
Utilize the Android media APIs
to create dynamic mobile apps

Pro
Android Media

Developing Graphics, Music, Video and
Rich Media Apps for Smartphones and Tablets

Shawn Van Every

Pro

 i

Pro Android Media
Developing Graphics, Music, Video,

and Rich Media Apps for Smartphones
and Tablets

■ ■ ■

Shawn Van Every

ii

Pro Android Media: Developing Graphics, Music, Video, and Rich Media Apps for Smartphones
and Tablets

Copyright © 2009 by Shawn Van Every

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3267-4

ISBN-13 (electronic): 978-1-4302-3268-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Matthew Moodie
Technical Reviewers: Steve Bull and Wallace Jackson
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editor: Mary Ann Fugate
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

 iii

Contents at a Glance

■Contents ... iv

■About the Author .. viii

■About the Technical Reviewers .. ix

■Acknowledgments ... x

■Preface ... xi

■Chapter 1: Introduction to Android Imaging .. 1

■Chapter 2: Building Custom Camera Applications ... 23

■Chapter 3: Image Editing and Processing ... 47

■Chapter 4: Graphics and Touch Events .. 79

■Chapter 5: Introduction to Audio on Android ... 105

■Chapter 6: Background and Networked Audio .. 125

■Chapter 7: Audio Capture .. 151

■Chapter 8: Audio Synthesis and Analysis ... 179

■Chapter 9: Introduction to Video ... 195

■Chapter 10: Advanced Video ... 211

■Chapter 11: Video Capture ... 229

■Chapter 12: Media Consumption and Publishing Using Web Services 251

■Index .. 291

iv

Contents

■Contents at a Glance ... iii
■About the Author .. viii
■About the Technical Reviewers .. ix
■Acknowledgments ... x
■Preface ... xi

■Chapter 1: Introduction to Android Imaging .. 1

Image Capture Using the Built-In Camera Application .. 1
Returning Data from the Camera App .. 3
Capturing Larger Images ... 5
Displaying Large Images .. 6

Image Storage and Metadata .. 10
Obtaining an URI for the Image .. 11
Updating Our CameraActivity to Use MediaStore for Image Storage and to Associate Metadata 12
Retrieving Images Using the MediaStore ... 16
Creating an Image Viewing Application ... 18
Internal Metadata ... 21

Summary .. 21

■Chapter 2: Building Custom Camera Applications ... 23
Using the Camera Class .. 23

Camera Permissions .. 24
Preview Surface ... 24
Implementing the Camera ... 25
Putting It All Together .. 35

Extending the Custom Camera Application ... 38
Building a Timer-Based Camera App ... 38
Building a Time-Lapse Photography App ... 43

Summary .. 45

■ CONTENTS

 v

■Chapter 3: Image Editing and Processing ... 47
Selecting Images Using the Built-In Gallery Application ... 47
Drawing a Bitmap onto a Bitmap .. 52
Basic Image Scaling and Rotating .. 54

Enter the Matrix ... 55
Matrix Methods .. 58
Alternative to Drawing ... 64

Image Processing ... 65
ColorMatrix .. 65
Altering Contrast and Brightness ... 67
Changing Saturation .. 69

Image Compositing ... 69
Summary .. 78

■Chapter 4: Graphics and Touch Events .. 79
Canvas Drawing .. 79

Bitmap Creation ... 79
Bitmap Configuration ... 80
Creating the Canvas ... 81
Working with Paint ... 82
Drawing Shapes ... 83
Drawing Text .. 87

Finger Painting .. 93
Touch Events ... 93
Drawing on Existing Images .. 97
Saving a Bitmap-Based Canvas Drawing ... 101

Summary .. 104

■Chapter 5: Introduction to Audio on Android ... 105
Audio Playback ... 105

Supported Audio Formats .. 106
Using the Built-In Audio Player via an Intent ... 107
Creating a Custom Audio-Playing Application ... 109
MediaStore for Audio ... 115

Summary .. 123

■Chapter 6: Background and Networked Audio .. 125
Background Audio Playback ... 125

Services ... 125
Local Service plus MediaPlayer ... 129
Controlling a MediaPlayer in a Service .. 132

Networked Audio .. 137
HTTP Audio Playback ... 137
Streaming Audio via HTTP ... 143
RTSP Audio Streaming ... 150

Summary .. 150

■Chapter 7: Audio Capture .. 151
Audio Capture with an Intent .. 151
Custom Audio Capture .. 154

■ CONTENTS

vi

MediaRecorder Audio Sources ... 155
MediaRecorder Output Formats ... 155
MediaRecorder Audio Encoders ... 156
MediaRecorder Output and Recording ... 156
MediaRecorder State Machine ... 156
MediaRecorder Example .. 157
Other MediaRecorder Methods .. 162

Inserting Audio into the MediaStore ... 167
Raw Audio Recording with AudioRecord .. 167
Raw Audio Playback with AudioTrack .. 170
Raw Audio Capture and Playback Example .. 172
Summary .. 177

■Chapter 8: Audio Synthesis and Analysis ... 179
Digital Audio Synthesis ... 179

Playing a Synthesized Sound ... 180
Generating Samples ... 182

Audio Analysis ... 187
Capturing Sound for Analysis ... 188
Visualizing Frequencies ... 189

Summary .. 193

■Chapter 9: Introduction to Video ... 195
Video Playback .. 195

Supported Formats .. 195
Playback Using an Intent ... 196
Playback Using VideoView ... 197
Adding Controls with MediaController ... 199
Playback Using a MediaPlayer ... 200

Summary .. 210

■Chapter 10: Advanced Video ... 211
MediaStore for Retrieving Video ... 211

Video Thumbnails from the MediaStore ... 212
Full MediaStore Video Example ... 212

Networked Video ... 218
Supported Network Video Types .. 218
Network Video Playback .. 221

Summary .. 228

■Chapter 11: Video Capture ... 229
Recording Video Using an Intent ... 229
Adding Video Metadata ... 232
Custom Video Capture .. 235

MediaRecorder for Video ... 235
Full Custom Video Capture Example .. 246

Summary .. 250

■Chapter 12: Media Consumption and Publishing Using Web Services 251
Web Services .. 251
HTTP Requests .. 252

■ CONTENTS

 vii

JSON ... 254
Pulling Flickr Images Using JSON .. 257
Location ... 263
Pulling Flickr Images Using JSON and Location .. 266

REST ... 273
Representing Data in XML ... 273
SAX Parsing ... 274

HTTP File Uploads ... 278
Making an HTTP Request ... 278
Uploading Video to Blip.TV ... 280

Summary .. 290

■Index .. 291

■ ACKNOWLEDGMENTS

viii

About the Author

Shawn Van Every runs a mobile and streaming media consultancy to help
companies better utilize emerging technologies related to audio and video
with a focus on mobile and streaming applications. His clients have ranged
from 19 Entertainment, MoMA, and Disney to Morgan Stanley, Lehman
Brothers, and NYU Medical School, along with countless start-ups and other
small clients.

Additionally, Shawn is an Adjunct Assistant Professor of Communication in
NYU's Interactive Telecommunications Program. His teaching is varied and
includes courses on participatory and social media, programming, mobile

technologies, and interactive telephony. In 2008 he was honored with the David Payne Carter
award for excellence in teaching.

He has demonstrated, exhibited, and presented work at many conferences and technology
demonstrations, including O'Reilly's Emerging Telephony, O'Reilly's Emerging Technology, ACM
Multimedia, Vloggercon, and Strong Angel II. He was a co-organizer of the Open Media
Developers Summit, Beyond Broadcast (2006), and iPhoneDevCamp NYC.

Shawn holds a Master's degree in Interactive Telecommunications from NYU and a Bachelor's
degree in Media Study from SUNY at Buffalo.

■ CONTENTS

 ix

About the Technical
Reviewers

Steve Bull has been coding and manipulating mobile devices since his days
at Paul Allen's Interval Research in Palo Alto. As a mixed-media technology
artist and entrepreneur, for the last nine years Bull has created location-
specific narratives and games that explore the social, technological and
creative possibilities of cell phones. He can be reached at
www.stevebull.org.

Wallace Jackson is a seasoned multimedia producer and i3D programmer for Acrobat3D PDF,
Android mobile apps, iTV Design, JavaFX, and JavaTV. He has been designing rich media since
the Atari ST1040 and AMIGA 3000 and has been writing for leading multimedia publications on
new media content development since the advent of Multimedia Producer magazine nearly two
decades ago. He can be reached at www.wallacejackson.com.

http://www.stevebull.org
http://www.wallacejackson.com

■ ACKNOWLEDGMENTS

x

Acknowledgments

The idea for this book came out of my work teaching at NYU. A huge debt of gratitude is owed to
the ever encouraging faculty, staff, and students who comprise NYU’s Interactive
Telecommunications Program and who provide an endless source of inspiration. Thank you to
Red Burns for creating, fostering, and ever improving ITP. Thank you to Dan O’Sullivan for
constantly challenging me. Thank you to Tom Igoe and Dan Shiffman for showing me that it can
be done. Thank you to Rob Ryan and Marianne Petite for all of your support. Thank you to all of
the rest of the faculty, staff, and residents that I have worked with. And thank you to all of my
current and former students who have made me realize how rewarding it can be to teach and see
projects come alive; particularly Nisma Zaman, who provided very valuable early feedback.

This book would not have come close to being in existence if it weren’t for the dedicated and very
talented staff at Apress. Thank you Steve Anglin, Matthew Moodie, Corbin Collins, Mary Ann
Fugate, Adam Heath, Anne Collette, and the rest of the Apress staff for your extraordinary effort.

A huge thank you to Steve Bull and Wallace Jackson, the technical reviewers for testing every
piece of code and for filling in the blanks when I missed something. Your contributions were
invaluable!

It goes without saying but this book could not have been written if it weren’t for the folks
responsible for bringing Android into existence. Thank you to them, particularly Dave Sparks
from Google who made himself available for some very valuable fact checking and question
answering.

To all of my friends and family who were so encouraging, thank you.

Finally, of course, this book would not have happened without the support of my wonderful wife,
Karen Van Every. Thank you!

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

■ CONTENTS

 xi

Preface

Among all the things that mobile phones are and have become, one definite trend is the increase
in the media production and consumption capabilities they offer. This trend began with the
advent of the camera phone in the late 1990s, and over the last few years has dramatically taken
off with the surging popularity of smart phones. In terms of media capabilities, today’s mobile
handsets are simultaneously cameras, photo albums, camcorders, movie players, music players,
dictation machines, and potentially much more.

In particular, Android has rich capabilities available within the SDK that this book seeks to
illuminate with discussion and examples so that you can get a jump-start on developing the next
generation media applications. It walks you through examples that not only show how to display
and play media but also allow you to take advantage of the camera, microphone, and video
capture capabilities. It is organized more or less into four sections: The first four chapters deal
with imaging; the second four handle audio; and the final four are about video and harnessing
web services for finding and sharing media.

The examples presented within get a bit more challenging as the book progresses, as the
amount of work that needs to be done to develop applications that harness the capabilities
increases. Regardless, with some familiarity with Android application development you, the
reader should be able to jump to any section and utilize the discussion and example code to
create an application that utilizes the capabilities presented.

The examples are generally in the form of a full class that extends an Activity targeted to run
with the SDK version 4 (Android 1.6) or later. The examples also include the contents of an XML
layout file and in many cases the contents of the AndroidManifest.xml file. It is assumed that you
will be using Eclipse (Galileo or later) with the ADT plugin (0.9.9 or later) and using the Android
SDK (r7 or later). Since much of the book is geared toward audio and video, I advise that you run
the examples on a handset (running Android 1.6 or later) rather than on the emulator, because in
many cases the examples do not function on the emulator.

I am excited to see what the future of media applications on mobile devices is. It is my hope
that through this book I can help you to create and define that future. I look forward to seeing
your Android media applications in action.

With all that out of the way, let’s get started!

■ ACKNOWLEDGMENTS

xii

1

1

 Chapter

Introduction to Android
Imaging
In this chapter, we’ll look at the basics of image capture and storage on Android. We’ll

explore the built-in capabilities that Android provides first and in later chapters move

into more custom software. The built-in capabilities for image capture and storage

provide a good introduction to the overall media capabilities on Android and pave the

way toward what we’ll be doing in later chapters with audio and video.

With that in mind, we’ll start with how to harness the built-in Camera application and

move on to utilizing the MediaStore, the built-in media and metadata storage

mechanism. Along the way, we’ll look at ways to reduce memory usage and leverage

EXIF, the standard in the consumer electronics and image processing software worlds

for sharing metadata.

Image Capture Using the Built-In Camera Application
With mobile phones quickly becoming mobile computers, they have in many ways

replaced a whole variety of consumer electronics. One of the earliest non-phone related

hardware capabilities added to mobile phones was a camera. Currently, it seems

someone would be hard pressed to buy a mobile phone that doesn’t include a camera.

Of course, Android-based phones are no exception; from the beginning, the Android

SDK has supported accessing the built-in hardware camera on phones to capture

images.

The easiest and most straightforward way to do many things on Android is to leverage

an existing piece of software on the device by using an intent. An intent is a core

component of Android that is described in the documentation as a “description of an

action to be performed.” In practice, intents are used to trigger other applications to do

something or to switch between activities in a single application.

All stock Android devices with the appropriate hardware (camera) come with the Camera

application. The Camera application includes an intent filter, which allows developers to

1

CHAPTER 1: Introduction to Android Imaging 2

offer image capture capabilities on a par with the Camera application without having to

build their own custom capture routines.

An intent filter is a means for a programmer of an application to specify that their

application offers a specific capability. Specifying an intent filter in the

AndroidManifest.xml file of an application tells Android that this application and, in

particular, the activity that contains the intent filter will perform the specified task, on

command.

The Camera application has the following intent filter specified in its manifest file. The

intent filter shown here is contained within the “Camera” activity tags.

<intent-filter>
 <action android:name="android.media.action.IMAGE_CAPTURE" />
 <category android:name="android.intent.category.DEFAULT" />
</intent-filter>

In order to utilize the Camera application via an intent, we simply have to construct an

intent that will be caught by the foregoing filter.

Intent i = new Intent("android.media.action.IMAGE_CAPTURE");

In practice, we probably don’t want to create the intent with that action string directly. In

this case, a constant is specified in the MediaStore class, ACTION_IMAGE_CAPTURE. The

reason we should use the constant rather than the string itself is that if the string

happens to change, it is likely that the constant will change as well, thereby making our

call a bit more future-proof than it would otherwise be.

Intent i = new Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE);
startActivity(i);

Using this intent in a basic Android activity will cause the default Camera application to

launch in still picture mode, as shown in Figure 1–1.

Figure 1–1. The built-in Camera application as called from an intent shown running in an emulator

CHAPTER 1: Introduction to Android Imaging 3

Returning Data from the Camera App
Of course, simply capturing an image using the built-in camera application won’t

actually be useful without having the Camera application return the picture to the calling

activity when one is captured. This can be accomplished by substituting the

startActivity method in our activity with the startActivityForResult method. Using

this method allows us the ability to access the data returned from the Camera

application, which happens to be the image that was captured by the user as a Bitmap.

Here is a basic example:

package com.apress.proandroidmedia.ch1.cameraintent;

import android.app.Activity;
import android.content.Intent;
import android.graphics.Bitmap;
import android.os.Bundle;
import android.widget.ImageView;

public class CameraIntent extends Activity {

 final static int CAMERA_RESULT = 0;

 ImageView imv;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 Intent i = new Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE);
 startActivityForResult(i, CAMERA_RESULT);
 }

 protected void onActivityResult(int requestCode, int resultCode, Intent intent) {
 super.onActivityResult(requestCode, resultCode, intent);

 if (resultCode == RESULT_OK)
 {
 Get Bundle extras = intent.getExtras();
 Bitmap bmp = (Bitmap) extras.get("data");

 imv = (ImageView) findViewById(R.id.ReturnedImageView);
 imv.setImageBitmap(bmp);
 }
 }
}

It requires the following in the project’s layout/main.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

http://schemas.android.com/apk/res/android

CHAPTER 1: Introduction to Android Imaging 4

 <ImageView android:id="@+id/ReturnedImageView" android:layout_width="wrap_content"
android:layout_height="wrap_content"></ImageView>
</LinearLayout>

To complete the foregoing example, here are the contents of AndroidManifest.xml.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0" package="com.apress.proandroidmedia.ch1.cameraintent">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".CameraIntent"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="4" />
</manifest>

In this example, the image is returned from the Camera application in an extra passed

through the intent that is sent to our calling activity in the onActivityResult method. The

name of the extra is "data" and it contains a Bitmap object, which needs to be cast from

a generic Object.

// Get Extras from the intent
Bundle extras = intent.getExtras();

// Get the returned image from that extra
Bitmap bmp = (Bitmap) extras.get("data");

In our layout XML (layout/main.xml) file, we have an ImageView. An ImageView is an

extension of a generic View, which supports the display of images. Since we have an

ImageView with the id ReturnedImageView specified, in our activity we need to obtain a

reference to that and set its Bitmap through its setImageBitmap method to be our

returned image. This enables the user of our application to view the image that was

captured.

To get a reference to the ImageView object, we use the standard findViewById method

specified in the Activity class. This method allows us to programmatically reference

elements specified in the layout XML file that we are using via setContentView by

passing in the id of the element. In the foregoing example, the ImageView object is

specified in the XML as follows:

<ImageView android:id="@+id/ReturnedImageView" android:layout_width="wrap_content"
android:layout_height="wrap_content"></ImageView>

To reference the ImageView and tell it to display the Bitmap from the Camera, we use

the following code.

imv = (ImageView) findViewById(R.id.ReturnedImageView);imv.setImageBitmap(bmp);

When you run this example, you’ll probably notice that the resulting image is small. (On

my phone, it is 121 pixels wide by 162 pixels tall. Other devices have different default

http://schemas.android.com/apk/res/android

CHAPTER 1: Introduction to Android Imaging 5

sizes.) This is not a bug—rather, it is by design. The Camera application, when triggered

via an intent, does not return the full-size image back to the calling activity. In general,

doing so would require quite a bit of memory, and the mobile device is generally

constrained in this respect. Instead the Camera application returns a small thumbnail

image in the returned intent, as shown in Figure 1–2.

Figure 1–2. The resulting 121x162 pixel image displayed in our ImageView

Capturing Larger Images
To get around the size limitation, starting with Android 1.5, on most devices we can pass

an extra into the intent that is used to trigger the Camera application. The name for this

extra is specified in the MediaStore class as a constant called EXTRA_OUTPUT. The value

(extras take the form of name-value pairs) for this extra indicates to the Camera

application where you would like the captured image saved in the form of an URI.

The following code snippet specifies to the Camera application that the image should be

saved to the SD card on a device with a file name of myfavoritepicture.jpg.

String imageFilePath = Environment.getExternalStorageDirectory().getAbsolutePath()
 + "/myfavoritepicture.jpg";
File imageFile = new File(imageFilePath);
Uri imageFileUri = Uri.fromFile(imageFile);

Intent i = new Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE);
i.putExtra(android.provider.MediaStore.EXTRA_OUTPUT, imageFileUri);
startActivityForResult(i, CAMERA_RESULT);

CHAPTER 1: Introduction to Android Imaging 6

NOTE: The foregoing code snippet for creating the URI to the image file could be simplified to the
following: imageFileUri =
Uri.parse("file:///sdcard/myfavoritepicture.jpg");

In practice, though, using the method shown will be more device-independent and future-proof
should the SD card–naming conventions or the URI syntax for the local filesystem change.

Displaying Large Images
Loading and displaying an image has significant memory usage implications. For

instance, the HTC G1 phone has a 3.2-megapixel camera. A 3.2-megapixel camera

typically captures images at 2048 pixels by 1536 pixels. Displaying a 32-bit image of

that size would take more than100663kb or approximately 13MB of memory. While this

may not guarantee that our application will run out of memory, it will certainly make it

more likely.

Android offers us a utility class called BitmapFactory, which provides a series of static

methods that allow the loading of Bitmap images from a variety of sources. For our

needs, we’ll be loading it from a file to display in our original activity. Fortunately, the

methods available in BitmapFactory take in a BitmapFactory.Options class, which

allows us to define how the Bitmap is read into memory. Specifically, we can set the

sample size that the BitmapFactory should use when loading an image. Indicating the

inSampleSize parameter in BitmapFactory.Options indicates that the resulting Bitmap

image will be that fraction of the size once loaded. For instance, setting the

inSampleSize to 8 as I do here would yield an image that is 1/8 the size of the original

image.

BitmapFactory.Options bmpFactoryOptions = new BitmapFactory.Options();
bmpFactoryOptions.inSampleSize = 8;
Bitmap bmp = BitmapFactory.decodeFile(imageFilePath, bmpFactoryOptions);
imv.setImageBitmap(bmp);

This is a quick way to load up a large image but doesn’t really take into account the

image’s original size nor the size of the screen. It would be better if we scaled the image

to something that would fit nicely on our screen.

The segments of code that follow illustrate how to use the dimensions of the display to

determine the amount of down sampling that should occur when loading the image.

When we use these methods, the image is assured of filling the bounds of the display as

much as possible. If, however, the image is only going to be shown at 100 pixels in any

one dimension, that value should be used instead of the display dimensions, which we

obtain as follows.

file:///sdcard/myfavoritepicture.jpg

CHAPTER 1: Introduction to Android Imaging 7

Display currentDisplay = getWindowManager().getDefaultDisplay();
int dw = currentDisplay.getWidth();
int dh = currentDisplay.getHeight();

To determine the overall dimensions of the image, which are needed for the calculation,

we use the BitmapFactory and BitmapFactory.Options with the

BitmapFactory.Options.inJustDecodeBounds variable set to true. This tells the

BitmapFactory class to just give us the bounds of the image rather than attempting to

decode the image itself. When we use this method, the

BitmapFactory.Options.outHeight and BitmapFactory.Options.outWidth variables are

filled in.

// Load up the image's dimensions not the image itself
BitmapFactory.Options bmpFactoryOptions = new BitmapFactory.Options();
bmpFactoryOptions.inJustDecodeBounds = true;
Bitmap bmp = BitmapFactory.decodeFile(imageFilePath, bmpFactoryOptions);

int heightRatio = (int)Math.ceil(bmpFactoryOptions.outHeight/(float)dh);
int widthRatio = (int)Math.ceil(bmpFactoryOptions.outWidth/(float)dw);

Log.v("HEIGHTRATIO",""+heightRatio);
Log.v("WIDTHRATIO",""+widthRatio);

Simple division of the dimensions of the image by the dimensions of the display tells us

the ratio. We can then choose whether to use the height ratio or the width ratio,

depending on which is greater. Simply using that ratio as the

BitmapFactory.Options.inSampleSize variable will yield an image that should be loaded

into memory with dimensions close to the same dimensions that we need—in this case,

close to the dimensions of the display itself.

// If both of the ratios are greater than 1,
// one of the sides of the image is greater than the screen
if (heightRatio > 1 && widthRatio > 1)
{
 if (heightRatio > widthRatio)
 {
 // Height ratio is larger, scale according to it
 bmpFactoryOptions.inSampleSize = heightRatio;
 }
 else
 {
 // Width ratio is larger, scale according to it
 bmpFactoryOptions.inSampleSize = widthRatio;
 }
}

// Decode it for real
bmpFactoryOptions.inJustDecodeBounds = false;
bmp = BitmapFactory.decodeFile(imageFilePath, bmpFactoryOptions);

Here is the code for a full example that uses the built-in camera via an intent and

displays the resulting picture. Figure 1–3 shows a resulting screen sized image as

generated by this example.

CHAPTER 1: Introduction to Android Imaging 8

package com.apress.proandroidmedia.ch1.sizedcameraintent;

import java.io.File;

import android.app.Activity;
import android.content.Intent;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.net.Uri;
import android.os.Bundle;
import android.os.Environment;
import android.util.Log;
import android.view.Display;
import android.widget.ImageView;

public class SizedCameraIntent extends Activity {

 final static int CAMERA_RESULT = 0;

 ImageView imv;
 String imageFilePath;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 imageFilePath = Environment.getExternalStorageDirectory().getAbsolutePath() +
 "/myfavoritepicture.jpg";
 File imageFile = new File(imageFilePath);
 Uri imageFileUri = Uri.fromFile(imageFile);

 Intent i = new Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE);
 i.putExtra(android.provider.MediaStore.EXTRA_OUTPUT, imageFileUri);
 startActivityForResult(i, CAMERA_RESULT);
 }

 protected void onActivityResult(int requestCode, int resultCode, Intent intent) {
 super.onActivityResult(requestCode, resultCode, intent);

 if (resultCode == RESULT_OK)
 {
 // Get a reference to the ImageView
 imv = (ImageView) findViewById(R.id.ReturnedImageView);

 Display currentDisplay = getWindowManager().getDefaultDisplay();
 int dw = currentDisplay.getWidth();
 int dh = currentDisplay.getHeight();

 // Load up the image's dimensions not the image itself
 BitmapFactory.Options bmpFactoryOptions = new BitmapFactory.Options();
 bmpFactoryOptions.inJustDecodeBounds = true;
 Bitmap bmp = BitmapFactory.decodeFile(imageFilePath, bmpFactoryOptions);

 int heightRatio = (int)Math.ceil(bmpFactoryOptions.outHeight/(float)dh);
 int widthRatio = (int)Math.ceil(bmpFactoryOptions.outWidth/(float)dw);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 1: Introduction to Android Imaging 9

 Log.v("HEIGHTRATIO",""+heightRatio);
 Log.v("WIDTHRATIO",""+widthRatio);

 // If both of the ratios are greater than 1,
 // one of the sides of the image is greater than the screen
 if (heightRatio > 1 && widthRatio > 1)
 {
 if (heightRatio > widthRatio)
 {
 // Height ratio is larger, scale according to it
 bmpFactoryOptions.inSampleSize = heightRatio;
 }
 else
 {
 // Width ratio is larger, scale according to it
 bmpFactoryOptions.inSampleSize = widthRatio;
 }
 }

 // Decode it for real
 bmpFactoryOptions.inJustDecodeBounds = false;
 bmp = BitmapFactory.decodeFile(imageFilePath, bmpFactoryOptions);

 // Display it
 imv.setImageBitmap(bmp);
 }
 }
}

The foregoing code requires the following layout/main.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ImageView android:id="@+id/ReturnedImageView" android:layout_width="wrap_content"
android:layout_height="wrap_content"></ImageView>
</LinearLayout>

http://schemas.android.com/apk/res/android

CHAPTER 1: Introduction to Android Imaging 10

Figure 1–3. The resulting screen-sized image displayed in our ImageView

Image Storage and Metadata
Android has a standard way to share data across applications. The classes responsible

for this are called content providers. Content providers offer a standard interface for

the storage and retrieval of various types of data.

The standard content provider for images (as well as audio and video) is the MediaStore.

The MediaStore allows the setting of the file in a standard location on the device and has

facilities for storing and retrieving metadata about that file. Metadata is data about data;

it could include information about the data in the file itself, such as its size and name,

but the MediaStore also allows setting for a wide variety of additional data, such as title,

description, latitude, and longitude.

To start utilizing the MediaStore, let’s change our SizedCameraIntent activity so that it

uses it for image storage and metadata association instead of storing the image in an

arbitrary file on the SD card.

CHAPTER 1: Introduction to Android Imaging 11

Obtaining an URI for the Image
To obtain the standard location for storage of images, we first need to get a reference to

the MediaStore. To do this, we use a content resolver. A content resolver is the means

to access a content provider, which the MediaStore is.

By passing a specific URI, the content resolver knows to provide an interface to the

MediaStore as the content provider. Since we are inserting a new image, the method we

are using is insert and the URI that we should use is contained in a constant in the

android.provider.MediaStore.Images.Media class called EXTERNAL_CONTENT_URI. This

means that we want to store the image on the primary external volume of the device,

generally the SD card. If we wanted to store it instead in the internal memory of the

device, we could use INTERNAL_CONTENT_URI. Generally, though, for media storage, as

images, audio, and video can be rather large in size, you’ll want to use the

EXTERNAL_CONTENT_URI.

The insert call shown previously returns an URI, which we can use to write the image

file’s binary data to. In our case, as we are doing in the CameraActivity, we want to

simply pass that as an extra in the intent that triggers the Camera application.

Uri imageFileUri = getContentResolver().insert(
 Media.EXTERNAL_CONTENT_URI, new ContentValues());

Intent i = new Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE);
i.putExtra(android.provider.MediaStore.EXTRA_OUTPUT, imageFileUri);
startActivityForResult(i, CAMERA_RESULT);

You’ll notice that we are also passing in a new ContentValues object. The ContentValues

object is the metadata that we want to associate with the record when it is created. In

the preceding example, we are passing in an empty ContentValues object.

Prepopulating Associated Metadata
If we wanted to pre-fill the metadata, we would use the put method to add some data

into it. ContentValues takes data as name-value pairs. The names are standard and

defined as constants in the android.provider.MediaStore.Images.Media class. (Some of

the constants are actually located in the android.provider.MediaStore.MediaColumns

interface, which the Media class implements.)

// Save the name and description of an image in a ContentValues map.
ContentValues contentValues = new ContentValues(3);
contentValues.put(Media.DISPLAY_NAME, "This is a test title");
contentValues.put(Media.DESCRIPTION, "This is a test description");
contentValues.put(Media.MIME_TYPE, "image/jpeg");

// Add a new record without the bitmap, but with some values set.
// insert() returns the URI of the new record.
Uri imageFileUri = getContentResolver().insert(Media.EXTERNAL_CONTENT_URI,
contentValues);

CHAPTER 1: Introduction to Android Imaging 12

Again, what is returned by this call is a URI that can be passed to the Camera

application via the intent to specify the location that the image should be saved in.

If you output this URI via a Log command, it should look something like this:

content://media/external/images/media/16

The first thing you might notice is that it looks like a regular URL, such as you would use

in a web browser; but instead of starting with something like http, which is the protocol

that delivers web pages, it starts with content. In Android, when a URI starts with

content, it is one that is used with a content provider (such as MediaStore).

Retrieving the Saved Image
The same URI obtained previously for saving the image can be used as the means to

access the image as well. Instead of passing in the full path to the file to our

BitmapFactory, we can instead open an InputStream for the image via the content

resolver and pass that to BitmapFactory.

Bitmap bmp = BitmapFactory.decodeStream(
getContentResolver().openInputStream(imageFileUri), null, bmpFactoryOptions);

Adding Metadata Later
If we want to associate more metadata with the image after we have captured it into the

MediaStore, we can use the update method of our content resolver. This is very similar to

the insert method we used previously, except we are accessing the image file directly

with the URI to the image file.

// Update the record with Title and Description
ContentValues contentValues = new ContentValues(3);
contentValues.put(Media.DISPLAY_NAME, "This is a test title");
contentValues.put(Media.DESCRIPTION, "This is a test description");
getContentResolver().update(imageFileUri,contentValues,null,null);

Updating Our CameraActivity to Use MediaStore for Image
Storage and to Associate Metadata
The following is an update to our previous example, which saves our image in the

MediaStore and then presents us with an opportunity to add a title and description. In

addition, this version has several UI elements whose visibility is managed based upon

the progress of the user in the application.

package com.apress.proandroidmedia.ch1.mediastorecameraintent;

import java.io.FileNotFoundException;
import android.app.Activity;
import android.content.Intent;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.net.Uri;

CHAPTER 1: Introduction to Android Imaging 13

import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.TextView;
import android.widget.Toast;
import android.provider.MediaStore.Images.Media;
import android.content.ContentValues;

public class MediaStoreCameraIntent extends Activity {

 final static int CAMERA_RESULT = 0;

 Uri imageFileUri;

 // User interface elements, specified in res/layout/main.xml
 ImageView returnedImageView;
 Button takePictureButton;
 Button saveDataButton;
 TextView titleTextView;
 TextView descriptionTextView;
 EditText titleEditText;
 EditText descriptionEditText;

We are including a couple of user interface elements. They are specified as normal in

layout/main.xml and their objects are declared in the foregoing code.

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 // Set the content view to be what is defined in the res/layout/main.xml file
 setContentView(R.layout.main);

 // Get references to UI elements
 returnedImageView = (ImageView) findViewById(R.id.ReturnedImageView);
 takePictureButton = (Button) findViewById(R.id.TakePictureButton);
 saveDataButton = (Button) findViewById(R.id.SaveDataButton);
 titleTextView = (TextView) findViewById(R.id.TitleTextView);
 descriptionTextView = (TextView) findViewById(R.id.DescriptionTextView);
 titleEditText = (EditText) findViewById(R.id.TitleEditText);
 descriptionEditText = (EditText) findViewById(R.id.DescriptionEditText);

In the standard activity onCreate method, after we call setContentView, we instantiate

the user interface elements that we’ll need control over in code. We have to cast each

one to the appropriate type after obtaining it via the findViewById method.

 // Set all except takePictureButton to not be visible initially
 // View.GONE is invisible and doesn't take up space in the layout
 returnedImageView.setVisibility(View.GONE);
 saveDataButton.setVisibility(View.GONE);
 titleTextView.setVisibility(View.GONE);
 descriptionTextView.setVisibility(View.GONE);
 titleEditText.setVisibility(View.GONE);
 descriptionEditText.setVisibility(View.GONE);

CHAPTER 1: Introduction to Android Imaging 14

Continuing on, we set all of the user interface elements to not be visible and not to take

up space in the layout. View.GONE is the constant that can be used in the setVisibility

method to do this. The other option, View.INVISIBLE, hides them but they still take up

space in the layout.

 // When the Take Picture Button is clicked
 takePictureButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v)
 {
 // Add a new record without the bitmap
 // returns the URI of the new record
 imageFileUri = getContentResolver().insert(Media.EXTERNAL_CONTENT_URI,
new ContentValues());

 // Start the Camera App
 Intent i = new Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE);
 i.putExtra(android.provider.MediaStore.EXTRA_OUTPUT, imageFileUri);
 startActivityForResult(i, CAMERA_RESULT);
 }
 });

In the OnClickListener for the takePictureButton, we create the standard intent for the

built-in camera and call startActivityForResult. Doing it here rather than directly in the

onCreate method makes for a slightly nicer user experience.

 saveDataButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v)
 {
 // Update the MediaStore record with Title and Description
 ContentValues contentValues = new ContentValues(3);
 contentValues.put(Media.DISPLAY_NAME,
titleEditText.getText().toString());
 contentValues.put(Media.DESCRIPTION,
descriptionEditText.getText().toString());
 getContentResolver().update(imageFileUri,contentValues,null,null);

 // Tell the user
 Toast bread = Toast.makeText(MediaStoreCameraIntent.this, "Record
Updated", Toast.LENGTH_SHORT);
 bread.show();

 // Go back to the initial state, set Take Picture Button Visible
 // hide other UI elements
 takePictureButton.setVisibility(View.VISIBLE);

 returnedImageView.setVisibility(View.GONE);
 saveDataButton.setVisibility(View.GONE);
 titleTextView.setVisibility(View.GONE);
 descriptionTextView.setVisibility(View.GONE);
 titleEditText.setVisibility(View.GONE);
 descriptionEditText.setVisibility(View.GONE);
 }
 });
 }

CHAPTER 1: Introduction to Android Imaging 15

The OnClickListener for the saveDataButton, which is visible once the Camera

application has returned an image, does the work of associating the metadata with the

image. It takes the values that the user has typed into the various EditText elements

and creates a ContentValues object that is used to update the record for this image in

the MediaStore.

 protected void onActivityResult(int requestCode, int resultCode, Intent intent)
 {
 super.onActivityResult(requestCode, resultCode, intent);

 if (resultCode == RESULT_OK)
 {
 // The Camera App has returned

 // Hide the Take Picture Button
 takePictureButton.setVisibility(View.GONE);

 // Show the other UI Elements
 saveDataButton.setVisibility(View.VISIBLE);
 returnedImageView.setVisibility(View.VISIBLE);
 titleTextView.setVisibility(View.VISIBLE);
 descriptionTextView.setVisibility(View.VISIBLE);
 titleEditText.setVisibility(View.VISIBLE);
 descriptionEditText.setVisibility(View.VISIBLE);

 // Scale the image
 int dw = 200; // Make it at most 200 pixels wide
 int dh = 200; // Make it at most 200 pixels tall

 try
 {
 // Load up the image's dimensions not the image itself
 BitmapFactory.Options bmpFactoryOptions = new BitmapFactory.Options();
 bmpFactoryOptions.inJustDecodeBounds = true;
 Bitmap bmp = BitmapFactory.decodeStream(getContentResolver().
openInputStream(imageFileUri), null, bmpFactoryOptions);

 int heightRatio = (int)Math.ceil(bmpFactoryOptions.outHeight/(float)dh);
 int widthRatio = (int)Math.ceil(bmpFactoryOptions.outWidth/(float)dw);

 Log.v("HEIGHTRATIO",""+heightRatio);
 Log.v("WIDTHRATIO",""+widthRatio);

 // If both of the ratios are greater than 1,
 // one of the sides of the image is greater than the screen
 if (heightRatio > 1 && widthRatio > 1)
 {
 if (heightRatio > widthRatio)
 {
 // Height ratio is larger, scale according to it
 bmpFactoryOptions.inSampleSize = heightRatio;
 }
 else
 {
 // Width ratio is larger, scale according to it
 bmpFactoryOptions.inSampleSize = widthRatio;
 }

CHAPTER 1: Introduction to Android Imaging 16

 }

 // Decode it for real
 bmpFactoryOptions.inJustDecodeBounds = false;
 bmp = BitmapFactory.decodeStream(getContentResolver().
openInputStream(imageFileUri), null, bmpFactoryOptions);

 // Display it
 returnedImageView.setImageBitmap(bmp);
 }
 catch (FileNotFoundException e)
 {
 Log.v("ERROR",e.toString());
 }
 }
 }
}

Here is the layout XML file, “main.xml” that is used in the above example.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ImageView android:id="@+id/ReturnedImageView" android:layout_width="wrap_content"
android:layout_height="wrap_content"></ImageView>
 <TextView android:layout_width="wrap_content" android:layout_height="wrap_content"
android:text="Title:" android:id="@+id/TitleTextView"></TextView>
 <EditText android:layout_height="wrap_content" android:id="@+id/TitleEditText"
android:layout_width="fill_parent"></EditText>
 <TextView android:layout_width="wrap_content" android:layout_height="wrap_content"
android:text="Description" android:id="@+id/DescriptionTextView"></TextView>
 <EditText android:layout_height="wrap_content" android:layout_width="fill_parent"
android:id="@+id/DescriptionEditText"></EditText>
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
android:id="@+id/TakePictureButton" android:text="Take Picture"></Button>
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
android:id="@+id/SaveDataButton" android:text="Save Data"></Button>
</LinearLayout>

As in previous examples, the onActivityResult method is triggered when the Camera

application returns. The newly created image is decoded into a Bitmap and displayed. In

this version, the relevant user interface elements are also managed.

Retrieving Images Using the MediaStore
One example that shows the power of using shared content providers on Android is the

ease with which we can use them to create something like a gallery application.

Because the content provider, in this case the MediaStore, is shared between

applications, we don’t need to actually create a camera application and a means to

store images in order to make our own application to view images. Since most

http://schemas.android.com/apk/res/android

CHAPTER 1: Introduction to Android Imaging 17

applications will use the default MediaStore, we can leverage that to build our own

gallery application.

Selecting from the MediaStore is very straightforward. We use the same URI that we

used to create a new record, to select records from it.

Media.EXTERNAL_CONTENT_URI

The MediaStore and, in fact, all content providers operate in a similar manner to a

database. We select records from them and are given a Cursor object, which we can

use to iterate over the results.

In order to do the selection in the first place, we need to create a string array of the

columns we would like returned. The standard columns for images in the MediaStore are

represented in the MediaStore.Images.Media class.

String[] columns = { Media.DATA, Media._ID, Media.TITLE, Media.DISPLAY_NAME };

To perform the actual query, we can use the activity managedQuery method. The first

argument is the URI, followed by the array of column names, followed by a limiting WHERE

clause, any arguments for the WHERE clause, and, lastly, an ORDER BY clause.

The following would select records that were created within the last hour and order them

oldest to most recent.

First we create a variable called oneHourAgo, which holds the number of seconds

elapsed from January 1, 1970 as of one hour ago. System.currenTimeMillis() returns

the number of milliseconds from the same date, so dividing by 1000 gives us the

number of seconds. If we subtract 60 minutes * 60 seconds, we’ll get the value as of

one hour ago.

long oneHourAgo = System.currentTimeMillis()/1000 - (60 * 60);

We then place that value in an array of strings that we can use as the arguments for the

WHERE clause.

String[] whereValues = {""+oneHourAgo};

Then we choose the columns we want returned.

String[] columns = { Media.DATA, Media._ID, Media.TITLE, Media.DISPLAY_NAME,
Media.DATE_ADDED };

And finally we perform the query. The WHERE clause has a ?, which will get substituted

with the value in the next parameter. If there are multiple ?, there must be multiple values

in the array passed in. The ORDER BY clause used here specifies that the data returned

will be ordered by the date added in ascending order.

cursor = managedQuery(Media.EXTERNAL_CONTENT_URI, columns, Media.DATE_ADDED + " > ?",
whereValues, Media.DATE_ADDED + " ASC");

You can, of course, pass in null for the last three arguments if you want all records

returned.

Cursor cursor = managedQuery(Media.EXTERNAL_CONTENT_URI, columns, null, null, null);

The cursor returned can tell us the index of each of the columns as selected.

CHAPTER 1: Introduction to Android Imaging 18

displayColumnIndex = cursor.getColumnIndexOrThrow(MediaStore.Images.Media.DATA);

We need the index in order to select that field out of the cursor. First we make sure that

the cursor is valid and has some results by calling the moveToFirst method. This method

will be false if the cursor isn’t holding any results. We use one of several methods in the

Cursor class to select the actual data. The method we choose is dependent on what

type the data is, getString for strings, getInt for integers, and so on.

if (cursor.moveToFirst()) {
 String displayName = cursor.getString(displayColumnIndex);
}

Creating an Image Viewing Application
What follows is a full example that queries the MediaStore to find images and presents

them to the user one after the other in the form of a slideshow.

package com.apress.proandroidmedia.ch1.mediastoregallery;

import android.app.Activity;
import android.database.Cursor;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Bundle;
import android.provider.MediaStore;
import android.provider.MediaStore.Images.Media;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.ImageButton;
import android.widget.TextView;

public class MediaStoreGallery extends Activity {

 public final static int DISPLAYWIDTH = 200;
 public final static int DISPLAYHEIGHT = 200;

Instead of using the size of the screen to load and display the images, we’ll use the

foregoing constants to decide how large to display them.

 TextView titleTextView;
 ImageButton imageButton;

In this example, we are using an ImageButton instead of an ImageView. This gives us

both the functionality of a Button (which can be clicked) and an ImageView (which can

display an image).

 Cursor cursor;
 Bitmap bmp;
 String imageFilePath;
 int fileColumn;
 int titleColumn;
 int displayColumn;

 @Override
 public void onCreate(Bundle savedInstanceState) {

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 1: Introduction to Android Imaging 19

 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 titleTextView = (TextView) this.findViewById(R.id.TitleTextView);
 imageButton = (ImageButton) this.findViewById(R.id.ImageButton);

Here we specify which columns we want returned. This must be in the form of an array

of strings. We pass that array into the managedQuery method on the next line.

 String[] columns = { Media.DATA, Media._ID, Media.TITLE, Media.DISPLAY_NAME };
 cursor = managedQuery(Media.EXTERNAL_CONTENT_URI, columns, null, null, null);

We’ll need to know the index for each of the columns we are looking to get data out of

from the Cursor object. In this example, we are switching from Media.DATA to

MediaStore.Images.Media.DATA. This is just to illustrate that they are the same.

Media.DATA is just shorthand that we can use since we have an import statement that

encompasses it: android.provider.MediaStore.Images.Media.

 fileColumn = cursor.getColumnIndexOrThrow(MediaStore.Images.Media.DATA);
 titleColumn = cursor.getColumnIndexOrThrow(MediaStore.Images.Media.TITLE);
 displayColumn =
cursor.getColumnIndexOrThrow(MediaStore.Images.Media.DISPLAY_NAME);

After we run the query and have a resulting Cursor object, we call moveToFirst on it to

make sure that it contains results.

 if (cursor.moveToFirst()) {
 //titleTextView.setText(cursor.getString(titleColumn));
 titleTextView.setText(cursor.getString(displayColumn));

 imageFilePath = cursor.getString(fileColumn);
 bmp = getBitmap(imageFilePath);

 // Display it
 imageButton.setImageBitmap(bmp);
 }

We then specify a new OnClickListener for imageButton, which calls the moveToNext

method on the Cursor object. This iterates through the result set, pulling up and

displaying each image that was returned.

 imageButton.setOnClickListener(
 new OnClickListener() {
 public void onClick(View v) {
 if (cursor.moveToNext())
 {
 //titleTextView.setText(cursor.getString(titleColumn));
 titleTextView.setText(cursor.getString(displayColumn));

 imageFilePath = cursor.getString(fileColumn);
 bmp = getBitmap(imageFilePath);
 imageButton.setImageBitmap(bmp);
 }
 }
 }
);
 }

CHAPTER 1: Introduction to Android Imaging 20

Here is a method called getBitmap, which encapsulates the image scaling and loading

that we need to do in order to display these images without running into memory

problems as discussed earlier in the chapter.

 private Bitmap getBitmap(String imageFilePath)
 {
 // Load up the image's dimensions not the image itself
 BitmapFactory.Options bmpFactoryOptions = new BitmapFactory.Options();
 bmpFactoryOptions.inJustDecodeBounds = true;
 Bitmap bmp = BitmapFactory.decodeFile(imageFilePath, bmpFactoryOptions);

 int heightRatio = (int) Math.ceil(bmpFactoryOptions.outHeight
 / (float) DISPLAYHEIGHT);
 int widthRatio = (int) Math.ceil(bmpFactoryOptions.outWidth
 / (float) DISPLAYWIDTH);

 Log.v("HEIGHTRATIO", "" + heightRatio);
 Log.v("WIDTHRATIO", "" + widthRatio);

 // If both of the ratios are greater than 1, one of the sides of
 // the image is greater than the screen
 if (heightRatio > 1 && widthRatio > 1) {
 if (heightRatio > widthRatio) {
 // Height ratio is larger, scale according to it
 bmpFactoryOptions.inSampleSize = heightRatio;
 } else {
 // Width ratio is larger, scale according to it
 bmpFactoryOptions.inSampleSize = widthRatio;
 }
 }

 // Decode it for real
 bmpFactoryOptions.inJustDecodeBounds = false;
 bmp = BitmapFactory.decodeFile(imageFilePath, bmpFactoryOptions);

 return bmp;
 }
}

The following is the layout XML that goes along with the foregoing activity. It should be

put in the res/layout/main.xml file.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<ImageButton android:layout_width="wrap_content" android:layout_height="wrap_content"
android:id="@+id/ImageButton"></ImageButton>
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/TitleTextView"
 android:text="Image Title"/>
</LinearLayout>

http://schemas.android.com/apk/res/android

CHAPTER 1: Introduction to Android Imaging 21

Internal Metadata
EXIF, which stands for exchangeable image file format, is a standard way of saving

metadata within an image file. Many digital cameras and desktop applications support

the use of EXIF data. Since EXIF data is actually a part of the file, it shouldn’t get lost in

the transfer of the file from one place to another. For instance, when copying a file from

the SD card of the Android device to a home computer, this data would remain intact. If

you open the file in an application such as iPhoto, the data will be present.

In general, EXIF data is very technically orientated; most of the tags in the standard

relate to data about the capturing of the image itself, such as ExposureTime and

ShutterSpeedValue.

There are some tags, though, that make sense for us to consider filling in or modifying.

Some of these might include the following:

 UserComment: A comment generated by the user

 ImageDescription: The title

 Artist: Creator or taker of image

 Copyright: Copyright holder of image

 Software: Software used to create image

Fortunately, Android provides us a nice means to both read and write EXIF data. The

main class for doing so is ExifInterface.

Here’s how to use ExifInterface to read specific EXIF data from an image file:

ExifInterface ei = new ExifInterface(imageFilePath);
String imageDescription = ei.getAttribute("ImageDescription");
if (imageDescription != null)
{
 Log.v("EXIF", imageDescription);
}

Here is how to save EXIF data to an image file using ExifInterface:

ExifInterface ei = new ExifInterface(imageFilePath);
ei.setAttribute("ImageDescription","Something New");

ExifInterface includes a set of constants that define the typical set of data that is

automatically included in captured images by the Camera application.

The latest version of the EXIF specification is version 2.3 from April 2010. It is available

online here: www.cipa.jp/english/hyoujunka/kikaku/pdf/DC-008-2010_E.pdf.

Summary
Throughout this chapter, we looked at the basics of image capture and storage on

Android. We saw how powerful using the built-in Camera application on Android could

be and how to effectively leverage its capabilities through an intent. We saw that the

http://www.cipa.jp/english/hyoujunka/kikaku/pdf/DC-008-2010_E.pdf

CHAPTER 1: Introduction to Android Imaging 22

Camera application offers a nice and consistent interface for adding image capture

capabilities into any Android application.

We also looked at the need to be conscious of memory usage when dealing with large

images. We learned that the BitmapFactory class helps us load scaled versions of an

image in order to conserve memory. The need to pay attention to memory reminds us

that mobile phones are not desktop computers with seemingly limitless memory.

We went over using Android’s built-in content provider for Images, the MediaStore. We

learned how to use it to save images to a standard location on the device as well as how

to query it to quickly build applications that leverage already captured images.

Finally we looked at how we can associate certain metadata with images with a

standard called EXIF, which is transportable and used in a variety of devices and

software applications.

This should give us a great starting point for exploring what more we can do with media

on Android.

I am looking forward to it!

23

23

 Chapter

Building Custom Camera
Applications
In the last chapter, we looked at how we can leverage Android’s built-in Camera

application to provide a ready-made photo capture component in any other application.

While this provides a standard interface to the end user and is straightforward for us the

programmers, it doesn’t provide us with much in the way of flexibility. For instance, if we

wanted our photo capture application to support time-lapse photography, we couldn’t

easily do that using the built-in application.

Fortunately, Android doesn’t limit us to just using the built-in applications for accessing

the hardware camera. We have as much access to the underlying hardware and

available methods as the Camera application itself, which allows us to use those

capabilities in any type of application we would like.

In this chapter, we’ll explore building a photo-taking application utilizing the underlying

Camera class and learn how to exploit the capabilities we are given. We’ll go through the

steps required to build a few different applications:

 A straightforward point and shoot photo app

 A countdown-style timer

 A time-lapse photo-taking application

Using the Camera Class
The Camera class in Android is what we use to access the camera hardware on the

device. It allows us to actually capture an image, and through its nested

Camera.Parameters class, we can change set various attributes, such as whether the

flash should be activated and what value the white balance should be set to.

http://developer.android.com/reference/android/hardware/Camera.html

2

http://developer.android.com/reference/android/hardware/Camera.html

CHAPTER 2: Building Custom Camera Applications 24

Camera Permissions
In order to use the Camera class to capture an image, we need to specify in our

AndroidManifest.xml file that we require the CAMERA permission.

 <uses-permission android:name="android.permission.CAMERA" />

Preview Surface
Also before we can get started using the camera, we need to create some type of

Surface for the Camera to draw viewfinder or preview images on. A Surface is an

abstract class in Android representing a place to draw graphics or images. One

straightforward way to provide a drawing Surface is to use the SurfaceView class.

SurfaceView is a concrete class providing a Surface within a standard View.

To specify a SurfaceView in our layout, we simply use the <SurfaceView /> element

within any normal layout XML. Here is a basic layout that just implements a SurfaceView

within a LinearLayout for a camera preview.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<SurfaceView android:id="@+id/CameraView" android:layout_width="fill_parent"
 android:layout_height="fill_parent"></SurfaceView>
</LinearLayout>

In our code, for the purposes of using this SurfaceView with the Camera class, we’ll need

to add a SurfaceHolder to the mix. The SurfaceHolder class can act as a monitor on our

Surface, giving us an interface through callbacks to let us know when the Surface is

created, destroyed, or changed. The SurfaceView class conveniently gives us a method,

getHolder, to obtain a SurfaceHolder for its Surface.

Here is a snippet of code that accesses the SurfaceView as declared in the layout XML

and obtains a SurfaceHolder from it. It also sets the Surface to be a “push” type of

Surface, which means that the drawing buffers are maintained external to the Surface

itself. In this case, the buffers are managed by the Camera class. A “push” type of

Surface is required for the Camera preview.

SurfaceView cameraView = (CameraView) this.findViewById(R.id.CameraView);
SurfaceHolder surfaceHolder = cameraView.getHolder();
surfaceHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

Additionally, we’ll want to implement SurfaceHolder.Callback in our activity. This allows

our activity to be notified when the Surface is created, when it changes and when it is

destroyed. To implement the Callback, we’ll add the following methods.

public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) {}
public void surfaceCreated(SurfaceHolder holder) {}
public void surfaceDestroyed(SurfaceHolder holder) {}

http://schemas.android.com/apk/res/android

CHAPTER 2: Building Custom Camera Applications 25

To finish up, we’ll need to tell our SurfaceHolder to use this activity as the Callback

handler.

surfaceHolder.addCallback(this);

Our activity should now look something this.

package com.apress.proandroidmedia.ch2.snapshot;

import android.app.Activity;
import android.os.Bundle;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

public class SnapShot extends Activity implements SurfaceHolder.Callback {

 SurfaceView cameraView;
 SurfaceHolder surfaceHolder;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 cameraView = (SurfaceView) this.findViewById(R.id.CameraView);
 surfaceHolder = cameraView.getHolder();
 surfaceHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 surfaceHolder.addCallback(this);
 }

 public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) {
 }
 public void surfaceCreated(SurfaceHolder holder) {
 }
 public void surfaceDestroyed(SurfaceHolder holder) {
 }
}

Implementing the Camera
Now that we have the activity and preview Surface all set up, we are ready to start using

the actual Camera object.

When the Surface is created, which will trigger calling the surfaceCreated method in our

code due to the SurfaceHolder.Callback, we can obtain a Camera object by calling the

static open method on the Camera class.

Camera camera;
public void surfaceCreated(SurfaceHolder holder) {
 camera = Camera.open();

We’ll want to follow that up with setting the preview display to the SurfaceHolder we are

using, which is provided to our method through the callback. This method needs to be

wrapped in a try catch block as it can throw an IOException. If this happens, we’ll want

CHAPTER 2: Building Custom Camera Applications 26

to release the camera as we could tie up the camera hardware resources for other

applications if we don’t.

 try
 {

 camera.setPreviewDisplay(holder);
 }
 catch (IOException exception)
 {
 camera.release();
 }

Finally, we’ll want to start the camera preview.

 camera.startPreview();

}

Likewise, in surfaceDestroyed, we’ll want to release the camera as well. We’ll first call

stopPreview, just to make sure everything cleans up as it should.

public void surfaceDestroyed(SurfaceHolder holder) {
 camera.stopPreview();
 camera.release();
}

Running this code, you’ll probably notice something strange with the preview. It is

rotating the preview image 90 degrees counter-clockwise as shown in Figure 2–1.

Figure 2–1. The camera preview rotated 90 degrees

CHAPTER 2: Building Custom Camera Applications 27

The reason this rotation is happening is that the Camera assumes the orientation to be

horizontal or landscape. The easiest way to correct the rotation is to make our activity

appear in landscape mode. To do this, we can add the following code in our activity’s

onCreate method.

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

Now our Camera preview appears correctly as illustrated in Figure 2–2. Unfortunately,

our application is now stuck in landscape mode.

Figure 2–2. The camera preview in landscape

Setting Camera Parameters
As previously mentioned, the Camera class has a nested Camera.Parameters class. This

class has a series of important attributes or settings that can be used to change how the

Camera operates. One of these that would help us right now is a way to deal with the

rotation/landscape issue we have in the preview.

The Parameters to be used by the Camera can be modified as follows:

Camera.Parameters parameters = camera.getParameters();

parameters.set("some parameter", "some value");
// or
parameters.set("some parameter", some_int);

camera.setParameters(parameters);

There are two different generic Parameters.set methods. The first takes a string for the

parameter name and value, and the second takes a string for the name but the value is

an integer.

CHAPTER 2: Building Custom Camera Applications 28

Setting the Parameters should be done in the surfaceCreated method right after the

Camera is created and its preview Surface specified.

Here is how we can use Parameters to request that the Camera be used with a portrait

orientation rather than landscape.

public void surfaceCreated(SurfaceHolder holder) {
 camera = Camera.open();
 try {
 Camera.Parameters parameters = camera.getParameters();
 if (this.getResources().getConfiguration().orientation !=
 Configuration.ORIENTATION_LANDSCAPE) {
 // This is an undocumented although widely known feature
 parameters.set("orientation", "portrait");

 // For Android 2.2 and above
 //camera.setDisplayOrientation(90);

 // Uncomment for Android 2.0 and above
 //parameters.setRotation(90);
 } else {
 // This is an undocumented although widely known feature
 parameters.set("orientation", "landscape");

 // For Android 2.2 and above
 //camera.setDisplayOrientation(0);

 // Uncomment for Android 2.0 and above
 //parameters.setRotation(0);
 }
 camera.setParameters(parameters);
 camera.setPreviewDisplay(holder);
 } catch (IOException exception) {
 camera.release();
 Log.v(LOGTAG,exception.getMessage());
 }
 camera.startPreview();
}

The foregoing code first checks the device configuration (through a call to

Context.getResources().getConfiguration()) to see what the current orientation is. If

the orientation is not landscape, it sets the Camera.Parameters “orientation” to be

“portrait.” Additionally, the Camera.Parameters setRotation method is called, and 90

degrees is passed in. This method, which is available in API level 5 (version 2.0) and

higher, does not actually do any rotation; rather, it tells the Camera to specify in the EXIF

data that the image should be rotated 90 degrees on display. If this isn’t included, when

you view this image in other applications, it would likely be displayed sideways.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2: Building Custom Camera Applications 29

NOTE: The method shown for modifying the Camera’s rotation by using Camera.Parameters is
for use with Android version 2.1 and earlier. In Android 2.2, a new method on the Camera class,
setDisplayOrientation(int degrees), was introduced. This method takes in an integer
representing the degrees the image should be rotated. The only valid degrees are 0, 90, 180,
270.

Most parameters that can or should be modified have specific methods associated with

them. As we can see with the setRotation method, they follow the Java getter and

setter design pattern. For instance, the flash mode of the Camera can be set with

setFlashMode(Camera.Parameters.FLASH_MODE_AUTO) and the current value can be

gotten with getFlashMode() rather than having to be done through the generic

Parameters.set method.

Starting with Android 2.0, one fun parameter that we can use for demonstration allows

us to change effects. The getter and setter are getColorEffect and setColorEffect.

There is also a getSupportedColorEffects method, which returns a List of String

objects with the various effects that are supported on the specific device. In fact, this

method exists for all of the parameters that have getter and setter methods and should

be used to ensure that the capability requested is available before being used.

Camera.Parameters parameters = camera.getParameters();
List<String> colorEffects = parameters.getSupportedColorEffects();
Iterator<String> cei = colorEffects.iterator();
while (cei.hasNext()) {
 String currentEffect = cei.next();
 Log.v("SNAPSHOT","Checking " + currentEffect);
 if (currentEffect.equals(Camera.Parameters.EFFECT_SOLARIZE)) {
 Log.v("SNAPSHOT","Using SOLARIZE");
 parameters.setColorEffect(Camera.Parameters.EFFECT_SOLARIZE);
 break;
 }
}
Log.v("SNAPSHOT","Using Effect: " + parameters.getColorEffect());
camera.setParameters(parameters);

In the foregoing code, we first query the Camera.Parameters object to see what effects

are supported through the getSupportedColorEffect method. We then use an Iterator

to go through the List of effects and see if any of them match the one we want, in this

case Camera.Parameters.EFFECT_SOLARIZE. If it appears in the list, it is supported and we

can go ahead and call setColorEffect on the Camera.Parameters object, passing in the

solarize constant. Figure 2–3 shows the Camera.Parameters.EFFECT_SOLARIZE in action.

CHAPTER 2: Building Custom Camera Applications 30

Figure 2–3. Solarized preview image from the camera

The other possibilities are also listed as constants within the Camera.Parameters class:

 EFFECT_NONE

 EFFECT_MONO

 EFFECT_NEGATIVE

 EFFECT_SOLARIZE

 EFFECT_SEPIA

 EFFECT_POSTERIZE

 EFFECT_WHITEBOARD

 EFFECT_BLACKBOARD

 EFFECT_AQUA

Similar constants exist for antibanding, flash mode, focus mode, scene mode, and white

balance.

Changing the Camera Preview Size
Another particularly useful setting available in Camera.Parameters is the ability to set a

preview size. As with other settings, we’ll first want to query the parameters object and

CHAPTER 2: Building Custom Camera Applications 31

get the supported values. Having gotten this list of sizes, we can go through it to make

sure the size we want is supported before we set it.

