

Android in Action
SECOND EDITION

W. FRANK ABLESON
ROBI SEN

CHRIS KING

Revised Edition of Unlocking Android

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine

Manning Publications Co. Development editor: Troy Mott
180 Broad St. Copyeditors: Joan Celmer, Liz Welch
Suite 1323 Typesetter: Dottie Marsico
Stamford, CT 06901 Cover designer: Marija Tudor

ISBN 978-1-935182-72-6
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

brief contents
PART 1 WHAT IS ANDROID?—THE BIG PICTURE1

1 ■ Introducing Android 3

2 ■ Android’s development environment 31

PART 2 EXERCISING THE ANDROID SDK61
3 ■ User interfaces 63

4 ■ Intents and Services 101

5 ■ Storing and retrieving data 129

6 ■ Networking and web services 159

7 ■ Telephony 187

8 ■ Notifications and alarms 205

9 ■ Graphics and animation 222

10 ■ Multimedia 246

11 ■ Location, location, location 267

PART 3 ANDROID APPLICATIONS291

12 ■ Putting Android to work in a field service application 293
v

13 ■ Building Android applications in C 338

BRIEF CONTENTSvi

PART 4 THE MATURING PLATFORM ..365

14 ■ Bluetooth and sensors 367

15 ■ Integration 387

16 ■ Android web development 421

17 ■ AppWidgets 454

18 ■ Localization 491

19 ■ Android Native Development Kit 506

contents
preface xvii
preface to the first edition xix
acknowledgments xxi
about this book xxiv
about the cover illustration xxix

PART 1 WHAT IS ANDROID?—THE BIG PICTURE1

1 Introducing Android 3
1.1 The Android platform 4
1.2 Understanding the Android market 5

Mobile operators 5 ■ Android vs. the feature phones 6
Android vs. the smartphones 7 ■ Android vs. itself 8
Licensing Android 9

1.3 The layers of Android 10
Building on the Linux kernel 11 ■ Running in the
Dalvik VM 12

1.4 The Intent of Android development 12
Empowering intuitive UIs 13 ■ Intents and how they work 13
vii

CONTENTSviii

1.5 Four kinds of Android components 17
Activity 17 ■ Service 18 ■ BroadcastReceiver 19
ContentProvider 22

1.6 Understanding the AndroidManifest.xml file 24
1.7 Mapping applications to processes 25
1.8 Creating an Android application 26
1.9 Summary 30

2 Android’s development environment 31
2.1 Introducing the Android SDK 32

Core Android packages 33 ■ Optional packages 34

2.2 Exploring the development environment 34
The Java perspective 35 ■ The DDMS perspective 37
Command-line tools 40

2.3 Building an Android application in Eclipse 43
The Android Project Wizard 43 ■ Android sample
application code 44 ■ Packaging the application 50

2.4 Using the Android emulator 51
Setting up the emulated environment 52
Testing your application in the emulator 56

2.5 Debugging your application 57
2.6 Summary 58

PART 2 EXERCISING THE ANDROID SDK61

3 User interfaces 63
3.1 Creating the Activity 65

Creating an Activity class 66 ■ Exploring the Activity
lifecycle 71

3.2 Working with views 74
Exploring common views 75 ■ Using a ListView 77
Multitasking with Handler and Message 81
Creating custom views 82 ■ Understanding layout 84
Handling focus 86 ■ Grasping events 87

3.3 Using resources 89
Supported resource types 89 ■ Referencing resources in Java 89
Defining views and layouts through XML resources 92

Externalizing values 94 ■ Providing animations 97

CONTENTS ix

3.4 Exploring the AndroidManifest file 98
3.5 Summary 99

4 Intents and Services 101
4.1 Serving up RestaurantFinder with Intent 102

Defining Intents 102 ■ Implicit and explicit invocation 103
Adding external links to RestaurantFinder 104 ■ Finding your
way with Intent 106 ■ Taking advantage of Android-provided
activities 108

4.2 Checking the weather with a custom URI 109
Offering a custom URI 109 ■ Inspecting a custom Uri 111

4.3 Checking the weather with broadcast receivers 113
Broadcasting Intent 113 ■ Creating a receiver 115

4.4 Building a background weather service 115
4.5 Communicating with the WeatherAlertService

from other apps 119
Android Interface Definition Language 119 ■ Binder and
Parcelable 121 ■ Exposing a remote interface 122
Binding to a Service 123 ■ Starting versus binding 126
Service lifecycle 127

4.6 Summary 128

5 Storing and retrieving data 129
5.1 Using preferences 130

Working with SharedPreferences 130 ■ Preference access
permissions 133

5.2 Using the filesystem 136
Creating files 136 ■ Accessing files 137 ■ Files as raw
resources 138 ■ XML file resources 139 ■ External storage
via an SD card 141

5.3 Persisting data to a database 144
Building and accessing a database 144 ■ Using the
sqlite3 tool 149

5.4 Working with ContentProvider classes 149
Using an existing ContentProvider 150 ■ Creating a
ContentProvider 151

5.5 Summary 158

CONTENTSx

6 Networking and web services 159
6.1 An overview of networking 161

Networking basics 161 ■ Clients and servers 163

6.2 Checking the network status 164
6.3 Communicating with a server socket 165
6.4 Working with HTTP 168

Simple HTTP and java.net 169 ■ Robust HTTP with
HttpClient 170 ■ Creating an HTTP and HTTPS helper 172

6.5 Web services 178
POX—Putting it together with HTTP and XML 179
REST 181 ■ To SOAP or not to SOAP, that is the question 184

6.6 Summary 185

7 Telephony 187
7.1 Exploring telephony background and terms 188

Understanding GSM 189 ■ Understanding CDMA 189

7.2 Accessing telephony information 190
Retrieving telephony properties 191 ■ Obtaining phone state
information 193

7.3 Interacting with the phone 195
Using intents to make calls 195 ■ Using phone number-related
utilities 196 ■ Intercepting outbound calls 198

7.4 Working with messaging: SMS 199
Sending SMS messages 199 ■ Receiving SMS messages 202

7.5 Summary 203

8 Notifications and alarms 205
8.1 Introducing Toast 206

Creating an SMS example with a Toast 206 ■ Receiving an
SMS message 207

8.2 Introducing notifications 210
The Notification class 210 ■ Notifying a user of an SMS 211

8.3 Introducing Alarms 215
Creating a simple alarm example 215 ■ Using notifications
with Alarms 218
8.4 Summary 220

CONTENTS xi

9 Graphics and animation 222
9.1 Drawing graphics in Android 223

Drawing with XML 224 ■ Exploring XML drawable
shapes 225

9.2 Creating animations with Android’s Graphics API 227
Android’s frame-by-frame animation 227 ■ Programmatically
creating an animation 230

9.3 Introducing OpenGL for Embedded Systems 233
Creating an OpenGL context 234 ■ Drawing a rectangle with
OpenGL ES 238 ■ Three-dimensional shapes and surfaces with
OpenGL ES 241

9.4 Summary 245

10 Multimedia 246
10.1 Introduction to multimedia and OpenCORE 247
10.2 Playing audio 248
10.3 Playing video 250
10.4 Capturing media 251

Understanding the camera 252 ■ Capturing audio 257

10.5 Recording video 259
10.6 Summary 265

11 Location, location, location 267
11.1 Simulating your location within the emulator 269

Sending in your coordinates with the DDMS tool 269
The GPS Exchange Format 271 ■ The Google Earth
Keyhole Markup Language 272

11.2 Using LocationManager and LocationProvider 275
Accessing location data with LocationManager 275
Using a LocationProvider 277 ■ Receiving location
updates with LocationListener 279

11.3 Working with maps 281
Extending MapActivity 282 ■ Using a MapView 282
Placing data on a map with an Overlay 285

11.4 Converting places and addresses with Geocoder 288
11.5 Summary 290

CONTENTSxii

PART 3 ANDROID APPLICATIONS291

12 Putting Android to work in a field service application 293
12.1 Designing a real-world Android application 294

Core requirements of the application 295 ■ Managing the
data 296 ■ Application architecture and integration 297

12.2 Mapping out the application flow 298
Mapping out the field service application 298 ■ List of source
files 300 ■ Field service application’s AndroidManifest.xml 302

12.3 Application source code 302
Splash Activity 302 ■ Preferences used by the FieldService
Activity 304 ■ Implementing the FieldService Activity 306
Settings 307 ■ Managing job data 309

12.4 Source code for managing jobs 316
RefreshJobs 317 ■ Managing jobs: The ManageJobs
Activity 320 ■ Working with a job with the ShowJob Activity 323
Capturing a signature with the CloseJob Activity 327

12.5 Server code 333
Dispatcher user interface 334 ■ Database 334 ■ PHP
dispatcher code 335 ■ PHP mobile integration code 336

12.6 Summary 337

13 Building Android applications in C 338
13.1 Building Android apps without the SDK 339

The C compiler and linker tools 339 ■ Building a Hello World
application 340 ■ Installing and running the application 342
C application build script 344

13.2 Solving the problem with dynamic linking 344
Android system libraries 345 ■ Building a dynamically linked
application 346 ■ exit() versus return() 349 ■ Startup
code 350

13.3 What time is it? The DayTime Server 352
DayTime Server application 352 ■ daytime.c 353
The SQLite database 355 ■ Building and running the
DayTime Server 358

13.4 Daytime Client 360
Activity 360 ■ Socket Client 361 ■ Testing the Daytime
Client 362
13.5 Summary 362

CONTENTS xiii

PART 4 THE MATURING PLATFORM365

14 Bluetooth and sensors 367
14.1 Exploring Android’s Bluetooth capabilities 368

Replacing cables 369 ■ Primary and secondary roles and
sockets 369 ■ Trusting a device 370 ■ Connecting to a remote
device 372 ■ Capturing Bluetooth events 374 ■ Bluetooth
permissions 375

14.2 Interacting with the SensorManager 375
Types of sensors 376 ■ Reading sensor values 377
Enabling and disabling sensors 378

14.3 Building the SenseBot application 379
User interface 380 ■ Interpreting sensor values 382
Driving the robot 383 ■ Communication with the robot 384

14.4 Summary 385

15 Integration 387
15.1 Understanding the Android contact model 388

Choosing open-ended records 388 ■ Dealing with multiple
accounts 390 ■ Unifying a local view from diverse remote
stores 392 ■ Sharing the playground 393

15.2 Getting started with LinkedIn 393
15.3 Managing contacts 395

Leveraging the built-in contacts app 395 ■ Requesting operations
from your app 398 ■ Directly reading and modifying the contacts
database 399 ■ Adding contacts 400

15.4 Keeping it together 403
The dream of sync 403 ■ Defining accounts 404
Telling secrets: The AccountManager service 405

15.5 Creating a LinkedIn account 406
Not friendly to mobile 406 ■ Authenticating to LinkedIn 407

15.6 Synchronizing to the backend with SyncAdapter 414
The synchronizing lifecycle 414 ■ Synchronizing LinkedIn
data 414

15.7 Wrapping up: LinkedIn in action 417
Finalizing the LinkedIn project 417 ■ Troubleshooting tips 418
Moving on 419
15.8 Summary 419

CONTENTSxiv

16 Android web development 421
16.1 What’s Android web development? 422

Introducing WebKit 422 ■ Examining the architectural
options 423

16.2 Optimizing web applications for Android 424
Designing with mobile in mind 424 ■ Adding the viewport
tag 426 ■ Selectively loading content 428 ■ Interrogating the
user agent 428 ■ The media query 429 ■ Considering a made-
for-mobile application 430

16.3 Storing data directly in the browser 431
Setting things up 432 ■ Examining the code 433 ■ The user
interface 433 ■ Opening the database 435 ■ Unpacking the
transaction function 436 ■ Inserting and deleting rows 438
Testing the application with WebKit tools 439

16.4 Building a hybrid application 440
Examining the browser control 440 ■ Wiring up the control 441
Implementing the JavaScript handler 443 ■ Accessing the code
from JavaScript 445 ■ Digging into the JavaScript 445
Security matters 447 ■ Implementing a WebViewClient 448
Augmenting the browser 448 ■ Detecting navigation events 449
Implementing the WebChromeClient 452

16.5 Summary 453

17 AppWidgets 454
17.1 Introducing the AppWidget 455

What’s an AppWidget? 455 ■ AppWidget deployment
strategies 457

17.2 Introducing SiteMonitor 458
Benefits of SiteMonitor 458 ■ The user experience 459

17.3 SiteMonitor application architecture 462
Bird’s-eye view of the application 462 ■ File by file 464

17.4 AppWidget data handling 465
17.5 Implementing the AppWidgetProvider 469

AppWidgetProvider method inventory 469 ■ Implementing
SiteMonitorWidgetImpl 470 ■ Handling zombie widgets 472

17.6 Displaying an AppWidget with RemoteViews 473
Working with RemoteViews 473 ■ UpdateOneWidget

explained 474

CONTENTS xv

17.7 Configuring an instance of the AppWidget 476
AppWidget metadata 477 ■ Working with Intent data 478
Confirming widget creation 479

17.8 Updating the AppWidget 480
Comparing services to alarms 481 ■ Triggering the update 482
Updating the widgets, finally! 484

17.9 Tying it all together with AndroidManifest.xml 488
17.10 Summary 489

18 Localization 491
18.1 The need for localization 492
18.2 Exploring locales 493
18.3 Strategies for localizing an application 494

Identifying target locales and data 494 ■ Identifying and
managing strings 495 ■ Drawables and layouts 497
Dates, times, numbers, and currencies 498 ■ Working with
the translation team 499

18.4 Leveraging Android resource capabilities 500
More than locale 500 ■ Assigning strings in resources 500

18.5 Localizing in Java code 502
18.6 Formatting localized strings 503
18.7 Obstacles to localization 504
18.8 Summary 505

19 Android Native Development Kit 506
19.1 Introducing the NDK 507

Uses for the NDK 507 ■ Looking at the NDK 508

19.2 Building an application with the NDK 509
Demonstrating the completed application 510
Examining the project structure 511

19.3 Building the JNI library 512
Understanding JNI 512 ■ Implementing the library 513
Compiling the JNI library 518

19.4 Building the user interface 519
User interface layout 519 ■ Taking a photo 521
Finding the edges 523

CONTENTSxvi

19.5 Integrating the NDK into Eclipse 524
19.6 Summary 526

appendix A Installing the Android SDK 527

appendix B Publishing applications 538

index 551

preface
When we set out to write the first version of this book, many friends and family won-
dered just what this Android thing was all about. Now, two years after the publication
of the first edition, Android is nearly a household term.

 The first edition of the book, Unlocking Android, enjoyed enough success that we
were privileged to have the opportunity to write this second edition, renamed as
Android in Action. The first thirteen chapters of the book have been refreshed and/or
rewritten to bring the content up to date with Android 2.2+. Six chapters were added,
bringing in more topics of interest that stray from the simplistic but are still within the
realm of instructional and informational. The new content extends beyond the basics
of Android development, including some topics that I’ve envisioned for a long time
but lacked the proper platform to bring them to fruition. We could have written many
more chapters, but we had to draw the line somewhere!

 The second edition of this book was written by Frank Ableson, Robi Sen, and Chris
King. Chris updated chapters 4, 5, 7, and 11. Some excellent content originally writ-
ten by Charlie Collins remains in this second edition. Early on in the project Chris
and I were discussing the need to bring social networking into the book. Chris exam-
ined the available social networks and came back with a clever mechanism to integrate
the Android contacts database with the popular business networking service
LinkedIn. His work is shown in chapter 15, “Integration.” The application from chap-
ter 15 is available as a free download in the Android Market.

 Robi updated his chapters on notifications, graphics, and media, while I focused
on some new content areas of interest, including Bluetooth communications, sen-
sors, localization, AppWidgets, native development in C, and web development for
xvii

Android.

PREFACExviii

 In addition to the LinkedIn application from chapter 15, two more applications
from this book are available in the Market as free downloads. The first is SenseBot—
an application that allows you to drive a LEGO Mindstorms-powered robot by tilting
your phone. The application demonstrates both the sensor subsystem of Android, as
well as communicating with Bluetooth. The other application available in the Market
is called FindEdges. FindEdges demonstrates the Android Native Development Kit as
it exercises an image processing algorithm written in the C language.

 All in all, writing a book for Android is both exciting and challenging. Android
continues to mature and promises to be a major player for years to come. Many thanks
are owed to readers of the first edition, for without you, there wouldn’t be a second
edition!

FRANK ABLESON

preface to the first edition
The first mobile applications I had the opportunity to work with were inventory con-
trol programs used in retail and manufacturing settings. The “terminals,” as we called
them at the time, were heavy and expensive. They had big antennas, lots of clunky
keys, grayscale LCD displays, and they looked like they came straight from the set of a
science fiction movie.

 From that austere beginning, my mobile horizons expanded when the Palm Pilot
became the craze in the mid to late 1990s. My first significant PalmOS project was to
develop an IrDA communications library for an application that printed calendars,
contacts, and task-lists. Back then, the hip printers had an IrDA port and it was cool to
beam your business card to someone. Ironically, I always enjoyed designing and writ-
ing the software more than using the devices themselves.

 Fast forward ten years, and I have had the privilege of working on some very chal-
lenging and engaging mobile software projects for numerous clients along the way.
Much of my career to date can be traced back to relationships stemming from my
early mobile development experiences—and what a blessing it has been for me. I just
love the question, “would it be possible to…?” And more often than not, the answer
has been “Yes!” What I particularly enjoy is helping change the way a business operates
or the way problems are solved through the application of mobile software. Mobile
technology can and will continue to change the way we live, work, and play…and this
brings me to Android and this book.

 In the fall of 2007, I was speaking with my friend Troy Mott, who happens to be an
editor for Manning, the publisher of this book. Troy and I were discussing the mobile
xix

marketplace, something we’ve been doing for years. We started kicking around the

PREFACE TO THE FIRST EDITIONxx

idea of writing a book on Android. The challenge was that Android didn’t really exist.
Yet. We knew from some of the preliminary information that the platform promised to
be open, capable, and popular. We felt that those ingredients could make for an inter-
esting and valuable topic, so we began thinking about what that book might look like,
taking it on faith that the platform would actually come to fruition.

 Before long, we convinced ourselves (and Manning) that this was a good idea and
the work began in early 2008. Beyond the usual challenges of putting a book together,
we had the additional obstacle that our subject matter has been in a steady, though
unpredictable, state of change over the past year. In essence, we’ve written this book
twice because the SDK has been changed multiple times and Android-equipped
phones have become available, accelerating the interest and demand for the plat-
form. Every time a significant change occurred, we went back and revisited portions of
the book, sometimes rewriting entire chapters to accommodate the latest develop-
ments in the Android platform.

 I say “we” because in the process of writing this book, Troy and I decided to share
the fun and brought in two experienced authors to contribute their expertise and
enthusiasm for this platform. It has been a pleasure getting to know and working with
both Charlie Collins and Robi Sen. While I focused on the first and third parts of the
book in the first edition, Charlie and Robi wrote part 2, which covers the important
fundamentals of writing Android applications. Thanks to their contributions, I
enjoyed the freedom to express my vision of what Android means to the mobile space
in the first part of the book, and then to work on a couple of more advanced applica-
tions at the end of the book.

 We hope that you enjoy reading this book and that it proves to be a valuable
resource for years to come as together we contribute to the future of the Android
platform.

FRANK ABLESON

acknowledgments
Perhaps the only thing more challenging than writing a technical book is writing the
second edition. There is a lot of excitement when writing the proposed table of con-
tents for the updated edition but at some point the work must commence. The size and
scope of this project meant working together as a team from the start. I had the privi-
lege of working again with Robi Sen from the first edition and also with experienced
developer and writer Chris King. Along with the help of the talented team at Manning,
we are pleased to present Android in Action, the update to Unlocking Android.

 In particular, we’d like to acknowledge and thank those at Manning who helped
bring this book about. First, thanks to Troy Mott, our acquisition and development
editor, who has been involved in every aspect of both the first and second editions.
Troy was there from the beginning, from the “what if” stages, through helping push us
over the goal line—twice! Karen Tegtmeyer did all the big and little things to bring
the project together; Mary Piergies skillfully piloted the team through the harrowing
production process; and Marjan Bace, our publisher, showed an attention to detail at
once challenging, beneficial, and appreciated.

 Once the writing was done, the next round of work began and special thanks need
to go to: Benjamin Berg who performed the pre-production editing pass, Joan Celmer
and Liz Welch, our copyeditors, who made our content readable in cases where it
went either “too geek” or where the geek in us tried to be “too literary;” Elizabeth
Martin, our proofreader, who added common sense to the project, as well as a terrific
sense of humor and encouraging attitude; Janet Vail who jumped in at the last minute
to help us bring the final pieces of the project together; and finally Dottie Marsico
xxi

who handles the actual layout of the pages. It is sometimes hard to envision the final

ACKNOWLEDGMENTSxxii

product when looking at edits upon edits in MS Word, but Dottie’s magic makes the
product you hold in your hands. Thanks to each of you for your special contribution
to this project. Next, we would like to thank Candace Gillhooley for her efforts in get-
ting the word out about the book.

 And special thanks to the other reviewers who read our revised manuscript at dif-
ferent times during its development: Michael Martin, Orhan Alkan, Eric Raymond,
Jason Jung, Frank Wang, Robert O’Connor, Paul Grebenc, Sean Owen, Loïc Simon,
Greg Donald, Nikolaos Kaintantzis, Matthew Johnson, and Patrick Steger; and to
Michael Galpin and Jérôme Bâton for their careful tech review of the final manuscript
during production.

 Lastly, we want to thank the thoughtful and encouraging MEAP subscribers who
provided feedback along the way; the book is better thanks to your contributions.

Frank Ableson

I would like to thank Robi Sen, Chris King, and Troy Mott for their contributions, col-
laboration, and endurance on this project! And of course, my wife Nikki and my chil-
dren deserve special recognition for the seemingly endless hours of wondering when I
would emerge from the “lab” and what mood I would be in—either elation when the
robot worked, or near depression when the AppWidgets wouldn’t go away. Thank you
for getting neither too excited nor too concerned! My staff at navitend also deserve a
big thank you for carrying the water while I finished my work on this project. Finally, a
big thank you to Miriam Raffay from Madridiam.com, who provided the much-
needed Spanish translations for chapter 18. Gracias!

Chris King

I am deeply grateful to Troy Mott and Frank Ableson for bringing me into this project
and providing support and inspiration throughout. Troy has been welcoming and
enthusiastic, showing great flexibility as we discussed what projects to undertake.
Frank has a keen eye for quality, and provided great guidance from start to finish on
how to craft the best book possible. I also appreciate all the work done by the review-
ers and editors from Manning, whose contributions have improved the text’s accuracy
and style. Working on this book has been a joy, and I’ve greatly enjoyed the opportuni-
ties to contribute more and more to its progress.

 Thanks also to the crew at Gravity Mobile, especially Noah Hurwitz, Chris Lyon,
Young Yoon, and Sam Trychin. You guys keep my life fun and challenging, and have
made mobile development an even better place to work. Finally, my love to my fam-
ily: Charles, Karen, Patrick, Kathryn, and Andrew. You’ve made everything possible
for me.

ACKNOWLEDGMENTS xxiii

Robi Sen

I would like to thank Troy Mott and the team—and everyone at Manning Publica-
tions— for their hard work making this book something worth reading. I would like to
thank my coauthors, Frank and Chris, who were great to work with and very under-
standing when I was the one holding things up. I would also like to thank Jesse Dailey
for his help with OpenGL as well as David Cartier with the Contacts API. Finally, I
would like to thank my family who, more often than I liked, had to do without me
while I worked on my chapters, worked multiple jobs, and finished grad school.

about this book
Android in Action, Second Edition is a revision and update of Unlocking Android, pub-
lished in April 2009. This book doesn’t fit nicely into the camp of “introductory text,”
nor is it a highly detailed reference manual. The text has something to offer both the
beginner and the experienced developer who is looking to sell his or her application
in the Android Market. This book covers important beginner topics such as “What is
Android” and installing and using the development environment. We then advance to
practical working examples of core programming topics any developer will be happy
to have at the ready on the reference shelf. The remaining chapters present very
detailed example applications covering advanced topics, including a complete field
service application, localization, and material on Android web applications, Blue-
tooth, sensors, AppWidgets, and integration adapters. We even include two chapters
on writing applications in C—one for the native side of Android and one using the
more generally accepted method of employing the Android Native Development Kit.

 Although you can read the book from start to finish, you can also consider it a cou-
ple of books in one. If you’re new to Android, focus first on chapter 1, appendix A,
and then chapter 2. With that foundation, you can then work your way through chap-
ters 3 through 12. Chapter 13 and on are more in-depth in nature and can be read
independently of the others.

The audience

We wrote this book for professional programmers and hobbyists alike. Many of the
concepts can be absorbed without specific Java language knowledge, though the
xxiv

most value will be found by readers with Java programming skills because Android

ABOUT THIS BOOK xxv

application programming requires them. A reader with C, C++, or C# programming
knowledge will be able to follow the examples.

 Prior Eclipse experience is helpful, but not required. A number of good resources
are available on Java and Eclipse to augment the content of this book.

Roadmap

This book is divided into four parts. Part 1 contains introductory material about the
platform and development environment. Part 2 takes a close look at the fundamental
skills required for building Android applications. Part 3 presents a larger scope appli-
cation and a Native C Android application. Part 4 explores features added to the
Android platform, providing examples of leveraging the capable Android platform to
create innovative mobile applicatoins.

PART 1: THE ESSENTIALS

Part 1 introduces the Android platform, including its architecture and setting up the
development environment.

 Chapter 1 delves into the background and positioning of the Android platform,
including comparisons to other popular platforms such as BlackBerry, iPhone, and
Windows Mobile. After an introduction to the platform, the balance of the first chap-
ter introduces the high-level architecture of Android applications and the operating
system environment.

 Chapter 2 takes you on a step-by-step development exercise, teaching you the
ropes of using the Android development environment, including the key tools and
concepts for building an application. If you’ve never used Eclipse or have never writ-
ten an Android application, this chapter will prepare you for the next part of the
book.

PART 2: THE PROGRAMMING ENVIRONMENT

Part 2 includes an extensive survey of fundamental programming topics in the
Android environment.

 Chapter 3 covers the fundamental Android UI components, including View and
Layout. We also review the Activity in more detail. These are the basic building
blocks of screens and applications on the Android platform. Along the way, we also
touch on other basic concepts such as handling external resources, dealing with
events, and the lifecycle of an Android application.

 Chapter 4 expands on the concepts you learned in chapter 3. We delve into the
Android Intent to demonstrate interaction between screens, activities, and entire
applications. We also introduce and use the Service, which brings background pro-
cesses into the fold.

 Chapter 5 incorporates methods and strategies for storing and retrieving data
locally. The chapter examines use of the filesystem, databases, the SD card, and
Android-specific entities such as the SharedPreferences and ContentProvider
classes. At this point, we begin combining fundamental concepts with more real-world

ABOUT THIS BOOKxxvi

details, such as handling application state, using a database for persistent storage, and
working with SQLite.

 Chapter 6 deals with storing and retrieving data over the network. Here we include
a networking primer before delving into using raw networking concepts such as sock-
ets on Android. From there, we progress to using HTTP, and even exploring web ser-
vices (such as REST and SOAP).

 Chapter 7 covers telephony on the Android platform. We touch on basics such as
originating and receiving phone calls, as well as more involved topics such as working
with SMS. We also cover telephony properties and helper classes.

 Chapter 8 looks at how to work with notifications and alarms. In this chapter, we
look at how to notify users of various events such as receiving a SMS message, as well as
how to manage and set alarms.

 Chapter 9 deals with the basics of Android’s Graphics API and more advanced con-
cepts such as working with the OpenGL ES library for creating sophisticated 2D and 3D
graphics. We also touch on animation.

 Chapter 10 looks at Android’s support for multimedia; we cover both playing mul-
timedia as well as using the camera and microphone to record your own multimedia
files.

 Chapter 11 introduces location-based services as we look at an example that com-
bines many of the concepts from the earlier parts of the book in a mapping applica-
tion. You’ll learn about using the mapping APIs on Android, including different
location providers and properties that are available, how to build and manipulate
map-related screens, and how to work with location-related concepts within the emu-
lator.

PART 3: BRINGING IT ALL TOGETHER

Part 3 contains two chapters, both of which build on knowledge you gained earlier in
the text, with a focus on bringing a larger application to fruition.

 Chapter 12 demonstrates an end-to-end field service application. The application
includes server communications, persistent storage, multiple Activity navigation
menus, and signature capture.

 Chapter 13 explores the world of native C language applications. The Android SDK
is limited to the Java language, although native applications can be written for
Android. This chapter walks you through examples of building C language applica-
tions for Android, including the use of built-in libraries and TCP socket communica-
tions as a Java application connects to your C application. This chapter is useful for
developers targeting solutions beyond carrier-subsidized, locked down cell phones.

PART 4: THE MATURING PLATFORM

Part 4 contains six new chapters, each of which represents a more advanced develop-
ment topic.

 Chapter 14 demonstrates the use of both Bluetooth communication and process-
ing sensor data. The sample application accompanying the chapter, SenseBot, permits

the user to drive a LEGO Mindstorms robot with their Android phone.

ABOUT THIS BOOK xxvii

 Chapter 15 explores the Android contact database and demonstrates integrating
with an external data source. In particular, this application brings Android into the
social networking scene by integrating with the popular LinkedIn professional net-
working service.

 Chapter 16 explores the world of web development. Android’s browser is based on
the open source WebKit engine and brings desktop-like capability to this mobile
browser. This chapter equips you to bring attractive and capable web applications to
Android.

 Chapter 17 brings the “home screen” of your Android application to life by show-
ing you how to build an application that presents its user interface as an AppWidget.
In addition to AppWidgets, this chapter demonstrates BroadcastReceiver, Service,
and Alarms.

 Chapter 18 takes a real-world look at localizing an existing application. Chapter
12’s Field Service application is modified to support multiple languages. Chapter 18’s
version of the Field Service application contains support for both English and Spanish.

 Chapter 19 reaches into Android’s open source foundation by using a popular
edge detection image processing algorithm. The Sobel Edge Detection algorithm is
written in C and compiled into a native library. The sample application snaps a pic-
ture with the Android camera and then uses this C algorithm to find the edges in the
photo.

THE APPENDICES

The appendices contain additional information that didn’t fit with the flow of the
main text. Appendix A is a step-by-step guide to installing the development environ-
ment. This appendix, along with chapter 2, provides all the information you need to
build an Android application. Appendix B demonstrates how to prepare and submit
an application for the Android Market—an important topic for anyone looking to sell
an application commercially.

Code conventions and downloads

All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. For most listings, the code is annotated to point out the key con-
cepts, and numbered bullets are sometimes used in the text to provide additional
information about the code. We have tried to format the code so that it fits within the
available page space in the book by adding line breaks and using indentation carefully.
Sometimes, however, very long lines will include line-continuation markers.

 Source code for all the working examples is available from www.manning.com/
AndroidinActionSecondEdition or http://www.manning.com/ableson2. A readme.txt
file is provided in the root folder and also in each chapter folder; the files provide
details on how to install and run the code. Code examples appear throughout this
book. Longer listings will appear under clear listing headers while shorter listings will
appear between lines of text.

ABOUT THIS BOOKxxviii

Software requirements

Developing applications for Android may be done from the Windows XP/Vista/7
environment, a Mac OS X (Intel only) environment or a Linux environment. Appen-
dix A includes a detailed description of setting up the Eclipse environment along with
the Android Developer Tools plug-in for Eclipse.

A note about the graphics

Many of the original graphics from the first edition, Unlocking Android, have been
reused in this version of the book. While the title of the revised edition was changed
to Android in Action, Second Edition during development, we kept the original book title
in our graphics and sample applications.

Author Online
Purchase of Android in Action, Second Edition includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
AndroidinActionSecondEdition or www.manning.com/ableson2. This page provides
information on how to get on the forum once you’re registered, what kind of help is
available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

about the cover illustration
The illustration on the cover of Android in Action, Second Edition is taken from a French
book of dress customs, Encyclopédie des Voyages by J. G. St. Saveur, published in 1796.
Travel for pleasure was a relatively new phenomenon at the time and illustrated
guides such as this one were popular, introducing both the tourist as well as the arm-
chair traveler to the inhabitants of other regions of the world, as well as to the
regional costumes and uniforms of France.

 The diversity of the drawings in the Encyclopédie des Voyages speaks vividly of the
uniqueness and individuality of the world’s countries and regions just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other, and when members of a
social class or a trade or a tribe could be easily distinguished by what they were wearing.

 This was also a time when people were fascinated by foreign lands and faraway
places, even though they could not travel to these exotic destinations themselves.
Dress codes have changed since then and the diversity by region and tribe, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a world of cul-
tural and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on native and tribal costumes from two centu-
ries ago brought back to life by the pictures from this travel guide.
xxix

Part 1

What is Android?—
The Big Picture

Android promises to be a market-moving technology platform—not just
because of the functionality available in the platform but because of how the
platform has come to market. Part 1 of this book brings you into the picture as a
developer of the open source Android platform. We begin with a look at the
Android platform and the impact it has on each of the major “stakeholders” in
the mobile marketplace (chapter 1). We then bring you on board to developing
applications for Android with a hands-on tour of the Android development envi-
ronment (chapter 2).

Introducing Android
You’ve heard about Android. You’ve read about Android. Now it’s time to begin
unlocking Android.

 Android is a software platform that’s revolutionizing the global cell phone mar-
ket. It’s the first open source mobile application platform that’s moved the needle
in major mobile markets around the globe. When you’re examining Android,
there are a number of technical and market-related dimensions to consider. This
first section introduces the platform and provides context to help you better under-
stand Android and where it fits in the global cell phone scene.

 Android is primarily a Google effort, in collaboration with the Open Handset
Alliance. Open Handset Alliance is an alliance of nearly 50 organizations commit-
ted to bringing a “better” and more “open” mobile phone to market. Considered a
novelty at first by some, Android has grown to become a market-changing player in
a few short years, earning both respect and derision alike from peers in the industry.

 This chapter introduces Android—what it is, and, equally important, what it’s

This chapter covers
 Exploring Android, the open source mobile platform

 Android Intents, the way things work

 Sample application
3

not. After reading this chapter, you’ll understand how Android is constructed, how

5Understanding the Android market

PLATFORM VS. DEVICE Throughout this book, wherever code must be tested
or exercised on a device, a software-based emulator is typically employed. An
exception is in chapter 14 where Bluetooth and Sensors are exercised. See
chapter 2 for information on how to set up and use the Android emulator.

The term platform refers to Android itself—the software—including all the
binaries, code libraries, and tool chains. This book focuses on the Android
platform; the Android emulators available in the SDK are simply components
of the Android platform.

With all of that as a backdrop, creating a successful mobile platform is clearly a non-
trivial task involving numerous players. Android is an ambitious undertaking, even for
Google, a company of seemingly boundless resources and moxie—and they’re getting
the job done. Within a span of two years, Android has seen four major software
releases and the release of multiple handsets across most major mobile carriers in the
global market.

 Now that you’ve got an introduction to what Android is, let’s look at the why and
where of Android to provide some context and set the perspective for Android’s intro-
duction to the marketplace. After that, it’s on to exploring the platform itself!

1.2 Understanding the Android market
Android promises to have something for everyone. It aims to support a variety of hard-
ware devices, not just high-end ones typically associated with expensive smartphones.
Of course, Android users will enjoy improved performance on a more powerful
device, considering that it sports a comprehensive set of computing features. But how
well can Android scale up and down to a variety of markets and gain market and mind
share? How quickly can the smartphone market become the standard? Some folks are
still clinging to phone-only devices, even though smartphones are growing rapidly in
virtually every demographic. Let’s look at Android from the perspective of a few exist-
ing players in the marketplace. When you’re talking about the cellular market, the
place to start is at the top, with the carriers, or as they’re sometimes referred to, the
mobile operators.

1.2.1 Mobile operators

Mobile operators (the cell phone companies such as AT&T and Verizon) are in the
business, first and foremost, of selling subscriptions to their services. Shareholders
want a return on their investment, and it’s hard to imagine an industry where there’s a
larger investment than in a network that spans such broad geographic territory. To
the mobile operator, cell phones are simultaneously a conduit for services, a drug to
entice subscribers, and an annoyance to support and lock down.

 Some mobile operators are embracing Android as a platform to drive new data ser-
vices across the excess capacity operators have built into their networks. Data services
represent high-premium services and high-margin revenues for the operator. If
Android can help drive those revenues for the mobile operator, all the better.

6 CHAPTER 1 Introducing Android

 Other mobile operators feel threatened by Google and the potential of “free wire-
less,” driven by advertising revenues and an upheaval of the market. Another challenge
for mobile operators is that they want the final say on what services are enabled across
their networks. Historically, handset manufacturers complain that their devices are
handicapped and don’t exercise all the features designed into them because mobile
operators lack the capability or willingness to support those features. An encouraging
sign is that there are mobile operators involved in the Open Handset Alliance.

 Let’s move on to a comparison of Android and existing cell phones on the market
today.

1.2.2 Android vs. the feature phones

The majority of cell phones on the market continue to be consumer flip phones and
feature phones—phones that aren’t smartphones.1 These phones are the ones consum-
ers get when they walk into the retailer and ask what can be had for free. These con-
sumers are the “I just want a phone” customers. Their primary interest is a phone for
voice communications, an address book, and increasingly, texting. They might even
want a camera. Many of these phones have additional capabilities such as mobile web
browsing, but because of relatively poor user
experience, these features aren’t employed heav-
ily. The one exception is text messaging, which is
a dominant application no matter the classifica-
tion of device. Another increasingly in-demand
category is location-based services, which typi-
cally use the Global Positioning System (GPS).

 Android’s challenge is to scale down to this
market. Some of the bells and whistles in
Android can be left out to fit into lower-end
hardware. One of the big functionality gaps on
these lower-end phones is the web experience
the user gets. Part of the problem is screen size,
but equally challenging is the browser technol-
ogy itself, which often struggles to match the rich
web experience of desktop computers. Android
features the market-leading WebKit browser
engine, which brings desktop-compatible brows-
ing to the mobile arena. Figure 1.2 shows WebKit
in action on Android. If a rich web experience
can be effectively scaled down to feature phone
class hardware, it would go a long way toward

1 Only 12% of phones sold in the fourth quarter of 2008 were smartphones: http://www.gartner.com/it/

Figure 1.2 Android’s built-in browser
technology is based on WebKit’s browser
engine.
page.jsp?id=910112.

7Understanding the Android market

penetrating this end of the market. Chapter 16 takes a close look at using web devel-
opment skills for creating Android applications.

WEBKIT The WebKit (http://www.webkit.org) browser engine is an open
source project that powers the browser found in Macs (Safari) and is the
engine behind Mobile Safari, which is the browser on the iPhone. It’s not a
stretch to say that the browser experience is what makes the iPhone popular,
so its inclusion in Android is a strong plus for Android’s architecture.

Software at the lower end of the market generally falls into one of two camps:

 Qualcomm’s BREW environment—BREW stands for Binary Runtime Environment
for Wireless. For a high-volume example of BREW technology, consider Veri-
zon’s Get It Now-capable devices, which run on this platform. The challenge for
software developers who want to gain access to this market is that the bar to get
an application on this platform is high, because everything is managed by the
mobile operator, with expensive testing and revenue-sharing fee structures. The
upside to this platform is that the mobile operator collects the money and dis-
burses it to the developer after the sale, and often these sales recur monthly.
Just about everything else is a challenge to the software developer. Android’s
open application environment is more accessible than BREW.

 Java ME, or Java Platform, Micro Edition—A popular platform for this class of
device. The barrier to entry is much lower for software developers. Java ME
developers will find a same-but-different environment in Android. Android isn’t
strictly a Java ME-compatible platform, but the Java programming environment
found in Android is a plus for Java ME developers. There are some projects
underway to create a bridge environment, with the aim of enabling Java ME
applications to be compiled and run for Android. Gaming, a better browser,
and anything to do with texting or social applications present fertile territory
for Android at this end of the market.

Although the majority of cell phones sold worldwide are not considered smartphones,
the popularity of Android (and other capable platforms) has increased demand for
higher-function devices. That’s what we’re going to discuss next.

1.2.3 Android vs. the smartphones

Let’s start by naming the major smartphone players: Symbian (big outside North
America), BlackBerry from Research in Motion, iPhone from Apple, Windows
(Mobile, SmartPhone, and now Phone 7), and of course, the increasingly popular
Android platform.

 One of the major concerns of the smartphone market is whether a platform can
synchronize data and access Enterprise Information Systems for corporate users.
Device-management tools are also an important factor in the enterprise market. The
browser experience is better than with the lower-end phones, mainly because of larger

8 CHAPTER 1 Introducing Android

displays and more intuitive input methods, such as a touch screen, touch pad, slide-
out keyboard, or a jog dial.

 Android’s opportunity in this market is to provide a device and software that peo-
ple want. For all the applications available for the iPhone, working with Apple can be
a challenge; if the core device doesn’t suit your needs, there’s little room to maneuver
because of the limited models available and historical carrier exclusivity. Now that
email, calendaring, and contacts can sync with Microsoft Exchange, the corporate
environment is more accessible, but Android will continue to fight the battle of scal-
ing the Enterprise walls. Later Android releases have added improved support for the
Microsoft Exchange platform, though third-party solutions still out-perform the built-
in offerings. BlackBerry is dominant because of its intuitive email capabilities, and the
Microsoft platforms are compelling because of tight integration to the desktop experi-
ence and overall familiarity for Windows users. iPhone has surprisingly good integra-
tion with Microsoft Exchange—for Android to compete in this arena, it must
maintain parity with iPhone on Enterprise support.

 You’ve seen how Android stacks up next to feature phones and smartphones. Next,
we’ll see whether Android, the open source mobile platform, can succeed as an open
source project.

1.2.4 Android vs. itself

Android will likely always be an open source project, but to succeed in the mobile mar-
ket, it must sell millions of units and stay fresh. Even though Google briefly entered the
device fray with its Nexus One phone, it’s not a hardware company. From necessity,
Android is sold by others such as HTC and Motorola, to name the big players. These
manufacturers start with the Android Open Source Platform (AOSP), but extend it to
meet their need to differentiate their offerings. Android isn’t the first open source
phone, but it’s the first from a player with the market-moving weight of Google leading
the charge. This market leadership position has already translated to impressive unit
sales across multiple manufacturers. So, now that there are a respectable number of
devices on the market, can Android keep it together and avoid fragmentation?

 Open source is a double-edged sword. On one hand, the power of many talented
people and companies working around the globe and around the clock to deliver
desirable features is a force to be reckoned with, particularly in comparison with a tra-
ditional, commercial approach to software development. This topic has become trite
because the benefits of open source development are well documented. On the other
hand, how far will the competing manufacturers extend and potentially split Android?
Depending on your perspective, the variety of Android offerings is a welcome alterna-
tive to a more monolithic iPhone device platform where consumers have few choices
available.

 Another challenge for Android is that the licensing model of open source code
used in commercial offerings can be sticky. Some software licenses are more restrictive
than others, and some of those restrictions pose a challenge to the open source label.
At the same time, Android licensees need to protect their investment, so licensing is

an important topic for the commercialization of Android.

9Understanding the Android market

1.2.5 Licensing Android

Android is released under two different open source licenses. The Linux kernel is
released under the GNU General Public License (GPL) as is required for anyone licensing
the open source OS kernel. The Android platform, excluding the kernel, is licensed
under the Apache Software License (ASL). Although both licensing models are open
source-oriented, the major difference is that the Apache license is considered friend-
lier toward commercial use. Some open source purists might find fault with anything
but complete openness, source-code sharing, and noncommercialization; the ASL
attempts to balance the goals of open source with commercial market forces. So far
there has been only one notable licensing hiccup impacting the Android mod com-
munity, and that had more to do with the gray area of full system images than with a
manufacturer’s use of Android on a mainstream product release. Currently, Android
is facing intellectual property challenges; both Microsoft and Apple are bringing liti-
gation against Motorola and HTC for the manufacturer’s Android-based handsets.

 The high-level, market-oriented portion of the book has now concluded! The
remainder of this book is focused on Android application development. Any technical
discussion of a software environment must include a review of the layers that compose
the environment, sometimes referred to as a stack because of the layer-upon-layer con-
struction. Next up is a high-level breakdown of the components of the Android stack.

Selling applications
A mobile platform is ultimately valuable only if there are applications to use and enjoy
on that platform. To that end, the topic of buying and selling applications for Android
is important and gives us an opportunity to highlight a key difference between Android
and the iPhone. The Apple AppStore contains software titles for the iPhone—lots of
them. But Apple’s somewhat draconian grip on the iPhone software market requires
that all applications be sold through its venue. Although Apple’s digital rights man-
agement (DRM) is the envy of the market, this approach can pose a challenging envi-
ronment for software developers who might prefer to make their application available
through multiple distribution channels.

Contrast Apple’s approach to application distribution with the freedom an Android
developer enjoys to ship applications via traditional venues such as freeware and
shareware, and commercially through various marketplaces, including his own web-
site! For software publishers who want the focus of an on-device shopping experi-
ence, Google has launched and continues to mature the Android Market. For software
developers who already have titles for other platforms such as Windows Mobile,
Palm, or BlackBerry, traditional software markets such as Handango (http://
www.Handango.com) also support selling Android applications. Handango and its ilk
are important outlets; consumers new to Android will likely visit sites such as Han-
dango because that might be where they first purchased one of their favorite applica-
tions for their prior device.

11The layers of Android

TIP Without question, Android development requires Java programming
skills. To get the most out of this book, be sure to brush up on your Java pro-
gramming knowledge. There are many Java references on the internet, and no
shortage of Java books on the market. An excellent source of Java titles can be
found at http://www.manning.com/catalog/java.

Now that we’ve shown you the obligatory stack diagram and introduced all the layers,
let’s look more in depth at the runtime technology that underpins Android.

1.3.1 Building on the Linux kernel

Android is built on a Linux kernel and on an advanced, optimized VM for its Java
applications. Both technologies are crucial to Android. The Linux kernel component
of the Android stack promises agility and portability to take advantage of numerous
hardware options for future Android-equipped phones. Android’s Java environment
is key: It makes Android accessible to programmers because of both the number of
Java software developers and the rich environment that Java programming has to
offer.

 Why use Linux for a phone? Using a full-featured platform such as the Linux ker-
nel provides tremendous power and capabilities for Android. Using an open source
foundation unleashes the capabilities of talented individuals and companies to move
the platform forward. Such an arrangement is particularly important in the world of
mobile devices, where products change so rapidly. The rate of change in the mobile
market makes the general computer market look slow and plodding. And, of course,
the Linux kernel is a proven core platform. Reliability is more important than perfor-
mance when it comes to a mobile phone, because voice communication is the primary
use of a phone. All mobile phone users, whether buying for personal use or for a busi-
ness, demand voice reliability, but they still want cool data features and will purchase a
device based on those features. Linux can help meet this requirement.

 Speaking to the rapid rate of phone turnover and accessories hitting the market,
another advantage of using Linux as the foundation of the Android platform stack is
that it provides a hardware abstraction layer; the upper levels remain unchanged
despite changes in the underlying hardware. Of course, good coding practices
demand that user applications fail gracefully in the event a resource isn’t available,
such as a camera not being present in a particular handset model. As new accessories
appear on the market, drivers can be written at the Linux level to provide support, just
as on other Linux platforms. This architecture is already demonstrating its value;
Android devices are already available on distinct hardware platforms. HTC, Motorola,
and others have released Android-based devices built on their respective hardware
platforms. User applications, as well as core Android applications, are written in Java
and are compiled into byte codes. Byte codes are interpreted at runtime by an inter-
preter known as a virtual machine (VM).

12 CHAPTER 1 Introducing Android

1.3.2 Running in the Dalvik VM

The Dalvik VM is an example of the need for efficiency, the desire for a rich program-
ming environment, and even some intellectual property constraints, colliding, with
innovation as the result. Android’s Java environment provides a rich application plat-
form and is accessible because of the popularity of Java itself. Also, application perfor-
mance, particularly in a low-memory setting such as you find in a mobile phone, is
paramount for the mobile market. But this isn’t the only issue at hand.

 Android isn’t a Java ME platform. Without commenting on whether this is ulti-
mately good or bad for Android, there are other forces at play here. There’s the mat-
ter of Java VM licensing from Oracle. From a high level, Android’s code environment
is Java. Applications are written in Java, which is compiled to Java byte codes and sub-
sequently translated to a similar but different representation called dex files. These
files are logically equivalent to Java byte codes, but they permit Android to run its
applications in its own VM that’s both (arguably) free from Oracle’s licensing clutches
and an open platform upon which Google, and potentially the open source commu-
nity, can improve as necessary. Android is facing litigation challenges from Oracle
about the use of Java.

NOTE From the mobile application developer’s perspective, Android is a Java
environment, but the runtime isn’t strictly a Java VM. This accounts for the
incompatibilities between Android and proper Java environments and librar-
ies. If you have a code library that you want to reuse, your best bet is to assume
that your code is nearly source compatible, attempt to compile it into an
Android project, then determine how close you are to having usable code.

The important things to know about the Dalvik VM are that Android applications run
inside it and that it relies on the Linux kernel for services such as process, memory,
and filesystem management.

 Now that we’ve discussed the foundational technologies in Android, it’s time to
focus on Android application development. The remainder of this chapter discusses
high-level Android application architecture and introduces a simple Android applica-
tion. If you’re not comfortable or ready to begin coding, you might want to jump to
chapter 2, where we introduce the development environment step-by-step.

1.4 The Intent of Android development
Let’s jump into the fray of Android development, focus on an important component
of the Android platform, and expand to take a broader view of how Android applica-
tions are constructed.

 An important and recurring theme of Android development is the Intent. An
Intent in Android describes what you want to do. An Intent might look like “I want
to look up a contact record” or “Please launch this website” or “Show the order confir-
mation screen.” Intents are important because they not only facilitate navigation in
an innovative way, as we’ll discuss next, they also represent the most important aspect

of Android coding. Understand the Intent and you’ll understand Android.

13The Intent of Android development

NOTE Instructions for setting up the Eclipse development environment are
in appendix A. This environment is used for all Java examples in this book.
Chapter 2 goes into more detail on setting up and using the development
tools.

The code examples in this chapter are primarily for illustrative purposes.
We reference and introduce classes without necessarily naming specific Java
packages. Subsequent chapters take a more rigorous approach to introducing
Android-specific packages and classes.

Next, we’ll look at the foundational information about why Intents are important,
then we’ll describe how Intents work. Beyond the introduction of the Intent, the
remainder of this chapter describes the major elements of Android application devel-
opment, leading up to and including the first complete Android application that
you’ll develop.

1.4.1 Empowering intuitive UIs

The power of Android’s application framework lies in the way it brings a web mindset
to mobile applications. This doesn’t mean the platform has only a powerful browser
and is limited to clever JavaScript and server-side resources, but rather it goes to the
core of how the Android platform works and how users interact with the mobile
device. The power of the internet is that everything is just a click away. Those clicks are
known as Uniform Resource Locators (URLs), or alternatively, Uniform Resource Identifiers
(URIs). Using effective URIs permits easy and quick access to the information users
need and want every day. “Send me the link” says it all.

 Beyond being an effective way to get access to data, why is this URI topic important,
and what does it have to do with Intents? The answer is nontechnical but crucial: The
way a mobile user navigates on the platform is crucial to its commercial success. Plat-
forms that replicate the desktop experience on a mobile device are acceptable to only
a small percentage of hardcore power users. Deep menus and multiple taps and clicks
are generally not well received in the mobile market. The mobile application, more
than in any other market, demands intuitive ease of use. A consumer might buy a
device based on cool features that were enumerated in the marketing materials, but
that same consumer is unlikely to even touch the instruction manual. A UI’s usability
is highly correlated with its market penetration. UIs are also a reflection of the plat-
form’s data access model, so if the navigation and data models are clean and intuitive,
the UI will follow suit.

 Now we’re going to introduce Intents and IntentFilters, Android’s innovative
navigation and triggering mechanisms.

1.4.2 Intents and how they work

Intents and IntentFilters bring the “click on it” paradigm to the core of mobile
application use (and development) for the Android platform:

14 CHAPTER 1 Introducing Android

 An Intent is a declaration of need. It’s made up of a number of pieces of infor-
mation that describe the desired action or service. We’re going to examine the
requested action and, generically, the data that accompanies the requested
action.

 An IntentFilter is a declaration of capability and interest in offering assis-
tance to those in need. It can be generic or specific with respect to which
Intents it offers to service.

The action attribute of an Intent is typically a verb; for example VIEW, PICK, or EDIT. A
number of built-in Intent actions are defined as members of the Intent class, but
application developers can create new actions as well. To view a piece of information,
an application employs the following Intent action:

android.content.Intent.ACTION_VIEW

The data component of an Intent is expressed in the form of a URI and can be virtu-
ally any piece of information, such as a contact record, a website location, or a refer-
ence to a media clip. Table 1.1 lists some Android URI examples.

The IntentFilter defines the relationship between the Intent and the application.
IntentFilters can be specific to the data portion of the Intent, the action portion,
or both. IntentFilters also contain a field known as a category. The category helps
classify the action. For example, the category named CATEGORY_LAUNCHER instructs
Android that the Activity containing this IntentFilter should be visible in the
main application launcher or home screen.

 When an Intent is dispatched, the system evaluates the available Activitys,
Services, and registered BroadcastReceivers (more on these in section 1.5) and dis-
patches the Intent to the most appropriate recipient. Figure 1.4 depicts this relation-
ship among Intents, IntentFilters, and BroadcastReceivers.

IntentFilters are often defined in an application’s AndroidManifest.xml file with
the <intent-filter> tag. The AndroidManifest.xml file is essentially an application
descriptor file, which we’ll discuss later in this chapter.

 A common task on a mobile device is looking up a specific contact record for the
purpose of initiating a call, sending a text message, or looking up a snail-mail address
when you’re standing in line at the neighborhood pack-and-ship store. Or a user
might want to view a specific piece of information, say a contact record for user 1234.

Table 1.1 Commonly employed URIs in Android

Type of information URI data

Contact lookup content://contacts/people

Map lookup/search Geo:0,0?q=23+Route+206+Stanhope+NJ

Browser launch to a specific website http://www.google.com/
In these cases, the action is ACTION_VIEW and the data is a specific contact record

16 CHAPTER 1 Introducing Android

helpful when you know exactly which Activity you want to handle the Intent and
you don’t want to leave anything to chance in terms of what code is executed. To cre-
ate an explicit Intent, use the overloaded Intent constructor, which takes a class as
an argument:

public void onClick(View v) {
 try {
 startActivityForResult(new Intent(v.getContext(),RefreshJobs.class),0);
 } catch (Exception e) {
 . . .
 }
}

These examples show how an Android developer creates an Intent and asks for it to be
handled. Similarly, an Android application can be deployed with an IntentFilter,
indicating that it responds to Intents that were already defined on the system, thereby
publishing new functionality for the platform. This facet alone should bring joy to
independent software vendors (ISVs) who’ve made a living by offering better contact
managers and to-do list management software titles for other mobile platforms.

Intent resolution, or dispatching, takes place at runtime, as opposed to when the
application is compiled. You can add specific Intent-handling features to a device,
which might provide an upgraded or more desirable set of functionality than the orig-
inal shipping software. This runtime dispatching is also referred to as late binding.

 Thus far, this discussion of Intents has focused on the variety of Intents that cause
UI elements to be displayed. Other Intents are more event-driven than task-oriented,
as our earlier contact record example described. For example, you also use the Intent
class to notify applications that a text message has arrived. Intents are a central ele-
ment to Android; we’ll revisit them on more than one occasion.

 Now that we’ve explained Intents as the catalyst for navigation and event flow on
Android, let’s jump to a broader view and discuss the Android application lifecycle
and the key components that make Android tick. The Intent will come into better
focus as we further explore Android throughout this book.

The power and the complexity of Intents
It’s not hard to imagine that an absolutely unique user experience is possible with
Android because of the variety of Activitys with specific IntentFilters that are
installed on any given device. It’s architecturally feasible to upgrade various aspects
of an Android installation to provide sophisticated functionality and customization.
Though this might be a desirable characteristic for the user, it can be troublesome
for someone providing tech support who has to navigate a number of components
and applications to troubleshoot a problem.

Because of the potential for added complexity, this approach of ad hoc system patch-
ing to upgrade specific functionality should be entertained cautiously and with your
eyes wide open to the potential pitfalls associated with this approach.

17Four kinds of Android components

1.5 Four kinds of Android components
Let’s build on your knowledge of the Intent and IntentFilter classes and explore
the four primary components of Android applications, as well as their relation to the
Android process model. We’ll include code snippets to provide a taste of Android
application development. We’re going to leave more in-depth examples and discus-
sion for later chapters.

NOTE A particular Android application might not contain all of these ele-
ments, but will have at least one of these elements, and could have all of
them.

1.5.1 Activity

An application might have a UI, but it doesn’t have to have one. If it has a UI, it’ll have
at least one Activity.

 The easiest way to think of an Android Activity is to relate it to a visible screen,
because more often than not there’s a one-to-one relationship between an Activity
and a UI screen. This relationship is similar to that of a controller in the MVC paradigm.

 Android applications often contain more than one Activity. Each Activity dis-
plays a UI and responds to system- and user-initiated events. The Activity employs
one or more Views to present the actual UI elements to the user. The Activity class is
extended by user classes, as shown in the following listing.

package com.msi.manning.chapter1;
import android.app.Activity;
import android.os.Bundle;
public class Activity1 extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

The Activity class is part of the android.app Java package, found in the Android
runtime. The Android runtime is deployed in the android.jar file. The class
Activity1 extends the class Activity, which we’ll examine in detail in chapter 3.
One of the primary tasks an Activity performs is displaying UI elements, which are
implemented as Views and are typically defined in XML layout files. Chapter 3 goes
into more detail on Views and Resources.

 Moving from one Activity to another is accomplished with the startActivity()
method or the startActivityForResult() method when you want a synchronous
call/result paradigm. The argument to these methods is an instance of an Intent.

 The Activity represents a visible application component within Android. With

Listing 1.1 A basic Activity in an Android application
assistance from the View class, which we’ll cover in chapter 3, the Activity is the most

18 CHAPTER 1 Introducing Android

commonly employed Android application component. The next topic of interest is
the Service, which runs in the background and doesn’t generally present a direct UI.

1.5.2 Service

If an application is to have a long lifecycle, it’s often best to put it into a Service. For
example, a background data synchronization utility should be implemented as a
Service. A best practice is to launch Services on a periodic or as-needed basis, trig-
gered by a system alarm, and then have the Service terminate when its task is complete.

 Like the Activity, a Service is a class in the Android runtime that you should
extend, as shown in the following listing. This example extends a Service, and peri-
odically publishes an informative message to the Android log.

package com.msi.manning.chapter1;
import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;
public class Service1 extends Service implements Runnable {
public static final String tag = "service1";
 private int counter = 0;
 @Override
 protected void onCreate() {
 super.onCreate();
 Thread aThread = new Thread (this);
 aThread.start();
 }
 public void run() {
 while (true) {
 try {
 Log.i(tag,"service1 firing : # " + counter++);
 Thread.sleep(10000);
 } catch(Exception ee) {
 Log.e(tag,ee.getMessage());
 }
 }

Listing 1.2 A simple example of an Android Service

You say Intent; I say Intent
The Intent class is used in similar sounding but very different scenarios.

Some Intents are used to assist in navigating from one Activity to the next, such
as the example given earlier of viewing a contact record. Activities are the targets of
these kinds of Intents, which are used with the startActivity or startActivi-
tyForResult methods.

Also, a Service can be started by passing an Intent to the startService method.

BroadcastReceivers receive Intents when responding to system-wide events,
such as a ringing phone or an incoming text message.

Extend
Service
class

B

InitializationC
 }

19Four kinds of Android components

@Override
public IBinder onBind(Intent intent) {
return null;
}

}

This example requires that the package android.app.Service be imported. This
package contains the Service class. This example also demonstrates Android’s log-
ging mechanism android.util.Log, which is useful for debugging purposes. (Many
examples in this book include using the logging facility. We’ll discuss logging in more
depth in chapter 2.) The Service1 class B extends the Service class. This class
implements the Runnable interface to perform its main task on a separate thread. The
onCreate method C of the Service class permits the application to perform initial-
ization-type tasks. We’re going to talk about the onBind() method D in further detail
in chapter 4, when we’ll explore the topic of interprocess communication in general.

 Services are started with the startService(Intent) method of the abstract
Context class. Note that, again, the Intent is used to initiate a desired result on the
platform.

 Now that the application has a UI in an Activity and a means to have a back-
ground task via an instance of a Service, it’s time to explore the BroadcastReceiver,
another form of Android application that’s dedicated to processing Intents.

1.5.3 BroadcastReceiver

If an application wants to receive and respond to a global event, such as a ringing
phone or an incoming text message, it must register as a BroadcastReceiver. An
application registers to receive Intents in one of the following ways:

 The application can implement a <receiver> element in the Android-
Manfest.xml file, which describes the BroadcastReceiver’s class name and enu-
merates its IntentFilters. Remember, the IntentFilter is a descriptor of the
Intent an application wants to process. If the receiver is registered in the
AndroidManifest.xml file, the application doesn’t need to be running in order
to be triggered. When the event occurs, the application is started automatically
upon notification of the triggering event. Thankfully, all this housekeeping is
managed by the Android OS itself.

 An application can register at runtime via the Context class’s register-
Receiver method.

Like Services, BroadcastReceivers don’t have a UI. Even more importantly, the code
running in the onReceive method of a BroadcastReceiver should make no assump-
tions about persistence or long-running operations. If the BroadcastReceiver
requires more than a trivial amount of code execution, it’s recommended that the
code initiate a request to a Service to complete the requested functionality because
the Service application component is designed for longer-running operations
whereas the BroadcastReceiver is meant for responding to various triggers.

Handle
Binding request

D

20 CHAPTER 1 Introducing Android

NOTE The familiar Intent class is used in triggering BroadcastReceivers.
The parameters will differ, depending on whether you’re starting an Activ-
ity, a Service, or a BroadcastReceiver, but it’s the same Intent class
that’s used throughout the Android platform.

A BroadcastReceiver implements the abstract method onReceive to process incom-
ing Intents. The arguments to the method are a Context and an Intent. The method
returns void, but a handful of methods are useful for passing back results, including
setResult, which passes back to the invoker an integer return code, a String return
value, and a Bundle value, which can contain any number of objects.

 The following listing is an example of a BroadcastReceiver triggering upon
receipt of an incoming text message.

package com.msi.manning.unlockingandroid;
import android.content.Context;
import android.content.Intent;
import android.util.Log;
import.android.content.BroadcastReceiver
public class MySMSMailBox extends BroadcastReceiver {
public static final String tag = "MySMSMailBox";
@Override
public void onReceive(Context context, Intent intent) {
 Log.i(tag,"onReceive");
 if (intent.getAction().equals
("android.provider.Telephony.SMS_RECEIVED")) {
 Log.i(tag,"Found our Event!");
 }
}

We need to discuss a few items in this listing. The class MySMSMailBox extends the
BroadcastReceiver class. This subclass approach is the most straightforward way to
employ a BroadcastReceiver. (Note the class name MySMSMailBox; it’ll be used in the
AndroidManifest.xml file, shown in listing 1.4.) The tag variable B is used in con-
junction with the logging mechanism to assist in labeling messages sent to the console
log on the emulator. Using a tag in the log enables us to filter and organize log mes-
sages in the console. (We discuss the log mechanism in more detail in chapter 2.) The
onReceive method is where all the work takes place in a BroadcastReceiver; you
must implement this method. A given BroadcastReceiver can register multiple
IntentFilters. A BroadcastReceiver can be instantiated for an arbitrary number of
Intents.

 It’s important to make sure that the application handles the appropriate Intent by
checking the action of the incoming Intent C. When the application receives the
desired Intent, it should carry out the specific functionality that’s required. A com-
mon task in an SMS-receiving application is to parse the message and display it to the
user via the capabilities found in the NotificationManager. (We’ll discuss notifica-

Listing 1.3 A sample BroadcastReceiver

Tag used
in logging

B

Check
Intent’s action

C

tions in chapter 8.) In listing 1.3, we simply record the action to the log.

21Four kinds of Android components

 In order for this BroadcastReceiver to fire and receive this Intent, the Broadcast-
Receiver is listed in the AndroidManifest.xml file, along with an appropriate intent-
filter tag, as shown in the following listing. This listing contains the elements
required for the application to respond to an incoming text message.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.unlockingandroid">
 <uses-permission android:name="android.permission.RECEIVE_SMS" />
 <application android:icon="@drawable/icon">
 <activity android:name=".Activity1" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name=".MySMSMailBox" >
 <intent-filter>
 <action android:name="android.provider.Telephony.SMS_RECEIVED" />
 </intent-filter>
 </receiver>
 </application>
</manifest>

Certain tasks within the Android platform require the application to have a designated
privilege. To give an application the required permissions, use the <uses-

permission> tag B. (We’ll discuss this tag in detail in section 1.6.) The <receiver>
tag contains the class name of the class implementing the BroadcastReceiver. In this
example, the class name is MySMSMailBox, from the package com.msi.manning.
unlockingandroid. Be sure to note the dot that precedes the name C. This dot is
required. If your application isn’t behaving as expected, one of the first places to
check is your Android.xml file, and look for the dot before the class name! The
IntentFilter is defined in the <intent-filter> tag. The desired action in this

Listing 1.4 AndroidManifest.xml

BRequired permission

Receiver tag;
note dot prefix

C

Testing SMS
The emulator has a built-in set of tools for manipulating certain telephony behavior
to simulate a variety of conditions, such as in-network and out-of-network coverage
and placing phone calls.

To send an SMS message to the emulator, telnet to port 5554 (the port number
might vary on your system), which will connect to the emulator, and issue the follow-
ing command at the prompt:
sms send <sender's phone number> <body of text message>

To learn more about available commands, type help at the prompt.

We’ll discuss these tools in more detail in chapter 2.

22 CHAPTER 1 Introducing Android

example is android.provider.Telephony.SMS_RECEIVED. The Android SDK contains
the available actions for the standard Intents. Also, remember that user applications
can define their own Intents, as well as listen for them.

 Now that we’ve introduced Intents and the Android classes that process or handle
Intents, it’s time to explore the next major Android application topic: the Content-
Provider, Android’s preferred data-publishing mechanism.

1.5.4 ContentProvider

If an application manages data and needs to expose that data to other applications
running in the Android environment, you should consider a ContentProvider. If an
application component (Activity, Service, or BroadcastReceiver) needs to access
data from another application, the component accesses the other application’s
ContentProvider. The ContentProvider implements a standard set of methods to
permit an application to access a data store. The access might be for read or write
operations, or for both. A ContentProvider can provide data to an Activity or
Service in the same containing application, as well as to an Activity or Service con-
tained in other applications.

 A ContentProvider can use any form of data storage mechanism available on the
Android platform, including files, SQLite databases, or even a memory-based hash
map if data persistence isn’t required. The ContentProvider is a data layer that pro-
vides data abstraction for its clients and centralizing storage and retrieval routines in a
single place.

 Sharing files or databases directly is discouraged on the Android platform, and is
enforced by the underlying Linux security system, which prevents ad hoc file access
from one application space to another without explicitly granted permissions.

 Data stored in a ContentProvider can be traditional data types, such as integers
and strings. Content providers can also manage binary data, such as image data. When
binary data is retrieved, the suggested best practice is to return a string representing
the filename that contains the binary data. If a filename is returned as part of a
ContentProvider query, the application shouldn’t access the file directly; you should
use the helper class, ContentResolver’s openInputStream method, to access the
binary data. This approach navigates the Linux process and security hurdles, as well as
keeps all data access normalized through the ContentProvider. Figure 1.5 outlines
the relationship among ContentProviders, data stores, and their clients.

 A ContentProvider’s data is accessed by an Android application through a Con-
tent URI. A ContentProvider defines this URI as a public static final String. For
example, an application might have a data store managing material safety data sheets.
The Content URI for this ContentProvider might look like this:

public static final Uri CONTENT_URI =
Uri.parse("content://com.msi.manning.provider.unlockingandroid/datasheets");

From this point, accessing a ContentProvider is similar to using Structured Query
Language (SQL) in other platforms, though a complete SQL statement isn’t

employed. A query is submitted to the ContentProvider, including the columns

24 CHAPTER 1 Introducing Android

1.6 Understanding the AndroidManifest.xml file
In the preceding sections, we introduced the common elements of an Android appli-
cation. A fundamental fact of Android development is that an Android application
contains at least one Activity, Service, BroadcastReceiver, or ContentProvider.
Some of these elements advertise the Intents they’re interested in processing via the
IntentFilter mechanism. All these pieces of information need to be tied together
for an Android application to execute. The glue mechanism for this task of defining
relationships is the AndroidManifest.xml file.

 The AndroidManifest.xml file exists in the root of an application directory and
contains all the design-time relationships of a specific application and Intents.
AndroidManfest.xml files act as deployment descriptors for Android applications. The
following listing is an example of a simple AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.unlockingandroid">
 <application android:icon="@drawable/icon">
 <activity android:name=".Activity1" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Looking at this simple AndroidManifest.xml file, you see that the manifest element
contains the obligatory namespace, as well as the Java package name containing this
application. This application contains a single Activity, with the class name
Activity1. Note also the @string syntax. Any time an @ symbol is used in an
AndroidManifest.xml file, it references information stored in one of the resource
files. In this case, the label attribute is obtained from the string resource identified as
app_name. (We discuss resources in further detail later in chapter 3.) This applica-
tion’s lone Activity contains a single IntentFilter definition. The IntentFilter
used here is the most common IntentFilter seen in Android applications. The
action android.intent.action.MAIN indicates that this is an entry point to the appli-
cation. The category android.intent.category.LAUNCHER places this Activity in
the launcher window, as shown in figure 1.6. It’s possible to have multiple Activity
elements in a manifest file (and thereby an application), with zero or more of them
visible in the launcher window.

 In addition to the elements used in the sample manifest file shown in listing 1.5,
other common tags are:

 The <service> tag represents a Service. The attributes of the <service> tag
include its class and label. A Service might also include the <intent-filter>

Listing 1.5 AndroidManifest.xml file for a basic Android application
tag.

25Mapping applications to processes

 The <receiver> tag represents a
BroadcastReceiver, which might have
an explicit <intent-filter> tag.

 The <uses-permission> tag tells
Android that this application requires
certain security privileges. For exam-
ple, if an application requires access to
the contacts on a device, it requires the
following tag in its AndroidMani-
fest.xml file:
<uses-permission android:name=
"android.permission.READ_CONTACTS" />

We’ll revisit the AndroidManifest.xml file a
number of times throughout the book because
we need to add more details about certain ele-
ments and specific coding scenarios.

 Now that you have a basic understanding of
the Android application and the AndroidMani-
fest.xml file, which describes its components,
it’s time to discuss how and where an Android
application executes. To do that, we need to
talk about the relationship between an
Android application and its Linux and Dalvik
VM runtime.

1.7 Mapping applications to
processes
Android applications each run in a single
Linux process. Android relies on Linux for pro-
cess management, and the application itself runs in an instance of the Dalvik VM. The
OS might need to unload, or even kill, an application from time to time to accommo-
date resource allocation demands. The system uses a hierarchy or sequence to select
the victim during a resource shortage. In general, the system follows these rules:

 Visible, running activities have top priority.
 Visible, nonrunning activities are important, because they’re recently paused

and are likely to be resumed shortly.
 Running services are next in priority.
 The most likely candidates for termination are processes that are empty

(loaded perhaps for performance-caching purposes) or processes that have
dormant Activitys.

Figure 1.6 Applications are listed in the
launcher based on their IntentFilter. In
this example, the application Where Do You
Live is available in the LAUNCHER category.
Let’s apply some of what you’ve learned by building your first Android application.

26 CHAPTER 1 Introducing Android

1.8 Creating an Android application
Let’s look at a simple Android application consisting of a single Activity, with one
View. The Activity collects data (a street address) and creates an Intent to find this
address. The Intent is ultimately dispatched to Google Maps. Figure 1.7 is a screen
shot of the application running on the emulator. The name of the application is
Where Do You Live.

ps -a
The Linux environment is complete, including process management. You can launch
and kill applications directly from the shell on the Android platform, but this is a
developer’s debugging task, not something the average Android handset user is
likely to carry out. It’s nice to have this option for troubleshooting application issues.
It’s a relatively recent phenomenon to be able to touch the metal of a mobile phone
in this way. For more in-depth exploration of the Linux foundations of Android, see
chapter 13.
Figure 1.7 This Android application demonstrates a simple Activity and Intent.

27Creating an Android application

 As we previously stated, the AndroidManifest.xml file contains the descriptors for
the application components of the application. This application contains a single
Activity named AWhereDoYouLive. The application’s AndroidManifest.xml file is
shown in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.unlockingandroid">
 <application android:icon="@drawable/icon">
 <activity android:name=".AWhereDoYouLive"
android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
<uses-permission android:name="android.permission.INTERNET" />
</manifest>

The sole Activity is implemented in the file AWhereDoYouLive.java, shown in the
following listing.

package com.msi.manning.unlockingandroid;
// imports omitted for brevity
public class AWhereDoYouLive extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 final EditText addressfield =
 (EditText) findViewById(R.id.address);
 final Button button = (Button)
 findViewById(R.id.launchmap);
 button.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View view) {
 try {
 String address = addressfield.getText().toString();
 address = address.replace(' ', '+');
 Intent geoIntent = new Intent
(android.content.Intent.ACTION_VIEW,
Uri.parse("geo:0,0?q=" + address));
 startActivity(geoIntent);
 } catch (Exception e) {

 }
 }
 });
 }

Listing 1.6 AndroidManifest.xml for the Where Do You Live application

Listing 1.7 Implementing the Android Activity in AWhereDoYouLive.java

B Get
address

C Prepare
Intent
}

28 CHAPTER 1 Introducing Android

In this example application, the setContentView method creates the primary UI,
which is a layout defined in main.xml in the /res/layout directory. The EditText view
collects information, which in this case is an address. The EditText view is a text box
or edit box in generic programming parlance. The findViewById method connects
the resource identified by R.id.address to an instance of the EditText class.

 A Button object is connected to the launchmap UI element, again using the find-
ViewById method. When this button is clicked, the application obtains the entered
address by invoking the getText method of the associated EditText B.

 When the address has been retrieved from the UI, we need to create an Intent to
find the entered address. The Intent has a VIEW action, and the data portion repre-
sents a geographic search query C.

 Finally, the application asks Android to perform the Intent, which ultimately
results in the mapping application displaying the chosen address. The startActivity
method is invoked, passing in the prepared Intent.

 Resources are precompiled into a special class known as the R class, as shown in
listing 1.8. The final members of this class represent UI elements. You should never
modify the R.java file manually; it’s automatically built every time the underlying
resources change. (We’ll cover Android resources in greater depth in chapter 3.)

/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */
package com.msi.manning.unlockingandroid;
public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int icon=0x7f020000;
 }
 public static final class id {
 public static final int address=0x7f050000;
 public static final int launchmap=0x7f050001;
 }
 public static final class layout {
 public static final int main=0x7f030000;
 }
 public static final class string {
 public static final int app_name=0x7f040000;
 }
}

Figure 1.7 shows the sample application in action. Someone looked up the address of
the White House; the result shows the White House pinpointed on the map.

Listing 1.8 R.java contains the R class, which has UI element identifiers

29Creating an Android application

 The primary screen of this application is defined as a LinearLayout view, as shown
in the following listing. It’s a single layout containing one label, one text entry ele-
ment, and one button control.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Please enter your home address."
 />
<EditText
 android:id="@+id/address"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
android:autoText="true"
/>
<Button
 android:id="@+id/launchmap"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Show Map"
 />
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Unlocking Android, Chapter 1."
 />
</LinearLayout>

Note the use of the @ symbol in this resource’s id attribute B and C. This symbol
causes the appropriate entries to be made in the R class via the automatically gener-
ated R.java file. These R class members are used in the calls to findViewById(), as
shown in listing 1.7, to tie the UI elements to an instance of the appropriate class.

 A strings file and icon round out the resources in this simple application. The
strings.xml file for this application is shown in the following listing. This file is used to
localize string content.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Where Do You Live</string>
</resources>

Listing 1.9 Main.xml defines the UI elements for our sample application

Listing 1.10 strings.xml

ID assignment
for EditText

B

ID assignment
for Button

C

30 CHAPTER 1 Introducing Android

As you’ve seen, an Android application has a few moving pieces—though the compo-
nents themselves are rather straightforward and easy to stitch together. As we progress
through the book, we’ll introduce additional sample applications step-by-step as we
cover each of the major elements of Android development activities.

1.9 Summary
This chapter introduced the Android platform and briefly touched on market posi-
tioning, including what Android is up against in the rapidly changing mobile market-
place. Inside two short years, the Android SDK has been announced, released, and
updated no fewer than four times. And that’s just the software. Major device manufac-
turers have now signed on to the Android platform and have brought capable devices
to market, including a privately labeled device from Google itself. Android’s future
continues to brighten.

 In this chapter, we examined the Android stack and discussed its relationship with
Linux and Java. With Linux at its core, Android is a formidable platform, especially
for the mobile space where it’s initially targeted. Although Android development is
done in the Java programming language, the runtime is executed in the Dalvik VM, as
an alternative to the Java VM from Oracle. Regardless of the VM, Java coding skills are
an important aspect of Android development.

 We also examined the Android SDK’s Intent class. The Intent is what makes
Android tick. It’s responsible for how events flow and which code handles them. It
provides a mechanism for delivering specific functionality to the platform, enabling
third-party developers to deliver innovative solutions and products for Android. We
introduced all the main application classes of Activity, Service, ContentProvider,
and BroadcastReceiver, with a simple code snippet example for each. Each of these
application classes use Intents in a slightly different manner, but the core facility of
using Intents to control application behavior enables the innovative and flexible
Android environment. Intents and their relationship with these application classes
will be unpacked and unlocked as we progress through this book.

 The AndroidManifest.xml descriptor file ties all the details together for an
Android application. It includes all the information necessary for the application to
run, what Intents it can handle, and what permissions the application requires.
Throughout this book, the AndroidManifest.xml file will be a familiar companion as
we add and explain new elements.

 Finally, this chapter provided a taste of Android application development with a
simple example tying a simple UI, an Intent, and Google Maps into one seamless and
useful experience. This example is, of course, just scratching the surface of what
Android can do. The next chapter takes a deeper look into the Android SDK so that
you can learn more about the toolbox we’ll use to unlock Android.

Android’s development
environment
Building upon the foundational information presented in the first chapter, we pick
up the pace by introducing the Android development environment used to con-
struct the applications in the balance of the book. If you haven’t installed the devel-
opment tools, refer to appendix A for a step-by-step guide to downloading and
installing the tools.

 This chapter introduces the Android development tool chain, the software tools
required to build Android applications, and serves as your hands-on guide to creat-
ing, testing, and even debugging applications. When you’ve completed this chap-
ter, you’ll be familiar with using Eclipse and the Android Development Tools (ADT)
plug-in for Eclipse, navigating the Android SDK, running Android applications in

This chapter covers
 Introducing the Android SDK

 Exploring the development environment

 Building an Android application in Eclipse

 Debugging applications in the Android emulator
31

32 CHAPTER 2 Android’s development environment

the emulator, and stepping line-by-line through a sample application that you’ll con-
struct in this chapter: a simple tip calculator.

 Android developers spend a significant amount of time working with the Android
emulator to debug their applications. This chapter goes into detail about creating and
building projects, defining Android virtual devices (emulators), setting up run config-
urations, and running and debugging applications on an instance of the Android
emulator. If you’ve never constructed an Android application, please don’t skip this
chapter; mastering the basics demonstrated here will aide your learning throughout
the rest of the book.

 When embracing a new platform, the first task for a developer is gaining an under-
standing of the SDK and its components. Let’s start by examining the core compo-
nents of the Android SDK, then transition into using the SDK’s tools to build and
debug an application.

2.1 Introducing the Android SDK
The Android SDK is a freely available download from the Android website. The first
thing you should do before going any further in this chapter is make sure you have the
Android SDK installed, along with Eclipse and the Android plug-in for Eclipse, also
known as the Android Development Tools, or simply as the ADT. The Android SDK is
required to build Android applications, and Eclipse is the preferred development envi-
ronment for this book. You can download the Android SDK from http://developer.
android.com/sdk/index.html.

TIP The Android download page has instructions for installing the SDK, or
you can refer to appendix A of this book for detailed information on install-
ing the required development tools.

As in any development environment, becoming familiar with the class structures is
helpful, so having the documentation at hand as a reference is a good idea. The
Android SDK includes HTML-based documentation, which primarily consists of
Javadoc-formatted pages that describe the available packages and classes. The
Android SDK documentation is in the /doc directory under your SDK installation.
Because of the rapidly changing nature of this new platform, you might want to keep
an eye out for any changes to the SDK. The most up-to-date Android SDK documenta-
tion is available at http://developer.android.com/reference/packages.html.

 Android’s Java environment can be broken down into a handful of key sections.
When you understand the contents in each of these sections, the Javadoc reference
material that ships with the SDK becomes a real tool and not just a pile of seemingly
unrelated material. You might recall that Android isn’t a strictly Java ME software envi-
ronment, but there’s some commonality between the Android platforms and other
Java development platforms. The next few sections review some of the Java packages
(core and optional) in the Android SDK and where you can use them. The remaining
chapters provide a deeper look into using many of these programming topics.

33Introducing the Android SDK

2.1.1 Core Android packages

If you’ve ever developed in Java, you’ll recognize many familiar Java packages for core
functionality. These packages provide basic computational support for things such as
string management, input/output controls, math, and more. The following list con-
tains some of the Java packages included in the Android SDK:

 java.lang—Core Java language classes
 java.io—Input/output capabilities
 java.net—Network connections
 java.text—Text-handling utilities
 java.math—Math and number-manipulation classes
 javax.net—Network classes
 javax.security—Security-related classes
 javax.xml—DOM-based XML classes
 org.apache.*—HTTP-related classes
 org.xml—SAX-based XML classes

Additional Java classes are also included. Generally speaking, this book won’t focus
much on the core Java packages listed here, because our primary concern is Android
development. With that in mind, let’s look at the Android-specific functionality found
in the Android SDK.

 Android-specific packages are easy to identify because they start with android in
the package name. Some of the more important packages are:

 android.app—Android application model access
 android.bluetooth—Android’s Bluetooth functionality
 android.content—Accessing and publishing data in Android
 android.net—Contains the Uri class, used for accessing content
 android.gesture—Create, recognize, load, and save gestures
 android.graphics—Graphics primitives
 android.location—Location-based services (such as GPS)
 android.opengl—OpenGL classes
 android.os—System-level access to the Android environment
 android.provider—ContentProvider-related classes
 android.telephony—Telephony capability access, including support for both

Code Division Multiple Access (CDMA) and Global System for Mobile commu-
nication (GSM) devices

 android.text—Text layout
 android.util—Collection of utilities for logging and text manipulation,

including XML

 android.view—UI elements
 android.webkit—Browser functionality

 android.widget—More UI elements

34 CHAPTER 2 Android’s development environment

Some of these packages are core to Android application development, including
android.app, android.view, and android.content. Other packages are used to vary-
ing degrees, depending on the type of applications that you’re constructing.

2.1.2 Optional packages

Not every Android device has the same hardware and mobile connectivity capabilities,
so you can consider some elements of the Android SDK as optional. Some devices sup-
port these features, and others don’t. It’s important that an application degrade grace-
fully if a feature isn’t available on a specific handset. Java packages that you should pay
special attention to include those that rely on specific, underlying hardware and net-
work characteristics, such as location-based services (including GPS) and wireless tech-
nologies such as Bluetooth and Wi-Fi (802.11).

 This quick introduction to the Android SDK’s programming interfaces is just
that—quick and at-a-glance. Upcoming chapters go into the class libraries in further
detail, exercising specific classes as you learn about various topics such as UIs, graph-
ics, location-based services, telephony, and more. For now, the focus is on the tools
required to compile and run (or build) Android applications.

 Before you build an Android application, let’s examine how the Android SDK and
its components fit into the Eclipse environment.

2.2 Exploring the development environment
After you install the Android SDK and the ADT plug-in for Eclipse, you’re ready to
explore the development environment. Figure 2.1 depicts the typical Android devel-
opment environment, including both real hardware and the useful Android emulator.
Although Eclipse isn’t the exclusive tool required for Android development, it can
play a big role in Android development, not only because it provides a rich Java com-
pilation and debugging environment, but also because with the ADT plug-in, you can
manage and control virtually all aspects of testing your Android applications directly
from the Eclipse IDE.

 The following list describes key features of the Eclipse environment as it pertains
to Android application development:

 A rich Java development environment, including Java source compilation, class
auto-completion, and integrated Javadoc

 Source-level debugging
 AVD management and launch
 The Dalvik Debug Monitor Server (DDMS)
 Thread and heap views
 Emulator filesystem management
 Data and voice network control
 Emulator control
 System and application logging

Eclipse supports the concept of perspectives, where the layout of the screen has a set of

related windows and tools. The windows and tools included in an Eclipse perspective

36 CHAPTER 2 Android’s development environment

The Java perspective is where you’ll edit your Java source code. Every time you save
your source file, it’s automatically compiled by Eclipse’s Java development tools (JDT)
in the background. You don’t need to worry about the specifics of the JDT; the impor-
tant thing to know is that it’s functioning in the background to make your Java experi-
ence as seamless and painless as possible. If there’s an error in your source code, the
details will show up in the Problems view of the Java perspective. Figure 2.3 has an
intentional error in the source code to demonstrate the Problems view. You can also
put your mouse over the red x to the left of the line containing the error for a tool-tip
explanation of the problem.

 One powerful feature of the Java perspective in Eclipse is the integration between
the source code and the Javadoc view. The Javadoc view updates automatically to pro-
vide any available documentation about a currently selected Java class or method, as
shown in figure 2.4. In this figure, the Javadoc view displays information about the
Activity class.

TIPS This chapter scratches the surface in introducing the powerful Eclipse
environment. To learn more about Eclipse, you might consider reading
Eclipse in Action: A Guide for Java Developers, by David Gallardo, Ed Burnette,
and Robert McGovern, published by Manning and available online at http://
www.manning.com/.

It’s easy to get the views in the current perspective into a layout that isn’t

Figure 2.3 The Problems view shows any errors in your source code.
what you really want. If this occurs, you have a couple of choices to restore

37Exploring the development environment

the perspective to a more useful state. You can use the Show View menu
under the Window menu to display a specific view or you can select the Reset
Perspective menu to restore the perspective to its default settings.

