CURRENT after LC_CTYPE disk
format changed.

600017 February 27, 2005 6.0-CURRENT after NLS catalogs
disk format changed.

600018 February 27, 2005 6.0-CURRENT after LC_COLLATE
disk format changed.

600019 February 28, 2005 Installation of acpica includes into
/usr/include.

600020 March 9, 2005 Addition of MSG_NOSIGNAL flag to
send(2) API.

600021 March 17, 2005 Addition of fields to cdevsw

600022 March 21, 2005 Removed gtar from base system.

600023 April 13, 2005 LOCAL_CREDS,
LOCAL_CONNWAIT socket options
added to unix(4).

600024 April 19, 2005 hwpmc(4) and related tools added to
6.0-CURRENT.

600025 April 26, 2005 struct icmphdr added to
6.0-CURRENT.

600026 May 3, 2005 pf updated to 3.7.

112

Chapter 12 Dos and Don’ts

Value Date Release
600027 May 6, 2005 Kernel libalias and ng_nat introduced.

600028 May 13, 2005 POSIX ttyname_r(3) made available
through unistd.h and libc.

600029 May 29, 2005 6.0-CURRENT after libpcap updated
to v0.9.1 alpha 096.

600030 June 5, 2005 6.0-CURRENT after importing
NetBSD’s if_bridge(4).

600031 June 10, 2005 6.0-CURRENT after struct ifnet was
broken out of the driver softcs.

600032 July 11, 2005 6.0-CURRENT after the import of
libpcap v0.9.1.

600033 July 25, 2005 6.0-STABLE after bump of all shared
library versions that had not been
changed since RELENG_5.

600034 August 13, 2005 6.0-STABLE after credential argument
is added to dev_clone event handler.
6.0-RELEASE.

600100 November 1, 2005 6.0-STABLE after 6.0-RELEASE

600101 December 21, 2005 6.0-STABLE after incorporating
scripts from the local_startup
directories into the base rcorder(8).

600102 December 30, 2005 6.0-STABLE after updating the ELF
types and constants.

600103 January 15, 2006 6.0-STABLE after MFC of pidfile(3)
API.

600104 January 17, 2006 6.0-STABLE after MFC of
ldconfig_local_dirs change.

600105 February 26, 2006 6.0-STABLE after NLS catalog
support of csh(1).

601000 May 6, 2006 6.1-RELEASE

601100 May 6, 2006 6.1-STABLE after 6.1-RELEASE.

601101 June 22, 2006 6.1-STABLE after the import of csup.

601102 July 11, 2006 6.1-STABLE after the iwi(4) update.

601103 July 17, 2006 6.1-STABLE after the resolver update
to BIND9, and exposure of reentrant
version of netdb functions.

601104 August 8, 2006 6.1-STABLE after DSO (dynamic
shared objects) support has been
enabled in OpenSSL.

601105 September 2, 2006 6.1-STABLE after 802.11 fixups
changed the api for the
IEEE80211_IOC_STA_INFO ioctl.

602000 November 15, 2006 6.2-RELEASE

113

Chapter 12 Dos and Don’ts

Value Date Release
602100 September 15, 2006 6.2-STABLE after 6.2-RELEASE.

602101 December 12, 2006 6.2-STABLE after the addition of
Wi-Spy quirk.

602102 December 28, 2006 6.2-STABLE after pci_find_extcap()
addition.

602103 January 16, 2007 6.2-STABLE after MFC of dlsym
change to look for a requested symbol
both in specified dso and its implicit
dependencies.

602104 January 28, 2007 6.2-STABLE after MFC of
ng_deflate(4) and ng_pred1(4)
netgraph nodes and new compression
and encryption modes for ng_ppp(4)
node.

602105 February 20, 2007 6.2-STABLE after MFC of BSD
licensed version of gzip(1) ported
from NetBSD.

602106 March 31, 2007 6.2-STABLE after MFC of PCI MSI
and MSI-X support.

602107 April 6, 2007 6.2-STABLE after MFC of ncurses 5.6
and wide character support.

602108 April 11, 2007 6.2-STABLE after MFC of CAM ’SG’
peripheral device, which implements a
subset of Linux SCSI SG passthrough
device API.

602109 April 17, 2007 6.2-STABLE after MFC of readline
5.2 patchset 002.

602110 May 2, 2007 6.2-STABLE after MFC of
pmap_invalidate_cache(),
pmap_change_attr(), pmap_mapbios(),
pmap_mapdev_attr(), and
pmap_unmapbios() for amd64 and
i386.

602111 June 11, 2007 6.2-STABLE after MFC of
BOP_BDFLUSH and caused breakage
of the filesystem modules KBI.

602112 September 21, 2007 6.2-STABLE after libutil(3) MFC’s.

602113 October 25, 2007 6.2-STABLE after MFC of wide and
single byte ctype separation. Newly
compiled binary that references to
ctype.h may require a new symbol,
__mb_sb_limit, which is not available
on older systems.

114

Chapter 12 Dos and Don’ts

Value Date Release
602114 October 30, 2007 6.2-STABLE after ctype ABI forward

compatibility restored.

602115 November 21, 2007 6.2-STABLE after back out of wide
and single byte ctype separation.

603000 November 25, 2007 6.3-RELEASE

603100 November 25, 2007 6.3-STABLE after 6.3-RELEASE.

603101 December 7, 2007 6.3-STABLE after fixing multibyte
type support in bit macro.

603102 April 24, 2008 6.3-STABLE after adding l_sysid to
struct flock.

603103 May 27, 2008 6.3-STABLE after MFC of the
memrchr function.

603104 June 15, 2008 6.3-STABLE after MFC of support for
:u variable modifier in make(1).

604000 October 4, 2008 6.4-RELEASE

604100 October 4, 2008 6.4-STABLE after 6.4-RELEASE.

700000 July 11, 2005 7.0-CURRENT.

700001 July 23, 2005 7.0-CURRENT after bump of all
shared library versions that had not
been changed since RELENG_5.

700002 August 13, 2005 7.0-CURRENT after credential
argument is added to dev_clone event
handler.

700003 August 25, 2005 7.0-CURRENT after memmem(3) is
added to libc.

700004 October 30, 2005 7.0-CURRENT after solisten(9) kernel
arguments are modified to accept a
backlog parameter.

700005 November 11, 2005 7.0-CURRENT after IFP2ENADDR()
was changed to return a pointer to
IF_LLADDR().

700006 November 11, 2005 7.0-CURRENT after addition of
if_addr member to struct ifnet

and IFP2ENADDR() removal.