In this example, we aren’t specifying an exact size that we want, rather choosing a size

that is close to but no larger than a couple of constants. Figure 2–4 shows the output of

this example.

...
public static final int LARGEST_WIDTH = 200;
public static final int LARGEST_HEIGHT= 200;
...

As with all Camera.Parameters, we’ll want to get and set them in surfaceCreated after we

have opened the camera and set its preview display Surface.

public void surfaceCreated(SurfaceHolder holder) {
 camera = Camera.open();
 try {
 camera.setPreviewDisplay(holder);
 Camera.Parameters parameters = camera.getParameters();

We’ll keep track of the closest values that are under our constant in these two variables:

 int bestWidth = 0;
 int bestHeight = 0;

Then we’ll get the list of all of the supported sizes on our device. This returns a list of

Camera.Size objects that we can loop through.

 List<Camera.Size> previewSizes = parameters.getSupportedPreviewSizes();
 if (previewSizes.size() > 1)
 {
 Iterator<Camera.Size> cei = previewSizes.iterator();
 while (cei.hasNext())
 {
 Camera.Size aSize = cei.next();

If the current size in the list is larger than our saved best sizes and smaller than or equal

to our LARGEST_WIDTH and LARGEST_HEIGHT constants, then we save that height and width

in our bestWidth and bestHeight variables and continue checking.

 Log.v("SNAPSHOT","Checking " + aSize.width + " x " + aSize.height);
 if (aSize.width > bestWidth && aSize.width <= LARGEST_WIDTH
 && aSize.height > bestHeight && aSize.height <= LARGEST_HEIGHT) {
 // So far it is the biggest without going over the screen dimensions
 bestWidth = aSize.width;
 bestHeight = aSize.height;
 }
 }

After we have finished going through the supported sizes, we make sure we got

something out. If our bestHeight and bestWidth variables are equal to 0, then we didn’t

find anything that matched our needs, or there is only one supported size and we

shouldn’t take any action. If, on the other-hand, they have values, we’ll call

setPreviewSize with the bestWidth and bestHeight variables on the Camera.Parameters

object.

CHAPTER 2: Building Custom Camera Applications 32

Additionally, we want to tell our camera preview SurfaceView object, cameraView, to

display at that size as well. If we don’t do this, SurfaceView won’t change sizes and the

preview image from the camera will be either distorted or very low quality.

 if (bestHeight != 0 && bestWidth != 0) {
 Log.v("SNAPSHOT", "Using " + bestWidth + " x " + bestHeight);
 parameters.setPreviewSize(bestWidth, bestHeight);

 cameraView.setLayoutParams(new LinearLayout.LayoutParams(bestWidth,
bestHeight));
 }
 }
 camera.setParameters(parameters);

After we set the parameters, all that remains is to close out the surfaceCreated method.

 } catch (IOException exception) {
 camera.release();
 }
}

Figure 2–4. Camera preview with small preview size

Capturing and Saving an Image
To capture an image with the Camera class, we have to call the takePicture method.

This method takes in three or four arguments, all of which are Callback methods. The

simplest form of the takePicture method is to have all of the arguments be null.

Unfortunately, while a picture would be captured, no reference to it will be available. At

the very least, one of the callback methods should be implemented. The safest one is

Camera.PictureCallback.onPictureTaken. This is guaranteed to be called and is called

when the compressed image is available. To utilize this, we’ll make our activity

implement Camera.PictureCallback and add an onPictureTaken method.

public class SnapShot extends Activity implements
 SurfaceHolder.Callback, Camera.PictureCallback {

 public void onPictureTaken(byte[] data, Camera camera) {
 }

CHAPTER 2: Building Custom Camera Applications 33

The onPictureTaken method has two arguments; the first is a byte array of the actual

JPEG image data. The second is a reference to the Camera object that captured the

image.

Since we are handed the actual JPEG data, we simply need to write it to disk

somewhere in order to save it. As we already know, it is a good idea to leverage the

MediaStore for specifying its location and metadata.

When our onPictureTaken method is called, we can call startPreview on the Camera

object. The preview had been automatically paused when the takePicture method was

called, and this method tells us that it is now safe to be restarted.

public void onPictureTaken(byte[] data, Camera camera) {
 Uri imageFileUri = getContentResolver().insert(Media.EXTERNAL_CONTENT_URI, new
 ContentValues());
 try {
 OutputStream imageFileOS = getContentResolver().openOutputStream(imageFileUri);
 imageFileOS.write(data);
 imageFileOS.flush();
 imageFileOS.close();

 } catch (FileNotFoundException e) {
 } catch (IOException e) {
 }

 camera.startPreview();
}

In the foregoing snippet, we are inserting a new record into the MediaStore and given a

URI in return. This URI is what we can subsequently use to obtain an OutputStream to

write the JPEG data to. This creates a file in the location specified by the MediaStore

and links it to the new record.

If we wanted to update the metadata stored in the MediaStore record later, we can

update the record with a new ContentValues object as described in Chapter 1.

ContentValues contentValues = new ContentValues(3);
contentValues.put(Media.DISPLAY_NAME, "This is a test title");
contentValues.put(Media.DESCRIPTION, "This is a test description");
getContentResolver().update(imageFileUri,contentValues,null,null);

Last, we’ll have to actually call Camera.takePicture. To do this, let’s make the preview

screen be “clickable,” and in the onClick method, we’ll take the picture.

We’ll make our activity implement an OnClickListener and set our SurfaceView’s

onClickListener to be the activity itself. We’ll then make our SurfaceView be “clickable”

with setClickable(true). Additionally we’ll need to make the SurfaceView be

“focusable.” A SurfaceView by default isn’t focusable, so we’ll have to explicitly set that

with setFocusable(true). Also, when we are in “touch mode,” focus is generally

disabled, so we’ll have to explicitly set that not to happen with

setFocusInTouchMode(true).

public class SnapShot extends Activity implements OnClickListener,
 SurfaceHolder.Callback, Camera.PictureCallback {
...

CHAPTER 2: Building Custom Camera Applications 34

 public void onCreate(Bundle savedInstanceState) {
...
 cameraView.setFocusable(true);
 cameraView.setFocusableInTouchMode(true);
 cameraView.setClickable(true);
 cameraView.setOnClickListener(this);
 }

 public void onClick(View v) {
 camera.takePicture(null, null, null, this);
 }

Other Camera Callback Methods
Aside from Camera.PictureCallback, there are a few others that are worth mentioning.

 Camera.PreviewCallback: Defines a method, onPreviewFrame(byte[]
data, Camera camera) , which is called when preview frames are

available. A byte array that holds the current pixels of the image may

be passed in. There are three different ways that this callback can be

used on a Camera object.

 setPreviewCallback(Camera.PreviewCallback): Registering a

Camera.PreviewCallback with this method ensures that the

onPreviewFrame method is called whenever a new preview frame

is available and displayed on the screen. The data byte array that

is passed into the onPreviewFrame method will most likely be in

YUV format. Unfortunately Android 2.2 is the first version to have

a YUV format decoder (YuvImage); in previous versions, decoding

has to be done by hand.

 setOneShotPreviewCallback(Camera.PreviewCallback):

Registering a Camera.PreviewCallback with this method on the

Camera object causes the onPreviewFrame to be called once,

when the next preview image is available. Again, the preview

image data passed to the onPreviewFrame method will most likely

be in the YUV format. This can be determined by checking the

result of Camera. getParameters().getPreviewFormat() with the

constants in ImageFormat.

 setPreviewCallbackWithBuffer(Camera.PreviewCallback):

Introduced in Android 2.2, this method works in the same

manner as the normal setPreviewCallback but requires us to

specify a byte array that will be used as a buffer for the preview

image data. This is done to allow us the ability to better manage

the memory that will be used when dealing with preview images.

 Camera.AutoFocusCallback: Defines a method, onAutoFocus, which is

called when an auto-focus activity has completed. Auto-focus may be

triggered by calling the autoFocus method on the Camera object,

passing in an instance of this callback interface.

CHAPTER 2: Building Custom Camera Applications 35

 Camera.ErrorCallback: Defines an onError method, which is called

when a Camera error occurs. There are two constants that can be

compared with the passed-in error code: CAMERA_ERROR_UNKNOWN and

CAMERA_ERROR_SERVER_DIED.

 Camera.OnZoomChangeListener: Defines a method, onZoomChange, which is

called when a “smooth zoom” (slow zoom in or out) is in progress or

completed. This class and method were introduced in Android 2.2 (API level 8).

 Camera.ShutterCallback: Defines a method, onShutter, which is called

at the moment an image is captured.

Putting It All Together
Let’s go through the entire example. The following code is written to run on Android 2.2

and higher, but with minor changes, it should run on versions 1.6 and higher. The

sections that require higher than 1.6 are noted with comments.

package com.apress.proandroidmedia.ch2.snapshot;

import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Iterator;
import java.util.List;

import android.app.Activity;
import android.content.ContentValues;
import android.content.res.Configuration;
import android.hardware.Camera;
import android.net.Uri;
import android.os.Bundle;
import android.provider.MediaStore.Images.Media;
import android.util.Log;
import android.view.SurfaceHolder;
import android.view.SurfaceView;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Toast;

public class SnapShot extends Activity implements OnClickListener,
 SurfaceHolder.Callback, Camera.PictureCallback {

 SurfaceView cameraView;
 SurfaceHolder surfaceHolder;
 Camera camera;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 cameraView = (SurfaceView) this.findViewById(R.id.CameraView);

CHAPTER 2: Building Custom Camera Applications 36

 surfaceHolder = cameraView.getHolder();
 surfaceHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 surfaceHolder.addCallback(this);

 cameraView.setFocusable(true);
 cameraView.setFocusableInTouchMode(true);
 cameraView.setClickable(true);

 cameraView.setOnClickListener(this);
 }

 public void onClick(View v) {
 camera.takePicture(null, null, this);
 }

We follow this up with the onPictureTaken method as described earlier.

 public void onPictureTaken(byte[] data, Camera camera) {
 Uri imageFileUri =
 getContentResolver().insert(Media.EXTERNAL_CONTENT_URI, new ContentValues());
 try {
 OutputStream imageFileOS =
 getContentResolver().openOutputStream(imageFileUri);
 imageFileOS.write(data);
 imageFileOS.flush();
 imageFileOS.close();
 } catch (FileNotFoundException e) {
 Toast t = Toast.makeText(this,e.getMessage(), Toast.LENGTH_SHORT);
 t.show();
 } catch (IOException e) {
 Toast t = Toast.makeText(this,e.getMessage(), Toast.LENGTH_SHORT);
 t.show();
 }
 camera.startPreview();
 }

Last, we need the various SurfaceHolder.Callback methods in which we set up the

Camera object.

 public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) {
 camera.startPreview();
 }

 public void surfaceCreated(SurfaceHolder holder) {
 camera = Camera.open();
 try {
 camera.setPreviewDisplay(holder);
 Camera.Parameters parameters = camera.getParameters();
 if (this.getResources().getConfiguration().orientation !=
 Configuration.ORIENTATION_LANDSCAPE)
 {
 parameters.set("orientation", "portrait");
 // For Android Version 2.2 and above
 camera.setDisplayOrientation(90);

 // For Android Version 2.0 and above
 parameters.setRotation(90);
 }

CHAPTER 2: Building Custom Camera Applications 37

 // Effects are for Android Version 2.0 and higher
 List<String> colorEffects = parameters.getSupportedColorEffects();
 Iterator<String> cei = colorEffects.iterator();
 while (cei.hasNext())
 {
 String currentEffect = cei.next();
 if (currentEffect.equals(Camera.Parameters.EFFECT_SOLARIZE))
 {
 parameters.setColorEffect(Camera.Parameters.EFFECT_SOLARIZE);
 break;
 }
 }
 // End Effects for Android Version 2.0 and higher

 camera.setParameters(parameters);
 }
 catch (IOException exception)
 {
 camera.release();
 }
 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 camera.stopPreview();
 camera.release();
 }
} // End the Activity

That takes care of our Snapshot activity. Here is the layout XML that is in use by it. It

belongs in res/layout/main.xml.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <SurfaceView android:id="@+id/CameraView" android:layout_width="fill_parent"
 android:layout_height="fill_parent"></SurfaceView>
</LinearLayout>

Last, we need to add the CAMERA permission to our AndroidManifest.xml file. Here is

the entire manifest.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.proandroidmedia.ch2.snapshot"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".SnapShot"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 2: Building Custom Camera Applications 38

 </application>
 <uses-sdk android:minSdkVersion="8" />
 <uses-permission android:name="android.permission.CAMERA"></uses-permission>
</manifest>

That should cover the basics of building a custom camera-based application. Next, let’s

look at how we can extend this application, implementing features that don’t exist in the

built-in camera application.

Extending the Custom Camera Application
In my opinion, the built-in camera application on Android is missing a few essential

features. One of those is the ability to take a picture after a small amount of time, say 10

or 30 seconds. This feature is generally useful with a camera that can be mounted on a

tripod. One thing it enables is the ability for a photographer to set up a shot, set the

timer, and then run into the shot.

While this isn’t something you would often do with a mobile phone, I do think it would be

useful in certain situations. For example, I would love to have this feature when want to

take a picture of both someone I am with and myself. Currently when I try to do so, I

have a difficult time, as I cannot see the touchscreen interface because it is facing away

from me. I fumble around, pushing the screen in various spots, hoping that I hit the

shutter button.

Building a Timer-Based Camera App
To rectify the situation just described, we can add a time delay to the taking of the

picture. Let’s update our SnapShot example so that picture is taken ten seconds after

pushing a button.

In order to accomplish this, we’ll need to use something like a java.util.Timer.

Unfortunately, in Android, using a Timer creates some complications as it introduces a

separate thread. To have separate threads interact with the UI, we need to use a

Handler to cause an action to occur on the main thread.

The other use of a Handler is to schedule something to happen in the future. This

capability of a Handler makes using the Timer unnecessary.

To create a Handler that will execute something in the future, we simply construct a

generic one:

Handler timerHandler = new Handler();

We then have to create a Runnable. This Runnable will contain within its run method the

action to happen later. In our case, we want this action to occur ten seconds later and

trigger the taking of the picture:

Runnable timerTask = new Runnable() {
 public void run() {
 camera.takePicture(null,null,null,TimerSnapShot.this);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2: Building Custom Camera Applications 39

 }
};

That should cover it. Now when we push a button, we simply need to schedule it:

timerHandler.postDelayed(timerTask, 10000);

This tells the timerHandler to call our timerTask method 10 seconds (10000

milliseconds) in the future.

In the following example, we are creating a Handler and having it call a method every

second. In this way, we can provide a countdown on the screen to the user.

package com.apress.proandroidmedia.ch2.timersnapshot;

import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Iterator;
import java.util.List;
import android.app.Activity;
import android.content.ContentValues;
import android.content.res.Configuration;
import android.hardware.Camera;
import android.net.Uri;
import android.os.Bundle;
import android.os.Handler;
import android.provider.MediaStore.Images.Media;
import android.util.Log;
import android.view.SurfaceHolder;
import android.view.SurfaceView;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;
import android.widget.Toast;

public class TimerSnapShot extends Activity implements OnClickListener,
 SurfaceHolder.Callback, Camera.PictureCallback {

 SurfaceView cameraView;
 SurfaceHolder surfaceHolder;
 Camera camera;

This activity is very similar to our SnapShot activity. We are going to add a Button to

trigger the start of countdown and a TextView to display the countdown.

 Button startButton;
 TextView countdownTextView;

We’ll also need a Handler, in this case timerUpdateHandler, a Boolean to help us keep

track of whether the timer has started (timerRunning), and we’ll have an integer

(currentTime) that will keep track of the countdown.

 Handler timerUpdateHandler;
 boolean timerRunning = false;
 int currentTime = 10;

CHAPTER 2: Building Custom Camera Applications 40

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 cameraView = (SurfaceView) this.findViewById(R.id.CameraView);
 surfaceHolder = cameraView.getHolder();
 surfaceHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 surfaceHolder.addCallback(this);

Next, we’ll obtain references to the new UI elements (defined in the layout XML) and

make our activity be the OnClickListener for the Button. We can do this because our

activity implements OnClickListener.

 countdownTextView = (TextView) findViewById(R.id.CountDownTextView);
 startButton = (Button) findViewById(R.id.CountDownButton);
 startButton.setOnClickListener(this);

The last thing we’ll do in our onCreate method is instantiate our Handler object.

 timerUpdateHandler = new Handler();
 }

Our onClick method will be called when the startButton Button is pressed. We’ll make

sure the timer routine isn’t already running by checking our timerRunning Boolean, and if

it isn’t, we’ll call timerUpdateTask Runnable (described here) without delay through our

Handler object, timerUpdateHandler.

 public void onClick(View v) {
 if (!timerRunning)
 {
 timerRunning = true;
 timerUpdateHandler.post(timerUpdateTask);
 }
 }

Here is our Runnable called timerUpdateTask. This is the object that contains the run

method that will be triggered by our timerUpdateHandler object.

 private Runnable timerUpdateTask = new Runnable() {
 public void run()
 {

If the currentTime, the integer holding our countdown, is greater than 1, we’ll decrement

it and schedule the Handler call again in 1 second.

 if (currentTime > 1)
 {
 currentTime--;
 timerUpdateHandler.postDelayed(timerUpdateTask, 1000);
 }
 else
 {

If currentTime isn’t greater than 1, we’ll actually trigger the camera to take the picture

and reset all of our tracking variables.

 camera.takePicture(null,null ,TimerSnapShot.this);
 timerRunning = false;

CHAPTER 2: Building Custom Camera Applications 41

 currentTime = 10;
 }

No matter what, we’ll update the TextView to display the current time remaining before

the picture is taken.

 countdownTextView.setText(""+currentTime);
 }
 };

The rest of the activity is essentially the same as the foregoing SnapShot example.

 public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) {
 camera.startPreview();
 }

 public void surfaceCreated(SurfaceHolder holder) {
 camera = Camera.open();
 try {
 camera.setPreviewDisplay(holder);
 Camera.Parameters parameters = camera.getParameters();
 if (this.getResources().getConfiguration().orientation !=
 Configuration.ORIENTATION_LANDSCAPE)
 {
 parameters.set("orientation", "portrait");

 // For Android Version 2.2 and above
 camera.setDisplayOrientation(90);

 // For Android Version 2.0 and above
 parameters.setRotation(90);
 }
 camera.setParameters(parameters);
 }
 catch (IOException exception)
 {
 camera.release();
 }
 }
 public void surfaceDestroyed(SurfaceHolder holder) {
 camera.stopPreview();
 camera.release();
 }

 public void onPictureTaken(byte[] data, Camera camera) {
 Uri imageFileUri =
 getContentResolver().insert(Media.EXTERNAL_CONTENT_URI, new ContentValues());
 try {
 OutputStream imageFileOS =
 getContentResolver().openOutputStream(imageFileUri);
 imageFileOS.write(data);
 imageFileOS.flush();
 imageFileOS.close();

 Toast t = Toast.makeText(this,"Saved JPEG!", Toast.LENGTH_SHORT);
 t.show();

 } catch (FileNotFoundException e) {

CHAPTER 2: Building Custom Camera Applications 42

 Toast t = Toast.makeText(this,e.getMessage(), Toast.LENGTH_SHORT);
 t.show();
 } catch (IOException e) {
 Toast t = Toast.makeText(this,e.getMessage(), Toast.LENGTH_SHORT);
 t.show();
 }

 camera.startPreview();
 }
}

The layout XML is a bit different. In this application, we are displaying the Camera

preview SurfaceView within a FrameLayout along with a LinearLayout that contains the

TextView for displaying the countdown and the Button for triggering the countdown. The

FrameLayout aligns all of its children to the top left and on top of each other. This way

the TextView and Button appear over top of the Camera preview.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <FrameLayout android:id="@+id/FrameLayout01" android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 <SurfaceView android:id="@+id/CameraView" android:layout_width="fill_parent"
 android:layout_height="fill_parent"></SurfaceView>
 <LinearLayout android:id="@+id/LinearLayout01"
android:layout_width="wrap_content"
android:layout_height="wrap_content">
 <TextView android:id="@+id/CountDownTextView" android:text="10"
 android:textSize="100dip" android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|center_horizontal|center"></TextView>
 <Button android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/CountDownButton" android:text="Start Timer"></Button>
 </LinearLayout>
 </FrameLayout>
</LinearLayout>

Last, we need to make sure our AndroidManifest.xml file contains the CAMERA

permission.

<uses-permission android:name="android.permission.CAMERA"></uses-permission>

http://schemas.android.com/apk/res/android

CHAPTER 2: Building Custom Camera Applications 43

Figure 2–5. Camera with countdown timer

Building a Time-Lapse Photography App
We have all seen beautiful examples of time-lapse photography. It is the process of

taking several pictures over an even course of time. It could be one per minute, one per

hour, or even one per week. Looking through a series of time-lapse photographs, we

can see how something changes over time. One example might be watching a building

being constructed, another might be documenting how a flower grows and blooms.

Now that we have built a timer-based camera app, updating it to be a time-lapse app is

fairly straightforward.

First we’ll change up some of the instance variables and add in a constant.

...
public class TimelapseSnapShot extends Activity implements OnClickListener,
 SurfaceHolder.Callback, Camera.PictureCallback {
 SurfaceView cameraView;
 SurfaceHolder surfaceHolder;
 Camera camera;

We’ll rename the Button to be startStopButton as it will now handle both actions and

perform a few minor naming updates to the rest of the variables.

 Button startStopButton;
 TextView countdownTextView;

CHAPTER 2: Building Custom Camera Applications 44

 Handler timerUpdateHandler;
 boolean timelapseRunning = false;

The currentTime integer will be used to count up to the amount of time between photos

in seconds instead of down from the total delay, as in the previous example. A constant

called SECONDS_BETWEEN_PHOTOS is set to 60. As its name implies, this will be used to

determine the time to wait between photos.

 int currentTime = 0;
 public static final int SECONDS_BETWEEN_PHOTOS = 60; // one minute

The onCreate method will largely remain the same—only the new variable names will be

referenced.

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 cameraView = (SurfaceView) this.findViewById(R.id.CameraView);
 surfaceHolder = cameraView.getHolder();
 surfaceHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 surfaceHolder.addCallback(this);

 countdownTextView = (TextView) findViewById(R.id.CountDownTextView);
 startStopButton = (Button) findViewById(R.id.CountDownButton);
 startStopButton.setOnClickListener(this);
 timerUpdateHandler = new Handler();
 }

The bulk of the changes to make this into a time-lapse application from a single timer-

based application will come in the onClick method, which is what happens when the

button is pressed and in the Runnable method that is scheduled by the Handler.

The onClick method first checks to see if the time-lapse processes are currently going

(the Button has previously been pressed), and if not, it sets it to running and calls the

Handler’s post method with the Runnable (described here) as the argument.

If the time-lapse process is going, the button press is meant to stop it, so the

removeCallbacks method on the Handler, timerUpdateHandler, is called. This will clear

any pending calls to the Runnable that are passed in as an argument.

 public void onClick(View v) {
 if (!timelapseRunning) {
 startStopButton.setText("Stop");
 timelapseRunning = true;
 timerUpdateHandler.post(timerUpdateTask);
 } else {
 startStopButton.setText("Start");
 timelapseRunning = false;
 timerUpdateHandler.removeCallbacks(timerUpdateTask);
 }
 }

As we are dealing with a Handler to do the scheduling, we have a Runnable that the

Handler calls upon when the time comes. In the run method of our Handler, we first

check to see if the currentTime integer is less than the number of seconds we want to

CHAPTER 2: Building Custom Camera Applications 45

wait between photos (SECONDS_BETWEEN_PHOTOS). If it is, we simply increment

currentTime. If the currentTime isn’t less than the period to wait, we tell the Camera to

take a picture and set currentTime back to 0 so it continues counting up.

After each of these cases, we simply update our TextView with the currentTime and

schedule a call back to ourselves in another second.

 private Runnable timerUpdateTask = new Runnable() {
 public void run() {
 if (currentTime < SECONDS_BETWEEN_PHOTOS)
 {
 currentTime++;
 }
 else
 {
 camera.takePicture(null,null,null,TimelapseSnapShot.this);
 currentTime = 0;
 }

 timerUpdateHandler.postDelayed(timerUpdateTask, 1000);
 countdownTextView.setText(""+currentTime);
 }
 };

The res/layout/main.xml interface and, of course, AndroidManifest.xml for this

example are the same as the single countdown timer version.

Summary
As you can see, there are myriad reasons that we might want to build our own camera-

based application rather than just utilizing the built-in application in our own app. The

sky is the limit with what you can accomplish, from simply creating an application that

takes a picture after a countdown to building your own time-lapse system and more.

Moving forward, we’ll look at what we can do with these images now that they are

captured.

CHAPTER 2: Building Custom Camera Applications 46

47

47

 Chapter

Image Editing
and Processing
As handheld devices become more and more powerful, many of the features that could

exist only on a desktop computer are now possible on a mobile device. Once the

purview of desktop apps such a Photoshop and the like, image editing and processing

can now be accomplished on a phone.

In this chapter, we’ll look at what we can do with images after they are captured. We’ll

go through how to alter them through rotation and scaling, how to adjust brightness and

contrast, as well as how we can composite two or more images together.

Selecting Images Using the Built-In Gallery
Application
As we know, using an intent is often the quickest way to harness a capability that

already exists in a pre-installed Android application. For the purposes of the examples in

this chapter, let’s look at how we can harness the built-in Gallery application to select an

image that we might want to work with.

The intent that we’ll want to use is a generic Intent.ACTION_PICK that signals to Android

that we want to select a piece of data. We also supply a URI for the data that we want to

pick from. In this case, we are using

android.provier.MediaStore.Images.Media.EXTERNAL_CONTENT_URI, which means that

we’ll be selecting images that are stored using the MediaStore on the SD card.

Intent choosePictureIntent = new Intent(Intent.ACTION_PICK,
 android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);

When this intent is triggered, it launches the Gallery application in a mode where the

user is able to select an image.

3

CHAPTER 3: Image Editing and Processing 48

As is usual with the return from an intent, after the user has selected the image, our

onActivityResult method is triggered. The selected image’s URI is returned in the data

of the returned intent.

onActivityResult(int requestCode, int resultCode, Intent intent) {
 super.onActivityResult(requestCode, resultCode, intent);

 if (resultCode == RESULT_OK) {
 Uri imageFileUri = intent.getData();
 }
}

Here is a full example:

package com.apress.proandroidmedia.ch3.choosepicture;

import java.io.FileNotFoundException;
import android.app.Activity;
import android.content.Intent;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;
import android.view.Display;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.ImageView;

Our activity will be responding to click events fired by a button; we’ll therefore

implement OnClickListener. In the onCreate method, we use the normal findViewById
method to access the necessary UI elements that are defined in the Layout XML.

public class ChoosePicture extends Activity implements OnClickListener {

 ImageView chosenImageView;
 Button choosePicture;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 chosenImageView = (ImageView) this.findViewById(R.id.ChosenImageView);
 choosePicture = (Button) this.findViewById(R.id.ChoosePictureButton);

 choosePicture.setOnClickListener(this);
 }

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3: Image Editing and Processing 49

Figure 3–1. The choosePicture button, displayed when the app first launches

What follows is the onClick method, which will respond to the pressing of the

choosePicture button which is displayed when the app starts as illustrated in Figure 3–1.

In this method, we create the intent that will trigger the Gallery application to launch in a

mode that allows the user to select a picture as shown in Figure 3–2.

 public void onClick(View v) {
 Intent choosePictureIntent = new Intent(Intent.ACTION_PICK,
 android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);
 startActivityForResult(choosePictureIntent, 0);
 }

CHAPTER 3: Image Editing and Processing 50

Figure 3–2. The view of the Gallery application when triggered by the ACTION_PICK intent prompting the user to
choose an image; the UI of the Gallery application may vary per device.

When the Gallery application returns after the user has selected an image, our

onActivityResult method is called. We get the URI to the selected image in the passed-

in intent’s data.

 protected void onActivityResult(int requestCode, int resultCode,
 Intent intent) {
 super.onActivityResult(requestCode, resultCode, intent);

 if (resultCode == RESULT_OK) {
 Uri imageFileUri = intent.getData();

Since the returned image is likely too big to load completely in memory, we’ll use the

technique we went over in Chapter 1 to resize it as it is loaded. The dw int and the dh int

will be the maximum width and height respectively. The maximum height will be less

than half the screen height, as we will eventually be displaying two images, aligned

vertically.

 Display currentDisplay = getWindowManager().getDefaultDisplay();
 int dw = currentDisplay.getWidth();
 int dh = currentDisplay.getHeight()/2 - 100;

 try {
 // Load up the image's dimensions not the image itself
 BitmapFactory.Options bmpFactoryOptions = new BitmapFactory.Options();
 bmpFactoryOptions.inJustDecodeBounds = true;

CHAPTER 3: Image Editing and Processing 51

 Bitmap bmp = BitmapFactory.decodeStream(getContentResolver().
openInputStream(imageFileUri), null, bmpFactoryOptions);

 int heightRatio = (int)Math.ceil(bmpFactoryOptions.outHeight/(float)dh);
 int widthRatio = (int)Math.ceil(bmpFactoryOptions.outWidth/(float)dw);

 if (heightRatio > 1 && widthRatio > 1)
 {
 if (heightRatio > widthRatio) {
 bmpFactoryOptions.inSampleSize = heightRatio;
 }
 else {
 bmpFactoryOptions.inSampleSize = widthRatio;
 }
 }

 bmpFactoryOptions.inJustDecodeBounds = false;
 bmp = BitmapFactory.decodeStream(getContentResolver().
openInputStream(imageFileUri), null, bmpFactoryOptions);

 choosenImageView.setImageBitmap(bmp);

 } catch (FileNotFoundException e) {
 Log.v("ERROR",e.toString());
 }
 }
 }
}

It requires the following in the project’s layout/main.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Choose Picture" android:id="@+id/ChoosePictureButton"/>
 <ImageView android:layout_width="wrap_content" android:layout_height=
 "wrap_content" android:id="@+id/ChosenImageView"></ImageView>
</LinearLayout>

http://schemas.android.com/apk/res/android

CHAPTER 3: Image Editing and Processing 52

Figure 3–3. The application after the user has chosen a picture

That’s it; we now have a user-chosen image as a Bitmap object displayed to the user as

illustrated in Figure 3–3. Let’s look at how we can use this Bitmap as a starting point for

other operations.

Drawing a Bitmap onto a Bitmap
Before we get into the specific mechanisms used to alter the images, let’s look at how

we can create a new, empty Bitmap object and draw an existing Bitmap into that. This is

the process that we will be using to create altered versions of our images.

In the foregoing example, we have a Bitmap object instantiated with an image that has

been selected by the user. It has been instantiated by a call to BitmapFactory’s

decodeStream method, as we learned how to do in Chapter 1.

Bitmap bmp = BitmapFactory.decodeStream(getContentResolver().
openInputStream(imageFileUri), null, bmpFactoryOptions);

In order to use this Bitmap as the source for our image editing experiments, we need to

be able to draw this Bitmap onto the screen with the effects applied. Additionally, it

would be great to draw it to an object that we can use to save the resulting image from.

It makes sense that we’ll want to create an empty Bitmap object with the same

dimensions as this one and use that as the destination for our altered Bitmap.

Bitmap alteredBitmap = Bitmap.createBitmap(bmp.getWidth(),

CHAPTER 3: Image Editing and Processing 53

bmp.getHeight(),bmp.getConfig());

This object, alteredBitmap, is created with the same width, height, and color depth as

the source Bitmap, bmp. Since we used the Bitmap class’s createBitmap method with the

width, height, and Bitmap.Config object as parameters, we are obtaining a mutable

Bitmap object in return. Mutable means that we can change the pixel values represented

by this Bitmap. If we had an immutable Bitmap, we would be unable to draw into it. This

method call is one of the only ways to instantiate a mutable Bitmap object.

The next thing we’ll need is a Canvas object. In Android a Canvas is, as you would

expect, something used to draw on. A Canvas can be created by passing in a Bitmap

object in its constructor, and subsequently it can be used to draw.

Canvas canvas = new Canvas(alteredBitmap);

Last, we’ll need a Paint object. When we do the actual drawing, the Paint object comes

into play. Specifically, it allows us to alter things such as color and contrast, but we’ll get

to that later. For now, we are going to use a default Paint object.

Paint paint = new Paint();

Now we have all of the required components to draw the source Bitmap into an empty

mutable Bitmap object. Here is all of the code just described put together.

Bitmap bmp = BitmapFactory.decodeStream(getContentResolver().
openInputStream(imageFileUri), null, bmpFactoryOptions);
Bitmap alteredBitmap = Bitmap.createBitmap(bmp.getWidth(),bmp.getHeight(),
bmp.getConfig());
Canvas canvas = new Canvas(alteredBitmap);
Paint paint = new Paint();

canvas.drawBitmap(bmp, 0, 0, paint);

ImageView alteredImageView = (ImageView) this.findViewById(R.id.AlteredImageView);
alteredImageView.setImageBitmap(alteredBitmap);

The drawBitmap method on the Canvas object we are using takes the source Bitmap and

an x, y offset along with our Paint object. This causes our alteredBitmap object to

contain the exact same information as our original bitmap.

We can plug all of this code into our Choose Picture example. It would come near the

end of the onActivityResult method, directly after the bmp =
BitmapFactory.decodeStream line. Be careful not to duplicate that line, as is shown in the

foregoing code snippet as well. Also don’t forget to add the appropriate import

statements.

Following that, we want to display our alteredBitmap object. To do that, we are using a

standard ImageView and calling setImageBitmap with our alteredBitmap. This assumes

that we have an ImageView with the id AlteredImageView declared in our Layout XML.

Here is the updated Layout XML for our full Choose Picture example, which contains the

original ImageView as well as our new ImageView for the alteredBitmap as shown in

Figure 3–4.

CHAPTER 3: Image Editing and Processing 54

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Choose Picture" android:id="@+id/ChoosePictureButton"/>

 <ImageView android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/ChosenImageView"></ImageView>
 <ImageView android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/AlteredImageView"></ImageView>
</LinearLayout>

Figure 3–4. The application after the user has selected an image with the second bitmap object displayed

Basic Image Scaling and Rotating
We’ll start our exploration of image editing and processing with learning how we can

perform spatial transformations such as changing scale and rotating images.

http://schemas.android.com/apk/res/android

CHAPTER 3: Image Editing and Processing 55

Enter the Matrix
The Android API has a Matrix class, which can be used when drawing on existing

Bitmap objects or creating a Bitmap object from another Bitmap object. This class allows

us to apply a spatial transformation to an image. A transformation of this type would be

rotating, cropping, scaling, or otherwise altering the coordinate space of the image.

The Matrix class represents transformations with an array of nine numbers. In many

cases, these can be generated by a formula that mathematically represents the

transformation that should occur. For instance, the formula for rotation involves using

sine and cosine to generate the number in the matrix.

The numbers in the Matrix can also be input manually. In order to understand how the

Matrix works, we’ll start by doing some manual transforms.

Each number in the Matrix applies to one of the three (x, y, or z) coordinates for each

point in the image.

For instance, here is a Matrix of nine floats:

1 0 0
0 1 0
0 0 1

The top row (1, 0, 0) specifies that the source x coordinate will be transformed according

the following formula: x = 1x + 0y + 0z. As you can see, the placement of the values in

the matrix determines how that number will affect the outcome. The top row will always

affect the x coordinate but can operate with the source x, y, and z coordinate.

The second row (0, 1, 0) means that the y coordinate will be determined as y = 0x + 1y +

0z, and the third row (0, 0, 1) means that the z coordinate will be determined by z = 0x +

0y + 1z.

In other words, this Matrix won’t do any transformation; everything will be placed as it is

in the source image.

To implement this in code, we would create the Matrix object and then explicitly set the

values through its setValues method.

Matrix matrix = new Matrix();
matrix.setValues(new float[] {
 1, 0, 0,
 0, 1, 0,
 0, 0, 1
});

We can use the Matrix object when drawing a bitmap onto a canvas.

canvas.drawBitmap(bmp, matrix, paint);

This would be in place of the drawBitmap method that we are using in our previous

example.

To have this Matrix change the image in some manner, we can replace any of the

existing numbers with a different value. If we change the first number from a 1 to a .5,

CHAPTER 3: Image Editing and Processing 56

we would squish the image on the x axis by 50% as illustrated in Figure 3–5. This first

number operates on the x coordinate in the source to influence the x coordinate in the

resulting image.

.5 0 0
0 1 0
0 0 1

Matrix matrix = new Matrix();
matrix.setValues(new float[] {
 .5f, 0, 0,
 0, 1, 0,
 0, 0, 1
});
canvas.drawBitmap(bmp, matrix, paint);

Figure 3–5. The second image displayed with the custom matrix applied, scaling the x axis by 50%

If we altered the matrix to have the x coordinate also be affected by the source y

coordinate, we can alter the second number.

Matrix matrix = new Matrix();
matrix.setValues(new float[] {
 1, .5f, 0,
 0, 1, 0,
 0, 0, 1
});
canvas.drawBitmap(bmp, matrix, paint);

CHAPTER 3: Image Editing and Processing 57

Figure 3–6. The second image displayed with the custom matrix applied, skewing the image

As you can see in Figure 3–6, it causes the image to skew. It skews because the first

row, which operates on the x value of each pixel, is being altered by the y value of each

pixel. As the y value increases, as we move down the image, the x value increases,

causing the image to skew. If we used a negative value, it would skew in the opposite

direction. You’ll also notice that the image gets cut off due to the coordinates changing.

We need to increase the size of the resulting bitmap as shown in Figure 3–7 if we are

going to perform operations like this.

alteredBitmap = Bitmap.createBitmap(bmp.getWidth()*2,bmp.getHeight(),bmp.getConfig());

CHAPTER 3: Image Editing and Processing 58

Figure 3–7. The second image displayed with the same custom matrix but with a larger width so the image isn’t
cropped

As you can see, these Matrix transformations are very powerful. Also, you can see that

doing them by hand can be cumbersome. Unfortunately, the formulas to accomplish

much of what you would want to do with the Matrix by hand require math that is out of

the scope of this book. There are plenty of resources online, though, if you are

interested in learning more. A good place to start is the Wikipedia Transformation Matrix

article: http://en.wikipedia.org/wiki/Transformation_matrix.

Matrix Methods
What we will do now, though, is explore the other methods of the Matrix class, as they

help us accomplish much of what we would want without having to resort to relearning

our high school and college math lessons.

Instead of creating our own Matrix numbers, we can simply call corresponding methods

for the transformations that we would like to use.

Each of the snippets presented next can take the place of the canvas.drawBitmap line in

the “Drawing a Bitmap onto a Bitmap” example.

Rotate
One of the built-in methods is the setRotation method. It takes in a float representing

the degrees of rotation. Positive values rotate the image clockwise and negative values

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://en.wikipedia.org/wiki/Transformation_matrix

CHAPTER 3: Image Editing and Processing 59

rotate it counter-clockwise around the default point (0,0), which is the top left corner of

the image as illustrated in Figure 3–8.

Matrix matrix = new Matrix();
matrix.setRotate(15);
canvas.drawBitmap(bmp, matrix, paint);

Figure 3–8. Rotation around the default point (0,0)

Alternatively, the setRotation method can be called with the degrees of rotation and the

points around which to rotate. Choosing the center point on the image might yield

results more in line with what we are looking for as shown in Figure 3–9.

matrix.setRotate(15,bmp.getWidth()/2,bmp.getHeight()/2);

CHAPTER 3: Image Editing and Processing 60

Figure 3–9. Rotation around the mid-point of the image

Scale
Another useful method of Matrix is the setScale method. It takes in two floats

representing the amount of scaling to occur on each axis. The first argument is the x-

axis scale, and the second is the y-axis scaling. Figure 3–10 shows the result of the

following setScale method call.

matrix.setScale(1.5f,1);

CHAPTER 3: Image Editing and Processing 61

Figure 3–10. 1.5 scale applied on the x axis

Translate
One of the most useful methods of Matrix is the setTranslate method. A translate

simply moves the image on the x and y axes. The setTranslate method takes in two

floats representing the amount to move on each axis. The first argument is the amount

the image will move on the x axis, and the second argument is the amount the image will

move on the y axis. Translating with positive values on the x axis will move the image to

the right, while using negative values will move the image to the left. Translating with

positive values on the y –axis will move the image downward and using negative values

will move the image upward.matrix.

setTranslate(1.5f,-10);.

Pre and Post
Of course, these are just the tip of the iceberg. There are several more that may prove to

be useful to you. Each of them also has a pre and a post version. These enable you to

do more than one transformation at a time in sequence. For instance, you could do a

preScale and then setRotate or a setScale and then postRotate. Changing the order of

when they occur could yield vastly different results depending on the operations

performed. Figure 3–11 shows the results of the following two method calls.

CHAPTER 3: Image Editing and Processing 62

matrix.setScale(1.5f, 1);
matrix.postRotate(15,bmp.getWidth()/2,bmp.getHeight()/2);

Figure 3–11. Scaled and rotated

Mirroring
One particularly useful pair is setScale and postTranslate, which allow you to flip the

image across a single axis (or both if you desire). If you scale by a negative number, the

image will draw in the negative space of the coordinate system. Since the 0, 0 point is

the top left, using a negative number on the x axis would cause the image to draw to the

left. Therefore we need to use the postTranslate method to move it over to the right as

displayed in Figure 3–12.

matrix.setScale(-1, 1);
matrix.postTranslate(bmp.getWidth(),0);

CHAPTER 3: Image Editing and Processing 63

Figure 3–12. Mirrored

Flipping
We could do the same thing, but on the y axis, to flip the image upside-down. We could

have achieved the same effect by rotating the image 180 degrees around the midpoint

on both axes as shown in Figure 3–13.

matrix.setScale(1, -1);
matrix.postTranslate(0, bmp.getHeight());

CHAPTER 3: Image Editing and Processing 64

Figure 3–13. Flipped

Alternative to Drawing
One of the drawbacks to the methods we are using in the foregoing sections is that the

images get cut off, as we aren’t calculating the resulting size after the transformation

and just drawing into a Bitmap with a predetermined size.

One way that we can overcome this issue is to apply the Matrix as we are creating the

Bitmap in the first place, rather than drawing into an empty Bitmap.

Going about things this way removes the need for us to have a Canvas and a Paint

object. The drawback is that we cannot continually change the Bitmap object and have

to recreate it if we want to do any more transformations on it.

The static createBitmap method available in the Bitmap class allows this. The first

argument is the source Bitmap, the next arguments are the start x, y, width, and height

values to use from the source, followed by the Matrix to apply, and last a Boolean

representing whether to apply any filtering to the image. Since we are not applying a

matrix that contains a filter, which we’ll discuss later in the chapter, we set that to be false.

Matrix matrix = new Matrix();
matrix.setRotate(15,bmp.getWidth()/2,bmp.getHeight()/2);
alteredBitmap = Bitmap.createBitmap(bmp, 0, 0, bmp.getWidth(), bmp.getHeight(),
 matrix, false);
alteredImageView.setImageBitmap(alteredBitmap);

CHAPTER 3: Image Editing and Processing 65

As you can see, we deal with the matrix in the same way, but we instantiate our second

Bitmap (alteredBitmap) using the original (bmp) as the source and pass in the Matrix

object. This creates a Bitmap from the source with the translation and scaled to the size

of the Bitmap object as shown in Figure 3–14.

Figure 3–14. Matrix applied when Bitmap created; the dimensions of the Bitmap are adjusted to match the
actual image data.

Image Processing
Another form of image editing or processing has to do with changing the color values of

the pixels themselves. Being able to do this allows us the ability to change contrast

levels, brightness, overall hue, and so on.

ColorMatrix
In a way similar to how we use the Matrix object when drawing on a Canvas, we can use

a ColorMatrix object to alter the Paint that is used to draw on a Canvas.

The ColorMatrix works in a similar manner as well. It is an array of numbers that operate

on the pixels of the image. Instead of operating on the x, y, and z coordinates, though, it

operates on the color values—Red, Green, Blue, and Alpha of each pixel.

CHAPTER 3: Image Editing and Processing 66

We can construct a default ColorMatrix object by calling its constructor without any

arguments.

ColorMatrix cm = new ColorMatrix();

This ColorMatrix can be used to alter how things are drawn to a Canvas by being

applied to the Paint object through a ColorMatrixColorFilter object that is constructed

using our ColorMatrix object.

paint.setColorFilter(new ColorMatrixColorFilter(cm));

This can simply be plugged into the drawing portion of our Choose Picture example to

allow us the ability to experiment with the ColorMatrix.

Bitmap bmp = BitmapFactory.decodeStream(getContentResolver().
openInputStream(imageFileUri), null, bmpFactoryOptions);
Bitmap alteredBitmap = Bitmap.createBitmap(bmp.getWidth(),
bmp.getHeight(),bmp.getConfig());
Canvas canvas = new Canvas(alteredBitmap);
Paint paint = new Paint();

ColorMatrix cm = new ColorMatrix();

paint.setColorFilter(new ColorMatrixColorFilter(cm));

Matrix matrix = new Matrix();
canvas.drawBitmap(bmp, matrix, paint);
alteredImageView.setImageBitmap(alteredBitmap);
chosenImageView.setImageBitmap(bmp);

The default ColorMatrix is what is called the identity, just like the default Matrix object,

in that when it is applied, it doesn’t alter the image. Looking at what the array contains

will help us understand how it works.

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

As you can see, it is an array of 20 floats. The first row of five comprises the operation to

occur on the red portion of an individual pixel, the second row affects the green portion,

the third operates on the blue portion, and the last row operates on the alpha value of

the pixel.

Within each row, the first number is the multiplier that is used along with the red value of

the pixel, the second is the multiplier used with the green, the third with the blue, the

fourth with the alpha, and the last number is not multiplied with anything. These values

are all added up to alter the pixel they are operating on.

If we have a single pixel that is a middle gray, its red value is 128, its blue value 128, its

green value 128, and its alpha value 0 (it is opaque). If we run that pixel through this

color matrix, the math would look like this:

New Red Value = 1*128 + 0*128 + 0*128 + 0*0 + 0
New Blue Value = 0*128 + 1*128 + 0*128 + 0*0 + 0
New Green Value = 0*128 + 0*128 + 1*128 + 0*0 + 0

CHAPTER 3: Image Editing and Processing 67

New Alpha Value = 0*128 + 0*128 + 0*128 + 1*0 + 0

As you can see, all of the values will remain the same, set to 128. This would be the

case for any color variant that we used for the pixel, as each row has a 1 in the position

meant to operate on its color but a 0 everywhere else.

If we simply wanted to make an image appear twice as red as it was previously, we

could increase the number that operates on the red value of all of the pixels to be a 2

instead of a 1. This would double the red value across the board.

2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

To implement this in code, we would do the following:

ColorMatrix cm = new ColorMatrix();
cm.set(new float[] {
 2, 0, 0, 0, 0,
 0, 1, 0, 0, 0,
 0, 0, 1, 0, 0,
 0, 0, 0, 1, 0
});
paint.setColorFilter(new ColorMatrixColorFilter(cm));

By hand, we could do similar things with any color across the board.

Altering Contrast and Brightness
Adjusting the brightness and contrast of an image can be done by increasing or

decreasing the color values.

This code will double the intensity of each color channel, which affects both the

brightness and contrast in an image as illustrated in Figure 3–15

ColorMatrix cm = new ColorMatrix();
float contrast = 2;
cm.set(new float[] {
 contrast, 0, 0, 0, 0,
 0, contrast, 0, 0, 0,
 0, 0, contrast, 0, 0,
 0, 0, 0, 1, 0 });
paint.setColorFilter(new ColorMatrixColorFilter(cm));

CHAPTER 3: Image Editing and Processing 68

Figure 3–15. ColorMatrix with each color’s intensity doubled, increasing brightness and contrast

In this example, both effects are linked. If we simply want to increase contrast without

increasing brightness, we actually have to reduce brightness to compensate for the

increase in color intensity.

Generally, when adjusting brightness, it is easier to just use the final column in the matrix

for each color. This is the amount that is simply added to the value of the color without

any multiplication of the existing color values.

Therefore, to reduce the brightness, we would use code for a matrix as follows.

ColorMatrix cm = new ColorMatrix();
float brightness = -25;
cm.set(new float[] {
 1, 0, 0, 0, brightness,
 0, 1, 0, 0, brightness,
 0, 0, 1, 0, brightness,
 0, 0, 0, 1, 0 });
paint.setColorFilter(new ColorMatrixColorFilter(cm));

Putting these two transformations together would yield the following.

ColorMatrix cm = new ColorMatrix();

float contrast = 2;
float brightness = -25;
cm.set(new float[] {
 contrast, 0, 0, 0, brightness,

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3: Image Editing and Processing 69

 0, contrast, 0, 0, brightness,
 0, 0, contrast, 0, brightness,
 0, 0, 0, contrast, 0 });
paint.setColorFilter(new ColorMatrixColorFilter(cm));

The result of this operation is shown in Figure 3–16.

Figure 3–16. ColorMatrix with each color’s intensity doubled but brightness decreased to affect contrast without
changing brightness

Changing Saturation
Fortunately, we don’t need to know the formula for each operation we might want to

accomplish. For instance, the ColorMatrix has a method for changing saturation built in.

ColorMatrix cm = new ColorMatrix();
cm.setSaturation(.5f);
paint.setColorFilter(new ColorMatrixColorFilter(cm));

Passing in a number greater than 1 will increase saturation, and a number between 0

and 1 decreases saturation. A value of 0 will yield a grayscale image.

Image Compositing
Compositing is the act of putting together two images, allowing features of both images

to be seen.

CHAPTER 3: Image Editing and Processing 70

In the Android SDK, we can accomplish compositing by first drawing one Bitmap to a

Canvas and then drawing a second Bitmap to the same Canvas. The only difference is

that we specify a transfermode (Xfermode) on the Paint when drawing the second image.

The set of classes that can be used as a transfermode all derive from the Xfermode base

class and include one called PorterDuffXfermode. The PorterDuffXfermode class is

named for Thomas Porter and Tom Duff, who published a paper entitled “Compositing

digital images” in the ACM SIGGRAPH Computer Graphics publication in 1984, detailing

a series of different rules for drawing images on top of one another. These rules define

which portions of which images will appear in the resulting output.

The rules devised by Porter and Duff and more are enumerated in the PorterDuff.Mode

class in Android.

They include the following:

 android.graphics.PorterDuff.Mode.SRC: This rule means that only the

source, in our case, the paint that we are applying this to, will be

drawn.

 android.graphics.PorterDuff.Mode.DST: This rule means that only the

destination, the original image, already on the canvas, will be shown.

Following the SRC and DST rules, there is a set that works with them to determine which

parts of each image will be drawn in the end. These generally apply when the images are

different sizes or when they have transparent portions.

 android.graphics.PorterDuff.Mode.DST_OVER: The destination image

will be drawn over the top of the source image.

 android.graphics.PorterDuff.Mode.DST_IN: The destination image will

be drawn only where the source and destination images intersect.

 android.graphics.PorterDuff.Mode.DST_OUT: The destination image

will be drawn only where the source and destination images do not

intersect.

 android.graphics.PorterDuff.Mode.DST_ATOP: The destination image

will be drawn where it intersects with the source; elsewhere the source

will be drawn.

 android.graphics.PorterDuff.Mode.SRC_OVER: The source image will

be drawn over the top of the destination image.

 android.graphics.PorterDuff.Mode.SRC_IN: The source image will be

drawn only where the destination and source images intersect.

 android.graphics.PorterDuff.Mode.SRC_OUT: The source image will be

drawn only where the destination and source images do not intersect.

 android.graphics.PorterDuff.Mode.SRC_ATOP: The source image will

be drawn where it intersects with the destination; elsewhere the

destination will be drawn.

CHAPTER 3: Image Editing and Processing 71

 android.graphics.PorterDuff.Mode.XOR: The source and destination

images will be drawn everywhere except where they overlap, where

neither will be drawn.

Four additional rules are defined that define how two images can be blended together

when one is placed above the other.

 android.graphics.PorterDuff.Mode.LIGHTEN: Takes the lightest pixel

of the two images from each position and shows that.

 android.graphics.PorterDuff.Mode.DARKEN: Takes the darkest pixel

from the two images in each position and shows that.

 android.graphics.PorterDuff.Mode.MULTIPLY: Multiplies the two

pixels from each position, divides by 255, and uses that value to

create a new pixel for display. Result Color = Top Color * Bottom Color

/ 255

 android.graphics.PorterDuff.Mode.SCREEN: Inverts each of the colors,

performs the same operation (multiplies them together and divides by

255), and then inverts once again. Result Color = 255 - (((255 - Top

Color) * (255 - Bottom Color)) / 255)

Let’s illustrate how these rules may be used with an example application.

package com.apress.proandroidmedia.ch3.choosepicturecomposite;

import java.io.FileNotFoundException;

import android.app.Activity;
import android.content.Intent;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.graphics.PorterDuffXfermode;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;
import android.view.Display;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.ImageView;

public class ChoosePictureComposite extends Activity implements OnClickListener {

We are creating a standard activity-based application, which we’ll call Choose Picture

Composite. The activity will implement OnClickListener so it can respond to Button

clicks.

Since we are going to be compositing two images, we’ll need to make sure the user

picks two images before we attempt to draw the composited version. To do this, we’ll

make two constants, one for each Button press and then two Booleans to track whether

a Button has been pressed. Of course, we’ll have two Button objects as well.

CHAPTER 3: Image Editing and Processing 72

 static final int PICKED_ONE = 0;
 static final int PICKED_TWO = 1;

 boolean onePicked = false;
 boolean twoPicked = false;

 Button choosePicture1, choosePicture2;

We’ll have one ImageView to display the final composited image. Also, we’ll need to have

two Bitmap objects, one for each of the chosen images.

 ImageView compositeImageView;

 Bitmap bmp1, bmp2;

As in our previous examples, we’ll need a Canvas to draw on and a Paint object to draw

with.

 Canvas canvas;
 Paint paint;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 compositeImageView = (ImageView) this.findViewById(R.id.CompositeImageView);

 choosePicture1 = (Button) this.findViewById(R.id.ChoosePictureButton1);
 choosePicture2 = (Button) this.findViewById(R.id.ChoosePictureButton2);

 choosePicture1.setOnClickListener(this);
 choosePicture2.setOnClickListener(this);
 }

Since we set the OnClickListener for each Button to be this class, we need to

implement an onClick method that will respond. To tell which one was clicked, we

compare the View object that is passed in with each of the Button objects. If they are

equal, that is the button that was clicked.

We are setting a variable called which to the value of one of the constants defined

previously to keep track of which Button was pressed. This variable is then passed

through to our Gallery Application, which is being instantiated with the ACTION_PICK

intent. As shown in our previous examples, this will launch that application in a mode

that allows the user to pick an image.

CHAPTER 3: Image Editing and Processing 73

 public void onClick(View v) {

 int which = -1;

 if (v == choosePicture1){
 which = PICKED_ONE;
 }
 else if (v == choosePicture2){
 which = PICKED_TWO;
 }

 Intent choosePictureIntent = new Intent(Intent.ACTION_PICK,android.provider.
MediaStore.Images.Media.EXTERNAL_CONTENT_URI);
 startActivityForResult(choosePictureIntent, which);
 }

After the user has selected an image, our onActivityResult method is called. The

variable that we passed in via the startActivityForResult method is passed back to us

in the first parameter, which we are calling requestCode. Using this we know which

image, the first or second, the user just chose. We use this value to decide which Bitmap

object to load the chosen image into.

 protected void onActivityResult(int requestCode, int resultCode, Intent intent)
 {
 super.onActivityResult(requestCode, resultCode, intent);

 if (resultCode == RESULT_OK){
 Uri imageFileUri = intent.getData();

 if (requestCode == PICKED_ONE){
 bmp1 = loadBitmap(imageFileUri);
 onePicked = true;
 }
 else if (requestCode == PICKED_TWO){
 bmp2 = loadBitmap(imageFileUri);
 twoPicked = true;
 }

When both images have been selected and both Bitmap objects have been instantiated,

we can then move forward with our compositing operations. This will be a very similar

process to our previous examples in this chapter. First we’ll create an empty mutable

Bitmap that is the same size and configuration as our first Bitmap, bmp1. Following that

we’ll construct a Canvas from that and a Paint object. We’ll simply draw our first Bitmap

(bmp1) into that canvas. This will cause that to be our destination for the compositing

operations.

Now we can set the transfer mode on the Paint object. We instantiate a new

PorterDuffXfermode object by passing in one of the constants that defines the mode

that it will operate in. After we do that, we draw the second Bitmap on the Canvas and set

the ImageView to be our new Bitmap. In the following version, we are using the MULTIPLY

mode.

 if (onePicked && twoPicked){
 Bitmap drawingBitmap = Bitmap.createBitmap(bmp1.getWidth(),
 bmp1.getHeight(), bmp1.getConfig());

CHAPTER 3: Image Editing and Processing 74

 canvas = new Canvas(drawingBitmap);
 paint = new Paint();
 canvas.drawBitmap(bmp1, 0, 0, paint);
 paint.setXfermode(new PorterDuffXfermode(android.graphics.
PorterDuff.Mode.MULTIPLY));
 canvas.drawBitmap(bmp2, 0, 0, paint);

 compositeImageView.setImageBitmap(drawingBitmap);
 }
 }
 }

Here is a helper class such as we defined in Chapter 1 to load a Bitmap from a URI

scaled to be no larger than the size of the screen.

 private Bitmap loadBitmap(Uri imageFileUri){
 Display currentDisplay = getWindowManager().getDefaultDisplay();

 float dw = currentDisplay.getWidth();
 float dh = currentDisplay.getHeight();
 // ARGB_4444 is desired

 Bitmap returnBmp = Bitmap.createBitmap((int)dw, (int)dh,
 Bitmap.Config.ARGB_4444);

 try {
 // Load up the image's dimensions not the image itself
 BitmapFactory.Options bmpFactoryOptions = new BitmapFactory.Options();
 bmpFactoryOptions.inJustDecodeBounds = true;
 returnBmp = BitmapFactory.decodeStream(getContentResolver().
openInputStream(imageFileUri), null, bmpFactoryOptions);

 int heightRatio = (int)Math.ceil(bmpFactoryOptions.outHeight/dh);
 int widthRatio = (int)Math.ceil(bmpFactoryOptions.outWidth/dw);

 Log.v("HEIGHTRATIO",""+heightRatio);
 Log.v("WIDTHRATIO",""+widthRatio);

 // If both of the ratios are greater than 1, one of the sides of the
 image is greater than the screen
 if (heightRatio > 1 && widthRatio > 1){
 if (heightRatio > widthRatio){
 // Height ratio is larger, scale according to it
 bmpFactoryOptions.inSampleSize = heightRatio;
 }
 else{
 // Width ratio is larger, scale according to it
 bmpFactoryOptions.inSampleSize = widthRatio;
 }
 }

 // Decode it for real
 bmpFactoryOptions.inJustDecodeBounds = false;
 returnBmp = BitmapFactory.decodeStream(getContentResolver().
openInputStream(imageFileUri), null, bmpFactoryOptions);
 }
 catch (FileNotFoundException e) {

CHAPTER 3: Image Editing and Processing 75

 Log.v("ERROR",e.toString());
 }

 return returnBmp;
 }
}

Here is the Layout XML to be used with the foregoing activity.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/ChoosePictureButton1" android:text="Choose Picture 1"/>
 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/ChoosePictureButton2" android:text="Choose Picture 2"/>
 <ImageView android:layout_width="wrap_content" android:layout_height=
"wrap_content" android:id="@+id/CompositeImageView"></ImageView>
</LinearLayout>

The result of the foregoing example with different transfer modes is illustrated in Figures

3–17 through 3–22

Figure 3–17. The output from the foregoing example using android.graphics.PorterDuff.Mode.DST as the
PorterDuffXfermode; as you can see, only the image selected as Picture 1 is displayed.

http://schemas.android.com/apk/res/android

CHAPTER 3: Image Editing and Processing 76

Figure 3–18. The output from the foregoing example using android.graphics.PorterDuff.Mode.SRC as the
PorterDuffXfermode; as you can see, only the image selected as Picture 2 is displayed.

Figure 3–19. The output from the foregoing example using android.graphics.PorterDuff.Mode.MULTIPLY
as the PorterDuffXfermode; as you can see, the two images are combined.

