
M A N N I N G

W. Frank Ableson
Robi Sen

Chris King
C. Enrique Ortiz

THIRD EDITION
IN ACTION

Android in Action
Third Edition

Android in Action
Third Edition

W. FRANK ABLESON
ROBI SEN

CHRIS KING
C. ENRIQUE ORTIZ

M A N N I N G
SHELTER ISLAND

D
ow

nl
oa

d
fr

om
 w

w
w

.U
pe

Bo
ok

.C
om
For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Troy Mott
20 Baldwin Road Copyeditors: Benjamin Berg, Tiffany Taylor
PO Box 261 Typesetter: Dottie Marsico
Shelter Island, NY 11964 Cover designer: Marija Tudor

ISBN 9781617290503
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

www.manning.com

brief contents
PART 1 WHAT IS ANDROID? THE BIG PICTURE............................1

1 ■ Introducing Android 3

2 ■ Android’s development environment 33

PART 2 EXERCISING THE ANDROID SDK63

3 ■ User interfaces 65

4 ■ Intents and Services 102

5 ■ Storing and retrieving data 130

6 ■ Networking and web services 160

7 ■ Telephony 188

8 ■ Notifications and alarms 206

9 ■ Graphics and animation 226

10 ■ Multimedia 260

11 ■ Location, location, location 284

PART 3 ANDROID APPLICATIONS ..309

12 ■ Putting Android to work in a field service application 311

13 ■ Building Android applications in C 356
v

BRIEF CONTENTSvi
PART 4 THE MATURING PLATFORM ..383

14 ■ Bluetooth and sensors 385

15 ■ Integration 405

16 ■ Android web development 439

17 ■ AppWidgets 472

18 ■ Localization 509

19 ■ Android Native Development Kit 524

20 ■ Activity fragments 545

21 ■ Android 3.0 action bar 560

22 ■ Drag-and-drop 579

contents
preface xix
acknowledgments xxi
about this book xxiii
about the cover illustration xxviii

PART 1 WHAT IS ANDROID? THE BIG PICTURE...................1

1 Introducing Android 3
1.1 The Android platform 4
1.2 Understanding the Android market 5

Mobile operators 5 ■ Android vs. the feature phones 6
Android vs. the smartphones 7 ■ Android vs. itself 8
Licensing Android 9

1.3 The layers of Android 10
Building on the Linux kernel 11 ■ Running in the
Dalvik VM 12

1.4 The Intent of Android development 13
Empowering intuitive UIs 13 ■ Intents and how they work 14

1.5 Four kinds of Android components 17
Activity 17 ■ Service 18 ■ BroadcastReceiver 19
ContentProvider 22
vii

CONTENTSviii
1.6 Understanding the AndroidManifest.xml file 24
1.7 Mapping applications to processes 26
1.8 Creating an Android application 26
1.9 Android 3.0 for tablets and smartphones 30

Why develop for Android tablets? 30 ■ What’s new in the
Android 3.0 Honeycomb platform? 31

1.10 Summary 32

2 Android’s development environment 33
2.1 Introducing the Android SDK 34

Core Android packages 35 ■ Optional packages 36

2.2 Exploring the development environment 36
The Java perspective 37 ■ The DDMS perspective 39
Command-line tools 42

2.3 Building an Android application in Eclipse 45
The Android Project Wizard 45 ■ Android sample
application code 46 ■ Packaging the application 52

2.4 Using the Android emulator 53
Setting up the emulated environment 54 ■ Testing your
application in the emulator 58

2.5 Debugging your application 59
2.6 Summary 61

PART 2 EXERCISING THE ANDROID SDK63

3 User interfaces 65
3.1 Creating the Activity 66

Creating an Activity class 68 ■ XML vs. programmatic
layouts 69 ■ Exploring the Activity lifecycle 72 ■ The server
connection 73

3.2 Working with views 75
Exploring common views 76 ■ Using a ListView 78
Multitasking with Handler and Message 82 ■ Creating custom
views 83 ■ Understanding layout 86 ■ Handling focus 88
Grasping events 89

CONTENTS ix
3.3 Using resources 90
Supported resource types 90 ■ Referencing resources in
Java 91 ■ Defining views and layouts through XML
resources 93 ■ Externalizing values 95 ■ Providing
animations 98

3.4 Exploring the AndroidManifest file 99
3.5 Summary 101

4 Intents and Services 102
4.1 Serving up RestaurantFinder with Intent 103

Defining Intents 103 ■ Implicit and explicit invocation 104
Adding external links to RestaurantFinder 105 ■ Finding your
way with Intent 107 ■ Taking advantage of Android-provided
activities 109

4.2 Checking the weather with a custom URI 110
Offering a custom URI 110 ■ Inspecting a custom URI 112

4.3 Checking the weather with broadcast receivers 114
Broadcasting Intent 114 ■ Creating a receiver 115

4.4 Building a background weather service 116
4.5 Communicating with the WeatherAlertService

from other apps 120
Android Interface Definition Language 120 ■ Binder and
Parcelable 122 ■ Exposing a remote interface 123
Binding to a Service 124 ■ Starting vs. binding 127
Service lifecycle 128

4.6 Summary 129

5 Storing and retrieving data 130
5.1 Using preferences 131

Working with SharedPreferences 131 ■ Preference access
permissions 134

5.2 Using the filesystem 137
Creating files 137 ■ Accessing files 138 ■ Files as raw
resources 139 ■ XML file resources 140 ■ External storage
via an SD card 142

5.3 Persisting data to a database 145
Building and accessing a database 146 ■ Using the sqlite3
tool 150

CONTENTSx
5.4 Working with ContentProvider classes 151
Using an existing ContentProvider 151 ■ Creating a
ContentProvider 152

5.5 Summary 159

6 Networking and web services 160
6.1 An overview of networking 162

Networking basics 162 ■ Clients and servers 164

6.2 Checking the network status 165
6.3 Communicating with a server socket 166
6.4 Working with HTTP 169

Simple HTTP and java.net 170 ■ Robust HTTP with
HttpClient 171 ■ Creating an HTTP and HTTPS
helper 173

6.5 Web services 179
POX: putting it together with HTTP and XML 180
REST 182 ■ To SOAP or not to SOAP, that is the question 185

6.6 Summary 186

7 Telephony 188
7.1 Exploring telephony background and terms 189

Understanding GSM 190 ■ Understanding CDMA 190

7.2 Phone or not? 191
7.3 Accessing telephony information 192

Retrieving telephony properties 192 ■ Obtaining phone state
information 195

7.4 Interacting with the phone 196
Using Intents to make calls 196 ■ Using phone number–related
utilities 198 ■ Intercepting outbound calls 200

7.5 Working with messaging: SMS 200
Sending SMS messages 201 ■ Receiving SMS messages 204

7.6 Summary 205

8 Notifications and alarms 206
8.1 Introducing Toast 207

CONTENTS xi
8.2 Placing your Toast message 209
8.3 Making a custom Toast view 210
8.4 Introducing notifications 212

The Notification class 212 ■ Notifying a user with a simple
button press 214

8.5 Making a custom notification view 216
8.6 Introducing alarms 219

Creating a simple alarm example 220 ■ Using notifications
with alarms 222

8.7 Summary 225

9 Graphics and animation 226
9.1 Drawing graphics in Android 227

Drawing with XML 228 ■ Exploring XML drawable
shapes 230

9.2 Creating animations with Android’s Graphics API 231
Android’s frame-by-frame animation 232 ■ Programmatically
creating an animation 234

9.3 Introducing OpenGL for Embedded Systems 238
Creating an OpenGL context 239 ■ Drawing a rectangle with
OpenGL ES 243 ■ Three-dimensional shapes and surfaces with
OpenGL ES 245

9.4 Introducing RenderScript for Android 250
RenderScript advantages and disadvantages 251 ■ Building a
RenderScript application 252

9.5 Summary 258

10 Multimedia 260
10.1 Introduction to multimedia and Stagefright 261

Stagefright overview 261

10.2 Playing audio 263
10.3 Playing video 264
10.4 Capturing media 266

Understanding the camera 267 ■ Capturing audio 272
Recording video 276

10.5 Summary 282

CONTENTSxii
11 Location, location, location 284
11.1 Simulating your location within the emulator 286

Sending in your coordinates with the DDMS tool 286 ■ The GPS
Exchange Format 288 ■ The Google Earth Keyhole Markup
Language 289

11.2 Using LocationManager and LocationProvider 292
Accessing location data with LocationManager 292
Using a LocationProvider 294 ■ Receiving location
updates with LocationListener 296

11.3 Working with maps 298
Extending MapActivity 299 ■ Using a MapView 299
Placing data on a map with an Overlay 302

11.4 Converting places and addresses with Geocoder 305
11.5 Summary 307

PART 3 ANDROID APPLICATIONS309

12 Putting Android to work in a field service application 311
12.1 Designing a real-world Android application 312

Core requirements of the application 313 ■ Managing the
data 314 ■ Application architecture and integration 315

12.2 Mapping out the application flow 316
Mapping out the field service application 316 ■ List of source
files 318 ■ Field service application’s AndroidManifest.xml 320

12.3 Application source code 320
Splash Activity 320 ■ Preferences used by the FieldService
Activity 322 ■ Implementing the FieldService Activity 324
Settings 325 ■ Managing job data 327

12.4 Source code for managing jobs 334
RefreshJobs 335 ■ Managing jobs: the ManageJobs Activity 338
Working with a job with the ShowJob Activity 341 ■ Capturing a
signature with the CloseJob Activity 345

12.5 Server code 351
Dispatcher user interface 352 ■ Database 352 ■ PHP
dispatcher code 353 ■ PHP mobile integration code 354

12.6 Summary 355

CONTENTS xiii
13 Building Android applications in C 356
13.1 Building Android apps without the SDK 357

The C compiler and linker tools 357 ■ Building a Hello World
application 358 ■ Installing and running the application 360
C application build script 362

13.2 Solving the problem with dynamic linking 362
Android system libraries 363 ■ Building a dynamically linked
application 364 ■ exit() vs. return() 367 ■ Startup code 368

13.3 What time is it? The DayTime Server 370
DayTime Server application 370 ■ daytime.c 371 ■ The SQLite
database 373 ■ Building and running the DayTime Server 376

13.4 Daytime Client 378
Activity 378 ■ Socket client 379 ■ Testing the Daytime
Client 380

13.5 Summary 380

PART 4 THE MATURING PLATFORM 383

14 Bluetooth and sensors 385
14.1 Exploring Android’s Bluetooth capabilities 386

Replacing cables 387 ■ Primary and secondary roles and
sockets 387 ■ Trusting a device 388 ■ Connecting to a
remote device 390 ■ Capturing Bluetooth events 392
Bluetooth permissions 393

14.2 Interacting with the SensorManager 393
Types of sensors 394 ■ Reading sensor values 395
Enabling and disabling sensors 396

14.3 Building the SenseBot application 397
User interface 398 ■ Interpreting sensor values 400
Driving the robot 401 ■ Communication with the robot 402

14.4 Summary 403

15 Integration 405
15.1 Understanding the Android contact model 406

Choosing open-ended records 406 ■ Dealing with multiple
accounts 408 ■ Unifying a local view from diverse remote
stores 410 ■ Sharing the playground 411

CONTENTSxiv
15.2 Getting started with LinkedIn 411
15.3 Managing contacts 413

Leveraging the built-in Contacts app 413 ■ Requesting operations
from your app 416 ■ Directly reading and modifying the contacts
database 417 ■ Adding contacts 418

15.4 Keeping it together 421
The dream of sync 421 ■ Defining accounts 422 ■ Telling
secrets: The AccountManager service 423

15.5 Creating a LinkedIn account 424
Not friendly to mobile 424 ■ Authenticating to LinkedIn 425

15.6 Synchronizing to the backend with SyncAdapter 432
The synchronizing lifecycle 432 ■ Synchronizing LinkedIn
data 432

15.7 Wrapping up: LinkedIn in action 435
Finalizing the LinkedIn project 435 ■ Troubleshooting tips 436
Moving on 437

15.8 Summary 437

16 Android web development 439
16.1 What’s Android web development? 440

Introducing WebKit 440 ■ Examining the architectural
options 441

16.2 Optimizing web applications for Android 442
Designing with mobile in mind 442 ■ Adding the viewport
tag 444 ■ Selectively loading content 446 ■ Interrogating the
user agent 446 ■ The media query 447 ■ Considering a made-
for-mobile application 448

16.3 Storing data directly in the browser 449
Setting things up 450 ■ Examining the code 451 ■ The user
interface 451 ■ Opening the database 453 ■ Unpacking the
transaction function 454 ■ Inserting and deleting rows 456
Testing the application with WebKit tools 457

16.4 Building a hybrid application 458
Examining the browser control 458 ■ Wiring up the control 459
Implementing the JavaScript handler 461 ■ Accessing the code
from JavaScript 463 ■ Digging into the JavaScript 463
Security matters 465 ■ Implementing a WebViewClient 466
Augmenting the browser 466 ■ Detecting navigation events 467
Implementing the WebChromeClient 470

16.5 Summary 471

CONTENTS xv
17 AppWidgets 472
17.1 Introducing the AppWidget 473

What’s an AppWidget? 473 ■ AppWidget deployment
strategies 475

17.2 Introducing SiteMonitor 476
Benefits of SiteMonitor 476 ■ The user experience 477

17.3 SiteMonitor application architecture 480
Bird’s-eye view of the application 480 ■ File by file 482

17.4 AppWidget data handling 483

17.5 Implementing the AppWidgetProvider 487
AppWidgetProvider method inventory 487 ■ Implementing
SiteMonitorWidgetImpl 488 ■ Handling zombie widgets 490

17.6 Displaying an AppWidget with RemoteViews 491
Working with RemoteViews 491 ■ UpdateOneWidget
explained 492

17.7 Configuring an instance of the AppWidget 494
AppWidget metadata 495 ■ Working with Intent data 496
Confirming widget creation 497

17.8 Updating the AppWidget 498
Comparing services to alarms 499 ■ Triggering the update 500
Updating the widgets, finally! 502

17.9 Tying it all together with AndroidManifest.xml 506

17.10 Summary 507

18 Localization 509
18.1 The need for localization 510

18.2 Exploring locales 511

18.3 Strategies for localizing an application 512
Identifying target locales and data 512 ■ Identifying and
managing strings 513 ■ Drawables and layouts 515
Dates, times, numbers, and currencies 516 ■ Working with
the translation team 517

18.4 Leveraging Android resource capabilities 518
More than locale 518 ■ Assigning strings in resources 518

18.5 Localizing in Java code 520

18.6 Formatting localized strings 521

CONTENTSxvi
18.7 Obstacles to localization 522
18.8 Summary 523

19 Android Native Development Kit 524
19.1 Introducing the NDK 525

Uses for the NDK 525 ■ Looking at the NDK 526

19.2 Building an application with the NDK 527
Demonstrating the completed application 528 ■ Examining the
project structure 529

19.3 Building the JNI library 530
Understanding JNI 530 ■ Implementing the library 531
Compiling the JNI library 536

19.4 Building the user interface 537
User interface layout 537 ■ Taking a photo 539 ■ Finding the
edges 541

19.5 Integrating the NDK into Eclipse 542
19.6 Summary 544

20 Activity fragments 545
20.1 Fragment lifecyle 546
20.2 Creating fragments and fragment layouts 548

Create the fragment subclass 548 ■ Defining a fragment
layout 551 ■ Include the fragment within the activity 552

20.3 Background fragments 553
20.4 The fragment manager 555
20.5 Fragment transactions 555
20.6 Fragment back stack 556
20.7 The Android Compatibility Package 557
20.8 Summary 558

21 Android 3.0 action bar 560
21.1 Introducing the action bar 561
21.2 Overview of the ActionBar classes 562
21.3 Action bar display options 563

Application name and icon 564 ■ Navigation modes 565

CONTENTS xvii
21.4 Action items 570
The application icon as an action item 573 ■ Action views 574

21.5 Removing, showing, and hiding the action bar 575
21.6 Action bar styling 575
21.7 Summary 578

22 Drag-and-drop 579
22.1 The drag-and-drop classes 580
22.2 Drag-and-drop operations 581
22.3 The shadow builder 583
22.4 Drag events 585
22.5 Starting drag operations 586
22.6 Listening for drag-and-drop events 587
22.7 Responding to drag-start operations 588
22.8 Handling drop operations 589
22.9 Summary 590

appendix A Installing the Android SDK 591
appendix B Publishing applications 601

index 613

preface
The idea of a writing a book about Android development can be somewhat futile at
times, considering the pace at which Android continues to expand, morph, and
change. What started out as a book project a few years ago has now become a series of
updates to the original work with the page count nearly double the original project—
and that after making hard decisions about what to leave out of the book to make sure
it gets published.

 This update to Android in Action represents our latest effort to provide coverage
on important Android development topics, namely the expansion into the tablet
space with Android 3.x as well as advances in mobile graphics and media such as
RenderScript.

 Although there have been many off-brand and name-brand tablet offerings pop-
ping up over time, the Android development team has taken the step of adding tablet-
specific capabilities to the SDK under the banner of 3.0. True to form, 3.0 was quickly
updated, so we generally refer to the tablet-specific features as 3.x; and before long I
am sure Android 4.x will be out with a super-set of features.

 Like many things in life, the only constant is change, but by now we’re somewhat
accustomed to the rapid-fire environment of Android development. To that end, we
have ensured that all of the applications in the book work with Android 3.x. The new-
est chapters covering tablet-specific content (20–22) require the 3.x SDK, whereas the
remaining chapters are compatible with the 2.x SDK versions. If you plan to write appli-
cation software for Android, you simply need to steel yourself for navigating the multi-
ple version game. It is at once a strength and a challenge of the Android ecosystem.
xix

PREFACExx
 The third edition was written by Frank Ableson, Robi Sen, Chris King, and new-
comer C. Enrique Ortiz, aka CEO. To borrow a line from the air-travel industry, “We
know you have a choice when it comes to Android development books, so thank you
for learning and collaborating with us.”

FRANK ABLESON

acknowledgments
Writing a third edition of Android in Action feels somewhat like the old saying about
weddings: “Something old, something new…” The deadlines for the third edition did
not become any easier as at last count there are still only 24 hours in the day. And as
for something new—it seems as though Android’s pace of innovation is continuing to
match its adoption rate by mobile users around the globe. Like the two earlier edi-
tions, Android in Action, Third Edition represents a collaboration between a number of
contributors. I had the privilege of working again with Robi Sen and Chris King, who
worked with me on the second edition. C. Enrique Ortiz joined us to contribute the
tablet content. Once again the talented team at Manning have labored to bring about
this edition.

 In particular, we’d like to acknowledge and thank everyone at Manning. First,
thanks to Troy Mott, our acquisition and development editor, who has been involved
in every aspect of now three editions of this project—congratulations, Troy, on your
hat-trick! Bob Herbstman did all the big and little things to bring the project together;
Mary Piergies skillfully piloted the team through the harrowing production process;
and Marjan Bace, our publisher, showed an attention to detail at once challenging,
beneficial, and appreciated.

 Once the writing was finished, the next round of work began. Special thanks need
to go to Benjamin Berg, who performed the preproduction editing pass; Tiffany Tay-
lor, who did the second copyediting pass and helped us bring the final pieces of the
project together; and finally Dottie Marsico, who handled the actual layout of the
pages. It’s sometimes hard to envision the final product when looking at edits upon
edits in MS Word, but Dottie’s magic made the product you hold in your hands. Next,
xxi

ACKNOWLEDGMENTSxxii
we would like to thank Candace Gillhoolley for her efforts in getting the word out
about the book. Thanks to each of you for your special contribution to this project.

 And special thanks to the reviewers who read our revised manuscript at different
times during its development: Steve Prior, Matthew Johnson, Julian Harty, David
Strong, Loïc Simon, Al Scherer, Gabor Paller, and Pieter Kuijpers; and to Jérôme
Bâton for his careful technical review of the final manuscript during production.

 Last, we want to thank the thoughtful and encouraging MEAP subscribers who pro-
vided feedback along the way; the book is better thanks to your contributions.

FRANK ABLESON

I would like to thank my coauthors: Robi Sen, a real pro who has been involved in this
project from the beginning; Chris King, who has proven to be rock-solid in terms of
both technical capability and reliability; and newcomer C. Enrique Ortiz (CEO), who
has injected energy and enthusiasm into the Third Edition. Of course, through each
iteration of this project, Troy Mott has led the way: managing the process, coaxing us
at times, and delivering every time. Bob Herbstman has contributed invaluably to the
finished product and is likely tired of cleaning up after my writing and amateurish
graphics after all of these years. Special thanks to Bob for re-creating many illustra-
tions. Thanks also to the production team at Manning Publications who have once
again delivered an excellent work. Thanks also to Candace Gillhoolley for continued
support with books and promotions to support speaking events and conferences—
always aiding my last-minute requests. Last and most important, I would like to thank
Nikki and company at the Ableson household for unconditional support. Praise be to
God, another version is complete!

CHRIS KING

I am deeply grateful to Troy Mott, Frank, Robi, and Enrique for being such a pleasure
to collaborate with as we drove toward the latest incarnation of this book. I also appre-
ciate all the work done by the reviewers and editors from Manning, and also the dedi-
cated readers of previous editions who contributed suggestions at the Author Online
forums. Special thanks go to Eric Tamo and Zac White for their support and relentless
good cheer. Finally, my love to my family: Charles, Karen, Patrick, Kathryn, and
Andrew.

ROBI SEN

I would like to thank Troy Mott and the team—and everyone at Manning Publica-
tions—for their hard work making this book something worth reading. I would like to
thank my coauthors, Frank and Chris, who were great to work with and very under-
standing when I was the one holding things up. I would also like to thank C. Enrique
Ortiz for his contributions. Finally, I would like to dedicate my efforts on this book to
my brother Neel, who passed away while we were wrapping up the book.

C. ENRIQUE ORTIZ

To my parents, family, friends, and colleagues, who influence my work and make it
exciting.

about this book
Android in Action, Third Edition is a revision and update of, you guessed it, the Second
Edition, published in January 2011. This third edition adds new content related to
Android’s push into the tablet space as well as enhancements to various sub-systems
within the Android platform. Like its predecessors, this book covers important begin-
ner topics such as “What is Android?” and installing and using the development envi-
ronment. We then advance to practical working examples of core programming topics
any developer will be happy to have at the ready on the reference shelf. The remain-
ing chapters present detailed example applications covering advanced topics, includ-
ing a complete field-service application, localization, and material on Android web
applications, Bluetooth, sensors, AppWidgets, and integration adapters. We even
include two chapters on writing applications in C—one for the native side of Android
and one using the more generally accepted method of employing the Android Native
Development Kit. Brand-new content covering tablet programming is found in chap-
ters 20 through 22. Chapters 20–22 specifically require Android SDK 3.0 and beyond,
whereas the balance of the book is compatible with 2.x versions of Android.

 Although you can read the book from start to finish, you can also consider it a few
books in one. If you’re new to Android, focus first on chapter 1, appendix A, and then
chapter 2. With that foundation, you can work your way through chapters 3–12. Chap-
ters 13 and on are more in-depth in nature and can be read independently of the oth-
ers. Chapters 20–22 focuses on important topics related to Android 3.0 and tablets.

Who should read this book?
We wrote this book for professional programmers and hobbyists alike. Many of the
concepts can be absorbed without specific Java language knowledge, although you’ll
xxiii

ABOUT THIS BOOKxxiv
obtain the most value if you have Java programming skills—Android application pro-
gramming requires them. If you have C, C++, or C# programming knowledge, you’ll
be able to follow the examples.

 Prior Eclipse experience is helpful, but not required. A number of good resources
are available on Java and Eclipse to augment the content of this book.

Roadmap
This book is divided into four parts. Part 1 contains introductory material about the
platform and development environment. Part 2 takes a close look at the fundamental
skills required for building Android applications. Part 3 presents a larger-scope appli-
cation and a Native C Android application. Part 4 explores features added to the
Android platform, providing examples of using the capable Android platform to cre-
ate innovative mobile applications.

Part 1: The essentials

Part 1 introduces the Android platform, including its architecture and setting up the
development environment.

 Chapter 1 delves into the background and positioning of the Android platform,
including comparisons to other popular platforms such as BlackBerry, iPhone, and
Windows Mobile. After an introduction to the platform, the balance of the first chap-
ter introduces the high-level architecture of Android applications and the operating
system environment.

 Chapter 2 takes you on a step-by-step development exercise, teaching you the ropes
of using the Android development environment, including the key tools and concepts
for building an application. If you’ve never used Eclipse or have never written an
Android application, this chapter will prepare you for the next part of the book.

Part 2: The programming environment

Part 2 includes an extensive survey of fundamental programming topics in the
Android environment.

 Chapter 3 covers the fundamental Android UI components, including View and
Layout. We also review the Activity in more detail. These are the basic building
blocks of screens and applications on the Android platform. Along the way, we also
touch on other basic concepts such as accessing external resources, responding to
events, and the lifecycle of an Android application.

 Chapter 4 expands on the concepts you learned in chapter 3. We delve into the
Android Intent to demonstrate interaction between screens, activities, and entire
applications. We also introduce and use the Service framework, which allows for
ongoing background processes.

 Chapter 5 incorporates methods and strategies for storing and retrieving data
locally. The chapter examines use of the filesystem, databases, the SD card, and
Android-specific storage entities such as the SharedPreferences and ContentProvider

ABOUT THIS BOOK xxv
classes. This chapter begins combining fundamental concepts with more real-world
details, such as handling application state, using a database for persistent storage, and
working with SQLite.

 Chapter 6 deals with storing and retrieving data over the network. Here we include
a networking primer before delving into using raw networking concepts such as sock-
ets on Android. From there, we progress to using HTTP, and even explore web services
(such as REST and SOAP).

 Chapter 7 covers telephony on the Android platform. We touch on basics such as
originating and receiving phone calls, as well as more involved topics such as identify-
ing cell towers and sending or receiving SMS messages.

 Chapter 8 looks at how to work with notifications and alarms. In this chapter, we
look at how to notify users of various events such as receiving a SMS message, as well as
how to manage and set alarms.

 Chapter 9 deals with the basics of Android’s Graphics API and more advanced con-
cepts such as working with the OpenGL ES library for creating sophisticated 2D and
3D graphics. We also touch on animation as well as Android’s new graphics systems
RenderScript.

 Chapter 10 looks at Android’s support for multimedia; we cover both playing
multimedia as well as using the camera and microphone to record your own multi-
media files.

 Chapter 11 introduces location-based services as we look at an example that com-
bines many of the concepts from the earlier parts of the book in a mapping applica-
tion. You’ll learn about using the mapping APIs on Android, including different
location providers and properties that are available, how to build and manipulate map-
related screens, and how to work with location-related concepts within the emulator.

Part 3: Bringing it all together

Part 3 contains two chapters, both of which build on knowledge you gained earlier in
the text, with a focus on bringing a larger application to fruition.

 Chapter 12 demonstrates an end-to-end field service application. The application
includes server communications, persistent storage, multiple Activity navigation
menus, and signature capture.

 Chapter 13 explores the world of native C language applications. The Android SDK
is limited to the Java language, although native applications can be written for
Android. This chapter walks you through examples of building C language applica-
tions for Android, including the use of built-in libraries and TCP socket communica-
tions as a Java application connects to your C application. This chapter is useful for
developers targeting solutions beyond carrier-subsidized, locked-down cell phones.

Part 4: The maturing platform

Part 4 contains nine new chapters, each of which represents a more advanced devel-
opment topic.

ABOUT THIS BOOKxxvi
 Chapter 14 demonstrates the use of both Bluetooth communication and process-
ing sensor data. The sample application accompanying the chapter, SenseBot, permits
the user to drive a LEGO Mindstorms robot with their Android phone.

 Chapter 15 explores the Android contact database and demonstrates integrating
with an external data source. In particular, this application brings Android into the
social-networking scene by integrating with the popular LinkedIn professional net-
working service.

 Chapter 16 explores the world of web development. Android’s browser is based on
the open source WebKit engine and brings desktop-like capability to this mobile
browser. This chapter equips you to bring attractive and capable web applications to
Android.

 Chapter 17 brings the home screen of your Android application to life by showing
you how to build an application that presents its user interface as an AppWidget. In
addition to AppWidgets, this chapter demonstrates BroadcastReceiver, Service, and
Alarms.

 Chapter 18 takes a real-world look at localizing an existing application.
Chapter 12’s Field Service application is modified to support multiple languages.
Chapter 18’s version of the Field Service application contains support for both Eng-
lish and Spanish.

 Chapter 19 reaches into Android’s open source foundation by using a popular
edge-detection image-processing algorithm. The Sobel Edge Detection algorithm is
written in C and compiled into a native library. The sample application snaps a picture
with the Android camera and then uses this C algorithm to find the edges in the photo.

 Chapter 20 covers Android Fragments, a new application component that was
introduced with Android 3.0. Fragments provide more granular application control
than working only with Activitys alone.

 Chapter 21 explores the action bar. Also introduced with Android 3.0, the action
bar provides a consistent look-and-feel for the application title, icon, actions, and
menu options.

 Chapter 22 introduces the new drag-and-drop API, also introduced with
Android 3.0. The drag-and-drop API allows for touch-based, interactive operations: for
example, to move or copy data across views by visually selecting data from one view
and dropping it onto another view on the screen. Another example is to trigger appli-
cation actions: for example, image sharing by dragging an image from an image gal-
lery view onto a sharing view.

Appendixes

The appendixes contain additional information that didn’t fit with the flow of the main
text. Appendix A is a step-by-step guide to installing the development environment.
This appendix, along with chapter 2, provides all the information you need to build an
Android application. Appendix B demonstrates how to prepare and submit an applica-
tion for the Android Market—an important topic for anyone looking to sell an appli-
cation commercially.

ABOUT THIS BOOK xxvii
Code conventions and downloads
All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. In many listings, the code is annotated to point out the key con-
cepts, and numbered bullets are sometimes used in the text to provide additional
information about the code. We have tried to format the code so that it fits within the
available page space in the book by adding line breaks and using indentation care-
fully. Sometimes, however, very long lines include line-continuation markers.

 Source code for all the working examples is available from www.manning.com/
AndroidinActionThirdEdition or www.manning.com/ableson3. A Readme.txt file is
provided in the root folder and also in each chapter folder; the files provide details on
how to install and run the code. Code examples appear throughout this book. Longer
listings appear under clear listing headers, whereas shorter listings appear between
lines of text.

Software requirements
Developing applications for Android may be done from the Windows XP/Vista/7
environment, a Mac OS X (Intel only) environment, or a Linux environment. Appen-
dix A includes a detailed description of setting up the Eclipse environment along with
the Android Developer Tools plug-in for Eclipse.

A note about the graphics
Many of the original graphics from the first edition, Unlocking Android, have been
reused in the second and third editions of the book. Although the title was changed to
Android in Action during the writing of the second edition, we kept the original book
title in our graphics and sample applications.

Author Online
Purchase of Android in Action, Third Edition includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
AndroidinActionThirdEdition or www.manning.com/ableson3. This page provides
information on how to get on the forum once you’re registered, what kind of help is
available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

www.manning.com/AndroidinActionThirdEdition
www.manning.com/AndroidinActionThirdEdition
www.manning.com/ableson3
www.manning.com/AndroidinActionThirdEdition
www.manning.com/AndroidinActionThirdEdition
www.manning.com/ableson3

about the cover illustration
The illustration on the cover of Android in Action, Third Edition is taken from a French
book of dress customs, Encyclopédie des Voyages by J. G. St. Saveur, published in 1796.
Travel for pleasure was a relatively new phenomenon at the time and illustrated
guides such as this one were popular, introducing both the tourist as well as the arm-
chair traveler to the inhabitants of other regions of the world, as well as to the
regional costumes and uniforms of France.

 The diversity of the drawings in the Encyclopédie des Voyages speaks vividly of the
uniqueness and individuality of the world’s countries and regions just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other, and when members of a
social class or a trade or a tribe could be easily distinguished by what they were wear-
ing. This was also a time when people were fascinated by foreign lands and faraway
places, even though they could not travel to these exotic destinations themselves.

 Dress codes have changed since then and the diversity by region and tribe, so rich
at the time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a world of cul-
tural and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on native and tribal costumes from two centu-
ries ago brought back to life by the pictures from this travel guide.
xxviii

Part 1

What is Android?
The big picture

Android has become a market-moving technology platform—not just
because of the functionality available in the platform but because of how the
platform has come to market. Part 1 of this book brings you into the picture as a
developer of the open source Android platform. We begin with a look at the
Android platform and the impact it has on each of the major stakeholders in the
mobile marketplace (chapter 1). We then bring you on board to developing
applications for Android with a hands-on tour of the Android development envi-
ronment (chapter 2).

Introducing Android
You’ve heard about Android. You’ve read about Android. Now it’s time to begin
unlocking Android.

 Android is a software platform that’s revolutionizing the global cell phone mar-
ket. It’s the first open source mobile application platform that’s moved the needle
in major mobile markets around the globe. When you’re examining Android,
there are a number of technical and market-related dimensions to consider. This
first section introduces the platform and provides context to help you better under-
stand Android and where it fits in the global cell phone scene. Moreover, Android
has eclipsed the cell phone market, and with the release of Android 3.X has begun
making inroads into the tablet market as well. This book focuses on using SDKs
from 2.0 to 3.X.

 Android is primarily a Google effort, in collaboration with the Open Handset
Alliance. Open Handset Alliance is an alliance of dozens of organizations commit-
ted to bringing a “better” and more “open” mobile phone to market. Considered a

This chapter covers
 Exploring Android, the open source phone and

tabtet platform

 Android Intents, the way things work

 Sample application
3

4 CHAPTER 1 Introducing Android
novelty at first by some, Android has grown to become a market-changing player in a
few short years, earning both respect and derision alike from peers in the industry.

 This chapter introduces Android—what it is, and, equally important, what it’s not.
After reading this chapter, you’ll understand how Android is constructed, how it com-
pares with other offerings in the market, and what its foundational technologies are,
plus you’ll get a preview of Android application architecture. More specifically, this
chapter takes a look at the Android platform and its relationship to the popular Linux
operating system, the Java programming language, and the runtime environment
known as the Dalvik virtual machine (VM).

 Java programming skills are helpful throughout the book, but this chapter is more
about setting the stage than about coding specifics. One coding element introduced
in this chapter is the Intent class. Having a good understanding of and comfort level
with the Intent class is essential for working with the Android platform.

 In addition to Intent, this chapter introduces the four main application compo-
nents: Activity, Service, ContentProvider, and BroadcastReceiver. The chapter
concludes with a simple Android application to get you started quickly.

1.1 The Android platform
Android is a software environment built for mobile devices. It’s not a hardware plat-
form. Android includes a Linux kernel-based OS, a rich UI, end-user applications,
code libraries, application frameworks, multimedia support, and much more. And,
yes, even telephone functionality is included! Whereas components of the underlying
OS are written in C or C++, user applications are built
for Android in Java. Even the built-in applications are
written in Java. With the exception of some Linux
exploratory exercises in chapter 13 and the Native
Developer Kit (NDK) in chapter 19, all the code
examples in this book are written in Java, using the
Android software development kit (SDK).

 One feature of the Android platform is that
there’s no difference between the built-in applica-
tions and applications that you create with the SDK.
This means that you can write powerful applications
to tap into the resources available on the device. Fig-
ure 1.1 shows the relationship between Android and
the hardware it runs on. The most notable feature of
Android might be that it’s open source; missing ele-
ments can and will be provided by the global devel-
oper community. Android’s Linux kernel-based OS
doesn’t come with a sophisticated shell environment,
but because the platform is open, you can write and
install shells on a device. Likewise, multimedia codecs
can be supplied by third-party developers and don’t

Android Software
Environment

Custom & built-in
applications

written in Java

Linux Kernel

Dalvik virtual
machine

Figure 1.1 Android is software
only. By leveraging its Linux kernel
to interface with the hardware,
Android runs on many different
devices from multiple cell phone
manufacturers. Developers write
applications in Java.

http://www.manning.com/catalog/java
http://www.manning.com/catalog/java
http://www.manning.com/catalog/java

5Understanding the Android market
need to rely on Google or anyone else to provide new functionality. That’s the power
of an open source platform brought to the mobile market.

PLATFORM VS. DEVICE Throughout this book, wherever code must be tested
or exercised on a device, a software-based emulator is typically employed. An
exception is in chapter 14 where Bluetooth and Sensors are exercised. See
chapter 2 for information on how to set up and use the Android emulator.

The term platform refers to Android itself—the software—including all the
binaries, code libraries, and tool chains. This book focuses on the Android
platform; the Android emulators available in the SDK are simply components
of the Android platform.

With all of that as a backdrop, creating a successful mobile platform is clearly a non-
trivial task involving numerous players. Android is an ambitious undertaking, even for
Google, a company of seemingly boundless resources and moxie—and they’re getting
the job done. Within a span of three years, Android has seen numerous major soft-
ware releases, the release of multiple handsets across most major mobile carriers in
the global market, and most recently the introduction of Android-powered tablets.

 Now that you’ve got an introduction to what Android is, let’s look at the why and
where of Android to provide some context and set the perspective for Android’s intro-
duction to the marketplace. After that, it’s on to exploring the platform itself!

1.2 Understanding the Android market
Android promises to have something for everyone. It aims to support a variety of hard-
ware devices, not just high-end ones typically associated with expensive smartphones.
Of course, Android users will enjoy improved performance on a more powerful
device, considering that it sports a comprehensive set of computing features. But how
well can Android scale up and down to a variety of markets and gain market and mind
share? How quickly can the smartphone market become the standard? Some folks are
still clinging to phone-only devices, even though smartphones are growing rapidly in
virtually every demographic. Let’s look at Android from the perspective of a few exist-
ing players in the marketplace. When you’re talking about the cellular market, the
place to start is at the top, with the carriers, or as they’re sometimes referred to, the
mobile operators.

1.2.1 Mobile operators

Mobile operators (the cell phone companies such as AT&T and Verizon) are in the
business, first and foremost, of selling subscriptions to their services. Shareholders
want a return on their investment, and it’s hard to imagine an industry where there’s a
larger investment than in a network that spans such broad geographic territory. To
the mobile operator, cell phones are simultaneously a conduit for services, a drug to
entice subscribers, and an annoyance to support and lock down.

 Some mobile operators are embracing Android as a platform to drive new data ser-
vices across the excess capacity operators have built into their networks. Data services

6 CHAPTER 1 Introducing Android
represent high-premium services and high-margin revenues for the operator. If
Android can help drive those revenues for the mobile operator, all the better.

 Other mobile operators feel threatened by Google and the potential of “free wire-
less,” driven by advertising revenues and an upheaval of the market. Another challenge
for mobile operators is that they want the final say on what services are enabled across
their networks. Historically, handset manufacturers complain that their devices are
handicapped and don’t exercise all the features designed into them because mobile
operators lack the capability or willingness to support those features. An encouraging
sign is that there are mobile operators involved in the Open Handset Alliance.

 Let’s move on to a comparison of Android and existing cell phones on the market
today.

1.2.2 Android vs. the feature phones

The majority of cell phones on the market continue to be consumer flip phones and
feature phones—phones that aren’t smartphones.1 These phones are the ones consum-
ers get when they walk into the retailer and ask what can be had for free. These con-
sumers are the “I just want a phone” customers. Their primary interest is a phone for
voice communications, an address book, and increasingly, texting. They might even
want a camera. Many of these phones have addi-
tional capabilities such as mobile web browsing,
but because of relatively poor user experience,
these features aren’t employed heavily. The one
exception is text messaging, which is a dominant
application no matter the classification of device.
Another increasingly in-demand category is loca-
tion-based services, which typically use the Global
Positioning System (GPS).

 Android’s challenge is to scale down to this
market. Some of the bells and whistles in
Android can be left out to fit into lower-end
hardware. One of the big functionality gaps on
these lower-end phones is the web experience
the user gets. Part of the problem is screen size,
but equally challenging is the browser technol-
ogy itself, which often struggles to match the rich
web experience of desktop computers. Android
features the market-leading WebKit browser
engine, which brings desktop-compatible brows-
ing to the mobile arena. Figure 1.2 shows WebKit
in action on Android. If a rich web experience

1 About 25% of phones sold in the second quarter of 2011 were smartphones: http://www.gartner.com/it/
page.jsp?id=1764714.

Figure 1.2 Android’s built-in browser
technology is based on WebKit’s browser
engine.

http://www.gartner.com/it/page.jsp?id=1764714
http://www.gartner.com/it/page.jsp?id=1764714

7Understanding the Android market
can be effectively scaled down to feature phone class hardware, it would go a long way
toward penetrating this end of the market. Chapter 16 takes a close look at using web
development skills for creating Android applications.

WEBKIT The WebKit (www.webkit.org) browser engine is an open source
project that powers the browser found in Macs (Safari) and is the engine
behind Mobile Safari, which is the browser on the iPhone. It’s not a stretch to
say that the browser experience is one of a few features that made the iPhone
popular out of the gate, so its inclusion in Android is a strong plus for
Android’s architecture.

Software at the lower end of the market generally falls into one of two camps:

 Qualcomm’s BREW environment—BREW stands for Binary Runtime Environment
for Wireless. For a high-volume example of BREW technology, consider Veri-
zon’s Get It Now-capable devices, which run on this platform. The challenge for
software developers who want to gain access to this market is that the bar to get
an application on this platform is high, because everything is managed by the
mobile operator, with expensive testing and revenue-sharing fee structures. The
upside to this platform is that the mobile operator collects the money and dis-
burses it to the developer after the sale, and often these sales recur monthly.
Just about everything else is a challenge to the software developer. Android’s
open application environment is more accessible than BREW.

 Java ME, or Java Platform, Micro Edition—A popular platform for this class of
device. The barrier to entry is much lower for software developers. Java ME
developers will find a same-but-different environment in Android. Android isn’t
strictly a Java ME-compatible platform, but the Java programming environment
found in Android is a plus for Java ME developers. There are some projects
underway to create a bridge environment, with the aim of enabling Java ME
applications to be compiled and run for Android. Gaming, a better browser,
and anything to do with texting or social applications present fertile territory
for Android at this end of the market.

Although the majority of cell phones sold worldwide are not considered smartphones,
the popularity of Android (and other capable platforms) has increased demand for
higher-function devices. That’s what we’re going to discuss next.

1.2.3 Android vs. the smartphones

Let’s start by naming the major smartphone players: Symbian (big outside North
America), BlackBerry from Research in Motion, iPhone from Apple, Windows
(Mobile, SmartPhone, and now Phone 7), and of course, the increasingly popular
Android platform.

 One of the major concerns of the smartphone market is whether a platform can
synchronize data and access Enterprise Information Systems for corporate users.
Device-management tools are also an important factor in the enterprise market. The

www.webkit.org

8 CHAPTER 1 Introducing Android
browser experience is better than with the lower-end phones, mainly because of larger
displays and more intuitive input methods, such as a touch screen, touch pad, slide-
out keyboard, or jog dial.

 Android’s opportunity in this market is to provide a device and software that peo-
ple want. For all the applications available for the iPhone, working with Apple can be
a challenge; if the core device doesn’t suit your needs, there’s little room to maneuver
because of the limited models available and historical carrier exclusivity. Now that
email, calendaring, and contacts can sync with Microsoft Exchange, the corporate
environment is more accessible, but Android will continue to fight the battle of scal-
ing the Enterprise walls. Later Android releases have added improved support for the
Microsoft Exchange platform, though third-party solutions still out-perform the built-
in offerings. BlackBerry is dominant because of its intuitive email capabilities, and the
Microsoft platforms are compelling because of tight integration to the desktop experi-
ence and overall familiarity for Windows users. iPhone has surprisingly good integra-
tion with Microsoft Exchange—for Android to compete in this arena, it must
maintain parity with iPhone on Enterprise support.

 You’ve seen how Android stacks up next to feature phones and smartphones. Next,
we’ll see whether Android, the open source mobile platform, can succeed as an open
source project.

1.2.4 Android vs. itself

Android will likely always be an open source project, but to succeed in the mobile mar-
ket, it must sell millions of units and stay fresh. Even though Google briefly entered the
device fray with its Nexus One and Nexus S phones, it’s not a hardware company. His-
torically, Android-powered devices have been brought to market by others such as
HTC, Samsung, and Motorola, to name the larger players. Starting in mid-2011, Google
began to further flex its muscles with the acquisition of Motorola’s mobile business
division. Speculation has it that Google’s primary interest is in Motorola’s patent port-
folio, because the intellectual property scene has heated up considerably. A secondary
reason may be to acquire the Motorola Xoom platform as Android continues to reach
beyond cell phones into tablets and beyond.

 When a manufacturer creates an Android-powered device, they start with the
Android Open Source Platform (AOSP) and then extend it to meet their need to dif-
ferentiate their offerings. Android isn’t the first open source phone, but it’s the first
from a player with the market-moving weight of Google leading the charge. This mar-
ket leadership position has translated to impressive unit sales across multiple manu-
facturers and markets around the globe. With a multitude of devices on the market,
can Android keep the long-anticipated fragmentation from eroding consumer and
investor confidence?

 Open source is a double-edged sword. On one hand, the power of many talented
people and companies working around the globe and around the clock to deliver
desirable features is a force to be reckoned with, particularly in comparison with a tra-
ditional, commercial approach to software development. This topic has become trite

9Understanding the Android market
because the benefits of open source development are well documented. On the other
hand, how far will the competing manufacturers extend and potentially split Android?
Depending on your perspective, the variety of Android offerings is a welcome alterna-
tive to a more monolithic iPhone device platform where consumers have few choices
available.

 Another challenge for Android is that the licensing model of open source code
used in commercial offerings can be sticky. Some software licenses are more restrictive
than others, and some of those restrictions pose a challenge to the open source label.
At the same time, Android licensees need to protect their investment, so licensing is
an important topic for the commercialization of Android.

1.2.5 Licensing Android

Android is released under two different open source licenses. The Linux kernel is
released under the GNU General Public License (GPL) as is required for anyone licensing
the open source OS kernel. The Android platform, excluding the kernel, is licensed
under the Apache Software License (ASL). Although both licensing models are open
source–oriented, the major difference is that the Apache license is considered friend-
lier toward commercial use. Some open source purists might find fault with anything
but complete openness, source-code sharing, and noncommercialization; the ASL
attempts to balance the goals of open source with commercial market forces. So far
there has been only one notable licensing hiccup impacting the Android mod com-
munity, and that had more to do with the gray area of full system images than with a
manufacturer’s use of Android on a mainstream product release. Currently, Android
is facing intellectual property challenges; both Microsoft and Apple are bringing liti-
gation against Motorola and HTC for the manufacturer’s Android-based handsets.

 The high-level, market-oriented portion of the book has now concluded! The
remainder of this book is focused on Android application development. Any technical
discussion of a software environment must include a review of the layers that compose
the environment, sometimes referred to as a stack because of the layer-upon-layer con-
struction. Next up is a high-level breakdown of the components of the Android stack.

Selling applications
A mobile platform is ultimately valuable only if there are applications to use and enjoy
on that platform. To that end, the topic of buying and selling applications for Android
is important and gives us an opportunity to highlight a key difference between Android
and the iPhone. The Apple App Store contains software titles for the iPhone—lots of
them. But Apple’s somewhat draconian grip on the iPhone software market requires
that all applications be sold through its venue. Although Apple’s digital rights man-
agement (DRM) is the envy of the market, this approach can pose a challenging envi-
ronment for software developers who might prefer to make their application available
through multiple distribution channels.

10 CHAPTER 1 Introducing Android
1.3 The layers of Android
The Android stack includes an impressive array of features for mobile applications. In
fact, looking at the architecture alone, without the context of Android being a plat-
form designed for mobile environments, it would be easy to confuse Android with a
general computing environment. All the major components of a computing platform
are there. Here’s a quick rundown of prominent components of the Android stack:

 A Linux kernel that provides a foundational hardware abstraction layer, as well as
core services such as process, memory, and filesystem management. The kernel
is where hardware-specific drivers are implemented—capabilities such as Wi-Fi
and Bluetooth are here. The Android stack is designed to be flexible, with
many optional components that largely rely on the availability of specific hard-
ware on a given device. These components include features such as touch
screens, cameras, GPS receivers, and accelerometers.

 Prominent code libraries, including the following:
• Browser technology from WebKit, the same open source engine powering

Mac’s Safari and the iPhone’s Mobile Safari browser. WebKit has become the
de facto standard for most mobile platforms.

• Database support via SQLite, an easy-to-use SQL database.
• Advanced graphics support, including 2D, 3D, animation from Scalable

Games Language (SGL), and OpenGL ES.
• Audio and video media support from PacketVideo’s OpenCORE, and

Google’s own Stagefright media framework.
• Secure Sockets Layer (SSL) capabilities from the Apache project.

 An array of managers that provide services for
• Activities and views
• Windows
• Location-based services
• Telephony
• Resources

(continued)
Contrast Apple’s approach to application distribution with the freedom Android
developers enjoy to ship applications via traditional venues such as freeware and
shareware, and commercially through various marketplaces, including their own
website! For software publishers who want the focus of an on-device shopping expe-
rience, Google has launched and continues to mature the Android Market. For soft-
ware developers who already have titles for other platforms such as Windows
Mobile, Palm, and BlackBerry, traditional software markets such as Handango
(www.Handango.com) also support selling Android applications. Handango and its
ilk are important outlets; consumers new to Android will likely visit sites such as
Handango because that might be where they first purchased one of their favorite
applications for their prior device.

http://www.Handango.com

11The layers of Android
 The Android runtime, which provides
• Core Java packages for a nearly full-featured Java programming environ-

ment. Note that this isn’t a Java ME environment.
• The Dalvik VM, which employs services of the Linux-based kernel to provide an

environment to host Android applications.

Both core applications and third-party applications (such as the ones you’ll build in
this book) run in the Dalvik VM, atop the com-
ponents we just listed. You can see the relation-
ship among these layers in figure 1.3.

TIP Without question, Android devel-
opment requires Java programming
skills. To get the most out of this book,
be sure to brush up on your Java pro-
gramming knowledge. There are many
Java references on the internet, and no
shortage of Java books on the market.
An excellent source of Java titles can
be found at www.manning.com/
catalog/java.

Now that we’ve shown you the obligatory stack
diagram and introduced all the layers, let’s
look more in depth at the runtime technology
that underpins Android.

1.3.1 Building on the Linux kernel

Android is built on a Linux kernel and on an advanced, optimized VM for its Java appli-
cations. Both technologies are crucial to Android. The Linux kernel component of the
Android stack promises agility and portability to take advantage of numerous hardware
options for future Android-equipped phones. Android’s Java environment is key: it
makes Android accessible to programmers because of both the number of Java soft-
ware developers and the rich environment that Java programming has to offer.

 Why use Linux for a phone? Using a full-featured platform such as the Linux ker-
nel provides tremendous power and capabilities for Android. Using an open source
foundation unleashes the capabilities of talented individuals and companies to move
the platform forward. Such an arrangement is particularly important in the world of
mobile devices, where products change so rapidly. The rate of change in the mobile
market makes the general computer market look slow and plodding. And, of course,
the Linux kernel is a proven core platform. Reliability is more important than perfor-
mance when it comes to a mobile phone, because voice communication is the primary
use of a phone. All mobile phone users, whether buying for personal use or for a busi-
ness, demand voice reliability, but they still want cool data features and will purchase a
device based on those features. Linux can help meet this requirement.

User applications: Contacts, phone, browser, etc.

Application managers: Windows, content, activities,
telephony, location, notifications, etc.

Android runtime: Java via Dalvik VM

Libraries: Graphics, media, database,
communications, browser engine, etc.

Linux kernel, including device drivers

Hardware device with specific capabilities such
as GPS, camera, Bluetooth, etc.

Figure 1.3 The Android stack offers an
impressive array of technologies and
capabilities.

http://www.manning.com/catalog/java
http://www.manning.com/catalog/java

12 CHAPTER 1 Introducing Android
 Speaking to the rapid rate of phone turnover and accessories hitting the market,
another advantage of using Linux as the foundation of the Android platform stack is
that it provides a hardware abstraction layer; the upper levels remain unchanged
despite changes in the underlying hardware. Of course, good coding practices
demand that user applications fail gracefully in the event a resource isn’t available,
such as a camera not being present in a particular handset model. As new accessories
appear on the market, drivers can be written at the Linux level to provide support, just
as on other Linux platforms. This architecture is already demonstrating its value;
Android devices are already available on distinct hardware platforms. HTC, Motorola,
and others have released Android-based devices built on their respective hardware
platforms. User applications, as well as core Android applications, are written in Java
and are compiled into byte codes. Byte codes are interpreted at runtime by an inter-
preter known as a virtual machine (VM).

1.3.2 Running in the Dalvik VM

The Dalvik VM is an example of the need for efficiency, the desire for a rich program-
ming environment, and even some intellectual property constraints, colliding, with
innovation as the result. Android’s Java environment provides a rich application plat-
form and is accessible because of the popularity of Java itself. Also, application perfor-
mance, particularly in a low-memory setting such as you find in a mobile phone, is
paramount for the mobile market. But this isn’t the only issue at hand.

 Android isn’t a Java ME platform. Without commenting on whether this is ultimately
good or bad for Android, there are other forces at play here. There’s the matter of Java
VM licensing from Oracle. From a high level, Android’s code environment is Java.
Applications are written in Java, which is compiled to Java byte codes and subsequently
translated to a similar but different representation called dex files. These files are logi-
cally equivalent to Java byte codes, but they permit Android to run its applications in its
own VM that’s both (arguably) free from Oracle’s licensing clutches and an open plat-
form upon which Google, and potentially the open source community, can improve as
necessary. Android is facing litigation challenges from Oracle about the use of Java.

NOTE From the mobile application developer’s perspective, Android is a Java
environment, but the runtime isn’t strictly a Java VM. This accounts for the
incompatibilities between Android and proper Java environments and librar-
ies. If you have a code library that you want to reuse, your best bet is to assume
that your code is nearly source compatible, attempt to compile it into an Android
project, and then determine how close you are to having usable code.

The important things to know about the Dalvik VM are that Android applications run
inside it and that it relies on the Linux kernel for services such as process, memory,
and filesystem management.

 Now that we’ve discussed the foundational technologies in Android, it’s time to
focus on Android application development. The remainder of this chapter discusses
high-level Android application architecture and introduces a simple Android

13The Intent of Android development
application. If you’re not comfortable or ready to begin coding, you might want to
jump to chapter 2, where we introduce the development environment step-by-step.

1.4 The Intent of Android development
Let’s jump into the fray of Android development, focus on an important component
of the Android platform, and expand to take a broader view of how Android applica-
tions are constructed.

 An important and recurring theme of Android development is the Intent. An
Intent in Android describes what you want to do. An Intent might look like “I want
to look up a contact record” or “Please launch this website” or “Show the order confir-
mation screen.” Intents are important because they not only facilitate navigation in
an innovative way, as we’ll discuss next, but also represent the most important aspect
of Android coding. Understand the Intent and you’ll understand Android.

NOTE Instructions for setting up the Eclipse development environment are in
appendix A. This environment is used for all Java examples in this book. Chap-
ter 2 goes into more detail on setting up and using the development tools.

The code examples in this chapter are primarily for illustrative purposes.
We reference and introduce classes without necessarily naming specific Java
packages. Subsequent chapters take a more rigorous approach to introducing
Android-specific packages and classes.

Next, we’ll look at the foundational information about why Intents are important,
and then we’ll describe how Intents work. Beyond the introduction of the Intent,
the remainder of this chapter describes the major elements of Android application
development, leading up to and including the first complete Android application that
you’ll develop.

1.4.1 Empowering intuitive UIs

The power of Android’s application framework lies in the way it brings a web mindset
to mobile applications. This doesn’t mean the platform has only a powerful browser
and is limited to clever JavaScript and server-side resources, but rather it goes to the
core of how the Android platform works and how users interact with the mobile
device. The power of the internet is that everything is just a click away. Those clicks are
known as Uniform Resource Locators (URLs), or alternatively, Uniform Resource Identifiers
(URIs). Using effective URIs permits easy and quick access to the information users
need and want every day. “Send me the link” says it all.

 Beyond being an effective way to get access to data, why is this URI topic important,
and what does it have to do with Intents? The answer is nontechnical but crucial: the
way a mobile user navigates on the platform is crucial to its commercial success. Plat-
forms that replicate the desktop experience on a mobile device are acceptable to only
a small percentage of hardcore power users. Deep menus and multiple taps and clicks
are generally not well received in the mobile market. The mobile application, more
than in any other market, demands intuitive ease of use. A consumer might buy a

14 CHAPTER 1 Introducing Android
device based on cool features that were enumerated in the marketing materials, but
that same consumer is unlikely to even touch the instruction manual. A UI’s usability
is highly correlated with its market penetration. UIs are also a reflection of the plat-
form’s data access model, so if the navigation and data models are clean and intuitive,
the UI will follow suit.

 Now we’re going to introduce Intents and IntentFilters, Android’s innovative
navigation and triggering mechanisms.

1.4.2 Intents and how they work

Intents and IntentFilters bring the “click it” paradigm to the core of mobile appli-
cation use (and development) for the Android platform:

 An Intent is a declaration of need. It’s made up of a number of pieces of infor-
mation that describe the desired action or service. We’re going to examine the
requested action and, generically, the data that accompanies the requested
action.

 An IntentFilter is a declaration of capability and interest in offering assis-
tance to those in need. It can be generic or specific with respect to which
Intents it offers to service.

The action attribute of an Intent is typically a verb: for example VIEW, PICK, or EDIT. A
number of built-in Intent actions are defined as members of the Intent class, but
application developers can create new actions as well. To view a piece of information,
an application employs the following Intent action:

android.content.Intent.ACTION_VIEW

The data component of an Intent is expressed in the form of a URI and can be virtu-
ally any piece of information, such as a contact record, a website location, or a refer-
ence to a media clip. Table 1.1 lists some Android URI examples.

 The IntentFilter defines the relationship between the Intent and the applica-
tion. IntentFilters can be specific to the data portion of the Intent, the action por-
tion, or both. IntentFilters also contain a field known as a category. The category
helps classify the action. For example, the category named CATEGORY_LAUNCHER
instructs Android that the Activity containing this IntentFilter should be visible in
the main application launcher or home screen.

 When an Intent is dispatched, the system evaluates the available Activitys,
Services, and registered BroadcastReceivers (more on these in section 1.5) and

Table 1.1 Commonly employed URIs in Android

Type of information URI data

Contact lookup content://contacts/people

Map lookup/search Geo:0,0?q=23+Route+206+Stanhope+NJ

Browser launch to a specific website http://www.google.com/

http://www.google.com/

15The Intent of Android development
dispatches the Intent to the most appropriate recipient. Figure 1.4 depicts this rela-
tionship among Intents, IntentFilters, and BroadcastReceivers.

IntentFilters are often defined in an application’s AndroidManifest.xml file with
the <intent-filter> tag. The AndroidManifest.xml file is essentially an application
descriptor file, which we’ll discuss later in this chapter.

 A common task on a mobile device is looking up a specific contact record for the
purpose of initiating a call, sending a text message, or looking up a snail-mail address
when you’re standing in line at the neighborhood pack-and-ship store. Or a user
might want to view a specific piece of information, say a contact record for user 1234.
In these cases, the action is ACTION_VIEW and the data is a specific contact record
identifier. To carry out these kinds of tasks, you create an Intent with the action set to
ACTION_VIEW and a URI that represents the specific person of interest.
Here are some examples:

 The URI that you would use to contact the record for user 1234: content://
contacts/people/1234

 The URI for obtaining a list of all contacts: content://contacts/people

The following code snippet shows how to PICK a contact record:

Intent pickIntent = new Intent(Intent.ACTION_PICK,Uri.parse("content://
contacts/people"));

startActivity(pickIntent);

An Intent is evaluated and passed to the most appropriate handler. In the case of pick-
ing a contact record, the recipient would likely be a built-in Activity named
com.google.android.phone.Dialer. But the best recipient of this Intent might be an
Activity contained in the same custom Android application (the one you build), a
built-in application (as in this case), or a third-party application on the device. Appli-
cations can leverage existing functionality in other applications by creating and

startActivity(Intent);

or

startActivity(Intent,identifier);

or

startService(Intent);

Help me: Find a Person
(Intent)

Android application #1

Help me: Find an address
on the map (Intent)

For hire: Take a ride on
the Internet (IntentFilter)

Android application #2 (BroadcastReceiver)

For hire: Find anything on
the map (IntentFilter)

For hire: View, edit, browse any contacts (IntentFilter)
Android application #3 (BroadcastReceiver)

For hire: Custom action on custom data (IntentFilter)

Android application #4 (BroadcastReceiver)

Figure 1.4 Intents are distributed to Android
applications, which register themselves by way of
the IntentFilter, typically in the
AndroidManifest.xml file.

16 CHAPTER 1 Introducing Android
dispatching an Intent that requests existing code to handle the Intent rather than
writing code from scratch. One of the great benefits of employing Intents in this man-
ner is that the same UIs get used frequently, creating familiarity for the user. This is par-
ticularly important for mobile platforms where the user is often neither tech-savvy nor interested in
learning multiple ways to accomplish the same task, such as looking up a contact on the phone.

 The Intents we’ve discussed thus far are known as implicit Intents, which rely on
the IntentFilter and the Android environment to dispatch the Intent to the
appropriate recipient. Another kind of Intent is the explicit Intent, where you can
specify the exact class that you want to handle the Intent. Specifying the exact class is
helpful when you know exactly which Activity you want to handle the Intent and
you don’t want to leave anything to chance in terms of what code is executed. To cre-
ate an explicit Intent, use the overloaded Intent constructor, which takes a class as
an argument:

public void onClick(View v) {
 try {
 startActivityForResult(new Intent(v.getContext(),RefreshJobs.class),0);
 } catch (Exception e) {
 . . .
 }
}

These examples show how an Android
developer creates an Intent and asks for
it to be handled. Similarly, an Android
application can be deployed with an
IntentFilter, indicating that it
responds to Intents that were already
defined on the system, thereby publish-
ing new functionality for the platform.
This facet alone should bring joy to
independent software vendors (ISVs)
who’ve made a living by offering better
contact managers and to-do list manage-
ment software titles for other mobile
platforms.

Intent resolution, or dispatching,
takes place at runtime, as opposed to
when the application is compiled. You
can add specific Intent-handling fea-
tures to a device, which might provide
an upgraded or more desirable set of
functionality than the original shipping
software. This runtime dispatching is
also referred to as late binding.

The power and the
complexity of Intents
It’s not hard to imagine that an abso-
lutely unique user experience is possi-
ble with Android because of the variety
of Activitys with specific Intent-
Filters that are installed on any given
device. It’s architecturally feasible to
upgrade various aspects of an Android
installation to provide sophisticated
functionality and customization.
Though this might be a desirable char-
acteristic for the user, it can be trou-
blesome for someone providing tech
support who has to navigate a number
of components and applications to
troubleshoot a problem.

Because of the potential for added
complexity, this approach of ad hoc
system patching to upgrade specific
functionality should be entertained
cautiously and with your eyes wide
open to the potential pitfalls associ-
ated with this approach.

17Four kinds of Android components
 Thus far, this discussion of Intents has focused on the variety of Intents that cause
UI elements to be displayed. Other Intents are more event-driven than task-oriented,
as our earlier contact record example described. For example, you also use the Intent
class to notify applications that a text message has arrived. Intents are a central ele-
ment to Android; we’ll revisit them on more than one occasion.

 Now that we’ve explained Intents as the catalyst for navigation and event flow on
Android, let’s jump to a broader view and discuss the Android application lifecycle
and the key components that make Android tick. The Intent will come into better
focus as we further explore Android throughout this book.

1.5 Four kinds of Android components
Let’s build on your knowledge of the Intent and IntentFilter classes and explore
the four primary components of Android applications, as well as their relation to the
Android process model. We’ll include code snippets to provide a taste of Android
application development. We’re going to leave more in-depth examples and discus-
sion for later chapters.

NOTE A particular Android application might not contain all of these ele-
ments but will have at least one of these elements, and could have all of them.

1.5.1 Activity

An application might have a UI, but it doesn’t have to have one. If it has a UI, it’ll have
at least one Activity.

 The easiest way to think of an Android Activity is to relate it to a visible screen,
because more often than not there’s a one-to-one relationship between an Activity
and a UI screen. This relationship is similar to that of a controller in the MVC paradigm.

 Android applications often contain more than one Activity. Each Activity dis-
plays a UI and responds to system- and user-initiated events. The Activity employs
one or more Views to present the actual UI elements to the user. The Activity class is
extended by user classes, as shown in the following listing.

package com.msi.manning.chapter1;
import android.app.Activity;
import android.os.Bundle;
public class Activity1 extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

The Activity class is part of the android.app Java package, found in the Android
runtime. The Android runtime is deployed in the android.jar file. The class

Listing 1.1 A basic Activity in an Android application

18 CHAPTER 1 Introducing Android
Activity1 extends the class Activity, which we’ll examine in detail in chapter 3.
One of the primary tasks an Activity performs is displaying UI elements, which are
implemented as Views and are typically defined in XML layout files. Chapter 3 goes
into more detail on Views and Resources.

 Moving from one Activity to another is accomplished with the startActivity()
method or the startActivityForResult() method when you want a synchronous
call/result paradigm. The argument to these methods is an instance of an Intent.

 The Activity represents a visible application component within Android. With
assistance from the View class, which we’ll cover in chapter 3, the Activity is the most
commonly employed Android application component. Android 3.0 introduced a new
kind of application component, the Fragment. Fragments, which are related to Activ-
itys and have their own life cycle, provide more granular application control than
Activitys. Fragments are covered in Chapter 20. The next topic of interest is the Ser-
vice, which runs in the background and doesn’t generally present a direct UI.

1.5.2 Service

If an application is to have a long lifecycle, it’s often best to put it into a Service. For
example, a background data-synchronization utility should be implemented as a
Service. A best practice is to launch Services on a periodic or as-needed basis, trig-
gered by a system alarm, and then have the Service terminate when its task is complete.

 Like the Activity, a Service is a class in the Android runtime that you should
extend, as shown in the following listing. This example extends a Service and period-
ically publishes an informative message to the Android log.

package com.msi.manning.chapter1;
import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;
public class Service1 extends Service implements Runnable {
public static final String tag = "service1";
 private int counter = 0;

Listing 1.2 A simple example of an Android Service

You say Intent; I say Intent
The Intent class is used in similar sounding but very different scenarios.

Some Intents are used to assist in navigating from one Activity to the next,
such as the example given earlier of viewing a contact record. Activities are the tar-
gets of these kinds of Intents, which are used with the startActivity and
startActivityForResult methods.

Also, a Service can be started by passing an Intent to the startService method.

BroadcastReceivers receive Intents when responding to system-wide events,
such as a ringing phone or an incoming text message.

Extend
Service
classB

19Four kinds of Android components
 @Override
 protected void onCreate() {
 super.onCreate();
 Thread aThread = new Thread (this);
 aThread.start();
 }
 public void run() {
 while (true) {
 try {
 Log.i(tag,"service1 firing : # " + counter++);
 Thread.sleep(10000);
 } catch(Exception ee) {
 Log.e(tag,ee.getMessage());
 }
 }
 }

@Override
public IBinder onBind(Intent intent) {
return null;
}

}

This example requires that the package android.app.Service be imported. This
package contains the Service class. This example also demonstrates Android’s log-
ging mechanism android.util.Log, which is useful for debugging purposes. (Many
examples in this book include using the logging facility. We’ll discuss logging in more
depth in chapter 2.) The Service1 class B extends the Service class. This class
implements the Runnable interface to perform its main task on a separate thread. The
onCreate method C of the Service class permits the application to perform initial-
ization-type tasks. We’re going to talk about the onBind() method D in further detail
in chapter 4, when we’ll explore the topic of interprocess communication in general.

 Services are started with the startService(Intent) method of the abstract
Context class. Note that, again, the Intent is used to initiate a desired result on the
platform.

 Now that the application has a UI in an Activity and a means to have a back-
ground task via an instance of a Service, it’s time to explore the BroadcastReceiver,
another form of Android application that’s dedicated to processing Intents.

1.5.3 BroadcastReceiver

If an application wants to receive and respond to a global event, such as a ringing
phone or an incoming text message, it must register as a BroadcastReceiver. An
application registers to receive Intents in one of the following ways:

 The application can implement a <receiver> element in the Android-
Manfest.xml file, which describes the BroadcastReceiver’s class name and
enumerates its IntentFilters. Remember, the IntentFilter is a descriptor of
the Intent an application wants to process. If the receiver is registered in the
AndroidManifest.xml file, the application doesn’t need to be running in order

InitializationC

Handle
binding request

D

20 CHAPTER 1 Introducing Android
to be triggered. When the event occurs, the application is started automatically
upon notification of the triggering event. Thankfully, all this housekeeping is
managed by the Android OS itself.

 An application can register at runtime via the Context class’s register-
Receiver method.

Like Services, BroadcastReceivers don’t have a UI. Even more important, the code
running in the onReceive method of a BroadcastReceiver should make no assump-
tions about persistence or long-running operations. If the BroadcastReceiver
requires more than a trivial amount of code execution, it’s recommended that the
code initiate a request to a Service to complete the requested functionality because
the Service application component is designed for longer-running operations
whereas the BroadcastReceiver is meant for responding to various triggers.

NOTE The familiar Intent class is used in triggering BroadcastReceivers.
The parameters will differ, depending on whether you’re starting an
Activity, a Service, or a BroadcastReceiver, but it’s the same Intent class
that’s used throughout the Android platform.

A BroadcastReceiver implements the abstract method onReceive to process incom-
ing Intents. The arguments to the method are a Context and an Intent. The method
returns void, but a handful of methods are useful for passing back results, including
setResult, which passes back to the invoker an integer return code, a String return
value, and a Bundle value, which can contain any number of objects.

 The following listing is an example of a BroadcastReceiver triggering upon
receipt of an incoming text message.

package com.msi.manning.unlockingandroid;
import android.content.Context;
import android.content.Intent;
import android.util.Log;
import.android.content.BroadcastReceiver
public class MySMSMailBox extends BroadcastReceiver {
public static final String tag = "MySMSMailBox";
@Override
public void onReceive(Context context, Intent intent) {
 Log.i(tag,"onReceive");
 if (intent.getAction().equals
("android.provider.Telephony.SMS_RECEIVED")) {
 Log.i(tag,"Found our Event!");
 }
}

We need to discuss a few items in this listing. The class MySMSMailBox extends the
BroadcastReceiver class. This subclass approach is the most straightforward way to
employ a BroadcastReceiver. (Note the class name MySMSMailBox; it’ll be used in the
AndroidManifest.xml file, shown in listing 1.4.) The tag variable B is used in

Listing 1.3 A sample BroadcastReceiver

Tag used
in logging

B

Check
Intent’s action

C

21Four kinds of Android components
conjunction with the logging mechanism to assist in labeling messages sent to the con-
sole log on the emulator. Using a tag in the log enables you to filter and organize log
messages in the console. (We discuss the log mechanism in more detail in chapter 2.)
The onReceive method is where all the work takes place in a BroadcastReceiver; you
must implement this method. A given BroadcastReceiver can register multiple
IntentFilters. A BroadcastReceiver can be instantiated for an arbitrary number of
Intents.

 It’s important to make sure that the application handles the appropriate Intent by
checking the action of the incoming Intent C. When the application receives the
desired Intent, it should carry out the specific functionality that’s required. A com-
mon task in an SMS-receiving application is to parse the message and display it to the
user via the capabilities found in the NotificationManager. (We’ll discuss notifica-
tions in chapter 8.) In listing 1.3, you simply record the action to the log.

 In order for this BroadcastReceiver to fire and receive this Intent, the Broadcast-
Receiver is listed in the AndroidManifest.xml file, along with an appropriate intent-
filter tag, as shown in the following listing. This listing contains the elements
required for the application to respond to an incoming text message.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.unlockingandroid">
 <uses-permission android:name="android.permission.RECEIVE_SMS" />
 <application android:icon="@drawable/icon">
 <activity android:name=".Activity1" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name=".MySMSMailBox" >
 <intent-filter>
 <action android:name="android.provider.Telephony.SMS_RECEIVED" />
 </intent-filter>
 </receiver>
 </application>
</manifest>

Certain tasks within the Android platform require the application to have a designated
privilege. To give an application the required permissions, use the <uses-

permission> tag B. (We’ll discuss this tag in detail in section 1.6.) The <receiver>
tag contains the class name of the class implementing the BroadcastReceiver. In this
example, the class name is MySMSMailBox, from the package com.msi.manning
.unlockingandroid. Be sure to note the dot that precedes the name C. This dot is
required. If your application isn’t behaving as expected, one of the first places to
check is your Android.xml file, and look for the dot before the class name! The
IntentFilter is defined in the <intent-filter> tag. The desired action in this

Listing 1.4 AndroidManifest.xml

BRequired permission

Receiver tag;
note dot prefix

C

22 CHAPTER 1 Introducing Android
example is android.provider.Telephony.SMS_RECEIVED. The Android SDK contains
the available actions for the standard Intents. Also, remember that user applications
can define their own Intents, as well as listen for them.

 Now that we’ve introduced Intents and the Android classes that process or handle
Intents, it’s time to explore the next major Android application topic: the Content-
Provider, Android’s preferred data-publishing mechanism.

1.5.4 ContentProvider

If an application manages data and needs to expose that data to other applications
running in the Android environment, you should consider a ContentProvider. If an
application component (Activity, Service, or BroadcastReceiver) needs to access
data from another application, the component accesses the other application’s
ContentProvider. The ContentProvider implements a standard set of methods to
permit an application to access a data store. The access might be for read or write
operations, or for both. A ContentProvider can provide data to an Activity or
Service in the same containing application, as well as to an Activity or Service con-
tained in other applications.

 A ContentProvider can use any form of data-storage mechanism available on the
Android platform, including files, SQLite databases, or even a memory-based hash
map if data persistence isn’t required. The ContentProvider is a data layer that pro-
vides data abstraction for its clients and centralizing storage and retrieval routines in a
single place.

 Sharing files or databases directly is discouraged on the Android platform, and is
enforced by the underlying Linux security system, which prevents ad hoc file access
from one application space to another without explicitly granted permissions.
Data stored in a ContentProvider can be traditional data types, such as integers and
strings. Content providers can also manage binary data, such as image data. When
binary data is retrieved, the suggested best practice is to return a string representing
the filename that contains the binary data. If a filename is returned as part of a
ContentProvider query, the application shouldn’t access the file directly; you should

Testing SMS
The emulator has a built-in set of tools for manipulating certain telephony behavior
to simulate a variety of conditions, such as in-network and out-of-network coverage
and placing phone calls.

To send an SMS message to the emulator, telnet to port 5554 (the port number
might vary on your system), which will connect to the emulator, and issue the follow-
ing command at the prompt:
sms send <sender's phone number> <body of text message>

To learn more about available commands, type help at the prompt.

We’ll discuss these tools in more detail in chapter 2.

23Four kinds of Android components
use the helper class, ContentResolver’s openInputStream method, to access the
binary data. This approach navigates the Linux process and security hurdles, as well as
keeps all data access normalized through the ContentProvider. Figure 1.5 outlines
the relationship among ContentProviders, data stores, and their clients.

 A ContentProvider’s data is accessed by an Android application through a Con-
tent URI. A ContentProvider defines this URI as a public static final String. For
example, an application might have a data store managing material safety data sheets.
The Content URI for this ContentProvider might look like this:

public static final Uri CONTENT_URI =
Uri.parse("content://com.msi.manning.provider.unlockingandroid/datasheets");

From this point, accessing a ContentProvider is similar to using Structured Query
Language (SQL) in other platforms, though a complete SQL statement isn’t
employed. A query is submitted to the ContentProvider, including the columns
desired and optional Where and Order By clauses. Similar to parameterized queries in
traditional SQL, parameter substitution is also supported when working with the
ContentProvider class. Where do the results from the query go? In a Cursor class,
naturally. We’ll provide a detailed ContentProvider example in chapter 5.

NOTE In many ways, a ContentProvider acts like a database server.
Although an application could contain only a ContentProvider and in
essence be a database server, a ContentProvider is typically a component of
a larger Android application that hosts at least one Activity, Service, or
BroadcastReceiver.

Android Application #1

Activity 1.1

SQLite

Activity 1.2

Data file XML Virtual connection
to remote store

ContentProvider A

Android Application #3

Activity 3.1

Android Application #2

Activity 2.1

Figure 1.5 The content
provider is the data tier for
Android applications and is
the prescribed manner in
which data is accessed and
shared on the device.

24 CHAPTER 1 Introducing Android
This concludes our brief introduction to the major Android application classes. Gain-
ing an understanding of these classes and how they work together is an important
aspect of Android development. Getting application components to work together
can be a daunting task. For example, have you ever had a piece of software that just
didn’t work properly on your computer? Perhaps you copied it from another devel-
oper or downloaded it from the internet and didn’t install it properly. Every software
project can encounter environment-related concerns, though they vary by platform.
For example, when you’re connecting to a remote resource such as a database server
or FTP server, which username and password should you use? What about the libraries
you need to run your application? All these topics are related to software deployment.

 Before we discuss anything else related to deployment or getting an Android
application to run, we need to discuss the Android file named AndroidManifest.xml,
which ties together the necessary pieces to run an Android application on a device. A
one-to-one relationship exists between an Android application and its Android-
Manifest.xml file.

1.6 Understanding the AndroidManifest.xml file
In the preceding sections, we introduced the common elements of an Android appli-
cation. A fundamental fact of Android development is that an Android application
contains at least one Activity, Service, BroadcastReceiver, or ContentProvider.
Some of these elements advertise the Intents they’re interested in processing via the
IntentFilter mechanism. All these pieces of information need to be tied together
for an Android application to execute. The glue mechanism for this task of defining
relationships is the AndroidManifest.xml file.

 The AndroidManifest.xml file exists in the root of an application directory and
contains all the design-time relationships of a specific application and Intents.
AndroidManfest.xml files act as deployment descriptors for Android applications. The
following listing is an example of a simple AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.unlockingandroid">
 <application android:icon="@drawable/icon">
 <activity android:name=".Activity1" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Looking at this simple AndroidManifest.xml file, you see that the manifest element
contains the obligatory namespace, as well as the Java package name containing this
application. This application contains a single Activity, with the class name

Listing 1.5 AndroidManifest.xml file for a basic Android application

25Understanding the AndroidManifest.xml file
Activity1. Note also the @string syntax. Any
time an @ symbol is used in an AndroidMani-
fest.xml file, it references information stored in
one of the resource files. In this case, the label
attribute is obtained from the string resource
identified as app_name. (We discuss resources
in further detail later in chapter 3.) This appli-
cation’s lone Activity contains a single
IntentFilter definition. The IntentFilter
used here is the most common IntentFilter
seen in Android applications. The action
android.intent.action.MAIN indicates that
this is an entry point to the application. The
category android.intent.category.LAUNCHER
places this Activity in the launcher window, as
shown in figure 1.6. It’s possible to have multi-
ple Activity elements in a manifest file (and
thereby an application), with zero or more of
them visible in the launcher window.

 In addition to the elements used in the sam-
ple manifest file shown in listing 1.5, other
common tags are as follows:

 The <service> tag represents a Service.
The attributes of the <service> tag
include its class and label. A Service
might also include the <intent-filter>
tag.

 The <receiver> tag represents a
BroadcastReceiver, which might have
an explicit <intent-filter> tag.

 The <uses-permission> tag tells Android that this application requires certain
security privileges. For example, if an application requires access to the contacts
on a device, it requires the following tag in its AndroidManifest.xml file:
<uses-permission android:name=
"android.permission.READ_CONTACTS" />

We’ll revisit the AndroidManifest.xml file a number of times throughout the book
because we need to add more details about certain elements and specific coding
scenarios.

 Now that you have a basic understanding of the Android application and the
AndroidManifest.xml file, which describes its components, it’s time to discuss how
and where an Android application executes. To do that, we need to talk about the
relationship between an Android application and its Linux and Dalvik VM runtime.

Figure 1.6 Applications are listed in the
launcher based on their IntentFilter. In
this example, the application Where Do You
Live is available in the LAUNCHER category.

26 CHAPTER 1 Introducing Android
1.7 Mapping applications to processes
Android applications each run in a single Linux process. Android relies on Linux for
process management, and the application itself runs in an instance of the Dalvik VM.
The OS might need to unload, or even kill, an application from time to time to accom-
modate resource allocation demands. The system uses a hierarchy or sequence to
select the victim during a resource shortage. In general, the system follows these rules:

 Visible, running activities have top priority.
 Visible, nonrunning activities are important, because they’re recently paused

and are likely to be resumed shortly.
 Running services are next in priority.
 The most likely candidates for termination are processes that are empty

(loaded perhaps for performance-caching purposes) or processes that have
dormant Activitys.

Let’s apply some of what you’ve learned by building your first Android application.

1.8 Creating an Android application
Let’s look at a simple Android application consisting of a single Activity, with one
View. The Activity collects data (a street address) and creates an Intent to find this
address. The Intent is ultimately dispatched to Google Maps. Figure 1.7 is a screen
shot of the application running on the emulator. The name of the application is
Where Do You Live.

 As we previously stated, the AndroidManifest.xml file contains the descriptors for
the application components of the application. This application contains a single
Activity named AWhereDoYouLive. The application’s AndroidManifest.xml file is
shown in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.unlockingandroid">
 <application android:icon="@drawable/icon">
 <activity android:name=".AWhereDoYouLive"

Listing 1.6 AndroidManifest.xml for the Where Do You Live application

ps -a
The Linux environment is complete, including process management. You can launch
and kill applications directly from the shell on the Android platform, but this is a
developer’s debugging task, not something the average Android handset user is
likely to carry out. It’s nice to have this option for troubleshooting application issues.
It’s a relatively recent phenomenon to be able to touch the metal of a mobile phone
in this way. For more in-depth exploration of the Linux foundations of Android, see
chapter 13.

27Creating an Android application
android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
<uses-permission android:name="android.permission.INTERNET" />
</manifest>

The sole Activity is implemented in the file AWhereDoYouLive.java, shown in the
following listing.

package com.msi.manning.unlockingandroid;
// imports omitted for brevity
public class AWhereDoYouLive extends Activity {
 @Override
 public void onCreate(Bundle icicle) {

Listing 1.7 Implementing the Android Activity in AWhereDoYouLive.java

Figure 1.7 This Android application demonstrates a simple Activity and an Intent.

28 CHAPTER 1 Introducing Android
 super.onCreate(icicle);
 setContentView(R.layout.main);
 final EditText addressfield =
 (EditText) findViewById(R.id.address);
 final Button button = (Button)
 findViewById(R.id.launchmap);
 button.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View view) {
 try {
 String address = addressfield.getText().toString();
 address = address.replace(' ', '+');
 Intent geoIntent = new Intent
(android.content.Intent.ACTION_VIEW,
Uri.parse("geo:0,0?q=" + address));
 startActivity(geoIntent);
 } catch (Exception e) {

 }
 }
 });
 }
}

In this example application, the setContentView method creates the primary UI,
which is a layout defined in main.xml in the /res/layout directory. The EditText view
collects information, which in this case is an address. The EditText view is a text box
or edit box in generic programming parlance. The findViewById method connects
the resource identified by R.id.address to an instance of the EditText class.

 A Button object is connected to the launchmap UI element, again using the find-
ViewById method. When this button is clicked, the application obtains the entered
address by invoking the getText method of the associated EditText B.

 When the address has been retrieved from the UI, you need to create an Intent to
find the entered address. The Intent has a VIEW action, and the data portion repre-
sents a geographic search query C.

 Finally, the application asks Android to perform the Intent, which ultimately
results in the mapping application displaying the chosen address. The startActivity
method is invoked, passing in the prepared Intent.

 Resources are precompiled into a special class known as the R class, as shown in
listing 1.8. The final members of this class represent UI elements. You should never
modify the R.java file manually; it’s automatically built every time the underlying
resources change. (We’ll cover Android resources in greater depth in chapter 3.)

/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */
package com.msi.manning.unlockingandroid;

Listing 1.8 R.java containing the R class, which has UI element identifiers

B Get
address

C Prepare
Intent

29Creating an Android application

D
ow

nl
oa

d
fr

om
 w

w
w

.U
pe

Bo
ok

.C
om
public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int icon=0x7f020000;
 }
 public static final class id {
 public static final int address=0x7f050000;
 public static final int launchmap=0x7f050001;
 }
 public static final class layout {
 public static final int main=0x7f030000;
 }
 public static final class string {
 public static final int app_name=0x7f040000;
 }
}

Figure 1.7 shows the sample application in action. Someone looked up the address of
the White House; the result shows the White House pinpointed on the map.

 The primary screen of this application is defined as a LinearLayout view, as shown
in the following listing. It’s a single layout containing one label, one text-entry ele-
ment, and one button control.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Please enter your home address."
 />
<EditText
 android:id="@+id/address"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
android:autoText="true"
/>
<Button
 android:id="@+id/launchmap"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Show Map"
 />
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Unlocking Android, Chapter 1."
 />
</LinearLayout>

Listing 1.9 Main.xml defining the UI elements for the sample application

ID assignment
for EditText

B

ID assignment
for Button

C

30 CHAPTER 1 Introducing Android
Note the use of the @ symbol in this resource’s id attribute B and C. This symbol
causes the appropriate entries to be made in the R class via the automatically gener-
ated R.java file. These R class members are used in the calls to findViewById(), as
shown in listing 1.7, to tie the UI elements to an instance of the appropriate class.

 A strings file and icon round out the resources in this simple application. The
strings.xml file for this application is shown in the following listing. This file is used to
localize string content.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Where Do You Live</string>
</resources>

As you’ve seen, an Android application has a few moving pieces—though the compo-
nents themselves are rather straightforward and easy to stitch together. As we progress
through the book, we’ll introduce additional sample applications step-by-step as we
cover each of the major elements of Android development activities.

1.9 Android 3.0 for tablets and smartphones
Android 3.0 was originally introduced for tablets. But what makes the tablet different?
It’s the richer and more interactive application user experience that tablets provide. This
user experience is driven by the tablet’s form factor (larger screen), ease of handling,
media-rich and graphical capabilities, content and application distribution support,
computing power, and, as in the case of smartphones, connectivity, including offline
support.

 This new form factor opens the door to new application verticals such as eHealth,
where ease of use and privacy issues are of primary importance, and content media
distribution where content protection via DRM will play an important role.

 The tablet form factor also introduces new challenges to Android developers—
challenges related to UI design and development considerations not found when
developing for smartphones. The larger form factor encourages touch interaction
and navigation using one or both hands, and layout design that takes full advantage of
landscape versus portrait. And because tablets are now part of the mobile platform
family, application compatibility and portability across smartphones and tablets is an
important consideration for mobile developers.

 Android 3.0 isn’t limited to tablets and applies to smartphones as well, but on a
smaller scale. Everything in this chapter also applies to smartphones, once Android
3.0 is ported across the different platforms.

1.9.1 Why develop for Android tablets?

Mobile developers already have to deal with many different kinds of mobile platforms:
iOS, mobile web, Android (and its different versions), BlackBerry, Windows Phone,

Listing 1.10 strings.xml

31Android 3.0 for tablets and smartphones
Web OS, and so on. This can be overwhelming, so it’s important to focus on the
platforms that matter to you and your customers—in other words, the platforms with
greater return on investment.

 The tablet space is not only growing, but is expected to be massive. Driven by iOS
and Android tablets, a recent 2011 Yankee Report puts total tablet device sales in the
USA alone at $7 billion.2 Tablets will play a major role in both the consumer and enter-
prise spaces. The opportunities for tablet application development seem endless.

 According to Gartner, 17.6 million tablets were sold in 2010, and it anticipates a
significant increase with sales jumping to 69.5 million tablets in 2011. The firm’s ana-
lysts anticipate in 2015 nearly 300 million devices could be sold.3

 Tablets will be a predominate mobile platform that must be considered by any
developer who is serious about developing for mobile.

1.9.2 What’s new in the Android 3.0 Honeycomb platform?

The new Android 3.0 platform provides all the elements for tablet application devel-
opment. Android 3.0 introduces a number of UI enhancements that improve overall
application usage experience on tablets. These include a new holographic theme, a
new global notification bar, an application-specific action bar, a redesigned keyboard,
and text selection with cut/paste capabilities. New connectivity features for Bluetooth
and USB are provided, as well as updates to a number of the standard applications
such as the browser, camera, and email. Because tablets are expected to play a major
role in the Enterprise and businesses, new policy-management support has been intro-
duced as well.

 From the developer perspective, the changes introduced by Android 3.0 are exten-
sive with additions and changes to many existing Java packages and three new Java
packages:

 Animation (android.animation)
 Digital Rights Management (DRM, android.drm)
 High-performance 3D graphics (android.renderscript)

The changes to the other existing Java packages touch many aspects of the Android
API layer, including the following:

 Activitys and Fragments
 The Action bar
 Drag and drop
 Custom notifications
 Loaders
 Bluetooth

2 www.yankeegroup.com/ResearchDocument.do?id=55390
3 http://mng.bz/680r

www.yankeegroup.com/ResearchDocument.do?id=55390
http://mng.bz/680r

32 CHAPTER 1 Introducing Android
This book will cover the major aspects of tablet development using Android 3.0, start-
ing with Activitys and Fragments. Although we’ll focus on tablets, note that Google
TV is Android 3.1–based, meaning that most of the content covered here is also appli-
cable to Google TV.

1.10 Summary
This chapter introduced the Android platform and briefly touched on market posi-
tioning, including what Android is up against in the rapidly changing and highly com-
petitive mobile marketplace. In a few years, the Android SDK has been announced,
released, and updated numerous times. And that’s just the software. Major device
manufacturers have now signed on to the Android platform and have brought capa-
ble devices to market, including a privately labeled device from Google itself. Add to
that the patent wars unfolding between the major mobile players, and the stakes con-
tinue to rise—and Android’s future continues to brighten.

 In this chapter, we examined the Android stack and discussed its relationship with
Linux and Java. With Linux at its core, Android is a formidable platform, especially
for the mobile space where it’s initially targeted. Although Android development is
done in the Java programming language, the runtime is executed in the Dalvik VM, as
an alternative to the Java VM from Oracle. Regardless of the VM, Java coding skills are
an important aspect of Android development.

 We also examined the Android SDK’s Intent class. The Intent is what makes
Android tick. It’s responsible for how events flow and which code handles them. It
provides a mechanism for delivering specific functionality to the platform, enabling
third-party developers to deliver innovative solutions and products for Android. We
introduced all the main application classes of Activity, Service, ContentProvider,
and BroadcastReceiver, with a simple code snippet example for each. Each of these
application classes use Intents in a slightly different manner, but the core facility of
using Intents to control application behavior enables the innovative and flexible
Android environment. Intents and their relationship with these application classes
will be unpacked and unlocked as we progress through this book.

 The AndroidManifest.xml descriptor file ties all the details together for an
Android application. It includes all the information necessary for the application to
run, what Intents it can handle, and what permissions the application requires.
Throughout this book, the AndroidManifest.xml file will be a familiar companion as
we add and explain new elements.

 Finally, this chapter provided a taste of Android application development with a
simple example tying a simple UI, an Intent, and Google Maps into one seamless and
useful experience. This example is, of course, just scratching the surface of what
Android can do. The next chapter takes a deeper look into the Android SDK so that
you can learn more about the toolbox we’ll use to unlock Android.

Android’s development
environment
Building upon the foundational information presented in the first chapter, we pick
up the pace by introducing the Android development environment used to con-
struct the applications in the balance of the book. If you haven’t installed the devel-
opment tools, refer to appendix A for a step-by-step guide to downloading and
installing the tools.

 This chapter introduces the Android development tool chain and the software
tools required to build Android applications, and serves as your hands-on guide to
creating, testing, and even debugging applications. When you’ve completed this
chapter, you’ll be familiar with using Eclipse and the Android Development Tools
(ADT) plug-in for Eclipse, navigating the Android SDK, running Android

This chapter covers
 Introducing the Android SDK

 Exploring the development environment

 Building an Android application in Eclipse

 Debugging applications in the Android emulator
33

34 CHAPTER 2 Android’s development environment
applications in the emulator, and stepping line-by-line through a sample application
that you’ll construct in this chapter: a simple tip calculator.

 Android developers spend a significant amount of time working with the Android
emulator to debug their applications. This chapter goes into detail about creating and
building projects, defining Android virtual devices (emulators), setting up run config-
urations, and running and debugging applications on an instance of the Android
emulator. If you’ve never constructed an Android application, please don’t skip this
chapter; mastering the basics demonstrated here will aide your learning throughout
the rest of the book.

 When embracing a new platform, the first task for a developer is gaining an under-
standing of the SDK and its components. Let’s start by examining the core compo-
nents of the Android SDK and then transition into using the SDK’s tools to build and
debug an application.

2.1 Introducing the Android SDK
The Android SDK is a freely available download from the Android website. The first
thing you should do before going any further in this chapter is make sure you have the
Android SDK installed, along with Eclipse and the Android plug-in for Eclipse, also
known as the Android Development Tools, or simply as the ADT. The Android SDK is
required to build Android applications, and Eclipse is the preferred development envi-
ronment for this book. You can download the Android SDK from http://developer.
android.com/sdk/index.html.

TIP The Android download page has instructions for installing the SDK, or
you can refer to appendix A of this book for detailed information on install-
ing the required development tools.

As in any development environment, becoming familiar with the class structures is
helpful, so having the documentation at hand as a reference is a good idea. The
Android SDK includes HTML-based documentation, which primarily consists of
Javadoc-formatted pages that describe the available packages and classes. The
Android SDK documentation is in the /doc directory under your SDK installation.
Because of the rapidly changing nature of this platform, you might want to keep an
eye out for any changes to the SDK. The most up-to-date Android SDK documentation
is available at http://developer.android.com/reference/packages.html.

 Android’s Java environment can be broken down into a handful of key sections.
When you understand the contents in each of these sections, the Javadoc reference
material that ships with the SDK becomes a real tool and not just a pile of seemingly
unrelated material. You might recall that Android isn’t a strictly Java ME software envi-
ronment, but there’s some commonality between the Android platforms and other
Java development platforms. The next few sections review some of the Java packages
(core and optional) in the Android SDK and where you can use them. The remaining
chapters provide a deeper look into using many of these programming topics.

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/reference/packages.html
http://www.manning.com/loughran/
http://www.manning.com/loughran/
http://www.manning.com/loughran/
http://www.manning.com/loughran/
http://www.manning.com/loughran/
http://www.manning.com/loughran/

35Introducing the Android SDK
2.1.1 Core Android packages

If you’ve ever developed in Java, you’ll recognize many familiar Java packages for core
functionality. These packages provide basic computational support for things such as
string management, input/output controls, math, and more. The following list con-
tains some of the Java packages included in the Android SDK:

 java.lang—Core Java language classes
 java.io—Input/output capabilities
 java.net—Network connections
 java.text—Text-handling utilities
 java.math—Math and number-manipulation classes
 javax.net—Network classes
 javax.security—Security-related classes
 javax.xml—DOM-based XML classes
 org.apache.*—HTTP-related classes
 org.xml—SAX-based XML classes

Additional Java classes are also included. Generally speaking, this book won’t focus
much on the core Java packages listed here, because our primary concern is Android
development. With that in mind, let’s look at the Android-specific functionality found
in the Android SDK.

 Android-specific packages are easy to identify because they start with android in
the package name. Some of the more important packages are as follows:

 android.app—Android application model access
 android.bluetooth—Android’s Bluetooth functionality
 android.content—Accessing and publishing data in Android
 android.net—Contains the Uri class, used for accessing content
 android.gesture—Creating, recognizing, loading, and saving gestures
 android.graphics—Graphics primitives
 android.location—Location-based services (such as GPS)
 android.opengl—OpenGL classes
 android.os—System-level access to the Android environment
 android.provider—ContentProvider-related classes
 android.telephony—Telephony capability access, including support for both

Code Division Multiple Access (CDMA) and Global System for Mobile commu-
nication (GSM) devices

 android.text—Text layout
 android.util—Collection of utilities for logging and text manipulation,

including XML

 android.view—UI elements
 android.webkit—Browser functionality
 android.widget—More UI elements

36 CHAPTER 2 Android’s development environment
Some of these packages are core to Android application development, including
android.app, android.view, and android.content. Other packages are used to vary-
ing degrees, depending on the type of applications that you’re constructing.

2.1.2 Optional packages

Not every Android device has the same hardware and mobile connectivity capabilities,
so you can consider some elements of the Android SDK as optional. Some devices sup-
port these features, and others don’t. It’s important that an application degrade grace-
fully if a feature isn’t available on a specific handset. Java packages that you should pay
special attention to include those that rely on specific, underlying hardware and net-
work characteristics, such as location-based services (including GPS) and wireless tech-
nologies such as Bluetooth and Wi-Fi (802.11).

 This quick introduction to the Android SDK’s programming interfaces is just
that—quick and at-a-glance. Upcoming chapters go into the class libraries in further
detail, exercising specific classes as you learn about various topics such as UIs, graph-
ics, location-based services, telephony, and more. For now, the focus is on the tools
required to compile and run (or build) Android applications.

 Before you build an Android application, let’s examine how the Android SDK and
its components fit into the Eclipse environment.

2.2 Exploring the development environment
After you install the Android SDK and the ADT plug-in for Eclipse, you’re ready to
explore the development environment. Figure 2.1 depicts the typical Android devel-
opment environment, including both real hardware and the useful Android emulator.
Although Eclipse isn’t the exclusive tool required for Android development, it can
play a big role in Android development, not only because it provides a rich Java com-
pilation and debugging environment, but also because with the ADT plug-in, you can
manage and control virtually all aspects of testing your Android applications directly
from the Eclipse IDE.

 The following list describes key features of the Eclipse environment as it pertains
to Android application development:

 A rich Java development environment, including Java source compilation, class
auto-completion, and integrated Javadoc

 Source-level debugging
 AVD management and launch
 The Dalvik Debug Monitor Server (DDMS)
 Thread and heap views
 Emulator filesystem management
 Data and voice network control
 Emulator control
 System and application logging

Eclipse supports the concept of perspectives, where the layout of the screen has a set of
related windows and tools. The windows and tools included in an Eclipse perspective

37Exploring the development environment
are known as views. When developing Android
applications, there are two Eclipse perspectives
of primary interest: the Java perspective and
the DDMS perspective. Beyond those two, the
Debug perspective is also available and useful
when you’re debugging an Android applica-
tion; we’ll talk about the Debug perspective in
section 2.5. To switch between the available
perspectives in Eclipse, use the Open Perspec-
tive menu, under the Window menu in the
Eclipse IDE.

 Let’s examine the features of the Java and
DDMS perspectives and how you can leverage
them for Android development.

2.2.1 The Java perspective

The Java perspective is where you’ll spend
most of your time while developing Android
applications. The Java perspective boasts a
number of convenient views for assisting in the
development process. The Package Explorer
view allows you to see the Java projects in your
Eclipse workspace. Figure 2.2 shows the Pack-
age Explorer listing some of the sample proj-
ects for this book.

Eclipse open source IDE

Coding

Debugging

Android Development Tools (plug-in)

SDK

Emulator profile configuration

Emulator launch

Process & file system viewing

Log viewing

SDK documentation

File transfer tools

GSM simulation tester

Command-line tools

Multiple skins

Network connectivity options

Android emulator

Integrated with Eclipse via
Android Development Tools
plug-in

Physical phone hardware

Android device

Development environment (laptop)

Figure 2.1
The development
environment for building
Android applications,
including the popular
open source Eclipse IDE

Figure 2.2 The Package Explorer allows
you to browse the elements of your Android
projects.

38 CHAPTER 2 Android’s development environment
The Java perspective is where you’ll edit your Java source code. Every time you save
your source file, it’s automatically compiled by Eclipse’s Java development tools (JDT)
in the background. You don’t need to worry about the specifics of the JDT; the impor-
tant thing to know is that it’s functioning in the background to make your Java experi-
ence as seamless and painless as possible. If there’s an error in your source code, the
details will show up in the Problems view of the Java perspective. Figure 2.3 has an
intentional error in the source code to demonstrate the Problems view. You can also
put your mouse over the red x to the left of the line containing the error for a tool-tip
explanation of the problem.

 One powerful feature of the Java perspective in Eclipse is the integration between
the source code and the Javadoc view. The Javadoc view updates automatically to pro-
vide any available documentation about a currently selected Java class or method, as
shown in figure 2.4. In this figure, the Javadoc view displays information about the
Activity class.

TIP This chapter scratches the surface in introducing the powerful
Eclipse environment. To learn more about Eclipse, you might consider
reading Eclipse in Action: A Guide for Java Developers, by David Gallardo, Ed
Burnette, and Robert McGovern, published by Manning and available
online at www.manning.com/gallardo.

Figure 2.3 The Problems view shows any errors in your source code.

http://www.manning.com/

39Exploring the development environment
It’s easy to get the views in the current perspective into a layout that isn’t what you
really want. If this occurs, you have a couple of choices to restore the perspective to a
more useful state. You can use the Show View menu under the Window menu to dis-
play a specific view or you can select the Reset Perspective menu to restore the per-
spective to its default settings.

 In addition to the JDT, which compiles Java source files, the ADT automatically
compiles Android-specific files such as layout and resource files. You’ll learn more
about the underlying tools later in this chapter and again in chapter 3, but now it’s
time to have a look at the Android-specific perspective in the DDMS.

2.2.2 The DDMS perspective

The DDMS perspective provides a dashboard-like view into the heart of a running
Android device or, in this example, a running Android emulator. Figure 2.5 shows the
emulator running the chapter 2 sample application.

 We’ll walk through the details of the application, including how to build the appli-
cation and how to start it running in the Android emulator, but first let’s see what
there is to learn from the DDMS with regard to our discussion about the tools available
for Android development.

Figure 2.4 The Javadoc view provides context-sensitive documentation, in this case for the
Activity class.

40 CHAPTER 2 Android’s development environment
The Devices view in figure 2.5 shows a single emulator session, titled emulator-tcp-
5554. The title indicates that there’s a connection to the Android emulator at TCP/IP
port 5554. Within this emulator session, five processes are running. The one of inter-
est to us is com.manning.unlockingandroid, which has the process ID 1707.

TIP Unless you’re testing a peer-to-peer application, you’ll typically have
only a single Android emulator session running at a time, although it is pos-
sible to have multiple instances of the Android emulator running concur-
rently on a single development machine. You might also have a physical
Android device connected to your development machine—the DDMS inter-
face is the same.

Logging is an essential tool in software development, which brings us to the LogCat
view of the DDMS perspective. This view provides a glimpse at system and application
logging taking place in the Android emulator. In figure 2.5, a filter has been set up for
looking at entries with a tag value of Chapter2. Using a filter on the LogCat is a help-
ful practice, because it can reduce the noise of all the logging entries and let you focus
on your own application’s entries. In this case, four entries in the list match our filter
criteria. We’ll look at the source code soon to see how you get your messages into the
log. Note that these log entries have a column showing the process ID, or PID, of the

Figure 2.5 DDMS perspective with an application running in the Android emulator

41Exploring the development environment
application contributing the log entry. As expected, the PID for our log entries is 616,
matching our running application instance in the emulator.

 The File Explorer view is shown in the upper right of figure 2.5. User applica-
tions—the ones you and I write—are deployed with a file extension of .apk and stored
in the /data/app directory of the Android device. The File Explorer view also permits
filesystem operations such as copying files to and from the Android emulator, as well
as removing files from the emulator’s filesystem. Figure 2.6 shows the process of delet-
ing a user application from the /data/app directory.

 Obviously, being able to casually browse the filesystem of your mobile phone is a
great convenience. This feature is nice to have for mobile development, where you’re
often relying on cryptic pop-up messages to help you along in the application develop-
ment and debugging process. With easy access to the filesystem, you can work with files
and readily copy them to and from your development computer platform as necessary.

 In addition to exploring a running application, the DDMS perspective provides
tools for controlling the emulated environment. For example, the Emulator Control
view lets you test connectivity characteristics for both voice and data networks, such as
simulating a phone call or receiving an incoming Short Message Service (SMS).
Figure 2.7 demonstrates sending an SMS message to the Android emulator.

 The DDMS provides a lot of visibility into, and control over, the Android emulator,
and is a handy tool for evaluating your Android applications. Before we move on to
building and testing Android applications, it’s helpful to understand what’s happen-
ing behind the scenes and what’s enabling the functionality of the DDMS.

Figure 2.6 Delete applications from the emulator by highlighting the application file and clicking the
Delete button.

42 CHAPTER 2 Android’s development environment
2.2.3 Command-line tools

The Android SDK ships with a collection of command-line tools, which are located in
the tools subdirectory of your Android SDK installation. Eclipse and the ADT provide a
great deal of control over the Android development environment, but sometimes it’s
nice to exercise greater control, particularly when considering the power and conve-
nience that scripting can bring to a development platform. Next, we’re going to
explore two of the command-line tools found in the Android SDK.

TIP It’s a good idea to add the tools directory to your search path. For exam-
ple, if your Android SDK is installed to c:\software\google\ androidsdk, you can
add the Android SDK to your path by performing the following operation in a
command window on your Windows computer:
set path=%path%;c:\software\google\androidsdk\tools;

Or use the following command for Mac OS X and Linux:
export PATH=$PATH:/path_to_Android_SDK_directory/tools

ANDROID ASSET PACKAGING TOOL

You might be wondering just how files such as the layout file main.xml get processed
and exactly where the R.java file comes from. Who zips up the application file for you
into the apk file? Well, you might have already guessed the answer from the heading
of this section—it’s the Android Asset Packaging Tool, or as it’s called from the command
line, aapt. This versatile tool combines the functionality of pkzip or jar along with an
Android-specific resource compiler. Depending on the command-line options you
provide to it, aapt wears a number of hats and assists with your design-time Android
development tasks. To learn the functionality available in aapt, run it from the com-
mand line with no arguments. A detailed usage message is written to the screen.

 Whereas aapt helps with design-time tasks, another tool, the Android Debug
Bridge, assists you at runtime to interact with the Android emulator.

Figure 2.7 Sending a test SMS to the Android emulator

43Exploring the development environment
ANDROID DEBUG BRIDGE

The Android Debug Bridge (adb) utility permits you to interact with the Android emula-
tor directly from the command line or script. Have you ever wished you could navigate
the filesystem on your smartphone? Now you can with adb! It works as a client/server
TCP-based application. Although a couple of background processes run on the devel-
opment machine and the emulator to enable your functionality, the important thing
to understand is that when you run adb, you get access to a running instance of the
Android emulator. Here are a couple of examples of using adb. First, let’s look to see if
you have any available Android emulator sessions running:

adb devices<return>

This command returns a list of available Android emulators; figure 2.8 demonstrates
adb locating two running emulator sessions.

 Let’s connect to the first Android emulator session and see if your application is
installed. You connect to a device or emulator with the syntax adb shell. You would
connect this way if you had a single Android emulator session active, but because two
emulators are running, you need to specify the serial number, or identifier, to connect
to the appropriate session:

adb –s "serialnumber" shell

Figure 2.9 shows off the Android filesystem and demonstrates looking for a specific
installed application, namely the chapter2 sample application, which you’ll build in
section 2.3.

 Using the shell can be handy when you want to remove a specific file from the
emulator’s filesystem, kill a process, or generally interact with the operating environ-
ment of the Android emulator. If you download an application from the internet, for
example, you can use the adb command to install the application:

adb [-s serialnumber] shell install someapplication.apk

This command installs the application named someapplication to the Android emu-
lator. The file is copied to the /data/app directory and is accessible from the Android
application launcher. Similarly, if you want to remove an application, you can run adb
to remove an application from the Android emulator. If you want to remove the

Figure 2.8 The adb tool
provides interaction at runtime
with the Android emulator.

44 CHAPTER 2 Android’s development environment
com.manning.unlockingandroid.apk sample application from a running emulator’s
filesystem, for example, you can execute the following command from a terminal or
Windows command window:

adb shell rm /data/app/com.manning.unlockingandroid.apk

You certainly don’t need to master the command-line tools in the Android SDK to
develop applications in Android, but understanding what’s available and where to
look for capabilities is a good skill to have in your toolbox. If you need assistance with
either the aapt or adb command, enter the command at the terminal, and a fairly ver-
bose usage/help page is displayed. You can find additional information about the
tools in the Android SDK documentation.

TIP The Android filesystem is a Linux filesystem. Though the adb shell
command doesn’t provide a rich shell programming environment, as you
find on a Linux or Mac OS X system, basic commands such as ls, ps, kill,
and rm are available. If you’re new to Linux, you might benefit from learning
some basic shell commands.

TELNET

One other tool you’ll want to make sure you’re familiar with is telnet. Telnet allows you
to connect to a remote system with a character-based UI. In this case, the remote sys-
tem you connect to is the Android emulator’s console. You can connect to it with the
following command:

telnet localhost 5554

In this case, localhost represents your local development computer where the
Android emulator has been started, because the Android emulator relies on your
computer’s loopback IP address of 127.0.0.1. Why port 5554? Recall that when you
employed adb to find running emulator instances, the output of that command
included a name with a number at the end. The first Android emulator can generally
be found at IP port 5554.

Figure 2.9 Using the shell command of the adb, you can browse Android’s filesystem.

45Building an Android application in Eclipse
NOTE In early versions of the Android SDK, the emulator ran at port 5555
and the Android console—where you could connect via Telnet—ran at 5554,
or one number less than the number shown in DDMS. If you’re having diffi-
culty identifying which port number to connect on, be sure to run netstat
on your development machine to assist in finding the port number. Note that
a physical device listens at port 5037.

Using a telnet connection to the emulator provides a command-line means for config-
uring the emulator while it’s running and for testing telephony features such as calls
and text messages.

 So far you’ve learned about the Eclipse environment and some of the command-
line elements of the Android tool chain. At this point, it’s time to create your own
Android application to exercise this development environment.

2.3 Building an Android application in Eclipse
Eclipse provides a comprehensive environment for Android developers to create appli-
cations. In this section, we’ll demonstrate how to build a basic Android application,
step by step. You’ll learn how to define a simple UI, provide code logic to support it,
and create the deployment file used by all Android applications: AndroidManifest.xml.
The goal in this section is to get a simple application under your belt. We’ll leave more
complex applications for later chapters; our focus is on exercising the development
tools and providing a concise yet complete reference.

 Building an Android application isn’t much different from creating other types of
Java applications in the Eclipse IDE. It all starts with choosing File > New and selecting
an Android application as the build target.

 Like many development environments, Eclipse provides a wizard interface to ease
the task of creating a new application. You’ll use the Android Project Wizard to get off
to a quick start in building an Android application.

2.3.1 The Android Project Wizard

The most straightforward manner to create an Android application is to use the
Android Project Wizard, which is part of the ADT plug-in. The wizard provides a sim-
ple means to define the Eclipse project name and location, the Activity name corre-
sponding to the main UI class, and a name for the application. Also of importance is
the Java package name under which the application is created. After you create an
application, it’s easy to add new classes to the project.

NOTE In this example, you’ll create a brand-new project in the Eclipse work-
space. You can use this same wizard to import source code from another
developer, such as the sample code for this book. Note also that the specific
screens have changed over time as the Android tools mature. If you’re follow-
ing along and have a question about this chapter, be sure to post a question
on the Manning Author forum for this book, available online at http://
manning.com/ableson3.

http://manning.com/ableson2
http://manning.com/ableson2

46 CHAPTER 2 Android’s development environment
Figure 2.10 demonstrates the creation of a new project named Chapter2 using the
wizard.

TIP You’ll want the package name of your applications to be unique from
one application to the next.

Click Finish to create your sample application. At this point, the application compiles
and is capable of running on the emulator—no further development steps are
required. Of course, what fun would an empty project be? Let’s flesh out this sample
application and create an Android tip calculator.

2.3.2 Android sample application code

The Android Project Wizard takes care of a number of important elements in the
Android application structure, including the Java source files, the default resource
files, and the AndroidManifest.xml file. Looking at the Package Explorer view in
Eclipse, you can see all the elements of this application. Here’s a quick description of
the elements included in the sample application:

 The src folder contains two Java source files automatically created by the wizard.
 ChapterTwo.java contains the main Activity for the application. You’ll modify

this file to add the sample application’s tip calculator functionality.
 R.java contains identifiers for each of the UI resource elements in the applica-

tion. Never modify this file directly. It automatically regenerates every time a
resource is modified; any manual changes you make will be lost the next time
the application is built.

Figure 2.10 Using the Android
Project Wizard, it’s easy to create an
empty Android application, ready for
customization.

47Building an Android application in Eclipse
 Android.jar contains the Android runtime Java classes. This reference to the
android.jar file found in the Android SDK ensures that the Android runtime
classes are accessible to your application.

 The res folder contains all the Android resource folders, including these:
• Drawables contains image files such as bitmaps and icons. The wizard pro-

vides a default Android icon named icon.png.
• Layout contains an XML file called main.xml. This file contains the UI ele-

ments for the primary view of your Activity. In this example, you’ll modify
this file but you won’t make any significant or special changes—just enough to
accomplish the meager UI goals for your tip calculator. We cover UI elements,
including Views, in detail in chapter 3. It’s not uncommon for an Android
application to have multiple XML files in the Layout section of the resources.

• Values contains the strings.xml file. This file is used for localizing string val-
ues, such as the application name and other strings used by your application.

AndroidManifest.xml contains the deployment information for this project.
Although AndroidManifest.xml files can become somewhat complex, this chapter’s
manifest file can run without modification because no special permissions are
required. We’ll visit AndroidManifest.xml a number of times throughout the book as
we discuss new features.

 Now that you know what’s in the project, let’s review how you’re going to modify
the application. Your goal with the Android tip calculator is to permit your user to
enter the price of a meal and then tap a button to calculate the total cost of the meal,
tip included. To accomplish this, you need to modify two files: ChapterTwo.java and
the UI layout file, main.xml. Let’s start with the UI changes by adding a few new ele-
ments to the primary View, as shown in the next listing.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Chapter 2 Android Tip Calculator"
 />
<EditText
 android:id="@+id/mealprice"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:autoText="true"
/>
<Button
android:id="@+id/calculate"

Listing 2.1 main.xml, which contains UI elements

48 CHAPTER 2 Android’s development environment
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Calculate Tip"
 />
<TextView
 android:id="@+id/answer"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text=""
 />

</LinearLayout>

The layout for this application is straightforward. The overall layout is a vertical, linear
layout with only four elements; all the UI controls, or widgets, are going to be in a verti-
cal arrangement. A number of layouts are available for Android UI design, which we’ll
discuss in greater detail in chapter 3.

 A static TextView displays the title of the application. An EditText collects the
price of the meal for this tip calculator application. The EditText element has an
attribute of type android:id, with a value of mealprice. When a UI element contains
the android:id attribute, it permits you to manipulate this element from your code.
When the project is built, each element defined in the layout file containing the
android:id attribute receives a corresponding identifier in the automatically gener-
ated R.java class file. This identifying value is used in the findViewById method,
shown in listing 2.2. If a UI element is static, such as the TextView, and doesn’t need to
be set or read from our application code, the android:id attribute isn’t required.

 A button named calculate is added to the view. Note that this element also has
an android:id attribute because you need to capture click events from this UI ele-
ment. A TextView named answer is provided for displaying the total cost, including
tip. Again, this element has an id because you’ll need to update it during runtime.

 When you save the file main.xml, it’s processed by the ADT plug-in, compiling the
resources and generating an updated R.java file. Try it for yourself. Modify one of the
id values in the main.xml file, save the file, and open R.java to have a look at the con-
stants generated there. Remember not to modify the R.java file directly, because if you
do, all your changes will be lost! If you conduct this experiment, be sure to change the
values back as they’re shown in listing 2.1 to make sure the rest of the project will com-
pile as it should. Provided you haven’t introduced any syntactical errors into your
main.xml file, your UI file is complete.

NOTE This example is simple, so we jumped right into the XML file to define
the UI elements. The ADT also contains an increasingly sophisticated GUI lay-
out tool. With each release of the ADT, these tools have become more and
more usable; early versions were, well, early.

Double-click the main.xml file to launch the layout in a graphical form. At the bottom
of the file you can switch between the Layout view and the XML view. Figure 2.11
shows the Layout tool.

49Building an Android application in Eclipse
It’s time to turn our attention to the file ChapterTwo.java to implement the tip calcu-
lator functionality. ChapterTwo.java is shown in the following listing. We’ve omitted
some imports for brevity. You can download the complete source code from the Man-
ning website at http://manning.com/ableson3.

package com.manning.unlockingandroid;
import com.manning.unlockingandroid.R;
import android.app.Activity;
import java.text.NumberFormat;
import android.util.Log;
// some imports omitted
public class ChapterTwo extends Activity {
 public static final String tag = "Chapter2";
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 final EditText mealpricefield =
 (EditText) findViewById(R.id.mealprice);
 final TextView answerfield =
 (TextView) findViewById(R.id.answer);
 final Button button = (Button) findViewById(R.id.calculate);
 button.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 try {
 Log.i(tag,"onClick invoked.");
 // grab the meal price from the UI
 String mealprice =
 mealpricefield.getText().toString();
 Log.i(tag,"mealprice is [" + mealprice + "]");
 String answer = "";
 // check to see if the meal price includes a "$"

Listing 2.2 ChapterTwo.java: implements the tip calculator logic

Figure 2.11 Using the GUI Layout tool provided in the ADT to define the user interface
elements of your application

Reference
EditText for
mealprice

B

Log entryC

Get meal priceD

http://manning.com/ableson2

50 CHAPTER 2 Android’s development environment
 if (mealprice.indexOf("$") == -1) {
 mealprice = "$" + mealprice;
 }
 float fmp = 0.0F;
 // get currency formatter
 NumberFormat nf =
 java.text.NumberFormat.getCurrencyInstance();
 // grab the input meal price
 fmp = nf.parse(mealprice).floatValue();
 // let's give a nice tip -> 20%
 fmp *= 1.2;
 Log.i(tag,"Total Meal Price (unformatted) is ["
+ fmp + "]");
 // format our result
 answer = "Full Price, Including 20% Tip: "
+ nf.format(fmp);
 answerfield.setText(answer);
 Log.i(tag,"onClick complete.");
 } catch (java.text.ParseException pe) {
 Log.i(tag,"Parse exception caught");
 answerfield.setText("Failed to parse amount?");
 } catch (Exception e) {
 Log.e(tag,"Failed to Calculate Tip:" + e.getMessage());
 e.printStackTrace();
 answerfield.setText(e.getMessage());
 }
 }
 });
 }
}

Let’s examine this sample application. Like all but the most trivial Java applications,
this class contains a statement identifying which package it belongs to: com.manning
.unlockingandroid. This line containing the package name was generated by the
Project Wizard.

 You import the com.manning.unlockingandroid.R class to gain access to the defi-
nitions used by the UI. This step isn’t required, because the R class is part of the same
application package, but it’s helpful to include this import because it makes your code
easier to follow. Newcomers to Android always ask how the identifiers in the R class are
generated. The short answer is that they’re generated automatically by the ADT! Also
note that you’ll learn about some built-in UI elements in the R class later in the book
as part of sample applications.

 Though a number of imports are necessary to resolve class names in use, most of
the import statements have been omitted from listing 2.2 for the sake of brevity. One
import that’s shown contains the definition for the java.text.NumberFormat class,
which is used to format and parse currency values.

 Another import shown is for the android.util.Log class, which is employed to
make entries to the log. Calling static methods of the Log class adds entries to the log.
You can view entries in the log via the LogCat view of the DDMS perspective. When
making entries to the log, it’s helpful to put a consistent identifier on a group of

Display full price,
including tip

E

Catch
parse
errorF

51Building an Android application in Eclipse
related entries using a common string, commonly referred to as the tag. You can filter
on this string value so you don’t have to sift through a mountain of LogCat entries to
find your few debugging or informational messages.

 Now let’s go through the code in listing 2.2. You connect the UI element contain-
ing mealprice to a class-level variable of type EditText B by calling the findView-
ById() method and passing in the identifier for the mealprice, as defined by the
automatically generated R class, found in R.java. With this reference, you can access
the user’s input and manipulate the meal price data as entered by the user. Similarly,
you connect the UI element for displaying the calculated answer back to the user,
again by calling the findViewById() method.

 To know when to calculate the tip amount, you need to obtain a reference to the
Button so you can add an event listener. You want to know when the button has been
clicked. You accomplish this by adding a new OnClickListener() method named
onClick.

 When the onClick() method is invoked, you add the first of a few log entries using
the static i() method of the Log class C. This method adds an entry to the log with an
Information classification. The Log class contains methods for adding entries to the
log for different levels, including Verbose, Debug, Information, Warning, and Error.
You can also filter the LogCat based on these levels, in addition to filtering on the pro-
cess ID and tag value.

 Now that you have a reference to the mealprice UI element, you can obtain the
text entered by the user with the getText() method of the EditText class D. In
preparation for formatting the full meal price, you obtain a reference to the static
currency formatter.

 Let’s be somewhat generous and offer a 20 percent tip. Then, using the formatter,
let’s format the full meal cost, including tip. Next, using the setText() method of the
TextView UI element named answerfield, you update the UI to tell the user the total
meal cost E.

 Because this code might have a problem with improperly formatted data, it’s a
good practice to put code logic into try/catch blocks so that the application behaves
when the unexpected occurs f.

 Additional boilerplate files are in this sample project, but in this chapter we’re
concerned only with modifying the application enough to get basic, custom function-
ality working. You’ll notice that as soon as you save your source files, the Eclipse IDE
compiles the project in the background. If there are any errors, they’re listed in the
Problems view of the Java perspective; they’re also marked in the left margin with a
small red x to draw your attention to them.

TIP Using the command-line tools found in the Android SDK, you can
create batch builds of your applications without using the IDE. This approach
is useful for software shops with a specific configuration-management
function and a desire to conduct automated builds. In addition to the
Android-specific build tools found under the tools subdirectory of your

52 CHAPTER 2 Android’s development environment
Android SDK installation, you’ll also need JDK version 5.0 or later to com-
plete command-line application builds. Creating sophisticated automated
builds of Android applications is beyond the scope of this book, but you can
learn more about the topic of build scripts by reading Ant in Action: Second
Edition of Java Development with Ant, by Steve Loughran and Erik Hatcher,
found at www.manning.com/loughran/.

Assuming there are no errors in the source files, your classes and UI files will compile
correctly. But what needs to happen before your project can be run and tested in the
Android emulator?

2.3.3 Packaging the application

At this point, your application has compiled and is ready to be run on the device. Let’s
look more deeply at what happens after the compilation step. You don’t need to per-
form these steps because the ADTs handle them for you, but it’s helpful to understand
what’s happening behind the scenes.

 Recall that despite the compile-time reliance on Java, Android applications don’t
run in a Java VM. Instead, the Android SDK employs the Dalvik VM. For this reason,
Java byte codes created by the Eclipse compiler must be converted to the .dex file for-
mat for use in the Android runtime. The Android SDK has tools to perform these
steps, but thankfully the ADT takes care of all of this for you transparently.

 The Android SDK contains tools that convert the project files into a file ready to
run on the Android emulator. Figure 2.12 depicts the generalized flow of source files
in the Android build process. If you recall from our earlier discussion of Android SDK
tools, the tool used at design time is aapt. Application resource XML files are pro-
cessed by aapt, with the R.java file created as a result—remember that you need to
refer to the R class for UI identifiers when you connect your code to the UI. Java source

layout.xml R.java

*.java

*.class *.dex

application.apk fileandroid-
manifest.xml

Figure 2.12 The ADT employs tools from the Android SDK to convert source
files to a package that’s ready to run on an Android device or emulator.

http://www.manning.com/loughran/

53Using the Android emulator
files are first compiled to class files by your Java environment, typically Eclipse and the
JDT. After they’re compiled, they’re then converted to dex files to be ready for use
with Android’s Dalvik VM. Surprisingly, the project’s XML files are converted to a
binary representation, not to text as you might expect. But the files retain their .xml
extension on the device.

 The converted XML files, a compiled form of the nonlayout resources including
the Drawables and Values, and the dex file (classes.dex) are packaged by the aapt
tool into a file with a naming structure of projectname.apk. The resulting file can be
read with a pkzip-compatible reader, such as WinRAR or WinZip, or the Java archiver,
jar. Figure 2.13 show this chapter’s sample application in WinRAR.

 Now you’re finally ready to run your application on the Android emulator! It’s
important to become comfortable with working in an emulated environment when
you’re doing any serious mobile software development. There are many good reasons
for you to have a quality emulator available for development and testing. One simple
reason is that having multiple real devices with requisite data plans is an expensive
proposition. A single device alone might cost hundreds of dollars. Android continues
to gain momentum and is finding its way to multiple carriers with numerous devices
and increasingly sophisticated capabilities. Having one of every device is impractical
for all but development shops with the largest of budgets. For the rest of us, a device
or two and the Android emulator will have to suffice. Let’s focus on the strengths of
emulator-based mobile development.

 Speaking of testing applications, it’s time to get the tip calculator application
running!

2.4 Using the Android emulator
At this point, your sample application, the Android tip calculator, has compiled suc-
cessfully. Now you want to run your application in the Android emulator. Before you
can run an application in the emulator, you have to configure the emulated environ-
ment. To do this, you’ll learn how to create an instance of the AVD using the AVD Man-
ager. After you’ve got that sorted out, you’ll define a run configuration in Eclipse,
which allows you to run an application in a specific AVD instance.

Figure 2.13 The Android application file format is pzip compatible.

54 CHAPTER 2 Android’s development environment
TIP If you’ve had any trouble building the sample application, now would be
a good time to go back and clear up any syntax errors that are preventing the
application from building. In Eclipse, you can easily see errors because
they’re marked with a red x next to the project source file and on the offend-
ing lines. If you continue to have errors, make sure that your build environ-
ment is set up correctly. Refer to appendix A of this book for details on
configuring the build environment.

2.4.1 Setting up the emulated environment

Setting up your emulator environment can be broken down into two logical steps.
The first is to create an instance of the AVD via the AVD Manager. The second is to
define a run configuration in Eclipse, which permits you to run your application in a
specific AVD instance. Let’s start with the AVD Manager.

MANAGING AVDS

Starting with version 1.6 of the Android SDK, developers have a greater degree of con-
trol over the emulated Android environment than in previous releases. The SDK and
AVD Manager permit developers to download the specific platforms of interest. For
example, you might be targeting devices running version 1.5 and 2.2 of the Android
platform, but you might want to add to that list as new versions become available. Fig-
ure 2.14 shows the SDK and AVD Manager with a few packages installed.

Emulator vs. simulator
You might hear the words emulator and simulator thrown about interchangeably.
Although they have a similar purpose—testing applications without the requirement
of real hardware—those words should be used with care.

A simulator tool works by creating a testing environment that behaves as close to
100 percent in the same manner as the real environment, but it’s just an approxima-
tion of the real platform. This doesn’t mean that the code targeted for a simulator will
run on a real device, because it’s compatible only at the source-code level. Simulator
code is often written to be run as a software program running on a desktop computer
with Windows DLLs or Linux libraries that mimic the application programming inter-
faces (APIs) available on the real device. In the build environment, you typically select
the CPU type for a target, and that’s often x86/Simulator.

In an emulated environment, the target of your projects is compatible at the binary
level. The code you write works on an emulator as well as the real device. Of course,
some aspects of the environment differ in terms of how certain functions are imple-
mented on an emulator. For example, a network connection on an emulator runs
through your development machine’s network interface card, whereas the network
connection on a real phone runs over the wireless connection such as a GPRS, EDGE,
or EVDO network. Emulators are preferred because they more reliably prepare you to
run your code on real devices. Fortunately, the environment available to Android
developers is an emulator, not a simulator.

55Using the Android emulator
After you’ve installed the Android platforms that you want, you can define instances
of the AVD. To define instances, select which platform you want to run on, select the
device characteristics, and then create the AVD, as shown in figure 2.15.

Figure 2.14 The installed Android packages listed in the AVD and SDK Manager

Figure 2.15 Creating a new AVD
includes defining characteristics
such as SD card storage capacity and
screen resolution.

56 CHAPTER 2 Android’s development environment
At this point, your AVD is created and available to be started independently. You can
also use it as the target of a run configuration. Figure 2.16 shows a representative list
of available AVDs on a single development machine.

NOTE Each release of the Android platform has two versions: one with
Google APIs and one without. In Figure 2.16, notice that the first entry, named
A22_NOMAPS, has a target of Android 2.2. The second entry, A22, has a target
of Google APIs (Google Inc.). The Google version is used when you want to
include application functionality such as Google Maps. Using the wrong target
version is a common problem encountered by developers new to the Android
platform hoping to add mapping functionality to their applications.

Now that you have the platforms downloaded and the AVDs defined, it’s time to wire
these things together so you can test and debug your application!

SETTING UP EMULATOR RUN CONFIGURATIONS

Your approach is to create a new
Android emulator profile so you can
easily reuse your test environment set-
tings. The starting place is the Open
Run Dialog menu in the Eclipse IDE, as
shown in figure 2.17. As new releases of
Eclipse become available, these screen
shots might vary slightly from your per-
sonal development environment.

Figure 2.16 Available AVDs defined. You can set up as many different AVD instances as your
requirements demand.

Figure 2.17 Creating a new launch configuration for
testing your Android application

57Using the Android emulator
You want to create a new launch configuration, as shown in figure 2.18. To begin this
process, highlight the Android Application entry in the list to the left, and click the
New Launch Configuration button, circled in figure 2.18.

 Now, give your launch configuration a name that you can readily recognize. You’re
going to have quite a few of these launch configurations on the menu, so make the
name something unique and easy to identify. The sample is titled Android Tip Calcu-
lator, as shown in figure 2.19. The three tabs have options that you can configure. The
Android tab lets you select the project and the first Activity in the project to launch.

Figure 2.18 Create a new run configuration based on the Android template.

Figure 2.19 Setting up the Android emulator launch configuration

58 CHAPTER 2 Android’s development environment
Use the next tab to select the AVD and network characteristics that you want, as shown
in figure 2.20. Additionally, command-line parameters might be passed to the emula-
tor to customize its behavior. For example, you might want to add the parameter
wipe-data to erase the device’s persistent storage prior to running your application
each time the emulator is launched. To see the available command-line options avail-
able, run the Android emulator from a command or terminal window with the option
emulator –help.

 Use the third tab to put this configuration on the Favorites menu in the Eclipse
IDE for easy access, as shown in figure 2.21. You can select Run, Debug, or both. Let’s
choose both for this example, because it makes for easier launching when you want to
test or debug the application.

 Now that you’ve defined your AVD and created a run configuration in Eclipse, you
can test your application in the Android emulator environment.

2.4.2 Testing your application in the emulator

You’re finally ready to start the Android emulator to test your tip calculator applica-
tion. Select the new launch configuration from the Favorites menu, as shown in
figure 2.22.

 If the AVD that you choose is already running, the ADT attempts to install the appli-
cation directly; otherwise, the ADT must first start the AVD and then install the applica-
tion. If the application was already running, it’s terminated and the new version
replaces the existing copy within the Android storage system.

Figure 2.20 Selecting the AVD to host the application and specify launch parameters

59Debugging your application
At this point, the Android tip calculator should be running in the Android emulator!
Go ahead; test it! But wait, what if there’s a problem with the code but you’re not sure
where? It’s time to briefly look at debugging an Android application.

2.5 Debugging your application
Debugging an application is a skill no pro-
grammer can survive without. Fortunately,
debugging an Android application is straight-
forward under Eclipse. The first step to take
is to switch to the Debug perspective in the
Eclipse IDE. Remember, you switch from one
perspective to another by using the Open
Perspective submenu found under the Win-
dow menu.

Figure 2.21 Adding the run configuration to the toolbar menu

Figure 2.22 Starting this chapter’s sample
application, an Android tip calculator

60 CHAPTER 2 Android’s development environment
Starting an Android application for debugging is as simple as running the application.
Instead of selecting the application from the Favorites Run menu, use the Favorites
Debug menu instead. This menu item has a picture of an insect (that is, a bug).
Remember, when you set up the launch configuration, you added this configuration
to both the Run and the Favorites Debug menus.

 The Debug perspective gives you debugging capabilities similar to other develop-
ment environments, including the ability to single-step into, or over, method calls,
and to peer into variables to examine their value. You can set breakpoints by double-
clicking in the left margin on the line of interest. Figure 2.23 shows how to step
through the Android tip calculator project. The figure also shows the resulting values
displayed in the LogCat view. Note that the full meal price, including tip, isn’t dis-
played on the Android emulator yet, because that line hasn’t yet been reached.

 Now that we’ve gone through the complete cycle of building an Android
application and you have a good foundational understanding of using the Android
ADT, you’re ready to move on to digging in and unlocking Android application devel-
opment by learning about each of the fundamental aspects of building Android
applications.

Figure 2.23 The Debug perspective permits you to step line-by-line through an Android application.

61Summary
2.6 Summary
This chapter introduced the Android SDK and offered a glance at the Android SDK’s
Java packages to get you familiar with the contents of the SDK from a class library per-
spective. We introduced the key development tools for Android application develop-
ment, including the Eclipse IDE and the ADT plug-in, as well as some of the behind-
the-scenes tools available in the SDK.

 While you were building the Android tip calculator, this chapter’s sample applica-
tion, you had the opportunity to navigate between the relevant perspectives in the
Eclipse IDE. You used the Java perspective to develop your application, and both the
DDMS perspective and the Debug perspective to interact with the Android emulator
while your application was running. A working knowledge of the Eclipse IDE’s per-
spectives will be helpful as you progress to build the sample applications and study the
development topics in the remainder of this book.

 We discussed the Android emulator and some of its fundamental permutations
and characteristics. Employing the Android emulator is a good practice because of
the benefits of using emulation for testing and validating mobile software applications
in a consistent and cost-effective manner.

 From here, the book moves on to dive deeper into the core elements of the
Android SDK and Android application development. The next chapter continues this
journey with a discussion of the fundamentals of the Android UI.

Part 2

Exercising
the Android SDK

The Android SDK provides a rich set of functionality, enabling developers to
create a wide range of applications. In part 2 we systematically examine the
major portions of the Android SDK, including practical examples in each chap-
ter. We start with a look at the application lifecycle and user interfaces (chapter
3), graduating to Intents and Services (chapter 4). No platform discussion is
complete without a thorough examination of the available persistence and stor-
age methods (chapter 5), and in today’s connected world, we can’t overlook
core networking and web services skills (chapter 6). Because the Android plat-
form is a telephone, among other things, we look at the telephony capabilities of
the platform (chapter 7). Next we move on to notifications and alarms (chapter
8). Android graphics and animation are covered (chapter 9) as well as multime-
dia (chapter 10). Part 2 concludes with a look at the location-based services avail-
able to the Android developer (chapter 11).

http://code.google.com/android/reference/android/view/View.html
http://code.google.com/android/reference/android/view/View.html
http://code.google.com/android/reference/android/view/View.html

User interfaces
With our introductory tour of the main components of the Android platform and
development environment complete, it’s time to look more closely at the funda-
mental Android concepts surrounding activities, views, and resources. Activities
provide screens for your application and play a key role in the Android application
lifecycle. The Android framework manages the life span of visible screens, and
you’ll learn how to respond to the various lifecycle points you encounter.

 The visible part of an Activity consists of subcomponents called views. Views
are what your users see and interact with. Views handle layout, provide text ele-
ments for labels and feedback, provide buttons and forms for user input, and draw
images to the device screen. You can also associate views with interface event listen-
ers, such as those for touch-screen controls. A hierarchical collection of views is
used to compose an Activity.

This chapter covers
 Understanding activities and views

 Exploring the Activity lifecycle

 Working with resources

 Exploring the AndroidManifest.xml file
65

66 CHAPTER 3 User interfaces
 Views use strings, colors, styles, and
graphic resources, which Android com-
piles into a binary form and makes avail-
able to applications as resources. The
automatically generated R.java class,
which we introduced in chapter 1, pro-
vides a reference to individual resources
and is the bridge between binary refer-
ences and the source code of an
Android application. You use the R class,
for example, to grab a string of text or a
color and add it to a view. The relation-
ship between activities, views, and
resources is depicted in figure 3.1.

 Along with the components you use to
build an application—views, resources,
and activities—Android includes the
manifest file we introduced in chapter 1:
AndroidManifest.xml. This XML file pro-
vides entrance points into your app, as
well as describes what permissions it has
and what components it includes.
Because every Android application requires this file, we’ll address it in more detail in
this chapter, and we’ll come back to it frequently in later parts of the book. The mani-
fest file is the one-stop shop for the platform to start and manage your application.

 If you’ve done any development involving UIs on any platform, the concepts of
activities, views, and resources should seem familiar. Android approaches UI in a
slightly different way, and this chapter will help address common points of confusion.

 First, we’ll introduce the sample application that we use to walk through these con-
cepts, moving beyond theory and into the code to construct an Activity. You can
download the complete source code for this sample from this book’s website. This
chapter will include the portions that focus on the user interface, chapter 4 adds the
sections that integrate with other Android apps, and the online portions include the
remaining components such as networking and parsing.

3.1 Creating the Activity
Over the course of this chapter and the next, you’ll build a sample application that
allows users to search for restaurant reviews based on location and cuisine. This appli-
cation, RestaurantFinder, will also allow the user to call the restaurant, visit its website,
or look up map directions. We chose this application as a starting point because it has
a clear and simple use case, and because it involves many different parts of the

Activity

View (text input)

View (image)

View (selection input)

View (map)

View (text label)

View (button)

Resources

Manifest
 (application definition, activities, permissions, intents)

Figure 3.1 High-level diagram of Activity,
view, resource, and manifest relationships,
showing that activities are made up of views,
and views use resources

http://code.google.com/android/reference/view-gallery.html
http://code.google.com/android/reference/view-gallery.html
http://code.google.com/android/reference/view-gallery.html

67Creating the Activity
Android platform. Making a sample application will let us cover a lot of ground
quickly, with the additional benefit of providing a useful app on your Android phone.

 To create this application, you’ll need three basic screens to begin with:

 A criteria screen where the user enters parameters to search for restaurant
reviews

 A list-of-reviews screen that shows pages of results matching the specified
criteria

 A review-detail page that shows the details for a selected review item

Recall from chapter 1 that a screen is roughly analogous to an Activity, which means
you’ll need three Activity classes, one for each screen. When complete, the three
screens for the RestaurantFinder application will look like what’s shown in figure 3.2.

 Our first step in exploring activities and views will be to build the RestaurantFinder
ReviewCriteria screen. From there, we’ll move on to the others. Along the way, we’ll
highlight many aspects of designing and implementing your Android UI.

Figure 3.2 RestaurantFinder application screenshots,
showing three activities: ReviewCriteria,
ReviewList, and ReviewDetail

http://code.google.com/android/reference/view-gallery.html

68 CHAPTER 3 User interfaces
3.1.1 Creating an Activity class

To create a screen, extend the android.app.Activity base class (as you did in chap-
ter 1) and override the key methods it defines. The following listing shows the first
portion of the RestaurantFinder’s ReviewCriteria class.

public class ReviewCriteria extends Activity {
 private static final int MENU_GET_REVIEWS = Menu.FIRST;
 private Spinner cuisine;
 private Button grabReviews;
 private EditText location;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.review_criteria);
 location = (EditText)
 findViewById(R.id.location); cuisine = (Spinner)
 findViewById(R.id.cuisine);
 grabReviews = (Button)
 findViewById(R.id.get_reviews_button);
 ArrayAdapter<String> cuisines =
 new ArrayAdapter<String>(this, R.layout.spinner_view,
 getResources().
 getStringArray(R.array.cuisines));
 cuisines.setDropDownViewResource(
 R.layout.spinner_view_dropdown);
 cuisine.setAdapter(cuisines);
 grabReviews.setOnClickListener(
 new OnClickListener() {
 public void onClick(View v) {
 handleGetReviews();
 }
 });
 }

The ReviewCriteria class extends android.app.Activity, which does a number of
important things. It gives your application a context, because Activity itself indi-
rectly extends the android.content.Context class; Context provides access to many
important Android operations, as you’ll see later. Extending Activity also causes you
to inherit the Android lifecycle methods, which give the framework a hook to start
and run your application. Finally, the Activity provides a container into which View
elements can be placed.

 Because an Activity represents an interaction with the user, it needs to provide
visible components on the screen. In the ReviewCriteria class, you reference three
views in the code: cuisine, grabReviews, and location. cuisine is a Spinner, a spe-
cial Android single-selection list component. grabReviews is a Button. location is a
type of View called EditText, a basic text-entry component.

 You place View elements like these within an Activity using a layout to define the
elements of a screen. You can define layouts and views directly in code or in a layout

Listing 3.1 First half of the ReviewCriteria Activity class

Override
onCreate()

B

Define layout with
setContentView

C

Inflate views
from XMLD

Define
ArrayAdapter
instanceE

Set view for
drop-downF

69Creating the Activity
XML resource file. You’ll learn more about views and layouts as we progress through
this section.

 After an Activity is started, the Android application lifecycle rules take over and
the onCreate() method is invoked B. This method is one of a series of important life-
cycle methods the Activity class provides. Every Activity overrides onCreate(),
where component initialization steps are invoked.

 Inside the onCreate() method, you’ll typically invoke setContentView() to dis-
play the content from an XML layout file C. An XML layout file defines View objects,
organized into a hierarchical tree structure. After they’re defined in relation to the
parent layout, each view can then be inflated at runtime.

3.1.2 XML vs. programmatic layouts

Android provides APIs that allow you to manage your layout through Java code instead
of XML. Although this approach may be more familiar and comfortable for develop-
ers from other mobile platforms, you should generally avoid it. XML layouts tend to be
much easier to read, understand, and maintain, and they nicely enforce separation of
your app’s UI from its logic.

 Views that need some runtime manipulation, such as binding to data, can then be
referenced in code and cast to their respective subtypes D. Views that are static—
those you don’t need to interact with or update at runtime, such as labels—don’t need
to be referenced in code at all. These views automatically show up on the screen
because they’re part of the layout as defined in the XML. For example, the screen-
shots in figure 3.1 show two labels in the ReviewCriteria screen as well as the three
inputs we’ve already discussed. These labels aren’t present in the code; they’re
defined in the review_criteria.xml file that’s associated with this Activity. You’ll see
this layout file when we discuss XML-defined resources.

 The next area of interest in ReviewCriteria Activity is binding data to the select
list views, the Spinner objects. Android provides an adapter concept used to link views
with an underlying data source. An adapter is a collection handler that returns each
item in the collection as a View. Android provides many basic adapters: ListAdapter,
ArrayAdapter, GalleryAdapter, CursorAdapter, and more. You can also easily create
your own adapter, a technique you’ll use when we discuss creating custom views in sec-
tion 3.2. Here, we’re using an ArrayAdapter that’s populated with Context (this), a
View element defined in an XML resource file, and an array representing the data.
Note that the underlying data source for the array is also defined as a resource in XML

E—which you’ll learn more about in section 3.3. When we create the ArrayAdapter,
we define the View to be used for the element shown in the Spinner before it’s
selected by the user. After it’s selected, it must provide a different visual interface—
this is the view defined in the drop-down F. After we define the adapter and its view
elements, we set it in the Spinner object.

 The last thing this initial Activity demonstrates is our first explicit use of event
handling. UI elements support many types of events, many of which you’ll learn about

70 CHAPTER 3 User interfaces
in section 3.2.7. In this instance, we’re using an OnClickListener with our Button in
order to respond to button clicks.

 After the onCreate() method finishes and our data is bound to our Spinner views,
we have menu items and their associated action handlers. The next listing shows how
these are implemented in the last part of ReviewCriteria.

...
@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 menu.add(0, ReviewCriteria.MENU_GET_REVIEWS, 0,
 R.string.menu_get_reviews).setIcon(
 android.R.drawable.ic_menu_more);
 return true;
 }
@Override
public boolean onMenuItemSelected(int featureId, MenuItem item) {
 switch (item.getItemId()) {
 case MENU_GET_REVIEWS:
 handleGetReviews();
 return true;
 }
 return super.onMenuItemSelected(featureId, item);
 }
 private void handleGetReviews() {
 if ((location.getText() == null) ||
 location.getText().toString().equals("")) {
 new AlertDialog.Builder(this).setTitle(R.string.alert_label).
 setMessage(R.string.location_not_supplied_message).
 setPositiveButton("Continue",
 new android.content.DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int arg1) {
 // Just close alert.
 }
 }).show();
 return;
 }
 RestaurantFinderApplication application =
 (RestaurantFinderApplication)
 getApplication();
 application.setReviewCriteriaCuisine(
 cuisine.getSelectedItem().toString());
 application.setReviewCriteriaLocation(
 location.getText().toString());
 Intent intent =
 new Intent(Constants.INTENT_ACTION_VIEW_LIST);
 startActivity(intent);
 }
}

Listing 3.2 Second half of the ReviewCriteria Activity class

Respond when
menu item selectedB

Define method to
process reviews

C

Use Application
object for state

D

Create IntentE

71Creating the Activity
The menu items at the bottom of the Activity screens in figure 3.2 were all created
using the onCreateOptionsMenu() method. Here, we use the Menu class’s add()
method to create a single MenuItem element. We pass a group ID, an ID, a sequence/
order, and a text resource reference as parameters to create the menu item. We also
assign an icon to the menu item with the setIcon method. The text and the image are
externalized from the code, using Android’s programmer-defined resources. The
MenuItem we’ve added duplicates the functionality of the onscreen Button, so we use
the same text value for the label: Get reviews.

 In addition to creating the menu item, we need to perform an action when the
MenuItem is selected. We do this in the onMenuItemSelected() event method B,
where we parse the ID of the multiple possible menu items with a switch statement.
When the MENU_GET_REVIEWS item is selected, we invoke the handleGetReviews()
method C.

USING THE MENU VS. ONSCREEN BUTTONS

We’ve chosen to use the Menu here, in addition to the onscreen buttons. When decid-
ing whether to use buttons, a menu, or both, you need to consider whether the Menu,
which is invoked by pressing the Menu button on the device and tapping a selection
(button and a tap), is appropriate for what you’re doing, or whether an onscreen but-
ton (single tap) is more appropriate. Generally, onscreen buttons should be tied to UI
elements, such as a button that clears search form input, and menu items should be
used for broader actions such as creating, saving, or deleting.

 We check for valid input and use an AlertDialog to warn users about problems
with the location they entered. Along with generally demonstrating the use of Alert-
Dialog, this demonstrates how a button can be made to respond to a click event with
an OnClickListener(). Here, the Android framework automatically dismisses the
pop-up, so no extra code is required in the listener.

THE BUILDER PATTERN

You might have noticed the use of the Builder pattern, where we add parameters to
the AlertDialog we created. In this approach, each of the methods invoked, such as
AlertDialog.setMessage() and AlertDialog.setTitle(), returns a reference to
itself (this), which means we can continue chaining method calls. This approach
avoids either using an extra-long constructor with many parameters or repeating the
class reference throughout the code. Intents also use this handy pattern; it’s some-
thing you’ll see frequently in Android.

 After passing validation, this method stores the user’s selection state in the
Application object D and prepares to call the next screen. We’ve moved this logic
into its own method because we’re using it from multiple places—both from our
onscreen Button and our MenuItem.

 The Application object is used internally by Android for many purposes, and it
can be extended, as we’ve done with RestaurantFinderApplication. You can find
the source of this class online. To store global state information, RestaurantFinder-
Application defines a few member variables in JavaBean style. We reference this

72 CHAPTER 3 User interfaces
object from other activities to retrieve the information we’re storing here. Objects can
be passed back and forth between activities in several ways; using Application is just
one of them.