700007 December 2, 2005 7.0-CURRENT after incorporating
scripts from the local_startup
directories into the base rcorder(8).

700008 December 5, 2005 7.0-CURRENT after removal of
MNT_NODEV mount option.

700009 December 19, 2005 7.0-CURRENT after ELF-64 type
changes and symbol versioning.

115

Chapter 12 Dos and Don’ts

Value Date Release
700010 December 20, 2005 7.0-CURRENT after addition of hostb

and vgapci drivers, addition of
pci_find_extcap(), and changing the
AGP drivers to no longer map the
aperture.

700011 December 31, 2005 7.0-CURRENT after tv_sec was made
time_t on all platforms but Alpha.

700012 January 8, 2006 7.0-CURRENT after
ldconfig_local_dirs change.

700013 January 12, 2006 7.0-CURRENT after
changes to /etc/rc.d/abi to support
/compat/linux/etc/ld.so.cache

being a symlink in a readonly
filesystem.

700014 January 26, 2006 7.0-CURRENT after pts import.

700015 March 26, 2006 7.0-CURRENT after the introduction
of version 2 of hwpmc(4)’s ABI.

700016 April 22, 2006 7.0-CURRENT after addition of
fcloseall(3) to libc.

700017 May 13, 2006 7.0-CURRENT after removal of
ip6fw.

700018 July 15, 2006 7.0-CURRENT after import of
snd_emu10kx.

700019 July 29, 2006 7.0-CURRENT after import of
OpenSSL 0.9.8b.

700020 September 3, 2006 7.0-CURRENT after addition of
bus_dma_get_tag function

700021 September 4, 2006 7.0-CURRENT after libpcap 0.9.4 and
tcpdump 3.9.4 import.

700022 September 9, 2006 7.0-CURRENT after dlsym change to
look for a requested symbol both in
specified dso and its implicit
dependencies.

700023 September 23, 2006 7.0-CURRENT after adding new
sound IOCTLs for the OSSv4 mixer
API.

700024 September 28, 2006 7.0-CURRENT after import of
OpenSSL 0.9.8d.

700025 November 11, 2006 7.0-CURRENT after the addition of
libelf.

700026 November 26, 2006 7.0-CURRENT after major changes on
sound sysctls.

700027 November 30, 2006 7.0-CURRENT after the addition of
Wi-Spy quirk.

116

Chapter 12 Dos and Don’ts

Value Date Release
700028 December 15, 2006 7.0-CURRENT after the addition of

sctp calls to libc

700029 January 26, 2007 7.0-CURRENT after the GNU gzip(1)
implementation was replaced with a
BSD licensed version ported from
NetBSD.

700030 February 7, 2007 7.0-CURRENT after the removal of
IPIP tunnel encapsulation
(VIFF_TUNNEL) from the IPv4
multicast forwarding code.

700031 February 23, 2007 7.0-CURRENT after the modification
of bus_setup_intr() (newbus).

700032 March 2, 2007 7.0-CURRENT after the inclusion of
ipw(4) and iwi(4) firmwares.

700033 March 9, 2007 7.0-CURRENT after the inclusion of
ncurses wide character support.

700034 March 19, 2007 7.0-CURRENT after changes to how
insmntque(), getnewvnode(), and
vfs_hash_insert() work.

700035 March 26, 2007 7.0-CURRENT after addition of a
notify mechanism for CPU frequency
changes.

700036 April 6, 2007 7.0-CURRENT after import of the
ZFS filesystem.

700037 April 8, 2007 7.0-CURRENT after addition of CAM
’SG’ peripheral device, which
implements a subset of Linux SCSI
SG passthrough device API.

700038 April 30, 2007 7.0-CURRENT after changing
getenv(3), putenv(3), setenv(3) and
unsetenv(3) to be POSIX conformant.

700039 May 1, 2007 7.0-CURRENT after the changes in
700038 were backed out.

700040 May 10, 2007 7.0-CURRENT after the addition of
flopen(3) to libutil.

700041 May 13, 2007 7.0-CURRENT after enabling symbol
versioning, and changing the default
thread library to libthr.

700042 May 19, 2007 7.0-CURRENT after the import of gcc
4.2.0.

700043 May 21, 2007 7.0-CURRENT after bump of all
shared library versions that had not
been changed since RELENG_6.

117

Chapter 12 Dos and Don’ts

Value Date Release
700044 June 7, 2007 7.0-CURRENT after changing the

argument for vn_open()/VOP_OPEN()
from filedescriptor index to the struct
file *.

700045 June 10, 2007 7.0-CURRENT after changing
pam_nologin(8) to provide an account
management function instead of an
authentication function to the PAM
framework.

700046 June 11, 2007 7.0-CURRENT after updated 802.11
wireless support.

700047 June 11, 2007 7.0-CURRENT after adding TCP LRO
interface capabilities.

700048 June 12, 2007 7.0-CURRENT after RFC 3678 API
support added to the IPv4 stack.
Legacy RFC 1724 behavior of the
IP_MULTICAST_IF ioctl has now
been removed; 0.0.0.0/8 may no longer
be used to specify an interface index.
struct ipmreqn should be used instead.

700049 July 3, 2007 7.0-CURRENT after importing pf
from OpenBSD 4.1

(not changed) 7.0-CURRENT after adding IPv6
support for FAST_IPSEC, deleting
KAME IPSEC, and renaming
FAST_IPSEC to IPSEC.