In addition to the JDT, which compiles Java source files, the ADT automatically com-
piles Android-specific files such as layout and resource files. You’ll learn more about
the underlying tools later in this chapter and again in chapter 3, but now it’s time to
have a look at the Android-specific perspective in the DDMS.

2.2.2 The DDMS perspective

The DDMS perspective provides a dashboard-like view into the heart of a running
Android device, or in this example, a running Android emulator. Figure 2.5 shows the
emulator running the chapter 2 sample application.

 We’ll walk through the details of the application, including how to build the appli-
cation and how to start it running in the Android emulator, but first let’s see what
there is to learn from the DDMS with regard to our discussion about the tools available
for Android development.

Figure 2.4 The Javadoc view provides context-sensitive documentation, in this case for the
Activity class.

38 CHAPTER 2 Android’s development environment

The Devices view in figure 2.5 shows a single emulator session, titled emulator-tcp-
5554. The title indicates that there’s a connection to the Android emulator at TCP/IP
port 5554. Within this emulator session, five processes are running. The one of inter-
est to us is com.manning.unlockingandroid, which has the process ID 1707.

TIP Unless you’re testing a peer-to-peer application, you’ll typically have
only a single Android emulator session running at a time although it is pos-
sible to have multiple instances of the Android emulator running concur-
rently on a single development machine. You might also have a physical
Android device connected to your development machine—the DDMS inter-
face is the same.

Logging is an essential tool in software development, which brings us to the LogCat
view of the DDMS perspective. This view provides a glimpse at system and application
logging taking place in the Android emulator. In figure 2.5, a filter has been set up for
looking at entries with a tag value of Chapter2. Using a filter on the LogCat is a help-
ful practice, because it can reduce the noise of all the logging entries and let you focus
on your own application’s entries. In this case, four entries in the list match our filter
criteria. We’ll look at the source code soon to see how you get your messages into the
log. Note that these log entries have a column showing the process ID, or PID, of the

Figure 2.5 DDMS perspective with an application running in the Android emulator

39Exploring the development environment

application contributing the log entry. As expected, the PID for our log entries is 616,
matching our running application instance in the emulator.

 The File Explorer view is shown in the upper right of figure 2.5. User applica-
tions—the ones you and I write—are deployed with a file extension of .apk and stored
in the /data/app directory of the Android device. The File Explorer view also permits
filesystem operations such as copying files to and from the Android emulator, as well
as removing files from the emulator’s filesystem. Figure 2.6 shows the process of delet-
ing a user application from the /data/app directory.

 Obviously, being able to casually browse the filesystem of your mobile phone is a
great convenience. This feature is nice to have for mobile development, where you’re
often relying on cryptic pop-up messages to help you along in the application develop-
ment and debugging process. With easy access to the filesystem, you can work with files
and readily copy them to and from your development computer platform as necessary.

 In addition to exploring a running application, the DDMS perspective provides
tools for controlling the emulated environment. For example, the Emulator Control
view lets you test connectivity characteristics for both voice and data networks, such as
simulating a phone call or receiving an incoming Short Message Service (SMS). Figure
2.7 demonstrates sending an SMS message to the Android emulator.

 The DDMS provides a lot of visibility into, and control over, the Android emulator,
and is a handy tool for evaluating your Android applications. Before we move on to
building and testing Android applications, it’s helpful to understand what’s happen-
ing behind the scenes and what’s enabling the functionality of the DDMS.

Figure 2.6 Delete applications from the emulator by highlighting the application file and clicking the
Delete button.

40 CHAPTER 2 Android’s development environment

2.2.3 Command-line tools

The Android SDK ships with a collection of command-line tools, which are located in
the tools subdirectory of your Android SDK installation. Eclipse and the ADT provide a
great deal of control over the Android development environment, but sometimes it’s
nice to exercise greater control, particularly when considering the power and conve-
nience that scripting can bring to a development platform. Next, we’re going to
explore two of the command-line tools found in the Android SDK.

TIP It’s a good idea to add the tools directory to your search path. For exam-
ple, if your Android SDK is installed to c:\software\google\ androidsdk, you can
add the Android SDK to your path by performing the following operation in a
command window on your Windows computer:
set path=%path%;c:\software\google\androidsdk\tools;

Or use the following command for Mac OS X and Linux:
export PATH=$PATH:/path_to_Android_SDK_directory/tools

ANDROID ASSET PACKAGING TOOL

You might be wondering just how files such as the layout file main.xml get processed
and exactly where the R.java file comes from. Who zips up the application file for you
into the apk file? Well, you might have already guessed the answer from the heading
of this section—it’s the Android Asset Packaging Tool, or as it’s called from the command
line, aapt. This versatile tool combines the functionality of pkzip or jar along with an
Android-specific resource compiler. Depending on the command-line options you
provide to it, aapt wears a number of hats and assists with your design-time Android
development tasks. To learn the functionality available in aapt, run it from the com-
mand line with no arguments. A detailed usage message is written to the screen.

 Whereas aapt helps with design-time tasks, another tool, the Android Debug

Figure 2.7 Sending a test SMS to the Android emulator
Bridge, assists you at runtime to interact with the Android emulator.

41Exploring the development environment

ANDROID DEBUG BRIDGE

The Android Debug Bridge (adb) utility permits you to interact with the Android emula-
tor directly from the command line or script. Have you ever wished you could navigate
the filesystem on your smartphone? Now you can with the adb! The adb works as a
client/server TCP-based application. Although a couple of background processes run
on the development machine and the emulator to enable your functionality, the
important thing to understand is that when you run adb, you get access to a running
instance of the Android emulator. Here are a couple of examples of using adb. First,
let’s look to see if we have any available Android emulator sessions running:

adb devices<return>

This command returns a list of available Android emulators; figure 2.8 demonstrates
adb locating two running emulator sessions.

 Let’s connect to the first Android emulator session and see if your application is
installed. You connect to a device or emulator with the syntax adb shell. You would
connect this way if you had a single Android emulator session active, but because two
emulators are running, you need to specify the serial number, or identifier, to connect
to the appropriate session:

adb –s "serialnumber" shell

Figure 2.9 shows off the Android filesystem and demonstrates looking for a specific
installed application, namely our chapter2 sample application, which you’ll build in
section 2.3.

 Using the shell can be handy when you want to remove a specific file from the
emulator’s filesystem, kill a process, or generally interact with the operating environ-
ment of the Android emulator. If you download an application from the internet, for
example, you can use the adb command to install the application:

adb [-s serialnumber] shell install someapplication.apk

This command installs the application named someapplication to the Android emu-
lator. The file is copied to the /data/app directory and is accessible from the Android
application launcher. Similarly, if you want to remove an application, you can run adb
to remove an application from the Android emulator. If you want to remove the

Figure 2.8 The adb tool
provides interaction at runtime

with the Android emulator.

42 CHAPTER 2 Android’s development environment

com.manning.unlockingandroid.apk sample application from a running emulator’s
filesystem, for example, you can execute the following command from a terminal or
Windows command window:

adb shell rm /data/app/com.manning.unlockingandroid.apk

You certainly don’t need to master the command-line tools in the Android SDK to
develop applications in Android, but understanding what’s available and where to
look for capabilities is a good skill to have in your toolbox. If you need assistance with
either the aapt or adb command, enter the command at the terminal, and a fairly ver-
bose usage/help page is displayed. You can find additional information about the
tools in the Android SDK documentation.

TIP The Android filesystem is a Linux filesystem. Though the adb shell
command doesn’t provide a rich shell programming environment, as you
find on a Linux or Mac OS X system, basic commands such as ls, ps, kill,
and rm are available. If you’re new to Linux, you might benefit from learning
some basic shell commands.

TELNET

One other tool you’ll want to make sure you’re familiar with is telnet. Telnet allows you
to connect to a remote system with a character-based UI. In this case, the remote sys-
tem you connect to is the Android emulator’s console. You can connect to it with the
following command:

telnet localhost 5554

In this case, localhost represents your local development computer where the
Android emulator has been started, because the Android emulator relies on your
computer’s loopback IP address of 127.0.0.1. Why port 5554? Recall that when we
employed adb to find running emulator instances, the output of that command
included a name with a number at the end. The first Android emulator can generally

Figure 2.9 Using the shell command of the adb, you can browse Android’s filesystem.
be found at IP port 5554.

43Building an Android application in Eclipse

NOTE In early versions of the Android SDK, the emulator ran at port 5555
and the Android console—where we could connect via Telnet—ran at 5554,
or one number less than the number shown in DDMS. If you’re having diffi-
culty identifying which port number to connect on, be sure run netstat on
your development machine to assist in finding the port number. Note that a
physical device listens at port 5037.

Using a telnet connection to the emulator provides a command-line means for config-
uring the emulator while it’s running and for testing telephony features such as calls
and text messages.

 So far you’ve learned about the Eclipse environment and some of the command-
line elements of the Android tool chain. At this point, it’s time to create your own
Android application to exercise this development environment.

2.3 Building an Android application in Eclipse
Eclipse provides a comprehensive environment for Android developers to create appli-
cations. In this section, we’ll demonstrate how to build a basic Android application,
step-by-step. You’ll learn how to define a simple UI, provide code logic to support it,
and create the deployment file used by all Android applications: AndroidManifest.xml.
Our goal in this section is to get a simple application under your belt. We’ll leave more
complex applications for later chapters; our focus is on exercising the development
tools and providing a concise, yet complete reference.

 Building an Android application isn’t much different from creating other types of
Java applications in the Eclipse IDE. It all starts with choosing File > New and selecting
an Android application as the build target.

 Like many development environments, Eclipse provides a wizard interface to ease
the task of creating a new application. We’ll use the Android Project Wizard to get off
to a quick start in building an Android application.

2.3.1 The Android Project Wizard

The most straightforward manner to create an Android application is to use the
Android Project Wizard, which is part of the ADT plug-in. The wizard provides a sim-
ple means to define the Eclipse project name and location, the Activity name corre-
sponding to the main UI class, and a name for the application. Also of importance is
the Java package name under which the application is created. After you create an
application, it’s easy to add new classes to the project.

NOTE In this example, you’ll create a brand-new project in the Eclipse work-
space. You can use this same wizard to import source code from another
developer, such as the sample code for this book. Note also that the specific
screens have changed over time as the Android tools mature. If you’re follow-
ing along and have a question about this chapter, be sure to post a question
on the Manning Author forum for this book, available online at http://
manning.com/ableson.

44 CHAPTER 2 Android’s development environment

Figure 2.10 demonstrates the creation of a new project named Chapter2 using the
wizard.

TIP You’ll want the package name of your applications to be unique from
one application to the next.

Click Finish to create your sample application. At this point, the application compiles
and is capable of running on the emulator—no further development steps are
required. Of course, what fun would an empty project be? Let’s flesh out this sample
application and create an Android tip calculator.

2.3.2 Android sample application code

The Android Application Wizard takes care of a number of important elements in the
Android application structure, including the Java source files, the default resource
files, and the AndroidManifest.xml file. Looking at the Package Explorer view in
Eclipse, you can see all the elements of this application. Here’s a quick description of
the elements included in the sample application:

 The src folder contains two Java source files automatically created by the wizard.
 ChapterTwo.java contains the main Activity for the application. You’ll modify

this file to add the sample application’s tip calculator functionality.
 R.java contains identifiers for each of the UI resource elements in the applica-

tion. Never modify this file directly. It automatically regenerates every time a
resource is modified; any manual changes you make will be lost the next time

Figure 2.10 Using the Android
Project Wizard, it’s easy to create an
empty Android application, ready for
customization.
the application is built.

45Building an Android application in Eclipse

 Android.jar contains the Android runtime Java classes. This reference to the
android.jar file found in the Android SDK ensures that the Android runtime
classes are accessible to your application.

 The res folder contains all the Android resource folders, including:
– Drawables contains image files such as bitmaps and icons. The wizard pro-

vides a default Android icon named icon.png.
– Layout contains an XML file called main.xml. This file contains the UI ele-

ments for the primary view of your Activity. In this example, you’ll modify
this file but you won’t make any significant or special changes—just enough to
accomplish the meager UI goals for your tip calculator. We cover UI elements,
including Views, in detail in chapter 3. It’s not uncommon for an Android
application to have multiple XML files in the Layout section of the resources.

– Values contains the strings.xml file. This file is used for localizing string val-
ues, such as the application name and other strings used by your application.

AndroidManifest.xml contains the deployment information for this project.
Although AndroidManifest.xml files can become somewhat complex, this chapter’s
manifest file can run without modification because no special permissions are
required. We’ll visit AndroidManifest.xml a number of times throughout the book as
we discuss new features.

 Now that you know what’s in the project, let’s review how you’re going to modify
the application. Your goal with the Android tip calculator is to permit your user to
enter the price of a meal, then tap a button to calculate the total cost of the meal, tip
included. To accomplish this, you need to modify two files: ChapterTwo.java and the
UI layout file, main.xml. Let’s start with the UI changes by adding a few new elements
to the primary View, as shown in the next listing.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Chapter 2 Android Tip Calculator"
 />
<EditText
 android:id="@+id/mealprice"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:autoText="true"
/>
<Button

Listing 2.1 main.xml contains UI elements
android:id="@+id/calculate"

46 CHAPTER 2 Android’s development environment

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Calculate Tip"
 />
<TextView
 android:id="@+id/answer"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text=""
 />

</LinearLayout>

The layout for this application is straightforward. The overall layout is a vertical, linear
layout with only four elements; all the UI controls, or widgets, are going to be in a verti-
cal arrangement. A number of layouts are available for Android UI design, which we’ll
discuss in greater detail in chapter 3.

 A static TextView displays the title of the application. An EditText collects the
price of the meal for this tip calculator application. The EditText element has an
attribute of type android:id, with a value of mealprice. When a UI element contains
the android:id attribute, it permits you to manipulate this element from your code.
When the project is built, each element defined in the layout file containing the
android:id attribute receives a corresponding identifier in the automatically gener-
ated R.java class file. This identifying value is used in the findViewById method,
shown in listing 2.2. If a UI element is static, such as the TextView, and doesn’t need to
be set or read from our application code, the android:id attribute isn’t required.

 A button named calculate is added to the view. Note that this element also has
an android:id attribute because we need to capture click events from this UI element.
A TextView named answer is provided for displaying the total cost, including tip.
Again, this element has an id because you’ll need to update it during runtime.

 When you save the file main.xml, it’s processed by the ADT plug-in, compiling the
resources and generating an updated R.java file. Try it for yourself. Modify one of the
id values in the main.xml file, save the file, and open R.java to have a look at the con-
stants generated there. Remember not to modify the R.java file directly, because if you
do, all your changes will be lost! If you conduct this experiment, be sure to change the
values back as they’re shown in listing 2.1 to make sure the rest of the project will com-
pile as it should. Provided you haven’t introduced any syntactical errors into your
main.xml file, your UI file is complete.

NOTE This example is simple, so we jumped right into the XML file to define
the UI elements. The ADT also contains an increasingly sophisticated GUI lay-
out tool. With each release of the ADT, these tools have become more and
more usable; early versions were, well, early.

Double-click the main.xml file to launch the layout in a graphical form. At the bottom
of the file you can switch between the Layout view and the XML view. Figure 2.11

shows the Layout tool.

47Building an Android application in Eclipse

It’s time to turn our attention to the file ChapterTwo.java to implement the tip calcu-
lator functionality. ChapterTwo.java is shown in the following listing. We’ve omitted
some imports for brevity. You can download the complete source code from the Man-
ning website at http://manning.com/ableson2.

package com.manning.unlockingandroid;
import com.manning.unlockingandroid.R;
import android.app.Activity;
import java.text.NumberFormat;
import android.util.Log;
// some imports omitted
public class ChapterTwo extends Activity {
 public static final String tag = "Chapter2";
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 final EditText mealpricefield =
 (EditText) findViewById(R.id.mealprice);
 final TextView answerfield =
 (TextView) findViewById(R.id.answer);
 final Button button = (Button) findViewById(R.id.calculate);
 button.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 try {
 Log.i(tag,"onClick invoked.");
 // grab the meal price from the UI
 String mealprice =
 mealpricefield.getText().toString();
 Log.i(tag,"mealprice is [" + mealprice + "]");
 String answer = "";

Listing 2.2 ChapterTwo.java implements the tip calculator logic

Figure 2.11 Using the GUI Layout tool provided in the ADT to define the user interface
elements of your application

Reference
EditText for
mealprice

B

Log entryC

Get meal priceD
 // check to see if the meal price includes a "$"

48 CHAPTER 2 Android’s development environment

 if (mealprice.indexOf("$") == -1) {
 mealprice = "$" + mealprice;
 }
 float fmp = 0.0F;
 // get currency formatter
 NumberFormat nf =
 java.text.NumberFormat.getCurrencyInstance();
 // grab the input meal price
 fmp = nf.parse(mealprice).floatValue();
 // let's give a nice tip -> 20%
 fmp *= 1.2;
 Log.i(tag,"Total Meal Price (unformatted) is ["
+ fmp + "]");
 // format our result
 answer = "Full Price, Including 20% Tip: "
+ nf.format(fmp);
 answerfield.setText(answer);
 Log.i(tag,"onClick complete.");
 } catch (java.text.ParseException pe) {
 Log.i(tag,"Parse exception caught");
 answerfield.setText("Failed to parse amount?");
 } catch (Exception e) {
 Log.e(tag,"Failed to Calculate Tip:" + e.getMessage());
 e.printStackTrace();
 answerfield.setText(e.getMessage());
 }
 }
 });
 }
}

Let’s examine this sample application. Like all but the most trivial Java applications,
this class contains a statement identifying which package it belongs to: com.manning.
unlockingandroid. This line containing the package name was generated by the
Application Wizard.

 We import the com.manning.unlockingandroid.R class to gain access to the defi-
nitions used by the UI. This step isn’t required, because the R class is part of the same
application package, but it’s helpful to include this import because it makes our code
easier to follow. Newcomers to Android always ask how the identifiers in the R class are
generated. The short answer is that they’re generated automatically by the ADT! Also
note that you’ll learn about some built-in UI elements in the R class later in the book
as part of sample applications.

 Though a number of imports are necessary to resolve class names in use, most of
the import statements have been omitted from listing 2.2 for the sake of brevity. One
import that’s shown contains the definition for the java.text.NumberFormat class,
which is used to format and parse currency values.

 Another import shown is for the android.util.Log class, which is employed to
make entries to the log. Calling static methods of the Log class adds entries to the log.
You can view entries in the log via the LogCat view of the DDMS perspective. When

Display full price,
including tip

E

Catch
parse
errorF
making entries to the log, it’s helpful to put a consistent identifier on a group of

49Building an Android application in Eclipse

related entries using a common string, commonly referred to as the tag. You can filter
on this string value so you don’t have to sift through a mountain of LogCat entries to
find your few debugging or informational messages.

 Now let’s go through the code in listing 2.2. We connect the UI element containing
mealprice to a class-level variable of type EditText B by calling the findViewById
method and passing in the identifier for the mealprice, as defined by the automati-
cally generated R class, found in R.java. With this reference, we can access the user’s
input and manipulate the meal price data as entered by the user. Similarly, we connect
the UI element for displaying the calculated answer back to the user, again by calling
the findViewById method.

 To know when to calculate the tip amount, we need to obtain a reference to the
Button so we can add an event listener. We want to know when the button has been
clicked. We accomplish this by adding a new OnClickListener method named
onClick.

 When the onClick method is invoked, we add the first of a few log entries using
the static i() method of the Log class C. This method adds an entry to the log with an
Information classification. The Log class contains methods for adding entries to the
log for different levels, including Verbose, Debug, Information, Warning, and Error.
You can also filter the LogCat based on these levels, in addition to filtering on the pro-
cess ID and tag value.

 Now that we have a reference to the mealprice UI element, we can obtain the text
entered by our user with the getText() method of the EditText class D. In prepara-
tion for formatting the full meal price, we obtain a reference to the static currency
formatter.

 Let’s be somewhat generous and offer a 20 percent tip. Then, using the formatter,
let’s format the full meal cost, including tip. Next, using the setText() method of the
TextView UI element named answerfield, we update the UI to tell the user the total
meal cost E.

 Because this code might have a problem with improperly formatted data, it’s a
good practice to put code logic into try/catch blocks so that our application behaves
when the unexpected occurs f.

 Additional boilerplate files are in this sample project, but in this chapter we’re
concerned only with modifying the application enough to get basic, custom function-
ality working. You’ll notice that as soon as you save your source files, the Eclipse IDE
compiles the project in the background. If there are any errors, they’re listed in the
Problems view of the Java perspective; they’re also marked in the left margin with a
small red x to draw your attention to them.

TIP Using the command-line tools found in the Android SDK, you can cre-
ate batch builds of your applications without using the IDE. This approach is
useful for software shops with a specific configuration-management function
and a desire to conduct automated builds. In addition to the Android-

specific build tools found under the tools subdirectory of your Android SDK

51Using the Android emulator

files are first compiled to class files by your Java environment, typically Eclipse and the
JDT. After they’re compiled, they’re then converted to dex files to be ready for use
with Android’s Dalvik VM. Surprisingly, the project’s XML files are converted to a
binary representation, not to text as you might expect. But the files retain their .xml
extension on the device.

 The converted XML files, a compiled form of the nonlayout resources including
the Drawables and Values, and the dex file (classes.dex) are packaged by the aapt
tool into a file with a naming structure of projectname.apk. The resulting file can be
read with a pkzip-compatible reader, such as WinRAR or WinZip, or the Java archiver,
jar. Figure 2.13 show this chapter’s sample application in WinRAR.

 Now you’re finally ready to run your application on the Android emulator! It’s
important to become comfortable with working in an emulated environment when
you’re doing any serious mobile software development. There are many good reasons
for you to have a quality emulator available for development and testing. One simple
reason is that having multiple real devices with requisite data plans is an expensive
proposition. A single device alone might cost hundreds of dollars. Android continues
to gain momentum and is finding its way to multiple carriers with numerous devices
and increasingly sophisticated capabilities. Having one of every device is impractical
for all but development shops with the largest of budgets. For the rest of us, a device
or two and the Android emulator will have to suffice. Let’s focus on the strengths of
emulator-based mobile development.

 Speaking of testing applications, it’s time to get our tip calculator application
running!

2.4 Using the Android emulator
At this point, our sample application, the Android tip calculator, has compiled suc-
cessfully. Now you want to run your application in the Android emulator. Before you
can run an application in the emulator, you have to configure the emulated environ-
ment. To do this, you’ll learn how to create an instance of the AVD using the AVD Man-
ager. After you’ve got that sorted out, you’ll define a run configuration in Eclipse,
which allows you to run an application in a specific AVD instance.

Figure 2.13 The Android application file format is pzip compatible.

52 CHAPTER 2 Android’s development environment

TIP If you’ve had any trouble building the sample application, now would be
a good time to go back and clear up any syntax errors that are preventing the
application from building. In Eclipse, you can easily see errors because
they’re marked with a red x next to the project source file and on the offend-
ing lines. If you continue to have errors, make sure that your build environ-
ment is set up correctly. Refer to appendix A of this book for details on
configuring the build environment.

2.4.1 Setting up the emulated environment

Setting up your emulator environment can be broken down into two logical steps.
The first is to create an instance of the AVD via the AVD Manager. The second is to
define a run configuration in Eclipse, which permits you to run your application in a
specific AVD instance. Let’s start with the AVD Manager.

MANAGING AVDS

Starting with version 1.6 of the Android SDK, developers have a greater degree of con-
trol over the emulated Android environment than in previous releases. The SDK and
AVD Manager permit developers to download the specific platforms of interest. For
example, you might be targeting devices running version 1.5 and 2.2 of the Android
platform, but you might want to add to that list as new versions become available. Fig-

Emulator vs. simulator
You might hear the words emulator and simulator thrown about interchangeably.
Although they have a similar purpose—testing applications without the requirement
of real hardware—those words should be used with care.

A simulator tool works by creating a testing environment that behaves as close to
100 percent in the same manner as the real environment, but it’s just an approxima-
tion of the real platform. This doesn’t mean that the code targeted for a simulator will
run on a real device, because it’s compatible only at the source-code level. Simulator
code is often written to be run as a software program running on a desktop computer
with Windows DLLs or Linux libraries that mimic the application programming inter-
faces (APIs) available on the real device. In the build environment, you typically select
the CPU type for a target, and that’s often x86/Simulator.

In an emulated environment, the target of your projects is compatible at the binary
level. The code you write works on an emulator as well as the real device. Of course,
some aspects of the environment differ in terms of how certain functions are imple-
mented on an emulator. For example, a network connection on an emulator runs
through your development machine’s network interface card, whereas the network
connection on a real phone runs over the wireless connection such as a GPRS, EDGE,
or EVDO network. Emulators are preferred because they more reliably prepare you to
run your code on real devices. Fortunately, the environment available to Android
developers is an emulator, not a simulator.
ure 2.14 shows the SDK and AVD Manager with a few packages installed.

53Using the Android emulator

After you’ve installed the Android platforms that you want, you can define instances
of the AVD. To define instances, select which platform you want to run on, select the
device characteristics, and then create the AVD, as shown in figure 2.15.

Figure 2.14 The installed Android packages listed in the AVD and SDK Manager

Figure 2.15 Creating a new AVD
includes defining characteristics
such as SD card storage capacity and
screen resolution.

54 CHAPTER 2 Android’s development environment

At this point, your AVD is created and available to be started independently. You can
also use it as the target of a run configuration. Figure 2.16 shows a representative list
of available AVDs on a single development machine.

NOTE Each release of the Android platform has two versions: one with
Google APIs and one without. In Figure 2.16, notice that the first entry, named
A22_NOMAPS, has a target of Android 2.2. The second entry, A22, has a target
of Google APIs (Google Inc.). The Google version is used when you want to
include application functionality such as Google Maps. Using the wrong target
version is a common problem encountered by developers new to the Android
platform hoping to add mapping functionality to their applications.

Now that you have the platforms downloaded and the AVDs defined, it’s time to wire
these things together so you can test and debug your application!

SETTING UP EMULATOR RUN CONFIGURATIONS

Our approach is to create a new
Android emulator profile so you can
easily reuse your test environment set-
tings. The starting place is the Open
Run Dialog menu in the Eclipse IDE, as
shown in figure 2.17. As new releases of
Eclipse become available, these screen
shots might vary slightly from your per-
sonal development environment.

Figure 2.16 Available AVDs defined. You can set up as many different AVD instances as your
requirements demand.

Figure 2.17 Creating a new launch configuration for
testing your Android application

55Using the Android emulator

You want to create a new launch configuration, as shown in figure 2.18. To begin this
process, highlight the Android Application entry in the list to the left, and click the
New Launch Configuration button, circled in red in figure 2.18.

 Now, give your launch configuration a name that you can readily recognize. You’re
going to have quite a few of these launch configurations on the menu, so make the
name something unique and easy to identify. The sample is titled Android Tip Calcu-
lator, as shown in figure 2.19. The three tabs have options that you can configure. The
Android tab lets you select the project and the first Activity in the project to launch.

Figure 2.18 Create a new run configuration based on the Android template.

Figure 2.19 Setting up the Android emulator launch configuration

56 CHAPTER 2 Android’s development environment

Use the next tab to select the AVD and network characteristics that you want, as shown
in figure 2.20. Additionally, command-line parameters might be passed to the emula-
tor to customize its behavior. For example, you might want to add the parameter
wipe-data to erase the device’s persistent storage prior to running your application
each time the emulator is launched. To see the available command-line options avail-
able, run the Android emulator from a command or terminal window with the option
emulator –help.

 Use the third tab to put this configuration on the Favorites menu in the Eclipse
IDE for easy access, as shown in figure 2.21. You can select Run, Debug, or both. Let’s
choose both for this example, because it makes for easier launching when you want to
test or debug the application.

 Now that you’ve defined your AVD and created a run configuration in Eclipse, you
can test your application in the Android emulator environment.

2.4.2 Testing your application in the emulator

Now you’re finally ready to start the Android emulator to test your tip calculator appli-
cation. Select the new launch configuration from the Favorites menu, as shown in fig-
ure 2.22.

 If the AVD that you choose is already running, the ADT attempts to install the appli-
cation directly; otherwise, the ADT must first start the AVD, and then install the appli-
cation. If the application was already running, it’s terminated and the new version

Figure 2.20 Selecting the AVD to host the application and specify launch parameters.
replaces the existing copy within the Android storage system.

57Debugging your application

At this point, the Android tip calculator should now be running in the Android emu-
lator! Go ahead; test it! But wait, what if there’s a problem with the code but you’re
not sure where? It’s time to briefly look at debugging an Android application.

2.5 Debugging your application
Debugging an application is a skill no pro-
grammer can survive without. Fortunately,
debugging an Android application is straight-
forward under Eclipse. The first step to take
is to switch to the Debug perspective in the
Eclipse IDE. Remember, you switch from one
perspective to another by using the Open
Perspective submenu found under the Win-
dow menu.

Figure 2.21 Adding the run configuration to the toolbar menu

Figure 2.22 Starting this chapter’s sample
application, an Android tip calculator.

58 CHAPTER 2 Android’s development environment

Starting an Android application for debugging is as simple as running the application.
Instead of selecting the application from the Favorites Run menu, use the Favorites
Debug menu instead. This menu item has a picture of an insect (that is, a bug).
Remember, when you set up the launch configuration, you added this configuration
to both the Run and the Favorites Debug menus.

 The Debug perspective gives you debugging capabilities similar to other develop-
ment environments, including the ability to single-step into, or over, method calls,
and to peer into variables to examine their value. You can set breakpoints by double-
clicking in the left margin on the line of interest. Figure 2.23 shows how to step
through the Android tip calculator project. The figure also shows the resulting values
displayed in the LogCat view. Note that the full meal price, including tip, isn’t dis-
played on the Android emulator yet, because that line hasn’t yet been reached.

 Now that we’ve gone through the complete cycle of building an Android applica-
tion and you have a good foundational understanding of using the Android ADT,
you’re ready to move on to digging in and unlocking android application development
by learning about each of the fundamental aspects of building Android applications.

2.6 Summary
This chapter introduced the Android SDK and offered a glance at the Android SDK’s
Java packages to get you familiar with the contents of the SDK from a class library per-

Figure 2.23 The Debug perspective permits you to step line-by-line through an Android application.

59Summary

spective. We introduced the key development tools for Android application develop-
ment, including the Eclipse IDE and the ADT plug-in, as well as some of the behind-
the-scenes tools available in the SDK.

 While you were building the Android tip calculator, this chapter’s sample applica-
tion, you had the opportunity to navigate between the relevant perspectives in the
Eclipse IDE. You used the Java perspective to develop your application, and both the
DDMS perspective and the Debug perspective to interact with the Android emulator
while your application was running. A working knowledge of the Eclipse IDE’s per-
spectives will be helpful as you progress to build the sample applications and study the
development topics in the remainder of this book.

 We discussed the Android emulator and some of its fundamental permutations
and characteristics. Employing the Android emulator is a good practice because of
the benefits of using emulation for testing and validating mobile software applications
in a consistent and cost-effective manner.

 From here, the book moves on to dive deeper into the core elements of the
Android SDK and Android application development. The next chapter continues this
journey with a discussion of the fundamentals of the Android UI.

Part 2

Exercising
the Android SDK

The Android SDK provides a rich set of functionality enabling developers to
create a wide range of applications. In part 2 we systematically examine the
major portions of the Android SDK, including practical examples in each chap-
ter. We start off with a look at the application lifecycle and user interfaces (chap-
ter 3), graduating to Intents and Services (chapter 4). No platform discussion
is complete without a thorough examination of the available persistence and
stor-age methods (chapter 5) and in today’s connected world, we cannot over-
look core networking and web services skills (chapter 6). Because the Android
platform is a telephone, among other things, we take a look at the telephony
capabilities of the platform (chapter 7). Next we move on to notifications and
alarms (chapter 8). Android graphics and animation are covered (chapter 9) as
well as multimedia (chapter 10). Part 2 concludes with a look at the location-
based services available to the Android developer (chapter 11).

User interfaces
With our introductory tour of the main components of the Android platform and
development environment complete, it’s time to look more closely at the funda-
mental Android concepts surrounding activities, views, and resources. Activities are
essential because, as you learned in chapter 1, they make up the screens of your
application and play a key role in the Android application lifecycle. Rather than
allowing any one application to wrest control of the device away from the user and
from other applications, Android introduces a well-defined lifecycle to manage
processes as needed. It’s essential to understand not only how to start and stop an
Android Activity, but also how to suspend and resume one. Activities themselves
are made up of subcomponents called views.

 Views are what your users see and interact with. Views handle layout, provide
text elements for labels and feedback, provide buttons and forms for user input,
and draw graphics to the device screen. Views are also used to register interface

This chapter covers
 Understanding activities and views

 Exploring the Activity lifecycle

 Working with resources

 Exploring the AndroidManifest.xml file
63

event listeners, such as those for touch-screen controls. A hierarchical collection of

65Creating the Activity

3.1 Creating the Activity
Over the course of this chapter, you’ll build a sample application that allows the user to
search for restaurant reviews based on location and cuisine. This application,
RestaurantFinder, will also allow the user to call, visit the website of, or map directions
to a selected restaurant. We chose this application as a starting point because it has a
clear and simple use case, and because it involves many different parts of the Android
platform. Making a sample application will allow us to cover a lot of ground quickly—
hopefully with the additional benefit of being a useful app on your Android phone!

 To create this application, you’ll need three basic screens to begin with:

 A criteria screen where a user enters parameters to search for restaurant reviews
 A list-of-reviews screen that shows pages of results that match the specified criteria
 A review-detail page that shows the details for a selected review item

Recall from chapter 1 that a screen is roughly analogous to an Activity, which means
you’ll need three Activity classes, one for each screen. When complete, the three
screens for the RestaurantFinder application will look like what’s shown in figure 3.2.

Figure 3.2 RestaurantFinder application screenshots,
showing three Activitys: ReviewCriteria,

ReviewList, and ReviewDetail

66 CHAPTER 3 User interfaces

 Our first step in exploring activities and views will be to build the RestaurantFinder
ReviewCritiera screen. From there, we’ll move on to the others. Along the way, we’ll
highlight many aspects of designing and implementing your Android UI.

3.1.1 Creating an Activity class

To create a screen, extend the android.app.Activity base class (as you did in chap-
ter 1) and override the key methods it defines. Listing 3.1 shows the first portion of
the RestaurantFinder’s ReviewCriteria class.

public class ReviewCriteria extends Activity {
 private static final int MENU_GET_REVIEWS = Menu.FIRST;
 private Spinner cuisine;
 private Button grabReviews;
 private EditText location;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 this. setContentView(R.layout.review_criteria);
 this.location = (EditText)
 findViewById(R.id.location);
 this.cuisine = (Spinner)
 findViewById(R.id.cuisine);
 this.grabReviews = (Button)
 findViewById(R.id.get_reviews_button);
 ArrayAdapter<String> cuisines =
 new ArrayAdapter<String>(this, R.layout.spinner_view,
 getResources().
 getStringArray(R.array.cuisines));
 cuisines.setDropDownViewResource(
 R.layout.spinner_view_dropdown);
 this.cuisine.setAdapter(cuisines);
 this.grabReviews.setOnClickListener(
 new OnClickListener() {
 public void onClick(View v) {
 handleGetReviews();
 }
 });
 }

The ReviewCriteria class extends android.app.Activity, which does a number of
important things: it gives your application a context, because Activity itself extends
the android.app.ApplicationContext class; it brings the Android lifecycle methods
into play; it gives the framework a hook to start and run your application; and it pro-
vides a container into which View elements can be placed.

 Because an Activity represents an interaction with the user, it needs to provide
components on the screen—this is where views come into play. In our Review-
Criteria class, we reference three views in the code: cuisine, grabReviews, and

Listing 3.1 The first half of the ReviewCriteria Activity class

Override
onCreate()

B

Define layout with
setContentViewC

Inflate views
from XMLD

Define ArrayAdapter
instanceE

Set view for
dropdownF
location C. cuisine is a fancy select list component, known in Android terms as a

67Creating the Activity

Spinner. grabReviews is a Button. location is a type of View known as an EditText, a
basic text-entry component.

 You place View elements like these within an Activity using a particular layout to
define the elements of a screen. You can define layout and views directly in code or in
a layout XML resource file.

 You’ll learn more about views as we progress through this section, and we focus
specifically on the topic of layouts in section 3.2.5.

 After an Activity is started, the Android application lifecycle rules take over and
the onCreate() method is invoked B. This method is one of a series of important life-
cycle methods the Activity class provides. Every Activity overrides onCreate(),
where component initialization steps are invoked. Not every Activity will need to
override the other available lifecycle methods. The Activity lifecycle is worthy of an
in-depth discussion of its own; for that reason we’ll explore these methods further in
section 3.1.2.

 Inside the onCreate() method, the setContentView() method is where you’ll typ-
ically associate an XML layout file C. We say typically because you don’t have to use an
XML file at all; instead, you can define all your layout and View configuration directly
in code, as Java objects. This technique is used in applications where a dynamic GUI is
required. Generally speaking, it’s often easier (and better practice) to use an XML lay-
out resource for each Activity. An XML layout file defines View objects, organized
into a hierarchical tree structure. After they’re defined in relation to the parent lay-
out, each view can then be inflated at runtime.

 Layout and view details, defined in XML or in code, are also topics we’ll address in
later sections of this chapter. Here we simply need to stress that views are typically
defined in XML and then are set into the Activity and inflated. Views that need some
runtime manipulation, such as binding to data, can then be referenced in code and
cast to their respective subtypes D. Views that are static—those you don’t need to
interact with or update at runtime, such as labels—don’t need to be referenced in
code at all. These views automatically show up on the screen because they’re part of
the layout as defined in the XML. They don’t need any explicit setup steps in code.

 Going back to the screenshots in figure 3.1, note that the ReviewCriteria screen
has two labels as well as the three inputs we’ve already discussed. These labels aren’t

Location as an EditText View
Why are we using an EditText View for the location field in the ReviewCriteria
Activity when Android includes technology that could be used to derive this value
from the current physical location of the device? After all, we could ask the user to
select the current location using a Map, rather than requiring the user to type in an
address. Good eye, but we’re doing this intentionally—we want this early example to
be complete and nontrivial, but not too complicated. You’ll learn more about using
the location support Android provides and MapViews in later chapters.
present in the code; they’re simply defined in the review_criteria.xml file that’s

68 CHAPTER 3 User interfaces

associated with this Activity. You’ll see this layout file when we discuss XML-defined
resources.

 The next area of interest in our ReviewCriteria Activity is binding data to our
select list views, the Spinner objects. Android employs a handy adapter concept used
to link views that contain collections with an underlying data source. An Adapter is a
collection handler that returns each item in the collection as a View. Android provides
many basic adapters: ListAdapter, ArrayAdapter, GalleryAdapter, CursorAdapter,
and more. You can also easily create your own Adapter, a technique you’ll use when
we discuss creating custom views in section 3.2. Here, we’re using an ArrayAdapter
that’s populated with Context (this), a View element defined in an XML resource
file, and an array representing the data. Note that the underlying data source for the
array is also defined as a resource in XML E—which you’ll learn more about in sec-
tion 3.3. When we create the ArrayAdapter, we define the View to be used for the ele-
ment shown in the Spinner before it’s selected by the user. After it’s selected, it must
provide a different visual interface—this is the View defined in the drop-down F.
After we define the Adapter and its View elements, we set it into the Spinner object.

 The last thing this initial Activity demonstrates is our first explicit use of event
handling. UI elements support many types of events, many of which you’ll learn more
about in section 3.2.7. In this specific instance, we’re using an OnClickListener with
our Button in order to respond to button clicks.

 After the onCreate() method is complete and data binds to our Spinner views, we
have menu items and their associated action handlers. The next listing shows how
these are implemented in the last part of ReviewCriteria.

. . .
@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 menu.add(0, ReviewCriteria.MENU_GET_REVIEWS, 0,
 R.string.menu_get_reviews).setIcon(
 android.R.drawable.ic_menu_more);
 return true;
 }
@Override
public boolean onMenuItemSelected(int featureId, MenuItem item) {
 switch (item.getItemId()) {
 case MENU_GET_REVIEWS:
 handleGetReviews();
 return true;
 }
 return super.onMenuItemSelected(featureId, item);
 }
 private void handleGetReviews() {
 if (!validate()) {
 return;

Listing 3.2 The second half of the ReviewCriteria Activity class

Respond when
menu item selectedB

Define method to
process reviewsC
 }

69Creating the Activity

 RestaurantFinderApplication application =
 (RestaurantFinderApplication)
 getApplication();
 application.setReviewCriteriaCuisine(
 this.cuisine.getSelectedItem().toString());
 application.setReviewCriteriaLocation(
 this.location.getText().toString());
 Intent intent =
 new

Intent(Constants.INTENT_ACTION_VIEW_LIST);
 startActivity(intent);
 }
 private boolean validate() {
 boolean valid = true;
 StringBuilder validationText = new StringBuilder();
 if ((this.location.getText() == null) ||
 this.location.getText().toString().equals("")) {
 validationText.append(getResources().getString(
 R.string.location_not_supplied_message));
 valid = false;
 }
 if (!valid) {
 new AlertDialog.Builder(this).
 setTitle(getResources().getString(R.string.alert_label)).
 setMessage(validationText.toString()).
 SetPositiveButton("Continue",
 new android.content.DialogInterface.
 OnClickListener() {
 public void onClick(
 DialogInterface dialog, int arg1) {
 }
 }).show();
 validationText = null;
 }
 return valid;
 }
}

The menu items at the bottom of the Activity screens in figure 3.2 were all created
using the onCreateOptionsMenu() method. Here, we use the Menu class add() method
to create a single MenuItem element. We’re passing a group ID, an ID, a sequence/
order, and a text resource reference as parameters to create the menu item. We’re
also assigning to the menu item an icon with the setIcon method. The text and the
image are externalized from the code, using Android’s programmer-defined
resources. The MenuItem we’ve added duplicates the functionality of the on-screen
Button, so we use the same text value for the label: Get reviews.

 In addition to creating the menu item, we need to perform an action when the
MenuItem is selected. We do this in the onMenuItemSelected() event method B,
where we parse the ID of the multiple possible menu items with a switch statement.
When the MENU_GET_REVIEWS item is selected, we invoke the handleGetReviews
method C. This method stores the user’s selection state in the Application object D

Use Application
object for stateD

Create IntentE

FUse AlertDialog
and prepares to call the next screen. We’ve moved this logic into its own method

70 CHAPTER 3 User interfaces

because we’re using it from multiple places—both from our onscreen Button and our
MenuItem.

 The Application object is used internally by Android for many purposes, and it
can be extended, as we’ve done with RestaurantFinderApplication. To store global
state information, the RestaurantFinderApplication defines a few member variables
in JavaBean style. We reference this object from other activities to retrieve the infor-
mation we’re storing here. Objects can be passed back and forth between activities in
several ways; using Application is just one of them. You can also use public static
members and Intent extras with Bundle objects. Additionally, you can use the pro-
vided SQLite database, or you can implement your own ContentProvider to store
data. We’ll talk more about state and data persistence in general, including all these
concepts, in chapter 5. The important thing to take away here is that at this point
we’re using the Application object to manage state between activities.

 After we store the criteria state, we fire off an action in the form of an Android
Intent E. We touched on Intents in chapter 1, and we’ll delve into them further in
the next chapter, but basically we’re asking another Activity to respond to the user’s
selection of a menu item by calling startActivity(intent). An alternative way to
start an Activity is with the startActivityForResult method, which we’ll introduce
later in this book.

 Also notable in the ReviewCriteria example is that we’re using an AlertDialog
F. Before we allow the next Activity to be invoked, we call a simple validate()
method that we’ve created, where we display a pop-up alert dialog to the user if the
location hasn’t been properly specified. Along with generally demonstrating the use
of AlertDialog, this demonstrates how a button can be made to respond to a click
event with an OnClickListener().

 With that, we’ve covered a good deal of material and you’ve completed Review-
Criteria, your first Activity. Now that this class is fully implemented, we’ll take a
closer look at the Android Activity lifecycle and how it relates to processes on the

Using the Menu vs. onscreen buttons
We’ve chosen to use the Menu here, in addition to the onscreen buttons. Though
either (or both) can work in many scenarios, you need to consider whether the menu,
which is invoked by pressing the Menu button on the device and tapping a selection
(button and a tap) is appropriate for what you’re doing, or whether an onscreen button
(single tap) is more appropriate. Generally, onscreen buttons should be tied to UI ele-
ments, such as a search button for a search form input, and menu items should be
used for more broad actions such as submitting a form, or performing an action such
as creating, saving, editing, or deleting. Because all rules need an exception, if you
have the screen real estate, it might be more convenient for users to have onscreen
buttons for actions as well, as we’ve done in the ReviewCriteria Activity. The
most important thing to keep in mind with these types of UI decisions is to be con-
sistent. If you do it one way on one screen, use that same approach on other screens.
platform.

71Creating the Activity

3.1.2 Exploring the Activity lifecycle

Every process running on the Android platform is placed on a stack. When you use an
Activity in the foreground, the system process that hosts that Activity is placed at
the top of the stack, and the previous process (the one hosting whatever Activity was
previously in the foreground) is moved down one notch. This concept is a key point to
understand. Android tries to keep processes running as long as it can, but it can’t
keep every process running forever because, after all, system resources are finite. So
what happens when memory starts to run low or the CPU gets too busy?

HOW PROCESSES AND ACTIVITIES RELATE

When the Android platform decides it needs to reclaim resources, it goes through a
series of steps to prune processes (and the activities they host). It decides which ones
to get rid of based on a simple set of priorities:

1 The process hosting the foreground Activity is the most important.
2 Any process hosting a visible but not foreground Activity is next in line.
3 Any process hosting a background Activity is next in line.
4 Any process not hosting any Activity (or Service or BroadcastReceiver) is

known as an empty process and is last in line.

A useful tool for development and debugging, especially in the context of process pri-
ority, is the adb, which you first met in chapter 2. You can see the state of all the run-
ning processes in an Android device or emulator by issuing the following command:
adb shell dumpsys activity

This command will output a lot of information about all the running processes,
including the package name, PID, foreground or background status, the current pri-
ority, and more.

 All Activity classes have to be able to handle being stopped and shut down at any
time. Remember, a user can and will change directions at will. It might be a phone call
or an incoming SMS message, but the user will bounce around from one application
to the next. If the process your Activity is in falls out of the foreground, it’s eligible
to be killed and it’s not up to you; it’s up to the platform’s algorithm, based on avail-

The Builder pattern
You might have noticed the use of the Builder pattern, where we add parameters to
the AlertDialog we created in the ReviewCriteria class. If you aren’t familiar with
this approach, each of the methods invoked, such as AlertDialog.setMessage()
and AlertDialog.setTitle(), returns a reference to itself (this), which means we
can continue chaining method calls. This approach avoids either an extra-long con-
structor with many parameters or repeating the class reference throughout the code.
Intents also use this handy pattern; it’s something you’ll see time and time again
in Android.
able resources and relative priorities.

73Creating the Activity

 The entire lifecycle phase refers to the methods that might be called when the
application isn’t on the screen, before it’s created, and after it’s gone (prior to
being shut down).

Table 3.1 provides more information about the lifecycle phases and outlines the main
high-level methods on the Activity class.

Beyond the main high-level lifecycle methods outlined in table 3.1, additional, finer-
grained methods are available. You don’t typically need methods such as onPost-
Create and onPostResume, so we won’t go into detail about them, but be aware that
they exist if you need that level of control. See the Activity documentation for full
method details.

 As for the main lifecycle methods that you’ll use the majority of the time, it’s
important to know that onPause() is the last opportunity you have to clean up and
save state information. The processes that host your Activity classes won’t be killed
by the platform until after the onPause() method has completed, but they might be
killed thereafter. The system will attempt to run through all of the lifecycle methods
every time, but if resources are spiraling out of control, as determined by the plat-
form, a fire alarm might be sounded and the processes that are hosting activities that
are beyond the onPause() method might be killed at any point. Any time your
Activity is moved to the background, onPause() is called. Before your Activity is
completely removed, onDestroy() is called, though it might not be invoked in all
circumstances.

 The onPause() method is definitely where you need to save persistent state.

Table 3.1 Android Activity main lifecycle methods and their purpose

Method Purpose

onCreate() Called when the Activity is created. Setup is done here. Also provided is access
to any previously stored state in the form of a Bundle.

onRestart() Called if the Activity is being restarted, if it’s still in the stack, rather than start-
ing new.

onStart() Called when the Activity is becoming visible on the screen to the user.

onResume() Called when the Activity starts interacting with the user. (This method is always
called, whether starting or restarting.)

onPause() Called when the Activity is pausing or reclaiming CPU and other resources. This
method is where you should save state information so that when an Activity is
restarted, it can start from the same state it was in when it quit.

onStop() Called to stop the Activity and transition it to a nonvisible phase and subsequent
lifecycle events.

onDestroy() Called when an Activity is being completely removed from system memory. This
method is called either because onFinish() is directly invoked or the system
decides to stop the Activity to free up resources.
Whether that persistent state is specific to your application, such as user preferences,

74 CHAPTER 3 User interfaces

or globally shared information, such as the contacts database, onPause() is where you
need to make sure all the loose ends are tied up—every time. We’ll discuss how to save
data in chapter 5, but here the important thing is to know when and where that needs
to happen.

NOTE In addition to persistent state, you should be familiar with one more
scenario: instance state. Instance state refers to the state of the UI itself. The
onSaveInstanceState()method is called when an Activity might be
destroyed, so that at a future time the interface state can be restored. This
method is transparently used by the platform to handle the view state process-
ing in the vast majority of cases; you don’t need to concern yourself with it
under most circumstances. Nevertheless, it’s important to know that it’s there
and that the Bundle it saves is handed back to the onCreate() method when
an Activity is restored—as savedInstanceState in most code examples. If
you need to customize the view state, you can do so by overriding this
method, but don’t confuse this with the more common general lifecycle
methods.

Managing activities with lifecycle events allows Android to do the heavy lifting, decid-
ing when things come into and out of scope, relieving applications of the decision-
making burden, and ensuring a level playing field for applications. This is a key aspect
of the platform that varies somewhat from many other application development envi-
ronments. To build robust and responsive Android applications, you have to pay care-
ful attention to the lifecycle.

 Now that you have some background about the Activity lifecycle and you’ve cre-
ated your first screen, let’s investigate views and fill in some more detail.

3.2 Working with views
Views are the building blocks of the UI of an Android application. Activities contain
views, and View classes represent elements on the screen and are responsible for inter-
acting with users through events.

 Every Android screen contains a hierarchical tree of View elements. These views
come in a variety of shapes and sizes. Many of the views you’ll need on a day-to-day
basis are provided as part of the platform—basic text elements, input elements,
images, buttons, and the like. In addition, you can create your own composite views
and custom views when the need arises. You can place views into an Activity (and
thus on the screen) either directly in code or by using an XML resource that’s later
inflated at runtime.

 In this section, we’ll discuss the fundamental aspects of views: the common views
that Android provides, custom views that you can create as you need them, layout in
relation to views, and event handling. We won’t address views defined in XML here,
because that’s covered in section 3.3 as part of a larger resources discussion. We’ll begin
with the common View elements Android provides by taking a short tour of the API.

76 CHAPTER 3 User interfaces

 As is evident from the diagram in figure 3.4, which isn’t an exhaustive representa-
tion, the View is the base class for many classes. ViewGroup is a special subclass of View
related to layout, as are other elements such as the commonly used TextView. All UI
classes are derived from the View class, including the layout classes (which extend
ViewGroup).

 Of course, everything that extends View has access to the base class methods. These
methods allow you to perform important UI-related operations, such as setting the
background, the minimum height and width, padding, layout parameters, and event-
related attributes. Table 3.2 lists some of the methods available in the root View class.
Beyond the base class, each View subclass typically adds a host of refined methods to
further manipulate its respective state, such as what’s shown for TextView in table 3.3.

 The View base class and the methods specific to the TextView combine to give you
extensive control over how an application can manipulate an instance of the Text-
View. For example, you can set layout, padding, focus, events, gravity, height, width,
colors, and so on. These methods can be invoked in code, or set at design time when
defining a UI layout in XML, as we’ll introduce in section 3.3.

 Each View element you use has its own path through the API, which means that a
particular set of methods is available; for details on all the methods, see the Android
Javadocs at http://code.google.com/android/reference/android/view/View.html.

Table 3.2 A subset of methods in the base Android View API

Method Purpose

setBackgroundColor(int color) Set the background color.

setBackgroundDrawable(Drawable d) Set the background
Drawable (image).

setClickable(boolean c) Set whether element is
clickable.

setFocusable(boolean f) Set whether element is
focusable.

setLayoutParams(ViewGroup.LayoutParams l) Set the LayoutParams
(position, size, and more).

setMinimumHeight(int minHeight) Set the minimum height (par-
ent can override).

setMinimumWidth(int minWidth) Set the minimum width (par-
ent can override).

setOnClickListener(OnClickListener l) Set listener to fire when click
event occurs.

setOnFocusChangeListener(OnFocusChangeListener l) Set listener to fire when
focus event occurs.

setPadding(int left, int right, int top, int bottom) Set the padding.

77Working with views

When you couple the wide array of classes with the rich set of methods available from
the base View class on down, the Android View API can quickly seem intimidating.
Thankfully, despite this initial impression, many of the concepts involved quickly
become evident, and their use becomes more intuitive as you move from View to View,
because they’re ultimately just specializations on the same base class. When you get
familiar with working with View classes, learning to use a new View becomes intuitive
and natural.

 Though our RestaurantFinder application won’t use many of the views listed in
our whirlwind tour here, they’re still useful to know about. We’ll use many of them in
later examples throughout the book.

 The next thing we’ll focus on is a bit more detail concerning one of the most com-
mon nontrivial View elements—the ListView component.

3.2.2 Using a ListView

On the ReviewList Activity of the RestaurantFinder application, shown in figure
3.2, you can see a View that’s different from the simple user inputs and labels we’ve
used up to this point—this screen presents a scrollable list of choices for the user to
pick from.

 This Activity uses a ListView component to display a list of review data that’s
obtained from calling the Google Base Atom API using HTTP. We refer to this API
generically as a web service, even though it’s not technically SOAP or any other stan-
dard associated with the web service moniker. We make the HTTP call by appending
the user’s criteria to the required Google Base URL. We then parse the results with the
Simple API for XML (SAX) and create a List of reviews. Neither the details of XML parsing
nor the use of the network itself are of much concern to us here—rather we’ll focus
on the Views employed to represent the data returned from the web service call. The
resulting List will be used to populate our screen’s list of items to choose from.

 The code in the following listing shows how to create and use a ListView to pres-
ent to the user the List of reviews within an Activity.

Table 3.3 More View methods for the TextView subclass

Method Purpose

setGravity(int gravity) Set alignment gravity: top, bottom, left, right, and more.

setHeight(int height) Set height dimension.

setText(CharSequence text) Set text.

setTypeFace(TypeFace face) Set typeface.

setWidth(int width) Set width dimension.

78 CHAPTER 3 User interfaces

public class ReviewList extends ListActivity {
 private static final int MENU_CHANGE_CRITERIA = Menu.FIRST + 1;
 private static final int MENU_GET_NEXT_PAGE = Menu.FIRST;
 private static final int NUM_RESULTS_PER_PAGE = 8;
 private TextView empty;
 private ProgressDialog progressDialog;
 private ReviewAdapter reviewAdapter;
 private List<Review> reviews;
 private final Handler handler = new Handler() {
 public void handleMessage(final Message msg) {
 progressDialog.dismiss();
 if ((reviews == null) || (reviews.size() == 0)) {
 empty.setText("No Data");
 } else {
 reviewAdapter = new ReviewAdapter(
 ReviewList.this, reviews);
 setListAdapter(reviewAdapter);
 }
 }
 };
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 this.setContentView(R.layout.review_list);
 this.empty = (TextView)
 findViewById(R.id.empty);
 ListView listView = getListView();
 listView.setItemsCanFocus(false);
 listView.setChoiceMode(ListView.CHOICE_MODE_SINGLE);
 listView.setEmptyView(this.empty);
 }
 @Override
 protected void onResume() {
 super.onResume();
 RestaurantFinderApplication application =
 (RestaurantFinderApplication) getApplication();
 String criteriaCuisine = application.getReviewCriteriaCuisine();
 String criteriaLocation = application.getReviewCriteriaLocation();
 int startFrom = getIntent().getIntExtra(
 Constants.STARTFROM_EXTRA, 1);
 loadReviews(criteriaLocation,
 criteriaCuisine, startFrom);
 }
 // onCreateOptionsMenu omitted for brevity
. . .

The ReviewList Activity extends ListActivity, which is used to host a ListView.
The default layout of a ListActivity is a full-screen, centered list of choices for the
user to select from. A ListView is similar in concept to a Spinner; in fact, they’re both
subclasses of AdapterView, as you saw in the class diagram in figure 3.4. ListView, like
Spinner, also uses an Adapter to bind to data. In this case, we’re using a custom

Listing 3.3 First half of the ReviewList Activity class, showing a ListView

Use
ReviewAdapter

B

Use resourced-
defined layout

C

Define TextView
for emptyD

Use Application
for global state

E

Use Intent extraF

79Working with views

ReviewAdapter class B. You’ll learn more about ReviewAdapter in the next section,
when we discuss custom views. The important part here is that we’re using a custom
Adapter for our ListView, and we use a List of Review objects to populate the
Adapter.

 Because we don’t yet have the data to populate the list, which we’ll get from a web
service call in another Thread, we need to include a Handler to allow for fetching data
and updating the UI to occur in separate steps. Don’t worry too much about these
concepts here; they’ll make more sense shortly when we discuss them while looking at
the second half of ReviewList in listing 3.4.

 After we declare our ListView and its data, we move on to the typical onCreate()
tasks you’ve already seen, including using a layout defined in an XML file C. This is
significant with respect to ListActivity because a ListView with the ID name list is
required if you want to customize the layout, as we’ve done. Note that the ID is
defined in the layout XML file; we’ll cover that in section 3.3.3. If you don’t provide a
layout, you can still use ListActivity and ListView, but you just get the system
default configuration. We’re also defining a UI element that’s used to display the mes-
sage No Data in the event that our List of reviews is empty D. We’re setting several
specific properties on the ListView, using its customization methods: whether the list
items themselves are focusable, how many elements can be selected at a time, and the
View to use when the list is empty.

 After we set up the View elements that are needed on the Activity, we get the cri-
teria to make our web service call from the Review object we previously placed in the
Application from the ReviewCriteria Activity E. Here we also use an Intent
extra to store a primitive int for page number F. We pass all the criteria data
(criteriaLocation, criteria-Cuisine, and startFrom) into the loadReviews()
method, which makes our web service call to populate the data list. This method, and
several others that show how we deal with items in the list being clicked on, are shown
in the second half of the ReviewList class in the following listing.

 . . .
 @Override
 public boolean onMenuItemSelected
(int featureId, MenuItem item) {
 Intent intent = null;

 switch (item.getItemId()) {
 case MENU_GET_NEXT_PAGE:
 intent = new Intent(Constants.INTENT_ACTION_VIEW_LIST);
 intent.putExtra(Constants.STARTFROM_EXTRA,
 getIntent().getIntExtra(Constants.STARTFROM_EXTRA, 1)
 + ReviewList.NUM_RESULTS_PER_PAGE);
 startActivity(intent);
 return true;
 case MENU_CHANGE_CRITERIA:

Listing 3.4 The second half of the ReviewList Activity class

Increment startFrom
Intent extra

B

 intent = new Intent(this, ReviewCriteria.class);

80 CHAPTER 3 User interfaces

 startActivity(intent);
 return true;
 }
 return super.onMenuItemSelected(featureId, item);
 }
 @Override
 protected void onListItemClick(ListView l, View v,
 int position, long id) {
 RestaurantFinderApplication application =
 (RestaurantFinderApplication) getApplication();
 application.setCurrentReview(this.reviews.get(position));
 Intent intent = new Intent(Constants.INTENT_ACTION_VIEW_DETAIL);
 intent.putExtra(Constants.STARTFROM_EXTRA, getIntent().getIntExtra(
 Constants.STARTFROM_EXTRA, 1));
 startActivity(intent);
 }
 private void loadReviews(String location, String cuisine,
 int startFrom) {
 final ReviewFetcher rf = new ReviewFetcher(location,
 cuisine, "ALL", startFrom,
 ReviewList.NUM_RESULTS_PER_PAGE);
 this.progressDialog =
 ProgressDialog.show(this, " Working...",
 " Retrieving reviews", true, false);
 new Thread() {
 public void run() {
 reviews = rf.getReviews();
 handler.sendEmptyMessage(0);
 }
 }.start();
 }
}

This Activity has a menu item that allows the user to get the next page of results or
change the list criteria. To support this, we have to implement the onMenuItem-
Selected method. When the MENU_GET_NEXT_PAGE menu item is selected, we define a
new Intent to reload the screen with an incremented startFrom value, with some
assistance from the Intent class’s getExtras() and putExtras() methods B.

 After the menu-related methods, you see a method named onListItemClick().
This method is invoked when one of the list items in a ListView is clicked. We use the
ordinal position of the clicked item to reference the particular Review item the user
selected, and we set this into the Application for later use in the Review-Detail
Activity (which you’ll begin to implement in section 3.3) C. After we have the data
set, we then call the next Activity, including the startFrom extra.

 In the ReviewList class, we have the loadReviews() method D. This method is
significant for several reasons. First, it sets up the ReviewFetcher class instance, which
is used to call out to the Google Base API over the network and return a List of
Review objects. Then it invokes the ProgressDialog.show() method to show the user
we’re retrieving data E. Finally, it sets up a new Thread F, within which the Review-

CGet Application
object and

set state

Create
loadReviews
methodD

Show
ProgressDialog

E

Make web
service callF
Fetcher is used, and the earlier Handler you saw in the first half of ReviewList is sent

81Working with views

an empty message. If you refer to listing 3.3, which is when the Handler was estab-
lished, you can see where, when the message is received, we dismiss the Progress-
Dialog, populate the Adapter our ListView is using, and call setListAdapter() to
update the UI. The setListAdapter()method iterates the Adapter and displays a
returned View for every item.

 With the Activity created and set up and the Handler being used to update the
Adapter with data, we now have a second screen in our application. The next thing we
need to do is fill in some of the gaps surrounding working with handlers and different
threads. These concepts aren’t view-specific but are worth a small detour at this point,
because you’ll want to use these classes when you’re trying to perform tasks related to
retrieving and manipulating data that the UI needs—a common design pattern when
you’re building Android applications.

3.2.3 Multitasking with Handler and Message

The Handler is the Swiss Army knife of messaging and scheduling operations for
Android. This class allows you to queue tasks to be run on different threads and to
schedule tasks using Message and Runnable objects.

 The Android platform monitors the responsiveness of applications and kills those
that are considered nonresponsive. An Application Not Responding (ANR) event occurs
when no response is received to a user input for 5 seconds. When a user interacts with
your application by touching the screen, pressing a key, or the like, your application
must respond. So does this mean that every operation in your code must complete
within 5 seconds? No, of course not, but the main UI thread does have to respond
within that time frame. To keep the main UI thread snappy, any long-running tasks,
such as retrieving data over the network, getting a large amount of data from a data-
base, or performing complicated or time-consuming calculations, should be per-
formed in a separate Thread, apart from the main UI Thread.

 Getting tasks into a separate thread and getting results back to the main UI thread
is where the Handler and related classes come into play. When a Handler is created,
it’s associated with a Looper. A Looper is a class that contains a MessageQueue and that
processes Message or Runnable objects that are sent via the Handler.

 When we used a Handler in listings 3.3 and 3.4, we created a Handler with a no-
argument constructor. With this approach, the Handler is automatically associated
with the Looper of the currently running thread, typically the main UI thread. The
main UI thread, which is created by the process of the running application, is an
instance of a HandlerThread. A HandlerThread is an Android Thread specialization
that provides a Looper. The key parts involved in this arrangement are depicted in fig-
ure 3.5.

 When you’re implementing a Handler, you’ll have to provide a handle-
Message(Message m) method. This method is the hook that lets you pass messages.
When you create a new Thread, you can then call one of several sendMessage methods
on Handler from within that thread’s run method, as our examples and figure 3.5

83Working with views

 this.reviews = reviews;
 }
 @Override
 public int getCount() {
 return this.reviews.size();
 }
 @Override
 public Object getItem(int position) {
 return this.reviews.get(position);
 }
 @Override
 public long getItemId(int position) {
 return position;
 }
 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 Review review = this.reviews.get(position);
 return new ReviewListView(
 this.context, review.name, review.rating);
 }
 private final class ReviewListView extends LinearLayout {
 private TextView name;
 private TextView rating;
 public ReviewListView(
 Context context, String name, String rating) {
 super(context);
 setOrientation(LinearLayout.VERTICAL);
 LinearLayout.LayoutParams params =
 new LinearLayout.LayoutParams(
 ViewGroup.LayoutParams.WRAP_CONTENT,
 ViewGroup.LayoutParams.WRAP_CONTENT);
 params.setMargins(5, 3, 5, 0);
 this.name = new TextView(context);
 this.name.setText(name);
 this.name.setTextSize(16f);
 this.name.setTextColor(Color.WHITE);
 this.addView(this.name, params);
 this.rating = new TextView(context);
 this.rating.setText(rating);
 this.rating.setTextSize(16f);
 this.rating.setTextColor(Color.GRAY);
 this.addView(this.rating, params);
 }
 }
}

The first thing to note in ReviewAdapter is that it extends BaseAdapter. BaseAdapter
is an Adapter implementation that provides basic event-handling support. Adapter
itself is an interface in the android.Widget package that provides a way to bind data to
a View with some common methods. This is often used with collections of data, as we
saw with Spinner and ArrayAdapter in listing 3.1. Another common use is with a Cur-
sorAdapter, which returns results from a database (something you’ll see in chapter 5).

Override
basic Adapter
methods

B

Override Adapter
getView

C

D
Define custom

inner View class

Set Layout
in codeE

Add TextView
to tree

F

Here we’re creating our own Adapter because we want it to return a custom View.

84 CHAPTER 3 User interfaces

 Our ReviewAdapter class accepts two parameters in the constructor and assigns
those values to two simple member objects: Context and List<Review>. This class
goes on to implement the straightforward required Adapter interface methods that
return a count, an item, and an ID—we use the ordinal position in the collection as
the ID B. The next Adapter method we have to implement is the most important—
getView(). The Adapter returns any View we create for a particular item in the collec-
tion of data that it’s supporting. Within this method, we get a particular Review object
based on the position/ID, then we create an instance of a custom ReviewListView
object to return as the View C.

ReviewListView itself, which extends LinearLayout (something you’ll learn more
about in section 3.2.4), is an inner class inside ReviewAdapter; we never use it except
to return a view from ReviewAdapter D. Within it, you see an example of setting layout
and View details in code, rather than relying on their definition in XML. In this listing,
we set the orientation, parameters, and margin for our layout E. Next, we populate
the simple TextView objects that will be children of our new View and represent data.
When these are set up via code, we add them to the parent container, which is in this
case our custom class ReviewListView F. This is where the data binding happens—
the bridge to the View from data. Another important thing to note about this is that
we’ve created not only a custom View but also a composite one. We’re using simple
existing View objects in a particular layout to construct a new type of reusable View,
which shows the detail of a selected Review object on screen, as depicted in figure 3.2.

 Our custom ReviewListView object is intentionally fairly simple. In many cases,
you’ll be able to create custom views by combining existing views in this manner,
though keep in mind that an alternative approach is to extend the View class itself.
With this approach, you can implement core methods as desired and you have access
to the lifecycle methods of a View. These View-specific methods include onMeasure(),
onLayout(), onDraw(), onVisibilityChanged(), and others. Though we don’t need
that level of control here, you should be aware that extending View gives you a great
deal of power to create custom components.

 Now that you’ve seen how you get the data for your reviews and what the Adapter
and custom View we’re using look like, the next thing we need to do is take a closer
look at a few more aspects of views, including layout.

3.2.5 Understanding layout

One of the most significant aspects of creating your UI and designing your screens is
understanding layout. In Android, screen layout is defined in terms of ViewGroup and
LayoutParams objects. ViewGroup is a View that contains other views (has children)
and also defines and provides access to the layout.

 On every screen, all the views are placed in a hierarchical tree; every element can
have one or more children, and somewhere at the root is a ViewGroup. All the views
on the screen support a host of attributes that pertain to background color, color, and
so on. We touched on many of these attributes in section 3.2.2 when we discussed the

86 CHAPTER 3 User interfaces

Recall that we used a LinearLayout in code in our ReviewListView in listing 3.5.
There we created our View and its LayoutParams directly in code. And, in our previ-
ous Activity examples, we used a RelativeLayout in our XML layout files that was
inflated into our code (again, we’ll cover XML resources in detail in section 3.3). A
RelativeLayout specifies child elements relative to each other: above, below,
toLeftOf, and so on.

 To summarize, the container is a ViewGroup, and a ViewGroup supports a particular
type of LayoutParams. Child View elements are then added to the container and must
fit into the layout specified by their parents. A key concept to grasp is that even
though a child View has to lay itself out based on its parents’ LayoutParams, it can also
specify a different layout for its own children. This design creates a flexible palette
upon which you can construct just about any type of screen you want.

 The dimensions for a given view are dictated by the LayoutParms of its parent—so
for each dimension of the layout of a view, you must define one of the following three
values:

 An exact number
 FILL_PARENT

 WRAP_CONTENT

The FILL_PARENT constant means “take up as much space in that dimension as the
parent does (subtracting padding).” WRAP_CONTENT means “take up only as much
space as is needed for the provided content (adding padding).” A child View requests
a size, and the parent makes a decision on how to position the child view on the
screen. The child makes a request and the parent makes the decision.

 Child elements do keep track of what size they’re initially asked to be, in case lay-
out is recalculated when things are added or removed, but they can’t force a particu-
lar size. Because of this, View elements have two sets of dimensions: the size and width
they want to take up [getMeasuredWidth() and getMeasuredHeight()] and the
actual size they end up after a parent’s decision [getWidth() and getHeight()].

 Layout is a two-step process: first, measurements are taken during the measure pass,
and subsequently, the items are placed to the screen during the layout pass, using the
associated LayoutParams. Components are drawn to the screen in the order they’re
found in the layout tree: parents first, then children. Note that parent views end up
behind children, if they overlap in positioning.

 Layout is a big part of understanding screen design with Android. Along with plac-
ing your View elements on the screen, you need to have a good grasp of focus and
event handling in order to build effective applications.

3.2.6 Handling focus

Focus is like a game of tag; one and only one component on the screen is always “it.”
All devices with UIs support this concept. When you’re turning the pages of a book,
your focus is on one particular page at a time. Computer interfaces are no different.

87Working with views

Though there can be many different windows and widgets on a particular screen, only
one has the current focus and can respond to user input. An event, such as movement
of a stylus or finger, a tap, or a keyboard press, might trigger the focus to shift to
another component.

 In Android, focus is handled for you by the platform a majority of the time. When
a user selects an Activity, it’s invoked and the focus is set to the foreground View.
Internal Android algorithms then determine where the focus should go next based on
events taking place in the applications. Events might include buttons being clicked,
menus being selected, or services returning callbacks. You can override the default
behavior and provide hints about where specifically you want the focus to go using the
following View class methods or their counterparts in XML:

 nextFocusDown

 nextFocusLeft

 nextFocusRight

 nextFocusUp

Views can also indicate a particular focus type, DEFAULT_FOCUS or WEAK_FOCUS, to set
the priority of focus to either themselves (default) or their descendants (weak). In
addition to hints, such as UP, DOWN, and WEAK, you can use the View.requestFocus()
method directly, if you need to, to indicate that focus should be set to a particular
View at a given time. Manipulating the focus manually should be the exception rather
than the rule—the platform logic generally does what you would expect, and more
importantly, what the user expects. Your application’s behavior should be mindful of
how other Android applications behave and it should act accordingly.

 Focus changes based on event-handling logic using the OnFocusChangeListener
object and related setOnFocusChangedListener() method. This takes us into the
world of event handling in general.

3.2.7 Grasping events

Events are used to change the focus and for many other actions. We’ve already imple-
mented several onClickListener() methods for buttons in listing 3.2. Those
OnClickListener instances were connected to button presses. They were indicating
events that said, “Hey, somebody pressed me.” This process is the same one that focus
events go through when announcing or responding to OnFocusChange events.

 Events have two halves: the component raising the event and the component (or
components) that respond to the event. These two halves are variously known as
Observable and Observer in design-pattern terms, or sometimes subject and observer.
Figure 3.7 is a class diagram of the relationships in this pattern.

 An Observable component provides a way for Observer instances to register.
When an event occurs, the Observable notifies all the observers that something has
taken place. The observers can then respond to that notification however they see fit.
Interfaces are typically used for the various types of events in a particular API.

89Using resources

 Our coverage of events in general, and how they relate to layout, rounds out the
majority of our discussion of views, but we still have one notable, related concept to
discuss—resources. Views are closely related to resources, but they also go beyond the
UI. In the next section, we’ll address all the aspects of resources, including XML-
defined views.

3.3 Using resources
We’ve mentioned Android resources in several contexts up to now (we initially intro-
duced them in chapter 1). Now we’re going to revisit resources in more depth to
expand on this important topic and to begin completing the third and final Activity
in RestaurantFinder—the ReviewDetail screen.

 When you begin working with Android, you’ll quickly notice many references to a
class named R. This class was introduced in chapter 1, and we’ve used it in our previ-
ous Activity examples in this chapter. This class is the Android resources reference
class. Resources are noncode items that are included with your project automatically
by the platform.

 To begin looking at resources, we’ll first discuss how they’re classified into types in
Android, and then we’ll demonstrate examples of each type of resource.

3.3.1 Supported resource types

Looking at the project structure of an Android project, the project’s resources are
located in the res directory and can be one of several types:

 res/anim—XML representations of frame-by-frame animations
 res/drawable—.png, .9.png, and .jpg images
 res/layout—XML representations of View objects
 res/values—XML representations of strings, colors, styles, dimensions, and

arrays
 res/xml—User-defined XML files that are compiled into a binary

representation
 res/raw—Arbitrary and uncompiled files that can be added

Resources are treated specially in Android because they’re typically compiled into an
efficient binary type, with the noted exception of items that are already binary and the
raw type, which isn’t compiled. Animations, layouts and views, string and color values,
and arrays can all be defined in an XML format on the platform. These XML resources
are then processed by the aapt tool, which you met in chapter 2, and compiled. After
resources are in compiled form, they’re accessible in Java through the automatically
generated R class.

3.3.2 Referencing resources in Java

The first portion of the ReviewDetail Activity, shown in the following listing, reuses
many of the Activity tenets you’ve already learned and uses several subcomponents

that come from R.java, the Android resources class.

90 CHAPTER 3 User interfaces

public class ReviewDetail extends Activity {
 private static final int MENU_CALL_REVIEW = Menu.FIRST + 2;
 private static final int MENU_MAP_REVIEW = Menu.FIRST + 1;
 private static final int MENU_WEB_REVIEW = Menu.FIRST;
 private String imageLink;
 private String link;
 private TextView location;
 private TextView name;
 private TextView phone;
 private TextView rating;
 private TextView review;
 private ImageView reviewImage;
 private Handler handler = new Handler() {
 public void handleMessage(Message msg) {
 if ((imageLink != null) && !imageLink.equals("")) {
 try {
 URL url = new URL(imageLink);
 URLConnection conn = url.openConnection();
 conn.connect();
 BufferedInputStream bis = new
BufferedInputStream(conn.getInputStream());
 Bitmap bm = BitmapFactory.decodeStream(bis);
 bis.close();
 reviewImage.setImageBitmap(bm);
 } catch (IOException e) {
 // log and or handle here
 }
 } else {
 reviewImage.setImageResource(R.drawable.no_review_image);
 }
 }
 };
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 this.setContentView(R.layout.review_detail);
 this.name =
 (TextView) findViewById(R.id.name_detail);
 this.rating =
 (TextView) findViewById(R.id.rating_detail);
 this.location =
 (TextView) findViewById(R.id.location_detail);
 this.phone =
 (TextView) findViewById(R.id.phone_detail);
 this.review =
 (TextView) findViewById(R.id.review_detail);
 this.reviewImage =
 (ImageView) findViewById(R.id.review_image);
 RestaurantFinderApplication application =
 (RestaurantFinderApplication) getApplication();
 Review currentReview = application.getCurrentReview();
 this.link = currentReview.link;

Listing 3.6 First portion of ReviewDetail showing multiple uses of the R class

Define inflatable
View items

B

Set layout using
setContentView()

C

 this.imageLink = currentReview.imageLink;

91Using resources

 this.name.setText(currentReview.name);
 this.rating.setText(currentReview.rating);
 this.location.setText(currentReview.location);
 this.review.setText(currentReview.content);
 if ((currentReview.phone != null) && !currentReview.phone.equals("")) {
 this.phone.setText(currentReview.phone);
 } else {
 this.phone.setText("NA");
 }
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 menu.add(0, ReviewDetail.MENU_WEB_REVIEW, 0,
 R.string.menu_web_review).setIcon(
 android.R.drawable.ic_menu_info_details);
 menu.add(0, ReviewDetail.MENU_MAP_REVIEW, 1,
 R.string.menu_map_review).setIcon(
 android.R.drawable.ic_menu_mapmode);
 menu.add(0, ReviewDetail.MENU_CALL_REVIEW, 2,
 R.string.menu_call_review).setIcon(
 android.R.drawable.ic_menu_call);
 return true;
 }
...

In the ReviewDetail class, we first define View components that we’ll later reference
from resources B. Next, you see a Handler that’s used to perform a network call to
populate an ImageView based on a URL. (This doesn’t relate specifically to our cur-
rent discussion of resources, but is included here for completeness. Don’t worry too
much about the details of this idea here; we’ll talk about it more when we specifically
discuss networking in chapter 5.) After the Handler, we set the layout and View tree
using setContentView(R.layout.review_detail) C. This maps to an XML layout
file at src/res/layout/review_detail.xml. Next, we reference some of the View objects
in the layout file directly through resources and corresponding IDs.

 Views defined in XML are inflated by parsing the layout XML and injecting the cor-
responding code to create the objects for you. This process is handled automatically
by the platform. All the View and LayoutParams methods we’ve discussed have coun-
terpart attributes in the XML format. This inflation approach is one of the most
important aspects of View-related resources, and it makes them convenient to use and
reuse. We’ll examine the layout file we’re referring to here and the specific views it
contains more closely in the next section.

 You reference resources in code, as we’ve been doing here, through the automati-
cally generated R class. The R class is made up of static inner classes (one for each
resource type) that hold references to all of your resources in the form of an int
value. This value is a constant pointer to an object file through a resource table that’s
contained in a special file the aapt tool creates and the R.java file uses.

 The last reference to resources in listing 3.6 is for the creation of our menu items D.

Use String
and Drawable
resources

D

For each of these, we’re referencing a String for text from our own local resources, and

92 CHAPTER 3 User interfaces

we’re also assigning an icon from the android.R.drawable resources namespace. You
can qualify resources in this way and reuse the platform drawables: icons, images, bor-
ders, backgrounds, and so on. You’ll likely want to customize much of your own appli-
cations and provide your own drawable resources, which you can do. Note that the
platform provides resources if you need them, and they’re arguably the better choice in
terms of consistency for the user, particularly if you’re calling out to well-defined
actions as we are here: map, phone call, and web page.

 We’ll cover how all the different resource types are handled and where they’re
placed in source in the next several sections. The first types of resources we’ll look at
more closely are layouts and views.

3.3.3 Defining views and layouts through XML resources

As we’ve noted in several earlier sections, views and layouts are often defined in XML1

rather than in Java code. Defining views and layout as resources in this way makes
them easier to work with, decoupled from the code, and in some cases reusable in dif-
ferent contexts.

 View resource files are placed in the res/layout source directory. The root of these
XML files is usually one of the ViewGroup layout subclasses we’ve already discussed:
RelativeLayout, LinearLayout, FrameLayout, and so on. Within these root elements
are child XML elements that comprise the view/layout tree.

 A subtle but important thing to understand here is that resources in the res/layout
directory don’t have to be complete layouts. For example, you can define a single
TextView in a layout file the same way you might define an entire tree starting from an
AbsoluteLayout. Yes, this might make the layout name and path potentially confus-
ing, but that’s how it’s set up. It might make more sense to have separate res/layout
and res/view directories, but that might be confusing too, so keep in mind that res/
layout is useful for more than layout. You might use this approach when a particularly
configured View is used in multiple areas of your application. By defining it as a stand-
alone resource, it can be maintained more readily over the lifetime of your project.

 You can have as many XML layout/view files as you need, all defined in the res/lay-
out directory. Each View is then referenced in code, based on the type and ID. Our lay-
out file for the ReviewDetail screen, review_detail.xml shown in the following listing,
is referenced in the Activity code as R.layout.review_detail—which is a pointer
to the RelativeLayout parent View object in the file.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"

Listing 3.7 XML layout resource file for review_detail.xml
1 See http://www.xml.com for more information about XML.

93Using resources

 android:gravity="center_horizontal"
 android:padding="10px"
 android.setVerticalScrollBarEnabled="true"
 >
 <ImageView android:id="@+id/review_image"
 android:layout_width="100px"
 android:layout_height="100px"
 android:layout_marginLeft="10px"
 android:layout_marginBottom="5px" />
 <TextView android:id="@+id/name_detail"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/review_image"
 android:layout_marginLeft="10px"
 android:layout_marginBottom="5px"
 style="@style/intro_blurb" />
 <TextView android:id="@+id/rating_label_detail"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/name_detail"
 android:layout_marginLeft="10px"
 android:layout_marginBottom="5px"
 style="@style/label"
 android:text="@string/rating_label" />
 . . .
</RelativeLayout>

In this file, we’re using a RelativeLayout. This is the ViewGroup at the root of the
View tree. LayoutParams are then also defined in XML using the android:
layout_[attribute] convention, where [attribute] refers to a layout attribute such
as width or height. Along with layout, you can also define other View-related attributes
in XML with counterpart XML attributes to the methods available in code, such as
android:padding, which is analogous to the setPadding() method.

 After we’ve defined the RelativeLayout parent itself, we add the child View ele-
ments. Here we’re using an ImageView and multiple TextView components. Each of
the components is given an ID using the form android:id="@+id/[name]" B. When
an ID is established in this manner, an int reference is defined in the resource table
and named with the specified name. Other components can reference the ID by the
friendly textual name. Never use the integer value directly, as it’ll change over time as
your view changes. Always use the constant value defined in the R class!

 After views are defined as resources, you can use the Activity method findView-
ById()to obtain a reference to a particular View, using the name. Then you can
manipulate that View in code. For example, in listing 3.6 we grabbed the rating
TextView as follows:

rating = (TextView) findViewById(R.id.rating_detail)

This inflates and hands off the rating_detail element. Note that child views of lay-
out files end up as id type in R.java (they’re not R.layout.name; rather they’re

Include child
element with ID

B

Reference another
resource

C

R.id.name, even though they’re required to be placed in the res/layout directory).

94 CHAPTER 3 User interfaces

 The properties for the View object are all defined in XML, and this includes the
layout. Because we’re using a RelativeLayout, we use attributes that place one View
relative to another, such as below or toRightOf. To accomplish relative placement, we
use the android:layout_below="@id/[name] syntax C. The @id syntax is a way to ref-
erence other resource items from within a current resource file. Using this approach,
you can reference other elements defined in the file you’re currently working on or
other elements defined in other resource files.

 Some of our views represent labels, which are shown on the screen as is and aren’t
manipulated in code, such as rating_label_detail. Others we’ll populate at run-
time; these views don’t have a text value set, such as name_detail. Labels, which are
the elements that we do know the values of, are defined with references to external-
ized strings.

 The same approach is applied with regard to styles, using the syntax
style="@style/[stylename]". Strings, styles, and colors are themselves defined as
resources in another type of resource file.

3.3.4 Externalizing values

It’s common practice in the programming world to externalize string literals from
code. In Java, you usually use a ResourceBundle or a properties file to externalize val-
ues. Externalizing references to strings in this way allows the value of a component to
be stored and updated separately from the component itself, away from code.

 Android includes support for values resources that are subdivided into several
groups: animations, arrays, styles, strings, dimensions, and colors. Each of these items
is defined in a specific XML format and made available in code as references from the
R class, just like layouts, views, and drawables. For the RestaurantFinder application,
we’re using externalized strings, as shown in the following listing, strings.xml.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name_criteria">RestaurantFinder – Criteria</string>
 <string name="app_name_reviews">RestaurantFinder - Reviews</string>
 <string name="app_name_review">RestaurantFinder - Review</string>
 <string name="app_short_name">Restaurants</string>
 <string name="menu_get_reviews">Get reviews</string>
 <string name="menu_web_review">Get full review</string>
 <string name="menu_map_review">Map location</string>
 <string name="menu_call_review">Call restaurant</string>
 <string name="menu_change_criteria">Change review criteria</string>
 <string name="menu_get_next_page">Get next page of results</string>
 <string name="intro_blurb_criteria">Enter review criteria</string>
 <string name="intro_blurb_detail">Review details</string>
 . . .
</resources>

As is evident from the strings.xml example, this is straightforward. This file uses a

Listing 3.8 Externalized strings for the RestaurantFinder application, strings.xml
<string> element with a name attribute for each string value you define. We’ve used

95Using resources

this file for the application name, menu buttons, labels, and alert validation messages.
This format is known as simple value in Android terminology. This file is placed in
source at the res/values/strings.xml location. In addition to strings, you can define
colors and dimensions in the same way.

 Dimensions are placed in dimens.xml and defined with the <dimen> element:
<dimen name=dimen_name>dimen_value</dimen>. Dimensions can be expressed in
any of the following units:

 pixels (px)
 inches (in)
 millimeters (mm)
 density-independent pixels (dp)
 scaled pixels (sp)

Colors are defined in colors.xml and are declared with the <color> element: <color
name=color_name>#color_value</color>. Color values are expressed using Red
Green Blue triplet values in hexadecimal format, like in HTML. Color and dimension
files are also placed in the res/values source location.