 After we store the criteria state, we fire off an action in the form of an Android
Intent e. We touched on Intents in chapter 1, and we’ll delve into them further in
the next chapter; here, we ask another Activity to respond to the user’s selection of
a menu item by calling startActivity(intent).

 With that, we’ve covered a good deal of material and you’ve completed Review-
Criteria, your first Activity. Now that this class is fully implemented, we’ll take a
closer look at the Android Activity lifecycle and how it relates to processes on the
platform.

3.1.3 Exploring the Activity lifecycle

Every process running on the Android platform is placed on a stack. When you use an
Activity in the foreground, the system process that hosts that Activity is placed at
the top of the stack, and the previous process (the one hosting whatever Activity was
previously in the foreground) is moved down one notch. This concept is a key point to
understand. Android tries to keep processes running as long as it can, but it can’t
keep every process running forever because system resources are finite. What happens
when memory starts to run low or the CPU gets too busy?

HOW PROCESSES AND ACTIVITIES RELATE

When the Android platform decides it needs to reclaim resources, it goes through a
series of steps to prune processes and the activities they host. It decides which ones to
get rid of based on a simple set of priorities:

 The process hosting the foreground Activity is the most important.
 Any process hosting a visible-but-not-foreground Activity comes next in terms

of importance (for example, a full-screen app that’s visible behind an app run-
ning in a pop-up window).

 After that comes any process hosting a background Activity.
 Any process not hosting any Activity (or Service or BroadcastReceiver) is

known as an empty process and is thus first in line to be killed.

A useful tool for development and debugging, especially in the context of process
priority, is the adb tool, which you first met in chapter 2. You can see the state of all
the running processes in an Android device or emulator by issuing the following
command:

adb shell dumpsys activity

This command outputs a lot of information about all the running processes, including
the package name, PID, foreground or background status, current priority, and more.

 All Activity classes must be able to handle being stopped and shut down at any
time. Remember, a user can and will change directions at any time. They might
receive a phone call or an incoming SMS message, causing them to bounce around

73Creating the Activity
from one application to the next. If the process your Activity is in falls out of the
foreground, it’s eligible to be killed without your consent; it’s up to the platform’s
algorithm, based on available resources and relative priorities.

 To manage this environment, Android applications (and the Activity classes they
host) use a different design from what you might be used to in other environments.
Using a series of event-related callback methods defined in the Activity class, you
can set up and tear down the Activity state gracefully. The Activity subclasses that
you implement override a set of lifecycle methods to make this happen. As we dis-
cussed in section 3.1.1, every Activity must implement the onCreate() method. This
method is the starting point of the lifecycle. In addition to onCreate(), most activities
will want to implement the onPause() method, where data and state can be persisted
before the hosting process potentially falls out of scope.

3.1.4 The server connection

If you’ve worked in managed environments such as Java EE servlet containers, you
should already be familiar with the concept of lifecycles. Your app responds to invoca-
tions by a framework, instead of driving its own lifespan. The critical difference for
Android is that your app is much more likely to be shut down entirely, and you’ll need
to handle any necessary cleanup.

 The lifecycle methods provided by the Activity class are called in a specific order
by the platform as it decides to create and kill processes. Because you, as an application
developer, can’t control the processes, you need to rely on the callback lifecycle meth-
ods to control state in your Activity classes as they come into the foreground, move
into the background, and fall away altogether. As the user makes choices, activities are
created and paused in a defined order by the system as it starts and stops processes.

ACTIVITY LIFECYCLE

Beyond onCreate() and onPause(), Android provides other distinct stages, each of
which is a part of a particular phase of the life of an Activity class. The methods that
you’ll encounter most and the phases for each part of the lifecycle are shown in
figure 3.3.

onCreate()

onStart()

onDestroy()

onRestart()

onResume()

onStop()

onPause()

Foreground phase

Visible phase

Entire lifecycle

Figure 3.3 Android Activity
lifecycle diagram, showing the
methods involved in the foreground
and visible phases

74 CHAPTER 3 User interfaces
 Each of the Android lifecycle methods has a distinct purpose, and each happens
during one of the following phases:

 In the foreground phase, the Activity is viewable on the screen and is on top of
everything else (when the user is interacting with the Activity to perform a
task).

 In the visible phase, the Activity is on the screen, but it might not be on top and
interacting with the user (when a dialog or floating window is on top of the
Activity, for example).

 The entire lifecycle phase refers to the methods that might be called when the
application isn’t on the screen, before it’s created, and after it’s gone (prior to
being shut down).

Table 3.1 provides more information about the lifecycle phases and outlines the main
high-level methods on the Activity class.

Beyond the main high-level lifecycle methods outlined in table 3.1, additional, finer-
grained methods are available. You don’t typically need methods such as onPost-
Create() and onPostResume(), but be aware that they exist if you need that level of
control. See the Activity documentation for full method details.

 As for the main lifecycle methods that you’ll use the majority of the time, it’s
important to know that onPause() is your last opportunity to clean up and save state
information. The processes that host your Activity classes won’t be killed by the plat-
form until after the onPause() method has completed, but they might be killed there-

Table 3.1 Android Activity main lifecycle methods and their purposes

Method Purpose

onCreate() Called when the Activity is created. Setup is done here. Also provides
access to any previously stored state in the form of a Bundle, which can be
used to restore what the user was doing before this Activity was destroyed.

onRestart() Called if the Activity is being restarted, if it’s still in the stack, rather than
starting new.

onStart() Called when the Activity is becoming visible on the screen to the user.

onResume() Called when the Activity starts interacting with the user. (This method is
always called, whether starting or restarting.)

onPause() Called when the Activity is pausing or reclaiming CPU and other resources.
This method is where you should save state information so that when an
Activity is restarted, it can start from the same state it was in when it quit.

onStop() Called to stop the Activity and transition it to a nonvisible phase and subse-
quent lifecycle events.

onDestroy() Called when an Activity is being completely removed from system memory.
This method is called either because onFinish() is directly invoked or
because the system decides to stop the Activity to free up resources.

75Working with views
after. The system will attempt to run through all of the lifecycle methods every time,
but if resources have grown critically low, the processes that are hosting activities
which are beyond the onPause() method might be killed at any point. Any time your
Activity is moved to the background, onPause() is called. Before your Activity is
completely removed, onDestroy() is called, although it might not be invoked in all
circumstances. You should save persistent state in onPause(). We’ll discuss how to save
data in chapter 5.

Managing activities with lifecycle events allows Android to do the heavy lifting, decid-
ing when things come into and out of scope, relieving applications of the decision-
making burden, and ensuring a level playing field for applications. This is a key aspect
of the platform that varies somewhat from many other application-development envi-
ronments. To build robust and responsive Android applications, you need to pay care-
ful attention to the lifecycle.

 Now that you have some background about the Activity lifecycle and you’ve cre-
ated your first screen, we’ll take a longer look at the various views that Android offers.

3.2 Working with views
Views are the building blocks of Android application’s UI. Activities contain views, and
View classes represent elements on the screen and are responsible for interacting with
users through events.

 Every Android screen contains a hierarchical tree of View elements. These views
come in a variety of shapes and sizes. Many of the views you’ll need on a day-to-day basis
are provided as part of the platform—text elements, input elements, images, buttons,
and the like. In addition, you can create your own composite views and custom views
when the need arises. You can place views into an Activity (and thus on the screen)
either directly in code or by using an XML resource that’s later inflated at runtime.

Instance state
In addition to persistent state, you should be familiar with one more scenario:
instance state. Instance state refers to the state of the UI itself. For example, instance
state refers to the current selection of any buttons, lists, text boxes, and so on,
whereas persistent state refers to data that you expect to remain after the phone
reboots.

The onSaveInstanceState() method is called when an Activity might be
destroyed, so that at a future time the interface state can be restored. This method
is used transparently by the platform to handle the view state processing in the vast
majority of cases; you don’t need to concern yourself with it under most circum-
stances. Nevertheless, it’s important to know that it’s there and that the Bundle it
saves is handed back to the onCreate() method when an Activity is restored—
as savedInstanceState in most code examples. If you need to customize the view
state, you can do so by overriding this method, but don’t confuse this with the more
common general lifecycle methods.

76 CHAPTER 3 User interfaces
 In this section, we’ll discuss the fundamental aspects of views: the common views
that Android provides, custom views that you can create as you need them, layout in
relation to views, and event handling. Views defined in XML will be covered in
section 3.3 as part of a larger discussion on resources. We’ll begin with the common
View elements Android provides by taking a short tour of the API.

3.2.1 Exploring common views

Android provides a generous set of View classes in the android.view package. These
classes range from familiar constructs such as the EditText, Spinner, and TextView
that you’ve already seen in action, to more specialized widgets such as AnalogClock,
Gallery, DatePicker, TimePicker, and VideoView. For a glance at some of the more
eye-catching views, check out the sample page in the Android documentation: http://
mng.bz/b83c.

View
AnalogClock

MapView

ImageView

ProgressBar

SurfaceView

TextView

ViewGroup

AbsoluteLayoutFrameLayoutLinearLayout

AdapterView

RelativeLayout

RadioGroup

TableLayout

TabWidget

DatePicker

TimePicker

ScaleLayout

Ticker

ScrollView

ListView

GridView

Spinner

Gallery
WebView

DialerFilter

TwoLineListItem

Button
EditText

DigitalClock

CheckBox

RadioButton

CompoundButton
ImageButton

ViewAnimator

Chronometer

VideoView

ViewStub

CheckedTextView

TableRow

ZoomControls

Figure 3.4 Class diagram of the Android
View API, showing the root View class and
specializations from there. Note that
ViewGroup classes such as layouts are
also a type of View.

http://mng.bz/b83c
http://mng.bz/b83c

77Working with views
The class diagram in figure 3.4 provides a high-level snapshot of what the overall View
API looks like. This diagram shows how the specializations fan out and includes many,
but not all, of the View-derived classes.

 As is evident from the diagram in figure 3.4, View is the base class for many classes.
ViewGroup is a special subclass of View related to layout, as are other elements such as
the commonly used TextView. All UI classes are derived from the View class, including
the layout classes (which extend ViewGroup).

 Of course, everything that extends View has access to the base class methods.
These methods allow you to perform important UI-related operations such as setting
the background, minimum height and width, padding, layout parameters, and event-
related attributes. Table 3.2 lists some of the methods available in the root View class.
Beyond the base class, each View subclass typically adds a host of refined methods to
further manipulate its respective state, such as what’s shown for TextView in table 3.3.

Table 3.2 A subset of methods in the base Android View API

Method Purpose

setBackgroundColor(int color) Set the background color

setBackgroundDrawable(Drawable d) Set the background drawable
(such as an image or gradient)

setClickable(boolean c) Set whether element is clickable

setFocusable(boolean f) Set whether element is focusable

setLayoutParams(ViewGroup.LayoutParams l) Set parameters for layout (posi-
tion, size, and more)

setMinimumHeight(int minHeight) Set the minimum height (parent
can override)

setMinimumWidth(int minWidth) Set the minimum width (parent
can override)

setOnClickListener(OnClickListener l) Set listener to fire when click
event occurs

setOnFocusChangeListener(OnFocusChangeListener l) Set listener to fire when focus
event occurs

setPadding(int left, int right, int top,
int bottom)

Set the padding

Table 3.3 More View methods for the TextView subclass

Method Purpose

setGravity(int gravity) Set alignment gravity: top, bottom, left, right, and more

setHeight(int height) Set height dimension

setText(CharSequence text) Set text to display in TextView

78 CHAPTER 3 User interfaces
The View base class and the methods specific to TextView combine to give you exten-
sive control over how an application can manipulate an instance of TextView. For
example, you can set layout, padding, focus, events, gravity, height, width, colors, and
so on. These methods can be invoked in code or set at design time when defining a UI
layout in XML, as we’ll introduce in section 3.3.

 Each View element you use has its own unique API; for details on all the methods,
see the Android Javadocs at http://mng.bz/82Qy.

 When you couple the wide array of classes with the rich set of methods available
from the base View class on down, the Android View API can seem intimidating.
Thankfully, despite this initial impression, many of the concepts involved quickly
become evident; and their use becomes more intuitive as you move from view to view,
because they’re ultimately just specializations of the same base class. When you get
familiar with working with View classes, learning to use a new view becomes intuitive
and natural.

 Although the RestaurantFinder application won’t use many of the views listed in
our whirlwind tour here, they’re still useful to know about. We’ll use many of them in
later examples throughout the book.

 The next thing we’ll focus on is a bit more detail concerning one of the most com-
mon nontrivial View elements—the ListView component.

3.2.2 Using a ListView

On the RestaurantFinder application’s ReviewList Activity, shown in figure 3.2, you
can see a view that’s different from the simple user inputs and labels we’ve used up to
this point—this screen presents a scrollable list of choices for the user to pick from.

 This Activity uses a ListView component to display a list of review data that’s
obtained from calling a mock web service for restaurant reviews. We make an HTTP
call by appending the user’s criteria to the mock web service’s URL. We then parse the
results with the Simple API for XML (SAX) and create a List of reviews. Neither the
details of XML parsing nor the use of the network itself is of much concern to us
here—rather we’ll focus on the views employed to represent the data returned from
the web service call. The resulting List will be used to populate our screen’s list of
items to choose from.

 The code in the following listing shows how to create and use a ListView to pres-
ent to the user the List of reviews within an Activity.

setTypeFace(TypeFace face) Set typeface

setWidth(int width) Set width dimension

Table 3.3 More View methods for the TextView subclass (continued)

Method Purpose

http://mng.bz/82Qy

79Working with views
public class ReviewList extends ListActivity {
 private static final int MENU_CHANGE_CRITERIA = Menu.FIRST + 1;
 private static final int MENU_GET_NEXT_PAGE = Menu.FIRST;
 private static final int NUM_RESULTS_PER_PAGE = 8;
 private TextView empty;
 private ProgressDialog progressDialog;
 private ReviewAdapter reviewAdapter;
 private List<Review> reviews;
 private final Handler handler = new Handler() {
 public void handleMessage(final Message msg) {
 progressDialog.dismiss();
 if ((reviews == null) || (reviews.size() == 0)) {
 empty.setText("No Data");
 } else {
 reviewAdapter = new ReviewAdapter(
 ReviewList.this, reviews);
 setListAdapter(reviewAdapter);
 }
 }
 };
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.review_list);
 empty = (TextView)
 findViewById(R.id.empty);
 ListView listView = getListView();
 listView.setItemsCanFocus(false);
 listView.setChoiceMode(ListView.CHOICE_MODE_SINGLE);
 listView.setEmptyView(empty);
 }
 @Override
 protected void onResume() {
 super.onResume();
 RestaurantFinderApplication application =
 (RestaurantFinderApplication) getApplication()
 String criteriaCuisine = application.getReviewCriteriaCuisine();
 String criteriaLocation = application.getReviewCriteriaLocation();
 int startFrom = getIntent().getIntExtra(
 Constants.STARTFROM_EXTRA, 1);
 loadReviews(criteriaLocation,
 criteriaCuisine, startFrom);
 }
 // onCreateOptionsMenu omitted for brevity
. . .

The ReviewList Activity extends ListActivity, which is used to host a ListView.
The default layout of a ListActivity is a full-screen, centered list of choices for the
user to select from. A ListView provides functionality similar to a Spinner; in fact,
they’re both subclasses of AdapterView, as you saw in the class diagram in figure 3.4.
ListView, like Spinner, uses an adapter to bind to data. In this case, we’re using a cus-

Listing 3.3 First half of the ReviewList Activity class, showing a ListView

Use
ReviewAdapter

b

Apply resource-
defined layout

c

Retrieve
TextViewd

eAccess Application
for global state

Use
Intent extraf

80 CHAPTER 3 User interfaces
tom ReviewAdapter class B. You’ll learn more about ReviewAdapter in the next sec-
tion, when we discuss custom views. For now, note that we’re using a custom adapter
for our ListView, and we use a List of Review objects to populate the adapter.

 Because we don’t yet have the data to populate the list, which we’ll get from a web
service call in another thread, we need to include a handler to allow for fetching data
and updating the UI to occur in separate steps. Don’t worry too much about these
concepts here; they’ll make more sense when we look at the second half of Review-
List in listing 3.4.

 After we declare our ListView and its data, we move on to the typical onCreate()
tasks you’ve already seen, including using a layout defined in an XML file c. This is
significant with respect to ListActivity because a ListView with the ID name list is
required if you want to customize the layout, as we’ve done. Note that the ID is
defined in the layout XML file; we’ll cover that in section 3.3.3. If you don’t provide a
layout, you can still use ListActivity and ListView, but you get the system default
configuration. We also look up a UI element that’s used to display the message No Data
in the event that our List of reviews is empty d. We set several specific properties on
the ListView, using its customization methods: we make the list items selectable, allow
a single selection at a time, and provide the view to display for an empty list.

 After we set up the View elements that are needed for the Activity, we get the cri-
teria to make our web service call from the Review object, which we previously placed
in the Application back in the ReviewCriteria Activity e. Here we also use an
Intent extra to store a primitive int for page number f. We pass all the criteria data
(criteriaLocation, criteriaCuisine, and startFrom) into the loadReviews()
method, which makes our web service call to populate the data list. This method, and
several others that show how we deal with items in the list being clicked, are shown
here in the second half of the ReviewList class.

 . . .
 @Override
 public boolean onMenuItemSelected
(int featureId, MenuItem item) {
 Intent intent = null;
 switch (item.getItemId()) {
 case MENU_GET_NEXT_PAGE:
 intent = new Intent(Constants.INTENT_ACTION_VIEW_LIST);
 intent.putExtra(Constants.STARTFROM_EXTRA,
 getIntent().getIntExtra(Constants.STARTFROM_EXTRA, 1)
 + ReviewList.NUM_RESULTS_PER_PAGE);
 startActivity(intent);
 return true;
 case MENU_CHANGE_CRITERIA:
 intent = new Intent(this, ReviewCriteria.class);
 startActivity(intent);
 return true;
 }
 return super.onMenuItemSelected(featureId, item);

Listing 3.4 Second half of the ReviewList Activity class

Increment
startFrom
Intent extra

b

81Working with views
 }
 @Override
 protected void onListItemClick(ListView l, View v,
 int position, long id) {
 RestaurantFinderApplication application =
 (RestaurantFinderApplication) getApplication();
 application.setCurrentReview(reviews.get(position));
 Intent intent = new Intent(Constants.INTENT_ACTION_VIEW_DETAIL);
 intent.putExtra(Constants.STARTFROM_EXTRA, getIntent().getIntExtra(
 Constants.STARTFROM_EXTRA, 1));
 startActivity(intent);
 }
 private void loadReviews(String location, String cuisine,
 int startFrom) {
 final ReviewFetcher rf = new ReviewFetcher(location,
 cuisine, "ALL", startFrom,
 ReviewList.NUM_RESULTS_PER_PAGE);
 progressDialog =
 ProgressDialog.show(this, " Working...",
 " Retrieving reviews", true, false);
 new Thread() {
 public void run() {
 reviews = rf.getReviews();
 handler.sendEmptyMessage(0);
 }
 }.start();
 }
}

This Activity has a menu item that allows the user to access the next page of results
or change the list criteria. To support this, we must implement the onMenuItem-
Selected() method. When the MENU_GET_NEXT_PAGE menu item is selected, we define
a new Intent to reload the screen with an incremented startFrom value, with some
assistance from the Intent class’s getExtras() and putExtras() methods B.

 After the menu-related methods comes the method onListItemClick(). Android
invokes this method when a user clicks one of the list items in a ListView. We use the
clicked item’s ordinal position to reference the particular Review item the user
selected, and we set this into the Application for later use in the ReviewDetail
Activity (which we’ll begin to implement in section 3.3) c. After we have the data
set, we then call the next Activity, including the startFrom extra.

 In the ReviewList class, we have the loadReviews() method d. This method is
significant for several reasons. First, it sets up the ReviewFetcher class instance, which
initiates a call to the mock web service over the network to retrieve a List of Review
objects. Then it invokes the ProgressDialog.show() method to show the user we’re
retrieving data e. Finally, it sets up a new thread f, within which the ReviewFetcher
is used, and the earlier handler you saw in the first half of ReviewList is sent an empty
message. If you refer to listing 3.3, which is when the handler was established, you can
see where we dismiss the ProgressDialog when the message is received, populate the
adapter our ListView is using, and call setListAdapter() to update the UI. The set-
ListAdapter() method iterates the adapter and displays a returned view for every

Set state in
Application

c

d

Create
loadReviews

method

Show
ProgressDialogeMake web

service callF

82 CHAPTER 3 User interfaces
item. With the Activity configured and the handler ready to update the adapter with
data, we now have a second screen in our application.

 Next, we’ll explore some details regarding handlers and multithreaded apps.
These concepts aren’t view-specific but are worth a small detour at this point, because
you’ll want to use these classes when you’re trying to perform tasks related to retriev-
ing and manipulating data that the UI needs—a common design pattern for building
Android applications.

3.2.3 Multitasking with Handler and Message

Handler helps you manage messaging and scheduling operations for Android. This
class allows you to queue tasks to be run on different threads and to schedule tasks
using Message and Runnable objects.

 The Android platform monitors the responsiveness of applications and kills those
that are considered nonresponsive. An Application Not Responding (ANR) event occurs
when no response is received to a user input for five seconds. When a user interacts
with your application by touching the screen or pressing a key, your application must
respond. Not every operation in your code must complete within five seconds, but the
main UI thread does need to respond within that time frame. To keep the main UI
thread snappy, any long-running tasks, such as retrieving data over the network, read-
ing a large amount of data from a database, or performing complicated or time-
consuming calculations, should be performed in a separate thread, apart from the
main UI thread.

 Getting tasks into a separate thread and
getting results back to the main UI thread is
where Handler and related classes come
into play. When a handler is created, it’s
associated with a Looper. A Looper is a class
that contains a MessageQueue and that pro-
cesses Message or Runnable objects that are
sent via the handler.

 When we used a handler in listings 3.3
and 3.4, we created a handler with a no-
argument constructor. With this approach,
the handler is automatically associated with
the Looper of the currently running thread,
typically the main UI thread. The main UI
thread, which is created by the process of
the running application, is an instance of
HandlerThread. A HandlerThread is an
Android Thread specialization that provides
a Looper. The key parts involved in this
arrangement are depicted in figure 3.5.

MainUIThread
(HandlerThread)

Looper

MessageQueue

Handler myHandler = new Handler() {
 public void handleMessage (Message m) {
 updateUIHere();
 }
};

new Thread() {
 public void run() {
 doStuff();
 Message m = myHandler.obtainMessage();
 Bundle b = new Bundle();
 b.putString("key", "value");
 m.setData(b);
 myHandler.sendMessage(m);
 }
}.start();

Figure 3.5 Using the Handler class with
separate threads, and the relationship among
HandlerThread, Looper, and
MessageQueue

83Working with views
 When you’re implementing a handler, you’ll need to provide a handle-
Message(Message m) method. When you create a new thread, you can then call one
of several sendMessage methods on Handler from within that thread’s run method, as
our examples and figure 3.5 demonstrate. Calling sendMessage() puts your message
on the MessageQueue, which the Looper services.

 Along with sending messages into handlers, you can also send Runnable objects
directly, and you can schedule things to be run at different times in the future. You
send messages and you post runnables. Each of these concepts supports methods such
as sendEmptyMessage(int what), which we’ve already used, and its counterparts
sendEmptyMessageAtTime(int what, long time) and sendEmptyMessageDelayed(int
what, long delay). After your Message is in the queue, Android will deliver it either
as soon as possible or according to the requested time that you indicated.

 You’ll see more of Handler and Message in other examples throughout the book,
and we’ll cover more detail in some instances, but the main point to remember when
you see these classes is that they’re used to communicate between threads and for
scheduling.

 Getting back to our RestaurantFinder application and more view-oriented topics,
we next need to elaborate on the ReviewAdapter used by our RestaurantFinder’s
ReviewList screen after it’s populated with data from a Message. This adapter returns
a custom View object for each data element it processes.

3.2.4 Creating custom views

Although the views that are provided with Android will suffice for many apps, there
might be situations where you prefer a custom view to display your own object in a
unique way.

 In the ReviewList screen, we used an adapter of type ReviewAdapter to back our
ListView. This custom adapter contains a custom View object, ReviewListView. A
ReviewListView is what our ReviewList Activity displays for every row of data it
contains. The adapter and view are shown in the following listing.

public class ReviewAdapter extends BaseAdapter {
 private final Context context;
 private final List<Review> reviews;
 public ReviewAdapter(Context context, List<Review> reviews) {
 this.context = context;
 this.reviews = reviews;
 }
 @Override
 public int getCount() {
 return reviews.size();
 }
 @Override
 public Object getItem(int position) {
 return reviews.get(position);

Listing 3.5 ReviewAdapter and inner ReviewListView classes

Override
basic adapter

b

84 CHAPTER 3 User interfaces
 }
 @Override
 public long getItemId(int position) {
 return position;
 }
 @Override

 public View getView(int position, View convertView, ViewGroup parent) {
 Review review = reviews.get(position);
 if (convertView == null ||
 !(convertView instanceof ReviewListView))
 {
 return new ReviewListView(context, review.name,
 review.rating);
 }
 ReviewListView view = (ReviewListView)convertView;
 view.setName(review.name);
 view.setRating(review.rating);
 return view;
 }
 private final class ReviewListView extends LinearLayout {
 private TextView name;
 private TextView rating;
 public ReviewListView(
 Context context, String itemName,
 String itemRating) {
 super(context);
 setOrientation(LinearLayout.VERTICAL);
 LinearLayout.LayoutParams params =
 new LinearLayout.LayoutParams(
 ViewGroup.LayoutParams.WRAP_CONTENT,
 ViewGroup.LayoutParams.WRAP_CONTENT);
 params.setMargins(5, 3, 5, 0);
 name = new TextView(context);
 name.setText(itemName);
 name.setTextSize(16f);
 name.setTextColor(Color.WHITE);
 addView(name, params);
 rating = new TextView(context);
 rating.setText(itemRating);
 rating.setTextSize(16f);
 rating.setTextColor(Color.GRAY);
 addView(rating, params);
 }
 public void setName(String itemName)
 {
 name.setText(itemName);
 }

 public void setRating(String itemRating)
 {
 rating.setText(itemRating);
 }
 }
}

Override
basic
adapter

B

Override
adapter
getView

c

Define
custom
inner view
class

d

Set layout
in code

e

Add TextView
to tree

f

85Working with views
The first thing to note in ReviewAdapter is that it extends BaseAdapter. BaseAdapter
is an Adapter implementation that provides basic event-handling support. Adapter
itself is an interface in the android.widget package and provides a way to bind data to
a View with some common methods. This is often used with collections of data, as you
saw with Spinner and ArrayAdapter in listing 3.1. Another common use is with a
CursorAdapter, which returns results from a database (something you’ll see in
chapter 5). Here we’re creating our own adapter because we want it to return a cus-
tom view.

 Our ReviewAdapter class accepts and stores two parameters in the constructor.
This class goes on to implement the required Adapter interface methods that return a
count, an item, and an ID; we use the ordinal position in the collection as the ID B.
The next Adapter method to implement is the most important: getView(). The
adapter returns any view we create for a particular item in the collection of data that
it’s supporting. Within this method, we get a particular Review object based on the
position/ID. The UI framework might call getView() multiple times for a given item;
for example, the UI may need to make multiple layout passes in order to determine
how items will fit inside. The framework might provide an old view that we may be
able to recycle for this item; doing so helps avoid wasted allocations. If there isn’t a
valid older view, we create an instance of a custom ReviewListView object to return as
the view c.

ReviewListView itself is an inner class inside ReviewAdapter; we never use it
except to return a view from ReviewAdapter d. Within it, you see an example of set-
ting layout and view details in code, rather than relying on their definition in XML. In
this listing, we set the orientation, parameters, and margin for our layout e. Next,
we populate the simple TextView objects that will be children of our new view and
represent data. When these are set up via code, we add them to the parent container,
which is in this case our custom class ReviewListView f. This is where the data bind-
ing happens—the bridge to the view from data. Another important thing to note
about this is that we’ve created not only a custom view, but also a composite one.
We’re using simple existing View objects in a particular layout to construct a new type
of reusable view, which shows the detail of a selected Review object on screen, as
depicted in figure 3.2.

 Our custom ReviewListView object is intentionally fairly simple. In many cases,
you’ll be able to create custom views by combining existing views in this manner. An
alternative approach is to extend the View class itself. If you extend View, you can
implement core methods as desired, and you have access to the lifecycle methods of a
View, such as onMeasure(), onLayout(), onDraw(), and onVisibilityChanged(). You
should rarely need to go to these lengths; for most apps, you can achieve your desired
UI by combining preexisting View components, as we’ve done here.

 Now that you’ve seen how you get the data for your reviews and what the adapter
and custom view look like, let’s take a closer look at a few more aspects of views,
including layout.

86 CHAPTER 3 User interfaces
3.2.5 Understanding layout

One of the most significant aspects of creating your UI and designing your screens is
understanding layout. Android manages layouts through ViewGroup and Layout-
Params objects. ViewGroup is a view that contains other views and also provides access
to the layout.

 On every screen, all the views are placed in a hierarchical tree; every element can
have one or more children, with a ViewGroup at the root. All the views on the screen
support a host of attributes that we addressed in section 3.2.1. Dimensions—width
and height—and other properties such as the margins and whether to use relative or
absolute placement are based on the LayoutParams a view requests and what the par-
ent can accommodate. The final layout reflects the cumulative dimensions of the par-
ent and its child views.

 The main ViewGroup classes are shown in the class diagram in figure 3.4. The dia-
gram in figure 3.6 expands on this class structure to show the specific LayoutParams
inner classes of the view groups and layout properties each type provides.

AbsoluteLayout

AbsoluteLayout.LayoutParams
x (position)
y (position)

FrameLayout

FrameLayout.LayoutParams
gravity

LinearLayout

LinearLayout.LayoutParams
gravity
weight

ViewGroup

RelativeLayout

RelativeLayout.LayoutParams
above
below
alignLeft
alignRight
toLeftOf
toRightOf
centerHorizontal
centerVertical

ViewGroup.MarginLayoutParams
marginBottom
marginLeft
marginRight
marginTop

ViewGroup.LayoutParams
height
width

Figure 3.6
Common ViewGroup classes
with LayoutParams and
properties provided

87Working with views
 As figure 3.6 shows, the base ViewGroup.LayoutParams class supports height and
width. From there, an AbsoluteLayout type with AbsoluteLayout.LayoutParams
allows you to specify the exact x and y coordinates of the child View objects placed
within. You should generally avoid the AbsoluteLayout because it prevents layouts
from looking good on larger or smaller screen resolutions.

 As an alternative to AbsoluteLayout, you can use the FrameLayout, Linear-
Layout, and RelativeLayout subtypes, all of which support variations of Layout-
Params that are derived from ViewGroup.MarginLayoutParams. A FrameLayout
frames one child element, such as an image. A FrameLayout supports multiple chil-
dren, but all the items are pinned to the top left—they’ll overlap each other in a
stack. A LinearLayout aligns child elements in either a horizontal or a vertical line.
Recall that we used a LinearLayout in our ReviewListView in listing 3.5. There we
created our view and its LayoutParams directly in code. Also, in our previous
Activity examples, we used a RelativeLayout in our XML layout files that was
inflated into our code. A RelativeLayout specifies child elements relative to each
other: above, below, toLeftOf, and so on.

 To summarize, the container is a ViewGroup, and a ViewGroup supports a particular
type of LayoutParams. Child View elements are then added to the container and must
fit into the layout specified by their parents. Even though a child view needs to lay
itself out based on its parents’ LayoutParams, it can also specify a different layout for
its own children. This flexibility allows you to construct just about any type of screen
you want.

 The dimensions for a given view are dictated by the LayoutParms of its parent—so
for each dimension of the layout of a view, you must define one of the following three
values:

 An exact number (unit required)
 FILL_PARENT

 WRAP_CONTENT

The FILL_PARENT constant means “take up as much space in that dimension as the
parent does (subtracting padding).” WRAP_CONTENT means “take up only as much
space as is needed for the provided content (adding padding).” A child view requests
a size, and the parent makes a decision on how to position the child view on the
screen. The child makes a request, and the parent makes the decision.

 Child elements do keep track of what size they’re initially asked to be, in case lay-
out is recalculated when things are added or removed, but they can’t force a particu-
lar size. Because of this, View elements have two sets of dimensions: the size and width
they want to take up (getMeasuredWidth() and getMeasuredHeight()) and the
actual size they end up after a parent’s decision (getWidth() and getHeight()). Lay-
out is a two-step process: first, measurements are taken during the measure pass, and
subsequently, the items are placed to the screen during the layout pass, using the asso-
ciated LayoutParams. Components are drawn to the screen in the order in which

88 CHAPTER 3 User interfaces
they’re found in the layout tree: parents first, then children. Note that parent views
end up behind children if they overlap in positioning.

 Layout is a big part of understanding screen design with Android. Along with plac-
ing your View elements on the screen, you need to have a good grasp of focus and
event handling in order to build effective applications.

FRAGMENTATION

Android 3.0 has introduced a new concept, the fragment, which lies somewhere
between a view and an Activity. A fragment defines a reusable user interface chunk
with its own lifecycle. Fragments are most useful if you wish to present multiple
“screens” at once on a larger device such as a tablet. For example, in the Restaurant-
Finder, you could represent the ReviewCriteria in one fragment, the ReviewList in
another, and the ReviewDetail in a third. A smartphone would display one fragment
at a time, but on a tablet, you could show the list of reviews in one pane and the
selected review’s detail in another pane. Fragments are more complicated than stan-
dard views, but in the long run they can reduce overall maintenance in your code by
letting you keep a single codebase that supports significantly different user interfaces.

3.2.6 Handling focus

Focus is like a game of tag; one and only one component on the screen is “it” at any
given time. Although a particular screen can have many different windows and wid-
gets, only one has the current focus and can respond to user input. An event, such as
movement of a stylus or finger, a tap, or a keyboard press, might trigger the focus to
shift to another component.

 In Android, focus is handled for you by the platform a majority of the time. When
a user selects an Activity, it’s invoked and the focus is set to the foreground View.
Internal Android algorithms then determine where the focus should go next based on
events taking place in the applications. Events might include buttons being clicked,
menus being selected, or services returning callbacks. You can override the default
behavior and provide hints about where specifically you want the focus to go using the
following View class methods or their counterparts in XML:

 nextFocusDown()

 nextFocusLeft()

 nextFocusRight()

 nextFocusUp()

Views can also indicate a particular focus type, DEFAULT_FOCUS or WEAK_FOCUS, to set
the priority of focus to either themselves (default) or their descendants (weak). In
addition to hints, such as UP, DOWN, and WEAK, you can use the View.requestFocus()
method directly, if you need to, to indicate that focus should be set to a particular view
at a given time. Manipulating the focus manually should be the exception rather than
the rule—the platform logic generally does what you’d expect (and more important,
what the user expects). Your application’s behavior should be mindful of how other
Android applications behave and should act accordingly.

89Working with views
 Focus changes based on event-handling logic using the OnFocusChangeListener
object and related setOnFocusChangedListener() method. This brings us to the
topic of event handling.

3.2.7 Grasping events

Events are used to change the focus and for many other actions. We’ve already imple-
mented several onClickListener() methods for buttons in listing 3.2. Those
OnClickListener instances were connected to button presses. They indicated events
that said, “Hey, somebody pressed me.” Focus events go through this same process
when announcing or responding to OnFocusChange events.

 Events have two halves: the component raising the event and the component (or
components) that respond to the event. These two halves are variously known as
Observable and Observer in design-pattern terms, or sometimes subject and observer. Fig-
ure 3.7 is a class diagram of the relationships in this pattern.

 An Observable component provides a way for Observer instances to register.
When an event occurs, the Observable notifies all the Observers that something has
taken place. The Observers can then respond to that notification however they see fit.
Interfaces are typically used for the various types of events in a particular API. An
Android Button represents this as follows:

 Observable—Button.setOnClickListener(OnClickListener listener)

 Observer—listener.onClick(View v)

This pattern affects Android View items, because many things are Observable and
allow other components to attach and listen for events. For example, most of the View
class methods that begin with on are related to events: onFocusChanged(),
onSizeChanged(), onLayout(), onTouchEvent(), and the like.

 Events occur both within the UI and all over the platform. For example, when an
incoming phone call occurs or a GPS-based location changes based on physical move-
ment, many different reactions can occur. More than one component might want to be
notified when the phone rings or when the location changes—not just the one you’re
working on—and this list of Observers isn’t necessarily limited to UI-oriented objects.

registerObserver() : void
unregisterObserver(): void
notifyObserver(): void

observerCollection : Collection<Observer> (Listeners)
Observable (Source)

notify() : void

Observer
(Listener)

ObserverImpl
ObserveableImpl

*0..1

For observer in
observerCollection:

notifyObserver()

Figure 3.7 A class diagram depicting the
Observer design pattern. Each Observable
component has zero to many Observers, which
can be notified of changes when necessary.

90 CHAPTER 3 User interfaces
 Views support events on many levels. When an interface event occurs, such as a
user pressing a button, scrolling, or selecting a portion of a window, the event is dis-
patched to the appropriate view. Click events, keyboard events, touch events, and
focus events represent the kinds of events you’ll primarily deal with in the UI.

 Remember that Android’s user interface is single-threaded. If you call a method
on a view, you need to be on the UI thread. Recall that this is why we used a handler in
listing 3.3—to get data outside the UI thread and to notify the UI thread to update the
view after the data was retrieved. The data was sent back to the handler as a Message
via the setMessage() event.

 Our coverage of events in general and how they relate to layout rounds out the
majority of our discussion of views, but we still have one notable related concept to
discuss—resources. In the next section, we’ll address all the aspects of resources,
including XML-defined views.

3.3 Using resources
You’ve already seen several examples of resources throughout the book. We’ll now
explore them in detail and implement the third and final Activity in Restaurant-
Finder—the ReviewDetail screen.

 When you begin working with Android, you’ll quickly notice many references to a
class named R. This class was introduced in chapter 1, and we’ve used it in our previ-
ous Activity examples in this chapter. Android automatically generates this class for
each of your projects to provide access to resources. Resources are noncode items that
the platform automatically includes in your project.

 To begin looking at resources, we’ll first explore the various available types, and
then we’ll demonstrate examples of each type of resource.

3.3.1 Supported resource types

Each Android project’s resources are located in the res directory. Not every project
will use every type, but any resource must fit one of the available types:

 res/anim—XML representations of frame-by-frame animations
 res/drawable—Graphics such as PNG and JPG images, stretchable nine-patch

images, and gradients
 res/layout—XML representations of View object hierarchies
 res/values—XML representations of strings, colors, styles, dimensions, and

arrays
 res/xml—User-defined XML files that are compiled into a compact binary rep-

resentation
 res/raw—Arbitrary and uncompiled files

Resources are treated specially in Android because they’re typically compiled into an
efficient binary type, with the noted exceptions of items that are already binary and
the raw type, which isn’t compiled. Animations, layouts and views, string and color

91Using resources
values, and arrays can all be defined in an XML format on the platform. These XML
resources are then processed by the aapt tool, which you saw in chapter 2, and com-
piled. After resources have been compiled, they’re accessible in Java through the auto-
matically generated R class.

3.3.2 Referencing resources in Java

The first portion of the ReviewDetail Activity, shown in the following listing, reuses
many of the Activity tenets you’ve already learned and uses several subcomponents
that come from R.java.

public class ReviewDetail extends Activity {
 private static final int MENU_CALL_REVIEW = Menu.FIRST + 2;
 private static final int MENU_MAP_REVIEW = Menu.FIRST + 1;
 private static final int MENU_WEB_REVIEW = Menu.FIRST;
 private String imageLink;
 private String link;
 private TextView location;
 private TextView name;
 private TextView phone;
 private TextView rating;
 private TextView review;
 private ImageView reviewImage;
 private Handler handler = new Handler() {
 public void handleMessage(Message msg) {
 if ((imageLink != null) && !imageLink.equals("")) {
 try {
 URL url = new URL(imageLink);
 URLConnection conn = url.openConnection();
 conn.connect();
 BufferedInputStream bis = new
BufferedInputStream(conn.getInputStream());
 Bitmap bm = BitmapFactory.decodeStream(bis);
 bis.close();
 reviewImage.setImageBitmap(bm);
 } catch (IOException e) {
 // log and or handle here
 }
 } else {
 reviewImage.setImageResource(R.drawable.no_review_image);
 }
 }
 };
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.review_detail);
 name =
 (TextView) findViewById(R.id.name_detail);
 rating =
 (TextView) findViewById(R.id.rating_detail);

Listing 3.6 First portion of ReviewDetail showing multiple uses of the R class

Define inflatable
View items

b

Set layout using
setContentView()

c

92 CHAPTER 3 User interfaces
 location =
 (TextView) findViewById(R.id.location_detail);
 phone =
 (TextView) findViewById(R.id.phone_detail);
 review =
 (TextView) findViewById(R.id.review_detail);
 reviewImage =
 (ImageView) findViewById(R.id.review_image);
 RestaurantFinderApplication application =
 (RestaurantFinderApplication) getApplication();
 Review currentReview = application.getCurrentReview();
 link = currentReview.link;
 imageLink = currentReview.imageLink;
 name.setText(currentReview.name);
 rating.setText(currentReview.rating);
 location.setText(currentReview.location);
 review.setText(currentReview.content);
 if ((currentReview.phone != null) &&
 !currentReview.phone.equals("")) {
 phone.setText(currentReview.phone);
 } else {
 phone.setText("NA");
 }
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 menu.add(0, ReviewDetail.MENU_WEB_REVIEW, 0,
 R.string.menu_web_review).setIcon(
 android.R.drawable.ic_menu_info_details);
 menu.add(0, ReviewDetail.MENU_MAP_REVIEW, 1,
 R.string.menu_map_review).setIcon(
 android.R.drawable.ic_menu_mapmode);
 #3
 menu.add(0, ReviewDetail.MENU_CALL_REVIEW, 2,
 R.string.menu_call_review).setIcon(
 android.R.drawable.ic_menu_call);

 return true;
 }
...
}

In the ReviewDetail class, we first define View components that we’ll later reference
from resources B. Next, you see a handler that’s used to perform a network call to
populate an ImageView based on a URL. (Don’t worry too much about the details of
the network calls here; these will be addressed in the networking sections in
chapter 5.) After the handler, we set the layout and view tree using setContentView
(R.layout.review_detail) c. This maps to an XML layout file at src/res/layout/
review_detail.xml. Next, we reference some of the View objects in the layout file
directly through resources and corresponding IDs.

 Views defined in XML are inflated by parsing the layout XML and injecting the cor-
responding code to create the objects for you. This process is handled automatically

Use String
and Drawable
resources

d

93Using resources
by the platform. All the View and LayoutParams methods we’ve discussed have coun-
terpart attributes in the XML format. This inflation approach is one of the most
important aspects of view-related resources, and it makes them convenient to use and
reuse. We’ll examine the layout file we’re referring to here and the specific views it
contains more closely in the next section.

 You reference resources in code, as we’ve been doing here, using the automatically
generated R class. The R class is made up of static inner classes (one for each resource
type) that hold references to all of your resources in the form of an int value. This
value is a constant pointer to an object file, by way of a resource table that’s contained
in a special file which is created by the aapt tool and used by the R.java file.

 The last reference to resources in listing 3.6 shows the creation of our menu
items d. For each of these, we reference a String for text from our own local
resources, and we also assign an icon from the android.R.drawable resources
namespace. You can qualify resources in this way and reuse the platform drawables,
which provides stock icons, images, borders, backgrounds, and so on. You’ll likely
want to customize much of your own applications and provide your own drawable
resources. Note that the platform provides resources if you need them, and they’re
arguably the better choice in terms of consistency for the user, particularly if you’re
calling out to well-defined actions as we are here: map, phone call, and web page.

 We’ll cover how all the different resource types are handled in the next several sec-
tions. The first types of resources we’ll look at more closely are layouts and views.

3.3.3 Defining views and layouts through XML resources

As we’ve noted in several earlier sections, views and layouts are often defined in XML
rather than in Java code. Defining views and layouts as resources in this way makes
them easier to work with, because they’re decoupled from the code and in some cases
reusable in across different screens.

 View resource files are placed in the res/layout source directory. The root of these
XML files is usually one of the ViewGroup layout subclasses we’ve already discussed:
RelativeLayout, LinearLayout, FrameLayout, and so on. Within these root elements
are child XML elements that form the view/layout tree.

 Resources in the res/layout directory don’t have to be complete layouts. For exam-
ple, you can define a single TextView in a layout file the same way you might define an
entire tree starting from an AbsoluteLayout. More often, you might create a compos-
ite view that contains several interior View components. You might use this approach
when a particularly configured view is used in multiple areas of your application. By
defining it as a standalone resource, you can maintain it more readily over the lifetime
of your project.

 You can have as many XML layout/view files as you need, all defined in the res/
layout directory. Each view is then referenced in code, based on the type and ID. Our
layout file for the ReviewDetail screen—review_detail.xml, shown in the following
listing—is referenced in the Activity code as R.layout.review_detail, which is a
pointer to the RelativeLayout parent View object in the file.

94 CHAPTER 3 User interfaces
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_horizontal"
 android:padding="10px"
 android.setVerticalScrollBarEnabled="true"
 >
 <ImageView android:id="@+id/review_image"
 android:layout_width="100px"
 android:layout_height="100px"
 android:layout_marginLeft="10px"
 android:layout_marginBottom="5px" />
 <TextView android:id="@+id/name_detail"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/review_image"
 android:layout_marginLeft="10px"
 android:layout_marginBottom="5px"
 style="@style/intro_blurb" />
 <TextView android:id="@+id/rating_label_detail"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/name_detail"
 android:layout_marginLeft="10px"
 android:layout_marginBottom="5px"
 style="@style/label"
 android:text="@string/rating_label" />
 . . .
</RelativeLayout>

This file uses a RelativeLayout as the root of the view tree. The XML also defines
LayoutParams using the android:layout_[attribute] convention, where
[attribute] refers to a layout attribute such as width or height. Along with layout,
you can also define other view-related attributes in XML, such as android:padding,
which is analogous to the setPadding() method.

 After we’ve defined the RelativeLayout parent itself, we add the child View ele-
ments. Here we’re using an ImageView and multiple TextView components. Each of
the components is given an ID using the form android:id="@+id/[name]" B. When
you define an ID like this, Android generates an int reference in the resource table
and gives it your specified name. Other components can reference the ID using the
friendly textual name. Never use the integer value directly, because it will change over
time as your view changes. Always use the constant value defined in the R class.

 After you’ve defined your views in a layout resource file and set the content view in
your Activity, you can use the Activity method findViewById() to obtain a refer-
ence to a particular view. You can then manipulate that view in code. For example, in
listing 3.6 we retrieved the rating TextView as follows:

rating = (TextView) findViewById(R.id.rating_detail)

Listing 3.7 XML layout resource file for review_detail.xml

Include child
element with ID

b

Reference
another
resource

c

95Using resources
This provides access to the rating_detail element.
XML can define all the properties for a view, including the layout. Because we’re

using a RelativeLayout, we use attributes that place one view relative to another, such
as below or toRightOf. To accomplish relative placement, we use the
android:layout_below="@id/[name]" syntax c. The @id syntax lets you reference
other resource items from within a current resource file. Using this approach, you can
reference other elements defined in the file you’re currently working on or other ele-
ments defined in other resource files.

 Some of our views represent labels that are shown on the screen as-is and aren’t
manipulated in code, such as rating_label_detail. Others we’ll populate at run-
time, such as name_detail; these views don’t have a text value set. We do know the text
for labels, which we’ll apply with references to externalized strings.

 You use the same syntax for styles, using the form style="@style/[stylename]".
Strings, styles, and colors are themselves defined as resources in another type of
resource file.

3.3.4 Externalizing values

It’s common practice in the programming world to externalize string literals from
code. In Java, you usually use a ResourceBundle or a properties file to externalize val-
ues. Externalizing references to strings in this way allows the value of a component to
be stored and updated separately from the component itself, away from code.

 Android includes support for values resources that are subdivided into several
groups: animations, arrays, styles, strings, dimensions, and colors. Each of these items
is defined in a specific XML format and made available in code as references from the
R class, just like layouts, views, and drawables. We use externalized strings in the
RestaurantFinder application, as shown in the following listing for strings.xml.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name_criteria">RestaurantFinder – Criteria</string>
 <string name="app_name_reviews">RestaurantFinder - Reviews</string>
 <string name="app_name_review">RestaurantFinder - Review</string>
 <string name="app_short_name">Restaurants</string>
 <string name="menu_get_reviews">Get reviews</string>
 <string name="menu_web_review">Get full review</string>
 <string name="menu_map_review">Map location</string>
 <string name="menu_call_review">Call restaurant</string>
 <string name="menu_change_criteria">Change review criteria</string>
 <string name="menu_get_next_page">Get next page of results</string>
 <string name="intro_blurb_criteria">Enter review criteria</string>
 <string name="intro_blurb_detail">Review details</string>
 . . .
</resources>

This file uses a <string> element with a name attribute for each string value we define.
We used this file for the application name, menu buttons, labels, and alert validation

Listing 3.8 Externalized strings for the RestaurantFinder application, strings.xml

96 CHAPTER 3 User interfaces
messages. This format is known as simple value in Android terminology. This file is
placed in source at the res/values/strings.xml location. In addition to strings, you can
define colors and dimensions the same way.

 Dimensions are placed in dimens.xml and defined with the <dimen> element:
<dimen name=dimen_name>dimen_value</dimen>. Dimensions can be expressed in
any of the following units:

 Pixels (px) indicate the actual number of pixels on a screen. You should gener-
ally avoid using this unit, because it might make your UI look tiny on a high-
resolution screen or huge on a low-resolution screen.

 Inches (in) determine the physical amount of space the item will occupy. Again,
use caution; one inch looks big on a handset but tiny on a tablet.

 Millimeters (mm) are the metric counterpart to inches.
 Density-independent pixels (dp) will scale automatically based on the pixel density

(dots per inch, or dpi) of the screen; you should try to use this unit for most
items.

 Scaled pixels (sp) are similar to dp but also take into account the user’s preferred
text size. Developers should try to use sp to describe text sizes.

Colors are defined in colors.xml and are declared with the <color> element: <color
name=color_name>#color_value</color>. Color values are expressed using Red
Green Blue triplet values in hexadecimal format, as in HTML. For example, solid blue
is #0000ff. Color and dimension files are also placed in the res/values source location.

 Although we haven’t defined separate colors and dimensions for the Restaurant-
Finder application, we’re using several styles, which we referenced in listing 3.7. The
style definitions are shown in the following listing. Unlike the string, dimension, and
color resource files, which use a simplistic value structure, the style resource file has a
more complex structure, including specific attributes from the android: namespace.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="intro_blurb">
 <item name="android:textSize">22sp</item>
 <item name="android:textColor">#ee7620</item>
 <item name="android:textStyle">bold</item>
 </style>
 <style name="label">
 <item name="android:textSize">18sp</item>
 <item name="android:textColor">#ffffff</item>
 </style>
 <style name="edit_text">
 <item name="android:textSize">16sp</item>
 <item name="android:textColor">#000000</item>
 </style>
 . . .
</resources>

Listing 3.9 Values resource defining reusable styles, styles.xml

97Using resources
The Android styles approach is similar in concept to using Cascading Style Sheets (CSS)
with HTML. You define styles in styles.xml and then reference them from other
resources or code. Each <style> element has one or more <item> children that
define a single setting. Styles consist of the various view settings: dimensions, colors,
margins, and such. They’re helpful because they facilitate easy reuse and the ability to
make changes in one place that are applied throughout your app. Styles are applied in
layout XML files by associating a style name with a particular View component, such as
style="@style/intro_blurb". Note that in this case, style isn’t prefixed with the
android: namespace; it’s a custom local style, not one provided by the platform.

 Styles can be taken one step further and used as themes. Whereas a style refers to a
set of attributes applied to a single View element, themes refer to a set of attributes
being applied to an entire screen. Themes can be defined in the same <style> and
<item> structure as styles are. To apply a theme, you associate a style with an entire
Activity, such as android:theme="@android:style/[stylename]".

 Along with styles and themes, Android supports a specific XML structure for defin-
ing arrays as a resource. You can place arrays in res/values/arrays.xml and use them to
define collections of constant values, such as the cuisines we used to pass to our
ArrayAdapter back in listing 3.1. The following listing shows an example of defining
these arrays in XML.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <array name="cuisines">
 <item>ANY</item>
 <item>American</item>
 <item>Barbeque</item>
 <item>Chinese</item>
 <item>French</item>
 <item>German</item>
 <item>Indian</item>
 <item>Italian</item>
 <item>Mexican</item>
 <item>Thai</item>
 <item>Vegetarian</item>
 <item>Kosher</item>
 </array>
</resources>

Array resources use an <array> element with a name attribute and include any num-
ber of <item> child elements to define each array member. You can access arrays in
code using the syntax shown in listing 3.1: String[] ratings = getResources()
.getStringArray(R.array.ratings).

 Android resources can also support raw files and XML. Using the res/raw and res/
xml directories, respectively, you can package these file types with your application
and access them through either Resources.openRawResource(int id) or Resources
.getXml(int id).

Listing 3.10 Arrays.xml used for defining cuisines and ratings

98 CHAPTER 3 User interfaces
 The last type of resource to examine is the most complex one: the animation
resource.

3.3.5 Providing animations

Animations are more complicated than other Android resources, but they’re also the
most visually impressive. Android allows you to define animations that can rotate,
fade, move, or stretch graphics or text. Although you don’t want to go overboard with
a constantly blinking animated shovel, an initial splash or occasional subtle animated
effect can enhance your UI.

 Animation XML files go into the res/anim source directory. As with layouts, you
reference the respective animation you want by name/ID. Android supports four
types of animations:

 <alpha>—Defines fading, from 0.0 to 1.0 (0.0 being transparent)
 <scale>—Defines sizing, x and y (1.0 being no change)
 <translate>—Defines motion, x and y (percentage or absolute)
 <rotate>—Defines rotation, pivot from x and y (degrees)

In addition, Android provides several attributes that can be used with any animation
type:

 duration—Time for the animation to complete, in milliseconds
 startOffset—Offset start time, in milliseconds
 interpolator—Used to define a velocity curve for speed of animation

The following listing shows a simple animation that you can use to scale a view.

<?xml version="1.0" encoding="utf-8"?>
<scale xmlns:android="http://schemas.android.com/apk/res/android"
 android:fromXScale="0.5"
 android:toXScale="2.0"
 android:fromYScale="0.5"
 android:toYScale="2.0"
 android:pivotX="50%"
 android:pivotY="50%"
 android:startOffset="700"
 android:duration="400"
 android:fillBefore="false" />

In code, you can reference and use this animation with any View object (TextView, for
example) as follows:

view.startAnimation(AnimationUtils.loadAnimation(this, R.anim.scaler));

This will scale the View element up in size on both the x and y axes. Although we don’t
have any animations in the RestaurantFinder sample application by default, to see this
animation work, you can add the startAnimation() method to any View element in
the code and reload the application.

Listing 3.11 Example of an animation defined in an XML resource, scaler.xml

99Exploring the AndroidManifest file
 Animations can come in handy, so you should be aware of them. We’ll cover ani-
mations and other graphics topics in greater detail in chapter 9.

 With our journey through Android resources now complete, we’re going to
address the final aspect of RestaurantFinder that we need to cover: the Android-
Manifest.xml manifest file, which is required for every Android application.

3.4 Exploring the AndroidManifest file
As you learned in chapter 1, Android requires a manifest file for every application—
AndroidManifest.xml. This file, located in the root directory of the project source,
describes the application context and any supported activities, services, broadcast
receivers, or content providers, as well as the requested permissions for the applica-
tion. You’ll learn more about services, Intents, and BroadcastReceivers in chapter 4
and about content providers in chapter 5. For now, the manifest file for our
RestaurantFinder sample application, as shown in the following listing, contains only
the <application> itself, an <activity> element for each screen, and several <uses-
permission> elements.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android">
 <application android:icon="@drawable/restaurant_icon_trans"
 android:label="@string/app_short_name"
android:name="RestaurantFinderApplication"
 android:allowClearUserData="true"
 android:theme="@android:style/Theme.Black">
 <activity android:name="ReviewCriteria"
 android:label="@string/app_short_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name="ReviewList"
 android:label="@string/app_name_reviews">
 <intent-filter>
 <category
 android:name="android.intent.category.DEFAULT" />
 <action
 android:name=
"com.msi.manning.restaurant.VIEW_LIST" />
 </intent-filter>
 </activity>
 <activity android:name="ReviewDetail"
 android:label="@string/app_name_review">
 <intent-filter>
 <category
 android:name="android.intent.category.DEFAULT" />
 <action

Listing 3.12 RestaurantFinder AndroidManifest.xml file

Define
ReviewCriteria
Activity

b

c

Define
MAIN LAUNCHER

Intent filter

100 CHAPTER 3 User interfaces
 android:name=
"com.msi.manning.restaurant.VIEW_DETAIL" />
 </intent-filter>
 </activity>
 </application>
 <uses-permission android:name="android.permission.CALL_PHONE" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-sdk android:minSdkVersion="3"
android:targetSdkVersion="9"></uses-sdk>
 <supports-screens largeScreens="false" xlargeScreens="false"
anyDensity="false" />
</manifest>

In the RestaurantFinder descriptor file, you first see the root <manifest> element dec-
laration, which includes the application’s package declaration and the Android
namespace. Then you see the <application> element with both the name and icon
attributes defined. You don’t need to include the name attribute here unless you want
to extend the default Android Application object to provide some global state to
your application. We took this approach so we could access the Application instance
to store the current Review object. The icon is also optional; if you don’t specify one, a
system default will represent your application on the main menu. We highly recom-
mended that you provide an attractive icon for your application to make it stand out.

 After the application is defined, you see the child <activity> elements within.
These elements define each Activity the application supports B. As we noted when
we discussed activities in general, one Activity in every application is defined as the
entry point for the application; this Activity has the <intent-filter> action MAIN
and category LAUNCHER designation c. This tells the Android platform how to start an
application from the Launcher, meaning this Activity will be placed in the main
menu on the device.

 After the ReviewCriteria Activity, you see another <activity> designation for
ReviewList. This Activity also includes an <intent-filter>, but for our own action,
com.msi.manning.restaurant.VIEW_LIST. This tells the platform that this Activity
should be invoked for that Intent. Next, the <uses-permission> elements tell the
platform that this application needs the CALL_PHONE and INTERNET permissions.

 The <uses-sdk> element has grown increasingly important as Android has
evolved. This element lets Android’s build tools recognize which version of the SDK
you intend to build with. If you want to access advanced features, either in your code
or in the manifest itself, you must set a targetSdkVersion that supports those fea-
tures. Using targetSdkVersion will usually restrict your app to only run on devices
with that version or higher; if you want to allow running on earlier devices, you can set
a lower minSdkVersion. When setting minSdkVersion, make sure that you test on that
version of device, and in particular verify that you don’t call any APIs that weren’t pres-
ent in that SDK—doing so will crash your app. In this example, we’re setting target-
SdkVersion to 9 so we can access the xlargeScreens property that was added in that
SDK revision; because we don’t call any APIs that were defined after Android 1.5, we
can safely leave minSdkVersion at 3.

101Summary
 Finally, <supports-screens> provides some instructions to Android that tell it how
to display our UI. By default, Android won’t try to stretch your app to fit very large
screens; as a result, apps that looked good when running on smartphones might look
tiny when running on a tablet. By setting xlargeScreeens="false", we’re telling
Android that we don’t offer any custom support for larger screens. This will cause
Android to run our app in screen-compatibility mode, automatically scaling up the
size of our screens to fill a tablet or other large device.

 The RestaurantFinder sample application uses a fairly basic manifest file with three
activities and a series of Intents. Wrapping up the description of the manifest file
completes our discussion of views, activities, resources, and working with UIs in
Android.

3.5 Summary
A big part of the Android platform revolves around the UI and the concepts of activi-
ties and views. In this chapter, we explored these concepts in detail and worked on a
sample application to demonstrate them. In relation to activities, we addressed the
concepts and methods involved, and we covered the all-important lifecycle events the
platform uses to manage them. Moving on to views, we looked at common and custom
types, attributes that define layout and appearance, and focus and events.

 In addition, we examined how Android handles various types of resources, from
simple strings to more involved animations. We also explored the Android-
Manifest.xml application descriptor and saw how it brings all these components
together to define an Android application.

 This chapter has given you a good foundation for general Android UI develop-
ment. Now we need to go deeper into the Intent and BroadcastReceiver classes,
which form the communication layer that Android activities and other components
rely on. We’ll cover these items, along with longer-running Service processes and the
Android interprocess communication (IPC) system involving the Binder, in chapter 4,
where you’ll also complete the RestaurantFinder application.

Intents and Services
You’ve already created some interesting applications that didn’t require much
effort to build. In this chapter, we’ll dig deeper into the use of Intent objects and
related classes to accomplish tasks. We’ll expand the RestaurantFinder application
from chapter 3, and show you how an Intent can carry you from one Activity to
another and easily link into outside applications. Next, you’ll create a new weather-
reporting application to demonstrate how Android handles background processes
through a Service. We’ll wrap up the chapter with an example of using the Android
Interface Definition Language (AIDL) to make different applications communicate
with one another.

 We introduced the Intent in chapter 1. An Intent describes something you
want to do, which might be as vague as “Do whatever is appropriate for this URL” or
as specific as “Purchase a flight from San Jose to Chicago for $400.” You saw several

This chapter covers
 Asking other programs to do work for you with Intents

 Advertising your capabilities with intent filters

 Eavesdropping on other apps with broadcast receivers

 Building Services to provide long-lived background
processing

 Offering APIs to external applications through AIDL
102

103Serving up RestaurantFinder with Intent
examples of working with Intent objects in chapter 3. In this chapter, we’ll look more
closely at the contents of an Intent and how it matches with an IntentFilter. The
RestaurantFinder app will use these concepts to display a variety of screens.

 After you complete the RestaurantFinder application, we’ll move on to Weather-
Reporter. WeatherReporter will use the Yahoo! Weather API to retrieve weather data
and alerts and show them to the user. Along the way, you’ll see how an Intent can
request work outside your UI by using a BroadcastReceiver and a Service. A
BroadcastReceiver catches broadcasts sent to any number of interested receivers.
Services also begin with an Intent but work in background processes rather than
UI screens.

 Finally, we’ll examine the mechanism for making interprocess communication
(IPC) possible using Binder objects and AIDL. Android provides a high-performance
way for different processes to pass messages among themselves.

 All these mechanisms require the use of Intent objects, so we’ll begin by looking
at the details of this class.

4.1 Serving up RestaurantFinder with Intent
The mobile Android architecture looks a lot like the service-oriented architecture
(SOA) that’s common in server development. Each Activity can make an Intent call
to get something done without knowing exactly who’ll receive that Intent. Develop-
ers usually don’t care how a particular task gets performed, only that it’s completed to
their requirements. As you complete the RestaurantFinder application, you’ll see that
you can request sophisticated tasks while remaining vague about how those tasks
should get done.

Intent requests are late binding; they’re mapped and routed to a component that
can handle a specified task at runtime rather than at build or compile time. One
Activity tells the platform, “I need a map of Langtry, TX, US,” and another compo-
nent returns the result. With this approach, individual components are decoupled
and can be modified, enhanced, and maintained without requiring changes to a
larger application or system.

 Let’s look at how to define an Intent in code, how to invoke an Intent within an
Activity, and how Android resolves Intent routing with IntentFilter classes. Then
we’ll talk about Intents that anyone can use because they’re built into the platform.

4.1.1 Defining Intents

Suppose that you want to call a restaurant to make a reservation. When you’re crafting
an Intent for this, you need to include two critical pieces of information. An action is
a verb describing what you want to do—in this case, make a phone call. Data is a noun
describing the particular thing to request—in this case, the phone number. You
describe the data with a Uri object, which we’ll describe more thoroughly in the next
section. You can also optionally populate the Intent with other information that fur-
ther describes how to handle the request. Table 4.1 lists all the components of an
Intent object.

104 CHAPTER 4 Intents and Services
Intent definitions typically express a combination of action, data, and other attri-
butes, such as category. You combine enough information to describe the task you
want done. Android uses the information you provide to resolve which class should
fulfill the request.

4.1.2 Implicit and explicit invocation

Android’s loose coupling allows you to write applications that make vague requests.
An implicit Intent invocation happens when the platform determines which compo-
nent should run the Intent. In our example of making a phone call, we don’t care
whether the user has the native Android dialer or has installed a third-party dialing
app; we only care that the call gets made. We’ll let Android resolve the Intent using
the action, data, and category we defined. We’ll explore this resolution process in
detail in the next section.

 Other times, you want to use an Intent to accomplish some work, but you want to
make sure that you handle it yourself. When you open a review in RestaurantFinder,
you don’t want a third party to intercept that request and show its own review instead.
In an explicit Intent invocation, your code directly specifies which component
should handle the Intent. You perform an explicit invocation by specifying either the
receiver’s Class or its ComponentName. The ComponentName provides the fully qualified
class name, consisting of a String for the package and a String for the class.

 To explicitly invoke an Intent, you can use the following form: Intent(Context
ctx, Class cls). With this approach, you can short-circuit all the Android Intent-
resolution wiring and directly pass in an Activity class reference to handle the
Intent. Although this approach is convenient and fast, it also introduces tight cou-
pling that might be a disadvantage later if you want to start using a different Activity.

Table 4.1 Intent data and descriptions

Intent attribute Description

Action Fully qualified String indicating the action (for example,
android.intent.action.DIAL)

Category Describes where and how the Intent can be used, such as from the main
Android menu or from the browser

Component Specifies an explicit package and class to use for the Intent, instead of infer-
ring from action, type, and categories

Data Data to work with, expressed as a URI (for example, content://contacts/1)

Extras Extra data to pass to the Intent in the form of a Bundle

Type Specifies an explicit MIME type, such as text/plain or
vnd.android.cursor.item/email_v2

http://groups.google.com/group/android-developers/browse_thread/thread/fa2848e31636af70

105Serving up RestaurantFinder with Intent
4.1.3 Adding external links to RestaurantFinder

When we started the RestaurantFinder in listing 3.6, we used Intent objects to move
between screens in our application. In the following listing, we finish the Review-
Detail Activity by using a new set of implicit Intent objects to link the user to other
applications on the phone.

@Override
public boolean onMenuItemSelected(int featureId, MenuItem item) {
 Intent intent = null;
 switch (item.getItemId()) {
 case MENU_WEB_REVIEW:
 if ((link != null) && !link.equals("")) {
 intent = new Intent(Intent.ACTION_VIEW,
 Uri.parse(link));
 startActivity(intent);
 } else {
 new AlertDialog.Builder(this)
 setTitle(getResources()
 .getString(R.string.alert_label))
 .setMessage(R.string.no_link_message)
 .setPositiveButton("Continue",
 new OnClickListener() {
 public void onClick(DialogInterface dialog,
 int arg1) {
 }
 }).show();
 }
 return true;
 case MENU_MAP_REVIEW:
 if ((location.getText() != null)
 && !location.getText().equals("")) {
 intent = new Intent(Intent.ACTION_VIEW,
 Uri.parse("geo:0,0?q=" +

location.getText().toString()));
 startActivity(intent);
 } else {
 new AlertDialog.Builder(this)
 .setTitle(getResources()
 .getString(R.string.alert_label))
 .setMessage(R.string.no_location_message)
 .setPositiveButton("Continue", new OnClickListener() {
 public void onClick(DialogInterface dialog,
 int arg1) {
 }
 }).show();
 }
 return true;
 case MENU_CALL_REVIEW:
 if ((phone.getText() != null)
 && !phone.getText().equals("")

Listing 4.1 Second section of ReviewDetail, demonstrating Intent invocation

Declare
IntentB

Display
web pageC

Set Intent for
map menu itemD

106 CHAPTER 4 Intents and Services
 && !phone.getText().equals("NA")) {
 String phoneString =
 parsePhone(phone.getText().toString());
 intent = new Intent(Intent.ACTION_CALL,
 Uri.parse("tel:" + phoneString));
 startActivity(intent);
 } else {
 new AlertDialog.Builder(this)
 .setTitle(getResources()
 .getString(R.string.alert_label))
 .setMessage(R.string.no_phone_message)
 .setPositiveButton("Continue", new OnClickListener() {
 public void onClick(DialogInterface dialog,
 int arg1) {
 }
 }).show();
 }
 return true;
 }
 return super.onMenuItemSelected(featureId, item);
 }
 private String parsePhone(final String phone) {
 String parsed = phone;
 parsed = parsed.replaceAll("\\D", "");
 parsed = parsed.replaceAll("\\s", "");
 return parsed.trim();
 }

The Review model object contains the address and phone number for a restaurant and
a link to a full online review. Using ReviewDetail Activity, the user can open the
menu and choose to display a map with directions to the restaurant, call the restaurant,
or view the full review in a web browser. To allow all of these actions to take place,
ReviewDetail launches built-in Android applications through implicit Intent calls.

 In our new code, we initialize an Intent class instance B so it can be used later by
the menu cases. If the user selects the MENU_WEB_REVIEW menu button, we create a
new instance of the Intent variable by passing in an action and data. For the action,
we use the String constant Intent.ACTION_VIEW, which has the value
android.app.action.VIEW. You can use either the constant or the value, but sticking
to constants helps ensure that you don’t mistype the name. Other common actions
are Intent.ACTION_EDIT, Intent.ACTION_INSERT, and Intent.ACTION_DELETE.

 For the data component of the Intent, we use Uri.parse(link) to create a URI.
We’ll look at Uri in more detail in the next section; for now, just know that this allows
the correct component to answer the startActivity(Intent i) request C and ren-
der the resource identified by the URI. We don’t directly declare any particular
Activity or Service for the Intent; we simply say we want to view http://somehost/
somepath. Android’s late-binding mechanism will interpret this request at runtime,
most likely by launching the device’s built-in browser.

ReviewDetail also handles the MENU_MAP_REVIEW menu item. We initialize the
Intent to use Intent.ACTION_VIEW again, but this time with a different type of URI:

Set Intent for
call menu itemE

107Serving up RestaurantFinder with Intent
"geo:0,0?q=" + street_address E. This combina-
tion of VIEW and geo invokes a different Intent, proba-
bly the built-in maps application. Finally, when
handling MENU_MAP_CALL, we request a phone call
using the Intent.ACTION_CALL action and the tel:Uri
scheme E.

 Through these simple requests, our Restaurant-
Finder application uses implicit Intent invocation to
allow the user to phone or map the selected restaurant
or to view the full review web page. These menu buttons
are shown in figure 4.1.

 The RestaurantFinder application is now complete.
Users can search for reviews, select a particular review
from a list, display a detailed review, and use additional
built-in applications to find out more about a selected
restaurant.

 You’ll learn more about all the built-in apps and
action-data pairs in section 4.1.5. Right now, we’re
going to focus on the Intent-resolution process and
how it routes requests.

4.1.4 Finding your way with Intent

RestaurantFinder makes requests to other applications by using Intent invocations,
and guides its internal movement by listening for Intent requests. Three types of
Android components can register to handle Intent requests: Activity, Broadcast-
Receiver, and Service. They advertise their capabilities through the <intent-
filter> element in the AndroidManifest.xml file.

 Android parses each <intent-filter> element into an IntentFilter object.
After Android installs an .apk file, it registers the application’s components, including
the Intent filters. When the platform has a registry of Intent filters, it can map any
Intent requests to the correct installed Activity, BroadcastReceiver, or Service.

 To find the appropriate handler for an Intent, Android inspects the action, data,
and categories of the Intent. An <intent-filter> must meet the following condi-
tions to be considered:

 The action and category must match.
 If specified, the data type must match, or the combination of data scheme and

authority and path must match.

Let’s look at these components in more detail.

ACTIONS AND CATEGORIES

Each individual IntentFilter can specify zero or more actions and zero or more cat-
egories. If no action is specified in the IntentFilter, it’ll match any Intent; other-
wise, it’ll match only if the Intent has the same action.

Figure 4.1 Menu buttons on
the RestaurantFinder sample
application that invoke external
applications

108 CHAPTER 4 Intents and Services

D
ow

nl
oa

d
fr

om
 w

w
w

.U
pe

Bo
ok

.C
om
 An IntentFilter with no categories will match only an Intent with no categories;
otherwise, an IntentFilter must have at least what the Intent specifies. For exam-
ple, if an IntentFilter supports both the HOME and the ALTERNATIVE categories,
it’ll match an Intent for either HOME or CATEGORY. But if the IntentFilter doesn’t
provide any categories, it won’t match HOME or CATEGORY.

 You can work with actions and categories without specifying any data. We used this
technique in the ReviewList Activity we built in chapter 3. In that example, we
defined the IntentFilter in the manifest XML, as shown in the following listing.

<activity android:name="ReviewList" android:label="@string/app_name">
 <intent-filter>
 <category android:name="android.intent.category.DEFAULT" />
 <action android:name="com.msi.manning.restaurant.VIEW_LIST" />
 </intent-filter>
</activity>

To match the filter declared in this listing, we used the following Intent in code,
where Constants.INTENT_ACTION_VIEW_LIST is the String "com.msi.manning

.restaurant.VIEW_LIST":

Intent intent = new Intent(Constants.INTENT_ACTION_VIEW_LIST);
startActivity(intent);

DATA

After Android has determined that the
action and category match, it inspects
the Intent data. The data can be either
an explicit MIME type or a combination
of scheme, authority, and path. The Uri
shown in figure 4.2 is an example of
using scheme, authority, and path.

 The following example shows what
using an explicit MIME type within a
URI looks like:

audio/mpeg

IntentFilter classes describe what combination of type, scheme, authority, and path
they accept. Android follows a detailed process to determine whether an Intent
matches:

 If a scheme is present and type is not present, Intents with any type will match.
 If a type is present and scheme is not present, Intents with any scheme will

match.

Listing 4.2 Manifest declaration of ReviewList Activity with <intent-filter>

weather:// com.msi.manning/loc?zip=12345

scheme authority path

Figure 4.2 The portions of a URI that are used in
Android, showing scheme, authority, and path

109Serving up RestaurantFinder with Intent
 If neither a scheme nor a type is present, only Intents with neither scheme nor
type will match.

 If an authority is specified, a scheme must also be specified.
 If a path is specified, a scheme and an authority must also be specified.

Most matches are straightforward, but as you can see, it can get complicated. Think of
Intent and IntentFilter as separate pieces of the same puzzle. When you call an
Intent in an Android application, the system resolves the Activity, Service, or
BroadcastReceiver to handle your request through this process using the actions,
categories, and data provided. The system searches all the pieces of the puzzle it has
until it finds one that meshes with the Intent you’ve provided, and then it snaps those
pieces together to make the late-binding connection.

 Figure 4.3 shows an example of how a match occurs. This example defines an
IntentFilter with an action and a combination of a scheme and an authority. It
doesn’t specify a path, so any path will match. The figure also shows an example of an
Intent with a URI that matches this filter.

 If multiple IntentFilter classes match the provided Intent, the platform chooses
which one will handle the Intent. For a user-visible action such as an Activity,
Android usually presents the user with a pop-up menu that lets them select which
Intent should handle it. For nonvisible actions such as a broadcast, Android consid-
ers the declared priority of each IntentFilter and gives them an ordered chance to
handle the Intent.

4.1.5 Taking advantage of Android-provided activities

In addition to the examples in the RestaurantFinder application, Android ships with a
useful set of core applications that allow access via the formats shown in table 4.2.
Using these actions and URIs, you can hook into the built-in maps application, phone
application, or browser application. By experimenting with these, you can get a feel
for how Intent resolution works in Android.

IntentFilter

<Intent-filter>

 <action android:name=”android.intent.action.VIEW” />

 <data android:scheme=”weather” android:host=”com.msi.manning” />

</Intent-filter>

Intent

Intent = newIntent(Intent.ACTION_VIEW

 Uri.parse(”weather://com.msi.manning /loc?zip=12345”);

Figure 4.3 Example Intent and IntentFilter matching using a filter defined in XML

110 CHAPTER 4 Intents and Services
With a handle on the basics of Intent resolution and a quick look at built-in Intents
out of the way, we can move on to a new sample application: WeatherReporter.

4.2 Checking the weather with a custom URI
WeatherReporter, the next sample application we’ll
build, uses the Yahoo! Weather API to retrieve weather
data and then displays the data to the user. This applica-
tion can also optionally alert users about severe weather
for certain locations, based either on the current loca-
tion of the device or on a specified postal code.

 Within this project, you’ll see how you can define a
custom URI and register it with a matching Intent filter
to allow any other application to invoke a weather report
through an Intent. Defining and publishing an Intent
in this way allows other applications to easily use your
application. When the WeatherReporter application is
complete, the main screen will look like figure 4.4.

4.2.1 Offering a custom URI

Let’s look more deeply into how to define Intent filters
in XML. The manifest for WeatherReporter is shown in
the following listing.

Table 4.2 Common Android application Intent, action, and URI combinations

Action URI Description

Intent.ACTION_CALL tel:phone_number Opens the phone application and
calls the specified number

Intent.ACTION_DIAL tel:phone_number Opens the phone application and
dials (but doesn’t call) the speci-
fied number

Intent.ACTION_DIAL voicemail: Opens the phone application and
dials (but doesn’t call) the voice-
mail number

Intent.ACTION_VIEW geo:latitude,longitude Opens the maps application
to the specified latitude and
longitude

Intent.ACTION_VIEW geo:0,0?q=street+address Opens the maps application to
the specified address

Intent.ACTION_VIEW http://web_address Opens the browser application to
the specified URL

Intent.ACTION_VIEW https://web_address Opens the browser application to
the specified secure URL

Figure 4.4 The WeatherReporter
application, showing the weather
forecast for the current location

111Checking the weather with a custom URI
<?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.weather">
 <application android:icon="@drawable/weather_sun_clouds_120"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Black"
 android:allowClearUserData="true">
 <activity android:name="ReportViewSavedLocations"
 android:label="@string/app_name_view_saved_locations" />
 <activity android:name="ReportSpecifyLocation"
 android:label=
 "@string/app_name_specify_location" />
 <activity android:name="ReportViewDetail"
 android:label="@string/app_name_view_detail">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="weather"
 android:host="com.msi.manning" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <data android:scheme="weather"
 android:host="com.msi.manning" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name=
 ".service.WeatherAlertServiceReceiver">
 <intent-filter>
 <action android:name=
 "android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 </receiver>
 <service
 android:name=".service.WeatherAlertService" />
 </application>
 <uses-permission
 android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <uses-permission
 android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name=
 "android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name=
 "android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
 <uses-permission android:name="android.permission.INTERNET" />
 </manifest>

Listing 4.3 Android manifest file for the WeatherReporter application

B

Define activities

Define receiverC

Define ServiceD

E
Include necessary

permissions

112 CHAPTER 4 Intents and Services
In the WeatherReporter manifest, we define three activities B. The first two don’t
include an <intent-filter>, so they can only be explicitly invoked from within this
application. The ReportViewDetail Activity has multiple <intent-filter> tags
defined for it, including one denoting it as the MAIN LAUNCHER and one with the
weather://com.msi.manning scheme and authority. Our application supports this
custom URI to provide weather access.

 You can use any combination of scheme, authority, and path, as shown in listing
4.3, or you can use an explicit MIME type. You’ll find out more about MIME types and
how they’re processed in chapter 5, where we’ll look at data sources and use an
Android concept known as a ContentProvider.

 After we define these activities, we use the <receiver> element in the manifest file
to refer to a BroadcastReceiver class C. We’ll examine BroadcastReceiver more
closely in section 4.3, but for now know that an <intent-filter> associates this
receiver with an Intent—in this case, for the BOOT_COMPLETED action. This filter tells
the platform to invoke the WeatherAlertServiceReceiver class after it completes the
bootup sequence.

 We also define a Service D. You’ll see how this Service is built, and how it polls
for severe weather alerts in the background, in section 4.3. Finally, our manifest
includes a set of required permissions E.

4.2.2 Inspecting a custom URI

With the foundation for our sample application in place via the manifest, Android will
launch WeatherReporter when it encounters a request that uses our custom URI. As
usual, it’ll invoke the onStart() method of the main Activity WeatherReporter will
use. The following listing shows our implementation, where we parse data from the
URI and use it to display a weather report.

@Override
public void onStart() {
 super.onStart();
 dbHelper = new DBHelper(this);
 deviceZip = WeatherAlertService.deviceLocationZIP;
 if ((getIntent().getData() != null)
 && (getIntent().getData().getEncodedQuery() != null)
 && (getIntent().getData().getEncodedQuery().length() > 8)) {
 String queryString =
 getIntent().getData().getEncodedQuery();
 reportZip = queryString.substring(4, 9);
 useDeviceLocation = false;
 } else {
 reportZip = deviceZip;
 useDeviceLocation = true;
 }
 savedLocation = dbHelper.get(reportZip);
 deviceAlertEnabledLocation =
 dbHelper.get(DBHelper.DEVICE_ALERT_ENABLED_ZIP);

Listing 4.4 onStart() method of the ReportViewDetail Activity

Create
database helper

B Get device
location
postal code

C

113Checking the weather with a custom URI
 if (useDeviceLocation) {
 currentCheck.setText(R.string.view_checkbox_current);
 if (deviceAlertEnabledLocation != null) {
 currentCheck.setChecked(true);
 } else {
 currentCheck.setChecked(false);
 }
 } else {
 currentCheck.setText(R.string.view_checkbox_specific);
 if (savedLocation != null) {
 if (savedLocation.alertenabled == 1) {
 currentCheck.setChecked(true);
 } else {
 currentCheck.setChecked(false);
 }
 }
 }
 loadReport(reportZip);
}

You can get the complete ReportViewDetail Activity from the source code down-
load for this chapter. In the onStart() method shown in this listing, we focus on pars-
ing data from the URI passed in as part of the Intent that invokes the Activity.

 First, we establish a database helper object B. This object will be used to query a
local SQLite database that stores user-specified location data. We’ll show more about
how data is handled, and the details of this helper class, in chapter 5.

 In this method, we also obtain the postal code of the current device location from
a LocationManager in the WeatherAlertService class C. We want to use the location
of the device as the default weather report location. As the user travels with the
phone, this location will automatically update. We’ll cover location and Location-
Manager in chapter 11.

 After obtaining the device location, we move on to the key aspect of obtaining URI
data from an Intent. We check whether our Intent provided specific data; if so, we
parse the URI passed in to obtain the queryString and embedded postal code to use
for the user’s specified location. If this location is present, we use it; if not, we default
to the device location postal code.

 After determining the postal code to use, we set the status of the check box that
indicates whether to enable alerts D. We have two kinds of alerts: one for the device
location and another for the user’s specified saved locations.

 Finally, we call the loadReport() method, which makes the call to the Yahoo!
Weather API to obtain data; then we use a Handler to send a Message to update the
needed UI View elements.

 Remember that this Activity registered in the manifest to receive weather://
com.msi.manning Intents. Any application can invoke this Activity without knowing
any details other than the URI. This separation of responsibilities enables late binding.
After invocation, we check the URI to see what our caller wanted.

 You’ve now seen the manifest and pertinent details of the main Activity class for
the WeatherReporter application we’ll build in the next few sections. We’ve also

DSet status of alert-
enabled check box

114 CHAPTER 4 Intents and Services
discussed how Intent and IntentFilter classes work together to wire up calls
between components. Next, we’ll look at some of the built-in Android applications
that accept external Intent requests. These requests enable you to launch activities by
simply passing in the correct URI.

4.3 Checking the weather with broadcast receivers
So far, you’ve seen how to use an Intent to communicate within your app and to issue
a request that another component will handle. You can also send an Intent to any
interested receiver. When you do, you aren’t requesting the execution of a specific
task, but instead you’re letting everyone know about something interesting that has
happened. Android sends these broadcasts for several reasons, such as when an
incoming phone call or text message is received. In this section, we’ll look at how
events are broadcast and how they’re captured using a BroadcastReceiver.

 We’ll continue to work through the WeatherReporter sample application we began
in section 4.2. The WeatherReporter application will display alerts to the user when
severe weather is forecast for the user’s indicated location. We’ll need a background
process that checks the weather and sends any needed alerts. This is where the
Android Service concept will come into play. We need to start the Service when the
device boots, so we’ll listen for the boot through an Intent broadcast.

4.3.1 Broadcasting Intent

As you’ve seen, Intent objects let you move from Activity to Activity in an
Android application, or from one application to another. Intents can also broadcast
events to any configured receiver using one of several methods available from the
Context class, as shown in table 4.3.

Table 4.3 Methods for broadcasting Intents

Method Description

sendBroadcast(Intent intent) Simple form for broadcasting an Intent.

sendBroadcast(Intent intent, String
receiverPermission)

Broadcasts an Intent with a permission String that
receivers must declare in order to receive the broadcast.

sendOrderedBroadcast(Intent intent,
String receiverPermission)

Broadcasts an Intent call to the receivers one by one seri-
ally, stopping after a receiver consumes the message.

sendOrderedBroadcast(Intent intent,
String receiverPermission,
BroadcastReceiver resultReceiver,
Handler scheduler, int initialCode,
String initialData, Bundle
initialExtras)

Broadcasts an Intent and gets a response back through
the provided BroadcastReceiver. All receivers can
append data that will be returned in the
BroadcastReceiver. When you use this method, the
receivers are called serially.

sendStickyBroadcast(Intent intent) Broadcasts an Intent that remains a short time after
broadcast so that receivers can retrieve data. Applications
using this method must declare the BROADCAST_STICKY
permission.

115Checking the weather with broadcast receivers
When you broadcast Intents, you send an event into the background. A broadcast
Intent doesn’t invoke an Activity, so your current screen usually remains in the
foreground.

 You can also optionally specify a permission when you broadcast an Intent. Only
receivers that have declared that permission will receive the broadcast; all others will
remain unaware of it. You can use this mechanism to ensure that only certain trusted
applications can listen in on what your app does. You can review permission declara-
tions in chapter 1.

 Broadcasting an Intent is fairly straightforward; you use the Context object to
send it, and interested receivers catch it. Android provides a set of platform-related
Intent broadcasts that use this approach. In certain situations, such as when the time
zone on the platform changes, when the device completes booting, or when a package
is added or removed, the system broadcasts an event using an Intent. Table 4.4 shows
some of the specific Intent broadcasts the platform provides.

 To register to receive an Intent broadcast, you implement a BroadcastReceiver.
You’ll make your own implementation to catch the platform-provided BOOT_COMPLETED
Intent to start the weather alert service.

4.3.2 Creating a receiver

Because the weather alert Service you’re going to create should always run in the
background, you need a way to start it when the platform boots. To do this, you’ll cre-
ate a BroadcastReceiver that listens for the BOOT_COMPLETED Intent broadcast.

 The BroadcastReceiver base class provides a series of methods that let you get
and set a result code, result data (in the form of a String), and an extra Bundle. It
also defines a lifecycle-related method to run when the appropriate Intent is
received.

 You can associate a BroadcastReceiver with an IntentFilter in code or in the
manifest XML file. We declared this for the WeatherReporter manifest in listing 4.3,
where we associated the BOOT_COMPLETED broadcast with the WeatherAlertService-
Receiver class. This class is shown in the following listing.

Table 4.4 Broadcast actions provided by the Android platform

Action Description

ACTION_BATTERY_CHANGED Sent when the battery charge level or charging state changes

ACTION_BOOT_COMPLETED Sent when the platform completes booting

ACTION_PACKAGE_ADDED Sent when a package is added to the platform

ACTION_PACKAGE_REMOVED Sent when a package is removed from the platform

ACTION_TIME_CHANGED Sent when the user changes the time on the device

ACTION_TIME_TICK Sent every minute to indicate that time is ticking

ACTION_TIMEZONE_CHANGED Sent when the user changes the time

116 CHAPTER 4 Intents and Services
public class WeatherAlertServiceReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals(Intent.ACTION_BOOT_COMPLETED)) {
 context.startService(new Intent(context,
 WeatherAlertService.class));
 }
 }
}

When you create your own Intent broadcast receiver, you extend the Broadcast-
Receiver class and implement the abstract onReceive(Context c, Intent i) method.
In our implementation, we start the WeatherAlertService. This Service class, which
we’ll create next, is started using the Context.startService(Intent i, Bundle b)
method.

 Keep in mind that receiver class instances have a short and focused lifecycle. After
completing the onReceive(Context c, Intent i) method, the instance and process
that invoked the receiver are no longer needed and might be killed by the system. For
this reason, you can’t perform any asynchronous operations in a BroadcastReceiver,
such as starting a thread or showing a dialog. Instead, you can start a Service, as we’ve
done in listing 4.5, and use it to do work.

 Our receiver has started the WeatherAlertService, which will run in the back-
ground and warn users of severe weather in the forecast with a Notification-based
alert. Let’s look more deeply into the concept of an Android Service.

4.4 Building a background weather service
In a basic Android application, you create Activity
classes and move from screen to screen using Intent
calls, as we’ve done in previous chapters. This approach
works for the canonical Android screen-to-screen fore-
ground application, but it doesn’t work for cases like
ours where we want to always listen for changes in the
weather, even if the user doesn’t currently have our app
open. For this, we need a Service.

 In this section, we’ll implement the Weather-
AlertService we launched in listing 4.4. This Service
sends an alert to the user when it learns of severe
weather in a specified location. This alert will display
over any application, in the form of a Notification, if
severe weather is detected. Figure 4.5 shows the notifi-
cation we’ll send.

 A background task is typically a process that doesn’t
involve direct user interaction or any type of UI. This

Listing 4.5 WeatherAlertServiceReceiver BroadcastReceiver class

Figure 4.5 Warning from a
background application about
severe weather

117Building a background weather service
process perfectly describes checking for severe weather. After a Service is started, it
runs until it’s explicitly stopped or the system kills it. The WeatherAlertService back-
ground task, which starts when the device boots via the BroadcastReceiver from list-
ing 4.5, is shown in the following listing.

public class WeatherAlertService extends Service {
 private static final String LOC = "LOC";
 private static final String ZIP = "ZIP";
 private static final long ALERT_QUIET_PERIOD = 10000;
 private static final long ALERT_POLL_INTERVAL = 15000;
 public static String deviceLocationZIP = "94102";
 private Timer timer;
 private DBHelper dbHelper;
 private NotificationManager nm;
 private TimerTask task = new TimerTask() {
 public void run() {
 List<Location> locations =
 dbHelper.getAllAlertEnabled();
 for (Location loc : locations) {
 WeatherRecord record = loadRecord(loc.zip);
 if (record.isSevere()) {
 if ((loc.lastalert +
 WeatherAlertService.ALERT_QUIET_PERIOD)
 < System.currentTimeMillis()) {
 loc.lastalert = System.currentTimeMillis();
 dbHelper.update(loc);
 sendNotification(loc.zip, record);
 }
 }
 }
 . . . device location alert omitted for brevity
 }
 };
 private Handler handler = new Handler() {
 public void handleMessage(Message msg) {
 notifyFromHandler((String) msg.getData()
 .get(WeatherAlertService.LOC), (String) msg.getData()
 .get(WeatherAlertService.ZIP));
 }
 };
 @Override
 public void onCreate() {
 dbHelper = new DBHelper(this);
 timer = new Timer();
 timer.schedule(task, 5000,
 WeatherAlertService.ALERT_POLL_INTERVAL);
 nm = (NotificationManager)
 getSystemService(Context.NOTIFICATION_SERVICE);
 }
 . . . onStart with LocationManager and LocationListener \
 omitted for brevity
 @Override

Listing 4.6 WeatherAlertService class, used to register locations and send alerts

Get locations with
alerts enabled

B

Fire alert
if severeC

Notify UI
from handlerD

Initialize timerE

118 CHAPTER 4 Intents and Services
 public void onDestroy() {
 super.onDestroy();
 dbHelper.cleanup();
 }
 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }
 protected WeatherRecord loadRecord(String zip) {
 final YWeatherFetcher ywh =
 new YWeatherFetcher(zip, true);
 return ywh.getWeather();
 }
 private void sendNotification(String zip,
 WeatherRecord record) {
 Message message = Message.obtain();
 Bundle bundle = new Bundle();
 bundle.putString(WeatherAlertService.ZIP, zip);
 bundle.putString(WeatherAlertService.LOC, record.getCity()
 + ", " + record.getRegion());
 message.setData(bundle);
 handler.sendMessage(message);
 }
 private void
 notifyFromHandler(String location, String zip) {
 Uri uri = Uri.parse("weather://com.msi.manning/loc?zip=" + zip);
 Intent intent = new Intent(Intent.ACTION_VIEW, uri);
 PendingIntent pendingIntent =
 PendingIntent.getActivity(this, Intent.FLAG_ACTIVITY_NEW_TASK,
 intent,PendingIntent.FLAG_ONE_SHOT);
 final Notification n =
 new Notification(R.drawable.severe_weather_24,
 "Severe Weather Alert!",
 System.currentTimeMillis());
 n.setLatestEventInfo(this, "Severe Weather Alert!",
 location, pendingIntent);
 nm.notify(Integer.parseInt(zip), n);
 }
}

WeatherAlertService extends Service. We create a Service in a way that’s similar to
how we’ve created activities and broadcast receivers: extend the base class, implement
the abstract methods, and override the lifecycle methods as needed.

 After the initial class declaration, we define several member variables. First come
constants that describe our intervals for polling for severe weather and a quiet period.
We’ve set a low threshold for polling during development—severe weather alerts will
spam the emulator often because of this setting. In production, we’d limit this to
check every few hours.

 Next, our TimerTask variable will let us periodically poll the weather. Each time
the task runs, it gets all the user’s saved locations through a database call B. We’ll
examine the specifics of using an Android database in chapter 5.

Clean up
database connection

F

Display
actionable
notification

G

119Building a background weather service
 When we have the saved locations, we parse each one and load the weather report.
If the report shows severe weather in the forecast, we update the time of the last alert
field and call a helper method to initiate sending a Notification C. After we process
the user’s saved locations, we get the device’s alert location from the database using a
postal code designation. If the user has requested alerts for their current location, we
repeat the process of polling and sending an alert for the device’s current location as
well. You can see more details on Android location-related facilities in chapter 11.

 After defining our TimerTask, we create a Handler member variable. This variable
will receive a Message object that’s fired from a non-UI thread. In this case, after
receiving the Message, our Handler calls a helper method that instantiates and dis-
plays a Notification D.

 Next, we override the Service lifecycle methods, starting with onCreate(). Here
comes the meat of our Service: a Timer E that we configure to repeatedly fire. For
as long as the Service continues to run, the timer will allow us to update weather
information. After onCreate(), you see onDestroy(), where we clean up our database
connection F. Service classes provide these lifecycle methods so you can control
how resources are allocated and deallocated, similar to Activity classes.

 After the lifecycle-related methods, we implement the required onBind() method.
This method returns an IBinder, which other components that call into Service
methods will use for communication. WeatherAlertService performs only a back-
ground task; it doesn’t support binding, and so it returns a null for onBind. We’ll add
binding and interprocess communication (IPC) in section 4.5.

 Next, we implement our helper methods. First, loadRecord() calls out to the
Yahoo! Weather API via YWeatherFetcher. (We’ll cover networking tasks, similar to
those this class performs, in chapter 6.) Then sendNotification configures a
Message with location details to activate the Handler we declared earlier. Last of all,
you see the notifyFromHandler() method. This method fires off a Notification with
Intent objects that will call back into the WeatherReporter Activity if the user clicks
the Notification G.

A warning about long-running Services
Our sample application starts a Service and leaves it running in the background.
This Service is designed to have a minimal footprint, but Android best practices dis-
courage long-running Services. Services that run continually and constantly use
the network or perform CPU-intensive tasks will eat up the device’s battery life and
might slow down other operations. Even worse, because they run in the background,
users won’t know what applications are to blame for their device’s poor performance.

The OS will eventually kill running Services if it needs to acquire additional memory,
but otherwise it won’t interfere with poorly designed Services. If your use case no
longer requires the Service, you should stop it. If you do require a long-running
Service, you might want to give users the option of whether to use it.

120 CHAPTER 4 Intents and Services
 Now that we’ve discussed the purpose of Services and you’ve created a Service
class and started one via a BroadcastReceiver, we can start looking at how other
developers can interact with your Service.

4.5 Communicating with the WeatherAlertService
from other apps
In Android, each application runs within its own process. Other applications can’t
directly call methods on your weather alert service, because the applications are in dif-
ferent sandboxes. You’ve already seen how applications can invoke one another by
using an Intent. Suppose, though, that you wanted to learn something specific from a
particular application, like check the weather in a particular region. This type of gran-
ular information isn’t readily available through simple Intent communication, but
fortunately Android provides a new solution: IPC through a bound service.

 We’ll illustrate bound services by expanding the weather alert with a remotable
interface using AIDL, and then we’ll connect to that interface through a proxy that
we’ll expose using a new Service. Along the way, we’ll explore the IBinder and
Binder classes Android uses to pass messages and types during IPC.

4.5.1 Android Interface Definition Language

If you want to allow other developers to use your weather features, you need to give
them information about the methods you provide, but you might not want to share
your application’s source code. Android lets you specify your IPC features by using an
interface definition language (IDL) to create AIDL files. These files generate a Java
interface and an inner Stub class that you can use to create a remotely accessible
object, and that your consumers can use to invoke your methods.

AIDL files allow you to define your package, imports, and methods with return
types and parameters. Our weather AIDL, which we place in the same package as the
.java files, is shown in the following listing.

package com.msi.manning.weather;
interface IWeatherReporter
{
 String getWeatherFor(in String zip);
 void addLocation(in String zip, in String city, in String region);
}

You define the package and interface in AIDL as you would in a regular Java file. Simi-
larly, if you require any imports, you’d list them above the interface declaration. When
you define methods, you must specify a directional tag for all nonprimitive types. The
possible directions are in, out, and inout. The platform uses this directional tag to
generate the necessary code for marshaling and unmarshaling instances of your inter-
face across IPC boundaries.

Listing 4.7 IWeatherReporter.aidl remote IDL file

121Communicating with the WeatherAlertService from other apps
 Our interface IWeatherReporter includes methods to look up the current weather
from the Service, or to add a new location to the Service. Other developers could use
these features to provide other front-end applications that use our back-end service.

 Only certain types of data are allowed in AIDL, as shown in table 4.5. Types that
require an import must always list that import, even if they’re in the same package as
your .aidl file.

After you’ve defined your interface methods with return types and parameters, you
then invoke the aidl tool included in your Android SDK installation to generate a Java
interface that represents your AIDL specification. If you use the Eclipse plug-in, it’ll
automatically invoke the aidl tool for you, placing the generated files in the appropri-
ate package in your project’s gen folder.

 The interface generated through AIDL includes an inner static abstract class
named Stub, which extends Binder and implements the outer class interface. This
Stub class represents the local side of your remotable interface. Stub also includes an
asInterface(IBinder binder) method that returns a remote version of your
interface type. Callers can use this method to get a handle to the remote object and
use it to invoke remote methods. The AIDL process generates a Proxy class (another
inner class, this time inside Stub) that connects all these components and returns to
callers from the asInterface() method. Figure 4.6 depicts this IPC local/remote
relationship.

 After all the required files are generated, create a concrete class that extends from
Stub and implements your interface. Then, expose this interface to callers through a
Service. We’ll be doing that soon, but first, let’s take a quick look under the hood
and see how these generated files work.

Table 4.5 Android IDL allowed types

Type Description Import required

Java primitives boolean, byte, short, int, float, double,
long, char.

No

String java.lang.String. No

CharSequence java.lang.CharSequence. No

List Can be generic; all types used in collection must be
allowed by IDL. Ultimately provided as an
ArrayList.

No

Map Can be generic, all types used in collection must be
one allowed by IDL. Ultimately provided as a
HashMap.

No

Other AIDL interfaces Any other AIDL-generated interface type. Yes

Parcelable objects Objects that implement the Android Parcelable inter-
face, described in section 4.5.2.

Yes

122 CHAPTER 4 Intents and Services
4.5.2 Binder and Parcelable

The IBinder interface is the base of the remoting protocol in Android. As we discussed
in the previous section, you don’t implement this interface directly; rather, you typi-
cally use AIDL to generate an interface which contains a Stub Binder implementation.

 The IBinder.transact() method and corresponding Binder.onTransact()
method form the backbone of the remoting process. Each method you define using
AIDL is handled synchronously through the transaction process, enabling the same
semantics as if the method were local.

 All the objects you pass in and out through the interface methods that you define
using AIDL use this transact process. These objects must be Parcelable in order for

AIDL file

IWeatherAlertService.aidl

AIDL
tool

Generated Java interface
IWeatherAlertService.java

Generated inner static abstract Stub
IWeatherAlertService.Stub

Generated inner static Proxy
IWeatherAlertService.Stub.Proxy

IWeatherAlertService asInterface(IBinder b)
IBinder asBinder()
boolean onTransact(int code, Parcel data,
Parcel reply, int flags)

IWeatherAlertService.Stub
IWeatherAlertService asInterface(IBinder b)
IBinder asBinder()
boolean onTransact(int code, Parcel data,
Parcel reply, int flags)

IWeatherAlertService.Stub.Proxy

addAlertLocation(String zip)
IWeatherAlertService

LOCAL object
Stub

Stub.asInterface() returns
REMOTE object (Proxy)

onTransact()

REMOTE object
Proxy

Caller uses "asInterface" to
get reference to a remote
object - Proxy is returned

transact()

Figure 4.6 Diagram of the Android AIDL process

123Communicating with the WeatherAlertService from other apps
you to place them inside a Parcel and move them across the local/remote process
barrier in the Binder transaction methods.

 The only time you need to worry about something being Parcelable is when you
want to send a custom object through Android IPC. If you use only the default allow-
able types in your interface definition files—primitives, String, CharSequence, List,
and Map—AIDL automatically handles everything.

 The Android documentation describes what methods you need to implement to
create a Parcelable class. Remember to create an .aidl file for each Parcelable
interface. These .aidl files are different from those you use to define Binder classes
themselves; these shouldn’t be generated from the aidl tool.

CAUTION When you’re considering creating your own Parcelable types,
make sure you actually need them. Passing complex objects across the
IPC boundary in an embedded environment is expensive and tedious;
you should avoid doing it, if possible.

4.5.3 Exposing a remote interface

Now that you’ve defined the features you want to expose from the weather app, you
need to implement that functionality and make it available to external callers.
Android calls this publishing the interface.

 To publish a remote interface, you create a class that extends Service and returns
an IBinder through the onBind(Intent intent) method. Clients will use that
IBinder to access a particular remote object. As we discussed in section 4.5.2, you can
use the AIDL-generated Stub class, which itself extends Binder, to extend from and
return an implementation of a remotable interface. This process is shown in the fol-
lowing listing, where we implement and publish the IWeatherReporter service we cre-
ated in the previous section.

public class WeatherReporterService extends WeatherAlertService {
 private final class WeatherReporter
 extends IWeatherReporter.Stub {
 public String getWeatherFor(String zip) throws RemoteException {
 WeatherRecord record = loadRecord(zip);
 return record.getCondition().getDisplay();
 }
 public void addLocation(String zip, String city, String region)
 throws RemoteException {
 DBHelper db = new DBHelper(WeatherReporterService.this);
 Location location = new Location();
 location.alertenabled = 0;
 location.lastalert = 0;
 location.zip = zip;
 location.city = city;
 location.region = region;
 db.insert(location);
 }

Listing 4.8 Implementing a weather service that publishes a remotable object

B

Implement
remote

interface

124 CHAPTER 4 Intents and Services
 };
 public IBinder onBind(Intent intent) {
 return new WeatherReporter();
 }
}

Our concrete instance of the generated AIDL Java interface must return an IBinder to
any caller that binds to this Service. We create an implementation by extending the
Stub class that the aidl tool generated B. Recall that this Stub class implements the
AIDL interface and extends Binder. After we’ve defined our IBinder, we can create
and return it from the onBind() method C.

 Within the stub itself, we write whatever code is necessary to provide the features
advertised by our interface. You can access any other classes within your application. In
this example, our Service has extended WeatherAlertService so we can more easily
access the weather functions we’ve already written, such as the loadRecord() method.

 You’ll need to define this new WeatherReporterService in your application’s man-
ifest, in the same way you define any other Service. If you want to bind to the Service
only from within your own application, no other steps are necessary. But if you want to
allow binding from another application, you must provide some extra information
within AndroidManifest.xml, as shown in the following listing.

<service android:name=".service.WeatherReporterService"
 android:exported="true">
 <intent-filter>
 <action android:name=
 "com.msi.manning.weather.IWeatherReporter"/>
 </intent-filter>
</service>

To allow external applications to find our Service, we instruct Android to export this
Service declaration. Exporting the declaration allows other applications to launch
the Service, a prerequisite for binding with it. The actual launch will happen through
an <intent-filter> that we define. In this example, the caller must know the full
name of the action, but any <intent-filter> we discussed earlier in the chapter can
be substituted, such as filtering by scheme or by type.

 Now that you’ve seen how a caller can get a reference to a remotable object, we’ll
finish that connection by binding to a Service from an Activity.

4.5.4 Binding to a Service

Let’s switch hats and pretend that, instead of writing a weather service, we’re another
company that wants to integrate weather functions into our own app. Our app will let
the user enter a ZIP code and either look up the current weather for that location or
save it to the WeatherReporter application’s list of saved locations. We’ve received the
.aidl file and learned the name of the Service. We generate our own interface from

Listing 4.9 Exporting a Service for other applications to access

Return IBinder
representing
remotable object

C

125Communicating with the WeatherAlertService from other apps
that .aidl file, but before we can call the remote methods, we’ll need to first bind with
the Service.

 When an Activity class binds to a Service using the Context.bindService
(Intent i, ServiceConnection connection, int flags) method, the Service-
Connection object that you pass in will send several callbacks from the Service back
to the Activity. The callback onServiceConnected(ComponentName className,

IBinder binder) lets you know when the binding process completes. The platform
automatically injects the IBinder returned from the Service’s onBind() method into
this callback, where you can save it for future calls. The following listing shows an
Activity that binds to our weather-reporting service and invokes remote methods on
it. You can see the complete source code for this project in the chapter downloads.

package com.msi.manning.weatherchecker;
. . . Imports omitted for brevity
public class WeatherChecker extends Activity {
 private IWeatherReporter reporter;
 private boolean bound;
 private EditText zipEntry;
 private Handler uiHandler;
 private ServiceConnection connection =
 new ServiceConnection() {
 public void onServiceConnected
 (ComponentName name, IBinder service) {
 reporter = IWeatherReporter.Stub.
 asInterface(service);
 Toast.makeText(WeatherChecker.this, "Connected to Service",
 Toast.LENGTH_SHORT).show();
 bound = true;
 }
 public void onServiceDisconnected
 (ComponentName name) {
 reporter = null;
 Toast.makeText(WeatherChecker.this, "Disconnected from Service",
 Toast.LENGTH_SHORT).show();
 bound = false;
 }
 };
. . . onCreate method omitted for brevity
 public void checkWeather(View caller) {
 final String zipCode = zipEntry.getText().toString();
 if (zipCode != null && zipCode.length() == 5) {
 new Thread() {
 public void run() {
 try {
 final String currentWeather =
 reporter.getWeatherFor(zipCode);
 uiHandler.post(new Runnable() {
 public void run() {
 Toast.makeText(WeatherChecker.this, currentWeather,
 Toast.LENGTH_LONG).show();

Listing 4.10 Binding to a Service within an Activity

Use generated
interface

B

Define
ServiceConnection behavior

C

Retrieve remotely
callable interface D

Don’t block
UI thread

Invoke remote methodE

Show feedback on UI thread

126 CHAPTER 4 Intents and Services
 }
 });
 } catch (DeadObjectException e) {
 e.printStackTrace();
 } catch (RemoteException e) {
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }.start();
 }
 }
 public void saveLocation(View caller) {
 final String zipCode = zipEntry.getText().toString();
 if (zipCode != null && zipCode.length() == 5) {
 new Thread() {
 public void run() {
 try {
 reporter.addLocation(zipCode, "", "");
 uiHandler.post(new Runnable() {
 public void run() {
 Toast.makeText(
 WeatherChecker.this, R.string.saved,
 Toast.LENGTH_LONG).show();
 }
 });
 } catch (DeadObjectException e) {
 e.printStackTrace();
 } catch (RemoteException e) {
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }.start();
 }
 }
 public void onStart() {
 super.onStart();
 if (!bound) {
 bindService(new Intent
 (IWeatherReporter.class.getName()),
 connection,
 Context.BIND_AUTO_CREATE);
 }
 }
 public void onPause() {
 super.onPause();
 if (bound){
 bound = false;
 unbindService(connection);
 }
 }
}

Don’t block
UI thread

Show feedback
on UI thread

Start binding
to Service

F

127Communicating with the WeatherAlertService from other apps
In order to use the remotable IWeatherReporter we defined in AIDL, we declare a
variable with this type B. We also define a boolean to keep track of the current state
of the binding. Keeping track of the current state will prevent us from rebinding to
the Service if our application is suspended and resumed.

 We use the ServiceConnection object C to bind and unbind using Context meth-
ods. After a Service is bound, the platform notifies us through the onService-
Connected callback. This callback returns the remote IBinder reference, which we
assign to the remotable type D so we can invoke it later. Next, a similar onService-
Disconnected callback will fire when a Service is unbound.

 After we’ve established a connection, we can use the AIDL-generated interface to
perform the operations it defines E. When we call getWeatherFor (or later, add-
Location), Android will dispatch our invocation across the process boundary, where
the Service we created in listing 4.8 will execute the methods. The return values will
be sent back across the process boundary and arrive as shown at E. This sequence can
take a long time, so you should avoid calling remote methods from the UI thread.

 In onStart(), we establish the binding using bindService() F; later, in
onPause(), we use unbindService(). The system can choose to clean up a Service
that’s been bound but not started. You should always unbind an unused Service so
the device can reclaim its resources and perform better. Let’s look more closely at the
difference between starting and binding a Service.

4.5.5 Starting vs. binding

Services serve two purposes in Android, and you can use them in two different ways:

 Starting—Context.startService(Intent service, Bundle b)

 Binding—Context.bindService(Intent service, ServiceConnection c,

int flag)

Starting a Service tells the platform to launch it in the background and keep it run-
ning, without any particular connection to any other Activity or application. You
used the WeatherAlertService in this manner to run in the background and issue
severe weather alerts.

 Binding to a Service, as you did with WeatherReporterService, gave you a handle
to a remote object, which let you call the Service’s exported methods from an
Activity. Because every Android application runs in its own process, using a bound
Service lets you pass data between processes.

 The actual process of marshaling and unmarshaling remotable objects across pro-
cess boundaries is complicated. Fortunately, you don’t have to deal with all the inter-
nals, because Android handles the complexity through AIDL. Instead, you can stick to
a simple recipe that will enable you to create and use remotable objects:

1 Define your interface using AIDL, in the form of a .aidl file; see listing 4.7.
2 Generate a Java interface for the .aidl file. This happens automatically in

Eclipse.

128 CHAPTER 4 Intents and Services
3 Extend from the generated Stub class and implement your interface methods;
see listing 4.8.

4 Expose your interface to clients through a Service and the Service

onBind(Intent i) method; see listing 4.8.
5 If you want to make your Service available to other applications, export it in

your manifest; see listing 4.9.
6 Client applications will bind to your Service with a ServiceConnection to get a

handle to the remotable object; see listing 4.10.

As we discussed earlier in the chapter, Services running in the background can have
a detrimental impact on overall device performance. To mitigate these problems,
Android enforces a special lifecycle for Services, which we’re going to discuss now.

4.5.6 Service lifecycle

You want the weather-alerting Service to constantly lurk in the background, letting
you know of potential dangers. On the other hand, you want the weather-reporting
Service to run only while another application actually needs it. Services follow their
own well-defined process phases, similar to those followed by an Activity or an
Application. A Service will follow a different lifecycle, depending on whether you
start it, bind it, or both.

SERVICE-STARTED LIFECYCLE

If you start a Service by calling Context.startService(Intent service, Bundle b),
as shown in listing 4.5, it runs in the background whether or not anything binds to it.
If the Service hasn’t been created, the Service onCreate() method is called. The
onStart(int id, Bundle args) method is called each time someone tries to start the
Service, regardless of whether it’s already running. Additional instances of the
Service won’t be created.

 The Service will continue to run in the background until someone explicitly stops
it with the Context.stopService() method or when the Service calls its own
stopSelf() method. You should also keep in mind that the platform might kill
Services if resources are running low, so your application needs to be able to react
accordingly. You can choose to restart the Service automatically, fall back to a more
limited feature set without it, or take some other appropriate action.

SERVICE-BOUND LIFECYCLE

If an Activity binds a Service by calling Context.bindService(Intent service,
ServiceConnection connection, int flags), as shown in listing 4.10, it’ll run as long
as the connection is open. An Activity establishes the connection using the Context
and is also responsible for closing it.

 When a Service is only bound in this manner and not also started, its onCreate()
method is invoked, but onStart(int id, Bundle args) is not used. In these cases, the
platform can stop and clean up the Service after it’s unbound.

129Summary
SERVICE-STARTED AND SERVICE-BOUND LIFECYCLE

If a Service is both started and bound, it’ll keep running in the background, much
like in the started lifecycle. In this case, both onStart(int id, Bundle args) and
onCreate() are called.

CLEANING UP WHEN A SERVICE STOPS

When a Service stops, its onDestroy() method is invoked. Inside onDestroy(), every
Service should perform final cleanup, stopping any spawned threads, terminating
network connections, stopping Services it had started, and so on.

 And that’s it! From birth to death, from invocation to dismissal, you’ve learned
how to wrangle Android Services. They might seem complex, but they offer
extremely powerful capabilities that can go far beyond what a single foregrounded
application can offer.

4.6 Summary
In this chapter, we covered a broad swath of Android territory. We first focused on the
Intent component, seeing how it works, how it resolves using IntentFilter objects,
and how to take advantage of built-in platform-provided Intent handlers. We also
looked at the differences between explicit Intent invocation and implicit Intent
invocation, and the reasons you might choose one type over another. Along the way,
you completed the RestaurantFinder sample application, and with just a bit more
code, you drastically expanded the usefulness of that app by tapping into preloaded
Android applications.

 After we covered the Intent class, we moved on to a new sample application,
WeatherReporter. You saw how a BroadcastReceiver could respond to notifications
sent by the platform or other applications. You used the receiver to listen for a boot
event and start the Service. The Service sends notification alerts from the back-
ground when it learns of severe weather events. You also saw another flavor of
Service, one that provides communication between different processes. Our other
weather service offered an API that third-party developers could use to take advantage
of the low-level network and storage capabilities of the weather application. We cov-
ered the difference between starting and binding Services, and you saw the moving
parts behind the Android IPC system, which uses the AIDL to standardize communica-
tion between applications.

 By seeing all these components interact in several complete examples, you now
understand the fundamentals behind Android Intents and Services. In the next
chapter, you’ll see how to make Services and other applications more useful by using
persistent storage. We’ll look at the various options Android provides for retrieving
and storing data, including preferences, the file system, databases, and how to create a
custom ContentProvider.

Storing and
retrieving data
Android provides several ways to store and share data, including access to the file-
system, a local relational database through SQLite, and a preferences system that
allows you to store simple key/value pairs within applications. In this chapter, we’ll
start with preferences and you’ll create a small sample application to exercise those
concepts. From there, you’ll create another sample application to examine using
the filesystem to store data, both internal to the application and external using the
platform’s Secure Digital (SD) card support. You’ll also see how to create and
access a database.

 Beyond the basics, Android also allows applications to share data through a
clever URI-based approach called a ContentProvider. This technique combines
several other Android concepts, such as the URI-based style of intents and the

This chapter covers
 Storing and retrieving data with SharedPreferences

 Using the filesystem

 Working with a SQLite database

 Accessing and building a ContentProvider
130

131Using preferences
Cursor result set seen in SQLite, to make data accessible across different applications.
To demonstrate how this works, you’ll create another small sample application that
uses built-in providers, then we’ll walk through the steps required to create your own
ContentProvider.

 We’ll begin with preferences, the simplest form of data storage and retrieval
Android provides.

5.1 Using preferences
If you want to share simple application data from one Activity to another, use a
SharedPreferences object. You can save and retrieve data, and also choose whether
to make preferences private to your application or accessible to other applications on
the same device.

5.1.1 Working with SharedPreferences

You access a SharedPreferences object through your current Context, such as the
Activity or Service. Context defines the method getSharedPreferences(String
name, int accessMode) that allows you to get a preferences handle. The name you
specify will be the name for the file that backs these preferences. If no such file exists
when you try to get preferences, one is automatically created. The access mode refers
to what permissions you want to allow.

 The following listing demonstrates allowing the user to input and store data
through SharedPreferences objects with different access modes.

package com.msi.manning.chapter5.prefs;
// imports omitted for brevity
public class SharedPrefTestInput extends Activity {
 public static final String PREFS_PRIVATE = "PREFS_PRIVATE";
 public static final String PREFS_WORLD_READ = "PREFS_WORLD_READABLE";
 public static final String PREFS_WORLD_WRITE = "PREFS_WORLD_WRITABLE";
 public static final String PREFS_WORLD_READ_WRITE =
 "PREFS_WORLD_READABLE_WRITABLE";
 public static final String KEY_PRIVATE = "KEY_PRIVATE";
 public static final String KEY_WORLD_READ = "KEY_WORLD_READ";
 public static final String KEY_WORLD_WRITE = "KEY_WORLD_WRITE";
 public static final String KEY_WORLD_READ_WRITE =
 "KEY_WORLD_READ_WRITE";
 . . . view element variable declarations omitted for brevity
 private SharedPreferences prefsPrivate;
 private SharedPreferences prefsWorldRead;
 private SharedPreferences prefsWorldWrite;
 private SharedPreferences prefsWorldReadWrite;
 @Override
 public void onCreate(Bundle icicle) {
 ... view inflation omitted for brevity
 button.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 boolean valid = validate();

Listing 5.1 Storing SharedPreferences using different modes

Declare
SharedPreferences
variables

B

132 CHAPTER 5 Storing and retrieving data
 if (valid) {
 prefsPrivate =
 getSharedPreferences(
 SharedPrefTestInput.PREFS_PRIVATE,
 Context.MODE_PRIVATE);
 prefsWorldRead =
 getSharedPreferences(
 SharedPrefTestInput.PREFS_WORLD_READ,
 Context.MODE_WORLD_READABLE);
 prefsWorldWrite =
 getSharedPreferences(
 SharedPrefTestInput.PREFS_WORLD_WRITE,
 Context.MODE_WORLD_WRITEABLE);
 prefsWorldReadWrite =
 getSharedPreferences(
 SharedPrefTestInput.PREFS_WORLD_READ_WRITE,
 Context.MODE_WORLD_READABLE
 + Context.MODE_WORLD_WRITEABLE);
 Editor prefsPrivateEditor =
 prefsPrivate.edit();
 Editor prefsWorldReadEditor =
 prefsWorldRead.edit();
 Editor prefsWorldWriteEditor =
 prefsWorldWrite.edit();
 Editor prefsWorldReadWriteEditor =
 prefsWorldReadWrite.edit()
 prefsPrivateEditor.putString(
 SharedPrefTestInput.KEY_PRIVATE,
 inputPrivate.getText.toString());
 prefsWorldReadEditor.putString(
 SharedPrefTestInput.KEY_WORLD_READ,
 inputWorldRead.getText().toString());
 prefsWorldWriteEditor.putString(
 SharedPrefTestInput.KEY_WORLD_WRITE,
 inputWorldWrite.getText().toString());
 prefsWorldReadWriteEditor.putString(
 SharedPrefTestInput.KEY_WORLD_READ_WRITE,
 inputWorldReadWrite.getText().toString());
 prefsPrivateEditor.commit();
 prefsWorldReadEditor.commit();
 prefsWorldWriteEditor.commit();
 prefsWorldReadWriteEditor.commit();
 Intent intent =
 new Intent(SharedPrefTestInput.this,
 SharedPrefTestOutput.class);
 startActivity(intent);
 }
 }
 });
 }
 . . . validate omitted for brevity
}

After you have a SharedPreferences variable B, you can acquire a reference
through the Context C. Note that for each SharedPreferences object we get, we use

Use
Context.getShared
Preferences for
references

C

Use
different modesD

Get
SharedPreferences
editor

E

Store values
with editor

F

Persist
changesG

133Using preferences
a different constant value for the access mode, and in some cases we also add modes
D. We repeat this coding for each mode we retrieve. Modes specify whether the pref-
erences should be private, world-readable, or world-writable.

 To modify preferences, you must get an Editor handle E. With the Editor, you
can set String, boolean, float, int, and long types as key/value pairs F. This limited
set of types can be restrictive, but often preferences are adequate, and they’re simple
to use.

 After storing with an Editor, which creates an in-memory Map, you have to call
commit() to persist it to the preferences backing file G. After data is committed, you
can easily get it from a SharedPreferences object. The following listing gets and dis-
plays the data that was stored in listing 5.1.

package com.msi.manning.chapter5.prefs;
// imports omitted for brevity
public class SharedPrefTestOutput extends Activity {
 . . . view element variable declarations omitted for brevity
 private SharedPreferences prefsPrivate;
 private SharedPreferences prefsWorldRead;
 private SharedPreferences prefsWorldWrite;
 private SharedPreferences prefsWorldReadWrite;
 . . . onCreate omitted for brevity
 @Override
 public void onStart() {
 super.onStart();
 prefsPrivate =
 getSharedPreferences(SharedPrefTestInput.PREFS_PRIVATE,
 Context.MODE_PRIVATE);
 prefsWorldRead =
 getSharedPreferences(SharedPrefTestInput.PREFS_WORLD_READ,
 Context.MODE_WORLD_READABLE);
 prefsWorldWrite =
 getSharedPreferences(SharedPrefTestInput.PREFS_WORLD_WRITE,
 Context.MODE_WORLD_WRITEABLE);
 prefsWorldReadWrite =
 getSharedPreferences(
 SharedPrefTestInput.PREFS_WORLD_READ_WRITE,
 Context.MODE_WORLD_READABLE
 + Context.MODE_WORLD_WRITEABLE);
 outputPrivate.setText(prefsPrivate.getString(
 SharedPrefTestInput.KEY_PRIVATE, "NA"));
 outputWorldRead.setText(prefsWorldRead.getString(
 SharedPrefTestInput.KEY_WORLD_READ, "NA"));
 outputWorldWrite.setText(prefsWorldWrite.getString(
 SharedPrefTestInput.KEY_WORLD_WRITE, "NA"));
 outputWorldReadWrite.setText(prefsWorldReadWrite.getString(
 SharedPrefTestInput.KEY_WORLD_READ_WRITE,
 "NA"));
 }
}

Listing 5.2 Getting SharedPreferences data stored in the same application

BGet values

134 CHAPTER 5 Storing and retrieving data
To retrieve previously stored values, we again declare variables and assign references.
When these are in place, we can get values using methods such as getString(String
key, String default) B. The default value is returned if no data was previously
stored with that key.

 Setting and getting preferences is straightforward. Access modes, which we’ll focus
on next, add a little more complexity.

5.1.2 Preference access permissions

You can open and create SharedPreferences with any combination of several Context
mode constants. Because these values are int types, you can add them, as in listings 5.1
and 5.2, to combine permissions. The following mode constants are supported:

 Context.MODE_PRIVATE (value 0)
 Context.MODE_WORLD_READABLE (value 1)
 Context.MODE_WORLD_WRITEABLE (value 2)

These modes allow you to tune who can access this preference. If you take a look at
the filesystem on the emulator after you’ve created SharedPreferences objects
(which themselves create XML files to persist the data), you can see how setting per-
missions works using a Linux-based filesystem.

 Figure 5.1 shows the Android Eclipse plug-in File Explorer view. Within the
explorer, you can see the Linux-level permissions for the SharedPreferences XML
files that we created from the SharedPreferences in listing 5.1.

 Each Linux file or directory has a type and three sets of permissions, represented
by a drwxrwxrwx notation. The first character indicates the type (d means directory,
- means regular file type, and other types such as symbolic links have unique types as
well). After the type, the three sets of rwx represent the combination of read, write,
and execute permissions for user, group, and world, in that order. Looking at this nota-
tion, you can tell which files are accessible by the user they’re owned by, by the group
they belong to, or by everyone else on the device. Note that the user and group always
have full permission to read and write, whereas the final set of permissions fluctuates
based on the preference’s mode.

 Android puts SharedPreferences XML files in the /data/data/PACKAGE_NAME/
shared_prefs path on the filesystem. An application or package usually has its own

Figure 5.1 The Android File Explorer view showing preferences file permissions

135Using preferences
user ID. When an application creates files, including SharedPreferences, they’re
owned by that application’s user ID. To allow other applications to access these files,
you have to set the world permissions, as shown in figure 5.1.

 If you want to access another application’s files, you must know the starting path.
The path comes from the Context. To get files from another application, you have to
know and use that application’s Context. Android doesn’t officially condone sharing
preferences across multiple applications; in practice, apps should use a content pro-
vider to share this kind of data. Even so, looking at SharedPreferences does show the
underlying data storage models in Android. The following listing shows how to get the
SharedPreferences we set in listing 5.1 again, this time from a different application
(different .apk and different package).

package com.other.manning.chapter5.prefs;
. . . imports omitted for brevity
public class SharedPrefTestOtherOutput extends Activity {
 . . . constants and variable declarations omitted for brevity
 . . . onCreate omitted for brevity
 @Override
 public void onStart() {
 super.onStart();
 Context otherAppsContext = null;
 try {
 otherAppsContext =
 createPackageContext("com.msi.manning.chapter5.prefs",
 Context.MODE_WORLD_WRITEABLE);
 } catch (NameNotFoundException e) {
 // log and/or handle
 }
 prefsPrivate =
 otherAppsContext.getSharedPreferences(
 SharedPrefTestOtherOutput.PREFS_PRIVATE, 0);
 prefsWorldRead =
 otherAppsContext.getSharedPreferences(
 SharedPrefTestOtherOutput.PREFS_WORLD_READ, 0);
 prefsWorldWrite =
 otherAppsContext.getSharedPreferences(
 SharedPrefTestOtherOutput.PREFS_WORLD_WRITE, 0);
 prefsWorldReadWrite =
 otherAppsContext.getSharedPreferences(
 SharedPrefTestOtherOutput.PREFS_WORLD_READ_WRITE, 0);
 outputPrivate.setText(

Listing 5.3 Getting SharedPreferences data stored in a different application

Directories with the world x permission
In Android, each package directory is created with the world x permission. This per-
mission means anyone can search and list the files in the directory, which means
that Android packages have directory-level access to one another’s files. From there,
file-level access determines file permissions.

Use
different
packageB

Get another
application’s
contextC

Use
otherAppsContextD

136 CHAPTER 5 Storing and retrieving data
 prefsPrivate.getString(
 SharedPrefTestOtherOutput.KEY_PRIVATE, "NA"));
 outputWorldRead.setText(
 prefsWorldRead.getString(
 SharedPrefTestOtherOutput.KEY_WORLD_READ, "NA"));
 outputWorldWrite.setText(
 prefsWorldWrite.getString(
 SharedPrefTestOtherOutput.KEY_WORLD_WRITE, "NA"));
 outputWorldReadWrite.setText(
 prefsWorldReadWrite.getString(
 SharedPrefTestOtherOutput.KEY_WORLD_READ_WRITE,"NA"));
 }
}

To get one application’s SharedPreferences from another application’s package B,
we use the createPackageContext(String contextName, int mode) method C. When
we have the other application’s Context, we can use the same names for the Shared-
Preferences objects that the other application created to access those preferences D.

 With these examples, we now have one application that sets and gets Shared-
Preferences, and a second application with a different .apk file that gets the prefer-
ences set by the first. The composite screen shot in figure 5.2 shows what the apps
look like. NA indicates a preference we couldn’t access from the second application,
either as the result of permissions that were set or because no permissions had been
created.

 Though SharedPreferences are ultimately backed by XML files on the Android
filesystem, you can also directly create, read, and manipulate files, as we’ll discuss in
the next section.

Figure 5.2
Two separate applications
getting and setting
SharedPreferences

137Using the filesystem
5.2 Using the filesystem
Android’s filesystem is based on Linux and supports mode-based permissions. You can
access this filesystem in several ways. You can create and read files from within applica-
tions, you can access raw resource files, and you can work with specially compiled cus-
tom XML files. In this section, we’ll explore each approach.

5.2.1 Creating files

Android’s stream-based system of manipulating files will feel familiar to anyone who’s
written I/O code in Java SE or Java ME. You can easily create files in Android and store
them in your application’s data path. The following listing demonstrates how to open
a FileOutputStream and use it to create a file.

public class CreateFile extends Activity {
 private EditText createInput;
 private Button createButton;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.create_file);
 createInput =
 (EditText) findViewById(R.id.create_input);
 createButton =
 (Button) findViewById(R.id.create_button);
 createButton.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 FileOutputStream fos = null;
 try {
 fos = openFileOutput("filename.txt",
 Context.MODE_PRIVATE);
 fos.write(createInput.getText().
 toString().getBytes());
 } catch (FileNotFoundException e) {
 Log.e("CreateFile", e.getLocalizedMessage());
 } catch (IOException e) {
 Log.e("CreateFile", e.getLocalizedMessage());
 } finally {
 if (fos != null) {
 try {
 fos.flush();
 fos.close();
 } catch (IOException e) {
 // swallow
 }
 }
 }
 startActivity(
 new Intent(CreateFile.this, ReadFile.class));
 }
 });
 }
}

Listing 5.4 Creating a file in Android from an Activity

Use
openFileOutput

B

Write data
to stream

C

Flush and
close stream

D

138 CHAPTER 5 Storing and retrieving data
Android provides a convenience method on Context to get a FileOutputStream—
namely openFileOutput(String name, int mode) B. Using this method, you can cre-
ate a stream to a file. That file will ultimately be stored at the data/data/
[PACKAGE_NAME]/files/file.name path on the platform. After you have the stream,
you can write to it as you would with typical Java C. After you’re finished with a
stream, you should flush and close it to clean up D.

 Reading from a file within an application context (within the package path of the
application) is also simple; in the next section we’ll show you how.

5.2.2 Accessing files

Similar to openFileOutput(), the Context also has a convenience openFileInput()
method. You can use this method to access a file on the filesystem and read it in, as
shown in the following listing.

public class ReadFile extends Activity {
 private TextView readOutput;
 private Button gotoReadResource;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.read_file);
 readOutput =
 (TextView) findViewById(R.id.read_output);
 FileInputStream fis = null;
 try {
 fis = openFileInput("filename.txt");
 byte[] reader = new byte[fis.available()];
 while (fis.read(reader) != -1) {}
 readOutput.setText(new String(reader));
 } catch (IOException e) {
 Log.e("ReadFile", e.getMessage(), e);
 } finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException e) {
 // swallow
 }
 }
 }
 . . . goto next Activity via startActivity omitted for brevity
 }
}

For input, you use openFileInput(String name, int mode) to get the stream B, and
then read the file into a byte array as with standard Java C. Afterward, close the
stream properly to avoid hanging on to resources.

 With openFileOutput and openFileInput, you can write to and read from any file
within the files directory of the application package you’re working in. Also, as we

Listing 5.5 Accessing an existing file in Android from an Activity

Use
openFileInput
for stream

B

Read data
from streamC

139Using the filesystem
discussed in the previous section, you can access files across different applications if
the permissions allow it and if you know the package used to obtain the full path to
the file.

 In addition to creating files from within your application, you can push and pull
files to the platform using the adb tool, described in section 2.2.3. The File Explorer
window in Eclipse provides a UI for moving files on and off the device or simulator.
You can optionally put such files in the directory for your application; when they’re
there, you can read these files just like you would any other file. Keep in mind that
outside of development-related use, you won’t usually push and pull files. Rather,
you’ll create and read files from within the application or work with files included
with an application as raw resources, as you’ll see next.

5.2.3 Files as raw resources

If you want to include raw files with your application, you can do so using the res/raw
resources location. We discussed resources in general in chapter 3. When you place a
file in the res/raw location, it’s not compiled by the platform but is available as a raw
resource, as shown in the following listing.

public class ReadRawResourceFile extends Activity {
 private TextView readOutput;
 private Button gotoReadXMLResource;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.read_rawresource_file);
 readOutput =
 (TextView) findViewById(R.id.readrawres_output);
 Resources resources = getResources();
 InputStream is = null;
 try {
 is = resources.openRawResource(R.raw.people);
 byte[] reader = new byte[is.available()];
 while (is.read(reader) != -1) {}
 readOutput.setText(new String(reader));
 } catch (IOException e) {

Listing 5.6 Accessing a noncompiled raw file from res/raw

Running a bundle of apps with the same user ID
Occasionally, setting the user ID of your application can be extremely useful. For
instance, if you have multiple applications that need to share data with one another,
but you also don’t want that data to be accessible outside that group of applications,
you might want to make the permissions private and share the UID to allow access.
You can allow a shared UID by using the sharedUserId attribute in your manifest:
android:sharedUserId="YourID".

Hold raw
resource with
InputStream

B

CUse getResources().openRawResource()

140 CHAPTER 5 Storing and retrieving data
 Log.e("ReadRawResourceFile", e.getMessage(), e);
 } finally {
 if (is != null) {
 try {
 is.close();
 } catch (IOException e) {
 // swallow
 }
 }
 }
 . . . go to next Activity via startActivity omitted for brevity
 }
}

Accessing raw resources closely resembles accessing files. You open a handle to an
InputStream B. You call Context.getResources() to get the Resources for your cur-
rent application’s context and then call openRawResource(int id) to link to the par-
ticular item you want C. Android will automatically generate the ID within the R class
if you place your asset in the res/raw directory. You can use any file as a raw resource,
including text, images, documents, or videos. The platform doesn’t precompile raw
resources.

 The last type of file resource we need to discuss is the res/xml type, which the plat-
form compiles into an efficient binary type accessed in a special manner.

5.2.4 XML file resources

The term XML resources sometimes confuses new
Android developers. XML resources might mean
resources in general that are defined in XML—such
as layout files, styles, arrays, and the like—or it can
specifically mean res/xml XML files.

 In this section, we’ll deal with res/xml XML files.
These files are different from raw files in that you
don’t use a stream to access them because they’re
compiled into an efficient binary form when
deployed. They’re different from other resources in
that they can be of any custom XML structure.

 To demonstrate this concept, we’re going to use
an XML file named people.xml that defines multiple
<person> elements and uses attributes for firstname
and lastname. We’ll grab this resource and display its
elements in last-name, first-name order, as shown in
figure 5.3.

 Our data file for this process, which we’ll place in
res/xml, is shown in the following listing.

Figure 5.3 The example
ReadXMLResourceFile
Activity that we’ll create in
listing 5.8, which reads a res/xml
resource file

141Using the filesystem
<people>
 <person firstname="John" lastname="Ford" />
 <person firstname="Alfred" lastname="Hitchcock" />
 <person firstname="Stanley" lastname="Kubrick" />
 <person firstname="Wes" lastname="Anderson" />
</people>

If you’re using Eclipse, it’ll automatically detect a file in the res/xml path and compile
it into a resource asset. You can then access this asset in code by parsing its binary
XML, as shown in the following listing.

public class ReadXMLResourceFile extends Activity {
 private TextView readOutput;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.read_xmlresource_file);
 readOutput = (TextView)
 findViewById(R.id.readxmlres_output);
 XmlPullParser parser =
 getResources().getXml(R.xml.people);
 StringBuffer sb = new StringBuffer();
 try {
 while (parser.next() != XmlPullParser.END_DOCUMENT) {
 String name = parser.getName();
 String first = null;
 String last = null;
 if ((name != null) && name.equals("person")) {
 int size = parser.getAttributeCount();
 for (int i = 0; i < size; i++) {
 String attrName =
 parser.getAttributeName(i);
 String attrValue =
 parser.getAttributeValue(i);
 if ((attrName != null)
 && attrName.equals("firstname")) {
 first = attrValue;
 } else if ((attrName != null)
 && attrName.equals("lastname")) {
 last = attrValue;
 }
 }
 if ((first != null) && (last != null)) {
 sb.append(last + ", " + first + "\n");
 }
 }
 }
 readOutput.setText(sb.toString());
 } catch (Exception e) {
 Log.e(“ReadXMLResourceFile”, e.getMessage(), e);
 }

Listing 5.7 A custom XML file included in res/xml

Listing 5.8 Accessing a compiled XML resource from res/xml

Parse XML with
XMLPullParser

B

CWalk XML tree

DGet attributeCount
for element

Get attribute
name and valueE

142 CHAPTER 5 Storing and retrieving data

 . . . goto next Activity via startActivity omitted for brevity
 }
}

To process a binary XML resource, you use an XmlPullParser B. This class supports
SAX-style tree traversal. The parser provides an event type for each element it encoun-
ters, such as DOCDECL, COMMENT, START_DOCUMENT, START_TAG, END_TAG, END_DOCUMENT,
and so on. By using the next() method, you can retrieve the current event type value
and compare it to event constants in the class C. Each element encountered has a
name, a text value, and an optional set of attributes. You can examine the document
contents by getting the attributeCount D for each item and grabbing each name
and value E. SAX is covered in more detail in chapter 13.

 In addition to local file storage on the device filesystem, you have another option
that’s more appropriate for certain types of content: writing to an external SD card
filesystem.

5.2.5 External storage via an SD card

One of the advantages the Android platform provides over some other smartphones is
that it offers access to an available SD flash memory card. Not every Android device
will necessarily have an SD card, but almost all do, and the platform provides an easy
way for you to use it.

All applications can read data stored on the SD card. If you want to write data here,
you’ll need to include the following permission in your AndroidManifest.xml:

<uses-permission android:name=
 "android.permission.WRITE_EXTERNAL_STORAGE" />

Failing to declare this permission will cause write attempts to the SD card to fail.
 Generally, you should use the SD card if you use large files such as images and

video, or if you don’t need to have permanent secure access to certain files. On the
other hand, for permanent application-specialized data, you should use the internal
filesystem.

 The SD card is removable, and SD card support on most devices (including Android-
powered devices) supports the File Allocation Table (FAT) filesystem. The SD card
doesn’t have the access modes and permissions that come from the Linux filesystem.

SD cards and the emulator
To work with an SD card image in the Android emulator, you’ll first need to use the
mksdcard tool provided to set up your SD image file (you’ll find this executable in the
tools directory of the SDK). After you’ve created the file, you’ll need to start the emu-
lator with the -sdcard <path_to_file> option in order to have the SD image
mounted. Alternately, use the Android SDK Manager to create a new virtual device
and select the option to create a new SD card.

143Using the filesystem
 Using the SD card is fairly basic. The standard java.io.File and related objects
can create, read, and remove files on the external storage path, typically /sdcard,
assuming it’s available. You can acquire a File for this location by using the method
Environment.getExternalStorageDirectory(). The following listing shows how to
check that the SD card’s path is present, create another subdirectory inside, and then
write and subsequently read file data at that location.

public class ReadWriteSDCardFile extends Activity {
 private TextView readOutput;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.read_write_sdcard_file);
 readOutput = (TextView)
 findViewById(R.id.readwritesd_output);
 String fileName = "testfile-"
 + System.currentTimeMillis() + ".txt";
 File sdDir = Environment.getExternalStorageDirectory();
 if (sdDir.exists() && sdDir.canWrite()) {
 File uadDir = new File(sdDir.getAbsolutePath()
 + "/unlocking_android");
 uadDir.mkdir();
 if (uadDir.exists() && uadDir.canWrite()) {
 File file = new File(uadDir.getAbsolutePath()
 + "/" + fileName);
 try {
 file.createNewFile();
 } catch (IOException e) {
 // log and or handle
 }
 if (file.exists() && file.canWrite()) {
 FileOutputStream fos = null;
 try {
 fos = new FileOutputStream(file);
 fos.write("I fear you speak upon the rack,"
 + "where men enforced do speak "
 + "anything.".getBytes());
 } catch (FileNotFoundException e) {
 Log.e(ReadWriteSDCardFile.LOGTAG, "ERROR", e);
 } catch (IOException e) {
 Log.e(ReadWriteSDCardFile.LOGTAG, "ERROR", e);
 } finally {
 if (fos != null) {
 try {
 fos.flush();
 fos.close();
 } catch (IOException e) {
 // swallow
 }
 }
 }
 } else {

Listing 5.9 Using standard java.io.File techniques with an SD card

Establish
filename

B

C

Get SD card
directory
reference

Instantiate
File for pathD

Get reference
to FileE

F
Write with

FileOutputStream

144 CHAPTER 5 Storing and retrieving data
 // log and or handle - error writing to file
 }
 } else {
 // log and or handle -
 // unable to write to /sdcard/unlocking_android
 }
 } else {
 Log.e("ReadWriteSDCardFile.LOGTAG",
 "ERROR /sdcard path not available (did you create "
 + " an SD image with the mksdcard tool,"
 + " and start emulator with -sdcard "
 + <path_to_file> option?");
 }
 File rFile =
 new File("/sdcard/unlocking_android/" + fileName);
 if (rFile.exists() && rFile.canRead()) {
 FileInputStream fis = null;
 try {
 fis = new FileInputStream(rFile);
 byte[] reader = new byte[fis.available()];
 while (fis.read(reader) != -1) {
 }
 readOutput.setText(new String(reader));
 } catch (IOException e) {
 // log and or handle
 } finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException e) {
 // swallow
 }
 }
 }
 } else {
 readOutput.setText(
 "Unable to read/write sdcard file, see logcat output");
 }
 }
}

We first define a name for the file to create B. In this example, we append a time-
stamp to create a unique name each time this example application runs. After we
have the filename, we create a File object reference to the removable storage direc-
tory C. From there, we create a File reference to a new subdirectory, /sdcard/
unlocking_android D. The File object can represent both files and directories.
After we have the subdirectory reference, we call mkdir() to create it if it doesn’t
already exist.

 With our directory structure in place, we follow a similar pattern to create the
actual file. We instantiate a reference File object E and then call createFile() to
create a file on the filesystem. When we have the File and know it exists and that
we’re allowed to write to it, we use a FileOutputStream to write data into the file F.

G
Use new File

object for reading

Read with
FileInputStreamH

145Persisting data to a database
 After we create the file and have data in it, we create another File object with the
full path to read the data back G. With the File reference, we then create a File-
InputStream and read back the data that was earlier stored in the file H.

 As you can see, working with files on the SD card resembles standard java.io.File
code. A fair amount of boilerplate Java code is required to make a robust solution,
with permissions and error checking every step of the way, and logging about what’s
happening, but it’s still familiar and powerful. If you need to do a lot of File han-
dling, you’ll probably want to create some simple local utilities for wrapping the mun-
dane tasks so you don’t have to repeat them over and over again. You might want to
use or port something like the Apache commons.io package, which includes a File-
Utils class that handles these types of tasks and more.

 The SD card example completes our exploration of the various ways to store differ-
ent types of file data on the Android platform. If you have static predefined data, you
can use res/raw; if you have XML files, you can use res/xml. You can also work directly
with the filesystem by creating, modifying, and retrieving data in files, either in the
local internal filesystem or on the SD card, if one is available.

 A more complex way to deal with data—one that supports more robust and spe-
cialized ways to persist information—is to use a database, which we’ll cover in the next
section.

5.3 Persisting data to a database
Android conveniently includes a built-in relational
database.1 SQLite doesn’t have all the features of
larger client/server database products, but it includes
everything you need for local data storage. At the
same time, it’s quick and relatively easy to work with.

 In this section, we’ll cover working with the built-
in SQLite database system, from creating and query-
ing a database to upgrading and working with the
sqlite3 tool available in the adb shell. We’ll demon-
strate these features by expanding the Weather-
Reporter application from chapter 4. This
application uses a database to store the user’s saved
locations and persists user preferences for each loca-
tion. The screenshot shown in figure 5.4 displays the
saved data that the user can select from; when the
user selects a location, the app retrieves information
from the database and shows the corresponding
weather report.

 We’ll start by creating WeatherReporter’s database.

1 Check out Charlie Collins’ site for Android SQLLite basics: www.screaming-penguin.com/node/7742.

Figure 5.4
The WeatherReporter Saved
Locations screen, which pulls
data from a SQLite database

http://www.screaming-penguin.com/node/7742

146 CHAPTER 5 Storing and retrieving data
5.3.1 Building and accessing a database

To use SQLite, you have to know a bit about SQL in general. If you need to brush up
on the background of the basic commands, such as CREATE, INSERT, UPDATE, DELETE,
and SELECT, then you might want to take a look at the SQLite documentation at
www.sqlite.org/lang.html.

 For now, we’ll jump right in and build a database helper class for our application.
You need to create a helper class so that the details concerning creating and upgrad-
ing the database, opening and closing connections, and running through specific
queries are all encapsulated in one place and not otherwise exposed or repeated in
your application code. Your Activity and Service classes can use simple get and
insert methods, with specific bean objects representing your model, rather than
database-specific abstractions such as the Android Cursor object. You can think of this
class as a miniature Data Access Layer (DAL).

 The following listing shows the first part of our DBHelper class, which includes a
few useful inner classes.

public class DBHelper {
 public static final String DEVICE_ALERT_ENABLED_ZIP = "DAEZ99";
 public static final String DB_NAME = "w_alert";
 public static final String DB_TABLE = "w_alert_loc";
 public static final int DB_VERSION = 3;
 private static final String CLASSNAME = DBHelper.class.getSimpleName();
 private static final String[] COLS = new String[]
 { "_id", "zip", "city", "region", "lastalert", "alertenabled" };
 private SQLiteDatabase db;
 private final DBOpenHelper dbOpenHelper;
 public static class Location {
 public long id;
 public long lastalert;
 public int alertenabled;
 public String zip;
 public String city;
 public String region;

 . . . Location constructors and toString omitted for brevity
 }
 private static class DBOpenHelper extends
 SQLiteOpenHelper {

 private static final String DB_CREATE = "CREATE TABLE "
 + DBHelper.DB_TABLE
 + " (_id INTEGER PRIMARY KEY, zip TEXT UNIQUE NOT NULL,"
 + "city TEXT, region TEXT, lastalert INTEGER, "
 + "alertenabled INTEGER);";

 public DBOpenHelper(Context context, String dbName, int version) {
 super(context, DBHelper.DB_NAME, null, DBHelper.DB_VERSION);
 }

 @Override

Listing 5.10 Portion of the DBHelper class showing the DBOpenHelper inner class

B

Define constants
for database

propertiesDefine inner
Location beanC

Define inner
DBOpenHelper
class

D

E
Define SQL query for

database creation

http://www.sqlite.org/lang.html

147Persisting data to a database
 public void onCreate(SQLiteDatabase db) {
 try {
 db.execSQL(DBOpenHelper.DB_CREATE);
 } catch (SQLException e) {
 Log.e("ProviderWidgets", DBHelper.CLASSNAME, e);
 }
 }

 @Override
 public void onOpen(SQLiteDatabase db) {
 super.onOpen(db);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 db.execSQL("DROP TABLE IF EXISTS " + DBHelper.DB_TABLE);
 onCreate(db);
 }
 }

Within our DBHelper class, we first create constants that define important values for
the database we want to work with, such as its name, version, and table B. Then we
show several inner classes that we created to support the WeatherReporter application.