700050 July 4, 2007 7.0-CURRENT after converting
setenv/putenv/etc. calls from
traditional BSD to POSIX.

700051 July 4, 2007 7.0-CURRENT after adding new
mmap/lseek/etc syscalls.

700052 July 6, 2007 7.0-CURRENT after moving I4B
headers to include/i4b.

700053 September 30, 2007 7.0-CURRENT after the addition of
support for PCI domains

700054 October 25, 2007 7.0-CURRENT after MFC of wide
and single byte ctype separation.

118

Chapter 12 Dos and Don’ts

Value Date Release
700055 October 28, 2007 7.0-RELEASE, and 7.0-CURRENT

after ABI backwards compatibility to
the FreeBSD 4/5/6 versions of the
PCIOCGETCONF, PCIOCREAD and
PCIOCWRITE IOCTLs was MFC’ed,
which required the ABI of the
PCIOCGETCONF IOCTL to be
broken again

700100 December 22, 2007 7.0-STABLE after 7.0-RELEASE

700101 February 8, 2008 7.0-STABLE after the MFC of
m_collapse().

700102 March 30, 2008 7.0-STABLE after the MFC of
kdb_enter_why().

700103 April 10, 2008 7.0-STABLE after adding l_sysid to
struct flock.

700104 April 11, 2008 7.0-STABLE after the MFC of
procstat(1).

700105 April 11, 2008 7.0-STABLE after the MFC of umtx
features.

700106 April 15, 2008 7.0-STABLE after the MFC of
write(2) support to psm(4).

700107 April 20, 2008 7.0-STABLE after the MFC of
F_DUP2FD command to fcntl(2).

700108 May 5, 2008 7.0-STABLE after some lockmgr(9)
changes, which makes it necessary to
include sys/lock.h in order to use
lockmgr(9).

700109 May 27, 2008 7.0-STABLE after MFC of the
memrchr function.

700110 August 5, 2008 7.0-STABLE after MFC of kernel NFS
lockd client.

700111 August 20, 2008 7.0-STABLE after addition of
physically contiguous jumbo frame
support.

700112 August 27, 2008 7.0-STABLE after MFC of kernel
DTrace support.

701000 November 25, 2008 7.1-RELEASE

701100 November 25, 2008 7.1-STABLE after 7.1-RELEASE.

701101 January 10, 2009 7.1-STABLE after strndup merge.

701102 January 17, 2009 7.1-STABLE after cpuctl(4) support
added.

701103 February 7, 2009 7.1-STABLE after the merge of
multi-/no-IPv4/v6 jails.

119

Chapter 12 Dos and Don’ts

Value Date Release
701104 February 14, 2009 7.1-STABLE after the store of the

suspension owner in the struct mount,
and introduction of vfs_susp_clean
method into the struct vfsops.

701105 March 12, 2009 7.1-STABLE after the incompatible
change to the kern.ipc.shmsegs sysctl
to allow to allocate larger SysV shared
memory segments on 64bit
architectures.

701106 March 14, 2009 7.1-STABLE after the merge of a fix
for POSIX semaphore wait operations.

702000 April 15, 2009 7.2-RELEASE

702100 April 15, 2009 7.2-STABLE after 7.2-RELEASE.

800000 October 11, 2007 8.0-CURRENT. Separating wide and
single byte ctype.

800001 October 16, 2007 8.0-CURRENT after libpcap 0.9.8 and
tcpdump 3.9.8 import.

800002 October 21, 2007 8.0-CURRENT after renaming
kthread_create() and friends to
kproc_create() etc.

800003 October 24, 2007 8.0-CURRENT after ABI backwards
compatibility to the FreeBSD 4/5/6
versions of the PCIOCGETCONF,
PCIOCREAD and PCIOCWRITE
IOCTLs was added, which required
the ABI of the PCIOCGETCONF
IOCTL to be broken again

800004 November 12, 2007 8.0-CURRENT after agp(4) driver
moved from src/sys/pci to
src/sys/dev/agp

800005 December 4, 2007 8.0-CURRENT after changes to the
jumbo frame allocator
(http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/kern/kern_mbuf.c#rev1.35).

800006 December 7, 2007 8.0-CURRENT after the addition of
callgraph capture functionality to
hwpmc(4).

800007 December 25, 2007 8.0-CURRENT after kdb_enter() gains
a "why" argument.

800008 December 28, 2007 8.0-CURRENT after
LK_EXCLUPGRADE option
removal.

120

Chapter 12 Dos and Don’ts

Value Date Release
800009 January 9, 2008 8.0-CURRENT after introduction of

lockmgr_disown(9)

800010 January 10, 2008 8.0-CURRENT after the vn_lock(9)
prototype change.

800011 January 13, 2008 8.0-CURRENT after the
VOP_LOCK(9) and
VOP_UNLOCK(9) prototype changes.

800012 January 19, 2008 8.0-CURRENT after introduction of
lockmgr_recursed(9),
BUF_RECURSED(9) and
BUF_ISLOCKED(9) and the removal
of BUF_REFCNT().

800013 January 23, 2008 8.0-CURRENT after introduction of
the “ASCII” encoding.

800014 January 24, 2008 8.0-CURRENT after changing the
prototype of lockmgr(9) and removal
of lockcount() and
LOCKMGR_ASSERT().

800015 January 26, 2008 8.0-CURRENT after extending the
types of the fts(3) structures.

800016 February 1, 2008 8.0-CURRENT after adding an
argument to MEXTADD(9)

800017 February 6, 2008 8.0-CURRENT after the introduction
of LK_NODUP and
LK_NOWITNESS options in the
lockmgr(9) space.

800018 February 8, 2008 8.0-CURRENT after the addition of
m_collapse.

800019 February 9, 2008 8.0-CURRENT after the addition of
current working directory, root
directory, and jail directory support to
the kern.proc.filedesc sysctl.

800020 February 13, 2008 8.0-CURRENT after introduction of
lockmgr_assert(9) and BUF_ASSERT

functions.

800021 February 15, 2008 8.0-CURRENT after introduction of
lockmgr_args(9) and LK_INTERNAL
flag removal.

800022 (backed out) 8.0-CURRENT after changing the
default system ar to BSD ar(1).