CHAPTER 3: Image Editing and Processing 77

Figure 3–20. The output from the foregoing example using android.graphics.PorterDuff.Mode.LIGHTEN
as the PorterDuffXfermode

Figure 3–21. The output from the foregoing example using android.graphics.PorterDuff.Mode.DARKEN as
the PorterDuffXfermode

CHAPTER 3: Image Editing and Processing 78

Figure 3–22. The output from the foregoing example using android.graphics.PorterDuff.Mode.SCREEN as
the PorterDuffXfermode

Summary
Throughout this chapter, we have learned that even though Android is primarily an

operating system for devices that are constrained by size, memory, and processor

power, it provides support for fairly sophisticated image processing. We covered many

of the capabilities for processing existing images, but our exploration of imaging

capabilities doesn’t end here. In the next chapter, we’ll look at some of the APIs that

allow us to create images from scratch and do further manipulation while harnessing

other sensors such as touchscreens.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

79

79

 Chapter

Graphics and
Touch Events
Thus far we have explored how we can capture and manipulate photographic images.

Of course, that isn’t all that Android has to offer in terms of images. In this chapter, we’ll

change up a bit and look at how we can create images by drawing graphical elements

and textual elements on a Canvas. Related to this, we’ll explore the capabilities provided

by Android for working with touchscreens. In particular we’ll build a touchscreen

drawing application.

Canvas Drawing
We know from the last chapter that we can draw Bitmap images on a Canvas object.

That’s not it for the Canvas class in Android, though. It also supports vector and text

drawing. We can use a Canvas object either with Bitmap objects, as we did in the last

chapter, or with Views. To start, we’ll use a Canvas to create or alter a Bitmap and then

move on to doing some very simple Canvas-based animation using a View.

Bitmap Creation
In the same manner we used previously, we can construct a Canvas object from a

mutable Bitmap. To create a mutable Bitmap, a Bitmap that can be modified, we have to

supply a width, a height, and a configuration. The configuration is generally a constant

value defined in the Bitmap.Config class.

The following snippet of code creates a mutable Bitmap object with the dimensions of

the display for the width and height and the Bitmap.Config.ARGB_8888 constant as the

configuration.

Bitmap bitmap = Bitmap.createBitmap((int)
 getWindowManager().getDefaultDisplay().getWidth(), (int)
 getWindowManager().getDefaultDisplay().getHeight(), Bitmap.Config.ARGB_8888);

4

CHAPTER 4: Graphics and Touch Events 80

Bitmap Configuration
The ARGB_8888 configuration constant defines that the bitmap will be created with 8 bits

of memory per color, 8 bits for the “A” or alpha channel, 8 bits for the “R” or red

channel, 8 bits for the “G” or green channel, and 8 bits for the “B” or blue channel. This

means that each pixel of the image will be represented by values between 0 and 255 for

each color, including alpha. This means that each pixel will be represented by 32 bits

and the total number of distinct colors that can be represented is more than 16.7 million.

Other configuration constants are available that use less memory and are therefore

faster to process at the expense of image quality.

 ALPHA_8: Used for Bitmaps that function as alpha masks, 8 bits on

alpha channel only. No other colors.

 ARGB_4444: 4 bits per color channel including alpha. Allows for 4096

unique colors with 16 alpha values. Figure 4–1 illustrates this setting

using a rainbow gradient.

 ARGB_8888: 8 bits per color channel including alpha. Allows for 16.7

million unique colors with 256 alpha values. Figure 4–2 illustrates this

setting using a rainbow gradient.

 RGB_565: 5 bits for the red channel, 6 bits for green, and 5 for blue (no

alpha). Allows for 65,535 distinct colors. As Figure 4–3 illustrates, this

setting is almost as high-quality as ARGB_8888 but takes up much

less memory space.

Figure 4–1. Rainbow gradient displayed on Bitmap in ARGB_4444 mode; notice the banding in the dark blue to
light blue and yellow to orange portions. ARGB_4444 can’t represent the required colors to make those transitions
smooth.

CHAPTER 4: Graphics and Touch Events 81

Figure 4–2. Rainbow gradient displayed on Bitmap in ARGB_8888 mode

Figure 4–3. Rainbow gradient displayed on Bitmap in RGB_565 mode

Creating the Canvas
Now that we have the Bitmap image that we’ll be drawing into created, we need to

create the Canvas object that we’ll be using to actually draw.

To do this, we simply construct a Canvas object by passing in our new Bitmap object.

CHAPTER 4: Graphics and Touch Events 82

Bitmap bitmap = Bitmap.createBitmap((int)
 getWindowManager().getDefaultDisplay().getWidth(), (int)
 getWindowManager().getDefaultDisplay().getHeight(), Bitmap.Config.ARGB_8888);
Canvas canvas = new Canvas(bitmap);

Working with Paint
Before we can do any drawing, we need to construct a Paint object. The Paint object

will allow us to define the color, size of the stroke, and style of the stroke used when

drawing. We can therefore think of the Paint as both paint and brush.

Paint paint = new Paint();
paint.setColor(Color.GREEN);
paint.setStyle(Paint.Style.STROKE);
paint.setStrokeWidth(10);

The foregoing snippet of code creates a Paint object, sets its color to be green, defines

that we want to draw the outline of shapes rather than fill them in, and sets the width of

that stroke to be 10 pixels.

Let’s examine each of these methods individually.

Color
Using the setColor method on the Paint object, we can pass in a Color object. The

Color class defines a series of colors represented as 32bit integers as constants:

 Color.BLACK

 Color.BLUE

 Color.RED

For the complete list, you can refer to the online reference for the Color class at

http://developer.android.com/reference/android/graphics/Color.html.

Paint paint = new Paint();
paint.setColor(Color.GREEN);

We can also construct a specific color by calling the static method Color.argb, passing

in a value between 0 and 255 for alpha, red, green, and blue. This method returns a

32bit integer representing that color that we then pass to setColor.

Paint paint = new Paint();
int myColor = Color.argb(255,128,64,32);
paint.setColor(myColor);

We can actually skip the color creation step completely if we are defining the exact

values:

Paint paint = new Paint();
paint.setARGB(255,128,64,32);

http://developer.android.com/reference/android/graphics/Color.html

CHAPTER 4: Graphics and Touch Events 83

Style
When defining the style of the paint through the setStyle method, we are determining

whether the shapes drawn will be filled or simply outlined. The possible styles are

defined as constants in the Paint.Style class.

 Paint.Style.STROKE: Only draw the outline of the shapes

 Paint.Style.FILL: Only fill the shapes

 Paint.Style.FILL_AND_STROKE: Fill and draw the outline of the shapes

Stroke Width
Last, we can use the setStrokeWidth method on the Paint object to specify the width of

the stroke that will be used when outlining the shapes. Setting a value of 0 will still yield

a 1-pixel stroke. To remove the stroke altogether, the setStyle method should be used,

passing in Paint.Style.FILL.

Drawing Shapes
The Canvas class defines several drawing methods. Let’s go through a couple of these.

Point
The simplest of these is simply drawing a point. To draw a point, we use the drawPoint

method on the Canvas object, passing in the x and y position as well as a Paint object.

canvas.drawPoint(199,201,paint);

The size of the point that is drawn is dependent on the stroke width of the Paint object.

The following code will render as shown in Figure 4–4.

Paint paint = new Paint();
paint.setColor(Color.GREEN);
paint.setStrokeWidth(100);
canvas.drawPoint(199,201,paint);

CHAPTER 4: Graphics and Touch Events 84

Figure 4–4. Point drawn using a Paint object that has a stroke width set to 100; it doesn’t look much like a point
due to the exceptionally large stroke width. In many cases, a point would be a single pixel, having a stroke width
of 1.

Line
A line is, well, a line: a series of points extending in a single direction from a start point to

an end point. You draw a line in using the Canvas method drawLine, passing in a start x

and y coordinate, an end x and y coordinate, and a Paint object. Figure 4–5 illustrates

how the following code will render.

Paint paint = new Paint();
paint.setColor(Color.GREEN);
paint.setStrokeWidth(10);
int startx = 50;
int starty = 100;
int endx = 150;
int endy = 210;
canvas.drawLine(startx,starty,endx,endy,paint);

CHAPTER 4: Graphics and Touch Events 85

Figure 4–5. Line

Rectangle
Rectangles can be drawn in a few different ways, the easiest being to specify the left y

coordinate, the top x coordinate, the right y coordinate, and the bottom x coordinate

along with a Paint object.

Paint paint = new Paint();
paint.setColor(Color.GREEN);
paint.setStyle(Paint.Style.FILL_AND_STROKE);
paint.setStrokeWidth(10);
float leftx = 20;
float topy = 20;
float rightx = 50;
float bottomy = 100;
canvas.drawRect(leftx, topy, rightx, bottomy, paint);

Another means to draw a rectangle is to pass in a RectF object. RectF is a class that

defines a rectangle using float values representing the left, top, right, and bottom

coordinates.

Paint paint = new Paint();
float leftx = 20;
float topy = 20;
float rightx = 50;
float bottomy = 100;
RectF rectangle = new RectF(leftx,topy,rightx,bottomy);
canvas.drawRect(rectangle, paint);

CHAPTER 4: Graphics and Touch Events 86

Oval
In the same way a rectangle may be drawn using RectF, we can draw an oval. The RectF

defines the bounds of the oval. In other words, the oval will be drawn inside the

rectangle with the longest point of the oval hitting the midpoint of the top and bottom

bounds and the widest point of the oval hitting the midpoint of left and right bounds.

Paint paint = new Paint();
paint.setColor(Color.GREEN);
paint.setStyle(Paint.Style.STROKE);
float leftx = 20;
float topy = 20;
float rightx = 50;
float bottomy = 100;
RectF ovalBounds = new RectF(leftx,topy,rightx,bottomy);
canvas.drawOval(ovalBounds, paint);

Circle
A circle can be drawn by specifying a center point (x and y) and radius. The following

code will be rendered as shown in Figure 4–6.

Paint paint = new Paint();
paint.setColor(Color.GREEN);
paint.setStyle(Paint.Style.STROKE);
float x = 50;
float y = 50;
float radius = 20;
canvas.drawCircle(x, y, radius, paint);

Figure 4–6. Circle

CHAPTER 4: Graphics and Touch Events 87

Path
A path is a series of lines that can be used to create an arbitrary shape. To draw a path,

we first have to construct a Path object. The Path object can have any number of calls

telling it to move to a point without drawing, using moveTo, or draw a line to a point using

lineTo. Of course, there are methods for drawing arcs and so on. Documentation of

these methods can be found in the documentation of the Path class at

http://developer.android.com/reference/android/graphics/Path.html.

The Path can then be passed to the Canvas method drawPath.

Paint paint = new Paint();
paint.setStyle(Paint.Style.STROKE);
paint.setColor(Color.GREEN);
Path p = new Path();
// Without the first "moveTo", drawing will start at (0,0)
p.moveTo(20, 20);
p.lineTo(100, 200);
p.lineTo(200, 100);
p.lineTo(240, 155);
p.lineTo(250, 175);
p.lineTo(20, 20);
canvas.drawPath(p, paint);

Figure 4–7. Path

Drawing Text
Of course, we aren’t limited to just drawing lines, shapes, and points. We can draw text

on the Canvas as well, using the method drawText; we simply pass in the text to draw as

http://developer.android.com/reference/android/graphics/Path.html

CHAPTER 4: Graphics and Touch Events 88

a String and the start x and y coordinates along with a Paint object. The Paint class

has a method called setTextSize for setting the size of the text that we can use.

Paint paint = new Paint();
paint.setColor(Color.GREEN);
paint.setTextSize(40);
float text_x = 120;
float text_y = 120;
canvas.drawText("Hello", text_x, text_y, paint);

Figure 4–8. Text drawn on a canvas

Built-In Fonts
Drawing text without being able to specify a font or style would be pretty limiting.

Fortunately, the Paint class allows us to specify which font should be used by calling

the setTypeface method and passing in a Typeface object.

The Typeface class has a number of constants defined that represent the built-in fonts

that come with the Android OS. These fonts were created by a company called

Ascender (www.ascendercorp.com/) as part of their Droid suite of fonts.

They are defined in the Typeface class as follows:

Typeface.MONOSPACE: This font has equal spacing for each letter.

Typeface.SANS_SERIF: This is a font that doesn’t have serifs.

Typeface.SERIF: This is a font that contains serifs.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.ascendercorp.com

CHAPTER 4: Graphics and Touch Events 89

NOTE: Serifs are small lines at the ends of the lines that make up the letters. The font that you
are reading right now is a sansserif font. This is an example of a serif font.

Figure 4–9. Typeface.MONOSPACE example

Figure 4–10. Typeface.SANS_SERIF example

Figure 4–11. Typeface.SERIF example

In addition to the main three fonts, there are two other Typeface constants:

 Typeface.DEFAULT: This is the same as the sanserif font and is the

default font that is used if setTypeface is not called.

 Typeface.DEFAULT_BOLD: This is a bold version of the sanserif font.

Here is a short code example:

Paint paint = new Paint();
paint.setColor(Color.GREEN);
paint.setTextSize(40);
paint.setTypeface(Typeface.DEFAULT_BOLD);
float text_x = 120;
float text_y = 120;
canvas.drawText("Hello", text_x, text_y, paint);

CHAPTER 4: Graphics and Touch Events 90

Figure 4–12. Typeface.DEFAULT_BOLD

Font Styles
Along with the built-in fonts, there is a series of styles that are defined as constants in

the Typeface class. These styles can be used to modify one of the built-in fonts through

the create method available in the Typeface class. This method returns a new Typeface

object that can be used.

Here is the list of styles that are defined in the Typeface class:

 Typeface.BOLD

 Typeface.ITALIC

 Typeface.NORMAL

 Typeface.BOLD_ITALIC

Using one of them is fairly straightforward. First we call Typeface.create, passing in the

base font and the style we want to apply. We get back a Typeface that we pass into the

Paint.setTypeface method, and that’s it.

Paint paint = new Paint();
paint.setColor(Color.GREEN);
paint.setTextSize(40);

Typeface serif_italic = Typeface.create(Typeface.SERIF, Typeface.ITALIC);
paint.setTypeface(serif_italic);

float text_x = 120;
float text_y = 120;
canvas.drawText("Hello", text_x, text_y, paint);

CHAPTER 4: Graphics and Touch Events 91

Figure 4–13. Serif font with Italic style applied

External Fonts
We aren’t limited in our Android applications to just the built-in fonts. Android supports

the creation of Typeface objects from any TrueType font file. TrueType fonts are a

standard and work on a variety of platforms. This opens up a wide range of possibilities

for our applications.

Many sites on the Internet offer free fonts, and, of course, there are font foundries,

companies that create fonts that will sell you a license to use their fonts.

One font that I found that was completely different from Android’s built-in fonts is the

Chopin Script font by Claude Pelletier. It is in the public domain and available as a free

download from a variety of sources such as fontspace.com

(www.fontspace.com/diogene/chopinscript). To use the font, I downloaded it and put

the.ttf file (ChopinScript.ttf) into my project’s “assets” folder.

The Typeface.createFromAsset method takes in an AssetManager, which can be gotten

through a call to getAssets from the Context and the name of the file. It returns a

Typeface object that can be passed into the Paint.setTypeface method.

Typeface chops = Typeface.createFromAsset(getAssets(), "ChopinScript.ttf");
paint.setTypeface(chops);

http://www.fontspace.com/diogene/chopinscript

CHAPTER 4: Graphics and Touch Events 92

Figure 4–14. Chopin Script font

Text on a Path
Text isn’t limited to being drawn on a horizontal line; it can be drawn on a Path as well.

Here is an example.

Paint paint = new Paint();
paint.setColor(Color.GREEN);
paint.setTextSize(20);
paint.setTypeface(Typeface.DEFAULT);

Path p = new Path();
p.moveTo(20, 20);
p.lineTo(100, 150);
p.lineTo(200, 220);

canvas.drawTextOnPath("Hello this is text on a path", p, 0, 0, paint);

CHAPTER 4: Graphics and Touch Events 93

Figure 4–15. Text drawn on a path

Finger Painting
Creating a static drawing on a Bitmap Canvas is all well and good, but let’s take this a bit

further and explore how we can make an application that allows the user to create a

drawing.

Touch Events
To start this application, we’ll need to understand how Android tells us when a user has

touched the touchscreen. Being able to handle that, we can then allow the user create a

drawing using his or her fingers on the touchscreen.

As we know, many of the UI elements that we use in Android derive from the View class.

Since we have been working with the Canvas from a Bitmap that is displayed in an

ImageView, it makes sense to see if that can help us out with detecting where the user

touches.

As luck would have it, the View class is touch-capable. It has a method where we specify

what class should receive any touch events that it gets. This method is

setOnTouchListener, and it takes in an object that implements the OnTouchListener

interface.

We can make our activity implement OnTouchListener by declaring it and creating a

method called onTouch.

CHAPTER 4: Graphics and Touch Events 94

public class SimpleFingerDraw extends Activity implements OnTouchListener {

 ImageView imageView;
 Bitmap bitmap;
 Canvas canvas;
 Paint paint;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 imageView = (ImageView) this.findViewById(R.id.ImageView);

 Display currentDisplay = getWindowManager().getDefaultDisplay();
 float dw = currentDisplay.getWidth();
 float dh = currentDisplay.getHeight();

 bitmap = Bitmap.createBitmap((int)dw,(int)dh,Bitmap.Config.ARGB_8888);
 canvas = new Canvas(bitmap);
 paint = new Paint();
 paint.setColor(Color.GREEN);
 imageView.setImageBitmap(bitmap);

 imageView.setOnTouchListener(this);
 }

 public boolean onTouch(View v, MotionEvent event) {
 return false;
 }
}

Now whenever the ImageView is touched, the onTouch method in our activity will be

called.

We can determine what kind of touch occurred by looking at the MotionEvent object that

is passed into our onTouch method. To do so, we call the getAction on that object. The

getAction method will return one of four values that are defined as constants in the

MotionEvent class.

 MotionEvent.ACTION_DOWN: This indicates that the view has received a

touch.

 MotionEvent.ACTION_UP: This indicates that the view has stopped

receiving a touch.

 MotionEvent.ACTION_MOVE: This indicates that after a touch down has

occurred, some movement has taken place before the ACTION_UP

event.

 MotionEvent.ACTION_CANCEL: This indicates that the touch has been

cancelled and should be ignored.

In addition, we can call the getX and getY methods on the MotionEvent object to

determine where the touch event took place.

CHAPTER 4: Graphics and Touch Events 95

Here is an update to our onTouch method, taking into account the different event

possibilities and drawing a line between the touch down and touch up events:

float downx = 0;
float downy = 0;
float upx = 0;
float upy = 0;

public boolean onTouch(View v, MotionEvent event) {
 int action = event.getAction();
 switch (action)
 {
 case MotionEvent.ACTION_DOWN:
 downx = event.getX();
 downy = event.getY();
 break;
 case MotionEvent.ACTION_MOVE:
 break;
 case MotionEvent.ACTION_UP:
 upx = event.getX();
 upy = event.getY();
 canvas.drawLine(downx, downy, upx, upy, paint);
 imageView.invalidate();
 break;
 case MotionEvent.ACTION_CANCEL:
 break;
 default:
 break;
 }
 return true;
}

You’ll notice several things about this code. First, we aren’t doing anything on

ACTION_MOVE or ACTION_CANCEL. In ACTION_DOWN we are simply setting our downx and downy

variables to be the X and Y position of the touch. In ACTION_UP we are setting upx and

upy to be the X and Y position of the touch up event and then calling the drawLine

function on our Canvas object. We also need to call the invalidate method on the

ImageView so that it redraws to the screen. If we didn’t do this, we wouldn’t see the new

line drawn on our Bitmap Canvas object. Last we are returning true instead of false. This

tells Android that we want to continue receiving touch events once an event starts.

CHAPTER 4: Graphics and Touch Events 96

Figure 4–16. Touch event–based drawing

As you can see in Figure 4–16, this drawing application is great for doing straight lines

from the point you touch down to the point you lift your finger up. If we wanted the

ability to draw lines as the finger moves, we would have to implement the drawing code

in the ACTION_MOVE case as well.

case MotionEvent.ACTION_MOVE:
 upx = event.getX();
 upy = event.getY();
 canvas.drawLine(downx, downy, upx, upy, paint);
 imageView.invalidate();
 downx = upx;
 downy = upy;
 break;

In this revised example, the upx and upy are captured in the ACTION_MOVE, the line is

drawn, and then the downx and downy variables are set to be the same position

(remember that the start of the line is defined by downx and downy in the ACTION_DOWN

event). This allows for a line drawing application that is able to track a finger around the

screen.

CHAPTER 4: Graphics and Touch Events 97

Figure 4–17. Enhanced touch event–based drawing

Drawing on Existing Images
Since we are drawing on a Canvas, we can use techniques described in the previous

chapter to draw an image to the Canvas and then draw on top of that image.

Let’s go through a full example.

package com.apress.proandroidmedia.ch4.choosepicturedraw;

import java.io.FileNotFoundException;

import android.app.Activity;
import android.content.Intent;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Matrix;
import android.graphics.Paint;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;
import android.view.Display;
import android.view.MotionEvent;
import android.view.View;

CHAPTER 4: Graphics and Touch Events 98

import android.view.View.OnClickListener;
import android.view.View.OnTouchListener;
import android.widget.Button;
import android.widget.ImageView;

Our activity will implement both OnClickListener and OnTouchListener. The

OnClickListener is so that our activity can respond to a Button press. The

OnTouchListener is so that we can draw on the ImageView using the touchscreen.

public class ChoosePictureDraw extends Activity implements OnClickListener,
 OnTouchListener {

We have two main UI elements. The first one is the ImageView, which will display our

Bitmap, which we’ll draw onto. The second is a Button that the user will press to select

an image from the Gallery application.

 ImageView choosenImageView;
 Button choosePicture;

We need to have two Bitmap objects. The first is the one that contains the scaled version

of the selected image. The second is the mutable version that we’ll draw the first one

into and draw on top of.

 Bitmap bmp;
 Bitmap alteredBitmap;
 Canvas canvas;
 Paint paint;
 Matrix matrix;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 choosenImageView = (ImageView) this.findViewById(R.id.ChoosenImageView);
 choosePicture = (Button) this.findViewById(R.id.ChoosePictureButton);

After we obtain references to the ImageView and Button, we set the listener for each of

the events, OnClick and OnTouch, to be our activity.

 choosePicture.setOnClickListener(this);
 choosenImageView.setOnTouchListener(this);
 }

Our onClick method follows. This uses the standard intent to allow the user to pick an

image from the Gallery application.

 public void onClick(View v) {
 Intent choosePictureIntent = new Intent(
 Intent.ACTION_PICK,
 android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);
 startActivityForResult(choosePictureIntent, 0);
 }

Our onActivityResult method is called after the user selects the image. It loads the

image selected into a Bitmap that is scaled to the size of the screen.

 protected void onActivityResult(int requestCode, int resultCode, Intent intent) {

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4: Graphics and Touch Events 99

 super.onActivityResult(requestCode, resultCode, intent);

 if (resultCode == RESULT_OK) {
 Uri imageFileUri = intent.getData();
 Display currentDisplay = getWindowManager().getDefaultDisplay();

 float dw = currentDisplay.getWidth();
 float dh = currentDisplay.getHeight();

 try {
 BitmapFactory.Options bmpFactoryOptions = new BitmapFactory.Options();
 bmpFactoryOptions.inJustDecodeBounds = true;
 bmp = BitmapFactory.decodeStream(
 getContentResolver().openInputStream(imageFileUri), null,
 bmpFactoryOptions);

 int heightRatio = (int)Math.ceil(bmpFactoryOptions.outHeight/dh);
 int widthRatio = (int)Math.ceil(bmpFactoryOptions.outWidth/dw);
 if (heightRatio > 1 && widthRatio > 1) {
 if (heightRatio > widthRatio) {
 bmpFactoryOptions.inSampleSize = heightRatio;
 }
 else {
 // Width ratio is larger, scale according to it
 bmpFactoryOptions.inSampleSize = widthRatio;
 }
 }

 bmpFactoryOptions.inJustDecodeBounds = false;
 bmp = BitmapFactory.decodeStream(
 getContentResolver().openInputStream(imageFileUri), null,
 bmpFactoryOptions);

After the Bitmap is loaded, we create a mutable Bitmap, alteredBitmap, and draw our

first Bitmap into it.

 alteredBitmap = Bitmap.createBitmap(
 bmp.getWidth(),bmp.getHeight(),bmp.getConfig());
 canvas = new Canvas(alteredBitmap);
 paint = new Paint();
 paint.setColor(Color.GREEN);
 paint.setStrokeWidth(5);
 matrix = new Matrix();
 canvas.drawBitmap(bmp, matrix, paint);

 choosenImageView.setImageBitmap(alteredBitmap);
 choosenImageView.setOnTouchListener(this);
 }
 catch (FileNotFoundException e) {
 Log.v("ERROR",e.toString());
 }
 }
 }

Now we simply implement our onTouch method in the same manner as we did before.

Instead of drawing on an empty Bitmap Canvas, we are now drawing over the top of an

existing image.

CHAPTER 4: Graphics and Touch Events 100

 float downx = 0;
 float downy = 0;
 float upx = 0;
 float upy = 0;

 public boolean onTouch(View v, MotionEvent event) {
 int action = event.getAction();
 switch (action) {
 case MotionEvent.ACTION_DOWN:
 downx = event.getX();
 downy = event.getY();
 break;
 case MotionEvent.ACTION_MOVE:
 upx = event.getX();
 upy = event.getY();
 canvas.drawLine(downx, downy, upx, upy, paint);
 choosenImageView.invalidate();
 downx = upx;
 downy = upy;
 break;
 case MotionEvent.ACTION_UP:
 upx = event.getX();
 upy = event.getY();
 canvas.drawLine(downx, downy, upx, upy, paint);
 choosenImageView.invalidate();
 break;
 case MotionEvent.ACTION_CANCEL:
 break;
 default:
 break;
 }

 return true;
 }

}

What follows is the layout XML file for the foregoing activity. It specifies the ImageView

and the Button in a standard LinearLayout.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Choose Picture" android:id="@+id/ChoosePictureButton"/>
 <ImageView android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/ChoosenImageView">
 </ImageView>
</LinearLayout>

http://schemas.android.com/apk/res/android

CHAPTER 4: Graphics and Touch Events 101

Figure 4–18. Drawing on an existing image

Saving a Bitmap-Based Canvas Drawing
What good would it be to just draw on an image without being able to save it after the

user has created a masterpiece? So far we have just drawn images—let’s look at how

we can commit these wonderful drawings to permanence. Well, at least let’s look at how

we can save them to the SD card.

Unsurprisingly, it will be a similar process to what we used in the second chapter to save

images captured from our custom camera application. Let’s go over the changes that

we can make to our ChoosePictureDraw example to save the images.

First of all, we’ll need to add the following imports.

import java.io.OutputStream;
import android.content.ContentValues;
import android.graphics.Bitmap.CompressFormat;
import android.provider.MediaStore.Images.Media;
import android.widget.Toast;

Then in the onCreate method, we’ll get a reference to a new Button that we will add to

the layout XML and declare in our activity.

We’ll declare the savePicture button along with the rest of the instance variables right

after the class definition.

CHAPTER 4: Graphics and Touch Events 102

Button savePicture;

In the onCreate after obtaining a reference to the choosePicture button we’ll obtain a

reference to the savePicture button:

savePicture = (Button) this.findViewById(R.id.SavePictureButton);

Following that, we’ll set its onClickListener to be our activity, the same thing we are

doing with the choosePicture Button.

savePicture.setOnClickListener(this);

Now we’ll need to modify our onClick method to take into account that two different

Buttons will be using it. The easiest way is to compare the View that is passed in with

the Buttons. If the View is equal to one of the Buttons, that’s the one that was clicked.

public void onClick(View v) {
 if (v == choosePicture)
 {
 Intent choosePictureIntent = new Intent(Intent.ACTION_PICK,
 android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);
 startActivityForResult(choosePictureIntent, 0);
 }
 else if (v == savePicture)
 {

We know the savePicture button was clicked. Now we need to make sure the Bitmap

we are drawing on has been defined.

 if (alteredBitmap != null)
 {

Once we do that, we’re all set to go about saving it. Just like previous examples, we’ll

query the MediaStore to get a Uri for our new image and create an OutputStream from

that Uri.

 Uri imageFileUri = getContentResolver().insert(
 Media.EXTERNAL_CONTENT_URI, new ContentValues());

 try {
 OutputStream imageFileOS =
 getContentResolver().openOutputStream(imageFileUri);

In previous image saving examples, we actually already had the data in JPEG form, and

we would simply write it out to the OutputStream. In this case, we have to use the

compress method of the Bitmap object to convert it into a JPEG (or PNG if we choose).

The compress method compresses the Bitmap data and writes it out to an OutputStream

for us. It takes in a constant defined in Bitmap.CompressFormat, which is either PNG or

JPEG. PNG is great for line art and graphics. JPEG is great for full-color images with

gradients, such as photographs. Since we are working with a photograph here, we’ll use

JPEG.

The next argument is the quality setting. The quality setting is useful only when

compressing as a JPEG, as PNG images will always keep all of the data, making a

quality setting useless. JPEG is what is considered a “lossy” codec, which means that

data will be thrown away. The quality has an inverse relationship with the size. A quality

CHAPTER 4: Graphics and Touch Events 103

setting of 0 will yield a small file size but not a great-looking file; a quality setting of 100

will yield a large file size, and the image will look pretty good. In this example and as

illustrated in Figure 4–19, we are using 90, which is somewhat of a compromise. Figure

4–20 shows the same image with a quality setting of 10 for comparison.

The last argument we need to pass in is the actual OutputStream to write the file to.

 alteredBitmap.compress(CompressFormat.JPEG, 90, imageFileOS);

That’s it—now we just tell the user that the image has been saved through a Toast alert,

and we continue on.

 Toast t = Toast.makeText(this,"Saved!", Toast.LENGTH_SHORT);
 t.show();

 } catch (FileNotFoundException e) {
 Log.v("EXCEPTION",e.getMessage());
 }
 }
 }
}

Here is the updated Layout XML, which contains the new Save Button.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Choose Picture" android:id="@+id/ChoosePictureButton"/>
 <ImageView android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/ChoosenImageView">
 </ImageView>
 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Save Picture" android:id="@+id/SavePictureButton"/>
</LinearLayout>

http://schemas.android.com/apk/res/android

CHAPTER 4: Graphics and Touch Events 104

Figure 4–19. Image saved as a JPEG using a quality setting of 90

Figure 4–20. Image saved as a JPEG using a quality setting of 10; it is less than 1/6 the file size of the one saved
with a quality setting of 90.

Summary
As we have explored, much can be done with canvas-based drawing on Android. This

wraps up the first part of our exploration, which dealt with still images. Most of what we

discussed merely scratched the surface of what can be done, but it provides a good

starting point for making applications of your own that harness the camera, perform

image processing, or have drawing features.

Next we’ll set our sights on audio!

105

105

 Chapter

Introduction to Audio on
Android
Any smartphone worth its name these days has audio playback capabilities on par with

dedicated portable media devices or MP3 players. Of course, Android-based devices

are no different. These capabilities allow for the building of music player, audio book,

podcast, or just about any other type of application that is centered around audio

playback.

In this chapter, we’ll explore what Android’s capabilities are in terms of format and

codec support, and we’ll build a few different playback applications. Furthermore we’ll

look at what Android supports in the way of audio formats and metadata.

Audio Playback
As mentioned, Android supports audio playback capabilities on par with MP3 players. In

fact, it probably goes a step further since it supports a fairly wide range of audio

formats, more than most hardware players. This is one of the benefits of smartphones

that perform functions previously relegated to dedicated hardware, since they have

good faculties for running a variety of software; like a computer, they can offer a wide

range of support for different and changing technologies that are simply not practical to

build into the firmware of hardware-centric devices.

5

CHAPTER 5: Introduction to Audio on Android 106

Supported Audio Formats
Android supports a variety of audio file formats and codecs for playback (it supports

fewer for recording, which we’ll discuss when we go over recording).

 AAC: Advanced Audio Coding codec (as well as both profiles of HE-

AAC, High Efficiency AAC), .m4a (audio/m4a) or.3gp (audio/3gpp) files.

AAC is a popular standard that is used by the iPod and other portable

media players. Android supports this audio format inside of MPEG-4

audio files and inside of 3GP files (which are based on the MPEG-4

format). Recent additions to the AAC specification, High Efficiency

AAC are also supported.

 MP3: MPEG-1 Audio Layer 3, .mp3 (audio/mp3) files. MP3, probably

the most widely used audio codec, is supported. This allows Android

to utilize the vast majority of audio available online through various

web sites and music stores.

 AMR: Adaptive Multi-Rate codec (both AMR Narrowband, AMR-NB,

and AMR Wideband, AMR-WB), .3gp (audio/3gpp) or .amr (audio/amr)

files. AMR is the audio codec that has been standardized as the

primary voice audio codec in use by the 3GPP (3rd Generation

Partnership Project). The 3GPP is a telecommunications industry

organization that creates specifications for the partner companies to

use. In other words, the AMR codec is what is primarily used for voice

calling applications on modern mobile phones and generally

supported across mobile handset manufacturers and carriers. As

such, this codec is generally useful for voice encoding but doesn’t

perform well for more complex types of audio such as music.

 Ogg: Ogg Vorbis, .ogg (application/ogg) files. Ogg Vorbis is an open

source, patent-free audio codec with quality that is comparable to

commercial and patent-encumbered codecs such as MP3 and AAC. It

was developed by volunteers and is currently maintained by the

Xiph.Org foundation.

CHAPTER 5: Introduction to Audio on Android 107

 PCM: Pulse Code Modulation commonly used in WAVE or WAV files

(Waveform Audio Format), .wav (audio/x-wav) files. PCM is the

technique used for storing audio on computers and other digital audio

devices. It is generally an uncompressed audio file with data that

represents the amplitude of a piece of audio over time. The “sample

rate” is how often an amplitude reading is stored. The “bit-depth” is

how many bits are used to represent an individual sample. A piece of

audio data with a sample rate of 16kHz and a bit-depth of 32 bits

means that it will contain 32 bits of data representing the amplitude of

the audio and it will have 16,000 of these per second. The higher the

sample rate and the higher the bit-depth, the more accurate the

digitization of the audio is. Sample rate and bit-depth also determine

how large the audio file will be when its length is taken into account.

Android supports PCM audio data within WAV files. WAV is a long-

standing standard audio format on PCs.

Using the Built-In Audio Player via an Intent
As with using the camera, the easiest way to provide the ability to play an audio file

within an application is to leverage the capabilities of the built-in “Music” application.

This application plays all of the formats that Android supports, has a familiar interface to

the user, and can be triggered to play a specific file via an intent.

The generic android.content.Intent.ACTION_VIEW intent with the data set to a Uri to the

audio file and the MIME type specified allows Android to pick the appropriate

application for playback. This should be the Music application, but the user may be

presented with other options if he or she has other audio playback software installed.

Intent intent = new Intent(android.content.Intent.ACTION_VIEW);
intent.setDataAndType(audioFileUri, "audio/mp3");
startActivity(intent);

NOTE: MIME stands for Multipurpose Internet Mail Extensions. It was originally specified to help
e-mail clients send and receive attachments. Its use, though, has extended greatly beyond e-
mail to many other communication protocols, including HTTP or standard web serving. Android
uses MIME types when resolving an intent, specifically to help determine which application
should handle the intent.

Each file type has a specific (sometimes more than one) MIME type. This type is specified using
at least two parts with slashes between them. The first is the more generic type, such as
“audio.” The second part is the more specific type, such as “mpeg.” A generic type “audio” and
a more specific type “mpeg” would yield a MIME type string of “audio/mpeg,” which is the MIME
type typically used for MP3 files.

CHAPTER 5: Introduction to Audio on Android 108

Here is a full example of triggering the built-in audio player application through an intent:

package com.apress.proandroidmedia.ch5.intentaudioplayer;

import java.io.File;
import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.os.Environment;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

Our activity will be listening for a Button to be pressed before it triggers the playback of

the audio. It implements OnClickListener so that it can respond.

public class AudioPlayer extends Activity implements OnClickListener {

 Button playButton;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

After we set the content view to our XML, we can get a reference to our Button in code

and set our activity (this) to be the OnClickListener.

 playButton = (Button) this.findViewById(R.id.Button01);
 playButton.setOnClickListener(this);
 }

When our Button is clicked, the onClick method is called. In this method, we construct

the intent with a generic android.content.Intent.ACTION_VIEW and then create a File
object that is a reference to an audio file that exists on the SD card. In this case, the

audio file is one that is manually placed on the SD card in the “Music” directory, which is

the standard location for music-related audio files.

 public void onClick(View v) {
 Intent intent = new Intent(android.content.Intent.ACTION_VIEW);

 File sdcard = Environment.getExternalStorageDirectory();
 File audioFile = new File(sdcard.getPath() + "/Music/goodmorningandroid.mp3");

Next, we set the data of the intent to be a Uri derived from the audio file and the type to

be its MIME type, audio/mp3. Finally, we trigger the built-in application to launch via the

startActivity call passing in our intent. Figure 5–1 shows the built-in application

playing the audio file.

 intent.setDataAndType(Uri.fromFile(audioFile), "audio/mp3");
 startActivity(intent);
 }
}

Here is a simple Layout XML file specifying the Button with the text “Play Audio” to be

used with the foregoing activity.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5: Introduction to Audio on Android 109

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:text="Play Audio" android:id="@+id/Button01"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
</LinearLayout>

Figure 5–1. Android’s built-in music player playing an audio file specified via an intent

Creating a Custom Audio-Playing Application
Of course, we aren’t limited to using Android’s built-in application for audio playback.

We can write our own application that offers playback capabilities and more.

To enable this, Android includes a MediaPlayer class. This class is used for the playback

and control of both audio and video. Right now we’ll just be using the audio playback

capabilities.

The simplest MediaPlayer example is to play back an audio file that is packaged with the

application itself. In order to do that, an audio file should be placed within the

application’s raw resources. To do this using the Android Developer Tools on Eclipse,

we need to create a new folder in our Project’s res folder called raw as illustrated in

http://schemas.android.com/apk/res/android

CHAPTER 5: Introduction to Audio on Android 110

Figure 5–2. The Android Developer Tools will generate a resource id for this file in the

R.java file (in the gen folder) with the syntax R.raw.file_name_without_extension.

Figure 5–2. Custom audio player Eclipse Project layout showing audio file located in raw folder

inside res folder.

Starting the Media Player
Creating a MediaPlayer for this audio file is straightforward. We instantiate a

MediaPlayer object using the static method create, passing in this as a Context (which

Activity is descended from) and the generated resource ID of the audio file.

MediaPlayer mediaPlayer = MediaPlayer.create(this, R.raw.goodmorningandroid);

Following that, we simply call the start method on the MediaPlayer object to play it.

mediaPlayer.start();

CHAPTER 5: Introduction to Audio on Android 111

LOCAL ASSETS

When placing assets in the res folder of an Android Developer Tools/Eclipse project, a couple of things
have to be considered: the file extension and using Uris.

File Extensions

The extension is removed, so files with the same base name but different extensions will cause issues.
You wouldn’t want to put a file named goodmorningandroid.mp3 and another file named
goodmorningandroid.m4a in there. Instead, if you would like to provide the same audio in multiple
formats, it would be better if you included the format as part of the file name so that you can differentiate
between them and the Android Developer Tools doesn’t have problems generating the resource ID. If you
name them goodmorningandroid_mp3.mp3 and goodmorningandroid_m4a.m4a, you will be able to
reference them as R.raw.goodmorningandroid_mp3 and R.raw.goodmorningandroid_m4a
respectively.

Uris for Resource Files

While resource IDs are great for some purposes, they don’t suit all. As we already know, many things in
Android can be accomplished using a Uri. Fortunately, it is easy to construct a Uri for a file that has been
placed in the resources. The resource ID can be appended to the end of a string, which can be used to
construct the Uri. The string must start with android.resource://, followed by the package name of
the application that the resources are local to, followed by the resource ID of the file.

Here is an example:

Uri fileUri = Uri.parse("android.resource://com.apress.proandroidmedia.ch5.customaudio/"
+ R.raw.goodmorningandroid);

To use the MediaPlayer with a Uri instead of a resource ID, which we will have to do if the file isn’t part
of the application, we can call a create method passing in the context and the Uri.

MediaPlayer mediaPlayer = MediaPlayer.create(this, fileUri);

Controlling Playback
The MediaPlayer class has several nested classes that are interfaces for listening to

events that the MediaPlayer sends. These events relate to state changes.

For instance, the MediaPlayer will call the onCompletion method on a class that

implements the OnCompletionListener and is registered via the

setOnCompletionListener. This will be done when an audio file is done playing.

Here is a full example of an activity that infinitely repeats, playing the same audio file by

using the OnCompletionListener. The MediaPlayer object is initialized and playback

started in the onStart method, with playback stopped and the MediaPlayer object

released in the onStop method. This prevents the audio from playing when the activity is

no longer in the front but restarts it when the activity is brought to the front again.

CHAPTER 5: Introduction to Audio on Android 112

package com.apress.proandroidmedia.ch5.customaudio;

import android.app.Activity;
import android.media.MediaPlayer;
import android.media.MediaPlayer.OnCompletionListener;
import android.os.Bundle;

public class CustomAudioPlayer extends Activity implements OnCompletionListener {

 MediaPlayer mediaPlayer;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 }

 public void onStart() {
 super.onStart();
 mediaPlayer = MediaPlayer.create(this, R.raw.goodmorningandroid);
 mediaPlayer.setOnCompletionListener(this);
 mediaPlayer.start();
 }

 public void onStop() {
 super.onStop();
 mediaPlayer.stop();
 mediaPlayer.release();
 }

 public void onCompletion(MediaPlayer mp) {
 mediaPlayer.start();
 }
}

Of course, this could be done without the OnCompletionListener by simply setting the

MediaPlayer to loop using the setLooping(true) method.

Let’s take this a step further and make it so that the playback is controlled by touch

events. This code might be a good starting point for making a DJ audio scratching

application.

package com.apress.proandroidmedia.ch5.customaudio;

import android.app.Activity;
import android.media.MediaPlayer;
import android.media.MediaPlayer.OnCompletionListener;
import android.os.Bundle;
import android.util.Log;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnClickListener;
import android.view.View.OnTouchListener;
import android.widget.Button;

3

CHAPTER 5: Introduction to Audio on Android 113

Our activity will implement the OnCompletionListener, as did the previous example, but

will also implement the OnTouchListener, so that it can respond to touch events, and

the OnClickListener, so that it can respond when a user clicks a button.

public class CustomAudioPlayer extends Activity implements OnCompletionListener,
OnTouchListener, OnClickListener {

Of course, we’ll need a reference to the MediaPlayer object. We need access to a View

so that we can register that we want touch events, and we’ll need access to any buttons

that we define in the Layout XML file—in this case, a button for stopping playback and a

button for starting playback.

 MediaPlayer mediaPlayer;
 View theView;
 Button stopButton, startButton;

We’ll declare a variable that will contain a saved position in the audio file. We’ll use this

position later to determine where to start playing the audio file.

 int position = 0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

Using our normal findViewById function, we’ll get access to the Buttons and the View

that are defined in the Layout XML.

 stopButton = (Button) this.findViewById(R.id.StopButton);
 startButton = (Button) this.findViewById(R.id.StartButton);

Since our activity can respond to Click events, we’ll make it so that it is registered as the

listener on both Buttons.

 startButton.setOnClickListener(this);
 stopButton.setOnClickListener(this);

 theView = this.findViewById(R.id.theview);

Then we’ll make our activity (this) respond to the touch events.

 theView.setOnTouchListener(this);

In this application, our audio file is called goodmorningandroid.mp3, and it has been

placed in the res/raw folder of our project. We’ll create our MediaPlayer object using this

file. Also, as in the previous example, we are setting our activity to be the

OnCompletionListener for our MediaPlayer.

 mediaPlayer = MediaPlayer.create(this, R.raw.goodmorningandroid);
 mediaPlayer.setOnCompletionListener(this);
 mediaPlayer.start();
 }

Here our onCompletion method is defined. It gets called whenever the MediaPlayer has

finished playing our audio file. In this case, we’ll call start first to make the audio play

CHAPTER 5: Introduction to Audio on Android 114

and then call seek to the saved position. The audio needs to be playing before we can

seek.

 public void onCompletion(MediaPlayer mp) {
 mediaPlayer.start();
 mediaPlayer.seekTo(position);
 }

When the user triggers a touch event, the onTouch method is called. In this method, we

are paying attention only to the ACTION_MOVE touch event, which is triggered when the

user drags a finger across the surface of the View. In this case, we’ll make sure the

MediaPlayer is playing and then calculate where we should seek to based upon where

on the screen the touch event occurs. If it occurs toward the right boundary of the

screen, we’ll seek toward the end of the file. If it occurs toward the left boundary of the

screen, we’ll seek to near the beginning of the file. We save this value in the position

variable, so that when the audio file finishes, it will seek back to that point when it starts

playing again (in the onCompletion method).

 public boolean onTouch(View v, MotionEvent me) {

 if (me.getAction() == MotionEvent.ACTION_MOVE)
 {
 if (mediaPlayer.isPlaying()) {
 position = (int) (me.getX() *
 mediaPlayer.getDuration()/theView.getWidth());
 Log.v("SEEK",""+position);
 mediaPlayer.seekTo(position);
 }
 }

 return true;
 }

Last we have an onClick method that responds to the Button clicks. These clicks pause

and start the audio playback.

 public void onClick(View v) {
 if (v == stopButton) {
 mediaPlayer.pause();
 } else if (v == startButton) {
 mediaPlayer.start();
 }

 }
}

Here is the Layout XML file that is being referred to in the foregoing code example:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:text="Start" android:id="@+id/StartButton"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>

http://schemas.android.com/apk/res/android

CHAPTER 5: Introduction to Audio on Android 115

 <Button android:text="Stop" android:id="@+id/StopButton"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
 <View android:layout_width="fill_parent" android:layout_height="fill_parent"
 android:id="@+id/theview" />
</LinearLayout>

As you can see, building a custom audio player on Android opens up some interesting

possibilities. Applications can be built that do more than just play audio straight through.

Turning this into a full-fledged DJ application for the phone could be fun.

MediaStore for Audio
We explored using the MediaStore for images early on in this book. Much of what we

learned can be leveraged for the storage and retrieval of other types of media, including

audio. In order to provide a robust mechanism for browsing and searching for audio,

Android includes a MediaStore.Audio package, which defines the standard content

provider.

Accessing Audio from the MediaStore
Accessing audio files that are stored using the MediaStore provider is consistent with

our previous uses of the MediaStore. In this case, we’ll be using the

android.provider.MediaStore.Audio package.

One of the easiest ways to illustrate the use of the MediaStore for audio is to go through

a sample application. The following code creates an activity that queries the MediaStore

for any audio file and simply plays the first one returned.

package com.apress.proandroidmedia.ch5.audioplayer;

import java.io.File;
import android.app.Activity;
import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;
import android.provider.MediaStore;

public class AudioPlayer extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

To use the MediaStore, we need to specify which data we want returned. We do

this by creating an array of strings using the constants located in the

android.provider.MediaStore.Audio.Media class. Those constants are all of the

standard fields that are saved in the MediaStore for use with audio.

CHAPTER 5: Introduction to Audio on Android 116

In this case, we are asking for the DATA column, which contains the path to the actual

audio file. We are also asking for the internal ID, the Title, Display Name, MIME-Type,

Artist, Album, and which type of audio file it is, alarm, music, ring tone, or notification type.

Other columns such as date added (DATE_ADDED), date modified (DATE_MODIFIED), file size

(SIZE), and so on are available as well.

 String[] columns = {
 MediaStore.Audio.Media.DATA,
 MediaStore.Audio.Media._ID,
 MediaStore.Audio.Media.TITLE,
 MediaStore.Audio.Media.DISPLAY_NAME,
 MediaStore.Audio.Media.MIME_TYPE,
 MediaStore.Audio.Media.ARTIST,
 MediaStore.Audio.Media.ALBUM,
 MediaStore.Audio.Media.IS_RINGTONE,
 MediaStore.Audio.Media.IS_ALARM,
 MediaStore.Audio.Media.IS_MUSIC,
 MediaStore.Audio.Media.IS_NOTIFICATION
 };

We query the MediaStore by calling the managedQuery method in Activity. The

managedQuery method takes in the Uri for the content provider, in this case, the audio

MediaStore, android.provider.MediaStore.Audio.Media.EXTERNAL_CONTENT_URI. This Uri

specifies that we want audio stored on the SD card. If we wanted audio files that are

stored in the internal memory, we would use

android.provider.MediaStore.Audio.Media.INTERNAL_CONTENT_URI.

In addition to the Uri to the MediaStore, the managedQuery method takes in the array of

columns that we want returned, an SQL WHERE clause, the values for the WHERE clause,

and an SQL ORDER BY clause.

In this example, we aren’t using the WHERE and ORDER BY clauses, so we’ll pass in null

for those arguments.

 Cursor cursor = managedQuery(MediaStore.Audio.Media.EXTERNAL_CONTENT_URI,
 columns, null, null, null);

The managedQuery method returns a Cursor object. The Cursor class allows interaction

with a dataset returned from a database query.

The first thing we’ll do is create a couple of variables to hold the column numbers for

some of the columns we want to access from the results. This isn’t absolutely

necessary, but it is nice to have the index around so we don’t have to call the method on

the Cursor object each time we need them. The way we get them is to pass in the

constant value for the column we want to the getColumnIndex method on the Cursor.

 int fileColumn = cursor.getColumnIndex (MediaStore.Audio.Media.DATA);

The first one is the index of the column containing the path to the actual audio file. We

got the foregoing index by passing in the constant that represents that column,

android.provider.MediaStore.Audio.Media.DATA.

Next we are getting a couple of other indexes, not all of which we are actually using, so

the extras are here merely for illustration purposes.

CHAPTER 5: Introduction to Audio on Android 117

 int titleColumn = cursor.getColumnIndex (MediaStore.Audio.Media.TITLE);
 int displayColumn = cursor.getColumnIndex (MediaStore.Audio.Media.DISPLAY_NAME);
 int mimeTypeColumn = cursor.getColumnIndex (MediaStore.Audio.Media.MIME_TYPE);

The data returned by the MediaStore available in the Cursor is organized in rows as well

as by columns. We can get the first result returned by calling the moveToFirst method

and retrieving the results from there. The method will return a Boolean false if no rows

are returned, so we can wrap it in an if statement to make sure there is data.

 if (cursor.moveToFirst()) {

To get the actual data, we call one of the “get” methods on the Cursor and pass in the

index for the column we want to retrieve. If the data is expected to be a String, we call

getString. If it is expected to be an integer, we call getInt. There are corresponding

“get” methods for all of the primitive data types.

 String audioFilePath = cursor.getString(fileColumn);
 String mimeType = cursor.getString(mimeTypeColumn);

 Log.v("AUDIOPLAYER",audioFilePath);
 Log.v("AUDIOPLAYER",mimeType);

Once we have the path to the file and the MIME type, we can use those to construct the

intent to launch the built-in audio player application and play that file. (Alternatively we

could use the MediaPlayer class as illustrated previously to play the audio file directly.)

In order to turn the path to the audio file into a Uri that we can pass into the intent, we

construct a File object and use the Uri.fromFile method to get the Uri. There are other

ways to do the same, but this is probably the most straightforward.

 Intent intent = new Intent(android.content.Intent.ACTION_VIEW);
 File newFile = new File(audioFilePath);
 intent.setDataAndType(Uri.fromFile(newFile), mimeType);
 startActivity(intent);
 }
 }
}

That finishes off our basic illustration of using the MediaStore for audio.

Now, let’s take it a step further and create an application that allows us to narrow down

the results returned and browse them, allowing the user to select the audio file to play.

Browsing Audio in the MediaStore
Audio files, in particular music files, can be found by album, artist, and genre as well as

directly in the MediaStore. Each of these has an Uri that can be used with a

managedQuery to search with.

 Album:
android.provider.MediaStore.Audio.Albums.EXTERNAL_CONTENT_URI

 Artist: android.provider.MediaStore.Artists.EXTERNAL_CONTENT_URI

 Genre: android.provider.MediaStore.Genres.EXTERNAL_CONTENT_URI

CHAPTER 5: Introduction to Audio on Android 118

Here is how you would use the album Uri to query for all of the albums on the device:

String[] columns = { android.provider.MediaStore.Audio.Albums._ID,
 android.provider.MediaStore.Audio.Albums.ALBUM};
Cursor cursor = managedQuery(MediaStore.Audio.Albums.EXTERNAL_CONTENT_URI, columns,
null, null, null);
if (cursor != null) {
 while (cursor.moveToNext()) {
 Log.v("OUTPUT",
 cursor.getString(cursor.getColumnIndex(MediaStore.Audio.Albums.ALBUM)));
 }
}

In the foregoing code snippet, you see that we are asking the MediaStore to return the

_ID and the ALBUM columns. The ALBUM constant indicates that we want the name of the

album returned. Other columns available are listed in the

android.provider.MediaStore.Audio.Albums class and are inherited from

android.provider.BaseColumns and android.provider.MediaStore.Audio.AlbumColumns.

We are calling the managedQuery method giving just the Uri and the list of columns,

leaving the other parameters as null. This will give us all of the albums available on the

device.

Finally, we are outputting the list of albums. To iterate through the list returned inside the

Cursor object, we first check that the Cursor contains results (cursor != null) and then

use the moveToNext method.

Album Browsing App Example
What follows is an example that uses the foregoing as a starting point to allow the user

to see the names of all of the albums. The user can indicate which album he or she

would like to see the songs on. It will then present the list of songs, and if the user

selects one of those, it will play that song.

package com.apress.proandroidmedia.ch5.audiobrowser;

import java.io.File;

import android.app.ListActivity;
import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.provider.MediaStore;
import android.util.Log;
import android.view.View;
import android.widget.ListView;
import android.widget.SimpleCursorAdapter;

Instead of extending a generic activity, let’s extend ListActivity. This allows us to

present and manage a basic ListView.

public class AudioBrowser extends ListActivity {

 Cursor cursor;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5: Introduction to Audio on Android 119

Let’s create a couple of constants that will help us keep track of where the user is in the

application and respond appropriately when the user performs an action. This will be

kept track of in the currentState variable that is initially set to STATE_SELECT_ALBUM.

 public static int STATE_SELECT_ALBUM = 0;
 public static int STATE_SELECT_SONG = 1;

 int currentState = STATE_SELECT_ALBUM;

Just like a normal activity, we have an onCreate method where we can perform the initial

commands.

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

After setting the layout (via the main.xml layout XML file), we create an array of Strings

that represents the columns we want returned from the MediaStore when we run our

query. In this case, it is the same as the foregoing snippet of code—we want the _ID and

the name of the album, ALBUM. Both are constants in the MediaStore.Audio.Albums class.

 String[] columns = {
 android.provider.MediaStore.Audio.Albums._ID,
 android.provider.MediaStore.Audio.Albums.ALBUM
 };

We call the managedQuery method with only the Uri representing the album search and

the columns, leaving everything else null. This should give us a list of all of the albums

available.

 cursor = managedQuery(MediaStore.Audio.Albums.EXTERNAL_CONTENT_URI, columns,
null, null, null);

Once we do this, we are returned a Cursor object that contains the results of our query.

Since we are using a ListActivity, we have the ability to have it automagically manage

the list of data for us. We can use the setListAdapter method to bind our Cursor object

to ListView.

First we create an array of Strings that is the name of the columns in the Cursor that we

want displayed. In our case, we just want the name of the album—

MediaStore.Audio.Albums.ALBUM is our constant for that.

Next we list the View objects that will display the data from those columns. Since we

just have one column, we need only one View object. It is android.R.id.text1. This

View is available to us, as it is part of the android.R.layout.simple_list_item_1 layout

that we’ll be using in the next step.

Last we call the setListAdapter method, passing in a SimpleCursorAdapter, which we

are creating inline. The SimpleCursorAdapter is a simple adapter from a Cursor object

containing data to a ListActivity. In creating the SimpleCursoryAdapter, we pass in our

activity (this) as the Context, a standard ListView layout that is already defined for us

(android.R.layout.simple_list_item_1), the Cursor object containing the data, and the

two arrays we just defined.

CHAPTER 5: Introduction to Audio on Android 120

 String[] displayFields = new String[] {MediaStore.Audio.Albums.ALBUM};
 int[] displayViews = new int[] {android.R.id.text1};
 setListAdapter(new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1, cursor, displayFields,
displayViews));

 }

If we were to run this as is, we would get a simple list of the albums available on our

device as shown in Figure 5–3. We are going to take it a step further, though, and allow

the user to select an album.

Figure 5–3. Albums listed in basic ListView

To allow the user to actually select one of the albums, we need to override the default

onListItemClick method that is provided by our ListActivity parent class.

 protected void onListItemClick(ListView l, View v, int position, long id) {
 if (currentState == STATE_SELECT_ALBUM) {

When an album in the list is selected, this method will be called. Since our currentState

variable starts off as STATE_SELECT_ALBUM the first time this method is called it should be

true.

The position of the selected album in the list will be passed in and can be used with the

Cursor object to get at the data about which album it was by calling the moveToPosition

method.

CHAPTER 5: Introduction to Audio on Android 121

 if (cursor.moveToPosition(position)) {

Assuming the moveToPosition was successful, we are going to start all over again

querying the MediaStore. This time, though, we are going to run our managedQuery on

MediaStore.Audio.Media.EXTERNAL_CONTENT_URI as we want access to the individual

media files.

First we choose the columns that we want returned.

 String[] columns = {
 MediaStore.Audio.Media.DATA,
 MediaStore.Audio.Media._ID,
 MediaStore.Audio.Media.TITLE,
 MediaStore.Audio.Media.DISPLAY_NAME,
 MediaStore.Audio.Media.MIME_TYPE,
 };

Next we need to construct an SQL WHERE clause for our query. Since we want only

media files that belong to a specific album, our WHERE clause should indicate that.

In normal SQL, the WHERE clause would look like this:

WHERE album = ‘album name’

Since we are working with a managedQuery, we don’t need the word WHERE and we don’t

need to pass in what it should be equal to. Instead we substitute in a ‘?’. Therefore for

the foregoing version, the String would be as follows:

album = ?

Since we don’t know the actual name of the column as we are working with a constant.

We’ll use that to construct the WHERE clause.

 String where = android.provider.MediaStore.Audio.Media.ALBUM + "=?";

Finishing off the WHERE clause, we need the data that will be substituted in for the ?s in

the WHERE. This will be an array of Strings, one for each of the ?s used. In our case, we

want to use the name of the album that was selected. Since we have the Cursor in the

right position, we simply need to call the Cursor’s getString method on the right

column, which we get by calling the Cursor’s getColumnIndex method on the column

name.

 String whereVal[] =
{cursor.getString(cursor.getColumnIndex(MediaStore.Audio.Albums.ALBUM))};

Last we can specify that we want the results to be ordered by a specific column’s value.

For this let’s create a String variable that will contain the name of the column that we

want the results ordered by.

 String orderBy = android.provider.MediaStore.Audio.Media.TITLE;

Finally, we can run our managedQuery method, passing in the Uri, the columns, the WHERE

clause variable, the WHERE clause data, and the ORDER BY variable.

 cursor = managedQuery(MediaStore.Audio.Media.EXTERNAL_CONTENT_URI,
columns, where, whereVal, orderBy);

CHAPTER 5: Introduction to Audio on Android 122

Again, we’ll use the ListActivity methods to manage the Cursor object and present the

results in a list.

 String[] displayFields = new String[]
{MediaStore.Audio.Media.DISPLAY_NAME};
 int[] displayViews = new int[] {android.R.id.text1};
 setListAdapter(new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1, cursor, displayFields,
displayViews));

The last thing we’ll do is change the currentState variable to be STATE_SELECT_SONG so

that the next time through this method, we skip all of this as the user will be selecting a

song and not an album.

 currentState = STATE_SELECT_SONG;
 }
 } else if (currentState == STATE_SELECT_SONG) {

When the user selects a song from the list after selecting an album, he or she will enter

this part of the method as currentState will equal STATE_SELECT_SONG.

 if (cursor.moveToPosition(position)) {

Using the same moveToPosition call on the Cursor object as we did previously, we can

get at the song that was actually selected. In this case, we are getting at the column that

contains the path to the file and the MIME-type of that file. We are converting it to a File

and creating an intent to start the built-in music player application.

 int fileColumn = cursor.getColumnIndex (MediaStore.Audio.Media.DATA);
 int mimeTypeColumn = cursor.getColumnIndex
(MediaStore.Audio.Media.MIME_TYPE);

 String audioFilePath = cursor.getString(fileColumn);
 String mimeType = cursor.getString(mimeTypeColumn);

 Intent intent = new Intent(android.content.Intent.ACTION_VIEW);

 File newFile = new File(audioFilePath);
 intent.setDataAndType(Uri.fromFile(newFile), mimeType);

 startActivity(intent);
 }
 }
 }
}

Here is the layout XML file that is being used by the foregoing code. You’ll notice that it

contains a ListView with the ID list. This is the default ID that needs to be used with the

ListActivity that we are extending.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

http://schemas.android.com/apk/res/android

CHAPTER 5: Introduction to Audio on Android 123

 <ListView android:id="@+android:id/list" android:layout_width="wrap_content"
 android:layout_height="wrap_content"></ListView>
</LinearLayout>

That wraps up our sample application, which allows us to browse and select songs to

play by album using the MediaStore. Using very similar methods, we could build it out so

that we could browse and select music based upon artist and genre as well.