 Although we haven’t defined separate colors and dimensions for the Restaurant-
Finder application, we’re using several styles, which we referenced in listing 3.7. The
style definitions are shown in the following listing. Unlike the string, dimension, and
color resource files, which use a simplistic value structure, the style resource file has a
more complex structure, including specific attributes from the android namespace.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="intro_blurb">
 <item name="android:textSize">22sp</item>
 <item name="android:textColor">#ee7620</item>
 <item name="android:textStyle">bold</item>
 </style>
 <style name="label">
 <item name="android:textSize">18sp</item>
 <item name="android:textColor">#ffffff</item>
 </style>
 <style name="edit_text">
 <item name="android:textSize">16sp</item>
 <item name="android:textColor">#000000</item>
 </style>
 . . .
</resources>

The Android styles approach is similar in concept to using Cascading Style Sheets (CSS)
with HTML. Styles are defined in styles.xml and then referenced from other resources
or code. Each <style> element has one or more <item> children that define a single
setting. Styles are made up of the various View settings: sizes, colors, margins, and

Listing 3.9 Values resource defining reusable styles, styles.xml
such. Styles are helpful because they facilitate easy reuse and the ability to make

96 CHAPTER 3 User interfaces

changes in one place. Styles are applied in layout XML files by associating a style name
with a particular View component, such as style="@style/intro_blurb". Note that
in this case, style isn’t prefixed with the android: namespace; it’s a custom local
style, not one provided by the platform.

 Styles can be taken one step further and used as themes. Whereas a style refers to a
set of attributes applied to a single View element, themes refer to a set of attributes
being applied to an entire screen. Themes can be defined in the same <style> and
<item> structure as styles are. To apply a theme, you associate a style with an entire
Activity, such as android:theme="@android:style/[stylename]".

 Along with styles and themes, Android supports a specific XML structure for defin-
ing arrays as a resource. Arrays are placed in source in res/values/arrays.xml and are
helpful for defining collections of constant values, such as the cuisines we used to
pass to our ArrayAdapter back in listing 3.1. The following listing shows how these
arrays are defined in XML.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <array name="cuisines">
 <item>ANY</item>
 <item>American</item>
 <item>Barbeque</item>
 <item>Chinese</item>
 <item>French</item>
 <item>German</item>
 <item>Indian</item>
 <item>Italian</item>
 <item>Mexican</item>
 <item>Thai</item>
 <item>Vegetarian</item>
 <item>Kosher</item>
 </array>
</resources>

Arrays are defined as resources using an <array> element with a name attribute and
include any number of <item> child elements to define each array member. You can
access arrays in code using the syntax shown in listing 3.1: String[] ratings = get-
Resources().getStringArray(R.array.ratings).

 Raw files and XML are also supported through resources. Using the res/raw and
res/xml directories respectively, you can package these file types with your application
and access them through either Resources.openRawResource(int id) or Resources.
getXml(int id).

 Going past simple values for strings, colors, and dimensions and more involved but
still straightforward structures for styles, arrays, raw files, and raw XML, the next type
of resources we’ll examine is the animation resource.

Listing 3.10 Arrays.xml used for defining cuisines and ratings

97Using resources

3.3.5 Providing animations

Animations2 are more complicated than other Android resources, but they’re also the
most visually impressive. Android allows you to define animations that can rotate,
fade, move, or stretch graphics or text. Though you don’t want to go overboard with a
constantly blinking animated shovel, an initial splash or occasional subtle animated
effect can enhance your UI.

 Animation XML files are placed in the res/anim source directory. There can be
more than one anim file, and, as with layouts, you reference the respective animation
you want by name/id. Android supports four types of animations:

 <alpha>—Defines fading, from 0.0 to 1.0 (0.0 being transparent)
 <scale>—Defines sizing, x and y (1.0 being no change)
 <translate>—Defines motion, x and y (percentage or absolute)
 <rotate>—Defines rotation, pivot from x and y (degrees)

In addition, Android provides several attributes that can be used with any animation
type:

 duration—Duration, in milliseconds
 startOffset—Offset start time, in milliseconds
 interpolator—Used to define a velocity curve for speed of animation

The following listing shows a simple animation that you can use to scale a View.

<?xml version="1.0" encoding="utf-8"?>
<scale xmlns:android="http://schemas.android.com/apk/res/android"
 android:fromXScale="0.5"
 android:toXScale="2.0"
 android:fromYScale="0.5"
 android:toYScale="2.0"
 android:pivotX="50%"
 android:pivotY="50%"
 android:startOffset="700"
 android:duration="400"
 android:fillBefore="false" />

In code, you can reference and use this animation with any View object (TextView, for
example) as follows:

view.startAnimation(AnimationUtils.loadAnimation(this, R.anim.scaler));

This will scale the view element up in size on both the X and Y axes. Though we don’t
have any animations in the RestaurantFinder sample application by default, to see this
animation work, you can add the startAnimation method to any view element in the

2 For a good start in understanding the animation frameworks that are part of the SDK: http://developer-

Listing 3.11 Example of an animation defined in an XML resource, scaler.xml
life.com/tutorials/?p=343.

98 CHAPTER 3 User interfaces

code and reload the application. Animations can come in handy, so you should be
aware of them. We’ll cover animations and other graphics topics in detail in chapter 9.

 With our journey through Android resources now complete, we’re going to
address the final aspect of RestaurantFinder that we need to cover: the Android-
Manifest.xml manifest file, which is required for every Android application.

3.4 Exploring the AndroidManifest file
As you learned in chapter 1, Android requires a manifest file for every application—
AndroidManifest.xml. This file, which is placed in the root directory of the project
source, describes the application context and any supported activities, services, broad-
cast receivers, or content providers, as well as the requested permissions for the appli-
cation. You’ll learn more about services, Intents, and BroadcastReceivers in chapter
4 and about content providers in chapter 5. For now, the manifest file for our
RestaurantFinder sample application, as shown in the following listing, contains only
the <application> itself, an <activity> element for each screen, and several <uses-
permission> elements.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android">
 <application android:icon="@drawable/restaurant_icon_trans"
 android:label="@string/app_short_name"

android:name="RestaurantFinderApplication"
 android:allowClearUserData="true"
 android:theme="@android:style/Theme.Black">
 <activity android:name="ReviewCriteria"
 android:label="@string/app_short_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name="ReviewList"
 android:label="@string/app_name_reviews">
 <intent-filter>
 <category
 android:name="android.intent.category.DEFAULT" />
 <action
 android:name="com.msi.manning.restaurant.VIEW_LIST" />
 </intent-filter>
 </activity>
 <activity android:name="ReviewDetail"
 android:label="@string/app_name_review">
 <intent-filter>
 <category
 android:name="android.intent.category.DEFAULT" />
 <action

Listing 3.12 The RestaurantFinder AndroidManifest.xml file

Define
ReviewCriteria
Activity

B

C
Define MAIN LAUNCHER

Intent filter
 android:name="com.msi.manning.restaurant.VIEW_DETAIL" />

99Summary

 </intent-filter>
 </activity>
 </application>
 <uses-permission android:name="android.permission.CALL_PHONE" />
 <uses-permission android:name="android.permission.INTERNET" />
</manifest>

In the RestaurantFinder descriptor file, you first see the root <manifest> element dec-
laration, which includes the application’s package declaration and the Android
namespace. Then you see the <application> element with both the name and icon
attributes defined. You don’t have to include the name attribute here unless you want
to extend the default Android Application object to provide some global state to your
application. We took this approach so we could access the Application instance to
store the current Review object. The icon is also optional; if you don’t specify one, a sys-
tem default is used to represent your application on the main menu. It’s highly recom-
mended that you provide an attractive icon for your application to make it stand out.

 After the application itself is defined, you see the child <activity> elements
within. These elements define each Activity the application supports B (note that
the manifest file can use Android resources as well, such as with @string/app_name).
As we noted when we discussed activities in general, one Activity in every application
is defined as the entry point for the application; this Activity has the <intent-
filter> action MAIN and category LAUNCHER designation C. This tells the Android
platform how to start an application from the Launcher, meaning this Activity will
be placed in the main menu on the device.

 After the ReviewCriteria Activity, you see another <activity> designation for
ReviewList. This Activity also includes an <intent-filter>, but for our own action,
com.msi.manning.restaurant.VIEW_LIST. This tells the platform that this Activity
should be invoked for this Intent. Last in our manifest file, we have a <uses-
permission> element. This element also relates to Intents and tells the platform that
this application needs the CALL_PHONE permission. We touched on permissions briefly
in chapter 2 and in other places in this book—mainly when we’re adding a new feature
and require a <uses-permission> element to allow the desired behavior.

 The RestaurantFinder sample application uses a fairly basic manifest file with three
activities and a series of Intents. Wrapping up the description of the manifest file
completes our discussion of views, activities, resources, and working with UIs in
Android.

3.5 Summary
A big part of the Android platform revolves around the UI and the concepts of activi-
ties and views. In this chapter, we explored these concepts in detail and worked on a
sample application to demonstrate them. In relation to activities, we addressed the
concepts and methods involved, and we covered the all-important lifecycle events the
platform uses to manage them. With regard to views, we looked at common and cus-

tom types, attributes that define layout and appearance, and focus and events.

100 CHAPTER 3 User interfaces

 In addition, we looked at how Android handles various types of resources, from
simple types to more involved layouts, arrays, and animations, and how these relate to,
and are used in, views and activities. We also explored the AndroidManifest.xml appli-
cation descriptor and how it brings all these pieces together to define an Android
application.

 This chapter has given you a good foundation for general Android UI develop-
ment. Now we need to go deeper into the Intent and BroadcastReceiver classes,
which comprise the communication layer that Android activities and other compo-
nents rely on. We’ll cover these items, along with longer-running Service processes
and the Android interprocess communication (IPC) system involving the Binder, in
chapter 4, where you’ll also complete the RestaurantFinder application.

Intents and Services
You’ve already created some interesting applications that didn’t require a lot of
effort to build. In this chapter, we’ll dig deeper into the use of Intent objects and
related classes to accomplish tasks. We’ll expand the RestaurantFinder application
from chapter 3, and show you how an Intent can carry you from one Activity to
another and easily link into outside applications. Next, you’ll create a new weather-
reporting application to demonstrate how Android handles background processes
through a Service. We’ll wrap up the chapter with an example of using the
Android Interface Definition Language (AIDL) to make different applications com-
municate with one another.

 We introduced the Intent in chapter 1. An Intent describes something you
want to do, which might be as vague as “Do whatever is appropriate for this URL” or

This chapter covers
 Asking other programs to do work for you with intents

 Advertising your capabilities with intent filters

 Eavesdropping on other apps with broadcast receivers

 Building Services to provide long-lived background
processing

 Offering APIs to external applications through AIDL
101

as specific as “Purchase a flight from San Jose to Chicago for $400.” You saw several

102 CHAPTER 4 Intents and Services

examples of working with Intent objects in chapter 3. In this chapter, we’ll look more
closely at the contents of an Intent and how it matches with an IntentFilter. The
RestaurantFinder app will use these concepts to display a variety of screens.

 After you complete the RestaurantFinder application, we’ll move on to Weather-
Reporter. WeatherReporter will use the Yahoo! Weather API to retrieve weather data
and alerts and show them to the user. Along the way, you’ll see how an Intent can
request work outside your UI by using a BroadcastReceiver and a Service. A
BroadcastReceiver catches broadcasts sent to any number of interested receivers.
Services also begin with an Intent, but work in background processes rather than
UI screens.

 Finally, we’ll examine the mechanism for making interprocess communication
(IPC) possible using Binder objects and AIDL. Android provides a high-performance
way for different processes to pass messages among themselves.

 All these mechanisms require the use of Intent objects, so we’ll begin by looking
at the details of this class.

4.1 Serving up RestaurantFinder with Intent
The mobile Android architecture looks a lot like the service-oriented architecture
(SOA) that’s common in server development. Each Activity can make an Intent call
to get something done without knowing exactly who’ll receive that Intent. Develop-
ers usually don’t care how a particular task gets performed, only that it’s completed to
their requirements. As you complete your RestaurantFinder application, you’ll see
that you can request some sophisticated tasks while remaining vague about how those
tasks should get done.

Intent requests are late binding; they’re mapped and routed to a component that
can handle a specified task at runtime rather than at build or compile time. One
Activity tells the platform, “I need a map to Langtry, TX, US,” and another compo-
nent returns the result. With this approach, individual components are decoupled
and can be modified, enhanced, and maintained without requiring changes to a
larger application or system.

 Let’s look at how to define an Intent in code, how to invoke an Intent within an
Activity, and how Android resolves Intent routing with IntentFilter classes. Then
we’ll talk about Intents that are built into the platform and that anyone can use.

4.1.1 Defining Intents

Suppose that you want to call a restaurant to make a reservation. When you’re craft-
ing an Intent for this, you need to include two critical pieces of information. An
action is a verb describing what you want to do—in this case, to make a phone call.
Data is a noun describing the particular thing to request—in this case, the phone
number. You describe the data with a Uri object, which we’ll describe more thor-
oughly in the next section. You can also optionally populate the Intent with other
elements that further describe how to handle the request. Table 4.1 lists all the com-

ponents of an Intent object.

103Serving up RestaurantFinder with Intent

Intent definitions typically express a combination of action, data, and other attri-
butes, such as category. You combine enough information to describe the task you
want done. Android uses the information you provide to resolve exactly which class
should fulfill the request.

4.1.2 Implicit and explicit invocation

Android’s loose coupling allows you to write applications that make vague requests.
An implicit Intent invocation happens when the platform determines which compo-
nent should run the Intent. In our example of making a phone call, we don’t particu-
larly care whether the user has the native Android dialer or if they’ve installed a third-
party dialing app; we only care that the call gets made. We’ll let Android resolve the
Intent using the action, data, and category we defined. We’ll explore this resolution
process in detail in the next section.

 Other times, you want to use an Intent to accomplish some work, but you want to
make sure that you handle it yourself. When you open a review in RestaurantFinder,
you don’t want a third party to intercept that request and show its own review instead.
In an explicit Intent invocation, your code directly specifies which component
should handle the Intent. You perform an explicit invocation by specifying either the
Class or ComponentName of the receiver. The ComponentName provides the fully quali-
fied class name, consisting of a String for the package and a String for the class.

 To explicitly invoke an Intent, you can use the following form: Intent(Context
ctx, Class cls). With this approach, you can short-circuit all the Android Intent-
resolution wiring and directly pass in an Activity class reference to handle the
Intent. Though this approach is convenient and fast, it also introduces tight coupling
that might be a disadvantage later if you want to start using a different Activity.

Table 4.1 Intent elements and descriptions

Intent element Description

Action Fully qualified String indicating the action (for example,
android.intent.action.DIAL)

Category Describes where and how the Intent can be used, such as from the main
Android menu or from the browser

Component Specifies an explicit package and class to use for the Intent, instead of infer-
ring from action, type, and categories

Data Data to work with, expressed as a URI (for example, content://contacts/1)

Extras Extra data to pass to the Intent in the form of a Bundle

Type Specifies an explicit MIME type, such as text/plain or
vnd.android.cursor.item/email_v2

104 CHAPTER 4 Intents and Services

4.1.3 Adding external links to RestaurantFinder

When we started the RestaurantFinder in listing 3.6, we used Intent objects to move
between screens in our application. In the following listing, we finish the Review-
Detail Activity by using a new set of implicit Intent objects to link the user to other
applications on the phone.

@Override
public boolean onMenuItemSelected(int featureId, MenuItem item) {
 Intent intent = null;
 switch (item.getItemId()) {
 case MENU_WEB_REVIEW:
 if ((link != null) && !link.equals("")) {
 intent = new Intent(Intent.ACTION_VIEW,
 Uri.parse(link));
 startActivity(intent);
 } else {
 new AlertDialog.Builder(this)
 setTitle(getResources()
 .getString(R.string.alert_label))
 .setMessage(R.string.no_link_message)
 .setPositiveButton("Continue",
 new OnClickListener() {
 public void onClick(DialogInterface dialog,
 int arg1) {
 }
 }).show();
 }
 return true;
 case MENU_MAP_REVIEW:
 if ((location.getText() != null)
 && !location.getText().equals("")) {
 intent = new Intent(Intent.ACTION_VIEW,
 Uri.parse("geo:0,0?q=" +
 location.getText().toString()));
 startActivity(intent);
 } else {
 new AlertDialog.Builder(this)
 .setTitle(getResources()
 .getString(R.string.alert_label))
 .setMessage(R.string.no_location_message)
 .setPositiveButton("Continue", new OnClickListener() {
 public void onClick(DialogInterface dialog,
 int arg1) {
 }
 }).show();
 }
 return true;
 case MENU_CALL_REVIEW:
 if ((phone.getText() != null)
 && !phone.getText().equals("")

Listing 4.1 Second section of ReviewDetail, demonstrating Intent invocation

Declare
IntentB

Display
web pageC

Set Intent for
map menu item

D

 && !phone.getText().equals("NA")) {

105Serving up RestaurantFinder with Intent

 String phoneString =
 parsePhone(phone.getText().toString());
 intent = new Intent(Intent.ACTION_CALL,
 Uri.parse("tel:" + phoneString));
 startActivity(intent);
 } else {
 new AlertDialog.Builder(this)
 .setTitle(getResources()
 .getString(R.string.alert_label))
 .setMessage(R.string.no_phone_message)
 .setPositiveButton("Continue", new OnClickListener() {
 public void onClick(DialogInterface dialog,
 int arg1) {
 }
 }).show();
 }
 return true;
 }
 return super.onMenuItemSelected(featureId, item);
 }
 private String parsePhone(final String phone) {
 String parsed = phone;
 parsed = parsed.replaceAll("\\D", "");
 parsed = parsed.replaceAll("\\s", "");
 return parsed.trim();
 }

The Review model object contains the address and phone number for a restaurant and
a link to the full online review. Using ReviewDetail Activity, the user can open the
menu and choose to display a map with directions to the restaurant, call the restaurant,
or view the full review in a web browser. To allow all of these actions to take place,
ReviewDetail launches built-in Android applications through implicit Intent calls.

 In our new code, we initialize an Intent class instance B so it can be used later by
the menu cases. If the user selects the MENU_WEB_REVIEW menu button, we create a
new instance of the Intent variable by passing in an action and data. For the action,
we use the String constant Intent.ACTION_VIEW, which has the value android.app.
action.VIEW. You can use either the constant or the value, but sticking to constants
helps ensure that you don’t mistype the name. Other common actions are Intent.
ACTION_EDIT, Intent.ACTION_INSERT, and Intent.ACTION_DELETE.

 For the data component of the Intent, we use Uri.parse(link) to create a Uri.
We’ll look at Uri in more detail in the next section; for now, just know that this allows
the correct component to answer the startActivity(Intent i) request C and render
the resource identified by the Uri. We don’t directly declare any particular Activity or
Service for the Intent; we simply say we want to VIEW http://somehost/somepath.
Android’s late-binding mechanism will interpret this request at runtime, most likely by
launching the device's built-in browser.

ReviewDetail also handles the MENU_MAP_REVIEW menu item. We initialize the
Intent to use Intent.ACTION_VIEW again, but this time with a different type of Uri:

Set Intent for
call menu itemE
"geo:0,0?q=" + street_address D. This combination of VIEW and geo scheme

106 CHAPTER 4 Intents and Services

invokes a different Intent, probably the built-in maps
application. Finally, when handling MENU_MAP_CALL, we
request a phone call using the Intent.ACTION_CALL
action and the tel: Uri scheme E.

 Through these simple requests, our Restaurant-
Finder application uses implicit Intent invocation to
allow the user to phone or map the selected restaurant
or to view the full review web page. These menu buttons
are shown in figure 4.1.

 Your RestaurantFinder application is now complete.
Users can now search for reviews, select a particular
review from a list, display a detailed review, and use
additional built-in applications to find out more about a
selected restaurant.

 You’ll learn more about all the built-in apps and
action-data pairs in section 4.1.5. Right now, we’re
going to focus on the Intent-resolution process and
how it routes requests.

4.1.4 Finding your way with Intent

Our RestaurantFinder makes requests to other applications by using Intent invoca-
tions, and guides its internal movement by listening for Intent requests. Three types
of Android components can register to handle Intent requests: Activity, Broadcast-
Receiver, and Service. They advertise their capabilities through the <intent-
filter> element in the AndroidManifest.xml file.

 Android parses each <intent-filter> element into an IntentFilter object.
After Android installs an .apk file, it registers the application’s components, including
the Intent filters. When the platform has a registry of Intent filters, it can map any
Intent requests to the correct, installed Activity, BroadcastReceiver, or Service.

 To find the appropriate handler for an Intent, Android inspects the action, data,
and categories of the Intent. An <intent-filter> must fulfill the following condi-
tions to be considered:

 The action and category must match.
 If specified, the data type must match, or the combination of data scheme and

authority and path must match.

Let’s look at these components in more detail.

ACTIONS AND CATEGORIES

Each individual IntentFilter can specify zero or more actions and zero or more cat-
egories. If the action isn’t specified in the IntentFilter, it’ll match any Intent; other-
wise, it’ll match only if the Intent has the same action.

 An IntentFilter with no categories will match only an Intent with no categories;

Figure 4.1 Menu buttons on the
RestaurantFinder sample
application that invoke external
applications
otherwise, an IntentFilter must have at least what the Intent specifies. For example,

107Serving up RestaurantFinder with Intent

if an IntentFilter supports both the HOME and the ALTERNATIVE categories, it’ll
match an Intent for either HOME or CATEGORY. But if the IntentFilter doesn’t pro-
vide any categories, it won’t match HOME or CATEGORY.

 You can work with action and category without specifying any data. We used this
technique in the ReviewList Activity you built in chapter 3. In that example, we
defined the IntentFilter in the manifest XML, as shown in the following listing.

<activity android:name="ReviewList" android:label="@string/app_name">
 <intent-filter>
 <category android:name="android.intent.category.DEFAULT" />
 <action android:name="com.msi.manning.restaurant.VIEW_LIST" />
 </intent-filter>
</activity>

To match the filter declared in this listing, we used the following Intent in code, where
Constants.INTENT_ACTION_VIEW_LIST is the String "com.msi.manning.restaurant.
VIEW_LIST":

Intent intent = new Intent(Constants.INTENT_ACTION_VIEW_LIST);
startActivity(intent);

DATA

After Android has determined that the action and category match, it inspects the
Intent data. The data can be either an explicit MIME type or a combination of
scheme, authority, and path. The Uri shown in figure 4.2 is an example of using
scheme, authority, and path.

 The following example shows what using an explicit MIME type within a Uri looks
like:

audio/mpeg

IntentFilter classes describe what combination of type, scheme, authority, and path
they accept. Android follows a detailed process to determine whether an Intent
matches:

1 If a scheme is present and type is not present, Intents with any type will match.
2 If a type is present and scheme is not present, Intents with any scheme will

match.
3 If neither a scheme nor a type is present, only Intents with neither scheme nor

type will match.
4 If an authority is specified, a scheme must also be specified.
5 If a path is specified, a scheme and an authority must also be specified.

Listing 4.2 Manifest declaration of ReviewList Activity with <intent-filter>

weather:// com.msi.manning/loc?zip=12345

Figure 4.2 The portions of a URI
that are used in Android, showing
scheme authority path scheme, authority, and path

109Checking the weather with a custom URI

application, phone application, or browser application. By experimenting with these,
you can get a feel for how Intent resolution works in Android.

 With a handle on the basics of Intent resolution and a quick look at built-in
Intents out of the way, we can move on to a new sample application: WeatherReporter.

4.2 Checking the weather with a custom URI
WeatherReporter, the next sample application you’ll
build, uses the Yahoo! Weather API to retrieve weather
data, and displays it to the user. This application can
also optionally alert users of severe weather for cer-
tain locations, based on either the current location of
the device or on a specified postal code.

 Within this project, you’ll see how you can define
a custom URI and register it with a matching Intent
filter to allow any other application to invoke a
weather report through an Intent. Defining and
publishing an Intent in this way allows other applica-
tions to easily use your application. When your
WeatherReporter application is complete, the main
screen will look like figure 4.4.

4.2.1 Offering a custom URI

Let’s look more deeply into how to define Intent fil-
ters in XML. The manifest for WeatherReporter is
shown in the following listing.

Intent.ACTION_DIAL voicemail: Opens the phone application and
dials (but doesn’t call) the voice-
mail number

Intent.ACTION_VIEW geo:latitude,longitude Opens the maps application to the
specified latitude and longitude

Intent.ACTION_VIEW geo:0,0?q=street+address Opens the maps application to the
specified address

Intent.ACTION_VIEW http://web_address Opens the browser application to
the specified URL

Intent.ACTION_VIEW https://web_address Opens the browser application to
the specified secure URL

Intent.ACTION_WEB_SEARCH plain_text Opens the browser application and
uses Google Search

Table 4.2 Common Android application Intent action and Uri combinations (continued)

Action Uri Description

Figure 4.4 The WeatherReporter
application, showing the weather
forecast for the current location

110 CHAPTER 4 Intents and Services

<?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.weather">
 <application android:icon="@drawable/weather_sun_clouds_120"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Black"
 android:allowClearUserData="true">
 <activity android:name="ReportViewSavedLocations"
 android:label="@string/app_name_view_saved_locations" />
 <activity android:name="ReportSpecifyLocation"
 android:label=
 "@string/app_name_specify_location" />
 <activity android:name="ReportViewDetail"
 android:label="@string/app_name_view_detail">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="weather"
 android:host="com.msi.manning" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <data android:scheme="weather"
 android:host="com.msi.manning" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name=
 ".service.WeatherAlertServiceReceiver">
 <intent-filter>
 <action android:name=
 "android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 </receiver>
 <service android:name=".service.WeatherAlertService" />
 </application>
 <uses-permission
 android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <uses-permission
 android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name=
 "android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name=
 "android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
 <uses-permission android:name="android.permission.INTERNET" />
 </manifest>

In the WeatherReporter manifest, we define three activities B. The first two don’t

Listing 4.3 The Android manifest file for the WeatherReporter application

B
Define

activities

Define receiverC

Define
service

D

Include necessary
permissions E
include an <intent-filter>, so they can only be explicitly invoked from within this

111Checking the weather with a custom URI

application. The ReportViewDetail Activity has multiple <intent-filter> tags
defined for it, including one denoting it as the MAIN LAUNCHER, and one with the
weather://com.msi.manning scheme and authority. Our application supports this
custom URI to provide weather access.

 You can use any combination of scheme, authority, and path, as shown in listing
4.3, or you can use an explicit MIME type. You’ll find out more about MIME types and
how they’re processed in chapter 5, where we’ll look at how to work with data sources
and use an Android concept known as a ContentProvider.

 After we define these activities, we use the <receiver> element in the manifest file
to refer to a BroadcastReceiver class C. We’ll examine BroadcastReceiver more
closely in section 4.3, but for now know that an <intent-filter> associates this
receiver with an Intent—in this case, for the BOOT_COMPLETED action. This filter tells
the platform to invoke the WeatherAlertServiceReceiver class after it completes the
boot up sequence.

 We also define a Service D. You’ll see how this Service is built, and how it polls
for severe weather alerts in the background, in section 4.3. Finally, our manifest
includes a set of required permissions E.

4.2.2 Inspecting a custom Uri

With the foundation for our sample application in place via the manifest, Android will
launch WeatherReporter when it encounters a request that uses our custom Uri. As
usual, it’ll invoke the onStart method of the main Activity WeatherReporter will
use. The following listing shows our implementation, where we parse data from the
Uri and use it to display a weather report.

@Override
public void onStart() {
 super.onStart();
 dbHelper = new DBHelper(this);
 deviceZip = WeatherAlertService.deviceLocationZIP;
 if ((getIntent().getData() != null)
 && (getIntent().getData().getEncodedQuery() != null)
 && (getIntent().getData().getEncodedQuery().length() > 8)) {
 String queryString =
 getIntent().getData().getEncodedQuery();
 reportZip = queryString.substring(4, 9);
 useDeviceLocation = false;
 } else {
 reportZip = deviceZip;
 useDeviceLocation = true;
 }
 savedLocation = dbHelper.get(reportZip);
 deviceAlertEnabledLocation =
 dbHelper.get(DBHelper.DEVICE_ALERT_ENABLED_ZIP);
 if (useDeviceLocation) {

Listing 4.4 onStart method of the ReportViewDetail Activity

Create
database
helper

B
Get device
location
postal code

C

 currentCheck.setText(R.string.view_checkbox_current);

112 CHAPTER 4 Intents and Services

 if (deviceAlertEnabledLocation != null) {
 currentCheck.setChecked(true);
 } else {
 currentCheck.setChecked(false);
 }
 } else {
 currentCheck.setText(R.string.view_checkbox_specific);
 if (savedLocation != null) {
 if (savedLocation.alertenabled == 1) {
 currentCheck.setChecked(true);
 } else {
 currentCheck.setChecked(false);
 }
 }
 }
 loadReport(reportZip);
}

You can get the complete ReportViewDetail Activity from the source code down-
load for this chapter. In the onStart method shown in this listing, we focus on parsing
data from the Uri passed in as part of the Intent that invokes the Activity.

 First, we establish a database helper object B. This object will be used to query a
local SQLite database that stores user-specified location data. We’ll show more about
how data is handled, and the details of this helper class, in chapter 5.

 In this method, we also obtain the postal code of the current device location from
a LocationManager in the WeatherAlertService class C. We want to use the location
of the device as the default weather report location. As the user travels with the
phone, this location will automatically update. We’ll cover location and Location-
Manager in chapter 11.

 After obtaining the device location, we move on to the key aspect of obtaining Uri
data from an Intent. We check to see whether our Intent provided specific data; if
so, we parse the Uri passed in to obtain the queryString and embedded postal code
to use for the user’s specified location. If this location is present, we use it; if not, we
default to the device location postal code.

 After determining the postal code to use, we set the status of the check box that
indicates whether to enable alerts D. We have two kinds of alerts: one for the device
location and another for the user’s specified saved locations.

 Finally, we call the loadReport method, which makes the call out to the Yahoo!
Weather API1 to obtain data; then we use a Handler to send a Message to update the
needed UI View elements.

 Remember that this Activity registered in the manifest to receive weather://
com.msi.manning intents. Any application can invoke this Activity without knowing
any details other than the URI. This separation of responsibilities enables late binding.
After invocation, we check the URI to see what our caller wanted.

Set status
of alert-
enabled
check box

D

1 For more on the Yahoo! Weather API, go here: http://developer.yahoo.com/weather/.

113Checking the weather with broadcast receivers

 You’ve now seen the manifest and pertinent details of the main Activity class for
the WeatherReporter application we’ll build in the next few sections. We’ve also dis-
cussed how Intent and IntentFilter classes work together to wire up calls between
components. Next, we’ll take a look at some of the built-in Android applications that
accept external Intent requests. These requests enable you to launch activities by sim-
ply passing in the correct URI.

4.3 Checking the weather with broadcast receivers
So far you’ve seen how to use an Intent to communicate within your app and to issue
a request that another component will handle. You can also send an Intent to any
interested receiver. When you do, you aren’t requesting the execution of a specific
task, but instead you’re letting everyone know about something interesting that has
happened. Android already sends these broadcasts for several reasons, such as when
an incoming phone call or text message is received. In this section, we’ll look at how
events are broadcast and how they’re captured using a BroadcastReceiver.

 We’ll continue to work through the WeatherReporter sample application we began
in section 4.2. The WeatherReporter application will display alerts to the user when
severe weather is forecast for the user’s indicated location. We’ll need a background
process that checks the weather and sends any needed alerts. This is where the
Android Service concept will come into play. We need to start the Service when the
device boots, so we’ll listen for the boot through an Intent broadcast.

4.3.1 Broadcasting Intent

As you’ve seen, Intent objects let you move from Activity to Activity in an
Android application, or from one application to another. Intents can also broadcast
events to any configured receiver using one of several methods available from the
Context class, as shown in table 4.3.

Table 4.3 Methods for broadcasting intents

Method Description

sendBroadcast(Intent intent) Simple form for broadcasting an Intent.

sendBroadcast(Intent intent,
String receiverPermission)

Broadcasts an Intent with a permission String
that receivers must declare in order to receive the
broadcast.

sendOrderedBroadcast(Intent intent,
String receiverPermission)

Broadcasts an Intent call to the receivers one-by-
one serially, stopping after a receiver consumes the
message.

114 CHAPTER 4 Intents and Services

When you broadcast Intents, you send an event into the background. A broadcast
Intent doesn’t invoke an Activity, so your current screen usually remains in the
foreground.

 You can also optionally specify a permission when you broadcast an Intent. Only
receivers who’ve declared that permission will receive the broadcast; all others will
remain unaware of it. You can use this mechanism to ensure that only certain trusted
applications can listen in on what your app does. You can review permission declara-
tions in chapter 1.

 Broadcasting an Intent is fairly straightforward; you use the Context object to
send it, and interested receivers catch it. Android provides a set of platform-related
Intent broadcasts that use this approach. In certain situations, such as when the time
zone on the platform changes, when the device completes booting, or when a package
is added or removed, the system broadcasts an event using an Intent. Table 4.4 shows
some of the specific Intent broadcasts the platform provides.

 To register to receive an Intent broadcast, you implement a BroadcastReceiver.
You’ll make your own implementation to catch the platform-provided BOOT_

COMPLETED Intent to start the weather alert service.

sendOrderedBroadcast(Intent intent,
String receiverPermission,
BroadcastReceiver resultReceiver,
Handler scheduler, int initialCode,
String initialData,
Bundle initialExtras)

Broadcasts an Intent and gets a response back
through the provided BroadcastReceiver. All
receivers can append data that will be returned in the
BroadcastReceiver. When you use this method,
the receivers are called serially.

sendStickyBroadcast(Intent intent) Broadcasts an Intent that remains a short time
after broadcast so that receivers can retrieve data.
Applications using this method must declare the
BROADCAST_STICKY permission.

Table 4.4 Broadcast actions provided by the Android platform

Action Description

ACTION_BATTERY_CHANGED Sent when the battery charge level or charging state changes

ACTION_BOOT_COMPLETED Sent when the platform completes booting

ACTION_PACKAGE_ADDED Sent when a package is added to the platform

ACTION_PACKAGE_REMOVED Sent when a package is removed from the platform

ACTION_TIME_CHANGED Sent when the user changes the time on the device

ACTION_TIME_TICK Sent every minute to indicate that time is ticking

Table 4.3 Methods for broadcasting intents (continued)

Method Description
ACTION_TIMEZONE_CHANGED Sent when the user changes the time zone on the device

115Building a background weather service

4.3.2 Creating a receiver

Because the weather alert Service you’re going to create should always run in the
background, you need a way to start it when the platform boots. To do this, you’ll cre-
ate a BroadcastReceiver that listens for the BOOT_COMPLETED Intent broadcast.

 The BroadcastReceiver base class provides a series of methods that lets you get
and set a result code, result data (in the form of a String), and an extra Bundle. It
also defines a lifecycle-related method to run when the appropriate Intent is
received.

 You can associate a BroadcastReceiver with an IntentFilter in code or in the
manifest XML file. We declared this for the WeatherReporter manifest in listing 4.3,
where we associated the BOOT_COMPLETED broadcast with the WeatherAlert-

ServiceReceiver class. This class is shown in the following listing.

public class WeatherAlertServiceReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals(Intent.ACTION_BOOT_COMPLETED)) {
 context.startService(new Intent(context,
 WeatherAlertService.class));
 }
 }
}

When you create your own Intent broadcast receiver, you extend the Broadcast-
Receiver class and implement the abstract onReceive(Context c, Intent i) method.
In our implementation, we start the WeatherAlertService. This Service class, which
we’ll create next, is started using the Context.startService(Intent i, Bundle b)
method.

 Keep in mind that receiver class instances have a short and focused lifecycle. After
completing the onReceive(Context c, Intent i) method, the instance and process
that invoked the receiver are no longer needed and might be killed by the system. For
this reason, you can’t perform any asynchronous operations in a BroadcastReceiver,
such as starting a thread or showing a dialog. Instead, you can start a Service, as we’ve
done in listing 4.5, and use it to do work.

 Our receiver has started the WeatherAlertService, which will run in the back-
ground and warn users of severe weather in the forecast with a Notification-based
alert. Let’s look more deeply into the concept of an Android Service.

4.4 Building a background weather service
In a basic Android application, you create Activity classes and move from screen to
screen using Intent calls, as we’ve done in previous chapters. This approach works for
the canonical Android screen-to-screen foreground application, but it doesn’t work
for cases like ours where we want to always listen for changes in the weather, even if

Listing 4.5 The WeatherAlertServiceReceiver BroadcastReceiver class

116 CHAPTER 4 Intents and Services

the user doesn’t currently have our app open. For this,
we need a Service.

 In this section, we’ll implement the Weather-
AlertService we launched in listing 4.4. This Service
sends an alert to the user when it learns of severe weather
in a specified location. This alert will display over any
application, in the form of a Notification, if severe
weather is detected. Figure 4.5 shows the notification
we’ll send.

 A background task is typically a process that doesn’t
involve direct user interaction or any type of UI. This
process perfectly describes checking for severe weather.
After a Service is started, it runs until it’s explicitly
stopped or the system kills it. The WeatherAlertService
background task, which starts when the device boots via
the BroadcastReceiver from listing 4.5, is shown in the
following listing.

public class WeatherAlertService extends Service {
 private static final String LOC = "LOC";
 private static final String ZIP = "ZIP";
 private static final long ALERT_QUIET_PERIOD = 10000;
 private static final long ALERT_POLL_INTERVAL = 15000;
 public static String deviceLocationZIP = "94102";
 private Timer timer;
 private DBHelper dbHelper;
 private NotificationManager nm;
 private TimerTask task = new TimerTask() {
 public void run() {
 List<Location> locations =
 dbHelper.getAllAlertEnabled();
 for (Location loc : locations) {
 WeatherRecord record = loadRecord(loc.zip);
 if (record.isSevere()) {
 if ((loc.lastalert +
 WeatherAlertService.ALERT_QUIET_PERIOD)
 < System.currentTimeMillis()) {
 loc.lastalert = System.currentTimeMillis();
 dbHelper.update(loc);
 sendNotification(loc.zip, record);
 }
 }
 }
 . . . device location alert omitted for brevity
 }
 };
 private Handler handler = new Handler() {

Listing 4.6 WeatherAlertService class, used to register locations and send alerts

Get locations with
alerts enabled

B

Fire alert
if severeC

Figure 4.5 Warning from a
background application about
severe weather
 public void handleMessage(Message msg) {

117Building a background weather service

 notifyFromHandler((String) msg.getData()
 .get(WeatherAlertService.LOC), (String) msg.getData()
 .get(WeatherAlertService.ZIP));
 }
 };
 @Override
 public void onCreate() {
 dbHelper = new DBHelper(this);
 timer = new Timer();
 timer.schedule(task, 5000,
 WeatherAlertService.ALERT_POLL_INTERVAL);
 nm = (NotificationManager)
 getSystemService(Context.NOTIFICATION_SERVICE);
 }
 . . . onStart with LocationManager and LocationListener \
 omitted for brevity
 @Override
 public void onDestroy() {
 super.onDestroy();
 dbHelper.cleanup();
 }
 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }
 protected WeatherRecord loadRecord(String zip) {
 final YWeatherFetcher ywh = #10
 new YWeatherFetcher(zip, true);
 return ywh.getWeather();
 }
 private void sendNotification(String zip,
 WeatherRecord record) { #11
 Message message = Message.obtain();
 Bundle bundle = new Bundle();
 bundle.putString(WeatherAlertService.ZIP, zip);
 bundle.putString(WeatherAlertService.LOC, record.getCity()
 + ", " + record.getRegion());
 message.setData(bundle);
 handler.sendMessage(message);
 }
 private void notifyFromHandler(String location, String zip) {
 Uri uri = Uri.parse("weather://com.msi.manning/loc?zip=" + zip);
 Intent intent = new Intent(Intent.ACTION_VIEW, uri);
 PendingIntent pendingIntent =
 PendingIntent.getActivity(this, Intent.FLAG_ACTIVITY_NEW_TASK,
 intent,PendingIntent.FLAG_ONE_SHOT);
 final Notification n =
 new Notification(R.drawable.severe_weather_24,
 "Severe Weather Alert!",
 System.currentTimeMillis());
 n.setLatestEventInfo(this, "Severe Weather Alert!",
 location, pendingIntent);
 nm.notify(Integer.parseInt(zip), n);
 }

Notify UI
from handlerD

Initialize timerE

Clean up
database connection

F

GDisplay actionable
notification
}

118 CHAPTER 4 Intents and Services

WeatherAlertService extends Service. We create a service in a way that’s similar to
how we’ve created activities and broadcast receivers: extend the base class, implement
the abstract methods, and override the lifecycle methods as needed.

 After the initial class declaration, we define several member variables. First come
constants that describe our intervals for polling for severe weather and a quiet period.
We’ve set a low threshold for polling during development—severe weather alerts will
spam the emulator often because of this setting. In production, we’d limit this to
check every few hours.

 Next, our TimerTask variable will let us periodically poll the weather. Each time
the task runs, it gets all the user’s saved locations through a database call B. We’ll
examine the specifics of using an Android database in chapter 5.

 When we have the saved locations, we parse each one and load the weather report.
If the report shows severe weather in the forecast, we update the time of the last alert
field and call a helper method to initiate sending a Notification C. After we process
the user’s saved locations, we get the device’s alert location from the database using a
postal code designation. If the user has requested alerts for his current location, we
repeat the process of polling and sending an alert for the device’s current location as
well. You can see more details on Android location-related facilities in chapter 11.

 After defining our TimerTask, we create a Handler member variable. This variable
will receive a Message object that’s fired from a non-UI thread. In this case, after
receiving the Message, our Handler calls a helper method that instantiates and dis-
plays a Notification D.

 Next, we override the Service lifecycle methods, starting with onCreate. Here
comes the meat of our Service: a Timer E that we configure to repeatedly fire. For as
long as the Service continues to run, the timer will allow us to update weather infor-
mation. After onCreate, we see onDestroy, where we clean up our database connec-
tion F. Service classes provide these lifecycle methods so you can control how
resources are allocated and deallocated, similar to Activity classes.

 After the lifecycle-related methods, we implement the required onBind method.
This method returns an IBinder, which other components that call into Service
methods will use for communication. The WeatherAlertService performs only a
background task; it doesn’t support binding, and so it returns a null for onBind. We’ll
add binding and interprocess communication (IPC) in section 4.5.

 Next, we implement our helper methods. First, loadRecord calls out to the Yahoo!
Weather API via YWeatherFetcher. (We’ll cover networking tasks, similar to those this
class performs, in chapter 6.) Then sendNotification configures a Message with
location details to activate the Handler we declared earlier. Last of all, you see the
notifyFromHandler method. This method fires off a Notification with Intent
objects that will call back into the WeatherReporter Activity if the user clicks on the
Notification G.

 Now that we’ve discussed the purpose of services and you’ve created a Service
class and started one via a BroadcastReceiver, we can start looking at how other

developers can interact with your Service.

119Communicating with the WeatherAlertService from other apps

4.5 Communicating with the WeatherAlertService
from other apps
In Android, each application runs within its own process. Other applications can’t
directly call methods on your weather alert service, because the applications are in dif-
ferent sandboxes. You’ve already seen how applications can invoke one another by
using an Intent. Suppose, though, that you wanted to learn something specific from a
particular application, like check the weather in a particular region. This type of gran-
ular information isn’t readily available through simple Intent communication, but
fortunately Android provides a new solution: IPC through a bound service.

 We’ll illustrate bound services by expanding our weather alert with a remotable
interface using AIDL, and then we’ll connect to that interface through a proxy that
we’ll expose using a new Service. Along the way, we’ll explore the IBinder and
Binder classes Android uses to pass messages and types during IPC.

4.5.1 Android Interface Definition Language

If you want to allow other developers to use your weather features, you need to give
them information about the methods you provide, but you might not want to share
your application’s source code. Android lets you specify your IPC features by using an
interface definition language (IDL) to create AIDL files. These files generate a Java
interface and an inner Stub class that you can use to create a remotely accessible
object, and that your consumers can use to invoke your methods.

AIDL files allow you to define your package, imports, and methods with return
types and parameters. Our weather AIDL, which we place in the same package as the
.java files, is shown in the following listing.

package com.msi.manning.weather;

interface IWeatherReporter
{

Listing 4.7 IWeatherReporter.aidl remote IDL file

A warning about long-running services
Our sample application starts a Service and leaves it running in the background. Our
service is designed to have a minimal footprint, but Android best practices discour-
age long-running services. Services that run continually and constantly use the net-
work or perform CPU-intensive tasks will eat up the device’s battery life and might
slow down other operations. Even worse, because they run in the background, the
user won’t know what applications are to blame for her device’s poor performance.
The OS will eventually kill running services if it needs to acquire additional memory,
but otherwise won’t interfere with poorly designed services. If your use case no longer
requires the service, you should stop it. If you do require a long-running service, you
might want to give the user the option of whether to use it.

120 CHAPTER 4 Intents and Services

 String getWeatherFor(in String zip);
 void addLocation(in String zip, in String city, in String region);
}

You define the package and interface in AIDL as you would in a regular Java file. Simi-
larly, if you require any imports, you’d list them above the interface declaration. When
you define methods, you must specify a directional tag for all nonprimitive types. The
possible directions are in, out, and inout. The platform uses this directional tag to
generate the necessary code for marshaling and unmarshaling instances of your inter-
face across IPC boundaries.

 Our interface IWeatherReporter includes methods to look up the current weather
from the service, or to add a new location to the service. Other developers could use
these features to provide other front-end applications that use our back-end service.

 Only certain types of data are allowed in AIDL, as shown in table 4.5. Types that
require an import must always list that import, even if they’re in the same package as
your .aidl file.

 After you’ve defined your interface methods with return types and parameters, you
then invoke the aidl tool included in your Android SDK installation to generate a Java
interface that represents your AIDL specification. If you use the Eclipse plug-in, it’ll
automatically invoke the aidl tool for you, placing the generated files in the appropri-
ate package in your project’s gen folder.

 The interface generated through AIDL includes an inner static abstract class
named Stub that extends Binder and implements the outer class interface. This Stub
class represents the local side of your remotable interface. Stub also includes an
asInterface(IBinder binder) method that returns a remote version of your interface
type. Callers can use this method to get a handle to the remote object and use it to
invoke remote methods. The AIDL process generates a Proxy class (another inner
class, this time inside Stub) that connects all these components and returns to callers
from the asInterface method. Figure 4.6 depicts this IPC local/remote relationship.

Table 4.5 Android IDL allowed types

Type Description
Import

required

Java primitives boolean, byte, short, int, float, double, long, char. No

String java.lang.String. No

CharSequence java.lang.CharSequence. No

List Can be generic; all types used in collection must be allowed by
IDL. Ultimately provided as an ArrayList.

No

Map Can be generic, all types used in collection must be one
allowed by IDL. Ultimately provided as a HashMap.

No

Other AIDL interfaces Any other AIDL-generated interface type. Yes

Parcelable objects Objects that implement the Android Parcelable interface, Yes

described in section 4.5.2.

122 CHAPTER 4 Intents and Services

AIDL is handled synchronously through the transaction process, enabling the same
semantics as if the method were local.

 All the objects you pass in and out through the interface methods that you define
using AIDL use the transact process. These objects must be Parcelable in order to be
able to be placed inside a Parcel and moved across the local/remote process barrier
in the Binder transaction methods.

 The only time you need to worry about something being Parcelable is when you
want to send a custom object through Android IPC. If you use only the default allow-
able types in your interface definition files—primitives, String, CharSequence, List,
and Map—AIDL automatically handles everything.

 The Android documentation describes what methods you need to implement to
create a Parcelable class. Remember to create a .aidl file for each Parcelable inter-
face. These .aidl files are different from those you use to define Binder classes them-
selves; these shouldn’t be generated from the aidl tool.

CAUTION When you’re considering creating your own Parcelable types,
make sure you actually need them. Passing complex objects across the IPC
boundary in an embedded environment is an expensive and tedious opera-
tion; you should avoid doing it, if possible.

4.5.3 Exposing a remote interface

Now that you’ve defined the features you want to expose from your weather app, you
need to actually implement that functionality and make it available to external callers.
Android calls this publishing the interface.

 To publish a remote interface, you create a class that extends Service and returns
an IBinder through the onBind(Intent intent) method. Clients will use that
IBinder to access a particular remote object. As we discussed in section 4.5.2, you can
use the AIDL-generated Stub class, which itself extends Binder, to extend from and
return an implementation of a remotable interface. This process is shown in the fol-
lowing listing, where we implement and publish the IWeatherReporter service we cre-
ated in the previous section.

public class WeatherReporterService extends WeatherAlertService {
 private final class WeatherReporter
 extends IWeatherReporter.Stub {
 public String getWeatherFor(String zip) throws RemoteException {
 WeatherRecord record = loadRecord(zip);
 return record.getCondition().getDisplay();
 }
 public void addLocation(String zip, String city, String region)
 throws RemoteException {
 DBHelper db = new DBHelper(WeatherReporterService.this);
 Location location = new Location();
 location.alertenabled = 0;

Listing 4.8 Implementing a weather service that publishes a remotable object

B
Implement

remote interface
 location.lastalert = 0;

123Communicating with the WeatherAlertService from other apps

 location.zip = zip;
 location.city = city;
 location.region = region;
 db.insert(location);
 }
 };
 public IBinder onBind(Intent intent) {
 return new WeatherReporter();
 }
}

Our concrete instance of the generated AIDL Java interface must return an IBinder to
any caller that binds to this Service. We create an implementation by extending the
Stub class that the aidl tool generated B. Recall that this Stub class implements the
AIDL interface and extends Binder. After we’ve defined our IBinder, we can create
and return it from the onBind method C.

 Within the stub itself, we write whatever code is necessary to provide the features
advertised by our interface. You can access any other classes within your application.
In this example, our service has extended WeatherAlertService so we can more eas-
ily access the weather functions we’ve already written, like the loadRecord method.

 You’ll need to define this new WeatherReporterService in your application’s mani-
fest, in the same way you define any other service. If you want to bind to the service
only from within your own application, no other steps are necessary. But if you want to
allow binding from another application, you must provide some extra information
within AndroidManifest.xml, as shown in the following listing.

<service android:name=".service.WeatherReporterService"
 android:exported="true">
 <intent-filter>
 <action android:name=
 "com.msi.manning.weather.IWeatherReporter"/>
 </intent-filter>
</service>

To allow external applications to find our Service, we instruct Android to export this
service declaration. Exporting the declaration allows other applications to launch the
Service, a prerequisite for binding with it. The actual launch will happen through an
intent-filter that we define. In this example, the caller must know the full name of
the action, but any <intent-filter> we discussed earlier in the chapter can be substi-
tuted, such as filtering by scheme or by type.

 Now that you’ve seen how a caller can get a reference to a remotable object, we’ll
finish that connection by binding to a Service from an Activity.

4.5.4 Binding to a Service

Let’s switch hats and pretend that, instead of writing a weather service, we’re another

Listing 4.9 Exporting a service for other applications to access

Return IBinder
representing
remotable object

C

company that wants to integrate weather functions into our own app. Our app will let

124 CHAPTER 4 Intents and Services

the user enter a ZIP code and either look up the current weather for that location or
save it to the WeatherReporter application’s list of saved locations. We’ve received the
.aidl file and learned the name of the Service. We generate our own interface from
that .aidl file, but before we can call the remote methods, we’ll need to first bind with
the service.

 When an Activity class binds to a Service using the Context.bindService
(Intent i, ServiceConnection connection, int flags) method, the Service-
Connection object that we pass in will send several callbacks from the Service back to
the Activity. The callback onServiceConnected (ComponentName className,

IBinder binder) lets you know when the binding process completes. The platform
automatically injects the IBinder returned from the service’s onBind method into this
callback, where you can save it for future calls. The following listing shows an Activity
that binds to our weather reporting service and invokes remote methods on it. You can
see the complete source code for this project in the chapter downloads.

package com.msi.manning.weatherchecker;
. . . Imports omitted for brevity
public class WeatherChecker extends Activity {

 private IWeatherReporter reporter;
 private boolean bound;
 private EditText zipEntry;
 private Handler uiHandler;

 private ServiceConnection connection =
 new ServiceConnection() {
 public void onServiceConnected
 (ComponentName name, IBinder service) {
 reporter = IWeatherReporter.Stub.
 asInterface(service);
 Toast.makeText(WeatherChecker.this, "Connected to Service",
 Toast.LENGTH_SHORT).show();
 bound = true;
 }
 public void onServiceDisconnected
 (ComponentName name) {
 reporter = null;
 Toast.makeText(WeatherChecker.this, "Disconnected from Service",
 Toast.LENGTH_SHORT).show();
 bound = false;
 }
 };

. . . onCreate method omitted for brevity

 public void checkWeather(View caller) {
 final String zipCode = zipEntry.getText().toString();
 if (zipCode != null && zipCode.length() == 5) {
 new Thread() {
 public void run() {

Listing 4.10 Binding to a Service within an Activity

Use generated
interface

B

Define
ServiceConnection
behavior

C

Retrieve remotely
callable interface

D

Don’t block
UI thread
 try {

125Communicating with the WeatherAlertService from other apps

 final String currentWeather =
 reporter.getWeatherFor(zipCode);
 uiHandler.post(new Runnable() {
 public void run() {
 Toast.makeText(WeatherChecker.this, currentWeather,
 Toast.LENGTH_LONG).show();
 }
 });
 } catch (DeadObjectException e) {
 e.printStackTrace();
 } catch (RemoteException e) {
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }.start();
 }
 }

 public void saveLocation(View caller) {
 final String zipCode = zipEntry.getText().toString();
 if (zipCode != null && zipCode.length() == 5) {
 new Thread() {
 public void run() {
 try {
 reporter.addLocation(zipCode, "", "");
 uiHandler.post(new Runnable() {
 public void run() {
 Toast.makeText(
 WeatherChecker.this, R.string.saved,
 Toast.LENGTH_LONG).show();
 }
 });
 } catch (DeadObjectException e) {
 e.printStackTrace();
 } catch (RemoteException e) {
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }.start();
 }
 }
 public void onStart() {
 super.onStart();
 if (!this.bound) {
 bindService(new Intent
 (IWeatherReporter.class.getName()),
 this.connection,
 Context.BIND_AUTO_CREATE);
 }
 }

 public void onPause() {

Invoke remote methodE

Show feedback
on UI thread

Show feedback
on UI thread

Start binding
to service

F

 super.onPause();

126 CHAPTER 4 Intents and Services

 if (this.bound){
 bound = false;
 unbindService(connection);
 }
 }
}

In order to use the remotable IWeatherReporter we defined in AIDL, we declare a
variable with this type B. We also define a boolean to keep track of the current state
of the binding. Keeping track of the current state will prevent us from rebinding to
the service if our application is suspended and resumed.

 We use the ServiceConnection object C to bind and unbind using Context meth-
ods. After a Service is bound, the platform notifies us through the onService-
Connected callback. This callback returns the remote IBinder reference, which we
assign to the remotable type D so we can invoke it later. Next, a similar onService-
Disconnected callback will fire when a Service is unbound.

 After we’ve established a connection, we can use the AIDL-generated interface to
perform the operations it defines E. When we call getWeatherFor (or later, add-
Location), Android will dispatch our invocation across the process boundary, where
the service we created in listing 4.8 will execute the methods. The return values will be
sent back across the process boundary and arrive as shown at E. This sequence can
take a long time, so you should avoid calling remote methods from the UI thread.

 In onStart, we establish the binding using bindService F; later, in onPause, we
use unbindService. The system can choose to clean up a Service that’s been bound
but not started. You should always unbind an unused Service so the device can
reclaim its resources and perform better. Let’s look more closely at the difference
between starting and binding a service.

4.5.5 Starting versus binding

Services serve two purposes in Android, and you can use them in two different ways:

 Starting—Context.startService(Intent service, Bundle b)
 Binding—Context.bindService(Intent service, ServiceConnection c, int

flag)

Starting a Service tells the platform to launch it in the background and keep it run-
ning, without any particular connection to any other Activity or application. You
used the WeatherAlertService in this manner to run in the background and issue
severe weather alerts.

 Binding to a Service, as you did with WeatherReporterService, gave you a handle
to a remote object, which let you call the service’s exported methods from an Activity.
Because every Android application runs in its own process, using a bound Service lets
you pass data between processes.

 The actual process of marshaling and unmarshaling remotable objects across pro-
cess boundaries is complicated. Fortunately, you don’t have to deal with all the inter-
nals, because Android handles all the complexity through AIDL. Instead, you can stick

to a simple recipe that will enable you to create and use remotable objects:

127Communicating with the WeatherAlertService from other apps

1 Define your interface using AIDL, in the form of a .aidl file; see listing 4.7.
2 Generate a Java interface for your .aidl file. This happens automatically in

Eclipse.
3 Extend from the generated .Stub class and implement your interface methods;

see listing 4.8.
4 Expose your interface to clients through a Service and the Service

onBind(Intent i) method; see listing 4.8.
5 If you want to make your service available to other applications, export the

Service in your manifest; see listing 4.9.
6 Client applications will bind to your Service with a ServiceConnection to get a

handle to the remotable object; see listing 4.10.

As we discussed earlier in the chapter, services running in the background can have a
detrimental impact on overall device performance. To mitigate these problems,
Android enforces a special lifecycle for services, which we’re going to discuss now.

4.5.6 Service lifecycle

We want our weather alerting service to constantly lurk in the background, letting us
know of potential dangers. On the other hand, we want our weather reporting service
to run only while another application actually needs it. Services follow their own well-
defined process phases, similar to those followed by an Activity or an Application.
A Service will follow a different lifecycle, depending on whether you start it, bind it,
or both.

SERVICE-STARTED LIFECYCLE

If you start a Service by calling Context.startService(Intent service, Bundle b),
as shown in listing 4.5, it runs in the background whether or not anything binds to it.
If the service hasn’t been created, the Service onCreate() method is called. The
onStart(int id, Bundle args) method is called each time someone tries to start the
service, whether or not it’s already running. Additional instances of the Service won’t
be created.

 The Service will continue to run in the background until someone explicitly stops
it with the Context.stopService() method or when the Service calls its own
stopSelf() method. You should also keep in mind that the platform might kill ser-
vices if resources are running low, so your application needs to be able to react accord-
ingly. You can choose to restart the service automatically, fall back to a more limited
feature set without it, or take some other appropriate action.

SERVICE-BOUND LIFECYCLE

If an Activity binds a Service by calling Context.bindService(Intent service,
ServiceConnection connection, int flags), as shown in listing 4.10, it’ll run as long
as the connection is open. An Activity establishes the connection using the Context
and is also responsible for closing it.

128 CHAPTER 4 Intents and Services

 When a Service is only bound in this manner and not also started, its onCreate()
method is invoked, but onStart(int id, Bundle args) is not used. In these cases, the
platform can stop and clean up the Service after it’s unbound.

SERVICE-STARTED AND SERVICE-BOUND LIFECYCLE

If a Service is both started and bound, it’ll keep running in the background, much
like in the started lifecycle. In this case, both onStart(int id, Bundle args) and
onCreate() are called.

CLEANING UP WHEN A SERVICE STOPS

When a Service stops, its onDestroy() method is invoked. Inside onDestroy(), every
Service should perform final cleanup, stopping any spawned threads, terminating
network connections, stopping services it had started, and so on.

 And that’s it! From birth to death, from invocation to dismissal, you’ve learned
how to wrangle an Android Service. They might seem complex, but they offer
extremely powerful capabilities that can go far beyond what a single foregrounded
application can offer.

4.6 Summary
In this chapter, we covered a broad swath of Android territory. We first focused on the
Intent component, seeing how it works, how it resolves using Intent-Filter objects,
and how to take advantage of built-in platform-provided Intent handlers. We also
looked at the differences between explicit Intent invocation and implicit Intent
invocation, and the reasons you might choose one type over another. Along the way,
you completed the RestaurantFinder sample application, and with just a bit more
code, you drastically expanded the usefulness of that app by tapping into preloaded
Android applications.

 After we covered the Intent class, we moved on to a new sample application,
WeatherReporter. You saw how a BroadcastReceiver could respond to notifications
sent by the platform or other applications. You used the receiver to listen for a boot
event and start the Service. The Service sends notification alerts from the back-
ground when it learns of severe weather events. You also saw another flavor of
Service, one that provides communication between different processes. Our other
weather service offered an API that third-party developers could use to leverage the
low-level network and storage capabilities of our weather application. We covered the
difference between starting and binding services, and you saw the moving parts
behind the Android IPC system, which uses the AIDL to standardize communication
between applications.

 By seeing all these components interact in several complete examples, you now
understand the fundamentals behind Android Intents and Services. In the next
chapter, you’ll see how to make services and other applications more useful by using
persistent storage. We’ll look at the various options Android provides for retrieving
and storing data, including preferences, the file system, databases, and how to create a

custom ContentProvider.

Storing and
retrieving data
Android provides several ways to store and share data, including access to the file-
system, a local relational database through SQLite, and a preferences system that
allows you to store simple key/value pairs within applications. In this chapter, we’ll
start with preferences and you’ll create a small sample application to exercise those
concepts. From there, you’ll create another sample application to examine using
the filesystem to store data, both internal to our application and external using the
platform’s Secure Digital (SD) card support. You’ll also see how to create and
access a database.

 Beyond the basics, Android also allows applications to share data through a
clever URI-based approach called a ContentProvider. This technique combines

This chapter covers
 Storing and retrieving data with SharedPreferences

 Using the filesystem

 Working with a SQLite database

 Accessing and building a ContentProvider
129

several other Android concepts, such as the URI-based style of intents and the

130 CHAPTER 5 Storing and retrieving data

Cursor result set seen in SQLite, to make data accessible across different applications.
To demonstrate how this works, you’ll create another small sample application that
uses built-in providers, then we’ll walk through the steps required to create your own
ContentProvider.

 We’ll begin with preferences, the simplest form of data storage and retrieval
Android provides.

5.1 Using preferences
If you want to share simple application data from one Activity to another, use a
SharedPreferences object. You can save and retrieve data, and also choose whether
to make preferences private to your application or accessible to other applications on
the same device.

5.1.1 Working with SharedPreferences

You access a SharedPreferences object through your current Context, such as the
Activity or Service. Context defines the method getSharedPreferences(String
name, int accessMode) that allows you to get a preferences handle. The name you
specify will be the name for the file that backs these preferences. If no such file exists
when you try to get preferences, one is automatically created. The access mode refers
to what permissions you want to allow.

 The following listing demonstrates allowing the user to input and store data
through SharedPreferences objects with different access modes.

package com.msi.manning.chapter5.prefs;
// imports omitted for brevity
public class SharedPrefTestInput extends Activity {
 public static final String PREFS_PRIVATE = "PREFS_PRIVATE";
 public static final String PREFS_WORLD_READ = "PREFS_WORLD_READABLE";
 public static final String PREFS_WORLD_WRITE = "PREFS_WORLD_WRITABLE";
 public static final String PREFS_WORLD_READ_WRITE =
 "PREFS_WORLD_READABLE_WRITABLE";
 public static final String KEY_PRIVATE = "KEY_PRIVATE";
 public static final String KEY_WORLD_READ = "KEY_WORLD_READ";
 public static final String KEY_WORLD_WRITE = "KEY_WORLD_WRITE";
 public static final String KEY_WORLD_READ_WRITE =
 "KEY_WORLD_READ_WRITE";
 . . . view element variable declarations omitted for brevity
 private SharedPreferences prefsPrivate;
 private SharedPreferences prefsWorldRead;
 private SharedPreferences prefsWorldWrite;
 private SharedPreferences prefsWorldReadWrite;
 @Override
 public void onCreate(Bundle icicle) {
 ... view inflation omitted for brevity
 button.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {

Listing 5.1 Storing SharedPreferences using different modes

Declare
SharedPreferences
variables

B

 boolean valid = validate();

131Using preferences

 if (valid) {
 prefsPrivate =
 getSharedPreferences(
 SharedPrefTestInput.PREFS_PRIVATE,
 Context.MODE_PRIVATE);
 prefsWorldRead =
 getSharedPreferences(
 SharedPrefTestInput.PREFS_WORLD_READ,
 Context.MODE_WORLD_READABLE);
 prefsWorldWrite =
 getSharedPreferences(
 SharedPrefTestInput.PREFS_WORLD_WRITE,
 Context.MODE_WORLD_WRITEABLE);
 prefsWorldReadWrite =
 getSharedPreferences(
 SharedPrefTestInput.PREFS_WORLD_READ_WRITE,
 Context.MODE_WORLD_READABLE
 + Context.MODE_WORLD_WRITEABLE);
 Editor prefsPrivateEditor =
 prefsPrivate.edit();
 Editor prefsWorldReadEditor =
 prefsWorldRead.edit();
 Editor prefsWorldWriteEditor =
 prefsWorldWrite.edit();
 Editor prefsWorldReadWriteEditor =
 prefsWorldReadWrite.edit()
 prefsPrivateEditor.putString(
 SharedPrefTestInput.KEY_PRIVATE,
 inputPrivate.getText.toString());
 prefsWorldReadEditor.putString(
 SharedPrefTestInput.KEY_WORLD_READ,
 inputWorldRead.getText().toString());
 prefsWorldWriteEditor.putString(
 SharedPrefTestInput.KEY_WORLD_WRITE,
 inputWorldWrite.getText().toString());
 prefsWorldReadWriteEditor.putString(
 SharedPrefTestInput.KEY_WORLD_READ_WRITE,
 inputWorldReadWrite.getText().toString());
 prefsPrivateEditor.commit();
 prefsWorldReadEditor.commit();
 prefsWorldWriteEditor.commit();
 prefsWorldReadWriteEditor.commit();
 Intent intent =
 new Intent(SharedPrefTestInput.this,
 SharedPrefTestOutput.class);
 startActivity(intent);
 }
 }
 });
 }
 . . . validate omitted for brevity
}

After you have a SharedPreferences variable B, you can acquire a reference

Use
Context.getShared
Preferences for
references

C

Use
different modesD

Get
SharedPreferences
editor

E

Store values
with editor

F

Persist
changesG
through the Context C. Note that for each SharedPreferences object we get, we use

132 CHAPTER 5 Storing and retrieving data

a different constant value for the access mode, and in some cases we also add modes
D. We repeat this coding for each mode we retrieve. Modes specify whether the pref-
erences should be private, world-readable, or world-writable.

 To modify preferences, you must get an Editor handle E. With the Editor, you
can set String, boolean, float, int, and long types as key/value pairs F. This limited
set of types can be restrictive, but often preferences are adequate, and they’re simple
to use.

 After storing with an Editor, which creates an in-memory Map, you have to call
commit() to persist it to the preferences backing file G. After data is committed, you
can easily get it from a SharedPreferences object. The following listing gets and dis-
plays the data that was stored in listing 5.1.

package com.msi.manning.chapter5.prefs;
// imports omitted for brevity
public class SharedPrefTestOutput extends Activity {
 . . . view element variable declarations omitted for brevity
 private SharedPreferences prefsPrivate;
 private SharedPreferences prefsWorldRead;
 private SharedPreferences prefsWorldWrite;
 private SharedPreferences prefsWorldReadWrite;
 . . . onCreate omitted for brevity
 @Override
 public void onStart() {
 super.onStart();
 prefsPrivate =
 getSharedPreferences(SharedPrefTestInput.PREFS_PRIVATE,
 Context.MODE_PRIVATE);
 prefsWorldRead =
 getSharedPreferences(SharedPrefTestInput.PREFS_WORLD_READ,
 Context.MODE_WORLD_READABLE);
 prefsWorldWrite =
 getSharedPreferences(SharedPrefTestInput.PREFS_WORLD_WRITE,
 Context.MODE_WORLD_WRITEABLE);
 prefsWorldReadWrite =
 getSharedPreferences(
 SharedPrefTestInput.PREFS_WORLD_READ_WRITE,
 Context.MODE_WORLD_READABLE
 + Context.MODE_WORLD_WRITEABLE);
 outputPrivate.setText(prefsPrivate.getString(
 SharedPrefTestInput.KEY_PRIVATE, "NA"));
 outputWorldRead.setText(prefsWorldRead.getString(
 SharedPrefTestInput.KEY_WORLD_READ, "NA"));
 outputWorldWrite.setText(prefsWorldWrite.getString(
 SharedPrefTestInput.KEY_WORLD_WRITE, "NA"));
 outputWorldReadWrite.setText(prefsWorldReadWrite.getString(
 SharedPrefTestInput.KEY_WORLD_READ_WRITE,
 "NA"));
 }
}

Listing 5.2 Getting SharedPreferences data stored in the same application

BGet values

133Using preferences

To retrieve previously stored values, we again declare variables and assign references.
When these are in place, we can get values using methods such as getString(String
key, String default) B. The default value is returned if no data was previously
stored with that key.

 Setting and getting preferences is straightforward. Access modes, which we’ll focus
on next, add a little more complexity.

5.1.2 Preference access permissions

You can open and create SharedPreferences with any combination of several Context
mode constants. Because these values are int types, you can add them, as in listings 5.1
and 5.2, to combine permissions. The following mode constants are supported:

 Context.MODE_PRIVATE (value 0)
 Context.MODE_WORLD_READABLE (value 1)
 Context.MODE_WORLD_WRITEABLE (value 2)

These modes allow you to tune who can access this preference. If you take a look at
the filesystem on the emulator after you’ve created SharedPreferences objects
(which themselves create XML files to persist the data), you can see how setting per-
missions works using a Linux-based filesystem.

 Figure 5.1 shows the Android Eclipse plug-in File Explorer view. Within the
explorer, you can see the Linux-level permissions for the SharedPreferences XML
files that we created from the SharedPreferences in listing 5.1.

 Each Linux file or directory has a type and three sets of permissions, represented
by a drwxrwxrwx notation. The first character indicates the type (d means directory, -
means regular file type, and other types such as symbolic links have unique types as
well). After the type, the three sets of rwx represent the combination of read, write,
and execute permissions for user, group, and world, in that order. Looking at this nota-
tion, we can tell which files are accessible by the user they’re owned by, by the group
they belong to, or by everyone else on the device. Note that the user and group always
have full permission to read and write, whereas the final set of permissions fluctuates
based on the preference’s mode.

 Android puts SharedPreferences XML files in the /data/data/PACKAGE_NAME/
shared_prefs path on the filesystem. An application or package usually has its own

Figure 5.1 The Android File Explorer view showing preferences file permissions

134 CHAPTER 5 Storing and retrieving data

user ID. When an application creates files, including SharedPreferences, they’re
owned by that application’s user ID. To allow other applications to access these files,
you have to set the world permissions, as shown in figure 5.1.

 If you want to access another application’s files, you must know the starting path.
The path comes from the Context. To get files from another application, you have to
know and use that application’s Context. Android doesn’t officially condone sharing
preferences across multiple applications; in practice, apps should use a content pro-
vider to share this kind of data. Even so, looking at SharedPreferences does show the
underlying data storage models in Android. The following listing shows how to get the
SharedPreferences we set in listing 5.1 again, this time from a different application
(different .apk and different package).

package com.other.manning.chapter5.prefs;
. . . imports omitted for brevity
public class SharedPrefTestOtherOutput extends Activity {
 . . . constants and variable declarations omitted for brevity
 . . . onCreate omitted for brevity
 @Override
 public void onStart() {
 super.onStart();
 Context otherAppsContext = null;
 try {
 otherAppsContext =
 createPackageContext("com.msi.manning.chapter5.prefs",
 Context.MODE_WORLD_WRITEABLE);
 } catch (NameNotFoundException e) {
 // log and/or handle
 }
 prefsPrivate =
 otherAppsContext.getSharedPreferences(
 SharedPrefTestOtherOutput.PREFS_PRIVATE, 0);
 prefsWorldRead =
 otherAppsContext.getSharedPreferences(
 SharedPrefTestOtherOutput.PREFS_WORLD_READ, 0);
 prefsWorldWrite =
 otherAppsContext.getSharedPreferences(
 SharedPrefTestOtherOutput.PREFS_WORLD_WRITE, 0);
 prefsWorldReadWrite =
 otherAppsContext.getSharedPreferences(
 SharedPrefTestOtherOutput.PREFS_WORLD_READ_WRITE, 0);

Listing 5.3 Getting SharedPreferences data stored in a different application

Directories with the world x permission
In Android, each package directory is created with the world x permission. This per-
mission means anyone can search and list the files in the directory, which means
that Android packages have directory-level access to one another’s files. From there,
file-level access determines file permissions.

Use
different
packageB

Get another
application’s
contextC

Use
otherAppsContextD
 outputPrivate.setText(

135Using preferences

 prefsPrivate.getString(
 SharedPrefTestOtherOutput.KEY_PRIVATE, "NA"));
 outputWorldRead.setText(
 prefsWorldRead.getString(
 SharedPrefTestOtherOutput.KEY_WORLD_READ, "NA"));
 outputWorldWrite.setText(
 prefsWorldWrite.getString(
 SharedPrefTestOtherOutput.KEY_WORLD_WRITE, "NA"));
 outputWorldReadWrite.setText(
 prefsWorldReadWrite.getString(
 SharedPrefTestOtherOutput.KEY_WORLD_READ_WRITE,"NA"));
 }
}

To get one application’s SharedPreferences from another application’s package B,
we use the createPackageContext(String contextName, int mode) method C. When
we have the other application’s Context, we can use the same names for the Shared-
Preferences objects that the other application created to access those preferences D.

 With these examples, we now have one application that sets and gets Shared-
Preferences, and a second application with a different .apk file that gets the prefer-
ences set by the first. The composite screen shot shown in figure 5.2 shows what the
apps look like. NA indicates a preference we couldn’t access from the second applica-
tion, either as the result of permissions that were set or because no permissions had
been created.

 Though SharedPreferences are ultimately backed by XML files on the Android
filesystem, you can also directly create, read, and manipulate files, as we’ll discuss in
the next section.

Figure 5.2
Two separate applications
getting and setting
SharedPreferences

136 CHAPTER 5 Storing and retrieving data

5.2 Using the filesystem
Android’s filesystem is based on Linux and supports mode-based permissions. You can
access this filesystem in several ways. You can create and read files from within applica-
tions, you can access raw resource files, and you can work with specially compiled cus-
tom XML files. In this section, we’ll explore each approach.

5.2.1 Creating files

Android’s stream-based system of manipulating files will feel familiar to anyone who’s
written I/O code in Java SE or Java ME. You can easily create files in Android and store
them in your application’s data path. The following listing demonstrates how to open
a FileOutputStream and use it to create a file.

public class CreateFile extends Activity {
 private EditText createInput;
 private Button createButton;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.create_file);
 createInput =
 (EditText) findViewById(R.id.create_input);
 createButton =
 (Button) findViewById(R.id.create_button);
 createButton.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 FileOutputStream fos = null;
 try {
 fos = openFileOutput("filename.txt",
 Context.MODE_PRIVATE);
 fos.write(createInput.getText().
 toString().getBytes());
 } catch (FileNotFoundException e) {
 Log.e("CreateFile", e.getLocalizedMessage());
 } catch (IOException e) {
 Log.e("CreateFile", e.getLocalizedMessage());
 } finally {
 if (fos != null) {
 try {
 fos.flush();
 fos.close();
 } catch (IOException e) {
 // swallow
 }
 }
 }
 startActivity(
 new Intent(CreateFile.this, ReadFile.class));
 }
 });
 }

Listing 5.4 Creating a file in Android from an Activity

Use
openFileOutput

B

Write data
to stream

C

Flush and
close stream

D

}

137Using the filesystem

Android provides a convenience method on Context to get a FileOutputStream—
namely openFileOutput(String name, int mode) B. Using this method, you can cre-
ate a stream to a file. That file will ultimately be stored at the data/data/
[PACKAGE_NAME]/files/file.name path on the platform. After you have the stream,
you can write to it as you would with typical Java C. After you’re finished with a
stream, you should flush and close it to clean up D.

 Reading from a file within an application context (within the package path of the
application) is also simple; in the next section we’ll show you how.

5.2.2 Accessing files

Similarly to openFileOutput, the Context also has a convenience openFileInput
method. You can use this method to access a file on the filesystem and read it in, as
shown in the following listing.

public class ReadFile extends Activity {
 private TextView readOutput;
 private Button gotoReadResource;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.read_file);
 readOutput =
 (TextView) findViewById(R.id.read_output);
 FileInputStream fis = null;
 try {
 fis = openFileInput("filename.txt");
 byte[] reader = new byte[fis.available()];
 while (fis.read(reader) != -1) {}
 readOutput.setText(new String(reader));
 } catch (IOException e) {
 Log.e("ReadFile", e.getMessage(), e);
 } finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException e) {
 // swallow
 }
 }
 }
 . . . goto next Activity via startActivity omitted for brevity
 }
}

For input, you use openFileInput(String name, int mode) to get the stream B, and
then read the file into a byte array as with standard Java C. Afterward, close the
stream properly to avoid hanging on to resources.

 With openFileOutput and openFileInput, you can write to and read from any file

Listing 5.5 Accessing an existing file in Android from an Activity

Use
openFileInput
for stream

B

Read data
from streamC
within the files directory of the application package you’re working in. Also, as we

138 CHAPTER 5 Storing and retrieving data

discussed in the previous section, you can access files across different applications if
the permissions allow it and if you know the package used to obtain the full path to
the file.

 In addition to creating files from within your application, you can push and pull
files to the platform using the adb tool, described in section 2.2.3. The File Explorer
window in Eclipse provides a UI for moving files on and off the device or simulator.
You can optionally put such files in the directory for your application; when they’re
there, you can read these files just like you would any other file. Keep in mind that
outside of development-related use, you won’t usually push and pull files. Rather,
you’ll create and read files from within the application or work with files included
with an application as a raw resource, as you’ll see next.

5.2.3 Files as raw resources

If you want to include raw files with your application, you can do so using the res/raw
resources location. We discussed resources in general in chapter 3. When you place a
file in the res/raw location, it’s not compiled by the platform, but is available as a raw
resource, as shown in the following listing.

public class ReadRawResourceFile extends Activity {
 private TextView readOutput;
 private Button gotoReadXMLResource;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.read_rawresource_file);
 readOutput =
 (TextView) findViewById(R.id.readrawres_output);
 Resources resources = getResources();
 InputStream is = null;
 try {
 is = resources.openRawResource(R.raw.people);
 byte[] reader = new byte[is.available()];
 while (is.read(reader) != -1) {}
 readOutput.setText(new String(reader));

Listing 5.6 Accessing a noncompiled raw file from res/raw

Running a bundle of apps with the same user ID
Occasionally, setting the user ID of your application can be extremely useful. For
instance, if you have multiple applications that need to share data with one another,
but you also don’t want that data to be accessible outside that group of applications,
you might want to make the permissions private and share the UID to allow access.
You can allow a shared UID by using the sharedUserId attribute in your manifest:
android:sharedUserId="YourID".

Hold raw
resource with
InputStream

B

 } catch (IOException e) {
CUse getResources().openRawResource()

139Using the filesystem

 Log.e("ReadRawResourceFile", e.getMessage(), e);
 } finally {
 if (is != null) {
 try {
 is.close();
 } catch (IOException e) {
 // swallow
 }
 }
 }
 . . . go to next Activity via startActivity omitted for brevity
 }
}

Accessing raw resources closely resembles accessing files. You open a handle to an
InputStream B. You call Context.getResources() to get the Resources for your cur-
rent application’s context, and then call openRawResource(int id) to link to the par-
ticular item you want C. Android will automatically generate the ID within the R class
if you place your asset in the res/raw directory. You can use any file as a raw resource,
including text, images, documents, or videos. The platform doesn’t precompile raw
resources.

 The last type of file resource we need to discuss is the res/xml type, which the plat-
form compiles into an efficient binary type accessed in a special manner.

5.2.4 XML file resources

The term XML resources sometimes confuses new
Android developers. XML resources might mean
resources in general that are defined in XML—such
as layout files, styles, arrays, and the like—or it can
specifically mean res/xml XML files.

 In this section, we’ll deal with res/xml XML files.
These files are different from raw files in that you
don’t use a stream to access them because they’re
compiled into an efficient binary form when
deployed. They’re different from other resources in
that they can be of any custom XML structure.

 To demonstrate this concept, we’re going to use
an XML file named people.xml that defines multiple
<person> elements and uses attributes for firstname
and lastname. We’ll grab this resource and display its
elements in last-name, first-name order, as shown in
figure 5.3.

 Our data file for this process, which we’ll place in
res/xml, is shown in the following listing.

Figure 5.3 The example
ReadXMLResourceFile
Activity that we’ll create in
listing 5.8, which reads a res/xml
resource file

140 CHAPTER 5 Storing and retrieving data

<people>
 <person firstname="John" lastname="Ford" />
 <person firstname="Alfred" lastname="Hitchcock" />
 <person firstname="Stanley" lastname="Kubrick" />
 <person firstname="Wes" lastname="Anderson" />
</people>

If you’re using Eclipse, it’ll automatically detect a file in the res/xml path and compile
it into a resource asset. You can then access this asset in code by parsing its binary
XML, as shown in the following listing.

public class ReadXMLResourceFile extends Activity {
 private TextView readOutput;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.read_xmlresource_file);
 readOutput = (TextView)
 findViewById(R.id.readxmlres_output);
 XmlPullParser parser =
 getResources().getXml(R.xml.people);
 StringBuffer sb = new StringBuffer();
 try {
 while (parser.next() != XmlPullParser.END_DOCUMENT) {
 String name = parser.getName();
 String first = null;
 String last = null;
 if ((name != null) && name.equals("person")) {
 int size = parser.getAttributeCount();
 for (int i = 0; i < size; i++) {
 String attrName =
 parser.getAttributeName(i);
 String attrValue =
 parser.getAttributeValue(i);
 if ((attrName != null)
 && attrName.equals("firstname")) {
 first = attrValue;
 } else if ((attrName != null)
 && attrName.equals("lastname")) {
 last = attrValue;
 }
 }
 if ((first != null) && (last != null)) {
 sb.append(last + ", " + first + "\n");
 }
 }
 }
 readOutput.setText(sb.toString());
 } catch (Exception e) {
 Log.e(“ReadXMLResourceFile”, e.getMessage(), e);

Listing 5.7 A custom XML file included in res/xml

Listing 5.8 Accessing a compiled XML resource from res/xml

Parse XML with
XMLPullParser

B

CWalk XML tree

DGet attributeCount
for element

Get attribute
name and valueE
 }

141Using the filesystem

 . . . goto next Activity via startActivity omitted for brevity
 }
}

To process a binary XML resource, you use an XmlPullParser B. This class supports
SAX-style tree traversal. The parser provides an event type for each element it encoun-
ters, such as DOCDECL, COMMENT, START_DOCUMENT, START_TAG, END_TAG, END_DOCUMENT,
and so on. By using the next() method, you can retrieve the current event type value
and compare it to event constants in the class C. Each element encountered has a
name, a text value, and an optional set of attributes. You can examine the document
contents by getting the attributeCount D for each item and grabbing each name
and value E. SAX is covered in more detail in chapter 13.

 In addition to local file storage on the device filesystem, you have another option
that’s more appropriate for certain types of content: writing to an external SD card
filesystem.

5.2.5 External storage via an SD card

One of the advantages the Android platform provides over some other smartphones is
that it offers access to an available SD flash memory card. Not every Android device
will necessarily have an SD card, but almost all do, and the platform provides an easy
way for you to use it.

Generally, you should use the SD card if you use large files such as images and video, or
if you don’t need to have permanent secure access to certain files. On the other hand,
for permanent application-specialized data, you should use the internal filesystem.

 The SD card is removable, and SD card support on most devices (including
Android-powered devices) supports the File Allocation Table (FAT)) filesystem. The
SD card doesn’t have the access modes and permissions that come from the Linux file-
system.

 Using the SD card is fairly basic. The standard java.io.File and related objects
can create, read, and remove files on the external storage path, typically /sdcard,
assuming it’s available. You can acquire a File for this location by using the method
Environment.getExternalStorageDirectory(). The following listing shows how to
check that the SD card’s path is present, create another subdirectory inside, and then

SD cards and the emulator
To work with an SD card image in the Android emulator, you’ll first need to use the
mksdcard tool provided to set up your SD image file (you’ll find this executable in the
tools directory of the SDK). After you’ve created the file, you’ll need to start the emu-
lator with the -sdcard <path_to_file> option in order to have the SD image
mounted. Alternately, use the Android SDK Manager to create a new virtual device
and select the option to create a new SD card.
write and subsequently read file data at that location.

142 CHAPTER 5 Storing and retrieving data

public class ReadWriteSDCardFile extends Activity {
 private TextView readOutput;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.read_write_sdcard_file);
 readOutput = (TextView)
 findViewById(R.id.readwritesd_output);
 String fileName = "testfile-"
 + System.currentTimeMillis() + ".txt";
 File sdDir = Environment.getExternalStorageDirectory();
 if (sdDir.exists() && sdDir.canWrite()) {
 File uadDir = new File(sdDir.getAbsolutePath()
 + "/unlocking_android");
 uadDir.mkdir();
 if (uadDir.exists() && uadDir.canWrite()) {
 File file = new File(uadDir.getAbsolutePath()
 + "/" + fileName);
 try {
 file.createNewFile();
 } catch (IOException e) {
 // log and or handle
 }
 if (file.exists() && file.canWrite()) {
 FileOutputStream fos = null;
 try {
 fos = new FileOutputStream(file);
 fos.write("I fear you speak upon the rack,"
 + "where men enforced do speak "
 + "anything.".getBytes());
 } catch (FileNotFoundException e) {
 Log.e(ReadWriteSDCardFile.LOGTAG, "ERROR", e);
 } catch (IOException e) {
 Log.e(ReadWriteSDCardFile.LOGTAG, "ERROR", e);
 } finally {
 if (fos != null) {
 try {
 fos.flush();
 fos.close();
 } catch (IOException e) {
 // swallow
 }
 }
 }
 } else {
 // log and or handle - error writing to file
 }
 } else {
 // log and or handle -
 // unable to write to /sdcard/unlocking_android
 }
 } else {

Listing 5.9 Using standard java.io.File techniques with an SD card

Establish
filename

B

C

reference

Instantiate
File for pathD

Get reference
to FileE

F
Write with

FileOutputStream
 Log.e("ReadWriteSDCardFile.LOGTAG",

143Using the filesystem

 "ERROR /sdcard path not available (did you create "
 + " an SD image with the mksdcard tool,"
 + " and start emulator with -sdcard "
 + <path_to_file> option?");
 }
 File rFile =
 new File("/sdcard/unlocking_android/" + fileName);
 if (rFile.exists() && rFile.canRead()) {
 FileInputStream fis = null;
 try {
 fis = new FileInputStream(rFile);
 byte[] reader = new byte[fis.available()];
 while (fis.read(reader) != -1) {
 }
 readOutput.setText(new String(reader));
 } catch (IOException e) {
 // log and or handle
 } finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException e) {
 // swallow
 }
 }
 }
 } else {
 readOutput.setText(
 "Unable to read/write sdcard file, see logcat output");
 }
 }
}

We first define a name for the file to create B. In this example, we append a time-
stamp to create a unique name each time this example application runs. After we have
the filename, we create a File object reference to the removable storage directory C.
From there, we create a File reference to a new subdirectory, /sdcard/
unlocking_android D. The File object can represent both files and directories. After
we have the subdirectory reference, we call mkdir() to create it if it doesn’t already
exist.