121

Chapter 12 Dos and Don’ts

Value Date Release
800023 February 25, 2008 8.0-CURRENT after changing the

prototypes of lockstatus(9) and
VOP_ISLOCKED(9), more
specifically retiring the struct
thread argument.

800024 March 1, 2008 8.0-CURRENT after axing out the
lockwaiters and
BUF_LOCKWAITERS functions,
changing the return value of brelvp
from void to int and introducing new
flags for lockinit(9).

800025 March 8, 2008 8.0-CURRENT after adding
F_DUP2FD command to fcntl(2).

800026 March 12, 2008 8.0-CURRENT after changing the
priority parameter to cv_broadcastpri
such that 0 means no priority.

800027 March 24, 2008 8.0-CURRENT after changing the bpf
monitoring ABI when zerocopy bpf
buffers were added.

800028 March 26, 2008 8.0-CURRENT after adding l_sysid to
struct flock.

800029 March 28, 2008 8.0-CURRENT after reintegration of
the BUF_LOCKWAITERS function and
the addition of lockmgr_waiters(9).

800030 April 1, 2008 8.0-CURRENT after the introduction
of the rw_try_rlock(9) and
rw_try_wlock(9) functions.

800031 April 6, 2008 8.0-CURRENT after the introduction
of the lockmgr_rw and
lockmgr_args_rw functions.

800032 April 8, 2008 8.0-CURRENT after the
implementation of the openat and
related syscalls, introduction of the
O_EXEC flag for the open(2), and
providing the corresponding linux
compatibility syscalls.

800033 April 8, 2008 8.0-CURRENT after added write(2)
support for psm(4) in native operation
level. Now arbitrary commands can be
written to /dev/psm%d and status can
be read back from it.

800034 April 10, 2008 8.0-CURRENT after introduction of
the memrchr function.

122

Chapter 12 Dos and Don’ts

Value Date Release
800035 April 16, 2008 8.0-CURRENT after introduction of

the fdopendir function.

800036 April 20, 2008 8.0-CURRENT after switchover of
802.11 wireless to multi-bss support
(aka vaps).

800037 May 9, 2008 8.0-CURRENT after addition of multi
routing table support (a.k.a. setfib(1),
setfib(2)).

800038 May 26, 2008 8.0-CURRENT after removal of
netatm and ISDN4BSD.

800039 June 14, 2008 8.0-CURRENT after removal of sgtty.

800040 June 26, 2008 8.0-CURRENT with kernel NFS lockd
client.

800041 July 22, 2008 8.0-CURRENT after addition of
arc4random_buf(3) and
arc4random_uniform(3).

800042 August 8, 2008 8.0-CURRENT after addition of
cpuctl(4).

800043 August 13, 2008 8.0-CURRENT after changing bpf(4)
to use a single device node, instead of
device cloning.

800044 August 17, 2008 8.0-CURRENT after the commit of
the first step of the vimage project
renaming global variables to be
virtualized with a V_ prefix with
macros to map them back to their
global names.

800045 August 20, 2008 8.0-CURRENT after the integration of
the MPSAFE TTY layer, including
changes to various drivers and utilities
that interact with it.

800046 September 8, 2008 8.0-CURRENT after the separation of
the GDT per CPU on amd64
architecture.

800047 September 10, 2008 8.0-CURRENT after removal of
VSVTX, VSGID and VSUID.

800048 September 16, 2008 8.0-CURRENT after converting the
kernel NFS mount code to accept
individual mount options in the
nmount() iovec, not just one big struct
nfs_args.

800049 September 17, 2008 8.0-CURRENT after the removal of
suser(9) and suser_cred(9).

123

Chapter 12 Dos and Don’ts

Value Date Release
800050 October 20, 2008 8.0-CURRENT after buffer cache API

change.

800051 October 23, 2008 8.0-CURRENT after the removal of
the MALLOC(9) and FREE(9)
macros.

800052 October 28, 2008 8.0-CURRENT after the introduction
of accmode_t and renaming of
VOP_ACCESS ’a_mode’ argument to
’a_accmode’.

800053 November 2, 2008 8.0-CURRENT after the prototype
change of vfs_busy(9) and the
introduction of its MBF_NOWAIT and
MBF_MNTLSTLOCK flags.

800054 November 22, 2008 8.0-CURRENT after the addition of
buf_ring, memory barriers and ifnet
functions to facilitate multiple
hardware transmit queues for cards
that support them, and a lockless
ring-buffer implementation to enable
drivers to more efficiently manage
queuing of packets.

800055 November 27, 2008 8.0-CURRENT after the addition of
Intel™ Core, Core2, and Atom
support to hwpmc(4).

800056 November 29, 2008 8.0-CURRENT after the introduction
of multi-/no-IPv4/v6 jails.

800057 December 1, 2008 8.0-CURRENT after the switch to the
ath hal source code.

800058 December 12, 2008 8.0-CURRENT after the introduction
of the VOP_VPTOCNP operation.

800059 December 15, 2008 8.0-CURRENT incorporates the new
arp-v2 rewrite.

800060 December 19, 2008 8.0-CURRENT after the addition of
makefs.

800061 January 15, 2009 8.0-CURRENT after TCP Appropriate
Byte Counting.

800062 January 28, 2009 8.0-CURRENT after removal of
minor(), minor2unit(), unit2minor(),
etc.

800063 February 18, 2009 8.0-CURRENT after GENERIC
config change to use the USB2 stack,
but also the addition of fdevname(3).

800064 February 23, 2009 8.0-CURRENT after the USB2 stack
is moved to and replaces dev/usb.

124

Chapter 12 Dos and Don’ts

Value Date Release
800065 February 26, 2009 8.0-CURRENT after the renaming of

all functions in libmp(3).

800066 February 27, 2009 8.0-CURRENT after changing USB
devfs handling and layout.

800067 February 28, 2009 8.0-CURRENT after adding
getdelim(), getline(), stpncpy(),
strnlen(), wcsnlen(), wcscasecmp(),
and wcsncasecmp().