Summary
As we have discovered throughout this chapter, Android provides a rich set of

capabilities for working with audio files. The capabilities it offers are implemented in a

manner similar to those we have used with the image capture capabilities; specifically,

we can use the built-in applications through an intent or create our own custom

playback application. Also, the MediaStore has special capabilities for audio beyond

querying for individual audio files—we can use it to search and browse for audio based

on artist, album, genre, and more.

In the next chapter, we’ll take this a step further and look at the world opened up by

harnessing audio not stored on the device, but rather available via the Internet.

CHAPTER 5: Introduction to Audio on Android 124

125

125

 Chapter

Background and
Networked Audio
In the last chapter, we explored Android’s basic audio playback capabilities. While those

capabilities are fantastic, we need to push a bit further to make them generally useful. In

this chapter, we’ll look at how we can do things like play audio files in the background

so that the application playing the audio doesn’t need to be running. We’ll take a look at

how we can synthesize sound rather than just playing sound files, and we’ll look at how

to leverage streaming audio that is available on the Internet.

Background Audio Playback
So far we have concentrated on building applications that are centered around being in

the foreground and have their user interface in front of the user. In the last chapter, we

looked at how to add audio playback capabilities to those types of applications.

What happens, though, if we want to build an application that plays music or audio

books, but we would like the user to be able to do other things with the phone while

continuing to listen? We might have some trouble making that happen if we limit

ourselves to just building activities. The Android operating system reserves the right to

kill activities that aren’t in the front and in use by the user. It does this in order to free up

memory to make room for other applications to run. If the OS kills an activity that is

playing audio, this would stop the audio from playing, making the user experience not so

great.

Fortunately, there is a solution. Instead of playing our audio in an activity, we can use a

Service.

Services
In order to ensure that the audio continues to play when the application is no longer in

the front and its activity is not in use, we need to create a Service. A Service is a

6

CHAPTER 6: Background and Networked Audio 126

component of an Android application that is meant to run tasks in the background

without requiring any interaction from the user.

Local vs. Remote Services
There are a couple of different classes of Services in use by Android. The first and what

we’ll be exploring is called a Local Service. Local Services exist as part of a specific

application and are accessed and controlled only by that application. Remote Services

are the other type. They can communicate with, be accessed, and be controlled by

other applications. As mentioned, we’ll be concentrating on using a Local Service to

provide audio playback capabilities. Developing Remote Services is a very large topic

and is unfortunately out of the scope of this book.

Simple Local Service
To demonstrate a Service, let’s go through this very simple example.

First we’ll need an activity with an interface that allows us to start and stop the Service.

package com.apress.proandroidmedia.ch06.simpleservice;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class SimpleServiceActivity extends Activity implements OnClickListener {

Our activity will have two Buttons—one for starting the Service and one for stopping it.

 Button startServiceButton;
 Button stopServiceButton;

In order to start or stop the Service, we use a standard intent.

 Intent serviceIntent;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

Our activity implements OnClickListener, so we set the OnClickListener for each of the

Buttons to be “this”.

 startServiceButton = (Button) this.findViewById(R.id.StartServiceButton);
 stopServiceButton = (Button) this.findViewById(R.id.StopServiceButton);

 startServiceButton.setOnClickListener(this);
 stopServiceButton.setOnClickListener(this);

When instantiating the intent that will be used to start and stop the Service, we pass in

our activity as the Context followed by the Service’s class.

CHAPTER 6: Background and Networked Audio 127

 serviceIntent = new Intent(this, SimpleServiceService.class);
 }

 public void onClick(View v) {
 if (v == startServiceButton) {

When the startServiceButton is clicked, we call the startService method, passing in

the intent just created to refer to our Service. The startService method is a part of the

Context class of which activity is a child.

 startService(serviceIntent);
 }
 else if (v == stopServiceButton) {

When the stopServiceButton is clicked, we call the stopService method, passing in the

same intent that refers to our Service. As with startService, stopService is part of the

Context class.

 stopService(serviceIntent);
 }
 }
}

Here is our main.xml file that defines the layout for the foregoing activity. It contains the

StartService and StopService Buttons as well as a TextView.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Simple Service"
 />
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/StartServiceButton" android:text="Start Service"></Button>
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="Stop Service" android:id="@+id/StopServiceButton"></Button>
</LinearLayout>

Now we can move on to the code for the Service itself. In this example, we aren’t

accomplishing anything in the Service, just using Toast to tell us when the Service has

started and stopped.

package com.apress.proandroidmedia.ch06.simpleservice;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;

Services extend the android.app.Service class. The Service class is abstract, so in

order to extend it, we have to at the very least implement the onBind method. In this very

http://schemas.android.com/apk/res/android

CHAPTER 6: Background and Networked Audio 128

simple example, we aren’t going to be “binding” to the Service. Therefore we’ll just

return null in our onBind method.

public class SimpleServiceService extends Service {

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

The next three methods represent the Service’s life cycle. The onCreate method, as in

the Activity, is called when the Service is instantiated. It will be the first method called.

 @Override
 public void onCreate() {
 Log.v("SIMPLESERVICE","onCreate");
 }

The onStartCommand method will be called whenever startService is called with an

intent that matches this Service. Therefore it may be called more than once. The

onStartCommand returns an integer value that represents what the OS should do if it kills

the Service. START_STICKY, which we are using here, indicates that the Service will be

restarted if killed.

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 Log.v("SIMPLESERVICE","onStartCommand");
 return START_STICKY;
 }

onStartCommand vs. onStart

The onStartCommand method was introduced with Android 2.0 (API level 5). Previous to that, the method
used was onStart. onStart’s parameters are an intent and an int for startId. It does not include the
int flags parameter and doesn’t have a return. If you are targeting a phone that is running something
earlier than 2.0, you can use the onStart method.

 @Override
public void onStart(Intent intent, int startid) {
 Log.v("SIMPLESERVICE","onStart");
 }

The onDestroy method is called when the OS is destroying a Service. In this example, it

is triggered when the stopService method is called by our activity. This method should

be used to do any cleanup that needs to be done when a Service is being shut down.

 public void onDestroy() {
 Log.v("SIMPLESERVICE","onDestroy");
 }
}

Finally, in order to make this example work, we need to add an entry to our manifest file

(AndroidManifest.xml) that specifies our Service.

<?xml version="1.0" encoding="utf-8"?>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6: Background and Networked Audio 129

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.proandroidmedia.ch06.simpleservice"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".SimpleServiceActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <service android:name=".SimpleServiceService" />
 </application>
 <uses-sdk android:minSdkVersion="5" />
</manifest>

Of course, this example doesn’t do anything other than output to the log indicating when

the Service has been started and stopped. Let’s move forward and have our Service

actually do something.

Local Service plus MediaPlayer
Now that we have created an example Service, we can use it as a template to create an

application to play audio files in the background. Here is a Service, and an activity to

control the Service that does just that, allows us to play audio files in the background. It

works in a similar manner to the custom audio player example from the last chapter, as

it is using the same underlying MediaPlayer class that Android makes available to us.

package com.apress.proandroidmedia.ch06.backgroundaudio;

import android.app.Service;
import android.content.Intent;
import android.media.MediaPlayer;
import android.media.MediaPlayer.OnCompletionListener;
import android.os.IBinder;
import android.util.Log;

The Service implements OnCompletionListener so that it can be notified when the

MediaPlayer has finished playing an audio file.

public class BackgroundAudioService extends Service implements OnCompletionListener
{

We declare an object of type MediaPlayer. This object will handle the playback of the

audio as shown in the custom audio player example in the last chapter.

 MediaPlayer mediaPlayer;

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

 @Override

http://schemas.android.com/apk/res/android

CHAPTER 6: Background and Networked Audio 130

 public void onCreate() {
 Log.v("PLAYERSERVICE","onCreate");

In the onCreate method, we instantiate the MediaPlayer. We are passing it a specific

reference to an audio file called goodmorningandroid.mp3, which should be placed in the

raw resources (res/raw) directory of our project. If this directory doesn’t exist, it should

be created. Putting the audio file in that location allows us to refer to it by a constant in

the generated R class, R.raw.goodmorningandroid. More detail about placing audio in the

raw resources directory is available in Chapter 5 in the “Creating a Custom Audio-

Playing Application” section.

 mediaPlayer = MediaPlayer.create(this, R.raw.goodmorningandroid);

We also set our Service, this class, to be the OnCompletionListener for the MediaPlayer

object.

 mediaPlayer.setOnCompletionListener(this);
 }

When the startService command is issued on this Service, the onStartCommand method

will be triggered. In this method, we first check that the MediaPlayer object isn’t already

playing, as this method may be called multiple times, and if it isn’t, we start it. Since we

are using the onStartCommand method rather than the onStart method, this example runs

only in Android 2.0 and above.

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 Log.v("PLAYERSERVICE","onStartCommand");

 if (!mediaPlayer.isPlaying()) {
 mediaPlayer.start();
 }
 return START_STICKY;
 }

When the Service is destroyed, the onDestroy method is triggered. Since this doesn’t

guarantee that the MediaPlayer will stop playing, we invoke its stop method here if it is

playing and also call its release method to get rid of any memory usage and or resource

locks.

 public void onDestroy() {
 if (mediaPlayer.isPlaying())
 {
 mediaPlayer.stop();
 }
 mediaPlayer.release();
 Log.v("SIMPLESERVICE","onDestroy");
 }

Because we are implementing OnCompletionListener and the Service itself is set to be

the MediaPlayer’s OnCompletionListener, the following onCompletion method is called

when the MediaPlayer has finished playing an audio file. Since this Service is only meant

to play one song and that’s it, we call stopSelf, which is analogous to calling

stopService in our activity.

CHAPTER 6: Background and Networked Audio 131

 public void onCompletion(MediaPlayer _mediaPlayer) {
 stopSelf();
 }
}

Here is the activity that corresponds to the foregoing Service. It has a very simple

interface with two buttons to control the starting and stopping of the Service. In each

case, it calls finish directly after to illustrate that the Service is not dependent on the

activity and runs independently.

package com.apress.proandroidmedia.ch06.backgroundaudio;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class BackgroundAudioActivity extends Activity implements OnClickListener {

 Button startPlaybackButton, stopPlaybackButton;
 Intent playbackServiceIntent;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 startPlaybackButton = (Button) this.findViewById(R.id.StartPlaybackButton);
 stopPlaybackButton = (Button) this.findViewById(R.id.StopPlaybackButton);

 startPlaybackButton.setOnClickListener(this);
 stopPlaybackButton.setOnClickListener(this);

 playbackServiceIntent = new Intent(this,BackgroundAudioService.class);
 }

 public void onClick(View v) {
 if (v == startPlaybackButton) {
 startService(playbackServiceIntent);
 finish();
 } else if (v == stopPlaybackButton) {
 stopService(playbackServiceIntent);
 finish();
 }
 }
}

Here is the main.xml layout XML file in use by the foregoing activity.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView

http://schemas.android.com/apk/res/android

CHAPTER 6: Background and Networked Audio 132

 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Background Audio Player"
 />
 <Button android:text="Start Playback" android:id="@+id/StartPlaybackButton"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
 <Button android:text="Stop Playback" android:id="@+id/StopPlaybackButton"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
</LinearLayout>

Finally, here is the AndroidManifest.xml for this project.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.proandroidmedia.ch06.backgroundaudio"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".BackgroundAudioActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <service android:name=".BackgroundAudioService" />
 </application>
 <uses-sdk android:minSdkVersion="5" />
</manifest>

As shown, simply using the MediaPlayer to start and stop audio playback within a

Service is very straightforward. Let’s now look at how we can take that a step further.

Controlling a MediaPlayer in a Service
Unfortunately, when using a Service, issuing commands to the MediaPlayer from the

user-facing activity becomes more complicated.

In order to allow the MediaPlayer to be controlled, we need to bind the activity and

Service together. Once we do that, since the activity and Service are running in the

same process, we can call methods in the Service directly. If we were creating a remote

Service, we would have to take further steps.

Let’s add a Button labeled “Have Fun” to the foregoing activity. When this Button is

pressed, we’ll have the MediaPlayer seek back a few seconds and continuing playing

the audio file.

We’ll start by adding the Button to the layout XML:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 6: Background and Networked Audio 133

 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Background Audio Player"
 />
 <Button android:text="Start Playback" android:id="@+id/StartPlaybackButton"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
 <Button android:text="Stop Playback" android:id="@+id/StopPlaybackButton"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
 <Button android:text="Have Fun" android:id="@+id/HaveFunButton"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
</LinearLayout>

Then in the activity, we’ll get a reference to it and set its onClickListener to be the

activity itself, just like the existing Buttons.

package com.apress.proandroidmedia.ch06.backgroundaudiobind;

import android.app.Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.IBinder;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class BackgroundAudioActivity extends Activity implements OnClickListener {

 Button startPlaybackButton, stopPlaybackButton;
 Button haveFunButton;
 Intent playbackServiceIntent;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 startPlaybackButton = (Button) this.findViewById(R.id.StartPlaybackButton);
 stopPlaybackButton = (Button) this.findViewById(R.id.StopPlaybackButton);
 haveFunButton = (Button) this.findViewById(R.id.HaveFunButton);

 startPlaybackButton.setOnClickListener(this);
 stopPlaybackButton.setOnClickListener(this);
 haveFunButton.setOnClickListener(this);

 playbackServiceIntent = new Intent(this,BackgroundAudioService.class);
 }

In order for us to have this Button interact with the MediaPlayer that is running in the

Service, we have to bind to the Service. The means to do this is with the bindService

method. This method takes in an intent; in fact, we can re-use the

playbackServiceIntent that we are using to start the Service, a ServiceConnection

object, and some flags for what to do when the Service isn’t running.

CHAPTER 6: Background and Networked Audio 134

In the following onClick method in our activity, we bind to the Service right after we start

it, when the startPlaybackButton is pressed. We unbind from the Service when the

stopPlaybackButton is called.

 public void onClick(View v) {
 if (v == startPlaybackButton) {
 startService(playbackServiceIntent);
 bindService(playbackServiceIntent, serviceConnection,
 Context.BIND_AUTO_CREATE);
 } else if (v == stopPlaybackButton) {
 unbindService(serviceConnection);
 stopService(playbackServiceIntent);
 }

You’ll probably notice that we are using a new object that we haven’t defined,

serviceConnection. This we’ll take care of in a moment.

We also need to finish off the onClick method. Since our new Button has its

onClickListener set to be the activity, we should handle that case as well and close out

the onClick method.

 else if (v == haveFunButton) {
 baService.haveFun();
 }
 }

In the new section, we are using another new object, baService. baService is an object

that is of type BackgroundAudioService. We’ll declare it now and take care of creating

when we create our ServiceConnection object.

 private BackgroundAudioService baService;

As mentioned, we are still missing the declaration and instantiation of an object called

serviceConnection. serviceConnection will be an object of type ServiceConnection,

which is an Interface for monitoring the state of a bound Service.

Let’s take care of creating our serviceConnection now:

 private ServiceConnection serviceConnection = new ServiceConnection() {

The onServiceConnected method shown here will be called when a connection with the

Service has been established through a bindService command that names this object

as the ServiceConnection (such as we are doing in our bindService call).

One thing that is passed into this method is an IBinder object that is actually created

and delivered from the Service itself. In our case, this IBinder object will be of type

BackgroundAudioServiceBinder, which we’ll create in our Service. It will have a method

that returns our Service itself, called getService. The object returned by this can be

operated directly on, as we are doing when the haveFunButton is clicked.

 public void onServiceConnected(ComponentName className, IBinder baBinder) {
 baService =
((BackgroundAudioService.BackgroundAudioServiceBinder)baBinder).getService();
 }

CHAPTER 6: Background and Networked Audio 135

We also need an onServiceDisconnected method to handle cases when the Service

goes away.

 public void onServiceDisconnected(ComponentName className) {
 baService = null;
 }
 };
}

.

Now we can turn our attention to what we need to change in the Service itself.

package com.apress.proandroidmedia.ch06.backgroundaudiobind;

import android.app.Service;
import android.content.Intent;
import android.media.MediaPlayer;
import android.media.MediaPlayer.OnCompletionListener;
import android.os.Binder;
import android.os.IBinder;
import android.util.Log;

public class BackgroundAudioService extends Service implements OnCompletionListener
{
 MediaPlayer mediaPlayer;

The first change that we’ll need to make in our Service is to create an inner class that

extends Binder that can return our Service itself when asked.

 public class BackgroundAudioServiceBinder extends Binder {
 BackgroundAudioService getService() {
 return BackgroundAudioService.this;
 }
 }

Following that, we’ll instantiate that as an object called basBinder.

 private final IBinder basBinder = new BackgroundAudioServiceBinder();

And override the implementation of onBind to return that.

 @Override
 public IBinder onBind(Intent intent) {
 // Return the BackgroundAudioServiceBinder object
 return basBinder;
 }

That’s it for the binding. Now we just need to deal with “Having Fun.”

As mentioned, when the haveFunButton is clicked, we want the MediaPlayer to seek

back a few seconds. In this implementation, it will seek back 2,500 milliseconds or 2.5

seconds.

 public void haveFun() {
 if (mediaPlayer.isPlaying()) {
 mediaPlayer.seekTo(mediaPlayer.getCurrentPosition() - 2500);
 }
 }

CHAPTER 6: Background and Networked Audio 136

That’s it for updates on the Service. Here is the rest of the code for good measure.

 @Override
 public void onCreate() {
 Log.v("PLAYERSERVICE","onCreate");

 mediaPlayer = MediaPlayer.create(this, R.raw.goodmorningandroid);
 mediaPlayer.setOnCompletionListener(this);
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 Log.v("PLAYERSERVICE","onStartCommand");

 if (!mediaPlayer.isPlaying()) {
 mediaPlayer.start();
 }
 return START_STICKY;
 }

 public void onDestroy() {
 if (mediaPlayer.isPlaying())
 {
 mediaPlayer.stop();
 }
 mediaPlayer.release();
 Log.v("SIMPLESERVICE","onDestroy");
 }

 public void onCompletion(MediaPlayer _mediaPlayer) {
 stopSelf();
 }

}

Finally, here is the AndroidManifest.xml file that is required by the foregoing example.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0" package="com.apress.proandroidmedia
.ch06.backgroundaudiobind">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".BackgroundAudioActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <service android:name=".BackgroundAudioService" />
 </application>
 <uses-sdk android:minSdkVersion="5" />
</manifest>

Now that the foundation is in place, we can add whatever functionality we like into the

Service and call the various methods such as haveFun directly from our activity by

http://schemas.android.com/apk/res/android

CHAPTER 6: Background and Networked Audio 137

binding to it. Without binding to the Service, we would be unable to do anything more

than start and stop the Service.

The foregoing examples should give a good starting point for building an application that

plays audio files in the background, allowing users to continue doing other tasks while

the audio continues playing. The second example can be extended to build a full-

featured audio playback application.

Networked Audio
Moving our attention forward, let’s look at how we can further leverage Android’s audio

playback capabilities to harness media that lives elsewhere, in particular audio that lives

online. With posting MP3 files, podcasting, and streaming all becoming more and more

popular, it only makes sense that we would want to build audio playback applications

that can leverage those services.

Fortunately, Android has rich capabilities for dealing with various types of audio

available on the network.

Let’s start with examining how to leverage web-based audio or audio delivered via

HTTP.

HTTP Audio Playback
The simplest case to explore would simply be to play an audio file that lives online and is

accessible via HTTP.

One such file would be this, which is available on my server:
http://www.mobvcasting.com/android/audio/goodmorningandroid.mp3

Here is an example activity that uses the MediaPlayer to illustrate how to play audio

available via HTTP.

package com.apress.proandroidmedia.ch06.audiohttp;

import java.io.IOException;

import android.app.Activity;
import android.media.MediaPlayer;
import android.os.Bundle;
import android.util.Log;

public class AudioHTTPPlayer extends Activity {
 MediaPlayer mediaPlayer;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

When our activity is created, we do a generic instantiation of a MediaPlayer object by

calling the MediaPlayer constructor with no arguments. This is a different way of using

http://www.mobvcasting.com/android/audio/goodmorningandroid.mp3

CHAPTER 6: Background and Networked Audio 138

the MediaPlayer than we have previously seen and requires us to take some additional

steps before we can play the audio.

 mediaPlayer = new MediaPlayer();

Specifically, we need to call the setDataSource method, passing in the HTTP location of

the audio file we would like to play. This method can throw an IOException, so we have

to catch and deal with that as well.

 try {
 mediaPlayer.setDataSource(
 "http://www.mobvcasting.com/android/audio/goodmorningandroid.mp3");

Following that we call the prepare method and then the start method, after which the

audio should start playing.

 mediaPlayer.prepare();
 mediaPlayer.start();
 } catch (IOException e) {
 Log.v("AUDIOHTTPPLAYER",e.getMessage());
 }
 }
}

Running this example, you will probably notice a significant lag time from when the

application loads to when the audio plays. The length of the delay is due to the speed of

the data network that the phone is using for its Internet connection (among other

variables).

If we add Log or Toast messages throughout the code, we would see that this delay

happens between the call to the prepare method and the start method. During the

running of the prepare method, the MediaPlayer is filling up a buffer so that the audio

playback can run smoothly even if the network is slow.

The prepare method actually blocks while it is doing this. This means that applications

that use this method will likely become unresponsive until the prepare method is

complete. Fortunately, there is a way around this, and that is to use the prepareAsync
method. This method returns immediately and does the buffering and other work in the

background, allowing the application to continue.

The issue then becomes one of paying attention to the state of the MediaPlayer object

and implementing various callbacks that help us keep track of its state.

To get a handle on the various states that a MediaPlayer object may be in, it is helpful to

look over the diagram from the MediaPlayer page on the Android API Reference, shown

in Figure 6–1.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.mobvcasting.com/android/audio/goodmorningandroid.mp3

CHAPTER 6: Background and Networked Audio 139

Figure 6–1. MediaPlayer state diagram from Android API Reference

Here is a full MediaPlayer example that uses prepareAsync and implements several

listeners to keep track of its state.

CHAPTER 6: Background and Networked Audio 140

package com.apress.proandroidmedia.ch06.audiohttpasync;

import java.io.IOException;
import android.app.Activity;
import android.media.MediaPlayer;
import android.media.MediaPlayer.OnBufferingUpdateListener;
import android.media.MediaPlayer.OnCompletionListener;
import android.media.MediaPlayer.OnErrorListener;
import android.media.MediaPlayer.OnInfoListener;
import android.media.MediaPlayer.OnPreparedListener;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

In this version of our HTTP audio player, we are implementing several interfaces. Two of

them, OnPreparedListener and OnCompletionListener, will help us keep track of the

state of the MediaPlayer so that we don’t attempt to play or stop audio when we

shouldn’t.

public class AudioHTTPPlayer extends Activity
 implements OnClickListener, OnErrorListener, OnCompletionListener,
 OnBufferingUpdateListener, OnPreparedListener {

 MediaPlayer mediaPlayer;

The interface for this activity has start and stop Buttons, a TextView for displaying the

status, and a TextView for displaying the percentage of the buffer that has been filled.

 Button stopButton, startButton;
 TextView statusTextView, bufferValueTextView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

In the onCreate method, we set the stopButton and startButton to be disabled. They’ll

be enabled or disabled throughout the running of the application. This is to illustrate

when the methods they trigger are and aren’t available.

 stopButton = (Button) this.findViewById(R.id.EndButton);
 startButton = (Button) this.findViewById(R.id.StartButton);
 stopButton.setOnClickListener(this);
 startButton.setOnClickListener(this);
 stopButton.setEnabled(false);
 startButton.setEnabled(false);

 bufferValueTextView = (TextView) this.findViewById(R.id.BufferValueTextView);
 statusTextView = (TextView) this.findViewById(R.id.StatusDisplayTextView);
 statusTextView.setText("onCreate");

After we instantiate the MediaPlayer object, we register the activity to be the

OnCompletionListener, the OnErrorListener, the OnBufferingUpdateListener, and the

OnPreparedListener.

CHAPTER 6: Background and Networked Audio 141

 mediaPlayer = new MediaPlayer();

 mediaPlayer.setOnCompletionListener(this);
 mediaPlayer.setOnErrorListener(this);
 mediaPlayer.setOnBufferingUpdateListener(this);
 mediaPlayer.setOnPreparedListener(this);

 statusTextView.setText("MediaPlayer created");

Next we call setDataSource with the URL to the audio file.

 try {
 mediaPlayer.setDataSource(
 "http://www.mobvcasting.com/android/audio/goodmorningandroid.mp3");

 statusTextView.setText("setDataSource done");
 statusTextView.setText("calling prepareAsync");

Last, we’ll call prepareAsync, which will start the buffering of the audio file in the

background and return. When the preparation is complete, our activity’s onCompletion

method will be called due to our activity being registered as the OnCompletionListener

for the MediaPlayer.

 mediaPlayer.prepareAsync();

 } catch (IOException e) {
 Log.v("AUDIOHTTPPLAYER",e.getMessage());
 }
 }

What follows is the implementation of the onClick method for the two Buttons. When

the stopButton is pressed, the MediaPlayer’s pause method will be called. When the

startButton is pressed, the MediaPlayer’s start method is called.

 public void onClick(View v) {
 if (v == stopButton) {
 mediaPlayer.pause();
 statusTextView.setText("pause called");
 startButton.setEnabled(true);
 } else if (v == startButton) {
 mediaPlayer.start();
 statusTextView.setText("start called");
 startButton.setEnabled(false);
 stopButton.setEnabled(true);
 }
 }

If the MediaPlayer enters into an error state, the onError method will be called on the

object that is registered as the MediaPlayer’s OnErrorListener. The following onError

method shows the various constants that are specified in the MediaPlayer class.

 public boolean onError(MediaPlayer mp, int what, int extra) {
 statusTextView.setText("onError called");

 switch (what) {
 case MediaPlayer.MEDIA_ERROR_NOT_VALID_FOR_PROGRESSIVE_PLAYBACK:
 statusTextView.setText(
 "MEDIA ERROR NOT VALID FOR PROGRESSIVE PLAYBACK " + extra);

http://www.mobvcasting.com/android/audio/goodmorningandroid.mp3

CHAPTER 6: Background and Networked Audio 142

 Log.v(
 "ERROR","MEDIA ERROR NOT VALID FOR PROGRESSIVE PLAYBACK " + extra);
 break;
 case MediaPlayer.MEDIA_ERROR_SERVER_DIED:
 statusTextView.setText("MEDIA ERROR SERVER DIED " + extra);
 Log.v("ERROR","MEDIA ERROR SERVER DIED " + extra);
 break;
 case MediaPlayer.MEDIA_ERROR_UNKNOWN:
 statusTextView.setText("MEDIA ERROR UNKNOWN " + extra);
 Log.v("ERROR","MEDIA ERROR UNKNOWN " + extra);
 break;
 }

 return false;
 }

When the MediaPlayer completes playback of an audio file, the onCompletion method of

the object registered as the OnCompletionListener will be called. This indicates that we

could start playback again.

 public void onCompletion(MediaPlayer mp) {
 statusTextView.setText("onCompletion called");
 stopButton.setEnabled(false);
 startButton.setEnabled(true);
 }

While the MediaPlayer is buffering, the onBufferingUpdate method of the object

registered as the MediaPlayer’s onBufferingUpdateListener is called. The percentage of

the buffer that is filled is passed in.

 public void onBufferingUpdate(MediaPlayer mp, int percent) {
 bufferValueTextView.setText("" + percent + "%");
 }

When the prepareAsync method finishes, the onPrepared method of the object registered

as the OnPreparedListener will be called. This indicates that the audio is ready for

playback, and therefore, in the following method, we are setting the startButton to be

enabled.

 public void onPrepared(MediaPlayer mp) {
 statusTextView.setText("onPrepared called");
 startButton.setEnabled(true);
 }
}

Here is the Layout XML associated with the foregoing activity:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView android:text="Status" android:id="@+id/TextView01"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></TextView>
 <TextView android:text="Unknown" android:id="@+id/StatusDisplayTextView"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></TextView>
 <TextView android:text="0%" android:id="@+id/BufferValueTextView"

http://schemas.android.com/apk/res/android

CHAPTER 6: Background and Networked Audio 143

 android:layout_width="wrap_content" android:layout_height="wrap_content"></TextView>
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="Start" android:id="@+id/StartButton"></Button>
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/EndButton" android:text="Stop"></Button>
</LinearLayout>

As just shown, the MediaPlayer has a nice set of capabilities for handling audio files that

are available online via HTTP.

Streaming Audio via HTTP
One way that live audio is commonly delivered online is via HTTP streaming. There are a

variety of streaming methods that fall under the umbrella of HTTP streaming from server

push, which has historically been used for displaying continually refreshing webcam

images in browsers to a series of new methods being put forth by Apple, Adobe, and

Microsoft for use by their respective media playback applications.

The main method for streaming live audio over HTTP is one developed in 1999 by a

company called Nullsoft, which was subsequently purchased by AOL. Nullsoft was the

creator of WinAMP, a popular MP3 player, and they developed a live audio streaming

server that used HTTP, called SHOUTcast. SHOUTcast uses the ICY protocol, which

extends HTTP. Currently, a large number of servers and playback software products

support this protocol, so many, in fact, that it may be considered the de facto standard

for online radio.

Fortunately, the MediaPlayer class on Android is capable of playing ICY streams without

requiring us developers to jump through hoops.

Unfortunately for us, Internet radio stations don’t typically advertise the direct URL to

their streams. This is for good reason; unfortunately, browsers don’t support ICY

streams directly and require a helper application or plug-in to play the stream. In order

to know to open a helper application, an intermediary file with a specific MIME-type is

delivered by the Internet radio station, which contains a pointer to the actual live stream.

In the case of ICY streams, this is typically either a PLS file or an M3U file.

 A PLS file is a multimedia playlist file and has the MIME-type

“audio/x-scpls”.

 An M3U file is also a file that stores multimedia playlists but in a more

basic format. Its MIME-type is “audio/x-mpegurl”.

The following illustrates the contents of an M3U file that points to a fake live stream.

#EXTM3U
#EXTINF:0,Live Stream Name
http://www.nostreamhere.org:8000/

The first line, #EXTM3U, is required and specifies that what follows is an Extended M3U

file that can contain extra information. Extra information about a playlist entry is

specified on the line above the entry and starts with #EXTINF:, followed by the duration

in seconds, a comma, and then the name of the media.

http://www.nostreamhere.org:8000

CHAPTER 6: Background and Networked Audio 144

An M3U file can have multiple entries as well, specifying one file or stream after another.

#EXTM3U
#EXTINF:0,Live Stream Name
http://www.nostreamhere.org:8000/
#EXTINF:0,Other Live Stream Name
http://www.nostreamthere.org/

Unfortunately, the MediaPlayer on Android doesn’t handle the parsing of M3U files for

us. Therefore, to create an HTTP streaming audio player on Android, we have to handle

the parsing ourselves and use the MediaPlayer for the actual media playback.

Here is an example activity that parses and plays an M3U file delivered from an online

radio station or any M3U file as entered in the URL field.

package com.apress.proandroidmedia.ch06.httpaudioplaylistplayer;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Vector;

import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.ClientProtocolException;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;

import android.app.Activity;
import android.media.MediaPlayer;
import android.media.MediaPlayer.OnCompletionListener;
import android.media.MediaPlayer.OnPreparedListener;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;

As in our previous example, this activity will extend OnCompletionListener and

OnPreparedListener to track the state of the MediaPlayer.

public class HTTPAudioPlaylistPlayer extends Activity
 implements OnClickListener, OnCompletionListener, OnPreparedListener {

We’ll use a Vector to hold the list of items in the playlist. Each item will be a

PlaylistFile object that is defined in an inner class at the end of this class.

 Vector playlistItems;

We’ll have a few Buttons on the interface as well as an EditText object, which will

contain the URL to the M3U file.

 Button parseButton;
 Button playButton;
 Button stopButton;

k

http://www.nostreamhere.org:8000
http://www.nostreamthere.org

CHAPTER 6: Background and Networked Audio 145

 EditText editTextUrl;
 String baseURL = "";
 MediaPlayer mediaPlayer;

The following integer is used keep track of which item from the playlistItems Vector

we are currently on.

 int currentPlaylistItemNumber = 0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 parseButton = (Button) this.findViewById(R.id.ButtonParse);
 playButton = (Button) this.findViewById(R.id.PlayButton);
 stopButton = (Button) this.findViewById(R.id.StopButton);

We are setting the text of the editTextUrl object to be the URL of an M3U file from an

online radio station. The first one, which is commented out, is the URL for KBOO, a

community radio station in Portland, Oregon (www.kboo.fm/). The second, which is not

commented out, is for KMFA, a classical station in Austin, Texas (www.kmfa.org/).

The user can edit this to be the URL to any M3U file available on the Internet.

 editTextUrl = (EditText) this.findViewById(R.id.EditTextURL);
 //editTextUrl.setText("http://live.kboo.fm:8000/high.m3u");
 editTextUrl.setText("http://pubint.ic.llnwd.net/stream/pubint_kmfa.m3u");

 parseButton.setOnClickListener(this);
 playButton.setOnClickListener(this);
 stopButton.setOnClickListener(this);

Initially the playButton and stopButton will not be enabled; the user will not be able to

press them. The parseButton, on the other hand, will be enabled. After the M3U file is

retrieved and parsed, the playButton will be enabled, and after the audio is playing, the

stopButton will be enabled. This is how we’ll guide the user through the flow of the

application.

 playButton.setEnabled(false);
 stopButton.setEnabled(false);

 mediaPlayer = new MediaPlayer();
 mediaPlayer.setOnCompletionListener(this);
 mediaPlayer.setOnPreparedListener(this);
 }

Each of the Buttons has their OnClickListener set to be this activity. Therefore the

following onClick method will be called when any of these are clicked. This drives most

of the application’s flow.

When the parseButton is pressed, the parsePlaylistFile method is called. When the

playButton is pressed, the playPlaylistItems method is called.

http://www.kboo.fm
http://www.kmfa.org
http://live.kboo.fm:8000/high.m3u
http://pubint.ic.llnwd.net/stream/pubint_kmfa.m3u

CHAPTER 6: Background and Networked Audio 146

 public void onClick(View view) {
 if (view == parseButton) {
 parsePlaylistFile();
 } else if (view == playButton) {
 playPlaylistItems();
 } else if (view == stopButton) {
 stop();
 }
 }

The first method that will be triggered is parsePlaylistFile. This method downloads the

M3U file that is specified by the URL in the editTextUrl object and parses it. The act of

parsing it picks out any lines that represent files to play and creates a PlaylistItem

object, which is added to the playlistItems Vector.

 private void parsePlaylistFile() {

We’ll start out with an empty Vector. If a new M3U file is parsed, anything previously in

here will be thrown away.

 playlistItems = new Vector();

To retrieve the M3U file off of the Web, we can use the Apache Software Foundation’s

HttpClient library, which is included with Android.

First we create an HttpClient object, which represents something along the lines of a

web browser, and then an HttpGet object, which represents the specific request for a

file. The HttpClient will execute the HttpGet and return an HttpResponse.

 HttpClient httpClient = new DefaultHttpClient();
 HttpGet getRequest = new HttpGet(editTextUrl.getText().toString());

 Log.v("URI",getRequest.getURI().toString());

 try {
 HttpResponse httpResponse = httpClient.execute(getRequest);
 if (httpResponse.getStatusLine().getStatusCode() != HttpStatus.SC_OK) {
 // ERROR MESSAGE
 Log.v("HTTP ERROR",httpResponse.getStatusLine().getReasonPhrase());
 } else {

After we make the request, we can retrieve an InputStream from the HttpResponse. This

InputStream contains the contents of the file requested.

 InputStream inputStream = httpResponse.getEntity().getContent();
 BufferedReader bufferedReader =
 new BufferedReader(new InputStreamReader(inputStream));

With the aid of a BufferedReader, we can go through the file line by line.

 String line;
 while ((line = bufferedReader.readLine()) != null) {
 Log.v("PLAYLISTLINE","ORIG: " + line);

If the line starts with a “#”, we’ll ignore it for now. As described earlier, these lines are

metadata.

CHAPTER 6: Background and Networked Audio 147

 if (line.startsWith("#")) {
 // Metadata
 // Could do more with this but not fo now

Otherwise, if it isn’t a blank line, it has a length greater than 0, and we’ll assume that it is

a playlist item.

 } else if (line.length() > 0) {

If the line starts with “http://”, we treat it as a full URL to the stream, otherwise we treat it

as a relative URL and tack on the URL of the original request for the M3U file.

 String filePath = "";

 if (line.startsWith("http://")) {
 // Assume it's a full URL
 filePath = line;
 } else {
 // Assume it's relative
 filePath = getRequest.getURI().resolve(line).toString();
 }

We then add it to our Vector of playlist items.

 PlaylistFile playlistFile = new PlaylistFile(filePath);
 playlistItems.add(playlistFile);
 }
 }
 inputStream.close();
 }
 } catch (ClientProtocolException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

Last, now that we are done parsing the file, we enable the playButton.

 playButton.setEnabled(true);
 }

When the user clicks the playButton, the playPlaylistItems method is called. This

method takes the first item from the playlistItems Vector and hands it to the

MediaPlayer object for preparation.

 private void playPlaylistItems() {
 playButton.setEnabled(false);

 currentPlaylistItemNumber = 0;
 if (playlistItems.size() > 0)
 {
 String path =
 ((PlaylistFile)playlistItems.get(currentPlaylistItemNumber)).getFilePath();
 try {

After extracting the path to the file or stream, we use that in a setDataSource method

call on the MediaPlayer.

 mediaPlayer.setDataSource(path);

CHAPTER 6: Background and Networked Audio 148

Then we call prepareAsync, which allows the MediaPlayer to buffer and prepare to play

the audio in the background. When the buffering and other preparation is done, the

activity’s onPrepared method will be called since the activity is registered as the

OnPreparedListener.

 mediaPlayer.prepareAsync();

 } catch (IllegalArgumentException e) {
 e.printStackTrace();
 } catch (IllegalStateException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

Once the onPrepared method has been called, the stopButton is enabled and the

MediaPlayer object is triggered to start playing the audio.

 public void onPrepared(MediaPlayer _mediaPlayer) {
 stopButton.setEnabled(true);
 Log.v("HTTPAUDIOPLAYLIST","Playing");
 mediaPlayer.start();
 }

When the audio playback is complete, the onCompletion method is triggered in this

activity since the activity extends and is registered as the MediaPlayer’s

OnCompletionListener.

The onCompletion method cues up the next item in the playlistItems Vector.

 public void onCompletion(MediaPlayer mediaPlayer) {
 Log.v("ONCOMPLETE","called");
 mediaPlayer.stop();
 mediaPlayer.reset();
 if (playlistItems.size() > currentPlaylistItemNumber + 1) {
 currentPlaylistItemNumber++;
 String path =
 ((PlaylistFile)playlistItems.get(currentPlaylistItemNumber)).getFilePath();
 try {
 mediaPlayer.setDataSource(path);
 mediaPlayer.prepareAsync();
 } catch (IllegalArgumentException e) {
 e.printStackTrace();
 } catch (IllegalStateException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

The stop method is called when the user presses the stopButton. This method causes

the MediaPlayer to pause rather than stop. The MediaPlayer has a stop method, but that

puts the MediaPlayer in an unprepared state. The pause method just pauses playback.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6: Background and Networked Audio 149

 private void stop() {
 mediaPlayer.pause();
 playButton.setEnabled(true);
 stopButton.setEnabled(false);
 }

Last, we have an inner class called PlaylistFile. One PlaylistFile object is created

for each file represented in the M3U file.

 class PlaylistFile {
 String filePath;

 public PlaylistFile(String _filePath) {
 filePath = _filePath;
 }

 public void setFilePath(String _filePath) {
 filePath = _filePath;
 }

 public String getFilePath() {
 return filePath;
 }
 }
}

Here is the layout XML file (main.xml) for the foregoing activity.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="Enter URL" android:id="@+id/EnterURLTextView"></TextView>
 <EditText android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/EditTextURL" android:text="http://www.mobvcasting.com/android/
 audio/test.m3u"></EditText>
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/ButtonParse" android:text="Parse"></Button>
 <TextView android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/PlaylistTextView"></TextView>
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/PlayButton" android:text="Play"></Button>
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/StopButton" android:text="Stop"></Button>
</LinearLayout>

This example requires that the following permission be added to the

AndroidManifest.xml file

<uses-permission android:name="android.permission.INTERNET" />

As you can see in the foregoing example, working with a live audio stream via HTTP is

as straightforward as working with a file delivered via HTTP. Figure 6–2 shows the

example in action.

http://schemas.android.com/apk/res/android
http://www.mobvcasting.com/android/%ED%AF%80%ED%B0%81audio/test.m3u%00%00
http://www.mobvcasting.com/android/%ED%AF%80%ED%B0%81audio/test.m3u%00%00

CHAPTER 6: Background and Networked Audio 150

Figure 6–2. HTTP Audio Playlist Player example shown after audio started playback

RTSP Audio Streaming
Android supports one more protocol for streaming audio through the MediaPlayer. This

is called the Real Time Streaming Protocol or RTSP. RTSP has been in use for quite

some time and was made popular in the mid- to late 1990s by RealNetworks, as it is the

protocol they used in their audio and video streaming software.

The same code in use for the preceding HTTP streaming example works with an RTSP

audio stream. We’ll get into more RTSP specifics in Chapter 10.

Summary
As we have seen throughout this chapter, Android’s rich advanced audio capabilities

help it to move beyond just being a playback device. Out of the box, it has capabilities

that allow us as developers to take advantage of the wide variety of audio available

online, from individual MP3 files to live radio streams.

In the next chapter, we’ll look at using Android as an audio production device as well.

151

151

 Chapter

Audio Capture
Developing audio playback applications isn’t the only way to work with audio on

Android. We can also write applications that involve capturing audio. In this chapter,

we’ll explore three different methods that can be used for audio capture. Each method

has relative strengths and weaknesses. The first method, using an intent, is the easiest

but least flexible, followed by a method using the MediaRecorder class, which is a bit

harder to use but offers more flexibility. The final method uses the AudioRecord class,

and offers the most flexibility but does the least amount of work for us.

Audio Capture with an Intent
The easiest way to simply allow audio recording capabilities in an application is to

leverage an existing application through an intent that provides recording capabilities. In

the case of audio, Android ships with a sound recorder application that can be triggered

in this manner.

The action used to create the intent is available as a constant called

RECORD_SOUND_ACTION within the MediaStore.Audio.Media class. Here is the basic code

to trigger the built-in sound recorder.

Intent intent = new Intent(MediaStore.Audio.Media.RECORD_SOUND_ACTION);
startActivity(intent);

Figure 7–1 shows the built-in audio recording application as triggered by an intent.

7

CHAPTER 7: Audio Capture 152

Figure 7–1. Android’s built-in sound recorder triggered with an intent

Of course, in order to retrieve the recording that the user creates, we’ll want to use

startActivityForResult rather than just startActivity.

Here is an example that triggers the built-in sound recorder via an intent. When the user

finishes, the audio file is played back using the MediaPlayer.

package com.apress.proandroidmedia.ch07.intentaudiorecord;

import android.app.Activity;
import android.content.Intent;
import android.media.MediaPlayer;
import android.media.MediaPlayer.OnCompletionListener;
import android.net.Uri;
import android.os.Bundle;
import android.provider.MediaStore;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

Our activity implements OnClickListener so that it can respond to Button presses, and

OnCompletionListener so that it can be notified when audio is finished playing in the

MediaPlayer.

public class IntentAudioRecorder extends Activity implements OnClickListener,
 OnCompletionListener {

7

CHAPTER 7: Audio Capture 153

We’ll create a constant called RECORD_REQUEST that we can pass into the

startActivityForResult function so that we can identify the source of any calls to

onActivityResult, which is called when the sound recorder is complete.

The onActivityResult method would be called by any returning activity when triggered

by a startActivityForResult function. Passing in a unique constant along with the

intent allows us to differentiate between them within the onActivityResult method.

 public static int RECORD_REQUEST = 0;

 Button createRecording, playRecording;

We need a Uri object that we will use to contain the Uri to the audio file that is recorded

by the sound recorder activity.

 Uri audioFileUri;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

After we set the content view, we can obtain references to the Button objects. Each

one’s click listener is set to this so that our activity’s onClick method will be called.

Also, we’ll set the playRecording button to not be enabled until we have an audio file to

play (get a result from the sound recorder activity).

 createRecording = (Button) this.findViewById(R.id.RecordButton);
 createRecording.setOnClickListener(this);

 playRecording = (Button) this.findViewById(R.id.PlayButton);
 playRecording.setOnClickListener(this);
 playRecording.setEnabled(false);
 }

When we click either of the Buttons, our onClick method is triggered. If the

createRecording Button was clicked, we trigger the sound recorder activity through the

MediaStore.Audio.Media.RECORD_SOUND_ACTION action in an intent passed into

startActivityForResult.

 public void onClick(View v) {
 if (v == createRecording) {
 Intent intent =
 new Intent(MediaStore.Audio.Media.RECORD_SOUND_ACTION);
 startActivityForResult(intent, RECORD_REQUEST);
 } else if (v == playRecording) {

If the playRecording Button was pressed, we create a MediaPlayer and set it to play the

audio file represented by the Uri that was returned from the sound recorder activity and

saved in our audioFileUri object.

We also set the OnCompletionListener of the MediaPlayer to be ourselves so that our

OnCompletion method is called when it is done playing, and we disable the

playRecording Button so that the user cannot trigger the playback to happen again until

we are ready.

p

CHAPTER 7: Audio Capture 154

 MediaPlayer mediaPlayer = MediaPlayer.create(this, audioFileUri);
 mediaPlayer.setOnCompletionListener(this);
 mediaPlayer.start();
 playRecording.setEnabled(false);
 }
 }

Our onActivityResult method is triggered when the sound recorder activity is complete.

The resultCode should equal the RESULT_OK constant, and the requestCode should equal

the value we passed into the startActivityForResult method, RECORD_REQUEST. If both

of those are true, then we can retrieve the Uri of the recorded audio file by getting it out

of the intent that is passed back to us through its getData method. Once all of that is

done, we enable the playRecording Button so that we can play the returned audio file.

 protected void onActivityResult (int requestCode, int resultCode, Intent data) {
 if (resultCode == RESULT_OK && requestCode == RECORD_REQUEST) {
 audioFileUri = data.getData();
 playRecording.setEnabled(true);
 }
 }

Finally, in our onCompletion method, which is called when the MediaPlayer is done

playing a file, we re-enable the playRecording Button so the user may listen to the audio

file again if he or she so chooses.

 public void onCompletion(MediaPlayer mp) {
 playRecording.setEnabled(true);
 }
}

Here is the layout XML that is in use by our activity.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:text="Record Audio" android:id="@+id/RecordButton"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
 <Button android:text="Play Recording" android:id="@+id/PlayButton"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
</LinearLayout>

As you can see, simply adding audio recording capabilities is straightforward. It doesn’t

allow much in the way of control over the user interface or other aspects of the

recording, but it does give a no-frills usable interface to the user without much work on

our part.

Custom Audio Capture
Of course, using an intent to trigger the sound recorder isn’t the only way we can

capture audio. The Android SDK includes a MediaRecorder class, which we can leverage

http://schemas.android.com/apk/res/android

CHAPTER 7: Audio Capture 155

to build our own audio recording functionality. Doing so enables a lot more flexibility,

such as controlling the length of time audio is recorded for.

The MediaRecorder class is used for both audio and video capture. After constructing a

MediaRecorder object, to capture audio, the setAudioEncoder and setAudioSource

methods must be called. If these methods are not called, audio will not be recorded.

(The same goes for video. If setVideoEncoder and setVideoSource methods are not

called, video will not be recorded. We won’t be dealing with video in this chapter;

therefore we won’t use either of these methods.)

Additionally, two other methods are generally called before having the MediaRecorder

prepare to record. These are setOutputFormat and setOutputFile. setOutputFormat

allows us to choose what file format should be used for the recording and

setOutputFile allows us to specify the file that we will record to. It is important to note

that the order of each of these calls matters quite a bit.

MediaRecorder Audio Sources
The first method that should be called after the MediaRecorder is instantiated is

setAudioSource. setAudioSource takes in a constant that is defined in the AudioSource

inner class. Generally we will want to use MediaRecorder.AudioSource.MIC, but it is

interesting to note that MediaRecorder.AudioSource also contains constants for

VOICE_CALL, VOICE_DOWNLINK, and VOICE_UPLINK. Unfortunately, it appears as though there

aren’t any handsets or versions of Android where recording audio from the call actually

works. Also of note, as of Froyo, Android version 2.2, there are constants for CAMCORDER

and VOICE_RECOGNITION. These may be used if the device has more than one microphone.

MediaRecorder recorder = new MediaRecorder();
recorder.setAudioSource(MediaRecorder.AudioSource.MIC);

MediaRecorder Output Formats
The next method to be called in sequence is setOutputFormat. The values this takes in

are specified as constants in the MediaRecorder.OutputFormat inner class.

 MediaRecorder.OutputFormat.MPEG_4: This specifies that the file

written will be an MPEG-4 file. It may contain both audio and video

tracks.

 MediaRecorder.OutputFormat.RAW_AMR: This represents a raw file

without any type of container. This should be used only when

capturing audio without video and when the audio encoder is

AMR_NB.

 MediaRecorder.OutputFormat.THREE_GPP: This specifies that the file

written will be a 3GPP file (extension .3gp). It may contain both audio

and video tracks.

recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);

CHAPTER 7: Audio Capture 156

MediaRecorder Audio Encoders
Following the setting of the output format, we can call setAudioEncoder to set the codec

that should be used. The possible values are specified as constants in the

MediaRecorder.AudioEncoder class and other than DEFAULT, only one other value exists:

MediaRecorder.AudioEncoder.AMR_NB, which is the Adaptive Multi-Rate Narrow Band

codec. This codec is tuned for speech and is therefore not a great choice for anything

other than speech. By default it has a sample rate of 8 kHz and a bitrate between 4.75

and 12.2 kbps, both of which are very low for recoding anything but speech.

Unfortunately, this is our only choice for use with the MediaRecorder at the moment.

recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);

MediaRecorder Output and Recording
Last, we’ll want to call setOutputFile with the location of the file we want to record to.

The following snippet of code creates a file using File.createTempFile in the preferred

file location for applications that need to store files on the SD card.

File path = new File(Environment.getExternalStorageDirectory().getAbsolutePath() +
 "/Android/data/com.apress.proandroidmedia.ch07.customrecorder/files/");
path.mkdirs();
audioFile = File.createTempFile("recording", ".3gp", path);
recorder.setOutputFile(audioFile.getAbsolutePath());

Now we can actually call prepare, which signals the end of the configuration stage and

tells the MediaRecorder to get ready to start recording. We call the start method to

actually start recording.

recorder.prepare();
recorder.start();

To stop recording, we call the stop method.

recorder.stop();

MediaRecorder State Machine
The MediaRecorder, similar to the MediaPlayer, operates as a state machine. Figure 7–2

shows a diagram from the Android API reference page for MediaRecorder, which

describes the various states and the methods that may be called from each state.

CHAPTER 7: Audio Capture 157

Figure 7–2. MediaRecorder state diagram from Android API Reference

MediaRecorder Example
Here is the code for a full custom audio capture and playback example using the

MediaRecorder class.

package com.apress.proandroidmedia.ch07.customrecorder;

import java.io.File;
import java.io.IOException;

import android.app.Activity;
import android.media.MediaPlayer;
import android.media.MediaRecorder;
import android.media.MediaPlayer.OnCompletionListener;

CHAPTER 7: Audio Capture 158

import android.os.Bundle;
import android.os.Environment;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

Our CustomRecorder activity implements OnClickListener so that it may be notified

when Buttons are pressed, and OnCompletionListener so that it can respond when

MediaPlayer has completed playing audio.

public class CustomRecorder extends Activity implements OnClickListener,
 OnCompletionListener {

We’ll have a series of user interface components. The first, a TextView called

statusTextView, will report the status of the application to the user: “Recording,” “Ready

to Play,” and so on.

 TextView statusTextView;

A series of buttons will be used for controlling various aspects. The names of the

Buttons describe their use.

 Button startRecording, stopRecording, playRecording, finishButton;

We’ll have a MediaRecorder for recording the audio and a MediaPlayer for playing it

back.

 MediaRecorder recorder;
 MediaPlayer player;

Finally, we have a File object called audioFile, which will reference the file that is

recorded to.

 File audioFile;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

When the activity starts up, we’ll set the text of the statusTextView to be “Ready.”

 statusTextView = (TextView) this.findViewById(R.id.StatusTextView);
 statusTextView.setText("Ready");

 stopRecording = (Button) this.findViewById(R.id.StopRecording);
 startRecording = (Button) this.findViewById(R.id.StartRecording);
 playRecording = (Button) this.findViewById(R.id.PlayRecording);
 finishButton = (Button) this.findViewById(R.id.FinishButton);

We’ll set all of the Buttons’ onClickListeners to be this so that our onClick method is

called when any of them are pressed.

 startRecording.setOnClickListener(this);
 stopRecording.setOnClickListener(this);
 playRecording.setOnClickListener(this);
 finishButton.setOnClickListener(this);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7: Audio Capture 159

Finally, in the onCreate method, we’ll disable the stopRecording and playRecording

Buttons since they won’t work until we either start recording or finish recording

respectively.

 stopRecording.setEnabled(false);
 playRecording.setEnabled(false);
 }

In the following onClick method, we handle all of the Button presses.

 public void onClick(View v) {
 if (v == finishButton) {

If the finishButton is pressed, we finish the activity.

 finish();
 } else if (v == stopRecording) {

If the stopRecording Button is pressed, we call stop and release on the MediaRecorder

object.

 recorder.stop();
 recorder.release();

We then construct a MediaPlayer object and have it prepare to play back the audio file

that we just recorded.

 player = new MediaPlayer();
 player.setOnCompletionListener(this);

The following two methods that we are using on the MediaPlayer, setDataSource and

prepare, may throw a variety of exceptions. In the following code, we are simply

throwing them. In your application development, you will probably want to catch and

deal with them more elegantly, such as alerting the user when a file doesn’t exist.

 try {
 player.setDataSource(audioFile.getAbsolutePath());
 } catch (IllegalArgumentException e) {
 throw new RuntimeException(
 "Illegal Argument to MediaPlayer.setDataSource", e);
 } catch (IllegalStateException e) {
 throw new RuntimeException(
 "Illegal State in MediaPlayer.setDataSource", e);
 } catch (IOException e) {
 throw new RuntimeException(
 "IOException in MediaPalyer.setDataSource", e);
 }

 try {
 player.prepare();
 } catch (IllegalStateException e) {
 throw new RuntimeException(
 "IllegalStateException in MediaPlayer.prepare", e);
 } catch (IOException e) {
 throw new RuntimeException("IOException in MediaPlayer.prepare", e);
 }

We set the statusTextView to indicate to the user that we are ready to play the audio file.

CHAPTER 7: Audio Capture 160

 statusTextView.setText("Ready to Play");

We then set the playRecording and startRecording Buttons to be enabled and disable

the stopRecording Button, as we are not currently recording.

 playRecording.setEnabled(true);
 stopRecording.setEnabled(false);
 startRecording.setEnabled(true);
 } else if (v == startRecording) {

When the startRecording Button is pressed, we construct a new MediaRecorder and call

setAudioSource, setOutputFormat, and setAudioEncoder.

 recorder = new MediaRecorder();

 recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
 recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);

We then create a new File on the SD card and call setOutputFile on the MediaRecorder

object.

 File path = new File(Environment.getExternalStorageDirectory()
.getAbsolutePath() + "/Android/data/com.apress.proandroidmedia.ch07
.customrecorder/files/");
 path.mkdirs();

 try {
 audioFile = File.createTempFile("recording", ".3gp", path);
 } catch (IOException e) {
 throw new RuntimeException("Couldn't create recording audio file",e);
 }

 recorder.setOutputFile(audioFile.getAbsolutePath());

We call prepare on the MediaRecorder and start to begin the recording.

 try {
 recorder.prepare();
 } catch (IllegalStateException e) {
 throw new RuntimeException(
 "IllegalStateException on MediaRecorder.prepare", e);
 } catch (IOException e) {
 throw new RuntimeException("IOException on MediaRecorder.prepare",e);
 }

 recorder.start();

Last, we update the statusTextView and change which Buttons are enabled and

disabled.

 statusTextView.setText("Recording");

 playRecording.setEnabled(false);
 stopRecording.setEnabled(true);
 startRecording.setEnabled(false);
 } else if (v == playRecording) {

CHAPTER 7: Audio Capture 161

The last Button that we need to respond to is playRecording. When the stopRecording

Button is pressed, the MediaPlayer object, player, is constructed and configured. All

that we need to do when the playRecording Button is pushed is to start the playback,

set the status message, and change which Buttons are enabled.

 player.start();
 statusTextView.setText("Playing");
 playRecording.setEnabled(false);
 stopRecording.setEnabled(false);
 startRecording.setEnabled(false);
 }
 }

The onCompletion method is called when the MediaPlayer object has completed

playback of a recording. We use it to change the status message and set which Buttons

are enabled.

 public void onCompletion(MediaPlayer mp) {
 playRecording.setEnabled(true);
 stopRecording.setEnabled(false);
 startRecording.setEnabled(true);
 statusTextView.setText("Ready");
 }
}

Here is the layout XML file, main.xml, for the foregoing activity.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView android:layout_width="wrap_content" android:layout_height=
"wrap_content" android:id="@+id/StatusTextView" android:text="Status"
 android:textSize="35dip"></TextView>

 <Button android:text="Start Recording" android:id="@+id/StartRecording"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
 <Button android:text="Stop Recording" android:id="@+id/StopRecording"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
 <Button android:text="Play Recording" android:id="@+id/PlayRecording"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/FinishButton" android:text="Finish"></Button>
</LinearLayout>

We’ll also need to add the following permissions to the AndroidManifest.xml file.

<uses-permission android:name="android.permission.RECORD_AUDIO"></uses-permission>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE">
</uses-permission>

As we have seen, developing a custom audio capture application using MediaRecorder is

not too cumbersome. Now let’s look at how we can use the MediaRecorder’s other

methods to add other features.

http://schemas.android.com/apk/res/android

CHAPTER 7: Audio Capture 162

Other MediaRecorder Methods
MediaRecorder has a variety of other methods available that we can use in relation to

audio capture.

 getMaxAmplitude: Allows us to request the maximum amplitude of

audio that has been recorded by the MediaPlayer. The value is reset

each time the method is called, so each call will return the maximum

amplitude from the last time it is called. An audio level meter may be

implemented by calling this method periodically.

 setMaxDuration: Allows us to specify a maximum recording duration in

milliseconds. This method must be called after the setOutputFormat

method but before the prepare method.

 setMaxFileSize: Allows us to specify a maximum file size for the

recording in bytes. As with setMaxDuration, this method must be

called after the setOutputFormat method but before the prepare

method.

Here is an update to the custom recorder application we went through previously that

includes a display of the current amplitude.

package com.apress.proandroidmedia.ch07.customrecorder;

import java.io.File;
import java.io.IOException;

import android.app.Activity;
import android.media.MediaPlayer;
import android.media.MediaRecorder;
import android.media.MediaPlayer.OnCompletionListener;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.Environment;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class CustomRecorder extends Activity implements OnClickListener,
 OnCompletionListener {

In this version, we have added a TextView called amplitudeTextView. This will display

the numeric amplitude of the audio input.

 TextView statusTextView, amplitudeTextView;
 Button startRecording, stopRecording, playRecording, finishButton;
 MediaRecorder recorder;
 MediaPlayer player;
 File audioFile;

We’ll need an instance of a new class called RecordAmplitude. This class is an inner

class that is defined toward the end of this source code listing. It uses a Boolean called

isRecording that will be set to true when we start the MediaRecorder.