 With our directory structure in place, we follow a similar pattern to create the
actual file. We instantiate a reference File object E, and then call createFile() to
create a file on the filesystem. When we have the File and know it exists and that
we’re allowed to write to it, we use a FileOutputStream to write data into the file F.

 After we create the file and have data in it, we create another File object with the
full path to read the data back G. With the File reference, we then create a File-
InputStream and read back the data that was earlier stored in the file H.

 As you can see, working with files on the SD card resembles standard java.io.File
code. A fair amount of boilerplate Java code is required to make a robust solution,

G

Read with
FileInputStreamH
with permissions and error checking every step of the way, and logging about what’s

144 CHAPTER 5 Storing and retrieving data

happening, but it’s still familiar and powerful. If you need to do a lot of File han-
dling, you’ll probably want to create some simple local utilities for wrapping the mun-
dane tasks so you don’t have to repeat them over and over again. You might want to
use or port something like the Apache commons.io package, which includes a File-
Utils class that handles these types of tasks and more.

 The SD card example completes our exploration of the various ways to store differ-
ent types of file data on the Android platform. If you have static predefined data, you
can use res/raw; if you have XML files, you can use res/xml. You can also work directly
with the filesystem by creating, modifying, and retrieving data in files, either in the
local internal filesystem or on the SD card, if one is available.

 A more complex way to deal with data—one that supports more robust and spe-
cialized ways to persist information—is to use a database, which we’ll cover in the next
section.

5.3 Persisting data to a database
Android conveniently includes a built-in relational
database.1 SQLite doesn’t have all the features of larger
client/server database products, but it includes every-
thing you need for local data storage. At the same time,
it’s quick and relatively easy to work with.

 In this section, we’ll cover working with the built-in
SQLite database system, from creating and querying a
database to upgrading and working with the sqlite3 tool
available in the adb shell. We’ll demonstrate these fea-
tures by expanding the WeatherReporter application
from chapter 4. This application uses a database to
store the user’s saved locations and persists user prefer-
ences for each location. The screenshot shown in figure
5.4 displays the saved data that the user can select from;
when the user selects a location, the app retrieves infor-
mation from the database and shows the corresponding
weather report.

 We’ll start by creating WeatherReporter’s database.

5.3.1 Building and accessing a database

To use SQLite, you have to know a bit about SQL in general. If you need to brush up
on the background of the basic commands, such as CREATE, INSERT, UPDATE, DELETE,
and SELECT, then you might want to take a look at the SQLite documentation at
http://www.sqlite.org/lang.html.

1 Check out Charlie Collins’ site for Android SQLLite basics: http://www.screaming-penguin.com/node/

Figure 5.4
The WeatherReporter Saved
Locations screen, which pulls
data from a SQLite database
7742.

145Persisting data to a database

 For now, we’ll jump right in and build a database helper class for our application.
You need to create a helper class so that the details concerning creating and upgrad-
ing the database, opening and closing connections, and running through specific
queries are all encapsulated in one place and not otherwise exposed or repeated in
your application code. Your Activity and Service classes can use simple get and
insert methods, with specific bean objects representing your model, rather than
database-specific abstractions such as the Android Cursor object. You can think of this
class as a miniature Data Access Layer (DAL).

 The following listing shows the first part of our DBHelper class, which includes a
few useful inner classes.

public class DBHelper {
 public static final String DEVICE_ALERT_ENABLED_ZIP = "DAEZ99";
 public static final String DB_NAME = "w_alert";
 public static final String DB_TABLE = "w_alert_loc";
 public static final int DB_VERSION = 3;
 private static final String CLASSNAME = DBHelper.class.getSimpleName();
 private static final String[] COLS = new String[]
 { "_id", "zip", "city", "region", "lastalert", "alertenabled" };
 private SQLiteDatabase db;
 private final DBOpenHelper dbOpenHelper;
 public static class Location {
 public long id;
 public long lastalert;
 public int alertenabled;
 public String zip;
 public String city;
 public String region;

 . . . Location constructors and toString omitted for brevity
 }
 private static class DBOpenHelper extends
 SQLiteOpenHelper {

 private static final String DB_CREATE = "CREATE TABLE "
 + DBHelper.DB_TABLE
 + " (_id INTEGER PRIMARY KEY, zip TEXT UNIQUE NOT NULL,"
 + "city TEXT, region TEXT, lastalert INTEGER, "
 + "alertenabled INTEGER);";

 public DBOpenHelper(Context context, String dbName, int version) {
 super(context, DBHelper.DB_NAME, null, DBHelper.DB_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 try {
 db.execSQL(DBOpenHelper.DB_CREATE);
 } catch (SQLException e) {
 Log.e("ProviderWidgets", DBHelper.CLASSNAME, e);
 }

Listing 5.10 Portion of the DBHelper class showing the DBOpenHelper inner class

B

Define constants
for database

propertiesDefine inner
Location beanC

Define inner
DBOpenHelper
class

D

E

Override
helper callbacksF
 }

146 CHAPTER 5 Storing and retrieving data

 @Override
 public void onOpen(SQLiteDatabase db) {
 super.onOpen(db);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 db.execSQL("DROP TABLE IF EXISTS " + DBHelper.DB_TABLE);
 onCreate(db);
 }
 }

Within our DBHelper class, we first create constants that define important values for
the database we want to work with, such as its name, version, and table B. Then we
show several inner classes that we created to support the WeatherReporter application.

 The first inner class is a simple Location bean that represents a user’s selected
location C. This class intentionally doesn’t provide accessors and mutators, because
these add overhead and we don’t expose the class externally. The second inner class is
a SQLiteOpenHelper implementation D.

 Our DBOpenHelper inner class extends SQLiteOpenHelper, which Android pro-
vides to help with creating, upgrading, and opening databases. Within this class, we
include a String that represents the CREATE query we’ll use to build our database
table; this shows the exact columns and types our table will have E. We also imple-
ment several key SQLiteOpenHelper callback methods F, notably onCreate and
onUpgrade. We’ll explain how these callbacks are invoked in the outer part of our
DBHelper class, which is shown in the following listing.

 public DBHelper(Context context) {
 dbOpenHelper = new DBOpenHelper(context, "WR_DATA", 1);
 establishDb();
 }
 private void establishDb() {
 if (db == null) {
 db = dbOpenHelper.getWritableDatabase();
 }
 }
 public void cleanup() {
 if (db != null) {
 db.close();
 db = null;
 }
 }
 public void insert(Location location) {
 ContentValues values = new ContentValues();
 values.put("zip", location.zip);
 values.put("city", location.city);
 values.put("region", location.region);
 values.put("lastalert", location.lastalert);

Listing 5.11 Portion of the DBHelper class showing convenience methods

B

instance

Open database
connectionC

Tear down
database connectionD

Provide convenience
insert, update,
delete, getE
 values.put("alertenabled", location.alertenabled);

147Persisting data to a database

 db.insert(DBHelper.DB_TABLE, null, values);
 }
 public void update(Location location) {
 ContentValues values = new ContentValues();
 values.put("zip", location.zip);
 values.put("city", location.city);
 values.put("region", location.region);
 values.put("lastalert", location.lastalert);
 values.put("alertenabled", location.alertenabled);
 db.update(DBHelper.DB_TABLE, values,
 "_id=" + location.id, null);
 }
 public void delete(long id) {
 db.delete(DBHelper.DB_TABLE, "_id=" + id, null);
 }
 public void delete(String zip) {
 db.delete(DBHelper.DB_TABLE, "zip='" + zip + "'", null);
 }
 public Location get(String zip) {
 Cursor c = null;
 Location location = null;
 try {
 c = db.query(true, DBHelper.DB_TABLE, DBHelper.COLS,
 "zip = '" + zip + "'", null, null, null, null,
 null);
 if (c.getCount() > 0) {
 c.moveToFirst();
 location = new Location();
 location.id = c.getLong(0);
 location.zip = c.getString(1);
 location.city = c.getString(2);
 location.region = c.getString(3);
 location.lastalert = c.getLong(4);
 location.alertenabled = c.getInt(5);
 }
 } catch (SQLException e) {
 Log.v("ProviderWidgets", DBHelper.CLASSNAME, e);
 } finally {
 if (c != null && !c.isClosed()) {
 c.close();
 }
 }
 return location;
 }
 public List<Location> getAll() {
 ArrayList<Location> ret = new ArrayList<Location>();
 Cursor c = null;
 try {
 c = db.query(DBHelper.DB_TABLE, DBHelper.COLS, null,
 null, null, null, null);
 int numRows = c.getCount();
 c.moveToFirst();
 for (int i = 0; i < numRows; ++i) {
 Location location = new Location();
 location.id = c.getLong(0);

EProvide
convenience

insert, update,
delete, get

Provide
additional
get methods

F

 location.zip = c.getString(1);

148 CHAPTER 5 Storing and retrieving data

 location.city = c.getString(2);
 location.region = c.getString(3);
 location.lastalert = c.getLong(4);
 location.alertenabled = c.getInt(5);
 if (!location.zip.equals
 (DBHelper.DEVICE_ALERT_ENABLED_ZIP)){
 ret.add(location);
 }
 c.moveToNext();
 }
 } catch (SQLException e) {
 Log.v("ProviderWidgets", DBHelper.CLASSNAME, e);
 } finally {
 if (c != null && !c.isClosed()) {
 c.close();
 }
 }
 return ret;
 }
 . . . getAllAlertEnabled omitted for brevity
}

Our DBHelper class contains a member-level variable reference to a SQLiteDatabase
object, as you saw in listing 5.10. We use this object as a workhorse to open database
connections, to execute SQL statements, and more.

 In the constructor, we instantiate the DBOpenHelper inner class from the first part
of the DBHelper class listing B. Inside the establishDb method, we use dbOpen-
Helper to call openDatabase with the current Context, database name, and database
version C. db is established as an instance of SQLiteDatabase through DBOpenHelper.

 Although you can also just open a database connection directly on your own, using
the open helper in this way invokes the provided callbacks and makes the process eas-
ier. With this technique, when you try to open your database connection, it’s automat-
ically created, upgraded, or just returned, through your DBOpenHelper. Though using
a DBOpenHelper requires a few extra steps up front, it’s extremely handy when you
need to modify your table structure. You can simply increment the database’s version
number and take appropriate action in the onUpgrade callback.

 Callers can invoke the cleanup method D when they pause, in order to close con-
nections and free up resources.

 After the cleanup method, we include the raw SQL convenience methods that
encapsulate our helper’s operations. In this class, we have methods to insert, update,
delete, and get data E. We also have a few additional specialized get and getAll
methods F. Within these methods, you can see how to use the db object to run que-
ries. The SQLiteDatabase class itself has many convenience methods, such as insert,
update, and delete, and it provides direct query access that returns a Cursor over a
result set.

 You can usually get a lot of mileage and utility from basic uses of the SQLiteData-
base class. The final aspect for us to explore is the sqlite3 tool, which you can use to

manipulate data outside your application.

149Working with ContentProvider classes

5.3.2 Using the sqlite3 tool

When you create a database for an application in Android, it creates files for that data-
base on the device in the /data/data/[PACKAGE_NAME]/database/db.name location.
These files are SQLite proprietary, but you can manipulate, dump, restore, and work
with your databases through these files in the adb shell by using the sqlite3 tool.

DATA PERMISSIONS Most devices lock down the data directory and will not
allow you to browse their content using standalone tools. Use sqlite3 in the
emulator or on a phone with firmware that allows you to access the /data/
data directory.

You can access this tool by issuing the following commands on the command line.
Remember to use your own package name; here we use the package name for the
WeatherReporter sample application:

cd [ANDROID_HOME]/tools
adb shell
sqlite3 /data/data/com.msi.manning.chapter4/databases/w_alert.db

When you’re in the shell and see the # prompt, you can then issue sqlite3 commands.
Type .help to get started; if you need more help, see the tool’s documentation at
http://www.sqlite.org/sqlite.html. Using the tool, you can issue basic commands,
such as SELECT or INSERT, or you can go further and CREATE or ALTER tables. Use this
tool to explore, troubleshoot, and to .dump and .load data. As with many command-
line SQL tools, it takes some time to get used to the format, but it’s the best way to
back up or load your data. Keep in mind that this tool is available only through the
development shell; it’s not something you can use to load a real application with data.

 Now that we’ve shown you how to use the SQLite support provided in Android, you
can do everything from creating and accessing tables to investigating databases with
the provided tools in the shell. Now we’ll examine the last aspect of handling data on
the platform, building and using a ContentProvider.

5.4 Working with ContentProvider classes
A ContentProvider in Android shares data between applications. Each application
usually runs in its own process. By default, applications can’t access the data and files
of other applications. We explained earlier that you can make preferences and files

Databases are application private
Unlike the SharedPreferences you saw earlier, you can’t make a database
WORLD_READABLE. Each database is accessible only by the package in which it was
created. If you need to pass data across processes, you can use AIDL/Binder (as in
chapter 4) or create a ContentProvider (as we’ll discuss in section 5.4), but you
can’t use a database directly across the process/package boundary.
available across application boundaries with the correct permissions and if each

150 CHAPTER 5 Storing and retrieving data

application knows the context and path. This solution applies only to related applica-
tions that already know details about one another. In contrast, with a ContentPro-
vider you can publish and expose a particular data type for other applications to
query, add, update, and delete, and those applications don’t need to have any prior
knowledge of paths, resources, or who provides the content.

 The canonical ContentProvider in Android is the contacts list, which provides
names, addresses, and phone numbers. You can access this data from any application
by using the correct URI and a series of methods provided by the Activity and
ContentResolver classes to retrieve and store data. You’ll learn more about Content-
Resolver as we explore provider details. One other data-related concept that a
ContentProvider offers is the Cursor, the same object we used previously to process
SQLite database result sets.

 In this section, you’ll build another application that implements its own Content-
Provider and includes a similar explorer-type Activity to manipulate that data.

NOTE For a review of content providers, please see chapter 1. You can also
find a complete example of working with the Contacts content provider in
chapter 15.

To begin, we’ll explore the syntax of URIs and the combinations and paths used to
perform different types of operations with the ContentProvider and Content-
Resolver classes.

5.4.1 Using an existing ContentProvider

Each ContentProvider exposes a unique CONTENT_URI that identifies the content
type it’ll handle. This URI can query data in two forms, singular or plural, as shown in
table 5.1.

 A provider can offer as many types of data as it likes. By using these formats, your
application can either iterate through all the content offered by a provider or retrieve
a specific datum of interest.

 The Activity class has a managedQuery method that makes calls into registered
ContentProvider classes. When you create your own ContentProvider in section
5.4.2, we’ll show you how a provider is registered with the platform. Each provider is
required to advertise the CONTENT_URI it supports. To query the contacts provider, you

Table 5.1 ContentProvider URI variations for different purposes

URI Purpose

content://food/ingredients/ Return List of all ingredients from the provider registered to handle
content://food

content://food/meals/ Return List of all meals from the provider registered to handle
content://food

content://food/meals/1 Return or manipulate single meal with ID 1 from the provider registered

to handle content://food

151Working with ContentProvider classes

have to know this URI and then get a Cursor by calling managedQuery. When you have
the Cursor, you can use it, as we showed you in listing 5.11.

 A ContentProvider typically supplies all the details of the URI and the types it sup-
ports as constants in a class. In the android.provider package, you can find classes
that correspond to built-in Android content providers, such as the MediaStore. These
classes have nested inner classes that represent types of data, such as Audio and
Images. Within those classes are additional inner classes, with constants that represent
fields or columns of data for each type. The values you need to query and manipulate
data come from the inner classes for each type.

For additional information, see the android.provider package in the Javadocs, which
lists all the built-in providers. Now that we’ve covered a bit about using a provider,
we’ll look at the other side of the coin—creating a ContentProvider.

5.4.2 Creating a ContentProvider

In this section, you’ll build a provider that handles data responsibilities for a generic
Widget object you’ll define. This simple object includes a name, type, and category; in
a real application, you could represent any type of data.

 To start, define a provider constants class that declares the CONTENT_URI and
MIME_TYPE your provider will support. In addition, you can place the column names
your provider will handle here.

DEFINING A CONTENT_URI AND MIME_TYPE

In the following listing, as a prerequisite to extending the ContentProvider class for a
custom provider, we define necessary constants for our Widget type.

Managed Cursor
To obtain a Cursor reference, you can also use the managedQuery method of the
Activity class. The activity automatically cleans up any managed Cursor objects
when your Activity pauses and restarts them when it starts. If you just need to
retrieve data within an Activity, you’ll want to use a managed Cursor, as opposed
to a ContentResolver.

What if the content changes after the fact?
When you use a ContentProvider to make a query, you get only the current state
of the data. The data could change after your call, so how do you stay up to date? To
receive notifications when a Cursor changes, you can use the ContentObserver
API. ContentObserver supports a set of callbacks that trigger when data changes.
The Cursor class provides register and unregister methods for Content-
Observer objects.

152 CHAPTER 5 Storing and retrieving data

public final class Widget implements BaseColumns {
 public static final String MIME_DIR_PREFIX =
 "vnd.android.cursor.dir";
 public static final String MIME_ITEM_PREFIX =
 "vnd.android.cursor.item";
 public static final String MIME_ITEM = "vnd.msi.widget";
 public static final String MIME_TYPE_SINGLE =
 MIME_ITEM_PREFIX + "/" + MIME_ITEM;
 public static final String MIME_TYPE_MULTIPLE =
 MIME_DIR_PREFIX + "/" + MIME_ITEM;
 public static final String AUTHORITY =
 "com.msi.manning.chapter5.Widget";
 public static final String PATH_SINGLE = "widgets/#";
 public static final String PATH_MULTIPLE = "widgets";
 public static final Uri CONTENT_URI =
 Uri.parse("content://" + AUTHORITY + "/" + PATH_MULTIPLE);
 public static final String DEFAULT_SORT_ORDER = "updated DESC";
 public static final String NAME = "name";
 public static final String TYPE = "type";
 public static final String CATEGORY = "category";
 public static final String CREATED = "created";
 public static final String UPDATED = "updated";
}

In our Widget-related provider constants class, we first extend the BaseColumns class.
Now our class has a few base constants, such as _ID. Next, we define the MIME_TYPE
prefix for a set of multiple items and a single item. By convention, vnd.android.
cursor.dir represents multiple items, and vnd.android.cursor.item represents a
single item. We can then define a specific MIME item and combine it with the single
and multiple paths to create two MIME_TYPE representations.

 After we have the MIME details out of the way, we define the authority B and path
for both single and multiple items that will be used in the CONTENT_URI that callers
pass in to use our provider. Callers will ultimately start from the multiple-item URI, so
we publish this one C.

 After taking care of all the other details, we define column names that represent
the variables in our Widget object, which correspond to fields in the database table
we’ll use. Callers will use these constants to get and set specific fields. Now we’re on to
the next part of the process, extending ContentProvider.

EXTENDING CONTENTPROVIDER

The following listing shows the beginning of our ContentProvider implementation
class, WidgetProvider. In this part of the class, we do some housekeeping relating to
the database we’ll use and the URI we’re supporting.

Listing 5.12 WidgetProvider constants, including columns and URI

Define
authority

B

Define ultimate
CONTENT_URI C

153Working with ContentProvider classes

public class WidgetProvider extends ContentProvider {
 private static final String CLASSNAME =
 WidgetProvider.class.getSimpleName();
 private static final int WIDGETS = 1;
 private static final int WIDGET = 2;
 public static final String DB_NAME = "widgets_db";
 public static final String DB_TABLE = "widget";
 public static final int DB_VERSION = 1;
 private static UriMatcher URI_MATCHER = null;
 private static HashMap<String, String> PROJECTION_MAP;
 private SQLiteDatabase db;
 static {
 WidgetProvider.URI_MATCHER = new UriMatcher(UriMatcher.NO_MATCH);
 WidgetProvider.URI_MATCHER.addURI(Widget.AUTHORITY,
 Widget.PATH_MULTIPLE, WidgetProvider.WIDGETS);
 WidgetProvider.URI_MATCHER.addURI(Widget.AUTHORITY,
 Widget.PATH_SINGLE, WidgetProvider.WIDGET);
 WidgetProvider.PROJECTION_MAP = new HashMap<String, String>();
 WidgetProvider.PROJECTION_MAP.put(BaseColumns._ID, "_id");
 WidgetProvider.PROJECTION_MAP.put(Widget.NAME, "name");
 WidgetProvider.PROJECTION_MAP.put(Widget.TYPE, "type");
 WidgetProvider.PROJECTION_MAP.put(Widget.CATEGORY, "category");
 WidgetProvider.PROJECTION_MAP.put(Widget.CREATED, "created");
 WidgetProvider.PROJECTION_MAP.put(Widget.UPDATED, "updated");
 }
 private static class DBOpenHelper extends SQLiteOpenHelper {
 private static final String DB_CREATE = "CREATE TABLE "
 + WidgetProvider.DB_TABLE
 + " (_id INTEGER PRIMARY KEY, name TEXT UNIQUE NOT NULL,"
 + "type TEXT, category TEXT, updated INTEGER, created"
 + "INTEGER);";
 public DBOpenHelper(Context context) {
 super(context, WidgetProvider.DB_NAME, null,
 WidgetProvider.DB_VERSION);
 }
 @Override
 public void onCreate(SQLiteDatabase db) {
 try {
 db.execSQL(DBOpenHelper.DB_CREATE);
 } catch (SQLException e) {
 // log and or handle
 }
 }
 @Override
 public void onOpen(SQLiteDatabase db) {
 }
 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 db.execSQL("DROP TABLE IF EXISTS "
 + WidgetProvider.DB_TABLE);
 onCreate(db);

Listing 5.13 The first portion of the WidgetProvider ContentProvider

Define
database
constants

B

Use
SQLiteDatabase
reference

C

D
Create and

open database
 }

154 CHAPTER 5 Storing and retrieving data

 }
 @Override
 public boolean onCreate() {
 DBOpenHelper dbHelper = new DBOpenHelper(getContext());
 db = dbHelper.getWritableDatabase();
 if (db == null) {
 return false;
 } else {
 return true;
 }
 }
 @Override
 public String getType(Uri uri) {
 switch (WidgetProvider.URI_MATCHER.match(uri)) {
 case WIDGETS:
 return Widget.MIME_TYPE_MULTIPLE;
 case WIDGET:
 return Widget.MIME_TYPE_SINGLE;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 }

Our provider extends ContentProvider, which defines the methods we’ll need to
implement. We use several database-related constants to define the database name
and table we’ll use B. After that, we include a UriMatcher, which we’ll use to match
types, and a projection Map for field names.

 We include a reference to a SQLiteDatabase object; we’ll use this to store and
retrieve the data that our provider handles C. We create, open, or upgrade the data-
base using a SQLiteOpenHelper in an inner class D. We’ve used this helper pattern
before, when we worked directly with the database in listing 5.10. In the onCreate
method, the open helper sets up the database E.

 After our setup-related steps, we come to the first method ContentProvider
requires us to implement, getType F. The provider uses this method to resolve each
passed-in Uri to determine whether it’s supported. If it is, the method checks which
type of data the current call is requesting. The data might be a single item or the
entire set.

 Next, we need to cover the remaining required methods to satisfy the Content-
Provider contract. These methods, shown in the following listing, correspond to the
CRUD-related activities: query, insert, update, and delete.

 @Override
 public Cursor query(Uri uri, String[] projection,
 String selection, String[] selectionArgs,
 String sortOrder) {
 SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder();
 String orderBy = null;

Listing 5.14 The second portion of the WidgetProvider ContentProvider

Override
onCreate

E

Implement
getType method

F

B
 switch (WidgetProvider.URI_MATCHER.match(uri)) { Set up query
based on URIC

155Working with ContentProvider classes

 case WIDGETS:
 queryBuilder.setTables(WidgetProvider.DB_TABLE);
 queryBuilder.setProjectionMap(WidgetProvider.PROJECTION_MAP);
 break;
 case WIDGET:
 queryBuilder.setTables(WidgetProvider.DB_TABLE);
 queryBuilder.appendWhere("_id="
 + uri.getPathSegments().get(1));
 break;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 if (TextUtils.isEmpty(sortOrder)) {
 orderBy = Widget.DEFAULT_SORT_ORDER;
 } else {
 orderBy = sortOrder;
 }
 Cursor c = queryBuilder.query(db, projection,
 selection, selectionArgs, null, null,
 orderBy);
 c.setNotificationUri(
 getContext().getContentResolver(), uri);
 return c;
 }
 @Override
 public Uri insert(Uri uri, ContentValues initialValues) {
 long rowId = 0L;
 ContentValues values = null;
 if (initialValues != null) {
 values = new ContentValues(initialValues);
 } else {
 values = new ContentValues();
 }
 if (WidgetProvider.URI_MATCHER.match(uri) !=
 WidgetProvider.WIDGETS) {
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 Long now = System.currentTimeMillis();
 . . . omit defaulting of values for brevity
 rowId = db.insert(WidgetProvider.DB_TABLE, "widget_hack",
 values);
 if (rowId > 0) {
 Uri result = ContentUris.withAppendedId(Widget.CONTENT_URI,
 rowId);
 getContext().getContentResolver().
 notifyChange(result, null);
 return result;
 }
 throw new SQLException("Failed to insert row into " + uri);
 }
 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {
 int count = 0;

Perform query
to get Cursor

D

Set notification
Uri on CursorE

Use ContentValues
in insert methodF

Call
database
insert

G

Get Uri to returnH
Notify listeners
data was insertedI

Provide
update
 switch (WidgetProvider.URI_MATCHER.match(uri)) { methodJ

156 CHAPTER 5 Storing and retrieving data

 case WIDGETS:
 count = db.update(WidgetProvider.DB_TABLE, values,
 selection, selectionArgs);
 break;
 case WIDGET:
 String segment = uri.getPathSegments().get(1);
 String where = "";
 if (!TextUtils.isEmpty(selection)) {
 where = " AND (" + selection + ")";
 }
 count = db.update(WidgetProvider.DB_TABLE, values,
 "_id=" + segment + where, selectionArgs);
 break;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 getContext().getContentResolver().notifyChange(uri, null);
 return count;
 }
 @Override
 public int delete(
 Uri uri, String selection, String[] selectionArgs) {
 int count;
 switch (WidgetProvider.URI_MATCHER.match(uri)) {
 case WIDGETS:
 count = db.delete(WidgetProvider.DB_TABLE, selection,
 selectionArgs);
 break;
 case WIDGET:
 String segment = uri.getPathSegments().get(1);
 String where = "";
 if (!TextUtils.isEmpty(selection)) {
 where = " AND (" + selection + ")";
 }
 count = db.delete(WidgetProvider.DB_TABLE,
 "_id=" + segment + where, selectionArgs);
 break;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 getContext().getContentResolver().notifyChange(uri, null);
 return count;
 }
}

The last part of our WidgetProvider class shows how to implement the Content-
Provider methods. First, we use a SQLQueryBuilder inside the query method to
append the projection map passed in B and any SQL clauses, along with the correct
URI based on our matcher C, before we make the actual query and get a handle on a
Cursor to return D.

 At the end of the query method, we use the setNotificationUri method to watch
the returned Uri for changes E. This event-based mechanism keeps track of when

Provide
delete
method

1)
Cursor data items change, regardless of who changes them.

157Working with ContentProvider classes

 Next, you see the insert method, where we validate the passed-in ContentValues
object and populate it with default values, if the values aren’t present F. After we have
the values, we call the database insert method G and get the resulting Uri to return
with the appended ID of the new record H. After the insert is complete, we use
another notification system, this time for ContentResolver. Because we’ve made a
data change, we inform the ContentResolver what happened so that any registered
listeners can be updated I.

 After completing the insert method, we come to the update J and delete 1)
methods. These methods repeat many of the previous concepts. First, they match the
Uri passed in to a single element or the set, and then they call the respective update
and delete methods on the database object. Again, at the end of these methods, we
notify listeners that the data has changed.

 Implementing the needed provider methods completes our class. After we register
this provider with the platform, any application can use it to query, insert, update, or
delete data. Registration occurs in the application manifest, which we’ll look at next.

PROVIDER MANIFESTS

Content providers must be defined in an application manifest file and installed on the
platform so the platform can learn that they’re available and what data types they
offer. The following listing shows the manifest for our provider.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.chapter5.widget">
 <application android:icon="@drawable/icon"
 android:label="@string/app_short_name">
 <activity android:name=".WidgetExplorer"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <provider android:name="WidgetProvider"
 android:authorities=
 "com.msi.manning.chapter5.Widget" />
 </application>
</manifest>

The <provider> element B defines the class that implements the provider and associ-
ates a particular authority with that class.

 A completed project that supports inserting, retrieving, updating, and deleting
records rounds out our exploration of using and building ContentProvider classes.
And with that, we’ve also now demonstrated the ways to locally store and retrieve data
on the Android platform.

Listing 5.15 WidgetProvider AndroidManifest.xml file

Declare
provider’s
authority

B

158 CHAPTER 5 Storing and retrieving data

5.5 Summary
From a simple SharedPreferences mechanism to file storage, databases, and finally
the concept of a ContentProvider, Android provides myriad ways for applications to
retrieve and store data.

 As we discussed in this chapter, several storage types can share data across applica-
tion and process boundaries, and several can’t. You can create SharedPreferences
with a permissions mode, allowing the flexibility to keep things private, or to share
data globally with read-only or read-write permissions. The filesystem provides more
flexible and powerful data storage for a single application.

 Android also provides a relational database system based on SQLite. Use this light-
weight, speedy, and capable system for local data persistence within a single applica-
tion. To share data, you can still use a database, but you need to expose an interface
through a ContentProvider. Providers expose data types and operations through a
URI-based approach.

 In this chapter, we examined each of the data paths available to an Android appli-
cation. You built several small, focused sample applications to use preferences and the
filesystem, and you expanded the WeatherReporter sample application that you began
in the last chapter. This Android application uses a SQLite database to access and per-
sist data. You also built your own custom content provider from the ground up.

 To expand your Android horizons beyond data, we’ll move on to general network-
ing in the next chapter. We’ll cover networking basics and the networking APIs
Android provides. We’ll also expand on the data concepts we’ve covered in this chap-
ter to use the network itself as a data source.

Additional ContentProvider manifest properties
The properties of a ContentProvider can configure several important settings
beyond the basics, such as specific permissions, initialization order, multiprocess
capability, and more. Though most ContentProvider implementations won’t need
to delve into these details, you should still keep them in mind. For complete and up-
to-date ContentProvider properties, see the SDK documentation.

Networking and
web services
With the ubiquity of high-speed networking, mobile devices are now expected to
perform many of the same data-rich functions of traditional computers such as
email, providing web access, and the like. Furthermore, because mobile phones
offer such items as GPS, microphones, CDMA/GSM, built in cameras, accelerome-
ters, and many others, user demand for applications that leverage all the features of
the phone continues to increase.

 You can build interesting applications with the open Intent- and Service-based
approach you learned about in previous chapters. That approach combines built-in
(or custom) intents, such as fully capable web browsing, with access to hardware
components, such as a 3D graphics subsystem, a GPS receiver, a camera, removable
storage, and more. This combination of open platform, hardware capability, soft-

This chapter covers
 Networking basics

 Determining network status

 Using the network to retrieve and store data

 Working with web services
159

ware architecture, and access to network data makes Android compelling.

160 CHAPTER 6 Networking and web services

 This doesn’t mean that the voice network isn’t important—we’ll cover telephony
explicitly in chapter 7—but we admit that voice is a commodity—and data is what we’ll
focus on when talking about the network.

 Android provides access to networking in several ways, including mobile Internet
Protocol (IP), Wi-Fi, and Bluetooth. It also provides some open and closed source third-
party implementations of other networking standards such as ZigBee and Worldwide
Interoperability for Microwave Access (WiMAX). In this chapter, though, we’ll concen-
trate on getting your Android applications to communicate using IP network data,
using several different approaches. We’ll cover a bit of networking background, and
then we’ll deal with Android specifics as we explore communication with the network
using sockets and higher-level protocols such as Hypertext Transfer Protocol (HTTP).

 Android provides a portion of the java.net package and the org.apache.http-
client package to support basic networking. Other related packages, such as
android.net, address internal networking details and general connectivity properties.
You’ll encounter all these packages as we progress though networking scenarios in
this chapter.

 In terms of connectivity properties, we’ll look at using the ConnectivityManager
class to determine when the network connection is active and what type of connection
it is: mobile or Wi-Fi. From there, we’ll use the network in various ways with sample
applications.

 One caveat to this networking chapter is that we won’t dig into the details concern-
ing the Android Wi-Fi or Bluetooth APIs. Bluetooth is an important technology for
close-range wireless networking between devices, but it isn’t available in the Android
emulator (see chapter 14 for more on Bluetooth). On the other hand, Wi-Fi has a good
existing API but also doesn’t have an emulation layer. Because the emulator doesn’t dis-
tinguish the type of network you’re using and doesn’t know anything about either
Bluetooth or Wi-Fi, and because we think the importance lies more in how you use the
network, we aren’t going to cover these APIs. If you want more information on the Wi-
Fi APIs, please see the Android documentation (http://code.google.com/android/
reference/android/net/wifi/package-summary.html).

 The aptly named sample application for this chapter, NetworkExplorer, will look at
ways to communicate with the network in Android and will include some handy utili-
ties. Ultimately, this application will have multiple screens that exercise different net-
working techniques, as shown in figure 6.1.

 After we cover general IP networking with regard to Android, we’ll discuss turning
the server side into a more robust API itself by using web services. On this topic, we’ll
work with plain old XML over HTTP (POX) and Representational State Transfer (REST).
We’ll also discuss the Simple Object Access Protocol (SOAP). We’ll address the pros and
cons of the various approaches and why you might want to choose one method over
another for an Android client.

 Before we delve into the details of networked Android applications, we’ll begin
with an overview of networking basics. If you’re already well versed in general

161An overview of networking

networking, you can skip ahead to section 6.2, but it’s important to have this founda-
tion if you think you need it, and we promise to keep it short.

6.1 An overview of networking
A group of interconnected computers is a network. Over time, networking has grown
from something that was available only to governments and large organizations to the
almost ubiquitous and truly amazing internet. Though the concept is simple—allow
computers to communicate—networking does involve advanced technology. We won’t
get into great detail here, but we’ll cover the core tenets as a background to the gen-
eral networking you’ll do in the remainder of this chapter.

6.1.1 Networking basics

A large percentage of the time, the APIs you use to program Android applications
abstract the underlying network details. This is good. The APIs and the network proto-
cols themselves are designed so that you can focus on your application and not worry
about routing, reliable packet delivery, and so on.

 Nevertheless, it helps to have some understanding of the way a network works so
that you can better design and troubleshoot your applications. To that end, let's cover
some general networking concepts, with a focus on Transmission Control Protocol/Inter-
net Protocol (TCP/IP).1 We’ll begin with nodes, layers, and protocols.

NODES

The basic idea behind a network is that data is sent between connected devices using
particular addresses. Connections can be made over wire, over radio waves, and so on.
Each addressed device is known as a node. A node can be a mainframe, a PC, a fancy

1 For an in-depth study of all things TCP/IP related, take a look at Craig Hunt’s book: http://oreilly.com/

Figure 6.1 The NetworkExplorer application you’ll build to cover networking topics
catalog/9780596002978.

162 CHAPTER 6 Networking and web services

toaster, or any other device with a network stack and connectivity, such as an Android-
enabled handheld.

LAYERS AND PROTOCOLS

Protocols are a predefined and agreed-upon set of rules for communication. Protocols
are often layered on top of one another because they handle different levels of
responsibility. The following list describes the main layers of the TCP/IP stack, which
is used for the majority of web traffic and with Android:

 The Link Layer—including physical device address resolution protocols such as
ARP and RARP

 The Internet Layer —including IP itself, which has multiple versions, the ping
protocol, and ICMP, among others

 The Transport Layer—where different types of delivery protocols such as TCP
and UDP are found

 The Application Layer—which includes familiar protocols such as HTTP, FTP,
SMTP, IMAP, POP, DNS, SSH, and SOAP

Layers are an abstraction of the different levels of a network protocol stack. The low-
est level, the Link Layer, is concerned with physical devices and physical addresses.
The next level, the Internet Layer, is concerned with addressing and general data
details. After that, the Transport Layer is concerned with delivery details. And, finally,
the top-level Application Layer protocols, which make use of the stack beneath them,
are application-specific for sending files or email or viewing web pages.

IP

IP is in charge of the addressing system and delivering data in small chunks called
packets. Packets, known in IP terms as datagrams, define how much data can go in each
chunk, where the boundaries for payload versus header information are, and the
like. IP addresses tell where each packet is from (its source) and where it’s going (its
destination).

IP addresses come in different sizes, depending on the version of the protocol
being used, but by far the most common at present is the 32-bit address. 32-bit IP
addresses (TCP/IP version 4, or IPv4) are typically written using a decimal notation
that separates the 32 bits into four sections, each representing 8 bits (an octet), such
as 74.125.45.100.

 Certain IP address classes have special roles and meaning. For example, 127 always
identifies a loopback2 or local address on every machine; this class doesn’t communi-
cate with any other devices (it can be used internally, on a single machine only).
Addresses that begin with 10 or 192 aren’t routable, meaning they can communicate
with other devices on the same local network segment but can’t connect to other seg-

2 The TCP/IP Guide provides further explanation of datagrams and loopbacks: http://www.tcpipguide.com/

index.htm.

163An overview of networking

ments. Every address on a particular network segment must be unique or collisions
can occur and it gets ugly.

 The routing of packets on an IP network—how packets traverse the network and
go from one segment to another—is handled by routers. Routers speak to each other
using IP addresses and other IP-related information.

TCP AND UDP

TCP and UDP (User Datagram Protocol) are different delivery protocols that are com-
monly used with TCP/IP. TCP is reliable, and UDP is fire and forget. What does that
mean? It means that TCP includes extra data to guarantee the order of packets and to
send back an acknowledgment when a packet is received. The common analogy is cer-
tified mail: the sender gets a receipt that shows the letter was delivered and signed for,
and therefore knows the recipient got the message. UDP, on the other hand, doesn’t
provide any ordering or acknowledgment. It’s more like a regular letter: it’s cheaper
and faster to send, but you basically just hope the recipient gets it.

APPLICATION PROTOCOLS

After a packet is sent and delivered, an application takes over. For example, to send an
email message, Simple Mail Transfer Protocol (SMTP) defines a rigorous set of proce-
dures that have to take place. You have to say hello in a particular way and introduce
yourself; then you have to supply from and to information, followed by a message
body in a particular format. Similarly, HTTP defines the set of rules for the Internet—
which methods are allowed (GET, POST, PUT, DELETE) and how the overall request/
response system works between a client and a server.

 When you’re working with Android (and Java-related APIs in general), you typi-
cally don’t need to delve into the details of any of the lower-level protocols, but you
might need to know the major differences we’ve outlined here for troubleshooting.
You should also be well-versed in IP addressing, know a bit more about clients and
servers, and how connections are established using ports.

6.1.2 Clients and servers

Anyone who’s ever used a web browser is familiar with the client/server computing
model. Data, in one format or another, is stored on a centralized, powerful server. Cli-
ents then connect to that server using a designated protocol, such as HTTP, to retrieve
the data and work with it.

 This pattern is, of course, much older than the web, and it has been applied to
everything from completely dumb terminals that connect to mainframes to modern
desktop applications that connect to a server for only a portion of their purpose. A
good example is iTunes, which is primarily a media organizer and player, but also has
a store where customers can connect to the server to get new content. In any case, the
concept is the same: The client makes a type of request to the server and the server
responds. This model is the same one that the majority of Android applications (at
least those that use a server side at all) generally follow. Android applications typically

end up as the client.

164 CHAPTER 6 Networking and web services

 In order to handle many client requests that are often for different purposes and
that come in nearly simultaneously to a single IP address, modern server operating sys-
tems use the concept of ports. Ports aren’t physical; they’re a representation of a par-
ticular area of the computer’s memory. A server can listen on multiple designated
ports at a single address; for example, one port for sending email, one port for web
traffic, two ports for file transfer, and so on. Every computer with an IP address also
supports a range of thousands of ports to enable multiple conversations to happen at
the same time.

 Ports are divided into three ranges:

 Well-known ports—0 through 1023
 Registered ports—1024 through 49151
 Dynamic and/or private ports—49152 through 65535

The well-known ports are all published and are just that—well known. HTTP is port 80
(and HTTP Secure, or HTTPS, is port 443), FTP is ports 20 (control) and 21 (data),
SSH is port 22, SMTP is port 25, and so on.

 Beyond the well-known ports, the registered ports are still controlled and pub-
lished, but for more specific purposes. Often these ports are used for a particular
application or company; for example, MySQL is port 3306 (by default). For a com-
plete list of well-known and registered ports, see the Internet Corporation for
Assigned Names and Numbers (ICANN) port-numbers document: http://www.iana.
org/assignments/port-numbers.

 The dynamic or private ports are intentionally unregistered because they’re used
by the TCP/IP stack to facilitate communication. These ports are dynamically regis-
tered on each computer and used in the conversation. Dynamic port 49500, for exam-
ple, might be used to handle sending a request to a web server and dealing with the
response. When the conversation is over, the port is reclaimed and can be reused
locally for any other data transfer.

 Clients and servers communicate as nodes with addresses, using ports, on a net-
work that supports various protocols. The protocols Android uses are based on the IP
network the platform is designed to participate in and involve the TCP/IP family.
Before you can build a full-on client/server Android application using the network,
you need to handle the prerequisite task of determining the state of the connection.

6.2 Checking the network status
Android provides a host of utilities that determine the device configuration and the
status of various services, including the network. You’ll typically use the
ConnectivityManager class to determine whether network connectivity exists and to
get notifications of network changes. The following listing, which is a portion of the
main Activity in the NetworkExplorer application, demonstrates basic usage of the
ConnectivityManager.

165Communicating with a server socket

@Override
public void onStart() {
 super.onStart();
 ConnectivityManager cMgr = (ConnectivityManager)
 this.getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo netInfo = cMgr.getActiveNetworkInfo();
 this.status.setText(netInfo.toString());
}

This short example shows that you can get a handle to the ConnectivityManager
through the context’s getSystemService method by passing the CONNECTIVITY_
SERVICE constant. When you have the manager, you can obtain network information
via the NetworkInfo object. The toString method of the NetworkInfo object returns
the output shown in figure 6.2.

 Of course, you won’t normally just display the
String output from NetworkInfo, but this example
does give you a glance at what’s available. More often,
you’ll use the isAvailable or isConnected methods
(which return a boolean value), or you’ll directly
query the NetworkInfo.State using the getState
method. NetworkInfo. State is an enum that defines
the coarse state of the connection. The possible values
are CONNECTED, CONNECTING, DISCONNECTED, and DIS-
CONNECTING. The NetworkInfo object also provides
access to more detailed information, but you won’t
normally need more than the basic state.

 When you know that you’re connected, either via
mobile or Wi-Fi, you can use the IP network. For the
purposes of our NetworkExplorer application, we’re
going to start with the most rudimentary IP connec-
tion, a raw socket, and work our way up to HTTP and
web services.

6.3 Communicating with a server socket
A server socket is a stream that you can read or write raw bytes to, at a specified IP
address and port. You can deal with data and not worry about media types, packet
sizes, and so on. A server socket is yet another network abstraction intended to make
the programmer’s job a bit easier. The philosophy that sockets take on—that every-
thing should look like file input/output (I/O) to the developer—comes from the Por-
table Operating System Interface for UNIX (POSIX) family of standards and has been
adopted by most major operating systems in use today.

 We’ll move on to higher levels of network communication in a bit, but we’ll start

Listing 6.1 The onStart method of the NetworkExplorer main Activity

Figure 6.2 The output of the
NetworkInfo toString method
with a raw socket. For that, we need a server listening on a particular port. The

166 CHAPTER 6 Networking and web services

EchoServer code shown in the next listing fits the bill. This example isn’t an Android-
specific class; rather, it’s an oversimplified server that can run on any host machine
with Java. We’ll connect to it later from an Android client.

public final class EchoServer extends Thread {
 private static final int PORT = 8889;
 private EchoServer() {}
 public static void main(String args[]) {
 EchoServer echoServer = new EchoServer();
 if (echoServer != null) {
 echoServer.start();
 }
 }
 public void run() {
 try {
 ServerSocket server = new ServerSocket(PORT, 1);
 while (true) {
 Socket client = server.accept();
 System.out.println("Client connected");
 while (true) {
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(
 client.getInputStream()));
 System.out.println("Read from client");
 String textLine = reader.readLine() + "\n";
 if (textLine.equalsIgnoreCase("EXIT\n")) {
 System.out.println("EXIT invoked, closing client");
 break;
 }
 BufferedWriter writer = new BufferedWriter(
 new OutputStreamWriter(
 client.getOutputStream()));
 System.out.println("Echo input to client");
 writer.write("ECHO from server: "
 + textLine, 0, textLine.length() + 18);
 writer.flush();
 }
 client.close();
 }
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

The EchoServer class we’re using is fairly basic Java I/O. It extends Thread and imple-
ments run, so that each client that connects can be handled in its own context. Then
we use a ServerSocket B to listen on a defined port. Each client is then an imple-
mentation of a Socket. The client input is fed into a BufferedReader that each line is
read from C. The only special consideration this simple server has is that if the input

Listing 6.2 A simple echo server for demonstrating socket usage

BUse
java.net.ServerSocket

CRead input with
BufferedReader

D
EXIT, break

the loop

167Communicating with a server socket

is EXIT, it breaks the loops and exits D. If the input doesn’t prompt an exit, the server
echoes the input back to the client’s OuputStream with a BufferedWriter.

 This example is a good, albeit intentionally basic, representation of what a server
does. It handles input, usually in a separate thread, then responds to the client, based
on the input. To try out this server before using Android, you can telnet to the speci-
fied port (after the server is running, of course) and type some input; if all is well, it
will echo the output.

 To run the server, you need to invoke it locally with Java. The server has a main
method, so it’ll run on its own; start it from the command line or from your IDE. Be
aware that when you connect to a server from the emulator (this one or any other),
you need to connect to the IP address of the host you run the server process on, not
the loopback (not 127.0.0.1). The emulator thinks of itself as 127.0.0.1, so use the
nonloopback address of the server host when you attempt to connect from Android.
(You can find out the IP address of the machine you’re on from the command line by
entering ifconfig on Linux or Mac and ipconfig on Windows.)

 The client portion of this example is where NetworkExplorer itself begins, with the
callSocket method of the SimpleSocket Activity, shown in the next listing.

public class SimpleSocket extends Activity {
 . . . View variable declarations omitted for brevity
 @Override
 public void onCreate(final Bundle icicle) {
 super.onCreate(icicle);
 this.setContentView(R.layout.simple_socket);
 . . . View inflation omitted for brevity
 this.socketButton.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 socketOutput.setText("");
 String output = callSocket(
 ipAddress.getText().toString(),
 port.getText().toString(),
 socketInput.getText().toString());
 socketOutput.setText(output);
 }
 });
 }
 private String callSocket(String ip, String port, String socketData) {
 Socket socket = null;
 BufferedWriter writer = null;
 BufferedReader reader = null;
 String output = null;
 try {
 socket = new Socket(ip, Integer.parseInt(port));
 writer = new BufferedWriter(
 new OutputStreamWriter(
 socket.getOutputStream()));

Listing 6.3 An Android client invoking a raw socket server resource, the echo server

Use callSocket
method

B

Create
client
Socket

C

 reader = new BufferedReader(

168 CHAPTER 6 Networking and web services

 new InputStreamReader(
 socket.getInputStream()));

 String input = socketData;
 writer.write(input + "\n", 0, input.length() + 1);
 writer.flush();
 output = reader.readLine();

 this.socketOutput.setText(output);
 // send EXIT and close
 writer.write("EXIT\n", 0, 5);
 writer.flush();
 . . . catches and reader, writer, and socket closes omitted for brevity
 . . . onCreate omitted for brevity
 return output;
 }

In this listing, we use the onCreate method to call a private helper callSocket
method B and set the output to a TextView. Within the callSocket method, we cre-
ate a Socket to represent the client side of our connection C, and we establish a
writer for the input and a reader for the output. With the housekeeping taken care of,
we then write to the socket D, which communicates with the server, and get the out-
put value to return E.

 A socket is probably the lowest-level networking usage in Android you’ll encounter.
Using a raw socket, though abstracted a great deal, still leaves many of the details up
to you, especially the server-side details of threading and queuing. Although you
might run up against situations in which you either have to use a raw socket (the
server side is already built) or you elect to use one for one reason or another, higher-
level solutions such as leveraging HTTP usually have decided advantages.

6.4 Working with HTTP
As we discussed in the previous section, you can use a raw socket to transfer IP data to
and from a server with Android. This approach is an important one to be aware of so
that you know you have that option and understand a bit about the underlying details.
Nevertheless, you might want to avoid this technique when possible, and instead take
advantage of existing server products to send your data. The most common way to do
this is to use a web server and leverage HTTP.

 Now we’re going to take a look at making HTTP requests from an Android client
and sending them to an HTTP server. We’ll let the HTTP server handle all the socket
details, and we’ll focus on our client Android application.

 The HTTP protocol itself is fairly involved. If you’re unfamiliar with it or want the
complete details, information is readily available via Requests for Comments (RFCs)
(such as for version 1.1: http://www.w3.org/Protocols/rfc2616/rfc2616.html). The
short story is that the protocol is stateless and involves several different methods that
allow users to make requests to servers, and those servers return responses. The entire
web is, of course, based on HTTP. Beyond the most basic concepts, there are ways to

Write to
socketD

Get socket
outputE
pass data into and out of requests and responses and to authenticate with servers.

169Working with HTTP

Here we’re going to use some of the most common methods and concepts to talk to
network resources from Android applications.

 To begin, we’ll retrieve data using HTTP GET requests to a simple HTML page,
using the standard java.net API. From there, we’ll look at using the Android-included
Apache HttpClient API. After we use HttpClient directly to get a feel for it, we’ll also
make a helper class, HttpRequestHelper, that you can use to simplify the process and
encapsulate the details. This class—and the Apache networking API in general—has a
few advantages over rolling your own networking with java.net, as you’ll see. When the
helper class is in place, we’ll use it to make additional HTTP and HTTPS requests, both
GET and POST, and we’ll look at basic authentication.

 Our first HTTP request will be an HTTP GET call using an HttpUrlConnection.

6.4.1 Simple HTTP and java.net

The most basic HTTP request method is GET. In this type of request, any data that’s
sent is embedded in the URL, using the query string. The next class in our Network-
Explorer application, which is shown in the following listing, has an Activity that
demonstrates the GET request method.

public class SimpleGet extends Activity {
 . . . other portions of onCreate omitted for brevity
 this.getButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 getOutput.setText("");
 String output =
 getHttpResponse(getInput.getText().toString());
 if (output != null) {
 getOutput.setText(output);
 }
 }
 });
 };
 . . .
 private String getHttpResponse(String location) {
 String result = null;
 URL url = null;
 try {
 url = new URL(location);

 } catch (MalformedURLException e) {
 // log and or handle
 }
 if (url != null) {
 try {
 HttpURLConnection urlConn =
 (HttpURLConnection) url.openConnection();
 BufferedReader in =
 new BufferedReader(

Listing 6.4 The SimpleGet Activity showing java.net.UrlConnection

B
Invoke getHttpResponse

method

Construct
URL object

C

D
Open connection using

HttpURLConnection
 new InputStreamReader(

170 CHAPTER 6 Networking and web services

 urlConn.getInputStream()));
 String inputLine;
 int lineCount = 0; // limit lines for example
 while ((lineCount < 10)
 && ((inputLine = in.readLine()) != null)) {

 lineCount++;
 result += "\n" + inputLine;
 }
 in.close();
 urlConn.disconnect();
 } catch (IOException e) {
 // log and or handle
 }
 } else {
 // log and or handle
 }
 return result;
 }
}

To get an HTTP response and show the first few lines of it in our SimpleGet class, we
call a getHttpResponse method that we’ve built B. Within this method, we construct
a java.net.URL object C, which takes care of many of the details for us, and then we
open a connection to a server using an HttpURLConnection D.

 We then use a BufferedReader to read data from the connection one line at a
time E. Keep in mind that as we’re doing this, we’re using the same thread as the UI
and therefore blocking the UI. This isn’t a good idea. We’re using the same thread
here only to demonstrate the network operation; we’ll explain more about how to
use a separate thread shortly. After we have the data, we append it to the result
String that our method returns F, and we close the reader and the connection.
Using the plain and simple java.net support that has been ported to Android this
way provides quick and dirty access to HTTP network resources.

 Communicating with HTTP this way is fairly easy, but it can quickly get cumber-
some when you need to do more than just retrieve simple data, and, as noted, the
blocking nature of the call is bad form. You could get around some of the problems
with this approach on your own by spawning separate threads and keeping track of
them and by writing your own small framework/API structure around that concept for
each HTTP request, but you don’t have to. Fortunately, Android provides another set
of APIs in the form of the Apache HttpClient3 library that abstract the java.net
classes further and are designed to offer more robust HTTP support and help handle
the separate-thread issue.

6.4.2 Robust HTTP with HttpClient

To get started with HttpClient, we’re going to look at using core classes to perform
HTTP GET and POST method requests. We’re going to concentrate on making network

Read
dataE

Append
to resultF
3 You’ll find more about the Apache HttpClient here: http://hc.apache.org/httpclient-3.x/.

171Working with HTTP

requests in a Thread separate from the UI, using a combination of the Apache
ResponseHandler and Android Handler (for different but related purposes, as you’ll
see). The following listing shows our first example of using the HttpClient API.

. . . .
private final Handler handler = new Handler() {
 public void handleMessage(Message msg) {
 progressDialog.dismiss();
 String bundleResult =
 msg.getData().getString("RESPONSE");
 output.setText(bundleResult);
 }
 };
. . . onCreate omitted for brevity
private void performRequest() {
 final ResponseHandler<String> responseHandler =
 new ResponseHandler<String>() {
 public String handleResponse(HttpResponse response) {
 StatusLine status = response.getStatusLine();
 HttpEntity entity = response.getEntity();
 String result = null;
 try {
 result = StringUtils.inputStreamToString(

 entity.getContent());
 Message message = handler.obtainMessage();
 Bundle bundle = new Bundle();
 bundle.putString("RESPONSE", result);
 message.setData(bundle);
 handler.sendMessage(message);
 } catch (IOException e) {
 // log and or handle
 }
 return result;
 }
 };
 this.progressDialog =
 ProgressDialog.show(this, "working . . .",
 "performing HTTP request");
 new Thread() {
 public void run() {
 try {
 DefaultHttpClient client = new DefaultHttpClient();
 HttpGet httpMethod =
 new HttpGet(
 urlChooser.getSelectedItem().toString());
 client.execute(
 httpMethod, responseHandler);
 } catch (ClientProtocolException e) {
 // log and or handle
 } catch (IOException e) {

Listing 6.5 Apache HttpClient with Android Handler and Apache ResponseHandler

Use Handler
to update UI

B

Create
ResponseHandler
for asynchronous
HTTP

C

Get HTTP
response
payload

D

Use separate Thread
for HTTP call

Create
HttpGet
object

Execute
HTTP with
HttpClient
 // log and or handle

173Working with HTTP

hides some of the complexity. We’ll examine the helper class itself after we look at this
first class that uses it.

public class ApacheHTTPViaHelper extends Activity {
 . . . other member variables omitted for brevity
 private final Handler handler = new Handler() {
 public void handleMessage(Message msg) {
 progressDialog.dismiss();
 String bundleResult = msg.getData().getString("RESPONSE");
 output.setText(bundleResult);

 }
 };
 @Override
 public void onCreate(final Bundle icicle) {
 super.onCreate(icicle);
 . . . view inflation and setup omitted for brevity
 this.button.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 output.setText("");
 performRequest(
 urlChooser.getSelectedItem().toString());
 }
 });
 };
 . . . onPause omitted for brevity
 private void performRequest(String url) {
 final ResponseHandler<String> responseHandler =
 HTTPRequestHelper.getResponseHandlerInstance(
 this.handler);

 this.progressDialog =
 ProgressDialog.show(this, "working . . .",
 "performing HTTP request");
 new Thread() {
 public void run() {
 HTTPRequestHelper helper = new
 HTTPRequestHelper(responseHandler);
 helper.performGet(url, null, null, null);
 }
 }.start();
 }
}

The first thing we do in this class is create another Handler. From within it, we update
a UI TextView based on data in the Message. Further on in the code, in the onCreate
method, we call a local performRequest method when the Go button is clicked, and
we pass a selected String representing a URL B.

 Inside the performRequest method, we use a static convenience method to return
an HttpClient ResponseHandler, passing in the Android Handler that it’ll use C.
We’ll examine the helper class next to get a look at exactly how this works, but the

Listing 6.6 Using Apache HttpClient via a custom HttpRequestHelper

BCall local
performRequest

Get ResponseHandler
from RequestHelperC

Instantiate
RequestHelper with
ResponseHandler

D

important part for now is that the ResponseHandler is created for us by the static

174 CHAPTER 6 Networking and web services

method. With the ResponseHandler instance taken care of, we instantiate an Http-
RequestHelper instance D and use it to make a simple HTTP GET call (passing in only
the String URL). Similar to what happened in listing 6.5, when the request com-
pletes, the ResponseHandler fires the onResponse method, and our Handler is sent a
Message, completing the process.

 The example Activity in listing 6.6 is fairly clean and simple, and it’s asynchro-
nous and doesn’t block the UI thread. The heavy lifting is taken care of by HttpClient
itself and by the setup our custom HttpRequestHelper makes possible. The first part
of the all-important HttpRequestHelper, which we’ll explore in three listings (listing
6.7, 6.8, and 6.9), is shown in the following listing.

public class HTTPRequestHelper {
 private static final int POST_TYPE = 1;
 private static final int GET_TYPE = 2;
 private static final String CONTENT_TYPE = "Content-Type";
 public static final String MIME_FORM_ENCODED =
 "application/x-www-form-urlencoded";
 public static final String MIME_TEXT_PLAIN = "text/plain";
 private final ResponseHandler<String> responseHandler;
 public HTTPRequestHelper(ResponseHandler<String> responseHandler) {
 this.responseHandler = responseHandler;
 }
 public void performGet(String url, String user, String pass,
 final Map<String, String> additionalHeaders) {
 performRequest(null, url, user, pass,
 additionalHeaders, null, HTTPRequestHelper.GET_TYPE);
 }
 public void performPost(String contentType, String url,
 String user, String pass,
 Map<String, String> additionalHeaders,
 Map<String, String> params) {

 performRequest(contentType, url, user, pass,
 additionalHeaders, params, HTTPRequestHelper.POST_TYPE);
 }
 public void performPost(String url, String user, String pass,
 Map<String, String> additionalHeaders,
 Map<String, String> params) {
 performRequest(HTTPRequestHelper.MIME_FORM_ENCODED,
 url, user, pass,
 additionalHeaders, params, HTTPRequestHelper.POST_TYPE);
 }
 private void performRequest(
 String contentType,
 String url,
 String user,
 String pass,
 Map<String, String> headers,
 Map<String, String> params,

Listing 6.7 The first part of the HttpRequestHelper class

BRequire
ResponseHandler

to construct

Provide
simple
GET
methodC

Provide simple
POST methods

D

Handle
combinations in

E

 int requestType) { private method

175Working with HTTP

 DefaultHttpClient client = new DefaultHttpClient();
 if ((user != null) && (pass != null)) {
 client.getCredentialsProvider().setCredentials(
 AuthScope.ANY,
 new UsernamePasswordCredentials(user, pass));
 }
 final Map<String, String> sendHeaders =
 new HashMap<String, String>();
 if ((headers != null) && (headers.size() > 0)) {
 sendHeaders.putAll(headers);
 }
 if (requestType == HTTPRequestHelper.POST_TYPE) {
 sendHeaders.put(HTTPRequestHelper.CONTENT_TYPE, contentType);
 }
 if (sendHeaders.size() > 0) {
 client.addRequestInterceptor(
 new HttpRequestInterceptor() {

 public void process(
 final HttpRequest request, final HttpContext context)
 throws HttpException, IOException {
 for (String key : sendHeaders.keySet()) {
 if (!request.containsHeader(key)) {
 request.addHeader(key,
 sendHeaders.get(key));
 }
 }
 }
 });
 }
 . . . POST and GET execution in listing 6.8
 }

The first thing of note in the HttpRequestHelper class is that a ResponseHandler is
required to be passed in as part of the constructor B. This ResponseHandler will be
used when the HttpClient request is ultimately invoked. After the constructor, we see
a public HTTP GET-related method C and several different public HTTP POST-related
methods D. Each of these methods is a wrapper around the private performRequest
method that can handle all the HTTP options E. The performRequest method sup-
ports a content-type header value, URL, username, password, Map of additional head-
ers, similar Map of request parameters, and request method type.

 Inside the performRequest method, a DefaultHttpClient is instantiated. Next, we
check whether the user and pass method parameters are present; if they are, we set
the request credentials with a UsernamePasswordCredentials type (HttpClient sup-
ports several types of credentials; see the Javadocs for details). At the same time as we
set the credentials, we also set an AuthScope. The scope represents which server, port,
authentication realm, and authentication scheme the supplied credentials are appli-
cable for.

 You can set any of the HttpClient parameters as finely or coarsely grained as you
want; we’re using the default ANY scope that matches anything. What we notably

Use Interceptor
for request
headers

F

176 CHAPTER 6 Networking and web services

haven’t set in all of this is the specific authentication scheme to use. HttpClient sup-
ports various schemes, including basic authentication, digest authentication, and a
Windows-specific NT Lan Manager (NTLM) scheme. Basic authentication (simple
username/password challenge from the server) is the default. Also, if you need to,
you can use a preemptive form login for form-based authentication—submit the form
you need, get the token or session ID, and set default credentials.

 After the security is out of the way, we use an HttpRequestInterceptor to add
HTTP headers F. Headers are name/value pairs, so adding the headers is pretty easy.
After we have all of the properties that apply regardless of our request method type,
we then add additional settings that are specific to the method. The following listing,
the second part of our helper class, shows the POST- and GET-specific settings and the
execute method.

 . . .
 if (requestType == HTTPRequestHelper.POST_TYPE) {
 HttpPost method = new HttpPost(url);

 List<NameValuePair> nvps = null;
 if ((params != null) && (params.size() > 0)) {
 nvps = new ArrayList<NameValuePair>();
 for (String key : params.keySet()) {
 nvps.add(new BasicNameValuePair(key,
 params.get(key)));

 }
 }
 if (nvps != null) {
 try {
 method.setEntity(
 new UrlEncodedFormEntity(nvps, HTTP.UTF_8));
 } catch (UnsupportedEncodingException e) {
 // log and or handle
 }
 }
 execute(client, method);
 } else if (requestType == HTTPRequestHelper.GET_TYPE) {
 HttpGet method = new HttpGet(url);
 execute(client, method);
 }
 . . .
 private void execute(HttpClient client, HttpRequestBase method) {
 BasicHttpResponse errorResponse =
 new BasicHttpResponse(
 new ProtocolVersion("HTTP_ERROR", 1, 1),
 500, "ERROR");

 try {
 client.execute(method, this.responseHandler);
 } catch (Exception e) {
 errorResponse.setReasonPhrase(e.getMessage());

Listing 6.8 The second part of the HttpRequestHelper class

Create
HttpPost
object

B

Add name/value
parametersC

Call execute
method

D

Set up an
error handler

E

177Working with HTTP

 try {
 this.responseHandler.handleResponse(errorResponse);
 } catch (Exception ex) {
 // log and or handle
 }
 }
 }

When the specified request is a POST type, we create an HttpPost object to deal with it
B. Then we add POST request parameters, which are another set of name/value pairs
and are built with the BasicNameValuePair object C. After adding the parameters,
we’re ready to perform the request, which we do with our local private execute
method using the method object and the client D.

 Our execute method sets up an error response handler (we want to return a
response, error or not, so we set this up just in case) E and wraps the HttpClient
execute method, which requires a method object (either POST or GET in our case, pre-
established) and a ResponseHandler as input. If we don’t get an exception when we
invoke HttpClient execute, all is well and the response details are placed into the
ResponseHandler. If we do get an exception, we populate the error handler and pass
it through to the ResponseHandler.

 We call the local private execute method with the established details for either a
POST or a GET request. The GET method is handled similarly to the POST, but we don’t
set parameters (with GET requests, we expect parameters encoded in the URL itself).
Right now, our class supports only POST and GET, which cover 98 percent of the
requests we generally need, but it could easily be expanded to support other HTTP
method types.

 The final part of the request helper class, shown in the following listing, takes us
back to the first example (listing 6.7), which used the helper. Listing 6.9 outlines exactly
what the convenience getResponseHandlerInstance method returns (constructing
our helper requires a ResponseHandler, and this method returns a default one).

 public static ResponseHandler<String>
 getResponseHandlerInstance(final Handler handler) {
 final ResponseHandler<String> responseHandler =
 new ResponseHandler<String>() {
 public String handleResponse(final HttpResponse response) {
 Message message = handler.obtainMessage();
 Bundle bundle = new Bundle();
 StatusLine status = response.getStatusLine();
 HttpEntity entity = response.getEntity();
 String result = null;
 if (entity != null) {
 try {
 result = StringUtils.inputStreamToString(
 entity.getContent());
 bundle.putString(

Listing 6.9 The final part of the HttpRequestHelper class

Require Handler
parameterB

C

Put result value

 "RESPONSE", result); into Bundle

178 CHAPTER 6 Networking and web services

 message.setData(bundle);
 handler.sendMessage(message);

 } catch (IOException e) {
 bundle.putString("
 RESPONSE", "Error - " + e.getMessage());
 message.setData(bundle);
 handler.sendMessage(message);
 }
 } else {
 bundle.putString("RESPONSE", "Error - "
 + response.getStatusLine().getReasonPhrase());
 message.setData(bundle);
 handler.sendMessage(message);

 }
 return result;
 }
 };
 return responseHandler;
 }
}

As we discuss the getResponseHandlerInstance method of our helper, we should
note that although we find it helpful, it’s entirely optional. You can still use the helper
class without using this method. To do so, construct your own ResponseHandler and
pass it in to the helper constructor, which is a perfectly plausible case. The get-
ResponseHandlerInstance method builds a convenient default ResponseHandler
that hooks in a Handler via a parameter B and parses the response as a String C.
The response String is sent back to the caller using the Handler Bundle and Message
pattern we’ve seen used time and time again to pass messages between threads in our
Android screens.

 With the gory HttpRequestHelper details out of the way, and having already
explored basic usage, we’ll next turn to more involved uses of this class in the context
of web service calls.

6.5 Web services
The term web services means many different things, depending on the source and the
audience. To some, it’s a nebulous marketing term that’s never pinned down; to oth-
ers, it’s a rigid and specific set of protocols and standards. We’re going to tackle it as a
general concept, without defining it in depth, but not leaving it entirely undefined
either.

 Web services are a means of exposing an API over a technology-neutral network
endpoint. They’re a means to call a remote method or operation that’s not tied to a
specific platform or vendor and get a result. By this definition, POX over the network
is included; so are REST and SOAP—and so is any other method of exposing opera-
tions and data on the wire in a neutral manner.

Set Bundle as
data into Message

Send Message
via Handler

179Web services

POX, REST, and SOAP are by far the most common web services around, so they’re
what we’ll focus on in this section. Each provides a general guideline for accessing
data and exposing operations, each in a more rigorous manner than the previous.
POX basically exposes chunks of XML over the wire, usually over HTTP. REST is more
detailed in that it uses the concept of resources to define data and then manipulates
them with different HTTP methods using a URL-style approach (much like the
Android Intent system in general, which we explored in previous chapters). SOAP is
the most formal of them all, imposing strict rules about types of data, transport mech-
anisms, and security.

 All these approaches have advantages and disadvantages, and these differences are
amplified on a mobile platform like Android. Though we can’t possibly cover all the
details here, we’ll touch on the differences as we discuss each of these concepts. We’ll
examine using a POX approach to return recent posts
from the Delicious API (formerly del.icio.us), then
we’ll look at using REST with the Google GData Atom-
Pub API. Up first is probably the most ubiquitous type
of web service in use on the internet today, and there-
fore one you’ll come across again and again when con-
necting Android applications—POX.

6.5.1 POX—Putting it together with HTTP and XML

To work with POX, we’re going to make network calls
to the popular Delicious online social bookmarking
site. We’ll specify a username and password to log in to
an HTTPS resource and return a list of recent posts, or
bookmarks. This service returns raw XML data, which
we’ll parse into a JavaBean-style class and display as
shown in figure 6.4.

 The following listing shows the Delicious login and
HTTPS POST Activity code from our NetworkExplorer
application.

public class DeliciousRecentPosts extends Activity {
 private static final String CLASSTAG =

DeliciousRecentPosts.class.getSimpleName();
 private static final String URL_GET_POSTS_RECENT =
 "https://api.del.icio.us/v1/posts/recent?";

 . . . member var declarations for user, pass, output,
 and button (Views) omitted for brevity,
 private final Handler handler = new Handler() {

 public void handleMessage(final Message msg) {

Listing 6.10 The Delicious HTTPS POX API with authentication from an Activity

Include
Delicious
URL

B

Provide Handler
to update UIC

Figure 6.4 The Delicious recent
posts screen from the
NetworkExplorer application
 progressDialog.dismiss();

180 CHAPTER 6 Networking and web services

 String bundleResult = msg.getData().getString("RESPONSE");
 output.setText(parseXMLResult(bundleResult));
 }
 };
 @Override
 public void onCreate(final Bundle icicle) {
 super.onCreate(icicle);
 this.setContentView(R.layout.delicious_posts);
 . . . inflate views omitted for brevity
 this.button.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 output.setText("");
 performRequest(user.getText().toString(),
 pass.getText().toString());
 }
 });
 };
 . . . onPause omitted for brevity
 private void performRequest(String user, String pass) {
 this.progressDialog = ProgressDialog.show(this,
 "working . . .", "performing HTTP post to del.icio.us");
 final ResponseHandler<String> responseHandler =
 HTTPRequestHelper.getResponseHandlerInstance(this.handler);
 new Thread() {
 public void run() {
 HTTPRequestHelper helper =
 new HTTPRequestHelper(responseHandler);
 helper.performPost(URL_GET_POSTS_RECENT,
 user, pass, null, null);

 }
 }.start();
 }
 private String parseXMLResult(String xmlString) {
 StringBuilder result = new StringBuilder();
 try {
 SAXParserFactory spf = SAXParserFactory.newInstance();
 SAXParser sp = spf.newSAXParser();
 XMLReader xr = sp.getXMLReader();
 DeliciousHandler handler = new DeliciousHandler();
 xr.setContentHandler(handler);
 xr.parse(new InputSource(new StringReader(xmlString)));
 List<DeliciousPost> posts = handler.getPosts();
 for (DeliciousPost p : posts) {
 result.append("\n" + p.getHref());
 }
 } catch (Exception e) {
 // log and or handle
 }
 return result.toString();
 }

To use a POX service, we need to know a bit about it, beginning with the URL end-
point B. To call the Delicious service, we again use a Handler to update the UI C,

Pass credentials to
performRequestD

Use helper
for HTTP

E

Parse XML
String result

F

and we use the HttpRequestHelper we previously built and walked through in the last

181Web services

section. Again in this example, we have many fewer lines of code than if we didn’t use
the helper—lines of code we’d likely be repeating in different Activity classes. With
the helper instantiated, we call the performRequest method with a username and
password D. This method, via the helper, will log in to Delicious and return an XML
chunk representing the most recently bookmarked items E.

 To turn the raw XML into useful types, we then also include a parseXMLResult
method F. Parsing XML is a subject in its own right, and we’ll cover it in more detail
in chapter 13, but the short takeaway with this method is that we walk the XML struc-
ture with a parser and return our own DeliciousPost data beans for each record.
That’s it—that’s using POX to read data over HTTPS.

 Building on the addition of XML to HTTP, above and beyond POX, is the REST
architectural principle, which we’ll explore next.

6.5.2 REST

While we look at REST, we’ll also try to pull in another useful concept in terms of
Android development: working with the various Google GData APIs (http://
code.google.com/apis/gdata/). We used the GData APIs for our RestaurantFinder
review information in chapter 3, but there we didn’t authenticate, and we didn’t get
into the details of networking or REST. In this section, we’ll uncover the details as we
perform two distinct tasks: authenticate and retrieve a Google ClientLogin token and
retrieve the Google Contacts data for a specified user. Keep in mind that as we work
with the GData APIs in any capacity, we’ll be using a REST-style API.

 The main REST concepts are that you specify resources in a URI form and you
use different protocol methods to perform different actions. The Atom Publishing
Protocol (AtomPub) defines a REST-style protocol, and the GData APIs are an imple-
mentation of AtomPub (with some Google extensions). As we noted earlier, the
entire Intent approach of the Android platform is a lot like REST. A URI such as
content://contacts/1 is in the REST style. It includes a path that identifies the type
of data and a particular resource (contact number 1).

 That URI doesn’t say what to do with contact 1, though. In REST terms, that’s
where the method of the protocol comes into the picture. For HTTP purposes, REST
uses various methods to perform different tasks: POST (create, update, or in special
cases, delete), GET (read), PUT (create, replace), and DELETE (delete). True HTTP
REST implementations use all the HTTP method types and resources to construct APIs.

 In the real world, you’ll find few true REST implementations. It’s much more com-
mon to see a REST-style API. This kind of API doesn’t typically use the HTTP DELETE
method (many servers, proxies, and so on, have trouble with DELETE) and overloads
the more common GET and POST methods with different URLs for different tasks (by
encoding a bit about what’s to be done in the URL, or as a header or parameter, rather
than relying strictly on the method). In fact, though many people refer to the GData
APIs as REST, they’re technically only REST-like, not true REST. That’s not necessarily a
bad thing; the idea is ease of use of the API rather than pattern purity. All in all, REST

is a popular architecture or style because it’s simple, yet powerful.

182 CHAPTER 6 Networking and web services

 The following listing is an example that focuses on the network aspects of authen-
tication with GData to obtain a ClientLogin token and use that token with a subse-
quent REST-style request to obtain Contacts data by including an email address as a
resource.

public class GoogleClientLogin extends Activity {
 private static final String URL_GET_GTOKEN =
 "https://www.google.com/accounts/ClientLogin";
 private static final String URL_GET_CONTACTS_PREFIX =
 "http://www.google.com/m8/feeds/contacts/";
 private static final String URL_GET_CONTACTS_SUFFIX = "/full";
 private static final String GTOKEN_AUTH_HEADER_NAME = "Authorization";
 private static final String GTOKEN_AUTH_HEADER_VALUE_PREFIX =
 "GoogleLogin auth=";
 private static final String PARAM_ACCOUNT_TYPE = "accountType";
 private static final String PARAM_ACCOUNT_TYPE_VALUE =
 "HOSTED_OR_GOOGLE";
 private static final String PARAM_EMAIL = "Email";
 private static final String PARAM_PASSWD = "Passwd";
 private static final String PARAM_SERVICE = "service";
 private static final String PARAM_SERVICE_VALUE = "cp";
 private static final String PARAM_SOURCE = "source";
 private static final String PARAM_SOURCE_VALUE =
 "manning-unlockingAndroid-1.0";
 private String tokenValue;
 . . . View member declarations omitted for brevity
 private final Handler tokenHandler = new Handler() {

 public void handleMessage(final Message msg) {
 progressDialog.dismiss();
 String bundleResult = msg.getData().getString("RESPONSE");
 String authToken = bundleResult;
 authToken = authToken.substring(authToken.indexOf("Auth=")
 + 5, authToken.length()).trim();
 tokenValue = authToken;

 GtokenText.setText(authToken);
 }
 };
 private final Handler contactsHandler =
 new Handler() {

 public void handleMessage(final Message msg) {
 progressDialog.dismiss();
 String bundleResult = msg.getData().getString("RESPONSE");
 output.setText(bundleResult);
 }
 };
 . . . onCreate and onPause omitted for brevity
 private void getToken(String email, String pass) {

 final ResponseHandler<String> responseHandler =

Listing 6.11 Using the Google Contacts AtomPub API with authentication

Create
Handler
token
request

B

Set
tokenValueC

Implement
getTokenD
 HTTPRequestHelper.getResponseHandlerInstance(

183Web services

 this.tokenHandler);
 this.progressDialog = ProgressDialog.show(this,
 "working . . .", "getting Google ClientLogin token");
 new Thread() {
 public void run() {
 HashMap<String, String> params =
 new HashMap<String, String>();
 params.put(GoogleClientLogin.PARAM_ACCOUNT_TYPE,
 GoogleClientLogin.PARAM_ACCOUNT_TYPE_VALUE);
 params.put(GoogleClientLogin.PARAM_EMAIL, email);
 params.put(GoogleClientLogin.PARAM_PASSWD, pass);
 params.put(GoogleClientLogin.PARAM_SERVICE,

 GoogleClientLogin.PARAM_SERVICE_VALUE);
 params.put(GoogleClientLogin.PARAM_SOURCE,

 GoogleClientLogin.PARAM_SOURCE_VALUE);
 HTTPRequestHelper helper =
 new HTTPRequestHelper(responseHandler);
 helper.performPost(HTTPRequestHelper.MIME_FORM_ENCODED,
 GoogleClientLogin.URL_GET_GTOKEN,
 null, null, null, params);
 }
 }.start();
 }
 private void getContacts(final String email,final String token) {

 final ResponseHandler<String> responseHandler =
 HTTPRequestHelper.getResponseHandlerInstance(
 this.contactsHandler);
 this.progressDialog = ProgressDialog.show(this,
 "working . . .", "getting Google Contacts");
 new Thread() {
 public void run() {
 HashMap<String, String> headers =
 new HashMap<String, String>();
 headers.put(GoogleClientLogin.GTOKEN_AUTH_HEADER_NAME,
 GoogleClientLogin.GTOKEN_AUTH_HEADER_VALUE_PREFIX
 + token);

 String encEmail = email;
 try {
 encEmail = URLEncoder.encode(encEmail,
 "UTF-8");

 } catch (UnsupportedEncodingException e) {
 // log and or handle
 }
 String url =
 GoogleClientLogin.URL_GET_CONTACTS_PREFIX + encEmail
 + GoogleClientLogin.URL_GET_CONTACTS_SUFFIX;
 HTTPRequestHelper helper = new
 HTTPRequestHelper(responseHandler);
 helper.performGet(url, null, null, headers);
 }
 }.start();
 }

ERequired
parameters for

ClientLogin

Perform POST
to get tokenF

G
Implement

getContacts

Add token
as headerH

Encode
email address
in URLI

Make GET
request for
ContactsJ
}

184 CHAPTER 6 Networking and web services

After a host of constants that represent various String values we’ll use with the GData
services, we have several Handler instances in this class, beginning with a token-
Handler B. This handler updates a UI TextView when it receives a message, like simi-
lar examples you saw previously, and updates a non-UI member tokenValue variable
that other portions of our code will use C. The next Handler we have is the contacts-
Handler that will be used to update the UI after the contacts request.

 Beyond the handlers, we have the getToken method D. This method includes all
the required parameters for obtaining a ClientLogin token from the GData servers
(http://code.google.com/apis/gdata/auth.html) E. After the setup to obtain the
token, we make a POST request via the request helper F.

 After the token details are taken care of, we have the getContacts method G.
This method uses the token obtained via the previous method as a header H. After
you have the token, you can cache it and use it with all subsequent requests; you don’t
need to obtain the token every time. Next, we encode the email address portion of the
Contacts API URL I, and we make a GET request for the data—again using the
HttpRequestHelper J.

 With this approach, we’re making several network calls (one as HTTPS to get the
token and another as HTTP to get data) using our previously defined helper class.
When the results are returned from the GData API, we parse the XML block and
update the UI.

Now that we’ve explored some REST-style networking, the last thing we need to discuss
with regard to HTTP and Android is SOAP. This topic comes up frequently in discus-
sions of networking mobile devices, but sometimes the forest gets in the way of the
trees in terms of framing the real question.

6.5.3 To SOAP or not to SOAP, that is the question

SOAP is a powerful protocol that has many uses. We would be remiss if we didn’t at
least mention that though it’s possible to use SOAP on a small, embedded device such
as a smartphone, regardless of the platform, it’s not recommended. The question
within the limited resources environment Android inhabits is really more one of
should it be done rather than can it be done.

 Some experienced developers, who might have been using SOAP for years on
other devices, might disagree. The things that make SOAP great are its support for

GData ClientLogin and CAPTCHA
Though we included a working ClientLogin example in listing 6.11, we also skipped
over an important part—CAPTCHA. Google might optionally require a CAPTCHA with the
ClientLogin approach. To fully support ClientLogin, you need to handle that
response and display the CAPTCHA to the user, then resend a token request with the
CAPTCHA value that the user entered. For details, see the GData documentation.
strong types (via XML Schema), its support for transactions, its security and encryp-

185Summary

tion, its support for message orchestration and choreography, and all the related WS-*
standards. These things are invaluable in many server-oriented computing environ-
ments, whether or not they involve the enterprise. They also add a great deal of over-
head, especially on a small, embedded device. In fact, in many situations where
people use SOAP on embedded devices, they often don’t bother with the advanced
features—and they use plain XML with the overhead of an envelope at the end of the
day anyway. On an embedded device, you often get better performance, and a simpler
design, by using a REST- or POX-style architecture and avoiding the overhead of SOAP.

 Even with the increased overhead, it makes sense in some situations to investigate
using SOAP directly with Android. When you need to talk to existing SOAP services
that you have no control over, SOAP might make sense. Also, if you already have J2ME
clients for existing SOAP services, you might be able to port those in a limited set of
cases. Both these approaches make it easier only on you, the developer; they have
either no effect or a negative one in terms of performance on the user. Even when
you’re working with existing SOAP services, remember that you can often write a POX-
or REST-style proxy for SOAP services on the server side and call that from Android,
rather than use SOAP directly from Android.

 If you feel like SOAP is still the right choice, you can use one of several ports of the
kSOAP toolkit (http://ksoap2.sourceforge.net/), which is specially designed for SOAP
on an embedded Java device. Keep in mind that even the kSOAP documentation
states, “SOAP introduces some significant overhead for web services that may be prob-
lematic for mobile devices. If you have full control over the client and the server, a
REST-based architecture may be more adequate.” In addition, you might be able to
write your own parser for simple SOAP services that don’t use fancy SOAP features and
just use a POX approach that includes the SOAP XML portions you require (you can
always roll your own, even with SOAP).

 All in all, to our minds the answer to the question is to not use SOAP on Android,
even though you can. Our discussion of SOAP, even though we don’t advocate it,
rounds out our more general web services discussion, and that wraps up our network-
ing coverage.

6.6 Summary
In this chapter, we started with a brief background of basic networking concepts, from
nodes and addresses to layers and protocols. With that general background in place,
we covered details about how to obtain network status information and showed several
different ways to work with the IP networking capabilities of the platform.

 In terms of networking, we looked at using basic sockets and the java.net pack-
age. Then we also examined the included Apache HttpClient API. HTTP is one of the
most common—and most important—networking resources available to the Android
platform. Using HttpClient, we covered a lot of territory in terms of different request
types, parameters, headers, authentication, and more. Beyond basic HTTP, we also

186 CHAPTER 6 Networking and web services

explored POX and REST, and we discussed a bit of SOAP—all of which use HTTP as the
transport mechanism.

 Now that we’ve covered a good deal of the networking possibilities, and hopefully
given you at least a glint of an idea of what you can do with server-side APIs and inte-
gration with Android, we’re going to turn to another important part of the Android
world—telephony.

Telephony
People use Android devices to surf the web, download and store data, access net-
works, find location information, and use many types of applications. Android can
even make phone calls.

 Android phones support dialing numbers, receiving calls, sending and receiv-
ing text and multimedia messages, and other related telephony services. In contrast
to other smartphone platforms, all these items are accessible to developers through
simple-to-use APIs and built-in applications. You can easily leverage Android’s tele-
phony support into your own applications.

 In this chapter, we’ll discuss telephony in general and cover terms related to
mobile devices. We’ll move on to basic Android telephony packages, which handle
calls using built-in Intent actions, and more advanced operations via the
TelephonyManager and PhoneStateListener classes. The Intent actions can initi-
ate basic phone calls in your applications. TelephonyManager doesn’t make phone

This chapter covers
 Making and receiving phone calls

 Capturing call-related events

 Obtaining phone and service information

 Using SMS
187

calls directly but is used to retrieve all kinds of telephony-related data, such as the

188 CHAPTER 7 Telephony

state of the voice network, the device’s own phone number, and other details. Tele-
phonyManager supports adding a PhoneStateListener, which can alert you when call
or phone network states change.

 After covering basic telephony APIs, we’ll move on to sending and receiving SMS
messages. Android provides APIs that allow you to send SMS messages and be notified
when SMS messages are received. We’ll also touch on emulator features that allow you
to test your app by simulating incoming phone calls or messages.

 Once again, a sample application will carry us through the concepts related to the
material in this chapter. You’ll build a sample TelephonyExplorer application to dem-
onstrate dialing the phone, obtaining phone and service state information, adding lis-
teners to the phone state, and working with SMS. Your TelephonyExplorer application
will have several basic screens, as shown in figure 7.1.

 TelephonyExplorer exercises the telephony-related APIs while remaining simple
and uncluttered. Before we start to build TelephonyExplorer, let's first define tele-
phony itself.

7.1 Exploring telephony background and terms
Whether you’re a new or an experienced mobile developer, it’s important to clarify
terms and set out some background for discussing telephony.

 First, telephony is a general term that refers to electrical voice communications over
telephone networks. Our scope is, of course, the mobile telephone networks that
Android devices1 participate in, specifically the Global System for Mobile Communica-
tions (GSM) and Code Division Multiple Access (CDMA) networks.

1 For a breakdown of all Android devices released in 2008-2010, go here: http://www.androphones.com/

Figure 7.1 TelephonyExplorer main screen, along with the related activities the sample
application performs
all-android-phones.php.