800068 March 2, 2009 8.0-CURRENT after renaming the
ushub devclass to uhub.

800069 March 9, 2009 8.0-CURRENT after libusb20.so.1
was renamed to libusb.so.1.

800070 March 9, 2009 8.0-CURRENT after merging
IGMPv3 and Source-Specific
Multicast (SSM) to the IPv4 stack.

800071 March 14, 2009 8.0-CURRENT after gcc was patched
to use C99 inline semantics in c99 and
gnu99 mode.

800072 March 15, 2009 8.0-CURRENT after the
IFF_NEEDSGIANT flag has been
removed; non-MPSAFE network
device drivers are no longer supported.

800073 March 18, 2009 8.0-CURRENT after the dynamic
string token substitution has been
implemented for rpath and needed
pathes.

800074 March 24, 2009 8.0-CURRENT after tcpdump 4.0.0
and libpcap 1.0.0 import.

800075 April 6, 2009 8.0-CURRENT after layout of structs
vnet_net, vnet_inet and vnet_ipfw has
been changed.

800076 April 9, 2009 8.0-CURRENT after adding delay
profiles in dummynet.

800077 April 14, 2009 8.0-CURRENT after removing
VOP_LEASE() and
vop_vector.vop_lease.

800078 April 15, 2009 8.0-CURRENT after struct rt_weight
fields have been added to struct
rt_metrics and struct rt_metrics_lite,
changing the layout of struct
rt_metrics_lite. A bump to
RTM_VERSION was made, but
backed out.

125

Chapter 12 Dos and Don’ts

Value Date Release
800079 April 15, 2009 8.0-CURRENT after struct llentry

pointers are added to struct route and
struct route_in6.

800080 April 15, 2009 8.0-CURRENT after layout of struct
inpcb has been changed.

800081 April 19, 2009 8.0-CURRENT after the layout of
struct malloc_type has been changed.

800082 April 21, 2009 8.0-CURRENT after the layout of
struct ifnet has changed, and with
if_ref() and if_rele() ifnet refcounting.

Note: Note that 2.2-STABLE sometimes identifies itself as “2.2.5-STABLE” after the 2.2.5-RELEASE. The pattern
used to be year followed by the month, but we decided to change it to a more straightforward major/minor system
starting from 2.2. This is because the parallel development on several branches made it infeasible to classify the
releases simply by their real release dates. If you are making a port now, you do not have to worry about old
-CURRENTs; they are listed here just for your reference.

12.6 Writing something after bsd.port.mk
Do not write anything after the .include <bsd.port.mk> line. It usually can be avoided by including
bsd.port.pre.mk somewhere in the middle of your Makefile and bsd.port.post.mk at the end.

Note: You need to include either the bsd.port.pre.mk/bsd.port.post.mk pair or bsd.port.mk only; do not mix
these two usages.

bsd.port.pre.mk only defines a few variables, which can be used in tests in the Makefile, bsd.port.post.mk
defines the rest.

Here are some important variables defined in bsd.port.pre.mk (this is not the complete list, please read
bsd.port.mk for the complete list).

Variable Description
ARCH The architecture as returned by uname -m (e.g., i386)
OPSYS The operating system type, as returned by uname -s

(e.g., FreeBSD)
OSREL The release version of the operating system (e.g., 2.1.5

or 2.2.7)
OSVERSION The numeric version of the operating system; the same as

__FreeBSD_version.
PORTOBJFORMAT The object format of the system (elf or aout; note that

for “modern” versions of FreeBSD, aout is deprecated.)

126

Chapter 12 Dos and Don’ts

Variable Description
LOCALBASE The base of the “local” tree (e.g., /usr/local/)
PREFIX Where the port installs itself (see more on PREFIX).

Note: If you have to define the variables USE_IMAKE, USE_X_PREFIX, or MASTERDIR, do so before including
bsd.port.pre.mk.

Here are some examples of things you can write after bsd.port.pre.mk:

no need to compile lang/perl5 if perl5 is already in system
.if ${OSVERSION} > 300003
BROKEN= perl is in system
.endif

only one shlib version number for ELF
.if ${PORTOBJFORMAT} == "elf"
TCL_LIB_FILE= ${TCL_LIB}.${SHLIB_MAJOR}
.else
TCL_LIB_FILE= ${TCL_LIB}.${SHLIB_MAJOR}.${SHLIB_MINOR}
.endif

software already makes link for ELF, but not for a.out
post-install:
.if ${PORTOBJFORMAT} == "aout"

${LN} -sf liblinpack.so.1.0 ${PREFIX}/lib/liblinpack.so
.endif

You did remember to use tab instead of spaces after BROKEN= and TCL_LIB_FILE=, did you not? :-).

12.7 Use the exec statement in wrapper scripts
If the port installs a shell script whose purpose is to launch another program, and if launching that program is the last
action performed by the script, make sure to launch the program using the exec statement, for instance:

#!/bin/sh
exec %%LOCALBASE%%/bin/java -jar %%DATADIR%%/foo.jar "$@"

The exec statement replaces the shell process with the specified program. If exec is omitted, the shell process
remains in memory while the program is executing, and needlessly consumes system resources.

12.8 UIDs and GIDs
The current list of reserved UIDs and GIDs can be found in ports/UIDs and ports/GIDs.

If your port requires a certain user to be on the installed system, let the pkg-install script call pw to create it
automatically. Look at sysutils/symon for an example. Your port must use a fixed user/group ID number. You

127

Chapter 12 Dos and Don’ts

must choose a free UID from 50 to 999 and register it either in ports/UIDs (for users) or in ports/GIDs (for
groups).

Make sure you do not use a UID already used by the system or other ports.

Please include a patch against these two files when you require a new user or group to be created for your port.

12.9 Do things rationally
The Makefile should do things simply and reasonably. If you can make it a couple of lines shorter or more
readable, then do so. Examples include using a make .if construct instead of a shell if construct, not redefining
do-extract if you can redefine EXTRACT* instead, and using GNU_CONFIGURE instead of CONFIGURE_ARGS +=

--prefix=${PREFIX}.