CHAPTER 7: Audio Capture 163

 RecordAmplitude recordAmplitude;
 boolean isRecording = false;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 statusTextView = (TextView) this.findViewById(R.id.StatusTextView);
 statusTextView.setText("Ready");

We’ll use a TextView to display the current amplitude of the audio as it is captured.

 amplitudeTextView = (TextView) this
 .findViewById(R.id.AmplitudeTextView);
 amplitudeTextView.setText("0");

 stopRecording = (Button) this.findViewById(R.id.StopRecording);
 startRecording = (Button) this.findViewById(R.id.StartRecording);
 playRecording = (Button) this.findViewById(R.id.PlayRecording);
 finishButton = (Button) this.findViewById(R.id.FinishButton);

 startRecording.setOnClickListener(this);
 stopRecording.setOnClickListener(this);
 playRecording.setOnClickListener(this);
 finishButton.setOnClickListener(this);

 stopRecording.setEnabled(false);
 playRecording.setEnabled(false);
 }

 public void onClick(View v) {
 if (v == finishButton) {
 finish();
 } else if (v == stopRecording) {

When we finish the recording, we set the isRecording Boolean to false and call cancel

on our RecordAmplitude class. Since RecordAmplitude extends AsyncTask, calling cancel

with true as the parameter will interrupt its thread if necessary.

 isRecording = false;
 recordAmplitude.cancel(true);

 recorder.stop();
 recorder.release();

 player = new MediaPlayer();
 player.setOnCompletionListener(this);
 try {
 player.setDataSource(audioFile.getAbsolutePath());
 } catch (IllegalArgumentException e) {
 throw new RuntimeException(
 "Illegal Argument to MediaPlayer.setDataSource", e);
 } catch (IllegalStateException e) {
 throw new RuntimeException(
 "Illegal State in MediaPlayer.setDataSource", e);
 } catch (IOException e) {
 throw new RuntimeException(

CHAPTER 7: Audio Capture 164

 "IOException in MediaPalyer.setDataSource", e);
 }

 try {
 player.prepare();
 } catch (IllegalStateException e) {
 throw new RuntimeException(
 "IllegalStateException in MediaPlayer.prepare", e);
 } catch (IOException e) {
 throw new RuntimeException(
 "IOException in MediaPlayer.prepare", e);
 }

 statusTextView.setText("Ready to Play");

 playRecording.setEnabled(true);
 stopRecording.setEnabled(false);
 startRecording.setEnabled(true);

 } else if (v == startRecording) {
 recorder = new MediaRecorder();

 recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
 recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);

 File path = new File(Environment.getExternalStorageDirectory()
 .getAbsolutePath() + "/Android/data/com.apress.proandroidmedia.ch07
.customrecorder/files/");
 path.mkdirs();
 try {
 audioFile = File.createTempFile("recording", ".3gp", path);
 } catch (IOException e) {
 throw new RuntimeException(
 "Couldn't create recording audio file", e);
 }
 recorder.setOutputFile(audioFile.getAbsolutePath());

 try {
 recorder.prepare();
 } catch (IllegalStateException e) {
 throw new RuntimeException(
 "IllegalStateException on MediaRecorder.prepare", e);
 } catch (IOException e) {
 throw new RuntimeException(
 "IOException on MediaRecorder.prepare", e);
 }
 recorder.start();

After we start the recording, we set the isRecording Boolean to true and create a new

instance of RecordAmplitude. Since RecordAmplitude extends AsyncTask, we’ll call the

execute method to start the RecordAmplitude’s task running.

CHAPTER 7: Audio Capture 165

 isRecording = true;
 recordAmplitude = new RecordAmplitude();
 recordAmplitude.execute();

 statusTextView.setText("Recording");

 playRecording.setEnabled(false);
 stopRecording.setEnabled(true);
 startRecording.setEnabled(false);
 } else if (v == playRecording) {
 player.start();
 statusTextView.setText("Playing");
 playRecording.setEnabled(false);
 stopRecording.setEnabled(false);
 startRecording.setEnabled(false);
 }
 }

 public void onCompletion(MediaPlayer mp) {
 playRecording.setEnabled(true);
 stopRecording.setEnabled(false);
 startRecording.setEnabled(true);
 statusTextView.setText("Ready");
 }

Here is the definition of RecordAmplitude. It extends AsyncTask, which is a nice utility

class in Android that provides a thread to run long-running tasks without tying up the

user interface or making an application unresponsive.

 private class RecordAmplitude extends AsyncTask<Void, Integer, Void> {

The doInBackground method runs on a separate thread and is run when the execute

method is called on the object. This method loops as long as isRecording is true and

calls Thread.sleep(500), which causes it to not do anything for half a second. Once that

is complete, it calls publishProgress and passes in the result of getMaxAmplitude on the

MediaRecorder object.

 @Override
 protected Void doInBackground(Void... params) {
 while (isRecording) {

 try {
 Thread.sleep(500);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 publishProgress(recorder.getMaxAmplitude());
 }
 return null;
 }

The preceding call to publishProgress calls the onProgressUpdate method defined here,

which runs on the main thread so it can interact with the user interface. In this case, it is

updating the amplitudeTextView with the value that is passed in from the

publishProgress method call.

CHAPTER 7: Audio Capture 166

 protected void onProgressUpdate(Integer... progress) {
 amplitudeTextView.setText(progress[0].toString());
 }
 }
}

Of course, we’ll need to update the layout XML to include the TextView for displaying

the amplitude.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView android:layout_width="wrap_content" android:layout_height=
"wrap_content" android:id="@+id/StatusTextView" android:text="Status"
 android:textSize="35dip"></TextView>
 <TextView android:layout_width="wrap_content" android:layout_height=
"wrap_content" android:id="@+id/AmplitudeTextView" android:textSize="35dip"
 android:text="0"></TextView>
 <Button android:text="Start Recording" android:id="@+id/StartRecording"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
 <Button android:text="Stop Recording" android:id="@+id/StopRecording"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
 <Button android:text="Play Recording" android:id="@+id/PlayRecording"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
 <Button android:layout_width="wrap_content" android:layout_height=
"wrap_content" android:id="@+id/FinishButton" android:text="Finish"></Button>
</LinearLayout>

As we can see, using an AsyncTask to do something periodically is a nice way to provide

automatically updating information to the user while something else is in progress. This

provides a nicer user experience for our MediaRecorder example. Using the

getMaxAmplitude method provides the user with some feedback about the recording

that is currently happening.

In Android 2.2, Froyo, the following methods were made available:

 setAudioChannels: Allows us to specify the number of audio channels

that will be recorded. Typically this will be either one channel (mono) or

two channels (stereo). This method must be called prior to the prepare

method.

 setAudioEncodingBitRate: Allows us to specify the number of bits per

second that will be used by the encoder when compressing the audio.

This method must be called prior to the prepare method.

 setAudioSamplingRate: Allows us to specify the sampling rate of the

audio as it is captured and encoded. The applicable rates are

determined by the hardware and codec being used. This method must

be called prior to the prepare method.

http://schemas.android.com/apk/res/android

CHAPTER 7: Audio Capture 167

Inserting Audio into the MediaStore
Audio recordings may be put into the MediaStore content provider so they are available

to other applications. The process is very similar to the process we used earlier to add

images to the MediaStore. In this case though, we’ll add them after they are created.

We create a ContentValues object to hold the data that we’ll insert into the MediaStore.

A ContentValues object is made up of a series of key/value pairs. The keys that may be

used are defined as constants in the MediaStore.Audio.Media class (and those classes it

inherits from).

The MediaStore.Audio.Media.DATA constant is the key for the path to the recorded file. It

is the only required pair in order to insert the file into the MediaStore.

To do the actual insert into the MediaStore, we use the insert method on a

ContentResolver object with the Uri to the table for audio files on the SD card and the

ContentValues object containing the data. The Uri is defined as a constant in

MediaStore.Audio.Media named EXTERNAL_CONTENT_URI.

Here is a snippet that may be plugged into the CustomRecorder example just after the

release method is called on the MediaRecorder (recorder.release()). It will cause the

recording to be inserted into the MediaStore and made available to other applications

that use the MediaStore for finding audio to play back.

ContentValues contentValues = new ContentValues();
contentValues.put(MediaStore.MediaColumns.TITLE, "This Isn't Music");
contentValues.put(MediaStore.MediaColumns.DATE_ADDED, System.currentTimeMillis());
contentValues.put(MediaStore.Audio.Media.DATA, audioFile.getAbsolutePath());
Uri newUri =
 getContentResolver().insert(
 MediaStore.Audio.Media.EXTERNAL_CONTENT_URI, contentValues);

Of course, in order to use the foregoing snippet, we’ll need to add these imports:

import android.content.ContentValues;
import android.net.Uri;
import android.provider.MediaStore;

Raw Audio Recording with AudioRecord
Aside from using an intent to launch the sound recorder and using the MediaRecorder,

Android offers a third method to capture audio, using a class called AudioRecord.

AudioRecord is the most flexible of the three methods in that it allows us access to the

raw audio stream but has the least number of built-in capabilities, such as not

automatically compressing the audio.

The basics for using AudioRecord are straightforward. We simply need to construct an

object of type AudioRecord, passing in various configuration parameters.

The first value we’ll need to specify is the audio source. The values for use here are the

same as we used for the MediaRecorder and are defined in MediaRecorder.AudioSource.

Essentially this means that we have MediaRecorder.AudioSource.MIC available to us.

CHAPTER 7: Audio Capture 168

int audioSource = MediaRecorder.AudioSource.MIC;

The next value that we’ll need to specify is the sample rate of the recording. This should

be specified in Hz. As we know, the MediaRecorder samples audio at 8 kHz or 8,000 Hz.

CD quality audio is typically 44.1 kHz or 44,100 Hz. Hz or hertz is the number of samples

per second. Different Android handset hardware will be able to sample at different

sample rates. For our example application, we’ll sample at 11,025 Hz, which is another

commonly used sample rate.

int sampleRateInHz = 11025;

Next, we need to specify the number of channels of audio to capture. The constants for

this parameter are specified in the AudioFormat class and are self-explanatory.

AudioFormat.CHANNEL_CONFIGURATION_MONO

AudioFormat.CHANNEL_CONFIGURATION_STEREO

AudioFormat.CHANNEL_CONFIGURATION_INVALID

AudioFormat.CHANNEL_CONFIGURATION_DEFAULT

We’ll use a mono configuration for now.

int channelConfig = AudioFormat.CHANNEL_CONFIGURATION_MONO;

Following that, we need to specify the audio format. The possibilities here are also

specified in the AudioFormat class.

AudioFormat.ENCODING_DEFAULT

AudioFormat.ENCODING_INVALID

AudioFormat.ENCODING_PCM_16BIT

AudioFormat.ENCODING_PCM_8BIT

Among these four, our choices boil down to PCM 16-bit and PCM 8-bit. PCM stands for

Pulse Code Modulation, which is essentially the raw audio samples. We can therefore

set the resolution of each sample to be 16 bits or 8 bits. Sixteen bits will take up more

space and processing power, while the representation of the audio will be closer to

reality.

For our example, we’ll use the 16-bit version.

int audioFormat = AudioFormat.ENCODING_PCM_16BIT;

Last, we’ll need to specify the buffer size. We can actually ask the AudioRecord class

what the minimum buffer size should be with a static method call, getMinBufferSize,

passing in the sample rate, channel configuration, and audio format.

int bufferSizeInBytes = AudioRecord.getMinBufferSize(sampleRateInHz, channelConfig,
 audioFormat);

Now we can construct the actual AudioRecord object.

AudioRecord audioRecord = new AudioRecord(audioSource, sampleRateInHz, channelConfig,
 audioFormat, bufferSizeInBytes);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7: Audio Capture 169

The AudioRecord class doesn’t actually save the captured audio anywhere. We need to

do that manually as the audio comes in. The first thing we’ll probably want to do is

record it to a file.

To do that, we’ll need to create a file.

File recordingFile;
File path = new File(Environment.getExternalStorageDirectory()
 .getAbsolutePath() + "/Android/data/com.apress.proandroidmedia.ch07
.altaudiorecorder /files/");
path.mkdirs();
try {
 recordingFile = File.createTempFile("recording", ".pcm", path);
} catch (IOException e1) {
 throw new RuntimeException("Couldn't create file on SD card", e);
}

Next we create an OutputStream to that file, specifically one wrapped in a

BufferedOutputStream and a DataOutputStream for performance and convenience

reasons.

DataOutputStream dos = new DataOutputStream(new BufferedOutputStream(new
 FileOutputStream(recordingFile)));

Now we can start the capture and write the audio samples to the file. We’ll use an array

of shorts to hold the audio we read from the AudioRecord object. We’ll make the array

smaller than the buffer that the AudioRecord object has so that buffer won’t fill up before

we read it out.

To make sure this array is smaller than the buffer size, we divide by 4. The size of the

buffer is in bytes and each short takes up 2 bytes, so dividing by 2 won’t be enough.

Dividing by 4 will make it so that this array is half the size of the AudioRecord object’s

internal buffer.

short[] buffer = new short[bufferSize/4];

We simply call the startRecording method on the AudioRecord object to kick things off.

audioRecord.startRecording();

After recording has started, we can construct a loop to continuously read from the

AudioRecord object into our array of shorts and write that to the DataOutputStream for

the file.

while (true) {
 int bufferReadResult = audioRecord.read(buffer, 0, bufferSize/4);
 for (int i = 0; i < bufferReadResult; i++) {
 dos.writeShort(buffer[i]);
 }
}
audioRecord.stop();
dos.close();

When we are done, we call stop on the AudioRecord object and close on the

DataOutputStream.

CHAPTER 7: Audio Capture 170

Of course, in the real world, we wouldn’t put this in a while (true) loop as it will never

complete. We also probably want to run this in some kind of thread so that it doesn’t tie

up the user interface and anything else we might want the application to do while

recording.

Before going through a full example, let’s look at how we can play back audio as it is

captured using the AudioRecord class.

Raw Audio Playback with AudioTrack
AudioTrack is a class in Android that allows us to play raw audio samples. This allows

for the playback of audio captured with AudioRecord that otherwise wouldn’t be playable

using a MediaPlayer object.

To construct an AudioTrack object, we need to pass in a series of configuration variables

describing the audio to be played.

 The first argument is the stream type. The possible values are defined

as constants in the AudioManager class. We’ll be using

AudioManager.STREAM_MUSIC, which is the audio stream used for

normal music playback.

 The second argument is the sample rate in hertz of the audio data that

will be played back. In our example, we’ll be capturing audio at 11,025

Hz, and therefore, to play it back, we need to specify the same value.

 The third argument is the channel configuration. The possible values,

the same as those used when constructing an AudioRecord object, are

defined as constants in the AudioFormat class. Their names are self-

explanatory.

 AudioFormat.CHANNEL_CONFIGURATION_MONO

 AudioFormat.CHANNEL_CONFIGURATION_STEREO

 AudioFormat.CHANNEL_CONFIGURATION_INVALID

 AudioFormat.CHANNEL_CONFIGURATION_DEFAULT

 The fourth argument is the format of the audio. The possible values are

the same as those used when constructing an AudioRecord object, and

they are defined in AudioFormat as constants. The value used should

match the value of the audio that will be passed in.

 AudioFormat.ENCODING_DEFAULT

 AudioFormat.ENCODING_INVALID

 AudioFormat.ENCODING_PCM_16BIT

 AudioFormat.ENCODING_PCM_8BIT

CHAPTER 7: Audio Capture 171

 The fifth argument is the size of the buffer that will be used in the

object to store the audio. To determine the smallest buffer size to use,

we can call getMinBufferSize, passing in the sample rate, the channel

configuration, and audio format.

int frequency = 11025;
int channelConfiguration = AudioFormat.CHANNEL_CONFIGURATION_MONO;
int audioEncoding = AudioFormat.ENCODING_PCM_16BIT;

int bufferSize = AudioTrack.getMinBufferSize(frequency, channelConfiguration,
 audioEncoding);

 The last argument is the mode. The possible values are defined as

constants in the AudioTrack class.

 AudioTrack.MODE_STATIC: The audio data will all be transferred to

the AudioTrack object before playback occurs.

 AudioTrack.MODE_STREAM: The audio data will continue to be

transferred to the AudioTrack object while playback is in

progress.

Here is our AudioTrack configuration:

AudioTrack audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC, frequency,
 channelConfiguration, audioEncoding, bufferSize,
 AudioTrack.MODE_STREAM);

Once the AudioTrack is constructed, we need to open an audio source, read the audio

data into a buffer, and pass it to the AudioTrack object.

We’ll construct a DataInputStream from a file containing raw PCM data in the right

format (11,025 Hz, 16 bit, mono).

DataInputStream dis = new DataInputStream(
 new BufferedInputStream(new FileInputStream(recordingFile)));

We can then call play on the AudioTrack and start writing audio in from the

DataInputStream.

audioTrack.play();

while (isPlaying && dis.available() > 0) {
 int i = 0;
 while (dis.available() > 0 && i < audiodata.length) {
 audiodata[i] = dis.readShort();
 i++;
 }
 audioTrack.write(audiodata, 0, audiodata.length);
}

dis.close();

That covers the basics of using AudioTrack to play back audio from a file as it is

recorded from an AudioRecorder.

CHAPTER 7: Audio Capture 172

Raw Audio Capture and Playback Example
Here is a full example that records using AudioRecord and plays back using AudioTrack.

Each of these operations lives in their own thread through the use of AsyncTask, so that

they don’t make the application become unresponsive by running in the main thread.

package com.apress.proandroidmedia.ch07.altaudiorecorder;

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import android.app.Activity;
import android.media.AudioFormat;
import android.media.AudioManager;
import android.media.AudioRecord;
import android.media.AudioTrack;
import android.media.MediaRecorder;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.Environment;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class AltAudioRecorder extends Activity implements OnClickListener {

We have two inner classes defined—one for the recording and one for the playback.

Each one extends AsyncTask.

 RecordAudio recordTask;
 PlayAudio playTask;

 Button startRecordingButton, stopRecordingButton, startPlaybackButton,
 stopPlaybackButton;
 TextView statusText;

 File recordingFile;

We’ll use Booleans to keep track of whether we should be recording and playing. These

will be used in the loops in recording and playback tasks.

 boolean isRecording = false;
 boolean isPlaying = false;

Here are the variables that we’ll use to define the configuration of both the AudioRecord

and AudioTrack objects.

 // These should really be constants themselves
 int frequency = 11025;

CHAPTER 7: Audio Capture 173

 int channelConfiguration = AudioFormat.CHANNEL_CONFIGURATION_MONO;
 int audioEncoding = AudioFormat.ENCODING_PCM_16BIT;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 statusText = (TextView) this.findViewById(R.id.StatusTextView);

 startRecordingButton = (Button) this .findViewById(R.id.StartRecordingButton);
 stopRecordingButton = (Button) this .findViewById(R.id.StopRecordingButton);
 startPlaybackButton = (Button) this .findViewById(R.id.StartPlaybackButton);
 stopPlaybackButton = (Button) this.findViewById(R.id.StopPlaybackButton);

 startRecordingButton.setOnClickListener(this);
 stopRecordingButton.setOnClickListener(this);
 startPlaybackButton.setOnClickListener(this);
 stopPlaybackButton.setOnClickListener(this);

 stopRecordingButton.setEnabled(false);
 startPlaybackButton.setEnabled(false);
 stopPlaybackButton.setEnabled(false);

The last thing we’ll do in the constructor is create the file that we’ll record to and play

back from. In this case, we are creating the file in the preferred location for files

associated with an application on the SD card.

 File path = new File(Environment.getExternalStorageDirectory()
 .getAbsolutePath() + "/Android/data/com.apress.proandroidmedia.ch07
.altaudiorecorder/files/");
 path.mkdirs();
 try {
 recordingFile = File.createTempFile("recording", ".pcm", path);
 } catch (IOException e) {
 throw new RuntimeException("Couldn't create file on SD card", e);
 }
 }

The onClick method handles the Button presses generated by the user. Each one

corresponds to a specific method.

 public void onClick(View v) {
 if (v == startRecordingButton) {
 record();
 } else if (v == stopRecordingButton) {
 stopRecording();
 } else if (v == startPlaybackButton) {
 play();
 } else if (v == stopPlaybackButton) {
 stopPlaying();
 }
 }

To start playback, we construct a new PlayAudio object and call its execute method,

which is inherited from AsyncTask.

 public void play() {

CHAPTER 7: Audio Capture 174

 startPlaybackButton.setEnabled(true);

 playTask = new PlayAudio();
 playTask.execute();

 stopPlaybackButton.setEnabled(true);
 }

To stop playback, we set the isPlaying Boolean to false and that’s it. This will cause

the PlayAudio object’s loop to finish.

 public void stopPlaying() {
 isPlaying = false;
 stopPlaybackButton.setEnabled(false);
 startPlaybackButton.setEnabled(true);
 }

To start recording, we construct a RecordAudio object and call its execute method.

 public void record() {
 startRecordingButton.setEnabled(false);
 stopRecordingButton.setEnabled(true);

 // For Fun
 startPlaybackButton.setEnabled(true);

 recordTask = new RecordAudio();
 recordTask.execute();
 }

To stop recording, we simply set the isRecording Boolean to false. This allows the

RecordAudio object to stop looping and perform any cleanup.

 public void stopRecording() {
 isRecording = false;
 }

Here is our PlayAudio inner class. This class extends AsyncTask and uses an AudioTrack

object to play back the audio.

 private class PlayAudio extends AsyncTask<Void, Integer, Void> {
 @Override
 protected Void doInBackground(Void... params) {
 isPlaying = true;

 int bufferSize = AudioTrack.getMinBufferSize(frequency,
 channelConfiguration, audioEncoding);
 short[] audiodata = new short[bufferSize/4];

 try {
 DataInputStream dis = new DataInputStream(
 new BufferedInputStream(new FileInputStream(
 recordingFile)));

 AudioTrack audioTrack = new AudioTrack(
 AudioManager.STREAM_MUSIC, frequency,
 channelConfiguration, audioEncoding, bufferSize,
 AudioTrack.MODE_STREAM);

CHAPTER 7: Audio Capture 175

 audioTrack.play();

 while (isPlaying && dis.available() > 0) {
 int i = 0;
 while (dis.available() > 0 && i < audiodata.length) {
 audiodata[i] = dis.readShort();
 i++;
 }
 audioTrack.write(audiodata, 0, audiodata.length);
 }

 dis.close();

 startPlaybackButton.setEnabled(false);
 stopPlaybackButton.setEnabled(true);

 } catch (Throwable t) {
 Log.e("AudioTrack", "Playback Failed");
 }

 return null;
 }
 }

Last is our RecordAudio class, which extends AsyncTask. This class runs an AudioRecord

object in the background and calls publishProgress to update the UI with an indication

of recording progress.

 private class RecordAudio extends AsyncTask<Void, Integer, Void> {
 @Override
 protected Void doInBackground(Void... params) {
 isRecording = true;

 try {
 DataOutputStream dos = new DataOutputStream(
 new BufferedOutputStream(new FileOutputStream(
 recordingFile)));

 int bufferSize = AudioRecord.getMinBufferSize(frequency,
 channelConfiguration, audioEncoding);

 AudioRecord audioRecord = new AudioRecord(
 MediaRecorder.AudioSource.MIC, frequency,
 channelConfiguration, audioEncoding, bufferSize);

 short[] buffer = new short[bufferSize];
 audioRecord.startRecording();

 int r = 0;
 while (isRecording) {
 int bufferReadResult = audioRecord.read(buffer, 0,
 bufferSize);
 for (int i = 0; i < bufferReadResult; i++) {
 dos.writeShort(buffer[i]);
 }

 publishProgress(new Integer(r));

CHAPTER 7: Audio Capture 176

 r++;
 }

 audioRecord.stop();
 dos.close();
 } catch (Throwable t) {
 Log.e("AudioRecord", "Recording Failed");
 }

 return null;
 }

When publishProgress is called, onProgressUpdate is the method called.

 protected void onProgressUpdate(Integer... progress) {
 statusText.setText(progress[0].toString());
 }

When the doInBackground method completes, the following onPostExecute method is

called.

 protected void onPostExecute(Void result) {
 startRecordingButton.setEnabled(true);
 stopRecordingButton.setEnabled(false);
 startPlaybackButton.setEnabled(true);
 }
 }
}

Here is the layout XML for the foregoing example:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="Status" android:id=
 "@+id/StatusTextView"/>

 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="Start Recording" android:id="@+id/StartRecordingButton"></Button>
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="Stop Recording" android:id="@+id/StopRecordingButton"></Button>
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="Start Playback" android:id="@+id/StartPlaybackButton"></Button>
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="Stop Playback" android:id="@+id/StopPlaybakButton" ></Button>
</LinearLayout>

And, we’ll need to add these permissions to AndroidManifest.xml.

<uses-permission android:name="android.permission.RECORD_AUDIO"></uses-permission>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE">
</uses-permission>

http://schemas.android.com/apk/res/android

CHAPTER 7: Audio Capture 177

As we have seen, using the AudioRecord and AudioTrack classes to create a capture and

playback application is much more cumbersome than working with the MediaRecorder

and MediaPlayer classes. But as we’ll see in the next chapter, it is worth the effort when

we need to do any type of audio processing or want to synthesize audio.

Summary
In this chapter, we looked at three different methods for recording audio on Android.

Each of them comes with their own plusses and minuses. Using the built-in sound

recorder is great for no-fuss audio recordings, where little or no programmatic control is

needed. Using the MediaRecorder allows us to take it a step further, allowing control

over the length of time media is recorded and other aspects but leaving the interface up

to us. Last we investigated the ability to record raw samples with AudioRecord. Using

this we have the most control and flexibility but have to do the most work in order to

capture and work with the audio.

In the next chapter, we’ll look more at audio possibilities, investigating audio processing

and synthesis.

CHAPTER 7: Audio Capture 178

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

179

179

 Chapter

Audio Synthesis
and Analysis
At the end of the last chapter, we looked at a way to capture raw PCM audio and play it

back using the AudioRecord and AudioTrack classes. In this chapter, we’ll continue using

those classes to both algorithmically synthesize audio and analyze recorded audio.

Digital Audio Synthesis
Digital audio synthesis is a very broad topic with a great deal of theory, mathematics,

engineering, and history behind it. Unfortunately, most of the topic overall is out of the

scope of what can be covered in this book. What we will do is look at some basic

examples on how we can harness a few built-in classes on Android to create audio from

scratch.

As you probably know, sound is formed by a repetitive change in pressure in air (or other

substance) in the form of a wave. Certain frequencies of these oscillations, otherwise

known as sound waves, are audible, meaning our ears are sensitive to that number of

repetitions in a period of time. This range is somewhere between 12 Hz (12 cycles per

second), which is a very low sound such as a rumble, and 20 kHz (20,000 cycles per

second), which is a very high-pitched sound.

To create audio, we need to cause the air to vibrate at the frequency desired for the

sound we want. In the digital realm, this is generally done with a speaker that is driven

by an analog electric signal. Digital audio systems contain a chip or board that performs

a digital-to-analog conversion (DAC). A DAC will take in data in the form of a series of

numbers that represent audio samples and convert that into an electrical voltage, which

is translated into sound by the speaker.

In order to synthesize audio, we simply need to synthesize the audio samples and feed

them to the appropriate mechanism. In the case of Android, that mechanism is the

AudioTrack class.

8

CHAPTER 8: Audio Synthesis and Analysis 180

As we learned in the last chapter, the AudioTrack class allows us to play raw audio

samples (such as those captured by the AudioRecord class).

Playing a Synthesized Sound
Here is a quick example showing how to construct an AudioTrack class and pass in data

to play. For a full discussion of the parameters used to construct the AudioTrack object,

please see the “Raw Audio Playback with AudioTrack” section of Chapter 7.

This example uses an inner class that extends AsyncTask, AudioSynthesisTask.

AsyncTask defines a method called doInBackground, which runs any code that is placed

inside it in a thread that is separate from the main thread of the activity. This allows the

activity and its UI to be responsive, as the loop that feeds the write method of our

AudioTrack object would otherwise tie it up.

package com.apress.proandroidmedia.ch08.audiosynthesis;

import android.app.Activity;
import android.media.AudioFormat;
import android.media.AudioManager;
import android.media.AudioTrack;
import android.os.AsyncTask;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class AudioSynthesis extends Activity implements OnClickListener {

 Button startSound;
 Button endSound;

 AudioSynthesisTask audioSynth;

 boolean keepGoing = false;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 startSound = (Button) this.findViewById(R.id.StartSound);
 startSound.setOnClickListener(this);

 endSound = (Button) this.findViewById(R.id.EndSound);
 endSound.setOnClickListener(this);

 endSound.setEnabled(false);
 }

 @Override
 public void onPause() {
 super.onPause();
 keepGoing = false;

CHAPTER 8: Audio Synthesis and Analysis 181

 endSound.setEnabled(false);
 startSound.setEnabled(true);
 }

 public void onClick(View v) {
 if (v == startSound) {
 keepGoing = true;

 audioSynth = new AudioSynthesisTask();
 audioSynth.execute();

 endSound.setEnabled(true);
 startSound.setEnabled(false);
 } else if (v == endSound) {
 keepGoing = false;

 endSound.setEnabled(false);
 startSound.setEnabled(true);
 }
 }

 private class AudioSynthesisTask extends AsyncTask<Void, Void, Void>
 {
 @Override
 protected Void doInBackground(Void... params) {
 final int SAMPLE_RATE = 11025;

 int minSize = AudioTrack.getMinBufferSize(SAMPLE_RATE,
 AudioFormat.CHANNEL_CONFIGURATION_MONO,
 AudioFormat.ENCODING_PCM_16BIT);

 AudioTrack audioTrack = new AudioTrack(
 AudioManager.STREAM_MUSIC, SAMPLE_RATE,
 AudioFormat.CHANNEL_CONFIGURATION_MONO,
 AudioFormat.ENCODING_PCM_16BIT,
 minSize,
 AudioTrack.MODE_STREAM);

 audioTrack.play();

 short[] buffer = {
 8130,15752,22389,27625,31134,32695,32210,29711,25354,19410,12253,
 4329,-3865,-11818,-19032,-25055,-29511,-32121,-32722,-31276,-27874,
 -22728,-16160,-8582,-466
 };

 while (keepGoing) {
 audioTrack.write(buffer, 0, buffer.length);
 }

 return null;
 }
 }
}

CHAPTER 8: Audio Synthesis and Analysis 182

Here is the layout XML in use by the preceding activity.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/StartSound" android:text="Start Sound"></Button>
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/EndSound" android:text="End Sound"></Button>
</LinearLayout>

The key to the foregoing code is the array of shorts. These are the audio samples that

are continuously being passed into the AudioTrack object through the write method. In

this case, the samples oscillate from 8,130 to 32,695, down to -32,121 and back up to -

466. If we plotted these values on a graph, these samples taken together will construct a

waveform. Since sound is created with oscillating pressure, and each of the samples

represents a pressure value, having these samples represent a waveform is required to

create sound. Varying this waveform allows us to create different kinds of audio. The

following set of samples describes a short waveform, only ten samples, and therefore

represents a high-frequency sound, one that has many oscillations per second. Low-

frequency sounds would have a waveform that spans many more samples at a fixed

sample rate.

short[] buffer = {
 8130,15752,32695,12253,4329,
 -3865,-19032,-32722,-16160,-466
};

Generating Samples
Using a little bit of math, we can algorithmically create these samples. The classic sine

wave can be reproduced. This example produces a sine wave at 440 Hz.

package com.apress.proandroidmedia.ch08.audiosynthesis;

import android.app.Activity;
import android.media.AudioFormat;
import android.media.AudioManager;
import android.media.AudioTrack;
import android.os.AsyncTask;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class AudioSynthesis extends Activity implements OnClickListener {

 Button startSound;
 Button endSound;

http://schemas.android.com/apk/res/android

CHAPTER 8: Audio Synthesis and Analysis 183

 AudioSynthesisTask audioSynth;

 boolean keepGoing = false;

 float synth_frequency = 440; // 440 Hz, Middle A

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 startSound = (Button) this.findViewById(R.id.StartSound);
 startSound.setOnClickListener(this);

 endSound = (Button) this.findViewById(R.id.EndSound);
 endSound.setOnClickListener(this);

 endSound.setEnabled(false);
 }

 @Override
 public void onPause() {
 super.onPause();
 keepGoing = false;

 endSound.setEnabled(false);
 startSound.setEnabled(true);
 }

 public void onClick(View v) {
 if (v == startSound) {
 keepGoing = true;

 audioSynth = new AudioSynthesisTask();
 audioSynth.execute();

 endSound.setEnabled(true);
 startSound.setEnabled(false);
 } else if (v == endSound) {
 keepGoing = false;

 endSound.setEnabled(false);
 startSound.setEnabled(true);
 }
 }

 private class AudioSynthesisTask extends AsyncTask<Void, Void, Void>
 {
 @Override
 protected Void doInBackground(Void... params) {
 final int SAMPLE_RATE= 11025;

 int minSize = AudioTrack.getMinBufferSize(SAMPLE_RATE,
 AudioFormat.CHANNEL_CONFIGURATION_MONO,
 AudioFormat.ENCODING_PCM_16BIT);

 AudioTrack audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,

CHAPTER 8: Audio Synthesis and Analysis 184

 SAMPLE_RATE,
 AudioFormat.CHANNEL_CONFIGURATION_MONO,
 AudioFormat.ENCODING_PCM_16BIT,
 minSize,
 AudioTrack.MODE_STREAM);

 audioTrack.play();

 short[] buffer = new short[minSize];

 float angular_frequency =
 (float)(2*Math.PI) * synth_frequency / SAMPLE_RATE;
 float angle = 0;

 while (keepGoing) {
 for (int i = 0; i < buffer.length; i++)
 {

 buffer[i] = (short)(Short.MAX_VALUE * ((float) Math.sin(angle)));
 angle += angular_frequency;
 }
 audioTrack.write(buffer, 0, buffer.length);
 }

 return null;
 }
 }
}

Here is the layout XML file for the foregoing activity:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/StartSound" android:text="Start Sound"></Button>
 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/EndSound" android:text="End Sound"></Button>
</LinearLayout>

Changing the synth_frequency would allow us to reproduce any other frequency we

would like. Of course, changing the function used to generate the values would change

the sound as well. You may want to try clamping the samples to Short.MAX_VALUE or

Short.MIN_VALUE to do a quick and dirty square wave example.

Of course, this just scratches the surface of what can be done with audio synthesis on

Android. Given AudioTrack allows us to play raw PCM samples, almost any technique

that can be used to generate digital audio can be utilized on Android, taking into

account processor speed and memory limitations.

What follows is an example application that takes some techniques from Chapter 4 for

tracking finger position on the touchscreen and the foregoing example code for

http://schemas.android.com/apk/res/android

CHAPTER 8: Audio Synthesis and Analysis 185

generating audio. In this application, we’ll generate audio and choose the frequency

based upon the location of the user’s finger on the x axis of the touchscreen.

package com.apress.proandroidmedia.ch08.fingersynthesis;

import android.app.Activity;
import android.media.AudioFormat;
import android.media.AudioManager;
import android.media.AudioTrack;
import android.os.AsyncTask;
import android.os.Bundle;
import android.util.Log;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener;

Our activity will implement OnTouchListener so that we can track the touch locations.

public class FingerSynthesis extends Activity implements OnTouchListener {

Just like the previous example, we’ll use an AsyncTask to provide a thread for generating

and playing the audio samples.

 AudioSynthesisTask audioSynth;

We need a base audio frequency that will be played when the finger is at the 0 position

on the x axis. This will be lowest frequency played.

 static final float BASE_FREQUENCY = 440;

We’ll be varying the synth_frequency float as the finger moves. When we start the app,

we’ll set it to the BASE_FREQUENCY.

 float synth_frequency = BASE_FREQUENCY;

We’ll use the play Boolean to determine when we should actually being playing audio or

not. It will be controlled by the touch events.

 boolean play = false;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

In our layout, we have only one item, a LinearLayout with the ID of MainView. We’ll get a

reference to this and register the OnTouchListener to be our activity. This way our

activity’s onTouch method will be called when the user touches the screen.

 View mainView = this.findViewById(R.id.MainView);
 mainView.setOnTouchListener(this);

 audioSynth = new AudioSynthesisTask();
 audioSynth.execute();
 }

 @Override
 public void onPause() {

CHAPTER 8: Audio Synthesis and Analysis 186

 super.onPause();
 play = false;

 finish();
 }

Our onTouch method, called when the user touches, stops touching, or drags a finger on

the screen, will set the play Boolean to true or false depending on the action of the

user. This will control whether audio samples are generated. It will also track the location

of the user’s finger on the x axis of the touchscreen and adjust the synth_frequency

variable accordingly.

 public boolean onTouch(View v, MotionEvent event) {
 int action = event.getAction();
 switch (action)
 {
 case MotionEvent.ACTION_DOWN:
 play = true;
 synth_frequency = event.getX() + BASE_FREQUENCY;
 Log.v("FREQUENCY",""+synth_frequency);
 break;
 case MotionEvent.ACTION_MOVE:
 play = true;
 synth_frequency = event.getX() + BASE_FREQUENCY;
 Log.v("FREQUENCY",""+synth_frequency);
 break;
 case MotionEvent.ACTION_UP:
 play = false;
 break;
 case MotionEvent.ACTION_CANCEL:
 break;
 default:
 break;
 }
 return true;
 }

 private class AudioSynthesisTask extends AsyncTask<Void, Void, Void>
 {
 @Override
 protected Void doInBackground(Void... params) {
 final int SAMPLE_RATE= 11025;

 int minSize = AudioTrack.getMinBufferSize(SAMPLE_RATE,
 AudioFormat.CHANNEL_CONFIGURATION_MONO,
 AudioFormat.ENCODING_PCM_16BIT);

 AudioTrack audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,
 SAMPLE_RATE,
 AudioFormat.CHANNEL_CONFIGURATION_MONO,
 AudioFormat.ENCODING_PCM_16BIT,
 minSize,
 AudioTrack.MODE_STREAM);

 audioTrack.play();

 short[] buffer = new short[minSize];

CHAPTER 8: Audio Synthesis and Analysis 187

 float angle = 0;

Finally, in the AudioSynthesisTask, in the loop that generates the audio, we’ll check the

play Boolean and do the calculations to generate the audio samples based on the

synth_frequency variable, which we are changing based upon the user’s finger position.

 while (true) {

 if (play)
 {
 for (int i = 0; i < buffer.length; i++)
 {
 float angular_frequency =
 (float)(2*Math.PI) * synth_frequency / SAMPLE_RATE;

 buffer[i] =
 (short)(Short.MAX_VALUE * ((float) Math.sin(angle)));
 angle += angular_frequency;
 }
 audioTrack.write(buffer, 0, buffer.length);
 } else {
 try {
 Thread.sleep(50);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 }
 }
}

Here is the layout XML:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/MainView"
 >
</LinearLayout>

This example shows some of the power and flexibility of the AudioTrack class. Since we

can algorithmically generate audio, we can use just about any method we would like to

determine its features (its pitch or frequency in this example).

Audio Analysis
Now that we have gone over more advanced ways that AudioTrack may be used, how

about looking at what else we might do with audio as it comes in through an

AudioRecord object?

http://schemas.android.com/apk/res/android

CHAPTER 8: Audio Synthesis and Analysis 188

Capturing Sound for Analysis
As previously described, sound is vibration traveling through a substance. These

vibrations can be captured by a microphone. Microphones convert the vibrations that

travel through air into a constantly varying electrical current. When a microphone is used

to capture sound by a computer, that sound is digitized. Specifically, amplitude samples

of a specific size (sample size) are taken many times a second (sample rate). This stream

of data is called a PCM (pulse code modulation) stream, which forms the foundation for

digital audio. Taken all together, the samples represented in the PCM stream digitally

represent the audio waveform that is captured. The higher the sample rate, the more

accurate the representation and the higher the frequency of audio that can be captured.

As we learned in the previous chapter, when we started working with the AudioRecord
class, these parameters may be passed into the constructor of the AudioRecord class

when creating an object. To revisit what each of the parameters means, please see the

“Raw Audio Recording with AudioRecord” section in Chapter 7.

NOTE: The Nyquist sampling theorem, named after Harry Nyquist, who was an engineer for Bell
Labs in the early to mid-twentieth century, explains that the highest frequency that may be
captured by a digitizing system is one half of the sample rate used. Therefore, in order to
capture audio at 440 Hz (middle A), our system needs to capture samples at 880 Hz or higher.

Here is a quick recap of the steps required to capture audio using an object of type

AudioRecord.

 int frequency = 8000;
 int channelConfiguration = AudioFormat.CHANNEL_CONFIGURATION_MONO;
 int audioEncoding = AudioFormat.ENCODING_PCM_16BIT;

 int bufferSize = AudioRecord.getMinBufferSize(frequency,
 channelConfiguration, audioEncoding);

 AudioRecord audioRecord = new AudioRecord(
 MediaRecorder.AudioSource.MIC, frequency,
 channelConfiguration, audioEncoding, bufferSize);

 short[] buffer = new short[blockSize];
 audioRecord.startRecording();

 while (started) {
 int bufferReadResult = audioRecord.read(buffer, 0, blockSize);
 }

 audioRecord.stop();

The foregoing code doesn’t actually do anything with the audio that is captured.

Normally we would want to write it to a file or to analyze it in some other manner.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8: Audio Synthesis and Analysis 189

Visualizing Frequencies
One common way that people typically use to analyze audio is to visualize the

frequencies that exist within it. Commonly these types of visuals are employed with

equalizers that allow the adjustment of the levels of various frequency ranges.

The technique used to break an audio signal down into component frequencies employs

a mathematic transformation called a discrete Fourier transform (DFT). A DFT is

commonly used to translate data from a time base to a frequency base. One algorithm

used to perform DFT is a fast Fourier transform (FFT), which is very efficient but

unfortunately complex.

Fortunately, many implementations of FFT algorithms exist that are in the public domain

or are open source and that we may employ. One such version is a Java port of the

FFTPACK library, originally developed by Paul Swarztrauber of the National Center for

Atmospheric Research. The Java port was performed by Baoshe Zhang of the University

of Lethbridge in Alberta, Canada. Various implementations are available online at

www.netlib.org/fftpack/. The one we’ll be using is archived in a file called

jfftpack.tgz linked off of that page. It is directly downloadable via

www.netlib.org/fftpack/jfftpack.tgz.

To use this or any other package containing Java source code in an Eclipse Android

project, we need to import the source into our project. This archive contains the correct

directory structure for the package, so we just drag the top-level folder in the javasource

directory (ca) into the src directory of our project.

Here is an example that draws the graphic portion of a graphic equalizer.

package com.apress.proandroidmedia.ch08.audioprocessing;

import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.media.AudioFormat;
import android.media.AudioRecord;
import android.media.MediaRecorder;
import android.os.AsyncTask;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.ImageView;

We’ll import the RealDoubleFFT class in the fftpack package.

import ca.uol.aig.fftpack.RealDoubleFFT;

public class AudioProcessing extends Activity implements OnClickListener {

We’ll use a frequency of 8 kHz, one audio channel, and 16 bit samples in the

AudioRecord object.

http://www.netlib.org/fftpack
http://www.netlib.org/fftpack/jfftpack.tgz

CHAPTER 8: Audio Synthesis and Analysis 190

 int frequency = 8000;
 int channelConfiguration = AudioFormat.CHANNEL_CONFIGURATION_MONO;
 int audioEncoding = AudioFormat.ENCODING_PCM_16BIT;

transformer will be our FFT object, and we’ll be dealing with 256 samples at a time from

the AudioRecord object through the FFT object. The number of samples we use will

correspond to the number of component frequencies we will get after we run them

through the FFT object. We are free to choose a different size, but we do need concern

ourselves with memory and performance issues as the math required to the calculation

is processor-intensive.

 private RealDoubleFFT transformer;
 int blockSize = 256;

 Button startStopButton;
 boolean started = false;

RecordAudio is an inner class defined here that extends AsyncTask.

 RecordAudio recordTask;

We’ll be using an ImageView to display a Bitmap image. This image will represent the

levels of the various frequencies that are in the current audio stream. To draw these

levels, we’ll use Canvas and Paint objects constructed from the Bitmap.

 ImageView imageView;
 Bitmap bitmap;
 Canvas canvas;
 Paint paint;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 startStopButton = (Button) this.findViewById(R.id.StartStopButton);
 startStopButton.setOnClickListener(this);

The RealDoubleFFT class constructor takes in the number of samples that we’ll deal with

at a time. This also represents the number of distinct ranges of frequencies that will be

output.

 transformer = new RealDoubleFFT(blockSize);

Here is the setup of the ImageView and related object for drawing.

 imageView = (ImageView) this.findViewById(R.id.ImageView01);
 bitmap = Bitmap.createBitmap((int)256,(int)100,Bitmap.Config.ARGB_8888);
 canvas = new Canvas(bitmap);
 paint = new Paint();
 paint.setColor(Color.GREEN);
 imageView.setImageBitmap(bitmap);
 }

Most of the work in this activity is done in the following class, called RecordAudio, which

extends AsyncTask. Using AsyncTask, we run the methods that will tie up the user

CHAPTER 8: Audio Synthesis and Analysis 191

interface on a separate thread. Anything that is placed in the doInBackground method

will be run in this manner.

 private class RecordAudio extends AsyncTask<Void, double[], Void> {
 @Override
 protected Void doInBackground(Void... params) {
 try {

We’ll set up and use AudioRecord in the normal manner.

 int bufferSize = AudioRecord.getMinBufferSize(frequency,
 channelConfiguration, audioEncoding);

 AudioRecord audioRecord = new AudioRecord(
 MediaRecorder.AudioSource.MIC, frequency,
 channelConfiguration, audioEncoding, bufferSize);

The short array, buffer, will take in the raw PCM samples from the AudioRecord object.

The double array, toTransform, will hold the same data but in the form of doubles, as

that is what the FFT class requires.

 short[] buffer = new short[blockSize];
 double[] toTransform = new double[blockSize];

 audioRecord.startRecording();

 while (started) {
 int bufferReadResult = audioRecord.read(buffer, 0, blockSize);

After we read the data from the AudioRecord object, we loop through and translate it

from short values to double values. We can’t do this directly by casting, as the values

expected should be between -1.0 and 1.0 rather than the full range. Dividing the short

by 32,768.0 will do that, as that value is the maximum value of short.

NOTE: There is a constant Short.MAX_VALUE that could be used instead.

 for (int i = 0; i < blockSize && i < bufferReadResult; i++) {
 toTransform[i] = (double) buffer[i] / 32768.0; // signed 16 bit
 }

Next we’ll pass the array of double values to the FFT object. The FFT object re-uses the

same array to hold the output values. The data contained will be in the frequency

domain rather than the time domain. This means that the first element in the array will

not represent the first sample in time—rather, it will represent the levels of the first set of

frequencies.

Since we are using 256 values (or ranges) and our sample rate is 8,000, we can

determine that each element in the array will cover approximately 15.625 Hz. We come

up with this figure by dividing the sample rate in half (as the highest frequency we can

capture is half the sample rate) and then dividing by 256. Therefore the data represented

in the first element of the array will represent the level of audio that is between 0 and

15.625 Hz.

 transformer.ft(toTransform);

CHAPTER 8: Audio Synthesis and Analysis 192

Calling publishProgress calls onProgressUpdate.

 publishProgress(toTransform);
 }

 audioRecord.stop();
 } catch (Throwable t) {
 Log.e("AudioRecord", "Recording Failed");
 }

 return null;
 }

onProgressUpdate runs on the main thread in our activity and can therefore interact with

the user interface without problems. In this implementation, we are passing in the data

after it has been run through the FFT object. This method takes care of drawing the data

on the screen as a series of lines at most 100 pixels tall. Each line represents one of the

elements in the array and therefore a range of 15.625 Hz. The first line represents

frequencies ranging from 0 to 15.625 Hz, and the last line represents frequencies

ranging from 3,984.375 to 4,000 Hz. Figure 8–1 shows what this looks like in action.

 protected void onProgressUpdate(double[]... toTransform) {
 canvas.drawColor(Color.BLACK);

 for (int i = 0; i < toTransform[0].length; i++) {
 int x = i;
 int downy = (int) (100 - (toTransform[0][i] * 10));
 int upy = 100;

 canvas.drawLine(x, downy, x, upy, paint);
 }
 imageView.invalidate();
 }
 }

 public void onClick(View v) {
 if (started) {
 started = false;
 startStopButton.setText("Start");
 recordTask.cancel(true);
 } else {
 started = true;
 startStopButton.setText("Stop");
 recordTask = new RecordAudio();
 recordTask.execute();
 }
 }
}

Here is the layout XML file used by the AudioProcessing activity just defined.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

http://schemas.android.com/apk/res/android

CHAPTER 8: Audio Synthesis and Analysis 193

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 />
 <ImageView android:id="@+id/ImageView01" android:layout_width="wrap_content"
 android:layout_height="wrap_content"></ImageView><Button android:text="Start"
 android:id="@+id/StartStopButton" android:layout_width="wrap_content"
 android:layout_height="wrap_content"></Button>
</LinearLayout>

Figure 8–1. AudioProcessing activity running

Summary
With this chapter, we have concluded our coverage of audio on Android and have done

so by showing how flexible it can be. Although we only scratched the surface of both

audio synthesis and analysis, doing so shows the potential of what can be done and

how flexible the AudioTrack and AudioRecord classes in Android are.

Next we’ll turn our attention to video.

CHAPTER 8: Audio Synthesis and Analysis 194

195

195

 Chapter

Introduction to Video
Continuing on our journey through Android’s media capabilities, we’ll now turn our

attention to video. In this chapter, we’ll explore the various means we can use for video

playback on Android as well as what formats are supported.

Video Playback
Technically, some mobile phones have had video capabilities previous to 2004. In

reality, though, video on mobile phones didn’t really take off in the US until the

introduction of the iPhone in 2007. Since then, every smartphone worth its name has

supported video playback, if not video capture. As we’ll explore throughout this chapter,

Android is no exception.

Supported Formats
Before we get into the specific mechanics of how to play video, we should look at the

types of video that we can play. Although Android supports playing back a variety of

video formats and the types it can play back is slowly increasing, it certainly doesn’t

cover the wide range of video formats available.

In general Android’s support is consistent with other mobile phones. It supports the 3GP

(.3gp) and MPEG-4 (.mp4) file formats. 3GP is a video standard derived from MPEG-4

specifically for use by mobile devices.

As far as codecs go, Android supports H.263, a codec designed for low-latency and

low-bitrate videoconferencing applications. H.263 video is supported in either MPEG-4

(.mp4) or 3GP (.3gp) files. Android also supports MPEG-4 Simple Profile in 3GP files

(.3gp) as well as H.264.

H.264 is also referred to as MPEG-4 part 10 or AVC (Advanced Video Coding). It is one

of the contenders for the video codec crown and probably offers the widest amount of

support across software and hardware. H.264 is supported by Silverlight, Flash,

iPhone/iPod, Blu-ray devices, and so on. Android supports H.264 encoded video in the

MPEG-4 container format (.mp4).

9

CHAPTER 9: Introduction to Video 196

Depending on when you are reading this book, Android probably also supports WebM

(Android 3.0 and later), the open and royalty-free media container that holds VP8-

encoded video and Vorbis-encoded audio. WebM was introduced shortly after Google

acquired On2 Technologies and released the VP8 codec into the public domain.

A large number of desktop video conversion tools work to aid the conversion of video

for use with Android devices. The hard part is getting the settings correct. In general, if

the tool has a preset for Android devices, you are just fine. If not, it is more than likely

any presets that a tool might have for the iPhone will also work with Android devices

since the range of supported formats is very close between the two.

Playback Using an Intent
As with most of Android’s capabilities that we have explored in this book, simply playing

back a video can be done easily, using an intent to trigger the built-in Media Player

application’s playback activity.

For this example, I captured a video using QuickTime X on a Mac laptop with a built-in

iSight. I exported this video using QuickTime X’s Save As command and selected

“iPhone” as the format. This created a video that I named Test_Movie.m4v. (The .m4v

extension was given by QuickTime. Unfortunately, it isn’t standard, which may indicate

that the file may not be a fully standards-compliant MPEG-4 file. Nevertheless, it doesn’t

seem to present any issues on Android devices.) This video is available online at

www.mobvcasting.com/android/video/Test_Movie.m4v for you to download if you would

like to test with it.

The following code requires that this video be on root of the SD card on your Android

device. To do this, you should be able to connect the device to your computer via a

USB cable and select the menu item in the status bar pull-down that states “USB

connected. Select to copy files to/from your computer.” This should bring up a screen

that allows you to “Turn on USB storage.” Doing so should cause your phone to be

mounted as a removable drive to your computer, and the video file can then be copied

over. Don’t forget to unmount the drive and “Turn off USB storage” before attempting to

run the following code. If you don’t, you’ll get an error as the program running on the

phone cannot access the SD card to read the video file while your computer has access

to it.

To create the intent that will trigger the built-in Media Player application’s playback

activity, we’ll construct an activity using the Intent.ACTION_VIEW constant and pass in

the URI and the MIME-type of the file via the setDataAndType method. This allows

Android to choose the preferred activity for playback. Figure 9–1 shows the built-in

Media Player from Android 2.2 playing video specified in this manner.

package com.apress.proandroidmedia.ch09.videointent;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.os.Environment;

http://www.mobvcasting.com/android/video/Test_Movie.m4v

CHAPTER 9: Introduction to Video 197

import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class VideoPlayerIntent extends Activity implements OnClickListener {
 Button playButton;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 playButton = (Button) this.findViewById(R.id.PlayButton);
 playButton.setOnClickListener(this);
 }

 public void onClick(View v) {
 Intent intent = new Intent(android.content.Intent.ACTION_VIEW);
 Uri data = Uri.parse(Environment.getExternalStorageDirectory().getPath() +
 "/Test_Movie.m4v");
 intent.setDataAndType(data, "video/mp4");
 startActivity(intent);
 }
}

Figure 9–1. Built-in Media Player application playing video specified via an intent

Playback Using VideoView
VideoView is a View that has video playback capabilities and can be used directly in a

layout. It is very straightforward to use.

The following layout XML file, main.xml, specifies a VideoView inside a LinearLayout.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

http://schemas.android.com/apk/res/android

CHAPTER 9: Introduction to Video 198

 <VideoView android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/VideoView"></VideoView>
</LinearLayout>

To utilize this VideoView, we simply have to gain a reference to it in the normal way,

using findViewById, passing in the ID (R.id.VideoView). Once we have the object, we

can set the Uri to the video file with setVideoURI and then call the start method to play.

package com.apress.proandroidmedia.ch09.videoview;

import android.app.Activity;
import android.net.Uri;
import android.os.Bundle;
import android.os.Environment;
import android.widget.VideoView;

public class ViewTheVideo extends Activity {
 VideoView vv;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 vv = (VideoView) this.findViewById(R.id.VideoView);
 Uri videoUri = Uri.parse(Environment.getExternalStorageDirectory().getPath() +
 "/Test_Movie.m4v");
 vv.setVideoURI(videoUri);
 vv.start();
 }
}

Figure 9–2 shows the foregoing example in action.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9: Introduction to Video 199

Figure 9–2. VideoView example

Adding Controls with MediaController
The VideoView has relatively few capabilities for controlling the playback of video.

Specifically it has a start and a pause method. In order to provide more controls, we

can instantiate a MediaController and set it via setMediaController to be the controller

of the VideoView.

The default MediaController has rewind, pause, play, and fast-forward buttons along

with a scrubber and progress bar combination that can be used to seek to any point in

the video.

Here is an update to our VideoView example to include a MediaController within the

onCreate method after the content view is set by the setContentView method.

 vv = (VideoView) this.findViewById(R.id.VideoView);
 vv.setMediaController(new MediaController(this));
 Uri videoUri = Uri.parse(Environment.getExternalStorageDirectory().getPath() +
 "/Test_Movie.m4v");
 vv.setVideoURI(videoUri);
 vv.start();

CHAPTER 9: Introduction to Video 200

Figure 9–3. VideoView with a default MediaController

Playback Using a MediaPlayer
In Chapters 6 and 7, those dealing with audio and networked audio, we introduced the

MediaPlayer class. The very same MediaPlayer class can also be used for video

playback, in much the same manner.

Using a MediaPlayer object for video playback gives us the greatest amount of flexibility

in the control of the playback itself, as compared with playing video using VideoView or

via an intent. In fact, the mechanism used to handle the actual playback within the

VideoView and the activity triggered via the intent is a MediaPlayer.

NOTE: Unfortunately, none of the video playback classes are as flexible as the most flexible
audio playback class, AudioTrack, which allows us to generate on the fly the data that will be
played.

CHAPTER 9: Introduction to Video 201

MediaPlayer States
MediaPlayer objects operate as a state machine. This means that operations need to be

performed in a specific order and various methods should be called only when the

object is in the correct state to handle them.

The MediaPlayer class defines several listeners that allow applications that use it to be

notified of various state changes and act accordingly.

Let’s go through a full MediaPlayer example to explore further. Figure 9–4 shows the

diagram again for reference.

Figure 9–4. MediaPlayer state diagram from MediaPlayer class reference documentation

CHAPTER 9: Introduction to Video 202

MediaPlayer Example
The following is a full example using the MediaPlayer to create a custom video playback

application. Figure 9–5 shows the application running.

package com.apress.proandroidmedia.ch09.videoplayercustom;

import java.io.IOException;

import android.app.Activity;
import android.os.Bundle;
import android.os.Environment;
import android.util.Log;
import android.view.Display;
import android.widget.LinearLayout;

We are importing the MediaPlayer and several of its inner classes that are interfaces

we’ll be implementing.

import android.media.MediaPlayer;
import android.media.MediaPlayer.OnCompletionListener;
import android.media.MediaPlayer.OnErrorListener;
import android.media.MediaPlayer.OnInfoListener;
import android.media.MediaPlayer.OnPreparedListener;
import android.media.MediaPlayer.OnSeekCompleteListener;
import android.media.MediaPlayer.OnVideoSizeChangedListener;

SurfaceHolder and SurfaceView will be used to draw the video.

import android.view.SurfaceHolder;
import android.view.SurfaceView;

Our activity will implement all of the MediaPlayer state change listeners as well as the

SurfaceHolder.Callback interface, which will enable us to get notified of changes to a

SurfaceView.

public class CustomVideoPlayer extends Activity
 implements OnCompletionListener, OnErrorListener, OnInfoListener,
 OnPreparedListener, OnSeekCompleteListener, OnVideoSizeChangedListener,
 SurfaceHolder.Callback
{
 Display currentDisplay;

 SurfaceView surfaceView;
 SurfaceHolder surfaceHolder;

The workhorse of our application will be this MediaPlayer object.

 MediaPlayer mediaPlayer;

 int videoWidth = 0;
 int videoHeight = 0;

 boolean readyToPlay = false;

 public final static String LOGTAG = "CUSTOM_VIDEO_PLAYER";

 @Override

CHAPTER 9: Introduction to Video 203

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

After we set the content view, we can get a reference to the SurfaceView defined in the

layout XML and get a reference to the SurfaceHolder, which allows us to monitor what

happens to the underlying Surface.

 surfaceView = (SurfaceView) this.findViewById(R.id.SurfaceView);
 surfaceHolder = surfaceView.getHolder();

Since our activity implements SurfaceHolder.Callback, we’ll assign it to be the callback

listener.

 surfaceHolder.addCallback(this);

We need to make sure the underlying surface is a push buffer surface, which is currently

required for video playback and camera previews.

 surfaceHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

Now we start constructing the actual MediaPlayer object. We aren’t passing in any

parameters, getting back a generic MediaPlayer in the “idle” state.

 mediaPlayer = new MediaPlayer();

We’ll also specify that our activity should be the listener for the various events.

 mediaPlayer.setOnCompletionListener(this);
 mediaPlayer.setOnErrorListener(this);
 mediaPlayer.setOnInfoListener(this);
 mediaPlayer.setOnPreparedListener(this);
 mediaPlayer.setOnSeekCompleteListener(this);
 mediaPlayer.setOnVideoSizeChangedListener(this);

Before we finish the onCreate method, we’ll tell the MediaPlayer object what to play. In

this example, we are using the same video file that we used in previous examples. You

can download it from www.mobvcasting.com/android/video/Test_Movie.m4v or create

your own file.

 String filePath = Environment.getExternalStorageDirectory().getPath() + "/Test
_Movie iPhone.m4v";

The setDataSource method on the MediaPlayer can throw multiple exceptions, which we

should handle gracefully. In this case, we are just quitting. In your application, you

probably want to present the user with an opportunity to select a different file or explain

what went wrong.

 try {
 mediaPlayer.setDataSource(filePath);
 } catch (IllegalArgumentException e) {
 Log.v(LOGTAG,e.getMessage());
 finish();
 } catch (IllegalStateException e) {
 Log.v(LOGTAG,e.getMessage());
 finish();
 } catch (IOException e) {
 Log.v(LOGTAG,e.getMessage());

http://www.mobvcasting.com/android/video/Test_Movie.m4v

CHAPTER 9: Introduction to Video 204

 finish();
 }

 currentDisplay = getWindowManager().getDefaultDisplay();
 }

Since our activity implements SurfaceHolder.Callback and is assigned to be the

callback listener, the following three methods will get triggered.

surfaceCreated will be called when the underlying Surface in SurfaceView is created.

 public void surfaceCreated(SurfaceHolder holder) {
 Log.v(LOGTAG,"surfaceCreated Called");

When the Surface is created, we can specify that the MediaPlayer use the Surface for

playback by calling its setDisplay method, passing in the SurfaceHolder object.

 mediaPlayer.setDisplay(holder);

Finally, after we specify the Surface, we can call prepare. The prepare method blocks

rather than doing the work in the background. To have it do the work in the background,

so as to not tie up the application, we could use prepareAsync instead. Either way, since

we have implemented the OnPreparedListener and our activity is set to be the listener,

our onPrepared method will be called when it is done.