 The first inner class is a simple Location bean that represents a user’s selected
location C. This class intentionally doesn’t provide accessors and mutators, because
these add overhead and we don’t expose the class externally. The second inner class is
a SQLiteOpenHelper implementation D.

 Our DBOpenHelper inner class extends SQLiteOpenHelper, which Android pro-
vides to help with creating, upgrading, and opening databases. Within this class, we
include a String that represents the CREATE query we’ll use to build our database
table; this shows the exact columns and types our table will have E. We also imple-
ment several key SQLiteOpenHelper callback methods F, notably onCreate and
onUpgrade. We’ll explain how these callbacks are invoked in the outer part of our
DBHelper class, which is shown in the following listing.

 public DBHelper(Context context) {
 dbOpenHelper = new DBOpenHelper(context, "WR_DATA", 1);
 establishDb();
 }
 private void establishDb() {
 if (db == null) {
 db = dbOpenHelper.getWritableDatabase();
 }
 }
 public void cleanup() {
 if (db != null) {
 db.close();
 db = null;
 }

Listing 5.11 Portion of the DBHelper class showing convenience methods

Override
helper callbacksF

B

Create
DBOpenHelper

instance

Open database
connectionC

Tear down
database connectionD

148 CHAPTER 5 Storing and retrieving data
 }
 public void insert(Location location) {
 ContentValues values = new ContentValues();
 values.put("zip", location.zip);
 values.put("city", location.city);
 values.put("region", location.region);
 values.put("lastalert", location.lastalert);
 values.put("alertenabled", location.alertenabled);
 db.insert(DBHelper.DB_TABLE, null, values);
 }
 public void update(Location location) {
 ContentValues values = new ContentValues();
 values.put("zip", location.zip);
 values.put("city", location.city);
 values.put("region", location.region);
 values.put("lastalert", location.lastalert);
 values.put("alertenabled", location.alertenabled);
 db.update(DBHelper.DB_TABLE, values,
 "_id=" + location.id, null);
 }
 public void delete(long id) {
 db.delete(DBHelper.DB_TABLE, "_id=" + id, null);
 }
 public void delete(String zip) {
 db.delete(DBHelper.DB_TABLE, "zip='" + zip + "'", null);
 }
 public Location get(String zip) {
 Cursor c = null;
 Location location = null;
 try {
 c = db.query(true, DBHelper.DB_TABLE, DBHelper.COLS,
 "zip = '" + zip + "'", null, null, null, null,
 null);
 if (c.getCount() > 0) {
 c.moveToFirst();
 location = new Location();
 location.id = c.getLong(0);
 location.zip = c.getString(1);
 location.city = c.getString(2);
 location.region = c.getString(3);
 location.lastalert = c.getLong(4);
 location.alertenabled = c.getInt(5);
 }
 } catch (SQLException e) {
 Log.v("ProviderWidgets", DBHelper.CLASSNAME, e);
 } finally {
 if (c != null && !c.isClosed()) {
 c.close();
 }
 }
 return location;
 }
 public List<Location> getAll() {
 ArrayList<Location> ret = new ArrayList<Location>();
 Cursor c = null;
 try {

EProvide
convenience

insert, update,
delete, get

Provide
additional
get methods

F

149Persisting data to a database
 c = db.query(DBHelper.DB_TABLE, DBHelper.COLS, null,
 null, null, null, null);
 int numRows = c.getCount();
 c.moveToFirst();
 for (int i = 0; i < numRows; ++i) {
 Location location = new Location();
 location.id = c.getLong(0);
 location.zip = c.getString(1);
 location.city = c.getString(2);
 location.region = c.getString(3);
 location.lastalert = c.getLong(4);
 location.alertenabled = c.getInt(5);
 if (!location.zip.equals
 (DBHelper.DEVICE_ALERT_ENABLED_ZIP)){
 ret.add(location);
 }
 c.moveToNext();
 }
 } catch (SQLException e) {
 Log.v("ProviderWidgets", DBHelper.CLASSNAME, e);
 } finally {
 if (c != null && !c.isClosed()) {
 c.close();
 }
 }
 return ret;
 }
 . . . getAllAlertEnabled omitted for brevity
}

Our DBHelper class contains a member-level variable reference to a SQLiteDatabase
object, as you saw in listing 5.10. We use this object as a workhorse to open database
connections, to execute SQL statements, and more.

 In the constructor, we instantiate the DBOpenHelper inner class from the first part
of the DBHelper class listing B. Inside the establishDb method, we use dbOpen-
Helper to call openDatabase with the current Context, database name, and database
version C. db is established as an instance of SQLiteDatabase through DBOpenHelper.

 Although you can also just open a database connection directly on your own, using
the open helper in this way invokes the provided callbacks and makes the process eas-
ier. With this technique, when you try to open your database connection, it’s automat-
ically created, upgraded, or just returned, through your DBOpenHelper. Though using
a DBOpenHelper requires a few extra steps up front, it’s extremely handy when you
need to modify your table structure. You can simply increment the database’s version
number and take appropriate action in the onUpgrade callback.

 Callers can invoke the cleanup method D when they pause, in order to close con-
nections and free up resources.

 After the cleanup method, we include the raw SQL convenience methods that
encapsulate our helper’s operations. In this class, we have methods to insert, update,
delete, and get data E. We also have a few additional specialized get and getAll

150 CHAPTER 5 Storing and retrieving data
methods F. Within these methods, you can see how to use the db object to run que-
ries. The SQLiteDatabase class itself has many convenience methods, such as insert,
update, and delete, and it provides direct query access that returns a Cursor over a
result set.

 You can usually get a lot of mileage and utility from basic uses of the SQLiteData-
base class. The final aspect for us to explore is the sqlite3 tool, which you can use to
manipulate data outside your application.

5.3.2 Using the sqlite3 tool

When you create a database for an application in Android, it creates files for that data-
base on the device in the /data/data/[PACKAGE_NAME]/database/db.name location.
These files are SQLite proprietary, but you can manipulate, dump, restore, and work
with your databases through these files in the adb shell by using the sqlite3 tool.

DATA PERMISSIONS Most devices lock down the data directory and will not
allow you to browse their content using standalone tools. Use sqlite3 in the
emulator or on a phone with firmware that allows you to access the /data/
data directory.

You can access this tool by issuing the following commands on the command line.
Remember to use your own package name; here we use the package name for the
WeatherReporter sample application:

cd [ANDROID_HOME]/tools
adb shell
sqlite3 /data/data/com.msi.manning.chapter4/databases/w_alert.db

When you’re in the shell and see the # prompt, you can then issue sqlite3 commands.
Type .help to get started; if you need more help, see the tool’s documentation at
www.sqlite.org/sqlite.html. Using the tool, you can issue basic commands, such as
SELECT or INSERT, or you can go further and CREATE or ALTER tables. Use this tool to
explore, troubleshoot, and .dump and .load data. As with many command-line SQL
tools, it takes some time to get used to the format, but it’s the best way to back up or
load your data. Keep in mind that this tool is available only through the development
shell; it’s not something you can use to load a real application with data.

 Now that we’ve shown you how to use the SQLite support provided in Android, you
can do everything from creating and accessing tables to investigating databases with

Databases are application private
Unlike the SharedPreferences you saw earlier, you can’t make a database
WORLD_READABLE. Each database is accessible only by the package in which it was
created. If you need to pass data across processes, you can use AIDL/Binder (as in
chapter 4) or create a ContentProvider (as we’ll discuss in section 5.4), but you
can’t use a database directly across the process/package boundary.

www.sqlite.org/sqlite.html

151Working with ContentProvider classes
the provided tools in the shell. Next we’ll examine the last aspect of handling data on
the platform: building and using a ContentProvider.

5.4 Working with ContentProvider classes
A content provider in Android shares data between applications. Each application usu-
ally runs in its own process. By default, applications can’t access the data and files of
other applications. We explained earlier that you can make preferences and files avail-
able across application boundaries with the correct permissions and if each
application knows the context and path. This solution applies only to related applica-
tions that already know details about one another. In contrast, with a content provider
you can publish and expose a particular data type for other applications to query, add,
update, and delete, and those applications don’t need to have any prior knowledge of
paths, resources, or who provides the content.

 The canonical content provider in Android is the contacts list, which provides
names, addresses, and phone numbers. You can access this data from any application
by using the correct URI and a series of methods provided by the Activity and
ContentResolver classes to retrieve and store data. You’ll learn more about Content-
Resolver as we explore provider details. One other data-related concept that a
content provider offers is the Cursor, the same object we used previously to process
SQLite database result sets.

 In this section, you’ll build another application that implements its own content
provider and includes a similar explorer-type Activity to manipulate that data.

NOTE For a review of content providers, please see chapter 1. You can also
find a complete example of working with the Contacts content provider in
chapter 15.

To begin, we’ll explore the syntax of URIs and the combinations and paths used to
perform different types of operations with the ContentProvider and Content-
Resolver classes.

5.4.1 Using an existing ContentProvider

Each ContentProvider class exposes a unique CONTENT_URI that identifies the con-
tent type it’ll handle. This URI can query data in two forms, singular or plural, as
shown in table 5.1.

Table 5.1 ContentProvider URI variations for different purposes

URI Purpose

content://food/ingredients/ Returns a List of all ingredients from the provider registered to handle
content://food

content://food/meals/ Returns a List of all meals from the provider registered to handle
content://food

content://food/meals/1 Returns or manipulates a single meal with ID 1 from the provider regis-
tered to handle content://food

152 CHAPTER 5 Storing and retrieving data
A provider can offer as many types of data as it likes. By using these formats, your
application can either iterate through all the content offered by a provider or retrieve
a specific datum of interest.

 The Activity class has a managedQuery() method that makes calls into registered
ContentProvider classes. When you create your own content provider in section 5.4.2,
we’ll show you how a provider is registered with the platform. Each provider is
required to advertise the CONTENT_URI it supports. To query the contacts provider, you
have to know this URI and then get a Cursor by calling managedQuery(). When you
have the Cursor, you can use it, as we showed you in listing 5.11.

 A ContentProvider typically supplies all the details of the URI and the types it sup-
ports as constants in a class. In the android.provider package, you can find classes
that correspond to built-in Android content providers, such as the MediaStore. These
classes have nested inner classes that represent types of data, such as Audio and
Images. Within those classes are additional inner classes, with constants that represent
fields or columns of data for each type. The values you need to query and manipulate
data come from the inner classes for each type.

 For additional information, see the android.provider package in the Javadocs,
which lists all the built-in providers. Now that we’ve covered a bit about using a pro-
vider, we’ll look at the other side of the coin—creating a content provider.

5.4.2 Creating a ContentProvider

In this section, you’ll build a provider that handles data responsibilities for a generic
Widget object you’ll define. This simple object includes a name, type, and category; in
a real application, you could represent any type of data.

Managed Cursor
To obtain a Cursor reference, you can also use the managedQuery method of the
Activity class. The Activity automatically cleans up any managed Cursor
objects when your Activity pauses and restarts them when it starts. If you just need
to retrieve data within an Activity, you’ll want to use a managed Cursor, as
opposed to a ContentResolver.

What if the content changes after the fact?
When you use a ContentProvider to make a query, you get only the current state
of the data. The data could change after your call, so how do you stay up to date? To
receive notifications when a Cursor changes, you can use the ContentObserver
API. ContentObserver supports a set of callbacks that trigger when data changes.
The Cursor class provides register() and unregister() methods for Content-
Observer objects.

153Working with ContentProvider classes
 To start, define a provider constants class that declares the CONTENT_URI and
MIME_TYPE your provider will support. In addition, you can place the column names
your provider will handle here.

DEFINING A CONTENT_URI AND MIME_TYPE

In the following listing, as a prerequisite to extending the ContentProvider class for a
custom provider, we define necessary constants for our Widget type.

public final class Widget implements BaseColumns {
 public static final String MIME_DIR_PREFIX =
 "vnd.android.cursor.dir";
 public static final String MIME_ITEM_PREFIX =
 "vnd.android.cursor.item";
 public static final String MIME_ITEM = "vnd.msi.widget";
 public static final String MIME_TYPE_SINGLE =
 MIME_ITEM_PREFIX + "/" + MIME_ITEM;
 public static final String MIME_TYPE_MULTIPLE =
 MIME_DIR_PREFIX + "/" + MIME_ITEM;
 public static final String AUTHORITY =
 "com.msi.manning.chapter5.Widget";
 public static final String PATH_SINGLE = "widgets/#";
 public static final String PATH_MULTIPLE = "widgets";
 public static final Uri CONTENT_URI =
 Uri.parse("content://" + AUTHORITY + "/" + PATH_MULTIPLE);
 public static final String DEFAULT_SORT_ORDER = "updated DESC";
 public static final String NAME = "name";
 public static final String TYPE = "type";
 public static final String CATEGORY = "category";
 public static final String CREATED = "created";
 public static final String UPDATED = "updated";
}

In our Widget-related provider constants class, we first extend the BaseColumns class.
Now our class has a few base constants, such as _ID. Next, we define the MIME_TYPE
prefix for a set of multiple items and a single item. By convention, vnd.android.
cursor.dir represents multiple items, and vnd.android.cursor.item represents a
single item. We can then define a specific MIME item and combine it with the single
and multiple paths to create two MIME_TYPE representations.

 After we have the MIME details out of the way, we define the authority B and path
for both single and multiple items that will be used in the CONTENT_URI that callers
pass in to use our provider. Callers will ultimately start from the multiple-item URI, so
we publish this one C.

 After taking care of all the other details, we define column names that represent
the variables in our Widget object, which correspond to fields in the database table
we’ll use. Callers will use these constants to get and set specific fields. Now we’re on to
the next part of the process, extending ContentProvider.

Listing 5.12 WidgetProvider constants, including columns and URI

Define
authority

B

Define ultimate
CONTENT_URI C

154 CHAPTER 5 Storing and retrieving data
EXTENDING CONTENTPROVIDER

The following listing shows the beginning of our ContentProvider implementation
class, WidgetProvider. In this part of the class, we do some housekeeping relating to
the database we’ll use and the URI we’re supporting.

public class WidgetProvider extends ContentProvider {
 private static final String CLASSNAME =
 WidgetProvider.class.getSimpleName();
 private static final int WIDGETS = 1;
 private static final int WIDGET = 2;
 public static final String DB_NAME = "widgets_db";
 public static final String DB_TABLE = "widget";
 public static final int DB_VERSION = 1;
 private static UriMatcher URI_MATCHER = null;
 private static HashMap<String, String> PROJECTION_MAP;
 private SQLiteDatabase db;
 static {
 WidgetProvider.URI_MATCHER = new UriMatcher(UriMatcher.NO_MATCH);
 WidgetProvider.URI_MATCHER.addURI(Widget.AUTHORITY,
 Widget.PATH_MULTIPLE, WidgetProvider.WIDGETS);
 WidgetProvider.URI_MATCHER.addURI(Widget.AUTHORITY,
 Widget.PATH_SINGLE, WidgetProvider.WIDGET);
 WidgetProvider.PROJECTION_MAP = new HashMap<String, String>();
 WidgetProvider.PROJECTION_MAP.put(BaseColumns._ID, "_id");
 WidgetProvider.PROJECTION_MAP.put(Widget.NAME, "name");
 WidgetProvider.PROJECTION_MAP.put(Widget.TYPE, "type");
 WidgetProvider.PROJECTION_MAP.put(Widget.CATEGORY, "category");
 WidgetProvider.PROJECTION_MAP.put(Widget.CREATED, "created");
 WidgetProvider.PROJECTION_MAP.put(Widget.UPDATED, "updated");
 }
 private static class DBOpenHelper extends SQLiteOpenHelper {
 private static final String DB_CREATE = "CREATE TABLE "
 + WidgetProvider.DB_TABLE
 + " (_id INTEGER PRIMARY KEY, name TEXT UNIQUE NOT NULL,"
 + "type TEXT, category TEXT, updated INTEGER, created"
 + "INTEGER);";
 public DBOpenHelper(Context context) {
 super(context, WidgetProvider.DB_NAME, null,
 WidgetProvider.DB_VERSION);
 }
 @Override
 public void onCreate(SQLiteDatabase db) {
 try {
 db.execSQL(DBOpenHelper.DB_CREATE);
 } catch (SQLException e) {
 // log and or handle
 }
 }
 @Override
 public void onOpen(SQLiteDatabase db) {
 }

Listing 5.13 The first portion of the WidgetProvider ContentProvider

Define
database
constants

B

Use
SQLiteDatabase
reference

C

D
Create and

open database

155Working with ContentProvider classes
 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 db.execSQL("DROP TABLE IF EXISTS "
 + WidgetProvider.DB_TABLE);
 onCreate(db);
 }
 }
 @Override
 public boolean onCreate() {
 DBOpenHelper dbHelper = new DBOpenHelper(getContext());
 db = dbHelper.getWritableDatabase();
 if (db == null) {
 return false;
 } else {
 return true;
 }
 }
 @Override
 public String getType(Uri uri) {
 switch (WidgetProvider.URI_MATCHER.match(uri)) {
 case WIDGETS:
 return Widget.MIME_TYPE_MULTIPLE;
 case WIDGET:
 return Widget.MIME_TYPE_SINGLE;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 }

Our provider extends ContentProvider, which defines the methods we’ll need to
implement. We use several database-related constants to define the database name
and table we’ll use B. After that, we include a UriMatcher, which we’ll use to match
types, and a projection Map for field names.

 We include a reference to a SQLiteDatabase object; we’ll use this to store and
retrieve the data that our provider handles C. We create, open, or upgrade the data-
base using a SQLiteOpenHelper in an inner class D. We’ve used this helper pattern
before, when we worked directly with the database in listing 5.10. In the onCreate()
method, the open helper sets up the database E.

 After our setup-related steps, we come to the first method ContentProvider
requires us to implement, getType() F. The provider uses this method to resolve
each passed-in URI to determine whether it’s supported. If it is, the method checks
which type of data the current call is requesting. The data might be a single item or
the entire set.

 Next, we need to cover the remaining required methods to satisfy the Content-
Provider contract. These methods, shown in the following listing, correspond to the
CRUD-related activities: query, insert, update, and delete.

Override
onCreate

E

Implement
getType method

F

156 CHAPTER 5 Storing and retrieving data
 @Override
 public Cursor query(Uri uri, String[] projection,
 String selection, String[] selectionArgs,
 String sortOrder) {
 SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder();
 String orderBy = null;
 switch (WidgetProvider.URI_MATCHER.match(uri)) {
 case WIDGETS:
 queryBuilder.setTables(WidgetProvider.DB_TABLE);
 queryBuilder.setProjectionMap(WidgetProvider.PROJECTION_MAP);
 break;
 case WIDGET:
 queryBuilder.setTables(WidgetProvider.DB_TABLE);
 queryBuilder.appendWhere("_id="
 + uri.getPathSegments().get(1));
 break;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 if (TextUtils.isEmpty(sortOrder)) {
 orderBy = Widget.DEFAULT_SORT_ORDER;
 } else {
 orderBy = sortOrder;
 }
 Cursor c = queryBuilder.query(db, projection,
 selection, selectionArgs, null, null,
 orderBy);
 c.setNotificationUri(
 getContext().getContentResolver(), uri);
 return c;
 }
 @Override
 public Uri insert(Uri uri, ContentValues initialValues) {
 long rowId = 0L;
 ContentValues values = null;
 if (initialValues != null) {
 values = new ContentValues(initialValues);
 } else {
 values = new ContentValues();
 }
 if (WidgetProvider.URI_MATCHER.match(uri) !=
 WidgetProvider.WIDGETS) {
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 Long now = System.currentTimeMillis();
 . . . omit defaulting of values for brevity
 rowId = db.insert(WidgetProvider.DB_TABLE, "widget_hack",
 values);
 if (rowId > 0) {
 Uri result = ContentUris.withAppendedId(Widget.CONTENT_URI,
 rowId);
 getContext().getContentResolver().
 notifyChange(result, null);

Listing 5.14 The second portion of the WidgetProvider ContentProvider

BUse query builder

Set up query
based on URIC

Perform query
to get Cursor

D

Set notification
URI on CursorE

Use ContentValues
in insert methodF

Call
database
insert

G

Get URI to returnH
Notify listeners
data was insertedI

157Working with ContentProvider classes
 return result;
 }
 throw new SQLException("Failed to insert row into " + uri);
 }
 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {
 int count = 0;
 switch (WidgetProvider.URI_MATCHER.match(uri)) {
 case WIDGETS:
 count = db.update(WidgetProvider.DB_TABLE, values,
 selection, selectionArgs);
 break;
 case WIDGET:
 String segment = uri.getPathSegments().get(1);
 String where = "";
 if (!TextUtils.isEmpty(selection)) {
 where = " AND (" + selection + ")";
 }
 count = db.update(WidgetProvider.DB_TABLE, values,
 "_id=" + segment + where, selectionArgs);
 break;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 getContext().getContentResolver().notifyChange(uri, null);
 return count;
 }
 @Override
 public int delete(
 Uri uri, String selection, String[] selectionArgs) {
 int count;
 switch (WidgetProvider.URI_MATCHER.match(uri)) {
 case WIDGETS:
 count = db.delete(WidgetProvider.DB_TABLE, selection,
 selectionArgs);
 break;
 case WIDGET:
 String segment = uri.getPathSegments().get(1);
 String where = "";
 if (!TextUtils.isEmpty(selection)) {
 where = " AND (" + selection + ")";
 }
 count = db.delete(WidgetProvider.DB_TABLE,
 "_id=" + segment + where, selectionArgs);
 break;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 getContext().getContentResolver().notifyChange(uri, null);
 return count;
 }
}

The last part of our WidgetProvider class shows how to implement the Content-
Provider methods. First, we use a SQLQueryBuilder inside the query() method to

Provide
update
methodJ

Provide
delete
method

1)

158 CHAPTER 5 Storing and retrieving data
append the projection map passed in B and any SQL clauses, along with the correct
URI based on our matcher C, before we make the actual query and get a handle on a
Cursor to return D.

 At the end of the query() method, we use the setNotificationUri() method to
watch the returned URI for changes E. This event-based mechanism keeps track of
when Cursor data items change, regardless of who changes them.

 Next, you see the insert() method, where we validate the passed-in Content-
Values object and populate it with default values, if the values aren’t present F. After
we have the values, we call the database insert() method G and get the resulting
URI to return with the appended ID of the new record H. After the insert is complete,
we use another notification system, this time for ContentResolver. Because we’ve
made a data change, we inform the ContentResolver what happened so that any reg-
istered listeners can be updated I.

 After completing the insert() method, we come to the update() J and
delete() 1) methods. These methods repeat many of the previous concepts. First,
they match the URI passed in to a single element or the set, and then they call the
respective update() and delete() methods on the database object. Again, at the end
of these methods, we notify listeners that the data has changed.

 Implementing the needed provider methods completes our class. After we register
this provider with the platform, any application can use it to query, insert, update, or
delete data. Registration occurs in the application manifest, which we’ll look at next.

PROVIDER MANIFESTS

Content providers must be defined in an application manifest file and installed on the
platform so the platform can learn that they’re available and what data types they
offer. The following listing shows the manifest for our provider.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.chapter5.widget">
 <application android:icon="@drawable/icon"
 android:label="@string/app_short_name">
 <activity android:name=".WidgetExplorer"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <provider android:name="WidgetProvider"
 android:authorities=
 "com.msi.manning.chapter5.Widget" />
 </application>
</manifest>

Listing 5.15 WidgetProvider AndroidManifest.xml file

Declare
provider’s
authority

B

159Summary
The <provider> element B defines the class that implements the provider and associ-
ates a particular authority with that class.

 A completed project that supports inserting, retrieving, updating, and deleting
records rounds out our exploration of using and building ContentProvider classes.
And with that, we’ve also now demonstrated the ways to locally store and retrieve data
on the Android platform.

5.5 Summary
From a simple SharedPreferences mechanism to file storage, databases, and finally
the concept of a content provider, Android provides myriad ways for applications to
retrieve and store data.

 As we discussed in this chapter, several storage types can share data across applica-
tion and process boundaries, and several can’t. You can create SharedPreferences
with a permissions mode, allowing the flexibility to keep things private, or to share
data globally with read-only or read-write permissions. The filesystem provides more
flexible and powerful data storage for a single application.

 Android also provides a relational database system based on SQLite. Use this light-
weight, speedy, and capable system for local data persistence within a single applica-
tion. To share data, you can still use a database, but you need to expose an interface
through a content provider. Providers expose data types and operations through a
URI-based approach.

 In this chapter, we examined each of the data paths available to an Android appli-
cation. You built several small, focused sample applications to use preferences and the
filesystem, and you expanded the WeatherReporter sample application that you began
in the last chapter. This Android application uses a SQLite database to access and per-
sist data. You also built your own custom content provider from the ground up.

 To expand your Android horizons beyond data, we’ll move on to general network-
ing in the next chapter. We’ll cover networking basics and the networking APIs
Android provides. We’ll also expand on the data concepts we’ve covered in this chap-
ter to use the network itself as a data source.

Additional ContentProvider manifest properties
The properties of a content provider can configure several important settings beyond
the basics, such as specific permissions, initialization order, multiprocess capability,
and more. Though most ContentProvider implementations won’t need to delve into
these details, you should still keep them in mind. For complete and up-to-date Con-
tentProvider properties, see the SDK documentation.

Networking and
web services
With the ubiquity of high-speed networking, mobile devices are now expected to
perform many of the same data-rich functions of traditional computers such as
email, providing web access, and the like. Furthermore, because mobile phones
offer such items as GPS, microphones, CDMA/GSM, built in cameras, accelerome-
ters, and many others, user demand for applications that leverage all the features of
the phone continues to increase.

 You can build interesting applications with the open Intent- and Service-based
approach you learned about in previous chapters. That approach combines built-in
(or custom) intents, such as fully capable web browsing, with access to hardware
components, such as a 3D graphics subsystem, a GPS receiver, a camera, removable
storage, and more. This combination of open platform, hardware capability, soft-
ware architecture, and access to network data makes Android compelling.

This chapter covers
 Networking basics

 Determining network status

 Using the network to retrieve and store data

 Working with web services
160

http://code.google.com/apis/gdata/

161
 This doesn’t mean that the voice network isn’t important—we’ll cover telephony
explicitly in chapter 7—but we admit that voice is a commodity—and data is what we’ll
focus on when talking about the network.

 Android provides access to networking in several ways, including mobile Internet
Protocol (IP), Wi-Fi, and Bluetooth. It also provides some open and closed source third-
party implementations of other networking standards such as ZigBee and Worldwide
Interoperability for Microwave Access (WiMAX). In this chapter, though, we’ll concen-
trate on getting your Android applications to communicate using IP network data,
using several different approaches. We’ll cover a bit of networking background, and
then we’ll deal with Android specifics as we explore communication with the network
using sockets and higher-level protocols such as Hypertext Transfer Protocol (HTTP).

 Android provides a portion of the java.net package and the org.apache.http-
client package to support basic networking. Other related packages, such as
android.net, address internal networking details and general connectivity properties.
You’ll encounter all these packages as we progress though networking scenarios in
this chapter.

 In terms of connectivity properties, we’ll look at using the ConnectivityManager
class to determine when the network connection is active and what type of connection
it is: mobile or Wi-Fi. From there, we’ll use the network in various ways with sample
applications.

 One caveat to this networking chapter is that we won’t dig into the details concern-
ing the Android Wi-Fi or Bluetooth APIs. Bluetooth is an important technology for
close-range wireless networking between devices, but it isn’t available in the Android
emulator (see chapter 14 for more on Bluetooth). On the other hand, Wi-Fi has a good
existing API but also doesn’t have an emulation layer. Because the emulator doesn’t dis-
tinguish the type of network you’re using and doesn’t know anything about either
Bluetooth or Wi-Fi, and because we think the importance lies more in how you use the
network, we aren’t going to cover these APIs. If you want more information on the Wi-
Fi APIs, please see the Android documentation (http://code.google.com/android/
reference/android/net/wifi/package-summary.html).

 The aptly named sample application for this chapter, NetworkExplorer, will look at
ways to communicate with the network in Android and will include some handy utili-
ties. Ultimately, this application will have multiple screens that exercise different net-
working techniques, as shown in figure 6.1.

 After we cover general IP networking with regard to Android, we’ll discuss turning
the server side into a more robust API itself by using web services. On this topic, we’ll
work with plain old XML over HTTP (POX) and Representational State Transfer (REST).
We’ll also discuss the Simple Object Access Protocol (SOAP). We’ll address the pros and
cons of the various approaches and why you might want to choose one method over
another for an Android client.

 Before we delve into the details of networked Android applications, we’ll begin
with an overview of networking basics. If you’re already well versed in general

http://code.google.com/android/reference/android/net/wifi/package-summary.html
http://code.google.com/android/reference/android/net/wifi/package-summary.html

162 CHAPTER 6 Networking and web services
networking, you can skip ahead to section 6.2, but it’s important to have this founda-
tion if you think you need it, and we promise to keep it short.

6.1 An overview of networking
A group of interconnected computers is a network. Over time, networking has grown
from something that was available only to governments and large organizations to the
almost ubiquitous and truly amazing internet. Though the concept is simple—allow
computers to communicate—networking does involve advanced technology. We won’t
get into great detail here, but we’ll cover the core tenets as a background to the gen-
eral networking you’ll do in the remainder of this chapter.

6.1.1 Networking basics

A large percentage of the time, the APIs you use to program Android applications
abstract the underlying network details. This is good. The APIs and the network proto-
cols themselves are designed so that you can focus on your application and not worry
about routing, reliable packet delivery, and so on.

 Nevertheless, it helps to have some understanding of the way a network works so
that you can better design and troubleshoot your applications. To that end, let’s cover
some general networking concepts, with a focus on Transmission Control Protocol/Inter-
net Protocol (TCP/IP).1 We’ll begin with nodes, layers, and protocols.

NODES

The basic idea behind a network is that data is sent between connected devices using
particular addresses. Connections can be made over wire, over radio waves, and so on.
Each addressed device is known as a node. A node can be a mainframe, a PC, a fancy

1 For an in-depth study of all things TCP/IP related, take a look at Craig Hunt’s book, TCP/IP Network Admin-
istration, Third Edition (O’Reilly, 2002): http://oreilly.com/catalog/9780596002978.

Figure 6.1 The NetworkExplorer application you’ll build to cover networking topics

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://oreilly.com/catalog/9780596002978

163An overview of networking
toaster, or any other device with a network stack and connectivity, such as an Android-
enabled handheld.

LAYERS AND PROTOCOLS

Protocols are a predefined and agreed-upon set of rules for communication. Protocols
are often layered on top of one another because they handle different levels of
responsibility. The following list describes the main layers of the TCP/IP stack, which
is used for the majority of web traffic and with Android:

 Link Layer—Physical device address resolution protocols such as ARP and RARP

 Internet Layer —IP itself, which has multiple versions, the ping protocol, and
ICMP, among others

 Transport Layer—Different types of delivery protocols such as TCP and UDP
 Application Layer—Familiar protocols such as HTTP, FTP, SMTP, IMAP, POP, DNS,

SSH, and SOAP

Layers are an abstraction of the different levels of a network protocol stack. The low-
est level, the Link Layer, is concerned with physical devices and physical addresses.
The next level, the Internet Layer, is concerned with addressing and general data
details. After that, the Transport Layer is concerned with delivery details. And, finally,
the top-level Application Layer protocols, which make use of the stack beneath them,
are application-specific for sending files or email or viewing web pages.

IP

IP is in charge of the addressing system and delivering data in small chunks called
packets. Packets, known in IP terms as datagrams, define how much data can go in each
chunk, where the boundaries for payload versus header information are, and the
like. IP addresses tell where each packet is from (its source) and where it’s going (its
destination).

IP addresses come in different sizes, depending on the version of the protocol
being used, but by far the most common at present is the 32-bit address. 32-bit IP
addresses (TCP/IP version 4, or IPv4) are typically written using a decimal notation
that separates the 32 bits into four sections, each representing 8 bits (an octet), such
as 74.125.45.100.

 Certain IP address classes have special roles and meaning. For example, 127 always
identifies a loopback2 or local address on every machine; this class doesn’t communi-
cate with any other devices (it can be used internally, on a single machine only).
Addresses that begin with 10 or 192 aren’t routable, meaning they can communicate
with other devices on the same local network segment but can’t connect to other seg-
ments. Every address on a particular network segment must be unique, or collisions
can occur and it gets ugly.

2 The TCP/IP Guide provides further explanation of datagrams and loopbacks: www.tcpipguide.com/
index.htm.

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://code.google.com/apis/gdata/auth.html
http://code.google.com/apis/gdata/auth.html
http://www.tcpipguide.com/index.htm
http://www.tcpipguide.com/index.htm

164 CHAPTER 6 Networking and web services
 The routing of packets on an IP network—how packets traverse the network and
go from one segment to another—is handled by routers. Routers speak to each other
using IP addresses and other IP-related information.

TCP AND UDP

TCP and UDP (User Datagram Protocol) are different delivery protocols that are com-
monly used with TCP/IP. TCP is reliable, and UDP is fire and forget. What does that
mean? It means that TCP includes extra data to guarantee the order of packets and to
send back an acknowledgment when a packet is received. The common analogy is cer-
tified mail: the sender gets a receipt that shows the letter was delivered and signed for,
and therefore knows the recipient got the message. UDP, on the other hand, doesn’t
provide any ordering or acknowledgment. It’s more like a regular letter: it’s cheaper
and faster to send, but you basically just hope the recipient gets it.

APPLICATION PROTOCOLS

After a packet is sent and delivered, an application takes over. For example, to send an
email message, Simple Mail Transfer Protocol (SMTP) defines a rigorous set of proce-
dures that have to take place. You have to say hello in a particular way and introduce
yourself; then you have to supply from and to information, followed by a message
body in a particular format. Similarly, HTTP defines the set of rules for the internet—
which methods are allowed (GET, POST, PUT, DELETE) and how the overall request/
response system works between a client and a server.

 When you’re working with Android (and Java-related APIs in general), you typi-
cally don’t need to delve into the details of any of the lower-level protocols, but you
might need to know the major differences we’ve outlined here for troubleshooting.
You should also be well-versed in IP addressing, know a bit more about clients and
servers, and understand how connections are established using ports.

6.1.2 Clients and servers

Anyone who’s ever used a web browser is familiar with the client/server computing
model. Data, in one format or another, is stored on a centralized, powerful server. Cli-
ents then connect to that server using a designated protocol, such as HTTP, to retrieve
the data and work with it.

 This pattern is, of course, much older than the web, and it has been applied to
everything from completely dumb terminals that connect to mainframes to modern
desktop applications that connect to a server for only a portion of their purpose. A
good example is iTunes, which is primarily a media organizer and player, but also has
a store where customers can connect to the server to get new content. In any case, the
concept is the same: the client makes a type of request to the server, and the server
responds. This model is the same one that the majority of Android applications (at
least those that use a server side at all) generally follow. Android applications typically
end up as the client.

165Checking the network status
 In order to handle many client requests that are often for different purposes and
that come in nearly simultaneously to a single IP address, modern server operating sys-
tems use the concept of ports. Ports aren’t physical; they’re a representation of a par-
ticular area of the computer’s memory. A server can listen on multiple designated
ports at a single address: for example, one port for sending email, one port for web
traffic, two ports for file transfer, and so on. Every computer with an IP address also
supports a range of thousands of ports to enable multiple conversations to happen at
the same time.

 Ports are divided into three ranges:

 Well-known ports—0 through 1023
 Registered ports—1024 through 49151
 Dynamic and/or private ports—49152 through 65535

The well-known ports are all published and are just that—well known. HTTP is port 80
(and HTTP Secure, or HTTPS, is port 443), FTP is ports 20 (control) and 21 (data),
SSH is port 22, SMTP is port 25, and so on.

 Beyond the well-known ports, the registered ports are still controlled and pub-
lished, but for more specific purposes. Often these ports are used for a particular
application or company; for example, MySQL is port 3306 (by default). For a com-
plete list of well-known and registered ports, see the Internet Corporation for
Assigned Names and Numbers (ICANN) port-numbers document: www.iana.org/
assignments/port-numbers.

 The dynamic or private ports are intentionally unregistered because they’re used
by the TCP/IP stack to facilitate communication. These ports are dynamically regis-
tered on each computer and used in the conversation. Dynamic port 49500, for exam-
ple, might be used to handle sending a request to a web server and dealing with the
response. When the conversation is over, the port is reclaimed and can be reused
locally for any other data transfer.

 Clients and servers communicate as nodes with addresses, using ports, on a net-
work that supports various protocols. The protocols Android uses are based on the IP
network the platform is designed to participate in and involve the TCP/IP family.
Before you can build a full-on client/server Android application using the network,
you need to handle the prerequisite task of determining the state of the connection.

6.2 Checking the network status
Android provides a host of utilities that determine the device configuration and the
status of various services, including the network. You’ll typically use the
ConnectivityManager class to determine whether network connectivity exists and to
get notifications of network changes. The following listing, which is a portion of the
main Activity in the NetworkExplorer application, demonstrates basic usage of the
ConnectivityManager.

http://ksoap2.sourceforge.net/
http://ksoap2.sourceforge.net/
http://ksoap2.sourceforge.net/
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

166 CHAPTER 6 Networking and web services
@Override
public void onStart() {
 super.onStart();
 ConnectivityManager cMgr = (ConnectivityManager)
 this.getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo netInfo = cMgr.getActiveNetworkInfo();
 this.status.setText(netInfo.toString());
}

This short example shows that you can get a handle to the ConnectivityManager
through the context’s getSystemService() method by passing the CONNECTIVITY_
SERVICE constant. When you have the manager, you can obtain network information
via the NetworkInfo object. The toString() method of the NetworkInfo object
returns the output shown in figure 6.2.

 Of course, you won’t normally just display the
String output from NetworkInfo, but this example
does give you a glance at what’s available. More often,
you’ll use the isAvailable() or isConnected()

method (which returns a boolean value), or you’ll
directly query the NetworkInfo.State using the get-
State() method. NetworkInfo.State is an enum that
defines the coarse state of the connection. The possi-
ble values are CONNECTED, CONNECTING, DISCONNECTED,
and DISCONNECTING. The NetworkInfo object also pro-
vides access to more detailed information, but you
won’t normally need more than the basic state.

 When you know that you’re connected, either via
mobile or Wi-Fi, you can use the IP network. For the
purposes of our NetworkExplorer application, we’re
going to start with the most rudimentary IP connec-
tion, a raw socket, and work our way up to HTTP and
web services.

6.3 Communicating with a server socket
A server socket is a stream that you can read or write raw bytes to, at a specified IP
address and port. You can deal with data and not worry about media types, packet
sizes, and so on. A server socket is yet another network abstraction intended to make
the programmer’s job a bit easier. The philosophy that sockets take on—that every-
thing should look like file input/output (I/O) to the developer—comes from the Por-
table Operating System Interface for UNIX (POSIX) family of standards and has been
adopted by most major operating systems in use today.

 We’ll move on to higher levels of network communication in a bit, but we’ll start
with a raw socket. For that, we need a server listening on a particular port. The

Listing 6.1 The onStart method of the NetworkExplorer main Activity

Figure 6.2 The output of the
NetworkInfo toString()
method

167Communicating with a server socket
EchoServer code shown in the next listing fits the bill. This example isn’t an Android-
specific class; rather, it’s an oversimplified server that can run on any host machine
with Java. We’ll connect to it later from an Android client.

public final class EchoServer extends Thread {
 private static final int PORT = 8889;
 private EchoServer() {}
 public static void main(String args[]) {
 EchoServer echoServer = new EchoServer();
 if (echoServer != null) {
 echoServer.start();
 }
 }
 public void run() {
 try {
 ServerSocket server = new ServerSocket(PORT, 1);
 while (true) {
 Socket client = server.accept();
 System.out.println("Client connected");
 while (true) {
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(
 client.getInputStream()));
 System.out.println("Read from client");
 String textLine = reader.readLine() + "\n";
 if (textLine.equalsIgnoreCase("EXIT\n")) {
 System.out.println("EXIT invoked, closing client");
 break;
 }
 BufferedWriter writer = new BufferedWriter(
 new OutputStreamWriter(
 client.getOutputStream()));
 System.out.println("Echo input to client");
 writer.write("ECHO from server: "
 + textLine, 0, textLine.length() + 18);
 writer.flush();
 }
 client.close();
 }
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

The EchoServer class we’re using is fairly basic Java I/O. It extends Thread and imple-
ments run, so that each client that connects can be handled in its own context. Then
we use a ServerSocket B to listen on a defined port. Each client is then an imple-
mentation of a Socket. The client input is fed into a BufferedReader that each line is
read from C. The only special consideration this simple server has is that if the input

Listing 6.2 A simple echo server for demonstrating socket usage

BUse
java.net.ServerSocket

CRead input with
BufferedReader

D
EXIT, break

the loop

168 CHAPTER 6 Networking and web services
is EXIT, it breaks the loops and exits D. If the input doesn’t prompt an exit, the server
echoes the input back to the client’s OuputStream with a BufferedWriter.

 This example is a good, albeit intentionally basic, representation of what a server
does. It handles input, usually in a separate thread, and then responds to the client,
based on the input. To try out this server before using Android, you can telnet to the
specified port (after the server is running, of course) and type some input; if all is
well, it will echo the output.

 To run the server, you need to invoke it locally with Java. The server has a main
method, so it’ll run on its own; start it from the command line or from your IDE. Be
aware that when you connect to a server from the emulator (this one or any other),
you need to connect to the IP address of the host you run the server process on, not
the loopback (not 127.0.0.1). The emulator thinks of itself as 127.0.0.1, so use the
nonloopback address of the server host when you attempt to connect from Android.
(You can find out the IP address of the machine you’re on from the command line by
entering ifconfig on Linux or Mac and ipconfig on Windows.)

 The client portion of this example is where NetworkExplorer itself begins, with the
callSocket() method of the SimpleSocket Activity, shown in the next listing.

public class SimpleSocket extends Activity {
 . . . View variable declarations omitted for brevity
 @Override
 public void onCreate(final Bundle icicle) {
 super.onCreate(icicle);
 this.setContentView(R.layout.simple_socket);
 . . . View inflation omitted for brevity
 this.socketButton.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 socketOutput.setText("");
 String output = callSocket(
 ipAddress.getText().toString(),
 port.getText().toString(),
 socketInput.getText().toString());
 socketOutput.setText(output);
 }
 });
 }
 private String callSocket(String ip, String port, String socketData) {
 Socket socket = null;
 BufferedWriter writer = null;
 BufferedReader reader = null;
 String output = null;
 try {
 socket = new Socket(ip, Integer.parseInt(port));
 writer = new BufferedWriter(
 new OutputStreamWriter(
 socket.getOutputStream()));

 reader = new BufferedReader(

Listing 6.3 An Android client invoking a raw socket server resource, the echo server

Use callSocket
method

B

Create
client
Socket

C

169Working with HTTP
 new InputStreamReader(
 socket.getInputStream()));

 String input = socketData;
 writer.write(input + "\n", 0, input.length() + 1);
 writer.flush();
 output = reader.readLine();

 this.socketOutput.setText(output);
 // send EXIT and close
 writer.write("EXIT\n", 0, 5);
 writer.flush();
 . . . catches and reader, writer, and socket closes omitted for brevity
 . . . onCreate omitted for brevity
 return output;
 }

In this listing, we use the onCreate() method to call a private helper callSocket()
method B and set the output to a TextView. Within the callSocket() method, we
create a socket to represent the client side of our connection C, and we establish a
writer for the input and a reader for the output. With the housekeeping taken care of,
we then write to the socket D, which communicates with the server, and get the out-
put value to return E.

 A socket is probably the lowest-level networking usage in Android you’ll encounter.
Using a raw socket, though abstracted a great deal, still leaves many of the details up
to you, especially the server-side details of threading and queuing. Although you
might run up against situations in which you either have to use a raw socket (the
server side is already built) or elect to use one for one reason or another, higher-level
solutions such as leveraging HTTP usually have decided advantages.

6.4 Working with HTTP
As we discussed in the previous section, you can use a raw socket to transfer IP data to
and from a server with Android. This approach is an important one to be aware of so
that you know you have that option and understand a bit about the underlying details.
Nevertheless, you might want to avoid this technique when possible, and instead take
advantage of existing server products to send your data. The most common way to do
this is to use a web server and HTTP.

 Now we’re going to take a look at making HTTP requests from an Android client
and sending them to an HTTP server. We’ll let the HTTP server handle all the socket
details, and we’ll focus on our client Android application.

 The HTTP protocol itself is fairly involved. If you’re unfamiliar with it or want the
complete details, information is readily available via Requests for Comments (RFCs)
(such as for version 1.1: www.w3.org/Protocols/rfc2616/rfc2616.html). The short
story is that the protocol is stateless and involves several different methods that allow
users to make requests to servers, and those servers return responses. The entire web
is, of course, based on HTTP. Beyond the most basic concepts, there are ways to pass
data into and out of requests and responses and to authenticate with servers. Here

Write to
socketD

Get socket
outputE

http://www.w3.org/Protocols/rfc2616/rfc2616.html

170 CHAPTER 6 Networking and web services
we’re going to use some of the most common methods and concepts to talk to net-
work resources from Android applications.

 To begin, we’ll retrieve data using HTTP GET requests to a simple HTML page,
using the standard java.net API. From there, we’ll look at using the Android-included
Apache HttpClient API. After we use HttpClient directly to get a feel for it, we’ll also
make a helper class, HttpRequestHelper, that you can use to simplify the process and
encapsulate the details. This class—and the Apache networking API in general—has a
few advantages over rolling your own networking with java.net, as you’ll see. When the
helper class is in place, we’ll use it to make additional HTTP and HTTPS requests, both
GET and POST, and we’ll look at basic authentication.

 Our first HTTP request will be an HTTP GET call using an HttpUrlConnection.

6.4.1 Simple HTTP and java.net

The most basic HTTP request method is GET. In this type of request, any data that’s
sent is embedded in the URL, using the query string. The next class in our Network-
Explorer application, which is shown in the following listing, has an Activity that
demonstrates the GET request method.

public class SimpleGet extends Activity {
 . . . other portions of onCreate omitted for brevity
 this.getButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 getOutput.setText("");
 String output =
 getHttpResponse(getInput.getText().toString());
 if (output != null) {
 getOutput.setText(output);
 }
 }
 });
 };
 . . .
 private String getHttpResponse(String location) {
 String result = null;
 URL url = null;
 try {
 url = new URL(location);

 } catch (MalformedURLException e) {
 // log and or handle
 }
 if (url != null) {
 try {
 HttpURLConnection urlConn =
 (HttpURLConnection) url.openConnection();
 BufferedReader in =
 new BufferedReader(
 new InputStreamReader(

Listing 6.4 The SimpleGet Activity showing java.net.UrlConnection

B
Invoke getHttpResponse
method

Construct
URL object

C

D
Open connection using

HttpURLConnection

171Working with HTTP
 urlConn.getInputStream()));
 String inputLine;
 int lineCount = 0; // limit lines for example
 while ((lineCount < 10)
 && ((inputLine = in.readLine()) != null)) {

 lineCount++;
 result += "\n" + inputLine;
 }
 in.close();
 urlConn.disconnect();
 } catch (IOException e) {
 // log and or handle
 }
 } else {
 // log and or handle
 }
 return result;
 }
}

To get an HTTP response and show the first few lines of it in our SimpleGet class, we
call a getHttpResponse() method that we’ve built B. Within this method, we con-
struct a java.net.URL object C, which takes care of many of the details for us, and
then we open a connection to a server using an HttpURLConnection D.

 We then use a BufferedReader to read data from the connection one line at a
time E. Keep in mind that as we’re doing this, we’re using the same thread as the UI
and therefore blocking the UI. This isn’t a good idea. We’re using the same thread
here only to demonstrate the network operation; we’ll explain more about how to
use a separate thread shortly. After we have the data, we append it to the result
String that our method returns F, and we close the reader and the connection.
Using the plain and simple java.net support that has been ported to Android this way
provides quick and dirty access to HTTP network resources.

 Communicating with HTTP this way is fairly easy, but it can quickly get cumber-
some when you need to do more than just retrieve simple data, and, as noted, the
blocking nature of the call is bad form. You could get around some of the problems
with this approach on your own by spawning separate threads and keeping track of
them and by writing your own small framework/API structure around that concept for
each HTTP request, but you don’t have to. Fortunately, Android provides another set
of APIs in the form of the Apache HttpClient3 library that abstract the java.net classes
further and are designed to offer more robust HTTP support and help handle the
separate-thread issue.

6.4.2 Robust HTTP with HttpClient

To get started with HttpClient, we’re going to look at using core classes to perform
HTTP GET and POST method requests. We’re going to concentrate on making network

3 You’ll find more about the Apache HttpClient here: http://hc.apache.org/httpclient-3.x/.

Read
dataE

Append
to resultF

http://hc.apache.org/httpclient-3.x/

172 CHAPTER 6 Networking and web services
requests in a Thread separate from the UI, using a combination of the Apache
ResponseHandler and Android Handler (for different but related purposes, as you’ll
see). The following listing shows our first example of using the HttpClient API.

. . . .
private final Handler handler = new Handler() {
 public void handleMessage(Message msg) {
 progressDialog.dismiss();
 String bundleResult =
 msg.getData().getString("RESPONSE");
 output.setText(bundleResult);
 }
 };
. . . onCreate omitted for brevity
private void performRequest() {
 final ResponseHandler<String> responseHandler =
 new ResponseHandler<String>() {
 public String handleResponse(HttpResponse response) {
 StatusLine status = response.getStatusLine();
 HttpEntity entity = response.getEntity();
 String result = null;
 try {
 result = StringUtils.inputStreamToString(

 entity.getContent());
 Message message = handler.obtainMessage();
 Bundle bundle = new Bundle();
 bundle.putString("RESPONSE", result);
 message.setData(bundle);
 handler.sendMessage(message);
 } catch (IOException e) {
 // log and or handle
 }
 return result;
 }
 };
 this.progressDialog =
 ProgressDialog.show(this, "working . . .",
 "performing HTTP request");
 new Thread() {
 public void run() {
 try {
 DefaultHttpClient client = new DefaultHttpClient();
 HttpGet httpMethod =
 new HttpGet(
 urlChooser.getSelectedItem().toString());
 client.execute(
 httpMethod, responseHandler);
 } catch (ClientProtocolException e) {
 // log and or handle
 } catch (IOException e) {
 // log and or handle

Listing 6.5 Apache HttpClient with Android Handler and Apache ResponseHandler

Use Handler
to update UI

B

Create
ResponseHandler
for asynchronous
HTTP

C

Get HTTP
response
payload

D

Use separate Thread
for HTTP call

Create
HttpGet
object

Execute
HTTP with
HttpClient

173Working with HTTP
 }
 }
 }.start();
 }

The first thing we do in our initial HttpClient example is create a Handler that we
can send messages to from other threads. This technique is the same one we’ve used
in previous examples; it allows background tasks to send Message objects to hook back
into the main UI thread B. After we create an Android Handler, we create an Apache
ResponseHandler C. This class can be used with HttpClient HTTP requests to pass in
as a callback point. When an HTTP request that’s fired by HttpClient completes, it
calls the onResponse() method if a ResponseHandler is used. When the response
comes in, we get the payload using the HttpEntity the API returns D. This in effect
allows the HTTP call to be made in an asynchronous manner—we don’t have to block
and wait the entire time between when the request is fired and when it completes.
The relationship of the request, response, Handler, ResponseHandler, and separate
threads is diagrammed in figure 6.3.

 Now that you’ve seen HttpClient at work and understand the basic approach, the
next thing we’ll do is encapsulate a few of the details into a convenient helper class so
that we can call it over and over without having to repeat a lot of the setup.

6.4.3 Creating an HTTP and HTTPS helper

The next Activity in our NetworkExplorer application, which is shown in listing 6.6,
is a lot more straightforward and Android-focused than our other HTTP-related
classes up to this point. We’ve used the helper class we mentioned previously, which

Apache HttpClient

execute(method, responseHandler)
HTTP request

HTTP response

HTTP
server

Apache ResponseHandler

handleResponse(httpResponse)

Android Handler

sendMessage(message)
onMessage(message)

Non UI Thread - network request

UI Thread - UI updates
Figure 6.3 The relationship between
HttpClient, ResponseHandler,
and Android Handler

174 CHAPTER 6 Networking and web services
hides some of the complexity. We’ll examine the helper class itself after we look at this
first class that uses it.

public class ApacheHTTPViaHelper extends Activity {
 . . . other member variables omitted for brevity
 private final Handler handler = new Handler() {
 public void handleMessage(Message msg) {
 progressDialog.dismiss();
 String bundleResult = msg.getData().getString("RESPONSE");
 output.setText(bundleResult);

 }
 };
 @Override
 public void onCreate(final Bundle icicle) {
 super.onCreate(icicle);
 . . . view inflation and setup omitted for brevity
 this.button.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 output.setText("");
 performRequest(
 urlChooser.getSelectedItem().toString());
 }
 });
 };
 . . . onPause omitted for brevity
 private void performRequest(String url) {
 final ResponseHandler<String> responseHandler =
 HTTPRequestHelper.getResponseHandlerInstance(
 this.handler);

 this.progressDialog =
 ProgressDialog.show(this, "working . . .",
 "performing HTTP request");
 new Thread() {
 public void run() {
 HTTPRequestHelper helper = new
 HTTPRequestHelper(responseHandler);
 helper.performGet(url, null, null, null);
 }
 }.start();
 }
}

The first thing we do in this class is create another Handler. From within it, we update
a UI TextView based on data in the Message. Further on in the code, in the
onCreate() method, we call a local performRequest() method when the Go button is
clicked, and we pass a selected String representing a URL B.

 Inside the performRequest() method, we use a static convenience method to return
an HttpClient ResponseHandler, passing in the Android Handler that it’ll use C. We’ll
examine the helper class next to get a look at exactly how this works, but the important
part for now is that the ResponseHandler is created for us by the static method. With the

Listing 6.6 Using Apache HttpClient via a custom HttpRequestHelper

BCall local
performRequest

Get ResponseHandler
from RequestHelperC

Instantiate
RequestHelper with
ResponseHandler

D

175Working with HTTP
ResponseHandler instance taken care of, we instantiate an HttpRequestHelper
instance D and use it to make a simple HTTP GET call (passing in only the String URL).
Similar to what happened in listing 6.5, when the request completes, the Response-
Handler fires the onResponse() method, and our Handler is sent a Message, complet-
ing the process.

 The example Activity in listing 6.6 is fairly clean and simple, and it’s asynchronous
and doesn’t block the UI thread. The heavy lifting is taken care of by HttpClient itself
and by the setup our custom HttpRequestHelper makes possible. The first part of the
all-important HttpRequestHelper, which we’ll explore in three listings (listings 6.7, 6.8,
and 6.9), is shown next.

public class HTTPRequestHelper {
 private static final int POST_TYPE = 1;
 private static final int GET_TYPE = 2;
 private static final String CONTENT_TYPE = "Content-Type";
 public static final String MIME_FORM_ENCODED =
 "application/x-www-form-urlencoded";
 public static final String MIME_TEXT_PLAIN = "text/plain";
 private final ResponseHandler<String> responseHandler;
 public HTTPRequestHelper(ResponseHandler<String> responseHandler) {
 this.responseHandler = responseHandler;
 }
 public void performGet(String url, String user, String pass,
 final Map<String, String> additionalHeaders) {
 performRequest(null, url, user, pass,
 additionalHeaders, null, HTTPRequestHelper.GET_TYPE);
 }
 public void performPost(String contentType, String url,
 String user, String pass,
 Map<String, String> additionalHeaders,
 Map<String, String> params) {

 performRequest(contentType, url, user, pass,
 additionalHeaders, params, HTTPRequestHelper.POST_TYPE);
 }
 public void performPost(String url, String user, String pass,
 Map<String, String> additionalHeaders,
 Map<String, String> params) {
 performRequest(HTTPRequestHelper.MIME_FORM_ENCODED,
 url, user, pass,
 additionalHeaders, params, HTTPRequestHelper.POST_TYPE);
 }
 private void performRequest(
 String contentType,
 String url,
 String user,
 String pass,
 Map<String, String> headers,
 Map<String, String> params,
 int requestType) {

Listing 6.7 The first part of the HttpRequestHelper class

BRequire
ResponseHandler

to construct

Provide
simple
GET
methodC

Provide simple
POST methods

D

Handle
combinations in
private method

E

176 CHAPTER 6 Networking and web services
 DefaultHttpClient client = new DefaultHttpClient();
 if ((user != null) && (pass != null)) {
 client.getCredentialsProvider().setCredentials(
 AuthScope.ANY,
 new UsernamePasswordCredentials(user, pass));
 }
 final Map<String, String> sendHeaders =
 new HashMap<String, String>();
 if ((headers != null) && (headers.size() > 0)) {
 sendHeaders.putAll(headers);
 }
 if (requestType == HTTPRequestHelper.POST_TYPE) {
 sendHeaders.put(HTTPRequestHelper.CONTENT_TYPE, contentType);
 }
 if (sendHeaders.size() > 0) {
 client.addRequestInterceptor(
 new HttpRequestInterceptor() {

 public void process(
 final HttpRequest request, final HttpContext context)
 throws HttpException, IOException {
 for (String key : sendHeaders.keySet()) {
 if (!request.containsHeader(key)) {
 request.addHeader(key,
 sendHeaders.get(key));
 }
 }
 }
 });
 }
 . . . POST and GET execution in listing 6.8
 }

The first thing of note in the HttpRequestHelper class is that a ResponseHandler is
required to be passed in as part of the constructor B. This ResponseHandler will be
used when the HttpClient request is ultimately invoked. After the constructor, you
see a public HTTP GET-related method C and several different public HTTP POST-
related methods D. Each of these methods is a wrapper around the private perform-
Request() method that can handle all the HTTP options E. The performRequest()
method supports a content-type header value, URL, username, password, Map of addi-
tional headers, similar Map of request parameters, and request method type.

 Inside the performRequest() method, a DefaultHttpClient is instantiated. Next,
we check whether the user and pass method parameters are present; if they are, we
set the request credentials with a UsernamePasswordCredentials type (HttpClient
supports several types of credentials; see the Javadocs for details). At the same time as
we set the credentials, we also set an AuthScope. The scope represents which server,
port, authentication realm, and authentication scheme the supplied credentials are
applicable for.

 You can set any of the HttpClient parameters as finely or coarsely grained as you
want; we’re using the default ANY scope that matches anything. What we notably

Use Interceptor
for request
headers

F

177Working with HTTP
haven’t set in all of this is the specific authentication scheme to use. HttpClient sup-
ports various schemes, including basic authentication, digest authentication, and a
Windows-specific NT Lan Manager (NTLM) scheme. Basic authentication (simple
username/password challenge from the server) is the default. Also, if you need to,
you can use a preemptive form login for form-based authentication—submit the form
you need, get the token or session ID, and set default credentials.

 After the security is out of the way, we use an HttpRequestInterceptor to add
HTTP headers F. Headers are name/value pairs, so adding the headers is pretty easy.
After we have all of the properties that apply regardless of our request method type,
we then add additional settings that are specific to the method. The following listing,
the second part of our helper class, shows the POST- and GET-specific settings and the
execute method.

 . . .
 if (requestType == HTTPRequestHelper.POST_TYPE) {
 HttpPost method = new HttpPost(url);

 List<NameValuePair> nvps = null;
 if ((params != null) && (params.size() > 0)) {
 nvps = new ArrayList<NameValuePair>();
 for (String key : params.keySet()) {
 nvps.add(new BasicNameValuePair(key,
 params.get(key)));

 }
 }
 if (nvps != null) {
 try {
 method.setEntity(
 new UrlEncodedFormEntity(nvps, HTTP.UTF_8));
 } catch (UnsupportedEncodingException e) {
 // log and or handle
 }
 }
 execute(client, method);
 } else if (requestType == HTTPRequestHelper.GET_TYPE) {
 HttpGet method = new HttpGet(url);
 execute(client, method);
 }
 . . .
 private void execute(HttpClient client, HttpRequestBase method) {
 BasicHttpResponse errorResponse =
 new BasicHttpResponse(
 new ProtocolVersion("HTTP_ERROR", 1, 1),
 500, "ERROR");

 try {
 client.execute(method, this.responseHandler);
 } catch (Exception e) {
 errorResponse.setReasonPhrase(e.getMessage());

Listing 6.8 The second part of the HttpRequestHelper class

Create
HttpPost
object

B

Add name/value
parametersC

Call execute
method

D

Set up an
error handler

E

178 CHAPTER 6 Networking and web services
 try {
 this.responseHandler.handleResponse(errorResponse);
 } catch (Exception ex) {
 // log and or handle
 }
 }
 }

When the specified request is a POST type, we create an HttpPost object to deal with it
B. Then we add POST request parameters, which are another set of name/value pairs
and are built with the BasicNameValuePair object C. After adding the parameters,
we’re ready to perform the request, which we do with our local private execute()
method using the method object and the client D.

 Our execute() method sets up an error response handler (we want to return a
response, error or not, so we set this up just in case) E and wraps the HttpClient
execute() method, which requires a method object (either POST or GET in our case,
pre-established) and a ResponseHandler as input. If we don’t get an exception when
we invoke HttpClient execute(), all is well and the response details are placed into
the ResponseHandler. If we do get an exception, we populate the error handler and
pass it through to the ResponseHandler.

 We call the local private execute() method with the established details for either a
POST or a GET request. The GET method is handled similarly to the POST, but we don’t
set parameters (with GET requests, we expect parameters encoded in the URL itself).
Right now, our class supports only POST and GET, which cover 98 percent of the
requests we generally need, but it could easily be expanded to support other HTTP
method types.

 The final part of the request helper class, shown in the following listing, takes us
back to the first example (listing 6.7), which used the helper. Listing 6.9 outlines exactly
what the convenience getResponseHandlerInstance() method returns (constructing
our helper requires a ResponseHandler, and this method returns a default one).

 public static ResponseHandler<String>
 getResponseHandlerInstance(final Handler handler) {
 final ResponseHandler<String> responseHandler =
 new ResponseHandler<String>() {
 public String handleResponse(final HttpResponse response) {
 Message message = handler.obtainMessage();
 Bundle bundle = new Bundle();
 StatusLine status = response.getStatusLine();
 HttpEntity entity = response.getEntity();
 String result = null;
 if (entity != null) {
 try {
 result = StringUtils.inputStreamToString(
 entity.getContent());
 bundle.putString(
 "RESPONSE", result);

Listing 6.9 The final part of the HttpRequestHelper class

Require Handler
parameterB

CGet response
content as String

Put result value
into Bundle

179Web services
 message.setData(bundle);
 handler.sendMessage(message);

 } catch (IOException e) {
 bundle.putString("
 RESPONSE", "Error - " + e.getMessage());
 message.setData(bundle);
 handler.sendMessage(message);
 }
 } else {
 bundle.putString("RESPONSE", "Error - "
 + response.getStatusLine().getReasonPhrase());
 message.setData(bundle);
 handler.sendMessage(message);

 }
 return result;
 }
 };
 return responseHandler;
 }
}

As we discuss the getResponseHandlerInstance() method of our helper, we should
note that although we find it helpful, it’s entirely optional. You can still use the helper
class without using this method. To do so, construct your own ResponseHandler and
pass it in to the helper constructor, which is a perfectly plausible case. The get-
ResponseHandlerInstance() method builds a convenient default ResponseHandler
that hooks in a Handler via a parameter B and parses the response as a String C. The
response String is sent back to the caller using the Handler, Bundle, and Message pat-
tern we’ve seen used time and time again to pass messages between threads in our
Android screens.

 With the gory HttpRequestHelper details out of the way, and having already
explored basic usage, we’ll next turn to more involved uses of this class in the context
of web service calls.

6.5 Web services
The term web services means many different things, depending on the source and the
audience. To some, it’s a nebulous marketing term that’s never pinned down; to oth-
ers, it’s a rigid and specific set of protocols and standards. We’re going to tackle it as a
general concept, without defining it in depth, but not leaving it entirely undefined
either.

 Web services are a means of exposing an API over a technology-neutral network
endpoint. They’re a means to call a remote method or operation that’s not tied to a
specific platform or vendor and get a result. By this definition, POX over the network
is included; so are REST and SOAP—and so is any other method of exposing opera-
tions and data on the wire in a neutral manner.

Set Bundle as
data into Message

Send Message
via Handler

180 CHAPTER 6 Networking and web services
POX, REST, and SOAP are by far the most common web services around, so they’re
what we’ll focus on in this section. Each provides a general guideline for accessing
data and exposing operations, each in a more rigorous manner than the previous.
POX basically exposes chunks of XML over the wire, usually over HTTP. REST is more
detailed in that it uses the concept of resources to define data and then manipulates
them with different HTTP methods using a URL-style approach (much like the
Android Intent system in general, which we explored in previous chapters). SOAP is
the most formal of them all, imposing strict rules about types of data, transport mech-
anisms, and security.

 All these approaches have advantages and disadvantages, and these differences are
amplified on a mobile platform like Android. Though we can’t possibly cover all the
details here, we’ll touch on the differences as we discuss each of these concepts. We’ll
examine using a POX approach to return recent posts
from the Delicious API (formerly del.icio.us), and then
we’ll look at using REST with the Google GData AtomPub
API. Up first is probably the most ubiquitous type of web
service in use on the internet today, and therefore one
you’ll come across again and again when connecting
Android applications—POX.

6.5.1 POX: putting it together with HTTP and XML

To work with POX, we’re going to make network calls to
the popular Delicious online social bookmarking site.
We’ll specify a username and password to log in to an
HTTPS resource and return a list of recent posts, or book-
marks. This service returns raw XML data, which we’ll
parse into a JavaBean-style class and display as shown in
figure 6.4.

 The following listing shows the Delicious login and
HTTPS POST Activity code from our NetworkExplorer
application.

public class DeliciousRecentPosts extends Activity {
 private static final String CLASSTAG =

DeliciousRecentPosts.class.getSimpleName();
 private static final String URL_GET_POSTS_RECENT =
 "https://api.del.icio.us/v1/posts/recent?";

 . . . member var declarations for user, pass, output,
 and button (Views) omitted for brevity,
 private final Handler handler = new Handler() {

 public void handleMessage(final Message msg) {
 progressDialog.dismiss();

Listing 6.10 The Delicious HTTPS POX API with authentication from an Activity

Include
Delicious
URL

B

Provide Handler
to update UIC

Figure 6.4 The Delicious recent
posts screen from the
NetworkExplorer application

181Web services
 String bundleResult = msg.getData().getString("RESPONSE");
 output.setText(parseXMLResult(bundleResult));
 }
 };
 @Override
 public void onCreate(final Bundle icicle) {
 super.onCreate(icicle);
 this.setContentView(R.layout.delicious_posts);
 . . . inflate views omitted for brevity
 this.button.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 output.setText("");
 performRequest(user.getText().toString(),
 pass.getText().toString());
 }
 });
 };
 . . . onPause omitted for brevity
 private void performRequest(String user, String pass) {
 this.progressDialog = ProgressDialog.show(this,
 "working . . .", "performing HTTP post to del.icio.us");
 final ResponseHandler<String> responseHandler =
 HTTPRequestHelper.getResponseHandlerInstance(this.handler);
 new Thread() {
 public void run() {
 HTTPRequestHelper helper =
 new HTTPRequestHelper(responseHandler);
 helper.performPost(URL_GET_POSTS_RECENT,
 user, pass, null, null);

 }
 }.start();
 }
 private String parseXMLResult(String xmlString) {
 StringBuilder result = new StringBuilder();
 try {
 SAXParserFactory spf = SAXParserFactory.newInstance();
 SAXParser sp = spf.newSAXParser();
 XMLReader xr = sp.getXMLReader();
 DeliciousHandler handler = new DeliciousHandler();
 xr.setContentHandler(handler);
 xr.parse(new InputSource(new StringReader(xmlString)));
 List<DeliciousPost> posts = handler.getPosts();
 for (DeliciousPost p : posts) {
 result.append("\n" + p.getHref());
 }
 } catch (Exception e) {
 // log and or handle
 }
 return result.toString();
 }

To use a POX service, we need to know a bit about it, beginning with the URL end-
point B. To call the Delicious service, we again use a Handler to update the UI C,
and we use the HttpRequestHelper we previously built and walked through in the last

Pass credentials to
performRequestD

Use helper
for HTTP

E

Parse XML
String result

F

182 CHAPTER 6 Networking and web services
section. Again in this example, we have many fewer lines of code than if we didn’t use
the helper—lines of code we’d likely be repeating in different Activity classes. With
the helper instantiated, we call the performRequest() method with a username and
password D. This method, via the helper, will log in to Delicious and return an XML
chunk representing the most recently bookmarked items E.

 To turn the raw XML into useful types, we then also include a parseXMLResult()
method F. Parsing XML is a subject in its own right, and we’ll cover it in more detail
in chapter 13, but the short takeaway with this method is that we walk the XML struc-
ture with a parser and return our own DeliciousPost data beans for each record.
That’s it—that’s using POX to read data over HTTPS.

 Building on the addition of XML to HTTP, above and beyond POX, is the REST
architectural principle, which we’ll explore next.

6.5.2 REST

While we look at REST, we’ll also try to pull in another useful concept in terms of
Android development: working with the various Google GData APIs (http://
code.google.com/apis/gdata/). We used the GData APIs for our RestaurantFinder
review information in chapter 3, but there we didn’t authenticate, and we didn’t get
into the details of networking or REST. In this section, we’ll uncover the details as we
perform two distinct tasks: authenticate and retrieve a Google ClientLogin token and
retrieve the Google Contacts data for a specified user. Keep in mind that as we work
with the GData APIs in any capacity, we’ll be using a REST-style API.

 The main REST concepts are that you specify resources in a URI form and you
use different protocol methods to perform different actions. The Atom Publishing
Protocol (AtomPub) defines a REST-style protocol, and the GData APIs are an imple-
mentation of AtomPub (with some Google extensions). As we noted earlier, the
entire Intent approach of the Android platform is a lot like REST. A URI such as
content://contacts/1 is in the REST style. It includes a path that identifies the type
of data and a particular resource (contact number 1).

 That URI doesn’t say what to do with contact 1, though. In REST terms, that’s
where the method of the protocol comes into the picture. For HTTP purposes, REST
uses various methods to perform different tasks: POST (create, update, or in special
cases, delete), GET (read), PUT (create, replace), and DELETE (delete). True HTTP
REST implementations use all the HTTP method types and resources to construct APIs.

 In the real world, you’ll find few true REST implementations. It’s much more com-
mon to see a REST-style API. This kind of API doesn’t typically use the HTTP DELETE
method (many servers, proxies, and so on, have trouble with DELETE) and overloads
the more common GET and POST methods with different URLs for different tasks (by
encoding a bit about what’s to be done in the URL, or as a header or parameter, rather
than relying strictly on the method). In fact, though many people refer to the GData
APIs as REST, they’re technically only REST-like, not true REST. That’s not necessarily a
bad thing; the idea is ease of use of the API rather than pattern purity. All in all, REST
is a popular architecture or style because it’s simple, yet powerful.

http://code.google.com/apis/gdata/
http://code.google.com/apis/gdata/

183Web services
 The following listing is an example that focuses on the network aspects of authen-
tication with GData to obtain a ClientLogin token and use that token with a subse-
quent REST-style request to obtain Contacts data by including an email address as a
resource.

public class GoogleClientLogin extends Activity {
 private static final String URL_GET_GTOKEN =
 "https://www.google.com/accounts/ClientLogin";
 private static final String URL_GET_CONTACTS_PREFIX =
 "http://www.google.com/m8/feeds/contacts/";
 private static final String URL_GET_CONTACTS_SUFFIX = "/full";
 private static final String GTOKEN_AUTH_HEADER_NAME = "Authorization";
 private static final String GTOKEN_AUTH_HEADER_VALUE_PREFIX =
 "GoogleLogin auth=";
 private static final String PARAM_ACCOUNT_TYPE = "accountType";
 private static final String PARAM_ACCOUNT_TYPE_VALUE =
 "HOSTED_OR_GOOGLE";
 private static final String PARAM_EMAIL = "Email";
 private static final String PARAM_PASSWD = "Passwd";
 private static final String PARAM_SERVICE = "service";
 private static final String PARAM_SERVICE_VALUE = "cp";
 private static final String PARAM_SOURCE = "source";
 private static final String PARAM_SOURCE_VALUE =
 "manning-unlockingAndroid-1.0";
 private String tokenValue;
 . . . View member declarations omitted for brevity
 private final Handler tokenHandler = new Handler() {

 public void handleMessage(final Message msg) {
 progressDialog.dismiss();
 String bundleResult = msg.getData().getString("RESPONSE");
 String authToken = bundleResult;
 authToken = authToken.substring(authToken.indexOf("Auth=")
 + 5, authToken.length()).trim();
 tokenValue = authToken;

 GtokenText.setText(authToken);
 }
 };
 private final Handler contactsHandler =
 new Handler() {

 public void handleMessage(final Message msg) {
 progressDialog.dismiss();
 String bundleResult = msg.getData().getString("RESPONSE");
 output.setText(bundleResult);
 }
 };
 . . . onCreate and onPause omitted for brevity
 private void getToken(String email, String pass) {

 final ResponseHandler<String> responseHandler =
 HTTPRequestHelper.getResponseHandlerInstance(

Listing 6.11 Using the Google Contacts AtomPub API with authentication

Create
Handler
token
request

B

Set
tokenValueC

Implement
getTokenD

184 CHAPTER 6 Networking and web services
 this.tokenHandler);
 this.progressDialog = ProgressDialog.show(this,
 "working . . .", "getting Google ClientLogin token");
 new Thread() {
 public void run() {
 HashMap<String, String> params =
 new HashMap<String, String>();
 params.put(GoogleClientLogin.PARAM_ACCOUNT_TYPE,
 GoogleClientLogin.PARAM_ACCOUNT_TYPE_VALUE);
 params.put(GoogleClientLogin.PARAM_EMAIL, email);
 params.put(GoogleClientLogin.PARAM_PASSWD, pass);
 params.put(GoogleClientLogin.PARAM_SERVICE,

 GoogleClientLogin.PARAM_SERVICE_VALUE);
 params.put(GoogleClientLogin.PARAM_SOURCE,

 GoogleClientLogin.PARAM_SOURCE_VALUE);
 HTTPRequestHelper helper =
 new HTTPRequestHelper(responseHandler);
 helper.performPost(HTTPRequestHelper.MIME_FORM_ENCODED,
 GoogleClientLogin.URL_GET_GTOKEN,
 null, null, null, params);
 }
 }.start();
 }
 private void getContacts(final String email,final String token) {

 final ResponseHandler<String> responseHandler =
 HTTPRequestHelper.getResponseHandlerInstance(
 this.contactsHandler);
 this.progressDialog = ProgressDialog.show(this,
 "working . . .", "getting Google Contacts");
 new Thread() {
 public void run() {
 HashMap<String, String> headers =
 new HashMap<String, String>();
 headers.put(GoogleClientLogin.GTOKEN_AUTH_HEADER_NAME,
 GoogleClientLogin.GTOKEN_AUTH_HEADER_VALUE_PREFIX
 + token);

 String encEmail = email;
 try {
 encEmail = URLEncoder.encode(encEmail,
 "UTF-8");

 } catch (UnsupportedEncodingException e) {
 // log and or handle
 }
 String url =
 GoogleClientLogin.URL_GET_CONTACTS_PREFIX + encEmail
 + GoogleClientLogin.URL_GET_CONTACTS_SUFFIX;
 HTTPRequestHelper helper = new
 HTTPRequestHelper(responseHandler);
 helper.performGet(url, null, null, headers);
 }
 }.start();
 }
}

ERequired
parameters for

ClientLogin

Perform POST
to get tokenF

G
Implement

getContacts

Add token
as headerH

Encode
email address
in URLI

Make GET
request for
ContactsJ

185Web services
After a host of constants that represent various String values we’ll use with the GData
services, we have several Handler instances in this class, beginning with a token-
Handler B. This handler updates a UI TextView when it receives a message, like simi-
lar examples you saw previously, and updates a non-UI member tokenValue variable
that other portions of our code will use C. The next Handler we have is the contacts-
Handler that will be used to update the UI after the contacts request.

 Beyond the handlers, we have the getToken() method D. This method includes
all the required parameters for obtaining a ClientLogin token from the GData serv-
ers (http://code.google.com/apis/gdata/auth.html) E. After the setup to obtain the
token, we make a POST request via the request helper F.

 After the token details are taken care of, we have the getContacts() method G.
This method uses the token obtained via the previous method as a header H. After
you have the token, you can cache it and use it with all subsequent requests; you don’t
need to obtain the token every time. Next, we encode the email address portion of the
Contacts API URL I, and we make a GET request for the data—again using the
HttpRequestHelper J.

 With this approach, we’re making several network calls (one as HTTPS to get the
token and another as HTTP to get data) using our previously defined helper class.
When the results are returned from the GData API, we parse the XML block and
update the UI.

Now that we’ve explored some REST-style networking, the last thing we need to discuss
with regard to HTTP and Android is SOAP. This topic comes up frequently in discus-
sions of networking mobile devices, but sometimes the forest gets in the way of the
trees in terms of framing the real question.

6.5.3 To SOAP or not to SOAP, that is the question

SOAP is a powerful protocol that has many uses. We would be remiss if we didn’t at
least mention that though it’s possible to use SOAP on a small, embedded device such
as a smartphone, regardless of the platform, it’s not recommended. The question
within the limited resources environment Android inhabits is really more one of
should it be done rather than can it be done.

 Some experienced developers, who might have been using SOAP for years on
other devices, might disagree. The things that make SOAP great are its support for
strong types (via XML Schema), its support for transactions, its security and

GData ClientLogin and CAPTCHA
Though we included a working ClientLogin example in listing 6.11, we also skipped
over an important part—CAPTCHA. Google might optionally require a CAPTCHA with the
ClientLogin approach. To fully support ClientLogin, you need to handle that
response and display the CAPTCHA to the user, and then resend a token request with
the CAPTCHA value that the user entered. For details, see the GData documentation.

http://code.google.com/apis/gdata/auth.html

186 CHAPTER 6 Networking and web services
encryption, its support for message orchestration and choreography, and all the
related WS-* standards. These things are invaluable in many server-oriented comput-
ing environments, whether or not they involve the enterprise. They also add a great
deal of overhead, especially on a small, embedded device. In fact, in many situations
where people use SOAP on embedded devices, they often don’t bother with the
advanced features—and they use plain XML with the overhead of an envelope at the
end of the day anyway. On an embedded device, you often get better performance,
and a simpler design, by using a REST- or POX-style architecture and avoiding the over-
head of SOAP.

 Even with the increased overhead, it makes sense in some situations to investigate
using SOAP directly with Android. When you need to talk to existing SOAP services
that you have no control over, SOAP might make sense. Also, if you already have J2ME
clients for existing SOAP services, you might be able to port those in a limited set of
cases. Both these approaches make it easier only on you, the developer; they have
either no effect or a negative one in terms of performance on the user. Even when
you’re working with existing SOAP services, remember that you can often write a POX-
or REST-style proxy for SOAP services on the server side and call that from Android,
rather than use SOAP directly from Android.

 If you feel like SOAP is still the right choice, you can use one of several ports of the
kSOAP toolkit (http://ksoap2.sourceforge.net/), which is specially designed for SOAP
on an embedded Java device. Keep in mind that even the kSOAP documentation
states, “SOAP introduces some significant overhead for web services that may be prob-
lematic for mobile devices. If you have full control over the client and the server, a
REST-based architecture may be more adequate.” In addition, you might be able to
write your own parser for simple SOAP services that don’t use fancy SOAP features and
just use a POX approach that includes the SOAP XML portions you require (you can
always roll your own, even with SOAP).

 All in all, to our minds the answer to the question is to not use SOAP on Android,
even though you can. Our discussion of SOAP, even though we don’t advocate it,
rounds out our more general web services discussion, and that wraps up our network-
ing coverage.

6.6 Summary
In this chapter, we started with a brief background of basic networking concepts, from
nodes and addresses to layers and protocols. With that general background in place,
we covered details about how to obtain network status information and showed several
different ways to work with the IP networking capabilities of the platform.

 In terms of networking, we looked at using basic sockets and the java.net pack-
age. Then we also examined the included Apache HttpClient API. HTTP is one of the
most common—and most important—networking resources available to the Android
platform. Using HttpClient, we covered a lot of territory in terms of different request
types, parameters, headers, authentication, and more. Beyond basic HTTP, we also

http://ksoap2.sourceforge.net/

187Summary
explored POX and REST, and we discussed a bit of SOAP—all of which use HTTP as the
transport mechanism.

 Now that we’ve covered a good deal of the networking possibilities, and hopefully
given you at least a glint of an idea of what you can do with server-side APIs and inte-
gration with Android, we’re going to turn to another important part of the Android
world—telephony.

Telephony
People use Android devices to surf the web, download and store data, access net-
works, find location information, and use many types of applications. Android can
even make phone calls.

 Android phones support dialing numbers, receiving calls, sending and receiv-
ing text and multimedia messages, and other related telephony services. In contrast
to other smartphone platforms, all these items are accessible to developers through
simple-to-use APIs and built-in applications. You can easily leverage Android’s tele-
phony support into your own applications.

 In this chapter, we’ll discuss telephony in general and cover terms related to
mobile devices. We’ll move on to basic Android telephony packages, which handle
calls using built-in Intent actions, and more advanced operations via the
TelephonyManager and PhoneStateListener classes. The Intent actions can initi-
ate basic phone calls in your applications. TelephonyManager doesn’t make phone
calls directly but is used to retrieve all kinds of telephony-related data, such as the

This chapter covers
 Making and receiving phone calls

 Capturing call-related events

 Obtaining phone and service information

 Using SMS
188

http://code.google.com/android/devel/security.html
http://code.google.com/android/devel/security.html
http://code.google.com/android/devel/security.html

189Exploring telephony background and terms
state of the voice network, the device’s own phone number, and other details.
TelephonyManager supports adding a PhoneStateListener, which can alert you when
call or phone network states change.

 After covering basic telephony APIs, we’ll move on to sending and receiving SMS
messages. Android provides APIs that allow you to send SMS messages and be notified
when SMS messages are received. We’ll also touch on emulator features that allow you
to test your app by simulating incoming phone calls or messages.

 Once again, a sample application will carry us through the concepts related to the
material in this chapter. You’ll build a sample TelephonyExplorer application to dem-
onstrate dialing the phone, obtaining phone and service state information, adding lis-
teners to the phone state, and working with SMS. Your TelephonyExplorer application
will have several basic screens, as shown in figure 7.1.

 TelephonyExplorer exercises the telephony-related APIs while remaining simple
and uncluttered. Before we start to build TelephonyExplorer, let’s first define tele-
phony itself.

7.1 Exploring telephony background and terms
Whether you’re a new or an experienced mobile developer, it’s important to clarify
terms and set out some background for discussing telephony.

 First, telephony is a general term that refers to electrical voice communications over
telephone networks. Our scope is, of course, the mobile telephone networks that
Android devices1 participate in, specifically the Global System for Mobile Communica-
tions (GSM) and Code Division Multiple Access (CDMA) networks.

1 For a breakdown of all Android devices by year of release, go here: www.androphones.com/all-android-
phones.php.

Figure 7.1 TelephonyExplorer main screen, along with the related activities the sample
application performs

http://www.androphones.com/all-android-phones.php
http://www.androphones.com/all-android-phones.php

190 CHAPTER 7 Telephony
GSM and CDMA are cellular telephone networks. Devices communicate over radio
waves and specified frequencies using cell towers. The standards must define a few
important things, such as identities for devices and cells, along with all the rules for
making communications possible.

7.1.1 Understanding GSM

We won’t delve into the underlying details of the networks, but it’s important to know
some key facts. GSM is based on Time Division Multiple Access (TDMA), a technology
that slices time into smaller chunks to allow multiple callers to share the same fre-
quency range. GSM was the first network that the Android stack supported for voice
calls; it’s ubiquitous in Europe and very common in North America. GSM devices use
Subscriber Identity Module (SIM) cards to store important network and user settings.

 A SIM card is a small, removable, secure smart card. Every device that operates on a
GSM network has specific unique identifiers, which are stored on the SIM card or on
the device itself:

 Integrated Circuit Card Identifier (ICCID)—Identifies a SIM card; also known as a
SIM Serial Number, or SSN.

 International Mobile Equipment Identity (IMEI)—Identifies a physical device. The
IMEI number is usually printed underneath the battery.

 International Mobile Subscriber Identity (IMSI)—Identifies a subscriber (and the
network that subscriber is on).

 Location Area Identity (LAI)—Identifies the region within a provider network
that’s occupied by the device.

 Authentication key (Ki)—A 128-bit key used to authenticate a SIM card on a pro-
vider network.

GSM uses these identification numbers and keys to validate and authenticate a SIM
card, the device holding it, and the subscriber on the network and across networks.

 Along with storing unique identifiers and authentication keys, SIM cards often store
user contacts and SMS messages. Users can easily move their SIM card to a new device
and carry along contact and message data. Currently, the Android platform handles
the SIM interaction, and developers can get read-only access via the telephony APIs.

7.1.2 Understanding CDMA

The primary rival to GSM technology is CDMA, which uses a different underlying
technology that’s based on using different encodings to allow multiple callers to share
the same frequency range. CDMA is widespread in the Unites States and common in
some Asian countries.

 Unlike GSM phones, CDMA devices don’t have a SIM card or other removable mod-
ule. Instead, certain identifiers are burned into the device, and the carrier must main-
tain the link between each device and its subscriber. CDMA devices have a separate set
of unique identifiers:

http://www.3gpp.org/ftp/Specs/html-info/23040.htm

191Phone or not?
 Mobile Equipment Identifier (MEID)—Identifies a physical device. This number is
usually printed under the battery and is available from within device menus. It
corresponds to GSM’s IMEI.

 Electronic Serial Number (ESN)—The predecessor to the MEID, this number is
shorter and identifies a physical device.

 Pseudo Electronic Serial Number (pESN)—A hardware identifier, derived from the
MEID, that’s compatible with the older ESN standard. The ESN supply was
exhausted several years ago, so pESNs provide a bridge for legacy applications
built around ESN. A pESN always starts with 0x80 in hex format or 128 in deci-
mal format.

Unlike GSM phones, which allow users to switch devices by swapping out SIM cards,
CDMA phones require you to contact your carrier if you want to transfer an account to
a new device. This process is often called an ESN swap or ESN change. Some carriers
make this easy, and others make it difficult. If you’ll be working on CDMA devices,
learning how to do this with your carrier can save you thousands of dollars in sub-
scriber fees.

NOTE A few devices, sometimes called world phones, support both CDMA
and GSM. These devices often have two separate radios and an optional
SIM card. Currently, such devices operate only on one network or the
other at any given time. Additionally, these devices are often restricted to
using only particular carriers or technologies in particular countries. You
generally don’t need to do anything special to support these devices, but
be aware that certain phones might appear to change their network tech-
nology from time to time.

Fortunately, few applications need to deal with the arcana of GSM and CDMA technol-
ogy. In most cases, you only need to know that your program is running on a device
that in turn is running on a mobile network. You can leverage that network to make
calls and inspect the device to find unique identifiers. You can locate this sort of infor-
mation by using the TelephonyManager class.

7.2 Phone or not?
Starting with version 2.1 of the Android OS, devices no longer need to support tele-
phony features. Expect more and more non-phone devices to reach the market, such
as set-top boxes, auto devices, and certain tablets. If you want to reach the largest pos-
sible market with your app, you should include telephony features but fail gracefully if
they’re not available. If your application makes sense only when running on a phone,
go ahead and use any phone features you require.

 If your application requires telephony to function, you should add the following
declaration to your AndroidManifest.xml:

<uses-feature android:name="android.hardware.telephony"
 android:required="true"/>

192 CHAPTER 7 Telephony
This will let Android Market and other storefronts know not to offer your app to non-
phone devices; otherwise, expect many complaints and queries from disappointed
customers. If your application supports telephony but can operate without it, set
android:required to "false".

7.3 Accessing telephony information
Android provides an informative manager class that supplies information about many
telephony-related details on the device. Using TelephonyManager, you can access
phone properties and obtain phone network state information.

NOTE Starting with version 2.1 of the Android OS, devices no longer
need to support telephony features. Expect more and more non-phone
devices to reach the market, such as set-top boxes and auto devices. If you
want to reach the largest possible market with your app, you should lever-
age telephony features but fail gracefully if they’re not available. If your
application makes sense only when running on a phone, go ahead and
use any phone features you require.

You can attach a PhoneStateListener event listener to the phone by using the man-
ager. Attaching a PhoneStateListener makes your applications aware of when the
phone gains and loses service, and when calls start, continue, or end.

 Next, we’ll examine several parts of the Telepho-
nyExplorer example application to look at both
these classes. We’ll start by obtaining a Telephony-
Manager instance and using it to query useful tele-
phony information.

7.3.1 Retrieving telephony properties

The android.telephony package contains the
TelephonyManager class, which provides details
about the phone status. Let’s retrieve and display a
small subset of that information to demonstrate the
approach. First, you’ll build an Activity that dis-
plays a simple screen showing some of the informa-
tion you can obtain via TelephonyManager, as shown
in figure 7.2.

 The TelephonyManager class is the information
hub for telephony-related data in Android. The fol-
lowing listing demonstrates how you obtain a refer-
ence to this class and use it to retrieve data.

Figure 7.2 Displaying device and
phone network meta-information
obtained from TelephonyManager

193Accessing telephony information
// . . . start of class omitted for brevity
 final TelephonyManager telMgr =
 (TelephonyManager) getSystemService(
 Context.TELEPHONY_SERVICE);
// . . . onCreate method and others omitted for brevity
 public String getTelephonyOverview(
 TelephonyManager telMgr) {
 String callStateString = "NA";
 int callState = telMgr.getCallState();
 switch (callState) {
 case TelephonyManager.CALL_STATE_IDLE:
 callStateString = "IDLE";
 break;
 case TelephonyManager.CALL_STATE_OFFHOOK:
 callStateString = "OFFHOOK";
 break;
 case TelephonyManager.CALL_STATE_RINGING:
 callStateString = "RINGING";
 break;
 }

 CellLocation cellLocation = (CellLocation)telMgr.getCellLocation();
 String cellLocationString = null;
 if (cellLocation instanceof GsmCellLocation)
 {
 cellLocationString = ((GsmCellLocation)cellLocation).getLac()
 + " " + ((GsmCellLocation)cellLocation).getCid();
 }
 else if (cellLocation instanceof CdmaCellLocation)
 {
 cellLocationString = ((CdmaCellLocation)cellLocation).
 getBaseStationLatitude() + " " +
 ((CdmaCellLocation)cellLocation).getBaseStationLongitude();
 }
 String deviceId = telMgr.getDeviceId();
 String deviceSoftwareVersion =
 telMgr.getDeviceSoftwareVersion();
 String line1Number = telMgr.getLine1Number();
 String networkCountryIso = telMgr.getNetworkCountryIso();
 String networkOperator = telMgr.getNetworkOperator();
 String networkOperatorName = telMgr.getNetworkOperatorName();

 String phoneTypeString = "NA";
 int phoneType = telMgr.getPhoneType();
 switch (phoneType) {
 case TelephonyManager.PHONE_TYPE_GSM:
 phoneTypeString = "GSM";
 break;
 case TelephonyManager.PHONE_TYPE_CDMA:
 phoneTypeString = "CDMA";
 break;
 case TelephonyManager.PHONE_TYPE_NONE:
 phoneTypeString = "NONE";

Listing 7.1 Obtaining a TelephonyManager reference and using it to retrieve data

Get TelephonyManager
from Context

B

Implement information
helper method

C

Obtain call state
informationD

Get device
informationE

194 CHAPTER 7 Telephony
 break;
 }

 String simCountryIso = telMgr.getSimCountryIso();
 String simOperator = telMgr.getSimOperator();
 String simOperatorName = telMgr.getSimOperatorName();
 String simSerialNumber = telMgr.getSimSerialNumber();
 String simSubscriberId = telMgr.getSubscriberId();
 String simStateString = "NA";
 int simState = telMgr.getSimState();
 switch (simState) {
 case TelephonyManager.SIM_STATE_ABSENT:
 simStateString = "ABSENT";
 break;
 case TelephonyManager.SIM_STATE_NETWORK_LOCKED:
 simStateString = "NETWORK_LOCKED";
 break;
 // . . . other SIM states omitted for brevity
 }

 StringBuilder sb = new StringBuilder();
 sb.append("telMgr - ");
 sb.append(" \ncallState = " + callStateString);
 // . . . remainder of appends omitted for brevity
 return sb.toString();
 }

We use the current Context, through the getSystemService method with a constant,
to obtain an instance of the TelephonyManager class B. After you have the manager,
you can use it as needed. In this case, we create a helper method to get data from the
manager and return it as a String that we later display on the screen C.

 The manager allows you to access phone state data, such as whether a call is in
progress D, the device ID and software version E, the phone number registered to
the current user/SIM, and other SIM details, such as the subscriber ID (IMSI) and the
current SIM state. TelephonyManager offers even more properties; see the Javadocs for
complete details.

NOTE Methods generally return null if they don’t apply to a particular
device; for example, getSimOperatorName() returns null for CDMA
phones. If you want to know in advance what type of device you’re work-
ing with, try using the method getPhoneType().

For this class to work, you must set the READ_PHONE_STATE permission in the manifest.
Without it, security exceptions will be thrown when you try to read data from the man-
ager. Phone-related permissions are consolidated in table 7.1.

 In addition to providing telephony-related information, including metadata about
the device, network, and subscriber, TelephonyManager allows you to attach a Phone-
StateListener, which we’ll describe in the next section.

195Accessing telephony information
7.3.2 Obtaining phone state information

A phone can be in any one of several conditions. The primary phone states include
idle (waiting), in a call, or initiating a call. When you’re building applications on a
mobile device, sometimes you not only need to know the current phone state, but you
also want to know when the state changes.

 In these cases, you can attach a listener to the phone and subscribe to receive noti-
fications of published changes. With Android, you use a PhoneStateListener, which
attaches to the phone through TelephonyManager. The following listing demonstrates
a sample usage of both these classes.

 @Override
 public void onStart() {
 super.onStart();
 final TelephonyManager telMgr =
 (TelephonyManager) getSystemService(
 Context.TELEPHONY_SERVICE);
 PhoneStateListener phoneStateListener =
 new PhoneStateListener() {

 public void onCallStateChanged(
 int state, String incomingNumber) {
 telMgrOutput.setText(getTelephonyOverview(telMgr));
 }
 };
 telMgr.listen(phoneStateListener,
 PhoneStateListener.LISTEN_CALL_STATE);
 String telephonyOverview = getTelephonyOverview(telMgr);
 telMgrOutput.setText(telephonyOverview);
 }

To start working with a PhoneStateListener, you need to acquire an instance of
TelephonyManager. PhoneStateListener itself is an interface, so you need to create
an implementation, including the required onCallStateChanged() method. When
you have a valid PhoneStateListener instance, you attach it by assigning it to the
manager with the listen() method.

 Listing 7.2 shows how to listen for any PhoneStateListener.LISTEN_CALL_STATE
change in the phone state. This constant value comes from a list of available states that
are in PhoneStateListener class. You can use a single value when assigning a listener
with the listen() method, as demonstrated in listing 7.2, or you can combine multi-
ple values to listen for multiple states.

 If a call state change does occur, it triggers the action defined in the onCallState-
Changed() method of your PhoneStateListener. In this example, we reset the details
on the screen using the getTelephonyOverview() method from listing 7.1. You can
filter this method further, based on the passed-in int state.

 To see the values in this example change while you’re working with the emulator,
you can use the SDK tools to send incoming calls or text messages and change the

Listing 7.2 Attaching a PhoneStateListener via the TelephonyManager

196 CHAPTER 7 Telephony
state of the voice connection. You can access these options from the DDMS perspective
in Eclipse. Additionally, the emulator includes a mock GSM modem that you can
manipulate using the gsm command from the console. Figure 7.3 shows an example
session from the console that demonstrates using the gsm command. For complete
details, see the emulator telephony documentation at http://code.google.com/
android/reference/emulator.html#telephony.

 Now that we’ve covered the major elements of telephony, let’s start exploring basic
uses of the telephony APIs and other related facilities. We’ll intercept calls, leverage
telephony utility classes, and make calls from within applications.

7.4 Interacting with the phone
In regular development, you’ll often want to use your Android device as a phone. You
might dial outbound calls through simple built-in intents, or intercept calls to modify
them in some way. In this section, we’ll cover these basic tasks and examine some of
the phone-number utilities Android provides for you.

 One of the more common things you’ll do with Android telephony support
doesn’t even require using the telephony APIs directly: making calls using built-in
Intents.

7.4.1 Using Intents to make calls

As we demonstrated in chapter 4, to invoke the built-in dialer and make a call all you
need to use is the Intent.ACTION_CALL action and the tel: Uri. This approach
invokes the dialer application, populates the dialer with the provided telephone num-
ber (taken from the URI), and initiates the call.

Figure 7.3 An Android console session demonstrating the gsm command and
available subcommands

http://code.google.com/android/reference/emulator.html#telephony
http://code.google.com/android/reference/emulator.html#telephony

197Interacting with the phone
 Alternatively, you can invoke the dialer application with the Intent.ACTION_DIAL
action, which also populates the dialer with the supplied phone number but stops
short of initiating the call. The following listing demonstrates both techniques using
their respective actions.

 dialintent = (Button) findViewById(R.id.dialintent_button);
 dialintent.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 Intent intent =
 new Intent(Intent.DIAL_ACTION,
 Uri.parse("tel:" + NUMBER));
 startActivity(intent);
 }
 });
 callintent = (Button) findViewById(R.id.callintent_button);
 callintent.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 Intent intent =
 new Intent(Intent.CALL_ACTION,
 Uri.parse("tel:" + NUMBER));
 startActivity(intent);
 }
 });

By now you should feel quite comfortable using Intents in the Android platform. In
this listing, we again take advantage of Android’s loose coupling, in this case to make
outgoing calls to specified numbers. First, you set the action you want to take place,
either populating the dialer with ACTION_DIAL or populating the dialer and initiating
a call with ACTION_CALL. In either case, you also need to specify the telephone number
you want to use with the Intent URI.

 Dialing calls also requires the proper permissions, which your application mani-
fest includes in order to access and modify the phone state, dial the phone, or inter-
cept phone calls (shown in section 7.3.3). Table 7.1 lists the relevant phone-related

Listing 7.3 Using Intent actions to dial and call using the built-in dialer application

Table 7.1 Phone-related manifest permissions and their purpose

Phone-related permission Purpose

android.permission.CALL_PHONE Initiates a phone call without user confirma-
tion in dialer

android.permission.CALL_PRIVILEGED Calls any number, including emergency, with-
out confirmation in dialer

android.permission.MODIFY_PHONE_STATE Allows the application to modify the phone
state: for example, to turn the radio on or off

android.permission.PROCESS_OUTGOING_CALLS Allows the application to receive broadcast
for outgoing calls and modify

android.permission.READ_PHONE_STATE Allows the application to read the phone
state

198 CHAPTER 7 Telephony
permissions and their purposes. For more detailed information, see the security sec-
tion of the Android documentation at http://code.google.com/android/devel/
security.html.

 Android makes dialing simple with built-in handling via Intents and the dialer
application. The PhoneNumberUtils class, which you can use to parse and validate
phone number strings, helps simplify dialing even more, while keeping numbers
human-readable.

7.4.2 Using phone number–related utilities

Applications running on mobile devices that support telephony deal with a lot of
String formatting for phone numbers. Fortunately, the Android SDK provides a
handy utility class that helps to mitigate the risks associated with this task and stan-
dardize the numbers you use—PhoneNumberUtils.

 The PhoneNumberUtils class parses String data into phone numbers, transforms
alphabetical keypad digits into numbers, and determines other properties of phone
numbers. The following listing shows an example of using this class.

// Imports omitted for brevity
 private TextView pnOutput;
 private EditText pnInput;
 private EditText pnInPlaceInput;
 private Button pnFormat;
// Other instance variables and methods omitted for brevity
 pnFormat.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 String phoneNumber = PhoneNumberUtils.formatNumber(
 pnInput.getText().toString());

 phoneNumber = PhoneNumberUtils.convertKeypadLettersToDigits(
 pnInput.getText().toString());

 StringBuilder result = new StringBuilder();
 result.append(phoneNumber);
 result.append("\nisGlobal - "
 + PhoneNumberUtils.isGlobalPhoneNumber(phoneNumber));
 result.append("\nisEmergency - "
 + PhoneNumberUtils.isEmergencyNumber(phoneNumber));
 result.append("\ncompare to 415-555-1234 - " +
 PhoneNumberUtils.compare(phoneNumber, "415-555-1234"));
 pnOutput.setText(result.toString());
 pnInput.setText("");
 }
});

The PhoneNumberUtils class offers several static helper methods for parsing phone
numbers, including the useful formatNumber. This method takes a single String as
input and uses the default locale settings to return a formatted phone number B.
Additional methods format a number using a locale you specify, parse different

Listing 7.4 Working with the PhoneNumberUtils class

Format as
phone
number

B

Convert alpha
characters to digitsC

Compare
to another
number

D

http://code.google.com/android/devel/security.html
http://code.google.com/android/devel/security.html

199Interacting with the phone
segments of a number, and so on. Parsing a number can be combined with another
helpful method, convertKeypadLettersToDigits(), to convert any alphabetic keypad
letter characters into digits c. The conversion method won’t work unless it already
recognizes the format of a phone number, so you should run the format method first.

 Along with these basic methods, you can also check properties of a number string,
such as whether the number is global and whether it represents an emergency call. The
compare() method lets you see whether a given number matches another number D,
which is useful for user-entered numbers that might include dashes or dots.

NOTE Android defines a global number as any string that contains one or
more digits; it can optionally be prefixed with a + symbol, and can option-
ally contain dots or dashes. Even strings like 3 and +4-2 are considered
global numbers. Android makes no guarantee that a phone can even dial
such a number; this utility simply provides a basic check for whether
something that looks like it could be a phone number in some country.

You can also format a phone number with the overloaded formatNumber() method.
This method is useful for any Editable, such as the common EditText (or TextView).
This method updates the provided Editable in-place, as shown in the following listing.

pnInPlaceInput.setOnFocusChangeListener(
 new OnFocusChangeListener() {
 public void onFocusChange(View v, boolean hasFocus) {
 if (v.equals(pnInPlaceInput) && (!hasFocus)) {
 PhoneNumberUtils.formatNumber(
 pnInPlaceInput.getText(),
 PhoneNumberUtils.FORMAT_NANP);
 }
 }
 });

The in-place editor can be combined with a dynamic update using various techniques.
You can make the update happen automatically when the focus changes from a
phone-number field. The in-place edit does not provide the keypad alphabetic charac-
ter-to-number conversion automatically. To ensure that the conversion occurs, we’ve
implemented an OnFocusChangeListener. Inside the onFocusChange() method,
which filters for the correct View item, we call the formatNumber() overload, passing
in the respective Editable and the formatting style we want to use. NANP stands for
North American Numbering Plan, which includes an optional country and area code
and a 7-digit local phone number.

NOTE PhoneNumberUtils also defines a Japanese formatting plan and
might add others in the future.

Now that you can use the phone number utilities and make calls, we can move on to
the more challenging and interesting task of call interception.

Listing 7.5 Using in-place Editable View formatting via PhoneNumberUtils

200 CHAPTER 7 Telephony

D
ow

nl
oa

d
fr

om
 w

w
w

.U
pe

Bo
ok

.C
om
7.4.3 Intercepting outbound calls

Imagine writing an application that catches outgoing calls and decorates or aborts
them, based on certain criteria. The following listing shows how to perform this type
of interception.

public class OutgoingCallReceiver extends BroadcastReceiver {
 public static final String ABORT_PHONE_NUMBER = "1231231234";
 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals(
 Intent.ACTION_NEW_OUTGOING_CALL)) {
 String phoneNumber =
 intent.getExtras().getString(Intent.EXTRA_PHONE_NUMBER);
 if ((phoneNumber != null)
 && phoneNumber.equals(
 OutgoingCallReceiver.ABORT_PHONE_NUMBER)) {
 Toast.makeText(context,
 "NEW_OUTGOING_CALL intercepted to number "
 + "123-123-1234 - aborting call",
 Toast.LENGTH_LONG).show();
 abortBroadcast();
 }
 }
 }
}

Our interception class starts by extending BroadcastReceiver. The new subclass
implements the onReceive() method B. Within this method, we filter on the Intent
action we want C, and then we get the Intent data using the phone number key. If
the phone number matches, we send a Toast alert to the UI and abort the outgoing
call by calling the abortBroadcast() method.

 Beyond dialing out, formatting numbers, and intercepting calls, Android also pro-
vides support for sending and receiving SMS. Managing SMS can seem daunting but
provides significant rewards, so we’re going to focus on it for the rest of the chapter.

7.5 Working with messaging: SMS
Mobile devices use the Short Message Service (SMS), a hugely popular and important
means of communication, to send simple text messages with small amounts of data.
Android includes a built-in SMS application that allows users to send, view, and reply
to SMS messages. Along with the built-in user-facing apps and the related ContentPro-
vider for interacting with the default text-messaging app, the SDK provides APIs for
developers to send and receive messages programmatically.

 Because Android now supplies an excellent built-in SMS message application, you
might wonder why anyone would bother building another one. The Android market
sells several superior third-party SMS messaging applications, but SMS can do a lot
more than text your contacts. For example, you could build an application that, upon

Listing 7.6 Catching and aborting an outgoing call

Override
onReceiveB

Filter Intent for actionC

201Working with messaging: SMS
receiving a special SMS, sends back another SMS
containing its location information. Due to the
nature of SMS, this strategy might succeed, while
another approach like trying to get the phone to
transmit its location in real time would fail. Alter-
nately, adding SMS as another communications
channel can enhance other applications. Best of
all, Android makes working with SMS relatively
simple and straightforward.

 To explore Android’s SMS support, you’ll cre-
ate an app that sends and receives SMS messages.
The screen in figure 7.4 shows the SMS-related
Activity you’ll build in the TelephonyExplorer
application.

 To get started working with SMS, you’ll first
build a class that programmatically sends SMS mes-
sages, using the SmsManager.

7.5.1 Sending SMS messages

The android.telephony package contains the SmsManager and SmsMessage classes.
The SmsManager defines many important SMS-related constants, and also provides the
sendDataMessage, sendMultipartTextMessage, and sendTextMessage methods.

NOTE Early versions of Android provided access to SMS only through the
android.telephony.gsm subpackage. Google has deprecated this usage,
but if you must target older versions of the OS, look there for SMS-related
functions. Of course, such classes work only on GSM-compatible devices.

The following listing shows an example from our TelephonyExplorer application that
uses the SMS manager to send a simple text message.

// . . . start of class omitted for brevity
 private Button smsSend;
 private SmsManager smsManager;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.smsexample);
 // . . . other onCreate view item inflation omitted for brevity
 smsSend = (Button) findViewById(R.id.smssend_button);
 smsManager = SmsManager.getDefault();
 final PendingIntent sentIntent =
 PendingIntent.getActivity(
 this, 0, new Intent(this,
 SmsSendCheck.class), 0);

Listing 7.7 Using SmsManager to send SMS messages

Get
SmsManager
handleB

Create
PendingIntent
for post action

C

Figure 7.4 An Activity that sends
SMS messages

202 CHAPTER 7 Telephony
 smsSend.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 String dest = smsInputDest.getText().toString();
 if (PhoneNumberUtils.
 isWellFormedSmsAddress(dest)) {
 smsManager.sendTextMessage(
 smsInputDest.getText().toString, null,
 smsInputText.getText().toString(),
 sentIntent, null);
 Toast.makeText(SmsExample.this,
 "SMS message sent",
 Toast.LENGTH_LONG).show();
 } else {
 Toast.makeText(SmsExample.this,
 "SMS destination invalid - try again",
 Toast.LENGTH_LONG).show();
 }
 }
 });
 }

Before doing anything with SMS messages, we must obtain an instance of the SmsMan-
ager with the static getDefault() method B. The manager will also send the mes-
sage later. Before we can send the message, we need to create a PendingIntent to
provide to the send method.

 A PendingIntent can specify an Activity, a Broadcast, or a Service that it
requires. In our case, we use the getActivity() method, which requests an Activity,
and then we specify the context, a request code (not used for this case), the Intent to
execute, and additional flags C. The flags indicate whether the system should create a
new instance of the referenced Activity (or Broadcast or Service), if one doesn’t
already exist.

 Next, we check that the destination address is valid for SMS D, and we send the
message using the manager’s sendTextMessage() method.

 This send method takes several parameters. The following snippet shows the signa-
ture of this method:

sendDataMessage(String destinationAddress, String scAddress,
 short destinationPort, byte[] data, PendingIntent sentIntent,
 PendingIntent deliveryIntent)

Check that
destination
is validD

What is a PendingIntent?
A PendingIntent specifies an action to take in the future. It lets you pass a future
Intent to another application and allow that application to execute that Intent as
if it had the same permissions as your application, whether or not your application is
still around when the Intent is eventually invoked. A PendingIntent provides a
means for applications to work, even after their process exits. It’s important to note
that even after the application that created the PendingIntent has been killed, that
Intent can still run.

203Working with messaging: SMS
The method requires the following parameters:

 destinationAddress—The phone number to receive the message.
 scAddress—The messaging center address on the network. You should almost

always leave this as null, which uses the default.
 destinationPort—The port number for the recipient handset.
 data—The payload of the message.
 sentIntent—The PendingIntent instance that’s fired when the message is suc-

cessfully sent.
 deliveryIntent—The PendingIntent instance that’s fired when the message is

successfully received.

NOTE GSM phones generally support receiving SMS messages to a partic-
ular port, but CDMA phones generally don’t. Historically, port-directed
SMS messages have allowed text messages to be delivered to a particular
application. Modern phones support better solutions; in particular, if you
can use a server for your application, consider using Android Cloud to
Device Messaging (C2DM)2 for Android phones with software version 2.2
or later.

Much like the phone permissions listed in table 7.1, SMS-related tasks also require
manifest permissions. SMS permissions are shown in table 7.2.

The AndroidManifest.xml file for the TelephonyExplorer application contains these
permissions:

<uses-permission android:name="android.permission.RECEIVE_SMS" />
<uses-permission android:name="android.permission.READ_SMS" />
<uses-permission android:name="android.permission.WRITE_SMS" />
<uses-permission android:name="android.permission.SEND_SMS" />

Along with sending text and data messages via SmsManager, you can create an SMS
BroadcastReceiver to receive incoming SMS messages.

2 Read Wei Huang’s detailed article for more about C2DM: http://android-developers.blogspot.com/2010/
05/android-cloud-to-device-messaging.html.

Table 7.2 SMS-related manifest permissions and their purpose

Phone-related permission Purpose

android.permission.READ_SMS Allows the application to read SMS messages

android.permission.RECEIVE_SMS Allows the application to monitor incoming SMS messages

android.permission.SEND_SMS Allows the application to send SMS messages

android.permission.WRITE_SMS Writes SMS messages to the built-in SMS provider (not
related to sending messages directly)

http://android-developers.blogspot.com/2010/05/android-cloud-to-device-messaging.html
http://android-developers.blogspot.com/2010/05/android-cloud-to-device-messaging.html

204 CHAPTER 7 Telephony
7.5.2 Receiving SMS messages

You can receive an SMS message programmatically by registering for the appropriate
broadcast. To demonstrate how to receive SMS messages in this way with our Telepho-
nyExplorer application, we’ll implement a receiver, as shown in the following listing.

public class SmsReceiver extends BroadcastReceiver {
 private static final String SMS_REC_ACTION =
 "android.provider.Telephony.SMS_RECEIVED";

 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction().
 equals(SmsReceiver.SMS_REC_ACTION)) {

 StringBuilder sb = new StringBuilder();
 Bundle bundle = intent.getExtras();
 if (bundle != null) {
 Object[] pdus = (Object[])
 bundle.get("pdus");
 for (Object pdu : pdus) {
 SmsMessage smsMessage =
 SmsMessage.createFromPdu
 ((byte[]) pdu);
 sb.append("body - " + smsMessage.
 getDisplayMessageBody());
 }
 }
 Toast.makeText(context, "SMS RECEIVED - "
 + sb.toString(), Toast.LENGTH_LONG).show();
 }
 }
}

To react to an incoming SMS message, we again create a custom BroadcastReceiver
by extending that class. Our receiver defines a local constant for the Intent action it
wants to catch, in this case, android.provider.Telephony.SMS_RECEIVED.

 Next, we filter for the action we want on the onReceive() method B, and we get
the SMS data from the Intent extras Bundle using the key pdus C. The Bundle is a
hash that contains Android data types.

Listing 7.8 Creating an SMS-related BroadcastReceiver

Filter for action
in receiverB

Get pdus from
Intent Bundle

C

Create SmsMessage
from pdus

D

What’s a PDU?
PDU, or protocol data unit, refers to one method of sending information along cellular
networks. SMS messaging, as described in the 3rd Generation Partnership Project
(3GPP) Specification, supports two different ways of sending and receiving mes-
sages. The first is text mode, which some phones don’t support. Text mode encodes
message content as a simple bit stream. The other is PDU mode, which contains not
only the SMS message, but also metadata about the SMS message, such as text

205Summary
For every pdu Object that we receive, we need to construct an SmsMessage by casting
the data to a byte array D. After this conversion, we can use the methods in that class,
such as getDisplayMessageBody().

NOTE If you run the example shown in listing 7.8, you’ll see that even
though the receiver does properly report the message, the message still
arrives in the user’s inbox. Some applications might process specific mes-
sages themselves and prevent the user from ever seeing them; for example,
you might implement a play-by-SMS chess program that uses text messages
to report the other players’ moves. To consume the incoming SMS mes-
sage, call abortBroadcast from within your onReceive() method. Note
that your receiver must have a priority level higher than that of the inbox.
Also, certain versions of the Android OS don’t honor this request, so test
on your target devices if this behavior is important to your app.

Congratulations! Now that you’ve learned how to send SMS messages programmati-
cally, set permissions appropriately, and receive and work with incoming SMS mes-
sages, you can incorporate useful SMS features into your application.

7.6 Summary
Our trip through the Android telephony-related APIs covered several important topics.
After a brief overview of some telephony terms, we examined Android-specific APIs.

 You accessed telephony information with the TelephonyManager, including device
and SIM card data and phone state. From there, we addressed hooking in a Phone-
StateListener to react to phone state changes.

 Besides retrieving data, you also learned how to dial the phone using built-in
intents and actions, intercept outgoing phone calls, and format numbers with the
PhoneNumberUtils class. After we covered standard voice usages, we looked at how to
send and receive SMS messages using the SmsManager and SmsMessage classes.

 In the next chapter, we’ll turn to the specifics of interacting with notifications and
alerts on the Android platform. We’ll also revisit SMS, and you’ll learn how to notify
users of events, such as an incoming SMS, by putting messages in the status bar, flash-
ing a light, or even making the phone vibrate.

(Continued)
encoding, the sender, SMS service center address, and much more. To access this
metadata, mobile SMS applications almost always use PDUs to encode the contents
of a SMS message. For more information about PDUs and the metadata they provide,
refer to the specification titled “Technical Realization of the Short Message Service
(SMS)” which you can find at www.3gpp.org/ftp/Specs/html-info/23040.htm. This
document, part of the 3GPP TS 23.040 Specification, is extremely technical but will
help you with developing more sophisticated SMS applications.

Notifications and alarms
Today’s cell phones and tablets are expected to be not only phones but personal
assistants, cameras, music and video players, and instant-messaging clients, as well
as to do just about everything else a computer might do. With all these applications
running on phones and tablets, applications need a way to notify users to get their
attention or to take some sort of action, whether in response to an SMS, a new
voicemail, or an alarm reminding them of a new appointment. With Android 3.1
Google has updated notifications, refined them, and made them richer. These noti-
fications will be part of the next version of Android, currently code-named “ice
cream sandwich,” which will run on handsets as well.

 In this chapter, we’re going to look at how to use the Android Broadcast-
Receiver and the AlarmManager to notify users of these sorts of events. First, we’ll
discuss how to display quick, unobtrusive, and nonpersistent messages called

This chapter covers
 Building an SMS notification application

 Working with Toasts

 Working with the NotificationManager

 Using alarms and the AlarmManager

 Setting an alarm
206

207Introducing Toast
Toasts, based on an event. Second, we’ll talk about how to create persistent messages,
LED flashes, phone vibrations, and other events to alert the user. These events are
called notifications. Finally, we’ll look at how to trigger events by making alarm events
through the AlarmManager. Before we go too deeply into how notifications work, let’s
first create a simple example application.

8.1 Introducing Toast
For this example, you’ll create a simple interface that has two buttons that pop up a
message, called a Toast, on the screen. A Toast is a simple, nonpersistent message
designed to alert the user of an event. Toasts are a great way to let a user know that a
call is coming in, an SMS or email has arrived, or some other event has just happened.
Toasts are designed to take up minimal space, allowing the user to continue to inter-
act with the system without having to stop what they’re doing. Toasts, after popping
up, fade away without user intervention. A Toast is different from a message, such as a
status bar notification, which persists even when a phone is turned off or until the user
selects the notification or the Clear Notification button.

 First let’s define a simple layout.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

<TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 />
<Button android:id="@+id/button_short"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Short Message"
 android:layout_x="50px"
 android:layout_y="200px"
 />
<Button android:id="@+id/button_long"
 android:text="Long Message"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_x="150px"
 android:layout_y="200px"
 />

</LinearLayout>

Next let’s create the Activity that will display the Toast messages.

Listing 8.1 Main.xml

208 CHAPTER 8 Notifications and alarms

package com.msi.manning.chapter8.SimpleToast;

import android.app.Activity;
import android.os.Bundle;
import android.widget.Button;
import android.view.View;
import android.widget.Toast;

public class SimpleToast extends Activity
{
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 Button button = (Button) findViewById(R.id.button_short);
 button.setOnClickListener(new Button.OnClickListener()
 {
 public void onClick(View v)
 {
 Toast.makeText(SimpleToast.this, "A short Toast",

➥Toast.LENGTH_SHORT).show();
 }
 });

 button = (Button) findViewById(R.id.button_long);
 button.setOnClickListener(new Button.OnClickListener()
 {
 public void onClick(View v)
 {
 Toast.makeText(SimpleToast.this,"A Longer

➥Toast",Toast.LENGTH_LONG).show();
 }
 });
 }
}

As you can see, Toasts are simple to create. Generally all you need to do is instantiate
a Toast object with either of the makeText() methods. The makeText() methods take
three parameters: the application context, the text to display, and the length of time
to display the message. Normally, the syntax looks like this:

Toast toast = Toast.makeText(context, text, duration);

The duration is always either LENGTH_SHORT or LENGTH_LONG, and text can be a
resource id or a string. You can display the Toast by calling the show() method. In
this example, we have chained the methods B. If you run this project and click one of
the buttons, you should see something like figure 8.1.

 Although Toasts are simple, they can be useful for providing information to users.
With Android 3.0, they’re more flexible, allowing custom positioning and styling that
was lacking in earlier versions of Android. To show off some of these newer features,
let’s make a few changes to the application. First, let’s look at how to reposition the

Listing 8.2 SimpleToast.java

Simple Toast created with
short display durationB

Toast with
long duration

209Placing your Toast message
Toast message so that instead of appearing in the default position, it shows in either
the upper-right corner or the lower-left corner.

8.2 Placing your Toast message
We want to display our short message in the upper-right corner. To do that, we can use
one of the Toast’s other methods: setGravity(). The setGravity() method allows
you to define exactly where you would like a Toast message to appear. It takes three
parameters: the Gravity constant, an x-position offset, and a y-position offset. The
syntax looks like this:

toast.setGravity(Gravity.TOP|Gravity.LEFT, 0, 0);

To use it in the example code, change the first Toast from

Toast.makeText(SimpleToast.this, "A short Toast", Toast.LENGTH_SHORT).show();

to

Toast toast = Toast.makeText(SimpleToast.this, "A short Toast",
Toast.LENGTH_SHORT);

 toast.setGravity(Gravity.TOP|Gravity.RIGHT, 0, 0);
 toast.show();

If you run this code, you should now see the Toast message in the upper-right corner
of your device, as shown in figure 8.2.

Figure 8.1 Simple example of a Toast message on a Xoom tablet

210 CHAPTER 8 Notifications and alarms
You can make the positioning much more specific by using the x and y offsets. Now
that you know how to position a Toast wherever you want, let’s make a truly custom
Toast by making a specialized Toast view.

NOTE For more information, see the Gravity class:
http://developer.android.com/reference/android/view/Gravity.html.

8.3 Making a custom Toast view
Making a custom Toast view is a little more involved than specifying its position, but
as you’ll see, it’s still straightforward. To make the custom Toast view, you first need to
define a new layout specifically for that Toast view. You can do this a number of ways,
including in your application’s code or in XML. Then all you need to do is pass the
view to setView(View) when you create the Toast message to display.

 Let’s create a new XML layout called customtoast.xml, in the layout directory.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/toast_layout_root"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="10dp"
 android:background="#DAAA" android:orientation="horizontal">
 <ImageView android:id="@+id/mandsm"

Listing 8.3 Customtoast.xml

Figure 8.2 Custom positioning of a Toast message

http://developer.android.com/reference/android/view/Gravity.html

211Making a custom Toast view
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:layout_marginRight="10dp"
 />
 <TextView android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:textColor="#FFFF"
 />
</LinearLayout>

As you can see, this is a simple layout. We define an ImageView to present a graphic
and a TextView to replace our need to use the makeText() method.

 Now we need to change the application code. For this example, we’ll only change
the first Toast message to use the custom view. Assuming you’re editing our original
code, you can change the code in the first onClick() method to look like the follow
listing.

protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 LayoutInflater inflater = getLayoutInflater();
 final View layout = inflater.inflate(R.layout.customtoast,
 (ViewGroup) findViewById(R.id.toast_layout_root));

 ImageView image = (ImageView) layout.findViewById(R.id.mandsm);
 image.setImageResource(R.drawable.mandsm);
 TextView text = (TextView) layout.findViewById(R.id.text);
 text.setText("Short custom message");

 Button button = (Button) findViewById(R.id.button_short);
 button.setOnClickListener(new Button.OnClickListener()
 {
 public void onClick(View v)
 {
 Toast toast = new Toast(getApplicationContext());
 toast.setGravity(Gravity.TOP|Gravity.RIGHT, 200, 200);
 toast.setDuration(Toast.LENGTH_LONG);
 toast.setView(layout);
 toast.show();
 }
 });

We use several classes and methods that you should be familiar with from earlier chap-
ters. The getLayoutInflater() method retrieves the LayoutInflater to instantiate
the customtoast layout XML B. Then we use the inflater to inflate the XML C. Next
we set the ImageView and the TextView, from the custom layout, and after that we cre-
ate a Toast. Note that we don’t use makeText() when we create the Toast, because
we’ve defined a custom TextView and ImageView D.

Listing 8.4 Modified application code

Instantiate layout XMLB

Inflate XMLC

Hold new
Toast viewD

212 CHAPTER 8 Notifications and alarms
When you run the code, you should get a result like that shown in figure 8.3.
Toasts are used in almost all major Android applications. But sometimes you need

to call the user’s attention to an event until the user takes some sort of action; a Toast
can’t do this, because it goes away on its own. Such persistent messages to the user are
called notifications; in the next section, we’ll look at how they work and what you can
do with them.

8.4 Introducing notifications
In the previous section, we showed how simple it is to create a quick, unobtrusive mes-
sage to let the user know that some event has happened or to provide them some use-
ful information. In this section, we’re going to look at how to create a persistent
notification that not only shows up in the status bar, but stays in a notification area
until the user deletes it. To do that, we need to use the classes Notification and
NotificationManager.

8.4.1 The Notification class

A notification on Android can be many things, ranging from a pop-up message, to a
flashing LED, to a vibration, but all these actions start with and are represented by the
Notification class. The Notification class defines how you want to represent a noti-
fication to a user. This class has three constructors, one public method, and a number
of fields. Table 8.1 summarizes the class.

Figure 8.3 A custom Toast message with embedded graphic

213Introducing notifications
As you can see, the Notification class has numerous fields; it has to describe every
way you can notify a user. The NotificationManager class, though, is required in
order to use the Notification class, because it’s the system service that executes and
manages notifications. Using a notification follows these steps:

Table 8.1 Notification fields

Access Type Method Description

public int audioStreamType Stream type to use when playing a sound

public RemoteViews contentView View to display when the statusBar-Icon is
selected in the status bar

public PendingIntent contentIntent Intent to execute when the icon is clicked

public int defaults Defines which values should be taken from
defaults

public int deleteIntent Intent to execute when the user clicks the
Clear All Notifications button

public flags Places all flags in the flag fields as bits

public PendingIntent fullScreenIntent Intent to launch instead of posting the notifi-
cation in status bar

public int icon Resource ID of a drawable to use as the icon in
the status bar

public Int iconLevel Level of an icon in the status bar

public bitmap largeIcon Bitmap that may be bigger than the bounds of
the panel

public int ledARGB Color of the LED notification

public int ledOffMS Number of milliseconds for the LED to be off
between flashes

public int ledOnMS Number of milliseconds for the LED to be on
for each flash

public Int number Number of events represented by this
notification

public ContentURI sound Sound to play

public CharSequence tickerText Text to scroll across the screen when this item
is added to the status bar

public RemoteViews tickerView View shown by the ticker notification in the sta-
tus bar

public long[] vibrate Vibration pattern to use

public long when Timestamp for the notification

214 CHAPTER 8 Notifications and alarms
NotificationManager myNotificationManager;
private static final int NOTIFICATION_ID = 1;
myNotificationManager =

➥(NotificationManager)getSystemService(Context.NOTIFICATION_SERVICE);

Here we set up a NotificationManager and instantiate it.
 Next we use the Notification.Builder to set Notification objects such as the

message icon for the notification, the title, and much more. The Notification
.Builder provides a much simpler mechanism for building notifications than in pre-
vious versions of Android:

Notification.Builder builder = new Notification.Builder(this);
builder.setTicker("Message to Show when Notification pops up");
builder.setContentTitle ("Title of Message");
builder.setSmallIcon(R.drawable.icon);
builder.setContentText("- Message for the User -");

Intent notificationIntent = new Intent(this, SimpleNotification.class);
PendingIntent contentIntent = PendingIntent.getActivity(this, 0,

➥notificationIntent, 0);
builder.setContentIntent(contentIntent);

Next we create PendingIntent for the Builder. You must create a PendingIntent for
all notifications.

 Finally, to send the notification, all you have to do is use the notify() method and
supply the Notification ID as well as the builder:

myNotificationManager.notify(NOTIFICATION_ID, builder.getNotification());

Here the notify() method wakes up a thread that performs the notification task you
have defined. You can use either an Activity or a Service to trigger the notification,
but generally you’ll want to use a Service because a Service can trigger a notification
in the background regardless of whether it’s the active application at the time.

8.4.2 Notifying a user with a simple button press

Based on the previous example, let’s make a simple interface with two buttons: one
that will trigger the notification and one that will clear it. Make a new project, and first
define the layout in main.xml as in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 />
<Button android:id="@+id/button_cn"

Listing 8.5 main.xml

215Introducing notifications
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Create Notification"
 android:layout_x="50px"
 android:layout_y="200px"
 />
<Button android:id="@+id/button_dn"
 android:text="Clear Notification"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_x="150px"
 android:layout_y="200px"
 />
</LinearLayout>

Now that we have our layout, let’s create the Activity that will trigger the notification.
(We’re using an Activity in this example for simplicity’s sake.) Make an Activity
called SimpleNotification, as shown in the following listing.

public class SimpleNotification extends Activity
{
 NotificationManager myNotificationManager;
 private static final int NOTIFICATION_ID = 1;

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 Button myGen = (Button)findViewById(R.id.button_cn);
 myGen.setOnClickListener(myGenOnClickListener);
 Button myClear = (Button)findViewById(R.id.button_dn);
 myClear.setOnClickListener(myClearOnClickListener);
}

private void GenerateNotification(){

 myNotificationManager =

➥(NotificationManager)getSystemService(Context.NOTIFICATION_SERVICE);
 Notification.Builder builder = new Notification.Builder(this);
 builder.setContentTitle ("Attention Please!");
 builder.setTicker("*** Notification ***");
 builder.setSmallIcon(R.drawable.notand);
 builder.setContentText("- Message for the User -");

 Intent notificationIntent =

➥new Intent(this, SimpleNotification.class);
 PendingIntent contentIntent = PendingIntent.getActivity(this, 0,

➥notificationIntent, 0);
 builder.setContentIntent(contentIntent);

 myNotificationManager.notify(NOTIFICATION_ID,

➥builder.getNotification());
}

Button.OnClickListener myGenOnClickListener =
 new Button.OnClickListener(){

Listing 8.6 SimpleNotification.java

BGet reference to
NotificationManager

C
Set up new

Notification.Builder

Set up Intent and
PendingIntent

D

216 CHAPTER 8 Notifications and alarms
 public void onClick(View v) {
 GenerateNotification();
 }
 };

Button.OnClickListener myClearOnClickListener =
 new Button.OnClickListener(){

 public void onClick(View v) {
 myNotificationManager.cancel(NOTIFICATION_ID);
 }

};
}

As you can see, the code for creating a notification is straightforward and follows the
same process we outlined earlier. In this example, we have two buttons. The first calls
the GenerateNotification() method, where we first get a reference to the
NotificationManager B. Then we build the message that we’ll pass to the user C.
Next we set up a PendingIntent D and then send the notification. If you build the
project, run it, and click the Create Notification button, you should see something
like figure 8.4.

8.5 Making a custom notification view
Just like Toasts, you can make custom views for notifications. One excellent example
is the Gmail application that ships with the Xoom. If you check your email, the notifi-
cations that pop up in the notification area include not only the subject of the email

Figure 8.4 Notification being displayed on a Xoom tablet

217Making a custom notification view
but, if available, the image associated with the person. Much as you do with Toasts, to
create a custom view for a Notification you need to first define a layout either in the
application code or in XML. For this example, we’ll use XML. In the example, create
the customnotification.xml file in your layout directory.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="#000" android:orientation="horizontal">
 >
 <ImageView android:id="@+id/avatar"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:layout_marginRight="10dp"
 />
 <TextView android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:textColor="#FFF"
 />
 <TextView android:id="@+id/textTicker"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:textColor="#FFF"
 />
</LinearLayout>

Now we’ll change the application code somewhat from the previous notification
example, to use the new custom layout.

private void GenerateNotification(){

 String contenttitle = "Attention Please!";
 String contenttext = "- Message for the User -" ;

 RemoteViews layout = new RemoteViews(getPackageName(),

➥R.layout.customnotification);
 layout.setTextViewText(R.id.text, contenttitle);
 layout.setTextViewText(R.id.textTicker, contenttext);
 layout.setImageViewResource(R.id.avatar, R.drawable.mandsm);

 myNotificationManager =

➥(NotificationManager)getSystemService(Context.NOTIFICATION_SERVICE);
 Notification.Builder builder = new Notification.Builder(this);
 builder.setContentTitle (contenttitle);
 builder.setTicker("*** Notification ***");
 builder.setSmallIcon(R.drawable.notand);
 builder.setContentText(contenttext);

 builder.setContent(layout);

Listing 8.7 customnotification.xml

Listing 8.8 SimpleNotification.java

Define image and
text for layout

B

Pass RemoteViews
reference to
Notification.Builder

C

218 CHAPTER 8 Notifications and alarms
 Intent notificationIntent = new Intent(this, SimpleNotMessage.class);
 PendingIntent contentIntent = PendingIntent.getActivity(this, 0,

➥notificationIntent, 0);
 builder.setContentIntent(contentIntent);

 myNotificationManager.notify(NOTIFICATION_ID, builder.getNotification());
}

We use a RemoteViews to set the text and image we plan to use inside the notification
B. When we’ve done that, we can pass the reference to the RemoteViews to the
Notification.Builder that will create the customer notification when the new code
is run C. Run the code and click Create Notification to open the notification shown
in figure 8.5.

 As you can see, creating a custom notification is straightforward. That being said,
you can make a notification even more sophisticated by having it flash an LED, play
sounds, vibrate the device, or perform any other number of actions by using the
Notification.Builder’s various setters. For example, you could have the previous
code turn on an LED on the device by adding this single line:

builder.setLights(0xFFff0000,1000,100);

The first parameter is the Red, Green, Blue (RGB) value of the LED, the second value
is the number of milliseconds the LED should stay on, and the last value is how long
the LED should stay off before going back on.

Figure 8.5 Custom styling for a notification on the Xoom

219Introducing alarms
 You could also add sound to a notification using the Notification.Builder like
this:

builder.setSound(Uri.parse("File///sdcard/music/Travis-Sing.mp3"));

There are also numerous other options. For now, we’ll move on and look at alarms in
Android 3.0.

8.6 Introducing alarms
In Android, alarms allow you to schedule your application to run at some point in the
future. Alarms can be used for a wide range of applications, from notifying a user of
an appointment to something more sophisticated, such as having an application start,
checking for software updates, and then shutting down. An alarm works by register-
ing an Intent with the alarm; at the scheduled time, the alarm broadcasts the
Intent. Android automatically starts the targeted application, even if the Android
handset is asleep.

 Android manages all alarms somewhat as it manages the NotificationManager—
via an AlarmManager class. The AlarmManager has the methods described table 8.2.

You retrieve the AlarmManager indirectly (as you do the NotificationManager), by
using Context.getSystemService(Context.ALARM_SERVICE).

 Setting alarms is easy, like most things in Android. In the next example, you’ll cre-
ate a simple application that sets an alarm when a button is clicked. When the alarm
is triggered, it will pass back a simple Toast to inform you that the alarm has been
fired.

Table 8.2 AlarmManager public methods

Returns Method description

void cancel(PendingIntent intent) Remove alarms with matching
Intent.

void set(int type, long triggerAtTime,
PendingIntent operation)

Set an alarm.

void setInexactRepeating(int type,
long triggerAtTime, long interval,
PendingIntent operation)

Repeating alarm that has inex-
act trigger requirements.

void setRepeating(int type, long triggerAtTime,
long interval, PendingIntent operation)

Set a repeating alarm.

void setTime(long milliseconds) Set the time for an alarm.

void setTimeZone(String TimeZone) Set the time zone for the alarm.

220 CHAPTER 8 Notifications and alarms
8.6.1 Creating a simple alarm example

In this next example, you’ll create an Android project called SimpleAlarm that has
the package name com.msi.manning.chapter8.simpleAlarm, the application name
SimpleAlarm, and the Activity name GenerateAlarm. This project uses another
open source icon, which you can find at www.manning.com/ableson3/ or in the
download for this chapter. Change the name of the icon to clock, and add it to the
res/drawable directory of the project when you create it.

 Next, edit the AndroidManifest.xml file to have a receiver (you’ll create that soon)
called AlarmReceiver, as shown in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.chapter8.simpleAlarm">
 <uses-sdk android:minSdkVersion="11"></uses-sdk>
 <application android:icon="@drawable/clock">
 <activity android:name=".GenerateAlarm"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name=".AlarmReceiver" android:process=":remote"

➥/>
 </application>
</manifest>

Next, edit the string.xml file in the values directory, and add two new strings:

<string name="set_alarm_text">Set Alarm</string>
<string name="alarm_message">Alarm Fired</string>

You’ll use this as the value of the button in the layout. Next, edit the main.xml file to
add a new button to the layout:

<Button android:id="@+id/set_alarm_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/set_alarm_text">
<requestFocus />
</Button>

You’re ready to create a new class that will act as the Receiver for the notification the
alarm will generate, as shown in the following listing. In this case, you’ll generate a
Toast-style notification to let the user know the alarms have been triggered. This class
waits for the alarm to broadcast to the AlarmReceiver and then generates the Toast.

Listing 8.9 AndroidManifest.xml

www.manning.com/ableson/

221Introducing alarms
public class AlarmReceiver extends BroadcastReceiver {

 public void onReceive(Context context, Intent intent) {
 try {
 Toast.makeText(context, R.string.app_name,

➥Toast.LENGTH_SHORT).show(); }
 catch (Exception r) { Toast.makeText(context, "woops",

➥Toast.LENGTH_SHORT).show();}

 }

}

Next, edit the SimpleAlarm class to create a button widget (as discussed in chapter 3)
that calls the inner class setAlarm. In setAlarm, we create an onClick method that
will schedule the alarm, call the Intent, and fire off the Toast. The following listing
shows what the finished class should look like.

public class GenerateAlarm extends Activity {

 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);

setContentView(R.layout.main);
 Button button = (Button) findViewById(R.id.set_alarm_button);
 button.setOnClickListener(this.mOneShotListener);
 }

 private OnClickListener mOneShotListener = new OnClickListener() {

 public void onClick(View v) {

 Intent intent = new Intent(GenerateAlarm.this,

➥AlarmReceiver.class

 PendingIntent appIntent =

➥PendingIntent.getBroadcast(GenerateAlarm.this,

➥0, intent, 0);
 long triggerAlarm = System.currentTimeMillis() + 30000;

 AlarmManager am = (AlarmManager)

➥getSystemService(Context.ALARM_SERVICE);
 am.set(AlarmManager.RTC_WAKEUP, triggerAlarm, appIntent);

 }
 };

}

As you can see, this class is simple. We create a Button to trigger the alarm B. Next,
we create an inner class for mOneShotListener. Then, we create the Intent to be trig-
gered when the alarm goes off C. In the next section of code, we use the Calendar

Listing 8.10 AlarmReceiver.java

Listing 8.11 GenerateAlarm.java

Broadcast Toast when
Intent is received

Set up Button to call
mOneShotListener

B

Create Intent to fire
when alarm goes off

C

Create
AlarmManager

D

222 CHAPTER 8 Notifications and alarms
class to help calculate the number of milliseconds from the time the button is clicked,
which we’ll use to set the alarm.

 Now we’ve done everything necessary to create and set the alarm. We create the
AlarmManager D and then call its set() method to set the alarm. To see a little more
detail of what’s going on in the application, look at these lines of code:

AlarmManager am = (AlarmManager) getSystemService(Context.ALARM_SERVICE);
 am.set(AlarmManager.RTC_WAKEUP, triggerAlarm, appIntent);

These lines are where we create and set the alarm by first using getSystemService()
to create the AlarmManager. The first parameter we pass to the set() method is
RTC_WAKEUP, which is an integer representing the alarm type we want to set. The
AlarmManager currently supports four alarm types, as shown in table 8.3.

You can use multiple types of alarms, depending on your requirements. RTC_WAKEUP,
for example, sets the alarm time in milliseconds; when the alarm goes off, it’ll wake
the device from sleep mode for you, as opposed to RTC, which won’t.

 The next parameter we pass to the method is the time, in milliseconds, for when
we want the alarm to be triggered. We do this with the following snippet by adding the
number of milliseconds to the current time:

long triggerAlarm = System.currentTimeMillis() + 30000

The last parameter is the Intent to which we want to broadcast, which is the Intent-
Receiver. Now, build the application and run it.

 Clicking the Set Alarm button sets the alarm; after 30 seconds, you should see
something like figure 8.6, displaying the Toast message.

8.6.2 Using notifications with alarms

Creating an alarm is pretty easy in Android, but what might make more sense would
be for that alarm to trigger a notification in the status bar. To do that, you need to add
a NotificationManager and generate a Notification. We’ve created a new method

Table 8.3 AlarmManager alarm types

Type Description

ELAPSED_REALTIME Alarm time in SystemClock.elapsedRealtime() (time since
boot, including sleep).

ELAPSED_REALTIME_WAKEUP Alarm time in SystemClock.elapsedRealtime() (time since
boot, including sleep). This will wake up the device when it goes
off.

RTC Alarm time in System.currentTimeMillis() (wall clock time
in UTC).

RTC_WAKEUP Alarm time in System.currentTimeMillis() (wall clock time
in UTC). This will wake up the device when it goes off.

223Introducing alarms
to add to listing 8.11 called showNotification(), which takes four parameters and
creates a Notification:

 Intent contentIntent = new Intent(this, SetAlarm.class);
 PendingIntent theappIntent =

➥PendingIntent.getBroadcast(SetAlarm.this, 0, contentIntent, 0);
 Notification.Builder builder = new Notification.Builder(this);
 builder.setContentTitle ("Attention Please!");
 builder.setTicker("Alarm");
 builder.setSmallIcon(statusBarIconID);
 builder.setContentText("- Message for the User -");
 builder.setContentIntent(theappIntent);

 nm.notify(NOTIFICATION_ID, builder.getNotification());

Much of this code is similar to the SimpleNotMessage code. To add it to your
GenerateAlarm, edit listing 8.10 to look like listing 8.12; the only other things we’ve
done are to import the Notification and NotificationManager into the code and
add the private variables nm and NOTIFICATION_ID.

public class AlarmReceiver extends BroadcastReceiver {

 private NotificationManager nm;
 private int NOTIFICATION_ID;

 public void onReceive(Context context, Intent intent) {

 this.nm = (NotificationManager)

Listing 8.12 AlarmReceiver.java

Figure 8.6 After the alarm runs, the application shows a simple Toast message.

224 CHAPTER 8 Notifications and alarms
➥context.getSystemService(Context.NOTIFICATION_SERVICE);

 Intent contentIntent = new Intent(context, AlarmReceiver.class);
 PendingIntent theappIntent = PendingIntent.getBroadcast(context, 0,

➥contentIntent, 0);

 Notification.Builder builder =

➥new Notification.Builder(context);
 builder.setContentTitle ("Attention Please!");
 builder.setTicker("Alarm");
 builder.setSmallIcon(R.drawable.alarm);
 builder.setContentText("- Message for the User -");
 builder.setContentIntent(theappIntent);
 nm.notify(NOTIFICATION_ID, builder.getNotification());
 abortBroadcast();
 }

}

Now edit GenerateAlarm.java so it looks like listing 8.13.

}
public class GenerateAlarm extends Activity {

 Toast mToast;
 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 Button button = (Button) findViewById(R.id.set_alarm_button);
 button.setOnClickListener(this.mOneShotListener);
 }

 private OnClickListener mOneShotListener = new OnClickListener() {
 public void onClick(View v) {
 Intent intent = new Intent(GenerateAlarm.this,

➥AlarmReceiver.class);
 PendingIntent appIntent =

➥PendingIntent.getBroadcast(GenerateAlarm.this, 0, intent, 0);
 Calendar calendar = Calendar.getInstance();
 calendar.setTimeInMillis(System.currentTimeMillis());
 calendar.add(Calendar.SECOND, 30);
 AlarmManager am = (AlarmManager)

➥getSystemService(Context.ALARM_SERVICE);
 am.set(AlarmManager.RTC_WAKEUP, calendar.getTimeInMillis(),

➥appIntent);
 NotificationManager nm = (NotificationManager)

➥getSystemService(Context.NOTIFICATION_SERVICE);
 nm.cancel(R.string.app_name);
 Toast.makeText(GenerateAlarm.this,

➥"alarm fired wait 30 seconds", Toast.LENGTH_SHORT).show();
 }
 };
}

If you run the code and click Set Alarm, you should see the alarm notification in the
status bar as shown in figure 8.7. You could easily edit this code to take parameters for
time and date, have it show different Intents when the icons are clicked, and so on.

Listing 8.13 GenerateAlarm.java

Build
notification

225Summary
As you can see from this example, Android alarms and the AlarmManager are straight-
forward, and you should be able to easily integrate them into your applications.

8.7 Summary
In this chapter, we’ve looked at three separate but related items: Toast, Notification,
and Alarm. You learned that for simple, nonpersistent messages, the Toast class pro-
vides an easy and convenient way to alert the user. We also discussed how to use the
NotificationManager to generate simple to relatively complex notifications. Then
you used the Notification class to present a notification to the user by building an
example that displays a message in the status bar, vibrates a phone, or even flashes an
LED when an SMS messages arrives in the inbox.

 We also looked at how to set an alarm to cause an application to start or take some
action in the future, including waking the system from sleep mode. Finally, we talked
about how to trigger a notification from an alarm. Although the code presented in
these examples gives you a taste of what can be done, notifications and alarms both
have broad applications limited only by your imagination.

 Now that you have an understanding of how to work with the Notification and
Alarm classes, we’re going to move on a discussion of graphics and animation. In
chapter 9, you’ll learn the basic methods of generating graphics in Android, how to
create simple animations, and even how to work with OpenGL to generate stunning
3D graphics.

Figure 8.7 Alarm notification shown in the status bar

Graphics and animation
By now, you should’ve picked up on the fact that it’s much easier to develop
Android applications than it is to use other mobile application platforms. This ease
of use is especially apparent when you’re creating visually appealing UIs and meta-
phors, but there’s a limit to what you can do with typical Android UI elements
(such as those we discussed in chapter 3). In this chapter, we’ll look at how to cre-
ate graphics using Android’s Graphics API, discuss how to develop animations, and
explore Android’s support for the OpenGL standard, as well as introduce you to
Android’s new cross-platform, high-performance graphics language RenderScript.
(To see examples of what you can do with Android’s graphics platform, go to
www.omnigsoft.com/Android/ADC/readme.html.)

 First, we’re going to show you how to draw simple shapes using the Android 2D
Graphics API, using Java and then XML to describe 2D shapes. Next, we’ll look at
making simple animations using Java and the Graphics API to move pixels around,
and then using XML to perform a frame-by-frame animation. After that we’ll exam-
ine Android’s support of the OpenGL ES API, make a simple shape, and then make

This chapter covers
 Drawing graphics in Android

 Applying the basics of OpenGL for embedded systems (ES)

 Animating with Android
226

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html

227Drawing graphics in Android
a more complex, rotating, three-dimensional shape. Finally we’ll introduce Render-
Script, a low-level, C-derived, native language that allows developers to take advantage
of multicore systems and graphics accelerators to make more performant, visually
intensive applications.

 If you’ve ever worked with graphics in Java, you’ll likely find the Graphics API and
how graphics work in Android familiar. If you’ve worked with OpenGL, you’ll find
Android’s implementation of OpenGL ES reasonably straightforward. You must
remember, though, that cell phones, tablets, and other mobile devices don’t have the
graphical processing power of a desktop. Regardless of your experience, you’ll find
the Android Graphics API both powerful and rich, allowing you to accomplish even
some of the most complex graphical tasks.

NOTE You can find more information on the differences between
OpenGL and OpenGL ES to help you determine the level of effort in
porting code at the Khronos website. For example, the OpenGL ES 1.5
specification at http://mng.bz/qapb provides information on differ-
ences between OpenGL and OpenGL ES.

9.1 Drawing graphics in Android
In this section, we’ll cover Android’s graphical capabilities and show you examples of
how to make simple 2D shapes. We’ll be applying the android.graphics package (see
http://mng.bz/CIFJ), which provides all the low-level classes you need to create
graphics. The graphics package supports such things as bitmaps (which hold pixels),
canvases (what your draw calls draw on), primitives (such as rectangles and text), and
paints (which you use to add color and styling). Although these aren’t the only graph-
ics packages, they’re the main ones you’ll use in most applications. Generally, you use
Java to call the Graphics API to create complex graphics.