If you find yourself having to write a lot of new code to try to do something, please go back and review
bsd.port.mk to see if it contains an existing implementation of what you are trying to do. While hard to read, there
are a great many seemingly-hard problems for which bsd.port.mk already provides a shorthand solution.

12.10 Respect both CC and CXX

The port should respect both CC and CXX variables. What we mean by this is that the port should not set the values of
these variables absolutely, overriding existing values; instead, it should append whatever values it needs to the
existing values. This is so that build options that affect all ports can be set globally.

If the port does not respect these variables, please add NO_PACKAGE=ignores either cc or cxx to the
Makefile.

An example of a Makefile respecting both CC and CXX variables follows. Note the ?=:

CC?= gcc

CXX?= g++

Here is an example which respects neither CC nor CXX variables:

CC= gcc

CXX= g++

Both CC and CXX variables can be defined on FreeBSD systems in /etc/make.conf. The first example defines a
value if it was not previously set in /etc/make.conf, preserving any system-wide definitions. The second example
clobbers anything previously defined.

12.11 Respect CFLAGS
The port should respect the CFLAGS variable. What we mean by this is that the port should not set the value of this
variable absolutely, overriding the existing value; instead, it should append whatever values it needs to the existing
value. This is so that build options that affect all ports can be set globally.

If it does not, please add NO_PACKAGE=ignores cflags to the Makefile.

128

Chapter 12 Dos and Don’ts

An example of a Makefile respecting the CFLAGS variable follows. Note the +=:

CFLAGS+= -Wall -Werror

Here is an example which does not respect the CFLAGS variable:

CFLAGS= -Wall -Werror

The CFLAGS variable is defined on FreeBSD systems in /etc/make.conf. The first example appends additional
flags to the CFLAGS variable, preserving any system-wide definitions. The second example clobbers anything
previously defined.

You should remove optimization flags from the third party Makefiles. System CFLAGS contains system-wide
optimization flags. An example from an unmodified Makefile:

CFLAGS= -O3 -funroll-loops -DHAVE_SOUND

Using system optimization flags, the Makefile would look similar to the following example:

CFLAGS+= -DHAVE_SOUND

12.12 Threading libraries
The threading library must be linked to the binaries using a special linker flag -pthread on FreeBSD. If a port
insists on linking -lpthread or -lc_r directly, patch it to use PTHREAD_LIBS variable provided by the ports
framework. This variable usually has the value of -pthread, but on certain architectures and FreeBSD versions it
can have different values, so do not just hardcode -pthread into patches and always use PTHREAD_LIBS.

Note: If building the port errors out with unrecognized option ’-pthread’ when setting PTHREAD_LIBS, it may
be desirable to use gcc as linker by setting CONFIGURE_ENV to LD=${CC}. The -pthread option is not supported
by ld directly.

12.13 Feedback
Do send applicable changes/patches to the original author/maintainer for inclusion in next release of the code. This
will only make your job that much easier for the next release.

12.14 README.html

Do not include the README.html file. This file is not part of the cvs collection but is generated using the make
readme command.

129

Chapter 12 Dos and Don’ts

12.15 Marking a port not installable with BROKEN, FORBIDDEN, or
IGNORE

In certain cases users should be prevented from installing a port. To tell a user that a port should not be installed,
there are several make variables that can be used in a port’s Makefile. The value of the following make variables
will be the reason that is given back to users for why the port refuses to install itself. Please use the correct make
variable as each make variable conveys radically different meanings to both users, and to automated systems that
depend on the Makefiles, such as the ports build cluster, FreshPorts, and portsmon.

12.15.1 Variables

• BROKEN is reserved for ports that currently do not compile, install, or deinstall correctly. It should be used for ports
where the problem is believed to be temporary.

If instructed, the build cluster will still attempt to try to build them to see if the underlying problem has been
resolved. (However, in general, the cluster is run without this.)

For instance, use BROKEN when a port:

• does not compile

• fails its configuration or installation process

• installs files outside of ${LOCALBASE}

• does not remove all its files cleanly upon deinstall (however, it may be acceptable, and desirable, for the port to
leave user-modified files behind)

• FORBIDDEN is used for ports that do contain a security vulnerability or induce grave concern regarding the security
of a FreeBSD system with a given port installed (ex: a reputably insecure program or a program that provides
easily exploitable services). Ports should be marked as FORBIDDEN as soon as a particular piece of software has a
vulnerability and there is no released upgrade. Ideally ports should be upgraded as soon as possible when a
security vulnerability is discovered so as to reduce the number of vulnerable FreeBSD hosts (we like being known
for being secure), however sometimes there is a noticeable time gap between disclosure of a vulnerability and an
updated release of the vulnerable software. Do not mark a port FORBIDDEN for any reason other than security.

• IGNORE is reserved for ports that should not be built for some other reason. It should be used for ports where the
problem is believed to be structural. The build cluster will not, under any circumstances, build ports marked as
IGNORE. For instance, use IGNORE when a port:

• compiles but does not run properly

• does not work on the installed version of FreeBSD

• requires FreeBSD kernel sources to build, but the user does not have them installed

• has a distfile which may not be automatically fetched due to licensing restrictions

• does not work with some other currently installed port (for instance, the port depends on www/apache21 but
www/apache13 is installed)

Note: If a port would conflict with a currently installed port (for example, if they install a file in the same place
that perfoms a different function), use CONFLICTS instead. CONFLICTS will set IGNORE by itself.

130

Chapter 12 Dos and Don’ts

• If a port should be marked IGNORE only on certain architectures, there are two other convenience variables that
will automatically set IGNORE for you: ONLY_FOR_ARCHS and NOT_FOR_ARCHS. Examples:

ONLY_FOR_ARCHS= i386 amd64

NOT_FOR_ARCHS= alpha ia64 sparc64

A custom IGNORE message can be set using ONLY_FOR_ARCHS_REASON and NOT_FOR_ARCHS_REASON. Per
architecture entries are possible with ONLY_FOR_ARCHS_REASON_ARCH and NOT_FOR_ARCHS_REASON_ARCH.