The prepare method can throw a couple of extensions that we need to take care of. For

brevity we’ll just log the error and quit. In your application, you’ll probably want to

intelligently handle these exceptions.

 try {
 mediaPlayer.prepare();
 } catch (IllegalStateException e) {
 Log.v(LOGTAG,e.getMessage());
 finish();
 } catch (IOException e) {
 Log.v(LOGTAG,e.getMessage());
 finish();
 }
 }

surfaceChanged will be called when the width, height, or other parameter of the Surface

underlying the SurfaceView changes. In this example, we don’t need to do anything in

this case.

 public void surfaceChanged(SurfaceHolder holder, int format, int width, int height){
 Log.v(LOGTAG,"surfaceChanged Called");
 }

surfaceDestroyed will be called when the underlying Surface of our SurfaceView is

destroyed. In this example, we won’t be doing anything when this occurs.

 public void surfaceDestroyed(SurfaceHolder holder) {
 Log.v(LOGTAG,"surfaceDestroyed Called");
 }

Since we implement the MediaPlayer.OnCompletionListener and register ourselves as

the listener, our onCompletion method will be called when the MediaPlayer finishes

CHAPTER 9: Introduction to Video 205

playing a file. We could use this to load another video or perform some other action

such as loading another screen. In this example, we’ll just quit.

 public void onCompletion(MediaPlayer mp) {
 Log.v(LOGTAG,"onCompletion Called");
 finish();
 }

Our activity implements the MediaPlayer.OnErrorListener, and it is registered as the

error listener for our MediaPlayer object, so the following onError method will be called

when one occurs. Unfortunately, not much error information is available, just two

constants as shown here.

 public boolean onError(MediaPlayer mp, int whatError, int extra) {
 Log.v(LOGTAG,"onError Called");

 if (whatError == MediaPlayer.MEDIA_ERROR_SERVER_DIED) {
 Log.v(LOGTAG,"Media Error, Server Died " + extra);
 } else if (whatError == MediaPlayer.MEDIA_ERROR_UNKNOWN) {
 Log.v(LOGTAG,"Media Error, Error Unknown " + extra);
 }

Returning false from the method indicates that the error wasn’t handled. If an

OnCompletionListener is registered, its onCompletion method will be called. The

MediaPlayer object will be put into the “error” state. It can be put back to the “idle” state

by calling the reset method.

 return false;
 }

The onInfo method, specified in the OnInfoListener, is called when specific information

about the playback of the media is available or if warnings need to be issued.

 public boolean onInfo(MediaPlayer mp, int whatInfo, int extra) {
 if (whatInfo == MediaPlayer.MEDIA_INFO_BAD_INTERLEAVING) {

This will be triggered if the audio and video data in the file are not properly interleaved. A

properly interleaved media file has audio and video samples arranged in an order that

makes playback efficient and smooth.

 Log.v(LOGTAG,"Media Info, Media Info Bad Interleaving " + extra);
 } else if (whatInfo == MediaPlayer.MEDIA_INFO_NOT_SEEKABLE) {

This will be triggered if the media cannot be seeked (meaning it is probably a live

stream).

 Log.v(LOGTAG,"Media Info, Media Info Not Seekable " + extra);
 } else if (whatInfo == MediaPlayer.MEDIA_INFO_UNKNOWN) {

This is self-explanatory, in that the information isn’t specified or is otherwise unknown.

 Log.v(LOGTAG,"Media Info, Media Info Unknown " + extra);
 } else if (whatInfo == MediaPlayer.MEDIA_INFO_VIDEO_TRACK_LAGGING) {

This will be triggered if the device is having trouble playing the video. It is possible that

the audio will play but the video is either too complex or the bitrate is too high.

 Log.v(LOGTAG,"MediaInfo, Media Info Video Track Lagging " + extra);

CHAPTER 9: Introduction to Video 206

 } else if (whatInfo == MediaPlayer.MEDIA_INFO_METADATA_UPDATE) {

MEDIA_INFO_METADATA_UPDATE is available in Android 2.0 and higher. It is triggered when

new metadata is available.

 Log.v(LOGTAG,"MediaInfo, Media Info Metadata Update " + extra);
 }
 return false;
 }

Following a successful preparation by the MediaPlayer to start playback, the onPrepared

method will be called. This is specified as part of the OnPreparedListener interface that

we are implementing. Once this method is called, the MediaPlayer has entered the

“prepared” state and is ready to play.

 public void onPrepared(MediaPlayer mp) {
 Log.v(LOGTAG,"onPrepared Called");

Before we can play the video, we should set the size of the Surface to match the video

or the display size, depending on which is smaller.

First we get the dimensions of the video using the getVideoWidth and getVideoHeight

methods available on the MediaPlayer object.

 videoWidth = mp.getVideoWidth();
 videoHeight = mp.getVideoHeight();

If the width or height of the video is greater than the display, then we’ll figure out the

ratio we should use.

 if (videoWidth > currentDisplay.getWidth() ||
 videoHeight > currentDisplay.getHeight())
 {
 float heightRatio = (float)videoHeight/(float)currentDisplay.getHeight();
 float widthRatio = (float)videoWidth/(float)currentDisplay.getWidth();

 if (heightRatio > 1 || widthRatio > 1)
 {

We’ll use whichever ratio is bigger and set the videoHeight and videoWidth by dividing

the video size by the larger ratio.

 if (heightRatio > widthRatio) {
 videoHeight = (int)Math.ceil((float)videoHeight/(float)heightRatio);
 videoWidth = (int)Math.ceil((float)videoWidth/(float)heightRatio);
 } else {
 videoHeight = (int)Math.ceil((float)videoHeight/(float)widthRatio);
 videoWidth = (int)Math.ceil((float)videoWidth/(float)widthRatio);
 }
 }
 }

We can now set the size of the SurfaceView we are displaying the video in to be either

the actual dimensions of the video or the resized dimensions if the video was bigger

than the display.

 surfaceView.setLayoutParams(
 new LinearLayout.LayoutParams(videoWidth,videoHeight));

CHAPTER 9: Introduction to Video 207

Finally, we can start the playback of the video by calling the start method on the

MediaPlayer object.

 mp.start();
 }

onSeekComplete is specified as part of the OnSeekListener that we are implementing,

and our activity is the registered listener for our MediaPlayer. It is called when a seek

command has completed.

 public void onSeekComplete(MediaPlayer mp) {
 Log.v(LOGTAG,"onSeekComplete Called");
 }

onVideoSizeChanged is specified as part of the OnVideoSizeChangedListener that we are

implementing, and our activity is the registered listener for our MediaPlayer. It is called

when a size change occurs. It will be called at least once after the data source is

specified and the video metadata is read.

 public void onVideoSizeChanged(MediaPlayer mp, int width, int height) {
 Log.v(LOGTAG,"onVideoSizeChanged Called");
 }
}

Here is the layout XML file, main.xml, for use with the foregoing activity.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/MainView"
 >
 <SurfaceView android:id="@+id/SurfaceView" android:layout_height="wrap_content"
 android:layout_width="wrap_content"></SurfaceView>
</LinearLayout>

http://schemas.android.com/apk/res/android

CHAPTER 9: Introduction to Video 208

Figure 9–5. Video playing in CustomVideoPlayer activity

MediaPlayer with MediaController
The MediaController view that we used in our VideoView example can also be used with

a MediaPlayer as shown in Figure 9–6. Unfortunately, it takes significantly more work

in order to have it work correctly.

First our class needs to implement MediaController.MediaPlayerControl in addition to

other classes it already implements.

import android.widget.MediaController;
public class CustomVideoPlayer extends Activity
 implements OnCompletionListener, OnErrorListener, OnInfoListener,
 OnPreparedListener, OnSeekCompleteListener, OnVideoSizeChangedListener,
 SurfaceHolder.Callback, MediaController.MediaPlayerControl
{

This interface defines a series of functions that the MediaController uses to control the

playback, and we need to implement them in our activity.

Here are the functions and their implementation in our CustomVideoPlayer example. For

several of the functions, we just return true, meaning the capability is there. For the rest,

we call the corresponding function on our MediaPlayer object.

 public boolean canPause() {
 return true;
 }

e

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9: Introduction to Video 209

 public boolean canSeekBackward() {
 return true;
 }

 public boolean canSeekForward() {
 return true;
 }

 public int getBufferPercentage() {
 return 0;
 }

 public int getCurrentPosition() {
 return mediaPlayer.getCurrentPosition();
 }

 public int getDuration() {
 return mediaPlayer.getDuration();
 }

 public boolean isPlaying() {
 return mediaPlayer.isPlaying();
 }

 public void pause() {
 if (mediaPlayer.isPlaying()) {
 mediaPlayer.pause();
 }
 }

 public void seekTo(int pos) {
 mediaPlayer.seekTo(pos);
 }

 public void start() {
 mediaPlayer.start();
 }

Now we are free to add the actual MediaController object. We’ll declare it with the rest

of the instance variables.

 MediaController controller;

In the onCreate method, we’ll instantiate it.

 controller = new MediaController(this);

We won’t actually set it up and use it until after the MediaPlayer is prepared. At the end

of the onPrepared method, we can add the following. First we specify the object that

implements MediaController.MediaPlayerControl by calling the setMediaPlayer

method. In this case, it is our activity, so we pass in this.

Then we set the root view of our activity so the MediaController can determine how to

display itself. In the foregoing layout XML, we gave the root LinearLayout object an ID of

MainView so we can reference it here.

Finally we enable it and show it.

CHAPTER 9: Introduction to Video 210

 controller.setMediaPlayer(this);
 controller.setAnchorView(this.findViewById(R.id.MainView));
 controller.setEnabled(true);
 controller.show();

In order to bring the controller back up after it disappears (the default behavior of the

MediaController is to auto-hide after a timeout), we can override onTouchEvent in our

activity to show or hide it.

 @Override
 public boolean onTouchEvent(MotionEvent ev) {
 if (controller.isShowing()) {
 controller.hide();
 } else {
 controller.show();
 }
 return false;
 }

Figure 9–6. CustomVideoPlayer activity with MediaController

Summary
As with many things in Android, there are many different ways that a task can be

accomplished. In this chapter, we looked at three different ways that we can play video

files. Simply using the built-in application via an intent is the easiest but least flexible.

Using a VideoView allows us to play video within our own activity but doesn’t offer much

more in the way of control capabilities. The MediaPlayer allows for the greatest range of

control but requires the most work.

211

211

 Chapter

Advanced Video
In Chapter 9, we looked at how Android can play back a specific video file that is placed

on the device’s SD card. In this chapter, we’ll take that a step further and look at

accessing video that is made available by the MediaStore and video that is available on

the Internet.

MediaStore for Retrieving Video
As discussed in Chapter 1, Android provides a standard means for sharing data across

applications. The ContentProvider class is the base class that enables this. Also as

discussed, the classes that extend the concept of a ContentProvider for media are the

various MediaStore classes. We previously looked at using the MediaStore for images

and audio and their related metadata. The MediaStore for use with video behaves in

much the same way.

MediaStore.Video is the nested class within the MediaStore class for use with video files

in particular. Within MediaStore.Video is MediaStore.Video.Media, which contains the

constants that specify the columns available in the MediaStore related to the video

media itself, many of which are inherited from other classes, such as

MediaStore.MediaColumns. There is also a MediaStore.Video.Thumbnails, which contains

the constants that specify the columns available in the MediaStore for thumbnail image

storage that is related to video files.

To query the MediaStore for video content, we utilize the Uri specified in the constant

MediaStore.Video.Media.EXTERNAL_CONTENT_URI as the data source for a query.

Using the managedQuery method available in the Activity class, we also need to pass in

an array of columns that we would like returned. The array specified here indicates that

we want the unique ID for the video in the MediaStore, MediaStore.Video.Media._ID.

This is followed by MediaStore.Video.Media.DATA, which is the path to the video file

itself. The next two specify that we want the title and the MIME-type of the file.

String[] mediaColumns = {
 MediaStore.Video.Media._ID,
 MediaStore.Video.Media.DATA,
 MediaStore.Video.Media.TITLE,

10

CHAPTER 10: Advanced Video 212

 MediaStore.Video.Media.MIME_TYPE
};

To query the MediaStore for video content, we utilize the Uri specified in the constant

MediaStore.Video.Media.EXTERNAL_CONTENT_URI as the data source for a query.

Cursor cursor = managedQuery(MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
 mediaColumns, null, null, null);

In return we get a cursor that we can loop through and extract the data.

if (cursor.moveToFirst()) {
 do {
 Log.v("VideoGallery",
 cursor.getString(cursor.getColumnIndex(MediaStore.Video.Media.DATA));
 Log.v("VideoGallery",
 cursor.getString(cursor.getColumnIndex(MediaStore.Video.Media.TITLE));
 Log.v("VideoGallery",
 cursor.getString(cursor.getColumnIndex(MediaStore.Video.Media.MIME_TYPE));
 } while (cursor.moveToNext());
}

Video Thumbnails from the MediaStore
We could, starting with Android 2.0 (API Level 5), pull out the thumbnails associated with

each video file from within the loop. We need the ID of the video file that is in our list of

columns to select (MediaStore.Video.Media._ID), which we can then use in the “where”

clause of the managedQuery.

int id = cursor.getInt(cursor.getColumnIndex(MediaStore.Video.Media._ID));
String[] thumbColumns = { MediaStore.Video.Thumbnails.DATA,
 MediaStore.Video.Thumbnails.VIDEO_ID};
Cursor thumbCursor = managedQuery(MediaStore.Video.Thumbnails.EXTERNAL_CONTENT_URI,
 thumbColumns, MediaStore.Video.Thumbnails.VIDEO_ID + "=" + id, null, null);
if (thumbCursor.moveToFirst()) {
 Log.v("VideoGallery",thumbCursor.getColumnIndex(MediaStore.Video.Thumbnails.DATA));
}

Full MediaStore Video Example
Here is a full example that retrieves all of the available video files from the MediaStore

and displays each of their thumbnail images and titles. Figure 10–1 shows the following

example running. This example uses the MediaStore.Video.Thumbnails class which is

available in Android 2.0 (API Level 5) and above.

package com.apress.proandroidmedia.ch10.videogallery;

import java.io.File;
import java.util.ArrayList;
import java.util.List;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;

CHAPTER 10: Advanced Video 213

import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.provider.MediaStore;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.BaseAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.AdapterView.OnItemClickListener;

public class VideoGallery extends Activity implements OnItemClickListener {
 Cursor cursor;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

We’ll use a ListView to display the list of videos.

 ListView listView = (ListView) this.findViewById(R.id.ListView);

Next is the list of columns we want from the MediaStore.Video.Thumbnails queries.

 String[] thumbColumns = {
 MediaStore.Video.Thumbnails.DATA,
 MediaStore.Video.Thumbnails.VIDEO_ID
 };

Then comes the list of columns we want from the MediaStore.Video.Media query.

 String[] mediaColumns = {
 MediaStore.Video.Media._ID,
 MediaStore.Video.Media.DATA,
 MediaStore.Video.Media.TITLE,
 MediaStore.Video.Media.MIME_TYPE
 };

In the main query, we’ll select all of the videos that are represented in the MediaStore.

 cursor = managedQuery(MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
 mediaColumns, null, null, null);

Each row returned by the query will create an item in the following ArrayList. Each item

will be a VideoViewInfo object, which is a class defined here specifically to hold

information about a video for use in this activity.

 ArrayList<VideoViewInfo> videoRows = new ArrayList<VideoViewInfo>();

Here we loop through the data contained in the Cursor object, creating a VideoViewInfo

object for each row and adding it to our ArrayList.

 if (cursor.moveToFirst())
 {

CHAPTER 10: Advanced Video 214

We are using a do while loop as we want it to run through the first row of data before

moving to the next row. The do portion happens before the while clause is

tested/executed. In our loop, we’ll create a new VideoViewInfo object for each row of

data returned.

 do {

 VideoViewInfo newVVI = new VideoViewInfo();

We can then pull out all of the relevant data from the Cursor. As just described, we’ll

also make another query to pull out a thumbnail image for each video. Each of these

pieces of data will be stored in the VideoViewInfo object.

 int id =
 cursor.getInt(cursor.getColumnIndex(MediaStore.Video.Media._ID));
 Cursor thumbCursor =
 managedQuery(MediaStore.Video.Thumbnails.EXTERNAL_CONTENT_URI,
 thumbColumns,
 MediaStore.Video.Thumbnails.VIDEO_ID + "=" + id,
 null, null);
 if (thumbCursor.moveToFirst())
 {
 newVVI.thumbPath = thumbCursor.getString(
 thumbCursor.getColumnIndex(MediaStore.Video.Thumbnails.DATA));
 Log.v("VideoGallery","Thumb " + newVVI.thumbPath);
 }

 newVVI.filePath = cursor.getString(
 cursor.getColumnIndexOrThrow(MediaStore.Video.Media.DATA));
 newVVI.title = cursor.getString(
 cursor.getColumnIndexOrThrow(MediaStore.Video.Media.TITLE));
 Log.v("VideoGallery","Title " + newVVI.title);
 newVVI.mimeType = cursor.getString(
 cursor.getColumnIndexOrThrow(MediaStore.Video.Media.MIME_TYPE));
 Log.v("VideoGallery","Mime " + newVVI.mimeType);

Finally, we add the VideoViewInfo to the videoRows ArrayList.

 videoRows.add(newVVI);
 } while (cursor.moveToNext());
 }

Once we are done getting all of the videos, we can continue on. We’ll set the adapter of

the ListView object to be a new instance of VideoGalleryAdapter, which is an inner

class defined here. We’ll also set this activity to be the OnItemClickListener for the

ListView.

 listView.setAdapter(new VideoGalleryAdapter(this,videoRows));
 listView.setOnItemClickListener(this);
 }

When an item in the ListView is clicked, the onItemClick method will be called. In this

method, we extract the data we need from the Cursor and create an intent to launch the

default media player application on the device to play back the video. We could have

created our own MediaPlayer or used the VideoView class here instead.

 public void onItemClick(AdapterView<?> l, View v, int position, long id) {

CHAPTER 10: Advanced Video 215

 if (cursor.moveToPosition(position)) {
 int fileColumn = cursor.getColumnIndexOrThrow(MediaStore.Video.Media.DATA);
 int mimeColumn =
 cursor.getColumnIndexOrThrow(MediaStore.Video.Media.MIME_TYPE);

 String videoFilePath = cursor.getString(fileColumn);
 String mimeType = cursor.getString(mimeColumn);

 Intent intent = new Intent(android.content.Intent.ACTION_VIEW);

 File newFile = new File(videoFilePath);
 intent.setDataAndType(Uri.fromFile(newFile), mimeType);

 startActivity(intent);
 }
 }

What follows is the very basic VideoViewInfo class, which is used to hold information

about each video returned.

 class VideoViewInfo
 {
 String filePath;
 String mimeType;
 String thumbPath;
 String title;
 }

Since we are using a ListView in our activity to display each of the videos returned from

the MediaStore query, we’ll be using the ListView to display both the title of the video

and a thumbnail. In order to hand the data to the ListView, we need to construct an

Adapter. Next, we create an Adapter, VideoGalleryAdapter, which extends BaseAdapter.

When this class is constructed, it gets passed the ArrayList that holds all of the videos

returned from the MediaStore query.

BaseAdapter is an abstract class, so in order to extend it, we need to implement several

methods. Most of them are straightforward and just operate on the ArrayList we

passed in, such as getCount and getItem. The method that requires the most attention is

the getView method.

 class VideoGalleryAdapter extends BaseAdapter
 {
 private Context context;
 private List<VideoViewInfo> videoItems;

 LayoutInflater inflater;

 public VideoGalleryAdapter(Context _context, ArrayList<VideoViewInfo> _items) {
 context = _context;
 videoItems = _items;

 inflater =
 (LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 }

 public int getCount() {

CHAPTER 10: Advanced Video 216

 return videoItems.size();
 }

 public Object getItem(int position) {
 return videoItems.get(position);
 }

 public long getItemId(int position) {
 return position;
 }

The getView method is used to return the view for each row represented in the ListView.

It is passed in the position that is meant to be returned (along with a View object

representing the current View and an object that represents the parent ViewGroup).

 public View getView(int position, View convertView, ViewGroup parent) {

To construct the View to be returned, we need to inflate the layout that we are using for

each row. In this case, we are using a layout defined in list_item.xml (shown here).

 View videoRow = inflater.inflate(R.layout.list_item, null);

After the layout is inflated, we can get at the individual Views that are defined and use

the data from the ArrayList of VideoViewInfo objects to define what to display. Here is

how that is done for the ImageView that is used to display each video’s thumbnail.

 ImageView videoThumb = (ImageView) videoRow.findViewById(R.id.ImageView);
 if (videoItems.get(position).thumbPath != null) {
 videoThumb.setImageURI(Uri.parse(videoItems.get(position).thumbPath));
 }

Here we obtain a reference to the TextView for the video title and set the text according

to the data in the ArrayList of VideoViewInfo object.

 TextView videoTitle = (TextView) videoRow.findViewById(R.id.TextView);
 videoTitle.setText(videoItems.get(position).title);

Finally, we return the newly constructed View.

 return videoRow;
 }
 }
}

Here is the main.xml file defining the layout for the activity.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ListView android:layout_width="wrap_content" android:layout_height="wrap_content"
android:id="@+id/ListView"></ListView>
</LinearLayout>

Here is the list_item.xml file that is used to define the layout for each row of the ListView.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

http://schemas.android.com/apk/res/android

CHAPTER 10: Advanced Video 217

 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 <ImageView android:id="@+id/ImageView" android:layout_width="wrap_content"
 android:layout_height="wrap_content"></ImageView>
 <TextView android:text="@+id/TextView01" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:id="@+id/TextView"></TextView>
</LinearLayout>

Figure 10–1. VideoGallery activity

You’ll notice that the thumbnails displayed in Figure 10–1 from our example are different

sizes. They are created by the MediaScanner service to be the same size as the video

itself. To display the thumbnails at the same size, we can adjust the parameters in the

ImageView item listed in list_item.xml.

<ImageView android:id="@+id/ImageView" android:layout_width="50dip"
 android:layout_height="50dip"></ImageView>

Now each of the video thumbnails will be displayed at 50 dip 50 dip, as shown in

Figure 10–2. (The term dip stands for “density independent pixel.” 160 dips equal 1 inch

on the display no matter what the resolution or density of the pixels on the display is.)

http://schemas.android.com/apk/res/android

CHAPTER 10: Advanced Video 218

Figure 10–2. VideoGallery activity with thumbnails the same size

Networked Video
As more and more media moves onto the Internet, it makes sense for Android to have

good support for playing it back, which it does. For the remainder of this chapter, we’ll

explore the details of what is supported in terms of protocols and video formats, and

how to harness network video.

Supported Network Video Types
Android currently supports two different protocols for network delivered video.

HTTP
The first is media delivered via standard HTTP. As HTTP is broadly supported across

networks and doesn’t typically have problems with firewalls as other streaming

protocols have had, a large amount of media is available in this manner. Media delivered

via HTTP is commonly referred to as progressive download.

Android supports on-demand media within MPEG-4 and 3GP files delivered from a

standard web server via HTTP. At this time, it does not support the delivery of live video

via HTTP using any of the new techniques now being used by Apple, Microsoft, or

Adobe.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10: Advanced Video 219

There are several things to keep in mind when preparing video for delivery via

progressive download. First, the media has to be encoded with a codec and in a format

that Android supports (see Chapter 9 for details about the formats and codecs that

Android supports).

There are many free and commercial tools available to prepare media for delivery via

HTTP progressive download. A few of them, in no particular order, are QuickTime X,

Adobe Media Encoder, HandBrake, and VLC. QuickTime X has presets for iPhone

encoding that work well with Android. Adobe Media Encoder has presets for iPod that

seem to work as well. In general, if a piece of software has presets for the iPhone, they

will likely work for Android devices.

Second, the bitrate of the video should be in the range of what can be delivered over the

network that will carry the video. For instance, GPRS bandwidth could be as low as 20

kbps, and therefore the audio and video should be encoded with that in mind. In

general, when delivered via HTTP, the media will be buffered on the device, and

playback will start when enough has been downloaded that the playback should be able

to go straight through to the end of the file without having to pause while waiting for

more media to download. If the delivery of the media is only 20 kbps and the media is

encoded at 400 kbps, that means that for each second of video the user will have to be

downloading for 20 seconds. This probably isn’t ideal.

If, though, the user is on WiFi, 400 kbps is probably good and will provide nice-looking

video as compared to video that is encoded at 20 kbps. In general, the speed of the

network that will be used has to be weighed against the quality of the video. The nice

thing about using HTTP progressive download is that this can be done: the media

doesn’t have to be delivered in real time as it does with RTSP, which we’ll discuss next.

Finally, in order for the video to be played back while it is downloading, it has to be

encoded in a manner that allows this. Specifically this means that the resulting file

should have what is called the “moov atom” at the front of the file. The “moov atom”

contains an index of what is in the file and how it is organized. In order for the video

playback software to be able to start playing back the video, it needs to know this

information. If the “moov atom” is at the end of the file, the playback software can’t start

playback until the entire file is downloaded so it can get the “moov atom.”

Unfortunately, some video capture and encoding tools do not automatically perform this

step. In some cases, it is simply a configuration setting; in other cases, you may need to

do this step manually. A command-line application called qt-faststart has been

developed and ported to many different operating systems and forms the basis for

several GUI applications as well. It can be read about and downloaded from

http://multimedia.cx/eggs/improving-qt-faststart/.

RTSP
The second protocol that Android supports for network delivery of video is RTSP. RTSP

stands for Real Time Streaming Protocol and is technically not a media delivery

protocol; rather, it is a control protocol that is used in support of media delivery. The

http://multimedia.cx/eggs/improving-qt-faststart

CHAPTER 10: Advanced Video 220

form of media delivery that is supported along with RTSP in Android is RTP (the Real-

time Transport Protocol) but only when paired with RTSP. In other words, RTP on

Android doesn’t work independently of RTSP.

RTSP and RTP are specific to real-time streaming. This is quite different from HTTP

progressive download, in that the media is played as it is received over the network.

It also means that a special server is required to deliver the media. There are several

RTSP servers on the market: Apple’s Open Source Darwin Streaming Server,

RealNetwork’s Helix Server, and the Wowza Media Server are a few. Unfortunately,

setting up and working with a server is out of the scope of what can be covered in this

book. Fortunately, a highly reliable service exists that serves media via RTSP that we

can test with (YouTube’s mobile site, available at http://m.youtube.com).

As with progressive download, a couple of things need to be kept in mind when

preparing media for delivery via RTSP. First the media needs to be encoded with a

codec and in a file format that Android supports and that is streamable by an RTSP

server. In general, streaming media for mobile devices is encoded as MP4 video and

AAC audio in a 3GP container, although other codecs (H.264) and containers (MP4) are

also supported.

NOTE: Android currently has two underlying media frameworks, PacketVideo’s OpenCORE and
one particular to Android called Stagefright. OpenCORE is the original framework that has been
used in Android, and it has been exclusive until Android 2.2, when Stagefright was introduced.

In Android 2.2 (and all previous versions), OpenCORE is the framework that is used for streaming
video (RTSP), although down the road this may change. The choice of which framework is used
will be in the hands of the handset manufacturer, and both frameworks should be compatible on
the API level. As this is all happening behind the scenes, with luck, we as developers will not
need to be concerned with which underlying framework is being used.

More information about what protocols, codecs, container formats, and streaming protocols are
supported by OpenCORE can be found on www.opencore.net/. Specifically the OpenCORE
Multimedia Framework Capabilities document is available at www.opencore.net/files/
opencore_framework_capabilities.pdf. (Unfortunately, at this time, no public
documentation with regards to Stagefright’s capabilities exists.)

Last, the bitrate of the media needs to be something that can be delivered in real time to

the end user depending on his or her network connection. These speeds vary quite a bit

depending on the network type. Second-generation networks (GPRS) offer data speeds

that top out in the 50 to 100 kbps range. Encoding live video to be delivered in real time

over this type of network requires that the video be encoded in the 30 kbps range to

account for overhead and varying connection qualities. Moving up to EDGE networks

should allow video in the 50 kbps range to be delivered reliably, and a conservative

bitrate for today’s current 3G networks would be in the 100 kbps range, with many

networks capable of supporting significantly higher bitrates.

http://m.youtube.com
http://www.opencore.net
http://www.opencore.net/files

CHAPTER 10: Advanced Video 221

Unlike HTTP progressive download, RTSP can be used for live streaming media as well.

This is one of its main advantages over traditional HTTP delivery. RTSP also supports

seeking within on-demand media. This means that users can seek to specific points in

the video without having to download all of the media up to and including that point. The

server takes care of only serving the media for that point in the file to the player.

Network Video Playback
Android supports HTTP and RTSP video playback in all three video playback methods

discussed in Chapter 9. Using either the built-in Media Player activity via an intent or the

VideoView class to play either form of network video requires no source code changes.

Simply use the HTTP or RTSP URL as the video Uri, and it will work as long as the

format is supported.

VideoView Network Video Player
Here is the ViewTheVideo activity example from Chapter 9 that uses a VideoView with an

RTSP URL to a video from YouTube’s mobile site. The only change is the string passed

in to construct the videoUri.

package com.apress.proandroidmedia.ch10.videoview;

import android.app.Activity;
import android.net.Uri;
import android.os.Bundle;
import android.widget.MediaController;
import android.widget.VideoView;

public class ViewTheVideo extends Activity {
 VideoView vv;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 vv = (VideoView) this.findViewById(R.id.VideoView);
 Uri videoUri =
Uri.parse("rtsp://v2.cache2.c.youtube.com/CjgLENy73wIaLwm3JbT_
9HqWohMYESARFEIJbXYtZ29vZ2xlSARSB3Jlc3VsdHNg
_vSmsbeSyd5JDA==/0/0/0/video.3gp");
 vv.setMediaController(new MediaController(this));
 vv.setVideoURI(videoUri);
 vv.start();
 }
}

MediaPlayer Network Video Player
Working with the MediaPlayer for network video playback is similar to the MediaPlayer

and MediaController code we went over in Chapter 9. In the following example, we’ll

highlight the portions that are specifically related to network playback. Figure 10–3

rtsp://v2.cache2.c.youtube.com/CjgLENy73wIaLwm3JbT_%ED%AF%80%ED%B0%819HqWohMYESARFEIJbXYtZ29vZ2xlSARSB3Jlc3VsdHNg_vSmsbeSyd5JDA==/0/0/0/video.3gp%00
rtsp://v2.cache2.c.youtube.com/CjgLENy73wIaLwm3JbT_%ED%AF%80%ED%B0%819HqWohMYESARFEIJbXYtZ29vZ2xlSARSB3Jlc3VsdHNg_vSmsbeSyd5JDA==/0/0/0/video.3gp%00
rtsp://v2.cache2.c.youtube.com/CjgLENy73wIaLwm3JbT_%ED%AF%80%ED%B0%819HqWohMYESARFEIJbXYtZ29vZ2xlSARSB3Jlc3VsdHNg_vSmsbeSyd5JDA==/0/0/0/video.3gp%00

CHAPTER 10: Advanced Video 222

shows the example in action. For a full explanation of the MediaPlayer and

MediaController, please refer to the examples in Chapter 9.

package com.apress.proandroidmedia.ch10.streamingvideoplayer;

import java.io.IOException;
import android.app.Activity;
import android.os.Bundle;
import android.media.MediaPlayer;
import android.media.MediaPlayer.OnBufferingUpdateListener;
import android.media.MediaPlayer.OnCompletionListener;
import android.media.MediaPlayer.OnErrorListener;
import android.media.MediaPlayer.OnInfoListener;
import android.media.MediaPlayer.OnPreparedListener;
import android.media.MediaPlayer.OnSeekCompleteListener;
import android.media.MediaPlayer.OnVideoSizeChangedListener;
import android.util.Log;
import android.view.Display;
import android.view.MotionEvent;
import android.view.SurfaceHolder;
import android.view.SurfaceView;
import android.view.View;
import android.widget.LinearLayout;
import android.widget.TextView;
import android.widget.MediaController;

The StreamingVideoPlayer activity implements many of the available listener and

callback abstract classes from MediaPlayer, SurfaceHolder, and MediaController. The

OnBufferingUpdateListener is particularly useful when dealing with network delivered

media. This class specifies an onBufferingUpdate method that is repeatedly called while

the media is buffering, allowing us to keep track of how full the buffer is.

public class StreamingVideoPlayer extends Activity implements
 OnCompletionListener, OnErrorListener, OnInfoListener,
 OnBufferingUpdateListener, OnPreparedListener, OnSeekCompleteListener,
 OnVideoSizeChangedListener, SurfaceHolder.Callback,
 MediaController.MediaPlayerControl {

 MediaController controller;
 Display currentDisplay;
 SurfaceView surfaceView;
 SurfaceHolder surfaceHolder;
 MediaPlayer mediaPlayer;

 View mainView;

In this version, we’ll use a TextView called statusView to display status messages to the

user. The reason we’ll do so is that loading a video for playback via the Internet can take

quite a bit of time, and without some sort of status message, the user may think the

application has hung.

 TextView statusView;

 int videoWidth = 0;
 int videoHeight = 0;

 boolean readyToPlay = false;

CHAPTER 10: Advanced Video 223

 public final static String LOGTAG = "STREAMING_VIDEO_PLAYER";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);
 mainView = this.findViewById(R.id.MainView);

 statusView = (TextView) this.findViewById(R.id.StatusTextView);

 surfaceView = (SurfaceView) this.findViewById(R.id.SurfaceView);
 surfaceHolder = surfaceView.getHolder();

 surfaceHolder.addCallback(this);
 surfaceHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

 mediaPlayer = new MediaPlayer();

 statusView.setText("MediaPlayer Created");

 mediaPlayer.setOnCompletionListener(this);
 mediaPlayer.setOnErrorListener(this);
 mediaPlayer.setOnInfoListener(this);
 mediaPlayer.setOnPreparedListener(this);
 mediaPlayer.setOnSeekCompleteListener(this);
 mediaPlayer.setOnVideoSizeChangedListener(this);

Among the list of MediaPlayer event listeners, our activity implements and is registered

to be the OnBufferingUpdateListener.

 mediaPlayer.setOnBufferingUpdateListener(this);

Instead of playing back a file from the SD card, we’ll be playing a file served from an

RTSP server. The URL to the file is specified in the following String, filePath. We’ll then

use the MediaPlayer’s setDataSource method, passing in the filePath String. The

MediaPlayer knows how to handle loading and playing data from an RTSP server, so we

don’t have to do anything else different to handle it.

 String filePath = "rtsp://v2.cache2.c.youtube.com/CjgLENy73wIaLwm3JbT
_9HqWohMYESARFEIJbXYtZ29vZ2xlSARSB3Jlc3VsdHNg96LUzsK0781MDA==/0/0/0/video.3gp";
 try {
 mediaPlayer.setDataSource(filePath);
 } catch (IllegalArgumentException e) {
 Log.v(LOGTAG, e.getMessage());
 finish();
 } catch (IllegalStateException e) {
 Log.v(LOGTAG, e.getMessage());
 finish();
 } catch (IOException e) {
 Log.v(LOGTAG, e.getMessage());
 finish();
 }

 statusView.setText("MediaPlayer DataSource Set");
 currentDisplay = getWindowManager().getDefaultDisplay();
 controller = new MediaController(this);

rtsp://v2.cache2.c.youtube.com/CjgLENy73wIaLwm3JbT%ED%AF%80%ED%B0%81_9HqWohMYESARFEIJbXYtZ29vZ2xlSARSB3Jlc3VsdHNg96LUzsK0781MDA==/0/0/0/video.3gp%00
rtsp://v2.cache2.c.youtube.com/CjgLENy73wIaLwm3JbT%ED%AF%80%ED%B0%81_9HqWohMYESARFEIJbXYtZ29vZ2xlSARSB3Jlc3VsdHNg96LUzsK0781MDA==/0/0/0/video.3gp%00

CHAPTER 10: Advanced Video 224

 }

 public void surfaceCreated(SurfaceHolder holder) {
 Log.v(LOGTAG, "surfaceCreated Called");

 mediaPlayer.setDisplay(holder);
 statusView.setText("MediaPlayer Display Surface Set");

We’ll use the MediaPlayer’s prepareAsync method instead of prepare. The prepareAsync

method does the preparation in the background on a separate thread. This makes it so

that the user interface doesn’t hang. This would allow the user to perform other actions

or allow us as the developer to display a loading animation or something similar.

 try {
 mediaPlayer.prepareAsync();
 } catch (IllegalStateException e) {
 Log.v(LOGTAG, "IllegalStateException " + e.getMessage());
 finish();
 }

So the user knows what’s happening while the prepareAsync method is running, we’ll

update the status message displayed by our statusView TextView.

 statusView.setText("MediaPlayer Preparing");
 }

 public void surfaceChanged(SurfaceHolder holder, int format, int width,
 int height) {
 Log.v(LOGTAG, "surfaceChanged Called");
 }

public void surfaceDestroyed(SurfaceHolder holder) {
 Log.v(LOGTAG, "surfaceDestroyed Called");
 }

 public void onCompletion(MediaPlayer mp) {
 Log.v(LOGTAG, "onCompletion Called");
 statusView.setText("MediaPlayer Playback Completed");
 }

 public boolean onError(MediaPlayer mp, int whatError, int extra) {
 Log.v(LOGTAG, "onError Called");
 statusView.setText("MediaPlayer Error");
 if (whatError == MediaPlayer.MEDIA_ERROR_SERVER_DIED) {
 Log.v(LOGTAG, "Media Error, Server Died " + extra);
 } else if (whatError == MediaPlayer.MEDIA_ERROR_UNKNOWN) {
 Log.v(LOGTAG, "Media Error, Error Unknown " + extra);
 }
 return false;
 }

 public boolean onInfo(MediaPlayer mp, int whatInfo, int extra) {
 statusView.setText("MediaPlayer onInfo Called");
 if (whatInfo == MediaPlayer.MEDIA_INFO_BAD_INTERLEAVING) {
 Log.v(LOGTAG, "Media Info, Media Info Bad Interleaving " + extra);
 } else if (whatInfo == MediaPlayer.MEDIA_INFO_NOT_SEEKABLE) {
 Log.v(LOGTAG, "Media Info, Media Info Not Seekable " + extra);

CHAPTER 10: Advanced Video 225

 } else if (whatInfo == MediaPlayer.MEDIA_INFO_UNKNOWN) {
 Log.v(LOGTAG, "Media Info, Media Info Unknown " + extra);
 } else if (whatInfo == MediaPlayer.MEDIA_INFO_VIDEO_TRACK_LAGGING) {
 Log.v(LOGTAG, "MediaInfo, Media Info Video Track Lagging " + extra);
 } else if (whatInfo == MediaPlayer.MEDIA_INFO_METADATA_UPDATE) {
 Log.v(LOGTAG, "MediaInfo, Media Info Metadata Update " + extra);
 }
 return false;
 }

 public void onPrepared(MediaPlayer mp) {
 Log.v(LOGTAG, "onPrepared Called");
 statusView.setText("MediaPlayer Prepared");

 videoWidth = mp.getVideoWidth();
 videoHeight = mp.getVideoHeight();

 Log.v(LOGTAG, "Width: " + videoWidth);
 Log.v(LOGTAG, "Height: " + videoHeight);

 if (videoWidth > currentDisplay.getWidth()
 || videoHeight > currentDisplay.getHeight()) {
 float heightRatio = (float) videoHeight
 / (float) currentDisplay.getHeight();
 float widthRatio = (float) videoWidth
 / (float) currentDisplay.getWidth();

 if (heightRatio > 1 || widthRatio > 1) {
 if (heightRatio > widthRatio) {
 videoHeight = (int) Math.ceil((float) videoHeight
 / (float) heightRatio);
 videoWidth = (int) Math.ceil((float) videoWidth
 / (float) heightRatio);
 } else {
 videoHeight = (int) Math.ceil((float) videoHeight
 / (float) widthRatio);
 videoWidth = (int) Math.ceil((float) videoWidth
 / (float) widthRatio);
 }
 }
 }

 surfaceView.setLayoutParams(
 new LinearLayout.LayoutParams(videoWidth, videoHeight));
 controller.setMediaPlayer(this);
 controller.setAnchorView(this.findViewById(R.id.MainView));
 controller.setEnabled(true);
 controller.show();

 mp.start();
 statusView.setText("MediaPlayer Started");
 }

 public void onSeekComplete(MediaPlayer mp) {
 Log.v(LOGTAG, "onSeekComplete Called");

CHAPTER 10: Advanced Video 226

 }

 public void onVideoSizeChanged(MediaPlayer mp, int width, int height) {
 Log.v(LOGTAG, "onVideoSizeChanged Called");

 videoWidth = mp.getVideoWidth();
 videoHeight = mp.getVideoHeight();

 Log.v(LOGTAG, "Width: " + videoWidth);
 Log.v(LOGTAG, "Height: " + videoHeight);

 if (videoWidth > currentDisplay.getWidth()
 || videoHeight > currentDisplay.getHeight()) {
 float heightRatio = (float) videoHeight
 / (float) currentDisplay.getHeight();
 float widthRatio = (float) videoWidth
 / (float) currentDisplay.getWidth();

 if (heightRatio > 1 || widthRatio > 1) {
 if (heightRatio > widthRatio) {
 videoHeight = (int) Math.ceil((float) videoHeight
 / (float) heightRatio);
 videoWidth = (int) Math.ceil((float) videoWidth
 / (float) heightRatio);
 } else {
 videoHeight = (int) Math.ceil((float) videoHeight
 / (float) widthRatio);
 videoWidth = (int) Math.ceil((float) videoWidth
 / (float) widthRatio);
 }
 }
 }

 surfaceView.setLayoutParams(
 new LinearLayout.LayoutParams(videoWidth, videoHeight));
 }

Since our activity implements the OnBufferingUpdateListener and is registered to be the

listener for the MediaPlayer, the following method will be called periodically as media is

downloaded and buffered. The buffering will occur during the preparation stage (after

onPrepareAsync or onPrepare is called).

 public void onBufferingUpdate(MediaPlayer mp, int bufferedPercent) {
 statusView.setText("MediaPlayer Buffering: " + bufferedPercent + "%");
 Log.v(LOGTAG, "MediaPlayer Buffering: " + bufferedPercent + "%");
 }

 public boolean canPause() {
 return true;
 }

 public boolean canSeekBackward() {
 return true;
 }

 public boolean canSeekForward() {

CHAPTER 10: Advanced Video 227

 return true;
 }

 public int getBufferPercentage() {
 return 0;
 }

 public int getCurrentPosition() {
 return mediaPlayer.getCurrentPosition();
 }

 public int getDuration() {
 return mediaPlayer.getDuration();
 }

 public boolean isPlaying() {
 return mediaPlayer.isPlaying();
 }

 public void pause() {
 if (mediaPlayer.isPlaying()) {
 mediaPlayer.pause();
 }
 }

 public void seekTo(int pos) {
 mediaPlayer.seekTo(pos);
 }

 public void start() {
 mediaPlayer.start();
 }

 @Override
 public boolean onTouchEvent(MotionEvent ev) {
 if (controller.isShowing()) {
 controller.hide();
 } else {
 controller.show();
 }
 return false;
 }
}

CHAPTER 10: Advanced Video 228

Figure 10–3. Streaming MediaPlayer activity during playback of video file from YouTube

Summary
Throughout this chapter, we looked at some more advanced video playback and

streaming capabilities available on Android. As we learned, the MediaStore can be used

for video in much the same way we previously used it for images and audio. It provides

us as developers a truly comprehensive means for media metadata storage and retrieval

on Android. We also learned that the three methods for media video playback can also

be leveraged to provide network video playback, both streaming and web-based.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

229

229

 Chapter

Video Capture
In previous chapters, we have covered image capture and audio capture. Now we’ll turn

our attention to video capture. In this chapter, we’ll explore capturing video using

Android’s built-in Camera application via an intent. We’ll look at the formats and codecs

that Android supports for video capture, and finally we’ll build a custom video capture

application.

Recording Video Using an Intent
It is becoming cliché, but as previously discussed, often the quickest and easiest way to

perform some function on Android is to leverage an existing application that can be

triggered by an intent from our application. Using the built-in Camera application to

record video, triggered by an intent, is no exception.

Within the android.provider.MediaStore class is a constant named

ACTION_VIDEO_CAPTURE, which contains the string “android.media.action.
VIDEO_CAPTURE”. This string is registered by the Camera application as an intent filter

and will therefore be activated by an intent sent via the Content.startActivity or

Context.startActivityForResult methods. Other applications may also register the

same string, which would result in the user being prompted to choose which application

he or she would like to use to perform the action.

Intent captureVideoIntent = new Intent(android.provider.MediaStore.
ACTION_VIDEO_CAPTURE);
startActivityForResult(captureVideoIntent, VIDEO_CAPTURED);

VIDEO_CAPTURED is a constant that should be defined as a class variable and is used to

recognize when the Camera application returns a result to our activity via a call to our

onActivityResult method:

public static int VIDEO_CAPTURED = 1;

The intent that is passed back to our activity in the onActivityResult method (data in

the following code example) contains a Uri to the video file that was created by the

Camera application.

11

CHAPTER 11: Video Capture 230

protected void onActivityResult (int requestCode, int resultCode, Intent data) {
 if (resultCode == RESULT_OK && requestCode == VIDEO_CAPTURED) {
 Uri videoFileUri = data.getData();
 }
}

Here is a full example that uses an intent to trigger the built-in Camera application for

video capture.

package com.apress.proandroidmedia.ch11.videocaptureintent;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.VideoView;

public class VideoCaptureIntent extends Activity implements OnClickListener {

The VIDEO_CAPTURED constant is created to the activity that is returning via a call to

onActivityResult.

 public static int VIDEO_CAPTURED = 1;

We’ll use two buttons, one for triggering the sending of the intent, captureVideoButton,

and another for playing the video once it is captured, playVideoButton.

 Button captureVideoButton;
 Button playVideoButton;

We will be using a standard VideoView object with a Uri to play back the video that has

been captured.

 VideoView videoView;
 Uri videoFileUri;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 captureVideoButton = (Button) this.findViewById(R.id.CaptureVideoButton);
 playVideoButton = (Button) this.findViewById(R.id.PlayVideoButton);

 captureVideoButton.setOnClickListener(this);
 playVideoButton.setOnClickListener(this);

The playVideoButton will initially not be enabled, meaning it cannot be clicked. We’ll set

it to be enabled once we have captured the video.

 playVideoButton.setEnabled(false);

 videoView = (VideoView) this.findViewById(R.id.VideoView);
 }

CHAPTER 11: Video Capture 231

Our activity implements OnClickListener and is registered as the OnClickListener for

each of the Buttons. Therefore when a button is pressed or clicked, our onClick method

will be called.

 public void onClick(View v) {
 if (v == captureVideoButton) {

If the captureVideoButton was pressed, we create the intent and pass it along with our

VIDEO_CAPTURED constant into the startActivityForResult method, which will kick off

the built-in Camera application.

 Intent captureVideoIntent = new Intent(android.provider.
MediaStore.ACTION_VIDEO_CAPTURE);
 startActivityForResult(captureVideoIntent, VIDEO_CAPTURED);
 } else if (v == playVideoButton) {

If the playVideoButton is pressed, we’ll set the Uri to play and start the playback.

 videoView.setVideoURI(videoFileUri);
 videoView.start();
 }
 }

When the Camera (or any triggered application/activity) returns, the following

onActivityResult method will be called. We check that the resultCode is the constant

RESULT_OK and the requestCode is what we passed into the startActivityForResult,

VIDEO_CAPTURED, and then grab the Uri to the video file that was recorded. Following

that, we’ll enable the playVideoButton so the user can press it and trigger the video to

play.

 protected void onActivityResult (int requestCode, int resultCode, Intent data) {
 if (resultCode == RESULT_OK && requestCode == VIDEO_CAPTURED) {
 videoFileUri = data.getData();
 playVideoButton.setEnabled(true);
 }
 }

}

Here is the layout XML contained in res/layout/main.xml referenced by the foregoing

activity.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:text="Capture Video" android:id="@+id/CaptureVideoButton"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
 <Button android:text="Play Video" android:id="@+id/PlayVideoButton"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
 <VideoView android:id="@+id/VideoView" android:layout_width="wrap_content"
 android:layout_height="wrap_content"></VideoView>
</LinearLayout>

http://schemas.android.com/apk/res/android

CHAPTER 11: Video Capture 232

As we have discovered, if we simply need to record video or want to offer the user all of

the controls available in the Camera app, using an intent to trigger it is a great way to go.

Adding Video Metadata
As we discussed in Chapter 9, Android’s MediaStore content provider has a portion,

MediaStore.Video, dedicated to video in addition to the portions for image and audio

files and metadata that we have previously looked at.

When triggering the Camera application via an intent, the Uri to the newly recorded

video file that is returned is a content:// style Uri, which is used in combination with a

content provider—in this case, the MediaStore. In order to add additional metadata, we

can use the Uri returned to update the video’s record in the MediaStore.

As with any content provider, we use the update method on a ContentResolver object

obtained from our Context. We pass in the content:// style Uri and the new data in the

form of a ContentValues object. Since we have a Uri to a specific record, we don’t need

to specify anything for the final two arguments, the SQL-style WHERE clause and WHERE

clause arguments.

The ContentValues object contains name value pairs, with the names being

MediaStore.Video specific column names. The possible names are listed as

constants in MediaStore.Video.Media, with most of them being inherited from

android.provider.BaseColumns, MediaStore.MediaColumns, and

MediaStore.Video.VideoColumns.

ContentValues values = new ContentValues(1);
values.put(MediaStore.MediaColumns.TITLE, titleEditText.getText().toString());
int numRecordsUpdated = getContentResolver().update(videoFileUri, values, null, null);

Here is an update to the foregoing VideoCaptureIntent example that presents the user

with the opportunity to associate a title with the newly captured video.

package com.apress.proandroidmedia.ch11.videocaptureintent;

import android.app.Activity;
import android.content.ContentValues;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.provider.MediaStore;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;

public class VideoCaptureIntent extends Activity implements OnClickListener {

 public static int VIDEO_CAPTURED = 1;

 Button captureVideoButton;
 Button playVideoButton;
 Button saveVideoButton;

CHAPTER 11: Video Capture 233

In this version, we’ll have an EditText object, which will be used by the user to enter in

the title for the video.

 EditText titleEditText;

 Uri videoFileUri;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 captureVideoButton = (Button) this.findViewById(R.id.CaptureVideoButton);
 playVideoButton = (Button) this.findViewById(R.id.PlayVideoButton);

We’ll also have a saveVideoButton, which, when pressed, will trigger the update of the

record in the MediaStore.

saveVideoButton = (Button) this.findViewById(R.id.SaveVideoButton);

 titleEditText = (EditText) this.findViewById(R.id.TitleEditText);

 captureVideoButton.setOnClickListener(this);
 playVideoButton.setOnClickListener(this);
 saveVideoButton.setOnClickListener(this);

 playVideoButton.setEnabled(false);
 saveVideoButton.setEnabled(false);
 titleEditText.setEnabled(false);
 }

The onClick method, triggered when any of the Buttons are pressed, performs most of

the work. When the captureVideoButton is pressed, we trigger the built-in Camera

application via an intent. When the playVideoButton is pressed, we trigger the built-in

Media Player application via an intent (instead of using a VideoView as we did

previously). Finally when we click the saveVideoButton, we update the MediaStore

record for the video file.

 public void onClick(View v) {
 if (v == captureVideoButton) {
 Intent captureVideoIntent = new Intent(android.provider.
MediaStore.ACTION_VIDEO_CAPTURE);
 startActivityForResult(captureVideoIntent, VIDEO_CAPTURED);
 } else if (v == playVideoButton) {
 Intent playVideoIntent = new Intent(Intent.ACTION_VIEW,
 videoFileUri);
 startActivity(playVideoIntent);
 } else if (v == saveVideoButton) {

First, we create a ContentValues object and populate it with the text the user has

specified in the EditText object.

 ContentValues values = new ContentValues(1);
 values.put(MediaStore.MediaColumns.TITLE,
 titleEditText.getText().toString());

CHAPTER 11: Video Capture 234

Then we call the update method on the ContentResolver object, passing in the Uri to the

captured video and the ContentValues object.

 if (getContentResolver().update(videoFileUri, values, null,
 null) == 1) {

If the result of the update method is 1, then we were successful; one row was updated,

and we’ll tell the user.

 Toast t = Toast.makeText(this, "Updated " +
 titleEditText.getText().toString(), Toast.LENGTH_SHORT);
 t.show();
 }
 else {

If the result was anything other than 1, we’ll tell the user that an error occurred.

 Toast t = Toast.makeText(this, "Error",
 Toast.LENGTH_SHORT);
 t.show();
 }
 }
 }

 protected void onActivityResult (int requestCode, int resultCode, Intent data) {
 if (resultCode == RESULT_OK && requestCode == VIDEO_CAPTURED) {
 videoFileUri = data.getData();
 playVideoButton.setEnabled(true);
 saveVideoButton.setEnabled(true);
 titleEditText.setEnabled(true);
 }
 }
}

Here is the layout XML contained in res/layout/main.xml referenced by the foregoing

activity.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:text="Capture Video" android:id="@+id/CaptureVideoButton"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
 <Button android:text="Play Video" android:id="@+id/PlayVideoButton"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>

 <TextView android:text="Title:" android:id="@+id/TitleTextView"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></TextView>
 <EditText android:text="" android:id="@+id/TitleEditText"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></EditText>
 <Button android:text="Save Metadata" android:id="@+id/SaveVideoButton"
 android:layout_width="wrap_content" android:layout_height="wrap_content"></Button>
</LinearLayout>

http://schemas.android.com/apk/res/android

CHAPTER 11: Video Capture 235

The preceding example shows how straightforward many aspects of using video within

Android can be, especially so when using an intent to do the video capture and relying

upon the MediaStore to handle metadata.

It should be noted that when updating the metadata in the MediaStore, the data is not

updated within the video file itself; rather, it is stored only in the MediaStore record that

pertains to the video. The Android SDK does not offer built-in classes to alter the media

file’s metadata directly.

Custom Video Capture
With images and audio there are multiple ways to do capture. Video capture is no

exception; we don’t have quite as many options as we do with audio, but we do have

the ability to create a custom video capture example using the MediaRecorder class.

In many ways, building a custom video capture application is a lot like building a custom

camera application combined with a custom audio recording application. We have to

create a SurfaceView for the camera to draw preview or viewfinder images on, just like

we did with our custom camera examples from Chapter 2, and we’ll use a

MediaRecorder for the actual recording, like we did in Chapter 7 for audio capture.

MediaRecorder for Video
To use the MediaRecorder for video capture, we have to follow all of the same steps for

audio capture plus some video specific steps. In addition, the MediaRecorder is a state

machine, and we therefore have to follow a specific sequence of steps to go from

instantiation to recording.

First we’ll instantiate it, and then go through the steps in sequence.

MediaRecorder recorder = new MediaRecorder();

Audio and Video Sources
Following instantiation, we can set the audio and video sources. To set the audio

source, we use the setAudioSource method, passing in a constant representing the

source we would like to use.

recorder.setAudioSource(MediaRecorder.AudioSource.DEFAULT);

The possible audio source values are constants defined in the

MediaRecorder.AudioSource class:

 CAMCORDER: If the device has different microphones for use with

different cameras (front-facing, rear-facing), using this value will

specify that the appropriate microphone is used (Android 2.1/API level

7 or later).

CHAPTER 11: Video Capture 236

 DEFAULT: This specifies that the default microphone on the device will

be used.

 MIC: This specifies that the normal microphone meant for use with

video recording is used.

 VOICE_CALL: This specifies that the audio should be taken from a call

that is currently in progress. This is currently unsupported by most if

not all handsets.

 VOICE_DOWNLINK: This specifies that the audio should be taken from a

call, specifically the incoming audio (the other party). This is currently

unsupported by most if not all handsets.

 VOICE_UPLINK: This specifies that the audio should be taken from a

call, specifically the outgoing audio (the audio that the handset is

sending). This is currently unsupported by most if not all handsets.

 VOICE_RECOGNITION: This specifies that the audio should be taken from

a microphone that is set for the voice recognition functions on the

phone. If no such microphone is specified, the DEFAULT microphone

will be used.

The possible video source values are defined in the MediaRecorder.VideoSource class,

which contains only two constants:

 CAMERA

 DEFAULT

Both indicate the same thing, that the device’s main camera should be used for

recording video.

To set the video source, we use the setVideoSource method:

recorder.setVideoSource(MediaRecorder.VideoSource.DEFAULT);

NOTE: It would make sense that using the MediaRecorder.VideoSource.DEFAULT in the
MediaRecorder’s setVideoSource method or MediaRecorder.AudioSource.DEFAULT
in the MediaRecorder’s setAudioSource method would be the same as not calling the
methods. After all, they are the default values. Unfortunately, on the contrary, each method is
required to be called for that specific data to be captured. In other words, if the audio source isn’t
set, no audio will be recorded, and if the video source isn’t set, no video will be recorded.

Output Format
Following the setting of the audio and video sources, we can set the output format using

the MediaRecorder’s setOutputFormat method, passing in the format to be used.

recorder.setOutputFormat(MediaRecorder.OutputFormat.DEFAULT);

CHAPTER 11: Video Capture 237

The possible formats are listed as constants in the MediaRecorder.OutputFormat class.

 DEFAULT: Specifies that the default output format will be used. This may

be different across devices. On a Nexus 1 running Android 2.2, it is

MPEG-4, the same format used if the MPEG_4 constant is used.

 MPEG_4: Specifies that the audio and video will be captured to a file in

the MPEG-4 file format. This file will be an .mp4 file. MPEG-4 files

typically contain H.264–, H.263–, or MPEG-4 Part 2–encoded video

with AAC– or MP3–encoded audio (although other codecs may be

used). MPEG-4 files are widely used in Flash with iPods and many

other online video technologies and consumer electronics devices.

 RAW_AMR: This setting is for audio recording only and does not work

with video.

 THREE_GPP: Specifies that the audio and video will be captured to a file

in the 3GP file format. This file will be a .3gp file. 3GPP files typically

contain video encoded with H.264, MPEG-4 Part 2, or H.263 codecs

and audio encoded with AMR or AAC codecs.

Audio and Video Encoders
After we set the output format, we should specify the audio and video encoders that we

would like used. Using the MediaRecorder’s setVideoEncoder method, we specify the

video codecs that will be used:

recorder.setVideoEncoder(MediaRecorder.VideoEncoder.DEFAULT);

The possible values that can be passed into setVideoEncoder are defined as constants

in MediaRecorder.VideoEncoder:

 DEFAULT: This is a device-dependent setting specifying that the codec

used will be the default for the device. In many cases, this will be

H.263 since it is the only codec that is required to be supported on

Android.

 H263: This specifies that the codec used will be H.263. H.263 is a

codec that was released in 1995 and was developed specifically for

low bitrate video transmission. It became the basis for many early

Internet video technologies such as those used early on in Flash and

the RealPlayer. It is required to be supported for encoding on Android

and therefore can be counted on to be available.

 H264: This specifies that the codec used will be H.264 (which also goes

by the name MPEG-4 Part 10 or AVC, Advanced Video Coding). H.264

is a state-of-the-art codec used in a wide range of technologies from

BluRay to Flash. It was released in 2003. Most Android devices

support this codec for video playback. A smaller set of devices use it

for video encoding.

CHAPTER 11: Video Capture 238

MPEG_4_SP: This specifies that the codec used will be the MPEG-4 SP

(Simple Profile) codec. MPEG-4 SP is technically the MPEG-4 Part 2

Simple Profile. It was released in 1999 and was developed for use by

technologies that require low bitrate video without requiring a lot of

processor power.

Using the MediaRecorder’s setAudioEncoder method, we specify the audio codecs that

will be used.

recorder.setAudioEncoder(MediaRecorder.AudioEncoder.DEFAULT);

The possible values that can be passed to setAudioEncoder are defined as constants in
MediaRecorder.AudioEncoder.

MediaRecorder.AudioEncoder contains only two constants:

AMR_NB: This specifies that the audio codec that will be used for audio

encoding is AMR-NB, which stands for Adaptive Multi-Rate Narrow

Band. AMR-NB is a codec tuned for voice and is widely used in mobile

phones.

DEFAULT: Since AMR-NB is the only other choice, the DEFAULT constant

specifies that AMR-NB will be the audio codec used.