189Exploring telephony background and terms

GSM and CDMA are cellular telephone networks. Devices communicate over radio
waves and specified frequencies using cell towers. The standards must define a few
important things, such as identities for devices and cells, along with all the rules for
making communications possible.

7.1.1 Understanding GSM

We won’t delve into the underlying details of the networks, but it’s important to know
some key facts. GSM is based on Time Division Multiple Access (TDMA), a technology
that slices time into smaller chunks to allow multiple callers to share the same fre-
quency range. GSM was the first network that the Android stack supported for voice
calls; it’s ubiquitous in Europe and very common in North America. GSM devices use
Subscriber Identity Module (SIM) cards to store important network and user settings.

 A SIM card is a small, removable, secure smart card. Every device that operates on a
GSM network has specific unique identifiers, which are stored on the SIM card or on
the device itself:

 Integrated Circuit Card Identifier (ICCID)—Identifies a SIM card; also known as a
SIM Serial Number, or SSN.

 International Mobile Equipment Identity (IMEI)—Identifies a physical device. The
IMEI number is usually printed underneath the battery.

 International Mobile Subscriber Identity (IMSI)—Identifies a subscriber (and the
network that subscriber is on).

 Location Area Identity (LAI)—Identifies the region within a provider network
that’s occupied by the device.

 Authentication key (Ki)—A 128-bit key used to authenticate a SIM card on a pro-
vider network.

GSM uses these identification numbers and keys to validate and authenticate a SIM
card, the device holding it, and the subscriber on the network and across networks.

 Along with storing unique identifiers and authentication keys, SIM cards often store
user contacts and SMS messages. Users can easily move their SIM card to a new device
and carry along contact and message data. Currently, the Android platform handles
the SIM interaction, and developers can get read-only access via the telephony APIs.

7.1.2 Understanding CDMA

The primary rival to GSM technology is CDMA, which uses a different underlying
technology that’s based on using different encodings to allow multiple callers to share
the same frequency range. CDMA is widespread in the Unites States and common in
some Asian countries.

 Unlike GSM phones, CDMA devices don’t have a SIM card or other removable mod-
ule. Instead, certain identifiers are burned into the device, and the carrier must main-
tain the link between each device and its subscriber. CDMA devices have a separate set
of unique identifiers:

190 CHAPTER 7 Telephony

 Mobile Equipment Identifier (MEID)—Identifies a physical device. This number is
usually printed under the battery and is available from within device menus. It
corresponds to GSM’s IMEI.

 Electronic Serial Number (ESN)—The predecessor to the MEID, this number is
shorter and identifies a physical device.

 Pseudo Electronic Serial Number (pESN)—A hardware identifier, derived from the
MEID, that’s compatible with the older ESN standard. The ESN supply was
exhausted several years ago, so pESNs provide a bridge for legacy applications
built around ESN. A pESN always starts with 0x80 in hex format or 128 in deci-
mal format.

Unlike GSM phones, which allow users to switch devices by swapping out SIM cards,
CDMA phones require you to contact your carrier if you want to transfer an account to
a new device. This process is often called an ESN swap or ESN change. Some carriers
make this easy, and others make it difficult. If you’ll be working on CDMA devices,
learning how to do this with your carrier can save you thousands of dollars in sub-
scriber fees.

NOTE A few devices, sometimes called world phones, support both CDMA
and GSM. These devices often have two separate radios and an optional
SIM card. Currently, such devices operate only on one network or the
other at any given time. Additionally, these devices are often restricted to
using only particular carriers or technologies in particular countries. You
generally don’t need to do anything special to support these devices, but
be aware that certain phones might appear to change their network tech-
nology from time to time.

Fortunately, few applications need to deal with the arcana of GSM and CDMA technol-
ogy. In most cases, you only need to know that your program is running on a device
that in turn is running on a mobile network. You can leverage that network to make
calls and inspect the device to find unique identifiers. You can locate this sort of infor-
mation by using the TelephonyManager class.

7.2 Accessing telephony information
Android provides an informative manager class that supplies information about many
telephony-related details on the device. Using TelephonyManager, you can access
phone properties and obtain phone network state information.

NOTE Starting with version 2.1 of the Android OS, devices no longer
need to support telephony features. Expect more and more non-phone
devices to reach the market, such as set-top boxes and auto devices. If you
want to reach the largest possible market with your app, you should lever-
age telephony features but fail gracefully if they’re not available. If your
application makes sense only when running on a phone, go ahead and

use any phone features you require.

191Accessing telephony information

You can attach a PhoneStateListener event listener to the phone by using the man-
ager. Attaching a PhoneStateListener makes your applications aware of when the
phone gains and loses service, and when calls start, continue, or end.

 Next, we’ll examine several parts of the Telepho-
nyExplorer example application to look at both
these classes. We’ll start by obtaining a Telephony-
Manager instance and using it to query useful tele-
phony information.

7.2.1 Retrieving telephony properties

The android.telephony package contains the
TelephonyManager class, which provides details
about the phone status. Let’s retrieve and display a
small subset of that information to demonstrate the
approach. First, you’ll build an Activity that dis-
plays a simple screen showing some of the informa-
tion you can obtain via TelephonyManager, as shown
in figure 7.2.

 The TelephonyManager class is the information
hub for telephony-related data in Android. The fol-
lowing listing demonstrates how you obtain a refer-
ence to this class and use it to retrieve data.

// . . . start of class omitted for brevity
 final TelephonyManager telMgr =
 (TelephonyManager) this.getSystemService(
 Context.TELEPHONY_SERVICE);
// . . . onCreate method and others omitted for brevity
 public String getTelephonyOverview(
 TelephonyManager telMgr) {
 String callStateString = "NA";
 int callState = telMgr.getCallState();
 switch (callState) {
 case TelephonyManager.CALL_STATE_IDLE:
 callStateString = "IDLE";
 break;
 case TelephonyManager.CALL_STATE_OFFHOOK:
 callStateString = "OFFHOOK";
 break;
 case TelephonyManager.CALL_STATE_RINGING:
 callStateString = "RINGING";
 break;
 }

 GsmCellLocation cellLocation =
 (GsmCellLocation) telMgr.getCellLocation();

Listing 7.1 Obtaining a TelephonyManager reference and using it to retrieve data

Get TelephonyManager
from Context

B

Implement information
helper method

C

Obtain call state
informationD

Figure 7.2 Displaying device and
phone network meta-information
obtained from TelephonyManager
 String cellLocationString =

192 CHAPTER 7 Telephony

 cellLocation.getLac() + " " + cellLocation.getCid();
 String deviceId = telMgr.getDeviceId();
 String deviceSoftwareVersion =
 telMgr.getDeviceSoftwareVersion();
 String line1Number = telMgr.getLine1Number();
 String networkCountryIso = telMgr.getNetworkCountryIso();
 String networkOperator = telMgr.getNetworkOperator();
 String networkOperatorName = telMgr.getNetworkOperatorName();

 String phoneTypeString = "NA";
 int phoneType = telMgr.getPhoneType();
 switch (phoneType) {
 case TelephonyManager.PHONE_TYPE_GSM:
 phoneTypeString = "GSM";
 break;
 case TelephonyManager.PHONE_TYPE_CDMA:
 phoneTypeString = "CDMA";
 break;
 case TelephonyManager.PHONE_TYPE_NONE:
 phoneTypeString = "NONE";
 break;
 }

 String simCountryIso = telMgr.getSimCountryIso();
 String simOperator = telMgr.getSimOperator();
 String simOperatorName = telMgr.getSimOperatorName();
 String simSerialNumber = telMgr.getSimSerialNumber();
 String simSubscriberId = telMgr.getSubscriberId();
 String simStateString = "NA";
 int simState = telMgr.getSimState();
 switch (simState) {
 case TelephonyManager.SIM_STATE_ABSENT:
 simStateString = "ABSENT";
 break;
 case TelephonyManager.SIM_STATE_NETWORK_LOCKED:
 simStateString = "NETWORK_LOCKED";
 break;
 // . . . other SIM states omitted for brevity
 }

 StringBuilder sb = new StringBuilder();
 sb.append("telMgr - ");
 sb.append(" \ncallState = " + callStateString);
 // . . . remainder of appends omitted for brevity
 return sb.toString();
 }

We use the current Context, through the getSystemService method with a constant,
to obtain an instance of the TelephonyManager class B. After you have the manager,
you can use it as needed. In this case, we create a helper method to get data from the
manager and return it as a String that we later display on the screen C.

 The manager allows you to access phone state data, such as whether a call is in
progress D, the device ID and software version E, the phone number registered to
the current user/SIM, and other SIM details, such as the subscriber ID (IMSI) and the

Get device
informationE

193Accessing telephony information

current SIM state. TelephonyManager offers even more properties; see the Javadocs for
complete details.

NOTE Methods generally return null if they don’t apply to a particular
device; for example, getSimOperatorName returns null for CDMA
phones. If you want to know in advance what type of device you’re work-
ing with, try using the method getPhoneType.

For this class to work, you must set the READ_PHONE_STATE permission in the manifest.
Without it, security exceptions will be thrown when you try to read data from the man-
ager. Phone-related permissions are consolidated in table 7.1.

 In addition to providing telephony-related information, including metadata about
the device, network, and subscriber, TelephonyManager allows you to attach a Phon-
eStateListener, which we’ll describe in the next section.

7.2.2 Obtaining phone state information

A phone can be in any one of several conditions. The primary phone states include
idle (waiting), in a call, or initiating a call. When you’re building applications on a
mobile device, sometimes you not only need to know the current phone state, but you
also want to know when the state changes.

 In these cases, you can attach a listener to the phone and subscribe to receive noti-
fications of published changes. With Android, you use a PhoneStateListener, which
attaches to the phone through TelephonyManager. The following listing demonstrates
a sample usage of both these classes.

 @Override
 public void onStart() {
 super.onStart();
 final TelephonyManager telMgr =
 (TelephonyManager) this.getSystemService(
 Context.TELEPHONY_SERVICE);
 PhoneStateListener phoneStateListener =
 new PhoneStateListener() {

 public void onCallStateChanged(
 int state, String incomingNumber) {
 telMgrOutput.setText(getTelephonyOverview(telMgr));
 }
 };
 telMgr.listen(phoneStateListener,
 PhoneStateListener.LISTEN_CALL_STATE);
 String telephonyOverview = this.getTelephonyOverview(telMgr);
 this.telMgrOutput.setText(telephonyOverview);
 }

To start working with a PhoneStateListener, you need to acquire an instance of
TelephonyManager. PhoneStateListener itself is an interface, so you need to create

Listing 7.2 Attaching a PhoneStateListener via the TelephonyManager

194 CHAPTER 7 Telephony

an implementation, including the required onCallStateChanged method. When you
have a valid PhoneStateListener instance, you attach it by assigning it to the manager
with the listen method.

 Listing 7.2 shows how to listen for any PhoneStateListener.LISTEN_CALL_STATE
change in the phone state. This constant value comes from a list of available states that
are in PhoneStateListener class. You can use a single value when assigning a listener
with the listen method, as demonstrated in listing 7.2, or you can combine multiple
values to listen for multiple states.

 If a call state change does occur, it triggers the action defined in the onCallState-
Changed method of your PhoneStateListener. In this example, we reset the details
on the screen using the getTelephonyOverview method from listing 7.1. You can filter
this method further, based on the passed-in int state.

 To see the values in this example change while you’re working with the emulator,
you can use the SDK tools to send incoming calls or text messages and change the
state of the voice connection. You can access these options from the DDMS perspective
in Eclipse. Additionally, the emulator includes a mock GSM modem that you can
manipulate using the gsm command from the console. Figure 7.3 shows an example
session from the console that demonstrates using the gsm command. For complete
details, see the emulator telephony documentation at http://code.google.com/
android/reference/emulator.html#telephony.

 Now that we’ve covered the major elements of telephony, let’s start exploring basic
uses of the telephony APIs and other related facilities. We’ll intercept calls, leverage
telephony utility classes, and make calls from within applications.

Figure 7.3 An Android console session demonstrating the gsm command and

available subcommands

195Interacting with the phone

7.3 Interacting with the phone
In regular development, you’ll often want to use your Android device as a phone. You
might dial outbound calls through simple built-in intents, or intercept calls to modify
them in some way. In this section, we’ll cover these basic tasks and examine some of
the phone-number utilities Android provides for you.

 One of the more common things you’ll do with Android telephony support
doesn’t even require using the telephony APIs directly: making calls using built-in
intents.

7.3.1 Using intents to make calls

As we demonstrated in chapter 4, to invoke the built-in dialer and make a call all you
need to use is the Intent.ACTION_CALL action and the tel: Uri. This approach
invokes the dialer application, populates the dialer with the provided telephone num-
ber (taken from the Uri), and initiates the call.

 Alternatively, you can invoke the dialer application with the Intent.ACTION_DIAL
action, which also populates the dialer with the supplied phone number but stops
short of initiating the call. The following listing demonstrates both techniques using
their respective actions.

 dialintent = (Button) findViewById(R.id.dialintent_button);
 dialintent.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 Intent intent =
 new Intent(Intent.DIAL_ACTION,
 Uri.parse("tel:" + NUMBER));
 startActivity(intent);
 }
 });
 callintent = (Button) findViewById(R.id.callintent_button);
 callintent.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 Intent intent =
 new Intent(Intent.CALL_ACTION,
 Uri.parse("tel:" + NUMBER));
 startActivity(intent);
 }
 });

By now you should feel quite comfortable using intents in the Android platform. In
this listing, we again take advantage of Android’s loose coupling, in this case to make
outgoing calls to specified numbers. First, you set the action you want to take place,
either populating the dialer with ACTION_DIAL or populating the dialer and initiating
a call with ACTION_CALL. In either case, you also need to specify the telephone number
you want to use with the Intent Uri.

 Dialing calls also requires the proper permissions, which your application manifest

Listing 7.3 Using Intent actions to dial and call using the built-in dialer application
includes in order to access and modify the phone state, dial the phone, or intercept

196 CHAPTER 7 Telephony

phone calls (shown in section 7.3.3). Table 7.1 lists the relevant phone-related permis-
sions and their purposes. For more detailed information, see the security section of the
Android documentation at http://code.google.com/android/devel/security.html.

 Android makes dialing simple with built-in handling via intents and the dialer
application. The PhoneNumberUtils class, which you can use to parse and validate
phone number strings, helps simplify dialing even more, while keeping numbers
human-readable.

7.3.2 Using phone number-related utilities

Applications running on mobile devices that support telephony deal with a lot of
String formatting for phone numbers. Fortunately, the Android SDK provides a
handy utility class that helps to mitigate the risks associated with this task and stan-
dardize the numbers you use—PhoneNumberUtils.

 The PhoneNumberUtils class parses String data into phone numbers, transforms
alphabetical keypad digits into numbers, and determines other properties of phone
numbers. The following listing shows an example of using this class.

// Imports omitted for brevity
 private TextView pnOutput;
 private EditText pnInput;
 private EditText pnInPlaceInput;
 private Button pnFormat;
// Other instance variables and methods omitted for brevity
 this.pnFormat.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 String phoneNumber = PhoneNumberUtils.formatNumber(
 pnInput.getText().toString());

 phoneNumber = PhoneNumberUtils.convertKeypadLettersToDigits(

Table 7.1 Phone-related manifest permissions and their purpose

Phone-related permission Purpose

android.permission.CALL_PHONE Initiate a phone call without user confirma-
tion in dialer

android.permission.CALL_PRIVILEGED Call any number, including emergency, with-
out confirmation in dialer

android.permission.MODIFY_PHONE_STATE Allow the application to modify the phone
state; for example, to turn the radio on or
off

android.permission.PROCESS_OUTGOING_CALLS Allow application to receive broadcast for
outgoing calls and modify

android.permission.READ_PHONE_STATE Allow application to read the phone state

Listing 7.4 Working with the PhoneNumberUtils class

Format as
phone
number

B

 pnInput.getText().toString()); Convert alpha
characters to digitsC

197Interacting with the phone

 StringBuilder result = new StringBuilder();
 result.append(phoneNumber);
 result.append("\nisGlobal - "
 + PhoneNumberUtils.isGlobalPhoneNumber(phoneNumber));
 result.append("\nisEmergency - "
 + PhoneNumberUtils.isEmergencyNumber(phoneNumber));
 result.append("\ncompare to 415-555-1234 - " +
 PhoneNumberUtils.compare(phoneNumber, "415-555-1234"));
 pnOutput.setText(result.toString());
 pnInput.setText("");
 }
});

The PhoneNumberUtils class offers several static helper methods for parsing phone
numbers, including the useful formatNumber. This method takes a single String as
input and uses the default locale settings to return a formatted phone number B.
Additional methods format a number using a locale you specify, parse different seg-
ments of a number, and so on. Parsing a number can be combined with another help-
ful method, convertKeypadLettersToDigits, to convert any alphabetic keypad letter
characters into digits c. The conversion method won’t work unless it already recog-
nizes the format of a phone number, so you should run the format method first.

 Along with these basic methods, you can also check properties of a number string,
such as whether the number is global and whether it represents an emergency call.
The compare method lets you see whether a given number matches another number
D, which is useful for user-entered numbers that might include dashes or dots.

NOTE Android defines a global number as any string that contains one or
more digits; it can optionally be prefixed with a + symbol, and can option-
ally contain dots or dashes. Even strings like 3 and +4-2 are considered
global numbers. Android makes no guarantee that a phone can even dial
such a number; this utility simply provides a basic check for whether
something looks like it could be a phone number in some country.

You can also format a phone number with the overloaded formatNumber method. This
method is useful for any Editable, such as the common EditText (or TextView). This
method updates the provided Editable in-place, as shown in the following listing.

this.pnInPlaceInput.setOnFocusChangeListener(
 new OnFocusChangeListener() {
 public void onFocusChange(View v, boolean hasFocus) {
 if (v.equals(pnInPlaceInput) && (!hasFocus)) {
 PhoneNumberUtils.formatNumber(
 pnInPlaceInput.getText(),
 PhoneNumberUtils.FORMAT_NANP);
 }
 }
 });

Listing 7.5 Using in-place Editable View formatting via PhoneNumberUtils

Compare
to another
number

D

198 CHAPTER 7 Telephony

The in-place editor can be combined with a dynamic update using various techniques.
You can make the update happen automatically when the focus changes from a
phone-number field. The in-place edit does not provide the keypad alphabetic charac-
ter-to-number conversion automatically. To ensure that the conversion occurs, we’ve
implemented an OnFocusChangeListener. Inside the onFocusChange method, which
filters for the correct View item, we call the formatNumber overload, passing in the
respective Editable and the formatting style we want to use. NANP stands for North
American Numbering Plan, which includes an optional country and area code and a
7-digit local phone number.

NOTE PhoneNumberUtils also defines a Japanese formatting plan, and
might add others in the future.

Now that you can use the phone number utilities and make calls, we can move on to
the more challenging and interesting task of call interception.

7.3.3 Intercepting outbound calls

Imagine writing an application that catches outgoing calls and decorates or aborts
them, based on certain criteria. The following listing shows how to perform this type
of interception.

public class OutgoingCallReceiver extends BroadcastReceiver {
 public static final String ABORT_PHONE_NUMBER = "1231231234";
 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals(
 Intent.ACTION_NEW_OUTGOING_CALL)) {
 String phoneNumber =
 intent.getExtras().getString(Intent.EXTRA_PHONE_NUMBER);
 if ((phoneNumber != null)
 && phoneNumber.equals(
 OutgoingCallReceiver.ABORT_PHONE_NUMBER)) {
 Toast.makeText(context,
 "NEW_OUTGOING_CALL intercepted to number "
 + "123-123-1234 - aborting call",
 Toast.LENGTH_LONG).show();
 this.abortBroadcast();
 }
 }
 }
}

Our interception class starts by extending BroadcastReceiver. The new subclass
implements the onReceive method B. Within this method, we filter on the Intent
action we want C, then we get the Intent data using the phone number key. If the
phone number matches, we send a Toast alert to the UI and abort the outgoing call

Listing 7.6 Catching and aborting an outgoing call

Override
onReceiveB

Filter Intent for actionC
by calling the abortBroadcast method.

199Working with messaging: SMS

 Beyond dialing out, formatting numbers, and intercepting calls, Android also pro-
vides support for sending and receiving SMS. Managing SMS can seem daunting, but
provides significant rewards, so we’re going to focus on it for the rest of the chapter.

7.4 Working with messaging: SMS
Mobile devices use the Short Message Service (SMS), a hugely popular and important
means of communication, to send simple text messages with small amounts of data.
Android includes a built-in SMS application that allows users to send, view, and reply
to SMS messages. Along with the built-in user-facing apps and the related ContentPro-
vider for interacting with the default text-messaging app, the SDK provides APIs for
developers to send and receive messages programmatically.

 Because Android now supplies an excellent built-in SMS message application, you
might wonder why anyone would bother building another one. The Android market
sells several superior third-party SMS messaging applications, but SMS can do a lot
more than text your contacts. For example, you
could build an application that, upon receiving a
special SMS, sends back another SMS containing its
location information. Due to the nature of SMS,
this strategy might succeed, while another
approach like trying to get the phone to transmit
its location in real time would fail. Alternately, add-
ing SMS as another communications channel can
enhance other applications. Best of all, Android
makes working with SMS relatively simple and
straightforward.

 To explore Android’s SMS support, you’ll cre-
ate an app that sends and receives SMS messages.
The screen in figure 7.4 shows the SMS-related
Activity you’ll build in the TelephonyExplorer
application.

 To get started working with SMS, you’ll first
build a class that programmatically sends SMS mes-
sages, using the SmsManager.

7.4.1 Sending SMS messages

The android.telephony package contains the SmsManager and SmsMessage classes.
The SmsManager defines many important SMS-related constants, and also provides the
sendDataMessage, sendMultipartTextMessage, and sendTextMessage methods.

NOTE Early versions of Android provided access to SMS only through the
android.telephony.gsm subpackage. Google has deprecated this usage,
but if you must target older versions of the OS, look there for SMS-related

Figure 7.4 An Activity that sends
SMS messages
functions. Of course, such classes work only on GSM-compatible devices.

200 CHAPTER 7 Telephony

The following listing shows an example from our TelephonyExplorer application that
uses the SMS manager to send a simple text message.

// . . . start of class omitted for brevity
 private Button smsSend;
 private SmsManager smsManager;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 this.setContentView(R.layout.smsexample);
 // . . . other onCreate view item inflation omitted for brevity
 this.smsSend = (Button) findViewById(R.id.smssend_button);
 this.smsManager = SmsManager.getDefault();
 final PendingIntent sentIntent =
 PendingIntent.getActivity(
 this, 0, new Intent(this,
 SmsSendCheck.class), 0);

 this.smsSend.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 String dest = smsInputDest.getText().toString();
 if (PhoneNumberUtils.
 isWellFormedSmsAddress(dest)) {
 smsManager.sendTextMessage(
 smsInputDest.getText().toString, null,
 smsInputText.getText().toString(),
 sentIntent, null);
 Toast.makeText(SmsExample.this,
 "SMS message sent",
 Toast.LENGTH_LONG).show();
 } else {
 Toast.makeText(SmsExample.this,
 "SMS destination invalid - try again",
 Toast.LENGTH_LONG).show();
 }
 }
 });
 }

Before doing anything with SMS messages, we must obtain an instance of the SmsMan-
ager with the static getDefault method B. The manager will also send the message
later. Before we can send the message, we need to create a PendingIntent to provide
to the send method.

 A PendingIntent can specify an Activity, Broadcast, or Service that it requires.
In our case, we use the getActivity method, which requests an Activity, and then
we specify the context, request code (not used for this case), the Intent to execute,
and additional flags C. The flags indicate whether the system should create a new
instance of the referenced Activity (or Broadcast or Service), if one doesn’t
already exist.

Listing 7.7 Using SmsManager to send SMS messages

Get
SmsManager
handleB

Create
PendingIntent
for post action

C

Check that
destination
is validD

201Working with messaging: SMS

Next, we check that the destination address is valid for SMS D, and we send the mes-
sage using the manager’s sendTextMessage method.

 This send method takes several parameters. The following snippet shows the signa-
ture of this method:

sendDataMessage(String destinationAddress, String scAddress,
 short destinationPort, byte[] data, PendingIntent sentIntent,
 PendingIntent deliveryIntent)

The method requires the following parameters:

 destinationAddress—The phone number to receive the message.
 scAddress—The messaging center address on the network; you should almost

always leave this as null, which uses the default.
 destinationPort—The port number for the recipient handset.
 data—The payload of the message.
 sentIntent—The PendingIntent instance that’s fired when the message is suc-

cessfully sent.
 deliveryIntent—The PendingIntent instance that’s fired when the message is

successfully received.

NOTE GSM phones generally support receiving SMS messages to a partic-
ular port, but CDMA phones generally don’t. Historically, port-directed
SMS messages have allowed text messages to be delivered to a particular
application. Modern phones support better solutions; in particular, if you
can use a server for your application, consider using Android Cloud to
Device Messaging (C2DM)2 for Android phones with software version 2.2
or later.

Much like the phone permissions listed in table 7.1, SMS-related tasks also require
manifest permissions. SMS permissions are shown in table 7.2.

 The AndroidManifest.xml file for the TelephonyExplorer application contains
these permissions.

2 Read Tim Bray’s detailed article for more about C2DM: http://android-developers.blogspot.com/2010/05/

What is a PendingIntent?
A PendingIntent specifies an action to take in the future. It lets you pass a future
Intent to another application and allow that application to execute that Intent as
if it had the same permissions as your application, whether or not your application is
still around when the Intent is eventually invoked. A PendingIntent provides a
means for applications to work, even after their process exits. It’s important to note
that even after the application that created the PendingIntent has been killed, that
Intent can still run.
android-cloud-to-device-messaging.html.

202 CHAPTER 7 Telephony

<uses-permission android:name="android.permission.RECEIVE_SMS" />
<uses-permission android:name="android.permission.READ_SMS" />
<uses-permission android:name="android.permission.WRITE_SMS" />
<uses-permission android:name="android.permission.SEND_SMS" />

Along with sending text and data messages via SmsManager, you can create an SMS
BroadcastReceiver to receive incoming SMS messages.

7.4.2 Receiving SMS messages

You can receive an SMS message programmatically by registering for the appropriate
broadcast. To demonstrate how to receive SMS messages in this way with our Telepho-
nyExplorer application, we’ll implement a receiver, as shown in the following listing.

public class SmsReceiver extends BroadcastReceiver {
 private static final String SMS_REC_ACTION =
 "android.provider.Telephony.SMS_RECEIVED";

 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction().
 equals(SmsReceiver.SMS_REC_ACTION)) {

 StringBuilder sb = new StringBuilder();
 Bundle bundle = intent.getExtras();
 if (bundle != null) {
 Object[] pdus = (Object[])
 bundle.get("pdus");
 for (Object pdu : pdus) {
 SmsMessage smsMessage =
 SmsMessage.createFromPdu
 ((byte[]) pdu);
 sb.append("body - " + smsMessage.
 getDisplayMessageBody());
 }
 }
 Toast.makeText(context, "SMS RECEIVED - "
 + sb.toString(), Toast.LENGTH_LONG).show();
 }
 }

Table 7.2 SMS-related manifest permissions and their purpose

Phone-related permission Purpose

android.permission.READ_SMS Allow application to read SMS messages

android.permission.RECEIVE_SMS Allow application to monitor incoming SMS messages

android.permission.SEND_SMS Allow application to send SMS messages

android.permission.WRITE_SMS Write SMS messages to the built-in SMS provider (not
related to sending messages directly)

Listing 7.8 Creating an SMS-related BroadcastReceiver

Filter for action
in receiverB

Get pdus from
Intent Bundle

C

Create SmsMessage
from pdus

D

}

203Summary

To react to an incoming SMS message, we again create a custom BroadcastReceiver
by extending that class. Our receiver defines a local constant for the Intent action it
wants to catch, in this case, android.provider.Telephony.SMS_RECEIVED.

 Next, we filter for the action we want on the onReceive method B, and we get the
SMS data from the Intent extras Bundle using the key pdus C. The Bundle is a hash
that contains Android data types.

For every pdu Object that we receive, we need to construct an SmsMessage by casting
the data to a byte array D. After this conversion, we can use the methods in that class,
such as getDisplayMessageBody.

NOTE If you run the example shown in listing 7.8, you’ll see that even
though the receiver does properly report the message, the message still
arrives in the user’s inbox. Some applications might process specific mes-
sages themselves and prevent the user from ever seeing them; for exam-
ple, you might implement a play-by-SMS chess program that uses text
messages to report the other players’ moves. To consume the incoming
SMS message, call abortBroadcast from within your onReceive method.
Note that your receiver must have a priority level higher than that of the
inbox. Also, certain versions of the Android OS don’t honor this request,
so test on your target devices if this behavior is important to your app.

Congratulations! Now that you’ve learned how to send SMS messages programmati-
cally, set permissions appropriately, and you can receive and work with incoming SMS
messages, you can incorporate useful SMS features into your application.

7.5 Summary
Our trip through the Android telephony-related APIs covered several important topics.
After a brief overview of some telephony terms, we examined Android-specific APIs.

What’s a PDU?
PDU, or protocol data unit, refers to one method of sending information along cellular
networks. SMS messaging, as described in the 3rd Generation Partnership Project
(3GPP) Specification, supports two different ways of sending and receiving mes-
sages. The first is text mode, which some phones don’t support. Text mode encodes
message content as a simple bit stream. The other is PDU mode, which not only con-
tains the SMS message, but also metadata about the SMS message, such as text
encoding, the sender, SMS service center address, and much more. To access this
metadata, mobile SMS applications almost always use PDUs to encode the contents
of a SMS message. For more information about PDUs and the metadata they provide,
refer to the specification titled “Technical Realization of the Short Message Service
(SMS)” which you can find at http://www.3gpp.org/ftp/Specs/html-info/23040.htm.
This document, part of the 3GPP TS 23.040 Specification, is extremely technical but
will help you with developing more sophisticated SMS applications.

204 CHAPTER 7 Telephony

 You accessed telephony information with the TelephonyManager, including device
and SIM card data and phone state. From there, we addressed hooking in a Phone-
StateListener to react to phone state changes.

 Besides retrieving data, you also learned how to dial the phone using built-in
intents and actions, intercept outgoing phone calls, and format numbers with the
PhoneNumberUtils class. After we covered standard voice usages, we looked at how to
send and receive SMS messages using the SmsManager and SmsMessage classes.

 In the next chapter, we’ll turn to the specifics of interacting with notifications and
alerts on the Android platform. We’ll also revisit SMS and you’ll learn how to notify
users of events, such as an incoming SMS, by putting messages in the status bar, flash-
ing a light, or even by making the phone vibrate.

Notifications and alarms
Today’s cell phones are expected to be not only phones but personal assistants,
cameras, music and video players, and instant-messaging clients, as well as do just
about everything else a computer might do. With all these applications running on
phones, applications need a way to notify users to get their attention or to take
some sort of action, whether in response to an SMS, a new voicemail, or an Alarm
reminding them of a new appointment.

 In this chapter, we’re going to look at how to use the Android Broadcast-
Receiver and the AlarmManager to notify users of these sorts of events. First, we’ll
look at how to display quick, unobtrusive, and nonpersistent messages called
Toasts, based on an event, such as receiving an SMS. Second, we’ll talk about how
to create persistent messages, LED flashes, phone vibrations, and other events to
alert the user. These events are called Notifications. Finally, we’ll look at how to
trigger events by making Alarm events through the AlarmManager. Before we go too

This chapter covers
 Building an SMS Notification application

 Working with Toasts

 Working with the NotificationManager

 Using Alarms and the AlarmManager

 Setting an Alarm
205

deeply into how notifications work, let’s first create a simple example application.

206 CHAPTER 8 Notifications and alarms

8.1 Introducing Toast
For our example, you’ll create a simple Receiver class that listens for an SMS text
message. When a message arrives, the Receiver briefly pops up a message, called a
Toast, to the user, with the content of the message. A Toast is a simple, nonpersistent
message designed to alert the user of an event. Toasts are a great way to let a user
know that a call is coming in, an SMS or email has arrived, or some other event has just
happened. A Toast is not the same as a message, such as a status bar notification,
which persists even when a phone is turned off or until the user selects the notifica-
tion or the Clear Notification button.

 In this example, we’ll also use the Android SmsMessage class, but we won’t go into
depth about how SMS works in Android. For more information about how to work
with SMS, see section 7.4 in chapter 7.

8.1.1 Creating an SMS example with a Toast

To look at how you can use a Toast, let’s create a simple example. First create a proj-
ect called SMSNotifyExample in Eclipse. You can use whatever package name you like,
but for this chapter we’ll use com.msi.manning.chapter8. Now that you’ve created
the project, let’s edit AndroidManifest.xml. You’ll need to add several permission tags
to allow Android to both receive and react to SMS messages. Make sure your
AndroidManifest.xml file looks like the one shown in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.chapter8.SMSNotifyExample2">
 <application android:icon="@drawable/icon">
 <activity android:name=".SMSNotifyExampleActivity"
android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
"android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name=".SMSNotifyExample">
 <intent-filter>
 <action android:name=
"android.provider.Telephony.SMS_RECEIVED" />
 </intent-filter>
 </receiver>
 </application>
 <uses-permission android:name=
"android.permission.RECEIVE_SMS"></uses-permission>
 <uses-permission android:name=
"android.permission.READ_SMS"></uses-permission>
</manifest>

Listing 8.1 AndroidManifest.xml for SMSNotifyExample

Define receiver,
SMSNotify, with
Intent filter

B

SMSNotifyExample
acts as receiver

C

Define user
permissions
to allow SMS
messages

D

207Introducing Toast

The first thing we need to do is add an intent-filter B to the AndroidManifest.xml
file. For the intent-filter, we define SMSNotifyActivity, which is simply our
Activity. The next class is SMSNotifyExample C, which will act as our receiver. Next,
and perhaps more importantly, we need to add user permissions D to allow incoming
SMS messages to be received and read. The Android security model default has no
permissions associated with applications; applications can essentially do nothing that
might harm the device or the data on the device. To provide Android permission, you
need to use one or more permissions, which you set in the manifest.xml file. In chap-
ter 9, we’ll go into greater detail about Android’s security model, but with the pleth-
ora of emerging SMS viruses and exploits, Android’s security model provides
important protection against such attacks.

8.1.2 Receiving an SMS message

Now that you’ve set up the project, you need to write the code to capture the response
when an SMS is received. First, create a simple Activity class called SMSNotify-
Activity, as shown in the following listing.

public class SMSNotifyExampleActivity extends Activity {

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 }
}

As you can see, there’s little to this listing, in part because for this first example we’re
not doing much with the Activity. Later in this chapter, we’ll build on this class. For
now, let’s create our Receiver class (see chapter 5 for more about Intent receivers),
which will listen for the SMS message and fire off an action. The following listing
shows the code for our SMSNotifyExample class.

public class SMSNotifyExample extends BroadcastReceiver {

 private static final String LOG_TAG = "SMSReceiver";
 public static final int NOTIFICATION_ID_RECEIVED = 0x1221;
 static final String ACTION =
"android.provider.Telephony.SMS_RECEIVED";

 @Override
 public void onReceive(Context context, Intent intent) {

 if (intent.getAction().equals(SMSNotifyExample.ACTION)) {
 StringBuilder sb = new StringBuilder();

 Bundle bundle = intent.getExtras();
 if (bundle != null) {

Listing 8.2 SMS Activity for the SMSNotifyExample class

Listing 8.3 A sample SMSNotifyExample

BBuild
message
to share
to user

Get PDUs
from Intent

C

 Object[] pdus = (Object[]) bundle.get("pdus"); Bundle

208 CHAPTER 8 Notifications and alarms

 for (Object pdu : pdus){
 SmsMessage messages =
 SmsMessage.createFromPdu((byte[]) pdu);
 sb.append("Received SMS\nFrom: ");
 sb.append(messages.getDisplayOriginatingAddress());
 sb.append("\n----Message----\n");
 sb.append(messages.getDisplayMessageBody());
 }
 }
 Log.i(SMSNotifyExample.LOG_TAG,
 "[SMSApp] onReceiveIntent: " + sb);
 Toast.makeText
(context, sb.toString(), Toast.LENGTH_LONG).show();
 }
 }

This should be easy to follow. First, we extend the SMSNotifyExample class using
BroadcastReceiver, which allows the class to receive Intent classes. Then we create a
String to hold the action that will be fired by the system when an SMS is received.
After that, we create a simple method to notify the user that an SMS message has been
received, and we parse the SMS message to show whom it was from and the content of
the message B. Next, we need to capture the contents of the SMS message C. We do
this by extracting the data from the protocol data unit or PDUs.

SMS messaging supports two different ways of sending and receiving messages. The
one we’re using is text mode, which happens to be unavailable on some phones and is
simply an encoding of the bit stream represented by the PDU mode. The PDU mode is
generally superior, because a PDU not only contains the SMS message, but also meta-
data about the SMS message, such as encoding, information about the sender, SMS ser-
vice center, and much more. PDUs are almost always used in mobile SMS applications
as the mechanism for handling SMS messages.

 We also use a Bundle, which acts as an Android-specific hash map and accepts only
primitives. We can look over the contents of the PDU and build an SmsMessage D, as
well as extract key pieces from the PDU, such as the SMS sender’s phone number, to
display to the user in a Toast E.

Toast classes are transient little messages—they pop up and provide the user with
quick information, without interrupting what the user is doing. In our code, we chain
two methods together using the form makeText(Context context, CharSquence
text, int duration).show(), where the first method contains a text view for the user
and the second method, show(), shows the message to the user. Toast allows you to
set a specific view using setView, but for our example, we allow it to show the default,
which is the Android status bar.

 After you’ve finished cutting and pasting the code, everything should automati-
cally compile, and you should be able to run the application. The application should
come up and look like figure 8.1.

NOTE In Unlocking Android, the first edition of this book, the code used the
android.telephony.gsm.Smsmessage class for SMS messages. This class is

Create SmsMessage
from PDUs

D

Display
Toast

E

now deprecated and you need to import android.telephony.Smsmessage.

209Introducing Toast

To test our application, select the DDMS option in Eclipse. Now, in the Telephony
Actions field, type a telephone number, for example, 17035551429. Select SMS, type a
message in the Message field, and click Send. Your message should be sent to the emu-
lator, and you should be able to see the emulator responding in the Eclipse console. A
message should appear in the Android status bar at the top of the Android screen rep-
resentation, as shown in figure 8.2.

Figure 8.1 A simple Toast, the SMSNotifyExample, shown running in the emulator

Figure 8.2 Example of a Toast message being generated from an SMS message

210 CHAPTER 8 Notifications and alarms

 You’ve created a simple example and you know how to display a short message
upon receiving an SMS and how to use the emulator to create an SMS. Now let’s look
at how to create a more persistent message that can also be used to set LEDs, play a
sound, or something of that nature, to let the user know an event has occurred.

8.2 Introducing notifications
In the previous section, we showed how simple it is to create a quick, unobtrusive mes-
sage to let the user know an SMS message has arrived. In this section, we’re going to
look at how to create a persistent notification that not only shows up in the status bar,
but stays in a notification area until the user deletes it. To do that, we need to use the
class Notification, because we want to do something more complex than Toast can
offer us.

8.2.1 The Notification class

A notification1 on Android can be many things, ranging from a pop-up message, to a
flashing LED, to a vibration, but all these actions start with and are represented by the
Notification class. The Notification class defines how you want to represent a noti-
fication to a user. This class has three constructors, one public method, and a number
of fields. Table 8.1 summarizes the class.

1 To get your Android notifications on your Mac OS X, Linux, or Windows desktop, follow along here:

Table 8.1 Notification fields

Access Type Method Description

public int audioStreamType Stream type to use when playing a sound

public int defaults Defines which values should be taken from
defaults

public int deleteIntent The Intent to execute when user selects
Clear All Notifications button

public flags

public int ledARGB The color of the LED notification

public int ledOffMS The number of milliseconds for the LED to be
off between flashes

public int ledOnMS The number of milliseconds for the LED to be
on for each flash

public Int number The number of events represented by this
notification

public ContentURI sound The sound to play
http://www.readwriteweb.com/archives/how_to_get_android_notifications_on_your_computer_desktop.php.

211Introducing notifications

As you can see, the Notification class has numerous fields; it has to describe every
way you can notify a user. Using a Notification is as simple as running this code:

int icon = R.drawable.icon_from_resources;
CharSequence tickerText = "Hello Android";
long when = System.currentTimeMillis();

CharSequence contentTitle = "New Message";
CharSequence contentText = "Hello Android how are you?";
Intent notificationIntent = new Intent(); // new intent
PendingIntent contentIntent = PendingIntent.getActivity(context, 0,

notificationIntent, 0);

The next two lines initialize the Notification using the configurations shown in the
previous snippet:

Notification notification = new Notification(icon, tickerText, when);
notification.setLatestEventInfo(context,
 contentTitle, contentText, contentIntent);

To send the Notification, all you have to do is enter the following code:

mNotificationManager.notify(NOTIFICATION_ID_RECEIVED, notification);

where the notify method wakes up a thread that performs the notification task you
have defined.

8.2.2 Notifying a user of an SMS

Now let’s take our previous example and edit it to change it from a Toast notification
to a notification in the status bar. Before we do that, we’ll make the application more

public RemoteViews contentView View to display when the statusBar-Icon
is selected in the status bar

public CharSequence statusBarBalloonText Text to display when the statusBar-Icon
is selected in the status bar

public PendingIntent contentIntent The Intent to execute when the icon is
clicked

public int icon The resource ID of a drawable to use as the
icon in the status bar

public Int iconLevel The level of an icon in the status bar

public CharSequence tickerText Text to scroll across the screen when this
item is added to the status bar

public long[] vibrate The vibration pattern to use

public long when A timestamp for the notification

Table 8.1 Notification fields (continued)

Access Type Method Description
interesting by adding icons to our resources directory. For this example, we’re going

212 CHAPTER 8 Notifications and alarms

to use the chat.png icon and the incoming.png icon. You can find these files in the
downloaded code for this book, or you can get them from http://www.manning.com/
ableson/. Simply drop them in the res/drawable directory to have Eclipse automati-
cally register them for you in the R class.

 Now let’s edit the code. First, we’ll edit the SMSNotifyActivity class so that when
the Activity is called, it can find the Notification passed to it from the
NotificationManager. After the Activity has run, SMSNotifyActivity can cancel it.
The following listing provides the code you need for the new SMSNotifyActivity class.

public class SMSNotifyActivity extends Activity {
@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 NotificationManager nm = (NotificationManager)
getSystemService(NOTIFICATION_SERVICE);

 nm.cancel(R.string.app_name);

 }
}

As you can see, all we did was use the NotificationManager to look up the
Notification, and then we used the cancel()method to cancel it. We could do
more, such as set up a custom view, but for now we’ll leave it as is.

 Next, we need to edit the SMSNotifyExample to remove the Toast Notification
and support a Notification to the status bar. The following listing shows the edits we
need to make.

 private static final String LOG_TAG = "SMSReceiver";
 public static final int NOTIFICATION_ID_RECEIVED = 0x1221;
 static final String ACTION = "android.provider.Telephony.SMS_RECEIVED";

 public void onReceive(Context context, Intent intent) {

 NotificationManager mNotificationManager =
 (NotificationManager) context.getSystemService
(Context.NOTIFICATION_SERVICE);
 if (intent.getAction().equals(SMSNotifyExample.ACTION)) {

 StringBuilder sb = new StringBuilder();
 String from = new String();
 String body = new String();

 Bundle bundle = intent.getExtras();
 if (bundle != null) {
 Object[] pdus = (Object[]) bundle.get("pdus");
 for (Object pdu : pdus){

Listing 8.4 A sample SMSNotifyActivity

Listing 8.5 Updated SMSNotifyExample.java

Get reference to
NotificationManager

B

 SmsMessage messages =

213Introducing notifications

 SmsMessage.createFromPdu((byte[]) pdu);
 sb.append("Received compressed SMS\nFrom: ");
 sb.append(messages.getDisplayOriginatingAddress());
 from = messages.getDisplayOriginatingAddress();
 sb.append("\n----Message----\n");
 sb.append("body -" + messages.getDisplayMessageBody());
 body= messages.getDisplayMessageBody();

 Log.i(SMSNotifyExample.LOG_TAG,
 "[SMSApp] onReceiveIntent: " + sb);
 abortBroadcast();
 }}

 int icon = R.drawable.chat;
 CharSequence tickerText =
 "New Message From " + from + ": " + body;
 long when = System.currentTimeMillis();

 Notification notification =
 new Notification(icon, tickerText, when);
 CharSequence contentTitle = "New SMS Message";
 CharSequence contentText = sb.toString();
 Intent notificationIntent = new Intent();
 PendingIntent contentIntent =
 PendingIntent.getActivity(context, 0, notificationIntent, 0);

 notification.setLatestEventInfo
(context, contentTitle, contentText, contentIntent);
 mNotificationManager.notify
(NOTIFICATION_ID_RECEIVED, notification);

}

The first thing you’ll notice is the addition of the NotificationManager B, which
handles all notifications. The second major change to the code is the addition of the
required fields that notifications need, such as icon, when, and tickerText C.

 Note the variable tickerMessage. The tickerMessage will hold the contents of
the SMS message that we want to scroll in the notification bar. Though it’s possible to
style the notification message in a variety of ways, the notification bar in general sup-
plies little space and is best used for short messages.

 Next, we instantiate the Notification with the required fields. After that, we cre-
ate an Intent for the Notification’s expanded message D. Notifications generally
have two parts—a message that appears in the notification bar, then a message that
appears in the expanded view of the Notifications drop-down view when you open the
notification bar. The message for the expanded Notifications window is provided via
the method setLatestEventInfo, like so:

Public void setLatestEventInfo(Context context,
 CharSequence contentTitle, CharSequence contentT006xt,
 PendingIntent contentIntent);

Finally, we use the notify() method E from the NotificationManager to broadcast
our Notification to the application.

Instantiate
Notification

C

Define
message
when
notification
bar
expands

D

Send notificationE

214 CHAPTER 8 Notifications and alarms

 Now if you run the application and then open the
DDMS and pass an SMS message as you did earlier, you
should see the new Notification in the status bar.
The message displays each line for a short interval
until the message is fully displayed. You should also see
a new icon pop up in the status bar that indicates a
new SMS message, as shown in figure 8.3.

 When you’ve sent the message, click the New Mes-
sages icon; a bar should drop down from it. Click the
bar and drag it down to the bottom of the screen. The
default view of the SMS inbox for Android opens, as
shown in figure 8.4.

 You could do a lot more with this demo, such as
creating a better UI2 or making the SMS inbox more
feature-rich. You could even make the application play
a sound when a message arrives. Even so, in this exam-
ple, we’ve looked at everything you need to know to
start working with notifications. In the next section,
we’re going to look at Notification’s close relative,
the Alarm.

2 Here is a great article about improving Android app quality and creating better UI experiences: http://

Figure 8.3 Using the Android DDMS to send an SMS message to the application

Figure 8.4 The expanded SMS
inbox displaying the
contentIntent and
appIntent
android-developers.blogspot.com/2010/10/improving-app-quality.html.

215Introducing Alarms

8.3 Introducing Alarms
In Android, Alarms allow you to schedule your application to run at some point in
the future. Alarms can be used for a wide range of applications, from notifying a
user of an appointment to something more sophisticated, such as having an applica-
tion start, check for software updates, and then shut down. An Alarm works by regis-
tering an Intent with the Alarm; at the scheduled time, the Alarm broadcasts the
Intent. Android automatically starts the targeted application, even if the Android
handset is asleep.

 Android manages all alarms somewhat like it manages the Notification-
Manager—via an AlarmManager class. The AlarmManager has four methods: cancel,
set, setRepeating, and setTimeZone, as shown in table 8.2.

You instantiate the AlarmManager indirectly (as you do the NotificationManager), by
using Context.getSystemService(Context.ALARM_SERVICE).

 Setting alarms is easy, like most things in Android. In the next example, you’ll cre-
ate a simple application that sets an Alarm when a button is pressed. When the Alarm
is triggered, it will pass back a simple Toast to inform us that the Alarm has been fired.

8.3.1 Creating a simple alarm example

In this next example, you’re going to create an Android project called SimpleAlarm
that has the package name com.msi.manning.chapter8.simpleAlarm, the application
name SimpleAlarm, and the Activity name GenerateAlarm. In this project, we’ll use
another open source icon, which you can find at http://www.manning.com/ableson/
or in the download for this chapter. Change the name of the icon to clock, and add it
to the res/drawable directory of the project when you create it.

 The next thing to do is edit the AndroidManifest.xml to have a receiver (we’ll cre-
ate that soon) called AlarmReceiver, as shown in the following listing.

Table 8.2 AlarmManager public methods

Returns Method and description

void cancel(PendingIntent intent)
Remove alarms with matching Intent

void set(int type, long triggerAtTime, PendingIntent operation)
Set an Alarm

void setRepeating(int type, long triggerAtTime, long interval,
PendingIntent operation)
Set a repeating Alarm

void setTimeZone(String TimeZone)
Set the time zone for the Alarm

216 CHAPTER 8 Notifications and alarms

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.chapter8.simpleAlarm">
 <application android:icon="@drawable/clock">
 <activity android:name=".GenerateAlarm"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name=".AlarmReceiver" android:process=
":remote" />
 </application>
</manifest>

Now we edit the string.xml file in the values directory and add two new strings:

<string name="set_alarm_text">Set Alarm</string>
<string name="alarm_message">Alarm Fired</string>

We’ll use this as the value of the button in our layout. Next, we need to add a new but-
ton to our layout, so edit the main.xml file to add a new button, like this:

<Button android:id="@+id/set_alarm_button"
android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/set_alarm_text">
 <requestFocus />
</Button>

We’re ready to create a new class that will act as the Receiver for the Notification
the Alarm will generate. In this case, we’re going to be generating a Toast-style
Notification to let the user know that the Alarm has been triggered. Now, create a
new class as shown in the following listing. This class waits for the Alarm to broadcast
to the AlarmReceiver and then generates a Toast.

public class AlarmReceiver extends BroadcastReceiver {
 public void onReceiveIntent(
 Context context, Intent intent) {
 Toast.makeText
(context, R.string.app_name, Toast.LENGTH_SHORT).show();
 }
 @Override
 public void onReceive(Context context, Intent intent) {
 }
}

Next, we need to edit the SimpleAlarm class to create a button widget (as we discussed

Listing 8.6 AndroidManifest.xml

Listing 8.7 AlarmReceiver.java

Broadcast Toast
when Intent is
received
in chapter 3) that calls the inner class setAlarm. In setAlarm, we create an onClick

217Introducing Alarms

method that will schedule our Alarm, call our Intent, and fire off our Toast. The fol-
lowing listing shows what the finished class should look like.

public class GenerateAlarm extends Activity
 {
 Toast mToast;
 @Override
 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 Button button = (Button)findViewById(R.id.set_alarm_button);
 button.setOnClickListener(this.mOneShotListener);
 }
 private OnClickListener mOneShotListener = new OnClickListener()
 {
 public void onClick(View v)
 {
 Intent intent =
 new Intent(GenerateAlarm.this, AlarmReceiver.class);
 PendingIntent appIntent =
 PendingIntent.getBroadcast(GenerateAlarm.this,
0, intent, 0);
 Calendar calendar = Calendar.getInstance();
 calendar.setTimeInMillis(System.currentTimeMillis());
 calendar.add(Calendar.SECOND, 30);
 AlarmManager am =
 (AlarmManager)getSystemService(ALARM_SERVICE);
 am.set(AlarmManager.RTC_WAKEUP, calendar.getTimeInMillis(),
 appIntent);
 if (GenerateAlarm.this.mToast != null) {
 GenerateAlarm.this.mToast.cancel();
 }
 GenerateAlarm.this.mToast = Toast.makeText(GenerateAlarm.this,
 R.string.alarm_message, Toast.LENGTH_LONG);
 GenerateAlarm.this.mToast.show();
 }
 };
}

As you can see, this class is pretty simple. We create a Button to trigger our Alarm B.
Next, we create an inner class for our mOneShotListener. Then, we create the Intent
to be triggered when the Alarm actually goes off C. In the next section of code, we
use the Calendar class to help us calculate the number of milliseconds from the time
the button is pressed, which we’ll use to set the Alarm.

 Now we’ve done everything necessary to create and set the Alarm. We create the
AlarmManager D and then call its set() method to set the Alarm. To see a little more
detail of what’s going on in the application, take a look at these lines of code:

AlarmManager am = (AlarmManager)getSystemService(ALARM_SERVICE);
 am.set(AlarmManager.RTC_WAKEUP, calendar.getTimeInMillis(), intent);

Listing 8.8 SimpleAlarm.java

B

Create Intent
to fire when
Alarm goes off

C

Create
AlarmManager

D

218 CHAPTER 8 Notifications and alarms

These lines are where we actually create and set the Alarm by first using getSystem-
Service to create the AlarmManager. The first parameter we pass to the set() method
is RTC_WAKEUP, which is an integer representing the Alarm type we want to set. The
AlarmManager currently supports four Alarm types, as shown in table 8.3.

You can use multiple types of alarms, depending on your requirements. The
RTC_WAKEUP, for example, sets the Alarm time in milliseconds; when the Alarm goes
off, it’ll wake up the device from sleep mode for you, as opposed to RTC, which won’t.

 The next parameter we pass to the method is the amount of time, in milliseconds,
that we want to elapse, after which we want the alarm to be triggered. The following
snippet shows how to set this sequence of events:

 Calendar calendar = Calendar.getInstance();
 calendar.setTimeInMillis(System.currentTimeMillis());
 calendar.add(Calendar.SECOND, 30);

The last parameter is the Intent we want to broadcast to, which is our Intent-
Receiver. Now, if you build the application and run it in the emulator, you should see
something like the screen shown in figure 8.5.

 Clicking the Set Alarm button will set the alarm; after 30 seconds, you should see
something like figure 8.6, displaying the Toast message.

8.3.2 Using notifications with Alarms

Creating an Alarm is pretty easy in Android, but what might make more sense would
be for that Alarm to trigger a Notification in the status bar. To do that, you need to
add a NotificationManager and generate a Notification. We’ve created a new
method to add to listing 8.8 called showNotification, which takes four parameters
and creates our Notification:

Table 8.3 AlarmManager Alarm types

Type Description

ELAPSED_REALTIME Alarm time in SystemClock.elapsedRealtime() (time since
boot, including sleep)

ELAPSED_REALTIME_WAKEUP Alarm time in SystemClock.elapsedRealtime() (time since
boot, including sleep), which will wake up the device when it goes off

RTC Alarm time in System.currentTimeMillis() (wall clock time in
UTC)

RTC_WAKEUP Alarm time in System.currentTimeMillis() (wall clock time in
UTC), which will wake up the device when it goes off

219Introducing Alarms

 private void showNotification(int statusBarIconID,
 int statusBarTextID, int detailedTextID, boolean showIconOnly) {
 Intent contentIntent = new Intent(this, SetAlarm.class);
 PendingIntent theappIntent =
PendingIntent.getBroadcast(SetAlarm.this,
 0, contentIntent, 0);
 CharSequence from = "Alarm Manager";
 CharSequence message = "The Alarm was fired";
 String tickerText = showIconOnly ? null :

this.getString(statusBarTextID);
 Notification notif = new Notification(statusBarIconID,
 tickerText,
 System.currentTimeMillis());
 notif.setLatestEventInfo(this, from, message, theappIntent);
 nm.notify(YOURAPP_NOTIFICATION_ID, notif);
 }

Much of this code is similar to the SMSNotifyExample code. To add it to your Simple-
Alarm, edit listing 8.8 to look like listing 8.9, where the only other things we’ve done
are to import the Notification and NotificationManager to the code, add the pri-
vate variables nm and ApplicationID, and make a call to showNotification(), right
after the Toast.

public class SetAlarm extends Activity {
 private NotificationManager nm;
 Toast mToast;
 @Override

Listing 8.9 SetAlarm.java

Figure 8.6 After the Alarm runs,
the application shows a simple
Toast message.

Figure 8.5 Example of the
SimpleAlarm application running
in the emulator
 protected void onCreate(Bundle icicle) {

220 CHAPTER 8 Notifications and alarms

 super.onCreate(icicle);
 setContentView(R.layout.main);
 this.nm = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
 Button button = (Button) findViewById(R.id.set_alarm_button);
 button.setOnClickListener(this.mOneShotListener);
 }
 private void showNotification(int statusBarIconID,
int statusBarTextID, int detailedTextID, boolean showIconOnly) {
 Intent contentIntent = new Intent(this, SetAlarm.class);
 PendingIntent theappIntent =

 PendingIntent.getBroadcast(SetAlarm.this, 0,
 contentIntent, 0);
 CharSequence from = "Alarm Manager";
 CharSequence message = "The Alarm was fired";
 String tickerText = showIconOnly ? null :
this.getString(statusBarTextID);
 Notification notif = new Notification(statusBarIconID, tickerText,
 System.currentTimeMillis());
 notif.setLatestEventInfo(this, from, message, theappIntent);
 this.nm.notify(this.YOURAPP_NOTIFICATION_ID, notif);
 }
 private OnClickListener mOneShotListener = new OnClickListener() {
 public void onClick(View v) {
 Intent intent = new Intent(SetAlarm.this, AlarmReceiver.class);
 PendingIntent appIntent =

PendingIntent.getBroadcast(SetAlarm.this, 0,
 intent, 0);
 Calendar calendar = Calendar.getInstance();
 calendar.setTimeInMillis(System.currentTimeMillis());
 calendar.add(Calendar.SECOND, 30);
 AlarmManager am = (AlarmManager)
 getSystemService(Context.ALARM_SERVICE);
 am.set(AlarmManager.RTC_WAKEUP, calendar.getTimeInMillis(),
 appIntent);
 showNotification(R.drawable.alarm, R.string.alarm_message,
 R.string.alarm_message, false);
 }
 };
 }
}

If you run the code and click Set Alarm, you should see the Alarm Notification in
the status bar. You could easily edit this code to take in parameters for time and date,
have it show different Intents when the icons are clicked, and so on.

 As you can see from this example, Android alarms and the AlarmManager are
straightforward, and you should be able to easily integrate them into your applications.

8.4 Summary
In this chapter, we’ve looked at three separate but related items: Toast, Notification,
and Alarm. You learned that for simple, nonpersistent messages, the Toast class pro-

vides an easy and convenient way to alert the user. We also looked at how to use the

221Summary

NotificationManager to generate simple to relatively complex notifications. Then
you used the Notification class to present a Notification to the user by building a
simple example that displays a message in the status bar, vibrates a phone, or even
flashes an LED when an SMS messages arrives in the inbox.

 We also looked at how to set an Alarm to cause an application to start or take some
action in the future, including waking the system from sleep mode. Finally, we talked
about how to trigger a Notification from an Alarm. Though the code presented in
these simple examples gives you a taste of what can be done with notifications and
alarms, both have broad applications limited only by your imagination.

 Now that you have an understanding of how to work with the Notification and
Alarm classes, we’re going to move on a discussion of graphics and animation. In
chapter 9, you’ll learn the basic methods of generating graphics in Android, how to
create simple animations, and even how to work with OpenGL to generate stunning
3D graphics.

Graphics and animation
One of the main features of Android that you should’ve picked up on by now is
how much easier it is to develop Android applications than it is to use other mobile
application platforms. This ease of use is especially apparent when you’re creating
visually appealing UIs and metaphors, but there’s a limit to what you can do with
typical Android UI elements (such as those we discussed in chapter 3). In this chap-
ter, we’ll look at how to create graphics using Android’s Graphics API, develop ani-
mations, and explore Android’s support for the OpenGL standard. (To see
examples of what you can do with Android’s graphics platform, go to http://
www.omnigsoft.com/Android/ADC/readme.html.)

 First, we’re going to show you how to draw simple shapes using the Android 2D
Graphics API, using Java and then XML to describe 2D shapes. Next, we’ll look at
making simple animations using Java and the Graphics API to move pixels around,
and then using XML to perform a frame-by-frame animation. Finally, we’ll look at
Android’s support of the OpenGL ES API, make a simple shape, and then make a

This chapter covers
 Drawing graphics in Android

 Applying the basics of OpenGL for embedded
systems (ES)

 Animating with Android
222

more complex, rotating, three-dimensional shape.

223Drawing graphics in Android

 If you’ve ever worked with graphics in Java, you’ll likely find the Graphics API and
how graphics work in Android familiar. If you’ve worked with OpenGL, you’ll find that
Android’s implementation of OpenGL ES will often let you port your previous code
into Android, with few changes. You must remember though, that cell phones don’t
have the graphical processing power of a desktop. Regardless of your experience,
you’ll find the Android Graphics API both powerful and rich, allowing you to accom-
plish even some of the most complex graphical tasks.

9.1 Drawing graphics in Android
In this section, we’ll cover Android’s graphical capabilities and show you examples of
how to make simple 2D shapes. We will be applying the android.graphics package
(see http://code.google.com/android/reference/android/graphics/package-summary.
html), which provides all the low-level classes you need to create graphics. The graph-
ics package supports such things as bitmaps (which hold pixels), canvas (what your
draw calls draw on), primitives (such as rectangles or text), and paint (which you use
to add color and styling). Generally, you use Java to call the Graphics API to create
complex graphics.

 To demonstrate the basics of drawing a shape with Java and the Graphics API, let’s
look at a simple example in the following listing, where we’ll draw a rectangle.

 package com.msi.manning.chapter9.SimpleShape;
 public class SimpleShape extends Activity {
 @Override
 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(new SimpleView(this));
 }
 private static class SimpleView extends View {
 private ShapeDrawable mDrawable =
 new ShapeDrawable();

 public SimpleView(Context context) {
 super(context);
 setFocusable(true);
 this.mDrawable =
 new ShapeDrawable(new RectShape());
 this.mDrawable.getPaint().setColor(0xFFFF0000);
 }
 @Override
 protected void onDraw(Canvas canvas) {
 int x = 10;
 int y = 10;
 int width = 300;
 int height = 50;
 this.mDrawable.setBounds(x, y, x + width, y + height);
 this.mDrawable.draw(canvas);
 y += height + 5;
 }
 }

Listing 9.1 Listing 9.1 simlepshape.java

Create ViewB

Create ShapeDrawable
to hold DrawableC

Create Rectangle,
assign to mDrawable

D

}

224 CHAPTER 9 Graphics and animation

Drawing a new shape is simple. First, we need to import
the necessary packages B, including graphics. Then
we import ShapeDrawable, which will support adding
shapes to our drawing, and then shapes, which sup-
ports several generic shapes, including RectShape,
that we’ll use. Next, we need to create a view C, and
then a new ShapeDrawable to add our Drawable to D.
After we have a ShapeDrawable, we can assign shapes to
it. In our code, we use the RectShape, but we could’ve
used OvalShape, PathShape, RectShape, RoundRect-
Shape, or Shape. We then use the onDraw() method to
draw the Drawable on the Canvas. Finally, we use the
Drawable’s setBounds() method to set the boundary
(a rectangle) in which we’ll draw our rectangle using
the draw() method.

 When you run listing 9.1, you should see a simple
red rectangle like the one shown in figure 9.1.

 Another way to do the same thing is through XML.
Android allows you to define shapes to draw in an XML resource file.

9.1.1 Drawing with XML

With Android, you can create simple drawings using an XML file approach. You might
want to use XML for several reasons. One basic reason is because it’s simple to do.
Also, it’s worth keeping in mind that graphics described by XML can be programmati-
cally changed later, so XML provides a simple way to do initial design that isn’t neces-
sarily static.

 To create a drawing with XML, create one or more Drawable objects, which are
defined as XML files in your drawable directory, such as res/drawable. The XML you
need to create a simple rectangle looks like the code shown in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android">
 <solid android:color="#FF0000FF"/>
</shape>

With Android XML drawable shapes, the default is a rectangle, but you can change the
shape by using the type tag and selecting the value oval, rectangle, line, or arc. To
use your XML shape, you need to reference it in a layout, as shown in the following
listing. The layout resides in res/layout.

Listing 9.2 simplerectangle.xml

Figure 9.1 A simple red
rectangle drawn using Android’s
Graphics API

225Drawing graphics in Android

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <ImageView android:layout_width="fill_parent"
 android:layout_height="50dip"
 android:src="@drawable/simplerectangle" />
 </LinearLayout>
</ScrollView>

Now all you need to do is create a simple Activity, where you place your UI in a
contentView, as shown in the following listing.

public class XMLDraw extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.xmldrawable);
 }
}

If you run this code, it’ll draw a simple rectangle. You can make more complex draw-
ings or shapes by stacking or ordering your XML drawables, and you can include as
many shapes as you want or need, depending on space. Let’s explore what multiple
shapes might look like next.

9.1.2 Exploring XML drawable shapes

One way to draw multiple shapes with XML is to create multiple XML files that repre-
sent different shapes. A simple way to do this is to change your xmldrawable.xml file
to look like the following listing, which adds a number of shapes and stacks them
vertically.

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

Listing 9.3 xmllayout.xml

Listing 9.4 XMLDraw.java

Listing 9.5 xmldrawable.xml
 <ImageView android:layout_width="fill_parent"

226 CHAPTER 9 Graphics and animation

 android:layout_height="50dip"
 android:src="@drawable/shape_1" />
 <ImageView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:src="@drawable/line" />
 <ImageView
 android:layout_width="fill_parent"
 android:layout_height="50dip"
 android:src="@drawable/shape_2" />
 <ImageView
 android:layout_width="fill_parent"
 android:layout_height="50dip"
 android:src="@drawable/shape_3" />
 </LinearLayout>
</ScrollView>

Finally, you need to add the shapes shown in listings 9.6 through 9.9 into the res/
drawable folder.

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
type="oval" >
 <solid android:color="#00000000"/>
 <padding android:left="10sp" android:top="4sp"
 android:right="10sp" android:bottom="4sp" />
 <stroke android:width="1dp" android:color="#FFFFFFFF"/>
</shape>

In the previous listing, we’re using an oval. We’ve added a tag called padding, which
allows us to define padding or space between the object and other objects in the UI.
We’re also using the tag called stroke, which allows us to define the style of the line
that makes up the border of the oval (see the following listing).

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android">
 <solid android:color="#FF0000FF"/>
 <stroke android:width="4dp" android:color="#FFFFFFFF"
 android:dashWidth="1dp" android:dashGap="2dp" />
 <padding android:left="7dp" android:top="7dp"
 android:right="7dp" android:bottom="7dp" />
 <corners android:radius="4dp" />
</shape>

With this shape, we’re generating another rectangle, but this time (the next listing)
we introduce the tag corners, which allows us to make rounded corners with the attri-
bute android:radius.

Listing 9.6 Shape1.xml

Listing 9.7 Shape2.xml

227Creating animations with Android’s Graphics API

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
type="oval">
 <gradient android:startColor="#FFFF0000" android:endColor="#80FF00FF"
 android:angle="270"/>
 <padding android:left="7dp" android:top="7dp"
 android:right="7dp" android:bottom="7dp" />
 <corners android:radius="8dp" />
</shape>

In the next listing, we create a shape of the type line with a size tag using the
android:height attribute, which allows us to describe the number of pixels used on
the vertical to size the line.

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
type="line" >
 <solid android:color="#FFFFFFFF"/>
 <stroke android:width="1dp" android:color="#FFFFFFFF"
 android:dashWidth="1dp" android:dashGap="2dp" />
 <padding android:left="1dp" android:top="25dp"
 android:right="1dp" android:bottom="25dp" />
 <size android:height="23dp" />
</shape>

If you run this code, you should see something like figure 9.2.
 As you can see, drawing with Android is straightforward, and Android provides the

ability for developers to programmatically draw anything they need. In the next sec-
tion, we’re going to look at what you can draw with
Android’s animation capabilities.

9.2 Creating animations with
Android’s Graphics API
If a picture says a thousand words, then an animation
must speak volumes. Android supports multiple meth-
ods of creating animation, including through XML, as
you saw in chapter 3, or via Android’s XML frame-by-
frame animations using the Android Graphics API, or via
Android’s support for OpenGL ES. In this section, you’re
going to create a simple animation of a bouncing ball
using Android’s frame-by-frame animation.

9.2.1 Android’s frame-by-frame animation

Android allows you to create simple animations by

Listing 9.8 Shape3.xml

Listing 9.9 line.xml

Figure 9.2 Various shapes

showing a set of images one after another to give the drawn using XML

228 CHAPTER 9 Graphics and animation

illusion of movement, much like stop-motion film. Android sets each frame image as a
drawable resource; the images are then shown one after the other in the background
of a View. To use this feature, you define a set of resources in a XML file and then call
AnimationDrawable start().

 To demonstrate this method for creating an animation, you need to download this
project from the Google code repository so you can get the images. The images for
this exercise are six representations of a ball bouncing. Next, create a project called
XMLanimation. Then create a new directory called /anim under the /res resources
directory. Place all the images for this example in the /drawable directory. Now create
an XML file called Simple_animation.xml that contains the code shown in the follow-
ing listing.

<?xml version="1.0" encoding="utf-8"?>
 <animation-list xmlns:android="http://schemas.android.com/apk/res/android"
 id="selected" android:oneshot="false">
 <item android:drawable="@drawable/ball1" android:duration="50" />
 <item android:drawable="@drawable/ball2" android:duration="50" />
 <item android:drawable="@drawable/ball3" android:duration="50" />
 <item android:drawable="@drawable/ball4" android:duration="50" />
 <item android:drawable="@drawable/ball5" android:duration="50" />
 <item android:drawable="@drawable/ball6" android:duration="50" />
 </animation-list>

The XML file defines the list of images to be displayed for the animation. The XML
<animation-list> tag contains the tags for two attributes: drawable, which describes
the path to the image, and duration, which describes the length of time to show the
image, in nanoseconds. Now that you’ve created the animation XML file, edit the
main.xml file to look like the following listing.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ImageView android:id="@+id/simple_anim"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center"
 android:layout_centerHorizontal="true"
 />
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Hello World, XMLAnimation"
 />

Listing 9.10 Simple_animation.xml

Listing 9.11 main.xml
</LinearLayout>

229Creating animations with Android’s Graphics API

All we’ve done to the file is added an ImageView tag that sets up the layout for our
Image-View. Finally, create the code to run the animation, which is shown in the fol-
lowing listing.

public class XMLAnimation extends Activity
{
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 ImageView img =
 (ImageView)findViewById(R.id.simple_anim);
 img.setBackground(R.anim.simple_animation);
 MyAnimationRoutine mar =
 new MyAnimationRoutine();
 MyAnimationRoutine2 mar2 =
 new MyAnimationRoutine2();
 Timer t = new Timer(false);
 t.schedule(mar, 100);
 Timer t2 = new Timer(false);
 t2.schedule(mar2, 5000);
 }
 class MyAnimationRoutine extends TimerTask {
 @Override
 public void run() {
 ImageView img = (ImageView) findViewById(R.id.simple_anim);
 AnimationDrawable frameAnimation = (AnimationDrawable)
 img.getBackground();
 frameAnimation.start();
 }
 }
 class MyAnimationRoutine2 extends TimerTask {
 @Override
 public void run() {
 ImageView img = (ImageView) findViewById(R.id.simple_anim);
 AnimationDrawable frameAnimation = (AnimationDrawable)
 img.getBackground();
 frameAnimation.stop();
 }
 }
}

Listing 9.12 might be slightly confusing because we’ve used the TimerTask classes.
Because we can’t control the animation from within the OnCreate method, we need to
create two subclasses that call Animation-Drawable’s start and stop methods. The first
subclass, MyAnimationRoutine, extends TimerTask B and calls the frame-Animation.
start() method for the AnimationDrawable bound to the ImageView background. If
you run the project now, you should see something like figure 9.3.

 As you can see, creating an Animation with XML in Android is pretty simple. You

Listing 9.12 xmlanimation.java

Allow wait time
before starting
Animation

B

can make the animations reasonably complex, as you would with any stop-motion-type

230 CHAPTER 9 Graphics and animation

movie, but to create more sophisticated animations programmatically you need to use
Android’s 2D and 3D graphics abilities. In the next section, we’ll do just that.

9.2.2 Programmatically creating an animation

In the previous section, we used Android’s frame-by-frame animation capabilities to
show a series of images in a loop that gives the impression of movement. In this next
section, we’re going to programmatically animate a globe so that it moves around the
screen.

 To create this animation, we’re going to animate a graphics file (a PNG file) with a
ball that appears to be bouncing around inside our Android viewing window. We’ll
create a Thread in which our animation will run, and a Handler that’ll help communi-
cate messages back to our program that reflect the changes in the state of our anima-
tion. We’ll use this same approach in section 9.3 when we talk about OpenGL ES.
You’ll find this approach is useful for creating most complex graphics applications
and animations.

CREATING THE PROJECT

In this section, we’ll look at a simple animation technique that uses an image bound
to a sprite. The image moves that sprite around the screen to give the appearance of a
bouncing ball. To get started, create a new project called BouncingBall with a Bounce-
Activity. You can copy and paste the code in the following listing for the Bounce-
Activity.java file.

public class BounceActivity extends Activity {
 protected static final int GUIUPDATEIDENTIFIER = 0x101;
 Thread myRefreshThread = null;
 BounceView myBounceView = null;
 Handler myGUIUpdateHandler = new Handler() {
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case BounceActivity.GUIUPDATEIDENTIFIER:

Listing 9.13 BounceActivity.java

Figure 9.3 Making a
ball bounce using an
Android XML animation

Create a
unique
identifierB

Create a handlerC
 myBounceView.invalidate();

231Creating animations with Android’s Graphics API

 break;
 }
 super.handleMessage(msg);
 }
 };
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 this.requestWindowFeature(Window.FEATURE_NO_TITLE);
 this.myBounceView = new BounceView(this);
 this.setContentView(this.myBounceView);
 new Thread(new RefreshRunner()).start();
 }
 class RefreshRunner implements Runnable {
 public void run() {
 while (!Thread.currentThread().isInterrupted()) {
 Message message = new Message();
 message.what = BounceActivity.GUIUPDATEIDENTIFIER;
 BounceActivity.this.myGUIUpdateHandler
.sendMessage(message);
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 }
 }
}

First, we import the Handler and Message classes, and then we create a unique identi-
fier to allow us to send a message back to our program to update the view in the main
thread. We need to send a message telling the main thread to update the view each
time the child thread has finished drawing our ball. Because different messages can
be thrown by the system, we need to guarantee the uniqueness of our message to our
handler by creating a unique identifier called GUIUPDATEIDENTIFIER B. Next, we cre-
ate the Handler that’ll process our messages to update the main view C. A Handler
allows us to send and process Message classes and Runnable objects associated with a
thread’s message queue. Handlers are associated with a single thread and its message
queue. We’ll use the Handler to allow our objects running a thread to communicate
changes in state back to the program that spawned them, or vice versa.

NOTE For more information about handling long-running requests in your
applications, see http://developer.android.com/reference/android/app/
Activity.html.

We set up a View D and create the new thread. Finally, we create a RefreshRunner
inner class implementing Runnable that’ll run unless something interrupts the
thread, at which point a message is sent to the Handler to call its invalidate()
method E. The invalidate method invalidates the View and forces a refresh.

Create
the view

D

Run the
animation

E

232 CHAPTER 9 Graphics and animation

 You’ve got your new project. Now you need to create the code that’ll do your ani-
mation and create a View.

MAKING ANIMATION HAPPEN

We’re going to use an image of a globe, which you can obtain at http://www.manning.
com/AndroidinActionSecondEdition. Alternatively, you can use any other PNG file
you’d like to use. We also want to have the Android logo as our background, which
you can find with the source code downloads. Make sure to drop the images under
res/drawable/. Next, create a Java file called BounceView, copy the code from the fol-
lowing listing, and paste it into your editor.

public class BounceView extends View {
 protected Drawable mySprite;
 protected Point mySpritePos = new Point(0,0);
 protected enum HorizontalDirection {LEFT, RIGHT} ;
 protected enum VerticalDirection {UP, DOWN} ;
 protected HorizontalDirection myXDirection =
HorizontalDirection.RIGHT;
 protected VerticalDirection myYDirection = VerticalDirection.UP;
 public BounceView(Context context) {
 super(context);
this.setBackground(this.getResources().getDrawable(R.drawable.android));
this.mySprite =
 this.getResources().getDrawable(R.drawable.world);
 }
 @Override
 protected void onDraw(Canvas canvas) {
this.mySprite.setBounds(this.mySpritePos.x,
 this.mySpritePos.y,
 this.mySpritePos.x + 50, this.mySpritePos.y + 50);
 if (mySpritePos.x >= this.getWidth() –
mySprite.getBounds().width()) {
 this.myXDirection = HorizontalDirection.LEFT;
 } else if (mySpritePos.x <= 0) {
 this.myXDirection = HorizontalDirection.RIGHT;
 }
 if (mySpritePos.y >= this.getHeight() –
mySprite.getBounds().height()) {
 this.myYDirection = VerticalDirection.UP;
 } else if (mySpritePos.y <= 0) {
 this.myYDirection = VerticalDirection.DOWN;
 }
 if (this.myXDirection ==
HorizontalDirection.RIGHT) {
 this.mySpritePos.x += 10;
 } else {
 this.mySpritePos.x -= 10;
 }

 if (this.myYDirection ==
 VerticalDirection.DOWN) {

Listing 9.14 BounceView.java

Get image
file and map
it to spriteB

Set the bounds
of the globe

C

DMove ball left or
right, up or down

E

Check if ball
is trying to
leave screen
 this.mySpritePos.y += 10;

233Introducing OpenGL for Embedded Systems

 } else {
 this.mySpritePos.y -= 10;
 }
 this.mySprite.draw(canvas);
 }
}

In this listing, we do all the real work of animating our image. First, we create a
Drawable to hold our globe image and a Point that we use to position and track our
globe as we animate it. Next, we create enumerations (enums) to hold directional val-
ues for horizontal and vertical directions, which we’ll use to keep track of the moving
globe. Then we map the globe to the mySprite variable and set the Android logo as
the background for our animation B.

 Now that we’ve done the setup work, we create a new View and set all the boundar-
ies for the Drawable C. After that, we create simple conditional logic that detects
whether the globe is trying to leave the screen; if it starts to leave the screen, we
change its direction D. Then we provide simple conditional logic to keep the ball
moving in the same direction if it hasn’t encountered the bounds of the View E.
Finally, we draw the globe using the draw method. If you compile and run the project,
you should see the globe bouncing around in front of the Android logo, as shown in
figure 9.4.

Though the simple Animation that we created is not too exciting, you could—with
a little extra work—leverage the key concepts (dealing with boundaries, moving
around drawables, detecting changes, dealing with threads, and so on) to create some-
thing like the Google Lunar Lander example game or even a simple version of Aster-
oids. If you want more graphics power and want to easily work with 3D objects to create
things such as games or sophisticated animations, read the next section on OpenGL ES.

9.3 Introducing OpenGL for Embedded Systems
One of the most interesting features of the Android platform is its support of OpenGL
for Embedded Systems,1 or OpenGL ES. OpenGL ES is the embedded systems version of the

1 Here is a good series of articles showing how to use OpenGL ES on Android: http://blog.jayway.com/author/

Figure 9.4 A simple
animation of a globe
bouncing in front of the
Android logo
pererikbergman.

234 CHAPTER 9 Graphics and animation

popular OpenGL standard, which defines a cross-platform and cross-language API for
computer graphics. The OpenGL ES API doesn’t support the full OpenGL API, and
much of the OpenGL API has been stripped out to allow OpenGL ES to run on a variety
of mobile phones, PDAs, video game consoles, and other embedded systems. OpenGL
ES was originally developed by the Khronos Group, an industry consortium. You can
find the most current version of the standard at http://www.khronos.org/opengles/.

 OpenGL ES is a fantastic API for 2D and 3D graphics, especially for graphically inten-
sive applications such as games, graphical simulations, visualizations, and all sorts of
animations. Because Android also supports 3D hardware acceleration, developers can
make graphically intensive applications that target hardware with 3D accelerators.

 Android 2.1 supports the Open GL ES 1.0 standard, which is almost equivalent to
the OpenGL 1.3 standard. If an application can run on a computer using OpenGL 1.3,
it should be possible to run it on Android, but you need to consider the hardware
specifications of your Android handset. Though Android offers support for hardware
acceleration, some handsets and devices running Android have had performance
issues with OpenGL ES in the past. Before you embark on a project using OpenGL,
consider the hardware you’re targeting and do extensive testing to make sure that you
don’t overwhelm your hardware with OpenGL graphics.

 Because OpenGL and OpenGL ES are such broad topics, with whole books dedi-
cated to them, we’ll cover only the basics of working with OpenGL ES and Android.
For a much deeper exploration of OpenGL ES, check out the specification and the
OpenGL ES tutorial at http://www.zeuscmd.com/tutorials/opengles/index.php.
After reading this section on Android support for OpenGL ES, you should have
enough information to follow a more in-depth discussion of OpenGL ES, and you
should be able to port your code from other languages (such as the tutorial examples)
into the Android framework. If you already know OpenGL or OpenGL ES, then the
OpenGL commands will be familiar; concentrate on the specifics of working with
OpenGL on Android.

NOTE An excellent book on OpenGL and Java 3D programming is Java 3D
Programming by Daniel Selman, which is available at http://www.manning.
com/selman/.

9.3.1 Creating an OpenGL context

Keeping in mind the comments we made in the introduction to this section, let’s
apply the basics of OpenGL ES to create an OpenGL-Context and a Window that we can
draw in. Much of this task will seem overly complex compared to Android’s Graphics
API. The good news is that you have to do this setup work only once. That being said,
we’ll use the following general processes for working with OpenGL ES in Android:

1 Create a custom View subclass.
2 Get a handle to an OpenGLContext, which provides access to Android’s OpenGL

ES functionality.

235Introducing OpenGL for Embedded Systems

3 In the View’s onDraw() method, use the handle to the GL object and then use
its methods to perform any GL functions.

Following these basic steps, first we’ll create a class that uses Android to create a blank
surface to draw on. In section 9.3.2, we’ll use OpenGL ES commands to draw a square
and an animated cube on the surface. To start, open a new project called
OpenGLSquare and create an Activity called OpenGLSquare, as shown in the follow-
ing listing.

public class SquareActivity extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(new DrawingSurfaceView(this));
 }
 class DrawingSurfaceView extends SurfaceView implements
 SurfaceHolder.Callback {
 public SurfaceHolder mHolder;
 public DrawingThread mThread;

 public DrawingSurfaceView(Context c) {
 super(c);
 init();
 }
 public void init() {
 mHolder = getHolder();
 mHolder.addCallback(this);
 mHolder.setType(SurfaceHolder.SURFACE_TYPE_GPU);
 }
 public void surfaceCreated(SurfaceHolder holder) {
 mThread = new DrawingThread();
 mThread.start();
 }
 public void surfaceDestroyed(SurfaceHolder holder) {
 mThread.waitForExit();
 mThread = null;
 }
 public void surfaceChanged(SurfaceHolder holder,
 int format, int w, int h) {
 mThread.onWindowResize(w, h);
 }
 class DrawingThread extends Thread {

 boolean stop;
 int w;
 int h;
 boolean changed = true;
 DrawingThread() {
 super();
 stop = false;
 w = 0;

Listing 9.15 OpenGLSquare.java

Handle all
creation and
destruction

B

Do actual
drawingC

Register as
callback

D

Create thread
to do drawing

E

 h = 0;

236 CHAPTER 9 Graphics and animation

 }
 @Override
 public void run() {
 EGL10 egl = (EGL10)EGLContext.getEGL();

 EGLDisplay dpy =
 egl.eglGetDisplay(EGL10.EGL_DEFAULT_DISPLAY);
 int[] version = new int[2];
 egl.eglInitialize(dpy, version);
 int[] configSpec = {

 EGL10.EGL_RED_SIZE, 5,
 EGL10.EGL_GREEN_SIZE, 6,
 EGL10.EGL_BLUE_SIZE, 5,
 EGL10.EGL_DEPTH_SIZE, 16,
 EGL10.EGL_NONE
 };
 EGLConfig[] configs = new EGLConfig[1];
 int[] num_config = new int[1];
 egl.eglChooseConfig(dpy, configSpec, configs, 1,
 num_config);
 EGLConfig config = configs[0];
 EGLContext context = egl.eglCreateContext(dpy,
 config, EGL10.EGL_NO_CONTEXT, null);
 EGLSurface surface = null;
 GL10 gl = null;
 while(! stop) {

 int W, H;
 boolean updated;
 synchronized(this) {
 updated = this.changed;
 W = this.w;
 H = this.h;
 this.changed = false;
 }
 if (updated) {
 if (surface != null) {
 egl.eglMakeCurrent(dpy,
EGL10.EGL_NO_SURFACE,EGL10.EGL_NO_SURFACE, EGL10.EGL_NO_CONTEXT);
 egl.eglDestroySurface(dpy,
 surface);
 }
 surface =
 egl.eglCreateWindowSurface(dpy, config, mHolder, null);
 egl.eglMakeCurrent(dpy, surface,
 surface, context);
 gl = (GL10) context.getGL();
 gl.glDisable(GL10.GL_DITHER);
 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT,
 GL10.GL_FASTEST);
 gl.glClearColor(1, 1, 1, 1);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glShadeModel(GL10.GL_SMOOTH);
 gl.glEnable(GL10.GL_DEPTH_TEST);

Get EGL
Instance

F

Specify
configuration
to useG

Obtain reference
to OpenGL ES
contextH

Do actual
drawingI
 gl.glViewport(0, 0, W, H);

237Introducing OpenGL for Embedded Systems

 float ratio = (float) W / H;
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glFrustumf(-ratio, ratio, -1,
 1, 1, 10);
 }
 drawFrame(gl);
 egl.eglSwapBuffers(dpy, surface);
 if (egl.eglGetError() ==
EGL11.EGL_CONTEXT_LOST) {
 Context c = getContext();
 if (c instanceof Activity) {
 ((Activity)c).finish();
 }
 }
 }
 egl.eglMakeCurrent(dpy, EGL10.EGL_NO_SURFACE,
EGL10.EGL_NO_SURFACE,
 EGL10.EGL_NO_CONTEXT);
 egl.eglDestroySurface(dpy, surface);
 egl.eglDestroyContext(dpy, context);
 egl.eglTerminate(dpy);
 }
 public void onWindowResize(int w, int h) {
 synchronized(this) {
 this.w = w;
 this.h = h;
 this.changed = true;
 }
 }
 public void waitForExit() {
 this.stop = true;
 try {
 join();
 } catch (InterruptedException ex) {
 }
 }
 private void drawFrame(GL10 gl) {
 // do whatever drawing here.
 }
 }
 }
}

Listing 9.15 will generate an empty black screen. Everything in this listing is code you
need to draw and manage any OpenGL ES visualization. First, we import all our
needed classes. Then we implement an inner class, which will handle everything
about managing a surface: creating it, changing it, or deleting it. We extend the class
SurfaceView and implement the SurfaceHolder interface, which allows us to get
information back from Android when the surface changes, such as when someone
resizes it B. With Android, all this has to be done asynchronously; you can’t manage
surfaces directly.