• If a port fetches i386 binaries and installs them, IA32_BINARY_PORT should be set. If this variable is set, it will
be checked whether the /usr/lib32 directory is available for IA32 versions of libraries and whether the kernel
has IA32 compatibility compiled in. If one of these two dependencies is not satisfied, IGNORE will be set
automatically.

12.15.2 Implementation Notes

The strings should not be quoted. Also, the wording of the string should be somewhat different due to the way the
information is shown to the user. Examples:

BROKEN= this port is unsupported on FreeBSD 5.x

IGNORE= is unsupported on FreeBSD 5.x

resulting in the following output from make describe:

===> foobar-0.1 is marked as broken: this port is unsupported on FreeBSD 5.x.

===> foobar-0.1 is unsupported on FreeBSD 5.x.

12.16 Marking a port for removal with DEPRECATED or
EXPIRATION_DATE

Do remember that BROKEN and FORBIDDEN are to be used as a temporary resort if a port is not working. Permanently
broken ports should be removed from the tree entirely.

When it makes sense to do so, users can be warned about a pending port removal with DEPRECATED and
EXPIRATION_DATE. The former is simply a string stating why the port is scheduled for removal; the latter is a string
in ISO 8601 format (YYYY-MM-DD). Both will be shown to the user.

It is possible to set DEPRECATED without an EXPIRATION_DATE (for instance, recommending a newer version of the
port), but the converse does not make any sense.

There is no set policy on how much notice to give. Current practice seems to be one month for security-related issues
and two months for build issues. This also gives any interested committers a little time to fix the problems.

131

Chapter 12 Dos and Don’ts

12.17 Avoid use of the .error construct
The correct way for a Makefile to signal that the port can not be installed due to some external factor (for instance,
the user has specified an illegal combination of build options) is to set a nonblank value to IGNORE. This value will
be formatted and shown to the user by make install.

It is a common mistake to use .error for this purpose. The problem with this is that many automated tools that
work with the ports tree will fail in this situation. The most common occurrence of this is seen when trying to build
/usr/ports/INDEX (see Section 9.1). However, even more trivial commands such as make -V maintainer also
fail in this scenario. This is not acceptable.

Example 12-1. How to avoid using .error

Assume that someone has the line

USE_POINTYHAT=yes

in make.conf. The first of the next two Makefile snippets will cause make index to fail, while the second one
will not:

.if USE_POINTYHAT

.error "POINTYHAT is not supported"

.endif

.if USE_POINTYHAT
IGNORE=POINTYHAT is not supported
.endif

12.18 Usage of sysctl
The usage of sysctl is discouraged except in targets. This is because the evaluation of any makevars, such as used
during make index, then has to run the command, further slowing down that process.

Usage of sysctl(8) should always be done with the SYSCTL variable, as it contains the fully qualified path and can be
overridden, if one has such a special need.

12.19 Rerolling distfiles
Sometimes the authors of software change the content of released distfiles without changing the file’s name. You
have to verify that the changes are official and have been performed by the author. It has happened in the past that the
distfile was silently altered on the download servers with the intent to cause harm or compromise end user security.

Put the old distfile aside, download the new one, unpack them and compare the content with diff(1). If you see
nothing suspicious, you can update distinfo. Be sure to summarize the differences in your PR or commit log, so
that other people know that you have taken care to ensure that nothing bad has happened.

You might also want to contact the authors of the software and confirm the changes with them.

12.20 Necessary workarounds
Sometimes it is necessary to work around bugs in software included with older versions of FreeBSD.

132

Chapter 12 Dos and Don’ts

• Some versions of make(1) were broken on at least 4.8 and 5.0 with respect to handling comparisons based on
OSVERSION. This would often lead to failures during make describe (and thus, the overall ports make index).
The workaround is to enclose the conditional comparison in spaces, e.g.:

if (${OSVERSION} > 500023)

Be aware that test-installing a port on 4.9 or 5.2 will not detect this problem.

12.21 Miscellanea
The files pkg-descr and pkg-plist should each be double-checked. If you are reviewing a port and feel they can
be worded better, do so.

Do not copy more copies of the GNU General Public License into our system, please.

Please be careful to note any legal issues! Do not let us illegally distribute software!

133

Chapter 13 A Sample Makefile

Here is a sample Makefile that you can use to create a new port. Make sure you remove all the extra comments
(ones between brackets)!

It is recommended that you follow this format (ordering of variables, empty lines between sections, etc.). This format
is designed so that the most important information is easy to locate. We recommend that you use portlint to check the
Makefile.

[the header...just to make it easier for us to identify the ports.]
New ports collection makefile for: xdvi
[the "version required" line is only needed when the PORTVERSION
variable is not specific enough to describe the port.]
Date created: 26 May 1995
[this is the person who did the original port to FreeBSD, in particular, the
person who wrote the first version of this Makefile. Remember, this should
not be changed when upgrading the port later.]
Whom: Satoshi Asami <asami@FreeBSD.org>

#
$FreeBSD$
[^^^^^^^^^ This will be automatically replaced with RCS ID string by CVS
when it is committed to our repository. If upgrading a port, do not alter
this line back to "$FreeBSD$". CVS deals with it automatically.]
#

[section to describe the port itself and the master site - PORTNAME
and PORTVERSION are always first, followed by CATEGORIES,
and then MASTER_SITES, which can be followed by MASTER_SITE_SUBDIR.
PKGNAMEPREFIX and PKGNAMESUFFIX, if needed, will be after that.
Then comes DISTNAME, EXTRACT_SUFX and/or DISTFILES, and then
EXTRACT_ONLY, as necessary.]
PORTNAME= xdvi
PORTVERSION= 18.2
CATEGORIES= print
[do not forget the trailing slash ("/")!
if you are not using MASTER_SITE_* macros]
MASTER_SITES= ${MASTER_SITE_XCONTRIB}
MASTER_SITE_SUBDIR= applications
PKGNAMEPREFIX= ja-
DISTNAME= xdvi-pl18
[set this if the source is not in the standard ".tar.gz" form]
EXTRACT_SUFX= .tar.Z

[section for distributed patches -- can be empty]
PATCH_SITES= ftp://ftp.sra.co.jp/pub/X11/japanese/
PATCHFILES= xdvi-18.patch1.gz xdvi-18.patch2.gz

[maintainer; *mandatory*! This is the person who is volunteering to
handle port updates, build breakages, and to whom a users can direct
questions and bug reports. To keep the quality of the Ports Collection
as high as possible, we no longer accept new ports that are assigned to
"ports@FreeBSD.org".]