Audio and Video Bitrates
Video encoding bitrates can be set using the setVideoEncodingBitrate method on the

MediaRecorder and passing in the bitrate requested in bits per second. A low bitrate

setting for video would be in the range of 256,000 bits per second (256 kbps), while a

high bitrate for video would be in the range of 3,000,000 bits per second (3 mbps).

recorder.setVideoEncodingBitRate(150000);

We can also specify the maximum bitrate that we would like used for the encoded audio

data. We do so by passing the value as bits per second into the

setAudioEncodingBitRate method on the MediaRecorder. For reference, 8,000 bits per

second (8 kbps) is a very low bitrate that is appropriate for audio that needs to be

delivered in real time over slow networks, while rates of 196,000 bits per second (196

kbps) and higher are not uncommon for music in MP3 files. Currently most Android

devices support bitrates only on the low end of the spectrum, and the MediaRecorder will

automatically select a bitrate within its supportable range should you choose one that is

too high.

recorder.setAudioEncodingBitRate(8000);

Audio Sample Rate
Along with bitrate, the audio sample rate is important in determining the quality of the

audio that is captured and encoded. The MediaPlayer has a method,

setAudioSampleRate, which allows us to request a specific sample rate. The sample rate

passed in is in Hz (hertz), which stands for the number of samples per second. The

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11: Video Capture 239

higher the sample rate, the larger the range of audio frequencies that can be

represented in the captured file. A sample rate on the low end, 8,000 Hz, is suitable for

capturing low-quality voice, and on the high end, 48,000 Hz is used in DVD and many

other high-quality video formats. Most Android devices support sample rates only in the

low range (8,000 Hz).

recorder.setAudioSamplingRate(8000);

Audio Channels
The number of audio channels to be captured can be specified by using the

setAudioChannels method, passing in the number of channels. For the most part,

incoming audio is currently limited to a single channel microphone on most Android

devices, and therefore using more than one channel wouldn’t be beneficial. Generally

the choice of the number of channels to use will be between one channel for mono and

two channels for stereo.

recorder.setAudioChannels(1);

Video Frame Rate
The number of frames of video captured per second can be controlled by using the

setVideoFrameRate by passing in the requested frame rate. A value between 12 and 15

frames per second is generally adequate to represent motion. On the high end,

television is 30 frames per second (29.97 in reality). The actual frame rate used will vary

based on the capabilities of the device.

recorder.setVideoFrameRate(15);

Video Size
The width and height of the video as it is captured can be controlled with the

setVideoSize method by passing in an integer for the width and the height in pixels.

Standard sizes range from 176x144 to 640x480, with many devices supporting even

higher resolutions.

NOTE: Many Android devices also support 720 480, but it should noted that this isn’t the same
pixel aspect ratio that would be captured by a DV camera, which captures rectangular pixels at
720 480. On Android devices, the pixels are generally square, and therefore if 720 480 video
from an Android device is brought into video editing software, the software might make the
wrong assumption about the video due to its resolution, causing the output to be distorted. To
correct this, the software needs to be told that the pixel aspect ratio is square or 1.0.

recorder.setVideoSize(640,480);

CHAPTER 11: Video Capture 240

Maximum File Size
The maximum size of a file captured by MediaRecorder can be specified by passing in

the maximum size in bytes to the setMaxFileSize method.

recorder.setMaxFileSize(10000000); // 10 megabytes

To determine when maximum file size has been reached, we need to implement the

MediaRecorder.OnInfoListener in our activity and register it with our MediaRecorder. The

onInfo method will then be called and the what parameter can be checked against the

MediaRecorder.MEDIA_RECORDER_INFO_FILESIZE_REACHED constant. If they match, the

maximum file size was reached.

According to the documentation, the MediaRecorder is supposed to stop when the

maximum file size is reached, but it seems that it does not do so reliably as of Android

2.2.1. Unfortunately no methods exist for us to check whether it has stopped. In order to

actually stop the recording, we must explicitly call the stop method.

Here is some extremely abbreviated code to illustrate.

public class VideoCapture extends Activity implements MediaRecorder.OnInfoListener {
 public void onCreate(Bundle savedInstanceState) {
 recorder.setOnInfoListener(this);
 }
 public void onInfo(MediaRecorder mr, int what, int extra) {
 if (what == MediaRecorder.MEDIA_RECORDER_INFO_MAX_FILESIZE_REACHED) {
 Log.v("VIDEOCAPTURE","Maximum Filesize Reached");
 }
 }
}

Maximum Duration
The maximum duration of a file captured by the MediaRecorder can be set by passing in

the maximum duration in milliseconds to the setMaxDuration method.

recorder.setMaxDuration(10000); // 10 seconds

To determine when the maxium duration has been reached, we need to implement the

MediaRecorder.OnInfoListener and register it with our MediaRecorder. Then when the

duration has been reached, our onInfo method will be triggered, with the what integer

being set to the constant MediaRecorder.MEDIA_RECORDER_INFO_MAX_DURATION_REACHED.

According to the documentation, the MediaRecorder is supposed to stop when the

maximum duration is reached, but it seems that it does not do so reliably as of Android

2.2.1. Unfortunately no methods exist for us to check whether it has stopped. In order to

actually stop the recording, we must explicitly call the stop method.

Here is an abbreviated illustration.

public class VideoCapture extends Activity implements MediaRecorder.OnInfoListener {
 public void onCreate(Bundle savedInstanceState) {
 recorder.setOnInfoListener(this);
 }

CHAPTER 11: Video Capture 241

 public void onInfo(MediaRecorder mr, int what, int extra) {
 if (what == MediaRecorder.MEDIA_RECORDER_INFO_MAX_DURATION_REACHED) {
 Log.v("VIDEOCAPTURE","Maximum Duration Reached");
 mr.stop();
 }
 }
}

Profile
Starting with Android 2.2 (API Level 8), MediaRecorder has a method, setProfile, which

takes in an instance of CamcorderProfile. CamcorderProfile has a static method,

CamcorderProfile.get, which takes in an integer with the possible values being defined

as constants, CamcorderProfile.QUALITY_HIGH or CamcorderProfile.QUALITY_LOW. Using

this method allows us to set an entire set of configuration variables according to preset

values. Of course, QUALITY_HIGH refers to settings for high-quality video capture, and

QUALITY_LOW refers to settings for low-quality video capture.

QUALITY_HIGH has the following settings:

 Audio Bit Rate: 12,200 bits per second

 Audio Channels: 1

 Audio Codec: AMR-NB

 Audio Sample Rate: 8000 Hz

 Duration: 60 seconds

 File Format: MP4

 Video Bit Rate: 3,000,000 bits per second

 Video Codec: H.264

 Video Frame Width: 720 pixels

 Video Frame Height: 480 pixels

 Video Frame Rate: 24 frames per second

Take note that as described previously, many of the settings are maximum or requested

and the capabilities of the device will dictate the results. For instance, a sample video

captured using the QUALITY_HIGH settings on a Nexus 1 running Android 2.2.1 yielded

video at 12.6 frames per second and a total bitrate of 1,617.34 kb/second.

Here are the QUALITY_LOW settings:

 Audio Bit Rate: 12,200 bits per second

 Audio Channels: 1

 Audio Codec: AMR-NB

 Audio Sample Rate: 8000 Hz

CHAPTER 11: Video Capture 242

 Duration: 30 seconds

 File Format: 3GPP

 Video Bit Rate: 256,000 bits per second

 Video Codec: 3

 Video Frame Width: 176 pixels

 Video Frame Height: 144 pixels

 Video Frame Rate: 15 frames per second

As with the QUALITY_HIGH version, these settings yield slightly different results as well.

The resulting video was captured at 16.06 frames per second with a bitrate of 207.96

kb/second.

Output File
Following all of that, we can set the location of the output file. We can pass in either a

FileDescriptor or a String representing the path to the file.

recorder.setOutputFile("/sdcard/recorded_video.mp4");

Preview Surface
Before we can move forward, we need to specify a Surface for the MediaRecorder

preview (viewfinder) images to draw. We’ll handle this in a similar manner to how we

handled the preview images in our custom camera examples in Chapter 2.

Let’s go through an abbreviated example. First, we’ll create a Surface in our layout.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <SurfaceView android:id="@+id/CameraView" android:layout_width="640px"
 android:layout_height="480px"></SurfaceView>
</LinearLayout>

In our activity, we need to implement SurfaceHolder.Callback so that we can be notified

when the Surface is created, changed, or destroyed.

...
public class VideoCapture extends Activity implements SurfaceHolder.Callback{
 MediaRecorder recorder;
 SurfaceHolder holder;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 recorder = new MediaRecorder();

http://schemas.android.com/apk/res/android

CHAPTER 11: Video Capture 243

At this point in the code, we would perform all of the normal setup of the MediaRecorder

object, such as setting the audio and video sources, the output file location, and so on.

We are leaving that out to illustrate just how to work with the Surface in this code

snippet.

 setContentView(R.layout.main);

Following the setting of the content view, we can obtain a reference to our SurfaceView

and get a reference to its SurfaceHolder.

 SurfaceView cameraView = (SurfaceView)
 findViewById(R.id.CameraView);
 holder = cameraView.getHolder();

We’ll add our activity as its SurfaceHolder.Callback implementer.

 holder.addCallback(this);

As with the camera examples in Chapter 2, the preview Surface will have its buffers

managed externally by the Camera object that is underlying the MediaRecorder; therefore

we need to set the type to be SURFACE_TYPE_PUSH_BUFFERS.

 holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 }

Because our activity has implemented and is registered as the SurfaceHolder.Callback,

our surfaceCreated method will be called when the Surface is actually created. When

this occurs, we can set the Surface to be the preview display of the MediaRecorder

object with the setPreviewDisplay method. We can’t do this before the Surface is

created.

 public void surfaceCreated(SurfaceHolder holder) {
 recorder.setPreviewDisplay(holder.getSurface());
 }

As we are implementing SurfaceHolder.Callback, we also have to have methods for

surfaceChanged and surfaceDestroyed, which are named for when they are called:

surfaceChanged when a change occurs to the Surface, such as its height and width are

changed; surfaceDestroyed when it is no longer used, such as when the activity is no

longer visible.

When surfaceDestroyed is called, we should stop recording video, as recording works

only when a Surface is available to draw preview images onto.

 public void surfaceChanged(SurfaceHolder holder, int format, int width,
 int height) {
 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 recorder.stop();
 }
}

CHAPTER 11: Video Capture 244

Prepare to Record
Once all of the MediaRecorder settings are set, we are ready to use the prepare method.

This method is required and performs all of the internal functions getting the

MediaRecorder ready to record.

recorder.prepare();

Start Recording
After the MediaRecorder has been “prepared,” we are ready to start the recording. The

start method does just that—it starts the recording.

recorder.start();

Stop Recording
After recording has been started, it can be stopped by using the stop method.

recorder.stop();

Release Resources
Finally, once we are done with the MediaRecorder, we should call the release method to

free up its resources. This is important as only one application at a time can use many of

the underlying resources, such as the hardware camera and microphone.

recorder.release();

State Machine
As just described and as with the MediaPlayer object, the MediaRecorder has various

states, and certain methods can be called only when in the appropriate state. Figure 11–

1 is an illustration of the possible states and what state it moves to when specific

methods are called (reproduced again here for reference).

CHAPTER 11: Video Capture 245

Figure 11–1. MediaRecorder state diagram from Android API Reference

Permissions
Using the MediaRecorder for both audio and video capture and saving to a file on the SD

card requires the following permissions be set in the AndroidManifest.xml file.

<uses-permission android:name="android.permission.RECORD_AUDIO"></uses-permission>
<uses-permission android:name="android.permission.CAMERA"></uses-permission>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE">
</uses-permission>

CHAPTER 11: Video Capture 246

Full Custom Video Capture Example
Here is a full example putting all of the foregoing steps together. It is using

CamcorderProfile, so it requires Android 2.2 or higher.

package com.apress.proandroidmedia.ch11.videocapture;

import java.io.IOException;
import android.app.Activity;
import android.content.pm.ActivityInfo;
import android.media.CamcorderProfile;
import android.media.MediaRecorder;
import android.os.Bundle;
import android.util.Log;
import android.view.SurfaceHolder;
import android.view.SurfaceView;
import android.view.View;
import android.view.Window;
import android.view.WindowManager;
import android.view.View.OnClickListener;

In this example, our activity will implement OnClickListener, so that the user can click to

start and stop recording, and SurfaceHolder.Callback to handle Surface-related events.

public class VideoCapture extends Activity implements OnClickListener,
 SurfaceHolder.Callback {
 MediaRecorder recorder;
 SurfaceHolder holder;

Here we have a Boolean that represents whether we are currently recording. It will be

false when we are not recording and true when we are.

 boolean recording = false;
 public static final String TAG = "VIDEOCAPTURE";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

This activity will run full-screen and in landscape, so we’ll set that up with the following

methods.

 requestWindowFeature(Window.FEATURE_NO_TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

Next, we’ll instantiate our MediaRecorder object.

 recorder = new MediaRecorder();

The initRecorder method, defined further on, will handle all of the MediaRecorder

settings.

 initRecorder();

 setContentView(R.layout.main);

CHAPTER 11: Video Capture 247

Continuing on, we’ll get a reference to the SurfaceView and the SurfaceHolder as well as

register our activity as the SurfaceHolder.Callback.

 SurfaceView cameraView = (SurfaceView)
 findViewById(R.id.CameraView);
 holder = cameraView.getHolder();
 holder.addCallback(this);
 holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

We’ll make our SurfaceView clickable and register our activity as the OnClickListener

for it. This way our onClick method will be called when the SurfaceView is touched.

 cameraView.setClickable(true);
 cameraView.setOnClickListener(this);
 }

The initRecorder method, defined here, takes care of all of the MediaRecorder settings.

 private void initRecorder() {

We’ll use the default audio and video sources.

 recorder.setAudioSource(MediaRecorder.AudioSource.DEFAULT);
 recorder.setVideoSource(MediaRecorder.VideoSource.DEFAULT);

Rather than go through all of the individual settings, we’ll use one of the built-in

CamcorderProfile’s—in this case, the one specified by the QUALITY_HIGH constant.

 CamcorderProfile cpHigh =
 CamcorderProfile.get(CamcorderProfile.QUALITY_HIGH);
 recorder.setProfile(cpHigh);

We’ll specify the path to a file to record to. In this case, it is a file directly on the SD card.

 recorder.setOutputFile("/sdcard/videocapture_example.mp4");

Then we’ll specify a maximum duration in milliseconds.

 recorder.setMaxDuration(50000); // 50 seconds

Finally we’ll specify a maximum file size in bytes.

 recorder.setMaxFileSize(5000000); // Approximately 5 megabytes
 }

The following prepareRecorder method exists to separate the setPreviewDisplay

method from the rest of the MediaRecorder methods. We need to do this as this step

needs to be performed after the Surface has been created, whereas the other steps can

be performed at any time after the MediaRecorder is instantiated or after it has been

stopped.

 private void prepareRecorder() {
 recorder.setPreviewDisplay(holder.getSurface());

After the preview display has been set, we can call the prepare method on the

MediaRecorder object. This step gets everything ready for capture. We have to wrap it in

a try/catch block as it throws some exceptions. If we get any, we’ll just finish. In your

applications, you will probably want to handle them more gracefully.

 try {

CHAPTER 11: Video Capture 248

 recorder.prepare();
 } catch (IllegalStateException e) {
 e.printStackTrace();
 finish();
 } catch (IOException e) {
 e.printStackTrace();
 finish();
 }
 }

When the SurfaceView is clicked, our activity’s onClick method will be called.

 public void onClick(View v) {

If the recording Boolean is true, we’ll call the stop method on the recorder and set the

recording Boolean to false. Additionally, if we are done with the MediaRecorder, we

should call the release method to free up its resources, as only one application can use

it at a time.

 if (recording) {
 recorder.stop();
 //recorder.release();
 recording = false;
 Log.v(TAG,"Recording Stopped");

In this example, we are going to allow the user to record again, so we’ll call

initRecorder and prepareRecorder to set everything back up. We need to do this

because after recording is stopped with the stop method, its state is as if it were just

initialized, and it therefore isn’t ready to record again.

 // Let's initRecorder so we can record again
 initRecorder();
 prepareRecorder();
 } else {

If the recording Boolean is false, we’ll call the start method on the MediaRecorder and

update the Boolean.

 recording = true;
 recorder.start();
 Log.v(TAG,"Recording Started");
 }
 }

As explained previously, we’ll call prepareRecorder once the Surface is created.

 public void surfaceCreated(SurfaceHolder holder) {
 Log.v(TAG,"surfaceCreated");
 prepareRecorder();
 }

 public void surfaceChanged(SurfaceHolder holder, int format, int width,
 int height) {
 }

We’ll stop the recording if we are recording when the Surface is destroyed. This will

likely happen when the activity is no longer visible. Since the MediaRecorder uses shared

resources, such as the camera and microphone, we’ll call the release method so that

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11: Video Capture 249

other applications may use them. In addition, there is no reason to keep this application

running; we’ll call finish so that next time it is started, everything is initialized again.

 public void surfaceDestroyed(SurfaceHolder holder) {
 Log.v(TAG,"surfaceDestroyed");
 if (recording) {
 recorder.stop();
 recording = false;
 }
 recorder.release();
 finish();
 }
}

Here is the layout XML that we are using.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <SurfaceView android:id="@+id/CameraView" android:layout_width="640px"
 android:layout_height="480px"></SurfaceView>
</LinearLayout>

Here are the contents of AndroidManifest.xml for this example. Of note are the three

uses-permission tags that are required.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.proandroidmedia.ch11.videocapture"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".VideoCapture"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="8" />
 <uses-permission android:name="android.permission.RECORD_AUDIO">
 </uses-permission>
 <uses-permission android:name="android.permission.CAMERA"></uses-permission>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE">
 </uses-permission>
</manifest>

As we see, writing an application to perform custom video capture isn’t terribly difficult,

but it can be a bit painful if we don’t pay attention to the Surface creation and the order

of the steps. Creating our own application gives us a lot of flexibility in changing the

settings, such as the codec, bitrate, and format used to record. Figure 11–2 shows the

foregoing example as it looks on a device.

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 11: Video Capture 250

Figure 11–2. Custom Video Capture activity

Summary
This concludes our exploration of video capabilities on Android. In previous chapters,

we looked at playback, storage, and networked video. In this chapter, we brought

capture into the mix and saw that just like the other media capture capabilities that exist

on Android, we can either use the built-in capabilities through an intent or create our

own capture application. Both ways are valid; the first offers a rich set of capabilities but

less control, while the second allows for a more controlled experience.

251

251

 Chapter

Media Consumption and
Publishing Using Web
Services
It would be negligent to put out a book that didn’t cover the wide range of possibilities

available for online media consumption from sites such as Flickr, which offers photos

and videos, and YouTube, famous for its wide range of user-generated video.

It also makes sense that since so much of this book has been about means and

methods for building applications that allow users to create or produce media, we

should cover methods for publishing that media to the same or similar places, such as

Blip.TV for video and Flickr for images.

Additionally, in the process of this media consuming and publishing, we’ll be doing two

things: we’ll be learning about and using web services and web service protocols such

as REST and JSON, and we’ll look at utilizing location. We’ll learn how we can query

platforms such as Flickr for content that was created around the user.

Web Services
We are all familiar with web pages and the sites that encompass them, such as Yahoo,

Google, Hulu, and Apress.com. What you may not be as familiar with is the concept of a

“web service.” Simply put, a web service is a means to access the content and services

offered by a web site in a programmatic fashion.

Sites will enable their content to be accessed in this manner to allow third-party

developers such as ourselves the ability to embed their content and functionality into

applications. For instance, Android phones typically come with a YouTube application

pre-installed. This application receives its data from YouTube’s site through a web

service protocol and displays it within the application. This is different from accessing

YouTube’s mobile web site, which we could do in a browser. In this case, we aren’t

12

CHAPTER 12: Media Consumption and Publishing Using Web Services 252

getting the layout and formatting data from YouTube’s web site; we are getting just the

data—for instance, the list of most viewed and top-rated videos, which are then

displayed within the application’s layout.

There are several web service technologies that are used to do this kind of behind-the-

scenes data delivery. We are going to cover two of them, JSON and REST. First, though,

we need to cover one of the basics of working with web services, which is making a web

or HTTP request in the first place.

HTTP Requests
A web service wouldn’t be a “web” service if we didn’t use HTTP to access it. Making an

HTTP request on Android is straightforward using the Apache-provided HttpClient

classes that are included with Android in the org.apache.http package.

First we need to create an HttpClient object, which will actually be a DefaultHttpClient

object.

HttpClient httpclient = new DefaultHttpClient();

Following that, we can construct the request. In this case, we’ll be making an HTTP GET

request, which puts any parameters on the URL in the form of a query string. This is as

opposed to an HTTP POST request, which sends additional data as the body of the

request message, which is not part of the URL.

To create an HTTP GET request, we’ll instantiate an HttpGet object, passing in a URL to

the page that we would like to retrieve. In this case, we are passing in a URL to the page

about this book on Apress’s site.

HttpGet httpget = new HttpGet("http://www.apress.com/book/view/9781430232674");

We’ll then execute the request by passing the HttpGet object to the HttpClient object

via the execute method. This will return an HttpResponse object.

HttpResponse response = httpclient.execute(httpget);

The HttpResponse will contain an HttpEntity, which is basically an HTTP message. Both

requests and responses contain entities.

HttpEntity entity = response.getEntity();

The getContent method on the HttpEntity returns an InputStream that we can use to

read the actual content that was sent in response.

InputStream inputstream = entity.getContent();

Let’s go through a short example to illustrate.

package com.apress.proandroidmedia.ch12.simplehttprequest;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;

http://www.apress.com/book/view/9781430232674

CHAPTER 12: Media Consumption and Publishing Using Web Services 253

import org.apache.http.HttpEntity;
import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

public class SimpleHTTPRequest extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

First we’ll instantiate our HttpClient and HttpGet objects.

 HttpClient httpclient = new DefaultHttpClient();
 HttpGet httpget = new HttpGet("http://www.apress.com/book/view/9781430232674");

The execute method on our HttpClient may throw an exception, so we need to wrap it

in a try catch block.

 try {
 HttpResponse response = httpclient.execute(httpget);
 HttpEntity entity = response.getEntity();

 if (entity != null) {

If the HttpEntity exists, we can get access to the InputStream, which can be used to

read the response.

 InputStream inputstream = entity.getContent();

We’ll wrap the InputStream in a BufferedReader and utilize a StringBuilder object to

turn it into a normal String that we can work with in the end.

 BufferedReader bufferedreader =
 new BufferedReader(new InputStreamReader(inputstream));
 StringBuilder stringbuilder = new StringBuilder();

 String currentline = null;
 try {
 while ((currentline = bufferedreader.readLine()) != null) {
 stringbuilder.append(currentline + "\n");
 }
 } catch (IOException e) {
 e.printStackTrace();
 }

After fully reading the content, we use the toString method on our StringBuilder object

to get the resulting String, which will then print out via the Log.

 String result = stringbuilder.toString();
 Log.v("HTTP REQUEST",result);
 inputstream.close();
 }

http://www.apress.com/book/view/9781430232674

CHAPTER 12: Media Consumption and Publishing Using Web Services 254

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Of course, we’ll need to have permission to access the Internet, so we’ll need to specify

that in our AndroidManifest.xml.

<uses-permission android:name="android.permission.INTERNET"></uses-permission>

Now that we know how to make an HTTP request for a generic web resource, let’s look

at how we can deal with the type of data that may be returned after a request to a web

service. We’ll start with JSON-formatted data.

JSON
JSON stands for JavaScript Object Notation. While originally designed for use in

JavaScript, as a data-interchange format, it is language-independent. Additionally, for a

variety of reasons, one being that it is relatively easy to implement, many web services

offer it as an alternative to other formats that are based on XML for data transmission. It

is also more lightweight, more compact, and easier for machines to parse than XML.

Android is bundled with a JSON parser within the org.json package.

We won’t get too far into the exact syntax of JSON data, but here is a prototypical JSON

object representation.

{"result":{"aname":"value", "anumber":1234, "aboolean":false}}

As you can see in the JSON representation, the entire representation is surrounded by

brackets, “{“ and “}”, and the name of the object is first, in quotes, followed by a colon:

"result":. The next set of brackets signifies all of the data that is part of that object.

Each piece of data is similarly labeled, with its name in quotes, followed by a colon and

then the actual data. Quotes are used to signify strings; a number without quotes is

simply a number; Boolean values are represented by true or false; and finally an array

of data would be a series of objects within square brackets “[” and “]”, separated by

commas.

Here is an array called anarray:

{"anarray":[{"arrayelement":"Array Element 1"}, {"arrayelement":"Array Element 2"}]}

This array has two elements, each one an object surrounded by “{“ and “}”, with a

comma between them. Each element is an object containing a string called

“arrayelement.”

Let’s look at how we can parse JSON data using Android’s built-in JSON parser.

We’ll start by working with this simple JSON data:

{"results":{"aname":"value", "anumber":1234, "aboolean":false, "anarray":
[{"arrayelement":"Array Element 1"}, {"arrayelement":"Array Element 2"}]}}

CHAPTER 12: Media Consumption and Publishing Using Web Services 255

It will have to be in a String in order to work with the JSON parser. To do that, we’ll have

to escape the double quotes.

String JSONData = "" +
 "{\"results\":{\"aname\":\"value\", \"anumber\":1234, \"aboolean\":false, " +
 "\"anarray\":[{\"arrayelement\":\"Array Element 1\"}, {\"arrayelement\":
\"Array Element 2\"}]}}";

The JSON package available in Android contains a JSONObject class, which can be

constructed by passing in JSON-formatted data such as we have in the JSONData String.

JSONObject overallJSONObject = new JSONObject(JSONData);

Once we have a JSONObject, we can pull out any JSON objects, JSON arrays, or regular

fields that it may contain. Since results is the JSON object that is directly inside the

outer object, we can get a reference to that by using the getJSONObject method, passing

in the name of the object we are attempting to pull out.

JSONObject resultsObject = overallJSONObject.getJSONObject("results");

Once we have that JSONObject, we can pull out any of the data that it contains. There

are different methods for each data type.

To pull out a String, we use the getString method, passing in the name as specified in

the JSON data.

String aname = resultsObject.getString("aname");

To pull out an integer, we use the getInt method, passing in the name specified in the

JSON data. Correspondingly we can pull out JSON numbers as a double, using

getDouble, or as a long, using getLong.

int anumber = resultsObject.getInt("anumber");

To pull out a Boolean, we use the getBoolean method, passing in the name specified in

the JSON data.

boolean aboolean = resultsObject.getBoolean("aboolean");

Our example data also has an array of JSON objects within the resultsObject called

anarray. We can get a reference to that using the getJSONArray method, passing in the

name of the array.

JSONArray anarray = resultsObject.getJSONArray("anarray");

We can loop through the JSONArray object and pull out the individual JSON object

elements, using the getJSONObject method available for use on JSONArray and passing

in the index number of the element.

for (int i = 0; i < anarray.length(); i++) {
 JSONObject arrayElementObject = anarray.getJSONObject(i);
 String arrayelement = arrayElementObject.getString("arrayelement");
}

Here is a full example putting all of the foregoing together.

package com.apress.proandroidmedia.ch12.simplejson;
import org.json.JSONArray;

CHAPTER 12: Media Consumption and Publishing Using Web Services 256

import org.json.JSONException;
import org.json.JSONObject;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

public class SimpleJSON extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 String JSONData = "" +
 "{\"results\":{\"aname\":\"value\", \"anumber\":1234, \"aboolean\":false, " +
 "\"anarray\":[{\"arrayelement\":\"Array Element 1\"}, {\"arrayelement\":\"Array
Element 2\"}]}}";

We need to wrap many of the JSONObject and JSONArray methods in a try catch block,

as many of them throw exceptions. This includes the JSONObject and JSONArray

constructors.

 try {
 JSONObject overallJSONObject = new JSONObject(JSONData);
 Log.v("SIMPLEJSON", overallJSONObject.toString());

 JSONObject resultsObject = overallJSONObject.getJSONObject("results");
 Log.v("SIMPLEJSON", resultsObject.toString());

 String aname = resultsObject.getString("aname");
 Log.v("SIMPLEJSON", aname);

 int anumber = resultsObject.getInt("anumber");
 Log.v("SIMPLEJSON", ""+anumber);

 boolean aboolean = resultsObject.getBoolean("aboolean");
 Log.v("SIMPLEJSON", ""+aboolean);

 JSONArray anarray = resultsObject.getJSONArray("anarray");
 for (int i = 0; i < anarray.length(); i++) {
 JSONObject arrayElementObject = anarray.getJSONObject(i);
 String arrayelement = arrayElementObject.getString("arrayelement");
 Log.v("SIMPLEJSON", arrayelement);
 }
 } catch (JSONException e) {

For the most part, the exception that we’ll need to catch is an instance of

JSONException. This will signify that an error has occurred in the parsing. Here we are

printing a stack trace. In your applications, you will probably want to do something a bit

more intelligent, such as showing the user an error message or attempting the parsing

without the step that generated the error.

 e.printStackTrace();
 }
 }
}

CHAPTER 12: Media Consumption and Publishing Using Web Services 257

As illustrated, the basics of parsing JSON data are very straightforward. Let’s now go

through how we can put together an HTTP request for JSON data in a real-world

example.

Pulling Flickr Images Using JSON
Flickr, a popular online photo and video sharing site, has a very full-featured web service

API that offers JSON as one of the output formats.

As with many sites that offer their functionality via web service APIs, Flickr requires

developers to register and request an API key. An API key uniquely identifies the

application to the Flickr system so that it may be tracked, and if it is causing problems it

can be otherwise dealt with (such as being disabled).

To request an API key from Flickr, you must log in and visit the page

www.flickr.com/services/apps/create/apply/? to answer their questions. Following

this, they will display your API key and an additional “Secret” string, which is required for

some functions, such as logging users in.

In the following example, we’ll be using the Flickr API to search for images that have

been tagged with “waterfront.” To do this, we’ll use the flickr.photos.search method.

You can find documentation of all of the methods available in the Flickr API online at

www.flickr.com/services/api/.

To call this method, we simply need to construct a URL that passes in the parameters

that we need to specify. We’ll specify flickr.photos.search as the method, waterfront

as the tags, json as the format, and 5 as the number of pictures returned per page

(we’ll be looking at only one page, the first page by default). We also need to pass in a 1

for nojsoncallback, which tells Flickr to return plain JSON rather than JSON wrapped

with a JavaScript method call. Finally, you’ll need to specify your API Key (shown as

YOUR_API_KEY in the example here).

http://api.flickr.com/services/rest/?method=flickr.photos.search&tags=
waterfront&format=json&api_key=YOUR_API_KEY&per_page=5&nojsoncallback=1

To see what this API call returns, we can simply put it in our desktop browser and look

at the response. Here is what is returned now. The data will be different if you try it, as it

shows the last five images tagged with “waterfront.” The structure, on the other hand,

will remain the same, which is important as we’ll need it to be consistent to build an app

around it.

{"photos":{"page":1, "pages":69200, "perpage":5, "total":"345999",
 "photo":[{"id":"5224082852", "owner":"43034272@N03", "secret":"9c694fa5f",
 "server":"4130", "farm":5, "title":"_G8J1792", "ispublic":1, "isfriend":0,
 "isfamily":0}, {"id":"5124084164", "owner":"43034272@N03", "secret":"64c867f86",
 "server":"4051", "farm":5, "title":"_G8J1798", "ispublic":1, "isfriend":0,
 "isfamily":0}, {"id":"5123480013", "owner":"43034272@N03", "secret":"b571b786e",
 "server":"4061", "farm":5, "title":"_G8J1781", "ispublic":1, "isfriend":0,
 "isfamily":0}, {"id":"5124083470", "owner":"43034272@N03", "secret":"537b42326",
 "server":"4070", "farm":5, "title":"_G8J1783", "ispublic":1, "isfriend":0,
 "isfamily":0}, {"id":"5124082142", "owner":"43034272@N03", "secret":"288b74481",

http://www.flickr.com/services/apps/create/apply/?
http://www.flickr.com/services/api
http://api.flickr.com/services/rest/?method=flickr.photos.search&tags=%ED%AF%80%ED%B0%81

CHAPTER 12: Media Consumption and Publishing Using Web Services 258

 "server":"1381", "farm":2, "title":"_G8J1774", "ispublic":1, "isfriend":0,
 "isfamily":0}]}, "stat":"ok"}

Looking over the JSON data that is returned, we can determine what steps we’ll need to

take using the JSON parser to get the information we need. Breaking it down, we can

see that there is an overall object called photos, which contains an array of JSON

objects called photo.

Each item in the photo array has a series of other values, id, owner, secret, server, farm,

title, and so on. The Flickr API documentation has a section about how to use these

values to construct the URL to the actual image file:

www.flickr.com/services/api/misc.urls.html.

Let’s go through a full example, putting it all together.

package com.apress.proandroidmedia.ch12.flickrjson;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.URL;

import org.apache.http.HttpEntity;
import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;
import org.json.JSONArray;
import org.json.JSONObject;

import android.app.Activity;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Bundle;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.BaseAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;

public class FlickrJSON extends Activity {

In the line here, the text “YOUR_API_KEY” needs to be replaced with the API Key provided

by Flickr after a request for one is made.

 public static final String API_KEY = "YOUR_API_KEY";

Further down in this example, we have defined a class called FlickrPhoto. One

FlickrPhoto object will be created for each photo element found in the JSON data. We’ll

put all of the FlickrPhoto objects into an array called photos, defined here.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.flickr.com/services/api/misc.urls.html

CHAPTER 12: Media Consumption and Publishing Using Web Services 259

 FlickrPhoto[] photos;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

When our activity first starts, we’ll make our request to the Flickr API using the

HttpClient.

 HttpClient httpclient = new DefaultHttpClient();
 HttpGet httpget = new HttpGet(
 "http://api.flickr.com/services/rest/?method=flickr.photos.search&
tags=waterfront&format=json&api_key=" + API_KEY + "&per_page=5&nojsoncallback=1");

 HttpResponse response;
 try {
 response = httpclient.execute(httpget);
 HttpEntity entity = response.getEntity();

 if (entity != null) {
 InputStream inputstream = entity.getContent();

Once we have the InputStream to the content, we’ll read it in and create a single String

that we can pass into the JSON parser.

 BufferedReader bufferedreader = new BufferedReader(
 new InputStreamReader(inputstream));
 StringBuilder stringbuilder = new StringBuilder();

 String currentline = null;
 try {
 while ((currentline = bufferedreader.readLine()) != null) {
 stringbuilder.append(currentline + "\n");
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 String result = stringbuilder.toString();

Now that we have the results of the HTTP request, we can go about parsing the returned

JSON data. First we’ll create a JSONObject with the overall JSON data, then another

using the first object, getting the main JSON photos object by name.

 JSONObject thedata = new JSONObject(result);
 JSONObject thephotosdata = thedata.getJSONObject("photos");

Once we have that, we can get at the JSONArray, which is named photo.

 JSONArray thephotodata = thephotosdata.getJSONArray("photo");

Now that we have the array of JSON photo objects, we set the length of the array of

FlickrPhoto objects. Following that, we’ll loop through the JSON objects, pull out all of

the relevant data, and create a FlickrPhoto object in the FlickrPhoto photos array.

 photos = new FlickrPhoto[thephotodata.length()];
 for (int i = 0; i < thephotodata.length(); i++) {
 JSONObject photodata = thephotodata.getJSONObject(i);

http://api.flickr.com/services/rest/?method=flickr.photos.search&%ED%AF%80%ED%B0%81tags=waterfront&format=json&api_key=
http://api.flickr.com/services/rest/?method=flickr.photos.search&%ED%AF%80%ED%B0%81tags=waterfront&format=json&api_key=

CHAPTER 12: Media Consumption and Publishing Using Web Services 260

 Log.v("JSON", photodata.getString("id"));

 photos[i] = new FlickrPhoto(photodata.getString("id"),
 photodata.getString("owner"),
 photodata.getString("secret"),
 photodata.getString("server"),
 photodata.getString("title"),
 photodata.getString("farm")
);
 }
 inputstream.close();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }

Finally, last in the onCreate method, we’ll get access to the ListView we have set up in

our layout and set its adapter. We’ll be using a class defined here called

FlickrGalleryAdapter to construct an adapter, passing in the array of FlickrPhotos.

 ListView listView = (ListView) this.findViewById(R.id.ListView);
 listView.setAdapter(new FlickrGalleryAdapter(this, photos));
 }

What follows is the FlickrGalleryAdapter class, whose responsibility it is to determine

the content that will appear in a ListView. In this case, it will be used to populate the

ListView defined in the layout displaying the photo and title from the Flickr search.

 class FlickrGalleryAdapter extends BaseAdapter {
 private Context context;
 private FlickrPhoto[] photos;

 LayoutInflater inflater;

 public FlickrGalleryAdapter(Context _context, FlickrPhoto[] _items) {
 context = _context;
 photos = _items;

 inflater =
 (LayoutInflater)context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 }

 public int getCount() {
 return photos.length;
 }

 public Object getItem(int position) {
 return photos[position];
 }

 public long getItemId(int position) {
 return position;
 }

The getView method is the meat of the class. It determines what will display in an

individual cell in the ListView.

CHAPTER 12: Media Consumption and Publishing Using Web Services 261

 public View getView(int position, View convertView, ViewGroup parent) {

First we’ll get a reference to the View that exists for each row. In this case, we’ll do that

by inflating the list_item layout, which is defined in list_item.xml.

 View photoRow = inflater.inflate(R.layout.list_item, null);

After we have access to the main View for the cell, we can get the individual elements

and set what should be in them. First we’ll deal with the ImageView and set the Bitmap to

be the image returned from the URL we construct within the FlickrPhoto object, using

the data returned from the JSON data.

 ImageView image = (ImageView) photoRow.findViewById(R.id.ImageView);
 image.setImageBitmap(imageFromUrl(photos[position].makeURL()));

Then we’ll do the same for the TextView and set its text to be the title of the image.

 TextView imageTitle = (TextView) photoRow
 .findViewById(R.id.TextView);
 imageTitle.setText(photos[position].title);
 return photoRow;
 }

Here is a method used to create a Bitmap for use in the foregoing ImageView from a

URL to an image available online. It uses HttpURLConnection to open an InputStream to

that image file and passes that to BitmapFactory for the creation of the Bitmap.

 public Bitmap imageFromUrl(String url) {
 Bitmap bitmapImage;

 URL imageUrl = null;
 try {
 imageUrl = new URL(url);
 } catch (MalformedURLException e) {
 e.printStackTrace();
 }
 try {
 HttpURLConnection httpConnection =
 (HttpURLConnection) imageUrl.openConnection();
 httpConnection.setDoInput(true);
 httpConnection.connect();
 InputStream is = httpConnection.getInputStream();

 bitmapImage = BitmapFactory.decodeStream(is);
 } catch (IOException e) {
 e.printStackTrace();
 bitmapImage = Bitmap.createBitmap(10, 10, Bitmap.Config.ARGB_8888);
 }
 return bitmapImage;
 }
 }

Finally, here is the FlickrPhoto class. It is a Java representation of the data we need

from each photo represented in the JSON data.

 class FlickrPhoto {
 String id;
 String owner;

CHAPTER 12: Media Consumption and Publishing Using Web Services 262

 String secret;
 String server;
 String title;
 String farm;

 public FlickrPhoto(String _id, String _owner, String _secret,
 String _server, String _title, String _farm) {
 id = _id;
 owner = _owner;
 secret = _secret;
 server = _server;
 title = _title;
 farm = _farm;
 }

The following makeURL method will turn this data into a URL to the image as per Flickr’s

API documentation.

 public String makeURL() {
 return "http://farm" + farm + ".static.flickr.com/" + server + "/"
 + id + "_" + secret + "_m.jpg";
 // http://farm{farm-id}.static.flickr.com/{server-id}/{id}_
{secret}_[mstzb].jpg
 // From: http://www.flickr.com/services/api/misc.urls.html
 }
 }
}

Here is the main.xml file, which contains the layout used in the foregoing code.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<ListView android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/ListView"></ListView>
</LinearLayout>

Here is the list_item.xml file, which defines the layout used for the ListView.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 <ImageView android:id="@+id/ImageView" android:layout_width="wrap_content"
 android:layout_height="wrap_content"></ImageView>
 <TextView android:text="@+id/TextView01" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:id="@+id/TextView"></TextView>
</LinearLayout>

Finally, here is AndroidManifest.xml, which contains the INTERNET permission that is

required to pull data from Flickr.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.proandroidmedia.ch12.flickrjson"

http://farm
http://farm
http://www.flickr.com/services/api/misc.urls.html
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 12: Media Consumption and Publishing Using Web Services 263

 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".FlickrJSON"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="4" />
 <uses-permission android:name="android.permission.INTERNET"></uses-permission>
</manifest>

Figure 12–1 shows the results of the foregoing example.

As we have seen, using JSON to interact with a web service such as Flickr is very

straightforward and potentially very powerful.

Figure 12–1. ListView displaying images tagged with “waterfront” from Flickr

Location
Since we are accessing these services on mobile devices whose location may change, it

may be interesting to utilize location as part of the request. Searching for “waterfront” on

Flickr in one place will then yield different results from searching in another place.

CHAPTER 12: Media Consumption and Publishing Using Web Services 264

Android provides us with a LocationManager class, which we can use to look up and

track location changes in our applications.

Here is a quick snippet of code illustrating how we can harness LocationManager and

listen for location updates.

package com.apress.proandroidmedia.ch12.locationtracking;

import android.app.Activity;
import android.content.Context;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.location.LocationProvider;
import android.os.Bundle;
import android.util.Log;
import android.widget.TextView;

To receive location updates from the LocationManager, we’ll have our activity implement

LocationListener.

public class LocationTracking extends Activity implements LocationListener {

 LocationManager lm;
 TextView tv;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 tv = (TextView) this.findViewById(R.id.location);

We get an instance of LocationManager by using the getSystemService method available

in Context, which Activity is a subclass of—therefore it is available to us.

 lm = (LocationManager) getSystemService(Context.LOCATION_SERVICE);

LocationManager offers us the ability to specify that we want our LocationListener, in

this case, our activity, to be notified of location-related changes. We register our activity

as the LocationListener by passing it in as the last argument to the

requestLocationUpdates method.

The first argument in the method is the location provider that we would like to use. The

two location providers available are specified as constants in the LocationManager class.

The one we are using here, NETWORK_PROVIDER, utilizes network services such as cell

tower location or WiFi access point location to determine location. The other one

available is GPS_PROVIDER, which provides location information utilizing GPS (Global

Positioning Satellites). NETWORK_PROVIDER is generally a much faster but potentially less

accurate location lookup than GPS. GPS may take a significant amount of time to

acquire signals from satellites and may not work at all indoors or in areas where the sky

is not clearly visible (midtown Manhattan, for instance).

The second argument is the minimum amount of time the system will wait between

“location changed” notifications. It is specified as a long representing milliseconds. Here

we are using 60,000 milliseconds or 1 minute.

CHAPTER 12: Media Consumption and Publishing Using Web Services 265

The third argument is the amount of distance that the location needs to have changed

before a “location changed” notification is given. This is specified as a float

representing meters. Here we are using 5 meters.

 lm.requestLocationUpdates(LocationManager.NETWORK_PROVIDER, 60000l,
 5.0f, this);
 }

When using the LocationManager, particularly when using GPS as the provider, it may be

prudent to stop the location updates when the application is no longer in the foreground.

This will conserve battery power. To do so, we can override the normal onPause or

onStop method in our activity and call the removeUpdates method on the

LocationManager object.

 public void onPause()
 {
 super.onPause();
 lm.removeUpdates(this);
 }

The onLocationChanged method will be called on the registered LocationListener and

passed a Location object whenever the location has changed and the change is greater

than the distance and time parameters specified in the requestLocationUpdates method.

The Location object that is passed in has methods available for getting latitude

(getLatitude), longitude (getLongitude), altitude (getAltitude), and many more, detailed

in the documentation:

http://developer.android.com/reference/android/location/Location.html.

 public void onLocationChanged(Location location) {
 tv.setText(location.getLatitude() + " " + location.getLongitude());
 Log.v("LOCATION", "onLocationChanged: lat=" + location.getLatitude() + ", lon=
" + location.getLongitude());
 }

The onProviderDisabled method within the registered LocationListener will get called

should the provider that is being monitored be disabled by the user.

 public void onProviderDisabled(String provider) {
 Log.v("LOCATION", "onProviderDisabled: " + provider);
 }

The onProviderEnabled method within the registered LocationListener will get called

should the provider that is being monitored be enabled by the user.

 public void onProviderEnabled(String provider) {
 Log.v("LOCATION", "onProviderEnabled: " + provider);
 }

Finally, the onStatusChanged method in the registered LocationListener will be called if

the location provider’s status changes. There are three constants in LocationProvider

that can be tested against the status variable which can be usedto determine what the

change that happened is. They are AVAILABLE, which will get called should the provider

become available after a period of time being unavailable, TEMPORARILY_UNAVAILABLE,

which is just as its name implies, the provider is temporarily unable to be used as it was

http://developer.android.com/reference/android/location/Location.html

CHAPTER 12: Media Consumption and Publishing Using Web Services 266

unable to fetch the current location and lastly, OUT_OF_SERVICE, which means that the

provider is unable to be used probably due to losing connectivity or signal.

 public void onStatusChanged(String provider, int status, Bundle extras) {
 Log.v("LOCATION", "onStatusChanged: " + provider + " status:" + status);
 if (status == LocationProvider.AVAILABLE) {
 Log.v("LOCATION","Provider Available");
 } else if (status == LocationProvider.TEMPORARILY_UNAVAILABLE) {
 Log.v("LOCATION","Provider Temporarily Unavailable");
 } else if (status == LocationProvider.OUT_OF_SERVICE) {
 Log.v("LOCATION","Provider Out of Service");
 }
 }
}

Here is the layout XML that is required by the foregoing activity.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 android:id="@+id/location"
 />
</LinearLayout>

Accessing location requires that permission be requested, so we need to add the

following uses-permission tag into our AndroidManifest.xml file. Note that the following

tag is for the LocationManager.NETWORK_PROVIDER provider, which gives us a coarse

location.

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION">
</uses-permission>

If we are interested in using more precise location with GPS, we’ll need to use the

ACCESS_FINE_LOCATION permission.

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION">
</uses-permission>

Pulling Flickr Images Using JSON and Location
We can update our Flickr JSON example, adding location into the mix by requesting

location changes from the LocationManager and then executing our request when we are

notified of a location. Of course, we’ll have to add location to the request, which Flickr

supports as part of the query string in the request.

package com.apress.proandroidmedia.ch12.flickrjsonlocation;

import java.io.BufferedReader;
import java.io.IOException;

http://schemas.android.com/apk/res/android

CHAPTER 12: Media Consumption and Publishing Using Web Services 267

import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.URL;

import org.apache.http.HttpEntity;
import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;
import org.json.JSONArray;
import org.json.JSONObject;

import android.app.Activity;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.Bundle;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.BaseAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;

We’ll have our FlickrJSONLocation activity implement LocationListener so that we can

be notified to changes in location.

public class FlickrJSONLocation extends Activity implements LocationListener {

 public static final String API_KEY = "YOUR_API_KEY";

 FlickrPhoto[] photos;
 TextView tv;
 LocationManager lm;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 tv = (TextView) findViewById(R.id.TextView);
 tv.setText("Looking Up Location");

Instead of directly making a request to Flickr, we’ll first specify that we want location by

creating an instance of the LocationManager and calling the requestLocationUpdates

method, registering our activity as the LocationListener. We are specifying that we

want updates at most every 60 seconds and after at least 500 meters moved.

 lm = (LocationManager) getSystemService(Context.LOCATION_SERVICE);
 lm.requestLocationUpdates(LocationManager.NETWORK_PROVIDER, 60000l, 500.0f,

CHAPTER 12: Media Consumption and Publishing Using Web Services 268

 this);
 }

 public void onPause()
 {
 super.onPause();
 lm.removeUpdates(this);
 }

Now, when our onLocationChanged method is called, we’ll make the request to Flickr,

taking into account the location as passed in via the Location object.

 public void onLocationChanged(Location location) {
 tv.setText(location.getLatitude() + " " + location.getLongitude());
 Log.v("LOCATION", "onLocationChanged: lat=" + location.getLatitude() + ", lon=
" + location.getLongitude());

 HttpClient httpclient = new DefaultHttpClient();

We’ll construct the URL to hit with a few additional parameters: lat for the latitude, lon
for the longitude, and accuracy, which is a number that represents the range of latitude

and longitude to return results from. According to the Flickr API documentation, a value

of 1 is the entire world, 6 is a “region,” 11 is approximately a city, and 16 is

approximately a street. Additionally, we are specifying two tags, “halloween” and “dog,”

separated by a comma as per the Flickr API documentation.

 String url = "http://api.flickr.com/services/rest/?method=
flickr.photos.search&tags= dog,halloween&format=json&api_key=" + API_KEY +
 "&per_page=5&nojsoncallback=1&accuracy=6&lat="+location.getLatitude()+"&lon=
"+location.getLongitude();
 HttpGet httpget = new HttpGet(url);

 HttpResponse response;
 try {
 response = httpclient.execute(httpget);
 HttpEntity entity = response.getEntity();

 if (entity != null) {

 InputStream inputstream = entity.getContent();

 BufferedReader bufferedreader = new BufferedReader(
 new InputStreamReader(inputstream));
 StringBuilder stringbuilder = new StringBuilder();

 String currentline = null;
 try {
 while ((currentline = bufferedreader.readLine()) != null) {
 stringbuilder.append(currentline + "\n");
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 String result = stringbuilder.toString();

 JSONObject thedata = new JSONObject(result);
 JSONObject thephotosdata = thedata.getJSONObject("photos");

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://api.flickr.com/services/rest/?method=%ED%AF%80%ED%B0%81flickr.photos.search&tags=dog
http://api.flickr.com/services/rest/?method=%ED%AF%80%ED%B0%81flickr.photos.search&tags=dog

CHAPTER 12: Media Consumption and Publishing Using Web Services 269

 JSONArray thephotodata = thephotosdata.getJSONArray("photo");

 photos = new FlickrPhoto[thephotodata.length()];
 for (int i = 0; i < thephotodata.length(); i++) {
 JSONObject photodata = thephotodata.getJSONObject(i);
 photos[i] = new FlickrPhoto(photodata.getString("id"),
 photodata.getString("owner"), photodata
 .getString("secret"), photodata
 .getString("server"), photodata
 .getString("title"), photodata
 .getString("farm"));
 Log.v("URL", photos[i].makeURL());
 }

 inputstream.close();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }

 ListView listView = (ListView) this.findViewById(R.id.ListView);
 listView.setAdapter(new FlickrGalleryAdapter(this, photos));
 }

Of course, since we are implementing LocationListener, we need to provide the

onProviderDisabled and onProviderEnabled methods. Here they are empty methods. In

your application, you would probably want to notify the user of their occurrence to

explain why location updates have either stopped or started working.

 public void onProviderDisabled(String provider) {
 }

 public void onProviderEnabled(String provider) {
 }

 public void onStatusChanged(String provider, int status, Bundle extras) {
 }

The remainder of the code in the example is as it was previously presented. We’ll be

using a class, FlickrGalleryAdapter, to handle the population of the ListView with the

results from Flickr.

 class FlickrGalleryAdapter extends BaseAdapter {
 private Context context;
 private FlickrPhoto[] photos;

 LayoutInflater inflater;

 public FlickrGalleryAdapter(Context _context, FlickrPhoto[] _items) {
 context = _context;
 photos = _items;

 inflater = (LayoutInflater) context
 .getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 }

 public int getCount() {

CHAPTER 12: Media Consumption and Publishing Using Web Services 270

 return photos.length;
 }

 public Object getItem(int position) {
 return photos[position];
 }

 public long getItemId(int position) {
 return position;
 }

 public View getView(int position, View convertView, ViewGroup parent) {
 View videoRow = inflater.inflate(R.layout.list_item, null);

 ImageView image = (ImageView) videoRow.findViewById(R.id.ImageView);
 image.setImageBitmap(imageFromUrl(photos[position].makeURL()));

 TextView videoTitle = (TextView) videoRow
 .findViewById(R.id.TextView);
 videoTitle.setText(photos[position].title);
 return videoRow;
 }

 public Bitmap imageFromUrl(String url) {
 Bitmap bitmapImage;

 URL imageUrl = null;
 try {
 imageUrl = new URL(url);
 } catch (MalformedURLException e) {
 e.printStackTrace();
 }
 try {
 HttpURLConnection httpConnection =
 (HttpURLConnection) imageUrl.openConnection();
 httpConnection.setDoInput(true);
 httpConnection.connect();
 int length = httpConnection.getContentLength();
 InputStream is = httpConnection.getInputStream();

 bitmapImage = BitmapFactory.decodeStream(is);
 } catch (IOException e) {
 e.printStackTrace();
 bitmapImage = Bitmap.createBitmap(10, 10, Bitmap.Config.ARGB_8888);
 }
 return bitmapImage;
 }
 }

Finally, as in the previous example, we have a FlickrPhoto class, which is used to hold

the data for each individual photo that was sent to us from Flickr via JSON.

 class FlickrPhoto {
 String id;
 String owner;
 String secret;
 String server;
 String title;

CHAPTER 12: Media Consumption and Publishing Using Web Services 271

 String farm;

 public FlickrPhoto(String _id, String _owner, String _secret,
 String _server, String _title, String _farm) {
 id = _id;
 owner = _owner;
 secret = _secret;
 server = _server;
 title = _title;
 farm = _farm;
 }

 public String makeURL() {
 return "http://farm" + farm + ".static.flickr.com/" + server + "/"
 + id + "_" + secret + "_m.jpg";
 // http://farm{farm-id}.static.flickr.com/{server-id}/{id}_{secret}_
[mstzb].jpg
 }
 }
}

Here is the main.xml layout for use by the example.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/TextView"></TextView>
 <ListView android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:id="@+id/ListView"></ListView>
</LinearLayout>

And here is the list_item.xml file for the ListView layout used in the example.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 <ImageView android:id="@+id/ImageView" android:layout_width="wrap_content"
 android:layout_height="wrap_content"></ImageView>
 <TextView android:text="@+id/TextView01" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:id="@+id/TextView"></TextView>
</LinearLayout>

Of course, we’ll need to specify that we need permission to access the Internet and use

location in this example. After adding the appropriate “uses-permission” tags, the

AndroidManifest.xml file for this example will be as follows.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.proandroidmedia.ch12.flickrjsonlocation"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">

http://farm
http://farm
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 12: Media Consumption and Publishing Using Web Services 272

 <activity android:name=".FlickrJSONLocation"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="4" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION">
</uses-permission>
 <uses-permission android:name="android.permission.INTERNET"></uses-permission>
</manifest>

As we can see, simply paying attention to location in our applications offers us the ability

to create a very dynamic experience. In this case, as the user moves around, he or she

is presented with a whole new set of “dog,halloween” photographs delivered via Flickr,

as illustrated in Figure 12–2.

Figure 12–2. Displaying images tagged with “dog” and “halloween" that were taken near my current location
from Flickr

Now let’s turn our attention back to web service protocols and talk about REST.

CHAPTER 12: Media Consumption and Publishing Using Web Services 273

REST
REST stands for Representational State Transfer. It is a set of architecture principles for

design of client-server services. In general, a web service is considered “RESTful,”

meaning it follows REST principles, under the following conditions:

 When it uses HTTP methods (GET, POST)

 When it is stateless, meaning that each transaction is independent

from other transactions

 When it uses directory-style URLs to pass data rather than query

string variables (www.afakeurl.com/shawn/van_every instead of

www.afakeurl.com/?firstname=shawn&lastname=van_every)

 When it uses XML (or JSON) for the transfer of data.

A good place to learn more about REST-based web service architecture is an article

entitled “RESTful Web Services: The Basics,” by Alex Rodriguez, from IBM

developerWorks: www.ibm.com/developerworks/webservices/library/ws-restful/.

The reason we are discussing REST here is that it is very commonly used in combination

with XML for the transfer of web service data. While we didn’t use the XML options in

the Flickr example, choosing JSON instead, we could have. The structure of the XML

representation of the data to be transferred doesn’t have to follow any strict Document

Type Definitions (DTD) or XML Schemas and is often created and documented as

needed by those services that are building the web service.

Representing Data in XML
Here is an example of an XML document that defines a “user” on a theoretical web

service. This document would be the response to a query for information about a user

given the user-id.

<?xml version="1.0"?>
<user>
 <user-id>15</user-id>
 <username>vanevery</username>
 <firstname>Shawn</firstname>
 <lastname>Van Every</lastname>
</user>

There are several different flavors of XML parsing available on Android by default. These

include the two main methods, SAX (Simple API for XML) and DOM (Document Object

Model), as well as others. On mobile devices, SAX is often chosen over DOM, as it reads

in the XML sequentially, allowing actions on the XML to occur as it is being read,

whereas DOM creates a representation of the XML in memory as objects, which, if the

XML is large, can take a long time and use up a significant amount of memory.

http://www.afakeurl.com/shawn/van_everyinsteadofwww.afakeurl.com/?firstname=shawn&lastname=van_every
http://www.afakeurl.com/shawn/van_everyinsteadofwww.afakeurl.com/?firstname=shawn&lastname=van_every
http://www.ibm.com/developerworks/webservices/library/ws-restful

CHAPTER 12: Media Consumption and Publishing Using Web Services 274

SAX Parsing
To use the built-in SAX parser on Android, we first need to create a class that extends

DefaultHandler. This will be the class that contains the methods that will get notified

when a XML element starts and stops and content is read. Here is a bare-bones version

that just logs output.

private class XMLHandler extends DefaultHandler {
 @Override
 public void startDocument() throws SAXException {
 Log.v("SimpleXMLParser","startDocument");
 }

 @Override
 public void endDocument() throws SAXException {
 Log.v("SimpleXMLParser","endDocument");
 }

 @Override
 public void startElement(String uri, String localName, String qName, Attributes
 attributes) throws SAXException {
 Log.v("SimpleXMLParser","startElement " + localName);
 }

 @Override
 public void endElement(String uri, String localName, String qName) throws
 SAXException {
 Log.v("SimpleXMLParser","endElement " + localName);
 }

 @Override
 public void characters(char[] ch, int start, int length) throws SAXException {
 String stringChars = new String(ch, start, length);
 Log.v("SimpleXMLParser",stringChars);
 }
}

Once we have that, we can create an instance of a SAXParserFactory and then create an

instance of a SAXParser.

SAXParserFactory aSAXParserFactory = SAXParserFactory.newInstance();
SAXParser aSAXParser = aSAXParserFactory.newSAXParser();

From the SAXParser object, we can get an XMLReader, which we’ll use to determine what

happens during the parsing and to perform the actual parsing.

XMLReader anXMLReader = aSAXParser.getXMLReader();

We then instantiate our XMLHandler and pass it to the setContentHandler method on our

XMLReader.

XMLHandler anXMLHandler = new XMLHandler();
anXMLReader.setContentHandler(anXMLHandler);

Finally we call the parse method on our XMLReader. In this case, we are assuming we

have an InputStream called xmlInputStream, which contains the XML that we’ll be

parsing.

CHAPTER 12: Media Consumption and Publishing Using Web Services 275

anXMLReader.parse(new InputSource(xmlInputStream));

Let’s go through a full example that shows how to parse the foregoing “user” XML.

package com.apress.proandroidmedia.ch12.simplexmlparser;

import java.io.ByteArrayInputStream;
import java.io.IOException;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.Attributes;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.DefaultHandler;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

public class SimpleXMLParser extends Activity {

We’ll be turning the XML into an instance of a class called XMLUser that is towards the

end of the code. This will be our Java representation of the data defined in the XML.

 XMLUser aUser;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

In this example, the XML that we’ll be parsing is included as a String called xml.

 String xml = "<?xml version=\"1.0\"?>\n"
 + "<user>\n"
 + "<user-id>15</user-id>\n"
 + "<username>vanevery</username>\n"
 + "<firstname>Shawn</firstname>\n"
 + "<lastname>Van Every</lastname>\n"
 + "</user>\n";

Here we’ll follow the steps previously described, and create a SAXParserFactory, a

SAXParser, and an XMLReader.

 SAXParserFactory aSAXParserFactory = SAXParserFactory.newInstance();
 try {

 SAXParser aSAXParser = aSAXParserFactory.newSAXParser();
 XMLReader anXMLReader = aSAXParser.getXMLReader();

We’ll be using an instance of UserXMLHandler, defined here, as our Handler that will

determine what happens as the parsing occurs.