238 CHAPTER 9 Graphics and animation

 Next, we create a thread to do the drawing C and create an init method that uses
the SurfaceView class’s getHolder method to get access to the SurfaceView and add a
callback to it via the addCallBack method D. Now we can implement surface-
Created, surfaceChanged, and surfaceDestroyed, which are all methods of the Call-
back class and are fired on the appropriate condition of change in the Surface’s state.

 Now that all the Callback methods are implemented, we’ll create a thread to do
all our drawing E. Before we can draw anything though, we need to create an
OpenGL ES Context F and create a handler to the surface G so that we can use the
OpenGL Context’s method to act on the surface via the handle H. Now we can finally
draw something, although in the drawFrame method I we aren’t doing anything.

 If you were to run the code right now, all you’d get would be an empty window, but
what we’ve generated so far will appear in some form or another in any OpenGL ES
application you make on Android. Typically, you would break up your code so that an
Activity class starts your code and another class implements your custom View. Yet
another class might implement your SurfaceHolder and Callback and provide all the
methods for detecting changes to the surface, as well as the actual drawing of your
graphics in a thread. Finally, you might have another class for whatever code repre-
sents your graphics.

 In the next section, we’ll look at how to draw a square on the surface and how to
create an animated cube.

9.3.2 Drawing a rectangle with OpenGL ES

In our next example, you’ll use OpenGL ES
to create a simple drawing, a rectangle,
using OpenGL primitives, which are pixels,
polygons, and triangles. When you draw
the square, you’ll use a primitive called the
GL_Triangle_Strip, which takes three ver-
tices (the x, y, and z points in an array of
vertices) and draws a triangle. The last two
vertices become the first two vertices for
the next triangle, with the next vertex in
the array being the final point. This process
repeats for as many vertices as there are in
the array, and it generates something like
figure 9.5, where two triangles are drawn.

 OpenGL supports a small set of primi-
tives, shown in table 9.1, that allow you to
build anything using simple geometric
shapes, from a rectangle to 3D models of
animated characters.

3 4

1 2

Triangle 2

Triangle 1

0.75

0.5

0.25

0.25 0.5 0.75

0.75

0.5

0.25

XZ

Y

Figure 9.5 How two triangles are drawn from
an array of vertices

239Introducing OpenGL for Embedded Systems

In the next listing, we use an array of vertices to define a square to paint on our sur-
face. To use the code, insert it directly into the code for listing 9.15, immediately
below the commented line // do whatever drawing here.

gl.glClear(GL10.GL_COLOR_BUFFER_BIT |
 GL10.GL_DEPTH_BUFFER_BIT);
float[] square = new float[] {
 0.25f, 0.25f, 0.0f,
 0.75f, 0.25f, 0.0f,
 0.25f, 0.75f, 0.0f,
 0.75f, 0.75f, 0.0f };
FloatBuffer squareBuff;
ByteBuffer bb =
ByteBuffer.allocateDirect(square.length*4);
 bb.order(ByteOrder.nativeOrder());
 squareBuff = bb.asFloatBuffer();
 squareBuff.put(square);
 squareBuff.position(0);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluOrtho2D(gl, 0.0f,1.2f,0.0f,1.0f);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, squareBuff);
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glColor4f(0,1,1,1);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);

Table 9.1 OpenGL primitives and their descriptions

Primitive flag Description

GL_LINE_LOOP Draws a continuous set of lines. After the first vertex, it draws a line
between every successive vertex and the vertex before it. Then it connects
the start and end vertices.

GL_LINE_STRIP Draws a continuous set of lines. After the first vertex, it draws a line
between every successive vertex and the vertex before it.

GL_LINES Draws a line for every pair of vertices given.

GL_POINTS Places a point at each vertex.

GL_TRIANGLE_FAN After the first two vertices, every successive vertex uses the previous ver-
tex and the first vertex to draw a triangle. This flag is used to draw cone-like
shapes.

GL_TRIANGLE_STRIP After the first two vertices, every successive vertex uses the previous two
vertices to draw a triangle.

GL_TRIANGLES For every triplet of vertices, it draws a triangle with corners specified by the
coordinates of the vertices.

Listing 9.16 OpenGLSquare.java

Create float buffer
to hold square

B

Set up 2D
orthographic
viewing region

C

Set current
vertices for
drawingD

240 CHAPTER 9 Graphics and animation

This code is dense with OpenGL commands. The first thing we do is clear the screen
using glClear, which you want to do before every drawing. Then we build the array
that’ll represent the set of vertices that make up our square. As we explained before,
we’ll be using the OpenGL primitive GL_TRANGLE_STRIP to create the rectangle shown
in figure 9.5, where the first set of three vertices (points 1, 2, and 3) represent the first
triangle. The last vertex represents the third vertex (point 4) in the second triangle,
which reuses vertices 2 and 3 from the first triangle as its first two to make the triangle
described by points 2, 3, and 4. To put it more succinctly, Open GL takes one triangle
and flips it over on its third side (in this case, the hypotenuse). We then create a buffer
to hold that same square data B. We also tell the system that we’ll be using a
GL_PROJECTION for our matrix mode, which is a type of matrix transformation that’s
applied to every point in the matrix stack.

 The next things we do are more related to setup. We load the identity matrix and
then use the gluOrtho2D(GL10 gl, float left, float right, float bottom, float
top) command to set the clipping planes that are mapped to the lower-left and upper-
right corners of the window C.

 Now we’re ready to start drawing our image. First, we use the glVertex-
Pointer(int size, int type, int stride, pointer to array) method, which indi-
cates the location of vertices for our triangle strip. The method has four attributes:
size, type, stride, and pointer. The size attribute specifies the number of coordi-
nates per vertex (for example, a 2D shape might ignore the z axis and use only two
coordinates per vertex), type defines the data type to be used (GL_BYTE, GL_SHORT,
GL_FLOAT, and so on) D, stride specifies the offset between consecutive vertices (how
many unused values exist between the end of the
current vertex and the beginning of the next), and
pointer is a reference to the array. Though most
drawing in OpenGL ES is performed by using vari-
ous forms of arrays such as the vertex array, they’re
all disabled by default to save system resources. To
enable them, we use the OpenGL command glEna-
bleClientState(array type), which accepts an
array type; in our case the type is GL_VERTEX_ARRAY.

 Finally, we use the glDrawArrays function to
render our arrays into the OpenGL primitives and
create our simple drawing. The glDrawAr-

rays(mode, first, count) function has three attri-
butes: mode indicates which primitive to render,
such as GL_TRIANGLE_STRIP; first is the starting
index of the array, which we set to 0 because we
want it to render all the vertices in the array; and
count specifies the number of indices to be ren-
dered, which for us is 4.

Figure 9.6 A simple rectangle drawn
on our surface using OpenGL ES

241Introducing OpenGL for Embedded Systems

 Now if you run the code, you should see a simple blue rectangle on a white sur-
face, like the one in figure 9.6. It isn’t particularly exciting, but you would need most
of the code you used for this example for any OpenGL project.

 There you have it—your first graphic in OpenGL ES. Now we’re going to do some-
thing way more interesting. In our next example, you’re going to create a 3D cube
with different colors on each side, then rotate it in space.

9.3.3 Three-dimensional shapes and surfaces with OpenGL ES

In this section, we’re going to use much of the code from the previous example, but
we’re going to extend it to create a 3D cube that rotates. We’ll examine how to intro-
duce perspective to your graphics to give the illusion of depth.

 Depth works in OpenGL by using a depth buffer, which contains a depth value for
every pixel, in the range 0 to 1. The value represents the perceived distance between
objects and your viewpoint; when two objects’ depth values are compared, the value
closer to 0 will appear in front on the screen. To make use of depth in our program,
we need to first enable the depth buffer by passing GL_DEPTH_TEST to the glEnable
method. Next, we need to use glDepthFunc to define how values are compared. For
our example, we’re going to use GL_LEQUAL, defined in table 9.2, which tells the sys-
tem to show objects with a lower depth value in front of other objects.

When you draw a primitive, the depth test occurs. If the value passes the test, the
incoming color value replaces the current one.

 The default value is GL_LESS. You want the value to pass the test if the values are
equal as well. Objects with the same z value will display, depending on the order in
which they were drawn. We pass GL_LEQUAL to the function.

 One important part of maintaining the illusion of depth is providing perspective.
In OpenGL, a typical perspective is represented by a viewpoint with near and far clip-
ping planes and top, bottom, left, and right planes, where objects that are closer to
the far plane appear smaller, as in figure 9.7.

Table 9.2 Flags for determining how values in the depth buffer are compared

Flag Description

GL_ALWAYS Always passes

GL_EQUAL Passes if the incoming depth value is equal to the stored value

GL_GEQUAL Passes if the incoming depth value is greater than or equal to the stored value

GL_GREATER Passes if the incoming depth value is greater than the stored value

GL_LEQUAL Passes if the incoming depth value is less than or equal to the stored value

GL_LESS Passes if the incoming depth value is less than the stored value

GL_NEVER Never passes

GL_NOTEQUAL Passes if the incoming depth value is not equal to the stored value

242 CHAPTER 9 Graphics and animation

OpenGL ES provides a function called gluPerspective(GL10 gl, float fovy, float
aspect, float zNear, float zFar) with five parameters (see table 9.3) that lets you
easily create perspective.

To demonstrate depth and perspective, you’re going to create a project called
OpenGLCube and copy and paste the code from listing 9.15 into the OpenGLCube-
Activity.

 Now add two new variables to your code, shown in the following listing, right at the
beginning of the DrawSurfaceView inner class.

class DrawingSurfaceView extends SurfaceView implements
SurfaceHolder.Callback {
 public SurfaceHolder mHolder;
 float xrot = 0.0f;
 float yrot = 0.0f;

We’re going to use xrot and yrot variables later in our code to govern the rotation of
our cube.

 Next, right before the method, add a new method called makeFloatBuffer, as in
the following listing.

Table 9.3 Parameters for the gluPerspective function

Parameter Description

aspect The aspect ratio that determines the field of view in the x direction. The aspect ratio is
the ratio of x (width) to y (height).

fovy Field of view angle in the y direction, in degrees,

gl GL10 interface.

zFar The distance from the viewer to the far clipping plane. This value is always positive.

zNear The distance from the viewer to the near clipping plane. This value is always positive.

Listing 9.17 OpenGLCubeActivity.java

T

L
R

B

N F
Viewpoint Figure 9.7 In OpenGL, a

perspective is made up of a
viewpoint and near (N), far (F),
left (L), right (R), top (T), and
bottom (B) clipping planes.

243Introducing OpenGL for Embedded Systems

protected FloatBuffer makeFloatBuffer(float[] arr) {
 ByteBuffer bb = ByteBuffer.allocateDirect(arr.length*4);
 bb.order(ByteOrder.nativeOrder());
 FloatBuffer fb = bb.asFloatBuffer();
 fb.put(arr);
 fb.position(0);
 return fb;
}

This float buffer is the same as the one in listing 9.16, but we’ve abstracted it from the
drawFrame method so we can focus on the code for rendering and animating our
cube.

 Next, copy and paste the code in the following listing into the drawFrame method.
Note you’ll also need to update your drawFrame call in the following way:

 drawFrame(gl, w, h);

 private void drawFrame(GL10 gl, int w1, int h1) {
 float mycube[] = {
 // FRONT
 -0.5f, -0.5f, 0.5f,
 0.5f, -0.5f, 0.5f,
 -0.5f, 0.5f, 0.5f,
 0.5f, 0.5f, 0.5f,
 // BACK
 -0.5f, -0.5f, -0.5f,
 -0.5f, 0.5f, -0.5f,
 0.5f, -0.5f, -0.5f,
 0.5f, 0.5f, -0.5f,
 // LEFT
 -0.5f, -0.5f, 0.5f,
 -0.5f, 0.5f, 0.5f,
 -0.5f, -0.5f, -0.5f,
 -0.5f, 0.5f, -0.5f,
 // RIGHT
 0.5f, -0.5f, -0.5f,
 0.5f, 0.5f, -0.5f,
 0.5f, -0.5f, 0.5f,
 0.5f, 0.5f, 0.5f,
 // TOP
 -0.5f, 0.5f, 0.5f,
 0.5f, 0.5f, 0.5f,
 -0.5f, 0.5f, -0.5f,
 0.5f, 0.5f, -0.5f,
 // BOTTOM
 -0.5f, -0.5f, 0.5f,
 -0.5f, -0.5f, -0.5f,
 0.5f, -0.5f, 0.5f,
 0.5f, -0.5f, -0.5f,
 };

Listing 9.18 OpenGLCubeActivity.java

Listing 9.19 OpenGLCubeActivity.java

244 CHAPTER 9 Graphics and animation

 FloatBuffer cubeBuff;

 cubeBuff = makeFloatBuffer(mycube);

 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glDepthFunc(GL10.GL_LEQUAL);
 gl.glClearDepthf(1.0f);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT |
GL10.GL_DEPTH_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glViewport(0,0,w,h);
 GLU.gluPerspective(gl, 45.0f,
((float)w)/h, 1f, 100f);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 GLU.gluLookAt(gl, 0, 0, 3, 0, 0, 0, 0, 1, 0);
 gl.glShadeModel(GL10.GL_SMOOTH);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, cubeBuff);
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glRotatef(xrot, 1, 0, 0);
 gl.glRotatef(yrot, 0, 1, 0);
 gl.glColor4f(1.0f, 0, 0, 1.0f);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 4, 4);
 gl.glColor4f(0, 1.0f, 0, 1.0f);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 8, 4);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 12, 4);
 gl.glColor4f(0, 0, 1.0f, 1.0f);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 16, 4);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 20, 4);
 xrot += 1.0f;
 yrot += 0.5f;

This listing doesn’t contain much new code. First, we describe the vertices for a cube,
which is built in the same way as our simple rectangle in listing 9.16 (using triangles).
Next, we set up the float buffer for our vertices B and enable the depth function C
and perspective function D to provide a sense of depth. Note that with our glu-
Perspective we passed 45.0f (45 degrees) to give a more natural viewpoint.

 Next, we use the GLU.gluLookAt(GL10 gl, float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
function to move the position of our view without having to modify the projection
matrix directly. When we’ve established our view position, we turn on smooth shading
for the model and rotate the cube around the x and y axes F. Then we draw the cube
sides and increment the rotation so that on the next iteration of draw, the cube is
drawn at a slightly different angle E. If you run the code, you should now see a rotat-
ing 3D cube like the one shown in figure 9.8.

NOTE You can try experimenting with the fovy value to see how changing
the angle affects the display of the cube.

Create float buffer
for vertices

B

Enable
depth test

C

Define perspectiveD

Draw six
sides in
three colors

E

Increment
x and y rotations

F

245Summary

You’ve done a lot in this section, starting with creating a simple OpenGL ES context
in which you can develop your OpenGL ES applications. Next, you learned how to
build shapes using OpenGL ES by creating multiple triangles. Then, you learned how
to realize this in three dimensions while incorporating it into a simple example. You
accomplished much of this without diving deep into OpenGL ES, which is definitely
nontrivial, but the good news is if you’re serious about doing 3D graphics on
Android, it’s definitely possible. Because Android provides excellent support for
OpenGL ES, you can find plenty of tutorials and references on the internet or at your
local bookstore.

9.4 Summary
In this chapter, we’ve lightly touched on a number of topics related to Android’s pow-
erful graphics features. First, we looked at how you can use both Java and XML with
the Android Graphics API to describe simple shapes. Next, we looked at how you can
use Android’s frame-by-frame XML to create an animation. You also learned how to
use more standard pixel manipulation to provide the illusion of movement through
Java and the Graphics API. Finally, we delved lightly into Android’s support of
OpenGL ES. We looked at how to create an OpenGL context, and then built a shape
in that context. Finally, you built a 3D animated cube.

 Graphics and visualizations are large and complex topics, easily filling a whole
book. Yet, because Android uses open and well-defined standards and supports an
excellent API for graphics, it should be easy for you to use Android’s documentation,
API, and other resources, such as Manning’s Java 3D Programming by Daniel Selman, to
develop anything from a new drawing program to complex games.

 In the next chapter, we’ll move from graphics to working with multiple media.
We’ll explore working with audio and video to lay the groundwork for making rich
multimedia applications.

Figure 9.8 A 3D cube
rotating in space

Multimedia
Today, people use cell phones for almost everything but phone calls, from chatting
to surfing the web to listening to music and even to watching live streaming TV.
Nowadays, a cell phone needs to support multimedia to be considered a usable
device. In this chapter, we’re going to look at how you can use Android to play
audio files, watch video, take pictures, and even record sound.

 Android supports multimedia by using the open source multimedia system
called OpenCORE from PacketVideo Corporation. OpenCORE provides the founda-
tion for Android’s media services, which Android wraps in an easy-to-use API. In
addition to the OpenCORE framework, the Android platform is migrating to a
Google-written multimedia framework named Stagefright. Both frameworks are
provided in version 2.2 (Froyo) and in subsequent versions of the SDK. It’s antici-
pated that most, if not all, of the multimedia functionality will be handled by the
Stagefright code base.

This chapter covers
 Playing audio and video

 Controlling the camera

 Recording audio

 Recording video
246

247Introduction to multimedia and OpenCORE

 In this chapter, we’ll look at OpenCORE’s multimedia architecture and features,
and then use it via Android’s MediaPlayer API to play audio files, take a picture, play
videos, and finally record video and audio from the emulator. To begin, let’s look at
OpenCORE’s multimedia architecture.

10.1 Introduction to multimedia and OpenCORE
Because the foundation of Android’s multimedia platform is PacketVideo’s Open-
CORE, we’re going to review OpenCORE’s architecture and services. OpenCORE is a
Java open source, multimedia platform that supports:

 Interfaces for third-party and hardware media codecs, input and output
devices, and content policies

 Media playback, streaming, downloading, and progressive playback, including
3rd Generation Partnership Program (3GPP), Moving Picture Experts Group 4
(MPEG-4), Advanced Audio Coding (AAC), and Moving Picture Experts Group
Audio Layer 3(MP3) containers

 Video and image encoders and decoders, including MPEG-4, International Tele-
communication Union H.263 video standard (H.263), Advanced Video Coding
(AVC H.264), and the Joint Photographic Experts Group (JPEG)

 Speech codecs, including Adaptive Multi-Rate audio codecs AMR-NB and
AMR-WB

 Audio codecs, including MP3, AAC, and AAC+
 Media recording, including 3GPP, MPEG-4, and JPEG

 Video telephony based on the 3GPP video conferencing standard 324-M
 PV test framework to ensure robustness and stability; profiling tools for memory

and CPU usage

OpenCORE provides all this functionality in a well-laid-out set of services, shown in fig-
ure 10.1.

NOTE As of Android 2.2, Google added a new multimedia platform called
Stagefright with the intention of replacing OpenCORE. As for Android 2.3,
Stagefright fully replaces OpenCORE with additional features, such as support
for multiple cameras, progressive streaming over HTTP, and the like. For the
most part, Android 2.3 and Stagefright focus on increasing performance and
making the underlying multimedia system easier to use and develop for. If
you plan to target Android 2.3 for your multimedia application development,
be sure to check against the Google list of support media file types at http://
developer.android.com/guide/appendix/media-formats.html.

As you can see from figure 10.1, OpenCORE’s architecture has excellent support for
multimedia and numerous codecs. In the next section, we’re going to dive right in
and use the Android API to play audio files.

249Playing audio

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Simple Media Player"
 />
<Button android:id="@+id/playsong"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Halo 3 Theme Song"
 />
</LinearLayout>

We need to fill out our MediaPlayerActivity class, as shown in the following listing.

public class MediaPlayerActivity extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 Button mybutton = (Button) findViewById(R.id.playsong);
 mybutton.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 MediaPlayer mp =
 MediaPlayer.create(MediaPlayerActivity.this,
 R.raw.halotheme);
 mp.start();
 mp.setOnCompletionListener(new OnCompletionListener(){
 public void onCompletion(MediaPlayer arg0) {

 }
 }
);
 }
 }
);
 }
}

As you can see, playing back an MP3 is easy. In listing 10.2, all we did was use the view
that we created in listing 10.1 and map the button, playsong, to mybutton, which we
then bound to the setOnClickListener() B. Inside the listener, we created the
MediaPlayer instance C using the create(Context context, int resourceid)
method, which takes our context and a resource ID for our MP3. Finally, we set the
setOnCompletionListener, which will perform some task on completion. For the
moment, we do nothing, but you might want to change a button’s state or provide a
notification to a user that the song is over, or ask if the user would like to play another
song. If you want to do any of these things, you’d use this method.

Listing 10.2 MediaPlayerActivity.java

Set view and
button to play MP3

B

Get context
and play MP3

C

250 CHAPTER 10 Multimedia

 Now if you compile the application and run it, you
should see something like figure 10.2. Click the button,
and you should hear the Halo 3 song played back in the
emulator via your speakers. You can also control the
volume of the playback with the volume switches on the
side of the Android emulator phone visualization.

 Now that we’ve looked at how to play an audio file,
let’s see how you can play a video file.

10.3 Playing video
Playing a video is slightly more complicated than play-
ing audio with the MediaPlayer API, in part because you
have to provide a view surface for your video to play on.
Android has a VideoView widget that handles that task
for you; you can use it in any layout manager. Android
also provides a number of display options, including
scaling and tinting. So let’s get started with playing
video by creating a new project called Simple Video
Player. Next, create a layout, as shown in the following listing.

NOTE Currently the emulator has some issues playing video content on cer-
tain computers and operating systems. Don’t be surprised if your audio or
video playback is choppy.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
 <VideoView android:id="@+id/video"
 android:layout_width="320px"
 android:layout_height="240px"
 />/
</LinearLayout>

All we’ve done in this listing is add the VideoView widget B. The VideoView provides
a UI widget with stop, play, advance, rewind, and other buttons, making it unnecessary
to add your own. Next, we need to write a class to play the video, which is shown in the
following listing.

 public class SimpleVideo extends Activity {

 private VideoView myVideo;

Listing 10.3 main.xml—UI for Simple Video Player

Listing 10.4 SimpleVideo.java

Add
VideoView widget

B

Figure 10.2
Simple media player example
 private MediaController mc;

251Capturing media

 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 getWindow().setFormat(PixelFormat.TRANSLUCENT);
 setContentView(R.layout.main);
 this.myVideo = (VideoView) findViewById(R.id.video);
 this.myVideo.setVideoPath("sdcard/test.mp4");
 this.mc = new MediaController(this);
 this.mc.setMediaPlayer(this.myVideo);
 this.myVideo.setMediaController(this.mc);
 this.myVideo.requestFocus();
 }
}

In this listing, we first created a translucent window, which is necessary for our
SurfaceView B. Next, we reference the VideoView as a container for playing the
video, and use its setVideoPath() to have it look at an SD card for our test MP4.
Finally, we set up the MediaController and use the setMediaController() to per-
form a callback to the VideoView to notify it when our video is finished playing.

 Before we can run this application, we need to set up an sdcard in the emulator
(see chapter 5 for details on the SD card). First, create a new SD card image:

mksdcard 512M mysdcard

Hit Return. A 512 MB FAT32 image named mysdcard
has now been created for you to load into the emulator.
Load the SD card into the emulator like this:

emulator –sdcard mysdcard

Now push the file test.mp4 to the disk image. After
you’ve pushed the file to the image, you can launch the
SimpleVideo application by going to your IDE and run-
ning the project while the emulator is already running.
You should now see something like figure 10.3.

 As you can see, the VideoView and MediaPlayer
classes simplify working with video files. Something
you’ll need to pay attention to when working with video
files is that the emulator and physical devices will react
differently with very large media files.

 Now that you’ve seen how simple it is to play media
using Android’s MediaPlayer API, let’s look at how you
can use a phone’s built-in camera or microphone to
capture images or audio.

10.4 Capturing media
Using your cell phone to take pictures, record memos, film short videos, and so on,
are features that are expected of any such device. In this section, we’re going to not
only look at how to capture media from the microphone and camera, but also how to

Create
translucent
window

B

Figure 10.3 Playing an MP4
video in the Android emulator
write these files to the simulated SD card image you created in the previous section.

252 CHAPTER 10 Multimedia

 To get started, let’s examine how to use the Android Camera class to capture
images and save them to a file.

10.4.1 Understanding the camera

An important feature of modern cell phones is their ability to take pictures or video
using a built-in camera. Some phones even support using the camera’s microphone to
capture audio. Android, of course, supports all three features and provides a variety of
ways to interact with the camera. In this section, we’re going to look at how to interact
with the camera and take photographs. In the next section, you’ll use the camera to
take video and save it to an SD card.

 You’ll be creating a new project called SimpleCamera to demonstrate how to con-
nect to a phone’s camera to capture images. For this project, we’ll be using the Camera
class (http://code.google.com/android/reference/android/hardware/Camera.html)
to tie the emulator’s (or phone’s) camera to a View. Most of the code that we’ve cre-
ated for this project deals with showing the input from the camera, but the main work
for taking a picture is done by a single method called take-Picture(Camera.
ShutterCallback shutter, Camera.PictureCallback raw, Camera.PictureCallback
jpeg), which has three callbacks that allow you to control how a picture is taken.

 Before we get any further into the Camera class and how to use the camera, let’s
create the project. We’ll be creating two classes; because the main class is long, we’ll
break it into two sections. For the first section, look at the following listing, Camera-
Example.java.

NOTE The Android emulator doesn’t allow you to connect to camera
devices, such as a webcam, on your computer; all your pictures will display a
chessboard like the one shown in figure 10.4. You can connect to a web cam-
era and get live images and video, but it requires some hacking. An excellent
example on how to do this can be found at Tom Gibara’s website, where he
has an open source project for obtaining live images from a webcam: http://
www.tomgibara.com/android/camera-source. It’s possible that in later ver-
sions of the SDK, the emulator will support connections to cameras on the
hardware the emulator is running on.

public class SimpleCamera extends Activity implements
SurfaceHolder.Callback
 {
 private Camera camera;
 private boolean isPreviewRunning = false;
 private SimpleDateFormat timeStampFormat = new
 SimpleDateFormat("yyyyMMddHHmmssSS");
 private SurfaceView surfaceView;
 private SurfaceHolder surfaceHolder;
 private Uri targetResource = Media.EXTERNAL_CONTENT_URI;
 public void onCreate(Bundle icicle)

Listing 10.5 CameraExample.java
 {

253Capturing media

 super.onCreate(icicle);
 Log.e(getClass().getSimpleName(), "onCreate");
 getWindow().setFormat(PixelFormat.TRANSLUCENT);
 setContentView(R.layout.main);
 surfaceView = (SurfaceView)findViewById(R.id.surface);
 surfaceHolder = surfaceView.getHolder();
 surfaceHolder.addCallback(this);
 surfaceHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 }
 @Override
 public boolean onCreateOptionsMenu(android.view.Menu menu) {
 MenuItem item =
menu.add(0, 0, 0, "View Photos?");
 item.setOnMenuItemClickListener(new
 MenuItem.OnMenuItemClickListener() {
 public boolean onMenuItemClick(MenuItem item) {
 Intent intent = new Intent(Intent.ACTION_VIEW,
 SimpleCamera.this.targetResource);
 startActivity(intent);
 return true;
 }
 });
 return true;
 }
 @Override
 protected void onRestoreInstanceState(Bundle savedInstanceState)
 {
 super.onRestoreInstanceState(savedInstanceState);
 }
 Camera.PictureCallback mPictureCallbackRaw = new
 Camera.PictureCallback() {
 public void onPictureTaken(byte[] data, Camera c) {
 SimpleCamera.this.camera.startPreview();
 }
 };
 Camera.ShutterCallback mShutterCallback = new Camera.ShutterCallback()
{
 Public void onShutter() {}
 }
 };

This listing is straightforward. First, we set variables for managing a surfaceView and
then set up the View. Next, we create a simple menu and menu option that will float
over our surface when the user clicks the Menu button on the phone while the appli-
cation is running B. Doing so will open Android’s picture browser and let the user
view the photos on the camera. Next, we create the first PictureCallback, which is
called when a picture is first taken C. This first callback captures the Picture-
Callback’s only method, onPictureTaken(byte[] data, Camera camera), to grab the
raw image data directly from the camera. Next, we create a ShutterCallback, which
can be used with its method, onShutter(), to play a sound; here we don’t call the
method D. We’ll continue with the CameraExample.java in the next listing.

Create menu to
Android’s Photo GalleryB

Create
PictureCallback

C

Create
ShutterCallbackD

254 CHAPTER 10 Multimedia

@Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {

 ImageCaptureCallback camDemo = null;
 if(keyCode == KeyEvent.KEYCODE_DPAD_CENTER) {
 try {
 String filename = this.timeStampFormat.format(new Date());
 ContentValues values = new ContentValues();
 values.put(MediaColumns.TITLE, filename);
 values.put(ImageColumns.DESCRIPTION,
 "Image from Android Emulator");
 Uri uri =
 getContentResolver().insert(
 Media.EXTERNAL_CONTENT_URI, values);
 camDemo = new ImageCaptureCallback(
 getContentResolver().openOutputStream(uri));
 } catch(Exception ex){
 }
 }
 if (keyCode == KeyEvent.KEYCODE_BACK) {
 return super.onKeyDown(keyCode, event);
 }
 if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER) {
 this.camera.takePicture(this.mShutterCallback,
 this.mPictureCallbackRaw, this.camDemo);
 return true;
 }
 return false;
 }
 @Override
 protected void onResume()
 {
 Log.e(getClass().getSimpleName(), "onResume");
 super.onResume();
 }
 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 }
 @Override
 protected void onStop()
 {
 super.onStop();
 }
 public void surfaceChanged(SurfaceHolder holder,
int format, int w, int h)
 {
 if (this.isPreviewRunning) {
 this.camera.stopPreview();
 }
 Camera.Parameters p = this.camera.getParameters();
 p.setPreviewSize(w, h);

Listing 10.6 CameraExample.java continued

Create method
to detect key
events

B

C

If center key
pressed, write
file to sdcard

If center key
depressed,
take pictureD
 this.camera.setParameters(p);

255Capturing media

 try{
 this.camera.setPreviewDisplay(holder);
 }catch(IOexcetion e{
 e.printStackTrace();
 }
 this.camera.startPreview();
 this.isPreviewRunning = true;
 }
 public void surfaceCreated(SurfaceHolder holder)
 {
 this.camera = Camera.open();
 }
 public void surfaceDestroyed(SurfaceHolder holder) {
 this.camera.stopPreview();
 this.isPreviewRunning = false;
 this.camera.release();
 }
}

This listing is more complicated than listing 10.5, although a large amount of the
code is about managing the surface for the camera preview. The first line is the start of
an implementation of the method onKeyDown B, which checks to see whether the
center key on the dpad was pressed. If it was, we set up the creation of a file, and by
using the ImageCaptureCallback, which we’ll define in listing 10.7, we create an
Outputstream to write our image data to C, including not only the image but the file-
name and other metadata. Next, we call the method takePicture() and pass to it the
three callbacks mShutterCallback, mPictureCallbackRaw, and camDemo. mPicture-
CallbackRaw is our raw image and camDemo writes the image to a file on the SD card
D, as you can see in the following listing.

public class ImageCaptureCallback implements PictureCallback {
 private OutputStream filoutputStream;
 public ImageCaptureCallback(OutputStream filoutputStream) {
 this.filoutputStream = filoutputStream;
 }
 public void onPictureTaken(byte[] data, Camera camera) {
 try {
 this.filoutputStream.write(data);
 this.filoutputStream.flush();
 this.filoutputStream.close();
 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Here, the class implements the PictureCallback interface and provides two meth-
ods. The constructor creates a stream to write data to, and the second method,
onPictureTaken, takes binary data and writes to the SD card as a JPEG.

Listing 10.7 ImageCaptureCallback.java

256 CHAPTER 10 Multimedia

 If you build this project and start the emulator
running using the SD card image you created ear-
lier in this chapter, you should see something like
figure 10.4 when you start the SimpleCamera appli-
cation from the Android menu. If you look at figure
10.4, you’ll notice an odd black-and-white checked
background with a bouncing gray box. The
Android emulator generates this test pattern to sim-
ulate an image feed because the emulator isn’t pull-
ing a live feed from the camera.

 Now if you click the center button on the dpad
in the emulator, the application will take a picture.
To see the picture, click the Menu button; a menu
appears on the camera view window with a single
option, View Pictures. If you select View Pictures,
you’re taken to the Android picture explorer, and
you should see Android’s image placeholders repre-
senting the number of camera captures. You can
also see the JPEG files that were written to the SD
card by opening the DDMS in Eclipse and navigat-
ing to mnt > sdcard > DCIM > Camera. You can see an example in figure 10.5.

 As you can see, working with the camera in Android isn’t particularly complicated.
To see how a real camera will behave, you’ll have to test on a real handset until the
emulator provides a simple way to connect to a camera on your computer. This work-
around shouldn’t stop you from developing your camera applications. A wealth of
Android applications already makes sophisticated use of the camera, ranging from
games to an application that uses a picture of your face to unlock your phone.

 Now that you’ve seen how the Camera class works in Android, let’s look at how to
capture or record audio from a camera’s microphone. In the next section, we’ll
explore the MediaRecorder class and you’ll write recordings to an SD card.

Figure 10.4 Test pattern coming
from the emulator camera and
displayed in the SimpleCamera
application
Figure 10.5 The Android emulator shows placeholder images for each photo taken.

257Capturing media

10.4.2 Capturing audio

Now we’ll look at using the onboard microphone to record audio. In this section,
we’re going to use the Android MediaRecorder example from Google Android Devel-
opers list, which you can find at http://code.google.com/p/unlocking-android/. The
code shown in this section has been updated slightly.

NOTE Audio capture requires a physical device running Android because it’s
not currently supported in the Android emulator.

In general, recording audio or video follows the same process in Android:

1 Create an instance of android.media.MediaRecorder
2 Create an instance of andriod.content.ContentValues, and add properties

such as TITLE, TIMESTAMP, and the all-important MIME_TYPE
3 Create a file path for the data to go to using android.content.

ContentResolver

4 To set a preview display on a view surface, use MediaRecorder.
setPreviewDisplay()

5 Set the source for audio, using MediaRecorder.setAudioSource()
6 Set output file format, using MediaRecorder.setOutputFormat()
7 Set your encoding for audio, using MediaRecorder.setAudioEncoder()
8 Use prepare() and start() to prepare and start your recordings
9 Use stop() and release() to gracefully stop and clean up your recording

process

Though recording media isn’t especially complex, you can see that it’s more complex
than playing it. To understand how to use the MediaRecorder class, we’ll look at an
application. Create a new application called SoundRecordingDemo. Next, you need
to edit the AndroidManifest.xml file and add the following line:

<uses-permission android:name="android.permission.RECORD_AUDIO" />

This code will allow the application to record the audio files and play them. Next, cre-
ate the class shown in the following listing.

public class SoundRecordingDemo extends Activity {
 MediaRecorder mRecorder;
 File mSampleFile = null;
 static final String SAMPLE_PREFIX = "recording";
 static final String SAMPLE_EXTENSION = ".mp3";
 private static final String TAG="SoundRecordingDemo";
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 this.mRecorder = new MediaRecorder();

Listing 10.8 SoundRecordingdemo.java
 Button startRecording = (Button)findViewById(R.id.startrecording);

258 CHAPTER 10 Multimedia

 Button stopRecording = (Button)findViewById(R.id.stoprecording);
 startRecording.setOnClickListener(new View.OnClickListener(){
 public void onClick(View v) {
 startRecording();
 }
 });
 stopRecording.setOnClickListener(new View.OnClickListener(){
 public void onClick(View v) {
 stopRecording();
 addToDB();
 }
 });
 }
 protected void addToDB() {
 ContentValues values = new ContentValues(3);
 long current = System.currentTimeMillis();
 values.put(MediaColumns.TITLE, "test_audio");
 values.put(MediaColumns.DATE_ADDED, (int) (current / 1000));
 values.put(MediaColumns.MIME_TYPE, "audio/mp3");
 values.put(MediaColumns.DATA, mSampleFile.getAbsolutePath());
 ContentResolver contentResolver = getContentResolver();
 Uri base = MediaStore.Audio.Media.EXTERNAL_CONTENT_URI;
 Uri newUri = contentResolver.insert(base, values);
 sendBroadcast(new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE,
 newUri));
 }
 protected void startRecording() {
 this.mRecorder = new MediaRecorder();
 this.mRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 this.mRecorder.setOutputFormat
(MediaRecorder.OutputFormat.THREE_GPP);
 this.mRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 this.mRecorder.setOutputFile(this.mSampleFile.getAbsolutePath());
 try{this.mRecorder.prepare();
 } catch (IllegalStateException e1) {
 e1.printStackTrace();
 } catch (IOException e1 {
 e1.printStackTrace();
 }
 this.mRecorder.start();
 if (this.mSampleFile == null) {
 File sampleDir = Environment.getExternalStorageDirectory();
 try {
 this.mSampleFile = File.createTempFile(
 SoundRecordingDemo.SAMPLE_PREFIX,
 SoundRecordingDemo.SAMPLE_EXTENSION, sampleDir);
 } catch (IOException e) {
 Log.e(TAG,"sdcard access error");
 return;
 }
 }
 }
 protected void stopRecording() {
 this.mRecorder.stop();
 this.mRecorder.release();
 }

BSet metadata
for audio

Notify music player
new audio file createdC

Start
recording
file

D

Stop recording
and release
MediaRecorder

E

}

259Recording video

In this listing, the first part of the code is creating the buttons and button listeners to
start and stop the recording. The first part of the listing you need to pay attention to is
the addToDB() method. In this method, we set all the metadata for the audio file we
plan to save, including the title, date, and type of file B. Next, we call the Intent
ACTION_MEDIA_SCANNER_SCAN_FILE to notify applications such as Android’s Music
Player that a new audio file has been created C. Calling this Intent allows us to use
the Music Player to look for new files in a playlist and play the files.

 Now that we’ve finished the addToDB method, we create the startRecording
method, which creates a new MediaRecorder D. As in the steps in the beginning of
this section, we set an audio source, which is the microphone, set an output format as
THREE_GPP, set the audio encoder type to AMR_NB, and then set the output file path to
write the file. Next, we use the methods prepare() and start() to enable audio
recording.

 Finally, we create the stopRecording() method to stop the MediaRecorder from
saving audio E by using the methods stop() and release(). If you build this applica-
tion and run the emulator with the SD card image from the previous section, you
should be able to launch the application from Eclipse and press the Start Recording
button. After a few seconds, press the Stop Recording button and open the DDMS; you
should be able to navigate to the sdcard folder and see your recordings, as shown in
figure 10.6.

 If music is playing on your computer’s audio system, the Android emulator will
pick it up and record it directly from the audio buffer (it’s not recording from a
microphone). You can then easily test whether it recorded sound by opening the
Android Music Player and selecting Playlists > Recently Added. It should play your
recorded file, and you should be able to hear anything that was playing on your com-
puter at the time.

 As of version 1.5, Android supported
the recording of video, although many
developers found it difficult and some
vendors implemented their own cus-
tomer solutions to support video record-
ing. With the release of 2.0, 2.1, and 2.2,
video has become far easier to work with,
both for playing as well as recording.
You’ll see how much easier in the next
section about using the MediaRecorder
class to write a simple application for
recording video.

10.5 Recording video
Video recording on Android is no more
difficult than recording audio, with the Figure 10.6 An example of audio files being saved

exception that you have a few different to the SD card image in the emulator

260 CHAPTER 10 Multimedia

fields. But there’s one important difference—unlike with recording audio data,
Android requires you to first preview a video feed before you can record it by passing
it a surface object much like we did with the camera application earlier in this chapter.
It’s worth repeating this point because when Android started supporting video record-
ing, many developers found themselves unable to record video: You must always pro-
vide a surface object. This might be awkward for some applications, but it’s currently
required in Android up to 2.2. Also, like recording audio, you have to provide several
permissions to Android so you can record video. The new one is RECORD_VIDEO, which
lets you use the camera to record video. The other permissions are CAMERA,
RECORD_AUDIO, and WRITE_EXTERNAL_ STORAGE, as shown in the following listing. So
go ahead and set up a new project called VideoCam and use the permissions in this
AndroidManifest.xml.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.chapter10.VideoCam"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".VideoCam"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
"android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-permission android:name="android.permission.CAMERA">
</uses-permission>
 <uses-permission android:name=
"android.permission.RECORD_AUDIO"></uses-permission>
 <uses-permission android:name=
"android.permission.RECORD_VIDEO"></uses-permission>
 <uses-permission android:name=
"android.permission.WRITE_EXTERNAL_STORAGE" />
 <uses-feature android:name="android.hardware.camera" />
</manifest>

Now that you’ve defined the manifest, you need to create a simple layout that has a
preview area and some buttons to start, stop, pause, and play your video recording.
The layout is shown in the following listing:

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

Listing 10.9 AndroidManifest.xml

Listing 10.10 maim.xml
 android:orientation="vertical"

261Recording video

 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <RelativeLayout android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/relativeVideoLayoutView"
 android:layout_centerInParent="true">

 <VideoView android:id="@+id/videoView"
android:layout_width="176px"

 android:layout_height="144px"
 android:layout_centerInParent="true"/>

 </RelativeLayout>

 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:layout_centerHorizontal="true"
 android:layout_below="@+id/relativeVideoLayoutView">
 <ImageButton android:id="@+id/playRecordingBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="@drawable/play"
 />

 <ImageButton android:id="@+id/bgnBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="@drawable/record"
 android:enabled="false"
 />
 </LinearLayout>
</RelativeLayout>

NOTE You’ll need to download this code from http://code.google.com/p/
unlocking-android/ to get the open source icons that we use for the buttons,
or you can use your own.

Video recording follows a set of steps that are similar to those for audio recording:

1 Create an instance of android.media.MediaRecorder.
2 Set up a VideoView.
3 To set a preview display on a view surface, use MediaRecorder.

setPreviewDisplay().
4 Set the source for audio, using MediaRecorder.setAudioSource().
5 Set the source for video, using MediaRecorder.setVideoSource().
6 Set your encoding for audio, using MediaRecorder.setAudioEncoder().
7 Set your encoding for video, using MediaRecorder.setVideoEncoder().
8 Set output file format using MediaRecorder.setOutputFormat().
9 Set the video size using setVideoSize(). (At the time this book was written,
there was a bug in setVideoSize that limited it to 320 by 240.)

262 CHAPTER 10 Multimedia

10 Set the video frame rate, using setVideoFrameRate.
11 Use prepare() and start() to prepare and start your recordings.
12 Use stop() and release() to gracefully stop and clean up your recording

process.

As you can see, using video is very similar to using audio. So let’s go ahead and finish
our example by using the code in the following listing.

VideoCam.java
public class VideoCam extends Activity implements SurfaceHolder.Callback {

 private MediaRecorder recorder = null;
 private static final String OUTPUT_FILE =
 "/sdcard/uatestvideo.mp4";
 private static final String TAG = "RecordVideo";
 private VideoView videoView = null;
 private ImageButton startBtn = null;
 private ImageButton playRecordingBtn = null;
 private Boolean playing = false;
 private Boolean recording = false;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 startBtn = (ImageButton) findViewById(R.id.bgnBtn);

 playRecordingBtn = (ImageButton)
 findViewById(R.id.playRecordingBtn);

 videoView = (VideoView)this.findViewById(R.id.videoView);

 final SurfaceHolder holder = videoView.getHolder();
 holder.addCallback(this);
 holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

 startBtn.setOnClickListener(new OnClickListener() {

 public void onClick(View view) {

 if(!VideoCam.this.recording & !VideoCam.this.playing)
 {
 try
 {
 beginRecording(holder);
 playing=false;
 recording=true;
 startBtn.setBackgroundResource(R.drawable.stop);
 } catch (Exception e) {
 Log.e(TAG, e.toString());
 e.printStackTrace();
 }
 }

Listing 10.11 VideoCam.java
 else if(VideoCam.this.recording)

263Recording video

 {
 try
 {
 stopRecording();
 playing = false;
 recording= false;
 startBtn.setBackgroundResource(R.drawable.play);
 }catch (Exception e) {
 Log.e(TAG, e.toString());
 e.printStackTrace();
 }
 }
 }
 });

 playRecordingBtn.setOnClickListener(new OnClickListener() {

 public void onClick(View view)
 {

 if(!VideoCam.this.playing & !VideoCam.this.recording)
 {
 try
 {
 playRecording();
 VideoCam.this.playing=true;
 VideoCam.this.recording=false;
 playRecordingBtn.setBackgroundResource

(R.drawable.stop);
 } catch (Exception e) {
 Log.e(TAG, e.toString());
 e.printStackTrace();
 }
 }
 else if(VideoCam.this.playing)
 {
 try
 {
 stopPlayingRecording();
 VideoCam.this.playing = false;
 VideoCam.this.recording= false;
 playRecordingBtn.setBackgroundResource

(R.drawable.play);
 }catch (Exception e) {
 Log.e(TAG, e.toString());
 e.printStackTrace();
 }
 }

 }
 });

 }

 public void surfaceCreated(SurfaceHolder holder) {

 startBtn.setEnabled(true);

264 CHAPTER 10 Multimedia

 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 }

 public void surfaceChanged(SurfaceHolder holder, int format, int width,
 int height) {
 Log.v(TAG, "Width x Height = " + width + "x" + height);
 }

 private void playRecording() {
 MediaController mc = new MediaController(this);
 videoView.setMediaController(mc);
 videoView.setVideoPath(OUTPUT_FILE);
 videoView.start();
 }

 private void stopPlayingRecording() {
 videoView.stopPlayback();
 }

 private void stopRecording() throws Exception {
 if (recorder != null) {
 recorder.stop();
 }
 }

 protected void onDestroy() {
 super.onDestroy();
 if (recorder != null) {
 recorder.release();
 }
 }

 private void beginRecording(SurfaceHolder holder) throws Exception {
 if(recorder!=null)
 {
 recorder.stop();
 recorder.release();
 }

 File outFile = new File(OUTPUT_FILE);
 if(outFile.exists())
 {
 outFile.delete();
 }

 try {
 recorder = new MediaRecorder();
 recorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);
 recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 recorder.setOutputFormat(MediaRecorder.OutputFormat.MPEG_4);
 recorder.setVideoSize(320, 240);
 recorder.setVideoFrameRate(15);
 recorder.setVideoEncoder(MediaRecorder.VideoEncoder.MPEG_4_SP);
 recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 recorder.setMaxDuration(20000);
 recorder.setPreviewDisplay(holder.getSurface());

 recorder.setOutputFile(OUTPUT_FILE);

265Summary

 recorder.prepare();
 recorder.start();
 }
 catch(Exception e) {
 Log.e(TAG, e.toString());
 e.printStackTrace();
 }
 }
}

Because much of this code is similar to other code in this chapter, we won’t describe
everything that’s happening. If you look quickly at the code in this listing, you’ll note
that it’s relatively simple. The first thing we do in the code, besides setting some fields,
is set up our surface to support the camera preview, much like we did in the simple
camera application earlier in this chapter. The next part of the code that’s important
is the beginRecording method. First, this method checks to make sure that everything
is ready to record a video file by making sure that the camera is free, and that it can
record the output file. Then, it closely follows the preceding processes to set up the
camera for recording before calling prepare() and then start().

 Unfortunately, as we noted with the camera project,
there’s no easy way to test your application in the emu-
lator. For this example, we’ve pushed the application to
a cell phone to test the camera, and used the DDMS to
note the file that was recorded and to play it back. You
can see an example of the output, captured with the
DDMS, from an HTC Hero in figure 10.7.

 Without a device to test on, you’ll have difficulties
debugging your video applications. If you decide to
develop a video application, we strongly suggest that
you not only obtain an Android device to test on, but
that you test every physical device that you hope your
application will run on. Although developing Android
applications that record data from sensors can be diffi-
cult to work with on the emulator, they’re relatively
straightforward to code, but you need to use a physical
Android device to test.

10.6 Summary
In this chapter, we looked at how the Android SDK uses multimedia and how you can
play, save, and record video and sound. We also looked at various features the Android
MediaPlayer offers the developer, from a built-in video player to wide support for for-
mats, encodings, and standards.

 We talked about how to interact with other hardware devices attached to the
phone, such as a microphone and camera. You used the SDK to create an SD card

Figure 10.7 Photograph of
VideoCam application running
on an HTC Hero 2.

266 CHAPTER 10 Multimedia

image for the emulator to simulate SD cards, and you used the MediaRecorder appli-
cation to record audio and save it to the SD card.

 The most consistent characteristic of multimedia programming with Android is
that things are changing and maturing! Multimedia support is moving from Open-
CORE to Stagefright, with version 2.2 being somewhat of a pivot release where both
frameworks share responsibility for delivering multimedia functionality. Writing multi-
media applications requires the developer to conduct a bit more work directly on the
hardware because the emulated environments don’t adequately replicate the hard-
ware capabilities of the handsets. Despite this potential speed-bump in the develop-
ment process, Android currently offers you everything you need to create rich and
compelling media applications. Its focus on supporting industry and open standards
guarantees that your applications will have wide support on a variety of phones.

 In the next chapter, you’ll learn all about how to use Android’s location services to
interact with GPS and maps. By mixing in what you’ve learned in this chapter, you’ll be
able to create your own GPS application that not only provides voice direction, but
that even responds to voice commands.

Location,
location, location
Accurate location awareness makes a mobile device more powerful. Combining
location awareness with network data can change the world—and Android shines
here. Other platforms have gained similar abilities in recent years, but Android
excels with its easy-to-use and popular location API framework based on Google
Maps.

 From direct network queries to triangulation with cell towers and even satellite
positioning via GPS, an Android-powered device has access to different types of
LocationProvider classes that allow access to location data. Various providers sup-
ply a mix of location-related metrics, including latitude and longitude, speed, bear-

This chapter covers
 Working with LocationProvider and LocationManager

 Testing location in the emulator

 Receiving location alerts with LocationListener

 Drawing with MapActivity and MapView

 Looking up addresses with the Geocoder
267

ing, and altitude.

268 CHAPTER 11 Location, location, location

 Developers generally prefer to work with GPS because of its accuracy and power.
But some devices may not have a GPS receiver, and even GPS-enabled devices can’t
access satellite data when inside a large building or otherwise obstructed from receiv-
ing the signal. In those instances the Android platform provides a graceful and auto-
matic fallback to query other providers when your first choice fails. You can examine
provider availability and hook into one or another using the LocationManager class.

 Location awareness1 opens up a new world of possibilities for application develop-
ment. In this chapter you’ll build an application that combines location awareness
with data from the U.S. National Oceanic and Atmospheric Administration (NOAA) to
produce an interesting and useful mashup.

 Specifically you’ll connect to the National Data Buoy Center (NDBC) to retrieve
data from buoys and ships located around the coastline in North America. Thanks to
the NOAA-NDBC system, which polls sensors on buoys and makes that data available in
RSS feeds, you can retrieve data for the vicinity, based on the current location, and dis-
play condition information such as wind speed, wave height, and temperature.
Although we won’t cover non-location-related details in this chapter, such as using
HTTP to pull the RSS feed data, the full source code for the application is available
with the code download for this chapter. Our Wind and Waves application has several
main screens, including an Android MapActivity with a MapView. These components
are used for displaying and manipulating map information, as shown in figure 11.1.

1 For more about location, check out Location-Aware Applications by Richard Ferraro and Murat Aktihanoglu,

Figure 11.1 Screens from the Wind and Waves location-aware application
to be published by Manning in March 2011: http//www.manning.com/ferraro.

269Simulating your location within the emulator

 Accessing buoy data, which is important mainly for marine use cases, has a some-
what limited audience. But the principles shown in this app demonstrate the range of
Android’s location-related capabilities, and should inspire you to develop your own
unique application.

 In addition to displaying data based on the current location, you’ll use this applica-
tion to create several LocationListener instances that receive updates when the
user’s location changes. When the position changes, the device will inform your appli-
cation, and you’ll update your MapView using an Overlay—an object that allows you to
draw on top of the map.

 Beyond the buoy application requirements, you’ll also write a few samples for
working with the Geocoder class. This class allows you to map between a GeoPoint (lat-
itude and longitude) and a place (city or postal code) or address. This utility doesn’t
help much on the high seas but does benefit many other apps.

 Before writing the sample apps, you’ll start by using the device’s built-in mapping
application and simulating your position within the Android emulator. This approach
will allow you to mock your location for the emulator. After we’ve covered all of the
emulator location-related options, we’ll move on to building Wind and Waves.

11.1 Simulating your location within the emulator
For any location-aware application, you’ll start by working with the provided SDK and
the emulator. Within the emulator, you’ll set and update your current location. From
there you’ll want to progress to supplying a range of locations and times to simulate
movement over a geographic area.

 You can accomplish these tasks in several ways, either by using the DDMS tool or by
using the command line from the shell. To get started quickly, let’s first send in direct
coordinates through the DDMS tool.

11.1.1 Sending in your coordinates with the DDMS tool

You can access the DDMS tool in two ways, either launched on its own from the SDK
tools subdirectory or as the Emulator Control view within the Eclipse IDE. You need to
have Eclipse and the Android Eclipse plug-in
to use DDMS within Eclipse; see chapter 2 and
appendix A for more details about getting the
SDK and plug-in set up.

 With the DDMS tool you can send direct
latitude and longitude coordinates manually
from the Emulator Control > Location Con-
trols form. This is shown in figure 11.2. Note
that Longitude is the first field, which is the
standard around the world, but backward
from how latitude and longitude are generally
expressed in the United States.

Figure 11.2 Using the DDMS tool to send
direct latitude and longitude coordinates to
the emulator as a mock location

270 CHAPTER 11 Location, location, location

 If you launch the built-in Maps application from Android’s main menu and send
in a location with the DDMS tool, you can then use the menu to select My Location,
and the map will animate to the location you’ve specified—anywhere on Earth.

NOTE Both the Google Maps application and the mapping APIs are part of
the optional Google APIs. As such, not all Android phones support these fea-
tures. Check your target devices to ensure that they provide this support. For
development, you’ll need to install an Android Virtual Device2 (AVD) that
supports the Google APIs.

Try this a few times to become comfortable with setting locations; for example, send
the decimal coordinates in table 11.1 one by one, and in between browse around the
map. When you supply coordinates to the emulator, you’ll need to use the decimal
form.

 Although the DDMS tool requires the decimal format, latitude and longitude are
more commonly expressed on maps and other tools as degrees, minutes, and seconds.
Degrees (°) represent points on the surface of the globe as measured from either the
equator (for latitude) or the prime meridian (for longitude). Each degree is further
subdivided into 60 smaller sections, called minutes ('), and each minute also has 60
seconds ("). If necessary, seconds can be divided into tenths of a second or smaller
fractions.

When representing latitude and longitude on a computer, the degrees are usually
converted into decimal form with positive representing north and east and negative
representing south and west, as shown in figure 11.3.

 If you live in the southern and eastern hemispheres, such as in Buenos Aires,
Argentina, which is 34°60' S, 58°40' W in the degree form, the decimal form is nega-
tive for both latitude and longitude, -34.60, -58.40. If you haven’t used latitude and
longitude much, the different forms can be confusing at first, but they quickly
become clear.

2 For more on Android, maps and Android Virtual Devices, try here: http://developer.appcelerator.com/doc/

Table 11.1 Example coordinates for the emulator to set using the DDMS tool

Description
Latitude
degrees

Longitude
degrees

Latitude
decimal

Longitude
decimal

Golden Gate Bridge, California 37°49' N 122°29' W 37.49 -122.29

Mount Everest, Nepal 27°59' N 86°56' E 27.59 86.56

Ayer’s Rock, Australia 25°23' S 131°05' E -25.23 131.05

North Pole 90°00' N 90.00

South Pole 90°00' S -90.00
mobile/android-maps.

272 CHAPTER 11 Location, location, location

 <ele>0</ele>
 <name>Station PTAC1</name>
 <desc>Point Arena Lighthouse</desc>
 </wpt>
 . . . remainder of wpts omitted for brevity
<trk>

<name>Example Track</name>
 <desc>A fine track with trkpts.</desc>
 <trkseg>
 <trkpt lat="41.85" lon="-124.38">
 <ele>0</ele>
 <time>2008-10-15T06:00:00Z</time>
 </trkpt>
 <trkpt lat="41.74" lon="-124.18">
 <ele>0</ele>
 <time>2008-10-15T06:01:00Z</time>
 </trkpt>
 <trkpt lat="38.95" lon="-123.74">
 <ele>0</ele>
 <time>2008-10-15T06:02:00Z</time>
 </trkpt>
 . . . remainder of trkpts omitted for brevity
 </trkseg>
 </trk>
</gpx>

A GPX file requires the correct XML namespace in the root gpx element B. Within its
body, the file includes metadata C and individual waypoints D. Waypoints are named
locations at a particular latitude and longitude. Along with individual waypoints, a
GPX file supports related route information in the form of tracks E, which can be
subdivided further into track segments F. Each track segment is made up of track
points. Finally, each track point G contains a waypoint with an additional point-in-
time property.

 When working with a GPX file in the DDMS tool, you can use two different modes,
as figure 11.4 reveals. The top half of the GPX box lists individual waypoints; when you
click one, that individual location is sent to the emulator. In the bottom half of the
GPX box, all the tracks are displayed. Tracks can be “played” forward and backward to
simulate movement. As the track reaches each track point, based on the time it
defines, it sends those coordinates to the emulator. You can modify the speed for this
playback via the Speed button.

GPX is simple and extremely useful when working with mock location information
for your Android applications, but it’s not the only file format supported. The DDMS
tool also supports a format called KML.

11.1.3 The Google Earth Keyhole Markup Language

The second format that the Android DDMS tool supports for sending a range of mock
location information to the emulator is the Keyhole Markup Language (KML). KML was
originally a proprietary format created by a company named Keyhole. After Google

Supply track
element

E

Use track
segment

F

Provide
specific
point

G

273Simulating your location within the emulator

acquired Keyhole, it submitted KML to the Open Geospatial Consortium (OGC),
which accepted KML as an international standard.

OGC KML pursues the following goal:
That there be one international standard language for expressing geographic annotation
and visualization on existing or future web-based online and mobile maps (2d) and earth
browsers (3d).

The following listing shows a sample KML file for sending location data to the Android
Emulator. This file uses the same coastal location data as you saw with the previous
GPX example.

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
 <Placemark>
 <name>Station 46027</name>
 <description>Off the coast of Lake Earl</description>
 <Point>
 <coordinates>-124.38,41.85,0</coordinates>
 </Point>
 </Placemark>
 <Placemark>
 <name>Station 46020</name>
 <description>Outside the Golden Gate</description>
 <Point>

Listing 11.2 A sample KML file

Figure 11.4 Using the DDMS tool with a GPX file to send mock location information

Capture information
with Placemark

B

Provide
Point

D
Supply coordinates

for Point
 <coordinates>-122.83,37.75,0</coordinates>

274 CHAPTER 11 Location, location, location

 </Point>
 </Placemark>
 <Placemark>
 <name>Station 46222</name>
 <description>San Pedro Channel</description>
 <Point>
 <coordinates>-118.31,33.61,0</coordinates>
 </Point>
 </Placemark>
</kml>

KML uses a kml root element requiring the correct namespace declaration. KML sup-
ports many more elements and attributes than the DDMS tool handles. DDMS only
checks your KML files for Placemark elements B, which contain Point child elements
C, which in turn supply coordinates D.

 Figure 11.5 shows an example of using a KML file with the DDMS tool.
KML3 is flexible and expressive, but it has drawbacks when used with the Android

Emulator. As we’ve noted, the DDMS parser looks for the coordinate elements in the
file and sends the latitude, longitude, and elevation for each in a sequence, one

Figure 11.5 Using the DDMS tool with a KML file to send mock location information
3 For more details on KML, go to: http://code.google.com/apls/kml/documentation/

275Using LocationManager and LocationProvider

Placemark per second. Timing and other advanced features of KML aren’t yet sup-
ported by DDMS. Because of this we find it more valuable at present to use GPX as a
debugging and testing format, because it supports detailed timing.

KML is still important; it’s an international standard and will continue to gain trac-
tion. Also, KML is an important format for other Google applications, so you may
encounter it more frequently in other contexts than GPX. For example, you could cre-
ate a KML route using Google Earth, and then later use it in your emulator to simulate
movement.

 Now that you know how to send mock location information to the emulator in var-
ious formats, you can step out of the built-in Maps application and start creating your
own programs that rely on location.

11.2 Using LocationManager and LocationProvider
When building location-aware applications on the Android platform, you’ll most
often use several key classes. A LocationProvider provides location data using several
metrics, and you can access providers through a LocationManager.

LocationManager allows you to attach a LocationListener that receives updates
when the device location changes. LocationManager also can directly fire an Intent
based on the proximity to a specified latitude and longitude. You can always retrieve
the last-known Location directly from the manager.

 The Location class is a Java bean that represents all the location data available
from a particular snapshot in time. Depending on the provider used to populate it, a
Location may or may not have all the possible data present; for example, it might not
include speed or altitude.

 To get your Wind and Waves sample application started and to grasp the related
concepts, you first need to master the LocationManager.

11.2.1 Accessing location data with LocationManager

LocationManager lets you retrieve location-related data on Android. Before you can
check which providers are available or query the last-known Location, you need to
acquire the manager from the system service. The following listing demonstrates this
task, and includes a portion of the MapViewActivity that will drive our Wind and
Waves application.

public class MapViewActivity extends MapActivity {
 private static final int MENU_SET_SATELLITE = 1;
 private static final int MENU_SET_MAP = 2;
 private static final int MENU_BUOYS_FROM_MAP_CENTER = 3;
 private static final int MENU_BACK_TO_LAST_LOCATION = 4;
 . . . Handler and LocationListeners omitted here for brevity - shown in
 later listings
 private MapController mapController;

Listing 11.3 Start of MapViewActivity

Extend
MapActivityB

Define C

 private LocationManager locationManager; LocationManager

276 CHAPTER 11 Location, location, location

 private LocationProvider locationProvider;
 private MapView mapView;
 private ViewGroup zoom;
 private Overlay buoyOverlay;
 private ProgressDialog progressDialog;
 private Drawable defaultMarker;
 private ArrayList<BuoyOverlayItem> buoys;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 this.setContentView(R.layout.mapview_activity);
 this.mapView = (MapView) this.findViewById(R.id.map_view);
 this.zoom = (ViewGroup) findViewById(R.id.zoom);
 this.zoom.addView(this.mapView.getZoomControls());
 this.defaultMarker =
 getResources().getDrawable(R.drawable.redpin);
 this.defaultMarker.setBounds(0, 0,
 this.defaultMarker.getIntrinsicWidth(),
 this.defaultMarker.getIntrinsicHeight());
 this.buoys = new ArrayList<BuoyOverlayItem>();
 }
 @Override
 public void onStart() {
 super.onStart();
 this.locationManager = (LocationManager)
 this.getSystemService
 (Context.LOCATION_SERVICE);
 this.locationProvider =
 this.locationManager.getProvider(
 LocationManager.GPS_PROVIDER);
 // LocationListeners omitted here for brevity
 GeoPoint lastKnownPoint = this.getLastKnownPoint();
 this.mapController = this.mapView.getController();
 this.mapController.setZoom(10);
 this.mapController.animateTo(lastKnownPoint);
 this.getBuoyData(lastKnownPoint);
 }
 . . . onResume and onPause omitted for brevity
 . . . other portions of MapViewActivity are included
 in later listings in this chapter
 private GeoPoint getLastKnownPoint() {
 GeoPoint lastKnownPoint = null;
 Location lastKnownLocation =

this.locationManager.getLastKnownLocation(
 LocationManager.GPS_PROVIDER);
 if (lastKnownLocation != null) {
 lastKnownPoint = LocationHelper.getGeoPoint(lastKnownLocation);
 } else {
 lastKnownPoint = LocationHelper.GOLDEN_GATE;
 }
 return lastKnownPoint;
 }

Define
LocationProviderD

Instantiate LocationManager
system service

E

Assign GPS
LocationProvider

F

Set up
map

G

Get last-known
Location

H

277Using LocationManager and LocationProvider

Our custom MapViewActivity extends MapActivity B. We’ll focus on the Map-
Activity in more detail in section 11.3, but for now, recognize that this is a special
kind of Activity. Within the class, you declare member variables for Location-
Manager C and LocationProvider D.

 To acquire the LocationManager, you use the Activity getSystemService
(String name) method E. Once you have the LocationManager, you assign the
LocationProvider you want to use with the manager’s getProvider method F. In
this case use the GPS provider. We’ll talk more about the LocationProvider class in
the next section.

 Once you have the manager and provider in place, you implement the onCreate
method of your Activity to instantiate a MapController and set initial state for the
screen G. Section 11.3 covers MapController and the MapView it manipulates.

 Along with helping you set up the provider you need, LocationManager supplies
quick access to the last-known Location H. Use this method if you need a quick fix on
the last location, as opposed to the more involved techniques for registering for peri-
odic location updates with a listener; we’ll cover that topic in section 11.2.3.

 Besides the features shown in this listing, LocationManager allows you to directly
register for proximity alerts. For example, your app could show a custom message if
you pass within a quarter-mile of a store that has a special sale. If you need to fire an
Intent based on proximity to a defined location, call the addProximityAlert
method. This method lets you set the target location with latitude and longitude, and
also lets you specify a radius and a PendingIntent. If the device comes within the
range, the PendingIntent is fired. To stop receiving these messages, call remove-
ProximityAlert.

 Getting back to the main purpose for which you’ll use the LocationManager with
Wind and Waves, we’ll next look more closely at the GPS LocationProvider.

11.2.2 Using a LocationProvider

LocationProvider helps define the capabilities of a given provider implementation.
Each implementation responsible for returning location information may be available
on different devices and in different circumstances.

 Available provider implementations depend on the hardware capabilities of the
device, such as the presence of a GPS receiver. They also depend on the situation: even
if the device has a GPS receiver, can it currently receive data from satellites, or is the
user somewhere inaccessible such as an elevator or a tunnel?

 At runtime you’ll query for the list of providers available and use the most suitable
one. You may select multiple providers to fall back on if your first choice isn’t avail-
able or enabled. Developers generally prefer using the LocationManager.

GPS_PROVIDER provider, which uses the GPS receiver. You’ll use this provider for
Wind and Waves because of its accuracy and its support in the emulator. Keep in
mind that a real device will normally offer multiple providers, including the
LocationManager.NETWORK_PROVIDER, which uses cell tower and Wi-Fi access points

278 CHAPTER 11 Location, location, location

to determine location data. To piggyback on other applications requesting location,
use LocationManager.PASSIVE_PROVIDER.

 In listing 11.3 we showed how you can obtain the GPS provider directly using the
getProvider(String name) method. Table 11.2 provides alternatives to this approach
of directly accessing a particular provider.

Different providers may support different location-related metrics and have different
costs or capabilities. The Criteria class helps define what each provider instance can
handle. Available metrics are latitude and longitude, speed, bearing, altitude, cost,
and power requirements.

 Remember to set the appropriate Android permissions. Your manifest needs to
include location-related permissions for the providers you want to use. The following
listing shows the Wind and Waves manifest XML file, which includes both COARSE- and
FINE-grained location-related permissions.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.windwaves">
 <application android:icon="@drawable/wave_45"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Black”>
 <activity android:name="StartActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

Table 11.2 Methods for obtaining a LocationProvider reference

LocationProvider code snippet Description

List<String> providers =
 locationManager.getAllProviders();

Get all of the providers registered on the
device.

List<String> enabledProviders =
 locationManager.getAllProviders(true);

Get all of the currently enabled
providers.

locationProvider =

locationManager.getProviders(true).get(0);

A shortcut to get the first enabled pro-
vider, regardless of type.

locationProvider =
 locationManager.getBestProvider(
 myCriteria, true);

An example of getting a
LocationProvider using a particular
Criteria argument. You can create a
Criteria instance and specify whether
bearing, altitude, cost, and other metrics
are required.

Listing 11.4 A manifest file showing COARSE and FINE location-related permissions
 </activity>

279Using LocationManager and LocationProvider

 <activity android:name="MapViewActivity" />
 <activity android:name="BuoyDetailActivity" />
 <uses-library android:name="com.google.android.maps" />
 </application>
 <uses-permission
 android:name=
 "android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission
 android:name=
 "android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission
 android:name="android.permission.INTERNET" />
</manifest>

Include both the ACCESS_COARSE_LOCATION B and ACCESS_FINE_LOCATION C permis-
sions in your manifest. The COARSE permission corresponds to the LocationManager.
NETWORK_PROVIDER provider for cell and Wi-Fi based data, and the FINE permission
corresponds to the LocationManager.GPS_PROVIDER provider. You don’t use the net-
work provider in Wind and Waves, but this permission would allow you to enhance the
app to fall back to the network provider if the GPS provider becomes unavailable or
disabled.

 Once you understand the basics of LocationManager and LocationProvider, you
can unleash the real power and register for periodic location updates in your applica-
tion with the LocationListener class.

11.2.3 Receiving location updates with LocationListener

You can keep abreast of the device location by creating a LocationListener imple-
mentation and registering it to receive updates. LocationListener lets you filter for
many types of location events based on a flexible and powerful set of properties. You
implement the interface and register your instance to receive location data callbacks.

 Listing 11.5 demonstrates those principles as you create several LocationListener
implementations for the Wind and Waves MapViewActivity and then register those
listeners using the LocationManager and LocationProvider. This listing helps com-
plete the initial code from listing 11.3.

. . . start of class in Listing 11.3
private final LocationListener locationListenerGetBuoyData =
 new LocationListener() {
 public void onLocationChanged(
 final Location loc) {
 int lat = (int) (loc.getLatitude()
 * LocationHelper.MILLION);
 int lon = (int) (loc.getLongitude()
 * LocationHelper.MILLION);
 GeoPoint geoPoint = new GeoPoint(lat, lon);
 getBuoyData(geoPoint);

Listing 11.5 Creation of LocationListener implementations in MapViewActivity

Access GPS
provider

C

Create anonymous
LocationListener B

Implement
onLocationChangedC

Get latitude
and longitude

D

Create GeoPointE
Update map
 } pins (buoy data)F

280 CHAPTER 11 Location, location, location

 public void onProviderDisabled(String s) {
 }
 public void onProviderEnabled(String s) {
 }
 public void onStatusChanged(String s,
 int i, Bundle b) {
 }
 };
private final LocationListener locationListenerRecenterMap =
 new LocationListener() {
 public void onLocationChanged(final Location loc) {
 int lat = (int) (loc.getLatitude()
 * LocationHelper.MILLION);
 int lon = (int) (loc.getLongitude()
 * LocationHelper.MILLION);
 GeoPoint geoPoint = new GeoPoint(lat, lon);
 mapController.animateTo(geoPoint);
 }
 public void onProviderDisabled(String s) {
 }
 public void onProviderEnabled(String s) {
 }
 public void onStatusChanged(String s,
 int i, Bundle b) {
 }
 };
 @Override
 public void onStart() {
 super.onStart();
 this.locationManager =
 (LocationManager)
 this.getSystemService(Context.LOCATION_SERVICE);
 this.locationProvider =
 this.locationManager.getProvider(LocationManager.GPS_PROVIDER);
 if (locationProvider != null) {
 this.locationManager.requestLocationUpdates(
 locationProvider.getName(), 3000, 185000,
 this.locationListenerGetBuoyData);
 this.locationManager.requestLocationUpdates(
 locationProvider.getName(), 3000, 1000,
 this.locationListenerRecenterMap);
 } else {
 Toast.makeText(this, "Wind and Waves cannot continue,"
 + " the GPS location provider is not available"
 + " at this time.", Toast.LENGTH_SHORT).show();
 this.finish();
 }
 . . . remainder of repeated code omitted (see listing 11.3)
 }

You’ll usually find it practical to use an anonymous inner class B to implement the
LocationListener interface. For this MapViewActivity, you create two Location-
Listener implementations so you can later register them using different settings.

Move map to
new location

G

Methods
intentionally
left blank

I
Register
locationListener-
RecenterMap

281Working with maps

 The first listener, locationListenerGetBuoyData, implements the onLocation-
Changed method C. In that method you get the latitude and longitude from the
Location sent in the callback D. You then use the data to create a GeoPoint E after
multiplying the latitude and longitude by 1 million (1e6). You need to multiply by a
million because GeoPoint requires microdegrees for coordinates. A separate class,
LocationHelper, defines this constant and provides other location utilities; you can
view this class in the code download for this chapter.

 After you have the data, you update the map F using a helper method that resets
a map Overlay; you’ll see this method’s implementation in the next section. In the
second listener, locationListenerRecenterMap, you perform the different task of
centering the map G.

 The need for two separate listeners becomes clear when you see how listeners are
registered with the requestLocationUpdates method of the Location-Manager class.
You register the first listener, locationListenerGetBuoyData, to fire only when the
new device location has moved a long way from the previous one H. The defined dis-
tance is 185,000 meters. (We chose this number to stay just under 100 nautical miles,
which is the radius you’ll use to pull buoy data for your map; you don’t need to redraw
the buoy data on the map if the user moves less than 100 nautical miles.) You register
the second listener, locationListenerRecenterMap, to fire more frequently; the map
view recenters if the user moves more than 1,000 meters I. Using separate listeners
like this allows you to fine-tune the event processing, rather than having to build in
your own logic to do different things based on different values with one listener.

 Keep in mind that your registration of LocationListener instances could become
even more robust by implementing the onProviderEnabled and onProviderDisabled
methods. Using those methods and different providers, you could provide useful mes-
sages to the user and also provide a graceful fallback through a set of providers; for
example, if GPS becomes disabled, you could try the network provider instead.

NOTE You should carefully use the time parameter to the requestLocation-
Updates method. Requesting location updates too frequently (less than
60,000 ms per the documentation) can wear down the battery and make the
application too jittery. In this sample you use an extremely low value (3,000
ms) for debugging purposes. Long-lived or always-running code shouldn’t
use a value lower than the recommended 60,000 ms in production code.

With LocationManager, LocationProvider, and LocationListener instances in place,
we can address the MapActivity and MapView in more detail.

11.3 Working with maps
In the previous sections, you wrote the start of the MapViewActivity for our Wind and
Waves application. We covered the supporting classes and showed you how to register
to receive location updates. With that structure in place, let’s now focus on the actual
map details.

282 CHAPTER 11 Location, location, location

 The MapViewActivity screen will look like fig-
ure 11.6, where several map Overlay classes dis-
play on top of a MapView within a MapActivity

 To use the com.google.android.maps pack-
age on the Android platform and support all the
features related to a MapView, you must use a
MapActivity.

11.3.1 Extending MapActivity

A MapActivity defines a gateway to the Android
Google Maps-like API package and other useful
map-related utilities. It handles several details
behind creating and using a MapView so you don’t
to have to worry about them.

 The MapView, covered in the next section, offers
the most important features. But a MapActivity
provides essential support for the MapView. It man-
ages all the network and filesystem-intensive setup
and teardown tasks needed for supporting the
map. For example, the MapActivity onResume
method automatically sets up network threads for various map-related tasks and caches
map section tile data on the filesystem, and the onPause method cleans up these
resources. Without this class, all these details would require extra housekeeping that any
Activity wishing to include a MapView would have to repeat each time.

 Your code won’t do much with MapActivity. Extend this class (as in listing 11.3),
making sure to use only one instance per process, and include a special manifest ele-
ment to enable the com.google.android.maps package. You may have noticed the
uses-library element in the Wind and Waves manifest in listing 11.4:

<uses-library android:name="com.google.android.maps" />

The com.google.android.maps package, where MapActivity, MapView, Map-

Controller, and other related classes such as GeoPoint and Overlay reside, isn’t a
standard package in the Android library. This manifest element pulls in support for
the Google maps package.

 Once you include the uses-library element and write a basic Activity that
extends MapActivity, you can start writing the main app features with a MapView and
related Overlay classes.

11.3.2 Using a MapView

Android offers MapView4 as a limited version of the Google Maps API in the form of a
View for your Android application. A MapView displays tiles of a map, which it obtains

4 Take a look at this MapView tutorial for more information: http://developer.android.com/guide/tutorials/

Figure 11.6 The MapViewActivity
from the Wind and Waves application
shows a MapActivity with MapView.
views/hello-mapview.html.

283Working with maps

over the network as the map moves and zooms,
much like the web version of Google Maps.

 Android supports many of the concepts from
the standard Google Maps API through the
MapView. For instance, MapView supports a plain
map mode, a satellite mode, a street-view mode,
and a traffic mode. When you want to write some-
thing on top of the map, draw a straight line
between two points, drop a “pushpin” marker, or
display full-sized images, you use an Overlay.

 You can see examples of several of these con-
cepts in figure 11.6, which shows MapView-

Activity screenshots for the Wind and Waves
application. Figure 11.7 shows that same
MapViewActivity again after switching into satel-
lite mode.

 You’ve already seen the MapView we’ll use for
the Wind and Waves application declared and
instantiated in listing 11.3. Now we’ll discuss
using this class inside your Activity to control,
position, zoom, populate, and overlay your map.

 Before you can use a map at all, you have to request a Google Maps API key and
declare it in your layout file. This listing shows the MapActivity layout file you’ll use
with a special android:apiKey attribute.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_horizontal" android:padding="10px">
 <com.google.android.maps.MapView
 android:id="@+id/map_view"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:enabled="true"
 android:clickable="true"
 android:apiKey=
 "05lSygx-ttd-J5GXfsIB-dlpNtggca4I4DMyVqQ" />
</RelativeLayout>

You can declare a MapView in XML just like other View components B. In order to use
the Google Maps network resources, a MapView requires an API key C. You can obtain
a map key from the Google Maps Android key registration web page at http://
code.google.com/android/maps-api-signup.html.

Listing 11.6 A MapView layout file including the Google Maps API key

Define MapView
element in XMLB

Include apiKey
attribute

C

Figure 11.7 The MapViewActivity
from the Wind and Waves application
using satellite mode

284 CHAPTER 11 Location, location, location

 Before you register for a key, you need to look up the MD5 fingerprint of the certif-
icate that signs your application. This sounds tricky, but it’s really simple. When using
the Android Emulator, the SDK always uses a Debug Certificate. To get the MD5 finger-
print for this certificate on Mac and Linux, you can use the following command:

cd ~/.android
keytool -list -keystore ./debug.keystore -storepass android -keypass android

On Windows, adjust for the user’s home directory slash directions, such as

cd c:\Users\Chris\.android
keytool -list -keystore debug.keystore -storepass android -keypass android

Getting a key for a production application follows the same process, but you need to
use the actual certificate your APK file is signed with instead of the debug.keystore file.
The Android documentation provides additional information about obtaining a key
at http://code.google.com/android/add-ons/google-apis/mapkey.html. For more
information about digital signatures, keys, and signing in general, see appendix B.

CAUTION Android requires you to declare the map API key in the layout file.
With the key in the layout file, you must remember to update the key between
debug and production modes. Additionally, if you debug on different devel-
opment machines, you must switch keys by hand.

Once you write a MapActivity with a MapView and create your view in the layout file,
complete with map API key, you can make full use of the map. Several of the previous
listings use the MapView from the Wind and Waves application. In the next listing we
repeat a few of the map-related lines of code we’ve already shown, and add related
items to consolidate all the map-related concepts in one listing.

. . . from onCreate
mapView = (MapView)
 findViewById(R.id.map_view);
mapView.
 setBuiltInZoomControls(true);
 . . . from onStart
mapController = mapView.getController();
mapController.setZoom(10);
mapController.
 animateTo(lastKnownPoint);
. . . from onMenuItemSelected
case MapViewActivity.MENU_SET_MAP:
 mapView.setSatellite(false);
 break;
case MapViewActivity.MENU_SET_SATELLITE:
 mapView.setSatellite(true);
 break;
case MapViewActivity.MENU_BUOYS_FROM_MAP_CENTER:
 getBuoyData(mapView.getMapCenter());

Listing 11.7 Portions of code that demonstrate working with maps

Inflate MapView
from layout

B

Animate to given
GeoPoint

C

Set map
satellite mode

D

 break;

285Working with maps

You declare the MapView in XML and inflate it just like other view components B.
Because it’s a ViewGroup, you can also combine and attach other elements to it. You
tell the MapView to display its built-in zoom controls so the user can zoom in and out.

 Next you get a MapController from the MapView. The controller allows you to pro-
grammatically zoom and move the map. When starting, you use the controller to set
the initial zoom level and animate to a specified GeoPoint C. When the user selects a
view mode from the menu, you set the mode of the map from plain to satellite or back
again D. Along with manipulating the map itself, you can retrieve data from it, such
as the coordinates of the map center.

 Besides manipulating the map and getting data from it, you can draw items on top
of the map using Overlay instances.

11.3.3 Placing data on a map with an Overlay

The small buoy icons for the Wind and Waves application that we’ve used in several
figures up to this point draw on the screen at specified coordinates using an Overlay.

Overlay describes an item to draw on the map. You can define your own Overlay
by extending this class or MyLocationOverlay. The MyLocationOverlay class lets you
display a user’s current location with a compass, and it has other useful features such
as a LocationListener for convenient access to position updates.

 Besides showing the user’s location, you’ll often place multiple marker items on
the map. Users generally expect to see markers as pushpins. You’ll create buoy mark-
ers for the location of every buoy using data you get back from the NDBC feeds.
Android provides built-in support for this with the ItemizedOverlay base class and
the OverlayItem.

OverlayItem, a simple bean, includes a title, a text snippet, a drawable marker,
coordinates defined in a GeoPoint, and a few other properties. The following listing
shows the buoy data-related BuoyOverlayItem class for Wind and Waves.

public class BuoyOverlayItem extends OverlayItem {
 public final GeoPoint point;
 public final BuoyData buoyData;
 public BuoyOverlayItem(GeoPoint point, BuoyData buoyData) {
 super(point, buoyData.title, buoyData.dateString);
 this.point = point;
 this.buoyData = buoyData;
 }
}

You extend OverlayItem to include all the necessary properties of an item to draw on
the map. In the constructor you call the superclass constructor with the location, title,
and a brief snippet, and you assign additional elements your subclass instance vari-
ables. In this case you add a BuoyData member, which is another bean with name,
water temperature, wave height, and other properties.

Listing 11.8 The OverlayItem subclass BuoyOverlayItem

286 CHAPTER 11 Location, location, location

 After you prepare the individual item class, you need a class that extends
ItemizedOverlay and uses a Collection of the items to display them on the map one
by one. The following listing, the BuoyItemizedOverlay class, shows how this works.

public class BuoyItemizedOverlay
 extends ItemizedOverlay<BuoyOverlayItem> {
 private final List<BuoyOverlayItem> items;
 private final Context context;
 public BuoyItemizedOverlay(List<BuoyOverlayItem> items,
 Drawable defaultMarker, Context context) {
 super(defaultMarker);
 this.items = items;
 this.context = context;
 this.populate();
 }
 @Override
 public BuoyOverlayItem createItem(int i) {
 return items.get(i);
 }
 @Override
 protected boolean onTap(int i) {
 final BuoyData bd = items.get(i).buoyData;
 LayoutInflater inflater = LayoutInflater.from(context);
 View bView = inflater.inflate(R.layout.buoy_selected, null);
 TextView title = (TextView) bView.findViewById(R.id.buoy_title);
 . . . rest of view inflation omitted for brevity
 new AlertDialog.Builder(context)
 .setView(bView)
 .setPositiveButton("More Detail",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface di, int what) {
 Intent intent =
 new Intent(context, BuoyDetailActivity.class);
 BuoyDetailActivity.buoyData = bd;
 context.startActivity(intent);
 }
 })
 .setNegativeButton("Cancel",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface di, int what) {
 di.dismiss();
 }
 })
 .show();
 return true;
 }
 @Override
 public int size() {
 return items.size();
 }
 @Override

Listing 11.9 The BuoyItemizedOverlay class

Extend
ItemizedOverlay

B

Include
Collection of
OverlayItemC

Provide
drawable
markerD

Override
createItem

E

Get data to
display

F

Override
size method

G

 public void draw(Canvas canvas, MapView mapView, boolean b) {

287Working with maps

 super.draw(canvas, mapView, false);
 }
}

The BuoyItemizedOverlay class extends ItemizedOverlay B and includes a
Collection of BuoyOverlayItem elements C. In the constructor you pass the Drawable
marker to the parent class D. This marker draws on the screen in the overlay to repre-
sent each point on the map.

ItemizedOverlay takes care of many of the details you’d otherwise have to imple-
ment yourself if you made your own Overlay with multiple points drawn on it. This
includes drawing items, handling focus, and processing basic events. An Itemized-
Overlay will invoke the onCreate method E for every element in the Collection of
items it holds. ItemizedOverlay also supports facilities such as onTap F, where you
can react when the user selects a particular overlay item. In this code you inflate some
views and display an AlertDialog with information about the respective buoy when a
BuoyOverlayItem is tapped. From the alert, the user can navigate to more detailed
information if desired.

 The size method tells ItemizedOverlay how many elements it needs to process
G, and even though you aren’t doing anything special with it in this case, there are
also methods such as onDraw H that you can customize to draw something beyond the
standard pushpin.

 When working with a MapView, you create the Overlay instances you need, then
add them on top of the map. Wind and Waves uses a separate Thread to retrieve the
buoy data in the MapViewActivity. You can view the data-retrieval code in the code
download for this chapter. After downloading the buoy data, you send a Message to a
Handler that adds the BuoyItemizedOverlay to the MapView. The following listing
shows these details.

private final Handler handler = new Handler() {
 public void handleMessage(final Message msg) {
 progressDialog.dismiss();
 if (mapView.getOverlays().contains(buoyOverlay)) {
 mapView.getOverlays().remove(buoyOverlay);
 }
 buoyOverlay = new BuoyItemizedOverlay(buoys,
 defaultMarker,
 MapViewActivity.this);
 mapView.getOverlays().add(buoyOverlay);
 }
};

A MapView contains a Collection of Overlay elements. You use the remove method to
clean up any existing BuoyOverlayItem class before you create and add a new one.
This way you reset the data instead of adding more items on top of each other.