134

Chapter 13 A Sample Makefile

MAINTAINER= asami@FreeBSD.org
COMMENT= A DVI Previewer for the X Window System

[dependencies -- can be empty]
RUN_DEPENDS= gs:${PORTSDIR}/print/ghostscript
LIB_DEPENDS= Xpm.5:${PORTSDIR}/graphics/xpm

[this section is for other standard bsd.port.mk variables that do not
belong to any of the above]
[If it asks questions during configure, build, install...]
IS_INTERACTIVE= yes
[If it extracts to a directory other than ${DISTNAME}...]
WRKSRC= ${WRKDIR}/xdvi-new
[If the distributed patches were not made relative to ${WRKSRC}, you
may need to tweak this]
PATCH_DIST_STRIP= -p1
[If it requires a "configure" script generated by GNU autoconf to be run]
GNU_CONFIGURE= yes
[If it requires GNU make, not /usr/bin/make, to build...]
USE_GMAKE= yes
[If it is an X application and requires "xmkmf -a" to be run...]
USE_IMAKE= yes
[et cetera.]

[non-standard variables to be used in the rules below]
MY_FAVORITE_RESPONSE= "yeah, right"

[then the special rules, in the order they are called]
pre-fetch:
i go fetch something, yeah

post-patch:
i need to do something after patch, great

pre-install:
and then some more stuff before installing, wow

[and then the epilogue]
.include <bsd.port.mk>

135

Chapter 14 Keeping Up
The FreeBSD Ports Collection is constantly changing. Here is some information on how to keep up.

14.1 FreshPorts
One of the easiest ways to learn about updates that have already been committed is by subscribing to FreshPorts
(http://www.FreshPorts.org/). You can select multiple ports to monitor. Maintainers are strongly encouraged to
subscribe, because they will receive notification of not only their own changes, but also any changes that any other
FreeBSD committer has made. (These are often necessary to keep up with changes in the underlying ports
framework—although it would be most polite to receive an advance heads-up from those committing such changes,
sometimes this is overlooked or just simply impractical. Also, in some cases, the changes are very minor in nature.
We expect everyone to use their best judgement in these cases.)

If you wish to use FreshPorts, all you need is an account. If your registered email address is @FreeBSD.org, you
will see the opt-in link on the right hand side of the webpages. For those of you who already have a FreshPorts
account, but are not using your @FreeBSD.org email address, just change your email to @FreeBSD.org, subscribe,
then change it back again.

FreshPorts also has a sanity test feature which automatically tests each commit to the FreeBSD ports tree. If
subscribed to this service, you will be notified of any errors which FreshPorts detects during sanity testing of your
commits.

14.2 The Web Interface to the Source Repository
It is possible to browse the files in the source repository by using a web interface. Changes that affect the entire port
system are now documented in the CHANGES (http://cvsweb.FreeBSD.org/ports/CHANGES) file. Changes that
affect individual ports are now documented in the UPDATING (http://cvsweb.FreeBSD.org/ports/UPDATING) file.
However, the definitive answer to any question is undoubtedly to read the source code of bsd.port.mk
(http://cvsweb.FreeBSD.org/ports/Mk/bsd.port.mk), and associated files.

14.3 The FreeBSD Ports Mailing List
If you maintain ports, you should consider following the FreeBSD ports mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports). Important changes to the way ports work will be
announced there, and then committed to CHANGES.

14.4 The FreeBSD Port Building Cluster on pointyhat.FreeBSD.org

One of the least-publicized strengths of FreeBSD is that an entire cluster of machines is dedicated to continually
building the Ports Collection, for each of the major OS releases and for each Tier-1 architecture. You can find the
results of these builds at package building logs and errors (http://pointyhat.FreeBSD.org/).

136

Chapter 14 Keeping Up

Individual ports are built unless they are specifically marked with IGNORE. Ports that are marked with BROKEN will
still be attempted, to see if the underlying problem has been resolved. (This is done by passing TRYBROKEN to the
port’s Makefile.)

14.5 The FreeBSD Port Distfile Survey
The build cluster is dedicated to building the latest release of each port with distfiles that have already been fetched.
However, as the Internet continually changes, distfiles can quickly go missing. The FreeBSD Ports distfiles survey
(http://people.FreeBSD.org/~fenner/portsurvey/) attempts to query every download site for every port to find out if
each distfile is still currently available. Maintainers are asked to check this report periodically, not only to speed up
the building process for users, but to help avoid wasting bandwidth of the sites that volunteer to host all these distfiles.

14.6 The FreeBSD Ports Monitoring System
Another handy resource is the FreeBSD Ports Monitoring System (http://portsmon.FreeBSD.org) (also known as
portsmon). This system comprises a database that processes information from several sources and allows its to be
browsed via a web interface. Currently, the ports Problem Reports (PRs), the error logs from the build cluster, and
individual files from the ports collection are used. In the future, this will be expanded to include the distfile survey, as
well as other sources.

To get started, you can view all information about a particular port by using the Overview of One Port
(http://portsmon.FreeBSD.org/portoverview.py).

As of this writing, this is the only resource available that maps GNATS PR entries to portnames. (PR submitters do
not always include the portname in their Synopsis, although we would prefer that they did.) So, portsmon is a good
place to start if you want to find out whether an existing port has any PRs filed against it and/or any build errors; or,
to find out if a new port that you may be thinking about creating has already been submitted.

137