 To demonstrate the basics of drawing a shape with Java and the Graphics API, let’s
look at a simple example in the following listing, where we’ll draw a rectangle.

 package com.msi.manning.chapter9.SimpleShape;
 public class SimpleShape extends Activity {
 @Override
 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(new SimpleView(this));
 }
 private static class SimpleView extends View {
 private ShapeDrawable mDrawable =
 new ShapeDrawable();
 public SimpleView(Context context) {
 super(context);
 setFocusable(true);
 this.mDrawable =
 new ShapeDrawable(new RectShape());
 this.mDrawable.getPaint().setColor(0xFFFF0000);

Listing 9.1 simpleshape.java

Create new
ShapeDrawable
to hold Drawable

B

Set up ViewC

Create Rectangle,
assign to mDrawable

D

http://mng.bz/qapb
http://code.google.com/android/reference/android/graphics/package-summary.html

228 CHAPTER 9 Graphics and animation
 }
 @Override
 protected void onDraw(Canvas canvas) {
 int x = 10;
 int y = 10;
 int width = 300;
 int height = 50;
 this.mDrawable.setBounds(x, y, x + width, y + height);
 this.mDrawable.draw(canvas);
 y += height + 5;
 }
 }
}

First, we need to import the necessary packages, including graphics. Then we import
ShapeDrawable, which will support adding shapes to our drawing, and then shapes,
which supports several generic shapes (including
RectShape) that we’ll use. Next, we need to create B
and then set up a View C. After this, we create a new
ShapeDrawable to add our Drawable to D. After we
have a ShapeDrawable, we can assign shapes to it. In
the code, we use the RectShape, but we could’ve used
OvalShape, PathShape, RectShape, RoundRectShape,
or Shape. We then use the onDraw() method to draw
the Drawable on the Canvas. Finally, we use the
Drawable’s setBounds() method to set the boundary
(a rectangle) in which we’ll draw our rectangle using
the draw() method.

 When you run listing 9.1, you should see a simple
rectangle like the one shown in figure 9.1 (it’s red,
although you can’t see the color in the printed book).

 Another way to do the same thing is through
XML. Android allows you to define shapes to draw in
an XML resource file.

9.1.1 Drawing with XML

With Android, you can create simple drawings using an XML file approach. You might
want to use XML for several reasons. One basic reason is because it’s simple to do.
Also, it’s worth keeping in mind that graphics described by XML can be programmati-
cally changed later, so XML provides a simple way to do initial design that isn’t neces-
sarily static.

 To create a drawing with XML, create one or more Drawable objects, which are
defined as XML files in your drawable directory, such as res/drawable. The XML to
create a simple rectangle looks like this:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android">

Figure 9.1 A simple rectangle
drawn using Android’s Graphics API

229Drawing graphics in Android
 <solid android:color="#FF0000FF"/>
</shape>

With Android XML drawable shapes, the default is a rectangle, but you can choose a
different shape by using the type tag and selecting the value oval, rectangle, line,
or arc. To use your XML shape, you need to reference it in a layout, as shown in
listing 9.2. The layout resides in res/layout.

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <ImageView android:layout_width="fill_parent"
 android:layout_height="50dip"
 android:src="@drawable/simplerectangle" />
 </LinearLayout>
</ScrollView>

All you need to do is create a simple Activity and place the UI in a ContentView, as
follows:

public class XMLDraw extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.xmldrawable);
 }
}

Listing 9.2 xmllayout.xml

ARGB color values
Android uses of Alpha, Red, Green, Blue (ARGB) values common in the software
industry for defining color values throughout the Android API. In RGB, colors are
defined as ints made up of four bytes: red, green, and blue, plus an alpha. Each value
can be a number from 0 to 255 that is converted to hexadecimal (hex). The alpha
indicates the level of transparency from 0 to 255.

For example, to create a transparent yellow, we might start with an alpha of 50.2%
transparency, where the hex value is 0x80: this is 128, which is 50.2% of 255. To
get yellow, we need red plus green. The number 255 in hex for red and green is FF.
No blue is needed, so its value is 00. Thus a transparent yellow is 80FFFF00. This
may seem confusing, but numerous ARGB color charts are available that show the
hexadecimal values of a multitude of colors.

230 CHAPTER 9 Graphics and animation
If you run this code, it draws a simple rectangle. You can make more complex draw-
ings or shapes by stacking or ordering XML drawables, and you can include as many
shapes as you want or need, depending on space. Let’s explore what multiple shapes
might look like next.

9.1.2 Exploring XML drawable shapes

One way to draw multiple shapes with XML is to create multiple XML files that repre-
sent different shapes. A simple way to do this is to change the xmldrawable.xml file
to look like the following listing, which adds a number of shapes and stacks them
vertically.

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <ImageView android:layout_width="fill_parent"
 android:layout_height="50dip"
 android:src="@drawable/shape_1" />
 <ImageView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:src="@drawable/shape_2" />
 <ImageView
 android:layout_width="fill_parent"
 android:layout_height="50dip"
 android:src="@drawable/shape_3" />
 <ImageView
 android:layout_width="fill_parent"
 android:layout_height="50dip"
 android:src="@drawable/shape_4" />
 </LinearLayout>
</ScrollView>

Try adding any of the shapes shown in the following code snippets into the res/draw-
able folder. You can sequentially name the files shape_n.xml, where n is some number.
Or you can give the files any acceptable name as long as the XML file defining the
shape is referenced in the xmldrawable.xml file.

 In the following code, we’re creating a rectangle with rounded corners. We’ve
added a tag called padding, which allows us to define padding or space between the
object and other objects in the UI:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
type="oval" >
 <solid android:color="#00000000"/>
 <padding android:left="10sp" android:top="4sp"

Listing 9.3 xmldrawable.xml

http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://www.manning.com/AndroidinActionSecondEdition
http://www.manning.com/AndroidinActionSecondEdition
http://www.manning.com/AndroidinActionSecondEdition

231Creating animations with Android’s Graphics API
 android:right="10sp" android:bottom="4sp" />
 <stroke android:width="1dp" android:color="#FFFFFFFF"/>
</shape>

We’re also using the stroke tag, which allows us to define the style of the line that
makes up the border of the oval, as shown here:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android">
 <solid android:color="#FF0000FF"/>
 <stroke android:width="4dp" android:color="#FFFFFFFF"
 android:dashWidth="1dp" android:dashGap="2dp" />
 <padding android:left="7dp" android:top="7dp"
 android:right="7dp" android:bottom="7dp" />
 <corners android:radius="4dp" />
</shape>

The next snippet introduces the corners tag, which allows us to make rounded cor-
ners with the attribute android:radius:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
type="oval">
 <gradient android:startColor="#FFFF0000" android:endColor="#80FF00FF"
 android:angle="270"/>
 <padding android:left="7dp" android:top="7dp"
 android:right="7dp" android:bottom="7dp" />
 <corners android:radius="8dp" />
</shape>

Finally, we create a shape of the type line with a size tag using the android:height
attribute, which allows us to describe the number of pixels used on the vertical to size
the line:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
type="line" >
 <solid android:color="#FFFFFFFF"/>
 <stroke android:width="1dp" android:color="#FFFFFFFF"
 android:dashWidth="1dp" android:dashGap="2dp" />
 <padding android:left="1dp" android:top="25dp"
 android:right="1dp" android:bottom="25dp" />
 <size android:height="23dp" />
</shape>

If you run this code, you should see something like figure 9.2.
 As you can see, Android provides the ability for developers to programmatically

draw anything they need. In the next section, we’ll look at what you can draw with
Android’s animation capabilities.

9.2 Creating animations with Android’s Graphics API
If a picture says a thousand words, then an animation must speak volumes. Android
supports multiple methods of creating animation, including through XML, as you saw

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

232 CHAPTER 9 Graphics and animation
in chapter 3; via Android’s XML frame-by-frame animations using the Android Graph-
ics API; and via Android’s support for OpenGL ES. In this section, you’ll create a sim-
ple animation of a bouncing ball using Android’s frame-by-frame animation.

9.2.1 Android’s frame-by-frame animation

Android allows you to create simple animations by showing a set of images one after
another to give the illusion of movement, much like stop-motion film. Android sets
each frame image as a drawable resource; the images are then shown one after the
other in the background of a View. To use this feature, you define a set of resources in
an XML file and then call AnimationDrawable.start().

 To demonstrate this method for creating an animation, you need to download this
project from the Manning website (www.manning.com/ableson3) so you’ll have the
images. The images for this exercise are six representations of a ball bouncing. Next,
create a project called XMLanimation, and create a new directory called /anim under
the /res resources directory. Place all the images for this example in res/drawable.
Then, create an XML file called Simple_animation.xml that contains the code shown
in the following listing.

<?xml version="1.0" encoding="utf-8"?>
 <animation-list xmlns:android="http://schemas.android.com/apk/res/android"
 id="selected" android:oneshot="false">

Listing 9.4 Simple_animation.xml

Figure 9.2 Various shapes drawn using XML

www.manning.com/ableson3
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/

233Creating animations with Android’s Graphics API
 <item android:drawable="@drawable/ball1" android:duration="50" />
 <item android:drawable="@drawable/ball2" android:duration="50" />
 <item android:drawable="@drawable/ball3" android:duration="50" />
 <item android:drawable="@drawable/ball4" android:duration="50" />
 <item android:drawable="@drawable/ball5" android:duration="50" />
 <item android:drawable="@drawable/ball6" android:duration="50" />
 </animation-list>

The XML file defines the list of images to be displayed for the animation. The XML
<animation-list> tag contains the tags for two attributes: drawable, which describes
the path to the image, and duration, which describes the length of time to show the
image, in nanoseconds.

 Now, edit the main.xml file to look like the following listing.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ImageView android:id="@+id/simple_anim"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center"
 android:layout_centerHorizontal="true"
 />
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Hello World, XMLAnimation"
 />
</LinearLayout>

All we’ve done to the file is added an ImageView tag that sets up the layout for the
ImageView. Finally, create the code to run the animation, as follows.

public class XMLAnimation extends Activity
{
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 ImageView img =
 (ImageView)findViewById(R.id.simple_anim);
 img. setBackgroundResource(R.anim.simple_animation);
 MyAnimationRoutine mar =
 new MyAnimationRoutine();
 MyAnimationRoutine2 mar2 =
 new MyAnimationRoutine2();
 Timer t = new Timer(false);

Listing 9.5 main.xml

Listing 9.6 xmlanimation.java

Bind resources
to ImageView

Call subclasses to start
and stop animation

http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php

234 CHAPTER 9 Graphics and animation
 t.schedule(mar, 100);
 Timer t2 = new Timer(false);
 t2.schedule(mar2, 5000);
 }
 class MyAnimationRoutine extends TimerTask {
 @Override
 public void run() {
 ImageView img = (ImageView) findViewById(R.id.simple_anim);
 AnimationDrawable frameAnimation = (AnimationDrawable)
 img.getBackground();
 frameAnimation.start();
 }
 }
 class MyAnimationRoutine2 extends TimerTask {
 @Override
 public void run() {
 ImageView img = (ImageView) findViewById(R.id.simple_anim);
 AnimationDrawable frameAnimation = (AnimationDrawable)
 img.getBackground();
 frameAnimation.stop();
 }
 }
}

Listing 9.6 may be slightly confusing because we’ve used the TimerTask classes.
Because we can’t control the animation from within the OnCreate() method, we
need to create two such subclasses to call AnimationDrawable’s start() and stop()
methods, respectively. The first subclass, MyAnimationRoutine, extends TimerTask B
and calls the frameAnimation.start() method for the AnimationDrawable bound to
the ImageView background. If you run the project now, you should see something
like figure 9.3.

 As you can see, creating an Animation with XML in Android is pretty simple. You
can make animations that are reasonably complex, as you would with any stop-motion-
type movie; but to create more sophisticated animations programmatically, you need
to use Android’s 2D and 3D graphics abilities. In the next section, we’ll show you how
to do just that.

9.2.2 Programmatically creating an animation

In the previous section, you used Android’s frame-by-frame animation capabilities to
show a series of images in a loop that gives the impression of movement. In this sec-
tion, you’ll programmatically animate a globe so that it moves around the screen.

 To create this animation, you’ll animate a graphics file (a PNG file) with a ball that
appears to be bouncing around inside the Android viewing window. You’ll create a
Thread in which the animation will run and a Handler that will help communicate
back to the program messages that reflect the changes in the state of the animation.
You’ll use this same approach in section 9.3 when we talk about OpenGL ES. You’ll
find that this approach is useful for creating most complex graphics applications and
animations.

Allow wait time before
starting animation

B

235Creating animations with Android’s Graphics API
CREATING THE PROJECT

This example’s animation technique uses an image bound to a sprite. In general, sprite
refers to a two-dimensional image or animation that is overlaid onto a background or
more complex graphical display. For this example, you’ll move the sprite around the
screen to give the appearance of a bouncing ball. To get started, create a new project
called BouncingBall with a BounceActivity. You can copy and paste the code in the
following listing for the BounceActivity.java file.

public class BounceActivity extends Activity {
 protected static final int GUIUPDATEIDENTIFIER = 0x101;
 Thread myRefreshThread = null;
 BounceView myBounceView = null;
 Handler myGUIUpdateHandler = new Handler() {
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case BounceActivity.GUIUPDATEIDENTIFIER:
 myBounceView.invalidate();
 break;
 }
 super.handleMessage(msg);
 }
 };
 @Override
 public void onCreate(Bundle icicle) {

Listing 9.7 BounceActivity.java

Figure 9.3 Making a ball bounce using an Android XML animation

Create unique
identifier

B

Create handlerC

236 CHAPTER 9 Graphics and animation
 super.onCreate(icicle);
 this.requestWindowFeature(Window.FEATURE_NO_TITLE);
 this.myBounceView = new BounceView(this);
 this.setContentView(this.myBounceView);
 new Thread(new RefreshRunner()).start();
 }
 class RefreshRunner implements Runnable {
 public void run() {
 while (!Thread.currentThread().isInterrupted()) {
 Message message = new Message();
 message.what = BounceActivity.GUIUPDATEIDENTIFIER;
 BounceActivity.this.myGUIUpdateHandler
.sendMessage(message);
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 }
 }
}

First we import the Handler and Message classes, and then we create a unique identi-
fier to allow us to send a message back to our program to update the View in the main
thread. We need to send a message telling the main thread to update the View each
time the child thread has finished drawing the ball. Because different messages can be
thrown by the system, we need to guarantee the uniqueness of our message to our
handler by creating a unique identifier called GUIUPDATEIDENTIFIER B. Next, we cre-
ate the Handler that will process our messages to update the main View C. A Handler
allows us to send and process Message classes and Runnable objects associated with a
thread’s message queue.

Handlers are associated with a single thread and its message queue, but their meth-
ods can be called from any thread. Thus we can use the Handler to allow objects run-
ning in another thread to communicate changes in state back to the thread that
spawned them, or vice versa.

NOTE For more information about handling long-running requests in
your applications, see http://mng.bz/K0H4.

We set up a View D and create the new thread. Finally, we create a RefreshRunner
inner class implementing Runnable that will run unless something interrupts the
thread, at which point a message is sent to the Handler to call BounceView’s invali-
date() method E. The invalidate() method invalidates the View and forces a
refresh.

 You’ve got your new project. Now you need to create the code that will perform
the animation and create a View.

Create viewD

Run animationE

237Creating animations with Android’s Graphics API
MAKING ANIMATION HAPPEN

The example uses an image of a globe, which you can obtain from www.manning
.com/ableson3. (Alternatively, you can use any PNG file you’d like.) You’ll also have
the Android logo as a background; it’s included with the source code downloads.
Make sure to drop the images into res/drawable/.

 Next, create a Java file called BounceView, using the code from the following listing.

public class BounceView extends View {
 protected Drawable mySprite;
 protected Point mySpritePos = new Point(0,0);
 protected enum HorizontalDirection {LEFT, RIGHT} ;
 protected enum VerticalDirection {UP, DOWN} ;
 protected HorizontalDirection myXDirection =
HorizontalDirection.RIGHT;
 protected VerticalDirection myYDirection = VerticalDirection.UP;
 public BounceView(Context context) {
 super(context);
this.setBackground(this.getResources().getDrawable(R.drawable.android));
this.mySprite =
 this.getResources().getDrawable(R.drawable.world);
 }
 @Override
 protected void onDraw(Canvas canvas) {
this.mySprite.setBounds(this.mySpritePos.x,
 this.mySpritePos.y,
 this.mySpritePos.x + 50, this.mySpritePos.y + 50);
 if (mySpritePos.x >= this.getWidth() –
mySprite.getBounds().width()) {
 this.myXDirection = HorizontalDirection.LEFT;
 } else if (mySpritePos.x <= 0) {
 this.myXDirection = HorizontalDirection.RIGHT;
 }
 if (mySpritePos.y >= this.getHeight() –
mySprite.getBounds().height()) {
 this.myYDirection = VerticalDirection.UP;
 } else if (mySpritePos.y <= 0) {
 this.myYDirection = VerticalDirection.DOWN;
 }
 if (this.myXDirection ==
HorizontalDirection.RIGHT) {
 this.mySpritePos.x += 10;
 } else {
 this.mySpritePos.x -= 10;
 }
 if (this.myYDirection ==
 VerticalDirection.DOWN) {
 this.mySpritePos.y += 10;
 } else {
 this.mySpritePos.y -= 10;
 }
 this.mySprite.draw(canvas);
 }
}

Listing 9.8 BounceView.java

Get image file and
map to spriteB

Set bounds
of globe

C

Move ball
left or
right, up
or down

D

Check if ball
is trying to
leave
screen

E

www.manning.com/ableson3
www.manning.com/ableson3

238 CHAPTER 9 Graphics and animation
In this listing, we do all the real work of animating the image. First, we create a
Drawable to hold the globe image and a Point that we use to position and track the
globe as we animate it. Next, we create enumerations (enums) to hold directional val-
ues for horizontal and vertical directions, which we’ll use to keep track of the moving
globe. Then we map the globe to the mySprite variable and set the Android logo as
the background for the animation B.

 Now that we’ve done the setup work, we create a new View and set all the boundar-
ies for the Drawable C. After that, we create simple conditional logic that detects
whether the globe is trying to leave the screen; if it starts to leave the screen, we
change its direction D. Then we provide simple conditional logic to keep the ball
moving in the same direction if it hasn’t encountered the bounds of the View E.
Finally, we draw the globe using the draw() method.

 If you compile and run the project, you should see the globe bouncing around in
front of the Android logo, as shown in figure 9.4.

 Although this animation isn’t too excit-
ing, you could—with a little extra work—
use the key concepts (dealing with bound-
aries, moving drawables, detecting
changes, dealing with threads, and so on)
to create something like the Google
Lunar Lander example game or even a
simple version of Asteroids. If you want
more graphics power and want to easily
work with 3D objects to create things such
as games or sophisticated animations,
you’ll learn how in the next section on
OpenGL ES.

9.3 Introducing OpenGL for Embedded Systems
One of the most interesting features of the Android platform is its support of OpenGL
for Embedded Systems (OpenGL ES). OpenGL ES is the embedded systems version of the
popular OpenGL standard, which defines a cross-platform and cross-language API for
computer graphics. The OpenGL ES API doesn’t support the full OpenGL API, and
much of the OpenGL API has been stripped out to allow OpenGL ES to run on a vari-
ety of mobile phones, PDAs, video game consoles, and other embedded systems.
OpenGL ES was originally developed by the Khronos Group, an industry consortium.
You can find the most current version of the standard at www.khronos.org/opengles/.

 OpenGL ES is a fantastic API for 2D and 3D graphics, especially for graphically
intensive applications such as games, graphical simulations, visualizations, and all sorts
of animations. Because Android also supports 3D hardware acceleration, developers
can make graphically intensive applications that target hardware with 3D accelerators.

 Android 2.1 supports the OpenGL ES 1.0 standard, which is almost equivalent to
the OpenGL 1.3 standard. If an application can run on a computer using OpenGL 1.3,

Figure 9.4 Animation of a globe bouncing in
front of the Android logo

www.khronos.org/opengles/

239Introducing OpenGL for Embedded Systems
it should be possible to run it on Android after light modification, but you need to con-
sider the hardware specifications of your Android handset. Although Android offers
support for hardware acceleration, some handsets and devices running Android have
had performance issues with OpenGL ES in the past. Before you embark on a project
using OpenGL, consider the hardware you’re targeting and do extensive testing to
make sure that you don’t overwhelm your hardware with OpenGL graphics.

 Because OpenGL and OpenGL ES are such broad topics, with entire books dedi-
cated to them, we’ll cover only the basics of working with OpenGL ES and Android.
For a much deeper exploration of OpenGL ES, check out the specification and the
OpenGL ES tutorial at http://mng.bz/0tdm. After reading this section on Android
support for OpenGL ES, you should have enough information to follow a more in-
depth discussion of OpenGL ES, and you should be able to port your code from other
languages (such as the tutorial examples) into the Android framework. If you already
know OpenGL or OpenGL ES, then the OpenGL commands will be familiar; concen-
trate on the specifics of working with OpenGL on Android.

NOTE For another good OpenGL resource from Silicon Graphics see
www.glprogramming.com/red/index.html.

9.3.1 Creating an OpenGL context

Keeping in mind the comments we made in the introduction to this section, let’s
apply the basics of OpenGL ES to create an OpenGLContext and a Window to draw in.
Much of this task will seem overly complex compared to Android’s Graphics API. The
good news is that you have to do this setup work only once.

NOTE Much of the material covered here will require further detailed
explanation if you aren’t already experienced with OpenGL. For more
information, we suggest that you refer directly to the documentation
from OpenGL at www.opengl.org/.

You’ll use the general processes outlined in the following sections to work with
OpenGL ES in Android:

1 Create a custom View subclass.
2 Get a handle to an OpenGLContext, which provides access to Android’s OpenGL

ES functionality.
3 In the View’s onDraw() method, use the handle to the GL object and then use

its methods to perform any GL functions.

Following these basic steps, first you’ll create a class that uses Android to create a
blank surface to draw on. In section 9.3.2, you’ll use OpenGL ES commands to draw a
square and an animated cube on the surface. To start, open a new project called
OpenGLSquare and create an Activity called OpenGLSquare, as shown in the follow-
ing listing.

http://mng.bz/0tdm
http://www.glprogramming.com/red/index.html
www.opengl.org/

240 CHAPTER 9 Graphics and animation
public class SquareActivity extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(new DrawingSurfaceView(this));
 }
 class DrawingSurfaceView extends SurfaceView implements
 SurfaceHolder.Callback {
 public SurfaceHolder mHolder;
 public DrawingThread mThread;
 public DrawingSurfaceView(Context c) {
 super(c);
 init();
 }
 public void init() {
 mHolder = getHolder();
 mHolder.addCallback(this);
 mHolder.setType(SurfaceHolder.SURFACE_TYPE_GPU);
 }
 public void surfaceCreated(SurfaceHolder holder) {
 mThread = new DrawingThread();
 mThread.start();
 }
 public void surfaceDestroyed(SurfaceHolder holder) {
 mThread.waitForExit();
 mThread = null;
 }
 public void surfaceChanged(SurfaceHolder holder,
 int format, int w, int h) {
 mThread.onWindowResize(w, h);
 }
 class DrawingThread extends Thread {
 boolean stop;
 int w;
 int h;
 boolean changed = true;
 DrawingThread() {
 super();
 stop = false;
 w = 0;
 h = 0;
 }
 @Override
 public void run() {
 EGL10 egl = (EGL10)EGLContext.getEGL();
 EGLDisplay dpy =
 egl.eglGetDisplay(EGL10.EGL_DEFAULT_DISPLAY);
 int[] version = new int[2];
 egl.eglInitialize(dpy, version);
 int[] configSpec = {
 EGL10.EGL_RED_SIZE, 5,
 EGL10.EGL_GREEN_SIZE, 6,
 EGL10.EGL_BLUE_SIZE, 5,

Listing 9.9 OpenGLSquare.java

Handle
creation and
destruction

B

Do drawingC

Register as
callback

D

Create thread
to do drawing

E

Get EGL
Instance

F

Specify
configuration
to use

G

241Introducing OpenGL for Embedded Systems
 EGL10.EGL_DEPTH_SIZE, 16,
 EGL10.EGL_NONE
 };
 EGLConfig[] configs = new EGLConfig[1];
 int[] num_config = new int[1];
 egl.eglChooseConfig(dpy, configSpec, configs, 1,
 num_config);
 EGLConfig config = configs[0];
 EGLContext context = egl.eglCreateContext(dpy,
 config, EGL10.EGL_NO_CONTEXT, null);
 EGLSurface surface = null;
 GL10 gl = null;
 while(!stop) {
 int W, H;
 boolean updated;
 synchronized(this) {
 updated = this.changed;
 W = this.w;
 H = this.h;
 this.changed = false;
 }
 if (updated) {
 if (surface != null) {
 egl.eglMakeCurrent(dpy,
EGL10.EGL_NO_SURFACE,EGL10.EGL_NO_SURFACE, EGL10.EGL_NO_CONTEXT);
 egl.eglDestroySurface(dpy,
 surface);
 }
 surface =
 egl.eglCreateWindowSurface(dpy, config, mHolder, null);
 egl.eglMakeCurrent(dpy, surface,
 surface, context);
 gl = (GL10) context.getGL();
 gl.glDisable(GL10.GL_DITHER);
 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT,
 GL10.GL_FASTEST);
 gl.glClearColor(1, 1, 1, 1);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glShadeModel(GL10.GL_SMOOTH);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glViewport(0, 0, W, H);
 float ratio = (float) W / H;
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glFrustumf(-ratio, ratio, -1,
 1, 1, 10);
 }
 drawFrame(gl);
 egl.eglSwapBuffers(dpy, surface);
 if (egl.eglGetError() ==
EGL11.EGL_CONTEXT_LOST) {
 Context c = getContext();
 if (c instanceof Activity) {
 ((Activity)c).finish();
 }

Obtain reference to
OpenGL ES contextH

Do drawingI

242 CHAPTER 9 Graphics and animation
 }
 }
 egl.eglMakeCurrent(dpy, EGL10.EGL_NO_SURFACE,
EGL10.EGL_NO_SURFACE,
 EGL10.EGL_NO_CONTEXT);
 egl.eglDestroySurface(dpy, surface);
 egl.eglDestroyContext(dpy, context);
 egl.eglTerminate(dpy);
 }
 public void onWindowResize(int w, int h) {
 synchronized(this) {
 this.w = w;
 this.h = h;
 this.changed = true;
 }
 }
 public void waitForExit() {
 this.stop = true;
 try {
 join();
 } catch (InterruptedException ex) {
 }
 }
 private void drawFrame(GL10 gl) {
 // do whatever drawing here.
 }
 }
 }
}

Listing 9.9 generates an empty black screen. Everything in this listing is code you need
to draw and manage any OpenGL ES visualization. First, we import all our needed
classes. Then we implement an inner class, which will handle everything about manag-
ing a surface: creating it, changing it, or deleting it. We extend the class SurfaceView
and implement the SurfaceHolder interface, which allows us to get information back
from Android when the surface changes, such as when someone resizes it B. With
Android, all this has to be done asynchronously; you can’t manage surfaces directly.

 Next, we create a thread to do the drawing C and create an init() method that
uses the SurfaceView class’s getHolder() method to get access to the SurfaceView
and add a callback to it via the addCallBack() method D. Now we can implement
surfaceCreated(), surfaceChanged(), and surfaceDestroyed(), which are all meth-
ods of the Callback class and are fired on the appropriate condition of change in the
Surface’s state.

 When all the Callback methods are implemented, we create a thread to do the
drawing E. Before we can draw anything, though, we need to create an OpenGL ES
context F and create a handler to the Surface G so that we can use the OpenGL
context’s method to act on the surface via the handle H. Now we can finally draw
something, although in the drawFrame() method I we aren’t doing anything.

 If you were to run the code right now, all you’d get would be an empty window; but
what we’ve generated so far will appear in some form or another in any OpenGL ES

243Introducing OpenGL for Embedded Systems
application you make on Android. Typically, you’ll break up the code so that an
Activity class starts the code and another class implements the custom View. Yet
another class may implement your SurfaceHolder and SurfaceHolder.Callback, pro-
viding all the methods for detecting changes to the surface, as well as those for the
drawing of your graphics in a thread. Finally, you may have another class for whatever
code represents your graphics.

 In the next section, we’ll look at how to draw a square on the surface and how to
create an animated cube.

9.3.2 Drawing a rectangle with OpenGL ES

In the next example, you’ll use OpenGL ES to create a simple drawing, a rectangle,
using OpenGL primitives, which in OpenGL ES are pixels and triangles. When you
draw the square, you’ll use a primitive
called the GL_Triangle_Strip, which
takes three vertices (the x, y, and z points
in an array of vertices) and draws a trian-
gle. The last two vertices become the first
two vertices for the next triangle, with the
next vertex in the array being the final
point. This process repeats for as many
vertices as there are in the array, and it
generates something like figure 9.5,
where two triangles are drawn.

 OpenGL ES supports a small set of
primitives, shown in table 9.1, that allow
you to build anything using simple geo-
metric shapes, from a rectangle to 3D
models of animated characters.

Table 9.1 OpenGL ES primitives and their descriptions

Primitive flag Description

GL_LINE_LOOP Draws a continuous set of lines. After the first vertex, it draws a line
between every successive vertex and the vertex before it. Then it con-
nects the start and end vertices.

GL_LINE_STRIP Draws a continuous set of lines. After the first vertex, it draws a line
between every successive vertex and the vertex before it.

GL_LINES Draws a line for every pair of vertices given.

GL_POINTS Places a point at each vertex.

GL_TRIANGLE_FAN After the first two vertices, every successive vertex uses the previous
vertex and the first vertex to draw a triangle. This flag is used to draw
cone-like shapes.

Triangle 2

Triangle 1

3 4

21

0.75

0.5

.25

Z X

Y

0.25 0.5 0.75

0.25

0.5

0.75

Figure 9.5 How two
triangles are drawn from
an array of vertices

244 CHAPTER 9 Graphics and animation
In the next listing, we use an array of vertices to define a square to paint on our sur-
face. To use the code, insert it directly into the code for listing 9.9, immediately below
the commented line // do whatever drawing here.

gl.glClear(GL10.GL_COLOR_BUFFER_BIT |
 GL10.GL_DEPTH_BUFFER_BIT);
float[] square = new float[] {
 0.25f, 0.25f, 0.0f,
 0.75f, 0.25f, 0.0f,
 0.25f, 0.75f, 0.0f,
 0.75f, 0.75f, 0.0f };
FloatBuffer squareBuff;
ByteBuffer bb =
ByteBuffer.allocateDirect(square.length*4);
 bb.order(ByteOrder.nativeOrder());
 squareBuff = bb.asFloatBuffer();
 squareBuff.put(square);
 squareBuff.position(0);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluOrtho2D(gl, 0.0f,1.2f,0.0f,1.0f);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, squareBuff);
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glColor4f(0,1,1,1);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);

This code is dense with OpenGL commands. The first thing we do is clear the screen
using glClear, which you want to do before every drawing. Then we build the array to
represent the set of vertices that make up our square. As we explained, we use the
OpenGL primitive GL_TRIANGLE_STRIP to create the rectangle shown in figure 9.5,
where the first set of three vertices (points 1, 2, and 3) represent the first triangle. The
last vertex represents the third vertex (point 4) in the second triangle, which reuses
vertices 2 and 3 from the first triangle as its first two to make the triangle described by
points 2, 3, and 4. To put it more succinctly, Open GL ES takes one triangle and flips it
over on its third side (in this case, the hypotenuse). We then create a buffer to hold
that same square data B. We also tell the system that we’ll be using a GL_PROJECTION
for our matrix mode, which is a type of matrix transformation that’s applied to every
point in the matrix stack.

GL_TRIANGLE_STRIP After the first two vertices, every successive vertex uses the previous
two vertices to draw the next triangle.

GL_TRIANGLES For every triplet of vertices, it draws a triangle with corners specified by
the coordinates of the vertices.

Listing 9.10 OpenGLSquare.java

Table 9.1 OpenGL ES primitives and their descriptions (continued)

Primitive flag Description

Create float buffer
to hold square

B

Set up 2D
orthographic
viewing region

C

Set current
vertices for
drawingD

245Introducing OpenGL for Embedded Systems
 The next things we do are more related to setup. We load the identity matrix and
then use the gluOrtho2D(GL10 gl, float left, float right, float bottom, float
top) command to set the clipping planes that are mapped to the lower-left and upper-
right corners of the window C.

 Now we’re ready to start drawing the image. First, we use the glVertex-
Pointer(int size, int type, int stride, pointer to array) method, which indi-
cates the location of vertices for the triangle strip. The method has four attributes:
size, type, stride, and pointer. The size attribute specifies the number of coordi-
nates per vertex (for example, a 2D shape might ignore the z axis and use only two
coordinates per vertex), type defines the data type to be used (GL_BYTE, GL_SHORT,
GL_FLOAT, and so on) D, stride specifies the offset between consecutive vertices (how
many unused values exist between the end of the current vertex and the beginning of
the next), and pointer is a reference to the array. Although most drawing in OpenGL
ES is performed by using various forms of arrays such as the vertex array, they’re all
disabled by default to save system resources. To enable them, we use the OpenGL
command glEnableClientState(array type), which accepts an array type; in this
case, the type is GL_VERTEX_ARRAY.

 Finally, we use the glDrawArrays function to render our arrays into the OpenGL
primitives and create our simple drawing. The glDrawArrays(mode, first, count)
function has three attributes: mode indicates which primitive to render, such as
GL_TRIANGLE_STRIP; first is the starting index into the array, which we set to 0
because we want it to render all the vertices in the array; and count specifies the num-
ber of indices to be rendered, which in this case is 4.

 If you run the code, you should see a simple blue rectangle on a white surface, as
shown in figure 9.6. It isn’t particularly exciting, but you’ll need most of the code you
used for this example for any OpenGL project.

 There you have it—your first graphic in OpenGL ES. Next, we’re going to do
something way more interesting. In the next example, you’ll create a 3D cube with dif-
ferent colors on each side and then rotate it in space.

9.3.3 Three-dimensional shapes and surfaces with OpenGL ES

In this section, you’ll use much of the code from the previous example, but you’ll
extend it to create a 3D cube that rotates. We’ll examine how to introduce perspective
to your graphics to give the illusion of depth.

 Depth works in OpenGL by using a depth buffer, which contains a depth value for
every pixel, in the range 0 to 1. The value represents the perceived distance between
objects and your viewpoint; when two objects’ depth values are compared, the value
closer to 0 will appear in front on the screen. To use depth in your program, you need
to first enable the depth buffer by passing GL_DEPTH_TEST to the glEnable() method.
Next, you use glDepthFunc() to define how values are compared. For this example,
you’ll use GL_LEQUAL, defined in table 9.2, which tells the system to show objects with a
lower depth value in front of other objects.

246 CHAPTER 9 Graphics and animation
When you draw a primitive, the depth test occurs. If the value passes the test, the
incoming color value replaces the current one.

 The default value is GL_LESS. You want the value to pass the test if the values are
equal as well. Objects with the same z value will display, depending on the order in
which they were drawn. We pass GL_LEQUAL to the function.

Table 9.2 Flags for determining how values in the depth buffer are compared

Flag Description

GL_ALWAYS Always passes

GL_EQUAL Passes if the incoming depth value is equal to the stored value

GL_GEQUAL Passes if the incoming depth value is greater than or equal to the stored value

GL_GREATER Passes if the incoming depth value is greater than the stored value

GL_LEQUAL Passes if the incoming depth value is less than or equal to the stored value

GL_LESS Passes if the incoming depth value is less than the stored value

GL_NEVER Never passes

GL_NOTEQUAL Passes if the incoming depth value isn’t equal to the stored value

Figure 9.6 A rectangle drawn on the surface using OpenGL ES

247Introducing OpenGL for Embedded Systems
One important part of maintaining the illusion of depth is providing perspective. In
OpenGL, a typical perspective is represented by a viewpoint with near and far clipping
planes and top, bottom, left, and right planes, where objects that are closer to the far
plane appear smaller, as in figure 9.7.

 OpenGL ES provides a function called gluPerspective(GL10 gl, float fovy,
float aspect, float zNear, float zFar) with five parameters (see table 9.3) that lets
you easily create perspective.

To demonstrate depth and perspective, you’re going to create a project called
OpenGLCube. Copy and paste the code from listing 9.11 into OpenGLCubeActivity.

 Now add two new variables to your code, shown in the following listing, right at the
beginning of the DrawSurfaceView inner class.

class DrawingSurfaceView extends SurfaceView implements
SurfaceHolder.Callback {
 public SurfaceHolder mHolder;
 float xrot = 0.0f;
 float yrot = 0.0f;

We’ll use the xrot and yrot variables later in the code to govern the rotation of the
cube.

 Next, just before the method, add a new method called makeFloatBuffer(), as in
the following listing.

Table 9.3 Parameters for the gluPerspective function

Parameter Description

aspect Aspect ratio that determines the field of view in the x direction. The aspect ratio is the
ratio of x (width) to y (height).

fovy Field of view angle in the y direction, in degrees.

gl GL10 interface.

zFar Distance from the viewer to the far clipping plane. This value is always positive.

zNear Distance from the viewer to the near clipping plane. This value is always positive.

Listing 9.11 OpenGLCubeActivity.java

Viewpoint

L

T

B

N

F
R

Figure 9.7 In OpenGL, a
perspective is made up of a
viewpoint and near (N), far (F),
left (L), right (R), top (T), and
bottom (B) clipping planes.

248 CHAPTER 9 Graphics and animation
protected FloatBuffer makeFloatBuffer(float[] arr) {
 ByteBuffer bb = ByteBuffer.allocateDirect(arr.length*4);
 bb.order(ByteOrder.nativeOrder());
 FloatBuffer fb = bb.asFloatBuffer();
 fb.put(arr);
 fb.position(0);
 return fb;
}

This float buffer is the same as the one in listing 9.11, but we’ve abstracted it from the
drawFrame() method so we can focus on the code for rendering and animating the cube.

 Next, copy and paste the code from the following listing into the drawFrame()
method. Note that you’ll also need to update your drawFrame() call in the following way:

drawFrame(gl, w, h);

 private void drawFrame(GL10 gl, int w1, int h1) {
 float mycube[] = {
 // FRONT
 -0.5f, -0.5f, 0.5f,
 0.5f, -0.5f, 0.5f,
 -0.5f, 0.5f, 0.5f,
 0.5f, 0.5f, 0.5f,
 // BACK
 -0.5f, -0.5f, -0.5f,
 -0.5f, 0.5f, -0.5f,
 0.5f, -0.5f, -0.5f,
 0.5f, 0.5f, -0.5f,
 // LEFT
 -0.5f, -0.5f, 0.5f,
 -0.5f, 0.5f, 0.5f,
 -0.5f, -0.5f, -0.5f,
 -0.5f, 0.5f, -0.5f,
 // RIGHT
 0.5f, -0.5f, -0.5f,
 0.5f, 0.5f, -0.5f,
 0.5f, -0.5f, 0.5f,
 0.5f, 0.5f, 0.5f,
 // TOP
 -0.5f, 0.5f, 0.5f,
 0.5f, 0.5f, 0.5f,
 -0.5f, 0.5f, -0.5f,
 0.5f, 0.5f, -0.5f,
 // BOTTOM
 -0.5f, -0.5f, 0.5f,
 -0.5f, -0.5f, -0.5f,
 0.5f, -0.5f, 0.5f,
 0.5f, -0.5f, -0.5f,
 };
 FloatBuffer cubeBuff;
 cubeBuff = makeFloatBuffer(mycube);

Listing 9.12 OpenGLCubeActivity.java

Listing 9.13 OpenGLCubeActivity.java

Create float
buffer for
vertices

B

249Introducing OpenGL for Embedded Systems
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glDepthFunc(GL10.GL_LEQUAL);
 gl.glClearDepthf(1.0f);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT |
GL10.GL_DEPTH_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glViewport(0,0,w,h);
 GLU.gluPerspective(gl, 45.0f,
((float)w)/h, 1f, 100f);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 GLU.gluLookAt(gl, 0, 0, 3, 0, 0, 0, 0, 1, 0);
 gl.glShadeModel(GL10.GL_SMOOTH);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, cubeBuff);
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glRotatef(xrot, 1, 0, 0);
 gl.glRotatef(yrot, 0, 1, 0);
 gl.glColor4f(1.0f, 0, 0, 1.0f);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 4, 4);
 gl.glColor4f(0, 1.0f, 0, 1.0f);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 8, 4);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 12, 4);
 gl.glColor4f(0, 0, 1.0f, 1.0f);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 16, 4);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 20, 4);
 xrot += 1.0f;
 yrot += 0.5f;

This listing doesn’t contain much new code. First, we describe the vertices for a cube,
which is built the same way as the rectangle in listing 9.10 (using triangles). Next, we
set up the float buffer for our vertices B and enable the depth function C and per-
spective function D to provide a sense of depth. Note that with gluPerspective we
passed 45.0f (45 degrees) to give a more natural viewpoint.

 Next, we use the GLU.gluLookAt(GL10 gl, float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
function to move the position of the View without having to modify the projection
matrix directly. When we’ve established the View position, we turn on smooth shading
for the model and rotate the cube around the x and y axes. Then we draw the cube
sides and increment the rotation so that on the next iteration of draw(), the cube is
drawn at a slightly different angle E. If you run the code, you should see a rotating 3D
cube like the one shown in figure 9.8.

NOTE You can try experimenting with the fovy value to see how chang-
ing the angle affects the display of the cube.

You’ve done a lot in this section, starting with creating an OpenGL ES context in
which you can develop your OpenGL ES applications. Next, you learned how to build
shapes using OpenGL ES by “triangulation” (creating multiple triangles). Then, you

Enable
depth
test

C

Define
perspective

D

Draw six sides
in three colors

E

Increment x
and y rotations

250 CHAPTER 9 Graphics and animation
learned how to realize this in three dimensions while incorporating it into a simple
example. You accomplished much of this without diving deep into OpenGL ES, which
is definitely nontrivial, but the good news is that if you’re serious about doing 3D
graphics on Android, it’s definitely possible.

 With the addition of RenderScript, introduced in the next section of this chapter,
developers can write code that is designed to use native code on specific hardware,
allowing for much better performance of applications that are heavily dependent on
processing power (such as Open GL applications). Because Android provides excel-
lent support for OpenGL ES, you can find plenty of tutorials and references on the
internet or at your local bookstore.

 Now, let’s look at how to use RenderScript to develop complex, rich, and high-per-
formance graphical application that let you take advantage of the latest mobile hard-
ware platforms that run multicore processors with dedicated graphics accelerators.

9.4 Introducing RenderScript for Android
RenderScript is a new API in Android that is focused on helping developers who need
extremely high performance for graphics and computationally intensive operations.
RenderScript isn’t completely new to Android 3.0+; it’s been part of earlier versions in
2.0 but not publicly available. As of Android 3, RenderScript has come to the fore as
the tool of choice for graphically intensive games and applications such as live wallpa-
pers, the new video carousel, and Google’s e-book reader on the Xoom. In this sec-
tion, we’ll look at how RenderScript fits into the Android architecture, how to build a
RenderScript application, and when and where to use RenderScript.

Figure 9.8 A 3D cube rotating in space

251Introducing RenderScript for Android
 RenderScript in many ways is a new paradigm for the Android platform. Although
Android uses Java syntax and a virtual machine for developing applications, Render-
Script is based on C99, a modern dialect of the C language. Furthermore, Render-
Script is compiled down to native code on each device at runtime but is controlled by
higher-level APIs running in the Android VM. This allows Android via RenderScript to
provide developers a way to develop optimized high-performance code that is cross
platform. This may seem extremely attractive, and many developers may be keen to
write most of their applications in RenderScript, but RenderScript doesn’t replace or
subsume development of Android apps in Java. There are both pros and cons to work-
ing with RenderScript.

9.4.1 RenderScript advantages and disadvantages

As already discussed, the first advantage of using RenderScript is that it’s a lower-level
language offering higher performance. Second, it allows Android apps to more easily
use multicore CPUs as well as graphical processing units (GPUs). RenderScript, by
design, at runtime selects the best-performance approach to running its code. This
includes running the code across multiple CPUs; running some simpler tasks on GPUs;
or, in some cases where no special hardware is present, running on just one CPU.

 RenderScript offers fantastic performance and cross-platform compatibility with-
out the need to target specific devices or create your own complex architectures for
cross-platform compatibility. RenderScript is best for two types of applications and
only has APIs to support those two types of applications: graphical applications and
computationally intensive applications. Many applications that use Android’s imple-
mentation of OpenGL are good candidates to target for RenderScript.

 The first major drawback of RenderScript is that it uses C99. Although there is
nothing wrong with C99, it breaks the Java style paradigm that most Android develop-
ers are comfortable with. To be truly comfortable developing RenderScript applica-
tions, you should also be comfortable with C, a lower-level language when compared
to Java.

 Second, and perhaps most important, RenderScript applications are inherently
more complex and difficult to develop than regular Android applications. In part this
is because you’re developing in two different languages, Java and C; but in addition,
RenderScript by its nature is very hard to debug—at times frustratingly so, unless you
have a strong understanding of both your application and the hardware it’s running
on. For example, if you have a multicore platform with a GPU, your code may be run
on either the CPUs or the GPU, reducing your ability to spot issues. Also be aware that
most RenderScript applications won’t run in the emulator, forcing you to debug on
hardware as well.

 Finally, you’ll find that you have a lot more bugs, because RenderScript is in C,
the current Android Development Tools (ADT) application for Eclipses doesn’t sup-
port the various extensions for it, and RenderScript applications tend to be more
complex than regular Android applications. But you shouldn’t avoid developing in

252 CHAPTER 9 Graphics and animation
RenderScript, nor should you overuse it as opposed to the standard Android APIs and
Java syntax. Rather, you should look to use RenderScript in applications that are
graphically intensive or computationally intensive.

 Let’s try building a RenderScript application.

9.4.2 Building a RenderScript application

Building a RenderScript application is a bit more complicated than developing a nor-
mal Android application. You lay out your application in a similar manner, but keep in
mind that you’ll be also developing RenderScript files, with the .rs file extension,
alongside your .java files. Your normal .java application files then call the Render-
Script code as needed; when you build your project, you’ll see the .rs files built into
bytecode with the same name as the RenderScript file but with the .bc extension
under the raw folder. For example, if you had a RenderScript file called Helloworld.rs
under src, you’d see a Helloworld.bc file when your application was built.

NOTE We won’t be covering the C or C99 language; we assume you know
C. If you don’t know C, you’ll need to reference another resource such as
Manning’s C# in Depth, 2nd edition, by John Skeet.

For your RenderScript application, you’re going to use the ADT’s built-in Android
project wizard to create a RenderScript project from built-in sample applications. To
do so, first create a new project using the ADT, but instead of selecting Create New
Project in Workspace, select Create Project from Existing Sample, as shown in
figure 9.9. Make sure you’ve selected API level of 11 or Android 3.0, and select the
sample RenderScript > Fountain from the Samples drop-down list. Click OK.

 Eclipse now builds the RenderScript application. Expand the application in the
Eclipse Package Explorer, as shown in figure 9.10. There are several things to note
here before we go over each file. First, note the RenderScript file with the extension
.rs. This is a file written in C. This file does all the real graphics work, and the other
.java files provide the higher-level calls to APIs to set up a View, manage inputs, and the
like. This file is compiled when the project is built into bytecode, which you can see
when you expand the raw directory.

Figure 9.9 Using the
ADT to build a sample
RenderScript application

253Introducing RenderScript for Android
Now that we’ve touched on the file layout, let’s look at the source code. The first file,
Fountain.java, is trivial: it’s the basic Android Activity class. As you can see in the fol-
lowing listing, it has an onCreate() method that sets the contentView to an instance
of the FountainView class.

public class Fountain extends Activity {

 private static final String LOG_TAG = "libRS_jni";
 private static final boolean DEBUG = false;
 private static final boolean LOG_ENABLED = DEBUG ? Config.LOGD :

➥Config.LOGV;
 private FountainView mView;
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 mView = new FountainView(this);
 setContentView(mView);
 }

 protected void onResume() {
 Log.e("rs", "onResume");
 super.onResume();
 mView.resume();
 }

 protected void onPause() {
 Log.e("rs", "onPause");
 super.onPause();
 mView.pause();
 }

Listing 9.14 Basic Android Activity class

Figure 9.10 The Fountain
project in the Eclipse Package
Explorer showing a typical
RenderScript application
structure

254 CHAPTER 9 Graphics and animation
 static void log(String message) {
 if (LOG_ENABLED) {
 Log.v(LOG_TAG, message);
 }
 }
}

The FountainView.java file introduces a new type of Android View, the RSSurface-
View, as you can see in the next listing. This class represents the SurfaceView on
which your RenderScript code will draw its graphics.

public class FountainView extends RSSurfaceView {

 public FountainView(Context context) {
 super(context);
 }

 private RenderScriptGL mRS;
 private FountainRS mRender;

 public void surfaceChanged(SurfaceHolder holder, int format, int w,

➥int h) {
 super.surfaceChanged(holder, format, w, h);
 if (mRS == null) {
 RenderScriptGL.SurfaceConfig sc = new

➥RenderScriptGL.SurfaceConfig();
 mRS = createRenderScriptGL(sc);
 mRS.setSurface(holder, w, h);
 mRender = new FountainRS();
 mRender.init(mRS, getResources(), w, h);
 }
 }

 protected void onDetachedFromWindow() {
 if (mRS != null) {
 mRS = null;
 destroyRenderScriptGL();
 }
 }

 public boolean onTouchEvent(MotionEvent ev)
 {
 int act = ev.getActionMasked();
 if (act == ev.ACTION_UP) {
 mRender.newTouchPosition(0, 0, 0, ev.getPointerId(0));
 return false;
 } else if (act == MotionEvent.ACTION_POINTER_UP) {
 int pointerIndex = ev.getActionIndex();
 int pointerId = ev.getPointerId(pointerIndex);
 mRender.newTouchPosition(0, 0, 0, pointerId);
 }
 int count = ev.getHistorySize();
 int pcount = ev.getPointerCount();

 for (int p=0; p < pcount; p++) {

Listing 9.15 RSSurfaceView

Create new
RenderScript

B

Create the
FountainRS classC

Handle
touch eventsD

255Introducing RenderScript for Android
 int id = ev.getPointerId(p);
 mRender.newTouchPosition(ev.getX(p),
 ev.getY(p),
 ev.getPressure(p),
 id);

 for (int i=0; i < count; i++) {
 mRender.newTouchPosition(ev.getHistoricalX(p, i),
 ev.getHistoricalY(p, i),
 ev.getHistoricalPressure(p, i),
 id);
 }
 }
 return true;
 }
}

If you look at the listing, you’ll notice in the surfacedChanged() method a new Ren-
derScript class as well as a FountainRS class B. The code

RenderScriptGL.SurfaceConfig sc = new RenderScriptGL.SurfaceConfig();
 mRS = createRenderScriptGL(sc);

is important in that it not only creates a RenderScriptGL object that contains the sur-
face our graphics go into, but the SurfaceConfig class allows us to set all the major
properties for the drawing surface (such as depth). The FountainRS class is important
in that it acts as a renderer for the FountainView C SurfaceView as well as controls
the actual RenderScript. One of the other important things this FountainView class
does is handle touch events with the onTouchEvent() method and pass these events to
the RenderScript D.

 The next class we’ll look at is FountainRS, shown in the following listing.

public class FountainRS {
 public static final int PART_COUNT = 50000;

 public FountainRS() {
 }
 private Resources mRes;
 private RenderScriptGL mRS;
 private ScriptC_fountain mScript;
 public void init(RenderScriptGL rs, Resources res,

➥int width, int height) {
 mRS = rs;
 mRes = res;
 ProgramFragmentFixedFunction.Builder pfb = new

ProgramFragmentFixedFunction.Builder(rs);
 pfb.setVaryingColor(true);
 rs.bindProgramFragment(pfb.create());
 ScriptField_Point points =

➥new ScriptField_Point(mRS, PART_COUNT);
 Mesh.AllocationBuilder smb = new Mesh.AllocationBuilder(mRS);
 smb.addVertexAllocation(points.getAllocation());

Listing 9.16 FountainRS class

Bind ScriptC_fountain classB

256 CHAPTER 9 Graphics and animation
 smb.addIndexSetType(Mesh.Primitive.POINT);
 Mesh sm = smb.create();

 mScript = new ScriptC_fountain(mRS, mRes, R.raw.fountain);
 mScript.set_partMesh(sm);
 mScript.bind_point(points);
 mRS.bindRootScript(mScript);
 }

 boolean holdingColor[] = new boolean[10];
 public void newTouchPosition(float x, float y,

➥float pressure, int id) {
 if (id >= holdingColor.length) {
 return;
 }
 int rate = (int)(pressure * pressure * 500.f);
 if (rate > 500) {
 rate = 500;
 }
 if (rate > 0) {
 mScript.invoke_addParticles(rate, x, y, id, !holdingColor[id]);
 holdingColor[id] = true;
 } else {
 holdingColor[id] = false;
 }

 }
}

When developing a graphical RenderScript application, you’ll have a class called
ClassNameRS that acts as a communication channel between your RenderScript file
and the rest of the Android application. (RenderScript compute projects don’t have a
file like this.) The FountainRS class interacts with the RenderScript code in foun-
tain.rs via interfaces exposed by ScriptC_fountain, a class generated by the ADT
when you build the project and found in the gen folder. The ScriptC_fountain class
binds to the RenderScript bytecode so the RenderScriptGL context knows which Ren-
derScript to bind to B. This may sound somewhat complicated, and it is, but the ADT
or Android tooling manages most of this for you.

 Finally, let’s look at the C code in fountain.rs, shown in listing 9.17. The first thing
you’ll notice is how simple it is. The code draws a simple cascade of points whose cen-
ter is the point touched on the screen. It’s important to note that all the methods to
capture the information about where the user presses are captured, handled, and
passed down to this class via the higher-level .java classes already discussed, and that
fountain.rs is solely focused on drawing.

#pragma version(1)
#pragma rs java_package_name(com.example.android.rs.fountain)
#pragma stateFragment(parent)
#include "rs_graphics.rsh"

static int newPart = 0;

Listing 9.17 C code in fountain.rs

Required pragma
directives class

257Introducing RenderScript for Android
rs_mesh partMesh;

typedef struct __attribute__((packed, aligned(4))) Point {
 float2 delta;
 float2 position;
 uchar4 color;
} Point_t;
Point_t *point;

int root() {
 float dt = min(rsGetDt(), 0.1f);
 rsgClearColor(0.f, 0.f, 0.f, 1.f);
 const float height = rsgGetHeight();
 const int size = rsAllocationGetDimX(rsGetAllocation(point));
 float dy2 = dt * (10.f);
 Point_t *p = point;
 for (int ct=0; ct < size; ct++) {
 p->delta.y += dy2;
 p->position += p->delta;
 if ((p->position.y > height) && (p->delta.y > 0)) {
 p->delta.y *= -0.3f;
 }
 p++;
 }

 rsgDrawMesh(partMesh);
 return 1;
}

static float4 partColor[10];
void addParticles(int rate, float x, float y, int index, bool newColor)
{
 if (newColor) {
 partColor[index].x = rsRand(0.5f, 1.0f);
 partColor[index].y = rsRand(1.0f);
 partColor[index].z = rsRand(1.0f);
 }
 float rMax = ((float)rate) * 0.02f;
 int size = rsAllocationGetDimX(rsGetAllocation(point));
 uchar4 c = rsPackColorTo8888(partColor[index]);

 Point_t * np = &point[newPart];
 float2 p = {x, y};
 while (rate--) {
 float angle = rsRand(3.14f * 2.f);
 float len = rsRand(rMax);
 np->delta.x = len * sin(angle);
 np->delta.y = len * cos(angle);
 np->position = p;
 np->color = c;
 newPart++;
 np++;
 if (newPart >= size) {
 newPart = 0;
 np = &point[newPart];
 }
 }
}

258 CHAPTER 9 Graphics and animation
The first thing to note is the inclusion of two pragmas that must be part of any
RenderScript file, which provide the version and package name. Also note the use of
two functions familiar to C developers, init() and root(). The init() function pro-
vides a mechanism for setting up variables or constants before anything else is exe-
cuted in the class. The root() method is of course the main root function of the class;
for graphics applications, RenderScript will expect to render the frame to be dis-
played in this method. Other than that, the C code is relatively straightforward.

 If you run this application and then touch the screen, you should see a burst of
color and cascading dots that fall to the bottom of the screen as shown in figure 9.11.
Although you could have done the same thing with Android’s 2-D API, and it would
have been much easier to code, the RenderScript application is extremely fast with no
discernable lag on a Motorola Xoom.

 We can’t go into RenderScript in depth in this book—it warrants its own chapter—
but we’ve touched on the main points. You now know the basics of how to build your
own RenderScript graphical applications.

9.5 Summary
In this chapter, we’ve lightly touched on a number of topics related to Android’s pow-
erful graphics features. First, we looked at how both Java and XML can be used with
the Android Graphics API to describe simple shapes. Next, we examined how to use
Android’s frame-by-frame XML to create an animation. You also learned how to use
more standard pixel manipulation to provide the illusion of movement through Java

Figure 9.11 Example of the Fountain project running on the Xoom

259Summary
and the Graphics API. Finally, we delved into Android’s support of OpenGL ES. We
looked at how to create an OpenGL ES context, and then we built a shape in that con-
text as well as a 3D animated cube. Finally, we took a high-level look at a RenderScript
application and discussed how the RenderScript system works inside Android.

 Graphics and visualizations are large and complex topics that can easily fill a book.
But because Android uses open and well-defined standards and supports an excellent
API for graphics, it should be easy for you to use Android’s documentation, API, and
other resources, such as Manning’s Java 3D Programming by Daniel Selman, to develop
anything from a new drawing program to complex games.

 In the next chapter, we’ll move from graphics to working with multimedia. We’ll
explore working with audio and video to lay the groundwork for making rich multi-
media applications.

Multimedia
Today, people use cell phones for almost everything but phone calls, from instant
messaging to surfing the web to listening to music and even to watching live stream-
ing TV. Nowadays, a cell phone needs to support multimedia to be considered a
usable device. In this chapter, we’re going to look at how you can use Android to
play audio files, watch video, take pictures, and even record sound and video.

 As of Android 2.0, Google decided to phase out the OpenCORE system for
Android’s multimedia needs and move to a new multimedia system called Stage-
fright. As of Android 2.3, Stagefright has subsumed OpenCORE and become its
replacement. That being said, most of Android’s interaction with media is
abstracted through the MediaPlayer API, hiding the specific implementation of
Stagefright, versus OpenCORE in older versions of Android. What this means to you
is that by considering which core media formats you wish to support and by carefully
developing your application, it’s possible to create applications that will work on
Android 2.3 and up as well as older versions of Android that use OpenCORE.

This chapter covers
 Playing audio and video

 Controlling the camera

 Recording audio

 Recording video
260

261Introduction to multimedia and Stagefright
 In this chapter, we’ll be looking at Stagefright’s multimedia architecture and fea-
tures. Moving on from architecture, we’ll explore how to use Stagefright via Android’s
MediaPlayer API.

10.1 Introduction to multimedia and Stagefright
Because the foundation of Android’s multimedia platform is Google’s new media plat-
form Stagefright, we’re going to review Stagefright’s architecture and services. Stage-
fright, as of now, supports the following core media files, services, and features:

 Interfaces for third-party and hardware media codecs, input and output
devices, and content policies

 Media playback, streaming, downloading, and progressive playback, including
third-Generation Partnership Program (3GPP), Moving Picture Experts Group 4
(MPEG-4), Advanced Audio Coding (AAC), and Moving Picture Experts Group
(MPEG) Audio Layer 3 (MP3) containers

 Network protocols including RTSP (TRP, SDP), HTTP progressive streaming, and
HTTP live streaming.

 Video and image encoders and decoders, including MPEG-4, International Tele-
communication Union H.263 video standard (H.263), Advanced Video Coding
(AVC H.264), and the Joint Photographic Experts Group (JPEG)

 Speech codecs, including Adaptive Multi-Rate audio codecs AMR-NB and
AMR-WB

 Audio codecs, including MP3, AAC, and AAC+, and more
 Media recording, including 3GPP, VP8, MPEG-4, and JPEG

 Video telephony based on the 3GPP video conferencing standard 324-M

Stagefright provides all this functionality in a well-laid-out set of services, shown in
figure 10.1.

NOTE Different API versions, such as 3.0 on the Xoom, may not support
all the listed media formats. To check which formats are supported, see
http://developer.android.com/guide/appendix/media-formats.html.

10.1.1 Stagefright overview

Stagefright has a much simpler internal implementation than OpenCORE. In figure
10.1, you can see a rough outline of how the MediaPlayer works with Stagefright inter-
nally. Essentially Stagefright works as follows:

 MediaExtractor retrieves track data and corresponding metadata from the file
system or HTTP stream.

 AudioPlayer is responsible for playing audio as well as managing timing for
A/V synchronization for audio.

 Depending on which codec is picked, a local or remote render is created for
video play. The system clock is used as the time base for video-only playback.

http://developer.android.com/guide/appendix/media-formats.html

262 CHAPTER 10 Multimedia
 AwesomePlayer works as the engine to coordinate the preceding classes. It’s
integrated via StagefrightPlayer in the Android MediaPlayerService.

 OpenCORE is still partially present for the Ocean Matrix (OMX) video standard
for decoding. There are two OMX plugins currently, although this may change
in future versions of Android.

Figure 10.1 Stagefright services

263Playing audio
In the next section, we’ll dive in and use the Android API, and thus Stagefright, to play
audio files.

10.2 Playing audio
Probably the most basic need for multimedia on a cell phone is the ability to play
audio files, whether new ringtones, MP3s, or quick audio notes. Android’s Media-
Player is easy to use. At a high level, all you need to do to play an MP3 file is follow
these steps:

1 Put the MP3 in the res/raw directory in a project (note that you can also use a
URI to access files on the network or via the internet).

2 Create a new instance of the MediaPlayer, and reference the MP3 by calling
MediaPlayer.create().

3 Call the MediaPlayer methods prepare() and start().

Let’s work through an example to demonstrate how simple this task is. First, create a
new project called MediaPlayerExample, with an Activity called MediaPlayer-
Activity. Now, create a new folder under res/ called raw; you’ll store your MP3s in
this folder. For this example, we’ll use a ringtone for the game Halo 3, which you can
download from the Android in Action Google code site at http://code.google.com/
p/android-in-action/, or you can use your own MP3. Download the Halo 3 theme
song and any other MP3s you fancy, and put them in the raw directory. Next, create a
simple Button for the music player, as shown in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Simple Media Player"
 />

<Button android:id="@+id/playsong"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Halo 3 Theme Song"
 />
</LinearLayout>

Next, fill out the MediaPlayerActivity class, as shown in the following listing.

Listing 10.1 main.xml for MediaPlayer example

http://nyatla.jp/nyartoolkit/wiki/index.php?FrontPage.en
http://nyatla.jp/nyartoolkit/wiki/index.php?FrontPage.en
http://code.google.com/p/android-in-action/
http://code.google.com/p/android-in-action/

264 CHAPTER 10 Multimedia
public class MediaPlayerActivity extends Activity {

 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 Button mybutton = (Button) findViewById(R.id.playsong);
 mybutton.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 MediaPlayer mp =
 MediaPlayer.create(MediaPlayerActivity.this,
 R.raw.halotheme);
 mp.start();
 mp.setOnCompletionListener(new OnCompletionListener(){
 public void onCompletion(MediaPlayer arg0) {
 }
 }
);
 }
 }
);
 }
}

As you can see, playing back an MP3 is easy. In listing 10.2, all we do is use the View
that we created in listing 10.1 and map the resource ID, playsong, to mybutton, which
we then bind to setOnClickListener() B. Inside the listener, we create the Media-
Player instance C using the create(Context context, int resourceid) method,
which takes our context and a resource ID for the MP3. Finally, we set the setOn-
CompletionListener, which will perform some task on completion. For the moment,
we do nothing, but you may want to change a button’s state or provide a notification
to a user that the song is over, or ask if the user would like to play another song. If you
want to do any of these things, you’ll use this method.

 If you compile the application and run it, you should see something like
figure 10.2. Click the button, and you should hear the Halo 3 song played back on
your device’s speakers.

 Now that we’ve looked at how to play an audio file, let’s see how you can play a
video file.

10.3 Playing video
Playing a video is slightly more complicated than playing audio with the MediaPlayer
API, in part because you have to provide a view surface for your video to play on.
Android has a VideoView widget that handles that task for you; you can use it in any
layout manager. Android also provides a number of display options, including scaling
and tinting. Let’s get started with playing video by creating a new project called Sim-
ple Video Player. Next, create a layout, as shown in the following listing.

Listing 10.2 MediaPlayerActivity.java

BSet view and
button to play MP3

Get context
and play MP3

C

http://groups.google.com/group/android-developers/files

265Playing video
NOTE Currently the emulator has some issues playing video content on
certain computers and operating systems. Don’t be surprised if your
audio or video playback is choppy.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
 <VideoView android:id="@+id/video"
 android:layout_width="320px"
 android:layout_height="240px"
 />/
</LinearLayout>

All we’ve done in this listing is add the VideoView widget B. It provides a UI widget
with Stop, Play, Advance, Rewind, and other buttons, making it unnecessary to add
your own. Next, you need to write a class to play the video, as shown in the following
listing.

Listing 10.3 main.xml UI for Simple Video Player

Figure 10.2 Media player example

Add
VideoView
widget

B

266 CHAPTER 10 Multimedia
 public class SimpleVideo extends Activity {
 private VideoView myVideo;
 private MediaController mc;
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 getWindow().setFormat(PixelFormat.TRANSLUCENT);
 setContentView(R.layout.main);
 myVideo = (VideoView) findViewById(R.id.video);
 File pathToTest= new File

➥(Environment.getExternalFileDirectory(),"test.mp4");
mc = new MediaController(this);
 mc.setMediaPlayer(myVideo);
 myVideo.setMediaController(mc);
 myVideo.requestFocus();
 }
}

In this listing, we first create a translucent window, which is necessary for the Surface-
View B. Next, we reference the VideoView as a container for playing the video and
use its setVideoPath() method to have it look at an SD card (using the approved
Environment API for this purpose) for our test MP4. Finally, we set up the Media-
Controller and use the setMediaController() method to perform a callback to the
VideoView to notify it when our video is finished playing.

 Before you can run this application, you’ll need to either use the ADB to push a
video onto your Android 3.0 device or create one that you’ll reference in the set-
VideoPath() method. You can download this project from the book’s source code
repository, which includes a number of short, license-free videos you can use for test-
ing. When the videos are on your device’s SD card, run the application and touch the
screen where the movie will play in the upper-left corner. Doing so will cause the con-
trols to appear. Push Play, and you should see something like figure 10.3.

 As you can see, the VideoView and MediaPlayer classes simplify working with video
files. Something you’ll need to pay attention to when working with video files is that
the emulator and physical devices will react differently with very large media files.

 Now that you’ve seen how simple it is to play media using Android’s MediaPlayer
API, let’s look at how you can use a phone’s built-in camera or microphone to capture
images or audio.

10.4 Capturing media
Using your cell phone to take pictures, record memos, film short videos, and so on,
are features that are expected of any such device. In this section, we’ll look at how to
capture media from the microphone and camera, and also how to write these files to
the SD card.

 To get started, let’s examine how to use the Android Camera class to capture
images and save them to a file.

Listing 10.4 SimpleVideo.java

Create
translucent
window

B

267Capturing media
10.4.1 Understanding the camera

An important feature of modern cell phones is their ability to take pictures or video
using a built-in camera. Some phones even support using the camera’s microphone to
capture audio. Android, of course, supports all three features and provides a variety of
ways to interact with the camera. In this section, we’ll look at how to interact with the
camera and take photographs.

 You’ll be creating a new project called SimpleCamera to demonstrate how to con-
nect to a phone’s camera to capture images. For this project, you’ll use the Camera
class (http://mng.bz/E244) to tie the emulator’s (or phone’s) camera to a View. Most
of the code that you’ll create for this project deals with showing the input from the
camera, but the main work for taking a picture is done by a single method called
takePicture(Camera.ShutterCallback shutter, Camera.PictureCallback raw,

Camera.PictureCallback jpeg), which has three callbacks that allow you to control
how a picture is taken.

 Before we get any further into the Camera class and how to use the camera, let’s
create the project. You’ll be creating two classes; because the main class is long, we’ll
break it into two sections. When you create the project, you’ll need to add the CAMERA
and WRITE_EXTERNALSTORAGE permissions to the manifest, like this:

<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name=

➥"android.permission.WRITE_EXTERNAL_STORAGE" />

Both permissions are essentially self explanatory.

Figure 10.3 Video and associated player controls in VideoView

http://mng.bz/E244
http://code.google.com/android/reference/android/hardware/Camera.ShutterCallback.html
http://code.google.com/android/reference/android/hardware/Camera.PictureCallback.html
http://code.google.com/android/reference/android/hardware/Camera.PictureCallback.html

268 CHAPTER 10 Multimedia
NOTE The Android emulator doesn’t allow you to connect to camera
devices, such as a webcam, on your computer; all your pictures will dis-
play a chessboard. You can connect to a web camera and get live images
and video, but doing so requires some hacking. You can find an excellent
example of how to do this at Tom Gibara’s website, where he has an open
source project for obtaining live images from a webcam: www.tomgibara
.com/android/camera-source. It’s possible that in later versions of the
SDK, the emulator will support connections to cameras on the hardware
the emulator is running on.

 Now, create the example’s layout, as shown in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 android:orientation="vertical">
 <SurfaceView android:id="@+id/surface"
 android:layout_width="fill_parent" android:layout_height="10dip"
 android:layout_weight="1">
 </SurfaceView>
 <Button android:id="@+id/pictureButton"

➥android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text=

➥"Take Picture"
 android:enabled="true" />

</LinearLayout>

The next listing shows the first part of CameraExample.java.

public class SimpleCamera extends Activity implements

 ➥SurfaceHolder.Callback {

 private Camera camera;
 private boolean isPreviewRunning = false;
 private SimpleDateFormat timeStampFormat =

 ➥new SimpleDateFormat("yyyyMMddHHmmssSS");
 private static final String TAG = "camera";
 private SurfaceView surfaceView;
 private SurfaceHolder surfaceHolder;
 private Uri targetResource = Media.EXTERNAL_CONTENT_URI;

 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 Log.e(getClass().getSimpleName(), "onCreate");
 getWindow().setFormat(PixelFormat.TRANSLUCENT);
 setContentView(R.layout.main);
 this.surfaceView = (SurfaceView) findViewById(R.id.surface);
 this.surfaceHolder = this.surfaceView.getHolder();
 this.surfaceHolder.addCallback(this);

Listing 10.5 Main.xml for SimpleCamera

Listing 10.6 CameraExample.java

www.tomgibara.com/android/camera-source
www.tomgibara.com/android/camera-source

269Capturing media
 this.surfaceHolder.setType(SurfaceHolder.

➥SURFACE_TYPE_PUSH_BUFFERS);

 Button takePicture = (Button) findViewById(R.id.pictureButton);

 takePicture.setOnClickListener(new OnClickListener() {
 public void onClick(View view) {
 try {
 takePicture();

 } catch (Exception e) {
 Log.e(TAG, e.toString());
 e.printStackTrace();
 }
 }
 });

 }

 public boolean onCreateOptionsMenu(android.view.Menu menu) {
 MenuItem item = menu.add(0, 0, 0, "View Pictures");
 item.setOnMenuItemClickListener(new

➥MenuItem.OnMenuItemClickListener() {

 public boolean onMenuItemClick(MenuItem item) {
 Intent intent = new Intent(Intent.ACTION_VIEW,

➥SimpleCamera.this.targetResource);
 startActivity(intent);
 return true;
 }
 });
 return true;
 }

 protected void onRestoreInstanceState(Bundle savedInstanceState) {
 super.onRestoreInstanceState(savedInstanceState);
 }

 Camera.PictureCallback mPictureCallbackRaw =

 ➥new Camera.PictureCallback() {

 public void onPictureTaken(byte[] data, Camera c) {
 SimpleCamera.this.camera.startPreview();
 }
 };

 Camera.ShutterCallback mShutterCallback =

 ➥new Camera.ShutterCallback() {

 public void onShutter() {
 }
 }; };

This listing is straightforward. First, we set variables for managing a SurfaceView and
then set up the View. Next, we create a menu and menu option that will float over the
surface when the user clicks the Menu button on the phone while the application is
running B. Doing so will open Android’s picture browser and let the user view the
photos on the camera. Next, we create the first PictureCallback, which is called

Create menu
to Android’s
Photo GalleryB

Create
PictureCallback

C

Create
ShutterCallback

D

270 CHAPTER 10 Multimedia
when a picture is first taken C. This first callback captures the PictureCallback’s
only method, onPictureTaken(byte[] data, Camera camera), to grab the raw image
data directly from the camera. Next, we create a ShutterCallback, which can be used
with its onShutter() method, to play a sound; here we don’t call the onShutter()
method D.

 We’ll continue with CameraExample.java in the next listing.

public boolean takePicture() {
 ImageCaptureCallback camDemo = null;

 try {
 String filename =
this.timeStampFormat.format(new Date());
 ContentValues values = new ContentValues();
 values.put(MediaColumns.TITLE, filename);
 values.put(ImageColumns.DESCRIPTION, "Image from Xoom");
 Uri uri =
getContentResolver().insert(Media.EXTERNAL_CONTENT_URI, values);
 camDemo = new
ImageCaptureCallback(getContentResolver().openOutputStream(uri));
 } catch (Exception ex) {

 }

 this.camera.takePicture(this.mShutterCallback,
this.mPictureCallbackRaw, camDemo);
 return true;

 }

 protected void onResume() {
 Log.e(getClass().getSimpleName(), "onResume");
 super.onResume();
 }

 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 }

 protected void onStop() {
 super.onStop();
 }

 public void surfaceChanged(SurfaceHolder holder, int format,
int w, int h) {
 if (this.isPreviewRunning) {
 this.camera.stopPreview();
 }
 Camera.Parameters p = this.camera.getParameters();
 p.setPreviewSize(w, h);
 this.camera.setParameters(p);
 try {

Listing 10.7 CameraExample.java, continued

Call method
to take
pictureB Set up required

information for
camera to
capture image

C

Take pictureD

http://code.google.com/android/reference/android/hardware/Camera.html

271Capturing media
 this.camera.setPreviewDisplay(holder);
 } catch (IOException e) {

 e.printStackTrace();
 }
 this.camera.startPreview();
 this.isPreviewRunning = true;
 }

 public void surfaceCreated(SurfaceHolder holder) {
 this.camera = Camera.open();
 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 this.camera.stopPreview();
 this.isPreviewRunning = false;
 this.camera.release();
 }
}

This listing is more complicated than listing 10.5. Much of the code is about manag-
ing the surface for the camera preview. The first line is the start of an implementation
of the method takePicture() B, which checks to see whether the Take Picture but-
ton was clicked. If it was, we set up the creation of a file; and by using the Image-
CaptureCallback (which we’ll define in listing 10.7), we create an Outputstream to
which we write our image data C, including not only the image but the filename and
other metadata. Next, we call the method takePicture() and pass to it the three call-
backs mShutterCallback, mPictureCallbackRaw, and camDemo. mPictureCallback-
Raw is the raw image, and camDemo writes the image to a file on the SD card D, as you
can see in the following listing.

public class ImageCaptureCallback implements PictureCallback {
 private OutputStream filoutputStream;
 public ImageCaptureCallback(OutputStream filoutputStream) {
 this.filoutputStream = filoutputStream;
 }
 public void onPictureTaken(byte[] data, Camera camera) {
 try {
 this.filoutputStream.write(data);
 this.filoutputStream.flush();
 this.filoutputStream.close();
 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Here, the class implements the PictureCallback interface and provides two meth-
ods. The constructor creates a stream to write data to, and the second method,
onPictureTaken(), takes binary data and writes to the SD card as a JPEG.

Listing 10.8 ImageCaptureCallback.java

272 CHAPTER 10 Multimedia
If you build this project and attempt to run it on a 3.0 emulator, it’s likely that it won’t
work; as noted earlier, the emulator in 3.0 has issues with trying to detect a camera
device. Probably the best to test camera support on an emulator is to create an input to
the emulator that simulates a camera. One tool to do this is NyARToolkit, which you
can get at http://mng.bz/gdBh. Because simulating a camera in Android isn’t an opti-
mal way to test your code, it’s by far preferred to use a real device such as the Motorola
Xoom. If you run this project in a Xoom, you should see something like figure 10.4.

 Now that you’ve seen how the Camera class works in Android, let’s look at how to
capture or record audio from a camera’s microphone. In the next section, we’ll
explore the MediaRecorder class, and you’ll write recordings to an SD card.

10.4.2 Capturing audio

Now we’ll look at using the onboard microphone to record audio. In this section,
you’ll use the Android MediaRecorder example from the Google Android Developers
list, which you can find at http://code.google.com/p/unlocking-android/. The code
shown in this section has been updated slightly.

NOTE Audio capture requires a physical device running Android,
because it’s not currently supported in the Android emulator.

In general, recording audio or video follows the same process in Android:

Figure 10.4 Using the SimpleCamera application on a Xoom

http://mng.bz/gdBh
http://code.google.com/p/unlocking-android/

273Capturing media
1 Create an instance of android.media.MediaRecorder.
2 Create an instance of android.content.ContentValues, and add properties

such as TITLE, TIMESTAMP, and the all-important MIME_TYPE.
3 Create a file path for the data to go to, using android.content.Content-

Resolver.
4 To set a preview display on a view surface, use MediaRecorder.setPreview-

Display().
5 Set the source for audio, using MediaRecorder.setAudioSource().
6 Set the output file format, using MediaRecorder.setOutputFormat().
7 Set your encoding for audio, using MediaRecorder.setAudioEncoder().
8 Use prepare() and start() to prepare and start your recordings.
9 Use stop() and release() to gracefully stop and clean up your recording

process.

Although recording media isn’t especially complex, you may notice that it’s more
involved than playing it. To understand how to use the MediaRecorder class, we’ll look
at an application. To begin, create a new project called SoundRecordingDemo. Next,
edit the AndroidManifest.xml file and add the following:

<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

This code will allow the application to record the audio files and play them. Next, cre-
ate the class shown in the following listing.

public class SoundRecordingDemo extends Activity {

 MediaRecorder mRecorder;
 File mSampleFile = null;
 static final String SAMPLE_PREFIX = "recording";
 static final String SAMPLE_EXTENSION = ".3gpp";
 private static final String OUTPUT_FILE = "/sdcard/audiooutput.3gpp";
 private static final String TAG = "SoundRecordingDemo";

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 this.mRecorder = new MediaRecorder();

 Button startRecording = (Button) findViewById(R.id.startrecording);
 Button stopRecording = (Button) findViewById(R.id.stoprecording);

 startRecording.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 startRecording();
 }
 });

 stopRecording.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {

Listing 10.9 SoundRecordingdemo.java

274 CHAPTER 10 Multimedia
 stopRecording();
 addToDB();
 }

 });
 }

 protected void addToDB() {
 ContentValues values = new ContentValues(3);
 long current = System.currentTimeMillis();

 values.put(MediaColumns.TITLE, "test_audio");
 values.put(MediaColumns.DATE_ADDED, (int) (current / 1000));
 values.put(MediaColumns.MIME_TYPE, "audio/3gpp");
 values.put(MediaColumns.DATA, OUTPUT_FILE);
 ContentResolver contentResolver = getContentResolver();

 Uri base = MediaStore.Audio.Media.EXTERNAL_CONTENT_URI;
 Uri newUri = contentResolver.insert(base, values);

 sendBroadcast(new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE,
 newUri)); }

 protected void startRecording() {
 this.mRecorder = new MediaRecorder();
 this.mRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 this.mRecorder.setOutputFormat(MediaRecorder.
OutputFormat.THREE_GPP);
 this.mRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 this.mRecorder.setOutputFile(OUTPUT_FILE);
 try {
 this.mRecorder.prepare();
 } catch (IllegalStateException e1) {
 // TODO Auto-generated catch block
 e1.printStackTrace();
 } catch (IOException e1) {
 // TODO Auto-generated catch block
 e1.printStackTrace();
 }
 this.mRecorder.start();

 if (this.mSampleFile == null) {
 File sampleDir = Environment.getExternalStorageDirectory();

 try {
 this.mSampleFile =
File.createTempFile(SoundRecordingDemo.SAMPLE_PREFIX,
 SoundRecordingDemo.SAMPLE_EXTENSION, sampleDir);
 } catch (IOException e) {
 Log.e(SoundRecordingDemo.TAG, "sdcard access error");
 return;
 }
 }
 }

 protected void stopRecording() {
 this.mRecorder.stop();
 this.mRecorder.release();
 }
}}

BSet metadata
for audio

Notify music player
new audio file createdC

Start recording file D

Stop recording
and release
MediaRecorderE

275Capturing media
The first part of the code creates the buttons and button listeners to start and stop the
recording; reference main.xml by downloading the code. The first part of the listing
that you need to pay attention to is the addToDB() method. In this method, we set all
the metadata for the audio file we plan to save, including the title, date, and type of
file B. Next, we call the Intent ACTION_MEDIA_SCANNER_SCAN_FILE to notify applica-
tions such as Android’s Music Player that a new audio file has been created C. Calling
this Intent allows us to use the Music Player to look for new files in a playlist and play
the files.

 Next, we create the startRecording() method, which creates a new Media-
Recorder D. As in the steps in the beginning of this section, we set an audio source,
which is the microphone; set an output format as THREE_GPP; set the audio encoder
type to AMR_NB; and then set the output file path to write the file. Next, we use the
methods prepare() and start() to enable audio recording.

 Finally, we create the stopRecording() method to stop the MediaRecorder from
saving audio E by using the methods stop() and release().

 If you build this application and run the emulator with the SD card image from the
previous section, you should be able to launch the application from Eclipse and click
the Start Recording button. After a few seconds, click the Stop Recording button and
open the DDMS; you should be able to navigate to the sdcard folder and see your
recordings, as shown in figure 10.5. Alternately you can use your device’s media
player, file browser, or the like to navigate to that file and play it.

 If music is playing on your computer’s audio system, the Android emulator will
pick it up and record it directly from the audio buffer (it’s not recording from a
microphone). You can then easily test whether it recorded sound by opening the
Android Music Player and selecting Playlists > Recently Added. It should play your
recorded file, and you should be able to hear anything that was playing on your com-
puter at the time.

 As of version 1.5, Android supported the recording of video, although many devel-
opers found it difficult and some vendors implemented their own customer solutions

Figure 10.5 An example of audio files being saved to the SD card image in the file explorer

276 CHAPTER 10 Multimedia
to support video recording. With the releases of Android 2.0 to Android 3.1, video has
become far easier to work with, both for playing as well as recording. You’ll see how
much easier in the next section about using the MediaRecorder class to write a simple
application for recording video.

10.4.3 Recording video

Video recording on Android is no more difficult than recording audio, with the
exception that you have a few different fields. But there’s one important difference—
unlike with recording audio data, Android requires you to first preview a video feed
before you can record it by passing it a surface object, much as we did with the camera
application earlier in this chapter. It’s worth repeating this point because when
Android started supporting video recording, many developers found themselves
unable to record video: you must always provide a surface object. This may be awk-
ward for some applications, but it’s currently required in Android up to 2.2 and up.

 Also, as with recording audio, you have to provide several permissions to Android so
you can record video. The new one is RECORD_VIDEO, which lets you use the camera to
record video. The other permissions are CAMERA, RECORD_AUDIO, and
WRITE_EXTERNAL_STORAGE, as shown in the following listing. Go ahead and set up a new
project called VideoCam, and use the permissions in this AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.chapter10.VideoCam"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".VideoCam"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
"android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-permission android:name="android.permission.CAMERA">
</uses-permission>
 <uses-permission android:name=
"android.permission.RECORD_AUDIO"></uses-permission>
 <uses-permission android:name=
"android.permission.RECORD_VIDEO"></uses-permission>
 <uses-permission android:name=
"android.permission.WRITE_EXTERNAL_STORAGE" />
 <uses-feature android:name="android.hardware.camera" />
</manifest>

Listing 10.10 AndroidManifest.xml

277Capturing media
One interesting thing that is worth pointing out about the manifest file for this project
is the uses-feature statement:

<uses-feature android:name="android.hardware.camera" />

This statement is needed for the application to run, but in general you would use this
statement to tell external entities what software and/or hardware the application
depends on. This is useful for informing users that your application will only run on
devices that have specific hardware, such as a camera or a 3G radio. To read more, see
http://mng.bz/PdE4.

 Now that you’ve defined the manifest, you need to create a simple layout that has a
preview area and some buttons to start, stop, pause, and play your video recording.
The layout is shown in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <RelativeLayout android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/relativeVideoLayoutView"
 android:layout_centerInParent="true">
 <VideoView android:id="@+id/videoView"

➥android:layout_width="176px"
 android:layout_height="144px"
 android:layout_centerInParent="true"/>
 </RelativeLayout>
 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:layout_centerHorizontal="true"
 android:layout_below="@+id/relativeVideoLayoutView">
 <ImageButton android:id="@+id/playRecordingBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="@drawable/play"
 />
 <ImageButton android:id="@+id/bgnBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="@drawable/record"
 android:enabled="false"
 />
 </LinearLayout>
</RelativeLayout>

NOTE You’ll need to download this code from https://code.google
.com/p/android-in-action/ to get the open source icons that we use for
the buttons, or you can use your own.

Listing 10.11 main.xml for VideoCam

http://mng.bz/PdE4
https://code.google.com/p/android-in-action/
https://code.google.com/p/android-in-action/

278 CHAPTER 10 Multimedia
Video recording follows a set of steps that are similar to those for audio recording:

1 Create an instance of android.media.MediaRecorder.
2 Set up a VideoView.
3 To set a preview display on a View surface, use MediaRecorder.setPreview-

Display().
4 Set the source for audio using MediaRecorder.setAudioSource().
5 Set the source for video using MediaRecorder.setVideoSource().
6 Set the encoding for audio using MediaRecorder.setAudioEncoder().
7 Set the encoding for video using MediaRecorder.setVideoEncoder().
8 Set the output file format using MediaRecorder.setOutputFormat().
9 Set the video size using setVideoSize(). (At the time this book was written,

there was a bug in setVideoSize() that limited it to 320 by 240.)
10 Set the video frame rate, using setVideoFrameRate().
11 Use prepare() and start() to prepare and start your recordings.
12 Use stop() and release() to gracefully stop and clean up the recording

process.

As you can see, using video is similar to using audio. Let’s finish the example by using
the code in the following listing.

public class VideoCam extends Activity implements SurfaceHolder.Callback {
 private MediaRecorder recorder = null;
 private static final String OUTPUT_FILE =
 "/sdcard/uatestvideo.mp4";
 private static final String TAG = "RecordVideo";
 private VideoView videoView = null;
 private ImageButton startBtn = null;
 private ImageButton playRecordingBtn = null;
 private Boolean playing = false;
 private Boolean recording = false;
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 startBtn = (ImageButton) findViewById(R.id.bgnBtn);
 playRecordingBtn = (ImageButton)
 findViewById(R.id.playRecordingBtn);
 videoView = (VideoView)this.findViewById(R.id.videoView);
 final SurfaceHolder holder = videoView.getHolder();
 holder.addCallback(this);
 holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 startBtn.setOnClickListener(new OnClickListener() {
 public void onClick(View view) {
 if(!VideoCam.this.recording & !VideoCam.this.playing)
 {
 try
 {
 beginRecording(holder);

Listing 10.12 VideoCam.java

279Capturing media
 playing=false;
 recording=true;
 startBtn.setBackgroundResource(R.drawable.stop);
 } catch (Exception e) {
 Log.e(TAG, e.toString());
 e.printStackTrace();
 }
 }
 else if(VideoCam.this.recording)
 {
 try
 {
 stopRecording();
 playing = false;
 recording= false;
 startBtn.setBackgroundResource(R.drawable.play);
 }catch (Exception e) {
 Log.e(TAG, e.toString());
 e.printStackTrace();
 }
 }
 }
 });
 playRecordingBtn.setOnClickListener(new OnClickListener() {
 public void onClick(View view)
 {
 if(!VideoCam.this.playing & !VideoCam.this.recording)
 {
 try
 {
 playRecording();
 VideoCam.this.playing=true;
 VideoCam.this.recording=false;
 playRecordingBtn.setBackgroundResource
(R.drawable.stop);
 } catch (Exception e) {
 Log.e(TAG, e.toString());
 e.printStackTrace();
 }
 }
 else if(VideoCam.this.playing)
 {
 try
 {
 stopPlayingRecording();
 VideoCam.this.playing = false;
 VideoCam.this.recording= false;
 playRecordingBtn.setBackgroundResource
(R.drawable.play);
 }catch (Exception e) {
 Log.e(TAG, e.toString());
 e.printStackTrace();
 }
 }
 }

280 CHAPTER 10 Multimedia
 });
 }
 public void surfaceCreated(SurfaceHolder holder) {
 startBtn.setEnabled(true);
 }
 public void surfaceDestroyed(SurfaceHolder holder) {
 }
 public void surfaceChanged(SurfaceHolder holder, int format, int width,
 int height) {
 Log.v(TAG, "Width x Height = " + width + "x" + height);
 }
 private void playRecording() {
 MediaController mc = new MediaController(this);
 videoView.setMediaController(mc);
 videoView.setVideoPath(OUTPUT_FILE);
 videoView.start();
 }
 private void stopPlayingRecording() {
 videoView.stopPlayback();
 }
 private void stopRecording() throws Exception {
 if (recorder != null) {
 recorder.stop();
 }
 }
 protected void onDestroy() {
 super.onDestroy();
 if (recorder != null) {
 recorder.release();
 }
 }
 private void beginRecording(SurfaceHolder holder) throws Exception {
 if(recorder!=null)
 {
 recorder.stop();
 recorder.release();
 }
 File outFile = new File(OUTPUT_FILE);
 if(outFile.exists())
 {
 outFile.delete();
 }
 try {
 recorder = new MediaRecorder();
 recorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);
 recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 recorder.setOutputFormat(MediaRecorder.OutputFormat.MPEG_4);
 recorder.setVideoSize(320, 240);
 recorder.setVideoFrameRate(15);
 recorder.setVideoEncoder(MediaRecorder.VideoEncoder.MPEG_4_SP);
 recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 recorder.setMaxDuration(20000);
 recorder.setPreviewDisplay(holder.getSurface());
 recorder.setOutputFile(OUTPUT_FILE);
 recorder.prepare();

281Capturing media
 recorder.start();
 }
 catch(Exception e) {
 Log.e(TAG, e.toString());
 e.printStackTrace();
 }
 }
}

Because much of this listing is similar to other code in this chapter, we won’t describe
everything that’s happening. If you look quickly at the code, you’ll note that it’s rela-
tively simple. The first thing we do, besides setting some fields, is set up our surface to
support the camera preview, much as we did in the camera application earlier in this
chapter. The next part of the code that’s important is the beginRecording() method.
First, this method checks to make sure that everything is ready to record a video file by
making sure that the camera is free and that it can record the output file. Then, the
method closely follows the preceding processes to set up the camera for recording
before calling prepare() and then start().

 Unfortunately, as we noted with the camera project, there’s no easy way to test your
application in the emulator. For this example, we’ve pushed the application to a cell
phone to test the camera, and we used the DDMS to note the file that was recorded
and to play it back. You can see an example of the output, captured with the DDMS
from a Motorola Xoom, in figure 10.6.

Figure 10.6 Photograph of the VideoCam application running on a Xoom

282 CHAPTER 10 Multimedia
SUPPORT FOR MULTIPLE CAMERAS

As of Android 2.3, Android supports multiple cameras. For example, the Motorola
Xoom has a front-facing camera and a back-facing camera to support applications like
video conferencing. For this reason, Android now supports multiple new API calls for
the Camera class to help developers support multiple cameras.

 The Camera.CameraInfo class stores the device’s camera orientation. Currently it
supports CAMERA_FACING_BACK and CAMERA_FACING_FRONT. You can use this class to
essentially auto-discover which camera is which, as in the following code snippet:

numberOfCameras = Camera.getNumberOfCameras();
CameraInfo cameraInfo = new CameraInfo();
 for (int i = 0; i < numberOfCameras; i++) {
 Camera.getCameraInfo(i, cameraInfo);
 if (cameraInfo.facing == CameraInfo.CAMERA_FACING_BACK) {
 defaultCameraId = i;
 }
 }

Other new camera-related methods include getNumberOfCameras() and getCamera-
Info(). If you look at the previous code snippet, you can see how these methods can
be used to query an application for the number of cameras available and find the cam-
era an application needs.

 Another new method, get(), allows you to programmatically retrieve information
about a specific camera as a CamcorderProfile. This lets your applications be more
flexible because they can get information about a device’s capabilities, and you have to
write less code targeting certain hardware platforms. Android 3.0 includes a number of
other new methods related to cameras, so be sure to review the Camera API at http://
mng.bz/v1sw. That being said, if you wish to work with cameras, you’ll most likely have
to work directly with the hardware on which you wish to run your applications.

DEBUGGING VIDEO APPS

Without a device to test on, you’ll have major difficulties debugging your video appli-
cations. This is especially true with the Android SDK emulator for Xoom-like tablets,
which is difficult to use due to its extremely poor performance. If you decide to
develop a video application, we strongly suggest that you not only obtain an Android
device to test on, but also test every physical device that you hope your application will
run on. Although Android applications that record data from sensors can be difficult
to work with on the emulator, they’re relatively straightforward to code—but you need
to use a physical Android device to test.

10.5 Summary
In this chapter, we looked at how the Android SDK supports multimedia and how you
can play, save, and record video and audio. We also discussed various features the
Android MediaPlayer offers developers, from a built-in video player to wide support
for formats, encodings, and standards.

http://mng.bz/v1sw
http://mng.bz/v1sw

283Summary
 We explained how to interact with other hardware devices attached to the phone,
such as a microphone and camera. You used the MediaRecorder application to record
audio and video and then save it to the SD card.

 The most consistent characteristic of multimedia programming with Android is
that things are changing and maturing! Multimedia support has moved from Open-
CORE to Stagefright as of Android 3.0. Writing multimedia applications requires you
to conduct a bit more work directly on the hardware you wish an application to work
on, because the emulated environments don’t adequately replicate the hardware
capabilities of the handsets. Despite this potential speed bump in the development
process, Android currently offers everything you need to create rich and compelling
media applications.

 In the next chapter, you’ll learn how to use Android’s location services to interact
with GPS and maps. By mixing in what you’ve learned in this chapter, you’ll be able to
create your own GPS application that not only provides voice direction, but also
responds to voice commands.

Location,
location, location
Accurate location awareness makes a mobile device more powerful. Combining
location awareness with network data can change the world—and Android shines
here. Other platforms have gained similar abilities in recent years, but Android
excels with its easy-to-use and popular location API framework based on Google
Maps.

 From direct network queries to triangulation with cell towers and even satellite
positioning via GPS, an Android-powered device has access to different types of
LocationProvider classes that allow access to location data. Various providers sup-
ply a mix of location-related metrics, including latitude and longitude, speed, bear-
ing, and altitude.

This chapter covers
 Working with LocationProvider and LocationManager

 Testing location in the emulator

 Receiving location alerts with LocationListener

 Drawing with MapActivity and MapView

 Looking up addresses with the Geocoder
284

285
 Developers generally prefer to work with GPS because of its accuracy and power.
But some devices may not have a GPS receiver, and even GPS-enabled devices can’t
access satellite data when inside a large building or otherwise obstructed from receiv-
ing the signal. In those instances the Android platform provides a graceful and auto-
matic fallback to query other providers when your first choice fails. You can examine
provider availability and hook into one or another using the LocationManager class.

 Location awareness1 opens up a new world of possibilities for application develop-
ment. In this chapter, you’ll build an application that combines location awareness
with data from the U.S. National Oceanic and Atmospheric Administration (NOAA) to
produce an interesting and useful mashup.

 Specifically, you’ll connect to the National Data Buoy Center (NDBC) to retrieve
data from buoys and ships located around the coastline in North America. Thanks to
the NOAA-NDBC system, which polls sensors on buoys and makes that data available in
RSS feeds, you can retrieve data for the vicinity, based on the current location, and dis-
play condition information such as wind speed, wave height, and temperature.
Although we won’t cover non-location-related details in this chapter, such as using
HTTP to pull the RSS feed data, the full source code for the application is available
with the code download for this chapter. Our Wind and Waves application has several
main screens, including an Android MapActivity with a MapView. These components
are used for displaying and manipulating map information, as shown in figure 11.1.

1 For more about location, check out Location-Aware Applications by Richard Ferraro and Murat Aktihanoglu,
published by Manning in July 2011: www.manning.com/ferraro.

Figure 11.1 Screens from the Wind and Waves location-aware application

http//www.manning.com/ferraro

286 CHAPTER 11 Location, location, location
 Accessing buoy data, which is important mainly for marine use cases, has a some-
what limited audience. But the principles shown in this app demonstrate the range of
Android’s location-related capabilities and should inspire you to develop your own
unique application.

 In addition to displaying data based on the current location, you’ll use this applica-
tion to create several LocationListener instances that receive updates when the
user’s location changes. When the position changes, the device will inform your appli-
cation, and you’ll update your MapView using an Overlay—an object that allows you to
draw on top of the map.

 Beyond the buoy application requirements, you’ll also write a few samples for
working with the Geocoder class. This class allows you to map between a GeoPoint (lat-
itude and longitude) and a place (city or postal code) or address. This utility doesn’t
help much on the high seas but does benefit many other apps.

 Before writing the sample apps, you’ll start by using the device’s built-in mapping
application and simulating your position within the Android emulator. This approach
will allow you to mock your location for the emulator. After we’ve covered all of the
emulator location-related options, we’ll move on to building Wind and Waves.

11.1 Simulating your location within the emulator
For any location-aware application, you’ll start by working with the provided SDK and
the emulator. Within the emulator, you’ll set and update your current location. From
there you’ll want to progress to supplying a range of locations and times to simulate
movement over a geographic area.

 You can accomplish these tasks in several ways, either by using the DDMS tool or by
using the command line from the shell. To get started quickly, let’s first send in direct
coordinates through the DDMS tool.

11.1.1 Sending in your coordinates with the DDMS tool

You can access the DDMS tool in two ways, either launched on its own from the SDK
tools subdirectory or as the Emulator Control view within the Eclipse IDE. You need to
have Eclipse and the Android Eclipse plug-in to
use DDMS within Eclipse; see chapter 2 and
appendix A for more details about getting the
SDK and plug-in set up.

 With the DDMS tool you can send direct lati-
tude and longitude coordinates manually from
the Emulator Control > Location Controls
form. This is shown in figure 11.2. Note that
Longitude is the first field, which is the standard
around the world, but backward from how lati-
tude and longitude are generally expressed in
the United States.

Figure 11.2 Using the DDMS tool to send
direct latitude and longitude coordinates to
the emulator as a mock location

287Simulating your location within the emulator
 If you launch the built-in Maps application from Android’s main menu and send
in a location with the DDMS tool, you can then use the menu to select My Location,
and the map will animate to the location you’ve specified—anywhere on Earth.

NOTE Both the Google Maps application and the mapping APIs are part of
the optional Google APIs. As such, not all Android phones support these fea-
tures. Check your target devices to ensure that they provide this support. For
development, you’ll need to install an Android Virtual Device2 (AVD) that
supports the Google APIs.

Try this a few times to become comfortable with setting locations; for example, send
the decimal coordinates in table 11.1 one by one, and in between browse around the
map. When you supply coordinates to the emulator, you’ll need to use the decimal
form.

 Although the DDMS tool requires the decimal format, latitude and longitude are
more commonly expressed on maps and other tools as degrees, minutes, and seconds.
Degrees (°) represent points on the surface of the globe as measured from either the
equator (for latitude) or the prime meridian (for longitude). Each degree is further
subdivided into 60 smaller sections, called minutes ('), and each minute also has 60
seconds ("). If necessary, seconds can be divided into tenths of a second or smaller
fractions.

When representing latitude and longitude on a computer, the degrees are usually
converted into decimal form with positive representing north and east and negative
representing south and west, as shown in figure 11.3.

 If you live in the southern and eastern hemispheres, such as in Buenos Aires,
Argentina, which is 34°60' S, 58°40' W in the degree form, the decimal form is nega-
tive for both latitude and longitude, -34.60, -58.40. If you haven’t used latitude and
longitude much, the different forms can be confusing at first, but they quickly
become clear.

2 For more on Android, maps and Android Virtual Devices, try here: http://developer.appcelerator.com/doc/
mobile/android-maps.

Table 11.1 Example coordinates for the emulator to set using the DDMS tool

Description
Latitude
degrees

Longitude
degrees

Latitude
decimal

Longitude
decimal

Golden Gate Bridge, California 37°49' N 122°29' W 37.82 -122.48

Mount Everest, Nepal 27°59' N 86°56' E 27.98 86.93

Ayer’s Rock, Australia 25°23' S 131°05' E -25.38 131.08

North Pole 90°00' N 90.00

South Pole 90°00' S -90.00

http://developer.appcelerator.com/doc/mobile/android-maps
http://developer.appcelerator.com/doc/mobile/android-maps

288 CHAPTER 11 Location, location, location

 Once you’ve mastered setting a fixed position, you
can move on to supplying a set of coordinates that the
emulator will use to simulate a range of movement.

NOTE You can also send direct coordinates from
within the emulator console. If you telnet localhost
5554 (adjust the port where necessary) or adb
shell, you’ll connect to the default emulator’s con-
sole. From there you can use the geo fix com-
mand to send longitude, latitude, and optional
altitude; for example, geo fix -21.55 64.1. Keep
in mind that the Android tools require longitude
in the first parameter.

11.1.2 The GPS Exchange Format

The DDMS tool supports two formats for supplying a
range of location data in file form to the emulator. The GPS Exchange Format (GPX)
allows a more expressive form when working with Android.

GPX is an XML schema that allows you to store waypoints, tracks, and routes. Many
handheld GPS devices support this format. The following listing shows the basics of
the format in a portion of a sample GPX file.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<gpx xmlns="http://www.topografix.com/GPX/1/1"
 version="1.1"
 creator="Charlie Collins - Hand Rolled"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.topografix.com/GPX/1/1/gpx.xsd">
 <metadata>
 <name>Sample Coastal California Waypoints</name>
 <desc>Test waypoints for use with Android</desc>
 <time>2008-11-25T06:52:56Z</time>
 <bounds minlat="25.00" maxlat="75.00"
 minlon="100.00" maxlon="-150.00" />
 </metadata>
 <wpt lat="41.85" lon="-124.38">
 <ele>0</ele>
 <name>Station 46027</name>
 <desc>Off the coast of Lake Earl</desc>
 </wpt>
 <wpt lat="41.74" lon="-124.18">
 <ele>0</ele>
 <name>Station CECC1</name>
 <desc>Crescent City</desc>
 </wpt>
 <wpt lat="38.95" lon="-123.74">

Listing 11.1 A sample GPX file

Define root
gpx element

B

Include
metadata
stanza

c

Supply
waypoint
element

D

o
East
 90

South
 -90

North
 90

West
 -90

o

o

o

Figure 11.3 Latitude and longitude
spherical diagram, showing positive
north and east and negative south
and west

289Simulating your location within the emulator
 <ele>0</ele>
 <name>Station PTAC1</name>
 <desc>Point Arena Lighthouse</desc>
 </wpt>
 . . . remainder of wpts omitted for brevity
<trk>

<name>Example Track</name>
 <desc>A fine track with trkpts.</desc>
 <trkseg>
 <trkpt lat="41.85" lon="-124.38">
 <ele>0</ele>
 <time>2008-10-15T06:00:00Z</time>
 </trkpt>
 <trkpt lat="41.74" lon="-124.18">
 <ele>0</ele>
 <time>2008-10-15T06:01:00Z</time>
 </trkpt>
 <trkpt lat="38.95" lon="-123.74">
 <ele>0</ele>
 <time>2008-10-15T06:02:00Z</time>
 </trkpt>
 . . . remainder of trkpts omitted for brevity
 </trkseg>
 </trk>
</gpx>

A GPX file requires the correct XML namespace in the root gpx element B. Within
its body, the file includes metadata C and individual waypoints D. Waypoints are
named locations at a particular latitude and longitude. Along with individual way-
points, a GPX file supports related route information in the form of tracks E, which
can be subdivided further into track segments F. Each track segment is made up of
track points. Finally, each track point G contains a waypoint with an additional point-
in-time property.

 When working with a GPX file in the DDMS tool, you can use two different modes,
as figure 11.4 reveals. The top half of the GPX box lists individual waypoints; when you
click one, that individual location is sent to the emulator. In the bottom half of the
GPX box, all the tracks are displayed. Tracks can be “played” forward and backward to
simulate movement. As the track reaches each track point, based on the time it
defines, it sends those coordinates to the emulator. You can modify the speed for this
playback via the Speed button.

GPX is simple and extremely useful when working with mock location information
for your Android applications, but it’s not the only file format supported. The DDMS
tool also supports a format called KML.

11.1.3 The Google Earth Keyhole Markup Language

The second format that the Android DDMS tool supports for sending a range of mock
location information to the emulator is the Keyhole Markup Language (KML). KML was
originally a proprietary format created by a company named Keyhole. After Google

Supply track
element

E

Use track
segment

F

Provide
specific
point

G

290 CHAPTER 11 Location, location, location
acquired Keyhole, it submitted KML to the Open Geospatial Consortium (OGC),
which accepted KML as an international standard.

OGC KML pursues the following goal:
That there be one international standard language for expressing geographic annotation
and visualization on existing or future web-based online and mobile maps (2d) and earth
browsers (3d).

The following listing shows a sample KML file for sending location data to the Android
emulator. This file uses the same coastal location data as you saw with the previous
GPX example.

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
 <Placemark>
 <name>Station 46027</name>
 <description>Off the coast of Lake Earl</description>
 <Point>
 <coordinates>-124.38,41.85,0</coordinates>
 </Point>
 </Placemark>
 <Placemark>
 <name>Station 46020</name>
 <description>Outside the Golden Gate</description>
 <Point>
 <coordinates>-122.83,37.75,0</coordinates>

Listing 11.2 A sample KML file

Figure 11.4 Using the DDMS tool with a GPX file to send mock location information

Capture information
with Placemark

B

Provide
PointC

D
Supply coordinates

for Point

291Simulating your location within the emulator
 </Point>
 </Placemark>
 <Placemark>
 <name>Station 46222</name>
 <description>San Pedro Channel</description>
 <Point>
 <coordinates>-118.31,33.61,0</coordinates>
 </Point>
 </Placemark>
</kml>

KML uses a kml root element requiring the correct namespace declaration. KML sup-
ports many more elements and attributes than the DDMS tool handles. DDMS only
checks your KML files for Placemark elements B, which contain Point child
elements C, which in turn supply coordinates D.

 Figure 11.5 shows an example of using a KML file with the DDMS tool.
KML3 is flexible and expressive, but it has drawbacks when used with the Android

emulator. As we’ve noted, the DDMS parser looks for the coordinate elements in the
file and sends the latitude, longitude, and elevation for each in a sequence, one

3 For more details on KML, go to http://code.google.com/apis/kml/documentation/.

Figure 11.5 Using the DDMS tool with a KML file to send mock location information

http://code.google.com/apis/kml/documentation/

292 CHAPTER 11 Location, location, location
Placemark per second. Timing and other advanced features of KML aren’t yet sup-
ported by DDMS. Because of this, we find it more valuable at present to use GPX as a
debugging and testing format, because it supports detailed timing.

KML is still important; it’s an international standard and will continue to gain trac-
tion. Also, KML is an important format for other Google applications, so you may
encounter it more frequently in other contexts than GPX. For example, you could cre-
ate a KML route using Google Earth, and then later use it in your emulator to simulate
movement.

 Now that you know how to send mock location information to the emulator in var-
ious formats, you can step out of the built-in Maps application and start creating your
own programs that rely on location.

11.2 Using LocationManager and LocationProvider
When building location-aware applications on the Android platform, you’ll most
often use several key classes. A LocationProvider provides location data using several
metrics, and you can access providers through a LocationManager.

LocationManager allows you to attach a LocationListener that receives updates
when the device location changes. LocationManager also can directly fire an Intent
based on the proximity to a specified latitude and longitude. You can always retrieve
the last-known Location directly from the manager.

 The Location class is a Java bean that represents all the location data available
from a particular snapshot in time. Depending on the provider used to populate it, a
Location may or may not have all the possible data present; for example, it might not
include speed or altitude.

 To get your Wind and Waves sample application started and to grasp the related
concepts, you first need to master the LocationManager.

11.2.1 Accessing location data with LocationManager

LocationManager lets you retrieve location-related data on Android. Before you can
check which providers are available or query the last-known Location, you need to
acquire the manager from the system service. The following listing demonstrates this
task and includes a portion of the MapViewActivity that will drive our Wind and
Waves application.

public class MapViewActivity extends MapActivity {
 private static final int MENU_SET_SATELLITE = 1;
 private static final int MENU_SET_MAP = 2;
 private static final int MENU_BUOYS_FROM_MAP_CENTER = 3;
 private static final int MENU_BACK_TO_LAST_LOCATION = 4;
 . . . Handler and LocationListeners omitted here for brevity - shown in
 later listings
 private MapController mapController;
 private LocationManager locationManager;

Listing 11.3 Start of MapViewActivity

Extend
MapActivityB

Define
LocationManager

C

293Using LocationManager and LocationProvider
 private LocationProvider locationProvider;
 private MapView mapView;
 private ViewGroup zoom;
 private Overlay buoyOverlay;
 private ProgressDialog progressDialog;
 private Drawable defaultMarker;
 private ArrayList<BuoyOverlayItem> buoys;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.mapview_activity);
 mapView = (MapView) this.findViewById(R.id.map_view);
 zoom = (ViewGroup) findViewById(R.id.zoom);
 zoom.addView(this.mapView.getZoomControls());
 defaultMarker =
 getResources().getDrawable(R.drawable.redpin);
 defaultMarker.setBounds(0, 0,
 defaultMarker.getIntrinsicWidth(),
 defaultMarker.getIntrinsicHeight());
 buoys = new ArrayList<BuoyOverlayItem>();
 }
 @Override
 public void onStart() {
 super.onStart();
 locationManager = (LocationManager)
 getSystemService
 (Context.LOCATION_SERVICE);
 locationProvider =
 locationManager.getProvider(
 LocationManager.GPS_PROVIDER);
 // LocationListeners omitted here for brevity
 GeoPoint lastKnownPoint = this.getLastKnownPoint();
 mapController = this.mapView.getController();
 mapController.setZoom(10);
 mapController.animateTo(lastKnownPoint);
 getBuoyData(lastKnownPoint);
 }
 . . . onResume and onPause omitted for brevity
 . . . other portions of MapViewActivity are included
 in later listings in this chapter
 private GeoPoint getLastKnownPoint() {
 GeoPoint lastKnownPoint = null;
 Location lastKnownLocation =
 locationManager.getLastKnownLocation(
 LocationManager.GPS_PROVIDER);
 if (lastKnownLocation != null) {
 lastKnownPoint = LocationHelper.getGeoPoint(lastKnownLocation);
 } else {
 lastKnownPoint = LocationHelper.GOLDEN_GATE;
 }
 return lastKnownPoint;
 }

Our custom MapViewActivity extends MapActivity B. We’ll focus on the Map-
Activity in more detail in section 11.3, but for now, recognize that this is a special

Define
LocationProviderD

Instantiate LocationManager
system service

E

Assign GPS
LocationProvider

F

Set up
map

G

Get last-known
Location

H

294 CHAPTER 11 Location, location, location
kind of Activity. Within the class, you declare member variables for Location-
Manager C and LocationProvider D.

 To acquire the LocationManager, you use the Activity getSystemService
(String name) method E. Once you have the LocationManager, you assign the
LocationProvider you want to use with the manager’s getProvider() method F. In
this case, use the GPS provider. We’ll talk more about the LocationProvider class in
the next section.

 Once you have the manager and provider in place, you implement the onCreate()
method of your Activity to instantiate a MapController and set the initial state for
the screen G. Section 11.3 covers MapController and the MapView it manipulates.

 Along with helping you set up the provider you need, LocationManager supplies
quick access to the last-known Location H. Use this method if you need a quick fix on
the last location, as opposed to the more involved techniques for registering for peri-
odic location updates with a listener; we’ll cover that topic in section 11.2.3.

 Besides the features shown in this listing, LocationManager allows you to directly
register for proximity alerts. For example, your app could show a custom message if
you pass within a quarter-mile of a store that has a special sale. If you need to fire an
Intent based on proximity to a defined location, call the addProximityAlert()
method. This method lets you set the target location with latitude and longitude, and
also lets you specify a radius and a PendingIntent. If the device comes within the
range, the PendingIntent is fired. To stop receiving these messages, call remove-
ProximityAlert().

 Getting back to the main purpose for which you’ll use the LocationManager with
Wind and Waves, we’ll next look more closely at the GPS LocationProvider.

11.2.2 Using a LocationProvider

LocationProvider helps define the capabilities of a given provider implementation.
Each implementation responsible for returning location information may be available
on different devices and in different circumstances.

 Available provider implementations depend on the hardware capabilities of the
device, such as the presence of a GPS receiver. They also depend on the situation: even
if the device has a GPS receiver, can it currently receive data from satellites, or is the
user somewhere inaccessible such as an elevator or a tunnel?

 At runtime, you’ll query for the list of providers available and use the most suit-
able one. You may select multiple providers to fall back on if your first choice isn’t
available or enabled. Developers generally prefer using the LocationManager

.GPS_PROVIDER provider, which uses the GPS receiver. You’ll use this provider for
Wind and Waves because of its accuracy and its support in the emulator. Keep in
mind that a real device will normally offer multiple providers, including the
LocationManager.NETWORK_PROVIDER, which uses cell tower and Wi-Fi access points
to determine location data. To piggyback on other applications requesting location,
use LocationManager.PASSIVE_PROVIDER.

295Using LocationManager and LocationProvider
 In listing 11.3, we showed how you can obtain the GPS provider directly using the
getProvider(String name) method. Table 11.2 provides alternatives to this approach
of directly accessing a particular provider.

Different providers may support different location-related metrics and have different
costs or capabilities. The Criteria class helps define what each provider instance can
handle. Available metrics are latitude and longitude, speed, bearing, altitude, cost,
and power requirements.

 Remember to set the appropriate Android permissions. Your manifest needs to
include location-related permissions for the providers you want to use. The following
listing shows the Wind and Waves manifest XML file, which includes both COARSE- and
FINE-grained location-related permissions.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.windwaves">
 <application android:icon="@drawable/wave_45"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Black”>
 <activity android:name="StartActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name="MapViewActivity" />
 <activity android:name="BuoyDetailActivity" />
 <uses-library android:name="com.google.android.maps" />

Table 11.2 Methods for obtaining a LocationProvider reference

LocationProvider code snippet Description

List<String> providers =
 locationManager.getAllProviders();

Get all of the providers registered on the
device.

List<String> enabledProviders =
 locationManager.getAllProviders(true);

Get all of the currently enabled
providers.

locationProvider =
locationManager.getProviders(true).get(0);

A shortcut to get the first enabled pro-
vider, regardless of type.

locationProvider =
 locationManager.getBestProvider(
 myCriteria, true);

An example of getting a
LocationProvider using a particular
Criteria argument. You can create a
Criteria instance and specify whether
bearing, altitude, cost, and other metrics
are required.

Listing 11.4 A manifest file showing COARSE and FINE location-related permissions

296 CHAPTER 11 Location, location, location
 </application>
 <uses-permission
 android:name=
 "android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission
 android:name=
 "android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission
 android:name="android.permission.INTERNET" />
</manifest>

Include both the ACCESS_COARSE_LOCATION B and ACCESS_FINE_LOCATION C permis-
sions in your manifest. The COARSE permission corresponds to the LocationManager
.NETWORK_PROVIDER provider for cell and Wi-Fi based data, and the FINE permission
corresponds to the LocationManager.GPS_PROVIDER provider. You don’t use the net-
work provider in Wind and Waves, but this permission would allow you to enhance the
app to fall back to the network provider if the GPS provider becomes unavailable or
disabled.

 Once you understand the basics of LocationManager and LocationProvider, you
can unleash the real power and register for periodic location updates in your applica-
tion with the LocationListener class.

11.2.3 Receiving location updates with LocationListener

You can keep abreast of the device location by creating a LocationListener imple-
mentation and registering it to receive updates. LocationListener lets you filter for
many types of location events based on a flexible and powerful set of properties. You
implement the interface and register your instance to receive location data callbacks.

 Listing 11.5 demonstrates those principles as you create several LocationListener
implementations for the Wind and Waves MapViewActivity and then register those
listeners using the LocationManager and LocationProvider. This listing helps com-
plete the initial code from listing 11.3.

. . . start of class in Listing 11.3
private final LocationListener locationListenerGetBuoyData =
 new LocationListener() {
 public void onLocationChanged(
 final Location loc) {
 int lat = (int) (loc.getLatitude()
 * LocationHelper.MILLION);
 int lon = (int) (loc.getLongitude()
 * LocationHelper.MILLION);
 GeoPoint geoPoint = new GeoPoint(lat, lon);
 getBuoyData(geoPoint);
 }
 public void onProviderDisabled(String s) {
 }
 public void onProviderEnabled(String s) {

Listing 11.5 Creation of LocationListener implementations in MapViewActivity

Access
LocationManager.NETWORK_PROVIDER B

Access GPS
provider

C

Create anonymous
LocationListener

B

Implement
onLocationChangedC

Get latitude
and longitude

D

Create GeoPointE
Update map
pins (buoy data)F

297Using LocationManager and LocationProvider
 }
 public void onStatusChanged(String s,
 int i, Bundle b) {
 }
 };
private final LocationListener locationListenerRecenterMap =
 new LocationListener() {
 public void onLocationChanged(final Location loc) {
 int lat = (int) (loc.getLatitude()
 * LocationHelper.MILLION);
 int lon = (int) (loc.getLongitude()
 * LocationHelper.MILLION);
 GeoPoint geoPoint = new GeoPoint(lat, lon);
 mapController.animateTo(geoPoint);
 }
 public void onProviderDisabled(String s) {
 }
 public void onProviderEnabled(String s) {
 }
 public void onStatusChanged(String s,
 int i, Bundle b) {
 }
 };
 @Override
 public void onStart() {
 super.onStart();
 locationManager =
 (LocationManager)
 getSystemService(Context.LOCATION_SERVICE);
 locationProvider =
 locationManager.getProvider(LocationManager.GPS_PROVIDER);
 if (locationProvider != null) {
 locationManager.requestLocationUpdates(
 locationProvider.getName(), 3000, 185000,
 locationListenerGetBuoyData);
 locationManager.requestLocationUpdates(
 locationProvider.getName(), 3000, 1000,
 locationListenerRecenterMap);
 } else {
 Toast.makeText(this, "Wind and Waves cannot continue,"
 + " the GPS location provider is not available"
 + " at this time.", Toast.LENGTH_SHORT).show();
 finish();
 }
 . . . remainder of repeated code omitted (see listing 11.3)
 }

You’ll usually find it practical to use an anonymous inner class B to implement the
LocationListener interface. For this MapViewActivity, we create two Location-
Listener implementations so we can later register them using different settings.

 The first listener, locationListenerGetBuoyData, implements the onLocation-
Changed method C. In that method we get the latitude and longitude from the

Move map to
new location

G

Methods
intentionally
left blank

H
Register
locationListener-
GetBuoyData

I
Register
locationListener-
RecenterMap

298 CHAPTER 11 Location, location, location
Location sent in the callback D. We then use the data to create a GeoPoint E after
multiplying the latitude and longitude by 1 million (1e6). You need to multiply by a
million because GeoPoint requires microdegrees for coordinates. A separate class,
LocationHelper, defines this constant and provides other location utilities; you can
view this class in the code download for this chapter.

 After we have the data, we update the map F using a helper method that resets a
map Overlay; you’ll see this method’s implementation in the next section. In the sec-
ond listener, locationListenerRecenterMap, we perform the different task of center-
ing the map G.

 The need for two separate listeners becomes clear when you see how listeners are
registered with the requestLocationUpdates() method of the LocationManager class.
We register the first listener, locationListenerGetBuoyData, to fire only when the
new device location has moved a long way from the previous one H. The defined dis-
tance is 185,000 meters. (We chose this number to stay just under 100 nautical miles,
which is the radius you’ll use to pull buoy data for your map; you don’t need to redraw
the buoy data on the map if the user moves less than 100 nautical miles.) We register
the second listener, locationListenerRecenterMap, to fire more frequently; the map
view recenters if the user moves more than 1,000 meters I. Using separate listeners
like this allows you to fine-tune the event processing, rather than having to build in
your own logic to do different things based on different values with one listener.

 Keep in mind that your registration of LocationListener instances could become
even more robust by implementing the onProviderEnabled() and onProvider-
Disabled() methods. Using those methods and different providers, you could pro-
vide useful messages to the user and also provide a graceful fallback through a set of
providers; for example, if GPS becomes disabled, you could try the network provider
instead.

NOTE You should use the time parameter to the requestLocationUpdates()
method carefully. Requesting location updates too frequently (less than
60,000 ms per the documentation) can wear down the battery and make the
application too jittery. In this sample, you use an extremely low value (3,000
ms) for debugging purposes. Long-lived or always-running code shouldn’t
use a value lower than the recommended 60,000 ms in production code.

With LocationManager, LocationProvider, and LocationListener instances in place,
we can address the MapActivity and MapView in more detail.

11.3 Working with maps
In the previous sections, you wrote the start of the MapViewActivity for the Wind and
Waves application. We covered the supporting classes and showed you how to register
to receive location updates. With that structure in place, let’s now focus on the actual
map details.

299Working with maps
 The MapViewActivity screen will look like fig-
ure 11.6, where several map Overlay classes dis-
play on top of a MapView within a MapActivity.

 To use the com.google.android.maps pack-
age on the Android platform and support all the
features related to a MapView, you must use a
MapActivity.

11.3.1 Extending MapActivity

A MapActivity defines a gateway to the Android
Google Maps–like API package and other useful
map-related utilities. It handles several details
behind creating and using a MapView so you don’t
to have to worry about them.

 The MapView, covered in the next section, offers
the most important features. But a MapActivity
provides essential support for the MapView. It man-
ages all the network- and filesystem-intensive setup
and teardown tasks needed for supporting the
map. For example, the MapActivity onResume()
method automatically sets up network threads for various map-related tasks and caches
map section tile data on the filesystem, and the onPause() method cleans up these
resources. Without this class, all these details would require extra housekeeping that any
Activity wishing to include a MapView would have to repeat each time.

 Your code won’t do much with MapActivity. Extend this class (as in listing 11.3),
making sure to use only one instance per process, and include a special manifest ele-
ment to enable the com.google.android.maps package. You may have noticed the
uses-library element in the Wind and Waves manifest in listing 11.4:

<uses-library android:name="com.google.android.maps" />

The com.google.android.maps package, where MapActivity, MapView, Map-

Controller, and other related classes such as GeoPoint and Overlay reside, isn’t a
standard package in the Android library. This manifest element pulls in support for
the Google maps package.

 Once you include the uses-library element and write a basic Activity that
extends MapActivity, you can start writing the main app features with a MapView and
related Overlay classes.

11.3.2 Using a MapView

Android offers MapView4 as a limited version of the Google Maps API in the form of a
View for your Android application. A MapView displays tiles of a map, which it obtains

4 Take a look at this MapView tutorial for more information: http://developer.android.com/guide/tutorials/
views/hello-mapview.html.

Figure 11.6 The MapViewActivity
from the Wind and Waves application
shows a MapActivity with a MapView.

http://developer.android.com/guide/tutorials/views/hello-mapview.html
http://developer.android.com/guide/tutorials/views/hello-mapview.html

300 CHAPTER 11 Location, location, location
over the network as the map moves and zooms,
much like the web version of Google Maps.

 Android supports many of the concepts from
the standard Google Maps API through the
MapView. For instance, MapView supports a plain
map mode, a satellite mode, a street-view mode,
and a traffic mode. When you want to write some-
thing on top of the map, draw a straight line
between two points, drop a “pushpin” marker, or
display full-sized images, you use an Overlay.

 You can see examples of several of these con-
cepts in figure 11.6, which shows MapView-

Activity screenshots for the Wind and Waves
application. Figure 11.7 shows that same
MapViewActivity again after switching into satel-
lite mode.

 You’ve already seen the MapView we’ll use for
the Wind and Waves application declared and
instantiated in listing 11.3. Now we’ll discuss
using this class inside your Activity to control,
position, zoom, populate, and overlay your map.

 Before you can use a map at all, you have to request a Google Maps API key and
declare it in your layout file. This listing shows the MapActivity layout file you’ll use
with a special android:apiKey attribute.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_horizontal" android:padding="10px">
 <com.google.android.maps.MapView
 android:id="@+id/map_view"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:enabled="true"
 android:clickable="true"
 android:apiKey=
 "05lSygx-ttd-J5GXfsIB-dlpNtggca4I4DMyVqQ" />
</RelativeLayout>

You can declare a MapView in XML just like other View components B. In order to use
the Google Maps network resources, a MapView requires an API key C. You can obtain
a map key from the Google Maps Android key registration web page at http://
code.google.com/android/maps-api-signup.html.

Listing 11.6 A MapView layout file including the Google Maps API key

Define MapView
element in XMLB

Include apiKey
attribute

C

Figure 11.7 The MapViewActivity
from the Wind and Waves application
using satellite mode

http://code.google.com/android/maps-api-signup.html
http://code.google.com/android/maps-api-signup.html

301Working with maps
 Before you register for a key, you need to look up the MD5 fingerprint of the certif-
icate that signs your application. This sounds tricky, but it’s really simple. When using
the Android emulator, the SDK always uses a Debug Certificate. To get the MD5 finger-
print for this certificate on Mac and Linux, you can use the following command:

cd ~/.android
keytool -list -keystore ./debug.keystore -storepass android -keypass android

On Windows, adjust for the user’s home directory slash directions, such as

cd c:\Users\Chris\.android
keytool -list -keystore debug.keystore -storepass android -keypass android

Getting a key for a production application follows the same process, but you need to
use the actual certificate your APK file is signed with instead of the debug.keystore file.
The Android documentation provides additional information about obtaining a key
at http://code.google.com/android/add-ons/google-apis/mapkey.html. For more
information about digital signatures, keys, and signing in general, see appendix B.

CAUTION Android requires you to declare the map API key in the layout file.
With the key in the layout file, you must remember to update the key between
debug and production modes. Additionally, if you debug on different devel-
opment machines, you must switch keys by hand.

Once you write a MapActivity with a MapView and create your view in the layout file,
complete with map API key, you can make full use of the map. Several of the previous
listings use the MapView from the Wind and Waves application. In the next listing, we
repeat a few of the map-related lines of code we’ve already shown and add related
items to consolidate all the map-related concepts in one listing.

. . . from onCreate
mapView = (MapView)
 findViewById(R.id.map_view);
mapView.
 setBuiltInZoomControls(true);
 . . . from onStart
mapController = mapView.getController();
mapController.setZoom(10);
mapController.
 animateTo(lastKnownPoint);
. . . from onMenuItemSelected
case MapViewActivity.MENU_SET_MAP:
 mapView.setSatellite(false);
 break;
case MapViewActivity.MENU_SET_SATELLITE:
 mapView.setSatellite(true);
 break;
case MapViewActivity.MENU_BUOYS_FROM_MAP_CENTER:
 getBuoyData(mapView.getMapCenter());
 break;

Listing 11.7 Portions of code that demonstrate working with maps

Inflate MapView
from layout

B

Animate to given
GeoPoint

C

Set map
satellite mode

D

http://code.google.com/android/add-ons/google-apis/mapkey.html

302 CHAPTER 11 Location, location, location
We declare the MapView in XML and inflate it just like other View components B.
Because it’s a ViewGroup, we can also combine and attach other elements to it. We tell
the MapView to display its built-in zoom controls so the user can zoom in and out.

 Next we get a MapController from the MapView. The controller allows us to pro-
grammatically zoom and move the map. When starting, we use the controller to set
the initial zoom level and animate to a specified GeoPoint C. When the user selects a
view mode from the menu, we set the mode of the map from plain to satellite or back
again D. Along with manipulating the map itself, you can retrieve data from it, such
as the coordinates of the map center.

 Besides manipulating the map and getting data from it, you can draw items on top
of the map using Overlay instances.

11.3.3 Placing data on a map with an Overlay

The small buoy icons for the Wind and Waves application that we’ve used in several
figures up to this point draw on the screen at specified coordinates using an Overlay.

Overlay describes an item to draw on the map. You can define your own Overlay
by extending this class or MyLocationOverlay. The MyLocationOverlay class lets you
display a user’s current location with a compass, and it has other useful features such
as a LocationListener for convenient access to position updates.

 Besides showing the user’s location, you’ll often place multiple marker items on
the map. Users generally expect to see markers as pushpins. You’ll create buoy mark-
ers for the location of every buoy using data you get back from the NDBC feeds.
Android provides built-in support for this with the ItemizedOverlay base class and
the OverlayItem.

OverlayItem, a simple bean, includes a title, a text snippet, a drawable marker,
coordinates defined in a GeoPoint, and a few other properties. The following listing
shows the buoy data-related BuoyOverlayItem class for Wind and Waves.

public class BuoyOverlayItem extends OverlayItem {
 public final GeoPoint point;
 public final BuoyData buoyData;
 public BuoyOverlayItem(GeoPoint point, BuoyData buoyData) {
 super(point, buoyData.title, buoyData.dateString);
 this.point = point;
 this.buoyData = buoyData;
 }
}

We extend OverlayItem to include all the necessary properties of an item to draw on
the map. In the constructor we call the superclass constructor with the location, the
title, and a brief snippet, and we assign additional elements our subclass instance vari-
ables. In this case, we add a BuoyData member, which is another bean with name,
water temperature, wave height, and other properties.

Listing 11.8 The OverlayItem subclass BuoyOverlayItem

303Working with maps
 After you prepare the individual item class, you need a class that extends
ItemizedOverlay and uses a Collection of the items to display them on the map one
by one. The following listing, the BuoyItemizedOverlay class, shows how this works.

public class BuoyItemizedOverlay
 extends ItemizedOverlay<BuoyOverlayItem> {
 private final List<BuoyOverlayItem> items;
 private final Context context;
 public BuoyItemizedOverlay(List<BuoyOverlayItem> items,
 Drawable defaultMarker, Context context) {
 super(defaultMarker);
 this.items = items;
 this.context = context;
 populate();
 }
 @Override
 public BuoyOverlayItem createItem(int i) {
 return items.get(i);
 }
 @Override
 protected boolean onTap(int i) {
 final BuoyData bd = items.get(i).buoyData;
 LayoutInflater inflater = LayoutInflater.from(context);
 View bView = inflater.inflate(R.layout.buoy_selected, null);
 TextView title = (TextView) bView.findViewById(R.id.buoy_title);
 . . . rest of view inflation omitted for brevity
 new AlertDialog.Builder(context)
 .setView(bView)
 .setPositiveButton("More Detail",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface di, int what) {
 Intent intent =
 new Intent(context, BuoyDetailActivity.class);
 BuoyDetailActivity.buoyData = bd;
 context.startActivity(intent);
 }
 })
 .setNegativeButton("Cancel",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface di, int what) {
 di.dismiss();
 }
 })
 .show();
 return true;
 }
 @Override
 public int size() {
 return items.size();
 }
 @Override
 public void draw(Canvas canvas, MapView mapView, boolean b) {

Listing 11.9 The BuoyItemizedOverlay class

Extend
ItemizedOverlay

B

Include
Collection of
OverlayItemC

Provide
drawable
markerD

Override
createItem

E

Get data to
display

F

Override
size method

G

304 CHAPTER 11 Location, location, location
 super.draw(canvas, mapView, false);
 }
}

The BuoyItemizedOverlay class extends ItemizedOverlay B and includes a
Collection of BuoyOverlayItem elements C. In the constructor, we pass the Drawable
marker to the parent class D. This marker draws on the screen in the overlay to repre-
sent each point on the map.

ItemizedOverlay takes care of many of the details you’d otherwise have to imple-
ment yourself if you made your own Overlay with multiple points drawn on it. This
includes drawing items, handling focus, and processing basic events. An Itemized-
Overlay will invoke the onCreate() method E for every element in the Collection
of items it holds. ItemizedOverlay also supports facilities such as onTap F, where you
can react when the user selects a particular overlay item. In this code, we inflate some
views and display an AlertDialog with information about the respective buoy when a
BuoyOverlayItem is tapped. From the alert, the user can navigate to more detailed
information if desired.

 The size() method tells ItemizedOverlay how many elements it needs to process
G, and even though we aren’t doing anything special with it in this case, there are
also methods such as onDraw() H that you can customize to draw something beyond
the standard pushpin.

 When working with a MapView, you create the Overlay instances you need and
then add them on top of the map. Wind and Waves uses a separate Thread to retrieve
the buoy data in the MapViewActivity. You can view the data-retrieval code in the
code download for this chapter. After downloading the buoy data, you send a Message
to a Handler that adds the BuoyItemizedOverlay to the MapView. The following listing
shows these details.

private final Handler handler = new Handler() {
 public void handleMessage(final Message msg) {
 progressDialog.dismiss();
 if (mapView.getOverlays().contains(buoyOverlay)) {
 mapView.getOverlays().remove(buoyOverlay);
 }
 buoyOverlay = new BuoyItemizedOverlay(buoys,
 defaultMarker,
 MapViewActivity.this);
 mapView.getOverlays().add(buoyOverlay);
 }
};

A MapView contains a Collection of Overlay elements. We use the remove() method
to clean up any existing BuoyOverlayItem class before we create and add a new one.
This way, we reset the data instead of adding more items on top of each other.

 The built-in Overlay subclasses perfectly handle our requirements. The Itemized-
Overlay and OverlayItem classes have allowed us to complete the Wind and Waves

Listing 11.10 The Handler Wind and Waves uses to add overlays to the MapView

Customized
drawingH

305Converting places and addresses with Geocoder
application without having to make our own Overlay subclasses directly. If you need
to, Android lets you go to that level and implement your own draw(), tap(), touch(),
and other methods within your custom Overlay.

 With this sample application now complete and providing you with buoy data
using a MapActivity and MapView, we need to address one final maps-related concept
that you haven’t yet encountered—geocoding.

11.4 Converting places and addresses with Geocoder
The Android documentation describes geocoding as converting a “street address or
other description of a location” into latitude and longitude coordinates. Reverse geocod-
ing is the opposite—converting latitude and longitude into an address. To accomplish
this, the Geocoder class makes a network call to a web service.

 You won’t use geocoding in Wind and Waves because the ocean doesn’t contain
cities, addresses, and so on. Nevertheless, geocoding provides invaluable tools when
working with coordinates and maps. To demonstrate the concepts surrounding geo-
coding, this listing includes a new single Activity application, GeocoderExample.

. . . Class declaration and Instance variables omitted for brevity
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 input = (EditText) findViewById(R.id.input);
 output = (TextView) findViewById(R.id.output);
 button = (Button) findViewById(R.id.geocode_button);
 isAddress = (CheckBox)
 findViewById(R.id.checkbox_address);
 button.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 output.setText(performGeocode(
 input.getText().toString(),
 isAddress.isChecked()));
 }
 });
}
private String performGeocode(String in, boolean isAddr) {
 String result = "Unable to Geocode - " + in;
 if (input != null) {
 Geocoder geocoder = new Geocoder(this);
 if (isAddr) {
 try {
 List<Address> addresses =
 geocoder.getFromLocationName(in, 1);
 if (addresses != null) {
 result = addresses.get(0).toString();
 }
 } catch (IOException e) {
 Log.e("GeocodExample", "Error", e);

Listing 11.11 A Geocoder example

Instantiate Geocoder
with Context

B

Get Address from
location name

C

306 CHAPTER 11 Location, location, location
 }
 } else {
 try {
 String[] coords = in.split(",");
 if ((coords != null) && (coords.length == 2)) {
 List<Address> addresses =
 geocoder.getFromLocation(
 Double.parseDouble(coords[0]),
 Double.parseDouble(coords[1]),
 1);
 result = addresses.get(0).toString();
 }
 } catch (IOException e) {
 Log.e("GeocodExample", "Error", e);
 }
 }
 }
 return result;
}

You create a Geocoder by constructing it with the Context of your application B. You
then use a Geocoder to either convert String instances that represent place names into
Address objects with the getFromLocationName() method C or convert latitude and
longitude coordinates into Address objects with the getFromLocation() method D.

 Figure 11.8 shows our GeocoderExample in use. In this case, we’ve converted a
String describing Wrigley Field in Chicago into
an Address object containing latitude and longi-
tude coordinates.

Geocoder provides many useful features. For
instance, if you have data that includes address
string portions, or only place descriptions, you can
easily convert them into latitude and longitude
numbers for use with GeoPoint and Overlay to
place them on the user’s map.

CAUTION As of this writing, the AVD for
API level 8 (the OS 2.2 emulator) doesn’t
properly support the geocoder. Attempts
to look up an address will result in a “Ser-
vice not Available” exception. Geocoding
does work properly on OS 2.2 devices. To
work around this problem during develop-
ment, you can use API level 7 for building
and testing your app on the emulator.

Geocoding concludes our look at the powerful
location- and mapping-related components of the
Android platform.

Get Address from
coordinates

D

Figure 11.8 Geocoder example
turning a String into an Address
object that provides latitude and
longitude coordinates

307Summary

D
ow

nl
oa

d
fr

om
 w

w
w

.U
pe

Bo
ok

.C
om
11.5 Summary
“Location, location, location,” as they say in real estate, could also be the mantra for
the future of mobile computing. Android supports readily available location informa-
tion and includes smart-mapping APIs and other location-related utilities.

 In this chapter, we explored the location and mapping capabilities of the Android
platform. You built an application that acquired a LocationManager and Location-
Provider, to which you attached several LocationListener instances. You did this so
that you could keep your application informed about the current device location by
using updates delivered to your listeners. Along with the LocationListener, we also
briefly discussed several other ways to get location updates from the Android platform.

 After we covered location-awareness basics, we showed you how to add information
from a unique data source, the National Data Buoy Center, to provide a draggable,
zoomable, interactive map. To build the map you used a MapActivity, along with
MapView and MapController. These classes make it fairly easy to set up and display
maps. Once you had your MapView in place, you created an ItemizedOverlay to
include points of interest, using individual OverlayItem elements. From the individ-
ual points, in this case buoys, you linked into another Activity class to display more
detailed information, thereby demonstrating how to go from the map to any other
kind of Activity and back.

 Our water-based sample application didn’t include the important mapping feature
of converting from an address into a latitude and longitude and vice versa. To demon-
strate this capability, we showed you how to build a separate small sample and dis-
cussed usage of the Geocoder class.

 With our exploration of the mapping capabilities of Android complete, including
a fully functional sample application that combines mapping with many other
Android tenets we’ve previously explored, we’ll move into a new stage of the book. In
the next few chapters, we’ll explore complete nontrivial applications that bring
together intents, activities, data storage, networking, and more.

Part 3

Android applications

As you learned in part 2, the Android platform is capable of enabling rich
applications in many genres and vertical industries. The goal of part 3 is to inte-
grate many of the lessons of part 2 on a larger scale and spur you on to explore
the platform in greater depth than simply using the Android SDK.

 In chapter 12, we take a detailed look at the requirements of a field service
application. We next map those requirements on a practical application that
could be adapted for many industries. The application includes multiple UI ele-
ments, server communications, and detecting touch-screen events for capturing
and uploading a signature.

 In chapter 13, we move on to a deeper examination of the Android/Linux
relationship by writing native C applications for Android and connecting to
Android core libraries such as SQLite and TCP socket communications.

Putting Android to work
in a field service application
Now that we’ve introduced and examined Android and some of its core technolo-
gies, it’s time to put together a more comprehensive application. Exercising APIs
can be informative, educational, and even fun for a while, but at some point a plat-
form must demonstrate its worth via an application that can be used outside of the
ivory tower—and that’s what this chapter is all about. In this chapter, we systemati-
cally design, code, and test an Android application to aid a team of field service
technicians in performing their job. The application syncs XML data with an inter-
net-hosted server, presents data to the user via intuitive user interfaces, links to
Google Maps, and concludes by collecting customer signatures via Android’s touch
screen. Many of the APIs introduced earlier are exercised here, demonstrating the
power and versatility of the Android platform.

This chapter covers
 Designing a real-world Android application

 Mapping out the application flow

 Writing application source code

 Downloading, data parsing, and signature capture

 Uploading data to a server
311

312 CHAPTER 12 Putting Android to work in a field service application
 In addition to an in-depth Android application, this chapter’s sample application
works with a custom website application that manages data for use by a mobile worker.
This server-side code is presented briefly toward the end of the chapter. All of the
source code for the server-side application is available for download from the book’s
companion website.

 If this example is going to represent a useful real-world application, we need to put
some flesh on it. Beyond helping you understand the application, this definition pro-
cess will get you thinking about the kinds of impact a mobile application can have on
our economy. This chapter’s sample application is called a field service application. A
pretty generic name perhaps, but it’ll prove to be an ample vehicle for demonstrating
key elements required in mobile applications, as well as demonstrating the power of
the Android platform for building useful applications quickly.

 Our application’s target user is a fleet technician who works for a national firm
that makes its services available to a number of contracted customers. One day our
technician, who we’ll call a mobile worker, is replacing a hard drive in the computer at
the local fast-food restaurant, and the next day he may be installing a memory
upgrade in a piece of pick-and-place machinery at a telephone system manufacturer.
If you’ve ever had a piece of equipment serviced at your home or office and thought
the technician’s uniform didn’t really match the job he was doing, you’ve experienced
this kind of service arrangement. This kind of technician is often referred to as hands
and feet. He has basic mechanical or computer skills and is able to follow directions
reliably, often guided by the manufacturer of the equipment being serviced at the
time. Thanks to workers like these, companies can extend their reach to a much
broader geography than internal staffing levels would ever allow. For example, a small
manufacturer of retail music-sampling equipment might contract with such a firm to
provide tech support to retail locations across the country.

 Because of our hypothetical technician’s varied schedule and lack of experience
on a particular piece of equipment, it’s important to equip him with as much relevant
and timely information as possible. But he can’t be burdened with thick reference
manuals or specialized tools. So, with a toolbox containing a few hand tools and of
course an Android-equipped device, our fearless hero is counting on us to provide an
application that enables him to do his job. And remember, this is the person who
restores the ice cream machine to operation at the local Dairy Barn, or perhaps fixes
the farm equipment’s computer controller so the cows get milked on time. You never
know where a computer will be found in today’s world!

 If built well, this application can enable the efficient delivery of service to custom-
ers in many industries, where we live, work, and play. Let’s get started and see what
this application must be able to accomplish and how Android steps up to the task.

12.1 Designing a real-world Android application
We’ve established that our mobile worker will be carrying two things: a set of hand
tools and an Android device. Fortunately, in this book we’re not concerned with the
applicability of the hand tools in his toolbox, leaving us free to focus on the

313Designing a real-world Android application
capabilities and features of a field service application running on the Android plat-
form. In this section, we define the basic and high-level application requirements.

12.1.1 Core requirements of the application

Before diving into the bits and bytes of data requirements and application features,
it’s helpful to enumerate some basic requirements and assumptions about our field
service application. Here are a few items that come to mind for such an application:

 The mobile worker is dispatched by a home office/dispatching authority,
which takes care of prioritizing and distributing job orders to the appropriate
technician.

 The mobile worker is carrying an Android device, which has full data service—a
device capable of browsing rich web content. The application needs to access
the internet for data transfer as well.

 The home office dispatch system and the mobile worker share data via a wire-
less internet connection on an Android device; a laptop computer isn’t neces-
sary or even desired.

 A business requirement is the proof of completion of work, most readily accom-
plished with the capture of a customer’s signature. Of course, an electronic sig-
nature is preferred.

 The home office wants to receive job completion information as soon as possi-
ble, as this accelerates the invoicing process, which improves cash flow.

 The mobile worker is also eager to perform as many jobs as possible, because
he’s paid by the job, not by the hour, so getting access to new job information as
quickly as possible is a benefit to him.

 The mobile worker needs information resources in the field and can use as
much information as possible about the problem he’s being asked to resolve.
The mobile worker may have to place orders for replacement parts while in the
field.

 The mobile worker will require navigation assistance, as he’s likely covering a
rather large geographic area.

 The mobile worker needs an intuitive application—one that’s simple to use
with a minimum number of requirements.

There are likely additional requirements for such an application, but this list is ade-
quate for our purposes. One of the most glaring omissions from our list is security.

 Security in this kind of an application comes down to two fundamental aspects.
The first is physical security of the Android device. Our assumption is that the device
itself is locked and only the authorized worker is using it. A bit naïve perhaps, but
there are more important topics we need to cover in this chapter. If this bothers you,
just assume there’s a sign-in screen with a password field that pops up at the most
inconvenient times, forcing you to tap in your password on a small keypad. Feel better
now? The second security topic is the secure transmission of data between the

314 CHAPTER 12 Putting Android to work in a field service application
Android device and the dispatcher. This is most readily accomplished through the use
of a Secure Sockets Layer (SSL) connection whenever required.

 The next step in defining this application is to examine the data flows and discuss
the kind of information that must be captured to satisfy the functional requirements.

12.1.2 Managing the data

Throughout this chapter, the term job refers to a specific task or event that our mobile
worker engages in. For example, a request to replace a hard drive in a computer at the
bookstore is a job. A request to upgrade the firmware in the fuel-injection system at
the refinery is likewise a job. The home office dispatches one or more jobs to the
mobile worker on a regular basis. Certain data elements in the job are helpful to the
mobile worker to accomplish his goal of completing the job. This information comes
from the home office. Where the home office gets this information isn’t our concern
for this application.

 In this chapter’s sample application, there are only two pieces of information the
mobile worker is responsible for submitting to the dispatcher:

 The mobile worker communicates to the home office that a job has been closed,
or completed.

 The mobile worker collects an electronic signature from the customer, acknowl-
edging that the job has, in fact, been completed.

Figure 12.1 depicts these data flows.
 Of course, additional pieces of information exist that may be helpful here, such as

the customer’s phone number, the anticipated duration of the job, replacement parts
required in the repair (including tracking numbers), any observations about the con-
dition of related equipment, and much more. Although important to a real-world
application, these pieces of information are extraneous to the goals of this chapter and
are left as an exercise for you to extend the application for your own learning and use.

 The next objective is to determine how data is stored and transported.

List of jobs sent to a
specific mobile worker Jobs

Home office/dispatcher Mobile worker

Each job contains
Job id

Customer name

Address

City, State, Zip

Product needing repair

URL to product information

Comments

Job status (updated by mobile)

Signature (updated by mobile)

Figure 12.1
Data flows between
the home office and
a mobile worker

315Designing a real-world Android application
12.1.3 Application architecture and integration

Now that you know which entities are responsible for the relevant data elements, and
in which direction they flow, let’s look at how the data is stored and exchanged. You’ll
be deep into code before too long, but for now we’ll focus on the available options
and continue to examine things from a requirements perspective, building to a pro-
posed architecture.