Listing 11.10 The Handler Wind and Waves uses to add overlays to the MapView

Customized
drawingH

288 CHAPTER 11 Location, location, location

 The built-in Overlay subclasses perfectly handle your requirements. The
ItemizedOverlay and OverlayItem classes have allowed you to complete the Wind
and Waves application without having to make your own Overlay subclasses directly. If
you need to, Android lets you go to that level and implement your own draw, tap,
touch, and other methods within your custom Overlay.

 With this sample application now complete and providing you with buoy data
using a MapActivity and MapView, we need to address one final maps-related concept
that you haven’t yet encountered—geocoding.

11.4 Converting places and addresses with Geocoder
The Android documentation describes geocoding as converting a “street address or
other description of a location” into latitude and longitude coordinates. Reverse geocod-
ing is the opposite—converting latitude and longitude into an address. To accomplish
this, the Geocoder class makes a network call to a web service.

 You won’t use geocoding in Wind and Waves because the ocean doesn’t contain
cities, addresses, and so on. Nevertheless, geocoding provides invaluable tools when
working with coordinates and maps. To demonstrate the concepts surrounding geoc-
oding, this listing includes a new single Activity application, GeocoderExample.

. . . Class declaration and Instance variables omitted for brevity
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 input = (EditText) findViewById(R.id.input);
 output = (TextView) findViewById(R.id.output);
 button = (Button) findViewById(R.id.geocode_button);
 isAddress = (CheckBox)
 findViewById(R.id.checkbox_address);
 button.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 output.setText(performGeocode(
 input.getText().toString(),
 isAddress.isChecked()));
 }
 });
}
private String performGeocode(String in, boolean isAddr) {
 String result = "Unable to Geocode - " + in;
 if (input != null) {
 Geocoder geocoder = new Geocoder(this);
 if (isAddr) {
 try {
 List<Address> addresses =
 geocoder.getFromLocationName(in, 1);
 if (addresses != null) {
 result = addresses.get(0).toString();

Listing 11.11 A Geocoder example

Instantiate Geocoder
with Context

B

Get Address from
location name

C

 }

289Converting places and addresses with Geocoder

 } catch (IOException e) {
 Log.e("GeocodExample", "Error", e);
 }
 } else {
 try {
 String[] coords = in.split(",");
 if ((coords != null) && (coords.length == 2)) {
 List<Address> addresses =
 geocoder.getFromLocation(
 Double.parseDouble(coords[0]),
 Double.parseDouble(coords[1]),
 1);
 result = addresses.get(0).toString();
 }
 } catch (IOException e) {
 Log.e("GeocodExample", "Error", e);
 }
 }
 }
 return result;
}

You create a Geocoder by constructing it with the Context of your application B. You
then use a Geocoder to either convert String instances that represent place names
into Address objects with the getFromLocationName method C or convert latitude
and longitude coordinates into Address objects with the getFromLocation method D.

 Figure 11.8 shows our GeocoderExample in use. In this case we’ve converted a
String describing Wrigley Field in Chicago into
an Address object containing latitude and longi-
tude coordinates.

Geocoder provides many useful features. For
instance, if you have data that includes address
string portions, or only place descriptions, you can
easily convert them into latitude and longitude
numbers for use with GeoPoint and Overlay to
place them on the user’s map.

CAUTION As of this writing, the AVD for
API level 8 (the OS 2.2 emulator) doesn’t
properly support the geocoder. Attempts
to look up an address will result in a “Ser-
vice not Available” exception. Geocoding
does work properly on OS 2.2 devices. To
work around this problem during develop-
ment, you can use API level 7 for building
and testing your app on the emulator.

Geocoding concludes our look at the powerful
location- and mapping-related components of the

Get Address from
coordinates

D

Figure 11.8 Geocoder example
turning a String into an Address
object that provides latitude and
Android platform. longitude coordinates

290 CHAPTER 11 Location, location, location

11.5 Summary
“Location, location, location,” as they say in real estate, could also be the mantra for
the future of mobile computing. Android supports readily available location informa-
tion and includes smart-mapping APIs and other location-related utilities.

 In this chapter we explored the location and mapping capabilities of the Android
platform. You built an application that acquired a LocationManager and Location-
Provider, to which you attached several LocationListener instances. You did this so
that you could keep your application informed about the current device location by
using updates delivered to your listeners. Along with the LocationListener, we also
briefly discussed several other ways to get location updates from the Android platform.

 After we covered location-awareness basics, we showed you how to add information
from a unique data source, the National Data Buoy Center, to provide a draggable,
zoomable, interactive map. To build the map you used a MapActivity, along with
MapView and MapController. These classes make it fairly easy to set up and display
maps. Once you had your MapView in place, you created an ItemizedOverlay to
include points of interest, using individual OverlayItem elements. From the individ-
ual points, in this case buoys, you linked into another Activity class to display more
detailed information, thereby demonstrating how to go from the map to any other
kind of Activity and back.

 Our water-based sample application didn’t include the important mapping feature
of converting from an address into a latitude and longitude and vice versa. To demon-
strate this capability, we showed you how to build a separate small sample and dis-
cussed usage of the Geocoder class.

 With our exploration of the mapping capabilities of Android complete, including
a fully functional sample application that combines mapping with many other
Android tenets we’ve previously explored, we’ll move into a new stage of the book. In
the next few chapters, we’ll explore complete nontrivial applications that bring
together intents, activities, data storage, networking, and more.

Part 3

Android applications

As you learned in part 2, the Android platform is capable of enabling rich
applications in many genres and vertical industries. The goal of part 3 is to inte-
grate many of the lessons of part 2 on a larger scale and spur you on to explore
the platform in greater depth than simply using the Android SDK.

 In chapter 12, we take a detailed look at the requirements of a field service
application. We next map those requirements on a practical application that
could be adapted for many industries. The application includes multiple UI ele-
ments, server communications, and detecting touch-screen events for capturing
and uploading a signature.

 In chapter 13, we move on to a deeper examination of the Android/Linux
relationship by writing native C applications for Android and connecting to
Android core libraries such as SQLite and TCP socket communications.

Putting Android to work
in a field service application
Now that we’ve introduced and examined Android and some of its core technolo-
gies, it’s time to put together a more comprehensive application. Exercising APIs
can be informative, educational, and even fun for a while, but at some point a plat-
form must demonstrate its worth via an application that can be used outside of the
ivory tower—and that’s what this chapter is all about. In this chapter, we systemati-
cally design, code, and test an Android application to aid a team of field service
technicians in performing their job. The application syncs XML data with an inter-
net-hosted server, presents data to the user via intuitive user interfaces, links to
Google Maps, and concludes by collecting customer signatures via Android’s touch
screen. Many of the APIs introduced earlier are exercised here, demonstrating the

This chapter covers
 Designing a real-world Android application

 Mapping out the application flow

 Writing application source code

 Downloading, data parsing, and signature capture

 Uploading data to a server
293

power and versatility of the Android platform.

294 CHAPTER 12 Putting Android to work in a field service application

 In addition to an in-depth Android application, this chapter’s sample application
works with a custom website application that manages data for use by a mobile worker.
This server-side code is presented briefly toward the end of the chapter. All of the
source code for the server-side application is available for download from the book’s
companion website.

 If this example is going to represent a useful real-world application, we need to put
some flesh on it. Beyond helping you understand the application, this definition pro-
cess will get you thinking about the kinds of impact a mobile application can have on
our economy. This chapter’s sample application is called a field service application. A
pretty generic name perhaps, but it’ll prove to be an ample vehicle for demonstrating
key elements required in mobile applications, as well as demonstrate the power of the
Android platform for building useful applications quickly.

 Our application’s target user is a fleet technician who works for a national firm
that makes its services available to a number of contracted customers. One day our
technician, who we’ll call a mobile worker, is replacing a hard drive in the computer at
the local fast-food restaurant, and the next day he may be installing a memory
upgrade in a piece of pick-and-place machinery at a telephone system manufacturer.
If you’ve ever had a piece of equipment serviced at your home or office and thought
the technician’s uniform didn’t really match the job he was doing, you’ve experienced
this kind of service arrangement. This kind of technician is often referred to as hands
and feet. He has basic mechanical or computer skills and is able to follow directions
reliably, often guided by the manufacturer of the equipment being serviced at the
time. Thanks to workers like these, companies can extend their reach to a much
broader geography than internal staffing levels would ever allow. For example, a small
manufacturer of retail music-sampling equipment might contract with such a firm to
provide tech support to retail locations across the country.

 Because of our hypothetical technician’s varied schedule and lack of experience
on a particular piece of equipment, it’s important to equip him with as much relevant
and timely information as possible. But he can’t be burdened with thick reference
manuals or specialized tools. So, with a toolbox containing a few hand tools and of
course an Android-equipped device, our fearless hero is counting on us to provide an
application that enables him to do his job. And remember, this is the person who
restores the ice cream machine to operation at the local Dairy Barn, or perhaps fixes
the farm equipment’s computer controller so the cows get milked on time. You never
know where a computer will be found in today’s world!

 If built well, this application can enable the efficient delivery of service to custom-
ers in many industries, where we live, work, and play. Let’s get started and see what
this application must be able to accomplish and how Android steps up to the task.

12.1 Designing a real-world Android application
We’ve established that our mobile worker will be carrying two things: a set of hand
tools and an Android device. Fortunately, in this book we’re not concerned with the

applicability of the hand tools in his toolbox, leaving us free to focus on the

295Designing a real-world Android application

capabilities and features of a field service application running on the Android plat-
form. In this section, we define the basic and high-level application requirements.

12.1.1 Core requirements of the application

Before diving into the bits and bytes of data requirements and application features,
it’s helpful to enumerate some basic requirements and assumptions about our field
service application. Here are a few items that come to mind for such an application:

 The mobile worker is dispatched by a home office/dispatching authority,
which takes care of prioritizing and distributing job orders to the appropriate
technician.

 The mobile worker is carrying an Android device, which has full data service—a
device capable of browsing rich web content. The application needs to access
the internet for data transfer as well.

 The home office dispatch system and the mobile worker share data via a wire-
less internet connection on an Android device; a laptop computer isn’t neces-
sary or even desired.

 A business requirement is the proof of completion of work, most readily accom-
plished with the capture of a customer’s signature. Of course, an electronic sig-
nature is preferred.

 The home office wants to receive job completion information as soon as possi-
ble, as this accelerates the invoicing process, which improves cash flow.

 The mobile worker is also eager to perform as many jobs as possible, because
he’s paid by the job, not by the hour, so getting access to new job information as
quickly as possible is a benefit to the mobile worker.

 The mobile worker needs information resources in the field and can use as
much information as possible about the problem he’s being asked to resolve.
The mobile worker may have to place orders for replacement parts while in the
field.

 The mobile worker will require navigation assistance, as he’s likely covering a
rather large geographic area.

 The mobile worker needs an intuitive application—one that’s simple to use
with a minimum number of requirements.

There are likely additional requirements for such an application, but this list is ade-
quate for our purposes. One of the most glaring omissions from our list is security.

 Security in this kind of an application comes down to two fundamental aspects.
The first is physical security of the Android device. Our assumption is that the device
itself is locked and only the authorized worker is using it. A bit naïve perhaps, but
there are more important topics we need to cover in this chapter. If this bothers you,
just assume there’s a sign-in screen with a password field that pops up at the most
inconvenient times, forcing you to tap in your password on a small keypad. Feel better

now? The second security topic is the secure transmission of data between the

297Designing a real-world Android application

12.1.3 Application architecture and integration

Now that you know which entities are responsible for the relevant data elements, and
in which direction they flow, let’s look at how the data is stored and exchanged. You’ll
be deep into code before too long, but for now we’ll focus on the available options
and continue to examine things from a requirements perspective, building to a pro-
posed architecture.

 At the home office, the dispatcher must manage data for multiple mobile workers.
The best tool for this purpose is a relational database. The options here are numer-
ous, but we’ll make the simple decision to use MySQL, a popular open source data-
base. Not only are there multiple mobile workers, but the organization we’re building
this application for is quite spread out, with employees in multiple markets and time
zones. Because of the nature of the dispatching team, it’s been decided to host the
MySQL database in a data center, where it’s accessed via a browser-based application.
For this sample application, the dispatcher system is supersimple and written in PHP.1

 Data storage requirements on the mobile device are modest. At any point, a given
mobile worker may have only a half-dozen or so assigned jobs. Jobs may be assigned at
any time, so the mobile worker is encouraged to refresh the list of jobs periodically.
Although you learned about how to use SQLite in chapter 5, we have little need for
sharing data between multiple applications and don’t need to build a Content-
Provider, so we’ve decided to use an XML file stored on the filesystem to serve as a
persistent store of our assigned job list.

 The field service application uses HTTP to exchange data with the home office.
Again, we use PHP to build the transactions for exchanging data. Though more com-
plex and sophisticated protocols can be employed, such as SOAP, this application sim-
ply requests an XML file of assigned jobs and submits an image file representing the
captured signature. In fact, SOAP is simple in name only and should be avoided. A
better solution that’s coming on strong in the mobile and web space is the JSON for-
mat. This architecture is depicted in figure 12.2.

 The last item to discuss before diving into the code is configuration. Every mobile
worker needs to be identified uniquely. This way, the field service application can
retrieve the correct job list, and the dispatchers can assign jobs to workers in the field.
Similarly, the mobile application may need to communicate with different servers,
depending on locale. A mobile worker in the United States might use a server located
in Chicago, but a worker in the United Kingdom may need to use a server in Cam-
bridge. Because of these requirements, we’ve decided that both the mobile worker’s
identifier and the server address need to be readily accessed within the application.
Remember, these fields would likely be secured in a deployed application, but for our
purposes they’re easy to access and not secured.
1 See Manning’s PHP in Action for details on PHP development: http://www.manning.com/reiersol/.

300 CHAPTER 12 Putting Android to work in a field service application

10 The behavior of the third button depends on the current status of the job. If
the job is still marked OPEN, this button is used to initiate the closeout or com-
pletion of this job.

11 When the close procedure is selected, the application presents an empty canvas
upon which the customer can take the stylus (assuming a touch screen–capable
Android device) and sign that the work is complete. A menu on that screen
presents two options: Sign & Close or Cancel. If the user selects Sign & Close
option, the application submits the signature as a JPEG image to the server, and
the server marks the job as CLOSED. In addition, the local copy of the job is
marked as CLOSED. The Cancel button causes the Show Job Details screen to be
restored.

12 If the job being viewed has already been closed, the browser window is opened
to a page displaying the previously captured signature.

Now that you have a feel for what the requirements are and how you’re going to tackle
the problem from a functionality and application-flow perspective, let’s examine the
code that delivers this functionality.

12.2.2 List of source files

The source code for this application consists of 12 Java source files, one of which is the
R.java file, which you’ll recall is automatically generated based on the resources in the
application. This section presents a quick introduction to each of these files. We won’t
explain any code yet; we want you to know a bit about each file, and then it’ll be time
to jump into the application, step by step. Table 12.1 lists the source files in the
Android field service application.

Table 12.1 Source files used to implement the field service application

Source filename Description

Splash.java Activity provides splash screen functionality.

ShowSettings.java Activity provides management of username and server URL address.

FieldService.java Activity provides the main screen of the application.

RefreshJobs.java Activity interacts with server to obtain updated list of jobs.

ManageJobs.java Activity provides access to list of jobs.

ShowJob.java Activity provides detailed information on a specific job, such as an address
lookup, or initiates the signature-capture process.

CloseJob.java Activity collects electronic signature and interacts with the server to upload
images and mark jobs as CLOSED.

R.java Automatically generated source file representing identifiers in the resources.

Prefs.java Helper class encapsulating SharedPreferences.

JobEntry.java Class that represents a job. Includes helpful methods used when passing

JobEntry objects from one Activity to another.

301Mapping out the application flow

The application also relies on layout resources to define the visual aspect of the UI.
In addition to the layout XML files, an image used by the Splash Activity is placed
in the drawable subfolder of the res folder along with the stock Android icon image.
This icon is used for the home application launch screen. Figure 12.4 depicts the
resources used in the application.

 In an effort to make navigating the code as
easy as possible, table 2.2 shows the field service
application resource files. Note that each is
clearly seen in figure 12.4, which is a screen-
shot from our project open in Eclipse.

 Examining the source files in this applica-
tion tells us that we have more than one
Activity in use. To enable navigation between
one Activity and the next, our application
must inform Android of the existence of these
Activity classes. Recall from chapter 1 that
this registration step is accomplished with the
AndroidManifest.xml file.

JobList.java Class representing the complete list of JobEntry objects. Includes methods
for marshaling and unmarshaling to nonvolatile storage.

JobListHandler.java Class used for parsing XML document containing job data.

Table 12.2 Resource files used in the sample application

Filename Description

android.jpg Image used in the Splash Activity.

icon.jpg Image used in the application launcher.

fieldservice.xml Layout for main application screen, FieldService Activity.

managejobs.xml Layout for the list of jobs, ManageJobs Activity.

refreshjobs.xml Layout for the screen shown when refreshing job list, RefreshJobs
Activity.

showjob.xml Layout for job detail screen, ShowJob Activity.

showsettings.xml Layout for configuration/settings screen, ShowSettings Activity.

splash.xml Layout for splash screen, Splash Activity.

strings.xml Strings file containing extracted strings. Ideally all text is contained in a
strings file for ease of localization. This application’s file contains only the

Table 12.1 Source files used to implement the field service application (continued)

Source filename Description

Figure 12.4 Resource files used in the
sample application
application title.

302 CHAPTER 12 Putting Android to work in a field service application

12.2.3 Field service application’s AndroidManifest.xml

Every Android application requires a manifest file to let Android properly “wire things
up” when an Intent is handled and needs to be dispatched. Take a look at the
AndroidManifest.xml file used by our application, shown in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.UnlockingAndroid">
 <application android:icon="@drawable/icon">
 <activity android:name=".Splash"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".FieldService" >
 </activity>
 <activity android:name=".RefreshJobs" >
 </activity>
 <activity android:name=".ManageJobs" >
 </activity>
 <activity android:name=".ShowJob" >
 </activity>
 <activity android:name=".CloseJob" >
 </activity>
 <activity android:name=".ShowSettings" >
 </activity>
 </application>
<uses-sdk android:minSdkVersion="6"/>
<uses-permission android:name="android.permission.INTERNET">
 </uses-permission>
</manifest>

12.3 Application source code
After a rather long introduction, it’s time to look at the source code for the field ser-
vice application. The approach is to follow the application flow, step by step. Let’s start
with the splash screen. In this portion of the chapter, we work through each of the
application’s source files, starting with the splash screen and moving on to each subse-
quent Activity of the application.

12.3.1 Splash Activity

We’re all familiar with a splash screen for a software application. It acts like a curtain
while important things are taking place behind the scenes. Ordinarily splash screens
are visible until the application is ready—this could be a brief amount of time or
much longer when a bit of housekeeping is necessary. As a rule, a mobile application
should focus on economy and strive to consume as few resources as possible. The

Listing 12.1 The field service application’s AndroidManifest.xml file

Entry point,
Splash
Activity

Intent filter
for main
launcher
visibility

Application’s
defined
Activity list

Required
permission
for internet
access
splash screen in this sample application is meant to demonstrate how such a feature

303Application source code

may be constructed—we don’t need one for housekeeping purposes. But that’s okay;
you can learn in the process. Two code snippets are of interest to us: the implementa-
tion of the Activity as well as the layout file that defines what the UI looks like. First,
examine the layout file in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ImageView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:scaleType="fitCenter"
 android:src="@drawable/android"
 />
</LinearLayout>

The splash.xml layout contains a single ImageView B, set to fill the entire screen.
The source image for this view is defined as the drawable resource C, named
android. Note that this is simply the name of the file (minus the file extension) in
the drawable folder, as shown earlier.

 Now you must use this layout in an Activity. Aside from the referencing of an
image resource from the layout, this part is not that interesting. Figure 12.5 shows the
splash screen running on the Android Emulator.

 Of interest to us is the code that creates the splash page functionality, shown in
the following listing.

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source code
public class Splash extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.splash);
 Handler x = new Handler();
 x.postDelayed(new SplashHandler(), 2000);
 }
 class SplashHandler implements Runnable {
 public void run() {
 startActivity(
 new Intent(getApplication(),FieldService.class));
 Splash.this.finish();
 }
 }
}

Listing 12.2 splash.xml, defining the layout of the application’s splash screen

Listing 12.3 Splash.java, which implements the splash screen functionality

Full screen
ImageView

B

Image
reference

C

Set up
main View

B

Define and
set up Handler

C

D

Kill splash
screenE

304 CHAPTER 12 Putting Android to work in a field service application

As with most Activity classes in Android, you
want to associate the splash layout with this
Activity’s View B. A Handler is set up C, which
is used to close down the splash screen after an
elapsed period of time. Note that the arguments
to the postDelayed method are an instance of a
class that implements the Runnable interface and
the desired elapsed time in milliseconds. In this
snippet of code, the screen will be shown for
2,000 milliseconds, or 2 seconds. After the indi-
cated amount of time has elapsed, the class
splashhandler is invoked. The FieldService
Activity is instantiated with a call to start-
Activity D. Note that an Intent isn’t used
here—you explicitly specify which class is going
to satisfy your request. Once you’ve started the
next Activity, it’s time to get rid of your splash
screen Activity E.

 The splash screen is happily entertaining our
mobile worker each time he starts the applica-
tion. Let’s move on to the main screen of the
application.

12.3.2 Preferences used by the FieldService Activity

The goal of the FieldService Activity is to put the functions the mobile worker
requires directly in front of him and make sure they’re easy to access. A good mobile
application is often one that can be used with one hand, such as using the five-way nav-
igation buttons, or in some cases a thumb tapping on a button. In addition, if there’s
helpful information to display, you shouldn’t hide it. It’s helpful for our mobile worker
to know that he’s configured to obtain jobs from a particular server. Figure 12.6 dem-
onstrates the field service application conveying an easy-to-use home screen.

 Before reviewing the code in FieldService.java, let’s take a break to discuss how the
user and server settings are managed. This is important
because these settings are used throughout the applica-
tion, and as shown in the fieldservice.xml layout file, we
need to access those values to display to our mobile
worker on the home screen.

PREFS CLASS

As you learned in chapter 5, there are a number of
means for managing data. Because we need to persist
this data across multiple invocations of our application,

Figure 12.5 The splash screen

Figure 12.6 The home screen.

the data must be stored in a nonvolatile fashion. This Less is more.

305Application source code

application employs private SharedPreferences to accomplish this. Why? Despite the
fact that we’re largely ignoring security for this sample application, using private
SharedPreferences means that other applications can’t casually access this poten-
tially important data. For example, we presently use only an identifier (let’s call it an
email address for simplicity) and a server URL in this application. But we might also
include a password or a PIN in a production-ready application, so keeping this data
private is a good practice.

 The Prefs class can be described as a helper or wrapper class. This class wraps the
SharedPreferences code and exposes simple getter and setter methods, specific to
this application. This implementation knows something about what we’re trying to
accomplish, so it adds value with some default values as well. Let’s look at the follow-
ing listing to see how our Prefs class is implemented.

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source code
public class Prefs {
 private SharedPreferences _prefs = null;
 private Editor _editor = null;
 private String _useremailaddress = "Unknown";
 private String _serverurl =
 "http://android12.msi-wireless.com/getjoblist.php";
 public Prefs(Context context) {
 _prefs = context.getSharedPreferences(
"PREFS_PRIVATE",
Context.MODE_PRIVATE);
 _editor = _prefs.edit();
 }
 public String getValue(String key,String defaultvalue){
 if (_prefs == null) return "Unknown";
 return _prefs.getString(key,defaultvalue);
 }
 public void setValue(String key,String value) {
 if (_editor == null) return;
 _editor.putString(key,value);
 }
 public String getEmail(){
 if (_prefs == null) return "Unknown";
 _useremailaddress = _prefs.getString("emailaddress","Unknown");
 return _useremailaddress;
 }
 public void setEmail(String newemail) {
 if (_editor == null) return;
 _editor.putString("emailaddress",newemail);
 }
 ... (abbreviated for brevity)
 public void save() {
 if (_editor == null) return;
 _editor.commit();
 }

Listing 12.4 Prefs class

SharedPreferences objectB
Implement
HandlerC

Default
values

E
Initialize

SharedPreferences

Generic
set/get
methods

F

Extract
email value

G

Set email
valueH

Save
preferencesI
}

306 CHAPTER 12 Putting Android to work in a field service application

To persist the application’s settings data, you employ a SharedPreferences object B.
To manipulate data within the SharedPreferences object, here named _prefs, you
use an instance of the Editor class C. This snippet employs some default settings val-
ues D, which are appropriate for your application. The Prefs() constructor E does
the necessary housekeeping so you can establish your private SharedPreferences
object, including using a passed-in Context instance. The Context class is necessary
because the SharedPreferences mechanism relies on a Context for segregating data.
This snippet shows a pair of set and get methods that are generic in nature F. The
getEmail G and setEmail methods H are responsible for manipulating the email
setting value. The save() method I invokes a commit() on the Editor, which per-
sists the data to the SharedPreferences store.

 Now that you have a feel for how this important preference data is stored, let’s
return to examine the code of FieldService.java.

12.3.3 Implementing the FieldService Activity

Recall that the FieldService.java file implements the FieldService class, which is
essentially the home screen of our application. This code does the primary dispatch-
ing for the application. Many of the programming techniques in this file have been
shown earlier in the book, but please note the use of startActivityForResult and
the onActivityResult methods as you read through the code shown in the following
listing.

package com.msi.manning.UnlockingAndroid;
// multiple imports trimmed for brevity, see full source code
public class FieldService extends Activity {
 final int ACTIVITY_REFRESHJOBS = 1;
 final int ACTIVITY_LISTJOBS = 2
 final int ACTIVITY_SETTINGS = 3;
 Prefs myprefs = null;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.fieldservice);
 myprefs = new Prefs(this.getApplicationContext());
 RefreshUserInfo();
 final Button refreshjobsbutton =

 (Button) findViewById(R.id.getjobs);
 refreshjobsbutton.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 try {
 startActivityForResult(new

Intent(v.getContext(),RefreshJobs.class),ACTIVITY_REFRESHJOBS);
 } catch (Exception e) {
 }
 }
 });

Listing 12.5 FieldService.java, which implements the FieldService Activity

Useful constants

Prefs instanceB

Set up UI Instantiate
Prefs
instance

C

Initiate UI field contents

D
Connect

button to UI
 // see full source comments

307Application source code

 }
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent

data) {
 switch (requestCode) {
 case ACTIVITY_REFRESHJOBS:
 break;
 case ACTIVITY_LISTJOBS:
 break;
 case ACTIVITY_SETTINGS:
 RefreshUserInfo();
 break;
 }
 }
 private void RefreshUserInfo() {
 try {
 final TextView emaillabel = (TextView)

findViewById(R.id.emailaddresslabel);
 emaillabel.setText("User: " + myprefs.getEmail() + "\nServer: " +

myprefs.getServer() + "\n");
 } catch (Exception e) {
 }
 }
}

This code implements a simple UI that displays three distinct buttons. As each is
selected, a particular Activity is started in a synchronous, call/return fashion. The
Activity is started with a call to startActivityForResult D. When the called
Activity is complete, the results are returned to the FieldService Activity via the
onActivityResult method E. An instance of the Prefs class B, C is used to obtain
values for displaying in the UI. Updating the UI is accomplished in the method
RefreshUserInfo F.

 Because the settings are so important to this
application, the next section covers the management
of the user and server values.

12.3.4 Settings

When the user clicks the Settings button on the main
application screen, an Activity is started that allows
the user to configure her user ID (email address)
and the server URL. The screen layout is basic (see
listing 12.6). It’s shown graphically in figure 12.7.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"

Listing 12.6 showsettings.xml, which contains UI elements for the settings screen

onActivityResult
processingE

RefreshUserInfoF

Figure 12.7 Settings screen in use
 android:layout_height="fill_parent"

308 CHAPTER 12 Putting Android to work in a field service application

 >
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Email Address"
 />
 <EditText
 android:id="@+id/emailaddress"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:autoText="true"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Server URL"
 />
 <EditText
 android:id="@+id/serverurl"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:autoText="true"
 />
 <Button android:id="@+id/settingssave"
 android:text="Save Settings"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:enabled="true"
 />
</LinearLayout>

The source code behind the settings screen is also basic. Note the use of the
PopulateScreen() method, which makes sure the EditView controls are populated
with the current values stored in the SharedPreferences. Note also the use of the
Prefs helper class to retrieve and save the values, as shown in the following listing.

package com.msi.manning.UnlockingAndroid;
// multiple imports trimmed for brevity, see full source code
public class ShowSettings extends Activity {
 Prefs myprefs = null;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.showsettings);

 myprefs = new Prefs(this.getApplicationContext());
 PopulateScreen();
 final Button savebutton = (Button) findViewById(R.id.settingssave);
 savebutton.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 try {

Listing 12.7 ShowSettings.java, which implements code behind the settings screen

TextView for
display of labels

TextView for
display of labels

Button to initiate
saving data

BInitialize
Prefs instance

Populate UI
elements

C

 final EditText email=

309Application source code

 (EditText)findViewById(R.id.emailaddress);
 if (email.getText().length() == 0) {
 // display dialog, see full source code
 return;
 }
 final EditText serverurl =
 (EditText)findViewById(R.id.serverurl);
 if (serverurl.getText().length() == 0) {
 // display dialog, see full source code
 return;
 }
 myprefs.setEmail(email.getText().toString());
 myprefs.setServer(serverurl.getText().toString());
 myprefs.save();
 finish();
 } catch (Exception e) {
 }
 }
 });
}
 private void PopulateScreen() {
 try {
 final EditText emailfield = (EditText) findViewById(R.id.emailaddress);
 final EditText serverurlfield = (EditText)findViewById(R.id.serverurl);
 emailfield.setText(myprefs.getEmail());
 serverurlfield.setText(myprefs.getServer());
 } catch Exception e) {
 }
 }
}

This Activity commences by initializing the SharedPreferences instance B, which
retrieves the setting’s values and subsequently populates the UI elements C by calling
the application-defined PopulateScreen method G. When the user clicks the Save
Settings button, the onClick method is invoked, wherein the data is extracted from
the UI elements D and put back into the Prefs instance E. A call to the finish
method F ends this Activity.

 Once the settings are in order, it’s time to focus on the core of the application:
managing jobs for our mobile worker. To get the most out the higher-level functional-
ity of downloading (refreshing) and managing jobs, let’s examine the core data struc-
tures in use in this application.

12.3.5 Managing job data

Data structures represent a key element of any software project and, in particular,
projects consisting of multiple tiers, such as our field service application. Job data is
exchanged between an Android application and the server, so the elements of the job
are central to our application. In Java, you implement these data structures as classes,
which include helpful methods in addition to the data elements. XML data shows up
in many locations in this application, so let’s start there.

Connect
EditText
to UI

D

Store and
save
settings

E

Finish this
ActivityF

PopulateScreen
method sets up UI

G

310 CHAPTER 12 Putting Android to work in a field service application

 The following listing shows a sample XML document containing a joblist with a
single job entry.

<?xml version="1.0" encoding="UTF-8" ?>
<joblist>
<job>
<id>22</id>
<status>OPEN</status>
<customer>Big Tristan's Imports</customer>
<address>2200 East Cedar Ave</address>
<city>Flagstaff</city>
<state>AZ</state>
<zip>86004</zip>
<product>UnwiredTools UTCIS-PT</product>
<producturl>http://unwiredtools.com</producturl>
<comments>Requires tuning - too rich in the mid range RPM.
Download software from website before visiting.</comments>
</job>
</joblist>

Now that you have a feel for what the job data looks like, we’ll show you how the data
is handled in our Java classes.

JOBENTRY

The individual job is used throughout the application, and therefore it’s essential that
you understand it. In our application, you define the JobEntry class to manage the indi-
vidual job, as shown in listing 12.9. Note that many of the lines are omitted from this list-
ing for brevity; please see the available source code for the complete code listing.

package com.msi.manning.UnlockingAndroid;
import android.os.Bundle;
public class JobEntry {
 private String _jobid="";
 private String _status = "";
 // members omitted for brevity
private String _producturl = "";
 private String _comments = "";
 JobEntry() {
 }
 // get/set methods omitted for brevity
 public String toString() {
 return this._jobid + ": " + this._customer + ": " + this._product;
 }
 public String toXMLString() {
 StringBuilder sb = new StringBuilder("");
 sb.append("<job>");
 sb.append("<id>" + this._jobid + "</id>");
 sb.append("<status>" + this._status + "</status>");

Listing 12.8 XML document containing data for the field service application

Listing 12.9 JobEntry.java

Bundle class
import

B

Each member
is a StringC

toString
method

D

toXMLString
methodE
 sb.append("<customer>" + this._customer + "</customer>");

311Application source code

 sb.append("<address>" + this._address + "</address>");
 sb.append("<city>" + this._city + "</city>");
 sb.append("<state>" + this._state + "</state>");
 sb.append("<zip>" + this._zip + "</zip>");
 sb.append("<product>" + this._product + "</product>");
 sb.append("<producturl>" + this._producturl + "</producturl>");
 sb.append("<comments>" + this._comments + "</comments>");
 sb.append("</job>");
 return sb.toString() + "\n";
}
 public Bundle toBundle() {
 Bundle b = new Bundle();
 b.putString("jobid", this._jobid);
 b.putString("status", this._status);
 // assignments omitted for brevity
 b.putString("producturl", this._producturl);
 b.putString("comments", this._comments);
 return b;
}
public static JobEntry fromBundle(Bundle b) {
 JobEntry je = new JobEntry();
 je.set_jobid(b.getString("jobid"));
 je.set_status(b.getString("status"));
 // assignments omitted for brevity
 je.set_producturl(b.getString("producturl"));
 je.set_comments(b.getString("comments"));
 return je;
}
}

This application relies heavily on the Bundle class B for moving data from one
Activity to another. (We’ll explain this in more detail later in this chapter.) A String
member C exists for each element in the job, such as jobid or customer. The
toString() method D is rather important, as it’s used when displaying jobs in the
ManageJobs Activity (also discussed later in the chapter). The toXMLString()
method E generates an XML representation of this JobEntry, complying with the job
element defined in the previously presented DTD. The toBundle() method F takes
the data members of the JobEntry class and packages them into a Bundle. This
Bundle is then able to be passed between activities, carrying with it the required data
elements. The fromBundle() static method G returns a JobEntry when provided with
a Bundle. toBundle() and fromBundle() work together to assist in the passing of
JobEntry objects (at least the data portion thereof) between activities. Note that this is
one of many ways in which to move data throughout an application. Another method,
as an example, is to have a globally accessible class instance to store data.

 Now that you understand the JobEntry class, we’ll move on to the JobList class,
which is a class used to manage a collection of JobEntry objects.

JOBLIST

When interacting with the server or presenting the available jobs to manage on the
Android device, the field service application works with an instance of the JobList

toBundle
method

F

fromBundle
method

G

312 CHAPTER 12 Putting Android to work in a field service application

class. This class, like the JobEntry class, has both data members and helpful methods.
The JobList class contains a typed List data member, which is implemented using a
Vector. This is the only data member of this class, as shown in the following listing.

package com.msi.manning.UnlockingAndroid;
import java.util.List;
import org.xml.sax.InputSource;
import android.util.Log;
// additional imports omitted for brevity, see source code
public class JobList {
 private Context _context = null;
 private List<JobEntry> _joblist;
 JobList(Context context){
 _context = context;
 _joblist = new Vector<JobEntry>(0);
 }
 int addJob(JobEntry job){
 _joblist.add(job);
 return _joblist.size();
 }
 JobEntry getJob(int location) {
 return _joblist.get(location);
 }
 List<JobEntry> getAllJobs() {
 return _joblist;
 }
 int getJobCount() {
 return _joblist.size();
 }
 void replace(JobEntry newjob) {
 try {
 JobList newlist = new JobList();
 for (int i=0;i<getJobCount();i++) {
 JobEntry je = getJob(i);
 if (je.get_jobid().equals(newjob.get_jobid())) {
 newlist.addJob(newjob);
 } else {
 newlist.addJob(je);
 }
 }
 this._joblist = newlist._joblist;
 persist();
 } catch (Exception e) {
 }
}
void persist() {
 try {
 FileOutputStream fos = _context.openFileOutput("chapter12.xml",

Context.MODE_PRIVATE);
 fos.write("<?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n".getBytes());
 fos.write("<joblist>\n".getBytes());

Listing 12.10 JobList.java

List class
imported for Vector

B

InputSource
imported,
used by XML
parserCFamiliar logging

mechanism

ConstructorD

addJob/getJob
methodsE

getAllJobs methodF

replace methodG

persist methodH
 for (int i=0;i<getJobCount();i++) {

313Application source code

 JobEntry je = getJob(i);
 fos.write(je.toXMLString().getBytes());
 }
 fos.write("</joblist>\n".getBytes());
 fos.flush();
 fos.close();
 } catch (Exception e) {
 Log.d("CH12",e.getMessage());
 }
}
static JobList parse(Context context) {
 try {
 FileInputStream fis = context.openFileInput("chapter12.xml");
 if (fis == null) {
 return null;
 }
 InputSource is = new InputSource(fis);
 SAXParserFactory factory = SAXParserFactory.newInstance();
 SAXParser parser = factory.newSAXParser();
 XMLReader xmlreader = parser.getXMLReader();
 JobListHandler jlHandler =
new JobListHandler(null /* no progress updates when reading file */);
 xmlreader.setContentHandler(jlHandler);
 xmlreader.parse(is);
 fis.close();
 return jlHandler.getList();
 } catch (Exception e) {
 return null;
 }
 }
}

The list of jobs is implemented as a Vector, which is a type of List B. The XML struc-
ture containing job information is parsed with the SAX parser, so you need to be sure
to import those required packages C. JobEntry objects are stored in the typed List
object named _joblist D. Helper methods for managing the list are included as
addJob and getJob E. The getAllJobs() method F returns the list of JobEntry
items. Note that generally speaking, the application uses the getJob() method for
individual JobEntry management, but the getAllJobs() method is particularly useful
when you display the full list of jobs in the ManageJobs Activity, discussed later in
this chapter.

 The replace() method G is used when you’ve closed a job and need to update
your local store of jobs. Note that after it has updated the local list of JobEntry items,
replace() calls the persist()H method, which is responsible for writing an XML
representation of the entire list of JobEntry items to storage. This method invokes the
toXMLString() method on each JobEntry in the list. The openFileOutput method
creates a file within the application’s private file area. This is essentially a helper
method to ensure you get a file path to which you have full read/write privileges.

 The parse method I obtains an instance of a FileInputStream to gain access to

parse methodI
the file and creates an instance of an InputStream C, which is required by the SAX XML

314 CHAPTER 12 Putting Android to work in a field service application

parser. In particular, take note of the JobListHandler. SAX is a callback parser, mean-
ing that it invokes a user-supplied method to process events in the parsing process. It’s
up to the JobListHandler (in our example) to process the data as appropriate.

 We have one more class to go before we can jump back to the higher-level func-
tionality of our application. The next section takes a quick tour of the JobList-
Handler, which is responsible for putting together a JobList from an XML data
source.

JOBLISTHANDLER

As presented earlier, our application uses an XML data storage structure. This XML
data can come from either the server or from a local file on the filesystem. In either
case, the application must parse this data and transform it into a useful form. This is
accomplished through the use of the SAX XML parsing engine and the JobList-
Handler, which is shown in listing 12.11. The JobListHandler is used by the SAX
parser for our XML data, regardless of the data’s source. Where the data comes from
dictates how the SAX parser is set up and invoked in this application. The JobList-
Handler behaves slightly differently depending on whether the class’s constructor
includes a Handler argument. If the Handler is provided, the JobListHandler will
pass messages back for use in a ProgressDialog. If the Handler argument is null, this
status message passing is bypassed. When parsing data from the server, the Progress-
Dialog is employed; the parsing of a local file is done quickly and without user feed-
back. The rationale for this is simple—the network connection may be slow and we
need to show progress information to the user. An argument could be made for always
showing the progress of the parse operation, but this approach gives us an opportu-
nity to demonstrate more conditionally operating code.

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source code
public class JobListHandler extends DefaultHandler {
 Handler phandler = null;
 JobList _list;
 JobEntry _job;
 String _lastElementName = "";
 StringBuilder sb = null;
 Context _context;
 JobListHandler(Context c,Handler progressHandler) {
 _context = c;
 if (progressHandler != null) {
 phandler = progressHandler;
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Processing List");
 phandler.sendMessage(msg);
 }
 }

Listing 12.11 JobListHandler.java

JobListHandler
constructor

B

Check for
progress handlerC
 public JobList getList() { getList methodD

315Application source code

 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Fetching List");
 if (phandler != null) phandler.sendMessage(msg);
 return _list;
 }
 public void startDocument() throws SAXException {
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Starting Document");
 if (phandler != null) phandler.sendMessage(msg);
 _list = new JobList(_context);
 _job = new JobEntry();
 }
 public void endDocument() throws SAXException {
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("End of Document");
 if (phandler != null) phandler.sendMessage(msg);
 }
 public void startElement
 (String namespaceURI, String localName,String qName,
 Attributes atts) throws SAXException {
 try {
 sb = new StringBuilder("");
 if (localName.equals("job")) {
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)(localName);
 if (phandler != null) phandler.sendMessage(msg);
 _job = new JobEntry();
 }
 } catch (Exception ee) {
 }
 }
 public void endElement
 (String namespaceURI, String localName, String qName)
 throws SAXException {
 if (localName.equals("job")) {
 // add our job to the list!
 _list.addJob(_job);
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Storing Job # " + _job.get_jobid());
 if (phandler != null) phandler.sendMessage(msg);
 return;
 }
 // portions of the code omitted for brevity
 }
 public void characters(char ch[], int start, int length) {
 String theString = new String(ch,start,length);
 Log.d("CH12","characters[" + theString + "]");
 sb.append(theString);
 }

startDocument
method

E

endDocument
method

F

Check for end
of job elementG

Build up String
incrementally

H

}

316 CHAPTER 12 Putting Android to work in a field service application

The JobListHandler constructor B takes a single argument of Handler. This value
may be null. If null, Message passing is omitted from operation. When reading from a
local storage file, this Handler argument is null. When reading data from the server
over the internet, with a potentially slow connection, the Message-passing code is uti-
lized to provide feedback for the user in the form of a Progress-Dialog. The
ProgressDialog code is shown later in this chapter in the discussion of the Refresh-
Jobs Activity. A local copy of the Handler C is set up when using the Progress-
Dialog, as described in B.

 The getList()D method is invoked when parsing is complete. The role of
getList is to return a copy of the JobList that was constructed during the parse pro-
cess. When the startDocument() callback method E is invoked by the SAX parser,
the initial class instances are established. The endDocument() method F is invoked by
the SAX parser when all of the document has been consumed. This is an opportunity
for the Handler to perform additional cleanup as necessary. In our example, a mes-
sage is posted to the user by sending a Message.

 For each element in the XML file, the SAX parser follows the same pattern: start-
Element is invoked, characters() is invoked (one or more times), and endElement is
invoked. In the startElement method, you initialize StringBuilder and evaluate the
element name. If the name is “job,” you initialize the class-level JobEntry instance.

 In the endElement() method, the element name is evaluated. If the element name
is “job” G, the JobListHandler adds this JobEntry to the JobList data member,
_joblist, with a call to addJob(). Also in the endElement() method, the data mem-
bers of the JobEntry instance (_job) are updated. Please see the full source code for
more details.

 The characters() method is invoked by the SAX parser whenever data is available
for storage. The JobListHandler simply appends this string data to a StringBuilder
instance H each time it’s invoked. It’s possible that the characters method may be
invoked more than once for a particular element’s data. That’s the rationale behind
using a StringBuilder instead of a single String variable; StringBuilder is a more
efficient class for constructing strings from multiple substrings.

 After this lengthy but important look into the data structures and the accompany-
ing explanations, it’s time to return to the higher-level functionality of the application.

12.4 Source code for managing jobs
Most of the time our mobile worker is using this application, he’ll be reading through
comments, looking up a job address, getting product information, and performing
other aspects of working on a specific job. Our application must supply the functional-
ity for the worker to accomplish each of these job-management tasks. We examine
each of these Activitys in detail in this section. The first thing we review is fetching
new jobs from the server, which gives us the opportunity to discuss the JobList-
Handler and the management of the jobs list used throughout the application.

317Source code for managing jobs

12.4.1 RefreshJobs

The RefreshJobs Activity performs a simple yet vital
role in the field service application. Whenever
requested, the RefreshJobs Activity attempts to
download a list of new jobs from the server. The UI is
super simple—just a blank screen with a Progress-
Dialog informing the user of the application’s prog-
ress, as shown in figure 12.8.

 The code for RefreshJobs is shown in listing 12.12.
The code is straightforward, as most of the heavy lift-
ing is done in the JobListHandler. This code’s respon-
sibility is to fetch configuration settings, initiate a
request to the server, and put a mechanism in place for
showing progress to the user.

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source
public class RefreshJobs extends Activity {
 Prefs myprefs = null;
 Boolean bCancel = false;
 JobList mList = null;
 ProgressDialog progress;
 Handler progresshandler;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.refreshjobs);
 myprefs = new Prefs(this.getApplicationContext);
 myprogress = ProgressDialog.show(this, "Refreshing Job List",
 "Please Wait",true,false);
 progresshandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case 0:
 myprogress.setMessage("" + (String) msg.obj);
 break;
 case 1:
 myprogress.cancel();
 finish();
 break;
 case 2: // error occurred
 myprogress.cancel();
 finish();
 break;
 }
 super.handleMessage(msg);

Listing 12.12 RefreshJobs.java

Progress indicatorB

Set up
ProgressDialogC

Define
HandlerD

Update UI
with textual
messageE

Handle cancel
and cancel
with error

F

Use openFileInput
for stream

G

Figure 12.8
The ProgressDialog in use
during RefreshJobs
 }

318 CHAPTER 12 Putting Android to work in a field service application

 };
 Thread workthread = new Thread(new DoReadJobs());
 workthread.start();
 }
 class DoReadJobs implements Runnable {
 public void run() {
 InputSource is = null;
 Message msg = new Message();
 msg.what = 0;
 try {
 //Looper.prepare();
 msg.obj = (Object) ("Connecting ...");
 progresshandler.sendMessage(msg);
 URL url = new URL(myprefs.getServer() +
 "getjoblist.php?identifier=" + myprefs.getEmail());
 is = new InputSource(url.openStream());
 SAXParserFactory factory = SAXParserFactory.newInstance();
 SAXParser parser = factory.newSAXParser();
 XMLReader xmlreader = parser.getXMLReader();
 JobListHandler jlHandler =
new JobListHandler(progresshandler);
 xmlreader.setContentHandler(jlHandler);
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Parsing ...");
 progresshandler.sendMessage(msg);
 xmlreader.parse(is);
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Parsing Complete");
 progresshandler.sendMessage(msg);
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Saving Job List");
 progresshandler.sendMessage(msg);
 jlHandler.getList().persist();
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Job List Saved.");
 progresshandler.sendMessage(msg);
 msg = new Message();
 msg.what = 1;
 progresshandler.sendMessage(msg);
 } catch (Exception e) {
 Log.d("CH12","Exception: " + e.getMessage());
 msg = new Message();
 msg.what = 2; // error occurred
 msg.obj = (Object)("Caught an error retrieving
 Job data: " + e.getMessage());
 progresshandler.sendMessage(msg);
 }
 }
 }
}

Initiate
DoReadJobs
class instanceH

Create
Message object

I

Define looping
construct

J

Prepare status
message1)

Prepare to parse data1!

Instantiate
JobListHandler

1@

Persist data1#

Set status flag
for completion

1$

Set status flag
for error

1%

319Source code for managing jobs

A ProgressDialog B is used to display progress information to the user. There are a
number of ways to display progress in Android. This is perhaps the most straightfor-
ward approach. A Handler is employed to process Message instances. Though the
Handler itself is defined as an anonymous class, the code requires a reference to it for
passing to the JobListHandler when parsing, which is shown in 1@. When instantiat-
ing the ProgressDialog C, the arguments include

 Context

 Title of Dialog

 Initial Textual Message

 Indeterminate

 Cancelable

Using true for the Indeterminate parameter means that you’re not providing any
clue as to when the operation will complete (such as percentage remaining), just an
indicator that something is still happening, which can be a best practice when you
don’t have a good handle on how long an operation may take. A new Handler D is
created to process messages sent from the parsing routine, which will be introduced
momentarily. An important class that has been mentioned but thus far not described
is Message. This class is used to convey information between different threads of exe-
cution. The Message class has some generic data members that may be used in a flexi-
ble manner. The first of interest is the what member, which acts as a simple identifier,
allowing recipients to easily jump to desired code based on the value of the what mem-
ber. The most typical (and used here) approach is to evaluate the what data member
via a switch statement.

 In this application, a Message received with its what member equal to 0 represents
a textual update message E to be displayed in the ProgressDialog. The textual data
itself is passed as a String cast to an Object and stored in the obj data member of the
Message. This interpretation of the what member is purely arbitrary. You could’ve
used 999 as the value meaning textual update, for example. A what value of 1 or 2
indicates that the operation is complete F, and this Handler can take steps to initiate
another thread of execution. For example, a value of 1 indicates successful comple-
tion so the ProgressDialog is canceled, and the RefreshJobs Activity is completed
with a call to finish(). The value of 2 for the what member has the same effect as a
value of 1, but it’s provided here as an example of handling different result condi-
tions; for example, a failure response due to an encountered error. In a production-
ready application, this step should be fleshed out to perform an additional step of
instruction to the user and/or a retry step. Any Message not explicitly handled by the
Handler instance should be passed to the super class G. In this way system messages
may be processed.

 When communicating with a remote resource, such as a remote web server in our
case, it’s a good idea to perform the communications steps in a thread other than the
primary GUI thread. A new Thread is created based on the DoReadJobs class, which
H

320 CHAPTER 12 Putting Android to work in a field service application

implements the Runnable Java interface. A new Message object I is instantiated and
initialized. This step takes place over and over throughout the run method of the
DoReadJobs class. It’s important to not reuse a Message object, as they’re literally
passed and enqueued. It’s possible for them to stack up in the receiver’s queue, so
reusing a Message object will lead to losing data or corrupting data at best and Thread
synchronization issues or beyond at worst.

 Why are we talking about a commented-out line of code J? Great question—
because it caused so much pain in the writing of this application! A somewhat odd and
confusing element of Android programming is the Looper class. This class provides
static methods to help Java Threads to interact with Android. Threads by default don’t
have a message loop, so presumably Messages don’t go anywhere when sent. The first
call to make is Looper.prepare(), which creates a Looper for a Thread that doesn’t
already have one established. Then by placing a call to the loop() method, the flow of
Messages takes place. Prior to implementing this class as a Runnable interface, we
experimented with performing this step in the same thread and attempted to get the
ProgressDialog to work properly. That said, if you run into funny Thread/Looper
messages on the Android Emulator, consider adding a call to Looper.prepare() at the
beginning of your Thread and then Looper.loop() to help Messages flow.

 When you want to send data to the user to inform him of your progress, you
update an instance of the Message class 1) and send it to the assigned Handler.

 To parse an incoming XML data stream, you create a new InputSource from the
URL stream 1!. This step is required for the SAX parser. This method reads data from
the network directly into the parser without a temporary storage file.

 Note that the instantiation of the JobListHandler 1@ takes a reference to the
progresshandler. This way the JobListHandler can (optionally) propagate messages
back to the user during the parse process. Once the parse is complete, the JobList-
Handler returns a JobList object, which is then persisted 1# to store the data to the
local storage. Because this parsing step is complete, you let the Handler know by pass-
ing a Message 1$ with the what field set to 1. If an exception occurs, you pass a mes-
sage with what set to 2, indicating an error 1%.

 Congratulations, your Android application has now constructed a URL object with
persistently stored configuration information (user and server) and successfully con-
nected over the internet to fetch XML data. That data has been parsed into a JobList
containing JobEntry objects, while providing our patient mobile worker with feed-
back, and subsequently storing the JobList to the filesystem for later use. Now we
want to work with those jobs, because after all, those jobs have to be completed for our
mobile worker friend to make a living!

12.4.2 Managing jobs: The ManageJobs Activity

The ManageJobs Activity presents a scrollable list of jobs for review and action. At
the top of the screen is a simple summary indicating the number of jobs in the list,
and each individual job is enumerated in a ListView.
 Earlier we mentioned the importance of the JobEntry’s toString() method:

321Source code for managing jobs

public String toString() {
 return this._jobid + ": " + this._customer + ": " + this._product;
}

This method generates the String that’s used to represent the JobEntry in the List-
View, as shown in figure 12.9.

 The layout for this Activity’s View is simple: just a TextView and a ListView, as
shown in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/joblistview"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:scrollbars="vertical"
 >
 <TextView android:id="@+id/statuslabel"
 android:text="list jobs here "
 android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 />
 <ListView android:id="@+id/joblist"
 android:layout_height="fill_parent"
 android:layout_width="fill_parent"
 />
</LinearLayout>

The code in listing 12.14 for the ManageJobs Activity
connects a JobList to the GUI and reacts to the selec-
tion of a particular job from the ListView. In addition,
this class demonstrates taking the result from another,
synchronously invoked Activity and processing it
according to its specific requirement. For example,
when a job is completed and closed, that JobEntry is
updated to reflect its new status.

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source
public class ManageJobs extends Activity implements OnItemClickListener {
 final int SHOWJOB = 1;
 Prefs myprefs = null;
 JobList _joblist = null;
 ListView jobListView;
 @Override
 public void onCreate(Bundle icicle) {

Listing 12.13 managejobs.xml

Listing 12.14 ManageJobs.java, which implements the ManageJobs Activity

Figure 12.9
ManageJobs Activity lists
downloaded jobs.
 super.onCreate(icicle);

322 CHAPTER 12 Putting Android to work in a field service application

 setContentView(R.layout.managejobs);

 myprefs = new Prefs(this.getApplicationContext());
 TextView tv =
 (TextView) findViewById(R.id.statuslabel);
 _joblist = JobList.parse(this.getApplicationContext());
 if (_joblist == null) {
 _joblist = new JobList(this.getApplicationContext());
 }

 if (_joblist.getJobCount() == 0){
 tv.setText("There are No Jobs Available");
 } else {
 tv.setText("There are " + _joblist.getJobCount() + " jobs.");
 }

 jobListView = (ListView) findViewById(R.id.joblist);
 ArrayAdapter<JobEntry> adapter = new ArrayAdapter<JobEntry>(this,
 android.R.layout.simple_list_item_1, _joblist.getAllJobs());
 jobListView.setAdapter(adapter);
 jobListView.setOnItemClickListener(this);
 jobListView.setSelection(0);
 }

 public void onItemClick(AdapterView parent,
 View v, int position, long id) {

 JobEntry je = _joblist.getJob(position);
 Log.i("CH12", "job clicked! [" + je.get_jobid() + "]");
 Intent jobintent = new Intent(this, ShowJob.class);
 Bundle b = je.toBundle();
 jobintent.putExtras(b);
 startActivityForResult(jobintent, SHOWJOB);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent

data) {
 switch (requestCode) {
 case SHOWJOB:
 if (resultCode == 1){
 Log.d("CH12","Good Close, let's update our list");
 JobEntry je = JobEntry.fromBundle(data.getExtras());
 _joblist.replace(je);
 }
 break;
 }
 }

}

The objective of this code is to display a list of available jobs to the user in a ListView
D. To display the list of jobs, we must first parse the list stored on the device B. Note
that the Context argument is required to allow the JobList class access to the private
file area for this application. If the parse fails, we initialize the JobList instance to a
new, empty list. This is a somewhat simplistic way to handle the error without the GUI

Connect
TextView to UI

Parse
data in
storage

B

Handle
bad parseCCheck for

empty JobList
Process click
events on List

DConnect ListView to UI

Fetch job from
list by ordinal

E

Use Bundle to
store Job data

F

Start
ShowJob ActivityG

Check
return code

H

Extract
returned
JobEntry

Update the list with
via replace methodI
falling apart C.

323Source code for managing jobs

 When a specific job is selected, its details are extracted via a call to the getJob
method E. The job is stored in a Bundle, put into an Intent F, and subsequently
sent to the ShowJob Activity for display and/or editing G. Note the use of the con-
stant SHOWJOB as the last parameter of the startActivityForResult method. When
the called-Activity returns, the second parameter to startActivityForResult is “passed
back” when the onActivityResult method is invoked H and the return code
checked. To obtain the changed JobEntry, you need to extract it from the Intent
with a call to getExtras(), which returns a Bundle. This Bundle is turned into a
JobEntry instance via the static fromBundle method of the JobEntry class. To update
the list of jobs to reflect this changed JobEntry, call the replace method I.

Now that you can view and select the job of interest, it’s time to look at just what you
can do with that job. Before diving into the next section, be sure to review the Manage-
Jobs code carefully to understand how the JobEntry information is passed between
the two activities.

12.4.3 Working with a job with the ShowJob Activity

The ShowJob Activity is the most interesting element of the entire application, and
it’s certainly the screen most useful to the mobile worker carrying around his
Android-capable device and toolbox. To help in the discussion of the various features
available to the user on this screen, take a look at figure 12.10.

 The layout is straightforward, but this time you have some Buttons and you’ll be
changing the textual description depending on the condition of a particular job’s sta-

More on bundles
You need to pass the selected job to the ShowJob Activity, but you can’t casually
pass an object from one Activity to another. You don’t want the ShowJob
Activity to have to parse the list of jobs again; otherwise you could simply pass
back an index to the selected job by using the integer storage methods of a Bundle.
Perhaps you could store the currently selected JobEntry (and JobList for that mat-
ter) in a global data member of the Application object, had you chosen to imple-
ment one. If you recall in chapter 1 when we discussed the ability of Android to
dispatch Intents to any Activity registered on the device, you want to keep the
ability open to an application other than your own to perhaps pass a job to you. If that
were the case, using a global data member of an Application object would never
work! The likelihood of such a step is low, particularly considering how the data is
stored in this application. This chapter’s sample application is an exercise of evalu-
ating some mechanisms you might employ to solve data movement around when pro-
gramming for Android. The chosen solution is to package the data fields of the
JobEntry in a Bundle (F in listing 12.14) to move a JobEntry from one Activity
to another. In the strictest sense, you’re not moving a real JobEntry object but a
representation of a JobEntry’s data members. The net of this discussion is that this
method creates a new Bundle by using the toBundle() method of the JobEntry.
tus. A TextView is used to present job details such as address, product requiring

324 CHAPTER 12 Putting Android to work in a field service application

service, and comments. The third Button will have the text property changed,
depending on the status of the job. If the job’s status is marked as CLOSED, the func-
tionality of the third button will change.

 To support the functionality of this Activity, first the code needs to launch a new
Activity to show a map of the job’s address, as shown in figure 12.11.

 The second button, Get Product Info, launches a browser window to assist users in
learning more about the product they’re being called on to work with. Figure 12.12
shows this in action.

 The third requirement is to allow the user to close the job or to view the signature
if it’s already closed; we’ll cover the details in the next section on the CloseJob
Activity.

Figure 12.10 An example of a job
shown in the ShowJob Activity

Figure 12.11 Viewing a job
address in the Maps application

Figure 12.12 Get Product Info
takes the user to a web page

specific to this job.

325Source code for managing jobs

 Fortunately, the steps required for the first two operations are quite simple with
Android—thanks to the Intent. The following listing and the accompanying annota-
tions show you how.

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source
public class ShowJob extends Activity {
 Prefs myprefs = null;
 JobEntry je = null;
 final int CLOSEJOBTASK = 1;
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.showjob);
 myprefs = new Prefs(this.getApplicationContext());
 StringBuilder sb = new StringBuilder();
 String details = null;
 Intent startingIntent = getIntent();
 if (startingIntent != null) {
 Bundle b = startingIntent.getExtas();
 if (b == null) {
 details = "bad bundle?";
 } else {
 je = JobEntry.fromBundle(b);
 sb.append("Job Id: " + je.get_jobid() + " (" + je.get_status()+
 ")\n\n");
 sb.append(je.get_customer() + "\n\n");
 sb.append(je.get_address() + "\n" + je.get_city() + "," +
 je.get_state() + "\n");
 sb.append("Product : "+ je.get_product() + "\n\n");
 sb.append("Comments: " + je.get_comments() + "\n\n");
 details = sb.toString();
 }
 } else {
 details = "Job Information Not Found.";
 TextView tv = (TextView) findViewById(R.id.details);
 tv.setText(details);
 return;
 }
 TextView tv = (TextView) findViewById(R.id.details);
 tv.setText(details);
 Button bmap = (Button) findViewById(R.id.mapjob);
 bmap.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 // clean up data for use in GEO query
 String address = je.get_address() + " " +
 je.get_city() + " " +
 je.get_zip();
 String cleanAddress = address.replace(",", "");
 cleanAddress = cleanAddress.replace(' ','+');
 try {
 Intent geoIntent = new Intent("android.intent.action.VIEW",

Listing 12.15 ShowJob.java

Get Intent Extract
Bundle
from Intent

Update UI
upon error
and return
android.net.Uri.parse("geo:0,0?q=" +

326 CHAPTER 12 Putting Android to work in a field service application

 cleanAddress));
 startActivity(geoIntent);
 } catch (Exception ee) {
 }
 }
 });
 Button bproductinfo = (Button) findViewById(R.id.productinfo);
 bproductinfo.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 try {
 Intent productInfoIntent = new

Intent("android.intent.action.VIEW",
 android.net.Uri.parse(je.get_producturl()));
 startActivity(productInfoIntent);
 } catch (Exception ee) {
 }
 }
 });
 Button bclose = (Button) findViewById(R.id.closejob);
 if (je.get_status().equals("CLOSED")) {
 bclose.setText("Job is Closed. View Signature");
 }
 bclose.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 if (je.get_status().equals("CLOSED")) {
 Intent signatureIntent = new

Intent("android.intent.action.VIEW",
 android.net.Uri.parse(myprefs.getServer()
 + "sigs/" +
 je.get_jobid() + ".jpg"));
 startActivity(signatureIntent);
 } else {
 Intent closeJobIntent = new Intent(ShowJob.this,CloseJob.class);
 Bundle b = je.toBundle();
 closeJobIntent.putExtras(b);
 startActivityForResult(closeJobIntent,CLOSEJOBTASK);
 }
 }
 });
 Log.d("CH12","Job status is :" + je.get_status());
 }
 @Override
 protected void onActivityResult(
int requestCode, int resultCode, Intent data) {
 switch (requestCode) {
 case CLOSEJOBTASK:
 if (resultCode == 1) {
 this.setResult(1, "", data.getExtras());
 finish();
 }
 break;
 }
 }
}

Build and launch
geo query

Obtain
product info
via URL

Selectively
update
Button label

Initiate CloseJob
Activity

Handle newly
closed JobEntry

B

327Source code for managing jobs

Upon completion of the CloseJob Activity, the onActivityResult callback is
invoked. When this situation occurs, this method receives a Bundle containing the
data elements for the recently closed JobEntry B. If you recall, the ShowJob Activity
was launched “for result.”, which permits a synchronous pattern, passing the result
back to the caller. The requirement is to propagate this JobEntry data back up to the
calling Activity, ManageJobs. Calling setResult() and passing the Bundle (obtained
with getExtras()) fulfills this requirement.

 Despite the simple appearance of some text and a few easy-to-hit buttons, the
ShowJob Activity provides a significant amount of functionality to the user. All that
remains is to capture the signature to close out the job. Doing so requires an examina-
tion of the CloseJob Activity.

12.4.4 Capturing a signature with the CloseJob Activity

Our faithful mobile technician has just completed the maintenance operation on the
part and is ready to head off to lunch before stopping for another job on the way
home, but first he must close out this job with a signature from the customer. To
accomplish this, the field service application presents a blank screen, and the cus-
tomer uses a stylus (or a mouse in the case of the Android Emulator) to sign the
device, acknowledging that the work has been completed. Once the signature has
been captured, the data is submitted to the server. The proof of job completion has
been captured, and the job can now be billed. Figure 12.13 demonstrates this
sequence of events.

 This Activity can be broken down into two basic functions: the capture of a signa-
ture and the transmittal of job data to the server. Notice that this Activity’s UI has no
layout resource. All of the UI elements in this Activity are generated dynamically, as
Figure 12.13 The CloseJob Activity capturing a signature and sending data to the server

328 CHAPTER 12 Putting Android to work in a field service application

shown in listing 12.16. In addition, the ProgressDialog introduced in the Refresh-
Jobs Activity is brought back for an encore, to let our mobile technician know that
the captured signature is being sent when the Sign & Close menu option is selected. If
the user selects Cancel, the ShowJob Activity resumes control. Note that the signa-
ture should be made prior to selecting the menu option.

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source
public class CloseJob extends Activity {
 ProgressDialog myprogress;
 Handler progresshandler;
 Message msg;
 JobEntry je = null;
 private closejobView sc = null;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 Intent startingIntent = getIntent();
 if (startingIntent != null) {
 Bundle b = startingIntent.getExtras()
 if (b != null) {
 je = JobEntry.fromBundle(b);
 }
 }
 sc = new closejobView(this);
 setContentView(sc);
 if (je == null) {

 finish();
 }
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 menu.add(0,0,"Sign & Close");
 menu.add(0,1,"Cancel");
 return true;

Listing 12.16 CloseJob.java—GUI setup

Local queuing
One element not found in this sample application is the local queuing of the signa-
ture. Ideally this would be done in the event that data coverage isn’t available. The
storage of the image is quite simple; the perhaps more challenging piece is the logic
on when to attempt to send the data again. Considering all the development of this
sample application is done on the Android Emulator with near-perfect connectivity,
it’s of little concern here. But in the interest of best preparing you to write real-world
applications, it’s worth reminding you of local queuing in the event of communica-
tions trouble in the field.

Instantiate instance of
closejobView

B

Define available
menus

C

 }

329Source code for managing jobs

 public boolean onOptionsItemSelected(Menu.Item item) {
 Prefs myprefs = new Prefs(CloseJob.this.getApplicationContext());
 switch (item.getId()) {
 case 0:
 try {
 myprogress = ProgressDialog.show(this, "Closing Job ",
 "Saving Signature to Network",true,false);
 progresshandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case 0:
 myprogress.setMessage("" + (String) msg.obj);
 break;
 case 1:
 myprogress.cancel();
 finish();
 break;
 }
 super.handleMessage(msg);
 }
 };
 Thread workthread = new
Thread(new DoCloseJob(myprefs));
 workthread.start();
 } catch (Exception e) {
 Log.d("closejob",e.getMessage());
 msg = new Message();
 msg.what = 1;
 progresshandler.sendMessage(msg);
 }
 return true;
 case 1:
 finish();
 return true;
 }
 return false;
}

Unlike previous activities in this chapter, the UI doesn’t come from a design time-
defined layout, but rather an instance of a closejobView B is the primary UI. The
closejobView is defined in listing 12.17.

 The onCreateOptionsMenu method c is an override of the base View’s method,
allowing a convenient way to add menus to this screen. Note that two menus are
added, one for Sign & Close and one for Cancel. The onOptionsItemSelected
method d is invoked when the user selects a menu item. A ProgressDialog and
accompanying Handler are instantiated when the user chooses the menu to close a
job. Once the progress-reporting mechanism is in place, a new Thread is created and
started in order to process the steps required to close the job e. Note that an instance
of Prefs is passed in as an argument to the constructor, as that will be needed to store
a signature, as we’ll show in listing 12.18.

D
Handle

selected menu

Start Thread
to CloseJob

E

330 CHAPTER 12 Putting Android to work in a field service application

 The UI at this point is only partially set up; we need a means to capture a signature
on the screen of our Android device. The next listing implements the class closejob-
View, which is an extension of the View class.

public class closejobView extends View {
 Bitmap _bitmap;
 Canvas _canvas;
 final Paint _paint;
 int lastX;
 int lastY;
 public closejobView(Context c) {
 super(c);
 _paint = new Paint();
 _paint.setColor(Color.BLACK);
 lastX = -1;
 }
 public boolean Save(OutputStream os){
 try {
 _canvas.drawText("Unlocking Android", 10, 10, _paint);
 _canvas.drawText("http://manning.com/ableson", 10, 25, _paint);
 _canvas.drawText("http://android12.msi-wireless.com",
 10, 40, _paint);
 _bitmap.compress(Bitmap.CompressFormat.JPEG, 100, os);
 invalidate();
 return true;
 } catch (Exception e) {
 return false;
 }
 }
 @Override
 protected void onSizeChanged(int w, int h, int oldw, int oldh) {
 Bitmap img =
 Bitmap.createBitmap(w, h,Bitmap.Config.ARGB_8888);
 Canvas canvas = new Canvas();
 canvas.setBitmap(img);
 if (_bitmap != null) {
 canvas.drawBitmap(img, 0, 0, null);
 }
 _bitmap = img;
 _canvas = canvas;
 _canvas.drawColor(Color.WHITE);
 }
 @Override
 protected void onDraw(Canvas canvas) {
 if (_bitmap != null) {
 canvas.drawBitmap(_bitmap, 0, 0, null);
 }
 }
 @Override
 public boolean onTouchEvent(MotionEvent event) {
 int action = event.getAction();
 int X = (int)event.getX();

Listing 12.17 CloseJob.java—closejobView class

closejobView
extends base
class ViewB

Required
classes for
drawing

C

Initialize
drawing
classes

Save method
persists
signature

D Add
contextual
data to
image

E

Draw image
on screen

F

Handle touch
events

G

 int Y = (int)event.getY();

331Source code for managing jobs

 switch (action) {
 case MotionEvent.ACTION_UP:
 // reset location
 lastX = -1;
 break;
 case MotionEvent.ACTION_DOWN:
 if (lastX != -1){
 if ((int) event.getX() != lastX) {
 _canvas.drawLine(lastX, lastY, X, Y, _paint);
 }
 }
 lastX = (int)event.getX();
 lastY = (int)event.getY();
 break;
 case MotionEvent.ACTION_MOVE:
 if (lastX != -1){
 _canvas.drawLine(lastX, lastY, X, Y, _paint);
 }
 lastX = (int)event.getX();
 lastY = (int)event.getY();
 break;
 }
 invalidate();
 return true;
 }
 }
}

The closejobView extends the base View class B. The Bitmap and Canvas classes c
work together to form the drawing surface for this Activity. Note the call to the
Canvas.drawColor method, which sets the background color to white. When the
onDraw() method is invoked, the canvas draws its associated bitmap with a call to
drawBitmap() f.

 The logic for where to draw relies on the onTouchEvent method g, which receives
an instance of the MotionEvent class. The MotionEvent class tells what happened and
where. ACTION_UP, ACTION_DOWN, and ACTION_MOVE are the events captured, with some
logic to guide when and where to draw. Once the signature is complete, the Save
method d is responsible for converting the contents of the image to a form usable for
submission to the server. Note that additional text is drawn on the signature e. In this
case, it’s little more than a shameless plug for this book’s web page, but this could also
be location-based data. Why is this important? Imagine someone forging a signature.
It could happen, but it would be more challenging and of less value to a rogue mobile
technician if the GPS/location data were stamped on the job, along with the date and
time. When converting the image to our desired JPEG format, there’s an additional
input argument to this method—an OutputStream, used to store the image data. This
OutputStream reference was an input argument to the Save method.

 Now that the UI has been created and a signature drawn on the screen, let’s look at
the code used to close the job. Closing the job involves capturing the signature and
sending it to the server via an HTTP POST. The class DoCloseJob is shown in the follow-

ing listing.

332 CHAPTER 12 Putting Android to work in a field service application

 class DoCloseJob implements Runnable {
 Prefs _myprefs;
 DoCloseJob(Prefs p) {
 _myprefs = p;
 }
 public void run() {
 try {
 FileOutputStream os =
 getApplication().openFileOutput("sig.jpg", 0);
 sc.Save(os);
 os.flush();
 os.close();
 // reopen to so we can send this data to server
 File f = new

File(getApplication().getFileStreamPath("sig.jpg").toString());
 long flength = f.length();
 FileInputStream is =

getApplication().openFileInput("sig.jpg");
 byte data[] = new byte[(int) flength];
 int count = is.read(data);
 if (count != (int) flength) {
 // bad read?
 }
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Connecting to Server");
 progresshandler.sendMessage(msg);
 URL url = new URL(_myprefs.getServer() +
 "/closejob.php?jobid=" + je.get_jobid());
 URLConnection conn = url.openConnection();
 conn.setDoOutput(true);
 BufferedOutputStream wr = new

BufferedOutputStream(conn.getOutputStream());
 wr.write(data);
 wr.flush();
 wr.close();
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Data Sent");
 progresshandler.sendMessage(msg);
 BufferedReader rd = new BufferedReader(new
 InputStreamReader(conn.getInputStream()));
 String line = "";
 Boolean bSuccess = false;
 while ((line = rd.readLine()) != null) {
 if (line.indexOf("SUCCESS") != -1) {
 bSuccess = true;
 }
 }
 wr.close();
 rd.close();
 if (bSuccess) {

Listing 12.18 CloseJob.java—DoCloseJob class

Constructor uses
Prefs instance

Open file for
storing
signature

B

Construct
storage
URL

C

Write data
to serverD

Read server
response

E

Check for
successful
processing

F

 msg = new Message();

333Server code

 msg.what = 0;
 msg.obj = (Object)("Job Closed Successfully");
 progresshandler.sendMessage(msg);
 je.set_status("CLOSED");
 CloseJob.this.setResult(1,"",je.toBundle());
 } else {
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Failed to Close Job");
 progresshandler.sendMessage(msg);
 CloseJob.this.setResult(0);
 }
 } catch (Exception e) {
 Log.d("CH12","Failed to submit job close signature: " +

e.getMessage());
 }
 msg = new Message();
 msg.what = 1;
 progresshandler.sendMessage(msg);
 }
}

At this point, you have a signature on the screen and need to capture it. A new File-
OutputStream B is obtained for a file on the local filesystem, and the signature is writ-
ten to this file. You’re now ready to transmit this file to the server—remember, you
want to bill the client as soon as possible for work completed!

 In preparation for sending the signature to the server, the signature file contents
are read into a byte array via an instance of a FileInputStream. Using the Prefs
instance to get specific configuration information, a URL c is constructed in order to
POST data to the server. The query String of the URL contains the jobid and the POST
data contains the image itself. A BufferedOutputStream d is employed to POST data,
which consists of the captured signature in JPEG format.

 Once the job data and signature have been sent to the server, the response data is
read back from the server e. A specific string indicates a successful transmission f.

 Upon successful closing, the JobEntry status member is marked as CLOSED g,
and this JobEntry is converted to a Bundle so that it may be communicated to the
caller by invoking the setResult() method h. Once the Handler receives the “I’m
done” message and the Activity finishes, this data is propagated back to the ShowJob
and all the way back to the ManageJob Activity.

 And that thankfully wraps up the source code review for the Android side of
things! There were some methods omitted from this text to limit this already very long
chapter, so please be sure to examine the full source code. Now it’s time to look at the
server application. jobs

12.5 Server code
A mobile application often relies on server-side resources, and our field service appli-
cation is no exception. This isn’t a book on server-side development techniques, server-

Update local
JobEntry
status

G

Set result and
store updated
JobEntryH
related code, and discussion, so we’ll present these things briefly. We’ll introduce the

334 CHAPTER 12 Putting Android to work in a field service application

UI and the accompanying database structure that makes up our list of job entries, and
then we’ll review the two server-side transactions that concern the Android applica-
tion. The server code relies on open source staples: MySQL and PHP. Let’s get started
with the interface used to enter new jobs, used by the dispatcher.

12.5.1 Dispatcher user interface

Before jumping into any server code–specific items, it’s important to understand how
the application is organized. All jobs entered by a dispatcher are assigned to a partic-
ular mobile technician. That identifier is interpreted as an email address, as seen in
the Android example where the user ID was used throughout the application. Once
the user ID is specified, all of the records revolve around that data element. For
example, figure 12.14 demonstrates this by showing the jobs assigned to the author,
fableson@msiservices.com.

NOTE This application is available for testing the sample application your-
self. It’s located at http://android12.msi-wireless.com. Sign on and add jobs
for your email address.

Let’s now turn our attention to the underlying data structure, which contains the list
of jobs.

12.5.2 Database

As mentioned earlier in section 12.1.3, the database in use in this application is
MySQL,2 with a single database table called tbl_jobs. The SQL to create this table is
provided in the next listing.

Figure 12.14 The server-side dispatcher screen
2 For more on development using MySQL, try the developer zone: http://dev.mysql.com/.

335Server code

CREATE TABLE IF NOT EXISTS 'tbl_jobs' (
 'jobid' int(11) NOT NULL auto_increment,
 'status' varchar(10) NOT NULL default 'OPEN',
 'identifier' varchar(50) NOT NULL,
 'address' varchar(50) NOT NULL,
 'city' varchar(30) NOT NULL,
 'state' varchar(2) NOT NULL,
 'zip' varchar(10) NOT NULL,
 'customer' varchar(50) NOT NULL,
 'product' varchar(50) NOT NULL,
 'producturl' varchar(100) NOT NULL,
 'comments' varchar(100) NOT NULL,
 UNIQUE KEY 'jobid' ('jobid')
) ENGINE=MyISAM DEFAULT CHARSET=ascii AUTO_INCREMENT=25 ;

Each row in this table is uniquely identified by the jobid B, which is an auto-
incrementing integer field. The identifier field C corresponds to the user ID/email
of the assigned mobile technician. The producturl field D is designed to be a spe-
cific URL to assist the mobile technician in the field in quickly gaining access to help-
ful information for completing the assigned job.

 The next section provides a road map to the server code.

12.5.3 PHP dispatcher code

The server-side dispatcher system is written in PHP and contains a number of files
working together to create the application. Table 12.3 presents a brief synopsis of each
source file to help you navigate the application if you choose to host a version of it
yourself.

Listing 12.19 Data definition for tbl_jobs

Table 12.3 Server-side source code

Source file Description

addjob.php Form for entering new job information

closejob.php Used by Android application to submit signature

db.php Database connection information

export.php Used to export list of jobs to a CSV file

footer.php Used to create a consistent look and feel for the footer of each page

getjoblist.php Used by the Android application to request a job XML stream

header.php Used to create a consistent look and feel for the header of each page

index.php Home page, including the search form

manage.php Used to delete jobs on the web application

savejob.php Used to save a new job (called from addjob.php)

showjob.php Used to display job details and load into a form for updating

Unique record IDB

User identificationC

Product URLD
showjobs.php Displays all jobs for a particular user

336 CHAPTER 12 Putting Android to work in a field service application

Of all these files, only two concern the Android application. We’ll discuss them in the
next section.

12.5.4 PHP mobile integration code

When the Android application runs the RefreshJobs Activity, the server side gener-
ates an XML stream. Without going into excessive detail on the server-side code, we
explain the getjoblist.php file in the following listing.

<?
require('db.php');
require('utils.php');
$theuser = $_GET['identifier'];
print (getJobsXML($theuser));
?>

The getJobsXML function retrieves data from the database and formats each row into
an XML representation. It wraps the list of XML-wrapped job records in the <joblist>
tags along with the <?xml ...> header declaration to generate the expected XML
structure used by the Android application. Remember, this is the data ultimately
parsed by the SAX-based JobListHandler class, as shown in listing 12.11.

 The other transaction that’s important to our Android field service application is
the closejob.php file, examined in the next listing.

<?
require('db.php');
require('utils.php');
$data = file_get_contents('php://input');
$jobid = $_GET['jobid'];
$f = fopen("~/pathtofiles/sigs/".$jobid.".jpg","w");
fwrite($f,$data);
fclose($f);
print(closeJob($_GET['jobid']));
?>

The POSTed image data is read via the file_get_contents() function. The secret is
the special identifier of php://input. This is the equivalent of a binary read. This data
is read into a variable named $data. The jobid is extracted from the query String.
The image file is written out to a directory that contains signatures as JPEG files, keyed

updatejob.php Used to save updates to a job

utils.php Contains various routines for interacting with the database

Listing 12.20 getjoblist.php

Listing 12.21 closejob.php

Table 12.3 Server-side source code (continued)

Source file Description

337Summary

by the jobid as part of the filename. When a job has been closed and the signature is
requested by the Android application, this file is requested in the Android browser.
The closeJob function (implemented in utils.php) updates the database to mark the
selected job as CLOSED.

 That wraps up the review of the source code for this chapter’s sample application.

12.6 Summary
The intent of the sample application was to tie together many things learned in previ-
ous chapters into a composite application. Our field service application has real-world
applicability to the kind of uses an Android device is capable of bringing to fruition. Is
this sample application production ready? Of course not, but almost! That, as they say,
is an exercise for the reader.

 Starting with a simple splash screen, this application demonstrates the use of
Handlers and displaying images stored in the resources section of an Android project.
Moving along to the main screen, a simple UI leads to different activities useful for
launching various aspects of the realistic application.

 Communications with the server involve downloading XML data, while showing the
user a ProgressDialog along the way. Once the data stream commences, the data is
parsed by the SAX XML parser, using a custom Handler to navigate the XML document.

 We demonstrated that managing jobs in a ListView is as easy as tapping on the
desired job in the list. The next screen, the ShowJobs Activity, allows even more
functionality, with the ability to jump to a Map showing the location of the job and
even a specific product information page customized to this job. Both of those func-
tions are as simple as preparing an Intent and a call to startActivity().

 Once the mobile technician completes the job in the field, the CloseJob Activity
brings the touch-screen elements into play by allowing the user to capture a signature
from his customer. That digital signature is then stamped with additional, contextual
information and transmitted over the internet to prove the job was done. Jumping
back to what you learned earlier, it would be straightforward to add location-based
data to further authenticate the captured signature.

 The chapter wrapped up with a quick survey of the server-side components to dem-
onstrate some of the steps necessary to tie the mobile and the server sides together.

 The sample application is hosted on the internet and is free for you to test out with
your own Android application, and the full source code is provided for the Android
and server applications discussed in this chapter.

 Now that we’ve shown what can be accomplished when exercising a broad range of
the Android SDK, the next chapter takes a decidedly different turn, as we explore the
underpinnings of Android a little deeper and look at building native C applications
for the Android platform.

Building Android
applications in C
Up to this point, this book has presented a cross section of development topics in
an effort to unlock the potential of the Android platform for the purpose of deliv-
ering useful, and perhaps even fun, mobile applications. In chapter 12 you built a
comprehensive application, building on what we introduced in the prior chapters.
As you embark on this chapter, you’re temporarily leaving behind the comforts of
working strictly in the Android SDK, Java, and Eclipse. We’ll instead take a close
look at the underlying Linux underpinnings of the Android platform—and more
specifically, you’ll learn how to build an application in C, without the SDK.

 The Android SDK is comprehensive and capable, but there may be times when
your application requires something more. This chapter explores the steps required
to build applications that run in the Linux foundation layer of Android. To accom-

This chapter covers
 Building an application in C

 Using dynamic linking

 Building a DayTime Server in C

 Building a Daytime Client in Java
338

plish this, we’re going to use the C programming language. In this chapter, we use

339Building Android apps without the SDK

the term Android/Linux to refer to the Linux underpinnings of the Android platform.
We also use the term Android/Java to refer to a Java application built using the Android
SDK and Eclipse.

 C language mastery on this platform is powerful because much of the C language
development process involves porting existing, open source Linux code to the mobile
platforms. This technique has the potential benefit of speeding up development for
adding future functionality to Android by leveraging existing code bases. Chapter 19
examines the Android Native Developer’s kit (NDK). Using the NDK, programmers
can leverage existing C code and map those routines to applications written in Java.
This chapter doesn’t use the NDK, but rather looks at building standalone C applica-
tions capable of running on the Android platform.

 We demonstrate the specific steps of building an Android/Linux application in C.
We begin with a description of the environment and the required tool chain. After an
obligatory Hello World–caliber application, you’ll construct a more sophisticated
application that implements a DayTime Server. Ultimately any application built for
Android/Linux needs to bring value to the user in some form. In an effort to meet
this objective, it’s desirable that Android/Java be able to interact in a meaningful
manner with our Android/Linux application. To that end, you’ll build a traditional
Android application using Java in Eclipse to interact with the Android/Linux server
application.

 Let’s get started with an examination of the requirements for building your first C
application for Android.

13.1 Building Android apps without the SDK
Applications for Android/Linux are markedly different from applications constructed
with the Android SDK. Applications built with Eclipse and the context-sensitive Java
syntax tools make for a comfortable learning environment. In line with the spirit of
Linux development, from here on out all development takes place with command-
line tools and nothing more sophisticated than a text editor. Though the Eclipse envi-
ronment could certainly be leveraged for non-Java development, the focus of this
chapter is on core C language1 coding for Android/Linux. The first place to start is
with the cross-compiling tool chain required to build Android/Linux applications.

13.1.1 The C compiler and linker tools

Building applications for Android/Linux requires the use of a cross-compiler tool
chain from CodeSourcery. The specific version required is the Sourcery G++ Lite Edition
for ARM, found at https://support.codesourcery.com/GNUToolchain/release1479.
Once installed, the Sourcery G++ tool chain contributes a number of useful tools to
assist you in creating applications targeting Linux on ARM, which is the architecture of
the Android platform. The ARM platform is a 32-bit reduced instruction set computer
1 For details on the C programming language start here: http://www.cprogramming.com/.

340 CHAPTER 13 Building Android applications in C

(RISC) processor, used in numerous devices, including smartphones, PDAs, and tech-
nology appliances such as low-end routers and disk drive controllers. The Code-
Sourcery installation comes with a fairly comprehensive set of PDF documents
describing the main components of the tool chain, including the C compiler, the
assembler, the linker, and many more tools. A full discussion of these versatile tools is
well beyond the scope of this chapter, but three tools in particular are demonstrated
in the construction of this chapter’s sample applications. You’ll be using these tools
right away, so let’s briefly introduce them in this section.

 The first and most important tool introduced is gcc.2 This tool is the compiler
responsible for turning C source files into object files and optionally initiating the link
process to build an executable suitable for the Android/Linux target platform. The
full name of the gcc compiler for our cross-compilation environment is arm-none-
linux-gnueabi-gcc. This tool is invoked from the command line of the development
machine. The tool takes command-line arguments of one or more source files, along
with zero or more of the numerous available switches.

 The linker, arm-none-linux-gnueabi-ld, is responsible for producing an execut-
able application for our target platform. When performing the link step, object code
along with routines from one or more library files are combined into a relocatable,
executable binary file, compatible with the Android Emulator’s Linux environment.
Whereas a simple application may be compiled and linked directly with gcc, the linker
is used when creating applications with more than one source file and/or more com-
plex application requirements.