 UserXMLHandler aUserXMLHandler = new UserXMLHandler();
 anXMLReader.setContentHandler(aUserXMLHandler);

CHAPTER 12: Media Consumption and Publishing Using Web Services 276

Finally, we’ll perform the actual parsing. We have to do a bit of additional work turning

the XML located in the xml String into an InputStream and an InputSource that can be

used by the XMLReader.

 anXMLReader.parse(
 new InputSource(new ByteArrayInputStream(xml.getBytes())));

 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 } catch (SAXException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

The meat of our example is the UserXMLHandler. This extends DefaultHandler and will

be given the data from the XML as it is parsed.

 private class UserXMLHandler extends DefaultHandler {

We’ll use the following constants in combination with the state variable to keep track of

what elements have been read in.

 static final int NONE = 0;
 static final int ID = 1;
 static final int FIRSTNAME = 2;
 static final int LASTNAME = 3;

 int state = NONE;

We’ll use the following constants to match against the element names that may occur in

the XML.

 static final String ID_ELEMENT = "user-id";
 static final String FIRSTNAME_ELEMENT = "firstname";
 static final String LASTNAME_ELEMENT = "lsatname";

The startDocument method is called when the parser identifies that an XML document

has started. In this method, we’ll instantiate our XMLUser object that we’ll use to hold the

data represented in the XML.

 @Override
 public void startDocument() throws SAXException {
 Log.v("SimpleXMLParser","startDocument");
 aUser = new XMLUser();
 }

The endDocument method will be called when the parser identifies that the XML

document has finished. We’ll simply print out the contents of our XMLUser object.

 @Override
 public void endDocument() throws SAXException {
 Log.v("SimpleXMLParser","endDocument");
 Log.v("SimpleXMLParser","User Info: " + aUser.user_id + " " +
 aUser.firstname + " " + aUser.lastname);
 }

CHAPTER 12: Media Consumption and Publishing Using Web Services 277

The startElement method will be called when a new element has been identified as

starting. In other words, an opening tag in the XML is found. The name of the element is

passed in via the localName variable. In this method, we’ll simply compare that name

with the constants defined earlier and use that to change the state variable.

 @Override
 public void startElement(String uri, String localName, String qName,
 Attributes attributes) throws SAXException {
 Log.v("SimpleXMLParser","startElement");
 if (localName.equalsIgnoreCase(ID_ELEMENT)) {
 state = ID;
 } else if (localName.equalsIgnoreCase(FIRSTNAME_ELEMENT)) {
 state = FIRSTNAME;
 } else if (localName.equalsIgnoreCase(LASTNAME_ELEMENT)) {
 state = LASTNAME;
 } else {
 state = NONE;
 }
 }

The endElement method will be called when any closing XML tag is found.

 @Override
 public void endElement(String uri, String localName, String qName)
 throws SAXException {
 Log.v("SimpleXMLParser","endElement");

 }

The characters method is called whenever text is found between an opening and

closing tag. In our implementation, we’ll take the data and place it in our XMLUser object

based upon where we are in the document as represented by our state variable.

 @Override
 public void characters(char[] ch, int start, int length) throws SAXException {
 String stringChars = new String(ch, start, length);
 Log.v("SimpleXMLParser",stringChars);
 if (state == ID) {
 aUser.user_id += stringChars.trim();
 Log.v("SimpleXMLParser","user_id:"+aUser.user_id);
 } else if (state == FIRSTNAME) {
 aUser.firstname += stringChars.trim();
 Log.v("SimpleXMLParser","firstname:"+aUser.firstname);
 } else if (state == LASTNAME) {
 aUser.lastname += stringChars.trim();
 Log.v("SimpleXMLParser","lastname:"+aUser.lastname);
 }
 }
 }

Here is the XMLUser class, which we are using to hold onto the data that is given to us

within the XML.

 class XMLUser {
 String user_id;
 String firstname;
 String lastname;

CHAPTER 12: Media Consumption and Publishing Using Web Services 278

 public XMLUser() {
 user_id = "";
 firstname = "";
 lastname = "";
 }
 }
}

Having gone through this quick example, we can use it as a template for any XML

parsing we might need to do on Android, including dealing with data that we may

receive in response to a request to a web service.

HTTP File Uploads
One way that we may wish to allow the user to distribute media that is created by

applications we develop is to allow them to be posted to online video sharing sites, such

as YouTube, Vimeo, or Blip.TV.

In order to post files to services such as these, we need to do an HTTP file upload.

There are several ways we might accomplish an HTTP file upload on Android. The way

that gives us the most flexibility is to involve importing and using libraries from Apache’s

HTTP Components (http://hc.apache.org/) that were not fully included with Android.

We’ll need httpmime-4.0.x.jar, which is provided within the HttpClient 4.0.x (GA)

download available at http://hc.apache.org/downloads.cgi. (The “x” in the version

numbers is currently at 3; it may be higher when you go to download it.)

We’ll also need Apache Mime4J version 0.6 (apache-mime4j-0.6.jar) or higher, which is

downloadable from http://james.apache.org/download.cgi.

When you build an application, you will simply bring these files into your Eclipse project

by dragging them onto the project folder in the Eclipse Package Explorer. We then have

to edit the Java Build Path in the Project Properties. To include them in the build path,

go to the Libraries tab in the Java Build Path dialog, select “Add JARs,” and finally

select them.

What we gained from importing the foregoing libraries is a MultipartEntity that can be

used within an HttpPost request as used by HttpClient. MultipartEntity allows for the

making of multipart/form-data style posts to servers. This is the same mechanism used

by browsers to do uploads from forms that allow the user to select a file.

Making an HTTP Request
Here is a quick sketch of how to use it.

First we’ll create an HttpClient object by instantiating DefaultHttpClient.

HttpClient httpclient = new DefaultHttpClient();

Following that, we’ll create an HttpPost object that represents a POST request to a

specific URL that we’ll pass in.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://hc.apache.org
http://hc.apache.org/downloads.cgi
http://james.apache.org/download.cgi

CHAPTER 12: Media Consumption and Publishing Using Web Services 279

HttpPost httppost = new HttpPost("http://webserver/file-upload-app");

Following that, we can instantiate our MultipartEntity. As just described, we can have

multiple parts in this type of entity.

MultipartEntity multipartentity = new MultipartEntity();

The main part that we’ll need is the actual file that will be uploaded. To do this, we’ll use

the addPart method and pass in the name as a String and a FileBody object as the

value. This FileBody object takes in a File object that represents the actual file we want

uploaded—in this case, a video file on the root of the SD card.

multipartentity.addPart("file", new FileBody(new File
("/sdcard/video_h264_640x480.mp4")));

If we need to add other elements such as username, password, and the like, we use the

same addPart method, passing in the name and value. In this case, the value should be

a StringBody object that contains the actual value as a String.

multipartentity.addPart("username", new StringBody("myusername"));
multipartentity.addPart("password", new StringBody("mypassword"));
multipartentity.addPart("title", new StringBody("A Title"));

Once our MultipartEntity is all set, we pass it to the HttpPost object by calling the

setEntity method.

httppost.setEntity(multipartentity);

Now we can execute the request and get the response.

HttpResponse httpresponse = httpclient.execute(httppost);
HttpEntity responseentity = httpresponse.getEntity();

We can read the response by getting an InputStream through a call to getContent on the

HttpEntity we were given.

InputStream inputstream = responseentity.getContent();

To read from InputStream, we’ll wrap it in an InputStreamReader and a BufferedReader

and go through the normal reading process.

BufferedReader bufferedreader = new BufferedReader(new InputStreamReader(inputstream));

We’ll use a StringBuilder to hold all of the data we read in.

StringBuilder stringbuilder = new StringBuilder();

And we will read line by line from the BufferedReader until it returns null.

String currentline = null;
while ((currentline = bufferedreader.readLine()) != null) {
 stringbuilder.append(currentline + "\n");
}

When we are done reading, we’ll convert the StringBuilder object to a normal String

and output it to the log.

String result = stringbuilder.toString();
Log.v("HTTP UPLOAD REQUEST",result);

http://webserver/file-upload-app

CHAPTER 12: Media Consumption and Publishing Using Web Services 280

Finally, we’ll close the InputStream.

inputstream.close();

Of course, we’ll need to have permission to access the Internet in our application.

Therefore we need to add the following uses-permission line to our

AndroidManifest.xml file.

<uses-permission android:name="android.permission.INTERNET"></uses-permission>

Once we have the required libraries downloaded and imported, doing file uploads is not

much more difficult than doing a normal HTTP request using the HttpClient class.

Uploading Video to Blip.TV
Blip.TV is a popular video sharing site that offers a REST-based file upload API that we

can use to build a video sharing mechanism onto a capture application or even as a

stand-alone application.

The Blip.TV upload API is documented online at

http://wiki.blip.tv/index.php/REST_Upload_API. It details the various elements that

may be included with the request. In particular, we’ll need the uploaded file element to

be named “file”. To run the sample code, you will need a regular Blip.TV user login

(username) and password (which, in an real-world application, should be supplied by the

user). We’ll need a title, and we’ll need to include post with a value of “1” and skin

with a value of api to get back a response in XML.

Once a video is uploaded to Blip.TV through the API, they respond with XML something

like the following:

<response>
 <current_time>2010-10-30T00:13:00Z</current_time>
 <timestamp>1288397581081</timestamp>
 <status>OK</status>
 <payload>
 <asset>
 <timestamp>1288397580</timestamp>
 <id>4332695</id>
 <item_type>file</item_type>
 <item_id>4314031</item_id>
 <links>
 <link rel="alternate" type="text/html"
 href="http://blip.tv/file/4314031/" />
 <link rel="alternate" type="application/rss+xml"
 href="http://blip.tv/rss/4332695" />
 <link rel="alternate" type="application/atom+xml"
 href="http://blip.tv/file/4314031/?skin=atom" />
 <link rel="service.edit" type="text/html"
 href="http://blip.tv/file/post/4314031/" />
 <link rel="service.edit" type="text/xml"
 href="http://blip.tv/file/post/4314031/?skin=api" />
 </links>
 <files>
 <file src="Username-AVideo562.3gp"

http://wiki.blip.tv/index.php/REST_Upload_API
http://blip.tv/file/4314031
http://blip.tv/rss/4332695
http://blip.tv/file/4314031/?skin=atom
http://blip.tv/file/post/4314031
http://blip.tv/file/post/4314031/?skin=api

CHAPTER 12: Media Consumption and Publishing Using Web Services 281

 submitted_as="VID_20101029_200900.3gp" role='Source' />
 </files>
 </asset>
 </payload>
</response>

Of note, the XML gives a status of OK if the upload was successful and gives a link to

the original file in the file element. We can parse this XML using a SAX parser, looking

for those items and presenting the video back to the user for verification that the upload

worked.

If the upload fails, the XML gives a status of ERROR and an error tag that includes a code

and a message. Here is an example where the username/password combination was

incorrectly entered.

<response>
 <current_time>2010-10-30T00:38:32Z</current_time>
 <timestamp>1288399112662</timestamp>
 <status>ERROR</status>
 <error>
 <code>AUTHENTICATION_REQUIRED</code>
 <message>The operation you attempted to perform require authentication,
 but your authentication information is invalid, missing or insufficient for the
 action you are attempting to perform.</message>
 </error>
</response>

Let’s go through the full code for capturing a video and uploading to Blip.TV:

package com.apress.proandroidmedia.ch12.blipuploader;

import java.io.BufferedReader;
import java.io.ByteArrayInputStream;
import java.io.File;
import java.io.FilterOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

import org.apache.http.HttpEntity;
import org.apache.http.HttpResponse;
import org.apache.http.client.ClientProtocolException;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.mime.MultipartEntity;
import org.apache.http.entity.mime.content.FileBody;
import org.apache.http.entity.mime.content.StringBody;
import org.apache.http.impl.client.DefaultHttpClient;
import org.xml.sax.Attributes;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;
import org.xml.sax.XMLReader;

CHAPTER 12: Media Consumption and Publishing Using Web Services 282

import org.xml.sax.helpers.DefaultHandler;

import android.app.Activity;
import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;
import android.os.AsyncTask;
import android.os.Bundle;
import android.util.Log;
import android.widget.TextView;

public class BlipTVUploader extends Activity {

Our activity will use an intent to trigger the Camera activity for video recording and the

default activity for video playback, so we’ll need to set two constants to know which

activity is returning.

 final static int VIDEO_CAPTURED = 0;
 final static int VIDEO_PLAYED = 1;

We have a couple of variables: a File to represent the captured video on the SD card, a

String title that will be the title for it when uploaded to Blip.TV, as well as a username

and password for Blip.TV. In a real-world application, the title, username, and password

should be gotten from the user.

 File videoFile;
 String title = "A Video";
 String username = "BLIPTV_USERNAME";
 String password = "BLIPTV_PASSWORD";

The postingResult variable will contain the results given in the XML response from

Blip.TV after the upload.

 String postingResult = "";

The fileLength variable will be set after the video is recorded so that we can track the

progress of the upload.

 long fileLength = 0;

We’ll use a TextView to display to the user the upload progress and other information.

 TextView textview;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 textview = (TextView) findViewById(R.id.textview);

When we first start up, we’ll use an intent to trigger the default video capture application,

generally the built-in Camera activity to launch and allow the user to capture video.

We’re passing in the VIDEO_CAPTURED constant along with the intent to

startActivityForResult so we know in onActivityResult what is being returned to us.

 Intent captureVideoIntent =
 new Intent(android.provider.MediaStore.ACTION_VIDEO_CAPTURE);

CHAPTER 12: Media Consumption and Publishing Using Web Services 283

 startActivityForResult(captureVideoIntent, VIDEO_CAPTURED);
 }

 protected void onActivityResult (int requestCode, int resultCode, Intent data) {

When the Camera activity returns, we can get the Uri to the video file as it was captured

in the manner described in Chapter 11.

 if (resultCode == RESULT_OK && requestCode == VIDEO_CAPTURED) {
 Uri videoFileUri = data.getData();

In order to get the actual video file on the SD card, we need to query the MediaStore,

asking for the DATA column that represents the file.

 String[] columns = { android.provider.MediaStore.Video.Media.DATA };
 Cursor cursor = managedQuery(videoFileUri, columns, null, null, null);
 int fileColumn =
 cursor.getColumnIndexOrThrow(android.provider.MediaStore.Video.Media.DATA);
 if (cursor.moveToFirst()) {
 String videoFilePath = cursor.getString(fileColumn);
 Log.v("VIDEO FILE PATH",videoFilePath);

Once we have the path to the file, we’ll construct the File object, get its length, and

instantiate a BlipTVFilePoster object. BlipTVFilePoster extends AsyncTask, so to start

it doing work, we’ll call its execute method.

 videoFile = new File(videoFilePath);
 fileLength = videoFile.length();
 BlipTVFilePoster btvfp = new BlipTVFilePoster();
 btvfp.execute();
 }

If it is the video player activity returning to us, we’ll simply finish. Our work is done.

 } else if (requestCode == VIDEO_PLAYED) {
 finish();
 }
 }

As mentioned, the BlipTVFilePoster class extends AsyncTask. This way it can do work

in a background thread without tying up the interface. It will also implement

ProgressListener, which is an interface we designed here to handle progress callbacks

from the uploading class, and BlipXMLParserListener so it can handle callbacks from

the XML parsing class.

 class BlipTVFilePoster extends AsyncTask<Void, String, Void> implements
 ProgressListener, BlipXMLParserListener {

The videoUrl variable will contain the URL to the video file after it has been uploaded to

Blip.TV.

 String videoUrl;

 @Override
 protected Void doInBackground(Void... params) {

As previously described, we can use HttpClient with a MultipartEntity to perform an

HTTP file upload.

CHAPTER 12: Media Consumption and Publishing Using Web Services 284

 HttpClient httpclient = new DefaultHttpClient();
 HttpPost httppost = new HttpPost("http://blip.tv/file/post");

For this example, we are using a class, ProgressMultipartEntity, which extends

MultipartEntity but lets us track the upload progress. We pass ourselves in as the

listener, which we can do since we implement ProgressListener.

 ProgressMultipartEntity multipartentity = new ProgressMultipartEntity(this);

We need to add several parts to the post as required by Blip.TV. Of course, we need the

file, but we also need the user login (username), password, title, post with a value of

“1” so that it actually gets posted, and skin with a value of api so that we get XML in

response instead of a normal web page.

 try {
 multipartentity.addPart("file", new FileBody(videoFile));

 multipartentity.addPart("userlogin", new StringBody(username));
 multipartentity.addPart("password", new StringBody(password));
 multipartentity.addPart("title", new StringBody(title));
 multipartentity.addPart("post", new StringBody("1"));
 multipartentity.addPart("skin", new StringBody("api"));

 httppost.setEntity(multipartentity);
 HttpResponse httpresponse = httpclient.execute(httppost);

 HttpEntity responseentity = httpresponse.getEntity();
 if (responseentity != null) {

Once we execute the HTTP file upload, we can get an InputStream to read the response

from the server. In our case, we want to simply hand that InputStream to an

implementation of a SAX parser so we can determine if the upload succeeded.

 InputStream inputstream = responseentity.getContent();

 SAXParserFactory aSAXParserFactory = SAXParserFactory.newInstance();
 try {

 SAXParser aSAXParser = aSAXParserFactory.newSAXParser();
 XMLReader anXMLReader = aSAXParser.getXMLReader();

We’ll be using a BlipResponseXMLHandler, defined here to deal specifically with the XML

responses from Blip.TV after a file upload.

 BlipResponseXMLHandler xmlHandler =
 new BlipResponseXMLHandler(this);
 anXMLReader.setContentHandler(xmlHandler);
 anXMLReader.parse(new InputSource(inputstream));

 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 } catch (SAXException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 inputstream.close();

http://blip.tv/file/post

CHAPTER 12: Media Consumption and Publishing Using Web Services 285

 }
 } catch (ClientProtocolException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 return null;
 }

As is normal in an AsyncTask, the onProgressUpdate method is eventually triggered when

publishProgress is called. This method can interact directly with the UI thread, unlike

the doInBackground method.

 protected void onProgressUpdate(String... textToDisplay) {
 textview.setText(textToDisplay[0]);
 }

The onPostExecute method is triggered when the doInBackground method has

completed. When this occurs, and if our videoUrl variable has been populated by the

XML parser, we simply create an intent to play the uploaded file back using the default

video player activity.

 protected void onPostExecute(Void result) {
 if (videoUrl != null) {
 Intent viewVideoIntent = new Intent(Intent.ACTION_VIEW);
 Uri uri = Uri.parse("http://blip.tv/file/get/" + videoUrl);
 viewVideoIntent.setDataAndType(uri, "video/3gpp");
 startActivityForResult(viewVideoIntent, VIDEO_PLAYED);
 }
 }

The transferred method, defined here, is required as part of the implementation of the

ProgressListener interface. It will be called by the ProgressMultipartEntity while the

file is being uploaded. It will call the publishProgress method, which triggers the

onProgressUpdate method to update the UI.

 public void transferred(long num) {
 double percent = (double)num/(double)fileLength;
 int percentInt = (int) (percent * 100);

 publishProgress("" + percentInt + "% Transferred");
 }

The parseResult method is required as part of the implementation of the

BlipXMLParserListener. This method will be called when there is progress in parsing the

XML that should be reported to the user. It simply calls publishProgress, which triggers

onProgressUpdate to display the results to the user.

 public void parseResult(String result) {
 publishProgress(result);
 }

http://blip.tv/file/get

CHAPTER 12: Media Consumption and Publishing Using Web Services 286

setVideoUrl is also required as part of the implementation of the

BlipXMLParserListener. It simply populates the videoUrl variable with the URL to the

video after it has been uploaded.

 public void setVideoUrl(String url) {
 videoUrl = url;
 }
 }

Here is ProgressMultipartEntity, which extends MultipartEntity. This class hosts the

ProgressListener so it can report progress and overrides the writeTo methods to use

an OutputStream that can count the outgoing bytes.

 class ProgressMultipartEntity extends MultipartEntity {
 ProgressListener progressListener;

 public ProgressMultipartEntity(ProgressListener pListener) {
 super();
 this.progressListener = pListener;
 }

 @Override
 public void writeTo(OutputStream outstream) throws IOException {
 super.writeTo(new ProgressOutputStream(outstream, this.progressListener));
 }
 }

The ProgressListener interface is very simple—it just specifies that we need to have a

method, transferred in the implementing class.

 interface ProgressListener {
 void transferred(long num);
 }

Here is ProgressOutputStream, which overrides the write methods in

FilterOutputStream and tracks the number of bytes that have been transferred.

 static class ProgressOutputStream extends FilterOutputStream {

 ProgressListener listener;
 int transferred;

 public ProgressOutputStream(final OutputStream out, ProgressListener listener) {
 super(out);
 this.listener = listener;
 this.transferred = 0;
 }

 public void write(byte[] b, int off, int len) throws IOException {
 out.write(b, off, len);
 this.transferred += len;
 this.listener.transferred(this.transferred);
 }

 public void write(int b) throws IOException {
 out.write(b);
 this.transferred++;
 this.listener.transferred(this.transferred);

CHAPTER 12: Media Consumption and Publishing Using Web Services 287

 }
 }

Finally we have the BlipXMLParserListener interface and BlipResponseXMLHandler,

which deal with the XML as delivered from Blip.TV in response to our file upload.

 interface BlipXMLParserListener {
 void parseResult(String result);
 void setVideoUrl(String url);
 }

class BlipResponseXMLHandler extends DefaultHandler {

The following constants are used in combination with the state variable to keep track of

where we are within the XML.

 int NONE = 0;
 int ONSTATUS = 1;
 int ONFILE = 2;
 int ONERRORMESSAGE = 3;

 int state = NONE;

The next set of constants defines the possible status values that may be returned in the

XML. We’ll use these to keep track of the status in the status integer defined directly

here.

 int STATUS_UNKNOWN = 0;
 int STATUS_OK = 1;
 int STATUS_ERROR = 2;

 int status = STATUS_UNKNOWN;

The message variable will be used to contain either the error message returned from the

XML or URL of the video if it was a successful upload.

 String message = "";

Of course, we’ll need to hold onto the BlipXMLParserListener that is passed in via the

constructor.

 BlipXMLParserListener listener;

 public BlipResponseXMLHandler(BlipXMLParserListener bxpl) {
 super();
 listener = bxpl;
 }

 @Override
 public void startDocument() throws SAXException {
 }

 @Override
 public void endDocument() throws SAXException {
 }

Much of the work will be done within the startElement tag. The localName variable that

contains the name of the XML tag will be checked to see if it matches anything that we

CHAPTER 12: Media Consumption and Publishing Using Web Services 288

need to pay attention to, and if it does, we’ll set the state variable to the appropriate

constant.

 @Override
 public void startElement(String uri, String localName, String qName,
 Attributes attributes) throws SAXException {
 if (localName.equalsIgnoreCase("status")) {
 state = ONSTATUS;
 } else if (localName.equalsIgnoreCase("file")) {
 state = ONFILE;

If it is the file element, we tell the listener, and we’ll pull out the src attribute, which will

equal the file name that Blip.TV gave it after it was uploaded.

 listener.parseResult("onFile");
 message = attributes.getValue("src");
 listener.parseResult("filemessage:" + message);

We’ll then pass that to BlipXMLParserListener via the setVideoUrl method.

 listener.setVideoUrl(message);
 } else if (localName.equalsIgnoreCase("message")) {
 state = ONERRORMESSAGE;
 listener.parseResult("onErrorMessage");
 }
 }

 @Override
 public void endElement(String uri, String localName, String qName)
 throws SAXException {
 if (localName.equalsIgnoreCase("status")) {
 state = NONE;
 } else if (localName.equalsIgnoreCase("file")) {
 state = NONE;
 } else if (localName.equalsIgnoreCase("message")) {
 state = NONE;
 }
 }

Our characters method will be triggered when any content is found within an element. If

our state variable indicates that we are reading an element that we need to be

concerned with, we’ll take action.

 @Override
 public void characters(char[] ch, int start, int length) throws SAXException {
 String stringChars = new String(ch, start, length);

If we are reading the status element, we’ll set the status variable to the appropriate

constant.

 if (state == ONSTATUS) {
 if (stringChars.equalsIgnoreCase("OK")) {
 status = STATUS_OK;
 } else if (stringChars.equalsIgnoreCase("ERROR")) {
 status = STATUS_ERROR;
 } else {
 status = STATUS_UNKNOWN;
 }

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 12: Media Consumption and Publishing Using Web Services 289

If we are on the error message element, we’ll get the text, set it to be our message

variable, and send it off to the listener.

 } else if (state == ONERRORMESSAGE) {
 message += stringChars.trim();
 listener.parseResult(message);
 }
 }
 }
}

The method utilized in the foregoing example for tracking the progress of the upload is

based on the answer provided by “tuler,” including edits by ColinD on the Stack

Overflow question asked by SoaperGEM on this page:
http://stackoverflow.com/questions/254719/file-upload-with-java-with-progress-
bar/470047#470047.

Here is the layout XML in use by the foregoing activity.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/textview"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text=""
 />
</LinearLayout>

Finally, here is AndroidManifest.xml, which includes the uses-permission tag specifying

that we need to be able to access the Internet.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.proandroidmedia.ch12.blipuploader"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".BlipTVUploader"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="4" />
 <uses-permission android:name="android.permission.INTERNET"></uses-permission>
</manifest>

This example illustrates the means to allow our users to directly publish their creations

to an online video sharing platform. Similar code could be used to publish to other

http://stackoverflow.com/questions/254719/file-upload-with-java-with-progress-bar/470047#470047
http://stackoverflow.com/questions/254719/file-upload-with-java-with-progress-bar/470047#470047
http://stackoverflow.com/questions/254719/file-upload-with-java-with-progress-bar/470047#470047
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 12: Media Consumption and Publishing Using Web Services 290

sharing platforms and, of course, isn’t limited to video. We could upload images to Flickr

or Picasa. We could upload audio files to audio sharing sites.

Summary
As we have seen throughout this chapter, leveraging online services for both obtaining

media and allowing users to publish media opens a wide range of possibilities. We

found that utilizing HTTP, REST, JSON, and XML with Android isn’t terribly difficult and

brings us the ability to access almost any web service. Furthermore, adding location into

the mix allows us to add yet another dynamic to our applications.

291

291

Index

■ A
AAC format, 106

ACCESS_FINE_LOCATION permission, 266

accuracy parameter, 268

ACTION_DOWN event, 96

ACTION_IMAGE_CAPTURE constant, 2

ACTION_MOVE event, 114

ACTION_PICK intent, 47, 50, 72

ACTION_VIDEO_CAPTURE constant, 229

Activity class, 4, 211

addPart method, 279

Advanced Video Coding (AVC), 195

album browsing app example, 118–123

ALBUM column, 118

ALBUM constant, 118–119

ALPHA_8 constant, 80

AMR format, 106

AMR_NB constant, 239

analyzing audio, 187–193

capturing sound for, 188

visualizing frequencies, 189

Android API, 55

Android SDK, 70

android.app.Service class, 127

android.content.Intent.ACTION_VIEW intent,

107–108

android.graphics.PorterDuff.Mode.DARKEN

rule, 71, 77

android.graphics.PorterDuff.Mode.DST rule,

70, 75

android.graphics.PorterDuff.Mode.DST_ATO

P rule, 70

android.graphics.PorterDuff.Mode.DST_IN

rule, 70

android.graphics.PorterDuff.Mode.DST_OU

T rule, 70

android.graphics.PorterDuff.Mode.DST_OVE

R rule, 70

android.graphics.PorterDuff.Mode.LIGHTEN

rule, 71, 77

android.graphics.PorterDuff.Mode.MULTIPL

Y rule, 71, 76

android.graphics.PorterDuff.Mode.SCREEN

rule, 71, 78

android.graphics.PorterDuff.Mode.SRC rule,

70, 76

android.graphics.PorterDuff.Mode.SRC_AT

OP rule, 70

android.graphics.PorterDuff.Mode.SRC_IN

rule, 70

android.graphics.PorterDuff.Mode.SRC_OU

T rule, 70

android.graphics.PorterDuff.Mode.SRC_OV

ER rule, 70

android.graphics.PorterDuff.Mode.XOR rule,

71

AndroidManifest.xml file, 2, 24, 42, 45, 136,

161, 254, 262, 271, 280

android.provider.BaseColumns class, 118

android.provider.MediaStore class, 229

android.provider.MediaStore.Audio

package, 115

android.provider.MediaStore.Audio.AlbumC

olumns class, 118

android.provider.MediaStore.Audio.Albums

class, 118

android.provider.MediaStore.Audio.Media

class, 115

android.provider.MediaStore.Audio.Media.D

ATA constant, 116

android.provider.MediaStore.Images.Media

class, 11

android.provider.MediaStore.MediaColumns

interface, 11

android.R.id.text1 view, 119

android.R.layout.simple_list_item_1 layout,

119

apache-mime4j-0.6.jar file, 278

ARGB_4444 constant, 80

ARGB_8888 constant, 80

Artist tag, 21

Index

292

AsyncTask class, 180, 190, 283, 285

audio, 105–150

analyzing, 187–193

capturing sound for, 188

visualizing frequencies, 189

background playback, 125–137

Local Service example, 126–129

Local vs. Remote Services, 126

MediaPlayer class, 109–115

controlling playback, 111–115

creating object, 110

MediaStore for, 115–123

accessing audio from, 115–117

album browsing app example,

118–123

browsing audio in, 118

networked, 137–150

HTTP playback, 137–143

RTSP streaming, 150

streaming audio via HTTP, 143–149

supported formats, 106–107

synthesizing, 179–187

generating samples, 182–187

playing synthesized sound, 180–182

using Music app via intent, 107–108

audio and video bitrates, 238

audio and video encoders, 237–238

audio capture, 151–177

AudioRecord class for, 167–170

example of, 172

and AudioTrack class

example of, 172

playback with, 170–171

inserting audio into MediaStore, 167

MediaRecorder class for, 154–166

example of, 157–161

setAudioEncoder method, 156

setAudioSource method, 155

setOutputFile method, 156

setOutputFormat method, 155

state of, 156

using intent, 151–154

audio sample rate, 238–239

AudioFormat class, 168, 170

AudioManager class, 170

AudioProcessing activity, 192–193

AudioRecord class, 151, 167–170, 172, 177,

179–180, 188

AudioSource class, 155

AudioSynthesisTask class, 180

AudioTrack class, 170–172, 177, 179–180,

187

AVAILABLE constant, 265

AVC (Advanced Video Coding), 195

■ B
background audio playback, 125–137

Local Service example, 126–129

binding with MediaPlayer class,

132–137

implementing MediaPlayer class,

129–132

Local vs. Remote Services, 126

BaseAdapter class, 215

bestHeight variable, 31

bestWidth variable, 31

bindService method, 133–134

Bitmap

applying Matrix class while creating,

64–65

configurations for, 80

drawing Bitmap onto, 52–53

Bitmap.Config class, 79

Bitmap.Config.ARGB_8888 constant, 79

BitmapFactory class, 6–7, 12

BitmapFactory.Options class, 6–7

BitmapFactory.Options.inJustDecodeBound

s variable, 7

BitmapFactory.Options.inSampleSize

variable, 7

BitmapFactory.Options.outHeight variable, 7

BitmapFactory.Options.outWidth variable, 7

bitrates, audio and video, 238

BlipResponseXMLHandler class, 284, 287

Blip.TV, uploading video to, 280

BlipTVFilePoster class, 283

BlipXMLParserListener interface, 283,

285–288

brightness, changing with ColorMatrix class,

67–69

BufferedReader class, 279

■ C
callback methods, for Camera class, 34–35

CAMCORDER constant, 155, 235

CamcorderProfile.get method, 241

CamcorderProfile.QUALITY_HIGH constant,

241

Index

293

CamcorderProfile.QUALITY_LOW constant,

241

Camera application, capturing images using,

1–9

displaying large images from, 6–9

returning data from, 3–5

and size restrictions, 5

Camera class, 23–45

example using, 35–38

extending, 38–45

time-lapse photography app, 43–45

timer-based camera app, 38–42

implementing, 25–35

callback methods for, 34–35

capturing and saving image, 32–33

parameters for, 27–30

preview size for, 30–32

and permissions, 24

SurfaceView class for, 24–25

CAMERA permission, 24, 37, 42

Camera.AutoFocusCallback method, 34

Camera.ErrorCallback method, 35

Camera.OnZoomChangeListener method,

35

Camera.Parameters class, 23, 27, 30–31

Camera.Parameters setRotation method, 28

Camera.PictureCallback.onPictureTaken

method, 32

Camera.PreviewCallback method, 34

Camera.ShutterCallback method, 35

Camera.takePicture method, 33

cancel method, 163

Canvas class, 79–92

circles with, 86

creating, 81

creating Bitmap, 79

drawLine method, 84

drawPoint method, 83

drawText method, 87–92

built-in fonts, 88–89

drawTextOnPath method, 92

external fonts, 91

font styles, 90

ovals with, 86

Paint class, 82–83

setColor method, 82

setStrokeWidth method, 83

setStyle method, 83

paths with, 87

rectangles with, 85

capture. See video capture

captureVideoButton button, 230–231, 233

channels, audio, 239

characters method, 277, 288

choosePicture button, 49, 102

ChopinScript.ttf file, 91

circles, with Canvas class, 86

click events, 48

Color class, 82

Color.argb method, 82

Color.BLACK constant, 82

Color.BLUE constant, 82

ColorMatrix class, 65–69

changing brightness with, 67–69

changing contrast with, 67–69

changing saturation with, 69

overview, 65–67

Color.RED constant, 82

compositing, of images, 69–78

compress method, 102

ContentProvider class, 211

Content.startActivity method, 229

Context class, 127

Context.getResources().getConfiguration()

method, 28

Context.startActivityForResult method, 229

contrast, changing with ColorMatrix class,

67–69

controlling playback, 111

Copyright tag, 21

create method, 90, 110–111

createBitmap method, Bitmap class, 53, 64

createRecording Button, 153

currentState variable, 119–120, 122

Cursor class, 18, 116

custom video capture, 235–250. See also

MediaRecorder for video

CustomRecorder activity, 158

■ D
DAC (digital-to-analog conversion), 179

DATA column, 116, 283

DATE_ADDED column, 116

DATE_MODIFIED column, 116

decodeStream method, BitmapFactory

class, 52

DEFAULT constant, 236–238

DefaultHandler class, 274, 276

DefaultHttpClient class, 278

DFT (discrete Fourier transform), 189

digital-to-analog conversion (DAC), 179

Index

294

discrete Fourier transform (DFT), 189

do while loop, 214

Document Object Model (DOM), 273

Document Type Definitions (DTD), 273

doInBackground method, 165, 176, 180,

191, 285

DOM (Document Object Model), 273

downx variable, 95–96

downy variable, 95–96

drawBitmap method, 53, 55

drawing graphics, 79–104

Canvas class, 79–92

circles with, 86

creating, 81

creating Bitmap, 79

drawLine method, 84

drawPoint method, 83

drawText method, 87–92

ovals with, 86

Paint class, 82–83

paths with, 87

rectangles with, 85

with finger, 93–104

on existing images, 97–100

saving drawing, 101–104

touch events for, 93–96

drawLine method, for Canvas class, 84

drawPoint method, for Canvas class, 83

drawText method, for Canvas class, 87–92

built-in fonts, 88–89

and drawTextOnPath method, 92

external fonts, 91

font styles, 90

drawTextOnPath method, for Canvas class,

92

DTD (Document Type Definitions), 273

■ E
Eclipse Package Explorer, 278

EditText elements, 15

EFFECT_AQUA constant,

Camera.Parameters class, 30

EFFECT_BLACKBOARD constant,

Camera.Parameters class, 30

EFFECT_MONO constant,

Camera.Parameters class, 30

EFFECT_NEGATIVE constant,

Camera.Parameters class, 30

EFFECT_NONE constant,

Camera.Parameters class, 30

EFFECT_POSTERIZE constant,

Camera.Parameters class, 30

EFFECT_SEPIA constant,

Camera.Parameters class, 30

EFFECT_SOLARIZE constant,

Camera.Parameters class, 30

EFFECT_WHITEBOARD constant,

Camera.Parameters class, 30

encoders, audio and video, 237–238

endDocument method, 276

endElement method, 277

error tag, 281

execute method, 164, 167, 173, 252–253,

283

ExifInterface class, 21

EXTERNAL_CONTENT_URI constant, 11,

167

EXTRA_OUTPUT constant, 5

■ F
FFT (fast Fourier transform), 189

FFT class, 191

FFTPACK library, 189

fftpack package, 189

file element, 281, 288

file uploads, HTTP

overview, 278–290

uploading video to Blip.TV, 280

File variable, 282

File.createTempFile method, 156

fileLength variable, 282

FilterOutputStream class, 286

findViewById function, 113

findViewById method, 4, 13

finger painting, 93–104

on existing images, 97–100

saving drawing, 101–104

touch events for, 93–96

finish method, 249

flags parameter, 128

flash mode, 29

Flickr, pulling images using JSON, 257–272

FlickrGalleryAdapter class, 260, 269

FlickrPhoto class, 261, 270

flickr.photos.search method, 257

flipping images, with Matrix class, 63

fonts, for drawText method

built-in, 88–89

external fonts, 91

styles for, 90

Index

295

format parameter, 257

formats

supported for audio, 106–107

for video, 195–196

frame rate, video, 239

frequencies, visualizing, 189

full custom example, 246

■ G
Gallery application, selecting images using,

47–52

gen folder, 110

GET request, 252

getAction method, 94

getAltitude method, 265

getAssets method, 91

getBitmap method, 20

getBoolean method, 255

getColorEffect method, 29

getColumnIndex method, 116, 121

getContent method, 252, 279

getCount method, 215

getData method, 154

getDouble method, 255

getFlashMode() method, 29

getHolder method, 24

getInt method, 18

getItem method, 215

getJSONArray method, 255

getJSONObject method, 255

getLatitude method, 265

getLong method, 255

getLongitude method, 265

getMaxAmplitude method, 162, 165–166

getMinBufferSize method, 168, 171

getService method, 134

getString method, 18, 121, 255

getSupportedColorEffects method, 29

getSystemService method, 264

getVideoHeight method, 206

getVideoWidth method, 206

getView method, 215–216, 260

Global Positioning Satellites (GPS), 264

goodmorningandroid_m4a.m4a file, 111

goodmorningandroid_mp3.mp3 file, 111

goodmorningandroid.m4a file, 111

goodmorningandroid.mp3 file, 111, 113, 130

GPS (Global Positioning Satellites), 264

GPS_PROVIDER constant, 264

■ H
H263 constant, 237

H264 constant, 237

haveFun method, 136

haveFunButton button, 134–135

HTTP (Hypertext Transfer Protocol)

audio playback via, 137–143

file uploads

overview, 278–290

uploading video to Blip.TV, 280

networked video, 218–219

requests

making, 278–280

overview, 252–254

streaming audio via, 143–149

HttpClient class, 252, 278, 280

HttpEntity class, 279

httpmime-4.0.x.jar file, 278

HttpPost request, 278

Hypertext Transfer Protocol. See HTTP

■ I
_ID column, 118

_ID constant, 119

ImageDescription tag, 21

images, 1–22, 47–78

capture using Camera app, 1–9

displaying large images from, 6–9

returning data from, 3–5

and size restrictions, 5

capturing and saving, with Camera

class, 32–33

ColorMatrix class, 65–69

changing brightness with, 67–69

changing contrast with, 67–69

changing saturation with, 69

overview, 65–67

compositing of, 69–78

creating viewing application for, 18–20

drawing Bitmap onto Bitmap, 52–53

drawing with finger on, 97–100

Matrix class

applying while creating Bitmap,

64–65

flipping with, 63

mirroring with, 62

overview, 55–58

pre and post methods for, 61

setRotation method, 58–59

Index

296

setScale method, 60

setTranslate method, 61

and metadata, 10–22

adding later, 12

associating to image, 12–16

is part of file, 21–22

obtaining URI for image, 11

prepopulating, 11–12

retrieving saved, 12

retrieving using MediaStore, 16–18

selecting using Gallery app, 47–52

initRecorder method, 246–248

InputStream class, 279–280

InputStreamReader class, 279

inSampleSize parameter, 6

insert method, 167

Intent.ACTION_VIEW constant, 196

intents

audio capture using, 151–154

playing video with, 196–197

recording video using, 229–232

INTERNAL_CONTENT_URI constant, 11

INTERNET permission, 262

invalidate method, 95

IOException, 25, 138

■ J, K
javasource directory, 189

jfftpack.tgz file, 189

JSON (JavaScript Object Notation), 254–272

pulling Flickr images using, 257–272

using location as part of request,

263–272

JSONArray constructor, 256

JSONException, 256

JSONObject class, 255

JSONObject constructor, 256

■ L
LARGEST_HEIGHT constant,

Camera.Parameters class, 31

LARGEST_WIDTH constant,

Camera.Parameters class, 31

lat parameter, 268

layout/main.xml file, 13, 51

list_item.xml file, 216–217, 261–262

ListActivity class, 120

ListView layout, 119

Local Service

example of, 126–129

binding with MediaPlayer class,

132–137

implementing MediaPlayer class,

129–132

vs. Remote Service, 126

localName variable, 277, 287

LocationManager class, 264–265, 267

LocationManager.NETWORK_PROVIDER

constant, 266

Log command, 12

lon parameter, 268

■ M
main.xml file, 16, 127, 131, 149, 161, 207,

216, 262, 271

makeURL method, 262

managedQuery method, 17, 19, 116,

118–119, 121, 212

Matrix class

applying while creating Bitmap, 64–65

flipping with, 63

mirroring with, 62

overview, 55–58

pre and post methods for, 61

setRotation method, 58–59

setScale method, 60

setTranslate method, 61

MediaController class, adding controls with

playing video with MediaPlayer class,

208

playing video with VideoView, 199–200

MediaController view, 208

MediaPlayer class, 109–115

controlling playback, 111–115

creating object, 110

and Local Service

binding with, 132–137

implementing in, 129–132

networked video playback with, 221

playing video with, 200–210

adding controls with MediaController

class, 208

example of, 202–208

states of, 200–201

MediaPlayer constructor, 137

MediaRecorder class, 154–166

example of, 157–161

setAudioEncoder method, 156

Index

297

setAudioSource method, 155

setOutputFile method, 156

setOutputFormat method, 155

state of, 156

MediaRecorder for video, 235–245

audio and video bitrates, 238

audio and video encoders, 237–238

audio and video sources, 235–236

audio channels, 239

audio sample rate, 238–239

maximum duration, 240

maximum file size, 240

output file, 242

output format, 236–237

permissions, 245

preparing to record, 244

preview Surface, 242–243

profile, 241–242

releasing resources, 244

starting recording, 244

state machine, 244–245

stopping recording, 244

video frame rate, 239

video size, 239

MediaRecorder.AudioEncoder class, 156

MediaRecorder.AudioSource class, 235

MediaRecorder.MEDIA_RECORDER_INFO_

FILESIZE_REACHED constant, 240

MediaRecorder.MEDIA_RECORDER_INFO_

MAX_DURATION_REACHED

constant, 240

MediaRecorder.OutputFormat class, 155,

237

MediaRecorder.OutputFormat.MPEG_4

constant, 155

MediaRecorder.OutputFormat.RAW_AMR

constant, 155

MediaRecorder.OutputFormat.THREE_GPP

constant, 156

MediaRecorder.VideoSource class, 236

MediaScanner service, 217

MediaStore

for audio, 115–123

accessing audio from, 115–117

album browsing app example,

118–123

browsing audio in, 118

inserting audio into, 167

for video, 211–218

example of, 212–218

thumbnails from, 212

MediaStore class, 2, 12, 15, 18, 33, 283

MediaStore query, 215

MediaStore.Audio package, 115

MediaStore.Audio.Albums class, 119

MediaStore.Audio.Albums.ALBUM constant,

119

MediaStore.Audio.Media class, 151, 167

MediaStore.Audio.Media.DATA constant,

167

MediaStore.Audio.Media.RECORD_SOUND

_ACTION action, 153

MediaStore.Images.Media class, 17

MediaStore.MediaColumns class, 211

MediaStore.Video class, 211

MediaStore.Video.Media class, 211

MediaStore.Video.Media query, 213

MediaStore.Video.Media._ID field, 211–212

MediaStore.Video.Media.DATA variable, 211

MediaStore.Video.Media.EXTERNAL_CONT

ENT_URI constant, 211–212

MediaStore.Video.Thumbnails class, 211

MediaStore.Video.Thumbnails queries, 213

message variable, 287, 289

metadata

for images, 10–22

adding later, 12

associating to image, 12–16

is part of file, 21–22

obtaining URI for image, 11

prepopulating, 11–12

for video, 232–235

method parameter, 257

MIC constant, 236

mirroring images, with Matrix class, 62

MotionEvent class, 94

MotionEvent.ACTION_CANCEL constant, 94

MotionEvent.ACTION_DOWN constant, 94

MotionEvent.ACTION_MOVE constant, 94

MotionEvent.ACTION_UP constant, 94

moveToFirst method, 18–19, 117

moveToNext method, 19, 118

moveToPosition method, 120, 122

MP3 format, 106

MPEG_4 constant, 237

MPEG_4_SP constant, 238

MultipartEntity class, 278–279, 284, 286

MULTIPLY mode, 73

Music app, using via intent, 107–108

Music directory, 108

myfavoritepicture.jpg file, 5

Index 298

■ N
NETWORK_PROVIDER constant, 264

networked audio, 137–150

HTTP playback, 137–143

RTSP streaming, 150

streaming audio via HTTP, 143–149

networked video, 218–228

HTTP, 218–219

playback with MediaPlayer, 221

playback with VideoView, 221

RTSP, 219–221

nojsoncallback parameter, 257

Nyquist, Harry, 188

■ O
of MediaRecorder class, 156

Ogg format, 106

onActivityResult method, 16, 48, 50, 73, 98,

153–154, 229–231

onBind method, 127–128

onBufferingUpdate method, 142, 222

onClick method, 33, 40, 49, 98, 114, 141,

153, 159, 231, 247

OnClickListener method, 14–15, 19, 231

onCompletion method, 111, 113, 130,

141–142, 153–154, 161, 204–205

OnCompletionListener interface, 140

onCreate method, 13–14, 27, 44, 48, 119,

140, 159, 203, 209

onDestroy method, 128, 130

onError method, 141, 205

onInfo method, MediaRecorder class, 240,

242

onItemClick method, 214

onListItemClick method, ListActivity class,

120

onLocationChanged method, 265, 268

onPause method, 265

onPictureTaken method, 32–33, 36

onPostExecute method, 176, 285

onPrepare method, 226

onPrepareAsync method, 226

onPrepared method, 142, 148, 204, 206,

209

OnPreparedListener interface, 140, 206

onProgressUpdate method, 165, 176, 192,

285

onProviderDisabled method, 265, 269

onProviderEnabled method, 265, 269

onServiceConnected method, 134

onServiceDisconnected method, 135

onStart method, 111, 128, 130

onStartCommand method, 128, 130

onStatusChanged method, 265

onStop method, 111, 265

onTouch method, 93, 95, 98–99, 185–186

OnTouchListener activity, 185

OnTouchListener interface, 93

ORDER BY clause, 17, 116

ORDER BY variable, 121

org.apache.http package, 252

org.json package, 254

OUT_OF_SERVICE constant, 266

OutputStream class, 286

ovals, with Canvas class, 86

■ P
Paint class, 82–83

setColor method, 82

setStrokeWidth method, 83

setStyle method, 83

Paint.setTypeface method, 90–91

Paint.Style class, 83

Paint.Style.FILL constant, 83

Paint.Style.FILL_AND_STROKE constant, 83

Paint.Style.STROKE constant, 83

parameters, for Camera class, 27–30

Parameters.set method, 27, 29

parse method, 274

parseButton button, 145

parsePlaylistFile method, 145–146

parseResult method, 285

paths, with Canvas class, 87

pause method, 141, 148, 199

PCM format, 107

Pelletier, Claude, 91

permissions, and Camera class, 24

photo element, 258

PlayAudio class, 174

playButton button, 145, 147

playing video, 195–210

with intent, 196–197

with MediaPlayer class, 200–210

adding controls with MediaController

class, 208

example of, 202–208

states of, 200–201

supported formats, 195–196

with VideoView, 197–200

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Index

299

PlaylistFile class, 149

playlistItems Vector, 145–148

playPlaylistItems method, 145, 147

playRecording Button, 153–154, 159–161

playVideoButton button, 230–231, 233

PorterDuff.Mode class, 70

PorterDuffXfermode class, 70, 75–78

post methods, for Matrix class, 61

POST request, 252, 278

postingResult variable, 282

postTranslate method, Matrix class, 62

pre methods, for Matrix class, 61

prepare method, 138, 159, 162, 166, 204,

244, 247

prepareAsync method, 138–139, 141–142,

148, 204, 224

prepareRecorder method, 247–248

preview size, for Camera class, 30–32

ProgressListener interface, 285–286

ProgressMultipartEntity class, 284–286

ProgressOutputStream class, 286

publishProgress method, 165, 175–176,

192, 285

■ Q
qt-faststart application, 219

QUALITY_HIGH constant, CamcorderProfile

class, 241–242, 247

QUALITY_LOW constant, CamcorderProfile

class, 241

■ R
R class, 130

raw folder, res folder, 110

RAW_AMR constant, 237

Real Time Streaming Protocol. See RTSP

RealDoubleFFT class, 189–190

Real-time Transport Protocol (RTP), 220

RECORD_REQUEST constant, 153–154

RECORD_SOUND_ACTION constant, 151

RecordAmplitude class, 162–163

RecordAudio class, 175, 190

recording video, using intents, 229–232

rectangles, with Canvas class, 85

RectF class, 85

release method, 167, 244, 248

Remote Service, vs. Local Service, 126

removeCallbacks method, 44

removeUpdates method, 265

Representational State Transfer. See REST

requestLocationUpdates method, 264–265,

267

res folder, 110–111

reset method, 205

res/layout/main.xml file, 20, 37, 231, 234

res/layout/main.xml interface, 45

REST (Representational State Transfer),

273–278

representing data in XML, 273

SAX parsing, 274–278

RESULT_OK constant, 154, 231

RGB_565 constant, 80

R.java file, gen folder, 109

Rodriguez, Alex, 273

R.raw.goodmorningandroid constant, 130

RTP (Real-time Transport Protocol), 220

RTSP (Real Time Streaming Protocol)

audio streaming, 150

networked video, 219–221

■ S
sample rate, audio, 238–239

samples, for audio, 182–187

saturation, changing with ColorMatrix class,

69

Save Button, 103

savePicture button, 101–102

saveVideoButton button, 233

SAX parsing, 274–278

SAXParser class, 274–275

SAXParserFactory class, 274–275

SECONDS_BETWEEN_PHOTOS constant,

44–45

seek command, 207

setAudioChannels method, 166, 239

setAudioEncoder method, 155–156, 160,

238–239

setAudioEncodingBitRate method, 166

setAudioSampleRate method, MediaPlayer

class, 238

setAudioSamplingRate method, 166

setAudioSource method, 155, 160, 235

setColor method, 82

setColorEffect method, 29

setContentHandler method, 274

setContentView method, 13, 199

setDataAndType method, 196

Index

300

setDataSource method, 138, 141, 147, 159,

203, 223

setDisplay method, 204

setDisplayOrientation(int degrees) method,

Camera class, 29

setEntity method, 279

setFlashMode(Camera.Parameters.FLASH_

MODE_AUTO) method, 29

setListAdapter method, 119

setLooping(true) method, 112

setMaxDuration method, 162, 240

setMaxFileSize method, 162, 240

setMediaPlayer method, 209

setOneShotPreviewCallback(Camera.Previe

wCallback) method, 34

setOnTouchListener method, 93

setOutputFile method, 155–156, 160

setOutputFormat method, 155–156, 160,

162, 236

setPreviewCallback(Camera.PreviewCallbac

k) method, 34

setPreviewCallbackWithBuffer(Camera.Previ

ewCallback) method, 34

setPreviewDisplay method, 243, 247

setProfile method, MediaRecorder class,

241

setRotation method, for Matrix class, 58–59

setScale method, Matrix class, 60, 62

setStrokeWidth method, for Paint class, 83

setStyle method, for Paint class, 83

setTextSize method, 88

setTranslate method, Matrix class, 61

setTypeface method, 88

setValues method, Matrix class, 55

setVideoEncoder method, MediaRecorder

class, 155, 237

setVideoEncodingBitrate method,

MediaRecorder class, 238

setVideoFrameRate method, 239

setVideoSize method, 240

setVideoSource method, 155, 236

setVideoUrl method, 286, 288

setVisibility method, 14

Short.MAX_VALUE constant, 191

SIZE column, 116

size restrictions, and capturing images using

Camera app, 5

SizedCameraIntent activity, 10

Software tag, 21

src attribute, 288

src directory, 189

start method, 141, 156, 198–199, 244, 248

startActivity method, 3, 108

startActivityForResult method, 3, 14, 73,

153–154, 231

startButton button, 40, 140, 142

startDocument method, 276

startElement method, 277, 287

startId parameter, 128

startPlaybackButton button, 134

startRecording Button, 160

startRecording method, 169

StartService button, 127

startService command, 130

startService method, 127–128

startServiceButton button, 127

startStopButton button, 43

state variable, 276–277, 288

states

of MediaPlayer class, 200–201

of MediaRecorder class, 156

status element, 288

status variable, 265, 288

stop method, 148, 242, 244, 248

stopButton button, 140, 145, 148

stopPlaybackButton button, 134

stopRecording Button, 159–161

stopService method, 127–128

stopServiceButton button, 127

StringBuilder class, 279

supported formats

for audio, 106–107

for video, 195–196

SURFACE_TYPE_PUSH_BUFFERS

constant, 243

surfaceChanged method, 243

surfaceCreated method, 28, 32, 204, 243

surfaceDestroyed method, 204, 243

SurfaceHolder class, 24, 222, 245

SurfaceHolder.Callback interface, 202–204,

243–244, 246–247

SurfaceHolder.Callback methods, 36

<SurfaceView /> element, 24

SurfaceView class, 24–25

synth_frequency variable, 186–187

synthesizing audio, 179–187

generating samples, 182–187

playing synthesized sound, 180–182

System.currenTimeMillis() method, 17

Index

301

■ T
tags parameter, 257

takePicture method, Camera class, 32–33

TEMPORARILY_UNAVAILABLE constant,

265

Test_Movie_iPhone.m4v file, 196

TextView class, 222, 261, 282

Thread.sleep(500) method, 165

THREE_GPP constant, 237

thumbnails, from MediaStore for video, 212

time-lapse photography app, with Camera

class, 43–45

timer-based camera app, with Camera

class, 38–42

title variable, 282

toString method, 253

touch events, for finger painting, 93–96

true (while) loop, 170

try catch block, 247, 253, 256

Typeface class, 88, 90

Typeface.create method, 90

Typeface.createFromAsset method, 91

Typeface.DEFAULT constant, 89

Typeface.DEFAULT_BOLD constant, 89

Typeface.MONOSPACE constant, 88

Typeface.SANS_SERIF constant, 88

Typeface.SERIF constant, 88

■ U
update method, 232, 234

upx variable, 95

upy variable, 95

URI, obtaining for images, 11

Uri.fromFile method, 117

URL field, 144

UserComment tag, 21

UserXMLHandler class, 275–276

uses-permission tag, 249, 266

using Music app via intent, 107

■ V
video, 195–228

MediaStore for, 211–218

example of, 212–218

thumbnails from, 212

networked, 218–228

HTTP, 218–219

playback with MediaPlayer, 221

playback with VideoView, 221

RTSP, 219–221

playback of, 195–210

with intent, 196–197

with MediaPlayer class, 200–202,

208–210

supported formats, 195–196

with VideoView, 197–200

video capture, 229–250

adding video metadata, 232–235

custom. See also MediaRecorder for

video

full custom example, 246–250

recording video using intents, 229–232

video frame rate, 239

VIDEO_CAPTURED constant, 229–231, 282

VideoGalleryAdapter class, 214–215

videoHeight property, 206

videoUrl variable, 283, 285

VideoView

networked video playback with, 221

playing video with, 197–200

VideoView class, 214, 221

VideoViewInfo class, 215

videoWidth property, 206

View class, 93

View.GONE constant, 14

View.INVISIBLE constant, 14

visualizing frequencies, 189

VOICE_CALL constant, 155, 236

VOICE_DOWNLINK constant, 155, 236

VOICE_RECOGNITION constant, 155, 236

VOICE_UPLINK constant, 155, 236

■ W
web services, media consumption and

publishing using, 251–290

HTTP file uploads

overview, 278–290

uploading video to Blip.TV, 280

HTTP requests

making, 278–280

overview, 252–254

JSON, 254–272

pulling Flickr images using, 257–272

using location as part of request,

263–272

overview, 251–252

REST, 273–278

representing data in XML, 273

Index

302

SAX parsing, 274–278

what parameter, 240

WHERE clause, 17, 116, 121

while (true) loop, 170

while clause, 214

write method, 180, 182, 286

writeTo method, 286

■ X, Y, Z
Xfermode class, 70

XML, representing data in, 273

XMLHandler class, 274

XMLReader class, 274–276

XMLUser class, 275, 277

Index

Index

	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Preface
	Introduction to Android Imaging
	Image Capture Using the Built-In Camera Application
	Returning Data from the Camera App
	Capturing Larger Images
	Displaying Large Images

	Image Storage and Metadata
	Obtaining an URI for the Image
	Updating Our CameraActivity to Use MediaStore for Image Storage and to Associate Metadata
	Retrieving Images Using the MediaStore
	Creating an Image Viewing Application
	Internal Metadata

	Summary

	Building Custom Camera Applications
	Using the Camera Class
	Camera Permissions
	Preview Surface
	Implementing the Camera
	Putting It All Together

	Extending the Custom Camera Application
	Building a Timer-Based Camera App
	Building a Time-Lapse Photography App

	Summary

	Image Editing and Processing
	Selecting Images Using the Built-In Gallery Application
	Drawing a Bitmap onto a Bitmap
	Basic Image Scaling and Rotating
	Enter the Matrix
	Matrix Methods
	Alternative to Drawing

	Image Processing
	ColorMatrix
	Altering Contrast and Brightness
	Changing Saturation

	Image Compositing
	Summary

	Graphics and Touch Events
	Canvas Drawing
	Bitmap Creation
	Bitmap Configuration
	Creating the Canvas
	Working with Paint
	Drawing Shapes
	Drawing Text

	Finger Painting
	Touch Events
	Drawing on Existing Images
	Saving a Bitmap-Based Canvas Drawing

	Summary

	Introduction to Audio on Android
	Audio Playback
	Supported Audio Formats
	Using the Built-In Audio Player via an Intent
	Creating a Custom Audio-Playing Application
	MediaStore for Audio

	Summary

	Background and Networked Audio
	Background Audio Playback
	Services
	Local Service plus MediaPlayer
	Controlling a MediaPlayer in a Service

	Networked Audio
	HTTP Audio Playback
	Streaming Audio via HTTP
	RTSP Audio Streaming

	Summary

	Audio Capture
	Audio Capture with an Intent
	Custom Audio Capture
	MediaRecorder Audio Sources
	MediaRecorder Output Formats
	MediaRecorder Audio Encoders
	MediaRecorder Output and Recording
	MediaRecorder State Machine
	MediaRecorder Example
	Other MediaRecorder Methods

	Inserting Audio into the MediaStore
	Raw Audio Recording with AudioRecord
	Raw Audio Playback with AudioTrack
	Raw Audio Capture and Playback Example
	Summary

	Audio Synthesis and Analysis
	Digital Audio Synthesis
	Playing a Synthesized Sound
	Generating Samples

	Audio Analysis
	Capturing Sound for Analysis
	Visualizing Frequencies

	Summary

	Introduction to Video
	Video Playback
	Supported Formats
	Playback Using an Intent
	Playback Using VideoView
	Adding Controls with MediaController
	Playback Using a MediaPlayer

	Summary

	Advanced Video
	MediaStore for Retrieving Video
	Video Thumbnails from the MediaStore
	Full MediaStore Video Example

	Networked Video
	Supported Network Video Types
	Network Video Playback

	Summary

	Video Capture
	Recording Video Using an Intent
	Adding Video Metadata
	Custom Video Capture
	MediaRecorder for Video
	Full Custom Video Capture Example

	Summary

	Media Consumption and Publishing Using Web Services
	Web Services
	HTTP Requests
	JSON
	Pulling Flickr Images Using JSON
	Location
	Pulling Flickr Images Using JSON and Location

	REST
	Representing Data in XML
	SAX Parsing

	HTTP File Uploads
	Making an HTTP Request
	Uploading Video to Blip.TV

	Summary

	Index
	¦ A
	B
	¦
	¦ C
	D
	¦
	F
	¦
	¦ E
	¦ H
	¦ G
	¦ I
	M
	¦
	¦ J, K
	¦ L
	¦ N
	¦ O
	¦ P
	¦ S ¦ Q
	¦ R
	¦ T
	U
	¦
	¦ W
	¦V
	¦ X, Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