 At the home office, the dispatcher must manage data for multiple mobile workers.
The best tool for this purpose is a relational database. The options here are numer-
ous, but we’ll make the simple decision to use MySQL, a popular open source data-
base. Not only are there multiple mobile workers, but the organization we’re building
this application for is quite spread out, with employees in multiple markets and time
zones. Because of the nature of the dispatching team, it’s been decided to host the
MySQL database in a data center, where it’s accessed via a browser-based application.
For this sample application, the dispatcher system is supersimple and written in PHP.1

 Data storage requirements on the mobile device are modest. At any point, a given
mobile worker may have only a half-dozen or so assigned jobs. Jobs may be assigned at
any time, so the mobile worker is encouraged to refresh the list of jobs periodically.
Although you learned about how to use SQLite in chapter 5, we have little need for
sharing data between multiple applications and don’t need to build a Content-
Provider, so we’ve decided to use an XML file stored on the filesystem to serve as a
persistent store of our assigned job list.

 The field service application uses HTTP to exchange data with the home office.
Again, we use PHP to build the transactions for exchanging data. Though more com-
plex and sophisticated protocols can be employed, such as SOAP, this application sim-
ply requests an XML file of assigned jobs and submits an image file representing the
captured signature. In fact, SOAP is simple in name only and should be avoided. A
better solution that’s coming on strong in the mobile and web space is the JSON for-
mat. This architecture is depicted in figure 12.2.

 The last item to discuss before diving into the code is configuration. Every mobile
worker needs to be identified uniquely. This way, the field service application can
retrieve the correct job list, and the dispatchers can assign jobs to workers in the field.
Similarly, the mobile application may need to communicate with different servers,
depending on locale. A mobile worker in the United States might use a server located
in Chicago, but a worker in the United Kingdom may need to use a server in Cam-
bridge. Because of these requirements, we’ve decided that both the mobile worker’s
identifier and the server address need to be readily accessed within the application.
Remember, these fields would likely be secured in a deployed application, but for our
purposes they’re easy to access and not secured.

1 See Manning’s PHP in Action for details on PHP development: www.manning.com/reiersol/.

http://www.manning.com/reiersol/

316 CHAPTER 12 Putting Android to work in a field service application
We’ve identified the functional requirements, defined the data elements necessary to
satisfy those objectives, and selected the preferred deployment platform. The next sec-
tion examines the high-level solution to the application’s requirements.

12.2 Mapping out the application flow
Have you ever downloaded an application’s source code, excited to get access to all
that code, but found it overwhelming to navigate? You want to make your own
changes, to put your own spin on the code, but you unzip the file into all the various
subdirectories, and you don’t know where to start. Before we jump directly into exam-
ining the source code, we need to pay attention to the architecture, in particular the
flow from one screen to the next.

12.2.1 Mapping out the field service application

In this section, we’ll examine the application flow to better understand the relation
among the application’s functionality, the UI, and the classes used to deliver this func-
tionality. Doing this process up-front helps ensure that the application delivers the
needed functionality and assists in defining which classes we require when it comes
time to start coding (which is soon)! Figure 12.3 shows the relation between the high-
level classes in the application, which are implemented as an Android Activity, as
well as interaction with other services available in Android.

 Here’s the procession of steps in the application:

1 The application is selected from the application launch screen on the Android
device.

2 The application splash screen displays. Why? Some applications require setup
time to get data structures initialized. As a practical matter, such time-
consuming behavior is discouraged on a mobile device, but it’s an important
aspect to application design, so we include it in this sample application.

MySQL

Distributed dispatchers

getjoblist.php

closejob.php

Dispatch functions

WWW Server
(Apache or IIS)

with PHP

Figure 12.2 The field service application and
dispatchers both leverage server-side transactions.

317Mapping out the application flow
3 The main screen displays the currently configured user and server settings,
along with three easy-to-hit-with-your-finger buttons.

4 The Refresh Jobs button initiates a download procedure to fetch the currently
available jobs for this mobile worker from the configured server. The download
includes a ProgressDialog, which we discuss in section 12.3.5.

5 The Settings button brings up a screen that allows you to configure the user
and server settings.

6 Selecting Manage Jobs lets our mobile worker review the available jobs assigned
to him and proceed with further steps specific to a chosen job.

7 Selecting a job from the list of jobs on the Manage Jobs screen brings up the
Show Job Details screen with the specific job information listed. This screen lists
the available information about the job and presents three additional buttons.

8 The Map Job Location button initiates a geo query on the device using an
Intent. The default handler for this Intent is the Maps application.

9 Because our mobile worker may not know much about the product he’s being
asked to service, each job includes a product information URL. Clicking this
button brings up the built-in browser and takes the mobile worker to a (hope-
fully) helpful internet resource. This resource may be an online manual or an
instructional video.

#1 #2

#3

#4 #5#6

#7

#8 #9 #10 #11

#12

No

Yes

Application launch #
Splash screen

(Splash Activity)

#4

Refresh jobs
(RefreshJobs Activity)

#6

Manage jobs
(ManageJobs Activity)

#5

Settings
(ShowSettings Activity)

#8

Map job location
(Launch Google Maps)

#9

Look up product info
(Launch browser)

#11

Capture signature
(CloseJob Activity)

#12

Display signature
(Launch browser)

#3Main screen
(FieldService Activity)

Show job details
(ShowJob Activity)

#10#

No

Yes

Job closed?

Figure 12.3 This figure
depicts the basic flow of the
field service application.

318 CHAPTER 12 Putting Android to work in a field service application
10 The behavior of the third button depends on the current status of the job. If
the job is still marked OPEN, this button is used to initiate the closeout or com-
pletion of this job.

11 When the close procedure is selected, the application presents an empty canvas
upon which the customer can take the stylus (assuming a touch screen–capable
Android device) and sign that the work is complete. A menu on that screen
presents two options: Sign & Close and Cancel. If the user selects Sign & Close
option, the application submits the signature as a JPEG image to the server, and
the server marks the job as CLOSED. In addition, the local copy of the job is
marked as CLOSED. The Cancel button causes the Show Job Details screen to be
restored.

12 If the job being viewed has already been closed, the browser window is opened
to a page displaying the previously captured signature.

Now that you have a feel for what the requirements are and how you’re going to tackle
the problem from a functionality and application-flow perspective, let’s examine the
code that delivers this functionality.

12.2.2 List of source files

The source code for this application consists of 12 Java source files, one of which is the
R.java file, which you’ll recall is automatically generated based on the resources in the
application. This section presents a quick introduction to each of these files. We won’t
explain any code yet; we want you to know a bit about each file, and then it’ll be time
to jump into the application, step by step. Table 12.1 lists the source files in the
Android field service application.

Table 12.1 Source files used to implement the field service application

Source filename Description

Splash.java Activity provides splash screen functionality.

ShowSettings.java Activity provides management of the username and server URL address.

FieldService.java Activity provides the main screen of the application.

RefreshJobs.java Activity interacts with the server to obtain an updated list of jobs.

ManageJobs.java Activity provides access to the list of jobs.

ShowJob.java Activity provides detailed information on a specific job, such as an address
lookup, or initiates the signature-capture process.

CloseJob.java Activity collects an electronic signature and interacts with the server to
upload images and mark jobs as CLOSED.

R.java Automatically generated source file representing identifiers in the resources.

Prefs.java Helper class encapsulating SharedPreferences.

JobEntry.java Class that represents a job. Includes helpful methods used when passing
JobEntry objects from one Activity to another.

319Mapping out the application flow
The application also relies on layout resources to define the visual aspect of the UI.
In addition to the layout XML files, an image used by the Splash Activity is placed
in the drawable subfolder of the res folder along with the stock Android icon image.
This icon is used for the home application launch screen. Figure 12.4 depicts the
resources used in the application.

 In an effort to make navigating the code as
easy as possible, table 2.2 shows the field service
application resource files. Note that each is
clearly seen in figure 12.4, which is a screen-
shot from our project open in Eclipse.

 Examining the source files in this applica-
tion tells us that we have more than one
Activity in use. To enable navigation between
one Activity and the next, our application
must inform Android of the existence of these
Activity classes. Recall from chapter 1 that
this registration step is accomplished with the
AndroidManifest.xml file.

JobList.java Class representing the complete list of JobEntry objects. Includes methods
for marshaling and unmarshaling to nonvolatile storage.

JobListHandler.java Class used for parsing the XML document containing job data.

Table 12.2 Resource files used in the sample application

Filename Description

android.jpg Image used in the Splash Activity.

icon.jpg Image used in the application launcher.

fieldservice.xml Layout for the main application screen, FieldService Activity.

managejobs.xml Layout for the list of jobs, ManageJobs Activity.

refreshjobs.xml Layout for the screen shown when refreshing the job list, RefreshJobs
Activity.

showjob.xml Layout for the job detail screen, ShowJob Activity.

showsettings.xml Layout for the configuration/settings screen, ShowSettings Activity.

splash.xml Layout for the splash screen, Splash Activity.

strings.xml Strings file containing extracted strings. Ideally, all text is contained in a
strings file for ease of localization. This application’s file contains only the
application title.

Table 12.1 Source files used to implement the field service application (continued)

Source filename Description

Figure 12.4 Resource files used in the
sample application

320 CHAPTER 12 Putting Android to work in a field service application
12.2.3 Field service application’s AndroidManifest.xml

Every Android application requires a manifest file to let Android properly “wire things
up” when an Intent is handled and needs to be dispatched. Take a look at the
AndroidManifest.xml file used by our application, shown in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.UnlockingAndroid">
 <application android:icon="@drawable/icon">
 <activity android:name=".Splash"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".FieldService" >
 </activity>
 <activity android:name=".RefreshJobs" >
 </activity>
 <activity android:name=".ManageJobs" >
 </activity>
 <activity android:name=".ShowJob" >
 </activity>
 <activity android:name=".CloseJob" >
 </activity>
 <activity android:name=".ShowSettings" >
 </activity>
 </application>
<uses-sdk android:minSdkVersion="6"/>
<uses-permission android:name="android.permission.INTERNET">
 </uses-permission>
</manifest>

12.3 Application source code
After a rather long introduction, it’s time to look at the source code for the field ser-
vice application. The approach is to follow the application flow, step by step. Let’s start
with the splash screen. In this portion of the chapter, we work through each of the
application’s source files, starting with the splash screen and moving on to each subse-
quent Activity of the application.

12.3.1 Splash Activity

We’re all familiar with a splash screen for a software application. It acts like a curtain
while important things are taking place behind the scenes. Ordinarily, splash screens
are visible until the application is ready—this could be a brief amount of time or
much longer when a bit of housekeeping is necessary. As a rule, a mobile application
should focus on economy and strive to consume as few resources as possible. The
splash screen in this sample application is meant to demonstrate how such a feature

Listing 12.1 The field service application’s AndroidManifest.xml file

Entry point,
Splash
Activity

Intent filter
for main
launcher
visibility

Application’s
defined
Activity list

Required
permission
for internet
access

321Application source code
may be constructed—we don’t need one for housekeeping purposes. But that’s okay;
you can learn in the process. Two code snippets are of interest to us: the implementa-
tion of the Activity as well as the layout file that defines what the UI looks like. First,
examine the layout file in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ImageView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:scaleType="fitCenter"
 android:src="@drawable/android"
 />
</LinearLayout>

The splash.xml layout contains a single ImageView B, set to fill the entire screen.
The source image for this view is defined as the drawable resource C, named
android. Note that this is simply the name of the file (minus the file extension) in
the drawable folder, as shown earlier.

 Now you must use this layout in an Activity. Aside from the referencing of an
image resource from the layout, this part is not that interesting. Figure 12.5 shows the
splash screen running on the Android Emulator.

 Of interest to us is the code that creates the splash page functionality, shown in
the following listing.

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source code
public class Splash extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.splash);
 Handler x = new Handler();
 x.postDelayed(new SplashHandler(), 2000);
 }
 class SplashHandler implements Runnable {
 public void run() {
 startActivity(
 new Intent(getApplication(),FieldService.class));
 Splash.this.finish();
 }
 }
}

Listing 12.2 splash.xml, defining the layout of the application’s splash screen

Listing 12.3 Splash.java, which implements the splash screen functionality

Full screen
ImageView

B

Image
reference

C

Set up
main View

B

Define and
set up Handler

C

DStart application’s
main Activity

Kill splash
screenE

322 CHAPTER 12 Putting Android to work in a field service application
As with most Activity classes in Android, we
want to associate the splash layout with this
Activity’s View B. A Handler is set up C, which
is used to close down the splash screen after an
elapsed period of time. Note that the arguments
to the postDelayed() method are an instance of
a class that implements the Runnable interface
and the desired elapsed time in milliseconds. In
this snippet of code, the screen will be shown for
2,000 milliseconds, or 2 seconds. After the indi-
cated amount of time has elapsed, the class
splashhandler is invoked. The FieldService
Activity is instantiated with a call to start-
Activity() D. Note that an Intent isn’t used
here—we explicitly specify which class is going to
satisfy our request. Once we’ve started the next
Activity, it’s time to get rid of the splash screen
Activity E.

 The splash screen is happily entertaining our
mobile worker each time he starts the applica-
tion. Let’s move on to the main screen of the
application.

12.3.2 Preferences used by the FieldService Activity

The goal of the FieldService Activity is to put the functions the mobile worker
requires directly in front of him and make sure they’re easy to access. A good mobile
application is often one that can be used with one hand, such as using the five-way nav-
igation buttons, or in some cases a thumb tapping on a button. In addition, if there’s
helpful information to display, you shouldn’t hide it. It’s helpful for our mobile worker
to know that he’s configured to obtain jobs from a particular server. Figure 12.6 dem-
onstrates the field service application conveying an easy-to-use home screen.

 Before reviewing the code in FieldService.java, let’s take a break to discuss how the
user and server settings are managed. This is important
because these settings are used throughout the applica-
tion, and as shown in the fieldservice.xml layout file, we
need to access those values to display to our mobile
worker on the home screen.

 As you learned in chapter 5, there are a number of
means for managing data. Because we need to persist
this data across multiple invocations of our application,
the data must be stored in a nonvolatile fashion. This
application employs private SharedPreferences to

Figure 12.5 The splash screen

Figure 12.6 The home screen.
Less is more.

323Application source code
accomplish this. Why? Despite the fact that we’re largely ignoring security for this sam-
ple application, using private SharedPreferences means that other applications can’t
casually access this potentially important data. For example, we presently use only an
identifier (let’s call it an email address for simplicity) and a server URL in this applica-
tion. But we might also include a password or a PIN in a production-ready application,
so keeping this data private is a good practice.

 The Prefs class can be described as a helper or wrapper class. This class wraps the
SharedPreferences code and exposes simple getter and setter methods, specific to
this application. This implementation knows something about what we’re trying to
accomplish, so it adds value with some default values as well. Let’s look at the follow-
ing listing to see how our Prefs class is implemented.

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source code
public class Prefs {
 private SharedPreferences _prefs = null;
 private Editor _editor = null;
 private String _useremailaddress = "Unknown";
 private String _serverurl =
 "http://android12.msi-wireless.com/getjoblist.php";
 public Prefs(Context context) {
 _prefs = context.getSharedPreferences(
"PREFS_PRIVATE",
Context.MODE_PRIVATE);
 _editor = _prefs.edit();
 }
 public String getValue(String key,String defaultvalue){
 if (_prefs == null) return "Unknown";
 return _prefs.getString(key,defaultvalue);
 }
 public void setValue(String key,String value) {
 if (_editor == null) return;
 _editor.putString(key,value);
 }
 public String getEmail(){
 if (_prefs == null) return "Unknown";
 _useremailaddress = _prefs.getString("emailaddress","Unknown");
 return _useremailaddress;
 }
 public void setEmail(String newemail) {
 if (_editor == null) return;
 _editor.putString("emailaddress",newemail);
 }
 ... (abbreviated for brevity)
 public void save() {
 if (_editor == null) return;
 _editor.commit();
 }
}

Listing 12.4 Prefs class

SharedPreferences objectB
Implement
HandlerC

Default
valuesD

E
Initialize

SharedPreferences

Generic
set/get
methods

F

Extract
email value

G

Set email
valueH

Save
preferencesI

324 CHAPTER 12 Putting Android to work in a field service application
To persist the application’s settings data, we employ a SharedPreferences object B.
To manipulate data within the SharedPreferences object, here named _prefs, you
use an instance of the Editor class C. This snippet employs some default settings val-
ues D, which are appropriate for this application. The Prefs() constructor E does
the necessary housekeeping so we can establish our private SharedPreferences
object, including using a passed-in Context instance. The Context class is necessary
because the SharedPreferences mechanism relies on a Context for segregating data.
This snippet shows a pair of set and get methods that are generic in nature F. The
getEmail() G and setEmail() methods H are responsible for manipulating the
email setting value. The save() method I invokes a commit() on the Editor, which
persists the data to the SharedPreferences store.

 Now that you have a feel for how this important preference data is stored, let’s
return to examine the code of FieldService.java.

12.3.3 Implementing the FieldService Activity

Recall that the FieldService.java file implements the FieldService class, which is
essentially the home screen of our application. This code does the primary dispatch-
ing for the application. Many of the programming techniques in this file have been
shown earlier in the book, but please note the use of the startActivityForResult()
and onActivityResult() methods as you read through the code shown in the follow-
ing listing.

package com.msi.manning.UnlockingAndroid;
// multiple imports trimmed for brevity, see full source code
public class FieldService extends Activity {
 final int ACTIVITY_REFRESHJOBS = 1;
 final int ACTIVITY_LISTJOBS = 2
 final int ACTIVITY_SETTINGS = 3;
 Prefs myprefs = null;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.fieldservice);
 myprefs = new Prefs(this.getApplicationContext());
 RefreshUserInfo();
 final Button refreshjobsbutton =

 (Button) findViewById(R.id.getjobs);
 refreshjobsbutton.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 try {
 startActivityForResult(new

Intent(v.getContext(),RefreshJobs.class),ACTIVITY_REFRESHJOBS);
 } catch (Exception e) {
 }
 }
 });
 // see full source comments

Listing 12.5 FieldService.java, which implements the FieldService Activity

Useful constants

Prefs instanceB

Set up UI Instantiate
Prefs
instance

C

Initiate UI field contents

D
Connect

button to UI

325Application source code
 }
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent

data) {
 switch (requestCode) {
 case ACTIVITY_REFRESHJOBS:
 break;
 case ACTIVITY_LISTJOBS:
 break;
 case ACTIVITY_SETTINGS:
 RefreshUserInfo();
 break;
 }
 }
 private void RefreshUserInfo() {
 try {
 final TextView emaillabel = (TextView)

findViewById(R.id.emailaddresslabel);
 emaillabel.setText("User: " + myprefs.getEmail() + "\nServer: " +

myprefs.getServer() + "\n");
 } catch (Exception e) {
 }
 }
}

This code implements a simple UI that displays three distinct buttons. As each is
selected, a particular Activity is started in a synchronous, call/return fashion. The
Activity is started with a call to startActivityForResult() D. When the called
Activity is complete, the results are returned to the FieldService Activity via the
onActivityResult() method E. An instance of the Prefs class B, C is used to
obtain values for displaying in the UI. Updating the UI is accomplished in the method
RefreshUserInfo() F.

 Because the settings are so important to this
application, the next section covers the management
of the user and server values.

12.3.4 Settings

When the user clicks the Settings button on the main
application screen, an Activity is started that allows
the user to configure her user ID (email address)
and the server URL. The screen layout is basic (see
listing 12.6). It’s shown graphically in figure 12.7.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"

Listing 12.6 showsettings.xml, which contains UI elements for the settings screen

onActivityResult
processingE

RefreshUserInfoF

Figure 12.7 Settings screen in use

326 CHAPTER 12 Putting Android to work in a field service application
 >
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Email Address"
 />
 <EditText
 android:id="@+id/emailaddress"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:autoText="true"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Server URL"
 />
 <EditText
 android:id="@+id/serverurl"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:autoText="true"
 />
 <Button android:id="@+id/settingssave"
 android:text="Save Settings"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:enabled="true"
 />
</LinearLayout>

The source code behind the settings screen is also basic. Note the use of the
PopulateScreen() method, which makes sure the EditView controls are populated
with the current values stored in the SharedPreferences. Note also the use of the
Prefs helper class to retrieve and save the values, as shown in the following listing.

package com.msi.manning.UnlockingAndroid;
// multiple imports trimmed for brevity, see full source code
public class ShowSettings extends Activity {
 Prefs myprefs = null;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.showsettings);

 myprefs = new Prefs(this.getApplicationContext());
 PopulateScreen();
 final Button savebutton = (Button) findViewById(R.id.settingssave);
 savebutton.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 try {
 final EditText email=

Listing 12.7 ShowSettings.java, which implements code behind the settings screen

TextView for
display of labels

EditView for
entry of data

TextView for
display of labels

EditView for
entry of data

Button to initiate
saving data

BInitialize
Prefs instance

Populate UI
elements

C

327Application source code
 (EditText)findViewById(R.id.emailaddress);
 if (email.getText().length() == 0) {
 // display dialog, see full source code
 return;
 }
 final EditText serverurl =
 (EditText)findViewById(R.id.serverurl);
 if (serverurl.getText().length() == 0) {
 // display dialog, see full source code
 return;
 }
 myprefs.setEmail(email.getText().toString());
 myprefs.setServer(serverurl.getText().toString());
 myprefs.save();
 finish();
 } catch (Exception e) {
 }
 }
 });
}
 private void PopulateScreen() {
 try {
 final EditText emailfield = (EditText) findViewById(R.id.emailaddress);
 final EditText serverurlfield = (EditText)findViewById(R.id.serverurl);
 emailfield.setText(myprefs.getEmail());
 serverurlfield.setText(myprefs.getServer());
 } catch Exception e) {
 }
 }
}

This Activity commences by initializing the SharedPreferences instance B, which
retrieves the setting’s values and subsequently populates the UI elements C by calling
the application-defined PopulateScreen() method G. When the user clicks the Save
Settings button, the onClick() method is invoked, wherein the data is extracted from
the UI elements D and put back into the Prefs instance E. A call to the finish()
method F ends this Activity.

 Once the settings are in order, it’s time to focus on the core of the application:
managing jobs for our mobile worker. To get the most out the higher-level functional-
ity of downloading (refreshing) and managing jobs, let’s examine the core data struc-
tures in use in this application.

12.3.5 Managing job data

Data structures represent a key element of any software project and, in particular,
projects consisting of multiple tiers, such as our field service application. Job data is
exchanged between an Android application and the server, so the elements of the job
are central to our application. In Java, you implement these data structures as classes,
which include helpful methods in addition to the data elements. XML data shows up
in many locations in this application, so let’s start there.

Connect
EditText
to UI

D

Store and
save
settings

E

Finish this
ActivityF

PopulateScreen
method sets up UI

G

328 CHAPTER 12 Putting Android to work in a field service application
 The following listing shows a sample XML document containing a joblist with a
single job entry.

<?xml version="1.0" encoding="UTF-8" ?>
<joblist>
<job>
<id>22</id>
<status>OPEN</status>
<customer>Big Tristan's Imports</customer>
<address>2200 East Cedar Ave</address>
<city>Flagstaff</city>
<state>AZ</state>
<zip>86004</zip>
<product>UnwiredTools UTCIS-PT</product>
<producturl>http://unwiredtools.com</producturl>
<comments>Requires tuning - too rich in the mid range RPM.
Download software from website before visiting.</comments>
</job>
</joblist>

Now that you have a feel for what the job data looks like, we’ll show you how the data
is handled in our Java classes.

JOBENTRY

The individual job is used throughout the application, and therefore it’s essential that
you understand it. In our application, we define the JobEntry class to manage the indi-
vidual job, as shown in listing 12.9. Note that many of the lines are omitted from this list-
ing for brevity; please see the available source code for the complete code listing.

package com.msi.manning.UnlockingAndroid;
import android.os.Bundle;
public class JobEntry {
 private String _jobid="";
 private String _status = "";
 // members omitted for brevity
private String _producturl = "";
 private String _comments = "";
 JobEntry() {
 }
 // get/set methods omitted for brevity
 public String toString() {
 return this._jobid + ": " + this._customer + ": " + this._product;
 }
 public String toXMLString() {
 StringBuilder sb = new StringBuilder("");
 sb.append("<job>");
 sb.append("<id>" + this._jobid + "</id>");
 sb.append("<status>" + this._status + "</status>");
 sb.append("<customer>" + this._customer + "</customer>");

Listing 12.8 XML document containing data for the field service application

Listing 12.9 JobEntry.java

Bundle class
import

B

Each member
is a StringC

toString
method

D

toXMLString
methodE

329Application source code
 sb.append("<address>" + this._address + "</address>");
 sb.append("<city>" + this._city + "</city>");
 sb.append("<state>" + this._state + "</state>");
 sb.append("<zip>" + this._zip + "</zip>");
 sb.append("<product>" + this._product + "</product>");
 sb.append("<producturl>" + this._producturl + "</producturl>");
 sb.append("<comments>" + this._comments + "</comments>");
 sb.append("</job>");
 return sb.toString() + "\n";
}
 public Bundle toBundle() {
 Bundle b = new Bundle();
 b.putString("jobid", this._jobid);
 b.putString("status", this._status);
 // assignments omitted for brevity
 b.putString("producturl", this._producturl);
 b.putString("comments", this._comments);
 return b;
}
public static JobEntry fromBundle(Bundle b) {
 JobEntry je = new JobEntry();
 je.set_jobid(b.getString("jobid"));
 je.set_status(b.getString("status"));
 // assignments omitted for brevity
 je.set_producturl(b.getString("producturl"));
 je.set_comments(b.getString("comments"));
 return je;
}
}

This application relies heavily on the Bundle class B for moving data from one
Activity to another. (We’ll explain this in more detail later in this chapter.) A String
member C exists for each element in the job, such as jobid or customer. The
toString() method D is rather important, as it’s used when displaying jobs in the
ManageJobs Activity (also discussed later in the chapter). The toXMLString()
method E generates an XML representation of this JobEntry, complying with the job
element defined in the previously presented DTD. The toBundle() method F takes
the data members of the JobEntry class and packages them into a Bundle. This
Bundle is then able to be passed between activities, carrying with it the required data
elements. The fromBundle() static method G returns a JobEntry when provided with
a Bundle. toBundle() and fromBundle() work together to assist in the passing of
JobEntry objects (at least the data portion thereof) between activities. Note that this is
one of many ways in which to move data throughout an application. Another method,
as an example, is to have a globally accessible class instance to store data.

 Now that you understand the JobEntry class, we’ll move on to the JobList class,
which is a class used to manage a collection of JobEntry objects.

JOBLIST

When interacting with the server or presenting the available jobs to manage on the
Android device, the field service application works with an instance of the JobList

toBundle
method

F

fromBundle
method

G

330 CHAPTER 12 Putting Android to work in a field service application
class. This class, like the JobEntry class, has both data members and helpful methods.
The JobList class contains a typed List data member, which is implemented using a
Vector. This is the only data member of this class, as shown in the following listing.

package com.msi.manning.UnlockingAndroid;
import java.util.List;
import org.xml.sax.InputSource;
import android.util.Log;
// additional imports omitted for brevity, see source code
public class JobList {
 private Context _context = null;
 private List<JobEntry> _joblist;
 JobList(Context context){
 _context = context;
 _joblist = new Vector<JobEntry>(0);
 }
 int addJob(JobEntry job){
 _joblist.add(job);
 return _joblist.size();
 }
 JobEntry getJob(int location) {
 return _joblist.get(location);
 }
 List<JobEntry> getAllJobs() {
 return _joblist;
 }
 int getJobCount() {
 return _joblist.size();
 }
 void replace(JobEntry newjob) {
 try {
 JobList newlist = new JobList();
 for (int i=0;i<getJobCount();i++) {
 JobEntry je = getJob(i);
 if (je.get_jobid().equals(newjob.get_jobid())) {
 newlist.addJob(newjob);
 } else {
 newlist.addJob(je);
 }
 }
 this._joblist = newlist._joblist;
 persist();
 } catch (Exception e) {
 }
}
void persist() {
 try {
 FileOutputStream fos = _context.openFileOutput("chapter12.xml",

Context.MODE_PRIVATE);
 fos.write("<?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n".getBytes());
 fos.write("<joblist>\n".getBytes());
 for (int i=0;i<getJobCount();i++) {

Listing 12.10 JobList.java

List class
imported for Vector

B

InputSource
imported,
used by XML
parserCFamiliar logging

mechanism

ConstructorD

addJob/getJob
methodsE

getAllJobs methodF

replace methodG

persist methodH

331Application source code
 JobEntry je = getJob(i);
 fos.write(je.toXMLString().getBytes());
 }
 fos.write("</joblist>\n".getBytes());
 fos.flush();
 fos.close();
 } catch (Exception e) {
 Log.d("CH12",e.getMessage());
 }
}
static JobList parse(Context context) {
 try {
 FileInputStream fis = context.openFileInput("chapter12.xml");
 if (fis == null) {
 return null;
 }
 InputSource is = new InputSource(fis);
 SAXParserFactory factory = SAXParserFactory.newInstance();
 SAXParser parser = factory.newSAXParser();
 XMLReader xmlreader = parser.getXMLReader();
 JobListHandler jlHandler =
new JobListHandler(null /* no progress updates when reading file */);
 xmlreader.setContentHandler(jlHandler);
 xmlreader.parse(is);
 fis.close();
 return jlHandler.getList();
 } catch (Exception e) {
 return null;
 }
 }
}

The list of jobs is implemented as a Vector, which is a type of List B. The XML struc-
ture containing job information is parsed with the SAX parser, so we need to be sure
to import those required packages C. JobEntry objects are stored in the typed List
object named _joblist D. Helper methods for managing the list are included as
addJob() and getJob() E. The getAllJobs() method F returns the list of JobEntry
items. Note that generally speaking, the application uses the getJob() method for
individual JobEntry management, but the getAllJobs() method is particularly useful
when we display the full list of jobs in the ManageJobs Activity, discussed later in this
chapter.

 The replace() method G is used when we’ve closed a job and need to update our
local store of jobs. Note that after it has updated the local list of JobEntry items,
replace() calls the persist()H method, which is responsible for writing an XML
representation of the entire list of JobEntry items to storage. This method invokes the
toXMLString() method on each JobEntry in the list. The openFileOutput() method
creates a file within the application’s private file area. This is essentially a helper
method to ensure we get a file path to which we have full read/write privileges.

 The parse() method I obtains an instance of a FileInputStream to gain access to
the file and creates an instance of an InputStream, which is required by the SAX XML

parse methodI

332 CHAPTER 12 Putting Android to work in a field service application
parser. In particular, take note of the JobListHandler. SAX is a callback parser, mean-
ing that it invokes a user-supplied method to process events in the parsing process. It’s
up to the JobListHandler (in our example) to process the data as appropriate.

 We have one more class to go before we can jump back to the higher-level func-
tionality of our application. The next section takes a quick tour of the JobList-
Handler, which is responsible for putting together a JobList from an XML data
source.

JOBLISTHANDLER

As presented earlier, our application uses an XML data storage structure. This XML
data can come from either the server or a local file on the filesystem. In either case,
the application must parse this data and transform it into a useful form. This is accom-
plished through the use of the SAX XML parsing engine and the JobListHandler,
which is shown in listing 12.11. The JobListHandler is used by the SAX parser for our
XML data, regardless of the data’s source. Where the data comes from dictates how
the SAX parser is set up and invoked in this application. The JobListHandler behaves
slightly differently depending on whether the class’s constructor includes a Handler
argument. If the Handler is provided, the JobListHandler will pass messages back for
use in a ProgressDialog. If the Handler argument is null, this status message passing
is bypassed. When parsing data from the server, the ProgressDialog is employed; the
parsing of a local file is done quickly and without user feedback. The rationale for this
is simple—the network connection may be slow, and we need to show progress infor-
mation to the user. An argument could be made for always showing the progress of
the parse operation, but this approach gives us an opportunity to demonstrate more
conditionally operating code.

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source code
public class JobListHandler extends DefaultHandler {
 Handler phandler = null;
 JobList _list;
 JobEntry _job;
 String _lastElementName = "";
 StringBuilder sb = null;
 Context _context;
 JobListHandler(Context c,Handler progressHandler) {
 _context = c;
 if (progressHandler != null) {
 phandler = progressHandler;
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Processing List");
 phandler.sendMessage(msg);
 }
 }
 public JobList getList() {

Listing 12.11 JobListHandler.java

JobListHandler
constructor

B

Check for
progress handlerC

getList methodD

333Application source code
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Fetching List");
 if (phandler != null) phandler.sendMessage(msg);
 return _list;
 }
 public void startDocument() throws SAXException {
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Starting Document");
 if (phandler != null) phandler.sendMessage(msg);
 _list = new JobList(_context);
 _job = new JobEntry();
 }
 public void endDocument() throws SAXException {
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("End of Document");
 if (phandler != null) phandler.sendMessage(msg);
 }
 public void startElement
 (String namespaceURI, String localName,String qName,
 Attributes atts) throws SAXException {
 try {
 sb = new StringBuilder("");
 if (localName.equals("job")) {
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)(localName);
 if (phandler != null) phandler.sendMessage(msg);
 _job = new JobEntry();
 }
 } catch (Exception ee) {
 }
 }
 public void endElement
 (String namespaceURI, String localName, String qName)
 throws SAXException {
 if (localName.equals("job")) {
 // add our job to the list!
 _list.addJob(_job);
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Storing Job # " + _job.get_jobid());
 if (phandler != null) phandler.sendMessage(msg);
 return;
 }
 // portions of the code omitted for brevity
 }
 public void characters(char ch[], int start, int length) {
 String theString = new String(ch,start,length);
 Log.d("CH12","characters[" + theString + "]");
 sb.append(theString);
 }
}

startDocument
method

E

endDocument
method

F

Check for end
of job elementG

Build up String
incrementally

H

334 CHAPTER 12 Putting Android to work in a field service application
The JobListHandler constructor B takes a single argument of Handler. This value
may be null. If null, Message passing is omitted from the operation. When reading
from a local storage file, this Handler argument is null. When reading data from the
server over the internet, with a potentially slow connection, the Message-passing code
is utilized to provide feedback for the user in the form of a ProgressDialog. The
ProgressDialog code is shown later in this chapter in the discussion of the Refresh-
Jobs Activity. A local copy of the Handler C is set up when using the Progress-
Dialog, as described in B.

 The getList()D method is invoked when parsing is complete. The role of
getList() is to return a copy of the JobList that was constructed during the parse
process. When the startDocument() callback method E is invoked by the SAX parser,
the initial class instances are established. The endDocument() method F is invoked by
the SAX parser when all of the document has been consumed. This is an opportunity
for the Handler to perform additional cleanup as necessary. In our example, a mes-
sage is posted to the user by sending a Message.

 For each element in the XML file, the SAX parser follows the same pattern: start-
Element() is invoked, characters() is invoked (one or more times), and end-
Element() is invoked. In the startElement() method, we initialize StringBuilder
and evaluate the element name. If the name is “job,” we initialize the class-level
JobEntry instance.

 In the endElement() method, the element name is evaluated. If the element name
is “job” G, the JobListHandler adds this JobEntry to the JobList data member,
_joblist, with a call to addJob(). Also in the endElement() method, the data mem-
bers of the JobEntry instance (_job) are updated. Please see the full source code for
more details.

 The characters() method is invoked by the SAX parser whenever data is available
for storage. The JobListHandler simply appends this string data to a StringBuilder
instance H each time it’s invoked. It’s possible that the characters() method may be
invoked more than once for a particular element’s data. That’s the rationale behind
using a StringBuilder instead of a single String variable; StringBuilder is a more
efficient class for constructing strings from multiple substrings.

 After this lengthy but important look into the data structures and the accompany-
ing explanations, it’s time to return to the higher-level functionality of the application.

12.4 Source code for managing jobs
Most of the time our mobile worker is using this application, he’ll be reading through
comments, looking up a job address, getting product information, and performing
other aspects of working on a specific job. Our application must supply the functional-
ity for the worker to accomplish each of these job-management tasks. We examine
each of these Activitys in detail in this section. The first thing we review is fetching
new jobs from the server, which gives us the opportunity to discuss the JobList-
Handler and the management of the jobs list used throughout the application.

335Source code for managing jobs
12.4.1 RefreshJobs

The RefreshJobs Activity performs a simple yet vital
role in the field service application. Whenever
requested, the RefreshJobs Activity attempts to
download a list of new jobs from the server. The UI is
super simple—just a blank screen with a Progress-
Dialog informing the user of the application’s prog-
ress, as shown in figure 12.8.

 The code for RefreshJobs is shown in listing 12.12.
The code is straightforward, as most of the heavy lift-
ing is done in the JobListHandler. This code’s respon-
sibility is to fetch configuration settings, initiate a
request to the server, and put a mechanism in place for
showing progress to the user.

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source
public class RefreshJobs extends Activity {
 Prefs myprefs = null;
 Boolean bCancel = false;
 JobList mList = null;
 ProgressDialog progress;
 Handler progresshandler;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.refreshjobs);
 myprefs = new Prefs(this.getApplicationContext);
 myprogress = ProgressDialog.show(this, "Refreshing Job List",
 "Please Wait",true,false);
 progresshandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case 0:
 myprogress.setMessage("" + (String) msg.obj);
 break;
 case 1:
 myprogress.cancel();
 finish();
 break;
 case 2: // error occurred
 myprogress.cancel();
 finish();
 break;
 }
 super.handleMessage(msg);
 }

Listing 12.12 RefreshJobs.java

Progress indicatorB

Set up
ProgressDialogC

Define
HandlerD

Update UI
with textual
messageE

Handle cancel
and cancel
with error

F

Use openFileInput
for stream

G

Figure 12.8
The ProgressDialog in use
during RefreshJobs

336 CHAPTER 12 Putting Android to work in a field service application
 };
 Thread workthread = new Thread(new DoReadJobs());
 workthread.start();
 }
 class DoReadJobs implements Runnable {
 public void run() {
 InputSource is = null;
 Message msg = new Message();
 msg.what = 0;
 try {
 //Looper.prepare();
 msg.obj = (Object) ("Connecting ...");
 progresshandler.sendMessage(msg);
 URL url = new URL(myprefs.getServer() +
 "getjoblist.php?identifier=" + myprefs.getEmail());
 is = new InputSource(url.openStream());
 SAXParserFactory factory = SAXParserFactory.newInstance();
 SAXParser parser = factory.newSAXParser();
 XMLReader xmlreader = parser.getXMLReader();
 JobListHandler jlHandler =
new JobListHandler(progresshandler);
 xmlreader.setContentHandler(jlHandler);
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Parsing ...");
 progresshandler.sendMessage(msg);
 xmlreader.parse(is);
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Parsing Complete");
 progresshandler.sendMessage(msg);
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Saving Job List");
 progresshandler.sendMessage(msg);
 jlHandler.getList().persist();
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Job List Saved.");
 progresshandler.sendMessage(msg);
 msg = new Message();
 msg.what = 1;
 progresshandler.sendMessage(msg);
 } catch (Exception e) {
 Log.d("CH12","Exception: " + e.getMessage());
 msg = new Message();
 msg.what = 2; // error occurred
 msg.obj = (Object)("Caught an error retrieving
 Job data: " + e.getMessage());
 progresshandler.sendMessage(msg);
 }
 }
 }
}

Initiate
DoReadJobs
class instanceH

Create
Message object

I

Define looping
construct

J

Prepare status
message1)

Prepare to
parse data 1!

Instantiate
JobListHandler1@

Persist data1#

Set status flag
for completion

1$

Set status flag
for error

1%

337Source code for managing jobs
A ProgressDialog B is used to display progress information to the user. There are a
number of ways to display progress in Android. This is perhaps the most straightfor-
ward approach. A Handler is employed to process Message instances. Though the
Handler itself is defined as an anonymous class, the code requires a reference to it for
passing to the JobListHandler when parsing, which is shown in 1@. When instantiat-
ing the ProgressDialog C, the arguments include

 Context

 Title of Dialog

 Initial Textual Message

 Indeterminate

 Cancelable

Using true for the Indeterminate parameter means that you’re not providing any
clue as to when the operation will complete (such as percentage remaining), just an
indicator that something is still happening, which can be a best practice when you
don’t have a good handle on how long an operation may take. A new Handler D is
created to process messages sent from the parsing routine, which will be introduced
momentarily. An important class that has been mentioned but thus far not described
is Message. This class is used to convey information between different threads of exe-
cution. The Message class has some generic data members that may be used in a flexi-
ble manner. The first of interest is the what member, which acts as a simple identifier,
allowing recipients to easily jump to desired code based on the value of the what mem-
ber. The most typical (and used here) approach is to evaluate the what data member
via a switch statement.

 In this application, a Message received with its what member equal to 0 represents
a textual update message E to be displayed in the ProgressDialog. The textual data
itself is passed as a String cast to an Object and stored in the obj data member of the
Message. This interpretation of the what member is purely arbitrary. We could’ve used
999 as the value meaning textual update, for example. A what value of 1 or 2 indicates
that the operation is complete F, and this Handler can take steps to initiate another
thread of execution. For example, a value of 1 indicates successful completion, so the
ProgressDialog is canceled, and the RefreshJobs Activity is completed with a call
to finish(). The value of 2 for the what member has the same effect as a value of 1,
but it’s provided here as an example of handling different result conditions: for exam-
ple, a failure response due to an encountered error. In a production-ready applica-
tion, this step should be fleshed out to perform an additional step of instruction to
the user and/or a retry step. Any Message not explicitly handled by the Handler
instance should be passed to the super class G. In this way, system messages may be
processed.

 When communicating with a remote resource, such as a remote web server in our
case, it’s a good idea to perform the communications steps in a thread other than the
primary GUI thread. A new Thread H is created based on the DoReadJobs class, which

338 CHAPTER 12 Putting Android to work in a field service application
implements the Runnable Java interface. A new Message object I is instantiated and
initialized. This step takes place over and over throughout the run() method of the
DoReadJobs class. It’s important to not reuse a Message object, as they’re literally
passed and enqueued. It’s possible for them to stack up in the receiver’s queue, so
reusing a Message object will lead to losing data or corrupting data at best and Thread
synchronization issues or beyond at worst.

 Why are we talking about a commented-out line of code J? Great question—
because it caused so much pain in the writing of this application! A somewhat odd and
confusing element of Android programming is the Looper class. This class provides
static methods to help Java Threads to interact with Android. Threads by default don’t
have a message loop, so presumably Messages don’t go anywhere when sent. The first
call to make is Looper.prepare(), which creates a Looper for a Thread that doesn’t
already have one established. Then by placing a call to the loop() method, the flow of
Messages takes place. Prior to implementing this class as a Runnable interface, we
experimented with performing this step in the same thread and attempted to get the
ProgressDialog to work properly. That said, if you run into funny Thread/Looper
messages on the Android Emulator, consider adding a call to Looper.prepare() at the
beginning of your Thread and then Looper.loop() to help Messages flow.

 When we want to send data to the user to inform him of our progress, we update
an instance of the Message class 1) and send it to the assigned Handler.

 To parse an incoming XML data stream, we create a new InputSource from the
URL stream 1!. This step is required for the SAX parser. This method reads data from
the network directly into the parser without a temporary storage file.

 Note that the instantiation of the JobListHandler 1@ takes a reference to the
progresshandler. This way the JobListHandler can (optionally) propagate messages
back to the user during the parse process. Once the parse is complete, the JobList-
Handler returns a JobList object, which is then persisted 1# to store the data to the
local storage. Because this parsing step is complete, we let the Handler know by pass-
ing a Message 1$ with the what field set to 1. If an exception occurs, we pass a message
with what set to 2, indicating an error 1%.

 Congratulations, your Android application has now constructed a URL object with
persistently stored configuration information (user and server) and successfully con-
nected over the internet to fetch XML data. That data has been parsed into a JobList
containing JobEntry objects, while providing our patient mobile worker with feed-
back, and subsequently storing the JobList to the filesystem for later use. Now we
want to work with those jobs, because after all, those jobs have to be completed for our
mobile worker friend to make a living!

12.4.2 Managing jobs: the ManageJobs Activity

The ManageJobs Activity presents a scrollable list of jobs for review and action. At
the top of the screen is a simple summary indicating the number of jobs in the list,
and each individual job is enumerated in a ListView.

 Earlier we mentioned the importance of the JobEntry’s toString() method:

339Source code for managing jobs
public String toString() {
 return this._jobid + ": " + this._customer + ": " + this._product;
}

This method generates the String that’s used to represent the JobEntry in the List-
View, as shown in figure 12.9.

 The layout for this Activity’s View is simple: just a TextView and a ListView, as
shown in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/joblistview"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:scrollbars="vertical"
 >
 <TextView android:id="@+id/statuslabel"
 android:text="list jobs here "
 android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 />
 <ListView android:id="@+id/joblist"
 android:layout_height="fill_parent"
 android:layout_width="fill_parent"
 />
</LinearLayout>

The code in listing 12.14 for the ManageJobs Activity
connects a JobList to the GUI and reacts to the selec-
tion of a particular job from the ListView. In addition,
this class demonstrates taking the result from another,
synchronously invoked Activity and processing it
according to its specific requirement. For example,
when a job is completed and closed, that JobEntry is
updated to reflect its new status.

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source
public class ManageJobs extends Activity implements OnItemClickListener {
 final int SHOWJOB = 1;
 Prefs myprefs = null;
 JobList _joblist = null;
 ListView jobListView;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

Listing 12.13 managejobs.xml

Listing 12.14 ManageJobs.java, which implements the ManageJobs Activity

Figure 12.9
The ManageJobs Activity
lists downloaded jobs.

340 CHAPTER 12 Putting Android to work in a field service application
 setContentView(R.layout.managejobs);

 myprefs = new Prefs(this.getApplicationContext());
 TextView tv =
 (TextView) findViewById(R.id.statuslabel);
 _joblist = JobList.parse(this.getApplicationContext());
 if (_joblist == null) {
 _joblist = new JobList(this.getApplicationContext());
 }

 if (_joblist.getJobCount() == 0){
 tv.setText("There are No Jobs Available");
 } else {
 tv.setText("There are " + _joblist.getJobCount() + " jobs.");
 }

 jobListView = (ListView) findViewById(R.id.joblist);
 ArrayAdapter<JobEntry> adapter = new ArrayAdapter<JobEntry>(this,
 android.R.layout.simple_list_item_1, _joblist.getAllJobs());
 jobListView.setAdapter(adapter);
 jobListView.setOnItemClickListener(this);
 jobListView.setSelection(0);
 }

 public void onItemClick(AdapterView parent,
 View v, int position, long id) {

 JobEntry je = _joblist.getJob(position);
 Log.i("CH12", "job clicked! [" + je.get_jobid() + "]");
 Intent jobintent = new Intent(this, ShowJob.class);
 Bundle b = je.toBundle();
 jobintent.putExtras(b);
 startActivityForResult(jobintent, SHOWJOB);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent

data) {
 switch (requestCode) {
 case SHOWJOB:
 if (resultCode == 1){
 Log.d("CH12","Good Close, let's update our list");
 JobEntry je = JobEntry.fromBundle(data.getExtras());
 _joblist.replace(je);
 }
 break;
 }
 }

}

The objective of this code is to display a list of available jobs to the user in a ListView
D. To display the list of jobs, we must first parse the list stored on the device B. Note
that the Context argument is required to allow the JobList class access to the private
file area for this application. If the parse fails, we initialize the JobList instance to a
new, empty list. This is a somewhat simplistic way to handle the error without the GUI
falling apart C.

Connect
TextView to UI

Parse
data in
storage

B

Handle
bad parseCCheck for

empty JobList
Process click
events on List

DConnect ListView to UI
Use a

built-in
list layout

Connect list with
dataevents on List

Fetch job from
list by ordinal

E
Prepare

Intent for
showing

Job details

Use Bundle to
store Job data

F

Start
ShowJob ActivityG

Check
return code

H

Extract
returned
JobEntry

Update the list with
via replace methodI

341Source code for managing jobs
 When a specific job is selected, its details are extracted via a call to the getJob()
method E. The job is stored in a Bundle, put into an Intent F, and subsequently
sent to the ShowJob Activity for display and/or editing G. Note the use of the con-
stant SHOWJOB as the last parameter of the startActivityForResult() method. When
the called Activity returns, the second parameter to startActivityForResult() is
“passed back” when the onActivityResult() method is invoked H and the return
code checked. To obtain the changed JobEntry, we need to extract it from the Intent
with a call to getExtras(), which returns a Bundle. This Bundle is turned into a
JobEntry instance via the static fromBundle() method of the JobEntry class. To
update the list of jobs to reflect this changed JobEntry, call the replace() method I.

Now that you can view and select the job of interest, it’s time to look at just what you
can do with that job. Before diving into the next section, be sure to review the Manage-
Jobs code carefully to understand how the JobEntry information is passed between
the two activities.

12.4.3 Working with a job with the ShowJob Activity

The ShowJob Activity is the most interesting element of the entire application, and
it’s certainly the screen most useful to the mobile worker carrying around his
Android-capable device and toolbox. To help in the discussion of the various features
available to the user on this screen, take a look at figure 12.10.

 The layout is straightforward, but this time you have some Buttons and you’ll be
changing the textual description depending on the condition of a particular job’s sta-
tus. A TextView is used to present job details such as address, product requiring

More on bundles
You need to pass the selected job to the ShowJob Activity, but you can’t casually
pass an object from one Activity to another. You don’t want the ShowJob
Activity to have to parse the list of jobs again; otherwise you could simply pass
back an index to the selected job by using the integer storage methods of a Bundle.
Perhaps you could store the currently selected JobEntry (and JobList for that mat-
ter) in a global data member of the Application object, had you chosen to imple-
ment one. If you recall in chapter 1 when we discussed the ability of Android to
dispatch Intents to any Activity registered on the device, you want to keep the
ability open to an application other than your own to perhaps pass a job to you. If that
were the case, using a global data member of an Application object would never
work! The likelihood of such a step is low, particularly considering how the data is
stored in this application. This chapter’s sample application is an exercise of evalu-
ating some mechanisms you might employ to solve data movement when program-
ming for Android. The chosen solution is to package the data fields of the JobEntry
in a Bundle (F in listing 12.14) to move a JobEntry from one Activity to another.
In the strictest sense, you’re not moving a real JobEntry object but a representation
of a JobEntry’s data members. The net of this discussion is that this method cre-
ates a new Bundle by using the toBundle() method of the JobEntry.

342 CHAPTER 12 Putting Android to work in a field service application
service, and comments. The third Button will have the text property changed,
depending on the status of the job. If the job’s status is marked as CLOSED, the func-
tionality of the third button will change.

 To support the functionality of this Activity, first the code needs to launch a new
Activity to show a map of the job’s address, as shown in figure 12.11.

 The second button, Get Product Info, launches a browser window to assist users in
learning more about the product they’re being called on to work with. Figure 12.12
shows this in action.

 The third requirement is to allow the user to close the job or to view the signature
if it’s already closed; we’ll cover the details in the next section on the CloseJob
Activity.

Figure 12.10 An example of a job
shown in the ShowJob Activity

Figure 12.11 Viewing a job
address in the Maps application

Figure 12.12 Get Product Info
takes the user to a web page
specific to this job.

343Source code for managing jobs
 Fortunately, the steps required for the first two operations are quite simple with
Android—thanks to the Intent. The following listing and the accompanying annota-
tions show you how.

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source
public class ShowJob extends Activity {
 Prefs myprefs = null;
 JobEntry je = null;
 final int CLOSEJOBTASK = 1;
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.showjob);
 myprefs = new Prefs(this.getApplicationContext());
 StringBuilder sb = new StringBuilder();
 String details = null;
 Intent startingIntent = getIntent();
 if (startingIntent != null) {
 Bundle b = startingIntent.getExtas();
 if (b == null) {
 details = "bad bundle?";
 } else {
 je = JobEntry.fromBundle(b);
 sb.append("Job Id: " + je.get_jobid() + " (" + je.get_status()+
 ")\n\n");
 sb.append(je.get_customer() + "\n\n");
 sb.append(je.get_address() + "\n" + je.get_city() + "," +
 je.get_state() + "\n");
 sb.append("Product : "+ je.get_product() + "\n\n");
 sb.append("Comments: " + je.get_comments() + "\n\n");
 details = sb.toString();
 }
 } else {
 details = "Job Information Not Found.";
 TextView tv = (TextView) findViewById(R.id.details);
 tv.setText(details);
 return;
 }
 TextView tv = (TextView) findViewById(R.id.details);
 tv.setText(details);
 Button bmap = (Button) findViewById(R.id.mapjob);
 bmap.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 // clean up data for use in GEO query
 String address = je.get_address() + " " +
 je.get_city() + " " +
 je.get_zip();
 String cleanAddress = address.replace(",", "");
 cleanAddress = cleanAddress.replace(' ','+');
 try {
 Intent geoIntent = new Intent("android.intent.action.VIEW",
android.net.Uri.parse("geo:0,0?q=" +

Listing 12.15 ShowJob.java

Get Intent Extract
Bundle
from Intent

Update UI
upon error
and return

344 CHAPTER 12 Putting Android to work in a field service application
 cleanAddress));
 startActivity(geoIntent);
 } catch (Exception ee) {
 }
 }
 });
 Button bproductinfo = (Button) findViewById(R.id.productinfo);
 bproductinfo.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 try {
 Intent productInfoIntent = new

Intent("android.intent.action.VIEW",
 android.net.Uri.parse(je.get_producturl()));
 startActivity(productInfoIntent);
 } catch (Exception ee) {
 }
 }
 });
 Button bclose = (Button) findViewById(R.id.closejob);
 if (je.get_status().equals("CLOSED")) {
 bclose.setText("Job is Closed. View Signature");
 }
 bclose.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 if (je.get_status().equals("CLOSED")) {
 Intent signatureIntent = new

Intent("android.intent.action.VIEW",
 android.net.Uri.parse(myprefs.getServer()
 + "sigs/" +
 je.get_jobid() + ".jpg"));
 startActivity(signatureIntent);
 } else {
 Intent closeJobIntent = new Intent(ShowJob.this,CloseJob.class);
 Bundle b = je.toBundle();
 closeJobIntent.putExtras(b);
 startActivityForResult(closeJobIntent,CLOSEJOBTASK);
 }
 }
 });
 Log.d("CH12","Job status is :" + je.get_status());
 }
 @Override
 protected void onActivityResult(
int requestCode, int resultCode, Intent data) {
 switch (requestCode) {
 case CLOSEJOBTASK:
 if (resultCode == 1) {
 this.setResult(1, "", data.getExtras());
 finish();
 }
 break;
 }
 }
}

Build and launch
geo query

Obtain
product info
via URL

Selectively
update
Button label

Show Signature
for CLOSED
JobEntrys

Initiate CloseJob
Activity

Handle newly
closed JobEntry

B

345Source code for managing jobs
Upon completion of the CloseJob Activity, the onActivityResult() callback is
invoked. When this situation occurs, this method receives a Bundle containing the
data elements for the recently closed JobEntry B. If you recall, the ShowJob Activity
was launched “for result,” which permits a synchronous pattern, passing the result
back to the caller. The requirement is to propagate this JobEntry data back up to the
calling Activity, ManageJobs. Calling setResult() and passing the Bundle (obtained
with getExtras()) fulfills this requirement.

 Despite the simple appearance of some text and a few easy-to-hit buttons, the
ShowJob Activity provides a significant amount of functionality to the user. All that
remains is to capture the signature to close out the job. Doing so requires an examina-
tion of the CloseJob Activity.

12.4.4 Capturing a signature with the CloseJob Activity

Our faithful mobile technician has just completed the maintenance operation on the
part and is ready to head off to lunch before stopping for another job on the way
home, but first he must close out this job with a signature from the customer. To
accomplish this, the field service application presents a blank screen, and the cus-
tomer uses a stylus (or a mouse in the case of the Android Emulator) to sign the
device, acknowledging that the work has been completed. Once the signature has
been captured, the data is submitted to the server. The proof of job completion has
been captured, and the job can now be billed. Figure 12.13 demonstrates this
sequence of events.

 This Activity can be broken down into two basic functions: the capture of a signa-
ture and the transmittal of job data to the server. Notice that this Activity’s UI has no
layout resource. All of the UI elements in this Activity are generated dynamically, as

Figure 12.13 The CloseJob Activity capturing a signature and sending data to the server

346 CHAPTER 12 Putting Android to work in a field service application
shown in listing 12.16. In addition, the ProgressDialog introduced in the Refresh-
Jobs Activity is brought back for an encore, to let our mobile technician know that
the captured signature is being sent when the Sign & Close menu option is selected. If
the user selects Cancel, the ShowJob Activity resumes control. Note that the signa-
ture should be made prior to selecting the menu option.

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source
public class CloseJob extends Activity {
 ProgressDialog myprogress;
 Handler progresshandler;
 Message msg;
 JobEntry je = null;
 private closejobView sc = null;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 Intent startingIntent = getIntent();
 if (startingIntent != null) {
 Bundle b = startingIntent.getExtras()
 if (b != null) {
 je = JobEntry.fromBundle(b);
 }
 }
 sc = new closejobView(this);
 setContentView(sc);
 if (je == null) {

 finish();
 }
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 menu.add(0,0,"Sign & Close");
 menu.add(0,1,"Cancel");
 return true;
 }

Listing 12.16 CloseJob.java—GUI setup

Local queuing
One element not found in this sample application is the local queuing of the signa-
ture. Ideally this would be done in the event that data coverage isn’t available. The
storage of the image is quite simple; the perhaps more challenging piece is the logic
on when to attempt to send the data again. Considering all the development of this
sample application is done on the Android Emulator with near-perfect connectivity,
it’s of little concern here. But in the interest of best preparing you to write real-world
applications, it’s worth reminding you of local queuing in the event of communica-
tions trouble in the field.

Instantiate instance of
closejobView

B

Define available
menus

C

347Source code for managing jobs
 public boolean onOptionsItemSelected(Menu.Item item) {
 Prefs myprefs = new Prefs(CloseJob.this.getApplicationContext());
 switch (item.getId()) {
 case 0:
 try {
 myprogress = ProgressDialog.show(this, "Closing Job ",
 "Saving Signature to Network",true,false);
 progresshandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case 0:
 myprogress.setMessage("" + (String) msg.obj);
 break;
 case 1:
 myprogress.cancel();
 finish();
 break;
 }
 super.handleMessage(msg);
 }
 };
 Thread workthread = new
Thread(new DoCloseJob(myprefs));
 workthread.start();
 } catch (Exception e) {
 Log.d("closejob",e.getMessage());
 msg = new Message();
 msg.what = 1;
 progresshandler.sendMessage(msg);
 }
 return true;
 case 1:
 finish();
 return true;
 }
 return false;
}

Unlike previous activities in this chapter, the UI doesn’t come from a design time-
defined layout, but rather an instance of a closejobView B is the primary UI. The
closejobView is defined in listing 12.17.

 The onCreateOptionsMenu() method c is an override of the base View’s method,
allowing a convenient way to add menus to this screen. Note that two menus are
added, one for Sign & Close and one for Cancel. The onOptionsItemSelected()
method d is invoked when the user selects a menu item. A ProgressDialog and
accompanying Handler are instantiated when the user chooses the menu to close a
job. Once the progress-reporting mechanism is in place, a new Thread is created and
started in order to process the steps required to close the job e. Note that an instance
of Prefs is passed in as an argument to the constructor, as that will be needed to store
a signature, as we’ll show in listing 12.18.

D
Handle

selected menu

Start Thread
to CloseJob

E

348 CHAPTER 12 Putting Android to work in a field service application
 The UI at this point is only partially set up; we need a means to capture a signature
on the screen of our Android device. The next listing implements the class closejob-
View, which is an extension of the View class.

public class closejobView extends View {
 Bitmap _bitmap;
 Canvas _canvas;
 final Paint _paint;
 int lastX;
 int lastY;
 public closejobView(Context c) {
 super(c);
 _paint = new Paint();
 _paint.setColor(Color.BLACK);
 lastX = -1;
 }
 public boolean Save(OutputStream os){
 try {
 _canvas.drawText("Unlocking Android", 10, 10, _paint);
 _canvas.drawText("http://manning.com/ableson", 10, 25, _paint);
 _canvas.drawText("http://android12.msi-wireless.com",
 10, 40, _paint);
 _bitmap.compress(Bitmap.CompressFormat.JPEG, 100, os);
 invalidate();
 return true;
 } catch (Exception e) {
 return false;
 }
 }
 @Override
 protected void onSizeChanged(int w, int h, int oldw, int oldh) {
 Bitmap img =
 Bitmap.createBitmap(w, h,Bitmap.Config.ARGB_8888);
 Canvas canvas = new Canvas();
 canvas.setBitmap(img);
 if (_bitmap != null) {
 canvas.drawBitmap(img, 0, 0, null);
 }
 _bitmap = img;
 _canvas = canvas;
 _canvas.drawColor(Color.WHITE);
 }
 @Override
 protected void onDraw(Canvas canvas) {
 if (_bitmap != null) {
 canvas.drawBitmap(_bitmap, 0, 0, null);
 }
 }
 @Override
 public boolean onTouchEvent(MotionEvent event) {
 int action = event.getAction();
 int X = (int)event.getX();
 int Y = (int)event.getY();

Listing 12.17 CloseJob.java—closejobView class

closejobView
extends base
class ViewB

Required
classes for
drawing

C

Initialize
drawing
classes

Save method
persists
signature

D Add
contextual
data to
image

E

Draw image
on screen

F

Handle touch
events

G

349Source code for managing jobs
 switch (action) {
 case MotionEvent.ACTION_UP:
 // reset location
 lastX = -1;
 break;
 case MotionEvent.ACTION_DOWN:
 if (lastX != -1){
 if ((int) event.getX() != lastX) {
 _canvas.drawLine(lastX, lastY, X, Y, _paint);
 }
 }
 lastX = (int)event.getX();
 lastY = (int)event.getY();
 break;
 case MotionEvent.ACTION_MOVE:
 if (lastX != -1){
 _canvas.drawLine(lastX, lastY, X, Y, _paint);
 }
 lastX = (int)event.getX();
 lastY = (int)event.getY();
 break;
 }
 invalidate();
 return true;
 }
 }
}

The closejobView extends the base View class B. The Bitmap and Canvas classes c
work together to form the drawing surface for this Activity. Note the call to the
Canvas.drawColor() method, which sets the background color to white. When the
onDraw() method is invoked, the canvas draws its associated bitmap with a call to
drawBitmap() f.

 The logic for where to draw relies on the onTouchEvent() method g, which
receives an instance of the MotionEvent class. The MotionEvent class tells what hap-
pened and where. ACTION_UP, ACTION_DOWN, and ACTION_MOVE are the events captured,
with some logic to guide when and where to draw. Once the signature is complete, the
Save() method d is responsible for converting the contents of the image to a form
usable for submission to the server. Note that additional text is drawn on the signature
e. In this case, it’s little more than a shameless plug for this book’s web page, but this
could also be location-based data. Why is this important? Imagine someone forging a
signature. It could happen, but it would be more challenging and of less value to a
rogue mobile technician if the GPS/location data were stamped on the job, along with
the date and time. When converting the image to our desired JPEG format, there’s an
additional input argument to this method—an OutputStream, used to store the image
data. This OutputStream reference was an input argument to the Save() method.

 Now that the UI has been created and a signature drawn on the screen, let’s look at
the code used to close the job. Closing the job involves capturing the signature and
sending it to the server via an HTTP POST. The class DoCloseJob is shown in the follow-
ing listing.

350 CHAPTER 12 Putting Android to work in a field service application
 class DoCloseJob implements Runnable {
 Prefs _myprefs;
 DoCloseJob(Prefs p) {
 _myprefs = p;
 }
 public void run() {
 try {
 FileOutputStream os =
 getApplication().openFileOutput("sig.jpg", 0);
 sc.Save(os);
 os.flush();
 os.close();
 // reopen to so we can send this data to server
 File f = new

File(getApplication().getFileStreamPath("sig.jpg").toString());
 long flength = f.length();
 FileInputStream is =

getApplication().openFileInput("sig.jpg");
 byte data[] = new byte[(int) flength];
 int count = is.read(data);
 if (count != (int) flength) {
 // bad read?
 }
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Connecting to Server");
 progresshandler.sendMessage(msg);
 URL url = new URL(_myprefs.getServer() +
 "/closejob.php?jobid=" + je.get_jobid());
 URLConnection conn = url.openConnection();
 conn.setDoOutput(true);
 BufferedOutputStream wr = new

BufferedOutputStream(conn.getOutputStream());
 wr.write(data);
 wr.flush();
 wr.close();
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Data Sent");
 progresshandler.sendMessage(msg);
 BufferedReader rd = new BufferedReader(new
 InputStreamReader(conn.getInputStream()));
 String line = "";
 Boolean bSuccess = false;
 while ((line = rd.readLine()) != null) {
 if (line.indexOf("SUCCESS") != -1) {
 bSuccess = true;
 }
 }
 wr.close();
 rd.close();
 if (bSuccess) {
 msg = new Message();

Listing 12.18 CloseJob.java—DoCloseJob class

Constructor uses
Prefs instance

Open file for
storing
signature

B

Construct
storage
URL

C

Write data
to serverD

Read server
response

E

Check for
successful
processing

F

351Server code
 msg.what = 0;
 msg.obj = (Object)("Job Closed Successfully");
 progresshandler.sendMessage(msg);
 je.set_status("CLOSED");
 CloseJob.this.setResult(1,"",je.toBundle());
 } else {
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Failed to Close Job");
 progresshandler.sendMessage(msg);
 CloseJob.this.setResult(0);
 }
 } catch (Exception e) {
 Log.d("CH12","Failed to submit job close signature: " +

e.getMessage());
 }
 msg = new Message();
 msg.what = 1;
 progresshandler.sendMessage(msg);
 }
}

At this point, we have a signature on the screen and need to capture it. A new File-
OutputStream B is obtained for a file on the local filesystem, and the signature is writ-
ten to this file. We’re now ready to transmit this file to the server—remember, we want
to bill the client as soon as possible for work completed!

 In preparation for sending the signature to the server, the signature file contents
are read into a byte array via an instance of a FileInputStream. Using the Prefs
instance to get specific configuration information, a URL c is constructed in order to
POST data to the server. The query String of the URL contains the jobid, and the
POST data contains the image itself. A BufferedOutputStream d is employed to POST
data, which consists of the captured signature in JPEG format.

 Once the job data and signature have been sent to the server, the response data is
read back from the server e. A specific string indicates a successful transmission f.

 Upon successful closing, the JobEntry status member is marked as CLOSED g,
and this JobEntry is converted to a Bundle so that it may be communicated to the
caller by invoking the setResult() method h. Once the Handler receives the “I’m
done” message and the Activity finishes, this data is propagated back to the ShowJob
and all the way back to the ManageJob Activity.

 And that thankfully wraps up the source code review for the Android side of
things! There were some methods omitted from this text to limit this already very long
chapter, so please be sure to examine the full source code. Now it’s time to look at the
server application.

12.5 Server code
A mobile application often relies on server-side resources, and our field service appli-
cation is no exception. This isn’t a book on server-side development techniques, server-
related code, and discussion, so we’ll present these things briefly. We’ll introduce the

Update local
JobEntry
status

G

Set result and
store updated
JobEntryH

352 CHAPTER 12 Putting Android to work in a field service application
UI and the accompanying database structure that makes up our list of job entries, and
then we’ll review the two server-side transactions that concern the Android applica-
tion. The server code relies on open source staples: MySQL and PHP. Let’s get started
with the interface used to enter new jobs, used by the dispatcher.

12.5.1 Dispatcher user interface

Before jumping into any server code–specific items, it’s important to understand how
the application is organized. All jobs entered by a dispatcher are assigned to a partic-
ular mobile technician. That identifier is interpreted as an email address, as seen in
the Android example where the user ID was used throughout the application. Once
the user ID is specified, all of the records revolve around that data element. For
example, figure 12.14 demonstrates this by showing the jobs assigned to the author,
fableson@msiservices.com.

NOTE This application is available for you to test. It’s located at http://
android12.msi-wireless.com. Sign on and add jobs for your email address.

Let’s now turn our attention to the underlying data structure, which contains the list
of jobs.

12.5.2 Database

As mentioned earlier in section 12.1.3, the database in use in this application is
MySQL,2 with a single database table called tbl_jobs. The SQL to create this table is
provided in the next listing.

2 For more on development using MySQL, try the developer zone: http://dev.mysql.com/.

Figure 12.14 The server-side dispatcher screen

http://android12.msi-wireless.com
http://android12.msi-wireless.com
http://dev.mysql.com/

353Server code
CREATE TABLE IF NOT EXISTS 'tbl_jobs' (
 'jobid' int(11) NOT NULL auto_increment,
 'status' varchar(10) NOT NULL default 'OPEN',
 'identifier' varchar(50) NOT NULL,
 'address' varchar(50) NOT NULL,
 'city' varchar(30) NOT NULL,
 'state' varchar(2) NOT NULL,
 'zip' varchar(10) NOT NULL,
 'customer' varchar(50) NOT NULL,
 'product' varchar(50) NOT NULL,
 'producturl' varchar(100) NOT NULL,
 'comments' varchar(100) NOT NULL,
 UNIQUE KEY 'jobid' ('jobid')
) ENGINE=MyISAM DEFAULT CHARSET=ascii AUTO_INCREMENT=25 ;

Each row in this table is uniquely identified by the jobid B, which is an auto-
incrementing integer field. The identifier field C corresponds to the user ID/email
of the assigned mobile technician. The producturl field D is designed to be a spe-
cific URL to assist the mobile technician in the field in quickly gaining access to help-
ful information for completing the assigned job.

 The next section provides a road map to the server code.

12.5.3 PHP dispatcher code

The server-side dispatcher system is written in PHP and contains a number of files
working together to create the application. Table 12.3 presents a brief synopsis of each
source file to help you navigate the application if you choose to host a version of it
yourself.

Listing 12.19 Data definition for tbl_jobs

Table 12.3 Server-side source code

Source file Description

addjob.php Form for entering new job information

closejob.php Used by the Android application to submit a signature

db.php Database connection information

export.php Used to export list of jobs to a CSV file

footer.php Used to create a consistent look and feel for the footer of each page

getjoblist.php Used by the Android application to request a job XML stream

header.php Used to create a consistent look and feel for the header of each page

index.php Home page, including the search form

manage.php Used to delete jobs on the web application

savejob.php Used to save a new job (called from addjob.php)

showjob.php Used to display job details and load into a form for updating

showjobs.php Displays all jobs for a particular user

Unique record IDB

User identificationC

Product URLD

354 CHAPTER 12 Putting Android to work in a field service application
Of all these files, only two concern the Android application. We’ll discuss them in the
next section.

12.5.4 PHP mobile integration code

When the Android application runs the RefreshJobs Activity, the server side gener-
ates an XML stream. Without going into excessive detail on the server-side code, we
explain the getjoblist.php file in the following listing.

<?
require('db.php');
require('utils.php');
$theuser = $_GET['identifier'];
print (getJobsXML($theuser));
?>

The getJobsXML() function retrieves data from the database and formats each row
into an XML representation. It wraps the list of XML-wrapped job records in the <job-
list> tags along with the <?xml ...> header declaration to generate the expected
XML structure used by the Android application. Remember, this is the data ultimately
parsed by the SAX-based JobListHandler class, as shown in listing 12.11.

 The other transaction that’s important to our Android field service application is
the closejob.php file, examined in the next listing.

<?
require('db.php');
require('utils.php');
$data = file_get_contents('php://input');
$jobid = $_GET['jobid'];
$f = fopen("~/pathtofiles/sigs/".$jobid.".jpg","w");
fwrite($f,$data);
fclose($f);
print(closeJob($_GET['jobid']));
?>

The POSTed image data is read via the file_get_contents() function. The secret is
the special identifier of php://input. This is the equivalent of a binary read. This data
is read into a variable named $data. The jobid is extracted from the query String.
The image file is written out to a directory that contains signatures as JPEG files, keyed

updatejob.php Used to save updates to a job

utils.php Contains various routines for interacting with the database

Listing 12.20 getjoblist.php

Listing 12.21 closejob.php

Table 12.3 Server-side source code (continued)

Source file Description

355Summary
by the jobid as part of the filename. When a job has been closed and the signature is
requested by the Android application, this file is requested in the Android browser.
The closeJob() function (implemented in utils.php) updates the database to mark
the selected job as CLOSED.

 That wraps up the review of the source code for this chapter’s sample application.

12.6 Summary
The intent of the sample application was to tie together many things learned in previ-
ous chapters into a composite application. Our field service application has real-world
applicability to the kind of uses an Android device is capable of bringing to fruition. Is
this sample application production ready? Of course not, but almost! That, as they say,
is an exercise for the reader.

 Starting with a simple splash screen, this application demonstrates the use of
Handlers and displaying images stored in the resources section of an Android project.
Moving along to the main screen, a simple UI leads to different activities useful for
launching various aspects of the realistic application.

 Communications with the server involve downloading XML data, while showing the
user a ProgressDialog along the way. Once the data stream commences, the data is
parsed by the SAX XML parser, using a custom Handler to navigate the XML document.

 We demonstrated that managing jobs in a ListView is as easy as tapping on the
desired job in the list. The next screen, the ShowJobs Activity, allows even more
functionality, with the ability to jump to a Map showing the location of the job and
even a specific product information page customized to this job. Both of those func-
tions are as simple as preparing an Intent and a call to startActivity().

 Once the mobile technician completes the job in the field, the CloseJob Activity
brings the touch-screen elements into play by allowing the user to capture a signature
from his customer. That digital signature is then stamped with additional, contextual
information and transmitted over the internet to prove the job was done. Jumping
back to what you learned earlier, it would be straightforward to add location-based
data to further authenticate the captured signature.

 The chapter wrapped up with a quick survey of the server-side components to dem-
onstrate some of the steps necessary to tie the mobile and the server sides together.

 The sample application is hosted on the internet and is free for you to test out with
your own Android application, and the full source code is provided for the Android
and server applications discussed in this chapter.

 Now that we’ve shown what can be accomplished when exercising a broad range of
the Android SDK, the next chapter takes a decidedly different turn, as we explore the
underpinnings of Android a little deeper and look at building native C applications
for the Android platform.

Building Android
applications in C
Up to this point, this book has presented a cross section of development topics in
an effort to unlock the potential of the Android platform for the purpose of deliv-
ering useful, and perhaps even fun, mobile applications. In chapter 12, you built a
comprehensive application, building on what we introduced in the prior chapters.
As you embark on this chapter, you’re temporarily leaving behind the comforts of
working strictly in the Android SDK, Java, and Eclipse. We’ll instead take a close
look at the underlying Linux underpinnings of the Android platform—and more
specifically, you’ll learn how to build an application in C, without the SDK.

 The Android SDK is comprehensive and capable, but there may be times when
your application requires something more. This chapter explores the steps required
to build applications that run in the Linux foundation layer of Android. To accom-
plish this, we’re going to use the C programming language. In this chapter, we use

This chapter covers
 Building an application in C

 Using dynamic linking

 Building a DayTime Server in C

 Building a Daytime Client in Java
356

357Building Android apps without the SDK
the term Android/Linux to refer to the Linux underpinnings of the Android platform.
We also use the term Android/Java to refer to a Java application built using the Android
SDK and Eclipse.

 C language mastery on this platform is powerful because much of the C language
development process involves porting existing, open source Linux code to the mobile
platforms. This technique has the potential benefit of speeding up development for
adding future functionality to Android by leveraging existing code bases. Chapter 19
examines the Android Native Developer’s kit (NDK). Using the NDK, programmers
can leverage existing C code and map those routines to applications written in Java.
This chapter doesn’t use the NDK, but rather looks at building standalone C applica-
tions capable of running on the Android platform.

 We demonstrate the specific steps of building an Android/Linux application in C.
We begin with a description of the environment and the required tool chain. After an
obligatory Hello World–caliber application, you’ll construct a more sophisticated
application that implements a DayTime Server. Ultimately, any application built for
Android/Linux needs to bring value to the user in some form. In an effort to meet
this objective, it’s desirable that Android/Java be able to interact in a meaningful
manner with our Android/Linux application. To that end, you’ll build a traditional
Android application using Java in Eclipse to interact with the Android/Linux server
application.

 Let’s get started with an examination of the requirements for building your first C
application for Android.

13.1 Building Android apps without the SDK
Applications for Android/Linux are markedly different from applications constructed
with the Android SDK. Applications built with Eclipse and the context-sensitive Java
syntax tools make for a comfortable learning environment. In line with the spirit of
Linux development, from here on out all development takes place with command-
line tools and nothing more sophisticated than a text editor. Though the Eclipse envi-
ronment could certainly be leveraged for non-Java development, the focus of this
chapter is on core C language1 coding for Android/Linux. The first place to start is
with the cross-compiling tool chain required to build Android/Linux applications.

13.1.1 The C compiler and linker tools

Building applications for Android/Linux requires the use of a cross-compiler tool
chain from CodeSourcery. The specific version required is the Sourcery G++ Lite Edition
for ARM, found at https://support.codesourcery.com/GNUToolchain/release1479.
Once installed, the Sourcery G++ tool chain contributes a number of useful tools to
assist you in creating applications targeting Linux on ARM, which is the architecture of
the Android platform. The ARM platform is a 32-bit reduced instruction set computer

1 For details on the C programming language, start here: www.cprogramming.com/.

http://www.cprogramming.com/
https://support.codesourcery.com/GNUToolchain/release1479

358 CHAPTER 13 Building Android applications in C
(RISC) processor, used in numerous devices, including smartphones, PDAs, and tech-
nology appliances such as low-end routers and disk drive controllers. The Code-
Sourcery installation comes with a fairly comprehensive set of PDF documents
describing the main components of the tool chain, including the C compiler, the
assembler, the linker, and many more tools. A full discussion of these versatile tools is
well beyond the scope of this chapter, but three tools in particular are demonstrated
in the construction of this chapter’s sample applications. You’ll be using these tools
right away, so let’s briefly introduce them in this section.

 The first and most important tool introduced is gcc.2 This tool is the compiler
responsible for turning C source files into object files and optionally initiating the link
process to build an executable suitable for the Android/Linux target platform. The
full name of the gcc compiler for our cross-compilation environment is arm-none-
linux-gnueabi-gcc. This tool is invoked from the command line of the development
machine. The tool takes command-line arguments of one or more source files, along
with zero or more of the numerous available switches.

 The linker, arm-none-linux-gnueabi-ld, is responsible for producing an execut-
able application for our target platform. When performing the link step, object code
along with routines from one or more library files are combined into a relocatable,
executable binary file, compatible with the Android Emulator’s Linux environment.
Whereas a simple application may be compiled and linked directly with gcc, the linker
is used when creating applications with more than one source file and/or more com-
plex application requirements.

 If the linker is responsible for constructing applications from more than one con-
tributing component, the object dump utility is useful for dissecting, or disassembling,
an application. The objdump, or arm-none-linux-gnueabi-objdump tool examines an
executable application—a binary file—and turns the machine instructions found
there into an assembly language listing file, suitable for analysis.

NOTE All of the examples in this chapter take place on a Windows XP work-
station. It’s also possible to use this tool chain on a Linux development
machine. If you are using Linux for your development environment, you may
need to modify the build scripts slightly as the path separator is different and
the libraries will require a preceding dot (“.”).

With this brief introduction behind us, let’s build the obligatory Hello Android appli-
cation to run in the Linux foundation of the Android Emulator.

13.1.2 Building a Hello World application

The first thing we want you to accomplish with your journey into Android/Linux
development is to print something to the emulator screen to demonstrate that you’re
running something on the platform outside the Android SDK and its Java application
environment. There’s no better way to accomplish this feat than by writing a variant of

2 For everything you’d want to know about gcc, go here: http://gcc.gnu.org/.

http://gcc.gnu.org/

359Building Android apps without the SDK
the Hello World application. At this point, there will be little talk of Android activities,
views, or resource layouts. Most code samples in this chapter are in the C language.
The following listing shows the code for your first Hello Android application.

#include <stdio.h>
int main(int argc,char * argv[])
{
 printf("Hello, Android!\n");
 return 0;
}

Virtually all C language applications require an #include header file containing func-
tion definitions, commonly referred to as prototypes. In this case, the application
includes the header file for the standard input and output routines, stdio.h. The stan-
dard C language entry point for user code is the function named main. The function
returns an integer return code (a value of 0 is returned in this simple example) and
takes two arguments. The first, argc, is an integer indicating the number of com-
mand-line arguments passed in to the program when invoked. The second, argv, is an
array of pointers to null-terminated strings representing each of the command-line
arguments. The first argument, argv[0], is always the name of the program execut-
ing. This application has but a single useful instruction, printf, which is to write to
standard output (the screen) a textual string. The printf function is declared in the
header file, stdio.h.

 To build this application, you employ the gcc tool:

arm-none-linux-gnueabi-gcc hello.c -static -o hellostatic

You’ll notice a few things about this command-line instruction:

 The compiler is invoked with the full name: arm-none-linux-gnueabi-gcc.
 The source file is named hello.c.
 The –static command-line switch is used to instruct gcc to fully link all

required routines and data into the resulting binary application file. In essence,
the application is fully standalone and ready to be run on the target Android
Emulator without any additional components. An application that’s statically
linked tends to be rather large, because so much code and data are included in
the executable file. For example, this statically linked application with basically
a single line of code weighs in at around 600 KB. Ouch! If this -static switch is
omitted, the application is built without any extra routines linked in. In this
case, the application will be much smaller, but it’ll rely on finding compatible
routines on the target system in order to run. For now, let’s keep things simple
and build the sample application in such a manner that all support routines are
linked statically.

 The output switch, -o, is used to request that the executable application be
assigned the name hellostatic. If this switch isn’t provided, the default applica-
tion name is a.out.

Listing 13.1 Hello.c

360 CHAPTER 13 Building Android applications in C
Now that the application is built, it’s time for you to try it out on the Android Emula-
tor. To do this, you’ll rely on the adb tool introduced in chapter 2.

13.1.3 Installing and running the application

In preparation for installing and running the Hello
Android application, let’s take a tour of our build and test-
ing environment. You need to identify four distinct envi-
ronments and tools and clearly understand them when
building applications for Android/Linux: Android Emula-
tor, command-line CodeSourcery tools, adb or DDMS, and
adb shell.

 The first environment to grasp is the big-picture archi-
tecture of the Android Emulator running essentially on
top of Linux, as shown in figure 13.1.

 As presented in the early chapters of this book, there’s
a Linux kernel running underneath the pretty, graphical
face of Android. There exist device drivers, process lists,
and memory management, among other elements of a
sophisticated operating system.

 As shown in the previous section, you need an environment in which to compile
your C code. This is most likely to be a command-prompt window on a Windows
machine, or a shell window on a Linux desktop machine, exercising the Code-
Sourcery tool chain. This is the second environment you need to be comfortable
operating within.

 The next requirement is to copy your newly constructed binary executable applica-
tion to the Android Emulator. You can do so with a call to the adb utility or by using
the DDMS view in Eclipse. Both of these tools were demonstrated in chapter 2. Here’s
the syntax for copying the executable file to the Android Emulator:

adb push hellostatic /data/ch13/hellostatic

Cross compiling
The CodeSourcery tool chain isn’t designed to run on the Android/Linux environment
itself, so the development work being done here is considered to be cross-compiling.
The figures and example code presented in this chapter were taken from a Windows
development environment used by one of the authors. There are a number of long
path and directory structures in the Android SDK and the CodeSourcery tools. To help
simplify some of the examples and keep certain command-line entries from running
over multiple lines, we set up some drive mappings. For example, a drive letter of m:
seen in scripts and figures corresponds to the root location of source code examples
on the author’s development machine. Likewise, the g: drive points to the currently
installed Android SDK on the author’s development machine. Note that this tech-
nique may also be used in Linux or Mac OS X environments with a “soft link” (ln)
command.

Figure 13.1 Android runs
atop a Linux kernel.

361Building Android apps without the SDK
Note a few items about this command:

 The command name is adb. This command takes a number of arguments that
guide its behavior. In this case, the subcommand is push, which means to copy a
file to the Android Emulator. There’s also a pull option for moving files from
the Android Emulator filesystem to the local development machine’s hard drive.

 After the push option, the next argument, hellostatic in this case, represents
the local file, stored on the development machine’s hard drive.

 The last argument is the destination directory (and/or filename) for the trans-
ferred file. In this sample, you’re copying the hellostatic file from the current
working directory to the /data/ch13 directory on the Android Emulator.

Be sure that the desired target directory exists first! You can accomplish this with a
mkdir command on the adb shell, described next.

 The final tool to become familiar with is the shell option of the adb tool. Using
this command, you can interact directly on the Android Emulator’s filesystem with a
limited shell environment. To enter this environment (assuming the Android Emula-
tor is already running), execute adb shell from the command line. When invoked,
the shell displays the # prompt, just as if you’d made a secure shell (ssh) or telnet con-
nection to a remote Unix-based machine. Figure 13.2 shows these steps in action.

 Note the sequence shown in figure 13.2. First the application is built with a call to
gcc. Next you push the file over to the Android Emulator. You then connect to the
Android Emulator via the adb shell command, which gives you the # prompt, indi-
cating that you’re now in the shell. Next you change directory (cd) to /data/ch13.
Remember that this is Linux, so the application by default may not be executable. A
call to chmod sets the file’s attributes, tuning on the executable bits and allowing the
application to be invoked. Finally, you invoke the application with a call to ./hello-
static. The search path for executable applications doesn’t by default include the cur-
rent directory on a Linux system, so you must provide a more properly qualified path,
which explains the ./ prefix. Of course, you can see that the application has run suc-
cessfully because you see the “Hello, Android!” text displayed on the screen.

Figure 13.2 The build, copy, run cycle

362 CHAPTER 13 Building Android applications in C
 Congratulations! You have a successful, albeit simple, Android/Linux application
running on the Android Emulator. In the next section, we look at streamlining this
build process by combining the multiple build operations into a script.

13.1.4 C application build script

In the previous section, we reviewed each step in building and preparing to test our
application. Due to the rather tedious nature of executing each of these steps, you
likely want to utilize command-line tools when building C applications, as it greatly
speeds up the edit, compile, copy, debug cycle. This example with only a single C
source file is rather simplistic; when multiple source files must be linked together, the
thought of having a build script is appealing. The need for a build script (shown in
listing 13.2) is particularly evident where there are numerous source files to compile
and link, a situation you’ll encounter later in this chapter.

 This listing shows the build script for our Hello Android application.

arm-none-linux-gnueabi-gcc hello.c -static -o hellostatic
g:\tools\adb push hellostatic /data/ch13
g:\tools\adb shell "chmod 777 /data/ch13/hellostatic"

A call to arm-none-linux-gnueabi-gcc compiles the source file, hello.c. The file is
statically linked against the standard C libraries, and the resulting binary executable
file is written out as hellostatic. The file hellostatic is copied to the Android Emulator
and placed in the directory /data/ch13. The permissions for this file are changed,
permitting execution. Note the use of the adb shell with a quote-delimited command.
Once this command executes, the adb application exits and returns to the Windows
command prompt.

 This example can be extended to perform other build steps or cleanup proce-
dures such as removing temporary test data files on the Android Emulator or any sim-
ilarly helpful tasks. As you progress, it’ll become clear what commands you need to
put into your build script to make the testing process more efficient.

 Now that the pressure is off—you’ve successfully written, built, and executed an
application in the Android/Linux environment—it’s time to deal with the problem-
atic issue of a simple application requiring such an enormous file size!

13.2 Solving the problem with dynamic linking
That was fun, but who wants a 500+ KB file that only displays something to the screen?
Recall that the –static flag links the essentials for running the application, including
the input/output routines required for printing a message to the screen. If you’re
thinking that there must be a better way, you’re correct; you need to link the applica-
tion to existing system libraries rather than include all that code in the application’s
executable file.

Listing 13.2 Build script for Hello Android, buildhello.bat

363Solving the problem with dynamic linking
13.2.1 Android system libraries

When an application is built with the
–static flag, it’s entirely self-contained,
meaning that all the routines it requires are
linked directly into the application. This
information isn’t new to you; we’ve already
discussed this. It has another important
implication beyond just the size of the
code: it also means that using Android resi-
dent code libraries is a bigger challenge.
Let’s dig deeper to understand why. To do
this, we have to look at the filesystem of
Android/Linux.

 System libraries in Android/Linux are
stored in the directory /system/lib. This
directory contains important functionality,
such as OpenGL, SQLite, C standard rou-
tines, Android runtime, UI routines, and
much more. Figure 13.3 shows a list of the
available libraries in the Android Emulator.
In short, everything that’s specific to the
Android platform is found in /system/lib,
so if you’re going to build an application
that has any significant functionality, you
can’t rely on the libraries that ship with
CodeSourcery alone. You have to write an
application that can interact with the
Android system libraries. This calls for a
side trip to discuss the functionality of the
linker application.

 When you’re building an application
that requires the use of the linker, a few
things change. First, the gcc command is
no longer responsible for invoking the linker. Instead, the –c option is used to inform
the tool to simply compile the application and leave the link step to a subsequent
build step. Here’s an example:

arm-none-linux-gnueabi-gcc –c hello.c -o hello.o

This command tells the compiler to compile the file hello.c and place the resulting
object code into the file hello.o.

 This process is repeated for as many source files as necessary for a particular appli-
cation. For our sample application, you have only this single source file. But to get an
executable application, you must employ the services of the linker.

Figure 13.3 Available libraries in /system/lib

364 CHAPTER 13 Building Android applications in C
 Another important change in the build environment is that you have to get a copy
of the Android/Linux libraries. You’re compiling on the Windows platform (or Linux
if you prefer), so you need to get access to the Android Emulator’s /system/lib con-
tents in order to properly link against the library files. Just how do you go about this?
You use the adb utility, of course! Listing 13.3 shows a Windows batch file used to
extract the system libraries from a running instance of the Android Emulator. A few of
the libraries are pointed out.

adb pull /system/lib/libdl.so m:\android\system\lib
adb pull /system/lib/libthread_db.so m:\android\system\lib
adb pull /system/lib/libc.so m:\android\system\lib
adb pull /system/lib/libm.so m:\android\system\lib
adb pull /system/lib/libGLES_CM.so m:\android\system\lib
adb pull /system/lib/libssl.so m:\android\system\lib
...
adb pull /system/lib/libhardware.so m:\android\system\lib
adb pull /system/lib/libsqlite.so m:\android\system\lib
many entries omitted for brevity

Figure 13.4 shows these files now copied over to the development machine.
 Once these files are available on the development machine, you can proceed with

the build step using the linker.

13.2.2 Building a dynamically linked application

The name for the linker is arm-none-linux-gnueabi-ld. In most Linux environ-
ments, the linker is named simply ld. When you’re using the linker, many command-
line options are available to you for controlling the output. There are so many options
that we could write an entire book covering no other topic. Our interest in this chap-
ter is writing applications, and we’re taking as streamlined an approach as possible. So
although there may be other options that can get the job done, our aim here is to
show you how to build an application that gives you as much flexibility as possible to
employ the Android system libraries. To that end, the following listing shows the script
for building a dynamic version of Hello Android.

arm-none-linux-gnueabi-gcc -c hello.c -o hello.o
arm-none-linux-gnueabi-ld -entry=main -dynamic-linker /system/bin/linker
 -nostdlib -rpath /system/lib -rpath-link /android/system/lib -L
 /android/system/lib -l android_runtime -l c -o
 hellodynamic hello.o
g:\tools\adb push hellodynamic /data/ch13
g:\tools\adb shell "chmod 777 /data/ch13/hellodynamic"

This build script passes the –c compiler option when compiling the source file,
hello.c. This way, gcc doesn’t attempt to link the application. The link command, arm-
none-linux-gnueeabi-ld, has a number of options. These options are more fully

Listing 13.3 pullandroid.bat

Listing 13.4 Build script for dynamically linked Android application

libdl.so, dynamic loading

libc.so, C runtime
libm.so, math library

libGLES_CM.so,
OpenGL

libsqlite.so,
SQLite database

365Solving the problem with dynamic linking
described in table 13.1. As in the previous example, adb is used to push the executable
file over to the Android Emulator. The permissions are also modified to mark the
application as executable.

 If our application required routines from the Open GL or SQLite library, the link
command would have additional parameters of –l GLES_CM or –l sqlite, respec-
tively. Leaving those library options off the link command prevents the application
from linking properly because certain symbols (functions, data) can’t be found.

 So, did it work? The hellodynamic binary is now only 2504 bytes. That’s a great
improvement. Figure 13.5 shows a listing of the two Hello Android files for a

Figure 13.4 Android
libraries pulled to the
development machine

366 CHAPTER 13 Building Android applications in C
remarkable comparison. Each program is run: first the static version, then the
dynamic version.

 This looks great, except for one little problem. Note the last line in figure 13.5,
which says, “Killed.” Is there a problem with our dynamic version? Let’s look closer.

Table 13.1 Linker options

Linker option Description

-entry=main Indicates the entry point for the application, in this
case, the function named main.

-dynamic-linker /system/bin/linker Tells the application where the dynamic linker appli-
cation may be found at runtime. The /system/bin/
linker path is found on the Android Emulator, not the
development environment.

-nostdlib Tells the linker to not include standard C libraries
when attempting to resolve code during the link
process.

-rpath /system/lib Tells the executable where libraries can be found at
runtime. This works in a manner similar to the envi-
ronment variable LD_LIBRARY_PATH.

-rpath-link /android/system/lib Tells the linker where libraries can be found when
linking. For Linux, add a dot to the beginning of the
line, as in ./android/system/lib.

-L /android/system/lib Tells the linker where libraries can be found. This is
the linker import directory.

-l android_runtime Tells the linker that this application requires routines
found in the library file libandroid_runtime.so.

-l c Tells the linker that this application requires routines
found in the library file libc.so.

-o hellodynamic Requests an output filename of hellodynamic.

hello.o Includes hello.o as an input to the link process.

Figure 13.5 Hello Android, static and dynamically linked

367Solving the problem with dynamic linking
13.2.3 exit() vs. return()

Though our application has successfully linked with the Android system libraries of
libc.so and libandroid_runtime.so and can actually run, there are missing pieces that
cause the application to not properly execute. When you build an application in this
manner, without letting the linker do all its magic of knitting the entire application
together, you have to do a bit of housekeeping yourself. Looks like there was some-
thing to that 500 KB application after all!

 For one thing, if our application’s entry point is the main function, and the main
function executes a return() statement, just where does it return to? Let’s replace the
return() statement with an exit() call, as shown in this listing.

#include <stdio.h>
int main(int argc,char * argv[])
{
 printf("Hello, Android!\n");
 exit(0);
 //return 0;
}

We add a call to the function exit(). This should return execution to the OS. And we
comment out the call to return(). A return() call in this location causes a stack
underflow because there’s nowhere within this application to return to!

 This fixed the problem—no more killed messages. Look at figure 13.6, where you
see that the dynamic version of Hello Android now runs just fine.

 Unfortunately, you’re not finished. It turns out that the application doesn’t prop-
erly interact with other libraries, nor does it properly handle the argc and argv[]
arguments to the main function. The C library (remember, you’re linking against
libc.so) has certain expectations for application structure and stack location. You’re
closer but still not quite ready for prime time.

 What this application requires is a start routine, which is called by the operating
system when the application is invoked. This function in turn calls the application’s
main function. This start routine must set up the necessary structures to allow the
application to properly interact with the operating system and the core C libraries.

Listing 13.5 Adding an exit() call

Figure 13.6 A better-
behaving dynamic
version of Hello Android

368 CHAPTER 13 Building Android applications in C
13.2.4 Startup code

We’ve surmised that the sample application is missing the proper startup code, but
just what does startup code for an Android/Linux application on ARM look like?
Where do you turn to get this kind of information? Let’s look deeper into the bag of
CodeSourcery tricks for a clue.

 A number of executable applications ship with Android, so pull one of them over
to the desktop and see what you can learn. Perhaps you can extract information from
that file that can assist in solving this puzzle.

 The tool you’re going to use to assist in this effort is the object dump command,
arm-none-linux-gnueabi-objdump. This utility has a number of options for tearing
apart an ELF (executable and linkable format) file for examination. This is the kind of file
structure used by applications in the Android/Linux environment. Using the –d
option of the objdump command results in a disassembly of the executable file, show-
ing the assembly language equivalent of the code in each executable section. Our
interest is in the first .text section of the disassembly, as this ought to be the entry
point of the application. The following listing shows the .text section from the ping
program taken from the Android Emulator (via adb pull).

000096d0 <dlopen-0x60>:
 96d0: e1a0000d mov r0, sp
 96d4: e3a01000 mov r1, #0; 0x0
 96d8: e28f2004 add r2, pc, #4; 0x4
 96dc: e28f3004 add r3, pc, #4; 0x43
 96e0: eaffff8b b 9514 <dlopen-0x21c>
 96e4: ea000e03 b cef8 <dlclose+0x37bc>
 96e8: 0000e408 andeq lr, r0, r8, lsl #8
 96ec: 0000e410 andeq lr, r0, r0, lsl r4
 96f0: 0000e418 andeq lr, r0, r8, lsl r4
 96f4: 0000e420 andeq lr, r0, r0, lsr #8
 96f8: e1a00000 nop (mov r0,r0)
 96fc: e1a00000 nop (mov r0,r0)

The first instruction assigns the value of the stack pointer (sp) to register 0 (r0) B.
Next the literal value of 0 is assigned to register r1 C. The address counter plus four
memory location spaces is stored in registers r2 and r3 D. The b instruction tells the
code to branch to a specific address E. In this case, the address is 0x21c bytes prior to
the address of the dlopen function. This value is 9514 in decimal. The next branch is
to an address that’s 0x37bc bytes beyond the dlclose label F. The next few instruc-
tions G are conditional operations. The code snippet finishes up with a pair of nop
instructions H. Note that the address of each instruction is shown to the left of each
line. Each instruction occurs at a 4-byte offset from its predecessor. Four bytes times 6
bits per byte equals a 32-bit address bus, which makes sense because the ARM proces-
sor family is 32 bit.

Listing 13.6 Disassembly of ping

Stack pointerB
mov instructionC

add instructionD

Branch instructionE

Branch instructionF

Conditional expressionsG

nop instructionsH

369Solving the problem with dynamic linking
 Okay, so that looks different from the rest of the code in this chapter—and just
what does it do? Unfortunately, other than some basic interpretation of the op codes
used, there’s little to tell you why those instructions are there. After doing research on
the internet, we found a better example of this code, shown in this listing.

 .text
 .global _start
 _start:
 mov r0, sp
 mov r1, #0
 add r2, pc,
 add r3, pc,
 b __libc_init
 b main
 .word __preinit_array_start
 .word __init_array_start
 .word __fini_array_start
 .word __ctors_start
 .word 0
 .word 0
 .section .preinit_array
 __preinit_array_start:
 .word 0xffffffff
 .word 0x00000000
 .section .init_array
 __init_array_start:
 .word 0xffffffff
 .word 0x00000000
 .section .fini_array
 __fini_array_start:
 .word 0xffffffff
 .word 0x00000000
 .section .ctors
 __ctors_start:
 .word 0xffffffff
 .word 0x00000000

The .text directive indicates that this code should be placed in the .text section of
the resulting executable B. The global start directive C makes the start routine vis-
ible to the rest of the application and the linker. The start: label D indicates the first
location of the start routine. The mov and add instructions perform some housekeep-
ing E with the stack pointer, sp, just as seen in the extracted code from the ping pro-
gram. Initialization takes place via a branch instruction to call the __libc_init
routine F. This routine is found in the library libc.so. When this routine is complete,
execution returns to the next instruction, another branch of the main routine G.
This is the main routine implemented by our C application. The next instructions H
set up a jump table to the sections required by a C language executable application. A
pair of nop instructions round out the table. The sections preinit_array,
init_array, fini_array, and .ctors are defined I. Note that it appears that these

Listing 13.7 crt.S

.text directiveB
global directiveC

start labelD
Set up
stack pointer

E

Branch to
initialization

F
Branch
to main

G

Jump tableH

Required
sectionsI

370 CHAPTER 13 Building Android applications in C
sections are required and that the values provided are an allowable address range for
these sections. The linker takes care of putting these sections into the resulting exe-
cutable file. Attempting to run the application without these sections results in code
that crashes.

NOTE All credit for this crt.S file belongs to the author of a blog found at
http://honeypod.blogspot.com/2007/12/initialize-libc-for-android.html.
You can find additional reference material for low-level Android program-
ming information at http://benno.id.au.

Now that we’ve found an adequate startup routine, we’ll show you how to add this rou-
tine to your application. The compiler handles the assembly file just like a C language
file:

arm-none-linux-gnueabi-gcc -c -o crt0.o crt.S

The resulting object file, crt0.o, is passed to the linker as an input file, just as any other
object file would be. Also, the entry switch to the linker must now specify _start
rather than main:

arm-none-linux-gnueabi-ld --entry=_start --dynamic-linker /system/bin/linker
-nostdlib -rpath /android/system/lib -rpath-link /android/system/lib -L
\android\system\lib -l c -l android_runtime -l sqlite -o hellodynamic
hello.o crt0.o

At this point, you should feel confident that you can build applications for Android/
Linux, so it’s time to build something useful. The next section walks through the con-
struction of a DayTime Server.

13.3 What time is it? The DayTime Server
Although we don’t talk about it much today, Linux systems (and more generically,
Unix systems) have a service running that provides the server’s current date and time.
This application, known as a DayTime Server, typically runs as a daemon (which
means it runs in the background and isn’t connected to a particular shell). For our
purposes, we’ll implement a basic DayTime Server for Android/Linux, but we won’t
worry about turning it into a background service.

 This application helps exercise our interest in developing Android/Linux applica-
tions. First and most important, it’s an application of some significance beyond a sim-
ple printf statement. Second, once this application is built, you’ll write an Android/
Java application to interact with the DayTime Server.

13.3.1 DayTime Server application

Our DayTime Server application has a basic function: the application listens on a TCP
port for incoming socket connections. When a connection is made, the application
writes a short textual string representation of the date and time via the socket, closes
the socket, and returns to listening for a new connection.

http://honeypod.blogspot.com/2007/12/initialize-libc-for-android.html

371What time is it? The DayTime Server
 In addition to the TCP socket interactions, our application logs requests to a SQLite
database. Why? Because we can! The purpose of this application is to demonstrate
nontrivial activities in the Android/Linux environment, including the use of the
SQLite system library. Let’s get started by examining the DayTime Server application.

13.3.2 daytime.c

The DayTime Server application can be broken into two basic functional parts. The
first is the TCP socket server.

 Our DayTime Server application binds to TCP port 1024 when looking for new
connections. Ordinarily, a daytime service binds to TCP port 13, but Linux has a secu-
rity feature where only trusted users can bind to any port below 1023. The second fea-
ture is the insertion of data into a SQLite database. The following listing shows the
code for the DayTime Server application.

#include <time.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <resolv.h>
#include "sqlite3.h"
int PORTNUMBER = 1024;
#define htons(a)
(((a & 0x00ff) << 8) | ((a & 0xff00) >> 8))
void RecordHit(char * when)
{
 int rc;
 sqlite3

*db;
 char *zErrMsg = 0;
 char sql[200];
 rc = sqlite3_open("daytime_db.db",&db);
 if(rc)
 {
 printf("Can't open database: %s\n", sqlite3_errmsg(db));
 sqlite3_close(db);
 return;
 }
 bzero(sql,sizeof(sql));
 sprintf(sql,"insert into hits values (DATETIME('NOW'),'%s');",when);
 rc = sqlite3_exec(db, sql, NULL, 0, &zErrMsg);
 if(rc!=SQLITE_OK)
 {
 printf("SQL error: %s\n", zErrMsg);
 }
 sqlite3_close(db);
}

Listing 13.8 daytime.c

B
Import
required
headers

Listening
port number

C

Define
helpful macroD

E
Interact

with SQLite

372 CHAPTER 13 Building Android applications in C
int main(int argc, char **argv)
{
int listenfd, connfd;
struct sockaddr_in servaddr;
char buf[100];
time_t ticks;
int done = 0;
int rc;
fd_set readset;
int result;
struct timeval tv;
 printf("Daytime Server\n");
 listenfd = socket(AF_INET,SOCK_STREAM,0);
 bzero(&servaddr,sizeof(servaddr));
 servaddr.sin_family = AF_INET;
 servaddr.sin_addr.s_addr = INADDR_ANY;
 servaddr.sin_port = htons(PORTNUMBER);
 rc = bind(listenfd, (struct sockaddr *) &servaddr,sizeof(servaddr));
 if (rc != 0)
 {
 printf("after bind,rc = [%d]\n",rc);
 return rc;
 }
 listen(listenfd,5);
 while (!done)
 {
 printf("Waiting for connection\n");
 while (1)
 {
 bzero(&tv,sizeof(tv));
 tv.tv_sec = 2;
 FD_ZERO(&readset);
 FD_SET(listenfd, &readset);
 result = select(listenfd + 1, &readset, &readset, NULL, &tv);
 if (result >= 1)
 {
 printf("Incoming connection!\n");
 break;
 }
 else if (result == 0)
 {
 printf("Timeout.\n");
 continue;
 }
 else
 {
 printf("Error, leave.\n");
 return result;
 }
 }
 printf("Calling accept:\n");
 connfd = accept(listenfd,
 (struct sockaddr *) NULL, NULL);
 printf("Connecting\n");
 ticks = time(NULL);

Set up and
listen on socket F

Accept socket
connection

G

373What time is it? The DayTime Server
 sprintf(buf,"%.24s",ctime(&ticks));
 printf("sending [%s]\n",buf);
 write(connfd,buf,strlen(buf));
 close(connfd);
 RecordHit(buf);
 }
 return 0;
}

As with many C language applications, a number of headers B are required, includ-
ing definitions and prototypes for time functions, SQLite functions, and TCP sockets.
Note that the sqlite3.h header file isn’t provided in the CodeSourcery tool chain. This
file was acquired from a sqlite3 distribution, and the file was copied into the local
directory along with daytime.c. This is why the include file is delimited with quotation
marks rather than <>, which is used for finding include files in the system or compiler
path. The htons function is typically implemented in the library named socket (lib-
socket.so). Android doesn’t provide this library, nor was this found in any of the sys-
tem libraries. Therefore htons is defined here as a macro D. This macro is required
to get the network byte ordering correct. When the application is running, we can ver-
ify this port by running netstat –tcp on the command line in the adb shell.

 The standard TCP port for a DayTime Server is port 13. In C, the application is
using port 1024 because our application can’t bind to any port numbered 1023 or
below. Only system processes may bind to ports below 1024.

 In the RecordHit() function, you see SQLite interaction E. The RecordHit()
function is responsible for inserting a record into the SQLite database created for this
application.

 Jumping into the main function, you see the socket functions in use to listen on a
socket for incoming connections F. When a connection is accepted G, the current
system time is sent to the calling client. After this, the application makes a record of
the transaction by calling the RecordHit() function H.

 That’s all the code necessary to implement our Android/Linux DayTime Server
application. Let’s look next at the SQLite 3 database interaction in more detail.

13.3.3 The SQLite database

This application employs a simple database structure created with the SQLite 3 appli-
cation. We interact with SQLite 3 from the adb shell environment, as shown in fig-
ure 13.7.

 The purpose of this database is to record data each time the DayTime Server pro-
cesses an incoming request. From a data perspective, this sample is boring, as it simply
records the system time along with the text returned to the client (this text is a ctime-
formatted time string). Though somewhat redundant from a data perspective, the
purpose is to demonstrate the use of SQLite from our C application, utilizing the
Android/Linux resident sqlite3 library, libsqlite.so.

Record
activity

H

374 CHAPTER 13 Building Android applications in C
The previous section of code outlined the syntax for inserting a row into the database;
this section shows how to interact with the database using the SQLite 3 tool. The
sequence shown in figure 13.7 is broken out and explained in the following listing.

pwd
pwd
/data/ch13
sqlite3 daytime_db.db
sqlite3 daytime_db.db
SQLite version 3.5.0
Enter ".help" for instructions
sqlite> .databases
.databases
seq name file
--- --------------- ---
0 main /data/ch13/daytime_db.db
sqlite> .tables
.tables
hits
sqlite> .schema hits
.schema hits
CREATE TABLE hits (hittime date,hittext text);
sqlite> .header on
.header on

Listing 13.9 Interacting with a SQLite database

Figure 13.7 Interact with SQLite 3 from the command line in the adb shell.

Connect to
database file

B

C
Examine

database structure

Create statementD

375What time is it? The DayTime Server
sqlite> .mode column
.mode column
sqlite> select * from hits;
select * from hits;
hittime hittext
------------------- ------------------------
2008-07-29 07:31:35 Tue Jul 29 07:31:35 2008
2008-07-29 07:56:27 Tue Jul 29 07:56:27 2008
2008-07-29 07:56:28 Tue Jul 29 07:56:28 2008
2008-07-29 07:56:29 Tue Jul 29 07:56:28 2008
2008-07-29 07:56:30 Tue Jul 29 07:56:30 2008
sqlite> .exit
.exit
#

The SQLite database operates in a similar fashion to other, modern SQL-based envi-
ronments. In listing 13.9, you see the output from an interactive session where the
database for this chapter’s sample application is opened B. A series of commands
given at the sqlite> prompt C display the contents of the database in terms of struc-
ture. The schema command dumps the DDL (Data Definition Language) for a particu-
lar table. In this case, you see the CREATE TABLE instructions for the hits table D.
Viewing the data is simple with the use of the familiar select statement E.

 To run the sample code yourself, you’ll want to execute the following command
sequence from an adb shell:

cd /data/ch13
sqlite3 daytime_db.db
create table hits (hittime date,hittext text);
.exit

The SQLite database engine is known for its simplicity. This section displayed a simple
interaction and just how easy it is to employ. In addition, the SQLite 3 database may be
pulled from the Android Emulator and used on the development machine, as shown
in figure 13.8.

Select rowsE

Figure 13.8 The SQLite database on the development machine

376 CHAPTER 13 Building Android applications in C
 This feature makes Android a compelling platform for mobile data collection
applications because syncing data can be as simple as copying a database file that’s
compatible across multiple platforms.

13.3.4 Building and running the DayTime Server

To build this application, we need to combine the components of the previous few
sections. We know that the application requires a startup component and must also
link against multiple libraries. Because the application interacts with the SQLite data-
base, we must link against the sqlite library in addition to the c and android_runtime
libraries. The full build script is shown in the next listing.

arm-none-linux-gnueabi-gcc -c daytime.c
arm-none-linux-gnueabi-gcc -c -o crt0.o crt.S
arm-none-linux-gnueabi-ld --entry=_start --dynamic-linker /system/bin/linker

-nostdlib -rpath /system/lib -rpath-link \android\system\lib -L
\android\system\lib -l c -l android_runtime -l sqlite -o daytime
daytime.o crt0.o

C:\software\google\<path to android sdk>\tools\adb
 push daytime /data/ch13
g:\tools\adb shell "chmod 777 /data/ch13/daytime"

The build script begins by compiling the main source file, daytime.c. The next line
compiles the crt.S file, which we introduced in listing 13.7 for our C runtime initializa-
tion. The linker command contains a number of switches to create the desired appli-
cation. Note the parameter to the linker to include the sqlite library. Note also the
inclusion of both daytime.o and crt0.o object files as inputs to the linker. Both are
required to properly construct the DayTime Server application. The input files are
found in local (to the development machine) copies of the libraries. And adb is
employed to push the executable file to the Android Emulator and to modify the per-
missions, saving a manual step.

 Running the DayTime Server application is the easy and fun part of this exercise.
Here’s a rundown of the sequence shown in figure 13.9:

1 Start the shell by running adb shell.
2 Change directories to /data/ch13, where the application resides, previously

pushed there with an adb push command.
3 Run the ./daytime application.
4 The application binds to a port and begins listening for an incoming

connection.
5 A timeout occurs prior to a connection being made. The application displays

the timeout and returns to look for connections again.
6 A connection is detected and subsequently accepted.

Listing 13.10 Daytime application build script

377What time is it? The DayTime Server
7 The time string is constructed and sent to the client.
8 A record is inserted into the database with the shown sql statement.
9 You kill the application and restart the shell. Note that this is because you didn’t

build a clean way of killing the DayTime Server. A proper version of the applica-
tion would be to convert it to a daemon, which is beyond the scope of our dis-
cussion here.

10 Run sqlite3 to examine the contents of the application’s database.
11 Perform a select against the hits table, where you see the recently inserted

record.

You’ve built an Android/Linux application that implements a variant of the traditional
DayTime Server application as well as interacts with a SQL database. Not too shabby
when you consider that this is a telephone platform! Let’s move on to examine the
Android/Java application used to exercise the DayTime Server, our Daytime Client.

Figure 13.9 DayTime Server running in the shell

378 CHAPTER 13 Building Android applications in C
13.4 Daytime Client
One of the stated objectives for this chapter is to connect the Java UI to our DayTime
Server application. This section demonstrates the construction of a Daytime Client
application, which communicates with our DayTime Server via TCP sockets.

13.4.1 Activity

The Daytime Client application has a single
Activity, which presents a single Button and a
TextView, as shown in figure 13.10.

 When a user clicks the Button, the Activity
initiates the DayTime Server query and replaces
the text of the TextView with the information
received from the DayTime Server. There’s not
much to it, but that’s fine, as all we’re after in this
sample is to demonstrate connectivity between
the two applications. The following listing shows
the onCreate() method for this Activity.

 Handler h;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 final TextView statuslabel = (TextView)

findViewById(R.id.statuslabel);
 h = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case 0:
 Log.d("CH13","data [" + (String) msg.obj + "]");
 statuslabel.setText((String) msg.obj);
 break;
 }
 super.handleMessage(msg);
 }
 };
 Button test = (Button) findViewById(R.id.testit);
 test.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 try {
 Requester r = new Requester();
 r.start();
 } catch (Exception e) {
 Log.d("CH13 exception caught : ",e.getMessage());
 }
 }
 });
 }

Listing 13.11 UI elements of DaytimeClient.java

BDeclare,
implement

Handler

Implement
click listener

C

Create
Requester instanceD

Figure 13.10 The Daytime Client app

379Daytime Client
This application is all about detecting the selection of a button C and initiating an
action based on that click. The action is the creation of an instance of the Requester
class D, which we discuss in the next section. We handle the response from the socket
server with the assistance of a Handler B. The Handler has a single role: updating the
UI with textual data stored in the obj member of a Message object.

 Although the UI of this application is simple, the more interesting side of this
Activity is the interaction with the DayTime Server, which takes place in the
Requester class, which we’ll look at next.

13.4.2 Socket client

The DayTime Server application listens on a TCP port for incoming connections. To
request the date and time, the Daytime Client must establish a client socket connec-
tion to the DayTime Server. It’s hard to imagine a simpler TCP service than this—open
a socket to the server, and read data until the socket connection is closed. There’s no
additional requirement. Most of the networking examples in this book have focused
on a higher-level protocol, HTTP, where the request and response are clearly defined
with headers and a specific protocol to observe. In this example, the communications
involve a lower-level socket connection, essentially raw, if you will, because there’s no
protocol associated with it beyond being a TCP stream (as opposed to UDP). The fol-
lowing listing demonstrates this lower-level socket communication.

 public class Requester extends Thread {
 Socket requestSocket;
 String message;
 StringBuilder returnStringBuffer = new StringBuilder();
 Message lmsg;
 int ch;
 public void run() {
 try {
 requestSocket = new Socket("localhost", 1024);
 InputStreamReader isr = new

InputStreamReader(requestSocket.getInputStream(),
"ISO-8859-1");
 while ((ch = isr.read()) != -1) {
 returnStringBuffer.append((char) ch);
 }
 message = returnStringBuffer.toString();
 lmsg = new Message();
 lmsg.obj = (Object) message;
 lmsg.what = 0;
 h.sendMessage(lmsg);
 requestSocket.close();
 } catch (Exception ee) {
 Log.d("CH13","failed to read data" + ee.getMessage());
 }
 }
 }

Listing 13.12 Requester class implementation

Extend
Thread classB

CCommunicate
on Socket

Create
Message object

D

Send Message
to main thread

E

380 CHAPTER 13 Building Android applications in C
The Requestor B class extends the Thread class by implementing the run() method.
Communications take place via an instance of the Socket class C, which is found in
the java.net package. Note the port number being used—1024, just like our socket
server! A Message D is used to communicate back to the UI thread. Once the Message
object is initialized, it’s sent back to the calling thread E.

 With the Daytime Client now coded, it’s time to test the application. In order for
the Daytime Client to access a TCP socket, a special permission entry is required in the
AndroidManifest.xml file: <uses-permission android:name="android.permis-

sion. INTERNET"></uses-permission>.

13.4.3 Testing the Daytime Client

The first step in testing the Daytime Client is to ensure that the DayTime Server appli-
cation is running, as described in section 13.3.4. Once you know the DayTime Server
is running, you can run the Daytime Client.

NOTE If you’re unclear on how to build and run the Daytime Client, refer to
chapter 2 for information on properly setting up the Android development
environment in Eclipse.

Figure 13.11 demonstrates the Daytime Client running, alongside a view of the Day-
Time Server. Note how the TextView of the Android application is updated to reflect
the date and time sent by the DayTime Server.

 The DayTime Server is exercising both TCP socket functionality and SQLite data-
base record insertions, all running in the Android Emulator. A production-ready
Android/Linux application would need to be converted to run as a daemon, which is
beyond our aim for this chapter.

13.5 Summary
This chapter hopefully stretched your imagination for the kinds of applications possi-
ble with the versatile and open platform of Android. We had the goal of writing an
application outside the Android SDK and demonstrating how that kind of application
may be leveraged by a standard Android Java application. To write for the Android/
Linux layer, we turned to the C programming language.

 Developing C language applications for Android/Linux is a cross-platform compi-
lation exercise using the freely available CodeSourcery tool chain. This chapter dem-
onstrated using that toolset in conjunction with the adb utility provided in the
Android SDK. The adb utility enabled you to push the application to the Android
Emulator for testing, as well as extract the Android system libraries essential for link-
ing the application with the Android resident libraries. You used the adb shell to inter-
act directly with the Android Emulator to run the C application.

 Our sample application exercised TCP socket communications. The TCP capability
proved to be a ready interface mechanism between the Android/Java layer and the
Android/Linux foundation of the environment in the Daytime Client and server

381Summary
applications, respectively. TCP socket communications may also take place from the
Android/Linux environment to external, remote systems such as email servers or
directory servers, opening up a world of possibilities.

 The DayTime Server sample application also demonstrated the use of an Android
resident library to manipulate a SQLite database used to store transaction data. The
impact of this step shouldn’t be minimized, as it satisfies three important develop-
ment challenges. The first and most basic accomplishment of this functionality is that
we’ve demonstrated linking against, and employing, an Android resident system
library. This is significant because it shows how future applications may leverage
Android functionality such as Open GL or media services. Second, using a device-resi-
dent database that’s also accessible from the Java layer means you have an additional
(and persistent) interface mechanism between the Java and Linux environments on
the platform. Third, Android is a mobile platform. Anytime there’s a mobile applica-
tion, the topic of sharing and syncing data bubbles up. We demonstrated in this chap-
ter the ease with which an SQL-capable database was shared between the Android
Emulator and a personal computer—and all without complex synchronization pro-
gramming. Synchronization is a broad topic, but the capability of moving a single file

Figure 13.11 Testing the Daytime Client

382 CHAPTER 13 Building Android applications in C
between platforms is a welcome feature. There are only a few comparable solutions in
the marketplace for other mobile environments, and that’s after years of market pene-
tration by these other platforms. Android gets it right from the start.

 This chapter took a bit of a detour from the regular Android SDK programming
environment. It’s time to return to the SDK; in the next chapter, you’ll learn about
Bluetooth and sensors.

Part 4

The maturing platform

In part 3, you learned about two extremes of the Android platform. Chapter
12 provided the full end-to-end SDK application experience, and chapter 13
went to the other extreme of exploring application techniques that might best
fit a custom piece of hardware running the Android operating system. The
objective of part 4 is to explore some of the features added to the Android plat-
form that take it a step beyond the other platforms to provide a unique and
memorable mobile experience.

 In chapter 14, we get close to the metal by interrogating onboard sensors and
communicating over Bluetooth. The sensors act as inputs for a navigation system
to control a LEGO Mindstorms robot.

 In chapter 15, we build a sophisticated integration between the Android
contact database and business social networking sensation, LinkedIn. The appli-
cation constructed in chapter 15 has become a popular download on the
Android market. Read along and learn how to get up close and personal with
your contacts.

 In chapter 16, the topic of Android web development is explored. Topics
such as building websites for the WebKit-powered Android browser and custom
JavaScript handlers are introduced. In addition, local SQL-based storage con-
cepts are examined, enabling next-generation web applications directly on your
mobile device.

 Chapter 17 presents a nontrivial example of the AppWidget, tying together
other key concepts such as services, alarms, and BroadcastReceivers. There’s
something for everyone in chapter 17 as we construct a website monitoring tool

that provides near-real-time status information directly to the home page of your
Android device.

 Chapter 18 circles back to the application constructed in chapter 12, but with a
twist. The code in chapter 18 demonstrates the localization of an existing application
as the field service application presented in chapter 12 is modified to support multi-
ple languages. The application now supports English and Spanish, depending on the
locale of the device.

 Chapter 19 looks at the Native Development Kit (NDK). The NDK permits Android
developers to incorporate C language source code into SDK applications. Chapter 19
demonstrates the NDK in the context of an image-processing application that allows
the user to capture images with the built-in camera and then perform an edge detec-
tion algorithm against the image. It’s loads of fun, and you’ll learn about the Java
Native Interface as well as how to integrate the NDK build process directly into Eclipse.

 Chapter 20 covers an application component called Fragment, introduced in
Android 3.0, that lets you modularize an application and its user interface (into frag-
ments). Think of fragments as mini-Activitys: reusable and independent, but related
mini portions of the application and screen that can be drawn independently of each
other, each receiving its own events and having its own state, application lifecycle, and
back stack. Although fragments were introduced in Android 3.0 for tablets, you can
use them for the phone as well.

 Chapter 21 covers the use of the action bar, introduced in Android 3.0, which is
located at the top of the screen and replaces the traditional (pre–Android 3.0)
application title. The action bar offers application control by providing navigation
options, widgets, and other contextual information, using a consistent approach
across applications.

 Chapter 22 covers the new drag-and-drop capabilities that are now available in
Android 3.0 applications. Drag-and-drop is a natural addition to touch-based user
interfaces and tablets, and it uses the clipboard classes to store the data to be trans-
ferred between views.

Bluetooth and sensors
The majority of the material presented in this book is concerned with employing
various capabilities of the Android SDK. At this point, however, you’re going to see
how to take advantage of an Android device’s hardware. Specifically, we’ll look at
connecting an Android device to remote devices via a Bluetooth wireless connec-
tion, as well as reading and interpreting values from a hardware-based orientation
sensor. This chapter combines these two hardware-related topics in a sample pro-
gram that exercises control over a robot constructed from the popular LEGO Mind-
storms NXT. The Mindstorms NXT robot supports a communications protocol
known as Direct Commands,1 allowing it to be controlled by a remote device. This
is the one chapter of the book where you’ll want to have access to a physical
Android device with version 2 or later of the operating system—the simulator alone
isn’t adequate for exercising the Bluetooth and sensor functionality.

This chapter covers
 Connecting to a Bluetooth peripheral

 Interacting with the SensorManager

 Building and running the SenseBot application

1 To learn more about Direct Commands for the LEGO Mindstorm, start here: http://mindstorms.
lego.com/en-us/support/files/default.aspx.
385

http://mindstorms.lego.com/en-us/support/files/default.aspx
http://mindstorms.lego.com/en-us/support/files/default.aspx

386 CHAPTER 14 Bluetooth and sensors
 The code accompanying this chapter is organized into an Android application
named SenseBot. SenseBot is a moderately complex example of using Android to
manipulate an external object. Android’s orientation sensor permits the user to
“drive” the robot by simply holding the phone in a particular direction, not unlike a
Nintendo Wii or other advanced gaming system. Tilt the phone forward, and the
robot drives forward. Tilt it backward, and the robot reverses direction. Tilting to the
left or right causes the robot to spin in the respective direction. With each interpreted
sensor motion, the SenseBot application uses Bluetooth to send commands to the
robot, causing the appropriate physical behavior. The LEGO NXT comes equipped
with a built-in command set that permits low-level operations such as direct motor
control. The motions of the Android device are interpreted, converted to commands,
and transmitted via Bluetooth to the robot.

 In addition to basic Bluetooth communications and sensor management, the code
demonstrates the use of a dynamically created BroadcastReceiver employed to handle
Bluetooth-related connection events.

 The topic of Bluetooth communications is much broader and deeper than we can
hope to cover in a single chapter. Likewise, there are at least half a dozen hardware
sensors available on the Android platform, yet this chapter demonstrates the use of
only one. If you’re looking for textbook-like coverage of these two topics, we encour-
age you to look at the online documentation or perhaps another text on the subject.
The aim of this chapter is to explore Bluetooth and sensor functionality on the
Android platform in the context of a functional (and fun) application. If you take the
time to follow along and build this application and have access to a LEGO Mindstorms
NXT robot, I promise that you’ll get hooked on “driving” your robot with your phone.
Also, a version of the application is available for download from the Android market.

14.1 Exploring Android’s Bluetooth capabilities
The first thing that comes to mind with the term Bluetooth is wireless headsets. Also
known as a hands-free, in many parts of the world these wireless wonders are required
by law for operating your telephone while driving a vehicle. In actuality, the hands-
free device is only one of many uses for the versatile Bluetooth technology.

 Bluetooth is a wireless communications protocol similar to WiFi but constrained to
usage scenarios for short-range applications reaching a range of approximately 10
meters. In addition to providing functionality as a hands-free microphone and
speaker for your cell phone, Bluetooth also enables peer-to-peer network access,
object exchange, cable replacement, and advanced audio/media capabilities.

 Like any other protocol standard, Bluetooth has its own “stack” of layers, each of
which implements distinct capabilities and features of the protocol. This chapter
doesn’t spend time dissecting these layers, as the Bluetooth stack is well covered in
other places. Rather, this chapter demonstrates the approach for establishing a data

387Exploring Android’s Bluetooth capabilities
connection between two peers. The specific Bluetooth “profile” employed here is the
RFCOMM2 cable replacement profile.

 In this section you’ll learn how to establish a connection between Android and
your remote device via the android.bluetooth package. Given how the Android plat-
form permits only encrypted connections, your two communicating devices must first
be paired or bonded, which will subsequently allow you to connect without a further
confirmation or security prompt. Then, in order to know that you’ve connected to a
Bluetooth device, you must register for two events: ACTION_ACL_CONNECTED and
ACTION_ACL_DISCONNECTED. And finally, your Android application will need to have
BLUETOOTH permission as defined in the AndroidManifest.xml file. Let’s get started.

14.1.1 Replacing cables

Today, connecting to the internet to exchange emails or browse the web is an everyday
experience for most Android users. With your phone, you can connect to computers
on the other side of the planet and beyond, but how can you communicate with some-
thing in the same room? In the not-so-distant past, we programmed interfaces
between computers and peripherals across a serial cable, often described as an RS232
interface. In a few short years, the RS232 serial cable has become a museum piece, hav-
ing been replaced by the more capable USB and with the Bluetooth Serial Port Profile.

 In the same way that USB can be used for many different applications, the Blue-
tooth wireless protocol also may be deployed in a variety of manners. The Bluetooth
capability of interest to us is the cable replacement functionality of the Serial Port Pro-
file (SPP), which is sometimes referred to as RFCOMM. The RF stands for radio fre-
quency, aka “wireless.” The COMM stands for communications port, harkening back to
its roots as a point-to-point connection-based streaming protocol.

14.1.2 Primary and secondary roles and sockets

The Bluetooth protocol works in a fashion similar to other communications environ-
ments where there’s a primary (or master) device that initiates communications with
one or more secondary (or slave) devices. Android is versatile in that it may be either
a primary or a secondary device in a Bluetooth connection.

 Regardless of how a connection is established—as a primary or a secondary Blue-
tooth device—an Android application exchanges data through a socket interface. That’s
right; the familiar networking paradigm of a socket and its associated input stream
and output stream is employed for Bluetooth connectivity as well. So once you get past
the scaffolding of connecting two Bluetooth devices together in a communications
session, you can be less concerned with the underlying details and can simply view the
remote device as an application on the other side of a socket. This is much like the
relationship between a web browser and a remote server that exchange data over a
TCP socket.

2 To learn more about RFCOMM, look at www.bluetooth.com.

http://www.bluetooth.com

388 CHAPTER 14 Bluetooth and sensors
 To access the Bluetooth environment on an Android device, you need to dig into
the android.bluetooth package, which first appeared in Android version 2.0.
Though most Android devices prior to version 2 were capable of Bluetooth hands-free
operation, it wasn’t until version 2 that Android applications could leverage the
underlying Bluetooth hardware as discussed in this chapter. Table 14.1 shows the
major Java classes used by Bluetooth-enabled Android applications.

This chapter demonstrates the use of the BluetoothAdapter, the BluetoothDevice
class, and the BluetoothSocket. The next section shows how an Android device goes
about connecting to another Bluetooth-enabled device.

NOTE For the examples in this chapter, the Android device acts as the pri-
mary device, and a LEGO Mindstorms NXT controller acts as a secondary Blu-
etooth device.

14.1.3 Trusting a device

Although the broader Bluetooth specification allows for both encrypted and unen-
crypted communications between peer devices, the Android platform permits only
encrypted connections. In essence, this means that the two communicating devices
must first be paired, or bonded. This is the somewhat annoying step of telling each
device that the other is trusted. Despite the annoyance factor and the fact that virtu-
ally every Bluetooth device on the planet uses its default security pin code of 0000 or
1234, the security aspects of Bluetooth do have their value—sort of.

Table 14.1 Bluetooth classes

Class Comment

BluetoothAdapter This class represents the local Android device’s Bluetooth hardware
and interface constructs. Everything begins with the
BluetoothAdapter.

BluetoothClass The BluetoothClass provides a convenient means of accessing
constant values related to Bluetooth communications and operations.

BluetoothDevice Any remote device is represented as a BluetoothDevice.

BluetoothSocket The BluetoothSocket is used for exchanging data. On a more
practical note, a primary device initiates a socket connection with a
secondary device by first creating a BluetoothSocket. The exam-
ple code in this chapter demonstrates this technique.

BluetoothServerSocket A Bluetooth secondary device listens for a primary device to connect
through a BluetoothServerSocket in much the same way that a
web server awaits a TCP socket connection from a browser. Once con-
nected, a BluetoothSocket is established for the ongoing commu-
nication.

389Exploring Android’s Bluetooth capabilities
 Devices are paired either through the settings
screens of the various peers or on demand the first
time a connection is requested. This section walks
through the steps of pairing an Android device3 with a
LEGO robot controller module.

 Figure 14.1 shows a portion of the Bluetooth set-
tings screen from my Nexus One device running
Android 2.2.

 From this screen you can see that the following are
true:

 Bluetooth is enabled.
 This device name is Nexus One.
 This device isn’t currently discoverable. This

means that other Bluetooth devices won’t see
this phone during a scan. Practically speaking,
this means that the phone ignores discovery
packets that it detects. There’s a button used to
initiate a manual scan for nearby Bluetooth
devices.

 You can initiate a scan for nearby Bluetooth
devices by pressing the Scan for Devices button.

 There are three devices that this phone has pre-
viously paired with but aren’t currently con-
nected:
• NXT—the LEGO robot.
• Two instances of a Samsung hands-free

device. This isn’t a mistake—there are two
distinct devices paired with this phone. (This
author “solved” his problem of frequently
lost hands-free devices by buying a handful of
them via eBay, hence the multiple device
pairings!)

A long click on one of the entries in the Bluetooth
devices list presents options for further operations,
with the specific choices depending on the device. For
example, selecting one of the Samsung entries pres-
ents the options shown in figure 14.2.

3 Join the Talk Android forums to learn more about the types of Android hardware: www.talkandroid.com/
android-forums/android-hardware/.

Figure 14.1 Bluetooth settings
screen

Figure 14.2 Options for a
paired device

http://www.talkandroid.com/android-forums/android-hardware/
http://www.talkandroid.com/android-forums/android-hardware/

390 CHAPTER 14 Bluetooth and sensors
In order to pair with a device, you need to first scan for it. Once it’s been added to the
list, you can select it to initiate the pairing. Figure 14.3 shows the LEGO robot control-
ler prompting for a PIN after a pairing request.

 This PIN value will then be compared to what the user enters on the phone, as
shown in figure 14.4.

 At this point, your phone and the LEGO robot controller are paired. Moving for-
ward, you’ll be able to connect to this device without a further confirmation or secu-
rity prompt.

14.1.4 Connecting to a remote device

Connecting to a paired, or bonded, device involves a two-step process:

1 Get a list of paired devices from the Bluetooth hardware/software stack.
2 Initiate an RFCOMM connection to the target device. The following listing dem-

onstrates a basic approach to establishing an RFCOMM, or Serial Port Profile
connection, between paired devices.

public void findRobot(View v)
{
 try
 {
 btInterface = BluetoothAdapter.getDefaultAdapter();
 pairedDevices = btInterface.getBondedDevices();
 Iterator<BluetoothDevice> it = pairedDevices.iterator();
 while (it.hasNext())
 {

Listing 14.1 Initiating a connection to a BluetoothDevice

Figure 14.4 Pairing with the LEGO robotFigure 14.3 LEGO controller prompts for a PIN

BGet adapter

Get list of
devices

C

Enumerate
listD

391Exploring Android’s Bluetooth capabilities
 BluetoothDevice bd = it.next();
 if (bd.getName().equalsIgnoreCase(ROBOTNAME)) {
 connectToRobot(bd);
 return;
 }
 }
 }
 catch (Exception e)
 {
 Log.e(tag,"Failed in findRobot() " + e.getMessage());
 }
}
private void connectToRobot(BluetoothDevice bd)
{
 try
 {
 socket = bd.createRfcommSocketToServiceRecord
(UUID.fromString("00001101-0000-1000-8000-00805F9B34FB"));
 socket.connect();
 }
 catch (Exception e)
 {
 Log.e(tag,"Error interacting with remote device [" + e.getMessage() +

"]");
 }
}

All Bluetooth4 activities begin with the BluetoothAdapter B. With a reference to the
adapter, we can obtain a list of already-paired devices C. We look through this list D
for a specific device name E that corresponds to the name of our robot. This name
may be hard-coded, as is done in this sample application; entered by the user at run-
time; or even selected from a more sophisticated “choose” dialog. One way or another,
the aim is to identify which BluetoothDevice you need and then initiate a connection,
as done here with a call to the function named connectToRobot() F. It’s a good prac-
tice to catch exceptions G, particularly when dealing with remote physical devices
that may not be in range or may have powered down. To connect to the remote device
across the Serial Port Profile, use the createRfComSocketToServiceRecord() method
of the BluetoothDevice class. The UUID string shown in the code is the identifier for
the Serial Port Profile H. Once we have a BluetoothSocket available, we call the
connect() method I.

 At this point you’ve found the device of interest and attempted a connection
request. Did it work? How do you know? You could make an assumption about the
connection status and wait for an error to tell you otherwise. Perhaps that isn’t the
best approach. There must be a better way—and there is, but it involves working with
Intents.

4 See the Google documentation for more details about Bluetooth and Android: http://developer.
android.com/guide/topics/wireless/bluetooth.html.

Evaluate
device name

E

Connect to robotF

Handle
connection
related
exceptions

G

Connect to robotF

Get Socket
interfaceH

Initiate connectionI

http://developer.android.com/guide/topics/wireless/bluetooth.html
http://developer.android.com/guide/topics/wireless/bluetooth.html

392 CHAPTER 14 Bluetooth and sensors
14.1.5 Capturing Bluetooth events

To verify that you’ve successfully connected to a BluetoothDevice, you must register
for a couple of Bluetooth-related events: ACTION_ACL_CONNECTED and
ACTION_ACL_DISCONNECTED. When these events occur, you know that you have a good
connection, or you’ve lost a connection, respectively. So, how can you use these events
in conjunction with your previously created socket? The following listing demon-
strates a technique for creating a BroadcastReceiver directly in the Activity and reg-
istering for the events of interest.

private BroadcastReceiver btMonitor = null;

private void setupBTMonitor() {
 btMonitor = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context,Intent intent) {
 if (intent.getAction().equals(
"android.bluetooth.device.action.ACL_CONNECTED")) {
 handleConnected();
 }
 if (intent.getAction().equals(
"android.bluetooth.device.action.ACL_DISCONNECTED")) {
 handleDisconnected();
 }

 }
 };
}

To monitor for specific broadcasted events, you need to employ a BroadcastReceiver.
Ordinarily you’d do this with a separate class, but this application requires a more
tightly integrated UI, so we take an alternative approach. Typically, BroadcastReceivers
are defined in the AndroidManifest.xml file, but in this case we only want notification
under a specific set of circumstances. This code defines an Activity-scoped Broadcas-
tReceiver named btMonitor B. In the onCreate() method, the setupBTMonitor()
method C is invoked to create the BroadcastReceiver D along with the implementa-
tion of the onReceive method E. Whenever a broadcasted Intent is available for this
BroadcastReceiver, the onReceive() method is invoked. In this implementation,
we’re concerned with the connect and disconnect of a Bluetooth peer. When the
devices are connected, the handleConnected() method F is invoked. Similarly, when
the remove device disconnects, the handleDisconnected() method G is called to
perform the appropriate housekeeping operations.

 With the device now connected, you need to perform some housekeeping to han-
dle things such as setting up the socket’s input and output streams. The next listing
shows an abbreviated version of the handleConnected() method showing the Blue-
tooth relevant portions.

Listing 14.2 Monitoring the Bluetooth connection

BroadcastReceiver variableB
SetupBTMonitor methodC

Create BroadcastReceiverD

E
onReceive

method
Connection
establishedF

Connection lostG

393Interacting with the SensorManager
private void handleConnected() {
 try {
 is =

socket.getInputStream();
 os = socket.getOutputStream();
 bConnected = true;
 btnConnect.setVisibility(View.GONE);
 btnDisconnect.setVisibility(View.VISIBLE);
 } catch (Exception e) {
 is = null;
 os = null;
 disconnectFromRobot(null);
 }
}

When the handleConnected() method is invoked, a valid Bluetooth socket connection
has been established, so we need to set up the input and output streams B. With these
streams established, data communications between the Android device and the LEGO
robot may now begin. As you’ll see later in this chapter, we only want to process sensor
events if we’re connected to a robot, so we set a flag C letting the application know the
status of the connection. We swap the visibility of a pair of Buttons D—one is used for
connecting to the robot and the other for disconnecting. In the event that an error
occurs during this step, we want to clean up by closing down the streams E and initi-
ating a disconnect request F.

 The code for disconnecting a socket is simply this:

socket.close();

To perform most Bluetooth operations with Android, there’s one important item that
must be established: permissions!

14.1.6 Bluetooth permissions

Working with a paired device peer isn’t the only place where permissions come into
play. In order to exercise the Bluetooth APIs, an Android application must have the
BLUETOOTH permission defined in the AndroidManifest.xml file:

<uses-permission android:name="android.permission.BLUETOOTH"></uses-
permission>

The balance of the Bluetooth communications code is presented in the third section
of this chapter, where we discuss in more depth the code that comprises the SenseBot
application. Before jumping into the fun of coding and running the robot applica-
tion, let’s look at the SensorManager and show how you can put Android’s sensors to
work for you to drive a robot.

14.2 Interacting with the SensorManager
Android exposes the physical hardware sensors via a class known as the Sensor-
Manager. The SensorManager class is similar to the BluetoothAdapter class in that all

Listing 14.3 The handleConnected() method

Set up IO streamsB

Set flagC
Swap
Button visibility

D

Handle exceptionE

Close connection
on errorF

394 CHAPTER 14 Bluetooth and sensors
related activities rely on having a reference to SensorManager. The SensorManager
class is part of the android.hardware package. In this section, you’ll learn how to read
values from the orientation sensor, which you must learn to do before you build the
SenseBot application.

 Table 14.2 lists the major classes associated with the SensorManager.

Working with the SensorManager class is simple. The first requirement is to obtain a
reference:

SensorManager sManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

Once you’ve obtained a valid reference, you can use this variable throughout the
application to interact with the sensors themselves. For example, the SenseBot appli-
cation utilizes the orientation sensor. To get a reference to this sensor, call the get-
DefaultSensor() method of SensorManager:

Sensor orientationSensor =
sManager.getDefaultSensor(Sensor.TYPE_ORIENTATION);

We only use the orientation sensor in this chapter, but Android offers many more sen-
sors. Let’s look at the available sensor types as of Android 2.2.

14.2.1 Types of sensors

Android supports the sensor types listed in table 14.3.

Table 14.2 Sensor-related classes

Class Comment

SensorManager Primary interface to the various sensors present in the hardware

Sensor Represents a particular sensor

SensorEvent Represents the readings from a sensor

SensorEventListener Receives SensorEvents in near real time

Table 14.3 Android’s common sensors

Sensor.TYPE_ACCELEROMETER Measures acceleration in three dimensions

Sensor.TYPE_GYROSCOPE Gyroscope

Sensor.TYPE_LIGHT Ambient light sensor

Sensor.TYPE_MAGNETIC_FIELD Measures magnetic field compass

Sensor.TYPE_ORIENTATION Measures orientation in three dimensions

Sensor.TYPE_PRESSURE Measures pressure

Sensor.TYPE_PROXIMITY Measures distance the phone is away from another object,
such as your ear

Sensor.TYPE_TEMPERATURE Measures ambient temperature

395Interacting with the SensorManager
Each sensor instance can provide a handful of useful and interesting attributes,
including

 Name of sensor
 Power consumption in mA
 Resolution
 Maximum range
 Vendor
 Version

The orientation sensor on a Nexus One shows the following characteristics:

 Name: AK8973 Orientation Sensor
 Power draw: 7.0 mA
 Resolution 1.0 degree
 Max range 360 degrees

Now that you have a feel for how to gain access to a sensor through SensorManager,
let’s explore reading values from a sensor.

14.2.2 Reading sensor values

You read a value from a sensor by implementing the SensorEventListener interface.
SensorEvent instances are sent to a method named onSensorChanged(). The Sensor-
Event class contains four fields, as you can see in table 14.4.

The SensorEventListener receives these events each time the corresponding sensor
values change. The following listing shows a slimmed-down version of the onSensor-
Changed() method for the SenseBot application.

public void onSensorChanged(SensorEvent event) {
 try {

 if (bConnected == false) return;

Table 14.4 SensorEvent’s fields

Field Comment

accuracy This integer field represents the sensor’s view of the accuracy of this reading.

Sensor This is a reference to the sensor that created this SensorEvent.

timestamp This is a nanosecond-based timestamp representing when the event occurred. This
field can be helpful when you’re correlating multiple events.

values[3] The values from the sensor are provided as an array of floats with three values. The
units and precision of the values vary by sensor.

Listing 14.4 Slimmed-down version of onSensorChanged

SensorEvent
parameterB

Check connected flagC

396 CHAPTER 14 Bluetooth and sensors
 StringBuilder sb = new StringBuilder();
 sb.append("[" + event.values[0] + "]");
 sb.append("[" + event.values[1] + "]");
 sb.append("[" + event.values[2] + "]");

 readings.setText(sb.toString());

 // process this sensor data
 // updateMotors();
 } catch (Exception e) {
 Log.e(tag,"onSensorChanged Error::" + e.getMessage());
 }
 }

Each time a SensorEvent B is available, it’s passed to the onSensorChanged()
method. The first thing the code does is a safety check to make sure we have a good
connection to the robot C. If there’s no connection, we ignore the data. Each of the
three values is extracted and formatted D for display in a simple TextView widget E.
The values are interpreted F and the appropriate instructions are passed to control
the robot’s motors G. The logic for the interpretation and interaction with the
robot’s hardware is provided later in this chapter.

 An application must register its SensorEventListener in order to receive these
notifications. There’s a prescribed manner in performing this registration process,
which is up next.

14.2.3 Enabling and disabling sensors

The SensorEventListener interface receives messages only when it’s registered. Sen-
sorManager provides two bookend-type functions that permit an application to regis-
ter for a particular sensor’s events. In the context of the SenseBot application, you’re
only interested in receiving orientation sensor events when the Android device is con-
nected to the robot via Bluetooth. As such, you’ll implement the registration code
inside the previously introduced handleConnected method. The following listing
shows the new code to be added to the handleConnected() method.

sManager.registerListener(SenseBot.this,
 sManager.getDefaultSensor(
 Sensor.TYPE_ORIENTATION),
 SensorManager.SENSOR_DELAY_UI);

The registerListener method of the SensorManager takes three arguments in order
to marshal sensor data to an application. The first argument is to an implementation
instance of SensorEventListener, which is in this case our class itself, SenseBot.this
B. The second argument is an instance of the sensor of interest. Here we’re interested
in tracking values for the orientation sensor C. The rate at which the sensor data is
updated is variable and is specified by the programmer as the third parameter. In this
case, we use the value SensorManager.SENSOR_DELAY_UI D, which is a good general-
purpose value. Use faster values for games or other real-time–oriented applications.

Listing 14.5 Sensor registration code

Build visual
representation

D

Display valuesE
Interpret valuesF

Move robot
accordinglyG

Provide SensorEventListenerB

Specify which SensorC
Sensor update frequencyD

397Building the SenseBot application
 If you recall, the orientation sensor has a draw of 7 mA. To conserve power and
battery life, you should be mindful to turn off the sensor when it’s not required. In the
SenseBot application, there are two places where this takes place. The first is in the
handleDisconnected() method—when you lose connection to the robot, you needn’t
take any further readings from the sensor. The more generic place to add this “unreg-
ister” functionality is in the onStop() Activity lifecycle method.

 Regardless of where the code is called, a SensorEventListener is unregistered
with a simple call to the unregisterListener() method of SensorManager:

sManager.unregisterListener(SenseBot.this);

Note that this call unregisters all sensors for this SensorEventListener in the event
that your application registered more than one sensor type.

 At this point you know how to both connect to the robot and read values from the
orientation sensor. It’s time to put all this knowledge together and build the SenseBot
application!

14.3 Building the SenseBot application
The SenseBot application has a simple premise—you want to drive a LEGO Mind-
storms NXT5 robot by changing the orientation of the Android phone. There are no
attached wires—all the communication is done via Bluetooth, and the orientation of
the phone alone should dictate how the robot moves. Furthermore, though the
LEGO robot is programmable, you utilize only the built-in capabilities of the robot to
manipulate individual motors. The benefit of this approach is that this program will
work on virtually any LEGO robot built, regardless of the skill of the robot program-
mer. The only requirements of the robot are that the motors be connected to output
ports B and C, which is the common manner of constructing LEGO NXT robots. Fig-
ure 14.5 shows the robot with a simple two-
motor design.

 The robot can move forward and backward,
spin to the left, and spin to the right. To drive
the robot, you tilt the phone forward or back-
ward, turn it on its side to the left, and turn it
on its side to the right, respectively.

 Although the robot is controlled entirely by
the motion of the phone, you still have to cre-
ate a useful and intuitive UI. In fact, the UI has
a nontrivial role in the development of this
application.

5 If you have a future engineer or scientist in the making, check out First LEGO League: www.first-
legoleague.org/.

Figure 14.5 Simple LEGO NXT robot with
motors connected to B and C ports

http://www.firstlegoleague.org/
http://www.firstlegoleague.org/

398 CHAPTER 14 Bluetooth and sensors
14.3.1 User interface

The UI for this application is simple but must be also intuitive for the user. You want to
show the user what’s happening to provide positive feedback on how to use the appli-
cation. Additionally, you’re dealing with a mechanical robot that may not function
properly at all times. The robot may perform an unexpected action—therefore it’s
desirable that you have the ability to compare the robot’s movement to the visual indi-
cators you provide to the user. To that end, you need to indicate to the user the state
of the motors at all times while the Android device is connected to the robot. Figure
14.6 shows the default user interface prior to connecting to a robot.

 Clicking the Connect button initiates the connection sequence with a call to the
findRobot() method shown earlier in section 14.1.4. Once connected to the robot,
you need to hide the Connect button and provide a means of disconnecting from the
robot by displaying a Disconnect button. In addition, you want to indicate the state of
the motors and display the sensor readings. Figure 14.7 shows the application after it
has connected and with the motors in the stopped condition.

NOTE The motor indicators on the screen are the values specified by the
application and correlate to motor control instructions sent to the robot.
They aren’t measured values read from the robot.

Figure 14.6 Waiting to
connect to a robot

Figure 14.7 Connected to the
robot with the motors stopped

399Building the SenseBot application
If the robot’s motors are moving while the screen indicates that they’re both stopped,
there’s a problem either with the command sent by the robot or with the robot itself.
Figure 14.8 is a screenshot taken from the application when guiding the robot to
move backward.

 Figure 14.9 shows the application instructing the robot to spin to the left. To
accomplish this, we’ve the left motor turning backward and the right motor turning
forward.

Finally, when the application disconnects from the robot (when you either click the Dis-
connect button or power off the robot), the application detects the Disconnected con-
dition and calls handleDisconnect(), and the UI is updated, as shown in figure 14.10.

Figure 14.8 Both motors are
moving backward.

Figure 14.9 Spinning to the left

Figure 14.10 Disconnected state, waiting
for a new connection

400 CHAPTER 14 Bluetooth and sensors
 The UI is generated by a pair of View widgets and three drawables:6 stop, up (for-
ward), and down (backward). Based on the values read from the sensors, the respec-
tive View widgets have their background changed appropriately.

 This application is so dependent on the orientation of the phone for the control of
the robot that you can’t allow the phone’s orientation to change back and forth
between portrait and landscape, as it’ll both restart the Activity, which could wreak
some havoc, as well as change the orientation of the sensors. To meet this objective, an
attribute was added to the activity tag in the AndroidManifest.xml file:

android:screenOrientation=landscape

Once this orientation is set up, there’s no worry of the orientation changing to por-
trait while driving the robot. You’ll find holding the phone in landscape is comfort-
able when you’re “driving.”

 By carefully coordinating the UI with the physical motors, you have a ready feed-
back mechanism to both make you a better robot driver and help troubleshoot any
anomalies during the development phase of this engineering project

 The communications are established and the orientation sensor is producing val-
ues; it’s now time to examine the interpretation of the sensor values.

14.3.2 Interpreting sensor values

To control the robot with the orientation of the phone, a neutral zone should be
established with a center represented by the position of the phone when being held
comfortably in a landscape orientation, slightly tilted back and up. Once this center is
defined, a comfortable spacing or sensitivity is added in both of the x and y dimen-
sions. As long as the phone’s orientation in these dimensions doesn’t exceed the sensi-
tivity value, the motors remain in neutral and not powered. Variables named xCenter,
yCenter, and xSensitivity and ySensitivity govern this neutral box.

 Look at the onSensorChanged() method: this is where you receive the Sensor-
Event providing the values of each dimension x, y, and z. The following listing shows
the complete implementation of this method, including the sensor evaluation and
movement suggestions.

public void onSensorChanged(SensorEvent event) {
 try {
 if (bConnected == false) return;
 StringBuilder sb = new StringBuilder();
 sb.append("[" + event.values[0] + "]");
 sb.append("[" + event.values[1] + "]");
 sb.append("[" + event.values[2] + "]");

 readings.setText(sb.toString());

6 Download a drawables application that lists all resources in android.R.drawable for the current Android
device: www.appbrain.com/app/android-drawables/aws.apps.androidDrawables.

Listing 14.6 The onSensorChanged() method, which interprets orientation

http://www.appbrain.com/app/android-drawables/aws.apps.androidDrawables

401Building the SenseBot application
 // process this sensor data
 movementMask = MOTOR_B_STOP + MOTOR_C_STOP;

 if (event.values[2] < (yCenter - ySensitivity)) {
 movementMask = MOTOR_B_FORWARD + MOTOR_C_FORWARD;
 motorPower = 75;

 } else if (event.values[2] > (yCenter + ySensitivity)) {
 movementMask = MOTOR_B_BACKWARD + MOTOR_C_BACKWARD;
 motorPower = 75;

 } else if (event.values[1] >(xCenter + xSensitivity)) {
 movementMask = MOTOR_B_BACKWARD + MOTOR_C_FORWARD;
 motorPower = 50;

 } else if (event.values[1] < (xCenter - xSensitivity)) {
 movementMask = MOTOR_B_FORWARD + MOTOR_C_BACKWARD;
 motorPower = 50;

 }
 updateMotors();
 } catch (Exception e) {
 Log.e(tag,"onSensorChanged Error::" + e.getMessage());
 }
 }

When interpreting the values for the motors, we default to having both motors
stopped B. Note that the B and C motors are managed separately. We check whether
the y sensor value is outside the y quiet zone C. If the sensed value is beyond the
“tilted forward” boundary, we move the robot forward. Likewise, if the sensed value is
further back than the resting position, we move the robot backward by marking both
motors to be turned backward. If the robot hasn’t been determined to be going either
forward or backward, we check for the lateral options of left and right D. If the robot
is moving forward or backward, the speed is set to 75% E. If the robot is to be spin-
ning, its power is set to 50% F. The final step is to translate these movement masks
into real actions by modifying the condition of the motors G and to update the UI to
reflect these commands.

 Once the onSensorChanged() method has completed processing the SensorEvent
data, it’s time to drive the robot’s motors and update the user interface.

14.3.3 Driving the robot

Driving the robot is as simple—and as complex—as turning the motors on with a
series of commands. The command protocol itself is shown in the next section; for
now let’s focus on the updateMotors() method to see how both the UI and the motor
positions are modified. The following listing displays the updateMotors() method.

private void updateMotors() {
 try {
 if ((movementMask & MOTOR_B_FORWARD) == MOTOR_B_FORWARD) {
 motorB.setBackgroundResource(R.drawable.uparrow);

Listing 14.7 The updateMotors() method

Default to
stopped motors

B

C
Check
forward/
back

Set motor speed fastE

Set motor speed fastE

D
Check
left/
right

Set motor speed slowF

Set motor speed slowF

Update
motor valuesG

BCheck motor
bitmask

C Update
graphic
images

402 CHAPTER 14 Bluetooth and sensors
 MoveMotor(MOTOR_B,motorPower);

 } else if ((movementMask & MOTOR_B_BACKWARD) == MOTOR_B_BACKWARD) {
 motorB.setBackgroundResource(R.drawable.downarrow);
 MoveMotor(MOTOR_B,-motorPower);

 } else {
 motorB.setBackgroundResource(R.drawable.stop);
 MoveMotor(MOTOR_B,0);
 }

 if ((movementMask & MOTOR_C_FORWARD) == MOTOR_C_FORWARD) {
 motorC.setBackgroundResource(R.drawable.uparrow);
 MoveMotor(MOTOR_C,motorPower);

 } else if ((movementMask & MOTOR_C_BACKWARD) == MOTOR_C_BACKWARD) {
 motorC.setBackgroundResource(R.drawable.downarrow);
 MoveMotor(MOTOR_C,-motorPower);

 } else {
 motorC.setBackgroundResource(R.drawable.stop);
 MoveMotor(MOTOR_C,0);
 }

 } catch (Exception e) {
 Log.e(tag,"updateMotors error::" + e.getMessage());
 }
}

The updateMotors() method compares the requested movement as defined in the
movementMask variable with each of the motors individually B. When a match is
found— for example, when the MOTOR_B_FORWARD bit is set—the particular motor is
enabled in the specified direction and speed D. A negative direction means backward,
and the power value is scaled between 0 and 100. Additionally, the UI is updated C in
conjunction with the motors themselves, thereby giving the user as accurate a picture
as possible of their performance as a driver.

14.3.4 Communication with the robot

The communications protocol for interacting with the LEGO NXT robot is a struc-
tured command with optional response protocol. Each packet of data is wrapped in
an envelope describing its size. Within the envelope, each direct command has a stan-
dard header followed by its own specific parameters. For this application you need but
a single command—to set the output state of the motor. The code that builds and
sends these packets is shown in the next listing.

private void MoveMotor(int motor,int speed)
{
 try
 {
 byte[] buffer = new byte[14];

Listing 14.8 The MoveMotor() method

Send command to motorD

B
Check
motor

bitmask

Send command to motorD

CUpdate graphic images

Send command to motorD

Send command to motorD

Declare bufferB

403Summary
 buffer[0] = (byte) (14-2); //length lsb
 buffer[1] = 0; // length msb
 buffer[2] = 0; // direct command (with response)
 buffer[3] = 0x04; // set output state
 buffer[4] = (byte) motor; // output 0,1,2 (motors A,B,C)
 buffer[5] = (byte) speed; // power
 buffer[6] = 1 + 2; // motor on + brake between PWM
 buffer[7] = 0; // regulation
 buffer[8] = 0; // turn rotation
 buffer[9] = 0x20; // run state
 buffer[10] = 0; // four bytes of position data.
 buffer[11] = 0; // leave zero
 buffer[12] = 0;
 buffer[13] = 0;

 os.write(buffer);
 os.flush();
 byte response [] = ReadResponse(4);
 }
 catch (Exception e)
 {
 Log.e(tag,"Error in MoveForward(" + e.getMessage() + ")");
 }
}

This code performs the simple yet precise operation of formatting a command, which
is sent to the LEGO robot to provide direct control over the motors. A buffer of the
appropriate size is declared B. The size for this buffer is dictated by the SetOutput-
State command, which is one of many commands supported by the robot. Each of
the various data elements are carefully provided C in their respective locations. Once
the command buffer is formatted, it’s written and flushed to the socket D. The
response code is consumed for good measure by the ReadResponse() method. As you
can see, aside from the specific formatting related to controlling the robot, sending
and receiving data with Bluetooth is as simple as reading or writing from a byte-ori-
ented stream.

 At this point, the sensors are working and the Android device and LEGO robot are
communicating. In time, with practice you’ll be an expert Android LEGO pilot. The
full source code for this application is available for download.

14.4 Summary
This chapter introduced two hardware-oriented features of the Android platform:
Bluetooth and sensors. From these seemingly unrelated areas of functionality grew a
fun application to operate a LEGO Mindstorms NXT robot. We demonstrated the
essential steps required to connect an Android device to a remote Bluetooth-enabled
peer via the use of the RFCOMM cable replacement protocol. This communications
channel is used to exchange a command set known as the Direct Command protocol
provided by the LEGO NXT controller. Through this command set, you can manipu-
late the robot’s motors to drive the robot. To make the user experience as intuitive as
possible, use the orientation sensor built into most Android hardware to sense

Format
buffered
command

C

Write commandD

404 CHAPTER 14 Bluetooth and sensors
motions made by the user. The position of the device is interpreted and a correspond-
ing set of commands is given to navigate the robot. Not only do the sensors provide a
functional means for driving the robot, it’s quite fun!

 In addition to these core Bluetooth communications and sensor interactions, this
chapter also demonstrated techniques for providing intuitive user feedback during
the operation of the application. For example, as the motors are engaged, the user
visually sees the direction each motor is being driven. Likewise, the user’s driving
motions are only processed when an active Bluetooth connection is detected. Because
this is an event-driven scenario, the application demonstrates listening for these
events through the use of a dynamically registered BroadcastReceiver with appropri-
ate IntentFilters.

 Hopefully you’ve enjoyed learning about Bluetooth and sensors in this chapter,
and perhaps you even have access to a LEGO Mindstorm robot to take for a spin!

 In the next chapter, you’ll learn about another means of connecting your Android
device to the outside world—this time working with the integration capabilities of the
platform to sync data with the popular business networking site LinkedIn.

Integration
No phone is an island. A mobile smartphone’s primary purpose is to connect with
others, whether through voice calls, email, text messaging, or some other way of
reaching out. But phones have historically acted like islands when it came to stor-
ing information. You might painstakingly save phone numbers for years on your
device, only to lose everything and start all over again when you switched phones.

 Android leads the charge in breaking away from the old device-centric way of
storing contacts and related data. Like all of Google’s services, Android looks to the
cloud as a vast storage location for all your data. Integration allows your phone to
stay in sync with what you care about, so you don’t need to manually copy doctors’
appointments and important emails from multiple computers to your phone.

 For the most part, Android users can feel happily oblivious to much of this;
everything “just works.” As a developer, you may want to take advantage of Android’s
integration features and add new conveniences for your users. This chapter shows
exactly how Android handles personal data such as contacts, how accounts work,

This chapter covers
 Manipulating and extending Android contacts

 Managing multiple accounts

 Synchronizing data to a remote server
405

406 CHAPTER 15 Integration
what synchronization does, and what hooks you can play with. Along the way, we’ll
build a real-world example: a plug-in that allows people to automatically sync their
Android contacts with connections they’ve made on LinkedIn. LinkedIn is the social
network most closely associated with business users, who use it to maintain their pro-
fessional contacts. Synchronizing with this account will allow users to connect with
their LinkedIn colleagues, making their information available anytime and anywhere.

15.1 Understanding the Android contact model
Contacts have long been the single most important feature on a mobile phone. After
all, a phone exists to call people, and you don’t want to memorize the 10-digit phone
number for every person you might call.

 If you’ve owned mobile phones for a long time, you’ve probably noticed a gradual
increase in the functionality of mobile contact applications. In the early days, people
could only enter a name and a single phone number, similar to a speed-dial on a land-
line phone. Modern phones allow you to enter multiple numbers for each contact, as
well as email addresses, photos, birthdays, and more. Not only does this provide
greater convenience to consumers, who now can turn to a single source for all related
information about a person; it also opens up many new opportunities for application
developers, who can take advantage of the wealth of information on a phone to make
their apps more useful and relevant.

 Android has always offered access to a user’s contacts, but its contact model has
changed through different versions. The model is now extremely robust and flexible,
offering great features for querying and updating contact information.

15.1.1 Choosing open-ended records

Imagine that you just got a new phone and started
entering contacts. You entered three names and phone
numbers. The final result would look something like
figure 15.1. From a user’s perspective, you have all that
you need. But how is this data being stored?

 In older phones, the underlying contact model
might result in something similar to figure 15.2. This
fixed-length record would dedicate a predetermined num-
ber of bytes to each contact. Such an approach had
hard limits: for example, you might only be allowed 10
digits per phone number, 12 characters per name, and
500 records per device. This led to both undesirable
truncation and wasted space.

 In addition to the problem of truncation, you can
see that this style of contact storage doesn’t allow the
user to add new types of data. Figure 15.2 shows that
there’s no space between Chris and Frank to insert a

Figure 15.1 Making entries in
the native Contacts application

407Understanding the Android contact model
mailing address or job title. Fortunately, Android uses a database to store its contact
data, so the storage looks more like figure 15.3. Each contact is a collection of related
data, and each piece of data can be as short
or as long as it needs to be. Contacts can
omit the data that they don’t require. These
are called open-ended records: records can be
freely extended to include previously
unknown pieces of data.

 You can see exactly how the data is
stored by querying the contacts database.
See chapter 5 if you need a review of using
the sqlite3 tool, with which we’ll query the
tables that were created when adding the
initial three contacts. In figure 15.4, we con-
nect to the sqlite database stored at /data/
data/com.android.providers.contacts/data-
bases/contacts2.db. Querying the data table
returns the individual pieces of contact
information on the device. The contacts
table includes individual contact entities.
Joining these two tables results in the infor-
mation visible in the Contacts application.

C H R I S K I N G 4 1 5 5 5 5 1 2 3 4

R O B I S E N 5 1 8 5 5 5 5 5 5 5

F R A N K A B E L S O 9 7 3 5 5 5 9 8 7 6 Figure 15.2
Fixed-length
storage records

Contacts

<Chris> <Frank> <Robb>

Chris King 415-555-1234 Frank Abelson 973-555-9878 Robi Sen 518-555-5555

Figure 15.3
Open-ended
storage records

Why bother with
fixed-length records?
Given these limitations, you might
wonder why anyone would’ve
adopted fixed-length records in the
first place. They do have the
advantage of being fast. Because
each record is the same length,
the phone can immediately jump to
the exact location in memory
where, say, the forty-second record
starts, without needing to search
for it.

When phones had extremely lim-
ited processors and slow flash
memory, this design allowed for a
much speedier experience. Now
that phones have gotten faster, OS
designers can afford to be more
flexible.

408 CHAPTER 15 Integration
Android’s contacts are highly extensible because they’re stored as records in a data-
base. Third-party applications can choose to define and add their own enhanced data
fields. For example, a business application may include employee ID numbers, and a
gaming application may use online handles. Other phone platforms require develop-
ers to maintain parallel data stores to add this kind of data, but Android allows you to
insert directly into the main contacts database. This leads to much better consistency,
and your enhanced information will automatically be updated when the user renames
or deletes a contact.

15.1.2 Dealing with multiple accounts

Most Android phones require users to activate the device and associate it with a
Google account. Upon activation, all of the user’s existing Gmail contacts will be avail-
able on the phone. This is convenient for people who keep all their information on
Gmail, but not terribly useful for people who have multiple accounts or don’t want to
use Gmail at all.

 The early versions of Android were hampered by this problem, but fortunately, the
new Android contact model offers a richer set of features that includes support for
multiple accounts. Users still must generally tie the phone to a Google account, but
they may also connect with a Microsoft Exchange1 account for business contacts and
email, with Facebook for friends’ statuses, and possibly other private accounts as well.

 Using multiple accounts offers great convenience but also greater complications.
Consider the following issues:

 Differing data—Each account will support disparate types of data. For example,
Facebook may offer an Instant Messaging screen name, whereas Exchange may
provide a contact’s supervisor.

1 For information on Microsoft Exchange Server development technologies, go to www.outlookcode.com/
archive0/d/exstech.htm.

Figure 15.4 Querying the contacts database

http://www.outlookcode.com/archive0/d/exstech.htm
http://www.outlookcode.com/archive0/d/exstech.htm

409Understanding the Android contact model
 Different formats—Even if the same type of data is supported by multiple
accounts, it may display differently. For example, one account may return a
phone number as (415) 555-1234, whereas another returns it as 4155551234.

 Consolidation—Having multiple accounts isn’t very convenient if you need to
search through three versions of each contact to find the one with the informa-
tion you need. Instead, you want to have a single contact that includes data
from all your accounts.

 Linkage—On a related note, the phone needs some way to determine when two
different accounts are referring to the same entity. If one refers to “James
Madison” and the other to “Jim Madison,” a human could guess that they refer
to the same contact, but software requires some more information to determine
how they link together.

 Ownership—Some contacts may only appear on one account, whereas others
may be listed in several. When you change a contact, you want to be sure they’re
updated appropriately.

Android resolves these issues gracefully. Each account stores its data in separate rows
in the contacts database. The raw_contacts table contains all the contacts that have
been received from all of the user’s accounts, including potentially duplicate contacts.
Table 15.1 shows a hypothetical view of a device’s contacts.

NOTE As you’ve seen, the actual contacts data fields will reside in the data
table. The raw_contacts table allows you to associate the various rows in the
data table with their corresponding accounts.

Splitting out the accounts’ views like this gives Android a great deal of flexibility.
Whenever a piece of data is updated, it knows where that data originally came from. It
can store data in the format most appropriate to the original account. And, because
each account gets its own set of rows, no account can mess up the data that originally
came from another account. This type of loose coupling extends a familiar Android
philosophy to the world of contacts and provides the same sorts of benefits that you’ve
seen elsewhere: more extensibility, stability, and transparency, at the cost of greater
complication.

Table 15.1 Raw contacts including duplicates from multiple accounts

ID Name Email Phone number Status

1 James Madison jmadison@gmail.com

2 Adam Smith asmith@gmail.com

3 James Madison 2024561414 “Negotiating with the
British...”

4 Adam Smith adam.smith@example.com +442055512345

410 CHAPTER 15 Integration
15.1.3 Unifying a local view from diverse remote stores

Storing raw contact data from each account makes architectural sense, but by itself it
would lead to a horrible user experience. If you had five accounts, you might have five
separate entries for the same person, which would lead to extra complications when-
ever you wanted to call them. You want to have just one contact entry for each real
contact you have, no matter how many accounts they’re associated with. Android pro-
vides exactly this utility.

 Figure 15.5 shows how Android consolidates the information received from multi-
ple accounts. In this example, the user has two contacts
that are spread across three remote accounts. In the
first phase, contacts are retrieved from each account.
Next, Android will associate the matching accounts and
consolidate each into a single logical contact. The raw
contact data remains on the device, but the user will see
and interact with the consolidated contact.

 This process works well but isn’t perfect. Android
may require additional help to recognize that two con-
tacts refer to the same person; sometimes it may mistak-
enly combine two records when it should’ve kept them
separate. Fortunately, because Android never removes
the raw contact data, you can easily join and separate
accounts at any time, as shown in figure 15.6. This
updates the contacts table and either creates or deletes
a row there, but will leave raw_contacts untouched.

Gmail Exchange Facebook

Adam Smith
asmith@gm
ail.com

James
Madison
jmadison@
gmail.com

Adam Smith
adam smith@example.
com
+442055512345

James Madison
(202) 456-1414
1600
Pennsylvania
Avenue
Married to Dolley
Madison
“Negotiating with
the British...”

Adam Smith
asmith@gmail.com
adam smith@example.com
+442055512345

James Madison
jmadison@gmail.com
202-456-1414
“Negotiating with the
British...”

Figure 15.5 Combining
raw contact data into
unique contacts

Figure 15.6 Joining and
separating contacts

411Getting started with LinkedIn
CAUTION Android currently doesn’t offer a way to specify what name should
be used after joining two records. You may get lucky, or you may be stuck with
the wrong one.

15.1.4 Sharing the playground

With all the flexibility of Android’s new contact model comes potential for abuse. A
single consolidated database holds all contacts information on the device, and any
application can read from or write to it. Users must give apps permission before mod-
ifying the database, but within the database, there’s no notion of particular columns
or rows being “owned” by a particular app or service.

 When you write apps that use contacts data, try to be a good citizen. This includes
the following principles:

 Only read and write Android’s built-in data fields and fields that you’ve created
for your application.

 Be sure to provide unique types for new contact data that you define, such as
vnd.manning.cursor.item/birthday instead of birthday.

 Always ask users for permission before doing anything destructive to their data.
 Clearly state if and how your app uses their personal contact data.
 If you store contact data taken from the user, be certain it’s well secured. You

don’t want to be responsible for addresses falling into the hands of spammers
or identity thieves.

Not only does upholding these standards garner good karma, but it also keeps your
users happy and more likely to use your app.

15.2 Getting started with LinkedIn
You’ll build a sample app throughout the rest of this chapter that illustrates the con-
cepts and techniques we’ve covered. To learn how contacts, accounts, and synchroniz-
ers all work together, you’ll build a plug-in for LinkedIn.2

 Like most social networking sites, LinkedIn offers a developer API for building cus-
tom applications on top of its platform. To protect against abuse, LinkedIn requires
the use of a developer API key with each request; this allows the company to shut off
an app if it’s found to be misbehaving. You can get started developing with LinkedIn
by following these steps:

1 Go to http://developer.linkedin.com.
2 Follow the links to request an API key for the LinkedIn APIs.
3 Fill in your information and join the Developer Network. You’ll need to create a

LinkedIn profile if you don’t already have one.
4 Add a new application. There’s no charge, and you should automatically

receive your API keys.

2 Check out the LinkedIn blog for developers: http://blog.linkedin.com/category/linkedin-developer-
network/.

http://developer.linkedin.com
http://blog.linkedin.com/category/linkedin-developer-network/
http://blog.linkedin.com/category/linkedin-developer-network/

412 CHAPTER 15 Integration
Once you receive your API key, take a look at the documentation available at http://
developer.linkedin.com. LinkedIn also maintains a fairly active developer community
in forums hosted at the same site if you need advice or want to see what the experts
are saying.

 Create a new Eclipse project called LinkedIn. The following listing shows a simple
class called LinkedIn that holds useful constants you’ll use later.

package com.manning.unlockingandroid.linkedin;
public class LinkedIn {
 public static final String MIME_TYPE =
 "vnd.android.cursor.item/vnd.linkedin.profile";
 public static final String TYPE =
 "com.manning.unlockingandroid.linkedin";
 public static final String API_KEY = "";
 public static final String SECRET_KEY = "";
 public static final String AUTH_TOKEN = "AuthToken";
 public static final String AUTH_TOKEN_SECRET = "AuthTokenSecret";
}

The MIME_TYPE refers to the new type of data you’ll be adding to contacts. With this
information, Android will be able to distinguish between a contact’s LinkedIn data
and data received from other sources. In the next section, you’ll use this type to insert
new LinkedIn records. The other constants will be useful in later sections as you begin
to connect with the LinkedIn server.

 The LinkedIn docs describe how to use LinkedIn’s API. You can follow this to
implement your app, but you’ll be taking advantage of the linkedin-j project. Writ-
ten by Nabeel Siddiqui, it comes under a generous Apache 2 license and provides a
simple, logical wrapper around the raw API calls. Visit the project page at http://
code.google.com/p/linkedin-j. Once you’ve downloaded the JAR files, add them as
external JARs to your Java project.

 While you’re doing the initial setup, let’s define all the strings for this application
in strings.xml, based on the following listing. Most will be used by the login UI activity,
but some will be used for other user-visible data.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">LinkedInAdapter</string>
 <string name="login_activity_email_label">Email Address</string>
 <string name="login_activity_instructions">Please click the
 button below to log in to LinkedIn.</string>
 <string name="remoteLogin">Log In Online</string>
 <string name="login_activity_pin_label">PIN</string>
 <string name="login_activity_ok_button">Sign in</string>
 <string name="empty_fields_error">Please enter your email
 address and password.</string>
 <string name="start_login_error">Unable to connect to LinkedIn.

Listing 15.1 Constants for LinkedIn

Listing 15.2 Externalized strings for LinkedIn

Use your
LinkedIn API keys

http://developer.linkedin.com
http://developer.linkedin.com
http://code.google.com/p/linkedin-j
http://code.google.com/p/linkedin-j

413Managing contacts
 Please verify your network connection and try again later.</string>
 <string name="login_fail_error">Login failed.
 Please click Log In Online and get a new PIN.</string>
 <string name="working">Finishing authentication.
 Please wait...</string>
 <string name="login_label">LinkedIn Login</string>
 <string name="contact_summary">LinkedIn</string>
 <string name="auth_token_label">LinkedIn</string>
</resources>

15.3 Managing contacts
Now that you understand the purpose behind Android’s contact model, it’s time to
start interacting with it. Many applications can be improved by plugging into a user’s
contacts. The degree of integration that you need, though, will differ depending on
the type of app you’re writing. This section looks at three increasingly complex ways to
hook into the phone’s contacts.

15.3.1 Leveraging the built-in Contacts app

Why reinvent the wheel? Android’s engineers have spent the time and effort to build
an attractive and familiar Contacts app. In many cases, it’s quicker and better to just
use that app when you need a contact.

 As you’d expect, you communicate with the native Contacts app by using an
Intent. The platform will respond to an ACTION_PICK request by bringing the list of
contacts to the foreground, allowing the user to select a single contact, and then
returning that selection to your application. You specify that you want to select a con-
tact by requesting the android.provider.ContactsContract.Contacts.CONTENT_URI
data type.

NOTE The ContactsContract class and all related classes were introduced
during the overhaul of the contacts model in Android 2.0. You may occasion-
ally see legacy code that uses the android.provider.Contacts class for inter-
acting with contacts. This usage is deprecated; though it works, it won’t
properly handle information from non-Google accounts.

After the user selects a contact, the response returns to your activity’s onActivity-
Result() method. You can query this result to pull out information such as the con-
tact’s name and ID, as shown in the following listing from a class called ContactPicker.

public static final int CONTACT_SELECTED = 1;
private void selectContact() {
 Intent chooser = new Intent(Intent.ACTION_PICK,
 ContactsContract.Contacts.CONTENT_URI);
 startActivityForResult(chooser, CONTACT_SELECTED);
}
public void onActivityResult(
 int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

Listing 15.3 Selecting a contact from the native Contacts app

Define unique
ID for result

414 CHAPTER 15 Integration
 switch (requestCode) {
 case (CONTACT_SELECTED):
 if (resultCode == Activity.RESULT_OK) {
 Uri contactData = data.getData();
 Cursor c = managedQuery(contactData, null, null, null, null);
 if (c.moveToFirst()) {
 int nameIndex = c.getColumnIndexOrThrow
 (ContactsContract.Contacts.
 DISPLAY_NAME);
 String name = c.getString(nameIndex);
 Toast.makeText(this, name, 2000).show();
 }
 }
 }
}

If you inspect the data returned by this cursor,
you’ll notice that it doesn’t contain everything
that you might expect from a contact. For
example, though it includes fields for the name
and photo, it won’t include any email addresses
or phone numbers. As you saw in section 15.1.1,
the open-ended style of contact record storage
in Android requires contact data to be stored in
a separate table from the actual contacts.
Table 15.2 illustrates one hypothetical contacts table.

 When you pick a contact, you’ve found the entry in the first table; you can then use
that contact ID as a foreign key to retrieve the extended data that you want. Table 15.3
shows the corresponding detailed information from the data table.

 To retrieve the email address for a selected contact, you look up the contact’s ID,
and then use that ID in a new query against the data table. For convenience, the most
useful data types have definitions in classes within the ContactsContract.Common-
DataKinds class. For email, you can use CommonDataKinds.Email, which provides the
URI and column names. The following listing expands listing 15.3 by making a new
database query to determine whether the selected contact has an email address.

Detect
selection

Retrieve name
from result

Data ID Data type Contact ID Data value

1 4 1 415-555-1234

2 1 1 cking@example.com

3 4 2 973-555-9876

4 4 3 518-555-5555 Table 15.3 The data table holds
extended information for contacts.

Table 15.2 The contacts table holds
minimal information about each contact.

Contact ID Contact name

1 Chris King

2 Frank Ableson

3 Robi Sen

415Managing contacts
public void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 switch (requestCode) {
 case (CONTACT_SELECTED):
 if (resultCode == Activity.RESULT_OK) {
 Uri contactData = data.getData();
 Cursor c = managedQuery(contactData, null, null, null, null);
 if (c.moveToFirst()) {
 try {
 int contactID = c.getInt(c.getColumnIndexOrThrow
 (ContactsContract.Contacts._ID));
 Uri uri = ContactsContract.
 CommonDataKinds.Email.CONTENT_URI;
 String[] projection = new String[] {
 ContactsContract.CommonDataKinds.
 Email.DATA }; #B
 String selection = ContactsContract.
 CommonDataKinds.Email.CONTACT_ID +
 "=?";
 String[] selectionArgs = new String[]
 { "" + contactID };
 c.close();
 c = managedQuery(uri, projection, selection,
 selectionArgs, null);
 String message;
 if (c.moveToFirst()) {
 message = "Selected email address " + c.getString(0);
 } else {
 message = "No email address found.";
 }
 Toast.makeText(this, message, 2000).show();
 } finally {
 c.close();
 }
 }
 }
 break;
 }
}

If you run this code, you’ll see a Toast with either a selected email address or a grace-
ful error message. Please review chapter 8 if you’d like a reminder of how Toast
objects work. The data table is open-ended, so a user may have multiple email
addresses. Depending on the needs of your application, you could choose to iterate
through all of them or only pick one, as shown in this example.

 You can adopt this technique to retrieve any other data about a contact selected by
the user. Browse the classes within ContactsContract.CommonDataKinds for natively
supported fields, or use custom fields added by your own application.

Listing 15.4 Retrieving email information for a selected contact

Look up email
information

Only retrieve
email value

Limit results
to this contact

416 CHAPTER 15 Integration
15.3.2 Requesting operations from your app

Now that we’ve retrieved contact data from the native
app, let’s see how to edit that data. You’ll often want to
use the native contact app to perform edits, because
users are comfortable and familiar with this interface.

 To create a new contact, use Intent.ACTION_INSERT.
By itself this will pop open an empty contact for the
user to fill out, which isn’t terribly useful. Most often,
you’ll have some pieces of information about a new
contact and ask the user to supply the rest. For exam-
ple, your app might retrieve screen names and email
addresses from a social networking service. You could
fill out these portions of the contact ahead of time and
let the user finish adding the person’s name in the
native Contacts app. Figure 15.7 shows a prepopulated
contacts screen that was generated by an application.

 Listing 15.5 shows how to generate this sort of
screen. The fields that you can optionally prepopulate
are available as static fields in the ContactsContract
.Intents.Insert convenience class.

private void createContact() {
 Intent creator = new Intent(Intent.ACTION_INSERT,
 ContactsContract.Contacts.CONTENT_URI);
 creator.putExtra(ContactsContract.Intents.Insert.
 NAME, "Oedipa Maas");
 creator.putExtra(ContactsContract.Intents.Insert.
 EMAIL, "oedipa@waste.example.com");
 startActivity(creator);
}

Listing 15.5 Adding a contact using the native Contacts app

Storing contact identifiers
An Android contact is a transient thing. Users may join different contacts together,
split them apart, or delete them altogether. As such, you should avoid holding onto
a contact ID for a long time and using it in future queries. If you need to retain a long-
lived reference to a contact, such as a list of the user’s gaming buddies, then instead
of the contact ID you should use the lookup key, which is a column defined by
ContactsContract.Contacts.LOOKUP_KEY. The lookup key will continue to work
even if the user joins or separates the contact.

But using the lookup key is slower than the contact ID, so if speed is critical in your
application, you may want to keep both the contact ID and the lookup key, and only
use the lookup key if retrieving by ID fails.

Insert contact

Define
initial
values

Figure 15.7 Partially complete
contact requested by application

417Managing contacts
To edit a contact, request Intent.ACTION_EDIT. But unlike creating or picking a con-
tact, when editing a contact you need a reference to a specific person. You could
retrieve one by launching the picker, but that’s needlessly cumbersome. Instead,
query for a particular contact, and then use its returned ID to launch the edit activity,
as shown in the next listing.

private void editContact() {
 Cursor c = null;
 try {
 Uri uri = ContactsContract.Contacts.CONTENT_URI;
 String[] projection = new String[] { ContactsContract.Contacts._ID };
 String selection = ContactsContract.Contacts.DISPLAY_NAME + "=?";
 String[] selectionArgs = new String[] { "Oedipa Maas" };
 c = managedQuery(uri, projection, selection, selectionArgs, null);
 if (c.moveToFirst()) {
 int id = c.getInt(0);
 Uri contact = ContentUris.appendId(
 ContactsContract.Contacts.CONTENT_URI.
 buildUpon(), id).build();
 Intent editor = new Intent(Intent.ACTION_EDIT, contact);
 startActivity(editor);
 }
 } finally {
 if (c != null)
 c.close();
 }
}

NOTE You can’t insert new values into an existing contact in the same way
that you can for a new contact. Any Intent extra fields will be ignored.
Instead, use the techniques in the next section to edit the contact manually,
and then display the updated contact for the user to further edit and approve.

15.3.3 Directly reading and modifying the contacts database

In many situations, you want to take advantage of the built-in Contacts app. But other
times you should bypass it entirely and operate on the data itself. For example, your
app might perform batch operations on a large number of contacts; it would be
tedious for the user to manually approve each individual change. Contact information
is ultimately just another type of content stored on the phone, and you can use exist-
ing tools to look up and manipulate content.

 You may have noticed that no special permissions were required to insert or edit
contacts through the native application. This is because your application isn’t directly
modifying the data itself; it’s merely issuing a request. But if you want to directly mod-
ify contact data, you’ll need to secure the android.permission.WRITE_CONTACTS per-
mission in your app’s manifest.

 You can retrieve the relevant URIs through queries such as those shown in listing
15.6, or by using the convenience definitions included under the ContactsContract

Listing 15.6 Looking up a contact by name and then editing it

Build URI
to retrieved
contact

418 CHAPTER 15 Integration
class. Instead of retrieving a Cursor to enumerate results, use the ContentResolver
class to manipulate data. Listing 15.7 demonstrates how to perform a conditional
global replacement across all email addresses in the user’s contacts list. Specifically,
it’ll find all addresses that contain the word waste and replace them with a concealed
address.

private void silentEditContact() {
 ContentResolver resolver = getContentResolver();
 Uri contactUri = ContactsContract.Data.CONTENT_URI;
 ContentValues values = new ContentValues();
 values.put(ContactsContract.CommonDataKinds.
 Email.DATA, "concealed@example.com");
 String where = ContactsContract.CommonDataKinds.
 Email.DATA + " like '%waste%'";
 resolver.update(contactUri, values, where, null);
}

In this example, the Uri B operates across all information for all contacts on the
device. This is essential because we’re updating the data associated with a contact; the
ContactsContract.Contacts.CONTENT_URI only refers to basic contact information
without extended data. The ContentValues C describes the new information to place
within the contacts. By itself, this would replace the email for every contact on the
device, which would be very destructive. The selection clause limits the update so it
only applies to addresses containing this string.

CAUTION Few things will anger users quicker than wrecking their contact
data. If your app directly creates, edits, or deletes contact data, you should
clearly explain to users what it does, and test thoroughly to ensure your app
behaves itself.

This is only one example of how to directly modify contact data, but combined with
the earlier discussions in this chapter, you should now be able to change any contact
data. You only need to find where the information is stored in the data table, find or
describe the rows that need to be modified, and then use ContentResolver to insert
or update your data.

15.3.4 Adding contacts

Our LinkedIn app begins with people. In addition to standard information such as
contacts’ names, LinkedIn includes expanded details such as their educational back-
ground and work history. You’ll take advantage of Android’s open-ended contact
model to store a unique type of data, the LinkedIn headline. The headline is a brief
and punchy summary of someone’s role, such as “Code Ninja” or “Senior Director at
Stationary Networks.”

 To create a LinkedIn contact, you’ll make a new entry in the raw_contacts table,
and also create any new data fields for that contact. The following listing shows a

Listing 15.7 Updating contact information using a ContentResolver

All contact
data

B

New email
address

C

419Managing contacts

D
ow

nl
oa

d
fr

om
 w

w
w

.U
pe

Bo
ok

.C
om
utility class that accepts LinkedIn-style data and either creates a new record or updates
an existing record.

package com.manning.unlockingandroid.linkedin;
// imports omitted for brevity
public class ContactHelper {
 public static boolean addContact(ContentResolver resolver,
 Account account, String name, String username, String headline) {
 ArrayList<ContentProviderOperation> batch =
 new ArrayList<ContentProviderOperation>();

 ContentProviderOperation.Builder builder = ContentProviderOperation
 .newInsert(RawContacts.CONTENT_URI);
 builder.withValue(RawContacts.ACCOUNT_NAME, account.name);
 builder.withValue(RawContacts.ACCOUNT_TYPE, account.type);
 builder.withValue(RawContacts.SYNC1, username);
 batch.add(builder.build());

 builder = ContentProviderOperation
 .newInsert(ContactsContract.Data.CONTENT_URI);
 builder.withValueBackReference(ContactsContract.CommonDataKinds.
 StructuredName.RAW_CONTACT_ID, 0);
 builder.withValue(ContactsContract.Data.MIMETYPE, ContactsContract.
 CommonDataKinds.StructuredName.CONTENT_ITEM_TYPE);
 builder.withValue(ContactsContract.CommonDataKinds.StructuredName.
 DISPLAY_NAME, name);
 batch.add(builder.build());

 builder = ContentProviderOperation.newInsert(
 ContactsContract.Data.CONTENT_URI);
 builder.withValueBackReference(ContactsContract.Data.RAW_CONTACT_ID,
 0);
 builder.withValue(ContactsContract.Data.MIMETYPE,
 LinkedIn.MIME_TYPE);
 builder.withValue(ContactsContract.Data.DATA1,
 headline);
 builder.withValue(ContactsContract.Data.DATA2, "LinkedIn");

 batch.add(builder.build());
 try {
 resolver.applyBatch(ContactsContract.AUTHORITY, batch);
 return true;
 } catch (Exception e) {
 return false;
 }
 }

 public static boolean updateContact(ContentResolver resolver,
 Account account, String username, String headline) {
 ArrayList<ContentProviderOperation> batch =
 new ArrayList<ContentProviderOperation>();
 ContentProviderOperation.Builder builder = ContentProviderOperation
 .newInsert(ContactsContract.Data.CONTENT_URI);
 builder.withValue(ContactsContract.Data.RAW_CONTACT_ID, 0);

Listing 15.8 Helper class for storing LinkedIn connections

Batch
operations

B

Unique ID for
future sync

Unique data
for contact

C

Batch
operations

B

420 CHAPTER 15 Integration
 builder.withValue(ContactsContract.Data.MIMETYPE,
 LinkedIn.MIME_TYPE);
 builder.withValue(ContactsContract.Data.DATA1,
 headline);
 builder.withValue(ContactsContract.Data.DATA2, "LinkedIn");
 batch.add(builder.build());
 try {
 resolver.applyBatch(ContactsContract.AUTHORITY, batch);
 return true;
 } catch (Exception e) {
 return false;
 }
 }
}

Because you’re performing multiple insertions at a time, we use a batch operation B
to wrap all the tasks involved. This operation performs more quickly and has the
added benefit of protecting against partially updated records if an error occurs mid-
way through processing.

 The DATA1 field C refers to custom data. Android defines many similar columns,
such as DATA1, DATA2, DATA3, and so on. Each new type of contact data can decide for
itself how it wants to define and interpret its data. In our example, we’re placing the
headline in the first available data slot. For more complex fields such as structured
names, you can use the various data fields to store multiple components such as first
and last names.

 Now that you can create contacts, you need to tell the native Contacts app how to
display LinkedIn data. This is done through a custom XML file, shown in the following
listing.

<?xml version="1.0" encoding="utf-8"?>
<ContactsSource xmlns:android="http://schemas.android.com/apk/res/android">
 <ContactsDataKind
 android:mimeType=
 "vnd.android.cursor.item/vnd.linkedin.profile"
 android:icon="@drawable/icon"
 android:summaryColumn="data2"
 android:detailColumn="data1"
 />
</ContactsSource>

Google hasn’t documented this file well, but fortunately there isn’t too much to know.
The code in B helps the Contacts app find the rows in the data table that correspond
to LinkedIn. The icon to display in Contacts and the summary column help users
identify this type of data. Finally, the detail column describes the information unique
to this contact. In our case, this is the headline.

Listing 15.9 contacts.xml

Unique data
for contact

C

Custom
content type

B

421Keeping it together
15.4 Keeping it together
People get calls all day long on their office phones at work and on their mobile
phones. They have personal friends, business contacts, and fellow alumni. They
belong to Facebook, LinkedIn, and Bebo. They have dental appointments, choir recit-
als, and quarterly reports.

 Today’s mobile phone users are caught in a dilemma. On one hand, they want a
single point of contact that handles all their information for them; why carry a pager,
a scheduler, a phone, and a little black address book, when you can have it all in one
smartphone? On the other hand, they want to compartmentalize their information.
Most people like to keep their work and personal email accounts separate, and may
not want friends on one social network to see friends on another network.

 Android manages this tricky balancing act through the use of multiple accounts, as
described in section 15.1.2. By understanding how accounts are managed and kept
up-to-date, you’ll be able to build powerful apps that smoothly fulfill your users’
expectations.

15.4.1 The dream of sync

If you’ve ever changed email providers, you’ve probably experienced the pain of
transferring your data. Copying old email manually is a cumbersome process, and
transferring your address book isn’t much easier.

 A similar problem constantly happens today with accounts that have multiple ter-
minals. When you send and receive Gmail from your desktop, laptop, and phone, you
expect the same emails to be visible everywhere. But if you use a POP3 email program
from an ISP, emails might only be seen from the computer that sent them. When the
same information is available in multiple places, we say that it’s synchronized. Synchro-
nization refers to the process of ensuring that the most up-to-date information is avail-
able on all terminals.

 Software developers have been trying to solve the synchronization problem for
decades, and though they’ve gotten closer, it continues to be a tricky problem. A sin-
gle master repository should hold the definitive view of a user’s information, such as
their calendar. Users generally won’t directly interact with
this repository; instead, they’ll use other programs to create
calendar events and receive event reminders. If the user
creates an event in one program, it must also display on the
other. Figure 15.8 shows how this process is handled for
Google accounts. All devices connect to the cloud, which
stores all the data. When a user creates an event on their
phone, it’s transferred to their remote calendar. The next
time the user connects to the calendar with their desktop
browser, they receive the event.

 Because mobile devices have unreliable network con-
nections, the system needs to be extremely robust in the

Storage

Web
Browser

Mobile
Phone

Google

Figure 15.8 Synchronizing
data across multiple
terminals

422 CHAPTER 15 Integration
event of failure. If network synchronization fails, as in figure 15.9, the device will be
responsible for retrying at a later time until it succeeds. Each provider will follow its
own strategy for syncing, depending on the data being transferred. For example, in
some situations the provider will want to abort all transferred data if the connection is
interrupted; in other cases, the provider will accept the data that was already transmit-
ted, and wait to receive the rest later.

 Try to keep this as transparent to the user as possible. Things should “just work”:
emails sent on one device should display on another without any effort involved.
Because of the complexity involved in synchronization, though, there are many ways
for synching to fail, which can lead to baffling results. By seeing what’s happening
behind the scenes, you’ve gained insight into detecting and handling these kinds of
errors.

15.4.2 Defining accounts

Section 15.1.2 described how Android handles multiple sets of contacts by creating
separate accounts for each set. Users can manually manage their contacts by visiting
Accounts, which is usually available as a menu option
within the native Contacts activity. Figure 15.10 shows
where to add and manage accounts.

 So what, exactly, is an account? An account combines
your identity information, such as a login and password,
with associated data, such as contacts and email.

 Because accounts store their contact data separately
from one another in the raw_contacts table, they can be
toggled on and off without affecting unrelated informa-
tion. For example, if you leave a company, you can
remove all your former colleagues without worrying
about destroying your personal data. You can create your
own type of account by providing three components.

SERVICE

Android will use accounts to retrieve the user’s remote
information while running in the background, so a ser-
vice will wrap all of the account’s actions.

Time passes...

Dropped connection Retries and succeeds

Google Google

Mobile
Phone

Mobile
Phone

Figure 15.9 Retrying a
synchronization operation
after initial failure

Figure 15.10
Managing accounts

423Keeping it together
IBINDER

The binder will service requests for this type of account, such as adding a new
account, authenticating the user, or storing credentials. You can create an appropriate
binder by extending AbstractAccountAuthenticator.

ACTIVITY

Users will need to enter their information to authenticate with their accounts. Differ-
ent accounts may have differing requirements; for example, some may require the use
of a key phrase, selecting a picture, or entering a soft crypto token. Because Android
can’t provide a generic UI to cover all possible types of authentication, each account
must implement an activity that extends AccountAuthenticatorActivity to present
the user with a login screen and handle the results. You’ll see examples of all three
components in section 15.5.

15.4.3 Telling secrets: The AccountManager service

Earlier versions of Android only had native support for a single Google account. Devel-
opers did write apps for other account types, such as Exchange, but these solutions
were isolated and inconsistent. Each developer needed to rewrite from scratch the sys-
tem for logging in to an account and managing the user’s data. Even worse, there were
no enforceable standards for managing users’ secret data, such as passwords.

 Android 2.0 fixed this problem by adding a new service called AccountManager.
AccountManager provides a consistent and uniform means for interacting with all the
accounts registered on a device, including adding and removing accounts or modify-
ing their security. AccountManager also provides a single and secure storage facility for
private user credentials; by using this service, your app is released from the burden of
protecting the user’s secrets.

 Each account can define whatever types of information are necessary to authenti-
cate the user. Typically, this will include the following:

 Login name—The unique identifier for the user, such as name@example.com.
 Password—A secret string, known to the user, which verifies that they are the

owner of this account.
 Authentication token—A transient string, known to the account but generally not

to the user, which demonstrates that the user has successfully logged in to the
account. Often referred to as an auth token, this string frees the user from the
need to manually type the password every time they wish to connect with the
account, and saves the server from performing additional, time-consuming
authentications. An auth token is usually valid for a limited amount of time and
must occasionally be refreshed by performing a full login.

All of this data is stored and managed by AccountManager, as shown in figure 15.11. In
this example, the user already has two active accounts on their device, which are cur-
rently authenticated. A third account can be added by providing the relevant account
details, in this case a name and password. Once verified by AccountManager, this
account will be accessible like the others.

424 CHAPTER 15 Integration
CAUTION Many permissions are required for implementing accounts. Be sure
to claim the MANAGE_ACCOUNTS permission if your app will be creating or mod-
ifying accounts, and the AUTHENTICATE_ACCOUNTS permission for managing
passwords and auth tokens. Many other permissions may be required as well,
including GET_ACCOUNTS, USE_CREDENTIALS, and WRITE_SETTINGS. Most appli-
cations that provide new accounts will eventually require all of these and
more. See a complete list in the sample manifest near the end of this chapter.

15.5 Creating a LinkedIn account
From a user’s perspective, connecting to LinkedIn looks simple. You just type in your
email address and password, and you get access. Behind the scenes, though, a lot
more is going on, particularly when connecting from a third-party application. No
fewer than seven tokens are involved as part of the authentication process, and all
must be handled correctly before you can start requesting data. This isn’t unique to
LinkedIn, and learning how to navigate the LinkedIn authentication process will
equip you well for handling almost any authentication scheme.

15.5.1 Not friendly to mobile

To protect against people viewing others’ private information, LinkedIn requires each
user of a third-party app to sign in to their account through the LinkedIn portal.
Once they do, LinkedIn returns two authentication tokens that’ll be included in all
future requests. LinkedIn wrote its API assuming that developers would write web
applications. The web app will redirect the user to the official LinkedIn login page,
and LinkedIn will return the user to a URL specified by the developer once the login is
complete.

 But this system doesn’t work well for other platforms such as desktop and mobile
applications. LinkedIn has no way of passing the authentication token directly to your
app, so you must jump through extra hoops to obtain this necessary information.

Account
Manager

Google Exchange Facebook

Name Password Auth
Token Name Password

Name Password Auth
Token Figure 15.11 Managing

multiple accounts

425Creating a LinkedIn account
15.5.2 Authenticating to LinkedIn

Fortunately, Android’s AccountManager system pro-
vides a perfect solution to circumvent this problem.
You can use the custom login Activity to guide the
user through the process of authenticating with
LinkedIn, and then securely store the tokens for all
future requests. LinkedIn is unusual in that it actually
returns two auth tokens, both a public one and a secret
version. Android’s AccountManager is robust and
extensible enough to accept arbitrary data beyond the
traditional username/password/authtoken combo, and
so the complexity of authenticating with LinkedIn can
be hidden.

 The UI will contain a few important sections. An
email address will uniquely identify the account. The
Activity will contain a link to the LinkedIn login page
where the user can remotely authenticate. After they get
their secure token, it can be entered back into the login
page to finish the authentication process.

 You start by defining the UI, which will look like figure 15.12. The layout XML for
this listing is available online on the website for this book.

 Next, you write the main Activity for the application, shown in the following list-
ing. In addition to configuring the UI, it manages the two-stage process of authenticat-
ing against LinkedIn. This activity is responsible for many details; only the most
important are printed here, but you can view the entire class in the download from
this book’s website.

package com.manning.unlockingandroid.linkedin.auth;
// imports omitted for brevity
public class LinkedInLoginActivity extends AccountAuthenticatorActivity {

 // Constants and most instance variables omitted for brevity
 private Boolean confirmCredentials = false;
 protected boolean createAccount = false;

 LinkedInOAuthService oauthService;
 private String authToken;
 private String authTokenSecret;

 @Override
 public void onCreate(Bundle icicle) {
 oauthService = LinkedInOAuthServiceFactory.getInstance()
 .createLinkedInOAuthService(LinkedIn.API_KEY,
 LinkedIn.SECRET_KEY);
 // UI code omitted for brevity
 confirmCredentials = intent.getBooleanExtra(PARAM_CREDENTIALS,

Listing 15.10 Login activity initialization and authentication

Purpose
for launch

B

Temporarily store
challenge tokens

C

Figure 15.12 Login screen for
LinkedIn account

426 CHAPTER 15 Integration
 false);
 }

 private Thread authenticate(final String userToken,
 final String userTokenSecret, final String pin) {
 Thread authenticator = new Thread() {
 public void run() {
 boolean success;
 try {
 LinkedInRequestToken requestToken = new
 LinkedInRequestToken(userToken, userTokenSecret);
 LinkedInAccessToken access = oauthService
 .getOAuthAccessToken(requestToken, pin);
 authToken = access.getToken();
 authTokenSecret = access.getTokenSecret();
 success = true;
 } catch (Exception e) {
 success = false;
 }
 final boolean result = success;
 handler.post(new Runnable() {
 public void run() {
 onAuthenticationResult(result);
 }
 });
 }
 };
 authenticator.start();
 return authenticator;
 }
 // Other methods shown in following listings.
}

Android always shows this screen when adding a new account; additionally, it’ll display
if the account later fails to sync due to an expired auth token or other security error.
As such, instance variables B keep track of the reason for displaying the activity. Here
we use OAuth variables C to store the initially provided challenge tokens so we can
send them to LinkedIn during the final stages of login. The linkedin-j APIs allow us
to write terser and clearer code than would be possible with the raw LinkedIn APIs,
which are more web services oriented.

 Logging into LinkedIn requires a two-stage process: first, you acquire a PIN num-
ber when the user visits the LinkedIn website, and then you use that PIN to complete
the authentication. The following listing shows the methods in our Activity that con-
trol the handling of this authentication data.

 @Override
 protected Dialog onCreateDialog(int id) {
 final ProgressDialog dialog = new ProgressDialog(this);
 // UI code omitted for brevity.
 dialog.setOnCancelListener(new DialogInterface.OnCancelListener() {

Listing 15.11 Login Activity’s multiple stages of logging in

Temporarily store
challenge tokens

C

427Creating a LinkedIn account
 public void onCancel(DialogInterface dialog) {
 if (authentication != null) {
 authentication.interrupt();
 finish();
 }
 }
 });
 return dialog;
 }

 public void startLogin(View view) {
 try {
 LinkedInRequestToken requestToken = oauthService
 .getOAuthRequestToken();
 userToken = requestToken.getToken();
 userTokenSecret = requestToken.getTokenSecret();
 String authURL = requestToken.getAuthorizationUrl();
 Intent authIntent = new Intent(Intent.ACTION_VIEW, Uri
 .parse(authURL));
 startActivity(authIntent);
 } catch (Exception ioe) {
 status.setText(R.string.start_login_error);
 }
 }

 public void finishLogin(View view) {
 if (createAccount) {
 accountName = accountNameField.getText().toString();
 }
 enteredPIN = pinField.getText().toString();
 if (TextUtils.isEmpty(accountName) ||
 TextUtils.isEmpty(enteredPIN)) {
 status.setText(R.string.empty_fields_error);
 } else {
 showProgress();
 authentication = authenticate(userToken,
 userTokenSecret, enteredPIN);
 }
 }

After authentication has finished, you’ll inspect and handle the outcome of the
attempt, as shown in this listing. If it succeeds, the token will be stored for future
reuse.

 public void onAuthenticationResult(boolean result) {
 hideProgress();
 if (result) {
 if (!confirmCredentials) {
 finishLogin();
 } else {
 finishConfirmCredentials(true);
 }
 } else {

Listing 15.12 Login Activity responding to completed login attempt

Cancel pending
auth attempt

Initiate first
login phase

Initiate second
login phase

Kick off auth
completion

428 CHAPTER 15 Integration
 if (createAccount) {
 status.setText(getText(R.string.login_fail_error));
 }
 }
 }

 protected void finishLogin() {
 final Account account = new Account(accountName, LinkedIn.TYPE);
 if (createAccount) {
 Bundle data = new Bundle();
 data.putString(LinkedIn.AUTH_TOKEN,
 authToken);
 data.putString(LinkedIn.AUTH_TOKEN_SECRET,
 authTokenSecret);
 accountManager.addAccountExplicitly(account,
 enteredPIN, data);
 ContentResolver.setSyncAutomatically(account,
 ContactsContract.AUTHORITY, true);
 } else {
 accountManager.setPassword(account, enteredPIN);
 accountManager.setUserData(account,
 LinkedIn.AUTH_TOKEN, authToken);
 accountManager.setUserData(account, LinkedIn.
 AUTH_TOKEN_SECRET, authTokenSecret);
 }
 final Intent intent = new Intent();
 intent.putExtra(AccountManager.KEY_ACCOUNT_NAME, accountName);
 intent.putExtra(AccountManager.KEY_ACCOUNT_TYPE, LinkedIn.TYPE);
 setAccountAuthenticatorResult(intent.getExtras());
 setResult(RESULT_OK, intent);
 finish();
 }

 protected void finishConfirmCredentials(boolean result) {
 final Account account = new Account(accountName, LinkedIn.TYPE);
 accountManager.setPassword(account, enteredPIN);
 final Intent intent = new Intent();
 intent.putExtra(AccountManager.KEY_BOOLEAN_RESULT, result);
 setAccountAuthenticatorResult(intent.getExtras());
 setResult(RESULT_OK, intent);
 finish();
 }

The most important parts of the Activity revolve around the AccountManager, where
we store the final auth tokens B. Note that, although we store the PIN as the password
field, for LinkedIn we never touch the user’s actual password; the auth tokens are the
important pieces.

 Next comes an AccountAuthenticator, shown in listing 15.13, which handles the
final stages of authenticating against LinkedIn and actually creates the Android
account. Most of the actions of an authenticator are boilerplate, so only the most rele-
vant portions are shown here. You can view the entire class online. First come two
main entry points that’ll be invoked by the system when adding a new account or con-
firming that an existing account still has valid credentials.

Server said
auth was OK

Permanently
store final
auth tokens

B

Register
contact sync

Permanently
store final
auth tokens

B

429Creating a LinkedIn account
package com.manning.unlockingandroid.linkedin.auth;
// imports omitted for brevity
class LinkedInAccountAuthenticator extends AbstractAccountAuthenticator {
 private final Context context;

 private LinkedInApiClientFactory factory;

 public Bundle addAccount(
 AccountAuthenticatorResponse response,
 String accountType, String authTokenType,
 String[] requiredFeatures, Bundle options) {
 Intent intent = new Intent(
 context, LinkedInLoginActivity.class);
 intent.putExtra(LinkedInLoginActivity.PARAM_AUTHTOKEN_TYPE,
 authTokenType);
 intent.putExtra(AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE,
 response);
 Bundle bundle = new Bundle();
 bundle.putParcelable(AccountManager.KEY_INTENT, intent);
 return bundle;
 }

 public Bundle confirmCredentials(AccountAuthenticatorResponse response,
 Account account, Bundle options) {
 if (options != null
 && options.containsKey(AccountManager.KEY_PASSWORD)) {
 String authToken = options.getString(LinkedIn.AUTH_TOKEN);
 String authSecret = options
 .getString(LinkedIn.AUTH_TOKEN_SECRET);
 boolean verified = validateAuthToken(authToken, authSecret);
 Bundle result = new Bundle();
 result.putBoolean(AccountManager.KEY_BOOLEAN_RESULT, verified);
 return result;
 }
 Intent intent = new Intent(
 context, LinkedInLoginActivity.class);
 intent.putExtra(LinkedInLoginActivity.PARAM_USERNAME, account.name);
 intent.putExtra(LinkedInLoginActivity.PARAM_CREDENTIALS, true);
 intent.putExtra(AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE,
 response);
 Bundle bundle = new Bundle();
 bundle.putParcelable(
 AccountManager.KEY_INTENT, intent);
 return bundle;
 }
 public Bundle updateCredentials(AccountAuthenticatorResponse response,
 Account account, String authTokenType, Bundle loginOptions) {
 Intent intent = new Intent(context, LinkedInLoginActivity.class);
 intent.putExtra(LinkedInLoginActivity.PARAM_USERNAME, account.name);
 intent.putExtra(LinkedInLoginActivity.PARAM_AUTHTOKEN_TYPE,
 authTokenType);
 intent.putExtra(LinkedInLoginActivity.PARAM_CREDENTIALS, false);
 Bundle bundle = new Bundle();
 bundle.putParcelable(AccountManager.KEY_INTENT, intent);

Listing 15.13 Authenticating against the LinkedIn account

Explicitly specify
login activity

Explicitly specify
login activity

Verify credentials
through UI

B

430 CHAPTER 15 Integration
 return bundle;
 }
}

Once again, the linkedin-j classes help clarify the code and take care of some rote
bookkeeping tasks. The authenticator will be called in various situations, including
creating a new account and verifying the auth token for an existing account, and so it
implements the AbstractAccountAuthenticator methods to support the different
entry points. Note, for example, that addAccount() B is responsible for launching
into the UI activity for creating a new account. Additionally, the authenticator will pro-
vide previously created tokens, as shown in the following listing.

 public Bundle getAuthToken(AccountAuthenticatorResponse response,
 Account account, String authTokenType, Bundle loginOptions) {
 // Sanity checking omitted for brevity.
 AccountManager am = AccountManager.get(context);
 String authToken = am.getUserData(account, LinkedIn.AUTH_TOKEN);
 String authTokenSecret = am.getUserData(account,
 LinkedIn.AUTH_TOKEN_SECRET);
 if (authToken != null && authTokenSecret != null) {
 boolean verified = validateAuthToken(authToken,
 authTokenSecret);
 if (verified) {
 // Return bundle omitted for brevity.
 }
 }
 Intent intent = new Intent(
 context, LinkedInLoginActivity.class);
 intent.putExtra(AccountManager.
 KEY_ACCOUNT_AUTHENTICATOR_RESPONSE,
 response);
 intent.putExtra(LinkedInLoginActivity.PARAM_USERNAME, account.name);
 intent.putExtra(LinkedInLoginActivity.PARAM_AUTHTOKEN_TYPE,
 authTokenType);
 Bundle bundle = new Bundle();
 bundle.putParcelable(AccountManager.KEY_INTENT, intent);
 return bundle;
 }

 private boolean validateAuthToken(String authToken,
 String authTokenSecret) {
 try {
 LinkedInApiClient client = factory.createLinkedInApiClient(
 authToken, authTokenSecret);
 client.getConnectionsForCurrentUser(0, 1);
 return true;
 } catch (Exception e) {
 return false;
 }
 }

Listing 15.14 Adding support for handling auth token

Ask user to
re-login

Issue test
network requestB

431Creating a LinkedIn account
Once the final tokens come back from the server, a dummy API request B ensures
that the connection is good. If any problems occur, notify the caller and it can take an
appropriate action, such as showing a notification to the user.

 Because authentication will run in the background, it must be a Service. The next
listing shows the lightweight authentication service wrapper, which defers everything
to our authenticator.

package com.manning.unlockingandroid.linkedin.auth;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class LinkedInAuthService extends Service {
 private LinkedInAccountAuthenticator authenticator;

 @Override
 public void onCreate() {
 authenticator = new LinkedInAccountAuthenticator(this);
 }

 @Override
 public void onDestroy() {
 }

 @Override
 public IBinder onBind(Intent intent) {
 return authenticator.getIBinder();
 }
}

Finally, the little piece of XML in the next listing will tell Android how to display this
type of account in the Manage Accounts screen.

<?xml version="1.0" encoding="utf-8"?>
<account-authenticator xmlns:android="http://schemas.android.com/apk/res/

android"
 android:accountType=
 "com.manning.unlockingandroid.linkedin"
 android:icon="@drawable/icon"
 android:smallIcon="@drawable/icon"
 android:label="@string/app_name"
/>

CAUTION Android went to great lengths to separate account authentication
and account synchronization; there’s no explicit linkage between the two
pieces. But early versions of the OS will react badly if you attempt to create an
account that doesn’t have a synchronizer. For example, the Android 2.1 emu-
lator will crash and reboot if you successfully add an account that doesn’t
have a matching synchronizer. Later versions of the OS should fix this bug. In
the meantime, you may want to wait a bit longer before testing your authenti-
cation code.

Listing 15.15 Defining the authentication service

Listing 15.16 authenticator.xml

Type advertised for
synchronization

432 CHAPTER 15 Integration
15.6 Synchronizing to the backend with SyncAdapter
Authenticating an account connects you to the remote server, but by itself does noth-
ing. The real power comes from an account’s ability to synchronize data onto and off
of the phone. Android 2.0 added the ability to synchronize custom data from arbitrary
accounts.

15.6.1 The synchronizing lifecycle

Synchronizing will generally happen in the background, similarly to authentication.
The authenticator and the synchronizer are loosely coupled; the synchronizer will
retrieve necessary information from the AccountManager instead of directly from the
authenticator. Again, this is done to keep the user’s private information secure.

 To perform synchronization, your service should return an IBinder obtained from
a class you define that extends AbstractThreadedSyncAdapter. This defines a single
method, onPerformSync, which allows you to perform all synching activities.

TIP Synchronizing operations can differ drastically, depending on what type
of data you’re synching. Though most accounts are oriented around personal
information, an account could also be used to deliver daily recipes to an
application, or to upload usage reports. The authenticator/synchronizer
combo is best for situations where a password is required and you want to
transfer data silently in the background. In other cases, a standard service
would work better.

15.6.2 Synchronizing LinkedIn data

Now that you’ve written an account and utilities for our LinkedIn connections, all that
remains is to tie the two together. You can accomplish this with a few final classes for
synchronization. The most important is SyncAdapter, shown in this listing.

package com.manning.unlockingandroid.linkedin.sync;
// Imports omitted for brevity
public class SyncAdapter extends AbstractThreadedSyncAdapter {
 private final AccountManager manager;
 private final LinkedInApiClientFactory factory;
 private final ContentResolver resolver;

 String[] idSelection = new String[] {
 ContactsContract.RawContacts.SYNC1 };
 String[] idValue = new String[1];

 public SyncAdapter(Context context, boolean autoInitialize) {
 super(context, autoInitialize);
 resolver = context.getContentResolver();
 manager = AccountManager.get(context);
 factory = LinkedInApiClientFactory.newInstance(LinkedIn.API_KEY,
 LinkedIn.SECRET_KEY);
 }

Listing 15.17 Synchronizing LinkedIn connections to contacts

SQL selection
to find contacts

433Synchronizing to the backend with SyncAdapter
 @Override
 public void onPerformSync(Account account, Bundle extras,
 String authority, ContentProviderClient provider,
 SyncResult syncResult) {
 String authToken = null;
 try {
 authToken = manager.blockingGetAuthToken(
 account, LinkedIn.TYPE, true);
 if (authToken == null) {
 syncResult.stats.numAuthExceptions++;
 return;
 }
 authToken = manager.getUserData(account,
 LinkedIn.AUTH_TOKEN);
 String authTokenSecret = manager.getUserData(
 account, LinkedIn.AUTH_TOKEN_SECRET);
 LinkedInApiClient client = factory.createLinkedInApiClient(
 authToken, authTokenSecret);
 Connections people = client.getConnectionsForCurrentUser();
 for (Person person:people.getPersonList()) {
 String id = person.getId();
 String firstName = person.getFirstName();
 String lastName = person.getLastName();
 String headline = person.getHeadline();
 idValue[0] = id;
 Cursor matches = resolver.query(
ContactsContract.RawContacts.CONTENT_URI, idSelection,
ContactsContract.RawContacts.SYNC1 + "=?", idValue,
null);
 if (matches.moveToFirst()) {
 ContactHelper.updateContact(
 resolver, account, id, headline);
 } else {
 ContactHelper.addContact(resolver,
 account, firstName + " "
 + lastName, id, headline);
 }
 }
 } catch (AuthenticatorException e) {
 manager.invalidateAuthToken(LinkedIn.TYPE, authToken);
 syncResult.stats.numAuthExceptions++;
 } catch (IOException ioe) {
 syncResult.stats.numIoExceptions++;
 } catch (OperationCanceledException ioe) {
 syncResult.stats.numIoExceptions++;
 } catch (LinkedInApiClientException liace) {
 manager.invalidateAuthToken(LinkedIn.TYPE, authToken);
 syncResult.stats.numAuthExceptions++;
 }
 }
}

When performing a sync, we first verify a working auth token B and then retrieve the
two auth tokens C that are needed to interact with LinkedIn. The linkedin-j APIs
simplify retrieving and manipulating data model objects for the user’s connections.

Ensure established
connection

B

Retrieve
credentials

C

Examine all
connections

D

Already
exists?

E

Update
headline

F

Insert data
and create
contact

G

434 CHAPTER 15 Integration
We iterate through these models D, check to see whether they’re already in our spe-
cial LinkedIn contacts list E, and then add F or update G the contacts as appropri-
ate, using the ContactHelper class from listing 15.8. Android will read the
syncResult variable to determine if and why the sync failed; this can cause the OS to
prompt the user to reauthenticate if necessary.

 As with authentication, a lightweight wrapper service, shown in the next listing,
manages the sync adapter.

package com.manning.unlockingandroid.linkedin.sync;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class SyncService extends Service {
 private static final Object syncAdapterLock
 = new Object();
 private static SyncAdapter syncAdapter = null;

 @Override
 public void onCreate() {
 synchronized (syncAdapterLock) {
 if (syncAdapter == null) {
 syncAdapter = new SyncAdapter(getApplicationContext(), true);
 }
 }
 }

 @Override
 public IBinder onBind(Intent intent) {
 return syncAdapter.getSyncAdapterBinder();
 }
}

And, last but not least, a final piece of XML is shown in the following listing to describe
the synchronization service’s capabilities.

<?xml version="1.0" encoding="utf-8"?>
<sync-adapter xmlns:android="http://schemas.android.com/apk/res/android"
 android:contentAuthority="com.android.contacts"
 android:accountType=
 "com.manning.unlockingandroid.linkedin"
 android:supportsUploading="false"
/>

The content authority tells Android what type of data can be updated by this service;
contacts are by far the most common. The account type B links the synchronizer to its
corresponding authenticator. Finally, the XML describes whether the synchronizer sup-
ports one-way downloading only, or whether it also supports uploading changes to data.

Listing 15.18 Defining the synchronization service

Listing 15.19 syncadapter.xml

Singleton

Uses the
linkedin accountB

435Wrapping up: LinkedIn in action
15.7 Wrapping up: LinkedIn in action
A few final pieces of code will conclude the sample project. A well-designed account
seems invisible; once configured, it’ll silently and seamlessly work in the background,
pulling in relevant data whenever available. We’ll also discuss a few advanced topics
that push the limits of integration.

15.7.1 Finalizing the LinkedIn project

You’ve already written all the code, so all that remains is updating your Android mani-
fest to describe the application’s capabilities. The following listing shows the final
pieces.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.manning.unlockingandroid.linkedin" android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <service android:name=".auth.LinkedInAuthService"
 android:exported="true">
 <intent-filter>
 <action android:name=
 "android.accounts.AccountAuthenticator" />
 </intent-filter>
 <meta-data android:name="android.accounts.AccountAuthenticator"
 android:resource="@xml/authenticator" />
 </service>
 <service android:name=".sync.SyncService" android:exported="true">
 <intent-filter>
 <action android:name=
 "android.content.SyncAdapter" />
 </intent-filter>
 <meta-data android:name="android.content.SyncAdapter"
 android:resource="@xml/syncadapter" />
 <meta-data android:name="android.provider.CONTACTS_STRUCTURE"
 android:resource="@xml/contacts" />
 </service>
 <activity android:name=
 ".auth.LinkedInLoginActivity" android:label=
 "@string/login_label" android:theme=
 "@android:style/Theme.Dialog"
 android:excludeFromRecents="true">
 </activity>
 </application>
 <uses-permission android:name="android.permission.GET_ACCOUNTS" />
 <uses-permission android:name="android.permission.USE_CREDENTIALS" />
 <uses-permission android:name="android.permission.MANAGE_ACCOUNTS" />
 <uses-permission
 android:name="android.permission.AUTHENTICATE_ACCOUNTS" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.WRITE_SETTINGS" />

Listing 15.20 AndroidManifest.xml for LinkedIn

Handles
adding
accounts

B

Handles
synching data

C

Private activity
for logging in

D

436 CHAPTER 15 Integration
 <uses-permission android:name="android.permission.READ_CONTACTS" />
 <uses-permission android:name="android.permission.WRITE_CONTACTS" />
 <uses-permission android:name="android.permission.READ_SYNC_STATS" />
 <uses-permission android:name="android.permission.READ_SYNC_SETTINGS" />
 <uses-permission android:name="android.permission.WRITE_SYNC_SETTINGS" />
 <uses-sdk android:minSdkVersion="5" />
</manifest>

You’ll notice a few new intent-filter definitions for
accounts B and synchronizing C. These prompt
Android to display our application as an available
account type. You’ll also notice that the manifest pulls
in all of the XML that we previously wrote. Again, these
instruct Android how to display custom content within
other applications. Finally, note that the Activity defi-
nition D doesn’t include an intent-filter. Users
shouldn’t launch this Activity themselves; as config-
ured, it can only be started by our own classes that know
its full class name.

 With the manifest in place, you can now run and syn-
chronize against LinkedIn. After you fill in the account
details, your existing contacts will begin receiving their
headlines, as shown in figure 15.13.

 Most people have many more social network connec-
tions than they do phone numbers, so you’d expect the
size of your contacts list to balloon after synchronizing
with LinkedIn. By default, though, Android will only dis-
play your primary contacts; in other words, if someone is
in both your phonebook and in LinkedIn, they’ll be dis-
played, but if they only appear in LinkedIn they won’t.
You can change this behavior by modifying your contacts
display options, as shown in figure 15.14. After making
this selection, you’ll see all your LinkedIn contacts.

15.7.2 Troubleshooting tips

Several issues may come up as you develop the LinkedIn
app or other integration services. Common items
include the following:

 If you have trouble authenticating, verify that the
time on your emulator is correct. Many modern
authentication schemes rely on synchronized
time settings on the client and server, so if your
clock is off by more than a few minutes, the login
may fail.

Figure 15.13 A contact with
standard and LinkedIn data

Figure 15.14 Choosing whether
to display all LinkedIn contacts

437Summary
 If API calls fail, check whether updated JAR files address your issue. In particu-
lar, note that linkedin-j works with other libraries such as signpost to man-
age authentication. Check that you use all the dependent JARs too.

 Because there’s no main activity for this application, selecting Debug from
within Eclipse won’t automatically start debugging the application; it’ll only
push it to the emulator. To debug, switch to the DDMS tab in Eclipse, select
the com.manning.unlockingandroid.linkedin process, and click the Debug
button.

 If your process isn’t already running, or you want to try some other debug-
ging tactics, check out the AccountsTester and SyncTester activities included
in the Dev Tools application. These can provide useful entry points into your
application.

To solve problems with LinkedIn transactions, visit the developer forums or search for
information online. Most likely you’re not the only one who’s encountered your prob-
lem, and someone else has found a solution. Similar resources exist for other popular
types of accounts.

15.7.3 Moving on

Simple can be beautiful. For most users, getting a little of the most relevant LinkedIn
information gives them want they want without cluttering up their contact screen. If
you’re looking for more, though, consider the following ideas:

 Pull in more advanced LinkedIn fields, such as educational background, publi-
cations, and previous job positions.

 Tie in contacts data with the Field Service application. For example, you could
create a contact when you receive a new job from a customer, and remove that
contact once the job is marked complete.

 In addition to the previous, create a new raw_contacts type for a field service
contact; this will allow users to toggle such contacts on and off as they wish.

 Create a new account type and synchronizer for connecting with your own
favorite online service.

15.8 Summary
Congratulations! You’ve written a fully functional, and fully useful, application that
seamlessly brings your LinkedIn connections to Android. Even better, you’ve experi-
enced every piece of the integration puzzle. Android makes no assumptions about
what contacts will look like, and offers a pluggable, extensible contacts model that lets
developers add their own custom data into the native contacts experience. Users can
synchronize their contacts remotely, and Android now supports an arbitrary number
of different types of accounts, each of which can follow its own custom authentication
scheme and still take advantage of secure storage for its credentials. Synchronization
will run in the background, silently delivering useful information to the user.

438 CHAPTER 15 Integration
 Integration shows Android’s design principles at their finest. Most modern
Android phones have built-in support for accounts such as Microsoft Exchange, but as
useful as these are, it’d be limiting to restrict users to approved account types. Instead,
Android’s open architecture has created an ecosystem where any type of account,
even from a small startup, can enjoy equal standing on the phone. The best compli-
ment you can pay to this kind of software is to say that it’s unnoticeable; great integra-
tion apps fade into the background, becoming an essential part of the user’s daily
experience.

 Now that you’ve integrated with the device’s internal store of contacts, it’s time to
turn your focus outward, toward the web browser. Android has an extremely robust
browser that supports unusually rich user experiences. The next chapter will help you
evaluate your strategies for developing content that’ll look great in the Android
browser.

Android web development
Mobile software development has usually required working with a proprietary tool-
set to build applications. The term SDK is a familiar one—the majority of this book
covers Android software development using the Android SDK. But the Android SDK
isn’t the only way to build and deliver applications for the Android platform. With
the emergence of accessible and powerful mobile browser capabilities, it’s now pos-
sible to develop applications for the Android platform with web technologies such
as HTML, CSS, and JavaScript.1

 Opening up the world of mobile development to web technologies introduces a
wide array of possibilities for developers and Android users alike. Mobile devices

This chapter covers
 Understanding Android web development

 Introducing WebKit

 Optimizing web applications for Android

 Storing data in the browser

 Building a custom JavaScript handler

1 See Quick & Easy HTML5 and CSS3 at www.manning.com/crowther. The book is to be published in spring
2012.
439

www.manning.com/crowther

440 CHAPTER 16 Android web development
rich in user experience (including Android) are in essence shrinking our world as
internet connectivity is becoming the norm rather than the exception. Being con-
nected to the internet allows Android users to share and access information from vir-
tually anywhere, at any time. In some ways, the web itself is being redefined as an
increasing percentage of content consumption and creation is taking place on mobile
devices, with Android powering that growth as it reaches new heights of adoption and
market share.

 This chapter aims to equip you with an understanding of various approaches to
deploying web technologies so that you can deliver an enhanced Android user experi-
ence. We start by surveying the major options for Android web technology develop-
ment, all of which rely on the WebKit open source browser engine. After a brief
introduction to WebKit, we look at creating universal web applications—apps that run
well on the desktop as well as the Android browser. From there we move on to demon-
strating the use of the SQL capabilities available in the browser, commonly referred to
as HTML 5 databases. Note that although the browser SQL functionality was originally
part of HTML 5, it has since been extracted from the core HTML 5 specification.

 The chapter concludes with an example of building a “hybrid” application—one
that uses Android SDK Java code along with browser-based HTML and JavaScript code.

16.1 What’s Android web development?
Aside from a brief sojourn down the native C path in chapter 13, all of the coding to this
point has employed the Java-based Android SDK. This chapter breaks from that mold
and demonstrates various web programming capabilities of the Android platform.

 In short, web development is all about building applications with the traditional
tools that web developers use: HTML for content, CSS for presentation, and JavaScript
for programmatic control. In order for this capable and complementary trio to work
their magic, the Android platform relies on the WebKit browser engine.

16.1.1 Introducing WebKit

The WebKit browser engine stems from an open source project that can be traced
back to the K Desktop Environment (KDE). WebKit made its significant mobile debut
when the iPhone was released, and since then WebKit has been adopted by Android
and other mobile platforms.

 Prior to the adoption of WebKit, early mobile web solutions ranged from laugh-
able, to mediocre, to tolerable, though always limited. These early mobile web offer-
ings were often so constrained that they required content providers to generate a
mobile-specific stream in addition to the normal desktop version of their material. In
some cases, a server-side component would perform on-the-fly distillation of the
HTML into a format more readily digested by the mobile browser. Regardless of the
implementation, any requirement for content providers to generate multiple copies
of their material severely constrained the volume of content the early mobile devices
could readily consume. The early mobile web was virtually nonexistent because brows-
ers were not capable of rendering full pages and sites made for mobile were rare.

441What’s Android web development?
 Fortunately, WebKit has changed the game thanks to its impressive rendering capa-
bilities and its envelope-pushing feature set. You can expect the WebKit engine to ren-
der any web page on a par with your desktop browser. This means that virtually the
entire web is open and accessible to an Android user! The pages of your favorite web-
site will render on your Android device’s browser, though you’ll likely need to scroll
the page due to the small screen dimensions, and certain navigation systems that rely
on hovering aren’t accessible. Despite these drawbacks, the capabilities of WebKit
open the broad range of the web to mobile users. In this chapter, we demonstrate how
to scale your web applications to accommodate for smaller browser windows in a man-
ner that retains desktop browsing compatibility, all without the necessity of creating
and managing multiple sites.

 WebKit powers the browser on the Android device, but it’s also available as an
embedded control or widget, permitting SDK-based applications to render HTML
directly within a compiled application. This embeddable browser control is highly cus-
tomizable and thereby empowers the Android developer to exercise a tremendous
amount of control over the user experience.

 Web programming for Android is a broad and versatile topic. In the next section
we examine the approaches to using web technologies for Android application
development.

16.1.2 Examining the architectural options

When it comes to employing web technologies in an Android application, you have to
examine a few distinct categories of application architecture. Let’s look at the pillars
of Android web technologies.

 The first and most basic intersection of web technologies and Android application
development involves the standalone browser. The Android browser is a capable
HTML and CSS rendering engine, and it also implements a JavaScript engine. The
JavaScript engine is capable of running sophisticated JavaScript, including Ajax, and
supports popular scripting libraries such as JQuery and Prototype. As such, the
browser itself is capable of running rich internet applications.

 The browser can be a good augmentation to an SDK-based application. Let’s say
you’ve released a software application for distribution. As part of your application,
you’d like to register users or perhaps provide access to a list of FAQs. It doesn’t make
sense to ship all that content with your application because it’ll both take up space
unnecessarily and likely be out of date by the time the application is installed on a cli-
ent device. Likewise, why should you implement data-collection functionality directly
in your application if it can be more readily accomplished on your website? In this
case, it’d be more appropriate to have the application launch the browser, taking the
user to the website, where you can readily maintain your list of FAQs and your registra-
tion form. As you’ve learned, an Android application launches the browser through
the use of an Intent and the startActivity() method of the Context class.

 A variant of this model is embedding the browser control directly into an
Activity’s UI. In this scenario, the browser control is defined in a layout file and

442 CHAPTER 16 Android web development
inflated at runtime. The control is manipulated directly by Java code and directed to
render either locally provided content or to navigate to a location on the web. An
advantage of this approach is that although users may visit a remote site, they
haven’t actually left the application. This approach helps in creating a highly
scripted experience for the user. If users are taken out of an application, there’s a
chance they won’t return.

 A further refinement of the embedded browser experience is the practice of
extending the JavaScript environment, thereby permitting the boundary between in-
the-browser JavaScript and SDK Java code to be breached, to the benefit of the user
experience. Further, the hybrid application can exercise control over which pages are
shown and how the browser reacts to events such as bad digital certificates or window
opening requests.

 Whether your objective is to leverage your web development skills to bring
Android applications to market or to enhance your SDK application with browser-
based capabilities, the options are plentiful.

 It’s time to expand on this introduction of WebKit and demonstrate web technolo-
gies in action on the Android platform. The next section explores ways in which you
can design a traditional web application running in the standalone browser to accom-
modate Android clients.

16.2 Optimizing web applications for Android
We start this discussion by considering how to code web applications so they’re view-
able both by desktop clients and by mobile platforms such as Android. Developing
web applications for Android can be viewed as a continuum of options. On one end is
a site created for universal access, meaning that it’ll be visited by both desktop and
mobile users. On the other end of the spectrum is a website designed specifically for
mobile users. Between these two extremes are a couple of techniques for improving
the user experience. We’ll use the term mobile in mind—this refers to a website that’s
not exclusively written for mobile users but expects them as part of the regular visitor
list. Let’s begin with a discussion of designing your site with mobile in mind.

16.2.1 Designing with mobile in mind

There are millions of websites, but only a small percentage were created with mobile
devices in mind—in fact, many sites were launched prior to the availability of a mobile
browser. Fortunately, the browser in Android is capable of rendering complex web
content—even more powerful than any of the early desktop browsers for which those
early sites were designed.

 When designing a universal website—a site that’s to be consumed by desktop and
mobile users alike—the key concept is to frequently check your boundary conditions.
For example, are you considering fly-out menus that rely on hovering with a mouse?
That approach is a nonstarter for an Android user; there’s no mouse with which to
hover. And unless you’re a giant search engine provider, you want to avoid coding

443Optimizing web applications for Android
your site to the least common denominator approach of a single field per page. That
might get you by for a while on a mobile browser, but your desktop users will be both
confused and annoyed. You need to meet the needs of both sets of users concurrently.
You may be starting from a position that creating two sites—one for desktop and one
for mobile—is out of your reach from a budgetary perspective. We’ll come back to the
multiple-site approach later, but for now let’s design with mobile in mind.

 To meet that objective, we examine two approaches to improve the visual appear-
ance and usability of a mobile-in-mind website. Start with a simple HTML page, shown
in the following listing.

<html>
<head>
</head>
<body>
<h1>Unlocking Android Second Edition</h1>
<h2>Chapter 16 -- Android Web Development</h2>

<hr />
<div style="width:200px;border:solid 5px red;">
<p>For questions or support you may visit the book's companion website or contact the author via
email.</p>

</div>
</body>
</html>

When this HTML page is rendered in the browser, the
content is “zoomed out” such that it all fits onto the
page. Go ahead; try it yourself by pointing your
Android browser to http://android16.msi-wireless
.com/index.php. Figure 16.1 shows the content ren-
dered in the standalone browser on an Android device.

 The text is too small to easily be read on the phone.
The user can of course pinch, zoom, and scroll the
content to make it more easily consumed. But if you
know that the site visitor is viewing your site on a
mobile device, wouldn’t it be a good idea to put out
the welcome mat for them, keeping their pinching and
zooming to a minimum? Fortunately, there’s a simple
means of modifying the visual appearance of your site
so that when visitors arrive at your site via their
Android device, you can make them feel like you were
expecting them. To accomplish this simple but impor-
tant task, you use the viewport meta tag.

Listing 16.1 Sample HTML page

Figure 16.1 Simple web page

http://android16.msi-wireless.com/index.php
http://android16.msi-wireless.com/index.php

444 CHAPTER 16 Android web development
16.2.2 Adding the viewport tag

The lowest-cost and least-obtrusive solution to the default view being too small to see
is the use of a special meta tag. Meta tags have long been the domain of the search
engine optimization (SEO) gurus.2 A meta tag is placed within the <head></head> tags
of a web page to specify such things as the page keywords and description—which are
used by search engines to help index the site.

 In this case, the meta tag of interest is the viewport. A viewport tag tells the client
browser how to craft a virtual window, or viewport, through which to view the website.
The viewport tag supports a handful of directives that govern the way in which the
browser renders the page and interacts with the user.

 To provide a more appealing rendering of our sample HTML page, you’ll add a
viewport tag between the head tags. Listing 16.2 shows the same web page, but it now
includes the viewport meta tag. If you want to view the page on your own Android
device, you can do so at http://android16.msi-wireless.com/index_view.php.

<html>
<head>
<meta name="viewport" content="width=device-width" />
</head>
<body>
// omitted html text
</body>
</html>

This web page has been made more mobile friendly by
the addition of the viewport meta tag B. The content
attribute of the tag conveys directives to govern how
the viewport should behave. In this case, the browser is
instructed to create a viewport with a logical width
equal to the screen width of the device.

 Figure 16.2 demonstrates the impact this one line
of code has on the visual appearance of the web page.
Note how the text of the page is larger and more acces-
sible. To be fair, this is an ultrasimple example, but the
point is that you can provide a readable page right
from the start, and the user can easily scroll down verti-
cally to view the remainder of the site without needing
to zoom in or out just to make out what the page says.

 You can specify the width in pixels rather than
requesting the width to be equal to the device-width.
This approach can be useful if you want to display a
graphic in a certain manner or if your site can

2 See http://searchenginewatch.com for everything SEO related.

Listing 16.2 Adding the viewport meta tag

Viewport
meta tagB

Figure 16.2 The viewport tag
modifies the appearance of the
web page.

http://searchenginewatch.com
http://android16.msi-wireless.com/index_view.php

445Optimizing web applications for Android
remember a user’s preferences and by default set up the logical dimensions accord-
ing to the user’s liking. Table 16.1 describes the ways in which you can customize the
viewport.

Adding a viewport meta tag to a web page is safe, because any meta tags that aren’t
supported by a client browser are ignored, with no impact on the page. This one tag
provides a simple yet useful enhancement to an existing website. Although this isn’t a
magic bullet to solve every challenge associated with viewing a website on an Android
phone, it does aid in the first impression, which is important.

 Before moving on, we have one additional feature
of the viewport tag to demonstrate: scaling. Figure 16.3
shows the same web page scaled to 1.3 times the origi-
nal size. This approach can be used to scale a page up
or down, within the constraints defined by the mini-
mum-scale and maximum-scale directives as described
in table 16.1.

 This scaled-up web page may or may not provide
your desired effect. The good news is that you can
adjust the initial-scale value to your liking. In prac-
tice you’ll likely set the value to somewhere between
0.7 and 1.3.

 The viewport tag is almost a freebie: add the tag,
and if the browser recognizes it, the page’s rendering
will be modified and likely improved. You can take a
bit more control than this by selectively loading con-
tent or style sheets based on the type of browser visit-
ing your site. That’s what we explore next.

Table 16.1 Viewport meta tag options

Directive or attribute Comment

width Used to specify the width of the logical viewport. Recommended value:
device-width.

height Used to specify the height of the logical viewport. Recommended value:
device-height.

initial-scale Multiplier used to scale the content up (or down) when the page is initially
rendered.

user-scalable Specifies whether the user is permitted to scale the screen via the pinch zoom
gesture. Value: yes or no.

maximum-scale Upper limit on how far a page may be scaled manually by the user. Maximum
value is 10.0.

minimum-scale Lower limit of how far a page may be scaled manually by the user. Minimum
value is 0.5.

Figure 16.3 Scaled-up web page

446 CHAPTER 16 Android web development
16.2.3 Selectively loading content

Assuming your budget doesn’t provide for creating and managing entirely parallel
websites to meet the needs of your desktop and mobile visitors, you need a strategy for
adequately delivering quality content to both types of users. To go beyond the func-
tionality of the viewport tag, you want to have a more predictable experience for your
mobile visitors. To accomplish this, you’re going to selectively load CSS based on the
type of visitor to your site.

 Browser detection approaches have matured over time. Next we explore two basic
methods to accomplish this task, keeping in mind that your site is meant to be univer-
sal and expecting browsers of different shapes, sizes, and capabilities.

16.2.4 Interrogating the user agent

The first approach involves the examination of the user agent string. Every time a
browser connects to a web server, one of the pieces of information it provides in the
HTTP request is the browser’s user agent. The user agent is a string value representing
the name of the browser, the platform, the version number, and other characteristics
of the browser. For example, the user agent of a Nexus One running Android 2.2
looks like this:

Mozilla/5.0 (Linux; U; Android 2.2; en-us;Nexus One Build/FRF91) AppleWebKit/
533.1 KHTML, like Gecko) Version/4.0 Mobile Safari/533.1

The contents of this string may be examined and subsequently used to decide which
content and or CSS files to load into the browser. The following listing demonstrates
the use of the user agent string to selectively choose a CSS file.

<html>
<head>
<meta name="viewport" content="width=device-width" />
<link rel="stylesheet" href="corestuff.css" type="text/css" />
<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">
 if (navigator.userAgent.indexOf('Android') != -1) {
 document.write('<link rel="stylesheet" href="android.css"
type="text/css" />');
 } else {
 document.write('<link rel="stylesheet" href="desktop.css"
type="text/css" />');
 }
</script>
</head>
<body>
...
</body>
</html>

Listing 16.3 Interrogating the user agent

BLoad
core CSS

Look for Android
userAgent

C

447Optimizing web applications for Android
This HTML snippet includes a viewport meta tag, specifying that the viewport’s width
should match the width of the device. A CSS file is included named corestuff.css B.
Regardless of the platform, this file contains required classes and styles related to the
application. Using this approach, the web application includes a style sheet aimed at
more than one target platform. This enables us to have a more deterministic impact
on the behavior on a particular device, leaving less to chance. Our primary content
hasn’t changed—remember, we’re still targeting a universal website but keeping
mobile users in mind. Clearly, more work is being done here, as various stylistic ele-
ments have been extracted into platform-specific files. As such, we’re taking a mea-
sured step down the continuum toward a made-for-mobile site. If the user agent string
contains the word “Android” C, the code loads the user-supplied android.css style
sheet. If the user agent isn’t from an Android device, the code loads a style sheet
named desktop.css. Additional conditional statements may be included here for other
mobile platforms, such as the iPhone or BlackBerry.

 User agent strings contain a considerable amount of information, though just how
much of it is useful and trustworthy is a topic of debate. For example, it’s not uncom-
mon for a hacker to write code to programmatically bombard a target website and in
the process craft a user agent that masquerades as a particular kind of browser. Some
versions of websites are more secure than others. A user agent value is easy to forge,
and although the security implications aren’t expressly of concern to us in this discus-
sion, it’s something to keep in mind.

 The user string has so much data that you have to do a bit of homework to inter-
pret it properly. Some JavaScript libraries can aid in this process, but ultimately it may
not be the best approach. There’s another way: the media query.

16.2.5 The media query

Early web styling included inline markup such as font and bold tags. The best practice
in web design today is to separate styling information from the content itself. This
involves adding class attributes to elements of content and relying on a style sheet to
dictate the specific colors, sizes, font face, and so on. Providing multiple CSS files for a
given page enables flexible management of the numerous styles needed to deliver a
crisp, clean web page. This approach also permits flexibility in terms of which styles
are used for a particular device.

 Professional content sites have leveraged this approach through the use of multi-
ple, targeted style sheets along with extensive use of the link statement’s media attri-
bute. The media attribute acts as a filter for determining which style sheets should be
loaded. For example, consider the familiar scenario where you purchase something
online and you’re shown your receipt. The page may have fancy graphics and multiple
elements organized in a creative manner. But when the page is printed, the output is
relatively benign and thankfully easy to read. This is accomplished through the use of
the media attribute applying a print-oriented style sheet. You can leverage this same
approach to build mobile-in-mind web pages.

448 CHAPTER 16 Android web development
 The following listing presents a snippet from a web page with support for many
style sheets, including two for mobile-specific use.

<link href="//sitename/css/all.css" media="all"
rel="stylesheet" type="text/css" />

<link href="//sitename/css/screen.css"
media="screen,projection"
rel="stylesheet" type="text/css" />

<link href="//sitename/css/screenfonts.css"
media="screen,projection" rel="stylesheet"
type="text/css" />

<link href="//sitename/css/print.css"
media="print" rel="stylesheet" type="text/css" />

<link href="//sitename/css/handheld.css"
media="handheld" rel="stylesheet" type="text/css" />

<link href="//sitename/css/handheld-small.css"
media="only screen and (max-device-width:320px)"
rel="stylesheet" type="text/css" />

The media query of all B indicates that the associated style sheet (all.css) is appro-
priate for all devices. The screen.css file C is filtered for screen or projectors only. An
additional screen- or projector-targeted style sheet named screenfonts.css D is
included to organize all font-related styles. For hard-copy output, the media value of
print is used E. The media value of handheld F is intended for handheld devices,
though when the media query specifications were first drafted, the capabilities of
mobile browsers were quite limited—certainly much less feature rich than the
Android browser is today. Therefore, a better approach is to use a media query related
to specific attributes such as screen dimensions. For example, if you’re targeting a par-
ticularly small device, you can use a specific attribute-oriented media query. The hand-
held-small.css file G will be used when you have a screen width of no more than 320
pixels.

 As with all things browser related, your mileage may vary over time with different
releases. There’s no substitute for regression testing.

 The actual technique of employing CSS within your code is beyond our scope and
interest here; you can find many good references on the topic. The takeaway from this
discussion is to be prepared to employ the appropriate CSS for each visitor to the site
based on their respective web browser capabilities. The media query is a powerful tool
in your arsenal.

 Of course, no matter the amount of effort you put into making your universal web-
site mobile friendly, there are times when a site should simply be designed from the
ground up for mobile users.

16.2.6 Considering a made-for-mobile application

Here we are, finally at the other end of the spectrum where we look at web applica-
tions that are designed explicitly for mobile devices. After all, the best mobile web

Listing 16.4 Sample link statements

all.cssB

Screen
filter

C

Fonts
only

D
Print
only

E

Handheld
device CSS

F

Media query based
on screen size

G

449Storing data directly in the browser
applications are designed to be mobile applications
from the start and aren’t simply the full application
versions crammed onto a smaller screen, relying on
the browser to render them. The Android browser will
display the pages, but the full-blown websites are often
too heavy and busy for the typical mobile user. The
reason is simple: using a mobile device is a different
experience than sitting at your desk with a mouse and
full keyboard.

 More often than not, the Android user is on the
move and has little time or patience for dealing with
data entry-intensive UIs or sifting through large result
sets. Mobile transactions need to be thought out and
targeted to the mobile user profile. Pretend you’re
standing on a train looking at a piece of content or
making a status update to a service ticket. If you have to
select multiple menus or enter too many fields to per-
form your work, it likely won’t get done.

 Consider two axioms for made-for-mobile applications.
 The first is to simplify, reduce, and eliminate. Simplify the UI. Reduce the data

entry required. Eliminate anything that’s not needed. Seriously; pull out the scalpel
and cut out things that don’t matter to someone in the field. Consider figure 16.4,
which shows the mobile version of the Facebook application. There’s no nonsense
here, just two fields: Email or Phone and Password, and a button to log in. Three links
round out the page.

 The second axiom is to provide a link to the full site and make sure that you don’t
reroute the user to the mobile version if they’ve explicitly requested to go to the main
page. Note the Full Site link in the lower-right corner of figure 16.4. Sometimes peo-
ple have the time and need to dig deeper than the mobile version permits. When this
occurs, let the user go to the main page and do whatever you can through the view-
port tag and the media queries to make the site as palatable as possible, but with the
full features.

 It’s time to move beyond the browser-only visual aspects of web application devel-
opment to consider more advanced techniques that Android developers have at their
disposal. We look next at browser database management technology, which has the
promise to take web applications, mobile and desktop, to unprecedented levels of
functionality and utility.

16.3 Storing data directly in the browser
One of the historical challenges to web applications is the lack of locally stored data.
When performing a frequent lookup, it’s often too time- and bandwidth-intensive to con-
stantly fetch reference rows from a server-side database. The availability of a local-to-the-
browser SQL database brings new possibilities to web applications, mobile or otherwise.

Figure 16.4 Facebook mobile

450 CHAPTER 16 Android web development
Support for SQL databases varies across browsers and versions, but fortunately for us, the
Android browser supports this functionality. Once again the WebKit engine relationship
pays dividends as we demonstrate using the desktop version of the browser to debug our
application. It’s mobile development, but that doesn’t mean you’re constrained to work-
ing exclusively on the device! The sample application used in this portion of the chapter
illustrates the basics of working with a locally stored SQL database.

16.3.1 Setting things up

The local SQL database accessible through the Android browser is essentially a wrap-
per around SQLite. As such, any syntactical or data type questions can be satisfied by
referring to the documentation for SQLite. To learn more about the underlying data-
base technology, refer to the discussion in chapter 6 and or visit the SQLite website at
http://sqlite.org.

 For this application, we’re managing a single table of information with two col-
umns. Each row represents a version of the Android operating system releases. A sim-
ple web application is used to exercise the database functionality. Figure 16.5 shows
the application screen when first loaded.

 The sample application, which we present in the next section, is accessible on the
web at http://android16.msi-wireless.com/db.php. Before diving into the code, let’s
walk through the operation of the application.

 Running the application is straightforward. The first thing to do is click the Setup
button. This attempts to open the database. If the database doesn’t exist, it’s created.
Once the database is opened, you can add records one at a time by populating the
two text fields and clicking the Save button. Figure 16.6 shows the process of adding a
record.

Figure 16.5 The sample SQL application Figure 16.6 Saving a new record

http://sqlite.org
http://android16.msi-wireless.com/db.php

451Storing data directly in the browser
 The List Records button queries the database and
displays the rows in a crudely formatted table. Figure
16.7 shows the result of our query after a single entry.

 The final piece of demonstrable functionality is the
option to remove all records. Clicking the Delete All
Rows button opens the prompt shown in figure 16.8. If
you confirm, the application proceeds to remove all
the records from the database.

 Remember, all of this is happening inside the
browser without any interaction with the server side
beyond the initial download of the page. In fact,
there’s no database on the server! If 10 people all hit
the site, download this page, and add records, they’ll
be working independently with independently stored
databases on their respective devices.

 Let’s look at the code for this application.

16.3.2 Examining the code

Working with a SQL database within the browser envi-
ronment involves the use of some nontrivial JavaScript.
If you’re not comfortable working in the flexible
JavaScript3 language, the code may be difficult to fol-
low at first. Stick with it—the language becomes easier
as you let the code sink in over time. One helpful hint
is to work with a text editor that highlights opening
and closing braces and brackets. Unlike a compiled
Android SDK application where the compiler points
out coding problems during the development process,
JavaScript errors are found at runtime. Anomalies
occur, and you have to track down the offending areas
of your code through an iterative process of cat and
mouse.

 Let’s begin by examining the UI elements of this
application.

16.3.3 The user interface

We break down the code into two sections. The follow-
ing listing contains the code for the UI of the applica-
tion, stored in db.html.

3 For more on JavaScript, take a look at Secrets of the JavaScript Ninja at www.manning.com/resig. The book, by
John Resig, is to be published by Manning in March 2012.

Figure 16.7 Listing the records
from the table

Figure 16.8 Confirming deletion
of records

http://www.manning.com/resig

452 CHAPTER 16 Android web development
<html>
<head>
<meta name="viewport" content="width=device-width" />
<script src="db.js" type="text/javascript" ></script>
</head>
<body>
<h1>Unlocking Android Second Edition</h1>
<h3>SQL database sample</h3>
<div id="outputarea"></div>

1. <button onclick="setup();">Setup</button>

2. Add a record:

Version Number: <input id="id-field"

maxlength="50" style="width:50px" />

Version Name: <input id="name-field"

maxlength="50" style="width:150px" />

<button onClick="saveRecord(document.getElementById(

'id-field').value,document.getElementById(
'name-field').value);">Save</button>

3. <button onclick="document.getElementById(

'outputarea').innerHTML = listRecords();">
List Records</button>

4. <button onclick="if (confirm('Delete all rows. Are you sure?'))

{deleteAllRecords();}">Delete all rows</button>

</body>
</html>

The db.html file presents a simple GUI. This page runs equally well in either the
Android browser or the desktop WebKit browser. It’s coded with mobile in mind, and
as such includes the viewport meta tag B. All of the database interaction JavaScript is
stored externally in a file named db.js. A script tag C includes that code in the page.
A div element with an ID of outputarea D is used for displaying information to the
user. In a production-ready application, this area would be more granularly defined
and styled. Clicking the Setup button E calls the JavaScript function named setup
found in db.js. Ordinarily, this kind of setup or initialization function would be called
from an HTML page’s onload handler. This step was left as an explicit operation to aid
in bringing attention to all the moving pieces related to this code sample. We look
more deeply at these JavaScript functions in the next section, so sit tight while we fin-
ish up the GUI aspects.

 Two text fields are used to gather information when adding a new record F. When
the Save button is clicked G, the saveRecord function is invoked. Listing the records
is accomplished by clicking the List Records button H. Deleting all the records in the
database is initiated by clicking the Delete All Records button I, which in turn
invokes the deleteAllRecords function found in db.js.

Listing 16.5 User interface elements of the SQL sample page in db.html

BViewport meta tag

Reference
JavaScript fileC

Output divD

Call setup()E

Gather
required
data

F

Save
record

G

List all
records

H

I
Delete

all rows

453Storing data directly in the browser
 With the basic GUI explanation behind us, let’s examine the functions found in
db.js, which provide all of the heavy lifting for the application.

16.3.4 Opening the database

Now it’s time to jump into the db.js file to see how the interactions take place with the
browser-based SQL database. The code for opening the database and creating the
table is found in the following listing.

var db;
var entryCount;
var ret;
entryCount = 0;

function setup() {
try {
 db = window.openDatabase('ua2',1.0,'unlocking android 2E',1024);
 db.transaction(function (tx) {
 tx.executeSql("select count(*) as howmany from versions",
 [],
 function(tx,result) {
 entryCount = result.rows.item(0)['howmany'];
 document.getElementById('outputarea').innerHTML = "# of rows : " +

entryCount;
 },
 function(tx,error) {
 alert("No database exists? Let's create it.");
 createTable();
 });});
 } catch (e) {alert (e);}
}

function createTable() {
 try {
 db.transaction(function (tx) {
 tx.executeSql("create table versions(id TEXT,codename TEXT)",
 [],
 function(tx,result) {
 },
 function(tx,error) {
 alert("Error attempting to create the database" + error.message);
 });});

 } catch (e) { alert (e); }
}

All interactions with the database require a handle, or variable, representing an open
database. In this code, the variable named db B is defined and used for this purpose.
A variable named entryCount C is used to keep track of and display the number of
records currently in the database. This variable isn’t essential to the operation of the
code, but it’s a helpful tool during development. In the setup function, the variable db
is initialized with a call to the openDatabase function D. The arguments to the

Listing 16.6 Code that opens the database and creates the table

db handleB
entryCount
variableC

DOpen database

Execute SQL
transactionE

Result handlerF

Error handlerG

Handle error by
creating tableH

IExecute
create table

454 CHAPTER 16 Android web development
openDatabase function include the name, version, description, and initial size alloca-
tion of the database. If the database exists, a valid handle is returned. If the database
isn’t yet in existence, it’s created and a handle returned to the newly created database.
Calling the transaction E method of the database object invokes a piece of SQL code.

 The mechanics of the transaction method are nontrivial and are described in
detail in section 16.3.5. For now, understand that the argument to the transaction
method is a function that has four arguments: a SQL statement, parameters, a callback
function for handling a successful invocation of the SQL statement, and an error-
handling function invoked when an error occurs processing the SQL. The SQL state-
ment invoked here attempts to get a count of the rows in the table named versions.
This value is stored in the entryCount variable F. If the table doesn’t exist, an error is
thrown G. This is our cue to go ahead and create the table with a call to a user-
supplied function named createTable H. The createTable function executes a sin-
gle piece of SQL to create a table I. This method could be used to do any number of
database initialization activities, such as creating multiple tables and populating each
with default values.

 Before we go through the balance of the transactions, it’s important to grasp how
the transaction method of the database object is wired.

16.3.5 Unpacking the transaction function

All interactions with the database involve using the transaction method of the data-
base object, so it’s important to understand how to interact with each of the four argu-
ments introduced previously.

 The first argument is a parameterized SQL statement. This is simply a string with
any parameterized values replaced with a question mark (?). For example, consider a
SQL statement that selectively deletes the iPhone from a table named smartphones:

delete from smartphones where devicename = ?

The second argument is an array of JavaScript objects, each element representing the
corresponding parameter in the SQL statement. Keeping with our example, you need
to provide the value needed for the where clause of the delete statement within the
array:

['iPhone']

The net effect of these two lines together results in this SQL statement:

delete form smartphones where devicename = 'iPhone'

This approach keeps you from worrying about delimiters and reduces your exposure
to SQL injection attacks, which are a concern when working with dynamically con-
structed SQL statements.

 The third argument is a function that’s invoked when the SQL statement is success-
fully executed. The arguments to this callback function are a handle to the database
transaction identifier along with an object representing the result of the statement.

455Storing data directly in the browser
For example, when you perform a select query against a database table, the rows are
returned as part of the result, as you can see in listing 16.7, which shows the list-
Records function from our sample application. In this listing, we use the returned
rows to construct a rudimentary HTML table to dynamically populate the screen.
There are other ways of accomplishing this task, but we kept it simple because our pri-
mary focus is on the interaction with the returned results set.

function listRecords() {
 ret = "<table border='1'><tr><td>Id</td><td>Name</td></tr>";

 try {
 db.transaction(function(tx) {
 tx.executeSql("select id,codename from versions",
 [],
 function (tx,result) {
 try {
 for (var i=0;i<result.rows.length;i++) {
 var row = result.rows.item(i);
 ret += "<tr><td>" + row['id'] +

 "</td><td>" + row['codename'] +
 "</td></tr>";

 }
 ret += "</table>";
 document.getElementById('outputarea').innerHTML = ret;
 } catch (e) {alert(e);}
 },
 function (tx,error) {
 alert("error fetching rows: " + error.message);
 });});
 }
 catch (e) { alert("Error fetching rows: " + e);}
}

The SQL statement is passed as the first argument B. In this case, we’re pulling two
columns from the table called versions. The second parameter C is the Java array
holding any available parameterized values. In this sample, there are no parameter-
ized values to pass along to the transaction, but you’ll see one in the next section.
Upon a successful execution of the select query, the results function is invoked D.
The second parameter to the results function, which is named result in this code,
provides access to the returned record set. The result object contains a collection of
rows. Looping over the result set is as easy as walking through an array E. Each row is
pulled out of the result set F and individual columns are extracted by name G.

 The fourth and final argument to the transaction method is the error handler.
Like the success handler, this is also a callback function that takes two parameters.
The first parameter is again the transaction identifier, and the second is an object rep-
resenting the trapped error.

 With this basic understanding of the database object’s transaction method, let’s
review the remaining functions contained in the db.js file.

Listing 16.7 Processing returned rows from a query

SQL statementB

Optional parametersC
Result functionD

Process result rowsE
Work with
one rowFAppend

formatted string
G

456 CHAPTER 16 Android web development
16.3.6 Inserting and deleting rows

Thus far you’ve seen how to open a database, create a table, and select rows from the
table. Let’s round this example out with an examination of the code required to insert
a row and to remove all the rows from the table. The following listing shows the save-
Record and deleteAllRecords functions.

function saveRecord(id,name) {
 try {
 db.transaction(function (tx) {
 tx.executeSql("insert into versions (id,codename) values (?,?)",
 [id,name],
 function(tx,result) {
 entryCount++;
 document.getElementById('outputarea').innerHTML = "# of rows : "

+ entryCount;
 },
 function(tx,error) {
 alert("Error attempting to insert row" + error.message);
 });});

 } catch (e) { alert (e); }
}

function deleteAllRecords() {
 try {
 db.transaction(function (tx) {
 tx.executeSql("delete from versions",
 [],
 function(tx,result) {
 entryCount = 0;
 document.getElementById('outputarea').innerHTML = "# of rows : "

+ entryCount;
 },
 function(tx,error) {
 alert("Error attempting to delete all rows" + error.message);
 });});
 } catch (e) { alert (e); }
}

Inserting a row into our sample database takes place in the saveRecord method B.
This method takes two arguments: id and name. A parameterized SQL insert statement
C is crafted providing a placeholder for each of the values required for the versions
table. The parameters themselves are provided in an array D. The success handler E
is invoked after a successful insertion. When an error occurs during the SQL state-
ment’s execution, the user is notified via a simple JavaScript alert F. Of course, more
sophisticated error responses can be crafted as desired. In the deleteAllRecords
function, you see a delete statement executed G.

Listing 16.8 Data-handling functions

Save recordB
CInsert SQL

statement

Define parametersD Update countE

F

Define
error

handler

Delete SQL
statementG

457Storing data directly in the browser
 If you’re starting to get the feeling that this is just plain old SQL like you hoped,
you’re correct. And remember, this is running in the client side of your browser on
your Android device!

 Though the code runs happily in the Android browser, your phone isn’t necessar-
ily the most expedient way of testing the core functionality outside of the visual
appearance. Testing on either a real Android device or the emulator provides an
acceptable experience, but for web applications such as this one, there’s a better way
to test: WebKit on the desktop.

16.3.7 Testing the application with WebKit tools

The good news about SQL development is that you can do it; the bad news is that the
tools are limited compared to other SQL environments you’re accustomed to in the
desktop world. Fortunately, you can leverage the WebKit desktop browser, and its
built-in development tools aid in your database work.

 The Web Inspector4 and Error Console found beneath the Develop menu in Web-
Kit on the desktop provide helpful tools. When you’re working with JavaScript, one of
the challenges is that code tends to die silently. This can happen because something is
misspelled or a function doesn’t get properly defined thanks to a parsing error. When
working in Eclipse with an Android SDK application, this kind of problem doesn’t
occur at runtime because the compiler tells you long before the application ever runs.
With WebKit, you can leverage the Error Console, which provides helpful pointers to
parsing problems in JavaScript code. This is one of those “don’t leave home without
it” kind of tools.

 When you’re working explicitly with a SQL database, the Web Inspector provides a
helpful database tool that permits you to peer into the database and browse each of
the defined tables. Although this tool isn’t nearly as powerful as tools for commercial
databases, there’s something particularly reassuring about seeing your data in the
table. Figure 16.9 shows a row in our versions table along with the web application
running within the WebKit desktop browser.

 The ability to move between the powerful WebKit desktop environment and the
Android-based browser is a tremendous advantage to the Android developer looking
to create a mobile web application.

 As you’ve seen, the ability to store and manage relational data in a persistent fash-
ion directly in the browser opens up new possibilities for application creation, deploy-
ment, and life-cycle management.

 Storing data locally is a tremendous capability, but there may be times when you
simply need more raw power and flexibility—and that calls for an SDK-based applica-
tion. How do you get the best that HTML, CSS, and JavaScript have to offer but still go
deeper? The answer is to build a hybrid application, which we cover next.

4 For more details on the Web Inspector, try http://trac.webkit.org/wiki/WebInspector.

http://trac.webkit.org/wiki/WebInspector

458 CHAPTER 16 Android web development
16.4 Building a hybrid application
So far, we’ve explored some of the capabilities of the Android browser and the flexibil-
ity it can provide to Android web developers. Fortunately those capabilities aren’t con-
strained to pure web application developers only—you can bring the power of WebKit
directly into your Android SDK applications. Including the browser control into an
application is much more than a web page on a form, though of course if that’s what
you need, it’s simple to implement. This section walks through the basics of building a
hybrid application and demonstrates some features of the hybrid application model.
It all starts with putting a browser on the screen, so let’s begin there.

16.4.1 Examining the browser control

The browser control, found in the android.webkit package, may be added to any UI
layout in the same way that you add a TextView or a Button to an Activity in your
application. From there you can programmatically direct the browser to load content
from a remote web page, from a file shipped with your application, or even content
generated on the fly. This control’s behavior may be overridden at any number of
points and is a topic worthy of an entire book itself!

Figure 16.9 Testing in the WebKit browser

459Building a hybrid application
 In its default condition, the control behaves just like the Android browser—minus
the menus for navigating forward and back through your history and other typical
browser actions. A common use for the control is for displaying a help screen for an
application. Help written in HTML and downloaded from the vendor’s website is the
most convenient means of keeping information up-to-date, particularly if there’s a
user-community aspect to an application.

 Things become more interesting as you consider the desired behavior of the web
control. For example, have you ever wished you could provide a different message box
for your application? Or how about implementing a feature in Java rather than
JavaScript? All these things and more can be accomplished with the browser control—
or you can just use it to browse your application’s help docs. You decide when you con-
figure the control in your Activity. Let’s start there.

16.4.2 Wiring up the control

An application may override significant portions of functionality of the WebView
browser control, including the WebChromeClient, the WebViewClient, and one or
more JavaScript handlers, as described in table 16.2.

The following listing demonstrates setting up the browser control when the Activity
starts.

package com.msi.manning.webtutorial;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
import android.webkit.WebView;
import android.webkit.WebSettings;
import android.webkit.WebChromeClient;

Table 16.2 Overriding browser behavior

Handler Description

WebChromeClient WebChromeClient controls visual aspects of the browser, including
everyday tools such as the alert, confirm, and prompt functions. You can
override WebChromeClient if you want to make a unique browsing user
interface experience.

WebViewClient WebViewClient modifies how the browser controls content navigation
and lets you change the pages accessible to the user. Override
WebViewClient if you want to filter the content in some fashion.

JavaScriptInterface Custom JavaScript “libraries” are mapped into the namespace of the
browser’s JavaScript environment. JavaScriptInterface is the
mechanism by which you can bridge the JavaScript/Java programming
environments.

Listing 16.9 Setting up a browser control

WebView
imports

B

460 CHAPTER 16 Android web development
public class WebTutorial extends Activity {

 private WebView browser = null;

 public static final String STARTING_PAGE =
"file:///android_asset/index.html";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 setupBrowser();
 }
 private void setupBrowser() {
 browser = (WebView) findViewById(R.id.browser);
 WebSettings browserSettings = browser.getSettings();
 browserSettings.setJavaScriptEnabled(true);
 browser.clearCache(true);
 browser.setWebChromeClient(new UAChrome(this));
 browser.addJavascriptInterface(new UAJscriptHandler(this),

"unlockingandroid");
 browser.setWebViewClient(new

UAWebViewClient(this.getApplicationContext()));
 browser.loadUrl(STARTING_PAGE);
 }
}

As with any aspect of Java programming, we have to create the required import state-
ments. In this case, the android.webkit package B provides functionality for the
browser control. An Activity-scoped variable C is defined for accessing the WebView
browser control. A constant D is defined as the starting page for the Activity. The
layout is inflated in the same way virtually every Android Activity operates E; the
interesting point here is that when this layout inflates, it instantiates a browser control
that’s subsequently set up with a call to the method setupBrowser() F. findViewById
is used to obtain a reference to the browser control G. With this reference, a number
of characteristics of the browser may now be defined. Some of those characteristics
are managed by the WebSettings object associated with the browser, so it’s important
to get a reference to the settings H. With the settings object available, we enable
JavaScript I. Next we customize the behavior for this browser instance by installing
our own handlers for UI events with the UAChrome class J, a JavaScript extension 1),
and a WebViewClient to handle navigation events 1!. Finally, we get things started
with the browser by loading a page of content into the control 1@.

 As we mentioned earlier, the browser control may load content from a remote web
page, a locally stored page, or even from content generated dynamically. For the sam-
ple application built for this chapter, the initial page is stored under a folder named
assets. The assets folder isn’t created automatically and must be created by the devel-
oper. Figure 16.10 shows the index.html file in relation to the project.

 Android maps this folder at runtime to the logical path name of android_asset, as
in file:///android_asset/index.html. Figure 16.11 shows the index.html page run-
ning in the application.

WebView
instance variable

C

Starting
web page

D

Inflate layoutE

Set up
browser controlF

Get
reference
to control

G
Get
browser
settings
object

H

Enable JavascriptI

Set up Chrome clientJ

Set up
JavaScript
handler1)

Set up
WebView
client1!

Load
content
into control1@

461Building a hybrid application
The sample application is broken up into three demos, each highlighting a slightly
different aspect of working with a browser control in an SDK application (a hybrid
application). This approach is typical of hybrid applications where the browser con-
trol provides the UI and the Java code of the application provides much of the func-
tionality and program logic. The next few sections break down each of these pieces of
functionality along with the respective demonstration. Let’s begin by looking at the
technique of adding a JavaScript handler to our code.

16.4.3 Implementing the JavaScript handler

There are three pillars to the hybrid application, each supporting one of the major
areas of functionality that the WebView browser provides. The most straightforward of
these is the JavaScript handler. The browser control permits an application to “install”
one or more JavaScript handlers into the JavaScript namespace of the browser. You’ve
already seen in listing 16.9 how the browser is set up. To emphasize the JavaScript han-
dler initiation, it’s repeated here:

browser.addJavascriptInterface(new UAJscriptHandler(this),
 "unlockingandroid");

The arguments to the addJavascriptInterface mechanism are simple. The first is an
application-provided handler, and the second is a textual string. Listing 16.10 presents
the class for the handler. Note that this kind of class may also be implemented as an
inner class to the Activity, but we broke it out for clarity in this example. One conse-
quence of breaking the class out on its own is the need to provide a Context for the
code in order to access various elements of the SDK. You accomplish this by passing
the context into the constructor, as in this listing.

Figure 16.10 index.html used in
our sample application

Figure 16.11 index.html in our
browser control

462 CHAPTER 16 Android web development
package com.msi.manning.webtutorial;

import android.content.Intent;
import android.content.Context;
import android.net.Uri;
import android.util.Log;
import android.widget.Toast;

public class UAJscriptHandler {
 private String tag = "UAJscriptHandler";
 private Context context = null;

 public UAJscriptHandler(Context context) {
 Log.i(tag,"script handler created");
 this.context = context;
 }

 public void Log(String s) {
 Log.i(tag,s);
 }

 public void Info(String s) {
 Toast.makeText(context,s,Toast.LENGTH_LONG).show();
 }

 public void PlaceCall(String number) {
 Log.i(tag,"Placing a phone call to [" + number + "]");
 String url = "tel:" + number;
 Intent callIntent = new Intent(Intent.ACTION_DIAL,Uri.parse(url));
 context.startActivity(callIntent);
 }

 public void SetSearchTerm(String searchTerm) {

 WTApplication app = (WTApplication) context.getApplicationContext();
 app.setSearchTerm(searchTerm);
 }

}

The UAJscriptHandler class B implements various functions that are mapped to the
browser control’s JavaScript environment. Because this class is implemented outside
of the browser control’s containing Activity, we store a reference to the Context C,
which is passed in with the constructor D. A custom function named Log E takes a
String parameter and adds an entry to the LogCat file when invoked. Troubleshoot-
ing JavaScript code is a nontrivial exercise; the ability to add entries to the LogCat is a
big help during development. A custom function named Info F takes a provided
String and presents it as a Toast notification. This is helpful for providing informa-
tion to the user while browsing without the annoyance of an alert pop-up box.

 An excellent example of bridging the gap between web page and SDK program-
ming is found in the PlaceCall function G. When this function is invoked, the code
initiates a Dial to call a phone number that was provided by the user on the HTML
page. When the number is received and passed to this function, an Intent is crafted

Listing 16.10 JavaScript interface code implementation

JavaScript
interface

B

Context
reference

C

ConstructorD

Log
function

E

Custom
notification
method

F

PlaceCall functionG

HIntent to initiate call

IGlobal application object

String assigned
as search termJ

463Building a hybrid application
to initiate a dial action H. The final portion of the JavaScript interface is a function
named SetSearchTerm. We’ll discuss this further when we examine the WebView-
Client. For now, note that this function obtains a reference to the application’s global
class named WTApplication I. With this reference, the passed-in string is assigned as
a search term J.

 Remember that some functionality implemented in the JavaScript handler may
require you to add entries to the application’s manifest file. For example, the Place-
Call() method relies on the application having the android.permission.CALL_
PHONE entry in the AndroidManifest.xml file.

 Now that you’ve defined the JavaScript implementation class, let’s look at how this
code is invoked. To do that, we need to jump over to the index.html file.

16.4.4 Accessing the code from JavaScript

When the JavaScript interface code was installed, two arguments were passed to the
addJavaScriptInterface() method. The first was the implementation class, which
we just introduced. The second argument is a string representing the namespace of
the code as known to the calling JavaScript code. In our example, we passed in a string
named unlockingandroid as the second value. This means that in order to access the
functions within that JavaScript interface, we need to prefix the functions in the
JavaScript code with the string unlockingandroid. So, to call the Info function, we
use code such as window.unlockingandroid.Info('Hi Android');.

 Let’s delve further into the code and examine how the JavaScript interface is
utilized.

16.4.5 Digging into the JavaScript

The following listing presents the index.html file, which contains the UI for this appli-
cation. For each of the buttons on the HTML page, there exists a simple onclick han-
dler that invokes the respective JavaScript functionality.

<html>
<head>
<meta name="viewport" content="width=device-width" />
</head>
<body>
<h2>Unlocking Android 2E</h2>
<h3>Hybrid Application</h3>
Call a number: <input type="text" id="phone"/>
<button onclick=

"window.unlockingandroid.PlaceCall(
document.getElementById('phone').value);">
Place a call</button>

<hr/>
<button onclick=

"window.unlockingandroid.Info('Hi Android');">
Info</button>

Listing 16.11 index.html

Set up
viewport

B

Request
phone
number

C

Invoke
PlaceCall

D

Invoke
Info

E

464 CHAPTER 16 Android web development
<button onclick="alert('Hey chrome!');">Chrome</button>
<hr/>
Custom Search Term: <input type="text" id="term"/>

<button onclick=

"window.unlockingandroid.SetSearchTerm(
document.getElementById('term').value);">
Set Search Term</button>

Jump to Google
</body>
</html>

We include a viewport meta tag reference B to this page, making it scale nicely to
the Android device window. The first input text box C accepts a phone number to
be passed to the PlaceCall function D. Note the fully
qualified name of the function: window.unlocking-
android.PlaceCall. Likewise, the Info function e is
called, passing in a static string. The alert function F
is invoked; this is the same alert function web develop-
ers have been using for over a decade. You’ll see how
this function is handled later when we review the Web-
ChromeClient implementation. Also, for a later dem-
onstration of the WebViewClient, the SetSearchTerm
function G passes a user-supplied textual string to the
code, which is subsequently managed by the JavaScript
interface in the Java code. A link to Google’s home
search page H is provided to demonstrate traditional
links and to provide a launching point for the
WebViewClient demo.

 As you can see, the JavaScript side of things is sim-
ple. All you have to do is prefix the function name with
the namespace used when the code was registered in
the SDK code side of the hybrid application. Note that
the structure of the JavaScript interface technique per-
mits adding multiple JavaScript handlers, each regis-
tered independently and uniquely identified with its
own namespace.

 Figure 16.12 shows the collection of a phone num-
ber in the browser window.

 Once the user clicks the button, the window
.unlockingandroid.PlaceCall function is invoked,
passing in the value of the input text field. From here,
the Java code behind the PlaceCall function creates
the Intent to start the dial action. Figure 16.13 shows
the number ready to be dialed.

Invoke alert
functionF

Invoke
SetSearchTerm

G

Define simple
anchor tagH

Figure 16.12 Entering a phone
number in the web page

Figure 16.13 Ready to dial!

465Building a hybrid application
 When the user clicks the Info button on the web
page, the button’s onclick handler invokes window
.unlockingandroi.Info, passing in a string of “Hi
Android”. Figure 16.14 demonstrates the result of that
action.

 Clearly, the JavaScript implementation is power-
ful—so powerful that many commercial applications
are written with an open source project named Phone-
Gap that leverages this WebKit browser control tech-
nique. PhoneGap provides a framework for developers
to create their applications in HTML, CSS, and
JavaScript, where the device-specific features are pro-
vided in Android SDK Java code. For more information
about PhoneGap, visit http://phonegap.com.

 With power comes responsibility. There are some
security concerns with this interfacing technique.

16.4.6 Security matters

Using the JavaScript interfacing capabilities opens your
application to potential security risks because anyone
who knows your custom API implemented in your
JavaScript handler can exploit those features. It may be
wise to permit this functionality only for HTML that
you’ve written yourself. To demonstrate just how wired-
in this JavaScript interface actually is to your
application, consider this JavaScript code, which may be
implemented by a malicious piece of JavaScript:

<button onclick=
"alert(window.unlockingandroid.toString());">
toString</button>

The result? Look at figure 16.15.
 A simple method call identifies the name of the class

behind the interface!
 If you determine that a page isn’t of your own cre-

ation and want to disable the connection between your
JavaScript code and Java code, you can re-register the
JavaScript interface with a class that contains limited
functionality, a class with zero methods (like that in the
following listing), or even a null object.

private class UANOOP {
}

Listing 16.12 A no-op class

Figure 16.14 The Info button
shows a Toast notification.

Figure 16.15 The toString()
method called from JavaScript

http://phonegap.com

466 CHAPTER 16 Android web development
Even a class with no methods isn’t immune to trouble.
Consider this JavaScript code run against our no-op
class: window.unlockingandroid.wait(). Guess what
this does to our application? Figure 16.16 demonstrates
the destructive power of a malicious code calling meth-
ods of the root Java Object class.

 If you plan on taking this approach of putting in a
safe class implementation, a better move is to install
null as the class to handle the Javascript interface:
browser.addJavascriptInterface(null,"unlocking

android");. Or better yet, don’t allow navigation away
at all.

 Okay, enough of the drama. For now, let’s assume
that the web is a safe place to navigate and you can lock
things down as you see fit. If you want to exercise more
control over navigating the web with your in-the-app
browser, you can implement your own WebViewClient.
We’ll show you how.

16.4.7 Implementing a WebViewClient

The basic approach to controlling a browser control’s navigation is to subclass the
WebViewClient, which is also part of the android.webkit package. This class provides
methods such as onPageStarted(), onPageFinished(), and numerous other methods
related to browser navigation. For example, the class also has a method named
onReceivedSslError(), which is invoked when a visited site has a digital certificate
that either has expired or is invalid for some other reason. The range of functionality
here is significant and beyond the scope of this section, so we’ll focus on a narrower
and more practical example to demonstrate the use of this class.

16.4.8 Augmenting the browser

As mentioned earlier, the application associated with this chapter, WebTutorial, con-
tains a few demos. In this portion of the code, we demonstrate the WebViewClient
functionality by monitoring the loading of pages in the browser control, searching for
a predefined term. It’s designed to be a simple browsing augmentation tool: you
could take this basic framework and build a browser with customized functionality.

 Here’s how the application works. Starting in our application’s home page, enter a
search term, as shown in figure 16.17. In our case we’re interested in the term HTC,
which is a company that manufactures a number of Android phones. We’re interested
in how many times the term HTC shows up on any page that we load in the browser.

 When we click the Set Search Term button, our Java code is invoked, which stores
this search term in the application globals. Listing 16.13 shows portions of both the
JavaScript handler code and the WTApplication class. The WTApplication code man-
ages the application’s global variables.

Figure 16.16 A crashed
application thanks to the wait
function

467Building a hybrid application
import android.app.Application;

public class WTApplication extends Application {

 private String searchTerm = "";

 public void setSearchTerm(String searchTerm) {

 this.searchTerm = searchTerm;
 }

 public String getSearchTerm() {
 return this.searchTerm;
 }
}

public class UAJscriptHandler {

 public void SetSearchTerm(String searchTerm) {

 WTApplication app = (WTApplication) context.getApplicationContext();
 app.setSearchTerm(searchTerm);
 }
}

A strategy to manage application globals in an Android application is to provide an
implementation of the android.app.Application class B. This class is accessible to
every Activity, Service, BroadcastReceiver, and ContentProvider within a given
application, and as such is a convenient means of shar-
ing information. In this case we implement a simple
pair of setter/getter methods for managing the search
term C. When a user clicks the Set Search Term but-
ton in the browser control, the code gets a reference to
the android.app.Application implementation D and
then updates the search term E.

 With the search term safely stored, it’s time to navi-
gate the web.

16.4.9 Detecting navigation events

Now you need to begin browsing the internet. For lack
of a better place to start, jump to the Google home
page and enter the search term android, as shown in fig-
ure 16.18.

 As soon as the page is launched, we want to remind
our users that we’re searching for the term HTC, and
when the page is fully loaded we want users to know
whether the term was found, as shown in figure 16.19.

Listing 16.13 Managing the search term

Implement
android.app.Application

B

C Manage global
search term

DGet reference to
Application

Set
search termE

Figure 16.17 Setting up a
search term

468 CHAPTER 16 Android web development
As you can see, searching the web for android + HTC is a different operation compared
to searching for android and then HTC. Yes, this functionality can be accomplished
with some search engine magic. The point is that you want to be able to have this
browsing assistant follow you wherever you go on the internet—even beyond the
search engine launching point. Any time you browse to a new page, you receive a
Toast notification letting you know how many times your search term appears on the
page. To show you how this is implemented, let’s examine the following listing, which
shows the implementation of the UAWebViewClient class.

package com.msi.manning.webtutorial;

import android.content.Context;
import android.util.Log;
import android.graphics.Bitmap;
import android.webkit.*;
import android.widget.Toast;

public class UAWebViewClient extends WebViewClient{
 private String tag = "UAWebViewClient";
 private Context context;
 public UAWebViewClient(Context context) {
 super();
 this.context = context;
 }
 public void onPageStarted(WebView wv,String url,Bitmap favicon) {
 super.onPageStarted(wv,url,favicon);
 if (!url.equals(WebTutorial.STARTING_PAGE)) {

Listing 16.14 UAWebViewClient.java

Figure 16.18 Searching the
web via Google

Figure 16.19 Hit indicator

Extend
WebViewClient

B

Call super
methods

C

CCall super
methods

Selective operationD

469Building a hybrid application
 WTApplication app = (WTApplication) context;
 String toSearch = app.getSearchTerm();
 if (toSearch != null && toSearch.trim().length() > 0) {
 Toast.makeText(context,"Searching for " +

toSearch,Toast.LENGTH_SHORT).show();
 }
 }
 }
 public void onPageFinished(WebView wv,String url) {
 super.onPageFinished(wv,url);
 Log.i(tag,"onPageFinished");
 if (!url.equals(WebTutorial.STARTING_PAGE)) {
 WTApplication app = (WTApplication) context;
 String toSearch = app.getSearchTerm();
 if (toSearch != null && toSearch.trim().length() > 0) {
 int count = wv.findAll(app.getSearchTerm());
 Toast.makeText(app, count + " occurrences of " + toSearch +

".",Toast.LENGTH_SHORT).show();

 }
 }
 }
}

Extending the WebViewClient B for our purposes involves a custom constructor plus
two subclassed methods. For each of the three methods, we call the respective super
methods C to make sure the parent class has an opportunity to perform necessary
housekeeping. When filtering the page loads, we don’t want our augmented behavior
to fire if we’re on the starting index.html page shipped with the application, so we do
a basic string comparison D to selectively ignore the additional functionality if we’re
back on the starting page within our own content. Assuming we’re on a subsequently
loaded web page, we need to access the android.app.Application instance E to
gain access to the globally stored searchTerm F. In the onPageStarted() method, we
remind the user of the term we’re searching for through the use of a Toast notifica-
tion. In onPageFinished(), we call the findAll() method to search the newly down-
loaded page for the search term G. When the search is completed, we again let the
user know via a Toast notification.

 This WebViewClient extension is installed with a call to

browser.setWebViewClient(new
 UAWebViewClient(this.getApplicationContext()));

This simple application is begging for enhancements, so feel free to download the
sample code and extend the WebViewClient yourself and enjoy the feeling of adding
functionality to the world’s most popular application—the browser!

 If you have a taste for improving additional behavior modification of the browser,
you’ll want to try your hand at updating the chrome by subclassing WebChromeClient.

Get
searchF

Get
globalsE

Find all
occurrences of term G

Call super
methods

C

Get
globals

E

Get searchF

Find all
occurrences of term G

470 CHAPTER 16 Android web development
16.4.10 Implementing the WebChromeClient

The WebChromeClient class is responsible for handling client-side events such as
JavaScript alerts, prompts, and the like. Additionally, the WebChromeClient is notified
when a window is being closed or a new window is attempting to load. Like the Web-
ViewClient, this class is a topic unto itself. For our purposes here, we demonstrate its
use by overriding the alert() JavaScript function.

 Referring to the index.html file from listing 16.11, you see the code for handling
the Chrome button: <button onclick="alert('Hey chrome!');">Chrome</button>.
There’s no special namespace qualifier on this function—it’s the same JavaScript alert
function used since client-side programming first littered our world with pop-up mes-
sages. This function’s sole purpose is to inform the user of information that’s hope-
fully relevant to their browsing activity. Listing 16.15 demonstrates subclassing the
WebChromeClient and implementing the onJsAlert method. Again, this method is
invoked when the JavaScript alert function is encountered in a running web page.

package com.msi.manning.webtutorial;

import android.content.Context;
import android.widget.Toast;
import android.webkit.JsResult;
import android.webkit.WebChromeClient;
import android.webkit.WebView;
import android.widget.Toast;

public class UAChrome extends WebChromeClient {

 private Context context;
 public UAChrome(Context context) {
 super();
 this.context = context;

 }
 public boolean onJsAlert(WebView wv,String url,

String message,JsResult result) {
 Toast.makeText(wv.getContext(),message,Toast.LENGTH_SHORT).show();
 result.confirm();
 return true;
 }
}

The UAChrome class extends the WebChromeClient B. In the constructor, we call the
constructor of the super class with a call to super C. In order to process alert state-
ments, we need to implement the onJsAlert() method D. This method takes four
arguments: the WebView instance hosting the JavaScript code, the URL of the page, the
message to be displayed, and a JsResult argument. The JsResult object has methods
for indicating to the caller whether the user confirmed or canceled the prompt. In this
sample implementation, we replace the pop-up box with a tidy Toast notification E;
and because the Toast notification clears on its own, we need to inform the caller that

Listing 16.15 UAChrome.java

Extending
WebChromeClient

B

Call super
method

C

Override
onJsAlert

D

Confirm
resultF E

Toast
notificationReturn trueG

471Summary
the notification was “confirmed.” This is accomplished with a call to the confirm()
method of the JsResult parameter named result F. Finally, we return a Boolean
true G to indicate that this overridden method has processed the event.

16.5 Summary
This chapter covered a fair amount of material related to web development for
Android. As with most topics related to programming, we’ve only scratched the sur-
face—and hopefully provided you with inspiration and guidance on where to dig
deeper on your own.

 Starting with the idea of making pure web applications as friendly as possible on
the Android standalone browser, we explored the viewport meta tag along with the
technique of loading platform-specific CSS files. Style sheet management is an impor-
tant and recommended skill for any kind of web development today.

 Moving beyond the look and feel aspects of the in-the-browser application model,
we explored the technique of SQL database access directly from the client-side
JavaScript. After a basic demonstration of the data access methods, we looked at a con-
venient testing platform in the desktop version of WebKit.

 We then moved on to cover perhaps the most exciting aspect of web programming
in the mobile world today: creating hybrid applications. Hybrid applications can
enhance an Android SDK application with highly capable formatting of selective areas
such as help screens or tutorials. Or, as demonstrated in this chapter’s sample code, a
hybrid application can enable a purely HTML and CSS user interface while permitting
the underlying Java code to perform the heavy lifting. Regardless of your approach,
having an understanding of the basics of Hybrid application development is a benefit
to the Android programmer.

 In the next chapter, we’ll look at one of the game-changing features of the
Android platform: the AppWidget.

AppWidgets
Continuing with the theme of exploring the maturing Android platform, this chap-
ter examines the AppWidget, which brings functionality to the phone-top, or home
screen, of an Android device. In this chapter, you construct an application named
SiteMonitor that ties together many of the fundamental application development
skills from prior chapters and adds an interactive presence on the home screen.

 By placing content directly on the Android device’s home screen, you empower
the user to fully leverage the platform by making powerful tools available for use
quickly and conveniently. Think about it—the deeper a user has to tap into an appli-
cation to find information of value, the less likely the application will become an
everyday staple. The goal is to create a mobile experience that brings value without
becoming a black hole of time, attention, or worse, annoyance. A key ingredient to
meeting this objective is the effective use of the AppWidget. This chapter equips you

This chapter covers
 Introducing the AppWidget

 Introducing the sample application: SiteMonitor

 Implementing the AppWidgetProvider

 Configuring an AppWidget instance

 Updating the AppWidgets
472

473Introducing the AppWidget
with an understanding of the uses and architecture of AppWidgets. It walks step by step
through the creation of a nontrivial AppWidget example application, including impor-
tant tasks such as configuration, data, and GUI updates, and wraps up with a discussion
of the elements required within the application’s AndroidManifest.xml file.

17.1 Introducing the AppWidget
When a user picks up an Android device (or any smartphone for that matter), their
first impression is often defined by their experience interacting with the phone’s
home screen. On the home screen, a user interacts with applications, initiates a
phone call, searches the device, launches a browser, and more. By the time the user
begins to browse for an application among the sea of icons in the launcher window, a
certain percentage of users will be lost and will conclude that the device just isn’t user
friendly. This can be likened to burying important web content deep within a web-
site—you need to be wary of hiding the value of your applications. One solution to
this challenge for Android is to employ an AppWidget.

17.1.1 What’s an AppWidget?

An AppWidget is code that runs on the home screen of an Android device. The visual
size of an AppWidget instance can vary and is designated by the programmer at design
time. The home screen is broken up into 16 usable spaces, each of which is approxi-
mately 74 pixels square. An AppWidget can span a rectangular area ranging from 1 x 1
spaces to 4 x 4 spaces, provided there’s room on the current home screen page. (A
typical phone has around five to nine home screen pages.)

 An AppWidget is typically deployed as a read-only
interface providing a view into application data. The UI
is implemented in a manner similar to a layout for a
traditional Android Activity. Unlike the Activity, the
AppWidget is much more constrained in that the only
user action permitted is a click. An AppWidget can’t
present a scrollable list, an EditText, or any other user
input mechanism beyond something that can react to a
click. When anything beyond a click is required as user
interaction, it’s prudent to load an Activity for the
heavy lifting—an AppWidget just isn’t designed for sig-
nificant user interactions. In this case, the AppWidget
acts as a storefront for the underlying Activity. It
accepts a click and then hands control off to the back
office, implemented typically by an Activity.

 Despite this apparent shortcoming, not all App-
Widgets require anything beyond a basic user interface.
For example, consider the Power Control Widget
shown in figure 17.1. The Power Control Widget is an

Figure 17.1 Power Control
Widget on the home screen

474 CHAPTER 17 AppWidgets
excellent demonstration of simplicity and value. This
widget is used to enable and disable various system ser-
vices such as Bluetooth, Wi-Fi, GPS, and other battery-
impacting functions. GPS services are a significant drain
on the battery—the fact that the Power Control Widget
exposes this on/off feature so easily makes the use of
location-based services a more realistic option for
Android users. On other phone platforms, this kind of
functionality is generally hidden under system or
option menus.

 You add AppWidgets to the home screen by pressing
and holding an empty area until a menu launches, as
shown in figure 17.2.

 From this menu, select Widgets, and available App-
Widgets are displayed in a scrollable list, as shown in
figure 17.3. Tap on the desired widget to add an
instance to your home screen.

 An AppWidget runs under another application,
namely an AppWidgetHost, which is typically the
device’s home screen. The AppWidget code is imple-
mented in an instance of an AppWidgetProvider, which
is an extension of the BroadcastReceiver class. Recall
from prior chapters that a BroadcastReceiver is
defined as a receiver in the AndroidManifest.xml file.
The AppWidgetProvider is a BroadcastReceiver with a
special IntentFilter and a metadata tag that further
defines the AppWidgetProvider’s characteristics. An
AppWidget may be implemented in code as a
BroadcastReceiver alone, yet the AppWidgetProvider
provides some convenience wrapper functionality and
is the recommended means of coding an AppWidget.

AppWidgets are designed to be updated periodically.
The stock implementation of an AppWidget automati-
cally updates at an interval defined by the developer at
design time. In general, this update is kept to a low fre-
quency to conserve battery power. There are other
mechanisms for updating an AppWidget on an as-
needed basis through the use of Intents. The App-
WidgetProvider extends BroadcastReceiver and therefore can receive different
Intent Actions based on the defined IntentFilters. The common practice is to
define an application-specific IntentFilter action and use the sendBroadcast()
method to trigger an AppWidget update on an as-needed basis.

Figure 17.2 Add to home screen

Figure 17.3 Choose a widget,
any widget.

475Introducing the AppWidget
 The details of the AppWidgetProvider, the special metadata in the Android-
Manifest, IntentFilters, RemoteViews, and much more are all discussed in this chap-
ter. Before we delve into the details of constructing an AppWidget, let’s consider the
various design patterns an AppWidget can satisfy.

17.1.2 AppWidget deployment strategies

In its most basic implementation, an AppWidget can be considered a dashboard of
sorts. The Power Control Widget shown in figure 17.1 is a good example of this flavor
of AppWidget. This AppWidget has no other user interface to which it’s tied, and any
actions taken directly invoke an underlying request to enable or disable a system fea-
ture. In any normal scenario, there’d be at most one Power Control Widget deployed
to the home screen. A user is free to add multiple copies of the Power Control Widget
to their home screen, but there’s no additional utility or benefit from doing so.

 Now consider an AppWidget for Facebook or Twitter, as shown in figure 17.4.
 Some people have multiple social media accounts and may desire multiple App-

Widgets instantiated for making updates to specific accounts. In this scenario, each
AppWidget instance is tied to its own set of data. For the purposes of this chapter, we’ll
call this data the AppWidget instance model. Each instance of the AppWidget has its
own set of data—which in the case of a Twitter account widget would look like user-
name/password information plus any cached data related to the specific account. We
go into significant detail later in this chapter on how to manage this per-widget data.

 One role an AppWidget can play is as a smart shortcut. Rather than simply display-
ing a static shortcut to an application, the AppWidget provides a means of displaying
pertinent and timely information to the user. When
clicked, the AppWidget loads the relevant Activity or
launches a relevant web page. Consider, for example, a
calendar widget that displays upcoming events on the
home screen. Tapping on the widget causes the calen-
dar application to load, jumping to the specific event
of interest.

 Due to the variable nature of an AppWidget’s
deployment strategy, it’s important to give some consid-
eration to how an AppWidget interacts with the other
Android-based application components. What may
seem like a simple AppWidget application may in fact
require the collaboration of multiple components.
Table 17.1 presents a nonexhaustive list of options for
how an AppWidget may interact with other components
within a suite of applications.

 What makes AppWidgets specifically (and Android
generally) so appealing to a developer is the ability to
distribute code that provides a small, focused piece of

Figure 17.4 Tweeting about
this chapter!

476 CHAPTER 17 AppWidgets
functionality. For example, let’s say you have a great idea to make interacting with the
calendar much easier: the “Killer Calendar App.” In traditional mobile development,
implementing your idea would require replacing the entire calendar application.
With Android’s architecture, a developer can distribute their application as simply an
AppWidget that provides a better interface, yet not have to replace the mountains of
work already shipped in the form of built-in applications! What’s more, portions of
your code could be called by third-party applications, provided they have the appro-
priate permissions.

 Creating an AppWidget isn’t something to be taken lightly. There are decisions to
be made and pitfalls to avoid—all of which we cover in this chapter. Before we dive
into the weeds of constructing an AppWidget of our own, let’s take a step back and
review the design objectives of SiteMonitor, our sample application for this chapter
that provides the context for learning about AppWidgets.

17.2 Introducing SiteMonitor
To demonstrate the AppWidget, this chapter presents an application named Site-
Monitor. SiteMonitor is a simple utility used to help monitor hosted applications such
as blogs, commerce sites, and the like—web-based applications.

17.2.1 Benefits of SiteMonitor

The premise of SiteMonitor is that an Android device is highly connected and highly
capable, and therefore should be leveraged to provide more value to the user than

Table 17.1 Various AppWidget deployment patterns

Description Additional application components Example

AppWidget standalone Singleton. No configuration options.
No Activity required. May use a
Service to process a longer-
running request in some
implementations.

Power Control.

AppWidget as smart
shortcut

Used to present information, and
upon a click loads an Activity.

Email widget showing the number of
messages in an inbox or upcoming
events in a calendar.

AppWidget with specific
static data

Configuration required. Variable
amounts of data associated with
each widget instance.

PictureFrame widget showing
a user-selected image from the
gallery.

AppWidget with dynamic
data

Configuration required. Variable
amounts of data associated with
each widget. Service used to update
data. BroadcastReceiver used
to respond to alarm invocations or
other triggers that prompt updates
at various times.

News application widgets. The sam-
ple application from this chapter,
SiteMonitor, demonstrates this
pattern.

477Introducing SiteMonitor
simply functioning as a fancy email device. Although this application may not be
appealing to the mass consumer market, there’s a nontrivial population of individuals
(entrepreneurs, system admins, service providers, and so on) who have an interest in
keeping one or more websites running.

 The implications of a website/hosted application not running properly range from
annoyance, to embarrassment, to loss of revenue when a commerce site isn’t accept-
ing transactions. Being able to keep an eye on a collection of online assets from any-
where is empowering and can even make things like a day out of the office seem more
realistic. Mobile devices today often feel like long leashes—perhaps this application
can lend a few more feet to the leash.

 Of course it’s possible to receive SMS alerts or emails when a site is no longer avail-
able, with server-side tools and third-party services—which is fine and applicable in
many instances. But keep in mind that SiteMonitor works entirely without server-side
integration, another desirable feature that’s in line with the trend of today’s mobile
applications.

 SiteMonitor is an AppWidget designed to meet the objective of monitoring website
health. Let’s start with the high-level user experience.

17.2.2 The user experience

Checking on websites is possible today with an Android device—just bookmark a
bunch of application URLs in the WebKit browser and check on them. And then check
on them again. And again. You get the picture; it’d be desirable to get some automated
assistance for this basic and repetitive task. The logical
answer is to code an application to do this for you. In
this case, SiteMonitor employs an AppWidget to bring
useful information directly to the phone’s home screen.
Let’s look at the user interface.

 Figure 17.5 shows the home screen of an Android
device with four instances of the SiteMonitor widget
configured to monitor four different applications.

 The UI is admittedly lackluster, but the information
is precisely what’s needed in this situation. At a glance
you can see that of the four sites being monitored,
three are up (green) and one is in an error condition
(red). You can see the name of each site and the date/
time of the most recent update. Tapping on one of the
SiteMonitor widget instances brings up an Activity
where you can see detailed information about the site.

 The widget-specific data includes not only the con-
figuration values for the hosted application but also the
most recent data retrieved from the hosted application.
For example, you see in figure 17.6 that this particular

Figure 17.5 Four instances of
the SiteMonitor AppWidget on
the home screen

478 CHAPTER 17 AppWidgets
site, named “chap 17,” has a low disk space warning.
The application can easily support multiple conditions;
for now let’s keep things simple with a good condition
and a bad condition. Good sites are shown in green and
bad are shown in red on the home screen.

 Still referring to figure 17.6, note that the screen
has support for maintaining three different fields, each
implemented as an EditText control. The first Edit-
Text instance manages the name of the site. Space is
limited on the widget, so it’s best to keep the length of
this name limited. Note that the widget can be
expanded to take more space and therefore permit
more descriptive names, and most users will be able to
use a short descriptor such as a server name or a client’s
nickname. More important, you want to fit multiple
instances of the SiteMonitor widget on the home
screen, so they shouldn’t take up any more space than
absolutely necessary.

 The next EditText field holds the URL that the
application periodically pings to check the status of the site. When it’s time to update
the status of a particular hosted application, SiteMonitor performs an HTTP GET
against this URL and expects a pipe-delimited return string. For example, a response
from a commerce site might look like the following:

GOOD|There are 10 orders today, totaling $1,000.00

Or perhaps a site that’s down might have a response that looks like this:

BAD|Cannot reach payment processor. Contact fakepaymentprocessor.com
at 555-123-4567

The third EditText field stores the site’s home page. When the Visit Site button is
clicked, the application opens a browser and navigates to this URL. Why is this feature
included? The answer is simple: the most common reaction to receiving a “the site is
down” notification is to check out the site firsthand to see what kind of errors may be
presenting themselves to site visitors. This approach is much easier than firing up the
browser and tapping in a complete URL—particularly under duress!

 Referring again to figure 17.6, note the highlighted phone number contained in
the TextView field. Selecting that link causes the phone to launch the dialer as shown
in figure 17.7. This TextView has the autoLink attribute enabled. When this attribute
is enabled, the application is requesting that Android scan the textual information
and attempt to turn any data that looks like a link into a clickable hotspot. Android can
optionally look for websites, email addresses, phone numbers, and so forth. This fea-
ture is one more step in making things as streamlined as possible for a mobile user to
support a hosted application.

Figure 17.6 Site details,
including hot-linked text

479Introducing SiteMonitor
 Let’s say the user is out to dinner and equipped
only with an Android device when a site goes down or
experiences an urgent condition. It may not be conve-
nient or feasible to look up detailed support informa-
tion about a particular hosted application, particularly
if this site is one of many. When an error condition is
observed, it’s useful to have key actionable data right
at your fingertips. This is akin to a “break glass in case
of emergency” situation. An emergency has occurred,
so let’s be as prepared as possible.

 The application isn’t limited to returning only bad
news—it’s feasible to have the application monitor
good news as well. For example, figure 17.8 shows that
the Acme site has received over $1,000 worth of busi-
ness today! Note the highlighted numbers: one of the
side effects of the auto-linking is that it sometimes
returns false positives.

 The SiteMonitor application is AppWidget-centric.
Although you can configure and examine various
aspects of a specific site through the configuration
Activity, there’s no other means of interacting with
the application. This application doesn’t appear in the
main launcher screen. As a natural consequence
of relying solely on instances of an AppWidget for the
UI, the number of sites monitored by SiteMonitor is
limited by the amount of home-screen real estate avail-
able upon which SiteMonitor widget instances can be
placed. Remember the motivation to keep an App-
Widget design as conservative as possible with respect
to screen real estate. It’s impossible to have an AppWid-
get that takes up less than one of the 16 available
spaces on a home screen page, but easy to have one
that’s larger than a 1 x 1 space.

 Please keep in mind that this choice of making Site-
Monitor available exclusively as an AppWidget is an arbi-
trary design decision to demonstrate working with an
AppWidget. A simple extension of this application could
remove this intentional limitation. To add this applica-
tion to the home screen, you could add an Activity that presents each of the moni-
tored sites and then add the Activity to the home screen launcher.

 Now that you have a basic understanding of what SiteMonitor is attempting to do,
it’s time to look at how the application is constructed.

Figure 17.7 Easy dialing to an
affected user

Figure 17.8 Monitor the good
news also—revenue!

480 CHAPTER 17 AppWidgets
17.3 SiteMonitor application architecture
Let’s start with a high-level architectural view and then drill down so that you can bet-
ter understand each major aspect of the SiteMonitor application. Some of the code
examples are provided in this chapter in an abbreviated form due to their length.
You’re encouraged to download the full project to walk through the code as you move
through the balance of this chapter.

 Let’s begin with a pictorial representation of the application.

17.3.1 Bird’s-eye view of the application

The SiteMonitor application relies on multiple Android application components to
deliver the desired functionality. Figure 17.9 depicts the major components of the
application.

 Examining in more detail the elements depicted in figure 17.9, you see an
Android device B hosting multiple instances of AppWidgets C. In this diagram, each
of the four AppWidgets represents an instance of the SiteMonitorWidget. This App-
Widget class is implemented in the class named SiteMonitorWidgetImpl that extends
an Android-provided class named AppWidgetProvider.

 Each instance of the SiteMonitor widget is configured by the user to monitor a dis-
tinct hosted application/website in the collection of sites D. The relationship

S1

S4

S3

S2

W1 W2 W3 W4

SiteMonitorWidgetimpl
Instances

SiteMonitorService
(Service)

Shared
Preferences

AndroidManifest.
xml

Meta-data

Home Screen

AppWidgetManager
(Android class)

SiteMonitorConfigure
(Activity)

SiteMonitorBootstrap
(BroadcastReceiver)

B

C

D

E

F

G

H

I

1)

1!

Alarm

J

Figure 17.9 Architectural diagram of the SiteMonitor application

481SiteMonitor application architecture
between a specific widget instance and its data is stored in the application’s Shared-
Preferences E persistent store. The class SiteMonitorModel provides methods for
managing and manipulating these data model instances. An Activity F is employed
to permit a user to configure the widget instance data. This Activity is implemented
as class SiteMonitorConfigure.

 Each time a new SiteMonitor widget is added to the home screen, the Site-
MonitorConfigure Activity is invoked to query the user for site-specific data: name,
URL, home page. This auto-launching of an Activity happens thanks to a special
relationship between an AppWidget class and its configuration activity. This relationship
is defined in the metadata file 1!. This metadata is referenced by the <receiver>
entry of the SiteMonitorWidgetImpl class in the manifest file 1). Note that the prac-
tice of having a configuration Activity for an AppWidget is optional.

 When a SiteMonitor widget instance is added or removed, a corresponding
method in the SiteMonitorWidgetImpl class is invoked. The specific methods of this
class are described in section 17.3.2. The Android-provided AppWidgetManager class
G acts as a helper to provide a list of AppWidget identifiers related to the Site-
MonitorWidgetImpl class. At this point, there are multiple widget instances on the
home screen, updating their visual display according to an update-refresh interval set-
ting defined in the metadata file 1!.

 As mentioned earlier, it’s common practice to perform an AppWidget update out-
side of its normally defined update interval. This update is generally accomplished
through the use of a Service, often triggered by an Alarm. It’s not a recommended
practice to have long-running Services in the background, so we use the preferred
method of employing an Alarm J that propagates a PendingIntent.

 The PendingIntent contains an Intent that’s received by the SiteMonitor-
Bootstrap class I. This class also contains static methods for managing the alarm,
called at various points in the application, each of which is discussed further in this
chapter. Consider the condition where there are no SiteMonitor widgets instantiated
on the home screen. If there are no hosted applications to monitor, there’s no need to
have a periodic alarm activated. Likewise, when a new SiteMonitor widget is added to
the home screen, it’s desirable for an alarm to be set to ensure that the widget is
updated periodically. The relationship between the Intent Action triggered by the
alarm and consumed by the SiteMonitorBootstrap class is defined in the manifest
1). The Action field of the Intent set in the Alarm’s PendingIntent matches the
IntentFilter Action for the SiteMonitorBootstrap.

 When the SiteMonitorBootstrap I receives the Intent in its onReceive() method,
the resulting step is the starting of SiteMonitorService H. The SiteMonitorService
is responsible for carrying out the updates and checking on the hosted applications.

 When it’s started, the SiteMonitorService iterates through the available widgets
thanks again to assistance from the AppWidgetManager G, which provides a list of wid-
gets. For each active widget instance, the Service extracts the hosted application’s URL
and performs an HTTP GET to retrieve the most up-to-date status information. The data
model for each active AppWidget is updated with the information retrieved from the

482 CHAPTER 17 AppWidgets
hosted application. When all the site data
has been updated, the Service sends an
Intent broadcast, in effect asking the
SiteMonitorWidgetImpl class to update
the visual status of the widgets themselves.

 As you can see, there are quite a few
moving pieces here in this prototypical
AppWidget application. It may be helpful
to refer back to this section as you con-
sider each of the ensuing code descrip-
tions. Let’s now take a tour of the files in
the project.

17.3.2 File by file

We’ll be looking at code snippets soon,
but first let’s tour the project from a high
level, discussing the purpose of each sig-
nificant file in the project. Figure 17.10
shows the project in the Eclipse IDE, and
table 17.2 provides a brief comment for
each file.

Table 17.2 File listing for this project

Filename Comment

AndroidManifest.xml Contains definitions of each Application component in the applica-
tion along with IntentFilters and required permissions.

sitemonitorwidget.xml Defines AppWidgetProvider-specific attributes, including dimen-
sions, configuration activity, icon, and initial UI layout.

SiteMonitorWidgetImpl.java Contains the AppWidgetProvider implementation.

SiteMonitorConfigure.java Contains the Activity used to manipulate a specific entry’s data and
to view data received from a remote hosted application.

SiteMonitorModel.java Contains the methods for managing the SharedPreferences that
store widget-specific data elements.

SiteMonitorService.java Service responsible for performing the actual monitoring of remote
sites. Network communications take place on a background thread.

SiteMonitorBootstrap.java Contains code related to alarm management and is responsible for trig-
gering the SiteMonitorService under various conditions, including
alarm firing.

monitor.xml Defines the user interface elements used by the AppWidget on the
home screen.

Figure 17.10 SiteMonitorWidget in Eclipse

483AppWidget data handling
With this foundational understanding of how the various pieces relate to one another,
it’s time to start looking at the code behind this application. Although it may be
tempting to jump into the AppWidgetProvider implementation, we first need to look
at the code for handling the AppWidget-specific data.

17.4 AppWidget data handling
As mentioned earlier, each instantiated AppWidget has a unique numeric identifier
represented as an integer primitive (int). Any time the application is asked to work
on a particular AppWidget, this identifier value is available to the code. Sometimes it’s
provided, as in an Intent’s extras bundle; in other circumstances a collection of wid-
get identifiers is retrieved from the AppWidgetManager as an array of integers
(int []). Regardless of its source, managing the relationship between this identifier
and the AppWidget instance-specific data defined by your own applications is crucial
for success.

 For the SiteMonitor application, all data management is performed by the Site-
MonitorModel class, contained in the SiteMonitorModel.java source file. The Site-
MonitorModel class can be broken down into two logical sections: the instance data
and methods, and the static method. The instance portion of the class includes a
number of String member variables, their respective getter and setter methods, and
helpful bundling and unbundling methods.

 The underlying data storage persistence method is the application’s Shared-
Preferences, which we introduced in chapter 5. To keep things simple, every data ele-
ment is stored as a java.lang.String. When the entire “record” needs to be stored,
the data elements are combined into a composite delimited String. When the data is
read out of the SharedPreferences, the retrieved String is parsed and stored into
respective members based on ordinal position in the string. Although this approach is
perhaps pedestrian, it’s perfectly adequate for our purposes. Alternatively, we could’ve
employed an SQLite database or constructed our own ContentProvider, but both of
those mechanisms are overkill for this purpose at present. A ContentProvider is often
only justified if the data needs to be shared with components outside of a single appli-
cation suite.

 The data elements managed for each AppWidget include

 Site name
 Site update URL

main.xml Defines the user interface elements used in the
SiteMonitorConfigure Activity.

strings.xml Contains externalized strings; useful for easy management of textual
data and for potential localization.

Table 17.2 File listing for this project (continued)

Filename Comment

484 CHAPTER 17 AppWidgets
 Site home page URL

 Status
 Last status date
 Message/comments

The class also includes four static methods used as helpers to manipulate instances of
widget data throughout the application. Three of these methods are related to persis-
tence of SiteMonitorModel data, and a fourth provides date formatting. This date for-
matting method was included to help standardize and centralize Date string
representation.

 The following listing presents the implementation of the SiteMonitorModel class,
minus a few setter/getters, which are omitted here but are included in the full source
listing available for download.

package com.msi.unlockingandroid.sitemonitor;

import java.text.SimpleDateFormat;
import android.content.Context;
import android.content.SharedPreferences;
import android.util.Log;

public class SiteMonitorModel {

 private static final String tag = "SiteMonitorModel";

 private static final String PREFS_NAME
"com.msi.unlockingandroid.SiteMonitor";
 private static final String PREFS_PREFIX = "sitemonitor_";

 private String name;
 private String url;
 private String homepageUrl;
 private String status;
 private String statusDate;
 private String message;

 public SiteMonitorModel(String name,String url,String homepageUrl,
String status,String statusDate,String message) {
 this.name = name;
 this.url = url;
 this.homepageUrl = homepageUrl;
 this.status = status;
 this.statusDate = statusDate;
 this.message = message;
 }

 public SiteMonitorModel(String instring) {
 Log.i(SiteMonitorModel.tag,"SiteMonitorModel(" + instring + ")");
 String[] data = instring.split("[|]");
 if (data.length == 6) {
 this.name = data[0];
 this.url = data[1];

Listing 17.1 SiteMonitorModel class

BContain constants for
SharedPreferences

persistence

Contain per-widget
data elements

C

Define
constructor D

Define
constructor/parser

E

485AppWidget data handling
 this.homepageUrl = data[2];
 this.status = data[3];
 this.statusDate = data[4];
 this.message = data[5];
 } else {
 this.name = "?";
 this.url = "?";
 this.homepageUrl = "?";
 this.status = "WARNING";
 this.statusDate =
java.util.Calendar.getInstance().getTime().toString();
 this.message = "";
 }
 }

 public String getName() {
 return this.name;
 }
 public void setName(String name) {
 this.name = name;
 }

 // see full source code for remaining getter/setter methods

 public String storageString() {
 return this.name + "|" + this.url + "|" + this.homepageUrl + "|" +
this.status + "|" + this.statusDate + "|" + message;
 }

 public String toString() {
 return this.storageString(); }

 public static void saveWidgetData(Context context,int
widgetId,SiteMonitorModel model) {
 Log.i(SiteMonitorModel.tag,"saveWidgetData(" + widgetId + "," +
model.storageString() + ")");
 SharedPreferences.Editor prefsEditor =
context.getSharedPreferences(PREFS_NAME, 0).edit();
 prefsEditor.putString(PREFS_PREFIX +
widgetId,model.storageString());
 prefsEditor.commit();
 }

 public static SiteMonitorModel
getWidgetData(Context context,int widget) {
 Log.i(SiteMonitorModel.tag,"getWidgetData(" + widget + ")");

 SharedPreferences prefs =
 context.getSharedPreferences (PREFS_NAME, 0);
 String ret = prefs.getString(PREFS_PREFIX + widget,"BAD");
 if (ret.equals("BAD")) return null;
 return new SiteMonitorModel(ret);
 }

 public static void deleteWidgetData(Context context,int widgetId) {
 Log.i(SiteMonitorModel.tag,"deleteWidgetData(" + widgetId + ")");

Define
getter/setterF

Prepare
data for
storage

G

Override
toString()H

Save
widget data

I

Retrieve widget data J

Return SiteMonitor-
Model instance1)

Remove
widget
data

1!

486 CHAPTER 17 AppWidgets
 SharedPreferences.Editor prefsEditor =
context.getSharedPreferences(PREFS_NAME, 0).edit();
 prefsEditor.remove(PREFS_PREFIX + widgetId);
 prefsEditor.commit();
 }

 public static String getFormattedDate() {
 SimpleDateFormat sdf = new SimpleDateFormat
("MMM dd HH:mm");
 return sdf.format(java.util.Calendar.getInstance().getTime());
 }
}

The SiteMonitorModel class meets the data management needs of the SiteMonitor
AppWidget. The underlying data persistence method is the application Shared-
Preferences and as such a couple of constant String values are employed B to iden-
tify the SharedPreferences data. Each data element is defined as a String member
variable C. Two distinct constructors are employed. The first constructor d is for cre-
ating a new instance from distinct String values, and the second constructor E is
used to parse out data for an existing widget that has been retrieved from a Shared-
Preference.

 Only one set of getter/setter methods F is shown in this listing, but they all
employ the same basic bean pattern.

 When preparing data to be stored in the SharedPreferences, the widget instance
data is reduced to a single delimited String with the assistance of the storage-
String() method G. The toString() method H is overridden and invokes the
storageString() method.

 Data storage, retrieval, and deletion are handled in statically defined methods.
The saveWidgetData() I method stores the widget data with a key of PREFIX_NAME +
widgetIdentifier. This means that the data for a widget with an ID of 200 would look
like this:

sitemonitor_200 = "sitename|url|homepageurl|status|statusDate|message"

For more specifics on using SharedPreferences, refer to chapter 5.
 Widget data is retrieved from SharedPreferences in the getWidgetData() method

J. This method returns a SiteMonitorModel 1) by employing the parsing version of
the constructor E.

 When a widget is removed from the device, we delete the associated data with a call
to deleteWidgetData() 1!.

 Finally, the getFormattedDate() method 1@ is responsible for formatting a
java.util.Date string into a String representation with the help of a SimpleData-
Format class.

 At this point you should have a good feel for what data is managed and where it
lives. Let’s get to the code to actually implement an AppWidget!

1@ Format
status
date

487Implementing the AppWidgetProvider
17.5 Implementing the AppWidgetProvider
The AppWidgetProvider for the SiteMonitor application is implemented in the file
SiteMonitorWidgetImpl.java. The AppWidgetProvider is responsible for handling
updates to the UI as well as responding to housekeeping events related to the App-
Widget lifecycle, and is arguably the most important aspect of AppWidget program-
ming to understand. Because of its centrality and importance to working with
AppWidgets, we’re going to look at the code from two perspectives.

17.5.1 AppWidgetProvider method inventory

The methods presented in table 17.3 represent the core AppWidgetProvider func-
tionality. Although these methods are common to AppWidgetProviders, the com-
ments are made in the context of the SiteMonitor application. Also, the final two
methods (denoted with *) are custom to the SiteMonitor application.

Table 17.3 Inventory of AppWidgetProvider methods

Method name Comment

onReceive This is the same method found in all BroadcastReceiver classes. It’s
used to detect ad hoc update requests, which it then hands off to the
onUpdate method.

onUpdate This method is responsible for updating one or more widget instances. The
method receives an array of widget identifiers to be updated.

onDeleted This method is invoked when one or more widgets are deleted. Like the
onUpdate method, this method receives an array of widget identifiers—in
this case each of these widgets has just been deleted. This method is
responsible for cleaning up any data stored on a per-widget basis.

onEnabled This method is invoked when the first AppWidget instance is placed on the
home screen. In SiteMonitor, this method initiates an Alarm sequence,
which forces an update on a specific interval as defined within the
SiteMonitorBootstrap class.

onDisabled This method is invoked when the final AppWidget instance is removed from
the home screen. When there are no instances of the SiteMonitor widget,
there’s no need for updating them. Therefore the alarm is cleared. This
method doesn’t reliably get called when you think it ought to be invoked.

*UpdateOneWidget This static method is responsible for performing the update on a specific wid-
get. Because there are multiple scenarios for interacting with the
AppWidgets in our class, it was desirable to consolidate all widget UI
impacting code into a single method.

*checkForZombies The AppWidget subsystem has a nasty habit of leaving widgets behind with-
out an effective means of cleaning them up short of a reboot. Consequently
our AppWidgetProvider instance is consistently being asked to perform
operations on widgets that don’t exist any longer. This method is used as a
helper to the onDisabled method. Every time the onDelete method is
invoked, call this method to perform an additional cleanup step. When no
legitimate widgets are detected, clear the update alarm, performing the job
that the onDisabled method can’t reliably perform.

488 CHAPTER 17 AppWidgets
You now know what the method names are and the responsibility of each. It’s time to
examine the code. Let’s begin with the implementation of an AppWidgetProvider as
we look at SiteMonitorWidgetImpl.

17.5.2 Implementing SiteMonitorWidgetImpl

There’s a lot of code to examine in this class, so we’re going to break it into a couple
of sections. In listing 17.2 you can see the basic callbacks or hooks that respond to the
AppWidget events. As you know, every widget in the system has an integer identifier.
When you’re working with AppWidgets, it’s common to manipulate an array of these
identifiers, as shown in the upcoming listings, so keep an eye out for those identifiers
as you review the code.

package com.msi.unlockingandroid.sitemonitor;

import android.content.Context;
import android.content.ComponentName;
import android.content.Intent;
import android.app.PendingIntent;
import android.appwidget.AppWidgetProvider;
import android.appwidget.AppWidgetManager;
import android.widget.RemoteViews;
import android.net.Uri;
import android.util.Log;
import android.graphics.Color;

public class SiteMonitorWidgetImpl extends AppWidgetProvider {
 private static final String tag = "SiteMonitor";
 public static final String UPDATE_WIDGETS =
"com.msi.unlockingandroid.sitemonitor.UPDATE_WIDGETS";

 @Override
 public void onUpdate(Context context,AppWidgetManager
appWidgetManager,int[] appWidgetIds) {

 super.onUpdate(context, appWidgetManager, appWidgetIds);
 int count = appWidgetIds.length;
 Log.i(SiteMonitorWidgetImpl.tag,"onUpdate::" + count);
 // we may have multiple instances of this widget ... make
sure we hit each one ...
 for (int i=0;i<count;i++) {
 SiteMonitorWidgetImpl.UpdateOneWidget
(context, appWidgetIds[i]);
 }
 }

 public void onDeleted(Context context,int[] appWidgetIds) {
 super.onDeleted(context, appWidgetIds);
 Log.i(SiteMonitorWidgetImpl.tag,"onDeleted()" + appWidgetIds.length);
 for (int i = 0;i<appWidgetIds.length;i++) {
 SiteMonitorModel.deleteWidgetData(context, appWidgetIds[i]);

Listing 17.2 SiteMonitorWidgetImpl, which implements AppWidget functionality

AppWidget
imports

B

String used
for updates

C

onUpdate
methodD

Update of
single widgetE

onDeleted

F

method

489Implementing the AppWidgetProvider
 }
 checkForZombies(context);
 }

 public void onEnabled(Context context) {
 Log.i(SiteMonitorWidgetImpl.tag,"onEnabled");
 super.onEnabled(context);

 // set up the recurring alarm that drives our refresh process
 SiteMonitorBootstrap.SetAlarm(context);
 }
 public void onDisabled(Context context) {
 Log.i(SiteMonitorWidgetImpl.tag,"onDisabled()");
 super.onDisabled(context);
 // kill the recurring alarm that drives our refresh process
 SiteMonitorBootstrap.ClearAlarm(context);
 }

 public void onReceive(Context context,Intent intent) {
 super.onReceive(context, intent);
 Log.i(SiteMonitorWidgetImpl.tag,"onReceive()::" +
 intent.getAction());

 if (intent.getAction().equals
(SiteMonitorWidgetImpl.UPDATE_WIDGETS)) {

 Log.i(SiteMonitorWidgetImpl.tag,
"Updating widget basedon intent”);AppWidgetManager appWidgetManager =
AppWidgetManager.getInstance(context);
 int [] ids = appWidgetManager.getAppWidgetIds
(new ComponentName(context,SiteMonitorWidgetImpl.class));
 onUpdate(context,appWidgetManager,ids);
 } // trace me

 }
public static void UpdateOneWidget(Context context,int widgetNumber) {
 // shown in Listing 17.5
}

private void checkForZombies(Context context) {
 // shown in Listing 17.3
}

The first thing to observe in listing 17.2 is the presence of some imports B that pro-
vide resolution for the AppWidget-related classes. A String constant C is defined for
comparing against Intents received by this class in the onReceive() method J. Note
that the protection level of this constant is public. It’s declared as a public member
because this String is used by other classes in the application to trigger an update
request.

 The onUpdate() method D is invoked both periodically based on the widget’s
update frequency as well as on an ad hoc basis. Note that when this update occurs, it’s
simply performing a refresh of the AppWidget UI. The actual refreshing of the under-
lying data model is a separate and distinct operation, which is discussed in detail in
section 17.8.

checkForZombiesG

Provider
enabled

H

Provider
disabledI

onReceive overrideJ

Check for
update request1)

1!List of
widgets

490 CHAPTER 17 AppWidgets
 Once we have a list of widgets that require updating, each is updated in turn with a
call to SiteMonitorWidgetImpl.UpdateOneWidget() E. This method is defined as a
static method, as it’s also called from the SiteMonitorConfigure Activity.

 The onDeleted() method F handles the scenario where a widget is removed from
the home screen. When this method is invoked, it in turn calls the super class’s
onDeleted method. Next it removes the data related to each deleted widget with a call
to SiteMonitorModel.deleteWidgetData(). Finally, this method wraps up with a call
to check for zombie widgets (which we describe in a moment) by calling checkFor-
Zombies() G. It’s not uncommon to have a widget identifier allocated but the widget
itself not actually created. An example of this is when a configuration activity is
launched but then canceled by the user—no widget data gets created, so you wind up
with widget identifiers not attached to meaningful widget data. The reason you want
to track this situation is to disable the update alarm when no legitimate widgets
remain. Also, note that the arguments to this method include an array of integers rep-
resenting the list of deleted widget instances. This array will usually consist of only a
single widget.

 When the AppWidgetProvider() is enabled H, the update alarm is set. Note that
the onEnabled() method can be used for other housekeeping setup tasks as well. This
method is triggered when the first AppWidget is created.

 The mirror image of the onEnabled method is the onDisabled() method I. This
method cancels the alarm set previously in the onEnabled() method. This method
isn’t called when you think it ought to be! Why? Because of the “zombie” widgets that
lurk about in the ether. It’s for this reason that the checkForZombies() method was
added to this class, accommodating the scenario where there are no active widgets but
the operating system believes they still exist. These widgets will persist until the device
is rebooted. The moral of the story here is that although these callback methods are
nice to have, it’s ultimately up to the developer to manage around the system. This will
in all likelihood be rectified in future releases, but as of Android version 2.2, this “fea-
ture” remains.

 Rounding out this code listing, you see the onReceive() method J. This is the
same method required of all BroadcastReceiver implementations—recall that App-
WidgetProvider extends the BroadcastReceiver. The super class’s onReceive()
method is invoked, and then the Intent is examined 1). If the Intent matches the
special update constant defined in this class, SiteMonitorWidgetImpl.UPDATE_
WIDGETS, the code gathers a list of relevant widget identifiers 1! and passes them to
the onUpdate() method to be refreshed visually.

17.5.3 Handling zombie widgets

We’ve discussed at length the nature of the relationship between the widget identifier
and the widget data as defined and managed in the SiteMonitorModel class. There
are a number of places in the application where a widget identifier is available and the
code needs to check for the presence of legitimate data. One example of this is the

491Displaying an AppWidget with RemoteViews
processing that occurs after a widget instance is deleted. Listing 17.3 demonstrates a
technique for keeping track of legitimate versus zombie widget identifiers. If no legiti-
mate identifiers are found, the code disables the alarm—there’s no need to take up
more system resources than necessary.

private void checkForZombies(Context context) {
 Log.i(SiteMonitorWidgetImpl.tag,"checkForZombies");
 AppWidgetManager appWidgetManager =
AppWidgetManager.getInstance(context);
 int [] ids = appWidgetManager.getAppWidgetIds
(new ComponentName(context,SiteMonitorWidgetImpl.class));
 int goodCount = 0;
 for (int i=0;i<ids.length;i++) {
 SiteMonitorModel smm =
SiteMonitorModel.getWidgetData(context,ids[i]);
 if (smm != null) goodCount++;
 }
 if (goodCount == 0) {
 Log.i(SiteMonitorWidgetImpl.tag,
"There are no good widgets left! Kill alarm!");

SiteMonitorBootstrap.clearAlarm(context);
 }
 }

All interactions with widgets rely on the availability of a valid widget identifier. To
obtain this information, the code must have access to the AppWidgetManager, which is
obtained with a call to that class’s static getInstance() method B. The AppWidget-
Manager has a method named getAppWidgetIds() C that takes a ComponentName
argument. For each widget identifier, we attempt to load widget-specific data D. If no
valid widget identifier-to-data relationships are found, we can clear the alarm with a
call to SiteMonitorBootstrap.clearAlarm() E.

 We have one method remaining to review: UpdateOneWidget(). This method cov-
ers such a broad range of topics that it’s discussed in its own section, coming up next.

17.6 Displaying an AppWidget with RemoteViews
An AppWidget runs in the process space of another application, typically the home
screen. Running in the space of another application has an impact on what can and
can’t be accomplished when interacting with UI elements. This section demonstrates
how an AppWidget’s user interface is managed through the use of the RemoteViews
class.

17.6.1 Working with RemoteViews

The RemoteViews class is used to permit a View to be displayed and managed from a
separate process. Unlike a traditional ViewGroup layout, which may be readily man-
aged via direct methods, the access to the view hierarchy inflated under the Remote-
Views class is limited and rigid. For example, in a typical Activity the code can

Listing 17.3 Dealing with AppWidgets that won’t die off

Reference
AppWidgetManager

B

Get list
of widgetsC

Attempt to
load dataD

Clear
alarm

E

492 CHAPTER 17 AppWidgets
inflate a layout by simply referencing it as R.layout.main and passing it to the
method setContentView. AppWidgets require more effort than this.

 The RemoteViews class offers two constructors. The one of most interest to us is
defined as

RemoteViews(String packageName, int layoutId)

The packageName can be obtained with a call to context.getPackageName(), and the
layoutId is a layout defined in the normal manner using a subset of the familiar wid-
gets such as TextView and Button:

RemoteViews rv = new RemoteViews(context.getPackageName(),R.id.monitor);

Once a reference to a remote view is available, a proxy-like mechanism is available for
setting and getting basic properties of views contained within the view hierarchy
loaded by the RemoteViews instance. Here’s an example of changing the text in a
TextView identified by R.id.someTextView:

rv.setTextViewText(R.id.someTextView,"Fat cats buy ice");

Another available method is setInt(), which passes an integer value to a named
method on a specified view. For example, to change the height of the view to 200 pix-
els, you can use the following code:

rv.setInt(R.id.someTextView,"setHeight",200);

When you’re working with RemoteViews, the only user interaction you can trap is a
click. You do so by passing a PendingIntent to the setOnClickListener() method.
The following listing demonstrates this procedure.

Intent onClickedIntent = new Intent(context,SomeClass.class);
PendingIntent pi = PendingIntent.getActivity(context, 0, onClickedIntent, 0);
rv.setOnClickPendingIntent(R.id.someButton, pi);

To make a RemoteViews-based click handler, the first step is to create a new Intent.
Initialize the Intent in any manner appropriate for your task. In this example, you
define an Intent to launch a specific Activity. Next, create a PendingIntent using
the getActivity static method. One of the arguments to this method is the previously
created Intent. Then a call to the setOnClickPendingIntent() method passing the
PendingIntent will wire up the desired behavior.

 Now that you have a feel for how RemoteViews operate, let’s finish up the discus-
sion of the SiteMonitorWidgetImpl class’s code.

17.6.2 UpdateOneWidget explained

All of the code presented thus far for the SiteMonitorWidgetImpl class has taken care
of the plumbing and scaffolding of the operation of our AppWidget. It’d be nice to get
something onto the screen of the phone! That’s where the UpdateOneWidget()

Listing 17.4 Setting up a PendingIntent to handle user interactions

493Displaying an AppWidget with RemoteViews
method comes into play. Recall that the onUpdate() method delegated the responsi-
bility of updating the screen to this method. The following listing demonstrates updat-
ing the widget with the help of RemoteViews.

 public static void UpdateOneWidget(Context context,int widgetNumber) {
 Log.i(SiteMonitorWidgetImpl.tag,"Update one widget!");
 AppWidgetManager appWidgetManager =
 AppWidgetManager.getInstance(context);
 SiteMonitorModel smm = SiteMonitorModel.getWidgetData
(context, widgetNumber);

 if (smm != null) {
 Log.i(SiteMonitorWidgetImpl.tag,"Processing widget " +
smm.toString());

 RemoteViews views = new
RemoteViews(context.getPackageName(),R.layout.monitor);
 if (smm.getStatus().equals("GOOD")) {
 views.setTextColor(R.id.siteName, Color.rgb(0,255,0));
 views.setTextColor(R.id.updateTime, Color.rgb(0,255,0));
 views.setTextColor(R.id.siteMessage, Color.rgb(0,255,0));
 } else if (smm.getStatus().equals("UNKNOWN")){
 views.setTextColor(R.id.siteName, Color.rgb(255,255,0));
 views.setTextColor(R.id.updateTime, Color.rgb(255,255,0));
 views.setTextColor(R.id.siteMessage, Color.rgb(255,255,0));
 } else {
 views.setTextColor(R.id.siteName, Color.rgb(255,0,0));
 views.setTextColor(R.id.updateTime, Color.rgb(255,0,0));
 views.setTextColor(R.id.siteMessage, Color.rgb(255,0,0));
 }
 views.setTextViewText(R.id.siteName, smm.getName());
 views.setTextViewText(R.id.updateTime, smm.getStatusDate());

 // make this thing clickable!
 Intent intWidgetClicked = new
Intent(context,SiteMonitorConfigure.class);
 intWidgetClicked.setData(Uri.parse("file:///bogus" +
widgetNumber));
 intWidgetClicked.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
 widgetNumber);
 PendingIntent pi = PendingIntent.getActivity(context, 0,
intWidgetClicked, 0);
 views.setOnClickPendingIntent(R.id.widgetLayout, pi);
 appWidgetManager.updateAppWidget(widgetNumber,views);
 }
 else {
 Log.i(SiteMonitorWidgetImpl.tag,"Ignore this widget # " +
widgetNumber + ". Must be a zombie widget.");
 }
 }

Like virtually everything related to AppWidget programming, the first thing to do is
acquire a reference to the AppWidgetManager B. Next, we load the widget-specific

Listing 17.5 Updating the widget with RemoteViews in SiteMonitorWidgetImpl

Acquire
AppWidgetManager referenceB

C
Load

widget data

Create
RemoteViews
instanceD

Format
TextViews

E

Assign
text
values

F

GAssign unique data

HCreate PendingIntent

494 CHAPTER 17 AppWidgets
data associated with this widget identifier with SiteMonitorModel.getWidgetData()
C and confirm that the data is valid. Assuming we have a good widget to work with,
we next create an instance of the RemoteViews class D, passing in an identifier for our
preferred layout R.id.monitor. Based on the status, we assign different TextColor val-
ues E to each of the visible TextViews within the layout, as well as populate the con-
trols with the actual textual values for display with calls to setTextViewText F.

 At this point, our widget is ready for display. We’d also like the user to be able to
tap on the widget and bring up related information. To do this, we must assign a
PendingIntent to a view within the view hierarchy represented by the RemoteViews
instance we previously instantiated.

 To begin, we create an Intent referencing our configuration activity Site-
MonitorConfigure. We next assign data related to this Intent with a call to the set-
Data() method G. Note that the data here isn’t particularly important, as long as it’s
unique. The reason for this is related to the manner in which PendingIntents are
resolved. Without this uniqueness, each subsequent PendingIntent assignment would
replace the previously assigned Intent. By adding this custom and unique data to the
Intent, your PendingIntent becomes unique per widget. If you doubt this, just com-
ment out this line and find out what happens!

 Next we assign the widgetNumber to the key AppWidget.EXTRA_APPWIDGET_ID. This
is used to make things a bit easier in the SiteMonitorConfigure Activity, which is
discussed in the next section. A PendingIntent is created, requesting an Activity H,
and finally this PendingIntent is assigned to our widget via the setOnClickPending-
Intent() method. One piece of trivia to note here is that we’ve passed in an ID for the
LinearLayout of the user interface. Layouts often don’t have ID attributes associated
with them. Layouts are instances of ViewGroups, which are extensions of the View
class, so there’s no reason why you can’t assign an ID to the layout itself. The net effect
is that your entire widget is clickable. Considering the fact that it’s a mere 74 pixels
square, this is a reasonable approach.

 At this point, much of the heavy lifting for our AppWidget is behind you. Let’s look
at some of the details associated with configuring a specific instance of an AppWidget
next, as we examine the SiteMonitorConfigure Activity.

17.7 Configuring an instance of the AppWidget
There are two scenarios where our AppWidget may be configured. The first is right
after the user requests its creation, and the second is when the user taps on an existing
widget instance on the home screen.

 Generally speaking, this Activity operates just as any other Activity you’ve expe-
rienced throughout the book. It inflates a layout, gets references to the various Views,
and responds to user input. Only a couple of items are worthy of highlighting here,
but they’re important details that you must implement.

 Let’s start with how Android knows which Activity to launch after a new instance
is created. To do that, we’ll take a brief side trip to look at the metadata related to this
AppWidget.

495Configuring an instance of the AppWidget
17.7.1 AppWidget metadata

Earlier we alluded to a special metadata file that defines attributes for an AppWidget.
This file is associated with a specific receiver entry in the AndroidManifest.xml file.
Within the metadata file, you can associate a specific Activity as the preferred con-
figuration tool. The following listing presents the sitemonitorwidget.xml file. Even
though our focus in this section is on the Activity, this is a good opportunity to tie
together a couple of ideas you’ve learned to this point.

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:minHeight="72dp"
 android:minWidth="72dp"
 android:initialLayout="@layout/monitor"
 android:updatePeriodMillis="0"
 android:configure=
"com.msi.unlockingandroid.sitemonitor.SiteMonitorConfigure"
 android:icon="@drawable/icon"
 >
</appwidget-provider>

Earlier in this chapter we described the screen real estate consumed by an AppWidget.
The height and width are specified as minimum values. Each of the available spaces or
cells in the screen is 74 pixels square. The formula for deriving the values here is the
number of cells requested times 74 minus 2.

 The initial layout used by the widget is defined in the initialLayout attribute. At
runtime the application is free to change the layout, but you should consider the fact
that by the time your widget is ready for updating, it’s already been placed on the
screen, so your expectations might be shattered if you were hoping to bump some
other widget out of the way!

 The updatePeriodMillis specifies the update interval. Based on the architecture
of the SiteMonitor, this has little importance, so set it to 0 to tell the widget not to
bother waking itself up to update. Setting this attribute to a nonzero value causes the
device to wake up periodically and call the onUpdate() method in the AppWidget-
Provider implementation.

 Finally, you see the configure attribute, which permits you to specify the fully qual-
ified class name for the Activity to be launched when the user selects this widget
from the list of available widgets on the home screen. When the user is selecting from
the list of widgets, the icon displayed in the list is defined by the icon attribute.

 Now that the Activity is associated with our AppWidget, it’s time to examine the
key elements of the Activity. The full code is available for download. The snippets
shown here are only the portions particularly relevant to AppWidget interactions.

Listing 17.6 AppWidget metadata file defining widget characteristics

496 CHAPTER 17 AppWidgets
17.7.2 Working with Intent data

When the AppWidget’s configuration Activity is launched, the most important piece
of information is the associated widget identifier. This value is stored as an extra in the
Intent and should be extracted during the onCreate() method. The following listing
demonstrates this technique.

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 etSiteName = (EditText) findViewById(R.id.etSiteName);
 etSiteURL = (EditText) findViewById(R.id.etSiteURL);
 etSiteHomePageURL = (EditText)
 findViewById(R.id.etSiteHomePageURL);
 tvSiteMessage = (TextView) findViewById(R.id.tvSiteMessage);

 final Button btnSaveSite =
(Button) findViewById(R.id.btnSaveSite);
 btnSaveSite.setOnClickListener(this);
 final Button btnVisitSite =
(Button) findViewById(R.id.btnVisitSite);
 btnVisitSite.setOnClickListener(this);

 widgetId =
getIntent().getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,widgetId);

 // lookup to see if we have any info on this widget
 smm = SiteMonitorModel.getWidgetData(this, widgetId);
 if (smm != null) {
 etSiteName.setText(smm.getName());
 etSiteURL.setText(smm.getUrl());
 etSiteHomePageURL.setText(smm.getHomepageUrl());
 tvSiteMessage.setText(smm.getMessage());
 }
 }

The Activity looks like boilerplate code, as it begins with wiring up the various view
elements in the layout to class-level variables B. The widgetId is extracted from the
startingIntent C. Again you see the relationship between widgetId and widget-
specific data managed by the SiteMonitorModel class D. If data is available, the GUI
elements are prepopulated with the values E. This scenario would only come into
play after the widget has been successfully created and subsequently clicked for man-
aging it.

 At this point, the Activity operates as expected, permitting the user to update the
details of the widget data as well as visit the associated website.

Listing 17.7 Setting up the configuration Activity to manage a widget instance

BWire
up GUI

CExtract widget identifier

Look up
widget data

D

Populate GUIE

497Configuring an instance of the AppWidget
17.7.3 Confirming widget creation

When the user has populated the required fields and clicks the Save button, you need
to not only save the data via the SiteMonitorModel class but also let the AppWidget
infrastructure know that you’ve affirmed the creation of this widget instance. This
takes place by using the Activity’s setResult() method along with an Intent con-
taining an extra indicating the widget number. In addition, you want to ensure that
the alarm is enabled for future updates. Finally, you really don’t want to wait until the
next alarm interval elapses; you want to get an update now. The following listing dem-
onstrates how to accomplish each of these tasks.

public void onClick(View v) {
 switch (v.getId()) {
 case R.id.btnSaveSite: {
 saveInfo();
 // update the widget's display
 SiteMonitorWidgetImpl.UpdateOneWidget(v.getContext(), widgetId);

 // let the widget provider know we're done and happy
 Intent ret = new Intent();
 ret.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,widgetId);
 setResult(Activity.RESULT_OK,ret);

 // let's ask for an update and also enable the alarm
 Intent askForUpdate =
new Intent(SiteMonitorBootstrap.ALARM_ACTION);
 this.sendBroadcast(askForUpdate);
 SiteMonitorBootstrap.setAlarm(this);
 finish();
 }
 break;
 case R.id.btnVisitSite: {
 saveInfo();
 Intent visitSite = new Intent(Intent.ACTION_VIEW);
 visitSite.setData(Uri.parse(smm.getHomepageUrl()));
 startActivity(visitSite);
 }
 break;
 }
 }

When the user clicks the Save button (or the Visit Site button), the widget-specific
data is saved B. There’s nothing fancy there—just a call to SiteMonitor-

Model.saveWidgetData(). The AppWidget subsystem is supposed to update the UI of
the widget after the Configuration dialog box completes successfully, but experience
shows that this isn’t always the case. Therefore a call is made to SiteMonitorWidget-
Impl.UpdateOneWidget with the newly created widgetId C.

Listing 17.8 Handling button clicks in the configuration Activity

Save dataB
CUpdate

widget’s UI

DAcknowledge widget creation

Set alarmE

Call
setAlarmF

Save dataB

Visit site
home page

G

498 CHAPTER 17 AppWidgets
 An important step in the life of a new AppWidget is to be sure to set the Activity
result to RESULT_OK D, passing along an Intent extra that identifies the new widget
by number.

 At this point our new widget is populated with a name and no meaningful status
information. To force an update, we broadcast an Intent that simulates the condition
where the alarm has just triggered E. We also want to ensure that the alarm is armed
for a subsequent operation, so we call SiteMonitorBootstrap.setAlarm() F.

 In the event that the Visit Site button is clicked, we want to take the user to the
defined home page of the currently active site being monitored by the widget G.

 The last condition to handle is the case where the widget has been selected from
the Add New Widget list on the home screen when the user cancels out of the config-
uration activity. In this case the widget shouldn’t be created. To achieve this result, you
set the result of the Activity to RESULT_CANCELED as shown in this listing.

 public void onDestroy() {
 super.onDestroy();
 if (!isFinishing()) {
 Intent ret = new Intent();
 ret.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,widgetId);
 setResult(Activity.RESULT_CANCELED,ret);
 }

This code overrides the onDestroy() method. If this method is invoked for any reason
other than finish() being called by the Activity itself, we want to cancel the
Activity. This is accomplished with a call to setResult() with the inclusion of the
Intent extra to pass along the widget identifier. Note that this cancel step is only
required when the widget instance is first created. There’s no harm in setting the
result for future invocations of the Activity.

 At this point our AppWidget is created, you know how to store data, and you know
how to configure a particular instance of the SiteMonitor widget. What’s needed next
is to update the data. For that, we’ll look at the SiteMonitorService.

17.8 Updating the AppWidget
Our AppWidget instances on the home screen are only useful if they’re actually keep-
ing data up-to-date. One means for performing this update is to solely rely on the
AppWidgetProvider’s onUpdate() method. The onUpdate() method is invoked peri-
odically according to the schedule specified in the metadata file.

 One reason for updating the widget outside of the AppWidgetProvider is to pro-
vide more granularity than afforded by the built-in scheduling mechanism. For exam-
ple, you may wish to update the data more frequently than once per hour depending
on the conditions. Imagine an AppWidget that tracks stock prices. It makes little sense
to have the widget update when the market is closed, and it wouldn’t be unreasonable
to update once every 15 minutes during market hours.

Listing 17.9 Checking for a cancel

499Updating the AppWidget
 Fortunately, the SiteMonitorWidgetImpl can process ad hoc updates. You’re
already set up for this because you’re overriding the onReceive() method. When the
onReceive() method receives an Intent with an Action equaling SiteMonitorWid-
getImpl.UPDATE_WIDGETS, the widgets are updated on the home screen. So, now all
you need to do is sort out how (and when) to update the underlying data.

 Beyond the AppWidget built-in scheduler, there are basically two mechanisms for
periodic updates. The first approach is to create a Service that periodically performs
an update. The other approach is to set an Alarm that triggers the update on a recur-
ring basis. Let’s take a brief look at both strategies.

17.8.1 Comparing services to alarms

A constantly running Service is capable of performing this periodic update; it’s the
ideal place to perform operations that are to be carried out in the background. An
Android Service is the appropriate vehicle for performing the update work—talking
to a remote hosted application—but what about all the idle time between updates?
Does the application need to be running, consuming resources but adding no addi-
tional value? Also, what happens if the Service stops running? Do you configure it to
be restarted automatically? Perhaps it should be kept running at all times, but at what
impact on the device’s overall performance? You need to conserve battery resources as
well as keep the load on the CPU as low as feasible to improve overall device responsive-
ness. This approach isn’t ideal because a long-running Service that’s idle the majority
of the time consumes resources unnecessarily and brings little overall benefit.

 What about an alarm? An alarm can be set to trigger once or periodically. Addi-
tionally, an alarm may be configured to trigger only when the device is awake—if the
widget doesn’t need to be updated while you and your device are sleeping, there’s no
need to unnecessarily expend battery resources to perform an update you may never
see! Also, the Alarm Manager can group a number of periodic alarms so that the
device wakes up for short windows of activity rather than every time an alarm may
request it. By giving Android some latitude on when an alarm can be fired, you can
further manage battery resources for longer life.

 As much as we like the alarm approach, there’s one thing you need to keep in
mind: an alarm has no ability in and of itself to perform any real activity beyond sig-
naling. The alarm can signal and the Service can perform the actual update, so the
correct answer here is to use both an alarm and a Service. And for good measure
we’re going to use a BroadcastReceiver to add more flexibility into the mix. Looking
back at figure 17.9, you see that the preferred architecture is to have an alarm send an
Intent via broadcast to a BroadcastReceiver, which in turn initiates a Service to per-
form the update process—fetching data over the internet from the various data
sources. Once the data is fetched and the SiteMonitorModel updated, you can
request that the widgets themselves be refreshed visually, and the Service can shut
down. It’ll be started again for the next periodic update.

 Let’s see how the alarm is managed.

500 CHAPTER 17 AppWidgets
17.8.2 Triggering the update

Services have been covered in various portions of this book already, so they’ll receive
relatively little coverage here. Of more interest in this section is the relationship
between the alarm, the BroadcastReceiver, and the Service. Let’s look first at the
code in SiteMonitorBootstrap.java.

package com.msi.unlockingandroid.sitemonitor;

import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.SystemClock;
import android.util.Log;

public class SiteMonitorBootstrap extends BroadcastReceiver {
 private static final String tag = "SiteMonitorBootstrap";
 public static final String ALARM_ACTION =
"com.msi.unlockingandroid.sitemonitor.ALARM_ACTION";

 private static final long UPDATE_FREQUENCY =
(1000 * 60 * 60);
// default to one hour

 @Override
 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();

 Log.i(SiteMonitorBootstrap.tag,"onReceive");

 if (action.equals(SiteMonitorBootstrap.ALARM_ACTION)) {
 Log.i(SiteMonitorBootstrap.tag,
"Alarm fired -- start the service to perform the updates");
 Intent startSvcIntent = new
Intent(context,SiteMonitorService.class);
 startSvcIntent.putExtra("ALARMTRIGGERED", "YES");
 context.startService(startSvcIntent);
 }
 }

 public static void setAlarm(Context context) {
 Log.i(SiteMonitorBootstrap.tag,"setAlarm");
 AlarmManager alarmManager =
(AlarmManager)context.getSystemService(Context.ALARM_SERVICE);

 // setup pending intent
 Intent alarmIntent = new Intent(SiteMonitorBootstrap.ALARM_ACTION);
 PendingIntent pIntent = PendingIntent.getBroadcast(context, 0,
 alarmIntent, PendingIntent.FLAG_UPDATE_CURRENT);

 // now go ahead and set the alarm

Listing 17.10 SiteMonitorBootstrap.java

Set up
Intent action

B

Update
frequency

C

Check for
update
trigger

D

Start
service

E

FGet AlarmManager
reference

GCreate PendingIntent

501Updating the AppWidget
 alarmManager.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 SystemClock.elapsedRealtime() + SiteMonitorBootstrap.UPDATE_FREQUENCY,
SiteMonitorBootstrap.UPDATE_FREQUENCY, pIntent);
 }

 public static void clearAlarm(Context context) {
 Log.i(SiteMonitorBootstrap.tag,"clearAlarm");
 AlarmManager alarmManager =
(AlarmManager)context.getSystemService(Context.ALARM_SERVICE);

 // cancel the pending intent!
 Intent alarmIntent = new Intent(SiteMonitorBootstrap.ALARM_ACTION);
 PendingIntent pIntent = PendingIntent.getBroadcast(context, 0,
alarmIntent, PendingIntent.FLAG_UPDATE_CURRENT);

 alarmManager.cancel(pIntent);

 }

}

The SiteMonitorBootstrap class is responsible for managing alarms within the appli-
cation as well as the starting the SiteMonitorService as needed. This class is a
BroadcastReceiver and as such overrides the onReceive() method, looking for
Intents D that it can process. The only IntentFilter set up for this class is for the
SiteMonitorBootstrap.ALARM_ACTION B. This constant is declared as a public static
member so it can be accessed from other components as well as the local alarm. The
update frequency is fixed and set in the UDPATE_FREQUENCY constant C. An enhance-
ment for this type of application would be to make this setting user configurable in
some fashion. When an ALARM_ACTION Intent is encountered, an Intent is created to
start the SiteMonitorService E It’s the responsibility of the SiteMonitorService to
perform the update of the configured SiteMonitor widgets.

 This class can readily be extended to detect other events such as the device boot-
ing or power events. For example, if it’s detected that the device is being charged—a
nonbattery power source is detected—the frequency of updates could be increased.
Similarly, if it’s detected that the device is now roaming, this could suspend the update
process to minimize any data roaming charges.

 Beyond acting as a BroadcastReceiver to react to events of interest, this code also
contains two static methods for setting and clearing the application-defined alarm.
Let’s walk through the two routines, starting with the setAlarm() method. The first
step in working with an alarm is to obtain a reference to the AlarmManager F. When
setting an alarm, you must create a PendingIntent that contains the Intent to be dis-
patched when the alarm triggers. In this case, we create a PendingIntent G that rep-
resents a subsequent Broadcast of the SiteMonitorBootstrap.ALARM_ACTION Intent.
In essence, we’re setting an alarm to send an Intent to this BroadcastReceiver,
which in turn initiates the update process. Once the PendingIntent is set up, it’s
passed as an argument to the setRepeating() method H. When canceling the alarm,
the steps are the same, except we call cancel I.

HArm alarm

Cancel alarmI

502 CHAPTER 17 AppWidgets
 You’ve done a lot of setup, and now it’s time to look at the code that performs the
update of the underlying widget-specific hosted application status data.

17.8.3 Updating the widgets, finally!

Once the SiteMonitorService code is in control, updating the widgets is rather easy.
Updating the SiteMonitorModel data is the sole responsibility of the Site-

MonitorService. To accomplish this task, the SiteMonitorService performs these
basic operations:

1 Starts a thread to perform the update
2 Updates each of the sites in turn
3 Shuts itself down to conserve resources

The Service creates a separate Thread for performing the update, because by default
the Service attempts to run on the main GUI thread of the device. Running in a sepa-
rate Thread of execution inside a Service is arguably the best place to perform a poten-
tially blocking operation such as the operation required of the SiteMonitorService.

 Let’s look at the code structure of the SiteMonitorService class.

package com.msi.unlockingandroid.sitemonitor;

import android.app.Service;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;
import android.appwidget.AppWidgetManager;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;

public class SiteMonitorService extends Service {

 private static final String tag = "SiteMonitorService";

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 Log.i(SiteMonitorService.tag,"onStartCommand");

 Thread smu = new Thread(new
SiteMonitorUpdater(this.getBaseContext()));
 smu.start();

Listing 17.11 SiteMonitorService class

Create, start
new Thread

B

503Updating the AppWidget
 return Service.START_NOT_STICKY;

 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 Log.i(SiteMonitorService.tag,"onDestroy");
 }

 class SiteMonitorUpdater implements Runnable {
 private static final String tag = "SiteMonitorUpdater";

 private Context context;

 public SiteMonitorUpdater(Context context) {
 this.context = context;
 }

 public void run() {
 Log.i(SiteMonitorUpdater.tag,"Running update code");
 updateAllSites();
 stopSelf();
 }

 private void updateAllSites() {
 // discussed in Listing 17.12
 }

 private void updateOneSite(SiteMonitorModel smm,int widgetId) {
 // discussed in Listing 17.12
 }

 private String getDataFromSite(String siteUrl) {
 // discussed in Listing 17.12
 }

 }

}

The first step this service takes is the creation of a new Thread B based on the Site-
MonitorUpdater class D. Once created, the thread is started. The Service then
returns Service.START_NON_STICKY C. This tells Android not to restart the Service
if it either crashes or is killed by the operating system. Because our Service will be
started periodically, there’s no need to have the operating system restart it.

 All the update code resides in the SiteMonitorUpdater class D. In the run
method of this class, we perform two steps. First we call a method called updateAll-
Sites() E, which, as the name implies, performs the various steps to update the wid-
get data. Once that operation is complete, the service calls stopSelf(), which cleanly
terminates the service F.

 At this point our Service is starting and has created an instance of the private
SiteMonitorUpdater class. Let’s look at the update operations.

Don’t
restart serviceC

Define
SiteMonitorUpdater

D

Update all sitesE
Stop serviceF

504 CHAPTER 17 AppWidgets
 private void updateAllSites() {
 Log.i(SiteMonitorUpdater.tag,"updateAllSites");

 try {
 AppWidgetManager appWidgetManager =
AppWidgetManager.getInstance(context);
 ComponentName widgetComponentName = new
ComponentName(context,SiteMonitorWidgetImpl.class);
 int [] widgetIds =
appWidgetManager.getAppWidgetIds(widgetComponentName);
 for (int i=0 ; i< widgetIds.length; i++) {
 SiteMonitorModel smm =
SiteMonitorModel.getWidgetData(context, widgetIds[i]);
 if (smm != null) {
 updateOneSite(smm,widgetIds[i]);
 } else {
 Log.i(SiteMonitorUpdater.tag,"Ignore this zombie widget!");
 }
 }

 Intent updateWidgetsIntent = new
Intent(SiteMonitorWidgetImpl.UPDATE_WIDGETS);
 context.sendBroadcast(updateWidgetsIntent);

 Log.i(SiteMonitorUpdater.tag,"Complete!");
 } catch (Exception e) {
 Log.e(SiteMonitorUpdater.tag,"updateAlLSites::caught exception:" +
 e.getMessage());
 e.printStackTrace();
 }
 }

 private void updateOneSite(SiteMonitorModel smm,int widgetId) {
 try {
 Log.i(SiteMonitorUpdater.tag,"updateOneSite: [" + smm.getName() +
"][" + widgetId + "]");

 // get update report from this site's url
 Log.i(SiteMonitorUpdater.tag,"url is [" + smm.getUrl() + "]");
 String dataFromSite = getDataFromSite(smm.getUrl());
 String[] data = dataFromSite.split("[|]");
 if (data.length == 2) {
 smm.setStatus(data[0]);
 smm.setMessage(data[1]);
 }
 smm.setStatusDate(SiteMonitorModel.getFormattedDate());
 SiteMonitorModel.saveWidgetData(context, widgetId, smm);

 } catch (Exception e) {
 Log.e(SiteMonitorUpdater.tag,"updateOneSite::caught exception:" +
e.getMessage());
 e.printStackTrace();

 }
 }

Listing 17.12 Iterating through each of the sites and request updates

Get
widget
list

B

Load
widget data

C

Update widgetD

Refresh
widget UI

E

Download,
parse data

F

Update
widget
dataG

HSave widget data

505Updating the AppWidget
 private String getDataFromSite(String siteUrl) {
 String ret = "BAD|unable to reach site";
 URL url;

 try {
 url = new URL(siteUrl);
 HttpURLConnection urlConn = (HttpURLConnection)
 url.openConnection();
 BufferedReader inBuf = new BufferedReader(new
InputStreamReader(urlConn.getInputStream()));
 String inputLine;
 String result = "";
 int lineCount = 0; // limit the lines for the example
 while ((lineCount < 10) && ((inputLine = inBuf.readLine()) !=
null)) {
 lineCount++;
 Log.v(SiteMonitorUpdater.tag,inputLine);
 result += inputLine;
 }

 inBuf.close();
 urlConn.disconnect();

 return result;

 } catch (Exception e) {
 Log.d(SiteMonitorUpdater.tag,"Error caught: " + e.getMessage());
 e.printStackTrace();
 return ret;
 }
 }

The updateAllSites() method starts like so many other methods in this chapter: by
obtaining a reference to the AppWidgetManager and creating a list of widgets B. For
each widget identifier, the code attempts to load the associated widget data C and
perform an update by calling the updateOneSite() method D.

 The updateOneSite() method invokes the getDataFromSite() method F. The
getDataFromSite() method performs some basic HTTP GET code to retrieve a string
from the remote site I. Once the data is retrieved from the remote site, it’s returned
J to the updateOneSite() method.

 The returned data is parsed and stored in the SiteMonitorModel instance G. The
date is updated and the widget data is saved with a call to SiteMonitor-

Model.saveWidgetData H.
 After all the sites have been updated, an Intent is broadcast with the action Site-

MonitorWidgetImpl.UPDATE_WIDGETS E. This causes the user widget UI to update,
reflecting the most recent updated information.

 That concludes the review of the code for this chapter. Let’s now look at
AndroidManifest.xml, which has a lot of important information tucked away.

Talk to
web

server
I

Return web dataJ

506 CHAPTER 17 AppWidgets
17.9 Tying it all together with AndroidManifest.xml
If you’re ever experiencing problems with an Android application, particularly during
development, remember to check the manifest file. Chances are that you’ve forgotten
to define an Activity or omitted a request for a required permission. The following
listing presents the AndroidManifest.xml used for the SiteMonitor application. Look-
ing at this should tie together any loose ends on how an AppWidget application can
be constructed.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.unlockingandroid.sitemonitor"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
android:label="@string/app_name">
 <activity android:name=".SiteMonitorConfigure"
 android:label="@string/app_name">
 <intent-filter>
 <action
android:name="android.appwidget.action.APPWIDGET_CONFIGURE" />
 </intent-filter>
 </activity>
 <receiver android:name=".SiteMonitorWidgetImpl">
 <intent-filter>
 <action android:name=
"android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 <intent-filter>
 <action android:name=
"com.msi.unlockingandroid.sitemonitor.UPDATE_WIDGETS" />
 </intent-filter>
 <meta-data android:name="android.appwidget.provider"
android:resource="@xml/sitemonitorwidget" />
 </receiver>
 <receiver android:name=".SiteMonitorBootstrap">
 <intent-filter>
 <action

android:name="com.msi.unlockingandroid.sitemonitor.ALARM_ACTION" />
 </intent-filter>
 </receiver>
 <service
 android:name=".SiteMonitorService"
 android:enabled="true">
 </service>

 </application>
<uses-permission android:name="android.permission.INTERNET">
</uses-permission></manifest>

AndroidManifest.xml contains all the ingredients required to ensure that the applica-
tion components know how to link to one another at runtime. All the components

Listing 17.13 AndroidManifest.xml

Package declarationB

Application tagC

SiteConfigure
ActivityD

EConfiguration IntentFilter

FSiteMonitorWidgetImpl receiver
Auto Update
IntentFilter

G

AdHoc Update
IntentFilter

H

AppWidget
metadata

I

JSiteMonitorBootstrap receiver

SiteMonitorService1)

507Summary
within the application share the same package name B. The Application tag defines
the name of the application C label, which in this case is taken from a string
resource named app_name.

 The SiteMonitorConfigure Activity is declared D. Note the presence of the
IntentFilter named android.appwidget.action.APPWIDGET_CONFIGURE E. The
presence of this IntentFilter, along with the contents of the AppWidget’s metadata
file I, serve to provide the necessary elements to support the use of an AppWidget-
Provider. Note that this metadata file is stored in the xml folder beneath the res
folder. This xml folder must be created manually, as it’s not part of the stock project
folders when a new Android project is created in Eclipse.

 The class SiteMonitorWidgetImpl F is defined with a receiver tag and additional
pieces of information that are essential for this application’s proper operation. This
receiver contains the android.appwidget.action.APPWIDGET_UPDATE IntentFilter
G along with the custom IntentFilter with an action of com.msi.unlocking-
android.sitemonitor.UPDATE_WIDGETS H. This is the Intent Action used when the
application wants to update the visual representation of the AppWidgets. This
receiver tag also refers to the metadata entry that defines the attributes for an
android.appwidget.provider.

 The SiteMonitorBootstrap is defined J along with an action of com.msi.
unlockingandroid.sitemonitor.ALARM_ACTION. This action triggers the launching of
the SiteMonitorService 1). Finally, the SiteMonitorService can’t retrieve data over
the internet without the uses-permission of android.permission.INTERNET.

17.10 Summary
In this chapter we covered AppWidgets; you learned not only what they are but how
they can be used and what it takes to make them operate at runtime. You learned that
there can be more to the AppWidget than meets the eye. A smart phone’s home screen
is where users spend most of their time, so learning how to add value to the home
screen is an essential skill for Android developers.

 We presented some usage scenarios for AppWidgets and introduced a sample appli-
cation named SiteMonitor that served as the context for discussing AppWidgets. This
application demonstrated the techniques required to manage widget instances and
refresh remote data in a nontrivial application. We explained the architecture
required to support SiteMonitor and then presented it in a step-by-step fashion.

 The major building blocks of the sample application presented important topics
such as managing widget data through the versatile SiteMonitorModel class. Han-
dling widget-specific data is critical to a successful AppWidget application. This chap-
ter also covered some of the undocumented features of Android’s AppWidgets, and
you learned how to code around those features.

 This chapter explored the use of many of the other skills you’ve learned through-
out this book. The chapter covered AppWidgets but also integrating with Shared-
Preferences, managing alarms, Services, RemoteViews, Threads, and more. After

508 CHAPTER 17 AppWidgets
building an AppWidget with moving pieces behind the scenes, you now have an appre-
ciation of how and where AppWidgets can be deployed and how Android may be lever-
aged to deliver intuitive and high-value applications to your customers.

 In the next chapter, we look at another important feature set of Android devices:
the numerous sensors that make these devices much more than a mere telephony tool.

Localization
Android is a worldwide open platform gaining market share at a rapid pace. As
Android reaches into new markets globally, the opportunity for mobile developers
to distribute applications is reaching a level previously enjoyed by only the most
successful of software products and projects. You can deploy an application across
the globe, have the Google Marketplace handle the commercial transaction, and
receive a royalty check. And you can accomplish all this without ever leaving your
home office or dorm room!

 To sell an application worldwide successfully, you must target it to a broad and
diverse audience. English enjoys a broad acceptance and practice, and therefore you
can expect that an English language application will sell well globally, but why give
up on sales opportunities to the broader non-English-speaking Android market? In
its simplest approach, this means translation into multiple languages. But there’s
more! Beyond language translation, an application needs to properly handle dates

This chapter covers
 The need for localization

 Strategies for localizing an application

 Dynamic localization in Java

 Obstacles to late localization
509

510 CHAPTER 18 Localization
and times, number and currency formats, and for some applications unit of measure.
This chapter is an introduction to the localization capabilities of the Android platform.

 In this chapter, we cover the topics required for localizing an application. You’ll
learn high-level strategies for localizing an application, and you’ll take a hands-on
approach to converting an existing application to another language. Looking back to
chapter 12’s Field Service application, you’ll refactor that code to be localization
ready and then translate it to Spanish. We demonstrate the localized version of the
application through screenshots throughout the chapter.

 We conclude the chapter with a discussion of challenges of localizing an applica-
tion as an afterthought rather than designing for localization from the start.

 We think it’s only fair to note that the author of this chapter is a native English
speaker and his knowledge of any languages beyond English involves computer pro-
gramming: Java, C, C#, Objective-C, and so on. If you’re one of the talented and fortu-
nate among us who can speak numerous languages, please bear with the rest of us as
we broaden our horizons to the global scene.

18.1 The need for localization
For many programmers there’s only one language: Java. Of course the world is larger
than one programming language, and it’s much larger than a single spoken and writ-
ten language. The majority of computer users choose a language when they set up
their computer and never think twice about the decision. In fact, after the initial setup
many of the resources related to other languages may even be deleted from the com-
puter or phone, to save storage space. If this describes your experience, you’re not
alone! The aim of this chapter is to equip you to navigate the task of localizing an
Android application and in the process reach a broader audience. As a side benefit,
you’ll likely find that you look at application development differently, even if you
never pursue localization of your own applications.

 The reasons for localizing an application are manifold. For a commercial applica-
tion, there are numerous markets to reach; there’s no need to limit your sales to a sin-
gle marketplace. Your application may be bound for some cultural reasons to a
specific region, but many applications such as games, utilities, and productivity tools
are of universal interest and appeal. Games in particular are often relatively light in
textual components, with the majority of the text constrained to settings screens and
help files. It’s to the developer’s advantage to access additional markets to increase
sales volume. Volume is important, considering the low price point of most mobile
applications.

 Even if your application isn’t designed to generate sales revenue directly, its pur-
pose may be to help build your brand and expand your influence. If you’re part of an
organization with a presence beyond your home country, localization is important to
you as well.

 Incredibly, the market reach of the mobile phone is greater worldwide than that of
the personal computer. People even have cell phones ahead of running water in some

511Exploring locales
parts of the globe. Many of these cell phones run a version of the Android OS, so as an
Android developer, you can reach a large and diverse market. A small amount of reve-
nue across numerous transactions can really add up!

 Whether your purpose in localizing an application is to increase sales or to reach a
new market for noncommercial reasons, you need a strategy and some practical skills,
both of which you’ll learn in this chapter. Before jumping into the details of localizing
an application, let’s examine the concept of a locale.

18.2 Exploring locales
A locale is generally referenced as a short character code including both the language
and the geographic region. The origin and meaning of these values stem from politi-
cal actions and boundaries, both of which change over
time. Our discussion should be considered practical and
hopefully useful rather than being a treatise on the history,
meaning, and minutia of the “official” definition of locale,
which is elusive.

 As language and regional barriers are blurred thanks to
technology, the concept of a locale has been employed
imperfectly to aid electronic communication. The ISO for-
mat for a locale identifier is a short character code of the
following syntax

language_REGION

where the language is represented first as two lowercase
characters and followed by the region, which is repre-
sented as two uppercase characters. For example, the
locale setting most Android phones employ in the United
Kingdom is en_GB for “English, Great Britain.” In Australia,
the value is en_AU. en_US is the locale for English in the
United States. Figure 18.1 shows an Android emulator
instance indicating the various flavors of English locales in
the Customize Locale application.

 To access the available locales on an Android device,
select Language & Keyboard from the Settings app, and
then tap on Select Language. This presents the installed
locale options, as shown in figure 18.2.

 When we speak of a locale, we often think of language:
English, Spanish, Chinese, Polish, and so forth. Locale is
more about orthography, or the rules for the written lan-
guage. But the topic of localization encompasses more
than just words. For example, Great Britain and the United
States share a common language: English. The differences
extend beyond how the language is used and how certain

Figure 18.1 English locales
on Android emulator

Figure 18.2 On-device
locale options

512 CHAPTER 18 Localization
words are spelled. Consider the formatting of dates,
which differs on either side of the Atlantic Ocean. In
the United States, it’s common to format a date with
the month preceding the day: MM/DD/YYYY. In the UK,
it’s more common to see the day of the month listed
first: DD/MM/YYYY.

 As an Android developer, you must keep not only
written language in mind, but also the formatting of
dates, times, and numbers that users can customize.
These differences are more than trivia; they have a
direct impact on how an application is coded, how it
behaves, and importantly, how it’s tested prior to
release. The Date & Time settings are shown in a sepa-
rate preferences screen, as you can see in figure 18.3.

 As the use of speech technology improves and
becomes more heavily adopted, the spoken word will
also be germane to the topic of localization.

 Localization in practice entails more than just pick-
ing a language, so let’s talk strategy on localizing an
Android application.

18.3 Strategies for localizing an application
Ideally an application is built from the top down with localization1 in mind from day
one. If you always take this approach from the start, congratulations, this topic will be
a breeze for you. But if you’ve ever written an application that has some hard-coded
strings or perhaps some code that makes specific assumptions about status codes or
date formatting, you have some work to do to make your applications play nicely
across multiple locales.

 There are a number of perspectives on localization. We won’t cover all of them,
but the discussion that follows should give you a good foundation for localizing your
application. Throughout this chapter, most of the code examples we use are from a
localized variant of the Field Service application you met in chapter 12. The code in
chapter 12 is not localized. The chapter 20 code is both localized and is additionally
translated into Spanish. Let’s get started!

18.3.1 Identifying target locales and data

In all likelihood, you’ll develop your Android application in your native language and
your initial target deployment may be in that same language. Your application may be
aimed at a specific people group and a specific language. Whether you’re targeting a

1 Localization is the how to, and the why. Frank Ableson’s post on Linux Magazine scratches the surface:
www.linux-mag.com/id/7794.

Figure 18.3
Date and time settings

http://www.linux-mag.com/id/7794

513Strategies for localizing an application
broader audience or a specific single market, it’s a good idea to always keep your tar-
get market in mind.

 For example, in the Field Service application, you may have users, customers, and
dispatchers distributed anywhere in the world. This means that you need to keep the
entire infrastructure in mind, not just the mobile application. You might congratulate
yourself for making your application play nicely in the fr_FR locale settings, but if all
the application data is still shown in English, you’re missing a vital element of the big-
ger objective. So not only does your mobile code need to be localized, but the entire
infrastructure needs to keep locale in focus.

 Data generated on the server may require on-the-fly translation. Perhaps a simpler
approach is to filter query results based on the specified language. The device’s locale
can be programmatically obtained at runtime using the toString() method of the
Locale class. This is shown in the following listing and demonstrated in figure 18.4
and figure 18.5.

private void RefreshUserInfo() {
 final TextView emaillabel = (TextView) findViewById(R.id.emailaddresslabel);
 emaillabel.setText(this.getString(R.string.user) +": " +
this.myprefs.getEmail() + "\n" + this.getString(R.string.server)+ ": " +
 this.myprefs.getServer() + "\n" +
 this.getString(R.string.locale) + ":" + Locale.getDefault().toString()

);
 }

You obtain a reference to a TextView widget for dis-
playing textual information at runtime. The get-
Default() static method returns the currently
selected locale. The toString() method displays the
ISO format of the locale.

 When submitting a request to a server-side applica-
tion, this locale value can be passed along as a query
parameter:

http://<servername>/somepage.php?a=b&c=d&locale=en_US

How the server side handles the query is application-specific and beyond our discus-
sion here. Keep in mind that localization is more than the translation of strings within
your application itself. Speaking of strings, they’re up next in our discussion.

18.3.2 Identifying and managing strings

There’s perhaps no more emblematic localization topic than the concept of translat-
ing and managing an application’s strings into target languages. Textual strings are
the most visible and obvious means to target an application for a particular locale.

Listing 18.1 Getting current locale at runtime

Figure 18.4 en_US locale

Figure 18.5 es_ES locale

514 CHAPTER 18 Localization
 The centerpiece of string management within an
Android application is the strings.xml file stored in the
/res/values folder. The values folder contains the
default resources for the application. Values for addi-
tional locales are stored in folders with names identify-
ing the attributes for a specific language or locale. For
example, figure 18.6 shows string files for both the
default locale and for Spanish translation of those
strings.

 A strings.xml file contains a list of strings, as shown in the following listing, which
shows some of the strings used in the Field Service application.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Unlocking Android</string>
 <string name="sign_and_close">Sign and Close</string>
 <string name="cancel">Cancel</string>
 <string name="refresh_job_list">Refresh Job List</string>
 <string name="manage_jobs">Manage Jobs</string>
 <string name="settings">Settings</string>
 <string name="user">User</string>
 <string name="server">Server</string>
 <string name="refreshing_job_list">Refreshing Job List</string>
 <string name="connecting">Connecting</string>
 <string name="there_are_count_jobs">There are %d jobs</string>
 <string name="jobid">Job ID</string>
 <string name="comments">Comments</string>
 <string name="product">Product</string>
 <string name="map_job_location">Map Job Location</string>
 <string name="get_product_info">Get Product Info</string>
 <string name="job_is_closed">Job is closed</string>
 <string name="view_signature">View Signature</string>
 <string name="email_address">Email Address</string>
 <string name="server_url">Server URL</string>
 <string name="save_settings">Save Settings</string>
 <string name="close_job">Close Job</string>
 <string name="locale">Locale</string>
</resources>

The strings.xml files are standard XML files B. To create one of these files, you can
either create it by hand or select File > New: Android Xml File in Eclipse. Each string
value C has an attribute that uniquely identifies the string along with a value stored
between the <string> and </string> tags.

 When creating a strings.xml file for any target language beyond the default locale,
you have the option of translating every string or just a subset of the strings. At run-
time, your application will automatically load the correct string, looking first in the
locale-specific file and working back to the default to find the required value. This cas-
cading works in a manner similar to CSS. The most precise interpretation of the

Listing 18.2 Default strings.xml file

XML file declarationB

String entryC

Figure 18.6
Multiple strings.xml files

515Strategies for localizing an application
device locale is the first file to be searched. If the resource isn’t found in this location,
the platform works its way up the tree toward the default. Let’s look at an example.

 Let’s say your application is written in a default language of English with 20 unique
strings stored in /res/values/strings.xml. You anticipate that your application will be
deployed around the globe, but you’re specifically targeting English- and French-
speaking users in the United States, France, and Canada.

 To implement this strategy, your application contains four different strings.xml
files, one in each of the directories listed in table 18.1.

When a string is looked up at runtime, Android uses the current locale as a filter to
choose resources. Let’s say our device is set for the French Canadian locale: fr_CA. If
the string we require is found in the /res/values-fr-rCA/strings.xml file, it’s used. If
the string isn’t found there, the file /res/values-fr/strings.xml is searched next
because it’s the general French strings file. If it’s still not found, the string will be
taken from the default strings file /res/values/strings.xml.

 Not every string needs to be provided in each file. If only a handful of strings differ
in Canada versus the general French strings, just provide the Canada-specific values in
the fr_rCA file. Following this practice of managing a minimum number of strings can
be helpful, because it can be labor- and testing-intensive to manage multiple string
tables.

 So far, our discussion has included only strings, language, and region-specific files.
Strings aren’t the only resources that may be localized. In the next section, we take a
brief look at other localized resources.

18.3.3 Drawables and layouts

Beyond strings, your application may need to provide locale-specific resources for
drawables (images) and for user interface layouts. The process of managing drawables
and layouts is identical to managing strings. If you require locale-specific versions of
your images and layouts, they should be put in locale-specific folders in the /res folder.

 Providing locale-specific images seems reasonable, because your application’s
images may have textual contents, or perhaps your application has images of region-
specific currency. It’d make sense to show an appropriate image of a greenback dollar
in the US or a Euro in most of Europe. But what about layouts: why would you want to
localize a layout?

Table 18.1 List of strings.xml files

Directory Comment

/res/values/strings.xml Default strings.xml stores values in English for this example

/res/values-fr/strings.xml Complete translation of strings in French

/res/values-fr-rFR/strings.xml A subset of strings with France-specific translations, spellings, etc.

/res/values-fr-rCA/strings.xml A subset of strings with Canada-specific translations, spellings, etc.

516 CHAPTER 18 Localization
 Most UI elements such as TextView widgets and Buttons display textual values. If
those textual values vary in length from one language to the next—which they can
and often do—it may be prudent to provide a locale-specific layout file in some
instances. The idea here is to be intentional about your application’s visual appear-
ance rather than letting the user have a nondeterministic experience. Recall that
many UI elements specify a width value wrap_content. This may not result in a visually
appealing layout at runtime. If a particular string is going to distort the UI of your
application, find out ahead of time and rearrange your widgets within a locale-specific
layout as required.

 In addition to your resources, you need to consider the data values your applica-
tion uses, such as date and time, numbers, and currency. This is the topic of the next
section.

18.3.4 Dates, times, numbers, and currencies

When working with data, keep in mind that users in various parts of the world manip-
ulate dates and numbers differently. If you doubt that, just try to enter the thirteenth
day of December 2010 into an application expecting input in the form of DD/MM/
YYYY. If you enter 12/13/2010, the application will choke because there’s no thir-
teenth month!

 Manipulating these values isn’t so much of an Android topic as it is a Java topic. As
such, our discussion here is limited to a quick survey of commonly used Java classes
for the purpose of handling data in a locale-specific fashion. Demonstrating each of
these classes is beyond the scope of this chapter, and we encourage you to view the
exhaustive Javadocs available for these classes. Table 18.2 enumerates some of the
classes you’re likely to employ when working with a localized application.

Table 18.2 Helpful classes for localized applications

Class name Comment

java.util.GregorianCalendar Subclass of the Calendar class, allowing for date and
time manipulation specific to a locale.

java.text.SimpleDateFormat Useful for formatting date and time according to custom
developer-supplied formats.

java.text.DecimalFormat Formats a decimal value according to a specific locale
and string format.

java.text.DecimalFormatSymbols Helper class to DecimalFormat. Use this class to
retrieve currency symbols, grouping, and decimal sym-
bols. Some locales use commas for grouping and period
for decimal separation; others do the opposite. This
class helps navigate those formatting distinctions.

java.util.Locale Most of the previous classes rely on this class in one way
or another.

517Strategies for localizing an application
Before examining the localized version of our Field Service application in more
detail, there’s one more topic to discuss that has less to do with code than it does with
coding.

 Most developers we know won’t translate their applications to multiple languages
and locales on their own—they’ll employ a teammate or an outside service. Regardless
of whom you work with, it’s helpful to keep them in mind from the start of your proj-
ect. The next section discusses things you can do to work successfully with your trans-
lation team.

18.3.5 Working with the translation team

Managing the strings within an application is straightforward on the surface, but it’s
not without some challenges, in part because you’re working with others. The transla-
tion professionals may be part of your organization or they may be an outside service.
If you have the good fortune of working closely with a teammate for translation,
things may go easier for you, as you can rely on them for not only term translation but
also context. An outside party can provide those services as well, but the cost in terms
of dollars and time may be much greater.

 Some of the challenges relate to the translation task itself, but there’s another chal-
lenge with building a localized application: discipline. Unless you’re working in a
structured environment, some aspects of software creation are fluid. You may have an
idea for an enhancement to a section of your code. You’re excited about this feature,
so you code the enhancement and add a menu item to enable this new aspect of your
application. Terrific, your application is now more functional and your users love you!
Hold on a moment. Did you use any string literals when you coded the new feature,
including the menu? If so, did you get translations yet? A localized application may
suffer from some latency and added expense when you factor in the translation and
testing steps. When you send data out to your translation team, it’s important not only
to provide an exhaustive list of strings or terms that need to be translated, but also to
provide as much context as possible. For example, when we had the Field Service
application’s terms translated to Spanish, we sent the list to our outside translation
vendor. Included in that list was a brief description of each term and its use in the
application. A further helpful step would be to storyboard the application with screen-
shots (or screencasts), thereby equipping the translation team with as much context
as possible.

 It’s also a good idea to keep cultural references in mind. Remember: your objec-
tive is to translate user experience, not just textual terms!

 At this point, you have enough information on why localization is important and
some feel for what needs to be done to make it happen. The next section digs deeper
into the capabilities built within the Android resource subsystem to aid in localization.

518 CHAPTER 18 Localization
18.4 Leveraging Android resource capabilities
With the rapid pace of innovation bringing new and varied capabilities to the mobile
market in general, and Android-powered devices in particular, the topic of localization
for the Android platform extends beyond mere language- and number-formatting
requirements. Because Android devices can vary in terms of their graphical capabili-
ties and physical attributes, some applications will require multiple layout files and
drawables targeted for a particular orientation and collection of display characteris-
tics. In short, the mechanics of multiple resource files for supporting multiple locales
can also provide Android applications with a flexibility previously unavailable in the
mobile landscape.

18.4.1 More than locale

Locale is but one of a handful of attributes that can be specified within your resources.
In addition to language and region (locale), the following attributes may be used as
qualifiers for organizing and specifying resources to be employed at runtime:

 Mobile carrier country (mmc)
 Mobile network code (mnc)
 Orientation: portrait, landscape
 Screen size: small, normal, large
 Screen aspect: long (WQVGA, WVGA, FWVGA), notlong (QVGA, HVGA, VGA)
 Dock Mode: car, desk
 Screen pixel density: ldpi, mdpi, hdpi, nodpi (non scalable bitmaps)
 Screen type: no touch, stylus, finger
 Input method: qwerty keyboard, no keyboard
 Navigation: wheel, trackball, dpad, none (touchscreen only)
 API revision

Android is a moving target as it matures with new capabilities, so this list is regularly
expanding and improving along with each Android release. For the most up-to-date ver-
sion of this list, including the specific qualifiers for the resource folder definition, visit
http://developer.android.com/guide/topics/resources/providing-resources.html.

 At this point, you know how to make your applications provide locale- and device-
specific resource files. The next section demonstrates how those resources relate to
one another.

18.4.2 Assigning strings in resources

To effectively manage a localized application throughout its lifespan, you must lever-
age the strings.xml file to manage every string. The place where most (but not all)
those strings are employed is within layout files. For example, this listing demonstrates
a simple layout resource file that references string values.

http://developer.android.com/guide/topics/resources/providing-resources.html

519Leveraging Android resource capabilities
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/email_address"
 />
 <EditText
 android:id="@+id/emailaddress"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:autoText="true"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/server_url"
 />
 <EditText
 android:id="@+id/serverurl"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:autoText="true"
 />
 <Button android:id="@+id/settingssave"
 android:text="@string/save_settings"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:enabled="true"
 />
</LinearLayout>

When defining a typical UI for an Android application,
we define a layout B containing multiple widgets.
Regardless of the kind of layout you use, there will be
widgets. Some of these widgets (namely TextView

instances) will contain textual elements. In this case the
android:text attribute is assigned a string value. For a
properly localized application, this attribute will always
refer to a string resource C of the format @string/
<identifier>. Likewise, the Button widget D often dis-
plays textual strings and should also refer to a string
constant.

 Figure 18.7 shows a localized version of the configu-
ration screen.

Listing 18.3 Showsettings.xml, which references string constants

Linear layoutB

Reference stringsC

Reference stringsC

Button with
string reference

D

Figure 18.7 Localized screen
referencing strings directly in
layout

520 CHAPTER 18 Localization
 Of course, not every string in an application is defined as an attribute of a layout
resource. Some strings are provided at runtime within Java code. Fortunately, this
approach too is straightforward and is presented in the next section.

18.5 Localizing in Java code
Many of the strings your application uses can be referenced in the application’s layout
files, but there’s often a need for building a string dynamically at runtime to display to
the user. These strings embedded into your code must be localized as well! In fact, our
experience shows that it’s these strings that flesh out the application and test your dis-
cipline as a developer committed to localization. These are also the strings that send
you back to the translation team with further requests for translation services!

 The first and fundamental use of localized strings in code is the simple string
retrieved from the string table and directly displayed without further formatting. We’ll
start by looking at a snippet of the Field Service application’s code prior to localiza-
tion. The following listing shows the onCreateOptionsMenu() method, which handles
the creation of the presented menu options.

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 menu.add(0, 0, 0, "Sign & Close");
 menu.add(0, 1, 1, "Cancel");
 return true;
 }

A literal string B is used to add a menu option to the application in this pre-
localization version of the code taken from chapter 12.

 Let’s now see how this code is converted to a localized form. The first step (see the
following listing) is to ensure that we have these strings present in the string table, as
shown in listing 18.2.

 <string name="sign_and_close">Sign and Close</string>
 <string name="cancel">Cancel</string>

With the strings defined in the string table, you can reference them from code. When
using localized strings in Java code, your best friend is the Context class’s getString()
method. This method takes a single integer argument representing the desired string,
as defined by the R class. Recall that the R class is automatically generated by the
Android Developer Tools whenever a resource is modified and saved within Eclipse.
Consider the following code, which demonstrates using the getString() method to
retrieve localized strings.

Listing 18.4 Menu creation code prior to localization

Listing 18.5 Subset of the string table

Menu with
literal string

B

521Formatting localized strings
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 menu.add(0, 0, 0, this.getString(R.string.sign_and_close));
 menu.add(0, 1, 1, this.getString(R.string.cancel));
 return true;
 }

Retrieving a string is accomplished with a call to the
getString() method, passing in a reference to the
string. The R.string.<identifier> value comes
directly from the name attribute in the string table.
Recall that the application-level R class is generated
in the project as R.java. Never modify that file on
your own, because it’s regularly updated by the ADT
and all your manual changes are lost!

 This localized menu is shown in figure 18.8.
 Static strings are fine, but what about strings that

have some formatting involved? What about when an
application requires dynamic content to be localized?
Let’s look at using the Formatter class next.

18.6 Formatting localized strings
One of the screens used in the Field Service applica-
tion lists all the jobs assigned to this user. Figure 18.9
shows this in the en_US locale.

 Note that the Number of Jobs phrase at the top of
the screen is defined in the default string table as

<string name="there_are_count_jobs">Number of jobs: %d</string>

In the Spanish version of the string table, this is defined as

<string name="there_are_count_jobs">Hay %d trabajo(s)</string>

The %d placeholder is used to specify where the integer should be placed within the
string. At runtime, this string is extracted and subsequently formatted with the help of
the java.util.Formatter class, as shown here.

if (this._joblist.getJobCount() == 0) {
 tv.setText(this.getString(R.string.there_are_no_jobs_available));
} else {
 Formatter f = new Formatter();
 tv.setText(f.format(this.getString(R.string.there_are_count_jobs),
 this._joblist.getJobCount()).toString());
}

Listing 18.6 Retrieving localized strings from the string table

Listing 18.7 Formatting localized strings

Figure 18.8 Localized menu

Figure 18.9 A job list in English

522 CHAPTER 18 Localization
In this dynamic formatting code, the first step is to
determine whether there are any jobs to display to the
user. If not, a static string is retrieved and assigned to
the TextView. In the case where there are jobs available
for display, an instance of the Formatter class is cre-
ated. The format() method of the Formatter object is
invoked, passing in the localized string pulled from the
string table associated with the identifier of R.string
.there_are_count_jobs, along with the integer value
representing the number of jobs.

 The benefit of using the Formatter class is that you
have the option of presenting strings in different man-
ners in different languages. Figure 18.10 shows the job
listings screen in English.

 Figure 18.11 shows the same screen but in Spanish.
Note the different placement of the numeric value.

 You’ve now seen examples of both statically and
dynamically localized strings. There’s no end to the
combinations you might employ in your applications.

 We conclude this chapter with a brief discussion of
obstacles you should avoid when building a localized
application.

18.7 Obstacles to localization
Localizing an application shouldn’t be an afterthought. Too much effort is required
to properly rework your application when you consider all the supporting cast around
your application. The Field Service application has a server-side component, and with
it a whole set of other users and use cases to consider. In this final section, we examine
a couple of these considerations.

 Anything that’s shown to the user should ideally be put into a form that’s readily
consumed and is relevant to them. This means that certain elements of your coding
approach might need to change—and this is often not easy to accomplish.

 For example, one aspect of the Field Service application that should be treated dif-
ferently is the use of the status code. The application uses the values OPEN and
CLOSED transparently but without translation, as shown in figure 18.12.

 This is a case where the same piece of text (OPEN, CLOSED) is used for not only
display but also control of the application. In hindsight, this approach is something to
avoid. The status code should be internal to the application and hidden from the user
in its raw form. Instead, a locale-specific version should be rendered based on the
underlying value. The status code ripples throughout the application, both on the
device and on the server side, so modifying it involves a more comprehensive and
costly effort than just translating some strings in the application.

Figure 18.10 Job listings
screen in en_US locale

Figure 18.11 Job listings
screen in es_ES locale

523Summary
 Additionally, we discussed earlier in the chapter the
idea of filtering out results that are potentially not
usable for a particular user. Refer again to figure 18.12.
Note that this screen is shown in Spanish but contains
a job with English comments. Some elements of a job
may be unable to be translated—for example, proper
names of products or a physical address—but the com-
ments themselves should be carefully distributed to
only users who can be productive with the information.

 The point in demonstrating some of the shortcom-
ings of this (partially) localized application is to empha-
size that localizing an application after it has been
released is much more work than starting with localiza-
tion in mind. Consequently, localizing an application
down the road adds more cost than if you’d designed
the application for localization from the start. In addi-
tion, the user experience may be compromised based
on some of the steps required to make a localized application fit into an infrastructure
that didn’t contemplate the possibility beforehand.

18.8 Summary
In this chapter we explored the topic of localizing an Android application. We
reviewed high-level concepts, including motivation, strategy, and technique. The code
used a variant of chapter 12’s Field Service application as an example to illustrate both
the techniques and challenges of localizing an application.

 We looked at the resource structure and the services performed for you automati-
cally by the Android platform. Beyond the definition and organization of the
resources, we examined the various means of working with localized strings.

 Although you may not have learned much Spanish in this chapter, we trust that
you’re now ready to add localization to your list of capabilities and in the process
make your applications available to a much broader audience.

 In addition to the basic mechanics of localizing an application, a key idea to take
from this chapter is that localization isn’t a casual exercise to be undertaken at some
point in the future, but rather it should be designed into the DNA of your application
from the start.

 In the next chapter, you get to go under the hood of Android as we look at the
Android Native Development Kit (NDK) and write C code for Android.

Figure 18.12 Speedbumps in
localization: OPEN status

D
ow

nl
oa

d
fr

om
 w

w
w

.U
pe

Bo
ok

.C
om
Android Native
Development Kit
The majority of the code in this book is written to employ the Android SDK using
the Java programming language. Looking back to chapter 13, we explored creating
native executable applications for Android by writing Linux-compatible applica-
tions. The code in that chapter was written in the C language, but it didn’t produce
applications that are easily executed on consumer hardware. The design approach
in chapter 13 requires an unlocked developer, or rooted, device and is arguably only
applicable for developers who are building custom Android builds—it’s not for the
typical developer looking to deploy applications to consumer-based handsets. This
chapter presents the “approved” manner of writing C code for the Android plat-
form with assistance from the Android Native Developer Kit, or simply the NDK.

 This chapter presents the NDK as an aid to Android developers. The architecture
of the NDK is presented and discussed in the context of a nontrivial, hands-on

This chapter covers
 Introducing the Android Native Development Kit

 Exploring the Java Native Interface

 Building an application with the NDK

 Integrating NDK into Eclipse
524

525Introducing the NDK
image-processing application. Image processing is a broad field encompassing many
applications across almost every industry. Perhaps the most familiar example of an
image-processing application is optical character recognition (OCR). OCR can be imple-
mented via a number of different algorithms. Many image-processing algorithms begin
by attempting to identify the target object within a still image or frame of a video. One
classic technique for separating an object from the background is known as edge detec-
tion. An edge detection algorithm analyzes the image looking for the outlines of any
objects within the image, be they characters or any other object. The application that
accompanies this chapter, named UA2E_FindEdges, implements a classic image-
processing algorithm known as Sobel Edge Detection.1 Using UA2E_FindEdges, you’ll use
the Android camera to acquire a photo and then find all of the edges within the image.
The algorithm to be used has been ported from another platform in the C program-
ming language, compiled into a native code library, and employed by an Android SDK
Java application.

 The chapter wraps up with a demonstration of integrating the NDK into the
Eclipse build environment, permitting a nearly seamless experience for the developer.

19.1 Introducing the NDK
NDK is a bolt-on, complementary tool chain to the core Android SDK that permits
developers to create application functionality in the C programming language. The
NDK isn’t meant to replace the SDK applications, but rather is designed to augment
them. In fact, you can’t create a standalone application with the NDK. The NDK com-
piles code written in C into libraries that are callable by SDK-based Java code. The role
of these native libraries is to provide additional functionality to the Java application.
The NDK also handles all of the application packaging steps to make sure that the
resulting APK file contains not only the Java code but the native code libraries as well.

 Considering the power and breadth of the Android SDK, why would you bother
with the NDK?

19.1.1 Uses for the NDK

For most developers, there’s no reason to use the NDK, as the combination of the Java
programming language and the Android SDK is more than capable of meeting the
needs of their applications, and they’ll never need to drop down to the native level to
accomplish their tasks. But there are scenarios where C is better suited to the task
than Java. Consider the case where an application needs to perform a large number of
bitwise operations on 8-bit data elements for applications such as raw signal condition-
ing, image processing, or encryption. Operations such as these are ideally suited for
the C language with its efficient use of memory and its agility when working with raw
data. Likewise, accessing the OpenGL libraries from C may provide better perfor-
mance for some applications where the developer is skilled in C.

1 Here is an introductory tutorial covering the topic of Sobel Edge Detection: www.generation5.org/content/
2002/im01.asp.

http://www.generation5.org/content/2002/im01.asp
http://www.generation5.org/content/2002/im01.asp

526 CHAPTER 19 Android Native Development Kit
 In addition to graphics programming and raw data processing needs where tight
native code has an advantage, there’s another scenario where the NDK may be worth
considering. Taking into account the large body of code written for Linux in the C pro-
gramming language, there may be functionality that a developer can drop in without
the need to port the functionality to Java. The NDK enables the reuse of legacy C code.2

 Interestingly, code written with the NDK isn’t guaranteed to execute faster than
Java code that implements the same algorithm, so the NDK shouldn’t be viewed as an
automatic choice when reviewing options to improve application performance. All
things being equal, the NDK actually complicates matters, so it should be deployed
with thoughtful consideration. The NDK is a good fit for self-contained and CPU-inten-
sive operations where memory allocation is kept to a minimum.

 To build an NDK project, you need to understand the components of the NDK and
how it relates to an Android application.

19.1.2 Looking at the NDK

The NDK is a freely available download from the Android developer website at http://
developer.android.com/sdk/ndk. Like the Android SDK, there are versions available
for each of the supported platforms: Windows, Mac, and Linux. Installing the NDK is as
simple as downloading the archive file and unzipping it into an accessible place on your
development machine. Placing the NDK in a folder parallel to the SDK is a good idea.

 Creating a symbolic (or soft) link to the directory is also helpful. For example, you
might put a link on your laptop, making the NDK easy to access:

ln -s /users/fableson/Software/android/android-ndk-r4b/ ndk

The NDK is updated periodically just like the SDK, so
using a soft link such as this can aid in managing build
scripts, as you’ll see at the end of this chapter.

 At first glance, the NDK footprint seems pretty
straightforward, but under the build folder lies a maze of
make files. Figure 19.1 shows the NDK as it resides on the
hard drive.

 Fortunately for us, building a native library from C
source code is surprisingly simple. Table 19.1 lists the
high-level steps in building a native library. The balance
of the chapter walks through the process of building a
native library and a sample application that leverages the
functionality of that library.

 The code generated by the NDK is known as a Java
Native Interface (JNI) library. A JNI library3 exposes one or

2 Start here to explore more about legacy C code: www.imagix.com/links/c_cplusplus_language.html.
3 To access the JNI documentation: http://download.oracle.com/javase/6/docs/technotes/guides/jni/

index.html.

Figure 19.1 NDK on the disk

http://developer.android.com/sdk/ndk
http://developer.android.com/sdk/ndk
http://www.imagix.com/links/c_cplusplus_language.html
http://download.oracle.com/javase/6/docs/technotes/guides/jni/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/jni/index.html

527Building an application with the NDK
more functions to a Java application through exported functions. The names of the
exported functions follow a strict naming convention. Failure to comply with this
naming convention results in runtime errors.

 The resulting name of the JNI library is lib<name of library>.so, which is the naming
convention for a shared library in the Linux environment. The JNI specification
defines the interface between the Java and C environments. To illustrate the JNI inter-
face with the NDK, let’s build an image-processing application from start to finish.

19.2 Building an application with the NDK
This section presents a step-by-step guide to building an application that leverages the
Android NDK. Before jumping into the code, let’s walk through the high-level func-
tionality of the application, which is named UA2EFindingEdges, including screen-
shots showing the application in action. After the demo of the application, we
examine each of the pieces of code to construct the application from the ground up.

Table 19.1 Build steps for an NDK library

Step Comment

Create Android project The starting point is to have an Android project to work
with.

Create library source folder Use the name jni (short for Java Native Interface). This
folder contains C source plus project-specific make files.
It should be at the same level as the src folder within a
standard Android project folder structure.

Create C source file This file contains the implementation of the native library.
This code may be split among multiple C source files.

Create Android.mk This is the configuration (or make) file for the native
library. An example is provided later in this chapter.

Change directory to library source folder The NDK must be run from within your jni folder.

Execute NDK Type ndk-build from the command line to execute the
build script. This processes a series of make files that
perform all of the compilation and linking of the library.
The result is a file ready for inclusion in the APK file.

Optional step:
integrate NDK into project’s build

Ideally modifying and saving the C source file will result in
the complete build of the application, including both SDK
and NDK aspects. Taking the time to do this makes the
development process much more appealing.

Look for any compilation or linking errors Any coding or configuration errors will become apparent
as lines written to the standard output and standard error
of the console where the script was executed. If run from
within Eclipse, the output is shown in the console window.

528 CHAPTER 19 Android Native Development Kit
19.2.1 Demonstrating the completed application

The sole function of this application is to convert a photograph into a grayscale
image, showing the edges of the object within the photograph. The application is writ-
ten in Java using the Android SDK with a minimalist interface, as shown in figure 19.2.

Selecting the Acquire Image button launches the built-in Camera application with
default image settings. Take a photo. Figure 19.3 shows an image taken of a model
race car body.

Clicking the OK button in the Camera application brings the photo back to our sam-
ple application and displays the image. The Find Edges button is now available, as
shown in figure 19.4.

Figure 19.2 Application waiting
to take a photo

Figure 19.3 Take a photograph.

Figure 19.4 Captured image
before image processing

529Building an application with the NDK
It’s now time to exercise the primary function of this application: the edge-detection
routine. See figure 19.5.

 After the Find Edges button is selected, the application performs two consecutive
image-processing routines, each of which is implemented in the C language JNI
library. The first function converts the color image to grayscale, which is a common
technique in image-processing algorithms. After the image has been converted, a
transformation known as the Sobel Edge Detection algorithm is performed to highlight
the edges in the photograph. Once the image processing is complete and the image
updated, the application is ready to acquire a new image.

 The image-processing prowess of this application is hardly groundbreaking, but
the application is fun to play with and presents a sufficiently complex problem to solve
with the NDK. You’re encouraged to follow along in the next section and build this
application for yourself. If you’d like to just use the application, it’s available for down-
load in the Android Market.

19.2.2 Examining the project structure

The application consists of two primary parts.
The first is the Android SDK-based Java code,
which contains the application structure, the UI,
the click handlers, code to display the images,
and all of the usual AndroidManifest.xml goodies
required to make the application run on an
Android device. The second portion of the appli-
cation is the image-processing library built with
the NDK. The library contains the two image-pro-
cessing functions, written in C and exported for
use by the user interface code. Figure 19.6 shows
the project as it looks in Eclipse.

 This project looks like every other Android
project you’ve worked with to date, with the addi-
tion of the jni and libs folders.

Figure 19.5 Showing the
edges of the car

Figure 19.6
A project in the Eclipse GUI

530 CHAPTER 19 Android Native Development Kit
 The jni folder contains three files of interest: the C language file and two make
files. The output.txt file is created by the NDK build subsystem.

 The libs folder contains output files from the NDK build process targeted for dif-
ferent CPU architectures. The topic of which CPU target to use is beyond our objec-
tives in this chapter—you can learn more about processor-specific settings in the
readme files in the NDK’s docs folder.

 Let’s start with a look at the JNI code.

19.3 Building the JNI library
Building a JNI library requires a basic understanding of JNI, a C source file, and the
appropriate entries in the Android.mk file. The next few sections break down these
requirements, step by step. We begin with a brief discussion of how code is mapped
between the Java and C language environments.

19.3.1 Understanding JNI

As mentioned earlier, a JNI library exposes one or more functions to a Java-based
application through a specific naming convention. A C language function is named
according to the following guideline:

Java_fully_qualified_class_name_method_name

For example, a method named SomeMethod() in the class named DoSomething, which
takes an integer and a string argument, would be defined as shown in the following
listing.

JNIEXPORT jint JNICALL Java_com_somecompany_DoSomething_SomeMethod(
JNIEnv * env,
jobject obj,
jint i,
jstring s);

The function is named according to the JNI standard, including the prefix of Java, fol-
lowed by the fully qualified class name and the method name. Every exported JNI
function has at minimum the same first two arguments. The first argument is a
pointer to the Java Environment. See the jni.h header file shipped with the NDK for
available functionality in the JNIEnv object. The next argument is a pointer to the
this object. Any additional arguments follow these two standard arguments. In this
case, there’s an integer argument, which is a data type of jint, and a String argu-
ment of type jstring. Again, see the jni.h header file for a more complete view of the
available data types.

 Calling a JNI function from Java first requires that the library be loaded. This is
accomplished with a call to System.loadLibrary, passing in the module name. The
module name is the name of the shared library minus the lib prefix and the .so exten-
sion. The next listing shows how to load this module and declare the sample method.

Listing 19.1 Sample JNI function signature

531Building the JNI library
package com.somecompany;

public class SomeObject {

 public SomeObject {

 native int SomeMethod(jint i,jstring s);
 static {
 System.loadLibrary("SomeModule");
 }
 }
}

In this simple example, note the package name and class name. These names com-
bine to form a portion of the JNI function name. The JNI function named
SomeMethod() is defined with a native qualifier. To gain access to this function, it must
be loaded via a call to loadLibrary, passing in the module name of the library.

 Much more is involved in the JNI specification, but you have enough here to get
started on the sample application code.

19.3.2 Implementing the library

Finally, you get to look at the C code that implements the image-processing functions!
The code listings are broken into three logical sections: the header of the C file with
macros and data type definitions, and then each of the two image-processing func-
tions. First you see the header of the file ua2efindedges.c.

#include <jni.h>
#include <android/log.h>
#include <android/bitmap.h>

#define LOG_TAG "libua2efindedges"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO,
 LOG_TAG,__VA_ARGS__)
#define LOGE(...) __android_log_print(ANDROID_LOG_ERROR,
 LOG_TAG,__VA_ARGS__)

typedef struct
{
 uint8_t alpha;
 uint8_t red;
 uint8_t green;
 uint8_t blue;
} argb;

The first header file included in the C source file is jni.h B. This file contains the
required data types and macros for the JNI. Without this header file, data types would
be unrecognized and the code would never compile. The Android NDK provides sup-
port for a handful of Android subsystems, including the logging and bitmap handling,
among others. Those headers are included as well C because they’re required for this

Listing 19.2 Calling a JNI function

Listing 19.3 ua2efindedges.c

jni header fileB
Log, bitmap headersC

Logging
macros

D

Structure for
image handlingE

532 CHAPTER 19 Android Native Development Kit
application. A few macros D aid in accessing the LogCat functionality. Because this
application is dealing with image data where each pixel is defined as a 32-bit structure
representing a Color object, a structure is defined to easily manage the pixel data E.

NOTE The bitmap functionality shown in this example requires Android 2.2
or later.

Let’s now discuss the image-processing routines. Don’t concern yourself with the
details of these functions unless they’re of interest to you. The basic approach of this
application is to pass Bitmap objects from the Java code to the JNI code. The pixel buf-
fers are locked such that the memory is accessible to the C code for raw manipulation.
When the image processing is complete, the pixels are unlocked.

 The first function is named converttogray() and takes two arguments. The first
argument is an Android Bitmap of the style RGBA_8888, which means each pixel con-
tains a byte representing the Alpha channel and then one byte each for Red, Green,
and Blue values. Each value is represented by an integer ranging in value from 0 to
255. The second Bitmap is created as a grayscale, 8-bits-per-pixel image. The first
parameter is the input image, and the second is the output image. The following list-
ing contains the converttogray() method. Note the long function name!

JNIEXPORT void JNICALL
Java_com_msi_manning_ua2efindedges_UA2EFindEdges_

➥converttogray(

JNIEnv * env, jobject obj,
jobject bitmapcolor,
jobject bitmapgray)
{
 AndroidBitmapInfo infocolor;
 void* pixelscolor;
 AndroidBitmapInfo infogray;
 void* pixelsgray;
 int ret;
 int y;
 int x;

 if ((ret = AndroidBitmap_getInfo(env,
 bitmapcolor, &infocolor)) < 0) {
 LOGE("AndroidBitmap_getInfo() failed ! error=%d", ret);
 return;
 }

 if ((ret = AndroidBitmap_getInfo(env,
 bitmapgray, &infogray)) < 0) {
 LOGE("AndroidBitmap_getInfo() failed ! error=%d", ret);
 return;
 }

 LOGI("color image :: width is %d; height is %d; stride is %d; format is
%d;flags is %d",infocolor.width,infocolor.height,infocolor.stride,

Listing 19.4 converttogray function implementation

Specify
function name

B

Define
AndroidBitmapInfo
structure

C
Contain pointer
to pixelsD

Get Bitmap infoE

Get Bitmap infoE

533Building the JNI library
 infocolor.format,infocolor.flags);
 if (infocolor.format != ANDROID_BITMAP_FORMAT_RGBA_8888) {
 LOGE("Bitmap format is not RGBA_8888 !");
 return;
 }

 LOGI("gray image :: width is %d; height is %d; stride is %d; format is
%d;flags is %d",infogray.width,infogray.height,infogray.stride,
 infogray.format,infogray.flags);
 if (infogray.format != ANDROID_BITMAP_FORMAT_A_8) {
 LOGE("Bitmap format is not A_8 !");
 return;
 }

 if ((ret = AndroidBitmap_lockPixels(env,
 bitmapcolor, &pixelscolor)) < 0) {
 LOGE("AndroidBitmap_lockPixels() failed ! error=%d", ret);
 }

 if ((ret = AndroidBitmap_lockPixels(env, bitmapgray,
 &pixelsgray)) < 0) {
 LOGE("AndroidBitmap_lockPixels() failed ! error=%d", ret);
 }

 // modify pixels with image processing algorithm
 for (y=0;y<infocolor.height;y++) {
 argb * line = (argb *) pixelscolor;
 uint8_t * grayline = (uint8_t *) pixelsgray;
 for (x=0;x<infocolor.width;x++) {
 grayline[x] = 0.3 * line[x].red + 0.59 *
 line[x].green + 0.11*line[x].blue;
 }

 pixelscolor = (char *)pixelscolor + infocolor.stride;
 pixelsgray = (char *) pixelsgray + infogray.stride;
 }

 AndroidBitmap_unlockPixels(env, bitmapcolor);
 AndroidBitmap_unlockPixels(env, bitmapgray);
}

The simple name of converttogray() is expanded to a much longer JNI name B.
Arguments to the function include a color Bitmap, which is used as the input image,
and a gray Bitmap, which is the resulting (or output) Bitmap for this function. The
AndroidBitmapInfo structure C holds information about a Bitmap, which is obtained
with a call to AndroidBitmap_getInfo E. Details of the Bitmap are logged to LogCat
with the previously introduced macros. Local variables are used to gain access to the
pixel data D and loop through the rows and columns of pixels with a couple of aptly
named variables, x and y. If the bitmaps are in the expected format F, the function
proceeds to lock down the pixel buffers G.

 At this point, the function can confidently navigate through a contiguous memory
block to access the pixels of the image H. This is important because most image-pro-
cessing routines rely on this sort of direct memory access through pointers. This
means easier inclusion of image-processing code from sources such as existing Linux

FCheck Bitmap format

GLock Bitmap pixels

Access image dataH

Advance through
pixel buffer

I

Unlock pixelsJ

534 CHAPTER 19 Android Native Development Kit
code bases. The color bitmap is accessed row by row. Each color pixel is converted to a
gray pixel. Pointer arithmetic I aids in the navigation through the pixel memory buf-
fer. When the images have been completely processed, the pixels are unlocked J.

 When the converttogray() function is complete, the calling Java code now has a
grayscale version of the color image. The Java code to call this C code is shown later in
this chapter; first let’s look at the routine that detects the edges, shown in the follow-
ing listing. Only the new features are discussed, as there’s a great deal of similarity
between the converttogray() and detectedges routines.

JNIEXPORT void JNICALL
Java_com_msi_manning_ua2efindedges_UA2EFindEdges_detectedges(
JNIEnv * env, jobject obj,
jobject bitmapgray,
jobject bitmapedges)
{
 AndroidBitmapInfo infogray;
 void* pixelsgray;
 AndroidBitmapInfo infoedges;
 void* pixelsedge;
 int ret;
 int y;
 int x;
 int sumX,sumY,sum;
 int i,j;
 int Gx[3][3];
 int Gy[3][3];
 uint8_t *graydata;
 uint8_t *edgedata;

 Gx[0][0] = -1;Gx[0][1] = 0;Gx[0][2] = 1;
 Gx[1][0] = -2;Gx[1][1] = 0;Gx[1][2] = 2;
 Gx[2][0] = -1;Gx[2][1] = 0;Gx[2][2] = 1;

 Gy[0][0] = 1;Gy[0][1] = 2;Gy[0][2] = 1;
 Gy[1][0] = 0;Gy[1][1] = 0;Gy[1][2] = 0;
 Gy[2][0] = -1;Gy[2][1] = -2;Gy[2][2] = -1;

 LOGI("detectedges in JNI code");

 if ((ret = AndroidBitmap_getInfo(env, bitmapgray, &infogray)) < 0) {
 LOGE("AndroidBitmap_getInfo() failed ! error=%d", ret);
 return;
 }

 if ((ret = AndroidBitmap_getInfo(env, bitmapedges, &infoedges)) < 0) {
 LOGE("AndroidBitmap_getInfo() failed ! error=%d", ret);
 return;
 }

 LOGI("gray image :: width is %d; height is %d; stride is %d; format is
%d;flags is %d",infogray.width,infogray.height,infogray.stride,
 infogray.format,infogray.flags);
 if (infogray.format != ANDROID_BITMAP_FORMAT_A_8) {

Listing 19.5 detectedges routine

Input grayscale
BitmapBOutput edges

BitmapC

Set up
masks

D

Point to
pixel data

E

Set up
transformations

F

535Building the JNI library
 LOGE("Bitmap format is not A_8 !");
 return;
 }

 LOGI("color image :: width is %d; height is %d; stride is %d; format is
%d;flags is %d",infoedges.width,infoedges.height,infoedges.stride,
 infoedges.format,infoedges.flags);
 if (infoedges.format != ANDROID_BITMAP_FORMAT_A_8) {
 LOGE("Bitmap format is not A_8 !");
 return;
 }

 if ((ret = AndroidBitmap_lockPixels(env,
 bitmapgray, &pixelsgray)) < 0) {
 LOGE("AndroidBitmap_lockPixels() failed ! error=%d", ret);
 }

 if ((ret = AndroidBitmap_lockPixels(env,
 bitmapedges, &pixelsedge)) < 0) {
 LOGE("AndroidBitmap_lockPixels() failed ! error=%d", ret);
 }

 // modify pixels with image processing algorithm
 graydata = (uint8_t *) pixelsgray;
 edgedata = (uint8_t *) pixelsedge;

 for (y=0;y<=infogray.height - 1;y++) {
 for (x=0;x<infogray.width -1;x++) {
 sumX = 0;
 sumY = 0;
 // check boundaries
 if (y==0 || y == infogray.height-1) {
 sum = 0;
 } else if (x == 0 || x == infogray.width -1) {
 sum = 0;
 } else {
 // calc X gradient
 for (i=-1;i<=1;i++) {
 for (j=-1;j<=1;j++) {
 sumX += (int) ((*(graydata + x + i +
 (y + j) * infogray.stride)) * Gx[i+1][j+1]);
 }
 }
 // calc Y gradient
 for (i=-1;i<=1;i++) {
 for (j=-1;j<=1;j++) {
 sumY += (int) ((*(graydata + x + i +
 (y + j) * infogray.stride)) * Gy[i+1][j+1]);
 }
 }
 sum = abs(sumX) + abs(sumY);
 }
 if (sum>255) sum = 255;
 if (sum<0) sum = 0;

 *(edgedata + x + y*infogray.width) = 255 - (uint8_t) sum;
 }

Access pixelsG

Ignore
border pixelsH

Calculate X
dimension

I

Calculate Y
dimension

J

Constrain
pixel values

1) Calculate
edge
value

1!

536 CHAPTER 19 Android Native Development Kit
 }
 AndroidBitmap_unlockPixels(env, bitmapgray);
 AndroidBitmap_unlockPixels(env, bitmapedges);
}

Like the prior function, this one takes two Bitmap arguments, both of which are gray-
scale images. The first contains the grayscale image B created in the converttogray()
method. The second bitmap argument C becomes the “edges only” version of the
image. A number of variables D are defined to aid in the edge-detection process. Like
the prior function, we have local pointers E to the image data. The Sobel Edge Detec-
tion algorithm involves a mathematical operation known as a convolution, which
requires initializing a pair of convolution masks F. The convolution must be per-
formed across the entire image G with the exception of the border pixels, which are
skipped H. First the calculations are made in the x dimension I and then in the y
dimension J. Once the calculations have been performed for a particular pixel, a new
value is calculated based on the surrounding pixels and stored in the output image 1).
Prior to storing a value, the new pixel value is constrained to be between 0 and 255 1!.

 You’re now ready to compile this code, but before you can do that you need to
define the make file for the library.

19.3.3 Compiling the JNI library

In addition to the C source file, you require a make file to instruct the NDK on how the
library is compiled. The following listing contains the make file used with this library.

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := ua2efindedges
LOCAL_SRC_FILES := ua2efindedges.c
LOCAL_LDLIBS := -llog –ljnigraphics

include $(BUILD_SHARED_LIBRARY)

The Android.mk file is a make file containing build information about the JNI library
for this project. The name of the library module is ua2efindedges. The actual result-
ing filename is libua2efindedges.so, which follows the normal file-naming structure
for a dynamically loadable library for Linux. The only source file for this library is
ua2efindedges.c. The input libraries are also listed. These libraries are searched for
code symbols when the library is linked. The standard C and math libraries are auto-
matically searched, so they don’t need to be included in the LOCAL_LDLIBS variable.

 Building the application is as simple as opening a terminal window to the jni folder
and running the file ndk-build, which can be found in the NDK installation directory.
Figure 19.7 shows the build process from the command line.

Listing 19.6 Android.mk

537Building the user interface
Now that the JNI library is complete, let’s swing back to the Android SDK and build the
user interface for this application.

19.4 Building the user interface
The UI for the application is modest. The things the UI must do include responding
to two different buttons, one for taking a picture and one for calling the JNI functions.
Beyond that, the code performs simple operations to display the various bitmap
images. Let’s start by looking at the layout for this application.

19.4.1 User interface layout

The layout for this application is contained in the resource file main.xml, shown next.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#ffffffff">
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:background="#ffffffff"
 android:gravity="center">
<Button android:id="@+id/AcquireImage"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Acquire Image"
 />
<Button android:id="@+id/FindEdges"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Find Edges"
 />

Listing 19.7 Layout file

Figure 19.7 Building the JNI library

Outer layoutb

Layout
containing
Buttons

c

Acquire, Find
Edges Buttons

d

538 CHAPTER 19 Android Native Development Kit
</LinearLayout>
<ImageView android:id="@+id/PictureFrame"
 android:layout_width="320px"
 android:layout_height="240px"
 android:scaleType="centerCrop"
 android:layout_gravity="center_vertical|center_horizontal"/>

</LinearLayout>

This layout is straightforward. It contains a vertically oriented LinearLayout B, which
contains all the UI elements of this application. Next is a horizontally oriented Layout,
which is also centered c. This layout contains two Buttons d, one for the acquisition
of a photo and one for calling the image-processing routines. When an image is avail-
able, it’s shown in an ImageView instance e. The visibility of the FindEdges Button is
toggled on only after a photo is available.

 This application relies on an Application object to hold a global variable—in this
case, a Bitmap. This is necessary because a photo application often results in the user
changing the orientation of the device: portrait to landscape or landscape to portrait,
and so on. Whenever this occurs, Android’s default behavior is to restart the Activ-
ity. If you store a captured photo in an Activity-level variable, you’ll lose it each
time the device is rotated. To solve this problem, store the Bitmap in an Application
object. The following listing shows the code for this simple class.

package com.msi.manning.ua2efindedges;

import android.app.Application;
import android.graphics.Bitmap;

public class UA2EFindEdgesApp extends Application {
 private Bitmap b;

 public Bitmap getBitmap() {
 return b;
 }
 public void setBitmap(Bitmap b) {
 this.b = b;

 }
}

The Application and Bitmap classes must be imported B for this code to compile. The
UA2EFindEdgesApp class extends the Application class. The Bitmap is stored as a pri-
vate member, and of course we have a getter and setter c to manipulate this Bitmap.

NOTE Whenever you use an Application class, it must be defined in the
AndroidManifest.xml file as the android:name attribute of the application tag.

Let’s now look at the primary user interface code to see how you take a photo and
store it into the Application object.

Listing 19.8 UA2EFindEdgesApp.java

ImageView
e

Required
imports

b

Getter
and setter
routinesc

539Building the user interface
19.4.2 Taking a photo

There are a number of ways to take a photograph on the Android platform. For this
application, you’ll just ask the Camera to do the work for you through the use of an
Intent. The next listing demonstrates this approach. Note that the JNI-related code
introduced next is employed in listing 19.10.

package com.msi.manning.ua2efindedges;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.widget.ImageView;
import android.widget.Button;
import android.view.View;
import android.content.Intent;
import android.graphics.Bitmap;
import android.graphics.Bitmap.Config;

public class UA2EFindEdges extends Activity {

 protected ImageView imageView = null;
 private final String tag = "UA2EFindEdges";
 private Button btnAcquire;
 private Button btnFindEdges;
 // declare native methods
 public native int converttogray(Bitmap bitmapcolor,
 Bitmap gray);
 public native int detectedges(Bitmap bitmapgray,
 Bitmap bitmapedges);

 static {
 System.loadLibrary("ua2efindedges");
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 btnAcquire = (Button) this.findViewById(R.id.AcquireImage);
 btnAcquire.setOnClickListener(new View.OnClickListener(){
 public void onClick(View v){
 try {
 Intent action = new
 Intent("android.media.action.IMAGE_CAPTURE");
 startActivityForResult(action,1);
 } catch (Exception e) {
 Log.e(tag,"Error occurred [" + e.getMessage() + "]");
 }
 }
 });

 btnFindEdges = (Button) this.findViewById(R.id.FindEdges);
 btnFindEdges.setOnClickListener(new View.OnClickListener(){
 // code shown in next listing

Listing 19.9 UA2EFindEdges.java

Declare
native
methods

b

Load JNI
libraryc

Request
photo

d

540 CHAPTER 19 Android Native Development Kit
 });

 imageView = (ImageView) this.findViewById(R.id.PictureFrame);
 UA2EFindEdgesApp app = (UA2EFindEdgesApp) getApplication();
 Bitmap b = app.getBitmap();
 if (b != null) {
 imageView.setImageBitmap(b);
 }
 else {
 btnFindEdges.setVisibility(View.GONE);
 }

 }

 protected void onActivityResult(int requestCode,
 int resultCode,Intent data)
 {
 try {
 if (requestCode == 1) {
 if (resultCode == RESULT_OK) {
 UA2EFindEdgesApp app = (UA2EFindEdgesApp) getApplication();
 Bitmap b = app.getBitmap();
 if (b != null) {
 b.recycle();
 }

 b = (Bitmap) data.getExtras().get("data");
 app.setBitmap(b);
 if (b != null) {
 imageView.setImageBitmap(b);
 btnFindEdges.setVisibility(View.VISIBLE);
 }
 }
 }
 } catch (Exception e) {
 Log.e(tag,"onActivityResult Error [" + e.getMessage() + "]");
 }

 }
}

This code is the primary Activity for the application and is also the code that calls the
previously written native code. To call the native methods, they must be declared B
and the JNI library must be loaded c at runtime. When the Acquire button is selected,
we request a photo by creating an Intent and dispatching it with a call to
startActivityForResult d. Whenever the Activity is created, we need to check
whether a Bitmap is available; to do that we first get a reference to the Application
object e, casting it to the UA2EFindEdgesApp class. If we have a valid Bitmap, we display
it f in the ImageView. This approach handles the scenario where the Android device
has changed orientations and the Activity has been restarted. When the Camera has
captured a photo, it’s packaged up into an Intent and sent back to the application via
the onActivityResult() method g. If an existing Bitmap is found in the Applica-
tion object, it’s recycled h and the new one is extracted from the Intent i. The
Bitmap is stored in the Application object and displayed to the screen. Once the
photo has been acquired, the Find Edges button is shown J.

e

Get
Application

referenceDisplay
Bitmapf

Activity
result

g

Recycle
Bitmap

h

Extract, store,
display Bitmap

i

Toggle Button
visibility

j

541Building the user interface
 Now that you have the photo, you want to run your image-processing routines
against it to find the edges. That’s up next as we examine the click handler for the
Find Edges button.

19.4.3 Finding the edges

The Java side of the image-processing code relies on some knowledge of how Android
Bitmaps are constructed. There are three Bitmaps in play by the time the edge detec-
tion is complete:

 The original photo is stored in the Application object as a full-color Bitmap
with a format of AARRGGBB, meaning Alpha channel, Red, Green, and Blue
pixel data.

 A grayscale image is created from the color image.
 A second grayscale image is created, which receives the edges found in the

prior grayscale image.

The following listing shows the click handler and steps through the process of con-
verting a color image to an edges-only image.

btnFindEdges = (Button) this.findViewById(R.id.ModifyImage);
btnFindEdges.setOnClickListener(new View.OnClickListener(){
 public void onClick(View v){
 try {
 UA2EFindEdgesApp app = (UA2EFindEdgesApp) getApplication();
 Bitmap b = app.getBitmap();
 int width = b.getWidth();
 int height = b.getHeight();
 Bitmap bg = Bitmap.createBitmap(width, height, Config.ALPHA_8);
 Bitmap be = Bitmap.createBitmap(width, height, Config.ALPHA_8);
 converttogray(b,bg);
 detectedges(bg,be);
 app.setBitmap(be);
 imageView.setImageBitmap(be);
 btnFindEdges.setVisibility(View.GONE);
 } catch (Exception e) {
 Log.e(tag,"Error occured [" + e.getMessage() + "]");
 }
 }
});

This code first obtains a reference to the Application object to retrieve the color
Bitmap B. To create the two grayscale Bitmaps c required for the image processing,
we first need to get the dimensions of the original photo. With all of the Bitmaps
ready for use, we convert the color photo to a grayscale version with a call to con-
verttogray(). Next, find the edges in the image with a call to detectedges() d.
Store the new image in the application and display it on the screen. We don’t want to
run the edge-detection routine without first obtaining a new color image, so we hide
the Find Edges button.

Listing 19.10 Finding the edges

bGet Bitmap
from Application

c

Create two
grayscale
Bitmaps

Find edgesd

542 CHAPTER 19 Android Native Development Kit
 Congratulations—you now know how to use the NDK! All in all, it wasn’t painful,
but there’s one annoying task. Building the JNI library from a command line is simple
but not fun, particularly when you’re accustomed to saving a Java source file and hav-
ing the application auto-build. Fortunately, there’s a way to incorporate the NDK into
the Eclipse environment.

19.5 Integrating the NDK into Eclipse
The goal is simple: build the entire project from within Eclipse and never resort to the
command line to perform any build operations. You can accomplish this goal by mod-
ifying the project’s build properties. Highlight the project in Eclipse and select Prop-
erties to open the properties dialog. Select the Builders group, as shown in figure 19.8.

 Note the ndk builder entry to the right. To create this in a new project, click the
New button on the far right side of the dialog. This opens a dialog with four tabbed
sections. You’re interested in the first, second, and fourth tabs, as shown in the next
few figures. Before looking at those screens, note that you want the NDK to build your
code before the other project build steps; that way, you can get the latest version of the
JNI library packaged into the final APK file. To do this, highlight the ndk builder tool
you just created and select the Up button to position it at the top of the list. Don’t
neglect this step!

 Figure 19.9 shows the options for the external tool to launch, which in this case is
the fully qualified path to the ndk-build script in the NDK directory. Note the use of
the symbolic link ndk, which eases the transition to new versions of the NDK over time.

 Figure 19.10 shows the next tab of the tool configuration window, which requests
that the project resources be refreshed after the build this step.

Figure 19.8 Project properties

543Integrating the NDK into Eclipse
Figure 19.9 External tool properties

Figure 19.10 Request refresh after build

544 CHAPTER 19 Android Native Development Kit
The fourth tab of the configuration, shown in figure 19.11, requests that the external
tool be configured for auto-build. This means that when you save a dependent file of
the tool (in this case, the Android.mk file or the ua2efindedges.c file), the NDK tool
runs, and if there are no errors, the rest of the build process continues on to package
the application for you. Goal accomplished: you stay within Eclipse! If you’re a com-
mand-line kind of programmer, just disregard this step.

19.6 Summary
In this chapter, we explored incorporating C language code via the NDK in the context
of an image-processing application. The NDK is the means by which the JNI is accessi-
ble for Android developers. The JNI permits the Android developer to leverage the C
environment for two primary purposes: to take advantage of C’s speed capabilities for
conducting time-critical operations and to use existing code libraries written in C.

 The chapter’s sample application demonstrated a classic image-processing algo-
rithm called edge detection with a fully functional application that demonstrated not
only the C language elements required by the NDK toolset, but also the necessary Java
code changes required to employ the custom JNI library.

 The chapter wrapped up by adding the NDK build process into the overall
Android project build process. This makes building an NDK application as stream-
lined as possible by setting up the NDK as an external tool to take advantage of
Eclipse’s auto-build feature.

Figure 19.11 Configuring build options

Activity fragments
The larger screen size of tablets, which allows more content to be displayed than is
possible on smaller form-factor devices such as smartphones, introduced the need
for new user interface and related application components.

 Recall that an Activity is an application component that is typically given a
window to draw a user interface. This window typically fills the screen, which works
fine on the smaller form-factor devices. Although the same approach can be used
for larger-screen devices, you may have to rely on complex custom views or hierar-
chies, and you may have to switch across activities to maximize all the available
screen real estate. The problem is compounded when you have different devices
with different form factors.

 Fortunately, Android 3.0 introduces a finer-grained application component
called Fragment that lets you modularize the application and its user interface
(into fragments). Think of fragments as “mini-activities”: reusable, independent
but related mini portions of the application and screen that can be drawn

This chapter covers
 Fragment lifecycle
 Background fragments
 The fragment manager
 Fragment transactions
 The fragment back stack
 The Android Compatibility Package
545

546 CHAPTER 20 Activity fragments
independently of each other, each receiving its own events and having its own state,
application lifecycle, and back stack.

 Fragments were introduced with Android 3.0 with tablets in mind, but their bene-
fits aren’t limited to tablets: fragments are available to previous non-tablet versions of
Android via a static library, as covered later in this chapter. Our exploration of frag-
ments begins with understanding the fragment lifecycle.

20.1 Fragment lifecyle
Fragments have a lifecycle that is similar to the lifecycle of activities. Fragments aren’t
standalone entities and are part of a host Activity, which drives the lifecycle of the
fragment. The best way to understand the lifecycle of a fragment and its relationship
to activities is by looking at figure 20.1.

 You can see in the diagram the similarities between the Activity and fragment
lifecycles; note how the lifecycle states and related callbacks correlate. Next, table 20.1
provides more information about the lifecycle states and related callback methods.

 In the following sections, we’ll cover these lifecycle methods in more detail.

Table 20.1 Android fragment lifecycle methods and their purpose

Method Purpose

onAttach(Activity) Called when the Activity is in the Created state once the fragment is associ-
ated with its Activity

onCreate(Bundle) Called when the Activity is in the Created state to do initial creation of the
fragment

onCreateView(
LayoutInflater,
ViewGroup, Bundle)

Called when the Activity is in the Created state to create and return the view
hierarchy associated with the fragment

onActivityCreated(
Bundle)

Called when the Activity is in the Created state to tell the fragment that its
Activity has completed its own Activity.onCreate()

onStart() Called when the Activity is in the Started state, indicating the fragment is
visible to the user

onResume() Called when the Activity is in the Resumed state, indicating the fragment is
now interacting with the user

onPause() Called when the Activity is in the Paused state, indicating the fragment is no
longer interacting with the user because its Activity is being paused or a frag-
ment operation is modifying it in the Activity

onStop() Called when the Activity is in the Stopped state, indicating the fragment is no
longer visible to the user because its Activity is being stopped

onDestroyView() Called when the Activity is in the Destroyed state to allow the fragment to
clean up resources associated with its view

onDestroy() Called when the Activity is in the Destroyed state to allow the fragment to do
final cleanup of the fragment’s state

onDetach() Called when the Activity is in the Destroyed state immediately prior to the
fragment no longer being associated with its Activity

547Fragment lifecyle
Created

Started

Resumed

Paused

Stopped

Destro ed

Source of the original lifecycle diagrams:
Android Developer’s Guide

Activity Lifecycle Fragment Lifecycle

Activity
starts

onRestart()

Your activity
comes to the
foreground

Your activity
comes to the
foreground

Fragment is
destroyed

onCreate()

um

onResume()

onPause()

y

onDestroy()

of the original lifecycle diagr

DDeDestro
Activity is
shut down

CCrCrCreaeaatted

StStaarrtted

onStart()

ReReResu
Activity is
running

onFreeze()

New activity is started

Your activity is no
longer visible

User
navigates

back to your
activity

Ne

Process is
killed

Other
applications

need
memory

SStStoopopped

onStop()

Fragment Lifecycle

Fragment is
added

onAttach()

onCreate()

onCreateView()

onActivityCreated()

onStart()

onResume()

Fragment is
active

Fragment is
added to the back

stack, then
removed/replaced

The fragment
returns to the

layout from the
back stack

User navigates
backward or
fragment is

removed/replaced

onPause()

Fragment is

onDetach()

onDestroy()

onStop()

onDestroy()

onDestroyView()

Figure 20.1 Activity and fragment lifecycles

548 CHAPTER 20 Activity fragments
20.2 Creating fragments and fragment layouts
The similarity between activities and fragments makes coding fragments a familiar
exercise. To show how to use the fragment API, we’ll use an example that creates a
two-pane application that uses two fragments: a summary list view with hyperlinks and
a web view for details, as shown in figure 20.2.

 The summary/detail view is a common user interface pattern in mobility. On
handsets, this pattern is typically implemented using two separate screens; but on tab-
lets, with their larger screen sizes, you can have this UI pattern render both at the
same time, with the summary and details information side by side. In this example,
you’ll use a SummaryListFragment to contain a list view of hyperlinks and a
DetailsWebFragment to display the web content that corresponds to the hyperlink
that was selected in the summary fragment.

 You follow three main steps when implementing a fragment:

1 Create the fragment subclass.
2 Define the fragment layout.
3 Include the fragment within the Activity.

Other steps may include the management of the back stack. Let’s begin with step 1.

20.2.1 Create the fragment subclass

Let’s first look at how to create a fragment. You can subclass Fragment or one of its
subclasses:

 android.app.Fragment—Represents specific behavior within an Activity such
as driving part of the user interface or an operation

 android.app.DialogFragment—Displays a dialog on top of its activity window
 android.app.ListFragment—Displays a list of items from a data source
 android.app.PreferenceFragment—Displays a hierarchy of Preference

objects
 android.app.WebViewFragment—Displays a WebView

PANE 1
LIST VIEW OF

WEB SITES

PANE 2
WEB VIEW WITH

LOADED WEB PAGE

Figure 20.2
Dual-pane example

549Creating fragments and fragment layouts
The following listing shows how to create a fragment using the summary pane frag-
ment SummaryListFragment.

public class SummaryListFragment extends ListFragment {

 private String[] mListItems = new String[] {
 "Mobility Weblog",
 "TechCrunch",
 "Manning Books"};

 public SummaryListFragment() {}

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 setListAdapter(new ArrayAdapter<String>(getActivity(),
 R.layout.frag_summary_textview, mListItems));
 }

 @Override
 public void onListItemClick(ListView l,
 View v, int position, long id) {
 DetailsWebFragment frag = (DetailsWebFragment)
 getFragmentManager().findFragmentById(R.id.frag_details_webview);
 frag.updateDetails(mListItemsUrls[position]);
 mPosition = position; // remember current position
 }
}

We first define SummaryListFragment, a subclass of ListFragment, which is the frag-
ment that drives the left pane of the dual-pane example application. Next, fragments
must have an empty constructor that is called when the fragment is instantiated dur-
ing the Activity lifecycle. The system notifies the fragment that the Activity has
been created B, letting the fragment initialize. In this case, the list view layout and its
data source adapter are initialized C by using the ArrayAdapter that points to the
simple mListItems array list; your application may instead use a cursor adapter for
data that is stored in a database. Last is the list item click event handler D onList-
ItemClick, which is called when a click occurs on the fragment list view. By getting the
position for the selected item, we can properly update the web view by calling the web
view fragment’s public method updateDetails(), which is covered shortly.

 As we just mentioned, fragments must have an empty constructor that is called
when the fragment is instantiated during the Activity lifecycle. At times, you’ll need
to pass arguments to your fragment. One way to do so is to implement a method that
instantiates the fragment and uses a Bundle and setArguments(Bundle) to pass argu-
ments that are retrieved later by the fragment with getArguments(); this is shown next.

Listing 20.1 Creating the ListView fragment

Define “activity
created” callback B

Initialize
list viewC

Define list item
click event handler

D

550 CHAPTER 20 Activity fragments
public static MyFragment newInstance(int arg) {
 MyFragment frag = new MyFragment();
 Bundle args = new Bundle();
 args.putInt("arg", arg);
 frag.setArguments(args);
 // return the fragment
 return frag;
}

Using the default empty constructor create an instance of the fragment. We create a
Bundle to hold the necessary arguments by calling setArguments(Bundle) to pass any
arguments. Then, we return the newly created fragment with the associated arguments.
The fragment arguments can be retrieved at a later time by calling getArguments().

 Next is the definition of the web view fragment DetailsWebFragment. This simple
fragment displays the web content for the selected summary list view URL.

public class DetailsWebFragment extends WebViewFragment {

 public DetailsWebFragment() {}

 WebView mWebView = getWebView();

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 mWebView = getWebView();
 WebSettings webSettings = mWebView.getSettings();
 webSettings.setUseWebViewBackgroundForOverscrollBackground(true);
 webSettings.setJavaScriptEnabled(true);
 webSettings.setSavePassword(false);
 webSettings.setSaveFormData(false);
 webSettings.setSupportZoom(true);
 webSettings.setLoadWithOverviewMode(true);
 webSettings.setUseWideViewPort(true);

 }

 public void updateDetails(String url) {
 mWebView.loadUrl(url);
 }

}

We first define DetailsWebFragment, a subclass of WebViewFragment that drives the
right side of the dual-pane example application. Again, we have an empty constructor
that is called when the fragment is instantiated during the Activity lifecycle. The sys-
tem calls onActivityCreated() to notify the fragment that the Activity has been
created B, letting the fragment initialize. To initialize the web view C, we retrieve the

Listing 20.2 Using newInstance() to instantiate fragment with arguments

Listing 20.3 Creating the WebViewFragment

Define “activity
created” callback B

Initialize
web view

C

Define updateDetails
to load URL

D

551Creating fragments and fragment layouts
WebView and then initialize it (enable JavaScript, ignore password and form data, sup-
port zoom). To have the web view properly fit and be resized within the allocated area
of the screen, we call the methods setLoadWithOverviewMode() and setUseWide-
ViewPort(). Next, the public method updateDetails() is called by the summary frag-
ment to update the contents of the web view fragment when an item from the
SummaryListFragment has been selected D; it takes for input the summary view
selected URL that is then loaded in the web view.

 We have defined a ListViewFragment that will contain the list of web sites to view
and a WebViewFragment that is updated as the user selects different web sites from the
list. Figure 20.3 shows the two-pane application with the list view of web sites to select
from on the left side and the web content for the selected web site on the right.

 Now that you’ve defined the fragments, let’s define the user interface layouts.

20.2.2 Defining a fragment layout

There are two steps in defining the fragment layout:

1 Define the fragment layout—in this case, a list view and a web view fragment.
2 Define the Activity layout.

As with activities, fragments can define a user interface either statically by using layout
resources or dynamically (programmatically) at runtime. In this example, Summary-
ListFragment uses a simple text view list, as shown in this listing.

Figure 20.3 Two-pane example fragment application screenshot

552 CHAPTER 20 Activity fragments
<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="10dp"
 android:textSize="20sp"
 android:gravity="fill"
 android:textAppearance="?android:attr/textAppearanceMedium"
 >
</TextView>

This layout is referenced during the initialization of the summary list view and the call
to setListAdapter:

setListAdapter(new ArrayAdapter<String>(getActivity(),
 R.layout.frag_summary_textview, mListItems));

The layout can be as complex as you need; for example, it may include images, two
lines, and so forth.

 For the web view fragment, you aren’t defining a layout, because in this example
you’re going to let the web view use that entire part of the pane to render the web
content as is.

 Having defined the fragment layouts, now you need to define the fragments within
the Activity layout.

20.2.3 Include the fragment within the activity

Now that you’ve defined your fragments and layouts, the fragments need to be added
to the Activity. You do this via the Activity layout file or programmatically. The fol-
lowing listing shows how the <fragment> elements are added to the Activity layout.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <fragment android:name="com...SummaryListFragment"
 android:id="@+id/frag_summary_listview"
 android:layout_width="0dp"
 android:layout_weight="1"
 android:layout_height="match_parent" />
 <fragment android:name="com...DetailsWebFragment"
 android:id="@+id/frag_details_webview"
 android:layout_width="0dp"
 android:layout_weight="1"
 android:layout_height="match_parent" />
</LinearLayout>

The <fragment> element defines the fragment and associated Fragment class and
attributes: in this example, SummaryListFragment B and DetailsWebFragment C. At

Listing 20.4 TextView for the ListFragment (frag_summary_textview.xml)

Listing 20.5 Adding fragments to an Activity layout (main.xml)

Define
SummaryListFragment

B

Define
DetailsWebFragment

C

553Background fragments
runtime, the system replaces in-place the <fragment> element with the fragment itself
within the Activity layout.

 The fragments can also be added programmatically to the Activity. The following
listing shows how to add the SummaryListFragment to the main layout using the frag-
ment manager and transactions.

FragmentManager fragmentManager = getFragmentManager();
SummaryListFragment fragment = new SummaryListFragment();
fragmentTransaction.add(R.id.main_view, fragment);
fragmentTransaction.commit();

Note that when you’re adding multiple fragments to the same container, the order in
which the fragments are added determines the order in which they will appear in the
view.

 You inflate the Activity’s layout as usual, when the Activity is created, by calling
setContentView().

public class MainActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
 :
 :
}

Up to this point, we’ve defined all the major pieces for foreground fragments: how to
define the fragment subclass and the fragment layout, how to include fragments
within the Activity, and how a fragment can call another fragment to update its con-
tent on the screen. As covered next, you can use fragments for background/non–user
interface tasks as well.

20.3 Background fragments
Not all fragments need to have a user interface; you can have background fragments
performing different tasks within the Activity. A background fragment has the same
lifecycle as a foreground one except that it doesn’t have a user interface. An effect of
this is that its onCreateView() is never called, and you can avoid implementing it.

 Don’t confuse background fragments with Android services. Services are stand-
alone application components that can be started and can continue running in the
background even when you switch between applications. Services typically provide
specific tasks to other application components that interact with services by binding to
them or using interprocess communications (IPC). On the other hand, background

Listing 20.6 Adding fragments to Activity programmatically

Listing 20.7 Inflating the Activity layout

554 CHAPTER 20 Activity fragments
fragments are part of a specific host Activity, share their lifecycle with the host
Activity, and have access to the host Activity’s resources.

 Background fragments are added programmatically to an Activity, similar to
listing 20.6, except that the fragment must be identified by tagname instead of resource
ID. To do so, you perform a fragment transaction similar to listing 20.6, but you call
FragmentManager.add(fragment, tagString).

 Background fragments can be useful. You can use a background fragment to do
work that persists across activities. For example, in one fragment you can find a back-
ground fragment, check whether it’s been retained, and, if not, create it. The follow-
ing code snippet shows how to set up the background fragment during its
initialization.

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 FragmentManager fm = getFragmentManager();

 mWorkFragment = (MyWorkFragment)fm.findFragmentByTag("workFrag");

 if (mWorkFragment == null) {
 mWorkFragment = new MyWorkFragment();
 mWorkFragment.setTargetFragment(this, 0);
 fm.beginTransaction();
 fm.add(mWorkFragment, "workFrag");
 fm.commit();
 }
 }

As with all fragments, we initialize the fragment via onActivityCreated when the
Activity has been created. Note the use of the fragment manager and transactions to
add the background fragment programmatically. Background fragments can be
retained when the configuration changes; recall that when a configuration is
changed, such as orientation changes, activities are destroyed and re-created. Next, we
check whether the fragment has been retained B. If the fragment hasn’t been
retained or is running for the first time C, we create a new instance, sets its target
fragment, and add it via the fragment manager.

 The following code snippet shows how to indicate that a fragment must be
retained when created:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setRetainInstance(true);

 :
 :
 }

Listing 20.8 Creating a background fragment

Has fragment
been retained?B

If not, (re)-create
fragmentC

555Fragment transactions
During the background fragment creation, we set the fragment to be retained. When
the fragment is retained, it will remain even when activities are destroyed during con-
figuration changes. Remember that a fragment’s lifecycle is tightly coupled to its host
Activity lifecycle.

 A number of the previous examples have made use of the fragment manager,
which is at the center of fragments. The fragment manager is covered next.

20.4 The fragment manager
The fragment manager is the entity that allows you to work with fragments inside an
Activity. You’ve already seen the fragment manager in action when we covered add-
ing a fragment to the Activity view and when creating background fragments. Using
FragmentManager, you can do the following:

 Find activity fragments by resource ID or by tag
 Manage fragment transactions
 Manage the fragment’s back stack

To retrieve the fragment manager, both the Activity and Fragment classes include
the method getFragmentManager() that returns the FragmentManager instance. Next
are some examples of what you can do with the fragment manager:

 Find a fragment by resource id:
getFragmentManager().findFragmentById(R.id.frag_details_webview);

 Find a fragment by tag:
mWorkFragment = (MyWorkFragment)fm.findFragmentByTag("workFrag");

 Begin and commit a fragment transaction:
FragmentTransaction ft = fragmentManager.beginTransaction();
:
ft.commit();

 Simulate a pop of the back stack:
getFragmentManager().popBackStack();

When you’re working with fragments—for example, adding and removing them—you
must do so under a fragment transaction. The next section will cover fragment trans-
actions in detail.

20.5 Fragment transactions
The fragment transaction API allows for a set of related fragment operations to be
performed together as a transaction. Fragment transactions are supported by the
FragmentTransaction class, which provides methods that add, hide, replace, and
remove fragments; set animation transitions and titles; show fragments; add to the
back stack; and commit the transaction.

 Before attempting any fragment operation, you must get a FragmentTransaction
object from the fragment manager by calling FragmentManager.beginTransaction():

 FragmentManager fm = getFragmentManager();
 FragmentTransaction ft = fm.beginTransaction();

556 CHAPTER 20 Activity fragments
 :
 ft.commit();

You can then perform fragment operations such as the following:

 Add fragments:
fragTransaction.add(R.id.viewgroup, newFragment);

 Replace an existing fragment:
fragTransaction.replace(R.id.viewgroup, newFragment);

 Remove an existing fragment:
fragTransaction.remove(newFragment);

 Add the fragment to the back stack:
fragTransaction.addToBackStack(null);

Or, you can call any of the other fragment operations mentioned earlier, as needed.
Remember to commit the transaction by calling the FragmentTransaction.commit()
method.

 All operations in a transaction are committed together. Similarly, operations in a
transaction are reverted together when you press the Back key or simulate a back-stack
pop.

 Committed transactions are scheduled for execution in the Activity’s main UI
thread, but you can request an immediate execution of pending transactions by call-
ing the FragmentTransaction.executePendingTransactions() method.

 As with activities, fragments have a back stack associated with them; this is covered
next.

20.6 Fragment back stack
Similar in concept to the Activity back stack, Android 3.0 supports a back stack for
fragments. Note that the fragment back stack holds fragment transactions. You can take
advantage of the back stack to navigate back, so that as the user presses the Back key,
the back stack is popped and the previous fragment transaction is presented.

 You add the fragment transaction to the back stack manually by calling the
FragmentTransaction.addToBackStack() method before committing the transac-
tion. Here’s an example:

FragmentManager fm = getFragmentManager();
FragmentTransaction ft = fm.beginTransaction();
:
ft.addToBackStack(null);
ft.commit();

Although this step is optional, note that adding the fragment transaction to the back
stack ensures that the fragment isn’t destroyed but is instead stopped when another
fragment becomes the active fragment in the layout. The fragment is later resumed
when it becomes the active fragment after the user presses the Back key. Otherwise, if
the fragment transaction isn’t added to the back stack, the fragment is destroyed when
it’s removed from the layout, and it can’t be navigated back to by pressing the Back key.

557The Android Compatibility Package
 The fragment manager provides a number of methods in support of the back stack:

 Adding a listener for changes in the back stack—addOnBackStackChanged-

Listener()

 Removing the listener—removeOnBackStackChangedListener()

 Retrieving the fragment at a given position in the back stack—getBackStack-

EntryAt()

 Getting the number of entries in the back stack—getBackStackEntryCount()

 Popping the back stack (simulating a Back key press)—popBackStack() as well
as other kinds of pop-back-stack methods, including performing immediate ver-
sus scheduled pops

In the last section of this chapter, we’ll examine the Android Compatibility Package.

20.7 The Android Compatibility Package
Fragments are a great way to modularize your application and activities. But frag-
ments, together with other Android 3.0 classes, are only available starting with
Android 3.0. This API is available across devices and form factors for which Google has
created the Android Compatibility Package, a static library that exposes the fragment
API to Android versions all the way down to Android 1.6.

 The Android Compatibility Package is available via the SDK Updater and the
Android SDK and AVD Manager, under Available Packages > Android Repository, as
shown in figure 20.4.

 After you download the package, you must include the static API in your project.
Open the Project Properties, and select Java Build Path. Select Add External JARs,

Figure 20.4 Installing the Android Compatibility Package

558 CHAPTER 20 Activity fragments
and point to the directory where the android-support JAR file resides, which typically
is under the [android-sdk]/extras/android/compatibility/[version#] directory; see
figure 20.5.

 Note that there are some differences in the fragment API when you use the static
library. First, fragments are based on the FragmentActivity class instead of the
Fragment class. Also, instead of calling the method getFragmentManager() to retrieve
the fragment manager, you use getSupportFragmentManager(), as follows:

public class MyFragment extends FragmentActivity {
 :
 FragmentManager fragmentManager = getSupportFragmentManager();
 :
 :
}

Make sure you update your manifest file to use the appropriate SDK numbers per the
Android version you’re targeting. The rest of the fragment API, including lifecycle,
remains the same as covered in this chapter.

20.8 Summary
Fragments are finer-grained application component within activities. An Activity
can have many fragments associated with it, whereas a given fragment must be associ-
ated with a given host Activity. Fragments have a lifecycle, a state, and events. The
fragment’s lifecycle is directly influenced by the lifecycle of the host Activity. Frag-
ments can drive a (portion of the) user interface or run in the background. They’re

Figure 20.5 Including the Android Compatibility Package static library into the project

559Summary
managed by the fragment manager, which you can find in both the Activity and
Fragment classes.

 Fragment transactions, which are managed via the FragmentTransaction class,
provide support for sets of operations that can be committed together, added to the
back stack, and reverted together when the user presses the Back button. The frag-
ment API is available in Android versions before version 3.0 via the Android Compati-
bility Package. For more information about fragments, visit Android’s developer
website at http://mng.bz/E6zQ.

http://mng.bz/E6zQ

Android 3.0 action bar
Android 3.0 introduced the action and system bars. The action bar is found at the
top of the screen and replaces the traditional (pre–Android 3.0) application title.
The always-visible system bar is found at the bottom of the screen and provides
access to system-level information. By default, applications that target Android 3.0
are automatically assigned the new action bar and the new holographic theme. The
content of the action bar is application-defined, meaning it’s contextual, and con-
sists of tabs, actions, and menus, providing users of tablet applications with greater
visibility and access to the application controls than on previous versions of
Android. The combined bars give users quicker and easier access to application
actions, controls, and system-wide notifications.

This chapter covers
 Overview of the ActionBar classes

 Action bar display options

 The elements of the action bar

 Removing, showing and hiding the action bar

 Styling the bar
560

561Introducing the action bar
21.1 Introducing the action bar
The action bar, which replaces the traditional application title bar on Android appli-
cations, is totally under your application’s control. You can change its appearance and
content based on the application context. For example, you can add titles, icons, tabs
or list-based navigation, and menu items. You can style the action bar with colors and
fonts as you wish. You can even hide and show the action bar and remove it. All of this
is explained throughout this chapter; system bar notifications are covered in chapter
8. The action and system bars are shown in figure 21.1.

A fully customized action bar typically displays the application icon/logo, title, naviga-
tional drop-down list or tabs, action, and menu items. A fully customized action bar is
illustrated in figure 21.2.

Android 3.0 automatically assigns the holographic theme with an action bar to appli-
cations that target Android 3.0. To target Android 3.0 you need to specify a minimum
SDK version of 11 or a target SDK version of 11 in the manifest file; note that API 11
refers to Android 3.0. The following listing shows a manifest file (Android-
Manifest.xml) that targets Android 3.0.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.manning.aia.chapter21"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-sdk
 android:minSdkVersion="11"

Listing 21.1 Specifying an Android 3.0 application target in the manifest file

GENERAL CONTENT AREA

ACTION BAR (FOR APPLICATION CONTROL)

SYSTEM BAR (FOR GLOBAL STATUS & NOTIFICATION)
Figure 21.1
Action and system bars

Figure 21.2 Anatomy of an action bar

562 CHAPTER 21 Android 3.0 action bar
 android:targetSdkVersion="11" />
 :
 :
</manifest>

The <use-sdk> element defines the SDK version attributes. The next two lines define
the minimum SDK as API 11 (Android 3.0) and the target SDK as API 11 (Android 3.0).

 After you’ve defined your application as an Android 3.0 application, you’ll have
access to the action bar, as we’ll cover next. But first, to better understand the action
bar, we’ll cover the ActionBar classes.

21.2 Overview of the ActionBar classes
Before looking into code examples, let’s cover the ActionBar classes. The ActionBar
API consists of six classes and interfaces encapsulated in the Java class android
.app.ActionBar and its nested classes and interfaces (see table 21.1).

The ActionBar API consists of the main ActionBar class, event listener or callback
interfaces, and a class that represents tab UI components within the action bar. In
addition, ActionBar defines a number of constants to control the action bar’s display
options and navigation modes.

 Before you can use the action bar, you have to get a reference to the ActionBar
instance, as shown in the following listing.

public class MainActivity extends Activity {
:
ActionBar bar = getActionBar();
if (bar != null) {
 ...
}
:

Table 21.1 The ActionBar API

Class or interface Description

android.app.ActionBar Class that represents the action bar

android.app.ActionBar.LayoutParams Nested class that represents the
layout parameters with the action
bar custom views

android.app.ActionBar.OnMenuVisibilityListener Nested interface for receiving visibil-
ity events

android.app.ActionBar.OnNavigationListener Nested interface for receiving navi-
gation events

android.app.ActionBar.Tab Nested class that represents a tab
in the action bar

ActionBar.TabListener Nested interface for receiving tab
events

Listing 21.2 Getting access to the action bar

563Action bar display options
Listing 21.2 gets a reference to the action bar via the current Activity. Note the test
if (bar != null);—not all themes have an action bar, so it’s a good practice to
check for the presence of the action bar before performing operations on it.

 The rest of the classes will be covered throughout the rest of the chapter.

21.3 Action bar display options
You can use a number of options to customize and control the action bar. These
options allow you to control certain aspects of the action bar such as displaying the
application logo instead of the icon, showing the title, and using a custom view. The
following list describes the supported display options:

 DISPLAY_SHOW_CUSTOM—Show the custom view, if one has been set.
 DISPLAY_SHOW_HOME—Show home elements, leaving more space for other navi-

gation elements.
 DISPLAY_HOME_AS_UP—Display the application home icon with the up indicator.
 DISPLAY_SHOW_TITLE—Show the Activity title and, if present, subtitle.
 DISPLAY_USE_LOGO—Use a logo instead of an icon, if available.

Together with these options, the ActionBar class also provides a number of methods
to manipulate them (see table 21.2).

Table 21.2 Action bar display options methods

Action bar method Description

void setDisplayOptions(int options) Set several display options at once. You can select
one or more options by ORing them together.

void setDisplayOptions(
int options, int mask)

Specified display options that match the mask are
set; others are unset.

int getDisplayOptions() Return the current set of display options.

void setDisplayShowCustomEnabled(
boolean showCustom)

Helper method. This is the same as calling
setDisplayOptions() with
DISPLAY_SHOW_CUSTOM.

void setDisplayShowHomeEnabled(
boolean showHome)

Helper method. This is the same as calling
setDisplayOptions() with
DISPLAY_SHOW_HOME.

void setDisplayHomeAsUpEnabled (
boolean showHome)

Helper method. This is the same as calling
setDisplayOptions() with
DISPLAY_HOME_AS_UP.

void setDisplayShowTitleEnabled(
boolean showTitle)

Helper method. This is the same as calling
setDisplayOptions() with
DISPLAY_SHOW_TITLE.

void setDisplayUseLogoEnabled(
boolean useLogo)

Helper method. This is the same as calling
setDisplayOptions() with
DISPLAY_USE_LOGO.

564 CHAPTER 21 Android 3.0 action bar
Table 21.2 is self-explanatory, but as you can see there are two kinds of display option
methods: helper methods to set/unset a specific kind of display option, and the
generic setDisplayOptions(…) to manipulate multiple options at once via an input
bitmask. The following two listings show two examples of how to set display options
using the bitmask methods and the helper methods.

 ActionBar bar = getActionBar();
 if (bar != null) {
 bar.setDisplayOptions(
 ActionBar.DISPLAY_HOME_AS_UP |
 ActionBar.DISPLAY_SHOW_HOME);
 }

Listing 21.3 calls the setDisplayOptions() method to set two specific display options:
the application (home) icon as “navigate up” and the ShowHome option. Using the bit-
mask method allows you to manipulate multiple settings at once. Listing 21.4 is similar
to listing 21.3 but instead calls the helper methods directly.

ActionBar bar = getActionBar();
if (bar != null) {
 bar.setDisplayShowHomeEnabled(true);
 bar.setDisplayHomeAsUpEnabled(true);
}

Although the ShowHome option is intended to maximize the space available in the
action bar (by showing the icon or logo and removing items such as the application
name), the DisplayHomeAsUp option adds a visual up indicator to the icon or logo, as
shown in figure 21.3.

 It’s good practice to enable the DisplayHomeAsUp indicator when you make the
application icon an action item to navigate up or
back. The visual indicator provides a hint to the user
about such behavior if they click the application
icon. We’ll cover the application icon as an action
item later, in section 21.4.1.

 The following sections cover each part of the
action bar and the related API, starting with the
application name and icon.

21.3.1 Application name and icon

All Android applications have a name or title and an icon. Starting with Android 3.0,
applications can also have a wider logo in place of the standard icon. On the action
bar, the two leftmost members are the application icon and title, as illustrated in
figure 21.4.

Listing 21.3 Setting the ActionBar display options using the generic method

Listing 21.4 Setting the ActionBar display options using the helper methods

Figure 21.3 The application icon
as a “navigate up” (left, as shown in
Android 3.0–3.1; right, Android 3.2)

565Action bar display options
The application name and icon (and logo) are defined as usual, in the manifest file
(AndroidManifest.xml), as shown in the following listing.

<application
 android:icon="@drawable/manningicon"
 android:label="@string/app_name"
 android:logo="@drawable/manninglogo">

When you’ve defined these attributes, the application icon and name appear on the
action bar. You can control the appearance of the action bar by setting one or more
display options, as previously covered.

 The next element on the action bar is either the navigation list or navigation tabs.

21.3.2 Navigation modes

To the right of the application icon and name/title is the navigation list or navigation
tabs, as illustrated in figure 21.5.

 The navigation to display (none, list, or tabs) depends on the navigation mode
that is selected. Modes are mutually exclusive, with one of three navigation modes set
at any given time:

 NAVIGATION_MODE_STANDARD—The standard navigation mode with no drop-
down list or tab navigation. It supports standard DisplayHomeAsUp, action, and
menu items.

 NAVIGATION_MODE_LIST—In addition to standard navigation, adds list-based
navigation such as a drop-down list.

 NAVIGATION_MODE_TABS—In addition to standard navigation, adds tabs-based
navigation (for fragments).

Similar to the display options, the action bar provides a number of navigation option-
related methods (see table 21.3). Using these methods, you can set the navigation
mode for the action bar, set an event listener, get the count of navigation items, and
so on.

Listing 21.5 Specifying the application name and icon

Figure 21.4 Application icon and title/name

Figure 21.5 The navigation tabs (or list)

566 CHAPTER 21 Android 3.0 action bar
When working with the action bar, the first thing the Activity should do is to set the
navigation mode. The following listing shows how to set the navigation mode to tabs-
based navigation.

ActionBar bar = getActionBar();
if (bar != null) {
 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);
}

In addition to setting the navigation mode, you must define the tabs or list as appro-
priate and related artifacts such as adapters and listeners. The next sections will cover
tab and list navigation in more detail.

TAB NAVIGATION

When defined, tabs are located to the right of the application icon or logo and title, as
illustrated in figure 21.6.

 The action bar provides support for tab-based navigation that allows activities to
navigate across fragments. Associated fragments must be defined in the Activity lay-
out, as covered in chapter 20. Tabs can have a title, an icon, or both. When a tab selec-
tion is made, a tab listener receives the corresponding tab events. As part of the tab

Table 21.3 Action bar navigation mode methods

Action bar method Description

void setNavigationMode(int mode) Set the current navigation mode.

void setListNavigationCallbacks(SpinnerAdapter
adapter, ActionBar.OnNavigationListener
callback)

Set the adapter and navigation call-
back for list-navigation mode.

int getNavigationMode() Get the current navigation mode.

void setSelectedNavigationItem(int position) Select the specified navigation item.

int getNavigationItemCount() Get the number of navigation items in
the current navigation mode.

int getSelectedNavigationIndex() Get the position of the selected navi-
gation item in list or tabbed naviga-
tion mode.

Listing 21.6 Setting the navigation mode to use tabs

Figure 21.6 Action bar tab navigation

567Action bar display options
event listener, a fragment transaction is automatically initiated by the system, allowing
the listener to add or remove fragments as needed. Tab events can also be used to set
state for a given fragment: for example, you can use tabs as a way to select the current
category to display on the current fragment.

ActionBar provides a number of methods to instantiate tabs, add and remove tabs,
and listen for tab events; see table 21.4.

After the navigation mode has been set, you call newTab() to create a new tab, set-
Text() to set its text or title, setIcon() to set the icon displayed with the tab, setTab-
Listener() to set the tab listener, and addTab() to add the tab to the action bar. You
can also define a custom view by calling setCustomView() to be used for the tab. The
following listing shows how to set up a basic tab.

private String[] mCategories = new String[] {
 "Technology",
 "Sports",
 "Arts"};

...

ActionBar bar = getActionBar();
if (bar != null) {
 bar.setDisplayShowTitleEnabled(false);
 bar.setNavigationMode(ActionBar. NAVIGATION_MODE_TABS);

 for (int i=0; i<mCategories.length; i++) {
 bar.addTab(bar.newTab().setText(mCategories[i]).

➥setTabListener(this));

Table 21.4 Action bar tab navigation methods

Action bar method Description

ActionBar.Tab getSelectedTab() If in tabbed navigation mode, return
the currently selected tab.

void addTab(ActionBar.Tab tab)
void addTab(ActionBar.Tab tab, boolean
setSelected)

void addTab(ActionBar.Tab tab, int position)
void addTab(ActionBar.Tab tab, int position,
boolean setSelected)

Add a tab to the action bar.

ActionBar.Tab newTab() Create and return a new
ActionBar.Tab.

void removeAllTabs() Remove all tabs from the action bar.

void removeTab(ActionBar.Tab tab) Remove a tab from the action bar.

void removeTabAt(int position) Remove a tab from the action bar.

void selectTab(ActionBar.Tab tab) Select the specified tab, adding it to
the action bar if needed.

Listing 21.7 Setting up tab navigation

Set navigation
mode to tabs

B

Create and
add tabsC

568 CHAPTER 21 Android 3.0 action bar
 }

 bar.setDisplayOptions(
 ActionBar.DISPLAY_HOME_AS_UP |
 ActionBar.DISPLAY_SHOW_HOME);
}

In listing 21.7, we set a couple of display options: in order to maximize the space avail-
able in the action bar, we don’t show the application title; and we set the navigation to
tab-based B. Next, we instantiate the tabs C and add them to the action bar. Finally,
we set some additional display options to enable the application icon for navigation.

 Next, you need to listen for tab events. For this you must implement a tab listener
that will receive tab events when a given tab is added or deleted, receives focus, or gets
unfocused. The ActionBar.TabListener interface defines the listener methods in
table 21.5.

The following listing shows an example of an action bar tab listener.

public class MainActivity extends Activity implements
 ActionBar.TabListener {

 :

 public void onTabSelected(ActionBar.Tab tab, FragmentTransaction ft) {
 SummaryListFragment frag = (SummaryListFragment)
 getFragmentManager().findFragmentById(R.id.frag_summary_listview);
 frag.setCategory(tab.getPosition());
 }

 public void onTabUnselected(ActionBar.Tab tab,
 FragmentTransaction ft) {
 ...
 }

 public void onTabReselected(ActionBar.Tab tab,
 FragmentTransaction ft) {
 ...
 }
}

Table 21.5 Action bar tab listener methods

ActionBar.TabListener methods Description

void onTabSelected(ActionBar.Tab tab,
FragmentTransaction ft)

Called when a tab enters the selected state

void onTabUnselected(ActionBar.Tab tab,
FragmentTransaction ft)

Called when a tab exits the selected state

void onTabReselected(ActionBar.Tab tab,
FragmentTransaction ft)

Called when a tab that is already selected is
chosen again by the user

Listing 21.8 Action bar tab listener

569Action bar display options
In this listing, when a tab is selected, we add new fragments or select the fragment for
which to set the fragment state. When a tab is unselected, the appropriate cleanup
code executes. When the tab is reselected, we refresh the tab as appropriate or do
nothing.

 All the tab methods take two parameters: the selected tab and a fragment transac-
tion to use. Within the fragment transaction, you add, remove, or change fragments.
Don’t commit fragments via ft.commit(), because the system will commit the frag-
ment transaction automatically; for more information about fragments and transac-
tions, see chapter 20. Fragments can’t be added to the back stack; to learn more about
fragments and the back stack, again see chapter 20.

 If you don’t want to use tab-based navigation in your application, you can use list
navigation, which is covered next.

LIST NAVIGATION

Instead of the tab navigation, you can use a drop-down list navigation that consists of a
simple list. The list is located at the same place where the tab would be: to the right of
the application icon and title (see figure 21.7).

 As with the other types of navigation, the setNavigationMode() method must be
called to set the list navigation mode.

ActionBar bar = getActionBar();
if (bar != null) {
 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_LIST);
}

To set up list navigation, a list navigation callback must be set by calling the action bar
method setListNavigationCallbacks(). This method takes two arguments: a source
adapter, which in this example is an ArrayAdapter that provides access to the list data
items to display; and an OnNavigationListener to receive list navigation events. This
is shown in the following listing.

private String[] mCategories = new String[] {
 "Technology",
 "Sports",

Listing 21.9 Setting the list navigation mode

Listing 21.10 Setting up list navigation

Figure 21.7 Action bar drop-down list navigation

Define array with data
to display in listB

570 CHAPTER 21 Android 3.0 action bar
 "Arts"};
:
:

ArrayAdapter<String> navListAdapter = new ArrayAdapter<String>(
 this,
 R.layout.spinner_textview,
 mCategories);

bar.setListNavigationCallbacks(navListAdapter,
 new OnNavigationListener() {
 @Override
 public boolean onNavigationItemSelected(int position, long itemId) {
 Toast.makeText(MainActivity.this,
 "onNavigationItemSelected: " + position,
 Toast.LENGTH_LONG).show();
 return true;
 }
 });

Listing 21.10 also defines a simple array of strings as the data source B. List-based nav-
igation uses an Adapter for its data, and this example uses a simple ArrayAdapter C.
To be notified when an item in the list is selected, we define a list event callback D;
here we identify the appropriate fragment to work with based on the onNavigation-
ItemSelected(int position, long itemId) parameters. This example does a Toast
when a list item has been selected.

 When an event occurs, the event listener method onNavigationItemSelected() is
called, passing the position and ID of the selected item. You display the appropriate
fragment or set the proper fragment state based on the list selection.

 As we continue moving down the action bar, the next elements to the right are
action items, covered next.

21.4 Action items
So far, we’ve covered the action bar application icon or logo, the application title, and
navigation options (tab or drop-down list). Next to the right are the action items, as
shown in figure 21.8.

 Action items provide quick access to user actions. Some can be displayed right on
the action bar, whereas others appear under the overflow menu list.

C
Define array

adapter

Define list event callbackD

Figure 21.8 Action bar action items and overflow menu

571Action items
 If you’re familiar with the options menu, covered in chapter 3, then you’re already
familiar with action items. In fact, action items are menu items. You can control
whether action items should appear always in the action bar, in the action bar only if
there is room available, or never in the action bar and instead be included in the over-
flow menu. You define this placement via the showAsAction attribute as follows:

 ifRoom—Place the item in the action bar only if there is room for it; otherwise,
place it in the overflow menu list.

 never—Never place this item in the action bar; always place in the overflow
menu list instead. This is the default value.

 always—Always place this item in the action bar. You should avoid using this
approach if possible, or limit its use to one or two action items, because if too
many UI elements are present in the action bar, smaller screens may encounter
overlapping UI elements (for example, with tabs). Make sure you test across dif-
ferent devices.

Note that you can combine any of these flags using a pipe (|) with the keyword with-
Text to indicate that text should be included when the item is shown as an action. The
text to show is defined by the android:title attribute.

 The following listing shows the menu resource with action items for the action bar
shown earlier in figure 21.8, where you have one action item for Share and four menu
items on the overflow menu.

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/menuitem0"
 android:title=" @string/share_label"
 android:icon="@drawable/ic_menu_share"
 android:showAsAction="ifRoom|withText" />

 <item android:id="@+id/menuitem1"
 android:title=" @string/menu1_label"
 android:showAsAction="never" />

 <item android:id="@+id/menuitem2"
 android:title=" @string/menu2_label"
 android:showAsAction="never" />

 <item android:id="@+id/menuitem3"
 android:title=" @string/menu3_label"
 android:showAsAction="never" />

 <item android:id="@+id/menuitem4"
 android:title=" @string/menu4_label"
 android:showAsAction="never" />

</menu>

Listing 21.11 Menu resource defining action and overflow menu items

Define share
action item

B

Define
menu
itemsC

572 CHAPTER 21 Android 3.0 action bar
The placement options are flexible. This example includes a Share item that will be
shown in the action bar only if space is available B; the action also has a label associ-
ated with it. The rest of the items C are to be shown only in the overflow menu.

 As with all menu resources, you inflate the action items when onCreateOptions-
Menu() is called (see the next listing).

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);
 return true;
}

You can also create action items programmatically instead of using menu resources.
To do so call setShowAsAction() on the MenuItem, passing the corresponding con-
stant placement value:

 SHOW_AS_ACTION_IF_ROOM—Same as the menu resource android:showAs-

Action attribute value ifRoom explained earlier
 SHOW_AS_ACTION_NEVER—Same as the menu resource android:showAsAction

attribute value never explained earlier
 SHOW_AS_ACTION_ALWAYS—Same as the menu resource android:showAsAction

attribute value always explained earlier
 SHOW_AS_ACTION_WITH_TEXT—Same as the menu resource android:showAs-

Action attribute value withText explained earlier

To handle the action or menu items when selected, add the appropriate logic to the
method onOptionsItemSelected(), as shown in the following listing.

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.shareitem:
 return true;
 case R.id.menuitem1:
 return true;
 case R.id.menuitem2:
 return true;
 case R.id.menuitem3:
 return true;
 case R.id.menuitem4:
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

Listing 21.12 Inflating the menu resource

Listing 21.13 Handling action or menu items

573Action items
As you can see, handling action items is the same as handling menu items. You han-
dle each individual menu item based on the unique menu ID defined for the menu
item for which you’re adding the appropriate logic; in the previous example, you
return true.

 We’ve covered how to work with action bar action and menu items. In addition,
the home icon can also be defined as an action item; this is covered next.

21.4.1 The application icon as an action item

Recall that the application icon can be used as an action item for application naviga-
tion. For example, you can use the application icon to navigate to the home Activ-
ity. It’s good practice to have the application icon provide navigation, at a minimum
allowing the user to jump to the home Activity at any time. You can also make the
application icon navigate up as defined by your application path. In this case, it’s
good practice to enable the DisplayHomeAsUp indicator to provide a visual indicator
to the user that clicking the application icon results in navigating up instead of
home. We previously explained that you use the method bar.setDisplayHomeAsUp-
Enabled(true) to enable the navigate-up indicator, which enables the display option,
as shown in figure 21.9.

 When the application icon is clicked, an event
is generated and sent to the method onOptions-
ItemSelected(), similarly to how other actions
items and menu items are handled. In this case, a
special, reserved event ID of android.R.id.home
is passed, as shown in the following listing.

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case android.R.id.home:
 Toast.makeText(this, "anroid.R.id.home pressed",
 Toast.LENGTH_LONG).show();
 Intent intent = new Intent(this, MainActivity.class);
 intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
 startActivity(intent);
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

The reserved ID android.R.id.home is used to identify the home action and take
appropriate action such as navigating home or up as defined by your application
Activity behavior. Intent.FLAG_ACTIVITY_CLEAR_TOP is of special interest when
you’re navigating home or up via the application icon. When navigating to the home or
other Activity, a new Activity is started via an Intent as shown. To avoid re-creating

Listing 21.14 Handling the home-up event

Figure 21.9 The application icon as a
navigate-up indicator (left, as shown in
Android 3.0–3.1; right, Android 3.2)

574 CHAPTER 21 Android 3.0 action bar
the Activity if it already exists, you should set the Intent.FLAG_ACTIVITY_CLEAR_TOP
flag on the intent, in which case all the activities after the one specified are destroyed
before the selected one is brought up; this is similar behavior to pressing the Back key
until you reach the desired Activity.

 In short, handling the application icon to navigate home or up is done similarly;
the behavior depends on what you want your application to do. If you decide to use
the application icon to navigate up instead of home, you should add the visual cue as
explained.

 There is still one more type of action to cover: action views, which are widget-based
action items.

21.4.2 Action views

An action view is a widget that substitutes an action item in the action bar. A good
example is a search action that shows a search icon that when clicked turns into a
search box. Another example is an action such as a share icon that starts a new frag-
ment or Activity after gathering some input from the user.

 You can define an action view for a menu item via the menu resource file or do it
programmatically. Looking at the menu resource first, for a menu item you can define
the following:

 android:actionLayout—Layout resource to use as the action view
 android:actionViewClass—Fully qualified classname for a view to use as the

action view

For example, the next listing shows a menu resource that uses the Android Search
Action Widget in the action bar.

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/menu_search"
 android:title="@string/search_action_label"
 android:showAsAction="ifRoom"
 android:actionViewClass="android.widget.SearchView" />
</menu>

You can also assign action views programmatically by calling the method Menu-
Item.setActionView() for the menu item of interest. There are two flavors for set-
ActionView():

 setActionView(resource ID)—Layout resource to use as the action view
 setActionView(View)—View to use as the action view

The first method takes for input a menu resource that describes the action view, and
the second takes a view that defines the action view. The example in listing 21.15
showed how to use the built-in Android search widget, but you can write your own
action view class. Writing action view widgets is outside the scope of this chapter.

Listing 21.15 Menu resource definition, using the Search Action View

575Action bar styling
21.5 Removing, showing, and hiding the action bar
At times you may not want an action bar in your application. There are a couple of ways
to accomplish this. One way is to indicate a NoActionBar theme such as Theme.Holo
.NoActionBar or Theme.Holo.NoActionBar.Fullscreen in the manifest file:

<activity android:theme="@android:style/Theme.Holo.NoActionBar.Fullscreen">

Another way is to define your own theme style (see the following section, “Action Bar
Styling”) that inherits from a NoActionBar theme. Yet a different way is to have a cus-
tom theme that sets the style property android:windowActionBar to false. Note that
none of these approaches let you add an action bar at runtime, and calling get-
ActionBar() will return null; avoid these methods if you want to handle the action
bar at runtime. For more information on NoActionBar styles, see http://developer
.android.com/reference/android/R.style.html.

 You can also hide the action bar at runtime by calling the action bar hide()
method, as shown here:

ActionBar bar = getActionBar();
bar.hide();
...
bar.show();

Once it’s hidden, you can show the action bar again by calling the action bar method
show().

21.6 Action bar styling
The look and feel of the action bar is driven by themes. Recall that applications that
target Android 3.0 are by default automatically assigned the holographic theme with
an action bar.

 To put things into perspective, let’s quickly compare a title bar with no action bar
to a fully customized action bar; see figure 21.10.

 You specify the theme to use by defining android:theme in the manifest file, along
with other application or Activity attributes such as name and icons. You can apply
the theme style to the application or at the Activity level. The following listing
assigns the theme to the application level.

Figure 21.10 (A) Pre–Android 3.0 title bar with no action bar. (B) Android 3.0 title bar with fully
customized action bar including tab-based navigation and action items, with the look and feel driven by
simple styling.

http://developer.android.com/reference/android/R.style.html
http://developer.android.com/reference/android/R.style.html

576 CHAPTER 21 Android 3.0 action bar
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.cenriqueortiz.androidinaction"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-sdk android:minSdkVersion="11" />
 <uses-permission android:name="android.permission.INTERNET" />

 <application
 android:label="@string/app_name"
 android:icon="@drawable/manninglogo"
 android:theme="@style/ThemeWithActionBar">

 :

This example assigns the theme at the application level (and thus all actions within)
B. Remember, though, that by targeting Android 3.0 (via the minimum and target
SDK versions previously covered in the chapter), Android will automatically assign the
holographic theme with an action bar.

 The theme style referenced in the manifest must be defined. You add custom
theme styles to the style.xml file in a manner similar to how styles are defined in
Android in general.

 The list of theme-styleable items is extensive; Android is flexible when it comes to
customizing themes. Following are some examples of commonly used theme style
items:

 Action bar styling
• android:actionBarTabStyle—Lets you customize the action bar tab by

specifying your own style
• android:actionBarTabTextStyle—Lets you customize the action bar tab

text by specifying your own text style
 Text

• android:textColor—Customizes the foreground text color
• android:textSize—Customizes the text size (remember to use sp for scale-

independent pixels when specifying font sizes)
• android:typeface—Specifies the font type

 Other styling
• android:listChoiceIndicatorMultiple—Sets the drawable for multiple-

choice indicators
• android:listChoiceIndicatorSingle—Sets the drawable for single-choice

indicators
• android:selectableItemBackground—Sets the background drawable for

standalone items that need focus/pressed states
• android:popupMenuStyle—Sets the style of pop-up menus

Listing 21.16 Specifying a theme

Assign themeB

577Action bar styling
• android:dropDownListViewStyle—Specifies the style for drop-down list
menus

• android:actionDropDownStyle—Overrides the default drop-down list style
for the overflow menu and drop-down navigation

The next listing shows an example of how to define the theme style in style.xml.

<style name="ThemeWithActionBar"
 parent="android:style/Theme.WithActionBar">
 <item name="android:textColor">@android:color/white</item>
 <item name=
 "android:actionBarTabTextStyle">@style/actionBarTabTextStyle</item>
 <item name="android:actionBarTabStyle">@style/actionBarTabStyle</item>
 <item name=
 "android:actionBarTabBarStyle">@style/actionBarTabBarStyle</item>
</style>

The theme style inherits its characteristics from the theme parent.
 Similarly, you can customize the holographic theme, defined by the parent Theme

.Holo or one of its subclasses, such as Theme.Holo.Light (see the following listing).

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="CustomHolo" parent="android:style/Theme.Holo">
 <item name=
 "android:actionBarTabTextStyle">@style/actionBarTabTextStyle</item>
 <item name=
 "android:actionBarTabStyle">@style/actionBarTabStyle</item>
 <item name=
 "android:actionBarTabBarStyle">@style/actionBarTabBarStyle</item>
 </style>

 <style name="actionBarTabTextStyle">
 <item name="android:textColor">#000000</item>
 <item name="android:textSize">20sp</item>
 <item name="android:typeface">sans</item>
 </style>

 <style name="actionBarTabStyle">
 <item name="android:paddingLeft">20dp</item>
 <item name="android:paddingRight">20dp</item>
 </style>

</resources>

This example sets the theme style by inheriting from Theme.Holo and overrides vari-
ous attributes such as the bar text style B and the tab style C.

 For a complete list of theme styling items that can be configured, see http://
mng.bz/Dy2M and search for styling items that begin with the prefix Theme_.

Listing 21.17 Defining the theme style (in style.xml)

Listing 21.18 Customizing the holographic theme

Set bar text styleB

Set tab styleC

http://mng.bz/Dy2M
http://mng.bz/Dy2M

578 CHAPTER 21 Android 3.0 action bar
21.7 Summary
This chapter covered the action bar in detail. The action bar offers application con-
trol by providing navigation options, widgets, and other contextual information at the
top of the screen, using a consistent approach across applications. This behavioral
consistency results in a familiar approach to application control and navigation and
gives you quick access to actions regardless of the nature of the application.

Drag-and-drop
Starting with Android 3.0 (API 11), developers can add drag-and-drop capabilities
to applications. Drag-and-drop support is one of the neat features added in
Android 3.0, a natural addition to touch-based user interfaces and tablets.
Android 3.0 provides a complete framework for drag-and-drop that consists of mul-
tiple classes, events, and operations. Related to drag-and-drop are copy-and-paste
operations. Although copy and paste has been around since API 1, a much richer
clipboard API has been introduced in API 11.

 Drag-and-drop is a touch-based gesture. With drag-and-drop gestures, you can
allow users to move data across views that reside within in the same layout: for
example, to select data items in one view and drop them onto a different view for
the purpose of sharing or synchronizing data items. Or you can use the drag-and-
drop gesture itself to trigger a specific action against the dragged item: for exam-
ple, viewing the selected item’s details. A typical drag-and-drop operation is shown
in figure 22.1.

This chapter covers
 The drag-and-drop classes

 Drag-and-drop operations

 The shadow builder

 Listening for drag-and-drop events
579

580 CHAPTER 22 Drag-and-drop
The drag-and-drop operation starts when the user selects a source item (view) and
begins dragging it onto a destination view; note that both views must be in the same
layout. The dragged item has a shadow that provides visual feedback about the item
being dragged during the operation.

 Drag-and-drop operations are a bit involved. There is a drag-and-drop framework
that involves a number of different classes, and the operation itself involves multiple
steps. The next section describes the drag-and-drop operations and the related classes
in more detail.

22.1 The drag-and-drop classes
The drag-and-drop framework involves a number of classes, some pre–Android 3.0,
that all together allow for drag-and-drop operations to take place:

 The source and destination view
 OnLongClickListener to detect when a view has been clicked and held
 OnDragListener to listen for drag events
 DragEvent, which is generated during the drag-and-drop operation
 A DragShadowBuilder that is called to generate the drag shadow for the

dragged item
 ClipData and ClipDescription, which are stored in the system clipboard dur-

ing the operation
 ContentProvider for drag-and-drop operations of complex data-types

With Android 3.0, the View class has been extended in support of drag-and-drop.
Table 22.1 shows the View-related classes hat are part of the drag-and-drop framework.

View 2

Data

View 1

Data

Data

Move

Trigger
action

Layout

Figure 22.1 Dragging and dropping data between Views

581Drag-and-drop operations
As previously mentioned, Android 3.0 also introduced a richer copy-and-paste API.
Drag-and-drop uses the copy-and-paste API underneath—the drag operation itself is
about selecting (copying and moving) data from a source and dropping (transferring
or pasting) the data onto a target. The following list summarizes the copy-and-paste
classes that are used for drag-and-drop operations:

 android.content.ClipboardManager—The manager for placing and retriev-
ing clipped data in the global clipboard

 android.content.ClipData—Clipped data on the clipboard; it can hold one
or more representations of an item of data (ClipData.Item)

 android.content.ClipData.Item—A single item of clipped data (ClipData)
 android.content.ClipDescription—Metadata that describes the contents of

ClipData

Note that the API 11 android.content.ClipboardManager replaces the API Level 1
android.text.ClipboardManager. The latter is now deprecated.

 The data being transferred during the drag-and-drop operation can be simple
(such as text or URIs) or complex. The clipboard provides a set of methods to handle
simple data, but for complex data, you use ContentProvider. Content providers are
covered in chapter 5.

22.2 Drag-and-drop operations
A drag-and-drop operation consists of a number of steps, some performed by the user,
others by the application, and others by the system, as illustrated in figure 22.2.

Table 22.1 android.view.View-related drag-and-drop classes

Classes Description

android.view.View.OnLongClickListener Listener interface that is called when the user
has performed a long click (clicked the view and
held). It’s common to use long presses to indi-
cate the start of the drag-and-drop operation.

android.view.View.DragShadowBuilder A class for creating the shadow image that the
system displays during the drag-and-drop
operation.

android.view.View.OnDragListener Listener interface that is called when a drag
event is being dispatched to this view.

android.view.DragEvent A class that represents a drag-and-drop event
(about the operation and underlying data) that is
sent out by the system at various times during a
drag-and-drop operation, and received either by
the drag event listener or the view’s
onDragEvent() callback method. See section
22.6.1 for information about when to use the
listener versus the callback.

582 CHAPTER 22 Drag-and-drop
As you can see, many drag events are triggered during the drag operation. The opera-
tion is initiated when the user performs the gesture to start the drag, typically a long-
press click that the application is listening to, and for which the application calls the
view’s startDrag() method:

public final boolean startDrag (
 ClipData data,
 View.DragShadowBuilder shadowBuilder
 Object myLocalState,
 int flags)

This method must be invoked to start the drag operation. It signals to other views in
the same layout that a drag operation has been initiated. Those views must determine
whether they want to participate on the drop operation. The method startDrag()
takes for input the following arguments:

 ClipData data is the data object to be transferred.
 View.DragShadowBuilder shadowBuilder is the object for building the drag

shadow.

Calls startDrag() to start drop operation,
passing data and shadow builder

ACTION_DRAG_STARTED event
(to all Views in current layout)

Return True if accepting operation
and continue receiving subsequent events,

false otherwise

ACTION_DRAG_ENTERED event
(when it enters bounding box)

ACTION_DRAG_LOCATION events
(while still within bounding box)

ACTION_DRAG_EXITED event
(only if exiting bounding box)

ACTION_DROP event
(user drops drag shadow)

ACTION_DRAG_ENDED event

User releases
the shadow

within
the View

User initiates
the drag

operation

Drag shadow
Continuing

to drag
shadow

Drag shadow
intersects

View’s
bounding box

Drop
shadow

Data

User Application System ScreenView

Figure 22.2 Drag-and-drop sequence diagram

583The shadow builder
 Object myLocalState is an optional data object that is sent as part of the Drag-
Event object generated from the start-drag operation. It’s a simple or light-
weight mechanism to pass internal local state or information such as state or
flags to the destination view.

 int flags are drag-and-drop control flags; no flags are currently defined, and
they should be set to 0.

This method returns true if the start-drag completes successfully and false other-
wise, indicating that the system was unable to start the drag operation (for example,
due to out-of-memory or other errors during the copy) and thus no drag operation is
in progress.

 Using the startDrag() method is covered in the section “Starting Drag Opera-
tions.” First, the following section introduces drag-and-drop shadows and builders.

22.3 The shadow builder
An important aspect of the drag-and-drop operation is the visual feedback provided
during the drag or data move. When the drag operation is started for a given view by
calling the startDrag() method, a View.DragShadowBuilder callback is specified.
The DragShadowBuilder is called by the system to generate a drag shadow for the view
being dragged.

DragShadowBuilder defines two kinds of constructors: one that takes a View for an
argument, and a no-argument constructor with no associated view. DragShadow-
Builder defines three methods:

 getView()—Returns the view associated with the shadow builder
 onDragShadow(Canvas canvas)—Draws the shadow image
 onProvideShadowMetrics(Point shadowSize, Point shadowTouchPoint)—

Provides the metrics for the shadow image

The following example shows a shadow builder that implements the shadow-builder
constructor, onDragShadow(), and onProvideShadowMetrics() methods.

private static class MyDragShadowBuilder extends View.DragShadowBuilder {
 private static Drawable mShadow;

 public MyDragShadowBuilder(View v) {
 super(v);
 mShadow = new ColorDrawable(Color.LTGRAY);
 }

 @Override
 public void onProvideShadowMetrics (Point size, Point touch) {
 int width = getView().getWidth();
 int height = getView().getHeight();
 mShadow.setBounds(0, 0, width, height);
 size.set(width, height);
 touch.set(width/2, height/2);
 }

Listing 22.1 Example shadow builder

Initialize
View.DragShadowBuilder
superclass

B

C
Define

onProvideShadowMetrics

584 CHAPTER 22 Drag-and-drop
 @Override
 public void onDrawShadow(Canvas canvas) {
 super.onDrawShadow(canvas);
 mShadow.draw(canvas);
 getView().draw(canvas);
 }
}

Drag shadow builders must extend View.DragShadowBuilder and initialize the super-
class with the view to be dragged B. During initialization, to keep the example sim-
ple, we define a shadow as a ColorDrawable of light gray color. The shadow size is
defined during the onProvideShadowMetrics() callback, and in this example C is
given the same dimension as the dragged view and a touchpoint that is in the middle
of the dragged view. When it’s time to draw the shadow, onDrawShadow() is called on
which the super onDrawShadow() is called D, and both the shadow’s and view’s
draw() method are called. The drag shadow is drawn during the drag-and-drop pro-
cess until it’s dropped.

 The result is shown in figure 22.3, where you can see the light-gray drag shadow
that is being dragged from the summary ListFragment on the left onto the WebView-
Fragment on the right. The dragged data is a URL that is loaded from the selected list
item view, which is then transferred to the web view when dropped.

 To make all this work, the application must handle a number of drag events that
are triggered during the life of the drag operation. The next sections cover drag
events, how to listen for and handle events, as well as how to copy and transfer data
during the drag-and-drop operation.

Define callback
to draw shadowD

Figure 22.3 Dragging and dropping data between views

585Drag events
22.4 Drag events
When the drag operation has started, and while the user drags the drag shadow, the
system dispatches events to all views that are listening for drag-and-drop operation
events: that is, if the view has indicated that it wants to receive events, as described
shortly.

 An android.view.DragEvent represents events that are dispatched by the system
during the drag-and-drop operation as illustrated in the figure 22.2 sequence dia-
gram. When a view receives an event, it must call the event’s getAction() method to
get the event’s action type, which indicates the state of the operation, again as illus-
trated in the sequence diagram in figure 22.2. By reacting to the various events, the
application and views can provide visual feedback when the drag begins, crosses view
boundaries, and completes. The currently supported event actions are as follows:

 ACTION_DRAG_STARTED—A drag-and-drop operation has begun. Of great impor-
tance is how to respond to ACTION_DRAG_STARTED. To accept the drop operation
and continue receiving further drag events, true must be returned in response
to ACTION_DRAG_STARTED.

 ACTION_DRAG_ENTERED—The drag point has entered the view’s bounding box.
 ACTION_DRAG_LOCATION—One or more of these events are sent by the system

after ACTION_DRAG_ENTERED and while the drag shadow is within a given view’s
bounding box.

 ACTION_DRAG_EXITED—The drag shadow has moved outside the view’s bound-
ing box. This event is received after an ACTION_DRAG_ENTERED and at least one
ACTION_DRAG_LOCATION have been received. After exit, no more ACTION_DRAG
_LOCATION events are sent to the view unless it’s re-entered (that is,
ACTION_DRAG_ENTERED, and the cycle repeats).

 ACTION_DROP—The user has released the drag shadow, and the drag point is
within this view’s bounding box. This event is sent by the system only if this view
previously accepted the drop operation by returning true in response to
ACTION_DRAG_STARTED. A call to the event’s getX() and getY() methods
returns the X and Y position of the drag point at the moment of the drop.

This event isn’t sent by the system if the user releases the shadow on views
that aren’t listening for events or on empty areas on the user interface.

 ACTION_DRAG_ENDED—The drag-and-drop operation has ended. This event is
also sent if the user releases the shadow on views that aren’t listening for events
or empty areas on the user interface.

In summary, drag-and-drop events can be grouped based on their purpose:

 For handling drag-and-drop data—ACTION_DRAG_STARTED and ACTION_DROP
ACTION_DRAG_STARTED is generated when the drag operation has started.

ACTION_DROP is generated when the operation has ended with the user per-
forming the drop, so that the application can extract the transferred data.

586 CHAPTER 22 Drag-and-drop
 For changing the view appearance—ACTION_DRAG_ENTERED, ACTION_DRAG

_LOCATION, ACTION_DRAG_EXITED, and ACTION_DRAG_ENDED
During the drag-and-drop operation, these events are generated, allowing

the application to change the appearance of views as the drag shadow enters
(ACTION_DRAG_ENTERED) or exits (ACTION_DRAG_EXITED) the target views or
touches parts of a view, or the operation completes (ACTION_DRAG_ENDED).

Now that you’ve seen the different kinds of drag-and-drop events, the next section
covers how to start drag operations and how to listen for drag-and-drop events.

22.5 Starting drag operations
The drag operation is started when a source view calls its startDrag() method, typi-
cally as a response to a long press by the user. In response to this action, you’ll typically
create clip data and related metadata for the data to be moved. You’ll also create the
shadow builder. The following listing shows how to set up for the view’s startDrag()
method.

private String[] mListItems = new String[] {
 "Mobility Weblog",
 "TechCrunch",
 "Manning Books"};

private String[] mListItemsUrls = new String[] {
 "http://mobilityweblog.com",
 "http://www.TechCrunch.com",
 "http://www.manning.com/"};
...

@Override
public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 ListView lv = getListView();
 lv.setOnItemLongClickListener(new OnItemLongClickListener() {
 public boolean onItemLongClick(AdapterView<?> av, View v,
 int pos, long id) {
 final String title = (String) ((TextView) v).getText();
 ClipData data = ClipData.newPlainText(title,
 mListItemsUrls[pos]);
 DragShadowBuilder shadowBuilder = new MyDragShadowBuilder(v);
 v.startDrag(data, shadowBuilder, v, 0);
 return true;
 }
 });

 ...
}

This example listens for long presses and starts the drag operation. We define an array
that contains the list of URLs that correspond to the data that can be selected by the

Listing 22.2 Starting a view drag operation

CSet list view
item long-

click listener
Get source viewB

Start drag
operationD

587Listening for drag-and-drop events
user and copy and moved from the source view to the destination view. A reference to
the source view is captured for later use B, and the long-click listener C is defined to
receive notifications when a given list item is selected. When an item is selected, clip
data is created (in this case, plain text) containing the selected URL to drag. The drag-
shadow builder for the source view is instantiated, and the drag operation is started D
by passing the data to drag, the shadow builder to use, and the source view.

 Once the startDrag() method is called on the source view, the system starts send-
ing drag events to views. The first of such events is ACTION_DRAG_STARTED. Target views
wanting to participate on the drop operation must define a drag event listener, as
explained next.

22.6 Listening for drag-and-drop events
Recall that a drag-and-drop operation begins with a call to startDrag() from a source
view. After the operation has started, the system begins sending drag events to views.
Views that want to participate in the drag operation and accept events and the
dropped data must first listen for events. There are two approaches for listening for
drag events:

 Implement android.view.View.OnDragListener and its onDrag(View v, Drag-
Event event) method. You set the view’s drag listener by calling the View.set-
OnDragListener() method.

 Use the view’s callback method by subclassing View and overriding the onDrag-
Event(DragEvent event) callback.

The approach to use—listener versus callback-based event handling—is based on your
design and/or preference. Implementing a listener allows you to reuse the listener
class across views; implementing an anonymous inline event listener is often more
convenient. Using the callback requires you to subclass View and override the callback
method. If both approaches are implemented, for testing purposes or in legacy code
that you inherited, the system first calls the event listener; the system won’t call the
callback method if the listener returns false.

 It isn’t necessary to react to all drag events. At a minimum, you should react to the
following:

 ACTION_DRAG_STARTED—The drag operation has started, and you need to
accept or reject the drop operation. Remember to return true to accept the
drop operation and continue receiving drag events from the system.

 ACTION_DROP—The user has dropped the drag shadow on the target view. You
need to process the dragged/transferred data.

The following listing shows an example of an anonymous inline drag-event listener
that listens for ACTION_DRAG_STARTED and ACTION_DROP events.

588 CHAPTER 22 Drag-and-drop
@Override
public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 mWebView = getWebView();

 ...

 mWebView.setOnDragListener(new View.OnDragListener() {
 public boolean onDrag(View v, DragEvent event) {
 switch (event.getAction()) {
 case DragEvent.ACTION_DRAG_STARTED:
 return dragStarted(mWebView, event);
 case DragEvent.ACTION_DROP:
 return dropReceived(mWebView, event);
 default:
 return false;
 }
 }
 });
}

In this example, the fragment initializes when onActivityCreated() is called after
Activity creation. We get the view for which a drag-event listener is defined by calling
setOnDragListener(). When the event ACTION_DRAG_STARTED is received B, it means
a drag operation has been started; recall that the view must return true to accept the
operation and continue receiving drag events. When the event ACTION_DROP is
received C, the user has dropped the drag shadow and the view can get the trans-
ferred data. Although this example only shows the handling of the start and drop
events, you should handle the other aforementioned events if you want to make the
user interface dynamic by changing the appearance of the user interface as the drag-
and-drop operation is performed.

 In this section, we covered how views can participate in drag-and-drop operations
by listening to drag events. The next section discusses how to respond to the start of
the drag operation.

22.7 Responding to drag-start operations
A participating target view is one that is listening for drag events and responds true to
the ACTION_DRAG_STARTED event. In the previous section, you saw how to set the drag
event listener by calling the view’s method setOnDragListener() on which, for event
ACTION_DRAG_STARTED, it will call the helper method dragStarted() to process the
event. The first thing a participating target view must do when responding to a drag-
start operation is to validate that it can handle the kind of data being dragged. This is
shown in the following listing.

Listing 22.3 Defining a drag-event listener

Process drag-
started event

B

Process
drop eventC

589Handling drop operations
private boolean dragStarted(View view, DragEvent event) {
 ClipDescription clipDesc = event.getClipDescription();
 if (clipDesc != null) {
 return clipDesc.hasMimeType(ClipDescription.MIMETYPE_TEXT_PLAIN);
 }
 return false;
}

In this example, the helper method dragStarted() is called to handle ACTION
_DRAG_STARTED. The transferred clip data’s description is used to tell the system that
the view only accepts plain text data types (MIMETYPE_TEXT_PLAIN); if the data type is
of type plain text, it returns true to accept the drop operation and receive further
events. If the clip data isn’t as expected, the drag operation is rejected and no further
events related to the current drag operation are sent to this view.

22.8 Handling drop operations
When the user releases the drag shadow, the ACTION_DROP event is dispatched by the
system. If the shadow is released on a view that is listening for drag events, and that
view previously indicated that it would accept the drop operation, its listener is called
with an action type of ACTION_DROP. Previously you saw how to set the drag event lis-
tener by calling the view’s method setOnDragListener(), on which for event
ACTION_DROP it will call the helper method dropReceived() to process the event. Pro-
cessing the drop event is about retrieving the transferred data. As shown in the follow-
ing listing, the event’s clip data is retrieved and used: in this example, a URL that is
used to load a web page.

private boolean dropReceived(View view, DragEvent event) {
 ClipData data = event.getClipData();
 if (data != null) {
 if (data.getItemCount() > 0) {
 android.content.ClipData.Item item = data.getItemAt(0);
 String textData = (String) item.getText();
 if (textData != null) {
 updateDetails(textData);
 return true;
 }
 }
 }
 return false;
}

In this example, the helper method dropReceived() is called to handle ACTION_DROP.
The transferred clip data is retrieved B. Clip data may include one or more items, but
in this example it contains only one: plain text that is assumed to be a properly for-
matted URL. This data is retrieved and then used C to update the view. If no errors

Listing 22.4 Responding to the ACTION_DRAG_STARTED drag event

Listing 22.5 Handling the ACTION_DROP drag event

Get clip itemB
Update
details fragmentC

590 CHAPTER 22 Drag-and-drop
are encountered, we return true to indicate that the dropped was accepted; otherwise
we return false.

22.9 Summary
Drag-and-drop is a very useful feature introduced in Android 3.0. A natural extension
to touch-based user interfaces, drag-and-drop exposes touch gestures to select and
move data or trigger actions between views in a layout. Drag-and-drop is view-centric
and event-based, and it uses the clipboard classes to store the data to be transferred
between views. Source views initiate the drag operation, and target views must define
drag-event listeners to accept the drop operation and the data that is transferred via
the clipboard as part of the drag-and-drop operation. Support for context-based drag-
and-drop operations can add interesting and intuitive ways of interacting with your
Android application.

appendix A:
Installing

 the Android SDK
This appendix walks through the installation of Eclipse, the Android SDK, and the
ADT plug-in for Eclipse. This appendix is meant to be a reference resource to assist
in setting up the environment for Android application development. The topic of
using the development tools is covered in chapter 2.

A.1 Development environment requirements
To develop Android applications, your computing environment must satisfy the
minimum requirements. Android development is a quick-paced topic, with
changes coming about very rapidly, so it’s a good idea to stay in tune with the latest
developments from the Android development team at Google. You’ll find the latest
information regarding supported platforms and requirements for Android Devel-
opment Tools (ADT) at http://developer.android.com/sdk/requirements.html.

 Compatible development environments for the sample applications in this book
include

 Windows XP/Vista/Windows 7, Mac OS X 10.4.8 or later (Intel x86 only), Linux
 Eclipse 3.4 (or later), including the JDT and Web Tools Platform, which are

included in the Eclipse installation package
 JDK and Java Runtime Environment (JRE) version 5 or 6
 ADT plug-in for Eclipse

Once you’ve identified a compatible computing environment, it’s time to obtain
and install the development tools. We’ll start with the Eclipse IDE.

A.2 Obtaining and installing Eclipse
A requirement for running the Eclipse IDE is the JRE version 5 or later. For assis-
tance in determining the best JRE for your development computer, go to
www.eclipse.org/downloads/moreinfo/jre.php. It’s likely that you already have an
acceptable JRE installed on your computer. An easy way to determine what version
(if any) you have is to run the following command from a command window or ter-
minal session on your development computer:

java -version
591

http://www.eclipse.org/downloads/moreinfo/jre.php
http://developer.android.com/sdk/requirements.html

592 APPENDIX A Installing the Android SDK
This command checks to see if the JRE is installed and present in your computer’s
search path. If the command comes back with an error stating an invalid or unrecog-
nized command, that probably means the JRE isn’t installed and/or it’s not properly
configured. Figure A.1 demonstrates using this command to check the version of the
installed JRE on a computer running the Windows OS.

Once your JRE is installed, the next step is to install the Eclipse IDE. Download the lat-
est stable release from www.eclipse.org/downloads. You’ll want to download the ver-
sion for Java developers. This distribution is described at the Eclipse website:
www.eclipse.org/downloads/moreinfo/java.php. The Eclipse download is a com-
pressed file. After you’ve downloaded it, extract the contents of the file to a conve-
nient place on your computer. Because this download is simply a compressed file and
not an installer, it doesn’t create any icons or shortcuts on your computer.

 To start Eclipse, execute the file named eclipse (run eclipse.exe for Windows
users) found in the directory to which you downloaded Eclipse. You may want to make
your own menu or desktop shortcut to eclipse(.exe) for convenience. Executing this
file loads the Eclipse IDE. Eclipse prompts for a workspace and suggests a default loca-
tion, such as C:\documents and settings\username\workspace. You can change the
workspace location to something Android specific to separate your Android work
from other projects, as shown in figure A.2.

 Accept the suggested workspace location or specify an alternative workspace loca-
tion, as desired. Once Eclipse is loaded, click the Workbench: Go to the Workbench
icon on the main screen, as shown in figure A.3.

Figure A.1 The java –version command displays the version of Java
installed on your computer.

Figure A.2 Eclipse projects are
stored in a workspace, which is a
directory on your computer’s
hard drive.

http://www.eclipse.org/downloads
http://www.eclipse.org/downloads
http://www.eclipse.org/downloads/moreinfo/java.php
http://www.eclipse.org/downloads/moreinfo/java.php

593Obtaining and installing Eclipse
Eclipse consists of many perspectives, and the default is the Java Perspective, from
which Android application development takes place. The Java Perspective is shown in
figure A.4. Chapter 2 discusses in greater detail the use of the Eclipse IDE for Android
application development.

Figure A.3 Eclipse defaults to the home screen. Go to the workbench.

Figure A.4 Android development takes place in the Java Perspective.

594 APPENDIX A Installing the Android SDK
 For more information on becoming familiar with the Eclipse environment, visit
www.eclipse.org, where you can find online tutorials for building Java applications
with Eclipse.

 Now that Eclipse is installed, it’s time to focus on the Android SDK.

A.3 Obtaining and installing the Android SDK
The Android SDK is available as a free download from a link on the Android home
page, at http://developer.android.com/sdk/index.html. SDK installation versions are
available for multiple platforms, including Windows, Mac OS X (Intel x86 only), and
Linux (i386). Select the latest version of the SDK for the desired platform.

 The Android SDK is a compressed folder download. Download and extract the con-
tents of the compressed folder file to a convenient place on your computer. For exam-
ple, you might install the SDK to C:\software\google\android-sdk-windows on a Windows
machine, or /somefolder/android-sdk-mac_86 on a Mac, as shown in figure A.5.

 As you can see in figure A.5, the installation footprint is rather simple. Earlier ver-
sions of the Android SDK were a complete archive of tools, documentation, and
classes. Starting with version 1.6 of the SDK, the archive only contains the tools—
essentially a set of SDK Management tools. As specific packages are installed over time,
they are added under the platforms folder. For Windows users, run the file named
SDK Setup.exe. For other development environments, run the shell script named
android. This will load the Android SDK and AVD Manager, which permits you to man-
age the SDKs on your development machine as well as define instances of the Android
emulator.

Figure A.5 Unzip the Android SDK archive to your hard drive.

http://www.eclipse.org
http://code.google.com/android/download.html
http://code.google.com/android/download.html

595Using the SDK and AVD Manager
A.4 Using the SDK and AVD Manager
To begin developing Android applications, you must first download at least one of the
available Android platforms. The benefit of this approach is that it allows you to man-
age and use multiple SDK versions in parallel on your development machine. Given
the pace at which the Android team is releasing code, this is a welcome improvement
over earlier versions of the SDK.

 In figure A.6, you can see the SDK and AVD Manager displaying the available
Android packages for download. Only the packages that are not presently on your
computer are listed here. As new packages become available, they appear in this list.

 Although the Android platform is generally described as versions, such as 1.1, 1.5,
1.6, 2.0, and so on, the underlying technologies have been described as levels. For
example, Android API Level 5 was introduced at the 2.0 release, and Android 2.3 is
API level 9. When looking at certain API documentation or working with Android plat-
forms, you’ll see these level indicators.

 Unless you have a specific older Android device in mind for an application, you’ll
want to focus on the most recent SDK release level. Much of this book uses SDK version
2.2 and 3.1, but you can install multiple versions of the SDK. Figure A.7 shows an
installation with support for numerous Android releases.

 Testing is often done via the Android emulator; each instance of the emulator is
known as an Android virtual device (AVD). Here’s where the AVD Manager comes into
play. Under the virtual devices section of the SDK and AVD Manager, you can define
instances of the emulator, each with specific characteristics, such as SDK version/API

Figure A.6 The packages available for download

596 APPENDIX A Installing the Android SDK
Level, SDCard storage size, and screen size. Figure A.8 shows the definition of a single
Android virtual device/emulator named A22_NOMAPS that uses the SDK version 2.0.1.
You can name your virtual device anything you like.

Figure A.7 The currently installed packages

Figure A.8 Defining an Android virtual device, also known as an emulator

597Obtaining and installing the Eclipse plug-in
 You can view API documentation based on your local SDK installation if installed,
or online at http://developer.android.com/reference/classes.html. To view docu-
mentation locally, select the index.html file under the docs folder in the folder where
the Android SDK was unzipped. The SDK’s documentation is largely a collection of
Javadocs enumerating the packages and classes of the SDK. The file android.jar is the
Android runtime Java archive. The samples folder contains a number of sample appli-
cations, each of which is mentioned in the documentation. The tools folder contains
Android-specific resource compilers and the very helpful adb tool. These tools are
explained and demonstrated in chapter 2 of this book. Each version of the Android
platform contains its own set of samples, tools, and runtime libraries.

TIP The SDK changes from time to time as the Android team releases new
versions. If you need to upgrade from one version to another, there will be an
upgrade document on the Android website—be sure to examine the relevant
upgrade documentation file to learn of important changes to the API. Check
for items that may impact your previously written applications.

Both Eclipse and the Android SDK are now installed. It’s time to install the ADT plug-
in for Eclipse to take advantage of the ADT’s powerful features, which help you bring
your Android applications to life.

A.5 Obtaining and installing the Eclipse plug-in
The following steps show you how to install the Android plug-in for Eclipse, known as
the ADT. The most up-to-date installation directions are available from the Android
website at http://developer.android.com/sdk/eclipse-adt.html. The first steps are
generic for any Eclipse plug-in installation, not just the ADT.

 Here are the basic steps to install the ADT:

1 Run the Find and Install feature in Eclipse, found under the Help > Software
Updates menu, as shown in figure A.9.

Figure A.9 The Eclipse environment supports an extensible plug-in architecture.

598 APPENDIX A Installing the Android SDK
2 Select the “Search for new features to install” option, as shown in figure A.10.
Click Next.

3 Select New Update Site. Give this site a name, such as Android Tools, as shown
in figure A.11. Use the following URL in the dialog: https://dl-ssl.google.com/
android/eclipse. Please note the https in the URL. Click OK.

4 A new entry is added to the list and is checked by default. Click Finish. The
search results display the ADTs.

5 Select Android Tools and click Next, as shown in figure A.12.
6 After reviewing and accepting the license agreement, click Next.
7 Review and accept the installation location. Click Finish.
8 The plug-in is now downloaded and installed. Restart Eclipse to complete the

installation.

Figure A.10 Choose the new features option.

Figure A.11 Create a new update site
to search for Android-related tools.

https://dl-ssl.google.com/android/eclipse
https://dl-ssl.google.com/android/eclipse

599Configuring the Eclipse plug-in
Congratulations! The ADT Eclipse plug-in is installed.
 Note that from time to time you may need to upgrade your ADT plug-in to support

a new Android API level/SDK. As of the writing of this book, the latest version of the
ADT plug-in is version 8.01v201012062107-82219. To check for available ADT
upgrades, select Software Updates under the Help menu in Eclipse. Highlight the
Android Developer Tools in the Installed Software list, and click the Upgrade button
on the right side of the dialog. This will upgrade your ADT plug-in if an upgrade is
available. As with the original installation of the ADT, we recommend that you restart
the Eclipse IDE for the software to properly install and be available to you.

 Next step: configuration.

A.6 Configuring the Eclipse plug-in
Once Eclipse is restarted, you connect the plug-in to the Android SDK installation.
Select Preferences from the Window menu in Eclipse for Windows or from the Eclipse
menu for Mac OS X. Click the Android item in the tree view to the left to expand the
Android settings. In the right pane, specify the SDK installation location. For example,
the value used for this appendix is /Users/fableson/Software/android/android-sdk-
mac_86, as shown in figure A.13.

Figure A.12 You must select Android Tools for Eclipse to download and install.

600 APPENDIX A Installing the Android SDK
 After the SDK location is specified, there are five other sections you may configure:

 Build—This section has options for automatically rebuilding resources. Leave
this checked. The Build option can change the level of verbosity. Normal is the
default setting.

 DDMS—This service is used for peering into a running virtual machine. These
settings specify TCP/IP port numbers used for connecting to a running VM with
the debugger and various logging levels and options. The default settings
should be just fine. Chapter 2 describes how to use the DDMS.

 Launch—This section permits optional emulator switches to be sent to the emu-
lator upon startup. An example of this might be the wipe-data option, which
cleans the persistent file system upon launch of the emulator.

 LogCat—The LogCat feature is used to view logging messages on the device.
This feature permits you to view both application-level log messages as well as
kernel-level messages. Only the font is selectable in this dialog, so adjust this as
desired. Don’t be fooled by this simple configuration setting—the LogCat is
your friend and is demonstrated throughout the book.

 Usage Stats—This optional feature sends your usage stats to Google to help the
Android tools team better understand which features of the plug-in are used in
an effort to enhance the toolset.

 Your Android development environment is complete!

Figure A.13 ADT plug-in for Eclipse preferences

appendix B:
Publishing applications

Writing and debugging applications can be both exhausting and satisfying, but the
day will come when it’s time to move past development and graduate to publishing
your Android application for others to use. This appendix presents best practices for
preparing an application for publication and then walks step by step through the
process of digitally signing an application and uploading it to the Android Market.

 In the most basic sense, publishing an application involves digitally signing it and
uploading it to the Android Market or other venues for distribution. But for you to
properly prepare an Android application, a few steps precede the distribution stage.
If you observe these guidelines carefully, the odds of your customers having a posi-
tive experience with your application increase significantly. Ignore these best prac-
tices, and you run the risk of tarnishing your reputation as a mobile developer.

B.1 Preparing an application for distribution
Preparing an Android application for distribution is a somewhat straightforward
and methodical task, though one that requires considerable attention to detail.
This section presents a list of things to consider prior to releasing your application.
It’s not meant to be an exhaustive list but rather a framework for cleaning up your
application.

B.1.1 Logging

During development, it’s common to accumulate superfluous LogCat statements
throughout your code. For example, you may make verbose entries to the LogCat
by dumping the contents of objects to the log or recording every response from a
remote server. You may even write sensitive information such as “before and after”
strings related to an encryption routine. Although these entries are helpful during
the debugging of your application, they can be fatal flaws if shipped to users. Imag-
ine leaving breadcrumbs to your company’s intellectual property behind in the
LogCat—bad idea!

B.1.2 Debugging notifications

Your code may include the use of a Toast notification to inform you of some condi-
tion or scenario, such as an unhandled branch in a switch statement or perhaps a
601

602 APPENDIX B Publishing applications
notification of a caught exception. This notification is helpful during the debug cycle
but certainly not desirable for a released application.

B.1.3 Sample data

Your application may ship with sample data; if so, be sure that it’s properly set up for
your users in an intuitive manner. Also, be sure to avoid leaving behind your own data.
For example, if you have an FTP application, don’t leave behind your own credentials
in the database shipped with your application. And don’t prepopulate a form with
your credit card number!

B.1.4 AndroidManifest.xml

The AndroidManifest.xml file requires careful attention before publication of your
application. Let’s look at a few items you need to keep in mind:

 Remove the android:debuggable tag, or at minimum set its value to false.
 Specify appropriate values for the label and icon attributes of the application

tag. Keep the text as short as possible in the label. Unless you’re an artist, get
someone to assist you in the creation of attractive logo artwork.

 Specify the android:versionCode and android:versionName attributes in the
<application> element of the manifest as well. The versionCode is an integer
value that can be checked programmatically and is typically incremented at
each release. The versionName is displayed to users. The online documentation
at http://developer.android.com covers these attributes in detail.

 Specify the minimum SDK level required for your application. For example, the
FindEdges application from chapter 19 requires bitmap features introduced in
the 2.2 version of the SDK. The SDK levels are integers that don’t correspond
exactly to the commonly referenced SDK versions. The FindEdges application has
the following line to specify the target and minimum SDK level:

<uses-sdk android:targetSdkVersion="8" android:minSdkVersion="8">
</uses-sdk>

The FindEdges application won’t run on a device with an older OS version due
to the bitmap requirements, but your application may not be so constrained. If
your application isn’t constrained, consider setting the minSdkVersion as low as
possible to make the application accessible to a wide variety of devices. If your
application contains a hard constraint, don’t neglect this step because properly
specifying a minimum SDK level prevents users with older devices from install-
ing an application that can’t run on their devices. This is better than allowing
users to install your application and experience problems running the app.

B.1.5 End-user license agreement

We recommend providing your own end-user license agreement (EULA) even though
most users will ignore it. You’ve written this software and likely invested heavily in its
creation. You owe it to yourself and your investors to do what you can to protect your

http://developer.android.com

603Preparing an application for distribution
interest in it, particularly with respect to hedging against potential liabilities your
application may introduce. Obtaining experienced legal counsel is a good idea unless
you plan to employ one of the commonly used open source agreements—even then,
consider obtaining guidance from an experienced legal expert familiar with software
licensing agreements.

 It’s common to display the EULA when the application is first launched, requiring
the user to positively acknowledge and agree to the terms. After the user has consented
to the terms of the EULA, don’t show it again unless the user explicitly requests to view
it via a menu selection. Storing a Boolean value in the SharedPreferences is an easy
approach to keeping track of the user’s consent to EULA agreement. You may also con-
sider showing the EULA on every upgrade in the event that your EULA is modified.

B.1.6 Testing

After you go through these steps, be sure to perform regression testing on your appli-
cation on a real device prior to distribution. It’s easy to break a functioning applica-
tion during this cleanup phase. The purpose of this testing is to check that all of your
potentially damaging debug information has been removed. You can then move on to
acceptance-style testing. Having a documented test plan is a good idea, and if possible,
let someone other than the primary developer be responsible for signing off on the
test plan.

 Be sure to run your application under as many conditions as you can with features
such as Wi-Fi, 3G, and GPS both enabled and disabled. Verify that the application
degrades gracefully in the event that a required service is unavailable, such as when
data service is unavailable or when roaming. It’s fine for your application to not per-
form if a missing communications link is unavailable, but the application should pres-
ent an easy-to-understand message to users, advising them of the situation and
perhaps suggesting steps to restore connectivity.

 Pay particular attention to how your application responds to being stopped and
restarted. Change the screen orientation when running each Activity. Does the
application behave as expected? Remember that the default behavior is for an
Activity to be stopped and restarted when the screen orientation changes. You may
need to return to your code and implement the Activity lifecycle methods.

B.1.7 Finishing touches

As an extra step, if your application persists data locally via a file, SharedPreferences,
or a SQL database, consider providing an import/export feature. This feature can be
implemented as an Activity, allowing the user to save the data out to the SD card in a
readily parsable format such as CSV or XML. The import/export feature should also
allow the user to restore the data to your application’s local storage. This extra feature
may make application upgrades easier and more resistant to errors. Having an easy
export/image mechanism via SD card also makes moving to a new device a nonevent
because your users can easily bring their data with them to the new device. Your users
will love you for this!

604 APPENDIX B Publishing applications
 Once you’re convinced that your application is ready for release, it’s time to digi-
tally sign the application in preparation for taking it to the Android Market.

B.2 Digitally signing an application
The Android platform requires every application file—that is, yourappname.apk—to
be digitally signed in order to run on a device or emulator; without a signature, an
application simply won’t run. When you use Eclipse to develop your application,
Eclipse silently signs the application with an automatically provided debug key. The
signing requirement is entirely transparent to most developers until it’s time to pub-
lish an application for others to use.

 When you’re publishing an application for distribution, the application needs to be
signed with a nondebug signature. Fortunately, the applications can be self-signed,
meaning a certificate authority isn’t required. This keeps the complexity and cost down
considerably compared to the signing process required for other mobile platforms.

B.2.1 Keystores

By default, the keystores are located under the user’s home directory in a folder
named .android. The following listing shows the contents of this folder on the
author’s development machine.

hostname:.android fableson$ ls -l
total 64
-rw-r--r-- 1 fableson staff 123 Jul 9 20:32 adb_usb.ini
-rw-r--r-- 1 fableson staff 198 May 22 10:28 androidtool.cfg
drwxr-xr-x 5 fableson staff 170 Jul 9 20:45 avd
-rw-r--r-- 1 fableson staff 58 Apr 19 22:58 ddms.cfg
-rw-r--r-- 1 fableson staff 1269 Jun 2 21:23 debug.keystore
-rw-r--r-- 1 fableson staff 759 Jun 10 03:21 default.keyset
-rw-r--r-- 1 fableson staff 51 Oct 24 2009 emulator-user.ini
-rw-r--r-- 1 fableson staff 2265 Aug 15 22:02 releasekey.keystore
-rw-r--r-- 1 fableson staff 72 Jul 20 00:53 repositories.cfg

The .android folder contains files and directories required by the Android Develop-
ment Tools. Of particular interest here is the debug.keystore B, which contains the
debug key used by Eclipse during normal edit, compile, install, and testing iterations.
Eclipse silently signs every application with the key stored within debug.keystore.
When the time comes to distribute applications to the Android Market, or other ven-
ues, a nondebug key must be created and stored in a separate keystore. In this case
we’ve created a nondebug key and stored it in releasekey.keystore C. This keystore
may be named arbitrarily by the developer.

 The next section walks through the process of creating a nondebug key and keystore.

Listing B.1 .android folder showing keystores

Debug
keystore

B

C

Release
keystore

605Digitally signing an application
B.2.2 keytool

This section demonstrates the creation of a key and its containing keystore via the pro-
gram named keytool. keytool is provided with the Java SDK and should be in the exe-
cutable path of your terminal or command window. When this step is complete, you’ll
have a valid key with which an Android application may be signed for distribution.

 The following command is an example of using keytool to create a self-signed pri-
vate key in the .android directory:

keytool -genkey -v -keystore ~/.android/releasekey.keystore -alias
releasekey -keyalg
RSA -validity 10000

This command generates a key (-genkey) in verbose mode (-v) stored in a keystore
file named releasekey.keystore with an alias of releasekey. The cryptographic algo-
rithm is RSA, and the key has a validity of 10,000 days prior to expiration. Every key in
a keystore requires an alias. The alias is used when referring to the key within the key-
store during the signing of the APK file. The Android documentation recommends at
least a 25-year key life.

 The keytool command prompts for a key password and organizational informa-
tion when creating a key. You should use accurate information as it’s possible for your
users to view this later, and you should use a strong password. Once you create your
key, you also need to be careful to store it securely and keep the password private. If
your key is lost or compromised, your identity can be misused, and the trust relation-
ships to your key via your applications can be abused.

 Now that you have a valid key, it’s time to sign the application. For this task, you’ll
utilize the jarsigner application.

B.2.3 jarsigner

Signing applications is accomplished with the jarsigner tool. Like keytool, jar-
signer is part of the Java SDK, so be sure that it is in your executable path.

 To sign an application, you must export it as an unsigned APK file. In Eclipse, right-
click and select the Android Tools > Export Unsigned Application Package option, as
shown in figure B.1.

 Save the file as projectname-unaligned.apk. In this example, you’ll export the
unsigned application file for the UA2E_FindEdges application to a file named
UA2E_FindEdges_unaligned.apk.

 Let’s now use jarsigner to sign the archive with our key, as shown here:

jarsigner -verbose -keystore ~/.android/releasekey.keystore
 UA2E_FindEdges-unaligned.apk releasekey

This command tells jarsigner to sign the APK file with a key named releasekey stored
in the previously created keystore file—that is, releasekey.keystore in the ~/.android
folder.

606 APPENDIX B Publishing applications
The jarsigner tool prompts for the password used when the key was created. Assum-
ing the correct password is entered, jarsigner proceeds to sign the contents of the
archive file as well as create or update manifest files, as shown here:

jarsigner -verbose -keystore ~/.android/releasekey.keystore
UA2E_FindEdges-unaligned.apk releasekey
Enter Passphrase for keystore: ****************
 updating: META-INF/RELEASEK.SF
 updating: META-INF/RELEASEK.RSA
 signing: res/layout/about.xml
 signing: res/layout/main.xml
 signing: AndroidManifest.xml
 signing: resources.arsc
 signing: res/drawable-hdpi/icon.png
 signing: res/drawable-ldpi/icon.png
 signing: res/drawable-mdpi/icon.png
 signing: classes.dex
 signing: lib/armeabi/libua2efindedges.so
 signing: lib/armeabi-v7a/libua2efindedges.so

Figure B.1 Using Android Tools from the Eclipse/ADT environment to
export an unsigned application archive package

607Publishing to the Android Market
Note that every file in the archive is signed, including the native JNI library files in
addition to the Android SDK classes and resources.

 At this point the application is ready to be installed, but there’s a recommended
optimization step. If all the resources within the archive are properly aligned, the
Android OS can access a memory map of the file, thereby preserving the runtime RAM
required because the application need not be copied into memory. To accomplish
this alignment step, you can use the zipalign tool, which you’ll find in the Android
SDK/tools folder:

zipalign –v 4 UA2E_FindEdges_unaligned.apk UA2E_FindEdges.apk

The APK file is now ready for deployment to either a local device via the adb tool or
for publishing to the Android Market.

 To install the file to a locally attached device, use the adb command as follows:

adb install UA2E_FindEdges.apk

Replace the APK file with your filename, of course. To remove a currently installed
application, either uninstall it from the settings application on the device or again
use adb:

adb uninstall com.msi.manning.ua2efindedges

Be sure to substitute your application’s package name.
 Let’s take a look at publishing an application to the Android Market.

B.3 Publishing to the Android Market
Every Android phone has a built-in application known as the Android Market; the
label of the application says simply Market. This application permits users to browse
the extensive catalog of applications by category and price. The best way to get your
application onto thousands of Android devices is to publish your application to the
Market. This is done through web-based tools found at android.com.

 Checking the validity of an application’s license is accomplished by interacting
with the License Verification Library (LVL). Interacting with this library requires the
inclusion of the com.android.vending.licensing package and is beyond the scope
of this chapter. Please examine the online documentation found at http://developer
.android.com/guide/publishing/licensing.html for more details on the LVL.

B.3.1 The Market rules

Before you put your application on the Market, you should carefully read the developer
terms (www.android.com/us/developer-distribution-agreement.html) and the content
guidelines (www.android.com/market/terms/developer-content-policy.html).

 The Market terms cover pricing, payments, returns, license grants, revocations,
and other relevant topics to anyone looking to publish applications to the Android
Market. The content guidelines further define what’s acceptable in terms of subject

http://www.android.com/us/developer-distribution-agreement.html
http://www.android.com/us/developer-distribution-agreement.html
http://www.android.com/market/terms/developer-content-policy.html

608 APPENDIX B Publishing applications
matter and media, though in practice an application must be very egregious to be
pulled out of the Market. The bar for entry is very low.

 If the Market terms are amenable to you and you plan to post applications, you need
to register as an Android developer as well as have a Google account. There’s a nominal
fee to register as an Android developer. Once you’re set up, you can begin placing your
applications in the Market for users to download and install directly. Optionally, you
can publish applications for a price other than “free”—that is, you can sell your soft-
ware. To do so, you must also provide banking and tax identifier information.

B.3.2 Getting your application in the Market

Registered Market developers simply use an online form to upload applications.
When uploading applications, you can define the different Market locations that are
supported, pricing and terms, as well as a category and description and other options.
To demonstrate the application publication process, we’ll review this author’s account
with a single published application. The application used for this exercise is the Find
Edges application created chapter 19.

 Figure B.2 shows the single application listed in the Android Market, ready for
maintenance. Note that this screen is also the place where new applications can added
to the market by clicking the Upload Application button in the lower-right corner.

Figure B.2 Managing Android Market applications

609Publishing to the Android Market

D
ow

nl
oa

d
fr

om
 w

w
w

.U
pe

Bo
ok

.C
om
Clicking through the application allows you to edit this application’s properties on the
Market. The editing screen is too large to fit into one screenshot, so it’s split between
two figures. Figure B.3 shows the top portion of the management interface where
updates to the APK file can be loaded along with screenshots to display the application
to prospective users browsing in the Market.

Figure B.3 Managing the APK file and screenshots

610 APPENDIX B Publishing applications
Figure B.4 shows the textual aspects of
the application description.

 Once the application is published
to the market, it’s visible to the Market
application on Android devices world-
wide within moments. Figure B.5
shows a screenshot of the Market
application running on a physical
Android device. The Market applica-
tion is displaying the catalog entry for
the Find Edges application.

 After that simple process, your
application is available for download
to users across the globe.

 The Android Market is easy to
use—but is it effective?

Figure B.4 Textual descriptions of the application along with publication options

Figure B.5
The newly
published
application
becomes available
on the device in
mere moments.

611Recapping the Android Debug Bridge
B.3.3 Android Market—the right solution

The Android Market is an effective distribution mechanism because it’s built in and
accessible to users and developers alike. Generally speaking, it’s the first place users
go to find applications.

 As mentioned in chapter 1, the open nature of the Android platform—and of the
Android Market—offers distinct advantages to both developers and users. There’s no
arbitrary inclusion or exclusion process that an individual or company holds over the
Market. Anyone who joins and agrees to the terms can publish applications on the
Market without fear of the thought police barring an application.

 Virtually all applications are welcome, but some will do better than others. Users
rate the applications on a scale of 1 to 5, and they may leave comments as well. These
comments often influence prospective purchasers with their positive or negative
remarks. The Android Market is a merit-based system; impress your users, and they’ll
rate your application well and compliment you; shortchange your users, and your
download count and sales will suffer.

 In keeping with the theme of being an open platform, Android applications may
be distributed beyond just the Android Market.

B.4 Other distribution means
The last thing to consider with regard to distributing applications is that there are
other venues beyond the Android Market.

 Various third-party sites also offer distribution channels. These sites have different
agreement types and different payment models, so you should research them carefully
before using them.

 You may want to distribute your application in the Android Market or on third-
party services, or you may decide to use multiple distribution channels. If you do use
third-party services, keep in mind that although these alternatives are growing in pop-
ularity they aren’t nearly as accessible to users compared to the built-in Market. Users
have to find the third-party service and generally then have to install applications on
their own or at least bootstrap the service with an application specifically designed for
the market.

 Last and certainly not least, Android applications can be distributed directly from
a company’s website or any other means of shipping an APK file. For commercial
developers targeting enterprise applications, this is a distinct advantage over the dra-
conian measures taken by Apple for iPhone and iPad application deployment.

 The more means you have at your disposal to get your applications into the hands
of users, the greater your influence. Good luck!

B.5 Recapping the Android Debug Bridge
Although we covered the Android Debug Bridge (adb) in chapter 2, a recap is in
order as background for signing and installing applications and working with Android
devices.

612 APPENDIX B Publishing applications
 The adb is a client/server program that lets you interact with the Android SDK in
various ways, including pushing and pulling files, installing and removing applica-
tions, issuing shell commands, and more. The adb tool consist of three components: a
development machine–based server, a development machine client for issuing com-
mands, and a client for each emulator or device in use. Other Android tools, such as
the DDMS tool, also create clients to interact with the adb.

 You can make sure your local adb server is running by issuing the adb start-
server command. Similarly, you can stop your server with adb kill-server and then
restart it, if necessary (or just to get familiar with the process). When you start the
Eclipse/ADT environment, it automatically starts an adb server instance.

 Once you’re sure your adb server is running, you can tell if any devices or emula-
tors are connected by issuing the adb devices command. The output of this com-
mand with an emulator running and a physical device attached via a USB cable is
shown here:

#$ adb devices
List of devices attached
emulator-5554 device
HT845GZ49611 device

The adb tool acts as the backplane for the Android development process. Communi-
cations between the development environment and a device/emulator rely on adb.
The first step in getting your applications onto an actual device is to connect your
device to the development machine and confirm that it’s recognized by adb. If you
have any running emulator instances, it’d be a good idea to shut them down prior to
beginning this process. Confirm that your physical device is the only attached Android
client. To do this, run adb devices from the command line and confirm that there’s a
single entry in the list of attached devices, as shown in figure B.1.

index
Symbols

@ symbol 25

A

aapt 42
abortBroadcast 200
AbsoluteLayout class

LayoutParams class 87
access permissions 134
AccountAuthenticator 428
AccountManager service 423
accounts, add and manage 422
action

ACTION_BATTERY_CHANGED
constant 115

ACTION_BOOT_COMPLETED
constant 115

ACTION_CALL constant 110
ACTION_PACKAGE_ADDED constant 115
ACTION_PACKAGE_REMOVED

constant 115
ACTION_TIME_CHANGED constant 115
ACTION_TIME_TICK constant 115
ACTION_TIMEZONE_CHANGED

constant 115
and intent filters 107
built-in 109

action bar
action items 570–574

application icon 573–574
creating programmatically 572
creating with menu resources 571
handling 572
location 571

showAsAction attribute 571
action views 574

assigning 574
app name and title 564–565
background drawables 576
checking for presence of 563
customized 561
display options 563–570

DISPLAY_HOME_AS_UP 563
DISPLAY_SHOW_CUSTOM 563
DISPLAY_SHOW_HOME 563
DISPLAY_SHOW_TITLE 563
DISPLAY_USE_LOGO 563
methods 563
setting 564

drop-down list style 577
font type 576
foreground text color 576
getting ActionBar instance 562
handling at runtime 575
hide() method 575
introduction 561–562
multiple-choice indicator 576
navigation modes 565–566

list navigation 569–570
methods 566
NAVIGATION_MODE_LIST 565
NAVIGATION_MODE_STANDARD 565
NAVIGATION_MODE_TABS 565
tab navigation 566–569

overriding default overflow menu style 577
pop-up menu style 576
removing, showing, and hiding 575
show() method 575
single-choice indicator 576
styling 575–577
613

614 INDEX
action bar (continued)
tab listener methods 568
tab navigation methods 567
tab style 576
text size 576
text style 576
theme 575

action view 574
assigning 574

ACTION_CALL 107
ACTION_DOWN 349
ACTION_DRAG_ENDED 585
ACTION_DRAG_ENTERED 585
ACTION_DRAG_EXITED 585
ACTION_DRAG_LOCATION 585
ACTION_DRAG_STARTED 585

responding to 587–589
ACTION_DROP 585

responding to 587, 589–590
ACTION_EDIT 106
ACTION_MEDIA_SCANNER_SCAN_FILE 275
ACTION_MOVE 349
ACTION_PICK 15
ACTION_UP 349
ACTION_VIEW 106
ActionBar API 562–563

classes 562
ActionBar.TabListener interface 568
activities 65–66

creating 66–75
entire lifecycle phase 74
foreground phase 74
handling shutdowns 72
lifecycle 72
passing objects between 72
referencing resources 91–93
themes 97
visible phase 74

Activity 24, 38, 57, 316, 345, 423
adding background fragment to 554
creating 68
displaying UI elements 18
extended by user classes 17
findViewById() method 94
including fragment in 552–553
initiates DayTime Server query 378
lifecycle compared to fragment lifecycle 546
navigation between 131, 319
RefreshJobs 337
ShowJob 341

adapters 69
ArrayAdapter class 69

AdapterView class 79

adb 43, 72, 139, 611
arguments 361
interacting with Android SDK 612
kill-server 612
shell 361, 373
start-server 612
See also DDMS

addOnBackStackChangedListener() method 557
addProximityAlert() method 294
Address 306
addresses, converting with Geocoder 305
addTab() method 567
addToDB() method 275
ADT 34, 591

configuring 599
installing 597
plug-in for Eclipse 36

Advanced Audio Coding (AAC) 261
Advanced Video Coding (AVC H.264) 261
aidl tool 121
Ajax 441
alarm 219–225, 481

compared to Services 499
example 220–222
receiver 220
setting 222
types 222
using notifications with 222–225

AlarmManager 222, 499
alarm types 222
methods 219
retrieving 219

AlertDialog 71, 304
setMessage() method 71

Alpha, Red, Green, Blue (ARGB) 229
Android

application
building in Eclipse 45–53
mapping flow 316–320
requires manifest file 320

Bluetooth capabilities 386–393
building application in Eclipse 45–53
building apps without the SDK 357–362
built-in actions 109
common sensors 394
components 17–24

Activity 17
BroadcastReceiver 19
ContentProvider 22
Service 18

contact model 406–411
core packages 35
Cursor object 146

615INDEX
Android (continued)
designing application 312–316

See also field service application
development requires Java skills 11
discourages direct file sharing 22
displaying progress 337
emulator 41, 53–58

setting up environment 54
splash screen 321
working with an SD card 142

environment, should vs. can 185
and Exchange account 408
and Google account 408
licensing 9
Linux

applications 356
kernel-based OS 4

logging mechanism 19
moving from Activity to Activity 131
only encrypted connections 387
optimizing web applications 442–449
packages, world x permission 135
philosophy 409
platform 4–9
runtime 363
same-but-different 7
SenseBot. See SenseBot
shell 26
stack 10–13
stock icon 319
taking a photo 539
two versions of platform 56
user applications written in Java 4
version 2.0 or later 385
vs. iPhone 9
vs. itself 8
web development 440–442

Android 2.2 389
Android 3.0 30–32

copy and paste 581
drag-and-drop 579
new features 31
targeting in manifest file 561

Android Activity 473
Android ARM. See ARM
Android Asset Packaging Tool. See aapt
Android Compatibility Package 557–558
Android Debug Bridge. See adb
Android Development Tools. See ADT
Android development, Intent 13
Android device

security 313
touch screen-capable 318

Android Interface Definition Language 120–121
allowed types 121
directional tags 120

Android Market 10
merit-based system 611
publishing to 607, 611
rules 607

Android Native Developer Kit. See NDK
Android NDK. See NDK
Android Open Source Platform. See AOSP
Android Project Wizard 45
Android SDK 34

installing 594
Android Service 499
Android Virtual Device. See AVD
android:actionBarTabStyle 576
android:actionBarTabTextStyle 576
android:actionDropDownStyle 577
android:actionLayout 574
android:actionViewClass 574
android:dropDownListViewStyle 577
android:height 231
android:id attribute 48
android:listChoiceIndicatorMultiple 576
android:listChoiceIndicatorSingle 576
android:popupMenuStyle 576
android:radius 231
android:selectableItemBackground 576
android:textColor 576
android:textSize 576
android:theme 575
android:title attribute 571
android:typeface 576
android:windowActionBar 575
android.animation 31
android.bluetooth package 387
android.content.ContentResolver 273
android.content.ContentValues 273
android.drm 31
android.intent.action.MAIN application entry

point 25
android.intent.category.LAUNCHER 25
Android.jar 47
android.media.MediaRecorder 273
android.net 161
android.provider.Telephony.SMS_RECEIVED 22
android.R.id.home 573
android.renderscript 31
android.telephony 192, 201
android.view package 76
Android/Java, refers to Java 357
Android/Linux

environments and tools 360
nontrivial activities 371

616 INDEX
Android/Linux (continued)
refers to Linux 357
startup code appearance 368
system libraries 363

AndroidManifest file 99
AndroidManifest.xml 21, 24, 45, 506, 561

@symbol 25
application descriptor file 15
AppWidget 495
deployment descriptors 24

animation 231–238
code to perform 237–238
creating programmatically 234–238
frame-by-frame 232–234
project, creating 235–236

AnimationDrawable.start() method 232
<animation-list> 233
animations 90, 98–99

duration attribute 98
interpolator attribute 98
startOffset attribute 98

AOSP 8
Apache 10

commons.io package 145
HttpClient 170
ResponseHandler 172

Apache Software License. See ASL
API

dummy request 431
linkedin-j 426

API key, LinkedIn APIs 411
.apk file 542
Apple 7

AppStore 9
Application class 71
application distribution, Android vs. iPhone 10
<application> element 99
application icon as action item 573–574
Application Layer 163
Application Not Responding event 82
applications

communicating between 120–129
distribution beyond Market 611
getting to Market 608
hybrid, building 458
made for mobile 448

link to full site 449
simplify, reduce, and eliminate 449

manifest 158
mapping to processes 26
name and icon, on action bar 564
preparing for distribution 601–604
RestaurantFinder 66–101

AppWidget
configuring 494
data elements 483
data handling 483–486
deployment patterns 476
metadata file 495
updating 498–505

AppWidgetHost 474
AppWidgetProvider 487–491
argc 367
argv 367
ARM 357

Android/Linux application on 368
processor family 368

arm-none-linux-gnueabi-gcc 358–359, 362
arm-none-linux-gnueabi-ld 358
arm-none-linux-gnueabi-objdump 358
<array> element 97
arrays 97
asInterface() method 121
ASL, friendlier toward commercial use 9
aspect ratio 247
assembly language 358
Atom Publishing Protocol. See AtomPub
AtomPub 180, 182
audio

capturing 272–276
encoding, setting 273
output file format 273
playing 263–264
source, setting 273

audio codecs 261
audio file, metadata 275
AudioPlayer 261
auth token 423
authenticating to LinkedIn 425
authentication 423

key. See Ki
lightweight service wrapper 431

AuthScope 176
AVD 287

management Eclipse 36
AVD Manager 54, 595
AwesomePlayer 262

B

background fragment 553–555
adding to Activity 554
creating 554
vs. service 553

background services 116–120
BaseAdapter class 85

617INDEX
BaseColumns 153
BasicNameValuePair 178
batch builds without using IDE 51
batch operations on contacts 417
beginRecording 281
Binary Runtime Environment for Wireless.

See BREW
Bitmap 349, 533, 536
BlackBerry 7, 10

email capabilities 8
Bluetooth 10

capturing events 392
classes, Android 388
close-range wireless networking 161
peer 392
permissions 393
and SenseBot 386

Bluetooth Serial Port Profile 387
BluetoothAdapter 391
bonded 388
BounceActivity 235
bound services 120
boundary conditions 442
BREW 7
broadcast receivers 114–116

creating 115–116
BroadcastReceiver 203, 392, 474, 500

in every Android application 24
no UI 20
tags 25

browser control, add to UI layout 458
browser detection

examination of user agent string 446
media query 447

browsers
overriding behavior 459
storing data directly 449
WebView 461

BufferedOutputStream 351
BufferedReader 167
BufferedWriter 168
build script, need for 362
Builder pattern 71
building a native library 526
Bundle 20, 179, 329

C

C 356
application 356
application build script 362
times where better than Java 525

C99 251

CALL_PHONE permission 100
CamcorderProfile 282
camDemo 271
camera 267–272

support for multiple 282
support, testing on emulator 272

Camera application 528
Camera class 267–272

get() method 282
CAMERA permission 267, 276
Canvas 349
CAPTCHA and GData ClientLogin 185
capturing media 266–282

capturing audio 272–276
recording video 276–282

carrier. See mobile operators
Cascading Style Sheets 97
CATEGORY_LAUNCHER 14
CDMA 35, 189

primary rival to GSM 190
characters() method 334
CharSequence type

and AIDL 121
checkForZombies() method 490
Class class 104
ClassNameRS 256
client/server 164
ClientLogin 182, 185
ClipboardManager 581
ClipData 580–581
ClipData.Item 581
ClipDescription 580–581
codecs 261
CodeSourcery 357, 360
<color> element 96
color values, defining 229
com.google.android.maps 299
com.google.android.phone.Dialer 15
ComponentName 104
conditional global replacement 418
configuration activity 481
connecting to a remote device 390
connection, wireless internet 313
ConnectivityManager 165

mobile or WiFi 161
contacts

adding 418
conditional global replacement 418
identifiers 416
managing 413–420
modifying database 417
multiple insertions 420
single logical 410
table 414

618 INDEX
content
provider 24
selectively loading 446
staying up to date 152

CONTENT_URI 151, 153
ContentObserver 152
ContentProvider 22, 130, 200, 315, 483, 580

accessible by any application 152
additional properties 159
classes 151–159
creating 152, 159
extending 154
in every Android application 24
URI variations 151

ContentResolver 23, 151
ContentView 229
Context class 19, 68, 135, 194, 324, 340

bindService() method 125, 127
stopService() method 128

Context.getSystemService(Context.ALARM_
SERVICE) 219

converttogray function 534
convolution 536
copy-and-paste API, classes used for drag-and-

drop 581
corners tag 231
createPackageContext 135
creation, widget instance 497
CSS

multiple files per page 447
selectively choose file 446

ctime 373
Cursor 23, 131

data items changed 158

D

DAL 146
Dalvik Debug Monitor Server. See DDMS
Dalvik VM 11

relies on Linux kernel 12
result is innovation 12

dashboard 475
data

contacts, good citizen principles 411
raw contact, storing 410
sample, properly set up 602
storage requirements 315
structures 327
values 516

Data Access Layer. See DAL
Data Definition Language. See DDL
data handling, AppWidget 483–486

data table 414
database

modifying contacts 417
not WORLD_READABLE 150
open a connection 149
opening 453
persisting data to 145
server 23

datagram 163
Date & Time settings 512
Daytime Client 377–380

single Activity 378
special permission 380
testing 380

DayTime Server 373
application has two parts 371
listens on TCP port 370, 379

DBHelper
inner classes 146
outer class 147

DBOpenHelper 146, 149
DDL 375
DDMS 36, 600

perspective
dashboard-like view 39
LogCat view 40

DDMS tool
requires decimal format 287
supports KML 289
two contexts 286
working with a GPX file 289

Debug
Certificate 301
perspective 37, 59–60

debugging 59
Delicious 180
depth buffer 245

depth test 246
flags to compare values 246

DetailsWebFragment 548, 550
developer API, LinkedIn 411
device ID 194
.dex files 12, 53
DialogFragment 548
digital signature 604–607

jarsigner 605
keystores 604
keytool 605

<dimen> element 96
dimensions 96
directory change 361
disassembling 358
drag event 582, 585–586

actions 585

619INDEX
drag event (continued)
listening for 587–588

listener vs. callback 587
which to respond to 587

drag operation, starting 586–587
drag shadow 583
drag-and-drop 581–583

drag event. See drag event
drag operation, starting 586–587
drag-start operation, responding to 588–589
drop operation, handling 589–590
introduction 580
sequence diagram 582
shadow builder 583–584
use of copy-and-paste API 581

drag-and-drop classes 580–581
DragEvent 580–581
DragShadowBuilder 580–583
drag-start operation, responding to 588–589
draw() method 228
Drawable 228, 238
drawables 47, 90, 321, 400

managing 515
drawBitmap 349
drawColor 349
drawFrame 242
drawing graphics 227–231

with XML 228–230
layout 229
shapes 230–231

drawing in OpenGL ES 243–250
drop operation, handling 589–590
dropReceived() method 589
dummy API request 431
dynamic linking 362–370

E

Eclipse
DDMS

perspective 37
view 360

debugging Android application 59
default perspective 593
Emulator Control 286
installing 591
Java perspective 37
and NDK 542
Package Explorer 37
plug-in, File Explorer view 134
setting up development environment 13
workspace prompt 592

Eclipse IDE 592–593
See also ADT

edge detection 525
routine 529

edges, finding 541
Editor 324
EditText 28
EditView 326
Electronic Serial Number. See ESN
ELF 368
email addresses, conditional global

replacement 418
empty processes 72
emulator

switches 600
vs. simulator 54

Emulator Control, testing connectivity 41
endElement method 334
endElement() method 334
end-user license agreement. See EULA
Enterprise Information Systems 7
equator, base for latitude 287
Error Console, WebKit 457
ESN swap 191
EULA 602
events 89–90

broadcast receivers 114
broadcasting 114–115
Observable and Observer 89

executable and linkable format. See ELF
exit 367
Extensible Markup Language resources 90

F

FAT 142
field service application

assumptions 313
manifest file 320
resource files 319
source code 320–334
source files 318
steps 316

FieldService Activity
goal 322
implementing 324

File Allocation Table. See FAT
File Explorer view, Eclipse 41
file_get_contents 354
FileInputStream 145, 331, 351
FileOutputStream 138, 144, 351
files

accessing 138
read and write 138
view resource files 93

620 INDEX
filesystem, based on Linux 137
findViewById 30

method 28
finish 337
fixed-length record 406
focus 88–89

DEFAULT_FOCUS 88
for additional locales 514
formatNumber 198
FountainRS 255
fovy 249
<fragment> 552
fragment 88

adding 556
adding to back stack 556
Android Compatibility Package 557–558
back stack 556–557

adding to 556
methods 557
pop, simulating 555

background fragment 553–555
adding to Activity 554
creating 554
vs. service 553

creating 548–553
finding by resource ID 555
finding by tag 555
including in Activity 552–553
instantiating with arguments 549
introduction to 545
lifecycle 546

compared to Activity lifecycle 546
methods 546

removing 556
replacing 556
retaining when created 554
with no UI 553

Fragment class 548
subclasses 548

fragment layout
creating 548–553
defining 551–552

fragment manager 555
back stack methods 557

fragment subclass, creating 548–551
fragment transaction 555–556

adding to back stack 556
FragmentActivity 558
FragmentManager class 555
FragmentManager.add(fragment, tagString)

method 554
FragmentManager.beginTransaction()

method 555
FragmentTransaction class 555

FragmentTransaction.addToBackStack()
method 556

FragmentTransaction.commit() method 556
FragmentTransaction.executePendingTransac-

tions() method 556
fromBundle 329, 341

G

gcc 358, 364
GData API

implementation of AtomPub 182
not true REST 182

GData ClientLogin and CAPTCHA 185
GenerateNotification() method 216
geo

fix 288
query 317

geo type 107, 110
Geocoder 305–306

creating 306
map between point and place 286

geocoding 305
GeoPoint 286, 298
getActionBar() method 575
getArguments() method 550
getBackStackEntryAt() method 557
getBackStackEntryCount() method 557
getCameraInfo() method 282
getDisplayOptions() method 563
getEmail() method 324
getExtras() method 341
getFragmentManager() method 555
getHolder() method 242
getJob() method 341
getLayoutInflater() method 211
getMeasuredWidth() method 87
getNavigationItemCount() method 566
getNavigationMode() method 566
getNumberOfCameras() method 282
getProvider() method 294
getSelectedNavigationIndex() method 566
getSelectedTab() method 567
getSharedPreferences() method 131
getSupportFragmentManager() method 558
getSystemService() method 166, 194, 294
getTelephonyOverview() method, reset screen

details 195
getView() method 85, 583
GL_DEPTH_TEST 245
GL_PROJECTION 244
GL_Triangle_Strip 243
glClear 244

621INDEX
glDepthFunc 245
glDrawArrays 245
glEnable 245
glEnableClientState 245
global number 199
Global Positioning System. See GPS
global replacement, conditional 418
global start directive 369
Global System for Mobile. See GSM
GLU.gluLookAt 249
gluOrtho2D 245
gluPerspective 247
glVertexPointer 245
GNU General Public License. See GPL
Google

Android Market 10
Contacts 182
GData 180, 182
Maps 26
and Open Handset Alliance 3

Google APIs 56
Google Maps API

key, requesting 300
support through MapView 300

Google TV 32
GPL 9
GPS 6

data stamped on job 349
most common location provider 285
obtaining provider directly 295
services 474

GPS Exchange Format. See GPX
GPX

DDMS tool 289
storing points 288

graphics
drawing 227–231

with XML 228–230
XML shapes 230–231

OpenGL ES. See OpenGL ES
Graphics API 227–238
GSM 35, 189

Android standard 190
gsm command 196
GUIUPDATEIDENTIFIER 236

H

Handango 10
handle 453
handleMessage() method 83
Handler 322, 332, 337

relationship diagram 173
Handler class 236

handlers 80, 82–83, 119
handling long-running requests 236
holographic theme 561

customizing 577
home activity 574

jumping to from app icon 573
Honeycomb. See Android 3.0
hotspot 478
HTML5 440
HTTP 161

authentication 177
creating helper 173
defines internet rules 164
GET 170, 176
headers 176
and java.net 170
parameters 176
POST 170, 176, 349
protocol stateless 169
working with 169–179

HttpClient 173
HttpEntity 173
HttpPost 178
HttpRequestHelper 170, 175, 181
HttpRequestInterceptor 177
HTTPS 180

creating helper 173
HttpUrlConnection 170

I

IBinder 423
IBinder interface 122

transact() method 122
ICANN 165
ICCID 190

identifies SIM card 190
identity matrix 245
ifconfig 168
ImageCaptureCallback 271
ImageView 233, 321
IMEI, identifies device 190
IMSI 194

subscriber and network identifier 190
inches 96
independent software vendor. See ISV
index.html file 460
InputStream 331
instance state 75
integer primitive, int 483
Intent 13, 80, 103, 180, 197, 317

action 103–104
ACTION_DIAL constant 110

622 INDEX
Intent (continued)
ACTION_VIEW constant 110
built-in actions 103–110
category 104
component 104
data 103–104
defined 14
defining 103–104
explicit 16
extras 104
getExtras() and putExtras() methods 81
handing intent requests 107–109
implicit 16
implicit versus explicit invocation 104
intent filter matching criteria 108
intent filters 107–114
late binding 103
linking between applications 105–107
making calls 196
MIME type 108
receiving 19
resolution 16
type 104

Intent filters
and category 108
and data 108
associating with broadcast receivers 115
defining in XML 110–112

Intent.FLAG_ACTIVITY_CLEAR_TOP 573
IntentFilter 19, 25

defined 14
defines relationship 14

IntentFilter action 474
<intent-filter> element 100, 107, 112, 124
interface definition languages 120
interfaces

publishing 123
remote version 123–124

International Mobile Equipment Identity.
See IMEI

International Mobile Subscriber Identity. See IMSI
International Telecommunication Union H.263

video standard (H.263) 261
Internet Layer 163
Internet Protocol. See IP
invalidate() method 236
IP 161

address 163
finding 168

network data 161
ipconfig 168
iPhone 7

vs. Android 9

ISO format 511
ISV 16
ItemizedOverlay 302

handles details 304
iTunes, as an example 164

J

jar 53
jarsigner 605
Java 4, 357

array 455
connecting UI to a DayTime Server 378
locale-specific data classes 516
Runnable interface 338

Java byte codes, convert to dex file 52
Java development tools. See JDT
Java ME 7
Java Native Interface. See JNI
Java packages, included in Android SDK 35
Java Perspective 37

Eclipse default 593
Java Platform, Micro Edition. See Java ME
Java Runtime Environment. See JRE
java.net 161, 170
Javadocs

android.provider package 152
view 38

JavaScript
errors found at runtime 451
implementing handler 461
interface code 463
multiple handlers 464
overriding alert() method 470
security matters 465

JDK 591
JDT 591

Eclipse 38
JNI

building a library 530–537
functions 537
library 526

compiling 536
load at runtime 540

JobEntry 328
JobListHandler 332, 335
jobs

data managing 327–334
ManageJobs Activity 338
managing 334–351
with GPS data stamp 349
working with the ShowJob Activity 341

Joint Photographic Experts Group (JPEG) 261

623INDEX
JPEG
captured signature 351
converting to 349

JQuery 441
JRE 591

K

KDE 440
Keyhole Markup Language. See KML
keystore, keys require an alias 605
keytool 605
Khronos 227

OpenGL ES 238
Ki, authenticates SIM card 190
KML 289

checks files for Placemark 291
drawbacks 291
international standard 292

kSOAP, documentation 186

L

LAI, region device is in 190
Language & Keyboard 511
languages, target 513
latitude, how expressed 287
launch screen 319
Layout 47
layout 473

managing 515
XML 425

LayoutInflater 211
layouts 68–72, 86–88

FrameLayout 87
layout resources 90

ld 364
LD_LIBRARY_PATH. 366
LEGO Mindstorms NXT. See robot
LEGO robot. See robot
libsqlite.so 373
License Verification Library. See LVL
lifecycle

activity lifecycle phases 74
bound services 128
started services 128

lightweight authentication service wrapper 431
LinearLayout 29
Link Layer 163
LinkedIn 406

contacts, expanded details 418
creating account 424–431
developer API key 411

logging in a two-stage process 426
synchronizing 432
transactions 437

linkedin-j
API 426
project 412

linker 363
arm-none-linux-gnueabi-ld 364
options 366

Linux 4
building applications 356
DayTime Server 370
finding IP address 168
kernel 10

Linux kernel
and Dalvik VM 12
why use 11

Linux security system prevents ad hoc file
access 22

list navigation on action bar 569–570
List type and AIDL 121
ListActivity class 79
listeners

OnClickListener 70
OnFocusChangedListener 89

ListFragment 548
ListView 78–82, 339
locale 511
localization

multiple locales 512
need for 510–517
obstacles 522
translation team 517
See also localizing

localizing
applications 516
entire infrastructure 513
in Java code 520
strategies 512

Location 292, 298
location

simulating 286–292
specify coordinates 286
updates 296

Location Area Identity. See LAI
location-based service. See GPS
LocationListener 292, 296

onProviderDisabled 298
onProviderEnabled 298
receive updates 286

LocationManager 292
Criteria 295
find available providers 285

624 INDEX
LocationManager (continued)
getProvider 295
GPS_PROVIDER 294
NETWORK_PROVIDER 294

LocationProvider 284, 292, 294
COARSE 295
FINE 295
permissions 295

LogCat 40, 51, 600
functionality 532
superfluous statements 601
values displayed 60

long click 581
longitude, how expressed 287
lookup key 416
loopback 163

don’t connect to 168
Looper 82, 338
LVL 607

M

Mac 7
finding IP address 168

main.xml 47–48
makeText() method 208
managedQuery() method 152
<manifest> element 100
manifest file 66, 99–101

targeting Android 3.0 561
Map type and AIDL 121
MapActivity 285, 293

extending 299
writing with MapView 301

MapController 294
get from MapView 302

mapping, applications to processes 26
Maps application 287, 317
maps, working with 298
MapView 285, 294

Google Maps API key 300
limited version of Google Maps API 299
and Overlay classes 299
set zoom level 302
updating 286
writing MapActivity 301

MapViewActivity 292
screen 299

MarginLayoutParams class 87
matrix mode 244
MD5 fingerprint 301
media recording 261
media, capturing 266–282

MediaController 266
MediaExtractor 261
MediaPlayer 263

example 263
MediaPlayer API 260
MediaPlayerService 262
MediaRecorder

capturing audio 272–276
capturing video 276–282

MediaRecorder.setAudioEncoder() method
273, 278

MediaRecorder.setAudioSource() method
273, 278

MediaRecorder.setOutputFormat() method
273, 278

MediaRecorder.setPreviewDisplay() method 278
MediaRecorder.setVideoEncoder() method 278
MediaRecorder.setVideoSource() method 278
MEID 191
Menu class, setIcon() method 71
MenuItem.setActionView() 574
menus vs. onscreen buttons 71
Message 173, 179, 236, 380

class 337
instances 337
object, do not reuse 338

MessageQueue class 82
metadata file, AppWidget 495
methods

activity lifecycle methods 73–75
nextFocusLeft() method 88

metrics, location-related 284
Microsoft Exchange 408
Microsoft, platforms compelling 8
millimeters 96
MIME_TYPE 153
MIMETYPE_TEXT_PLAIN 589
minSdkVersion property 100
mkdir, command on adb shell 361
mksdcard tool 142
Mobile Equipment Identifier. See MEID
mobile in mind, designing 442
mobile operators

challenges 6
response to Android 5

mobile phone, basic states 195
Mobile Safari 7

iPhone 7
MotionEvent 349
Moving Picture Experts Group (MPEG) 261
Moving Picture Experts Group 4 (MPEG-4) 261
MP3 file, playing 263
mPictureCallbackRaw 271

625INDEX
mShutterCallback 271
multimedia

capturing media 266–282
capturing audio 272–276
recording video 276–282

introduction to 261–263
playing audio 263–264
playing video 264–266

multiple accounts 408
convenience and complications 408

Music Player 275
My Location 287
myLocalState 583
MyLocationOverlay 302
MySQL 315, 352

N

NANP 199
National Data Buoy Center. See NDBC
Native Developer Kit. See NDK
native library, building 526
navigation, detecting events 467
NBDC 285

feeds 302
NDK 4, 357, 524

build subsystem 530
building an application 527
directory 542
installing 526
integrating into Eclipse 542
uses for 525

netstat 373
network protocols 162
NetworkInfo 166
networking, overview 162–165
newTab() 567
newTab() method 567
nextFocusDown() method 88
nextFocusRight() method 88
nextFocusUp() method 88
NexusOne device 389
Nintendo Wii 386
NOAA 285
NoActionBar themes 575
node 162
nop 368
North American Numbering Plan. See NANP
nostdlib 366
notification 212–216

custom view 216–219
PendingIntent 214
sending 214

using with alarms 222–225
with button press 214–216
with LED 218
with sound 219

Notification class 212–214
fields 213

Notification.Builder 214
NotificationManager 213
notifications 116

debugging 601
NT Lan Manager. See NTLM
NTLM 177
number, global 199
NyARToolkit 272

O

-o switch 359
objdump 358, 368
Observer design pattern 89
Ocean Matrix (OMX) 262
OCR 525
OGC 290
onActivityCreated() method 550, 588
onActivityResult() method 324–325, 341, 345
onBind() method 19, 119, 123
onCallStateChanged() method 195
onClick() method 327
onCreate() method 19, 69, 73–74, 128
onCreateOptionsMenu() method 71, 347, 572
onDestroy() method 74, 129
onDrag() method 587
onDragEvent() method 581, 587
OnDragListener 580–581, 587
onDragShadow() method 583
onDraw() method 228, 349
onDrawShadow() method 584
OnFocusChangeListener 199
onListItemClick() method 81
onLocationChanged() method 297
OnLongClickListener 580–581
onMeasure() method 85
onMenuItemSelected() method 81
onNavigationItemSelected() method 570
OnNavigationListener 569
onOptionsItemSelected() method 347, 572–573
onPause() method 74
onPictureTaken() method 270–271
onPostCreate() method 74
onProvideShadowMetrics() method 583
onReceive() method 200
onRestart() method 74
onResume() method 74

626 INDEX
onSaveInstanceState() method 75
onServiceConnected() method 125
onShutter() method 270
onStart() method 74, 112
onStop() method 74
onTabReselected() method 568
onTabSelected() method 568
onTabUnselected() method 568
onTouchEvent() method 255, 349
Open Geospatial Consortium. See OGC
Open GL and link command 365
Open GL ES

context, creating 239–243
introduction to 238–239
standards comparison 238

Open Handset Alliance and Google 3
open source, double-edged sword 8
OPEN, CLOSED 522
OpenCORE 260
open-ended records 407
openFileInput 138
openFileOutput 137, 331
OpenGL 238, 363
OpenGL ES 10, 238–250

3D shapes and surfaces 245–250
drawing a rectangle 243–245
perspective 247–249
primitives 243–244

OpenGL for Embedded Systems. See OpenGL ES
OpenGL libraries 525
OpenGLContext 239–243
openInputStream() method 23
openRawResource() method 139
Oracle, Java VM licensing 12
org.apache.httpclient 161
outbound calls, intercepting 200
output switch. See -o switch
OutputStream 349
OvalShape 228
overflow menu list 570
Overlay

classes display on MapView 299
draw on top of map 286
onTap 304
placing data on map with 302

OverlayItem 302

P

Package Explorer, Eclipse 37
packet 163
PacketVideo, OpenCORE 10
padding tag 230

paired 388
Palm 10
PathShape 228
patterns, AppWidget deployment 476
PDU, SMS data packet 204
PendingIntent 202, 214, 294
permissions

access 134
phone-related 197
world x 135

perspective 247–249
aspect ratio 247

perspectives
DDMS 39
Debug 37, 59
Eclipse 36
Java 37–38

pESN 191
phone

home screen 473
number 194

Phone 7 7
PhoneGap 465
PhoneNumberUtils

formatNumber() helper method 198
parse and validate 198

PhoneStateListener 188, 192, 195
phone-top 472
PHP 315

for exchanging data 315
mobile integration code 354
server-side dispatcher system 353

PictureCallback 269, 271
PID 40
PIN value 390
pipe-delimited return string 478
pixels 96

density-independent pixels 96
scaled pixels 96

places, converting with Geocoder 305
plain old XML over HTTP. See POX
Point 238
POP3 email program 421
popBackStack() 557
port 370

identifying number 45
three ranges 165

Portable Operating System Interface for UNIX.
See POSIX

POSIX 166
POST data 351
postDelayed 322
Power Control widget 473, 475

627INDEX
POX 161
exposes chunks of XML 179
using a service 181

PreferenceFragment 548
preferences 131
preinit_array 369
prime meridian base for longitude 287
printf 359
process ID. See PID
processes

how the system chooses which to kill 72
saving state before they’re killed 74

produce information URL 317
progress, displaying 337
ProgressDialog 317, 332, 337, 346–347

show() method 81
projectname.apk 53
protocol data unit 204
protocol layers 163
Prototype 441
ps -a 26
Pseudo Electronic Serial Number. See pESN
publishing, Android Market 607, 611

Q

Qualcomm 7
queuing, local 346

R

R class 30, 95
inner classes 93

R.java 30, 46
file 318
updating 48

raw contact data, storing 410
read-only interface, AppWidget 473
receiver 474

tag 25
<receiver> element 112
RECORD_AUDIO 276
RECORD_VIDEO 276
RecordHit, inserts record into SQLite DB 373
records 407

fixed-length 406
open-ended 407

choosing 406
RectShape 228
referencing resources 91
RefreshJobs 335
RefreshRunner 236
regression testing 603

relational database, built-in 145
RelativeLayout class 94–95
remote device, connecting 390
RemoteViews, working with 491
removeAllTabs() method 567
removeOnBackStackChangedListener()

method 557
removeProximityAlert() method 294
removeTab() method 567
removeTabAt() method 567
RenderScript 250–258

application
building 252–258
file structure 252
source code 253

bytecode files 252
debugging, issues with 251
init() method 258
introduction to 250–252
pragmas 258
pros and cons of using 251–252
root() method 258
types of apps to use for 251

RenderScriptGL 255
Representational State Transfer. See REST
request, long-running, handling 236
requestLocationUpdates 298

use time parameter carefully 298
Research in Motion 7
Resources 140

raw resources 139
XML resources 140

resources 66, 90–99
raw 90
supported types 90
values 90–98
views and layouts as 93–95

ResponseHandler 173, 176
REST 161, 185

methods 182
uses URL-style approach 179

RestaurantFinder application 103–110
basic screens 67

return, replace with exit call 367
RFCOMM 387

cable replacement profile 387
RISC 358
robot

communicating with 402
controlling with phone orientation 400
driving 401

RoundRectShape 228
router 164

628 INDEX
rows, inserting and deleting 456
rpath 366
RSSurfaceView 254
Runnable, Java interface 338

S

Safari 7
Samsung 389
save 324
SAX

parser 331, 334
style of tree traversal 142
XML parser 332

scaling 445
screen, clearing before drawing 244
ScriptC_fountain 256
SD card 130, 142–145

and the emulator 142
handles large files 142

sdcard path 143
SDK 4

upgrades 597
searching, Set Search Term button 466
Secure Digital. See SD card
secure shell 361
Secure Sockets Layer. See SSL
security risks 465–466
select() method 375
selectTab() method 567
sendBroadcast() method 114
sendDataMessage() method 201
sendEmptyMessage() method 83
sendMessage() method 83
sendMultipartTextMessage() method 201
sendOrderedBroadcast() method 114
sendStickyBroadcast() method 114
sendTextMessage() method 201
SenseBot 386

building the application 397
uses Bluetooth to drive robot 386

SensorEvent fields 395
SensorManager 393–397

classes 394
sensors

enabling and disabling 396
events 393

SEO 444
Serial Port Profile. See SPP
server 351–355

communicating with 166
relies on MySQL and PHP 352
role 168

ServerSocket 167
Service 18, 24, 422

stopSelf() method 128
tags 25

services 116
binding to 124–128
compared to alarms 499
lifecycle 128–129
long-running 119
starting 127
tag 25
vs. background fragment 553

setActionView() method 574
setAlarm() method 221
setArguments(Bundle) method 550
setBackgroundColor() method 77
setBackgroundDrawable() method 77
setBounds() method 228
setClickable() method 77
setContentView() method 28, 69, 92
setCustomView() method 567
setDisplayHomeAsUpEnabled() method 563, 573
setDisplayOptions() method 563
setDisplayShowCustomEnabled() method 563
setDisplayShowHomeEnabled() method 563
setDisplayShowTitleEnabled() method 563
setDisplayUseLogoEnabled() method 563
setEmail() method 324
setFocusable() method 77
setGravity() method 77, 209
setHeight() method 77
setIcon() method 567
setLayoutParams() method 77
setListAdapter() method 81
setListNavigationCallbacks() method 566, 569
setLoadWithOverviewMode() method 551
setMediaController() method 266
setMinimumHeight() method 77
setMinimumWidth() method 77
setNavigationMode() method 566, 569
setNotificationUri() method 158
setOnClickListener() method 77
setOnCompletionListener() method 264
setOnDragListener() method 588
setOnFocusChangeListener() method 77
setPadding() method 77
setResult() method 351
setSelectedNavigationItem() method 566
setShowAsAction() method 572
setTabListener() method 567
setText() method 77, 567
Settings button() method 317
setTypeFace() method 78
setUseWideViewPort() method 551

629INDEX
setVideoFrameRate() method 278
setVideoPath() 266
setVideoPath() method 266
setVideoSize() method 278
setWidth() method 78
SGL 10
shadow builder 583–584
Shape 228
ShapeDrawable 228
SharedPreferences 322, 324

access mode 133
Context 131
Editor 133
objects 134
storing with different modes 131
XML files permissions 134

sharedUserId 139
Short Message Service. See SMS
showAsAction 571
ShutterCallback 270
signature

capturing with CloseJob Activity 345
electronic 313
JPEG image 318

SIM cards
stored identifiers 190
used by GSM devices 190

Simple API for XML 78
Simple Object Access Protocol. See SOAP
simulator vs. emulator 54
single logical contact 410
SiteMonitor

application architecture 480–483
basics 476–479
monitors website health 477
supports multiple conditions 478

SiteMonitorModel class, two logical sections 483
SiteMonitorService 498
size tag 231
smart shortcut 475
smartphone, major players 7
SMS 41–205

pdus 204
permissions 203
receiving messages 204
send message to emulator 22
sending messages 201–202

SmsManager 201
SmsMessage 201, 205
SMTP rigorous procedures 164
SOAP 161, 185, 315

imposes strict rules 179
kSOAP 186
proxy 186

Sobel Edge Detection 525
convolution 536
highlighting image edges 529

Socket 167, 380
socket interface 387
software development kit. See SDK
software version 194
sound, adding to a notification 219
source-level debugging, Eclipse 36
speech codecs 261
Spinner class 68
Splash Activity 319
splash page, functionality 321
splash screen 316, 320
splashhandler 322
SPP 387
SQL 23

functionality 440
local database 450

SQLite 10, 315, 363
built-in database system 145
database 373
insert, update, and delete data 149
insertion of data 371
and link command 365
query 150
supports WeatherReporter 130

SQLite database 407
SQLite3 145, 373

tool 150
SQLiteDatabase 149, 155
SQLiteOpenHelper 146
SQLQueryBuilder 157
src folder 46
SSL 314
stack 386
stacks 72
Stagefright

introduction to 260–263
overview 261–263
supported files, services, and features 261

StagefrightPlayer 262
standalone resources 93
start routine 367
startActivity() method 18, 106
startActivityForResult() method 18, 324–325, 341
startAnimation() method 98
startDocument() method 334
startDrag() method 582–583, 586
startElement() method 334
starting path 135
startRecording() method 275
startService() method 18, 127

630 INDEX
state, persistent 75
–static command-line switch 359
–static flag, applications self-contained 363
static method 483
status code, should be internal 522
stopRecording() method 275
storing raw contact data 410
String 334, 483
<string> element 95
String type and AIDL 121
StringBuilder 334
strings

comparison 469
identifying and managing 513
in resources 518
pipe-delimited return 478

strings.xml file 47, 515
stroke tag 231
Structured Query Language. See SQL
Stub class 121
<style> element 97
style sheet 447
style.xml, theme styles 576
styles 95–96
stylus 318, 345
summary/detail view 548
SummaryListFragment 548–549
<supports-screens> element 101
surface object, and video recording 276
surface, managing 242
surfaceChanged() method 242
surfaceCreated() method 242
surfacedChanged() method 255
surfaceDestroyed() method 242
SurfaceHolder 242–243
SurfaceHolder.Callback 243
SurfaceView 242
sync 421

across multiple terminals 421
retrying 422

synchronization. See sync
synchronizing lifecycle 432
System.currentTimeMillis() method 222
SystemClock.elapsedRealtime() method 222

T

tab navigation on action bar 566–569
listening for tab events 568–569
setting up 567

tablet
Android 3.0 and 30
Android, developing for 30

form factor 30
market share 31

takePicture() method 267, 271
targetSdkVersion property 100
TCP 371

reliable 164
sockets 373

TCP/IP 162
TDMA 190
tel type 110
telephony 189

alphabetic keypad 199
format number 198
outgoing call 200
permission 194

TelephonyManager 188, 192
telnet 44
testing, run under varied conditions 603
.text 368
TextView 378

methods 77
presents job details 341

theme style items, commonly used 576
Theme.Holo.NoActionBar 575
Theme.Holo.NoActionBar.Fullscreen 575
themes 97

and action bar 575
threads 82

HandlerThread class 82
TimerTask 234
timestamp, appending 144
titled 401
Toast 415

creating 208
custom view 210–212
displaying 208
introduction to 207–209
placing 209–212

toBundle 341
tool chain, cross compiling 357
tools, linker 357
toString method, displaying jobs 329
toXMLString 329, 331
transaction function, unpacking 454
translation team 517
Transport Layer 163
troubleshooting 436
try/catch blocks 51

U

U.S. National Oceanic and Atmospheric
Administration. See NOAA

UDP, fire and forget 164

631INDEX
UI
changes 47
distortion 516

Unix, DayTime Server 370
update, triggering 500
updateDetails 551
Uri class 103

custom URIs 110–114
parse() method 106

UriMatcher 155
URIs 13

Content 23
examples 14
syntax 151

URL 13
product information 317

Usage Stats 600
user agent 446
user friendly 473
user ID 139
user interfaces 65–101
UsernamePasswordCredentials 176
uses-feature 277
uses-library 299
uses-permission 25, 380

tag 25
<uses-permission> element 100
<uses-sdk> element 100

V

Values 47
values

externalizing 95
simple value 96

Vector 331
Verizon, Get It Now 7
versionCode 602
versionName 602
video

frame rate, setting 278
playing 264–266
recording 276–282

permissions 276
surface object required 276

size, setting 278
video application, debugging 282
video conferencing 282
video telephony 261
VideoView 264
View 349

drag-and-drop classes 580
focus methods 88

invalidate() method 236
methods 77
subclasses 77
widgets 400

View.setOnDragListener() method 587
ViewGroup class 77, 86

inner classes 86
viewport

meta tag options 445
tag, adding 444

views 65, 75–90
and events 89
assigning IDs to 94
common 76–78
composite views 93
custom 83–85
defining with XML 93
Devices 40
Eclipse 37
Emulator Control 41
File Explorer 41, 134
FILL_PARENT constant 87
Javadoc 38
Layout 48
lifecycle 85
LogCat 40, 50, 60
Package Explorer 37, 46
Problems 38, 51
referencing 69
ViewGroup class 76–88
XML 48

vnd.android.cursor.dir 153
vnd.android.cursor.item 153
voicemail type 110

W

WeatherReporter 150
WeatherReporter application 110–129
web camera, connecting to 268
web control, desired behavior 459
Web Inspector, WebKit 457
web services 179–186
Web Tools Platform 591
web view, ensuring proper fit 551
WebChromeClient class 470
WebKit 6, 10

and KDE 440
tools

Error Console 457
for testing 457
Web Inspector 457

WebView browser 461
WebViewClient 466

632 INDEX
WebViewFragment 548, 550
widget instance, create 497
widgets 48

zombie 490
Wi-Fi 161

Bluetooth similar to 386
no emulation layer 161

WiMAX 161
Windows 7

finding IP address 168
NTLM 177

Windows Mobile 10
WinRAR 53
WinZip 53
Workbench 592
Worldwide Interoperability for Microwave Access.

See WiMAX
WRITE_EXTERNAL_STORAGE 276
WRITE_EXTERNALSTORAGE permission 267
WS-* 186

X

XML
drawing graphics with 228–230

layout 229
shapes 230–231
type tag 229

parsing 182
resources 140
Schema 185
stream 354

xmldrawable.xml 230
XmlPullParser 142

Z

zombie widgets 490

Ableson ● Sen ● King ● Ortiz

W
hen it comes to mobile apps, Android can do almost
anything—and with this book, so can you! Android,
Google’s popular mobile operating system and SDK

for tablets and smart phones, is the broadest mobile platform
available. It is Java-based, HTML5-aware, and loaded with the
features today’s mobile users demand.

Android in Action, Third Edition takes you far beyond “Hello
Android.” You’ll master the SDK, build WebKit apps using
HTML 5, and even learn to extend or replace Android’s built-in
features. You’ll fi nd interesting examples on every page as you
explore cross-platform graphics with RenderScript, the updated
notifi cation system, and the Native Development Kit. Th is book
also introduces important tablet concepts like drag and drop,
fragments, and the Action Bar, all new in Android 3.

What’s Inside
● Covers Android 3.x
● SDK and WebKit development from the ground up
● Driving a robot with Bluetooth and sensors
● Image processing with Native C code

Th is book is written for hobbyists and developers. A back-
ground in Java is helpful—no prior experience with Android is
assumed.

Frank Ableson and Robi Sen are entrepreneurs focused on mobile
and web products, and on novel wireless technologies, respec-
tively. Chris King is a senior mobile engineer and C. Enrique Ortiz
a mobile technologist, developer, and author.

For access to the book’s forum and a free ebook for owners of this
book, go to manning.com/AndroidinActionThirdEdition

$49.99 / Can $52.99 [INCLUDING eBOOK]

Android IN ACTION THIRD EDITION

MOBILE TECHNOLOGY

M A N N I N G

SEE INSERT

“Gold standard of Android
 training books.” —Gabor Paller, Ericsson

“Still the best single book
 for both beginners and
 experts.”
 —Matthew Johnson
 Sabaki Engineering

“Fully covers most Android
 tablet functionalities.”
 —Loïc Simon, SII

	Android in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Part 1: The essentials
	Part 2: The programming environment
	Part 3: Bringing it all together
	Part 4: The maturing platform
	Appendixes

	Code conventions and downloads
	Software requirements
	A note about the graphics
	Author Online

	about the cover illustration
	Part 1 What is Android? The big picture
	Chapter 1 Introducing Android
	1.1 The Android platform
	1.2 Understanding the Android market
	1.2.1 Mobile operators
	1.2.2 Android vs. the feature phones
	1.2.3 Android vs. the smartphones
	1.2.4 Android vs. itself
	1.2.5 Licensing Android

	1.3 The layers of Android
	1.3.1 Building on the Linux kernel
	1.3.2 Running in the Dalvik VM

	1.4 The Intent of Android development
	1.4.1 Empowering intuitive UIs
	1.4.2 Intents and how they work

	1.5 Four kinds of Android components
	1.5.1 Activity
	1.5.2 Service
	1.5.3 BroadcastReceiver
	1.5.4 ContentProvider

	1.6 Understanding the AndroidManifest.xml file
	1.7 Mapping applications to processes
	1.8 Creating an Android application
	1.9 Android 3.0 for tablets and smartphones
	1.9.1 Why develop for Android tablets?
	1.9.2 What’s new in the Android 3.0 Honeycomb platform?

	1.10 Summary

	Chapter 2 Android’s development environment
	2.1 Introducing the Android SDK
	2.1.1 Core Android packages
	2.1.2 Optional packages

	2.2 Exploring the development environment
	2.2.1 The Java perspective
	2.2.2 The DDMS perspective
	2.2.3 Command-line tools

	2.3 Building an Android application in Eclipse
	2.3.1 The Android Project Wizard
	2.3.2 Android sample application code
	2.3.3 Packaging the application

	2.4 Using the Android emulator
	2.4.1 Setting up the emulated environment
	2.4.2 Testing your application in the emulator

	2.5 Debugging your application
	2.6 Summary

	Part 2 Exercising the Android SDK
	Chapter 3 User interfaces
	3.1 Creating the Activity
	3.1.1 Creating an Activity class
	3.1.2 XML vs. programmatic layouts
	3.1.3 Exploring the Activity lifecycle
	3.1.4 The server connection

	3.2 Working with views
	3.2.1 Exploring common views
	3.2.2 Using a ListView
	3.2.3 Multitasking with Handler and Message
	3.2.4 Creating custom views
	3.2.5 Understanding layout
	3.2.6 Handling focus
	3.2.7 Grasping events

	3.3 Using resources
	3.3.1 Supported resource types
	3.3.2 Referencing resources in Java
	3.3.3 Defining views and layouts through XML resources
	3.3.4 Externalizing values
	3.3.5 Providing animations

	3.4 Exploring the AndroidManifest file
	3.5 Summary

	Chapter 4 Intents and Services
	4.1 Serving up RestaurantFinder with Intent
	4.1.1 Defining Intents
	4.1.2 Implicit and explicit invocation
	4.1.3 Adding external links to RestaurantFinder
	4.1.4 Finding your way with Intent
	4.1.5 Taking advantage of Android-provided activities

	4.2 Checking the weather with a custom URI
	4.2.1 Offering a custom URI
	4.2.2 Inspecting a custom URI

	4.3 Checking the weather with broadcast receivers
	4.3.1 Broadcasting Intent
	4.3.2 Creating a receiver

	4.4 Building a background weather service
	4.5 Communicating with the WeatherAlertService from other apps
	4.5.1 Android Interface Definition Language
	4.5.2 Binder and Parcelable
	4.5.3 Exposing a remote interface
	4.5.4 Binding to a Service
	4.5.5 Starting vs. binding
	4.5.6 Service lifecycle

	4.6 Summary

	Chapter 5 Storing and retrieving data
	5.1 Using preferences
	5.1.1 Working with SharedPreferences
	5.1.2 Preference access permissions

	5.2 Using the filesystem
	5.2.1 Creating files
	5.2.2 Accessing files
	5.2.3 Files as raw resources
	5.2.4 XML file resources
	5.2.5 External storage via an SD card

	5.3 Persisting data to a database
	5.3.1 Building and accessing a database
	5.3.2 Using the sqlite3 tool

	5.4 Working with ContentProvider classes
	5.4.1 Using an existing ContentProvider
	5.4.2 Creating a ContentProvider

	5.5 Summary

	Chapter 6 Networking and web services
	6.1 An overview of networking
	6.1.1 Networking basics
	6.1.2 Clients and servers

	6.2 Checking the network status
	6.3 Communicating with a server socket
	6.4 Working with HTTP
	6.4.1 Simple HTTP and java.net
	6.4.2 Robust HTTP with HttpClient
	6.4.3 Creating an HTTP and HTTPS helper

	6.5 Web services
	6.5.1 POX: putting it together with HTTP and XML
	6.5.2 REST
	6.5.3 To SOAP or not to SOAP, that is the question

	6.6 Summary

	Chapter 7 Telephony
	7.1 Exploring telephony background and terms
	7.1.1 Understanding GSM
	7.1.2 Understanding CDMA

	7.2 Phone or not?
	7.3 Accessing telephony information
	7.3.1 Retrieving telephony properties
	7.3.2 Obtaining phone state information

	7.4 Interacting with the phone
	7.4.1 Using Intents to make calls
	7.4.2 Using phone number–related utilities
	7.4.3 Intercepting outbound calls

	7.5 Working with messaging: SMS
	7.5.1 Sending SMS messages
	7.5.2 Receiving SMS messages

	7.6 Summary

	Chapter 8 Notifications and alarms
	8.1 Introducing Toast
	8.2 Placing your Toast message
	8.3 Making a custom Toast view
	8.4 Introducing notifications
	8.4.1 The Notification class
	8.4.2 Notifying a user with a simple button press

	8.5 Making a custom notification view
	8.6 Introducing alarms
	8.6.1 Creating a simple alarm example
	8.6.2 Using notifications with alarms

	8.7 Summary

	Chapter 9 Graphics and animation
	9.1 Drawing graphics in Android
	9.1.1 Drawing with XML
	9.1.2 Exploring XML drawable shapes

	9.2 Creating animations with Android’s Graphics API
	9.2.1 Android’s frame-by-frame animation
	9.2.2 Programmatically creating an animation

	9.3 Introducing OpenGL for Embedded Systems
	9.3.1 Creating an OpenGL context
	9.3.2 Drawing a rectangle with OpenGL ES
	9.3.3 Three-dimensional shapes and surfaces with OpenGL ES

	9.4 Introducing RenderScript for Android
	9.4.1 RenderScript advantages and disadvantages
	9.4.2 Building a RenderScript application

	9.5 Summary

	Chapter 10 Multimedia
	10.1 Introduction to multimedia and Stagefright
	10.1.1 Stagefright overview

	10.2 Playing audio
	10.3 Playing video
	10.4 Capturing media
	10.4.1 Understanding the camera
	10.4.2 Capturing audio
	10.4.3 Recording video

	10.5 Summary

	Chapter 11 Location, location, location
	11.1 Simulating your location within the emulator
	11.1.1 Sending in your coordinates with the DDMS tool
	11.1.2 The GPS Exchange Format
	11.1.3 The Google Earth Keyhole Markup Language

	11.2 Using LocationManager and LocationProvider
	11.2.1 Accessing location data with LocationManager
	11.2.2 Using a LocationProvider
	11.2.3 Receiving location updates with LocationListener

	11.3 Working with maps
	11.3.1 Extending MapActivity
	11.3.2 Using a MapView
	11.3.3 Placing data on a map with an Overlay

	11.4 Converting places and addresses with Geocoder
	11.5 Summary

	Part 3 Android applications
	Chapter 12 Putting Android to work in a field service application
	12.1 Designing a real-world Android application
	12.1.1 Core requirements of the application
	12.1.2 Managing the data
	12.1.3 Application architecture and integration

	12.2 Mapping out the application flow
	12.2.1 Mapping out the field service application
	12.2.2 List of source files
	12.2.3 Field service application’s AndroidManifest.xml

	12.3 Application source code
	12.3.1 Splash Activity
	12.3.2 Preferences used by the FieldService Activity
	12.3.3 Implementing the FieldService Activity
	12.3.4 Settings
	12.3.5 Managing job data

	12.4 Source code for managing jobs
	12.4.1 RefreshJobs
	12.4.2 Managing jobs: the ManageJobs Activity
	12.4.3 Working with a job with the ShowJob Activity
	12.4.4 Capturing a signature with the CloseJob Activity

	12.5 Server code
	12.5.1 Dispatcher user interface
	12.5.2 Database
	12.5.3 PHP dispatcher code
	12.5.4 PHP mobile integration code

	12.6 Summary

	Chapter 13 Building Android applications in C
	13.1 Building Android apps without the SDK
	13.1.1 The C compiler and linker tools
	13.1.2 Building a Hello World application
	13.1.3 Installing and running the application
	13.1.4 C application build script

	13.2 Solving the problem with dynamic linking
	13.2.1 Android system libraries
	13.2.2 Building a dynamically linked application
	13.2.3 exit() vs. return()
	13.2.4 Startup code

	13.3 What time is it? The DayTime Server
	13.3.1 DayTime Server application
	13.3.2 daytime.c
	13.3.3 The SQLite database
	13.3.4 Building and running the DayTime Server

	13.4 Daytime Client
	13.4.1 Activity
	13.4.2 Socket client
	13.4.3 Testing the Daytime Client

	13.5 Summary

	Part 4 The maturing platform
	Chapter 14 Bluetooth and sensors
	14.1 Exploring Android’s Bluetooth capabilities
	14.1.1 Replacing cables
	14.1.2 Primary and secondary roles and sockets
	14.1.3 Trusting a device
	14.1.4 Connecting to a remote device
	14.1.5 Capturing Bluetooth events
	14.1.6 Bluetooth permissions

	14.2 Interacting with the SensorManager
	14.2.1 Types of sensors
	14.2.2 Reading sensor values
	14.2.3 Enabling and disabling sensors

	14.3 Building the SenseBot application
	14.3.1 User interface
	14.3.2 Interpreting sensor values
	14.3.3 Driving the robot
	14.3.4 Communication with the robot

	14.4 Summary

	Chapter 15 Integration
	15.1 Understanding the Android contact model
	15.1.1 Choosing open-ended records
	15.1.2 Dealing with multiple accounts
	15.1.3 Unifying a local view from diverse remote stores
	15.1.4 Sharing the playground

	15.2 Getting started with LinkedIn
	15.3 Managing contacts
	15.3.1 Leveraging the built-in Contacts app
	15.3.2 Requesting operations from your app
	15.3.3 Directly reading and modifying the contacts database
	15.3.4 Adding contacts

	15.4 Keeping it together
	15.4.1 The dream of sync
	15.4.2 Defining accounts
	15.4.3 Telling secrets: The AccountManager service

	15.5 Creating a LinkedIn account
	15.5.1 Not friendly to mobile
	15.5.2 Authenticating to LinkedIn

	15.6 Synchronizing to the backend with SyncAdapter
	15.6.1 The synchronizing lifecycle
	15.6.2 Synchronizing LinkedIn data

	15.7 Wrapping up: LinkedIn in action
	15.7.1 Finalizing the LinkedIn project
	15.7.2 Troubleshooting tips
	15.7.3 Moving on

	15.8 Summary

	Chapter 16 Android web development
	16.1 What’s Android web development?
	16.1.1 Introducing WebKit
	16.1.2 Examining the architectural options

	16.2 Optimizing web applications for Android
	16.2.1 Designing with mobile in mind
	16.2.2 Adding the viewport tag
	16.2.3 Selectively loading content
	16.2.4 Interrogating the user agent
	16.2.5 The media query
	16.2.6 Considering a made-for-mobile application

	16.3 Storing data directly in the browser
	16.3.1 Setting things up
	16.3.2 Examining the code
	16.3.3 The user interface
	16.3.4 Opening the database
	16.3.5 Unpacking the transaction function
	16.3.6 Inserting and deleting rows
	16.3.7 Testing the application with WebKit tools

	16.4 Building a hybrid application
	16.4.1 Examining the browser control
	16.4.2 Wiring up the control
	16.4.3 Implementing the JavaScript handler
	16.4.4 Accessing the code from JavaScript
	16.4.5 Digging into the JavaScript
	16.4.6 Security matters
	16.4.7 Implementing a WebViewClient
	16.4.8 Augmenting the browser
	16.4.9 Detecting navigation events
	16.4.10 Implementing the WebChromeClient

	16.5 Summary

	Chapter 17 AppWidgets
	17.1 Introducing the AppWidget
	17.1.1 What’s an AppWidget?
	17.1.2 AppWidget deployment strategies

	17.2 Introducing SiteMonitor
	17.2.1 Benefits of SiteMonitor
	17.2.2 The user experience

	17.3 SiteMonitor application architecture
	17.3.1 Bird’s-eye view of the application
	17.3.2 File by file

	17.4 AppWidget data handling
	17.5 Implementing the AppWidgetProvider
	17.5.1 AppWidgetProvider method inventory
	17.5.2 Implementing SiteMonitorWidgetImpl
	17.5.3 Handling zombie widgets

	17.6 Displaying an AppWidget with RemoteViews
	17.6.1 Working with RemoteViews
	17.6.2 UpdateOneWidget explained

	17.7 Configuring an instance of the AppWidget
	17.7.1 AppWidget metadata
	17.7.2 Working with Intent data
	17.7.3 Confirming widget creation

	17.8 Updating the AppWidget
	17.8.1 Comparing services to alarms
	17.8.2 Triggering the update
	17.8.3 Updating the widgets, finally!

	17.9 Tying it all together with AndroidManifest.xml
	17.10 Summary

	Chapter 18 Localization
	18.1 The need for localization
	18.2 Exploring locales
	18.3 Strategies for localizing an application
	18.3.1 Identifying target locales and data
	18.3.2 Identifying and managing strings
	18.3.3 Drawables and layouts
	18.3.4 Dates, times, numbers, and currencies
	18.3.5 Working with the translation team

	18.4 Leveraging Android resource capabilities
	18.4.1 More than locale
	18.4.2 Assigning strings in resources

	18.5 Localizing in Java code
	18.6 Formatting localized strings
	18.7 Obstacles to localization
	18.8 Summary

	Chapter 19 Android Native Development Kit
	19.1 Introducing the NDK
	19.1.1 Uses for the NDK
	19.1.2 Looking at the NDK

	19.2 Building an application with the NDK
	19.2.1 Demonstrating the completed application
	19.2.2 Examining the project structure

	19.3 Building the JNI library
	19.3.1 Understanding JNI
	19.3.2 Implementing the library
	19.3.3 Compiling the JNI library

	19.4 Building the user interface
	19.4.1 User interface layout
	19.4.2 Taking a photo
	19.4.3 Finding the edges

	19.5 Integrating the NDK into Eclipse
	19.6 Summary

	Chapter 20 Activity fragments
	20.1 Fragment lifecyle
	20.2 Creating fragments and fragment layouts
	20.2.1 Create the fragment subclass
	20.2.2 Defining a fragment layout
	20.2.3 Include the fragment within the activity

	20.3 Background fragments
	20.4 The fragment manager
	20.5 Fragment transactions
	20.6 Fragment back stack
	20.7 The Android Compatibility Package
	20.8 Summary

	Chapter 21 Android 3.0 action bar
	21.1 Introducing the action bar
	21.2 Overview of the ActionBar classes
	21.3 Action bar display options
	21.3.1 Application name and icon
	21.3.2 Navigation modes

	21.4 Action items
	21.4.1 The application icon as an action item
	21.4.2 Action views

	21.5 Removing, showing, and hiding the action bar
	21.6 Action bar styling
	21.7 Summary

	Chapter 22 Drag-and-drop
	22.1 The drag-and-drop classes
	22.2 Drag-and-drop operations
	22.3 The shadow builder
	22.4 Drag events
	22.5 Starting drag operations
	22.6 Listening for drag-and-drop events
	22.7 Responding to drag-start operations
	22.8 Handling drop operations
	22.9 Summary

	appendix A: Installing the Android SDK
	A.1 Development environment requirements
	A.2 Obtaining and installing Eclipse
	A.3 Obtaining and installing the Android SDK
	A.4 Using the SDK and AVD Manager
	A.5 Obtaining and installing the Eclipse plug-in
	A.6 Configuring the Eclipse plug-in

	appendix B: Publishing applications
	B.1 Preparing an application for distribution
	B.1.1 Logging
	B.1.2 Debugging notifications
	B.1.3 Sample data
	B.1.4 AndroidManifest.xml
	B.1.5 End-user license agreement
	B.1.6 Testing
	B.1.7 Finishing touches

	B.2 Digitally signing an application
	B.2.1 Keystores
	B.2.2 keytool
	B.2.3 jarsigner

	B.3 Publishing to the Android Market
	B.3.1 The Market rules
	B.3.2 Getting your application in the Market
	B.3.3 Android Market—the right solution

	B.4 Other distribution means
	B.5 Recapping the Android Debug Bridge

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