 If the linker is responsible for constructing applications from more than one con-
tributing component, the object dump utility is useful for dissecting, or disassembling,
an application. The objdump, or arm-none-linux-gnueabi-objdump tool examines an
executable application—a binary file—and turns the machine instructions found
there into an assembly language listing file, suitable for analysis.

NOTE All of the examples in this chapter take place on a Windows XP work-
station. It’s also possible to use this tool chain on a Linux development
machine. If you are using Linux for your development environment, you may
need to modify the build scripts slightly as the path separator is different and
the libraries will require a preceeding dot (“.”).

With this brief introduction behind us, let’s build the obligatory Hello Android appli-
cation to run in the Linux foundation of the Android Emulator.

13.1.2 Building a Hello World application

The first thing we want you to accomplish with your journey into Android/Linux
development is to print something to the emulator screen to demonstrate that you’re
running something on the platform outside the Android SDK and its Java application
environment. There’s no better way to accomplish this feat than by writing a variant of
2 For everything you’d want to know about gcc, go here: http://gcc.gnu.org/.

341Building Android apps without the SDK

the Hello World application. At this point, there will be little talk of Android activities,
views, or resource layouts. Most code samples in this chapter are in the C language.
The following listing shows the code for your first Hello Android application.

#include <stdio.h>
int main(int argc,char * argv[])
{
 printf("Hello, Android!\n");
 return 0;
}

Virtually all C language applications require an #include header file containing func-
tion definitions, commonly referred to as prototypes. In this case, the application
includes the header file for the standard input and output routines, stdio.h. The stan-
dard C language entry point for user code is the function named main. The function
returns an integer return code (a value of 0 is returned in this simple example) and
takes two arguments. The first, argc, is an integer indicating the number of com-
mand-line arguments passed in to the program when invoked. The second, argv, is an
array of pointers to null-terminated strings representing each of the command-line
arguments. The first argument, argv[0], is always the name of the program execut-
ing. This application has but a single useful instruction, printf, which is to write to
standard output (the screen) a textual string. The printf function is declared in the
header file, stdio.h.

 To build this application, you employ the gcc tool:

arm-none-linux-gnueabi-gcc hello.c -static -o hellostatic

You’ll notice a few things about this command-line instruction:

 The compiler is invoked with the full name: arm-none-linux-gnueabi-gcc.
 The source file is named hello.c.
 The –static command-line switch is used to instruct gcc to fully link all

required routines and data into the resulting binary application file. In essence,
the application is fully standalone and ready to be run on the target Android
Emulator without any additional components. An application that’s statically
linked tends to be rather large, because so much code and data are included in
the executable file. For example, this statically linked application with basically
a single line of code weighs in at around 600 KB. Ouch! If this -static switch is
omitted, the application is built without any extra routines linked in. In this
case, the application will be much smaller, but it’ll rely on finding compatible
routines on the target system in order to run. For now, let’s keep things simple
and build the sample application in such a manner that all support routines are
linked statically.

 The output switch, -o, is used to request that the executable application be
assigned the name hellostatic. If this switch isn’t provided, the default applica-

Listing 13.1 Hello.c
tion name is a.out.

342 CHAPTER 13 Building Android applications in C

Now that the application is built, it’s time for you to try it out on the Android Emula-
tor. To do this, you’ll rely on the adb tool introduced in chapter 2.

13.1.3 Installing and running the application

In preparation for installing and running the Hello
Android application, let’s take a tour of our build and test-
ing environment. You need to identify four distinct envi-
ronments and tools and clearly understand them when
building applications for Android/Linux: Android Emula-
tor, command-line CodeSourcery tools, adb or DDMS, and
adb shell.

 The first environment to grasp is the big-picture archi-
tecture of the Android Emulator running essentially on
top of Linux, as shown in figure 13.1.

 As presented in the early chapters of this book, there’s
a Linux kernel running underneath the pretty, graphical
face of Android. There exist device drivers, process lists,
and memory management, among other elements of a
sophisticated operating system.

 As shown in the previous section, you need an environment in which to compile
your C code. This is most likely to be a command-prompt window on a Windows
machine, or a shell window on a Linux desktop machine, exercising the Code-
Sourcery tool chain. This is the second environment you need to be comfortable
operating within.

 The next requirement is to copy your newly constructed binary executable applica-
tion to the Android Emulator. You can do so with a call to the adb utility or by using
the DDMS view in Eclipse. Both of these tools were demonstrated in chapter 2. Here’s
the syntax for copying the executable file to the Android Emulator:

adb push hellostatic /data/ch13/hellostatic

Cross compiling
The CodeSourcery tool chain isn’t designed to run on the Android/Linux environment
itself, so the development work being done here is considered to be cross-compiling.
The figures and example code presented in this chapter were taken from a Windows
development environment used by one of the authors. There are a number of long
path and directory structures in the Android SDK and the CodeSourcery tools. To help
simplify some of the examples and keep certain command-line entries from running
over multiple lines, we set up some drive mappings. For example, a drive letter of m:
seen in scripts and figures corresponds to the root location of source code examples
on the author’s development machine. Likewise, the g: drive points to the currently
installed Android SDK on the author’s development machine. Note that this tech-
nique may also be used in Linux or Mac OS X environments with a “soft link” (ln)
command.

Figure 13.1 Android runs
atop a Linux kernel.

343Building Android apps without the SDK

Note a few items about this command:

 The command name is adb. This command takes a number of arguments that
guide its behavior. In this case, the subcommand is push, which means to copy a
file to the Android Emulator. There’s also a pull option for moving files from
the Android Emulator filesystem to the local development machine’s hard drive.

 After the push option, the next argument, hellostatic in this case, represents
the local file, stored on the development machine’s hard drive.

 The last argument is the destination directory (and/or filename) for the trans-
ferred file. In this sample, you’re copying the hellostatic file from the current
working directory to the /data/ch13 directory on the Android Emulator.

Be sure that the desired target directory exists first! You can accomplish this with a
mkdir command on the adb shell, described next.

 The final tool to become familiar with is the shell option of the adb tool. Using
this command, we can interact directly on the Android Emulator’s filesystem with a
limited shell environment. To enter this environment (assuming the Android Emula-
tor is already running), execute adb shell from the command line. When invoked,
the shell displays the # prompt, just as if you’d made a secure shell (ssh) or telnet con-
nection to a remote Unix-based machine. Figure 13.2 shows these steps in action.

 Note the sequence shown in figure 13.2. First the application is built with a call to
gcc. Next you push the file over to the Android Emulator. You then connect to the
Android Emulator via the adb shell command, which gives you the # prompt, indi-
cating that you’re now in the shell. Next you change directory (cd) to /data/ch13.
Remember that this is Linux, so the application by default may not be executable. A
call to chmod sets the file’s attributes, tuning on the executable bits and allowing the
application to be invoked. Lastly, you invoke the application with a call to ./hello-
static. The search path for executable applications doesn’t by default include the cur-
rent directory on a Linux system, so you must provide a more properly qualified path,
which explains the ./ prefix. Of course, you can see that our application has run suc-
cessfully because you see the “Hello, Android!” text displayed on the screen.
Figure 13.2 The build, copy, run cycle

344 CHAPTER 13 Building Android applications in C

 Congratulations! You have a successful, albeit simple, Android/Linux application
running on the Android Emulator. In the next section, we look at streamlining this
build process by combining the multiple build operations into a script.

13.1.4 C application build script

In the previous section, we reviewed each step in building and preparing to test our
application. Due to the rather tedious nature of executing each of these steps, you
likely want to utilize command-line tools when building C applications, as it greatly
speeds up the edit, compile, copy, debug cycle. This example with only a single C
source file is rather simplistic; when multiple source files must be linked together, the
thought of having a build script is appealing. The need for a build script (shown in
listing 13.2) is particularly evident where there are numerous source files to compile
and link, a situation you’ll encounter later in this chapter.

 This listing shows the build script for our Hello Android application.

arm-none-linux-gnueabi-gcc hello.c -static -o hellostatic
g:\tools\adb push hellostatic /data/ch13
g:\tools\adb shell "chmod 777 /data/ch13/hellostatic"

A call to arm-none-linux-gnueabi-gcc compiles the source file, hello.c. The file is
statically linked against the standard C libraries, and the resulting binary executable
file is written out as hellostatic. The file hellostatic is copied to the Android Emulator
and placed in the directory /data/ch13. The permissions for this file are changed,
permitting execution. Note the use of the adb shell with a quote-delimited command.
Once this command executes, the adb application exits and returns to the Windows
command prompt.

 This example can be extended to perform other build steps or cleanup proce-
dures such as removing temporary test data files on the Android Emulator or any sim-
ilarly helpful tasks. As you progress, it’ll become clear what commands you need to
put into your build script to make the testing process more efficient.

 Now that the pressure is off—you’ve successfully written, built, and executed an
application in the Android/Linux environment—it’s time to deal with the problem-
atic issue of a simple application requiring such an enormous file size!

13.2 Solving the problem with dynamic linking
That was fun, but who wants a 500+ KB file that only displays something to the screen?
Recall that the –static flag links the essentials for running the application, including
the input/output routines required for printing a message to the screen. If you’re
thinking that there must be a better way, you’re correct; you need to link the applica-
tion to existing system libraries rather than include all that code in the application’s
executable file.

Listing 13.2 Build script for Hello Android, buildhello.bat

345Solving the problem with dynamic linking

13.2.1 Android system libraries

When an application is built with the
–static flag, it’s entirely self-contained,
meaning that all the routines it requires are
linked directly into the application. This
information isn’t new to you; we’ve already
discussed this. It has another important
implication beyond just the size of the
code: it also means that using Android resi-
dent code libraries is a bigger challenge.
Let’s dig deeper to understand why. To do
this, we have to look at the filesystem of
Android/Linux.

 System libraries in Android/Linux are
stored in the directory /system/lib. This
directory contains important functionality,
such as OpenGL, SQLite, C standard rou-
tines, Android runtime, UI routines, and
much more. Figure 13.3 shows a list of the
available libraries in the Android Emulator.
In short, everything that’s specific to the
Android platform is found in /system/lib,
so if you’re going to build an application
that has any significant functionality, you
can’t rely on the libraries that ship with
CodeSourcery alone. You have to write an
application that can interact with the
Android system libraries. This calls for a
side trip to discuss the functionality of the
linker application.

 When you’re building an application
that requires the use of the linker, a few
things change. First, the gcc command is
no longer responsible for invoking the linker. Instead, the –c option is used to inform
the tool to simply compile the application and leave the link step to a subsequent
build step. Here’s an example:

arm-none-linux-gnueabi-gcc –c hello.c -o hello.o

This command tells the compiler to compile the file hello.c and place the resulting
object code into the file hello.o.

 This process is repeated for as many source files as necessary for a particular appli-
cation. For our sample application, you have only this single source file. But to get an

Figure 13.3 Available libraries in /system/lib
executable application, you must employ the services of the linker.

346 CHAPTER 13 Building Android applications in C

 Another important change in the build environment is that you have to get a copy
of the Android/Linux libraries. You’re compiling on the Windows platform (or Linux
if you prefer), so you need to get access to the Android Emulator’s /system/lib con-
tents in order to properly link against the library files. Just how do you go about this?
You use the adb utility, of course! Listing 13.3 shows a Windows batch file used to
extract the system libraries from a running instance of the Android Emulator. A few of
the libraries are pointed out.

adb pull /system/lib/libdl.so m:\android\system\lib
adb pull /system/lib/libthread_db.so m:\android\system\lib
adb pull /system/lib/libc.so m:\android\system\lib
adb pull /system/lib/libm.so m:\android\system\lib
adb pull /system/lib/libGLES_CM.so m:\android\system\lib
adb pull /system/lib/libssl.so m:\android\system\lib
...
adb pull /system/lib/libhardware.so m:\android\system\lib
adb pull /system/lib/libsqlite.so m:\android\system\lib
many entries omitted for brevity

Figure 13.4 shows these files now copied over to the development machine.
 Once these files are available on the development machine, you can proceed with

the build step using the linker.

13.2.2 Building a dynamically linked application

The name for the linker is arm-none-linux-gnueabi-ld. In most Linux environ-
ments, the linker is named simply ld. When you’re using the linker, many command-
line options are available to you for controlling the output. There are so many options
that we could write an entire book covering no other topic. Our interest in this chap-
ter is writing applications, and we’re taking as streamlined an approach as possible. So
although there may be other options that can get the job done, our aim here is to
show you how to build an application that gives you as much flexibility as possible to
employ the Android system libraries. To that end, the following listing shows the script
for building a dynamic version of Hello Android.

arm-none-linux-gnueabi-gcc -c hello.c -o hello.o
arm-none-linux-gnueabi-ld -entry=main -dynamic-linker /system/bin/linker
 -nostdlib -rpath /system/lib -rpath-link /android/system/lib -L
 /android/system/lib -l android_runtime -l c -o
 hellodynamic hello.o
g:\tools\adb push hellodynamic /data/ch13
g:\tools\adb shell "chmod 777 /data/ch13/hellodynamic"

This build script passes the –c compiler option when compiling the source file,
hello.c. This way, gcc doesn’t attempt to link the application. The link command, arm-

Listing 13.3 pullandroid.bat

Listing 13.4 Build script for dynamically linked Android application

libsqlite.so,
SQLite database
none-linux-gnueeabi-ld, has a number of options. These options are more fully

347Solving the problem with dynamic linking

described in table 13.1. As in the previous example, adb is used to push the executable
file over to the Android Emulator. The permissions are also modified to mark the
application as executable.

 If our application required routines from the Open GL or SQLite library, the link
command would have additional parameters of –l GLES_CM or –l sqlite, respec-
tively. Leaving those library options off the link command prevents the application
from linking properly because certain symbols (functions, data) can’t be found.

 So, did it work? The hellodynamic binary is now only 2504 bytes. That’s a great
improvement. Figure 13.5 shows a listing of the two Hello Android files for a

Figure 13.4 Android
libraries pulled to the
development machine

348 CHAPTER 13 Building Android applications in C

remarkable comparison. Each program is run: first the static version, then the
dynamic version.

 This looks great, except for one little problem. Note the last line in figure 13.5,
which says, “Killed.” Is there a problem with our dynamic version? Let’s look closer.

Table 13.1 Linker options

Linker option Description

-entry=main Indicates the entry point for the application, in this
case, the function named main.

-dynamic-linker /system/bin/linker Tells the application where the dynamic linker appli-
cation may be found at runtime. The /system/bin/
linker path is found on the Android Emulator, not the
development environment.

-nostdlib Tells the linker to not include standard C libraries
when attempting to resolve code during the link
process.

-rpath /system/lib Tells the executable where libraries can be found at
runtime. This works in a manner similar to the envi-
ronment variable LD_LIBRARY_PATH.

-rpath-link /android/system/lib Tells the linker where libraries can be found when
linking. For Linux add a dot to the beginning of the
line, as in ./android/system/lib.

-L /android/system/lib Tells the linker where libraries can be found. This is
the linker import directory.

-l android_runtime Tells the linker that this application requires routines
found in the library file libandroid_runtime.so.

-l c Tells the linker that this application requires routines
found in the library file libc.so.

-o hellodynamic Requests an output filename of hellodynamic.

hello.o Includes hello.o as an input to the link process.
Figure 13.5 Hello Android, static and dynamically linked

349Solving the problem with dynamic linking

13.2.3 exit() versus return()

Though our application has successfully linked with the Android system libraries of
libc.so and libandroid_runtime.so and can actually run, there are missing pieces that
cause the application to not properly execute. When you build an application in this
manner, without letting the linker do all its magic of knitting the entire application
together, you have to do a bit of housekeeping yourself. Looks like there was some-
thing to that 500 KB application after all!

 For one thing, if our application’s entry point is the main function, and the main
function executes a return statement, just where does it return to? Let’s replace the
return statement with an exit() call, as shown in this listing.

#include <stdio.h>
int main(int argc,char * argv[])
{
 printf("Hello, Android!\n");
 exit(0);
 //return 0;
}

Add a call to the function exit(). This should return execution to the OS. Comment
out the call to return(). A return call in this location causes a stack underflow
because there’s nowhere within this application to return to!

 This fixed the problem—no more killed messages! Look at figure 13.6, where you
see that the dynamic version of Hello, Android now runs just fine.

 Unfortunately you’re not finished. It turns out that the application doesn’t prop-
erly interact with other libraries, nor does it properly handle the argc and argv[]
arguments to the main function. The C library (remember, you’re linking against
libc.so) has certain expectations for application structure and stack location. You’re
closer but still not quite ready for prime time.

 What this application requires is a start routine, which is called by the operating
system when the application is invoked. This function in turn calls the application’s
main function. This start routine must set up the necessary structures to allow the
application to properly interact with the operating system and the core C libraries.

Listing 13.5 Add an exit() call

Figure 13.6 A better-
behaving dynamic
version of Hello Android

350 CHAPTER 13 Building Android applications in C

13.2.4 Startup code

You’ve surmised that the sample application is missing the proper startup code, but
just what does startup code for an Android/Linux application on ARM look like?
Where do you turn to get this kind of information? Let’s look deeper into the bag of
CodeSourcery tricks for a clue.

 A number of executable applications ship with Android, so pull one of them over
to the desktop and see what you can learn. Perhaps you can extract information from
that file that can assist in solving this puzzle.

 The tool you’re going to use to assist in this effort is the object dump command,
arm-none-linux-gnueabi-objdump. This utility has a number of options for tearing
apart an ELF (executable and linkable format) file for examination. This is the kind of file
structure used by applications in the Android/Linux environment. Using the –d
option of the objdump command results in a disassembly of the executable file, show-
ing the assembly language equivalent of the code in each executable section. Our
interest is in the first .text section of the disassembly, as this ought to be the entry
point of the application. The following listing shows the .text section from the ping
program taken from the Android Emulator (via adb pull).

000096d0 <dlopen-0x60>:
 96d0: e1a0000d mov r0, sp
 96d4: e3a01000 mov r1, #0; 0x0
 96d8: e28f2004 add r2, pc, #4; 0x4
 96dc: e28f3004 add r3, pc, #4; 0x43
 96e0: eaffff8b b 9514 <dlopen-0x21c>
 96e4: ea000e03 b cef8 <dlclose+0x37bc>
 96e8: 0000e408 andeq lr, r0, r8, lsl #8
 96ec: 0000e410 andeq lr, r0, r0, lsl r4
 96f0: 0000e418 andeq lr, r0, r8, lsl r4
 96f4: 0000e420 andeq lr, r0, r0, lsr #8
 96f8: e1a00000 nop (mov r0,r0)
 96fc: e1a00000 nop (mov r0,r0)

The first instruction assigns the value of the stack pointer (sp) to register 0 (r0) B.
Next the literal value of 0 is assigned to register r1 C. The address counter plus four
memory location spaces is stored in registers r2 and r3 D. The b instruction tells the
code to branch to a specific address E. In this case, the address is 0x21c bytes prior to
the address of the dlopen function. This value is 9514 in decimal. The next branch is
to an address that’s 0x37bc bytes beyond the dlclose label F. The next few instruc-
tions G are conditional operations. The code snippet finishes up with a pair of nop
instructions H. Note that the address of each instruction is shown to the left of each
line. Each instruction occurs at a 4 byte offset from its predecessor. Four bytes times 6
bits per byte equals a 32-bit address bus, which makes sense because the ARM proces-
sor family is 32 bit.

Listing 13.6 Disassembly of ping

Stack pointerB
mov instructionC

add instructionD

Branch instructionE

Branch instructionF

Conditional expressionsG

nop instructionH

351Solving the problem with dynamic linking

 Okay, so that looks different from the rest of the code in this chapter—and just
what does it do? Unfortunately, other than some basic interpretation of the op codes
used, there’s little to tell you why those instructions are there. After doing research on
the internet, we found a better example of this code, shown in this listing.

 .text
 .global _start
 _start:
 mov r0, sp
 mov r1, #0
 add r2, pc,
 add r3, pc,
 b __libc_init
 b main
 .word __preinit_array_start
 .word __init_array_start
 .word __fini_array_start
 .word __ctors_start
 .word 0
 .word 0
 .section .preinit_array
 __preinit_array_start:
 .word 0xffffffff
 .word 0x00000000
 .section .init_array
 __init_array_start:
 .word 0xffffffff
 .word 0x00000000
 .section .fini_array
 __fini_array_start:
 .word 0xffffffff
 .word 0x00000000
 .section .ctors
 __ctors_start:
 .word 0xffffffff
 .word 0x00000000

The .text directive indicates that this code should be placed in the .text section of
the resulting executable B. The global start directive C makes the start routine vis-
ible to the rest of the application and the linker. The start: label D indicates the first
location of the start routine. The mov and add instructions perform some housekeep-
ing E with the stack pointer, sp, just as seen in the extracted code from the ping pro-
gram. Initialization takes place via a branch instruction to call the __libc_init
routine F. This routine is found in the library libc.so. When this routine is complete,
execution returns to the next instruction, another branch of the main routine G.
This is the main() routine implemented by our C application. The next instructions
H set up a jump table to the sections required by a C language executable applica-
tion. A pair of nop instructions round out the table. The sections preinit_array,

Listing 13.7 crt.S

.text directiveB
global directiveC

start labelD
Set up
stack pointer

E

Branch to
initialization

F
Branch
to main

G

Jump tableH

Required
sectionsI
init_array, fini_array, and .ctors are defined I. Note that it appears that these

352 CHAPTER 13 Building Android applications in C

sections are required and that the values provided are an allowable address range for
these sections. The linker takes care of putting these sections into the resulting exe-
cutable file. Attempting to run the application without these sections results in code
that crashes.

NOTE All credit for this crt.S file belongs to the author of a blog found at
http://honeypod.blogspot.com/2007/12/initialize-libc-for-android.html.
You can find additional reference material for low-level Android program-
ming information at http://benno.id.au.

Now that you’ve found an adequate startup routine, we’ll show you how to add this
routine to your application. The compiler handles the assembly file just like a C lan-
guage file:

arm-none-linux-gnueabi-gcc -c -o crt0.o crt.S

The resulting object file, crt0.o, is passed to the linker as an input file, just as any other
object file would be. Also, the entry switch to the linker must now specify _start
rather than main:

arm-none-linux-gnueabi-ld --entry=_start --dynamic-linker /system/bin/linker
-nostdlib -rpath /android/system/lib -rpath-link /android/system/lib -L
\android\system\lib -l c -l android_runtime -l sqlite -o hellodynamic
hello.o crt0.o

At this point, you should feel confident that you can build applications for Android/
Linux, so it’s time to build something useful. The next section walks through the con-
struction of a DayTime Server.

13.3 What time is it? The DayTime Server
Although we don’t talk about it much today, Linux systems (and more generically,
Unix systems) have a service running that provides the server’s current date and time.
This application, known as a DayTime Server, typically runs as a daemon (which
means it runs in the background and isn’t connected to a particular shell). For our
purposes, we’ll implement a basic DayTime Server for Android/Linux, but we won’t
worry about turning it into a background service.

 This application helps exercise our interest in developing Android/Linux applica-
tions. First and most important, it’s an application of some significance beyond a sim-
ple printf statement. Second, once this application is built, you’ll write an Android/
Java application to interact with the DayTime Server.

13.3.1 DayTime Server application

Our DayTime Server application has a basic function: the application listens on a TCP
port for incoming socket connections. When a connection is made, the application
writes a short textual string representation of the date and time via the socket, closes
the socket, and returns to listening for a new connection.

353What time is it? The DayTime Server

 In addition to the TCP socket interactions, our application logs requests to a SQLite
database. Why? Because we can! The purpose of this application is to demonstrate
nontrivial activities in the Android/Linux environment, including the use of the
SQLite system library. Let’s get started by examining the DayTime Server application.

13.3.2 daytime.c

The DayTime Server application can be broken into two basic functional parts. The
first is the TCP socket server.

 Our DayTime Server application binds to TCP port 1024 when looking for new
connections. Ordinarily, a daytime service binds to TCP port 13, but Linux has a secu-
rity feature where only trusted users can bind to any port below 1023. The second fea-
ture is the insertion of data into a SQLite database. The following listing shows the
code for the DayTime Server application.

#include <time.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <resolv.h>
#include "sqlite3.h"
int PORTNUMBER = 1024;
#define htons(a)
(((a & 0x00ff) << 8) | ((a & 0xff00) >> 8))
void RecordHit(char * when)
{
 int rc;
 sqlite3

*db;
 char *zErrMsg = 0;
 char sql[200];
 rc = sqlite3_open("daytime_db.db",&db);
 if(rc)
 {
 printf("Can't open database: %s\n", sqlite3_errmsg(db));
 sqlite3_close(db);
 return;
 }
 bzero(sql,sizeof(sql));
 sprintf(sql,"insert into hits values (DATETIME('NOW'),'%s');",when);
 rc = sqlite3_exec(db, sql, NULL, 0, &zErrMsg);
 if(rc!=SQLITE_OK)
 {
 printf("SQL error: %s\n", zErrMsg);
 }
 sqlite3_close(db);

Listing 13.8 daytime.c

B
Importing
required
headers

Listening
port number

C

Defining
helpful macroD

E
Interacting
with SQLite
}

354 CHAPTER 13 Building Android applications in C

int main(int argc, char **argv)
{
int listenfd, connfd;
struct sockaddr_in servaddr;
char buf[100];
time_t ticks;
int done = 0;
int rc;
fd_set readset;
int result;
struct timeval tv;
 printf("Daytime Server\n");
 listenfd = socket(AF_INET,SOCK_STREAM,0);
 bzero(&servaddr,sizeof(servaddr));
 servaddr.sin_family = AF_INET;
 servaddr.sin_addr.s_addr = INADDR_ANY;
 servaddr.sin_port = htons(PORTNUMBER);
 rc = bind(listenfd, (struct sockaddr *) &servaddr,sizeof(servaddr));
 if (rc != 0)
 {
 printf("after bind,rc = [%d]\n",rc);
 return rc;
 }
 listen(listenfd,5);
 while (!done)
 {
 printf("Waiting for connection\n");
 while (1)
 {
 bzero(&tv,sizeof(tv));
 tv.tv_sec = 2;
 FD_ZERO(&readset);
 FD_SET(listenfd, &readset);
 result = select(listenfd + 1, &readset, &readset, NULL, &tv);
 if (result >= 1)
 {
 printf("Incoming connection!\n");
 break;
 }
 else if (result == 0)
 {
 printf("Timeout.\n");
 continue;
 }
 else
 {
 printf("Error, leave.\n");
 return result;
 }
 }
 printf("Calling accept:\n");
 connfd = accept(listenfd,
 (struct sockaddr *) NULL, NULL);
 printf("Connecting\n");

Setting up &
listening on socket

F

Setting up &
listening on socket

Accepting
socket connection

G

 ticks = time(NULL);

355What time is it? The DayTime Server

 sprintf(buf,"%.24s",ctime(&ticks));
 printf("sending [%s]\n",buf);
 write(connfd,buf,strlen(buf));
 close(connfd);
 RecordHit(buf);
 }
 return 0;
}

As with many C language applications, a number of headers B are required, includ-
ing definitions and prototypes for time functions, SQLite functions, and for TCP sock-
ets. Note that the sqlite3.h header file isn’t provided in the CodeSourcery tool chain.
This file was acquired from a sqlite3 distribution, and the file was copied into the local
directory along with daytime.c. This is why the include file is delimited with quotation
marks rather than <>, which is used for finding include files in the system or compiler
path. The htons function is typically implemented in the library named socket (lib-
socket.so). Android doesn’t provide this library, nor was this found in any of the sys-
tem libraries. Therefore htons is defined here as a macro D. This macro is required
to get the network byte ordering correct. When the application is running, you can
verify this port by running netstat –tcp on the command line in the adb shell.

 The standard TCP port for a DayTime Server is port 13. In C, the application is
using port 1024 because our application can’t bind to any port numbered 1023 or
below. Only system processes may bind to ports below 1024.

 In the RecordHit function, you see SQLite interaction E. The RecordHit() func-
tion is responsible for inserting a record into the SQLite database created for this
application.

 Jumping into the main function, you see the socket functions in use to listen on a
socket for incoming connections F. When a connection is accepted G, the current
system time is sent to the calling client. After this, the application makes a record of
the transaction by calling the RecordHit function H.

 That’s all the code necessary to implement our Android/Linux DayTime Server
application. Let’s look next at the SQLite 3 database interaction in more detail.

13.3.3 The SQLite database

This application employs a simple database structure created with the SQLite 3 appli-
cation. We interact with SQLite 3 from the adb shell environment, as shown in fig-
ure 13.7.

 The purpose of this database is to record data each time the DayTime Server pro-
cesses an incoming request. From a data perspective, this sample is boring, as it simply
records the system time along with the text returned to the client (this text is a ctime-
formatted time string). Though somewhat redundant from a data perspective, the
purpose is to demonstrate the use of SQLite from our C application, utilizing the
Android/Linux resident sqlite3 library, libsqlite.so.

Recording
activity

H

356 CHAPTER 13 Building Android applications in C

The previous section of code outlined the syntax for inserting a row into the database;
this section shows how to interact with the database using the SQLite 3 tool. The
sequence shown in figure 13.7 is broken out and explained in the following listing.

pwd
pwd
/data/ch13
sqlite3 daytime_db.db
sqlite3 daytime_db.db
SQLite version 3.5.0
Enter ".help" for instructions
sqlite> .databases
.databases
seq name file
--- --------------- ---
0 main /data/ch13/daytime_db.db
sqlite> .tables
.tables
hits
sqlite> .schema hits
.schema hits
CREATE TABLE hits (hittime date,hittext text);
sqlite> .header on

Listing 13.9 Interacting with a SQLite database

Figure 13.7 Interact with SQLite 3 from the command line in the adb shell.

Connect to
database file

B

C
Examine

database structure

Create statementD
.header on

357What time is it? The DayTime Server

sqlite> .mode column
.mode column
sqlite> select * from hits;
select * from hits;
hittime hittext
------------------- ------------------------
2008-07-29 07:31:35 Tue Jul 29 07:31:35 2008
2008-07-29 07:56:27 Tue Jul 29 07:56:27 2008
2008-07-29 07:56:28 Tue Jul 29 07:56:28 2008
2008-07-29 07:56:29 Tue Jul 29 07:56:28 2008
2008-07-29 07:56:30 Tue Jul 29 07:56:30 2008
sqlite> .exit
.exit
#

The SQLite database operates in a similar fashion to other, modern SQL-based envi-
ronments. In listing 13.9, you see the output from an interactive session where the
database for this chapter’s sample application is opened B. A series of commands
given at the sqlite> prompt C display the contents of the database in terms of struc-
ture. The schema command dumps the DDL (Data Definition Language) for a particu-
lar table. In this case, you see the CREATE TABLE instructions for the hits table D.
Viewing the data is simple with the use of the familiar select statement E.

 To run the sample code yourself, you’ll want to execute the following command
sequence from an adb shell:

cd /data/ch13
sqlite3 daytime_db.db
create table hits (hittime date,hittext text);
.exit

The SQLite database engine is known for its simplicity. This section displayed a simple
interaction and just how easy it is to employ. In addition, the SQLite 3 database may be
pulled from the Android Emulator and used on the development machine, as shown
in figure 13.8.

Select rowsE
Figure 13.8 The SQLite database on the development machine

358 CHAPTER 13 Building Android applications in C

 This feature makes Android a compelling platform for mobile data collection
applications because syncing data can be as simple as copying a database file that’s
compatible across multiple platforms.

13.3.4 Building and running the DayTime Server

To build this application, you need to combine the components of the previous few
sections. You know that our application requires a startup component and must also
link against multiple libraries. Because the application interacts with the SQLite data-
base, you must link against the sqlite library in addition to the c and android_runtime
libraries. The full build script is shown in the next listing.

arm-none-linux-gnueabi-gcc -c daytime.c
arm-none-linux-gnueabi-gcc -c -o crt0.o crt.S
arm-none-linux-gnueabi-ld --entry=_start --dynamic-linker /system/bin/linker

-nostdlib -rpath /system/lib -rpath-link \android\system\lib -L
\android\system\lib -l c -l android_runtime -l sqlite -o daytime
daytime.o crt0.o

C:\software\google\<path to android sdk>\tools\adb
 push daytime /data/ch13
g:\tools\adb shell "chmod 777 /data/ch13/daytime"

The build script begins by compiling the main source file, daytime.c. The next line
compiles the crt.S file, which we introduced in listing 13.7 for our C runtime initializa-
tion. The linker command contains a number of switches to create the desired appli-
cation. Note the parameter to the linker to include the sqlite library. Note also the
inclusion of both daytime.o and crt0.o object files as inputs to the linker. Both are
required to properly construct the DayTime Server application. The input files are
found in local (to the development machine) copies of the libraries. adb is employed
to push the executable file to the Android Emulator and to modify the permissions,
saving a manual step.

 Running the DayTime Server application is the easy and fun part of this exercise.
Here’s a rundown of the sequence shown in figure 13.9:

1 Start the shell by running adb shell.
2 Change directories to /data/ch13, where the application resides, previously

pushed there with an adb push command.
3 Run the ./daytime application.
4 The application binds to a port and begins listening for an incoming

connection.
5 A timeout occurs prior to a connection being made. The application displays

the timeout and returns to look for connections again.
6 A connection is detected and subsequently accepted.

Listing 13.10 Daytime application build script

359What time is it? The DayTime Server

7 The time string is constructed and sent to the client.
8 A record is inserted into the database with the shown sql statement.
9 You kill the application and restart the shell. Note that this is because you didn’t

build a clean way of killing the DayTime Server. A proper version of the applica-
tion would be to convert it to a daemon, which is beyond the scope of our dis-
cussion here.

10 Run sqlite3 to examine the contents of our application’s database.
11 Perform a select against the hits table, where you see the recently inserted

record.

You’ve built an Android/Linux application that implements a variant of the traditional
DayTime Server application as well as interacts with a SQL database. Not too shabby
when you consider that this is a telephone platform! Let’s move on to examine the
Android/Java application used to exercise the DayTime Server, our Daytime Client.

Figure 13.9 DayTime Server running in the shell

360 CHAPTER 13 Building Android applications in C

13.4 Daytime Client
One of the stated objectives for this chapter is to connect the Java UI to our DayTime
Server application. This section demonstrates the construction of a Daytime Client
application, which communicates with our DayTime Server via TCP sockets.

13.4.1 Activity

The Daytime Client application has a single
Activity, which presents a single Button and a
TextView, as shown in figure 13.10.

 When a user clicks the Button, the Activity
initiates the DayTime Server query and replaces
the text of the TextView with the information
received from the DayTime Server. There’s not
much to it, but that’s fine, as all we’re after in this
sample is to demonstrate connectivity between
the two applications. The following listing shows
the onCreate method for this Activity.

 Handler h;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 final TextView statuslabel = (TextView)

findViewById(R.id.statuslabel);
 h = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case 0:
 Log.d("CH13","data [" + (String) msg.obj + "]");
 statuslabel.setText((String) msg.obj);
 break;
 }
 super.handleMessage(msg);
 }
 };
 Button test = (Button) findViewById(R.id.testit);
 test.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 try {
 Requester r = new Requester();
 r.start();
 } catch (Exception e) {
 Log.d("CH13 exception caught : ",e.getMessage());
 }
 }
 });

Listing 13.11 UI elements of DaytimeClient.java

BDeclare,
implement

Handler

Implement
click listener

C

Create
Requester instanceD

Figure 13.10 The Daytime Client app
 }

361Daytime Client

This application is all about detecting the selection of a button C and initiating an
action based on that click. The action is the creation of an instance of the Requester
class D, which we discuss in the next section. You handle the response from the
socket server with the assistance of a Handler B. The Handler has a single role: updat-
ing the UI with textual data stored in the obj member of a Message object.

 Although the UI of this application is simple, the more interesting side of this
Activity is the interaction with the DayTime Server, which takes place in the
Requester class, which we’ll look at next.

13.4.2 Socket Client

The DayTime Server application listens on a TCP port for incoming connections. To
request the date and time, the Daytime Client must establish a client socket connec-
tion to the DayTime Server. It’s hard to imagine a simpler TCP service than this—open
a socket to the server and read data until the socket connection is closed. There’s no
additional requirement. Most of the networking examples in this book have focused
on a higher-level protocol, HTTP, where the request and response are clearly defined
with headers and a specific protocol to observe. In this example, the communications
involve a lower-level socket connection, essentially raw, if you will, because there’s no
protocol associated with it beyond being a TCP stream (as opposed to UDP). The fol-
lowing listing demonstrates this lower-level socket communication.

 public class Requester extends Thread {
 Socket requestSocket;
 String message;
 StringBuilder returnStringBuffer = new StringBuilder();
 Message lmsg;
 int ch;
 public void run() {
 try {
 requestSocket = new Socket("localhost", 1024);
 InputStreamReader isr = new

InputStreamReader(requestSocket.getInputStream(),
"ISO-8859-1");
 while ((ch = isr.read()) != -1) {
 returnStringBuffer.append((char) ch);
 }
 message = returnStringBuffer.toString();
 lmsg = new Message();
 lmsg.obj = (Object) message;
 lmsg.what = 0;
 h.sendMessage(lmsg);
 requestSocket.close();
 } catch (Exception ee) {
 Log.d("CH13","failed to read data" + ee.getMessage());
 }
 }

Listing 13.12 Requester class implementation

Extending
Thread classB

CCommunicating
on Socket

Creating
Message object

D

Sending Message
to main thread

E

 }

362 CHAPTER 13 Building Android applications in C

The Requestor B class extends the Thread class by implementing the run method.
Communications take place via an instance of the Socket class C, which is found in
the java.net package. Note the port number being used—1024, just like our socket
server! A Message D is used to communicate back to the UI thread. Once the Message
object is initialized, it’s sent back to the calling thread E.

 With the Daytime Client now coded, it’s time to test the application. In order for
the Daytime Client to access a TCP socket, a special permission entry is required in the
AndroidManifest.xml file: <uses-permission android:name="android.permis-

sion. INTERNET"></uses-permission>.

13.4.3 Testing the Daytime Client

The first step in testing the Daytime Client is to ensure that the DayTime Server appli-
cation is running, as described in section 13.3.4. Once you know the DayTime Server
is running, you can run the Daytime Client.

NOTE If you’re unclear on how to build and run the Daytime Client, refer to
chapter 2 for information on properly setting up the Android development
environment in Eclipse.

Figure 13.11 demonstrates the Daytime Client running, alongside a view of the Day-
Time Server. Note how the TextView of the Android application is updated to reflect
the date and time sent by the DayTime Server.

 The DayTime Server is exercising both TCP socket functionality and SQLite data-
base record insertions, all running in the Android Emulator. A production-ready
Android/Linux application would need to be converted to run as a daemon, which is
beyond our aim for this chapter.

13.5 Summary
This chapter hopefully stretched your imagination for the kinds of applications possi-
ble with the versatile and open platform of Android. We had the goal of writing an
application outside the Android SDK and demonstrating how that kind of application
may be leveraged by a standard Android Java application. To write for the Android/
Linux layer, we turned to the C programming language.

 Developing C language applications for Android/Linux is a cross-platform compi-
lation exercise using the freely available CodeSourcery tool chain. This chapter dem-
onstrated using that toolset in conjunction with the adb utility provided in the
Android SDK. The adb utility enabled you to push the application to the Android
Emulator for testing, as well as extract the Android system libraries essential for link-
ing the application with the Android resident libraries. You used the adb shell to inter-
act directly with the Android Emulator to run the C application.

 Our sample application exercised TCP socket communications. The TCP capability
proved to be a ready interface mechanism between the Android/Java layer and the
Android/Linux foundation of the environment in the Daytime Client and server

363Summary

applications, respectively. TCP socket communications may also take place from the
Android/Linux environment to external, remote systems such as email servers or
directory servers, opening up a world of possibilities.

 The DayTime Server sample application also demonstrated the use of an Android
resident library to manipulate a SQLite database used to store transaction data. The
impact of this step shouldn’t be minimized, as it satisfies three important develop-
ment challenges. The first and most basic accomplishment of this functionality is that
we’ve demonstrated linking against, and employing, an Android resident system
library. This is significant because it shows how future applications may leverage
Android functionality such as Open GL or media services. Second, using a device-resi-
dent database that’s also accessible from the Java layer means you have an additional
(and persistent) interface mechanism between the Java and Linux environments on
the platform. Third, Android is a mobile platform. Anytime there’s a mobile applica-
tion, the topic of sharing and syncing data bubbles up. We demonstrated in this chap-
ter the ease with which an SQL-capable database was shared between the Android
Emulator and a personal computer—and all without complex synchronization pro-
gramming. Synchronization is a broad topic, but the capability of moving a single file

Figure 13.11 Testing the Daytime Client

364 CHAPTER 13 Building Android applications in C

between platforms is a welcome feature. There are only a few comparable solutions in
the marketplace for other mobile environments, and that’s after years of market pene-
tration by these other platforms. Android gets it right from the start.

 This chapter took a bit of a detour from the regular Android SDK programming
environment. It’s time to return to the SDK; in the next chapter you’ll learn about
Bluetooth and sensors.

Part 4

The maturing platform

In part 3, you learned about two extremes of the Android platform. Chapter
12 provided the full end-to-end SDK application experience, and chapter 13
went to the other extreme of exploring application techniques that might best
fit a custom piece of hardware running the Android operating system. The
objective of part 4 is to explore some of the features added to the Android plat-
form that take it a step beyond the other platforms to provide a unique and
memorable mobile experience.

 In chapter 14, we get close to the metal by interrogating onboard sensors and
communicating over Bluetooth. The sensors act as inputs for a navigation system
to control a LEGO Mindstorms robot.

 In chapter 15, we build a sophisticated integration between the Android
contact database and business social networking sensation, LinkedIn. The appli-
cation constructed in chapter 15 has become a popular download on the
Android market. Read along and learn how to get up close and personal with
your contacts.

 In chapter 16, the topic of Android web development is explored. Topics
such as building websites for the WebKit-powered Android browser and custom
JavaScript handlers are introduced. In addition, local SQL-based storage con-
cepts are examined, enabling next-generation web applications directly on your
mobile device.

 Chapter 17 presents a nontrivial example of the AppWidget, tying together
other key concepts such as services, alarms, and BroadcastReceivers. There’s
something for everyone in chapter 17 as we construct a website monitoring tool

that provides near-real-time status information directly to the home page of your
Android device.

 Chapter 18 circles back to the application constructed in chapter 12, but with a
twist. The code in chapter 18 demonstrates the localization of an existing application
as the field service application presented in chapter 12 is modified to support multi-
ple languages. The application now supports English and Spanish, depending on the
locale of the device.

 Chapter 19 wraps up the book with a look at the Native Development Kit (NDK).
The NDK permits Android developers to incorporate C language source code into
SDK applications. Chapter 19 demonstrates the NDK in the context of an image-
processing application that allows the user to capture images with the built-in camera
and then perform an edge detection algorithm against the image. It’s loads of fun and
you’ll learn about the Java Native Interface as well as how to integrate the NDK build
process directly into Eclipse.

Bluetooth and sensors
The majority of the material presented in this book is concerned with employing
various capabilities of the Android SDK. At this point, however, you’re going to see
how to take advantage of an Android device’s hardware. Specifically, we’ll look at
connecting an Android device to remote devices via a Bluetooth wireless connec-
tion, as well as reading and interpreting values from a hardware-based orientation
sensor. This chapter combines these two hardware-related topics in a sample pro-
gram that exercises control over a robot constructed from the popular LEGO Mind-
storms NXT. The Mindstorms NXT robot supports a communications protocol
known as “Direct Commands,”1 allowing it to be controlled by a remote device.
This is the one chapter of the book where you’ll want to have access to a physical
Android device with version 2 or later of the operating system—the simulator alone
isn’t adequate for exercising the Bluetooth and sensor functionality.

This chapter covers
 Connecting to a Bluetooth peripheral

 Interacting with the SensorManager

 Building and running the SenseBot application

1 To learn more about Direct Commands for the Lego Mindstorm, start here: http://mindstorms.
367

lego.com/en-us/support/files/default.aspx.

368 CHAPTER 14 Bluetooth and sensors

 The code accompanying this chapter is organized into an Android application
named SenseBot. SenseBot is a moderately complex example of using Android to
manipulate an external object. Android’s orientation sensor permits the user to
“drive” the robot by simply holding the phone in a particular direction, not unlike a
Nintendo Wii or other advanced gaming system. Tilt the phone forward and the robot
drives forward. Tilt it backward and the robot reverses direction. Tilting to the left or
right causes the robot to spin in the respective direction. With each interpreted sensor
motion, the SenseBot application uses Bluetooth to send commands to the robot
causing the appropriate physical behavior. The LEGO NXT comes equipped with a
built-in command set that permits low-level operations such as direct motor control.
The motions of the Android device are interpreted, converted to commands, and
transmitted via Bluetooth to the robot.

 In addition to basic Bluetooth communications and Sensor management, the code
demonstrates the use of a dynamically created BroadcastReceiver employed to handle
Bluetooth-related connection events.

 The topic of Bluetooth communications is much broader and deeper than we can
hope to cover in a single chapter. Likewise, there are at least half a dozen hardware
sensors available on the Android platform, yet this chapter demonstrates the use of
only one. If you’re looking for textbook-like coverage of these two topics, we encour-
age you to look at the online documentation or perhaps another text on the subject.
The aim of this chapter is to explore Bluetooth and sensor functionality on the
Android platform in the context of a functional (and fun) application. If you take the
time to follow along and build this application and have access to a LEGO Mindstorms
NXT robot, I promise that you’ll get hooked on “driving” your robot with your phone.
Also, a version of the application is available for download from the Android market.

14.1 Exploring Android’s Bluetooth capabilities
The first thing that comes to mind with the term Bluetooth is wireless headsets. Also
known as a hands-free, in many parts of the world these wireless wonders are required
by law for operating your telephone while driving a vehicle. In actuality, the hands-
free device is only one of many uses for the versatile Bluetooth technology.

 Bluetooth is a wireless communications protocol similar to WiFi but constrained to
usage scenarios for short-range applications reaching a range of approximately 10
meters. In addition to providing functionality as a hands-free microphone and
speaker for your cell phone, Bluetooth also enables peer-to-peer network access,
object exchange, cable replacement, and advanced audio/media capabilities.

 Like any other protocol standard, Bluetooth has its own “stack” of layers, each of
which implements distinct capabilities and features of the protocol. This chapter
doesn’t spend time dissecting these layers, as the Bluetooth stack is well covered in
other places. Rather, this chapter demonstrates the approach for establishing a data

369Exploring Android’s Bluetooth capabilities

connection between two peers. The specific Bluetooth “profile” employed here is the
RFCOMM2 cable replacement profile.

 In this section you’ll learn how to establish a connection between Android and
your remote device via the android.bluetooth package. Given how the Android plat-
form permits only encrypted connections, your two communicating devices must first
be paired or bonded, which will subsequently allow you to connect without a further
confirmation or security prompt. Then, in order to know that you’ve connected to a
Bluetooth device, you must register for two events: ACTION_ACL_CONNECTED and
ACTION_ACL_DISCONNECTED. And finally, your Android application will need to have
BLUETOOTH permission as defined in the AndroidManifest.xml file. Let’s get started.

14.1.1 Replacing cables

Today, connecting to the internet to exchange emails or browse the web is an everyday
experience for most Android users. With your phone you can connect to computers
on the other side of the planet and beyond, but how can you communicate with some-
thing in the same room? In the not-so-distant past we programmed interfaces between
computers and peripherals across a serial cable, often described as an RS232 interface.
In a few short years, the RS232 serial cable has become a museum piece, having been
replaced by the more capable USB and with the Bluetooth Serial Port Profile.

 In the same way that USB can be used for many different applications, the Blue-
tooth wireless protocol also may be deployed in a variety of manners. The Bluetooth
capability of interest to us is the cable replacement functionality of the Serial Port Pro-
file (SPP), which is sometimes referred to as RFCOMM. The RF stands for radio fre-
quency, aka “wireless.” The COMM stands for communications port, harkening back to
its roots as a point-to-point connection-based streaming protocol.

14.1.2 Primary and secondary roles and sockets

The Bluetooth protocol works in a fashion similar to other communications environ-
ments where there’s a primary (or master) device that initiates communications with
one or more secondary (or slave) devices. Android is versatile in that it may be either
a primary or a secondary device in a Bluetooth connection.

 Regardless of how a connection is established—as a primary or a secondary Blue-
tooth device—an Android application exchanges data through a socket interface. That’s
right; the familiar networking paradigm of a socket and its associated input stream
and output stream is employed for Bluetooth connectivity as well. So once you get past
the scaffolding of connecting two Bluetooth devices together in a communications
session, you can be less concerned with the underlying details and can simply view the
remote device as an application on the other side of a socket. This is much like the
relationship between a web browser and a remote server that exchange data over a
TCP socket.
2 To learn more about RFCOMM, look at http://www.bluetooth.com.

370 CHAPTER 14 Bluetooth and sensors

 To access the Bluetooth environment on an Android device, you need to dig into
the android.bluetooth package, which first appeared in Android version 2.0.
Though most Android devices prior to version 2 were capable of Bluetooth hands-free
operation, it wasn’t until version 2 that Android applications could leverage the
underlying Bluetooth hardware as discussed in this chapter. Table 14.1 shows the
major Java classes used by Bluetooth-enabled Android applications.

This chapter demonstrates the use of the BluetoothAdapter, the BluetoothDevice
class, and the BluetoothSocket. The next section shows how an Android device goes
about connecting to another Bluetooth-enabled device.

NOTE For the examples in this chapter, the Android device acts as the pri-
mary device and a LEGO Mindstorms NXT controller acts as a secondary Blue-
tooth device.

14.1.3 Trusting a device

Although the broader Bluetooth specification allows for both encrypted and unen-
crypted communications between peer devices, the Android platform permits only
encrypted connections. In essence, this means that the two communicating devices
must first be paired, or bonded. This is the somewhat annoying step of telling each
device that the other is trusted. Despite the annoyance factor and the fact that virtu-
ally every Bluetooth device on the planet uses its default security pin code of 0000 or
1234, the security aspects of Bluetooth do have their value—sort of.

Table 14.1 Bluetooth classes

Class Comment

BluetoothAdapter This class represents the local Android device’s Bluetooth hardware
and interface constructs. Everything begins with the
BluetoothAdapter.

BluetoothClass The BluetoothClass provides a convenient means of accessing
constant values related to Bluetooth communications and operations.

BluetoothDevice Any remote device is represented as a BluetoothDevice.

BluetoothSocket The BluetoothSocket is used for exchanging data. On a more
practical note, a primary device initiates a socket connection with a
secondary device by first creating a BluetoothSocket. The exam-
ple code in this chapter demonstrates this technique.

BluetoothServerSocket A Bluetooth secondary device listens for a primary device to connect
through a BluetoothServerSocket in much the same way that a
web server awaits a TCP socket connection from a browser. Once con-
nected, a BluetoothSocket is established for the ongoing commu-
nication.

371Exploring Android’s Bluetooth capabilities

 Devices are paired either through the “settings”
screens of the various peers or on demand the first
time a connection is requested. This section walks
through the steps of pairing an Android device3 with a
LEGO robot controller module.

 Figure 14.1 shows a portion of the Bluetooth set-
tings screen from my Nexus One device running
Android 2.2.

 From this screen you can see that the following is
true:

 Bluetooth is enabled.
 This device name is Nexus One.
 This device isn’t currently discoverable. This

means that other Bluetooth devices won’t see
this phone during a “scan.” Practically speaking,
this means that the phone ignores discovery
packets that it detects. There’s a button used to
initiate a manual scan for nearby Bluetooth
devices.

 You can initiate a scan for nearby Bluetooth
devices by pressing the Scan for Devices button.

 There are three devices that this phone has pre-
viously paired with but aren’t currently con-
nected:
– NXT—the LEGO robot
– Two instances of a Samsung hands-free

device. This isn’t a mistake—there are two
distinct devices paired with this phone. (This
author “solved” his problem of frequently
lost hands-free devices by buying a handful of
them via eBay, hence the multiple device
pairings!)

A long click on one of the entries in the Bluetooth
devices list presents options for further operations,
with the specific choices depending on the device. For
example, selecting one of the Samsung entries pres-
ents the options shown in figure 14.2.

3 Join the Talk Android forums to learn more about the types of Android hardware: http://www.talkandroid.

Figure 14.1 Bluetooth settings
screen

Figure 14.2 Options for a
paired device
com/android-forums/android-hardware/.

372 CHAPTER 14 Bluetooth and sensors

In order to pair with a device, you need to first scan for it. Once it’s been added to the
list, you can select it to initiate the pairing. Figure 14.3 shows the LEGO robot control-
ler prompting for a PIN after a pairing request.

 This PIN value will then be compared to what the user enters on the phone, as
shown in figure 14.4.

 At this point, your phone and the LEGO robot controller are paired. Moving for-
ward, you’ll be able to connect to this device without a further confirmation or secu-
rity prompt.

14.1.4 Connecting to a remote device

Connecting to a paired, or bonded, device involves a two-step process:

 Get a list of paired devices from the Bluetooth hardware/software stack.
 Initiate an RFCOMM connection to the target device. The following listing dem-

onstrates a basic approach to establishing an RFCOMM, or Serial Port Profile
connection, between paired devices.

public void findRobot(View v)
{
 try
 {
 btInterface = BluetoothAdapter.getDefaultAdapter();
 pairedDevices = btInterface.getBondedDevices();
 Iterator<BluetoothDevice> it = pairedDevices.iterator();
 while (it.hasNext())

Listing 14.1 Initiating a connection to a BluetoothDevice

Figure 14.4 Pairing with the LEGO robotFigure 14.3 LEGO controller prompts for a PIN

BGet adapter

Get list of
devices

C

Enumerate

 { listD

373Exploring Android’s Bluetooth capabilities

 BluetoothDevice bd = it.next();
 if (bd.getName().equalsIgnoreCase(ROBOTNAME)) {
 connectToRobot(bd);
 return;
 }
 }
 }
 catch (Exception e)
 {
 Log.e(tag,"Failed in findRobot() " + e.getMessage());
 }
}
private void connectToRobot(BluetoothDevice bd)
{
 try
 {
 socket = bd.createRfcommSocketToServiceRecord
(UUID.fromString("00001101-0000-1000-8000-00805F9B34FB"));
 socket.connect();
 }
 catch (Exception e)
 {
 Log.e(tag,"Error interacting with remote device [" + e.getMessage() +

"]");
 }
}

All Bluetooth4 activities begin with the BluetoothAdapter B. With a reference to the
adapter, you can obtain a list of already-paired devices C. You look through this list D
for a specific device name E that corresponds to the name of your robot. This name
may be hard-coded, as is done in this sample application; entered by the user at run-
time; or even selected from a more sophisticated “choose” dialog. One way or another,
the aim is to identify which BluetoothDevice you need and then initiate a connection,
as done here with a call to the function named connectToRobot F. It’s a good prac-
tice to catch exceptions G, particularly when dealing with remote physical devices
that may not be in range or may have powered down. To connect to the remote device
across the Serial Port Profile, use the createRfComSocketToServiceRecord method of
the BluetoothDevice class. The UUID string shown in the code is the identifier for the
Serial Port Profile H. Once you have a BluetoothSocket available, you call the con-
nect method I.

 At this point you’ve found the device of interest and attempted a connection
request. Did it work? How do you know? You could make an assumption about the
connection status and wait for an error to tell you otherwise. Perhaps that isn’t the
best approach. There must be a better way—and there is, but it involves working with
Intents.

4 See the Google documentation for more details about Bluetooth and Android: http://developer.

Evaluate
device name

E

Connect to RobotF

Handle
connection
related
exceptions

G

Connect to RobotF

Get Socket
interfaceH

Initiate connectionI
android.com/guide/topics/wireless/bluetooth.html.

374 CHAPTER 14 Bluetooth and sensors

14.1.5 Capturing Bluetooth events

To verify that you’ve successfully connected to a BluetoothDevice, you must register
for a couple of Bluetooth-related events: ACTION_ACL_CONNECTED and
ACTION_ACL_DISCONNECTED. When these events occur, you know that you have a good
connection, or you’ve lost a connection, respectively. So, how can you use these events
in conjunction with your previously created socket? The following listing demon-
strates a technique for creating a BroadcastReceiver directly in the Activity and reg-
istering for the events of interest.

private BroadcastReceiver btMonitor = null;

private void setupBTMonitor() {
 btMonitor = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context,Intent intent) {
 if (intent.getAction().equals(
"android.bluetooth.device.action.ACL_CONNECTED")) {
 handleConnected();
 }
 if (intent.getAction().equals(
"android.bluetooth.device.action.ACL_DISCONNECTED")) {
 handleDisconnected();
 }

 }
 };
}

To monitor for specific broadcasted events, you need to employ a BroadcastReceiver.
Ordinarily you’d do this with a separate class, but this application requires a more
tightly integrated UI, so you take an alternative approach. Typically BroadcastReceiv-
ers are defined in the AndroidManifest.xml file, but in this case you only want notifi-
cation under a specific set of circumstances. This code defines an Activity-scoped
BroadcastReceiver named btMonitor B. In the onCreate method, the setupBTMoni-
tor method C is invoked to create the BroadcastReceiver D along with the imple-
mentation of the onReceive method E. Whenever a broadcasted Intent is available
for this BroadcastReceiver, the onReceive method is invoked. In this implementation,
you’re concerned with the connect and disconnect of a Bluetooth peer. When the
devices are connected, the handleConnected method F is invoked. Similarly when
the remove device disconnects, the handleDisconnected method G is called to per-
form the appropriate housekeeping operations.

 With the device now connected, you need to perform some housekeeping to han-
dle things such as setting up the socket’s input and output streams. The next listing
shows an abbreviated version of the handleConnected method showing the Bluetooth
relevant portions.

Listing 14.2 Monitoring the Bluetooth connection

BroadcastReceiver variableB
SetupBTMonitor methodC

Create BroadcastReceiverD

E
onReceive

method
Connection
establishedF

Connection lostG

375Interacting with the SensorManager

private void handleConnected() {
 try {
 is =

socket.getInputStream();
 os = socket.getOutputStream();
 bConnected = true;
 btnConnect.setVisibility(View.GONE);
 btnDisconnect.setVisibility(View.VISIBLE);
 } catch (Exception e) {
 is = null;
 os = null;
 disconnectFromRobot(null);
 }
}

When the handleConnected method is invoked, a valid Bluetooth socket connection
has been established, so you need to set up the input and output streams B. With
these streams established, data communications between the Android device and the
LEGO robot may now begin. As you’ll see later in this chapter, you only want to process
sensor events if you’re connected to a robot, so you set a flag C letting the application
know the status of the connection. You swap the visibility of a pair of Buttons D—one
is used for connecting to the robot and the other for disconnecting. In the event that
an error occurs during this step, you want to clean up by closing down the streams E
and initiating a disconnect request F.

 The code for disconnecting a socket is simply this:

socket.close();

To perform most Bluetooth operations with Android, there’s one important item that
must be established: permissions!

14.1.6 Bluetooth permissions

Working with a paired device peer isn’t the only place where permissions come into
play. In order to exercise the Bluetooth APIs, an Android application must have the
BLUETOOTH permission defined in the AndroidManifest.xml file:
<uses-permission android:name="android.permission.BLUETOOTH"></uses-

permission>

The balance of the Bluetooth communications code is presented in the third section
of this chapter, where we discuss in more depth the code that comprises the SenseBot
application. Before jumping into the fun of coding and running the robot applica-
tion, let’s look at the SensorManager and show how you can put Android’s sensors to
work for you to drive a robot.

14.2 Interacting with the SensorManager
Android exposes the physical hardware sensors via a class known as the Sensor-

Listing 14.3 The handleConnected method

Setup IO streamsB

Set flagC
Swap
Button visibility

D

Handle exceptionE

Close connection
on errorF
Manager. The SensorManager class is similar to the BluetoothAdapter class in that all

376 CHAPTER 14 Bluetooth and sensors

related activities rely on having a reference to SensorManager. The SensorManager
class is part of the android.hardware package. In this section, you’ll learn how to read
values from the orientation sensor, which you must learn to do before you build the
SenseBot application.

 Table 14.2 lists the major classes associated with the SensorManager.

Working with the SensorManager class is simple. The first requirement is to obtain a
reference:

SensorManager sManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

Once you’ve obtained a valid reference, you can use this variable throughout the
application to interact with the sensors themselves. For example, the SenseBot appli-
cation utilizes the orientation sensor. To get a reference to this sensor, call the get-
DefaultSensor() method of SensorManager:

Sensor orientationSensor =
sManager.getDefaultSensor(Sensor.TYPE_ORIENTATION);

We only use the orientation sensor in this chapter, but Android offers many more sen-
sors. Let’s look at the available sensor types as of Android 2.2.

14.2.1 Types of sensors

Android supports the sensor types listed in table 14.3.

Table 14.2 Sensor-related classes

Class Comment

SensorManager Primary interface to the various sensors present in the hardware

Sensor Represents a particular sensor

SensorEvent Represents the readings from a sensor

SensorEventListener This interface used to receive SensorEvents in near real time

Table 14.3 Android’s common sensors

Sensor.TYPE_ACCELEROMETER Measures acceleration in three dimensions

Sensor.TYPE_GYROSCOPE Gyroscope

Sensor.TYPE_LIGHT Ambient light sensor

Sensor.TYPE_MAGNETIC_FIELD Measures magnetic field compass

Sensor.TYPE_ORIENTATION Measures orientation in three dimensions

Sensor.TYPE_PRESSURE Measures pressure

Sensor.TYPE_PROXIMITY Measures distance the phone is away from another object,
such as your ear

Sensor.TYPE_TEMPERATURE Measures ambient temperature

377Interacting with the SensorManager

Each sensor instance can provide a handful of useful and interesting attributes,
including:

 Name of sensor
 Power consumption in mA
 Resolution
 Maximum range
 Vendor
 Version

The orientation sensor on a Nexus One shows the following characteristics:

 Name: AK8973 Orientation Sensor
 Power draw: 7.0 mA
 Resolution 1.0 degree
 Max range 360 degrees

Now that you have a feel for how to gain access to a sensor through SensorManager,
let’s explore reading values from a sensor.

14.2.2 Reading sensor values

You read a value from a sensor by implementing the SensorEventListener interface.
SensorEvent instances are sent to a method named onSensorChanged(). The Sensor-
Event class contains four fields, as you can see in table 14.4.

The SensorEventListener receives these events each time the corresponding sensor
values change. The following listing shows a slimmed-down version of the onSensor-
Changed method for the SenseBot application.

public void onSensorChanged(SensorEvent event) {
 try {

 if (bConnected == false) return;

Table 14.4 SensorEvent’s fields

Field Comment

accuracy This integer field represents the sensor’s view of the accuracy of this reading.

Sensor This is a reference to the sensor that created this SensorEvent.

timestamp This is a nanosecond-based timestamp representing when the event occurred. This
field can be helpful when you’re correlating multiple events.

values[3] The values from the sensor are provided as an array of floats with three values. The
units and precision of the values vary by sensor.

Listing 14.4 Our slimmed-down version of onSensorChanged

SensorEvent
parameterB

Check connected flagC

378 CHAPTER 14 Bluetooth and sensors

 StringBuilder sb = new StringBuilder();
 sb.append("[" + event.values[0] + "]");
 sb.append("[" + event.values[1] + "]");
 sb.append("[" + event.values[2] + "]");

 readings.setText(sb.toString());

 // process this sensor data
 // updateMotors();
 } catch (Exception e) {
 Log.e(tag,"onSensorChanged Error::" + e.getMessage());
 }
 }

Each time a SensorEvent B is available, it’s passed to the onSensorChanged method.
The first thing the code does is a safety check to make sure you have a good connec-
tion to the robot C. If there’s no connection, you ignore the data. Each of the three
values is extracted and formatted D for display in a simple TextView widget E. The
values are interpreted F and the appropriate instructions are passed to control the
robot’s motors G. The logic for the interpretation and interaction with the robot’s
hardware is provided later in this chapter.

 An application must register its SensorEventListener in order to receive these
notifications. There’s a prescribed manner in performing this registration process,
which is up next.

14.2.3 Enabling and disabling sensors

The SensorEventListener interface receives messages only when it’s registered. Sen-
sorManager provides two bookend-type functions that permit an application to regis-
ter for a particular sensor’s events. In the context of the SenseBot application, you’re
only interested in receiving orientation sensor events when the Android device is con-
nected to the robot via Bluetooth. As such, you’ll implement the registration code
inside the previously introduced handleConnected method. The following listing
shows the new code to be added to the handleConnected method.

sManager.registerListener(SenseBot.this,
 sManager.getDefaultSensor(
 Sensor.TYPE_ORIENTATION),
 SensorManager.SENSOR_DELAY_UI);

The registerListener method of the SensorManager takes three arguments in order
to marshal sensor data to an application. The first argument is to an implementation
instance of SensorEventListener, which is in this case our class itself, SenseBot.this
B. The second argument is an instance of the sensor of interest. Here you’re inter-
ested in tracking values for the orientation sensor C. The rate at which the sensor data
is updated is variable and is specified by the programmer as the third parameter. In this
case you use the value SensorManager.SENSOR_DELAY_UI D, which is a good general-

Listing 14.5 Sensor registration code

Build visual
representation

D

Display valuesE
Interpret valuesF

Move robot
accordinglyG

Provide SensorEventListenerB

Specify which SensorC
Sensor update frequencyD
purpose value. Use faster values for games or other real-time–oriented applications.

379Building the SenseBot application

 If you recall, the orientation sensor has a draw of 7 mA. To conserve power and
battery life, you should be mindful to turn off the sensor when it’s not required. In the
SenseBot application, there are two places where this takes place. The first is in the
handleDisconnected method—when you lose connection to the robot, you needn’t
take any further readings from the sensor. The more generic place to add this “unreg-
ister” functionality is in the onStop Activity lifecycle method.

 Regardless of where the code is called, a SensorEventListener is unregistered
with a simple call to the unregisterListener method of SensorManager:

sManager.unregisterListener(SenseBot.this);

Note that this call unregisters all sensors for this SensorEventListener in the event
that your application registered more than one sensor type.

 At this point you know how to both connect to the robot and read values from the
orientation sensor. It’s time to put all this knowledge together and build the SenseBot
application!

14.3 Building the SenseBot application
The SenseBot application has a simple premise—you want to drive a LEGO Mind-
storms NXT5 robot by changing the orientation of the Android phone. There are no
attached wires—all the communication is done via Bluetooth and the orientation of
the phone alone should dictate how the robot moves. Furthermore, though the
LEGO robot is programmable, you utilize only the built-in capabilities of the robot to
manipulate individual motors. The benefit of this approach is that this program will
work on virtually any LEGO robot built, regardless of the skill of the robot program-
mer. The only requirements of the robot are that the motors be connected to output
ports B and C, which is the common manner of constructing LEGO NXT robots. Fig-
ure 14.5 shows the robot with a simple two-
motor design.

 The robot can move forward and backward,
spin to the left, and spin to the right. To drive
the robot, you tilt the phone forward or back-
ward, turn it on its side to the left, and turn it
on its side to the right, respectively.

 Although the robot is controlled entirely by
the motion of the phone, you still have to cre-
ate a useful and intuitive UI. In fact, the UI has
a nontrivial role in the development of this
application.

5 If you have a future engineer or scientist in the making, check out First Lego League: http://www.first-

Figure 14.5 Simple LEGO NXT robot with
motors connected to B and C ports
legoleague.org/.

380 CHAPTER 14 Bluetooth and sensors

14.3.1 User interface

The UI for this application is simple but must be also intuitive for the user. You want to
show the user what’s happening to provide positive feedback on how to use the appli-
cation. Additionally, you’re dealing with a mechanical robot that may not function
properly at all times. The robot may perform an unexpected action—therefore it’s
desirable that you have the ability to compare the robot’s movement to the visual indi-
cators you provide to the user. To that end, you need to indicate to the user the state
of the motors at all times while the Android device is connected to the robot. Figure
14.6 shows the default user interface prior to connecting to a robot.

 Clicking the Connect button initiates the connection sequence with a call to the
findRobot method shown earlier in section 1.1.4. Once connected to the robot, you
need to hide the Connect button and provide a means of disconnecting from the
robot by displaying a Disconnect button. In addition, you want to indicate the state of
the motors and display the sensor readings. Figure 14.7 shows the application after it
has connected and with the motors in the stopped condition.

NOTE The motor indicators on the screen are the values specified by the
application and correlate to motor control instructions sent to the robot.
They aren’t measured values read from the robot.

Figure 14.6 Waiting to
connect to a robot

Figure 14.7 Connected to the
robot with the motors stopped

381Building the SenseBot application

If the robot’s motors are moving while the screen indicates that they’re both stopped,
there’s a problem either with the command sent by the robot or with the robot itself.
Figure 14.8 is a screenshot taken from the application when guiding the robot to
move backward.

 Figure 14.9 shows the application instructing the robot to spin to the left. To
accomplish this, we’ve the left motor turning backward and the right motor turning
forward.

Lastly, when the application disconnects from the robot (when you either click the Dis-
connect button or power off the robot), the application detects the Disconnected con-
dition and calls handleDisconnect, and the UI is updated, as shown in figure 14.10.

Figure 14.8 Both motors are
moving backward.

Figure 14.9 Spinning to the left

Figure 14.10 Disconnected state, waiting
for a new connection

382 CHAPTER 14 Bluetooth and sensors

 The UI is generated by a pair of View widgets and three drawables:6 stop, up (for-
ward), and down (backward). Based on the values read from the sensors, the respec-
tive View widgets have their background changed appropriately.

 This application is so dependent on the orientation of the phone for the control of
the robot that you can’t allow the phone’s orientation to change back and forth
between portrait and landscape, as it’ll both restart the Activity, which could wreak
some havoc, as well as change the orientation of the sensors. To meet this objective, an
attribute was added to the activity tag in the AndroidManifest.xml file:

android:screenOrientation=landscape

Once this orientation is set up, there’s no worry of the orientation changing to por-
trait while driving the robot. You’ll find holding the phone in landscape is comfort-
able when you’re “driving.”

 By carefully coordinating the UI with the physical motors, you have a ready feed-
back mechanism to both make you better robot drivers and help troubleshoot any
anomalies during the development phase of this engineering project

 The communications are established and the orientation sensor is producing val-
ues; it’s now time to examine the interpretation of the sensor values.

14.3.2 Interpreting sensor values

To control the robot with the orientation of the phone, a “neutral zone” should be
established with a “center” represented by the position of the phone when being held
comfortably in a landscape orientation, slightly tilted back and up. Once this center is
defined, a comfortable spacing or “sensitivity” is added in both of the x and y dimen-
sions. As long as the phone’s orientation in these dimensions doesn’t exceed the sensi-
tivity value, the motors remain in neutral and not powered. Variables named xCenter,
yCenter, and xSensitivity and ySensitivity govern this “neutral box.”

 Look at the onSensorChanged method: this is where you receive the SensorEvent
providing the values of each dimension x, y, and z. The following listing shows the
complete implementation of this method, including the sensor evaluation and move-
ment suggestions.

public void onSensorChanged(SensorEvent event) {
 try {
 if (bConnected == false) return;
 StringBuilder sb = new StringBuilder();
 sb.append("[" + event.values[0] + "]");
 sb.append("[" + event.values[1] + "]");
 sb.append("[" + event.values[2] + "]");

 readings.setText(sb.toString());

6 Download a drawables application that lists all resources in android.R.drawable for the current Android

Listing 14.6 The onSensorChanged method, which interprets orientation
device: http://www.appbrain.com/app/android-drawables/aws.apps.androidDrawables.

383Building the SenseBot application

 // process this sensor data
 movementMask = MOTOR_B_STOP + MOTOR_C_STOP;

 if (event.values[2] < (yCenter - ySensitivity)) {
 movementMask = MOTOR_B_FORWARD + MOTOR_C_FORWARD;
 motorPower = 75;

 } else if (event.values[2] > (yCenter + ySensitivity)) {
 movementMask = MOTOR_B_BACKWARD + MOTOR_C_BACKWARD;
 motorPower = 75;

 } else if (event.values[1] >(xCenter + xSensitivity)) {
 movementMask = MOTOR_B_BACKWARD + MOTOR_C_FORWARD;
 motorPower = 50;

 } else if (event.values[1] < (xCenter - xSensitivity)) {
 movementMask = MOTOR_B_FORWARD + MOTOR_C_BACKWARD;
 motorPower = 50;

 }
 updateMotors();
 } catch (Exception e) {
 Log.e(tag,"onSensorChanged Error::" + e.getMessage());
 }
 }

When interpreting the values for the motors, you default to having both motors
stopped B. Note that the B and C motors are managed separately. You check whether
the y sensor value is outside the y quiet zone C. If the sensed value is beyond the
“titled forward” boundary, you move the robot forward. Likewise, if the sensed value is
further back than the resting position, you move the robot backward by marking both
motors to be turned backward. If the robot hasn’t been determined to be going either
forward or backward, you check for the lateral options of left and right D. If the robot
is moving forward or backward, the speed is set to 75% E. If the robot is to be spin-
ning, its power is set to 50% F. The final step is to translate these movement masks
into real actions by modifying the condition of the motors G and to update the UI to
reflect these commands.

 Once the onSensorChanged method has completed processing the SensorEvent
data, it’s time to drive the robot’s motors and update the user interface.

14.3.3 Driving the robot

Driving the robot is as simple—and as complex—as turning the motors on with a
series of commands. The command protocol itself is shown in the next section; for
now let’s focus on the updateMotors method to see how both the UI and the motor
positions are modified. The following listing displays the updateMotors method.

private void updateMotors() {
 try {
 if ((movementMask & MOTOR_B_FORWARD) == MOTOR_B_FORWARD) {

Listing 14.7 The updateMotors method

Default to
stopped motors

B

C
Check
forward/
back

Set motor speed fastE

Set motor speed fastE

D
Check
left/
right

Set motor speed slowF

Set motor speed slowF

Update
motor valuesG

BCheck motor
bitmask

C Update
graphic
 motorB.setBackgroundResource(R.drawable.uparrow); images

384 CHAPTER 14 Bluetooth and sensors

 MoveMotor(MOTOR_B,motorPower);

 } else if ((movementMask & MOTOR_B_BACKWARD) == MOTOR_B_BACKWARD) {
 motorB.setBackgroundResource(R.drawable.downarrow);
 MoveMotor(MOTOR_B,-motorPower);

 } else {
 motorB.setBackgroundResource(R.drawable.stop);
 MoveMotor(MOTOR_B,0);
 }

 if ((movementMask & MOTOR_C_FORWARD) == MOTOR_C_FORWARD) {
 motorC.setBackgroundResource(R.drawable.uparrow);
 MoveMotor(MOTOR_C,motorPower);

 } else if ((movementMask & MOTOR_C_BACKWARD) == MOTOR_C_BACKWARD) {
 motorC.setBackgroundResource(R.drawable.downarrow);
 MoveMotor(MOTOR_C,-motorPower);

 } else {
 motorC.setBackgroundResource(R.drawable.stop);
 MoveMotor(MOTOR_C,0);
 }

 } catch (Exception e) {
 Log.e(tag,"updateMotors error::" + e.getMessage());
 }
}

The updateMotors method compares the requested movement as defined in the move-
mentMask variable with each of the motors individually B. When a match is found—
for example, when the MOTOR_B_FORWARD bit is set—the particular motor is enabled in
the specified direction and speed D. A negative direction means backwards and the
power value is scaled between 0 and 100. Additionally, the UI is updated C in conjunc-
tion with the motors themselves, thereby giving the user as accurate a picture as possi-
ble of their performance as a driver.

14.3.4 Communication with the robot

The communications protocol for interacting with the LEGO NXT robot is a struc-
tured command with optional response protocol. Each packet of data is wrapped in
an envelope describing its size. Within the envelope, each “direct command” has a
standard header followed by its own specific parameters. For this application you need
but a single command—to set the output state of the motor. The code that builds and
sends these packets is shown in the next listing.

private void MoveMotor(int motor,int speed)
{
 try
 {

Listing 14.8 The MoveMotor method

Send command to motorD

B
Check
motor

bitmask

Send command to motorD

C

Send command to motorD

Send command to motorD

Declare bufferB

 byte[] buffer = new byte[14];

385Summary

 buffer[0] = (byte) (14-2); //length lsb
 buffer[1] = 0; // length msb
 buffer[2] = 0; // direct command (with response)
 buffer[3] = 0x04; // set output state
 buffer[4] = (byte) motor; // output 0,1,2 (motors A,B,C)
 buffer[5] = (byte) speed; // power
 buffer[6] = 1 + 2; // motor on + brake between PWM
 buffer[7] = 0; // regulation
 buffer[8] = 0; // turn rotation
 buffer[9] = 0x20; // run state
 buffer[10] = 0; // four bytes of position data.
 buffer[11] = 0; // leave zero
 buffer[12] = 0;
 buffer[13] = 0;

 os.write(buffer);
 os.flush();
 byte response [] = ReadResponse(4);
 }
 catch (Exception e)
 {
 Log.e(tag,"Error in MoveForward(" + e.getMessage() + ")");
 }
}

This code performs the simple yet precise operation of formatting a command, which
is sent to the LEGO robot to provide direct control over the motors. A buffer of the
appropriate size is declared B. The size for this buffer is dictated by the SetOutput-
State command, which is one of many commands supported by the robot. Each of
the various data elements are carefully provided C in their respective locations. Once
the command buffer is formatted, it’s written and flushed to the socket D. The
response code is consumed as a good measure by the ReadResponse method. As you
can see, aside from the specific formatting related to controlling the robot, sending
and receiving data with Bluetooth is as simple as reading or writing from a byte-ori-
ented stream.

 At this point, the sensors are working and the Android device and LEGO robot are
communicating. In time, with practice you’ll be an expert Android LEGO pilot. The
full source code to this application is available for download.

14.4 Summary
This chapter introduced two hardware-oriented features of the Android platform:
Bluetooth and sensors. From these seemingly unrelated areas of functionality grew a
fun application to operate a LEGO Mindstorms NXT robot. We demonstrated the
essential steps required to connect an Android device to a remote Bluetooth-enabled
peer via the use of the RFCOMM cable replacement protocol. This communications
channel is used to exchange a command set known as the Direct Command protocol
provided by the LEGO NXT controller. Through this command set, you can manipu-
late the robot’s motors to drive the robot. To make the user experience as intuitive as

Format
buffered
command

C

Write commandD
possible, use the orientation sensor built into most Android hardware to sense

386 CHAPTER 14 Bluetooth and sensors

motions made by the user. The position of the device is interpreted and a correspond-
ing set of commands is given to navigate the robot. Not only do the sensors provide a
functional means for driving the robot, it’s quite fun!

 In addition to these core Bluetooth communications and sensor interactions, this
chapter also demonstrated techniques for providing intuitive user feedback during
the operation of the application. For example, as the motors are engaged, the user
visually sees the direction each motor is being driven. Likewise, the user’s driving
motions are only processed when an active Bluetooth connection is detected. Because
this is an event-driven scenario, the application demonstrates listening for these
events through the use of a dynamically registered BroadcastReceiver with appropri-
ate IntentFilters.

 Hopefully you’ve enjoyed learning about Bluetooth and sensors in this chapter,
and perhaps you even have access to a LEGO Mindstorm robot to take for a spin!

 In the next chapter you’ll learn about another means of connecting your Android
device to the outside world—this time working with the integration capabilities of the
platform to sync data with the popular business networking site LinkedIn.

Integration
No phone is an island. A mobile smartphone’s primary purpose is to connect with
others, whether through voice calls, email, text messaging, or some other way of
reaching out. But phones have historically acted like islands when it came to stor-
ing information. You might painstakingly save phone numbers for years on your
device, only to lose everything and start all over again when you switched phones.

 Android leads the charge in breaking away from the old device-centric way of
storing contacts and related data. Like all of Google’s services, Android looks to the
cloud as a vast storage location for all your data. Integration allows your phone to
stay in sync with what you care about, so you don’t need to manually copy doctors’
appointments and important emails from multiple computers to your phone.

 For the most part, Android users can feel happily oblivious to much of this;
everything “just works.” As a developer, you may want to take advantage of Android’s
integration features and add new conveniences for your users. This chapter shows
exactly how Android handles personal data such as contacts, how accounts work,

This chapter covers
 Manipulating and extending Android contacts

 Managing multiple accounts

 Synchronizing data to a remote server
387

388 CHAPTER 15 Integration

what synchronization does, and what hooks you can play with. Along the way, we’ll
build a real-world example: a plug-in that allows people to automatically sync their
Android contacts with connections they’ve made on LinkedIn. LinkedIn is the social
network most closely associated with business users, who use it to maintain their pro-
fessional contacts. Synchronizing with this account will allow users to connect with
their LinkedIn colleagues, making their information available anytime and anywhere.

15.1 Understanding the Android contact model
Contacts have long been the single most important feature on a mobile phone. After
all, a phone exists to call people, and you don’t want to memorize the 10-digit phone
number for every person you might call.

 If you’ve owned mobile phones for a long time, you’ve probably noticed a gradual
increase in the functionality of mobile contact applications. In the early days, people
could only enter a name and a single phone number, similar to a speed-dial on a land-
line phone. Modern phones allow you to enter multiple numbers for each contact, as
well as email addresses, photos, birthdays, and more. Not only does this provide
greater convenience to consumers, who now can turn to a single source for all related
information about a person; it also opens up many new opportunities for application
developers, who can take advantage of the wealth of information on a phone to make
their apps more useful and relevant.

 Android has always offered access to a user’s contacts, but its contact model has
changed through different versions. The model is now extremely robust and flexible,
offering great features for querying and updating contact information.

15.1.1 Choosing open-ended records

Imagine that you just got a new phone and started
entering contacts. You entered three names and phone
numbers. The final result would look something like
figure 15.1. From a user’s perspective, you have all that
you need. But how is this data being stored?

 In older phones, the underlying contact model
might result in something similar to figure 15.2. This
fixed-length record would dedicate a predetermined num-
ber of bytes to each contact. Such an approach had
hard limits: for example, you might only be allowed 10
digits per phone number, 12 characters per name, and
500 records per device. This led to both undesirable
truncation and wasted space.

 In addition to the problem of truncation, you can
see that this style of contact storage doesn’t allow the
user to add new types of data. Figure 15.2 shows that
there’s no space between Chris and Frank to insert a

Figure 15.1 Making entries in

the native Contacts application

390 CHAPTER 15 Integration

Android’s contacts are highly extensible because they’re stored as records in a data-
base. Third-party applications can choose to define and add their own enhanced data
fields. For example, a business application may include employee ID numbers, and a
gaming application may use online handles. Other phone platforms require develop-
ers to maintain parallel data stores to add this kind of data, but Android allows you to
insert directly into the main contacts database. This leads to much better consistency,
and your enhanced information will automatically be updated when the user renames
or deletes a contact.

15.1.2 Dealing with multiple accounts

Most Android phones require users to activate the device and associate it with a
Google account. Upon activation, all of the user’s existing Gmail contacts will be avail-
able on the phone. This is convenient for people who keep all their information on
Gmail, but not terribly useful for people who have multiple accounts or don’t want to
use Gmail at all.

 The early versions of Android were hampered by this problem, but fortunately, the
new Android contact model offers a richer set of features that includes support for
multiple accounts. Users still must generally tie the phone to a Google account, but
they may also connect with a Microsoft Exchange1 account for business contacts and
email, with Facebook for friends’ statuses, and possibly other private accounts as well.

 Using multiple accounts offers great convenience but also greater complications.
Consider the following issues:

 Differing data—Each account will support disparate types of data. For example,
Facebook may offer an Instant Messaging screen name, whereas Exchange may
provide a contact’s supervisor.

1 For information on Microsoft Exchange Server development technologies, go to http://www.outlookcode.

Figure 15.4 Querying the contacts database
com/archive0/d/exstech.htm.

391Understanding the Android contact model

 Different formats—Even if the same type of data is supported by multiple
accounts, it may display differently. For example, one account may return a
phone number as (415) 555-1234, whereas another returns it as 4155551234.

 Consolidation—Having multiple accounts isn’t very convenient if you need to
search through three versions of each contact to find the one with the informa-
tion you need. Instead, you want to have a single contact that includes data
from all your accounts.

 Linkage—On a related note, the phone needs some way to determine when two
different accounts are referring to the same entity. If one refers to “James
Madison” and the other to “Jim Madison,” a human could guess that they refer
to the same contact, but software requires some more information to determine
how they link together.

 Ownership—Some contacts may only appear on one account, whereas others
may be listed in several. When you change a contact, you want to be sure they’re
updated appropriately.

Android resolves these issues gracefully. Each account stores its data in separate rows
in the contacts database. The raw_contacts table contains all the contacts that have
been received from all of the user’s accounts, including potentially duplicate contacts.
Table 15.1 shows a hypothetical view of a device’s contacts.

NOTE As you’ve seen, the actual contacts data fields will reside in the data
table. The raw_contacts table allows you to associate the various rows in the
data table with their corresponding accounts.

Splitting out the accounts’ views like this gives Android a great deal of flexibility.
Whenever a piece of data is updated, it knows where that data originally came from. It
can store data in the format most appropriate to the original account. And, because
each account gets its own set of rows, no account can mess up the data that originally
came from another account. This type of loose coupling extends a familiar Android
philosophy to the world of contacts and provides the same sorts of benefits that you’ve
seen elsewhere: more extensibility, stability, and transparency, at the cost of greater
complication.

Table 15.1 Raw contacts including duplicates from multiple accounts

ID Name Email Phone number Status

1 James Madison jmadison@gmail.com

2 Adam Smith asmith@gmail.com

3 James Madison 2024561414 “Negotiating with the
British...”

4 Adam Smith adam.smith@example.com +442055512345

393Getting started with LinkedIn

CAUTION Android currently doesn’t offer a way to specify what name should
be used after joining two records. You may get lucky, or you may be stuck with
the wrong one.

15.1.4 Sharing the playground

With all the flexibility of Android’s new contact model comes potential for abuse. A
single consolidated database holds all contacts information on the device, and any
application can read from or write to it. Users must give apps permission before mod-
ifying the database, but within the database, there’s no notion of particular columns
or rows being “owned” by a particular app or service.

 When you write apps that use contacts data, try to be a good citizen. This includes
the following principles:

 Only read and write Android’s built-in data fields and fields that you’ve created
for your application.

 Be sure to provide unique types for new contact data that you define, such as
vnd.manning.cursor.item/birthday instead of birthday.

 Always ask users for permission before doing anything destructive to their data.
 Clearly state if and how your app uses their personal contact data.
 If you store contact data taken from the user, be certain it’s well secured. You

don’t want to be responsible for addresses falling into the hands of spammers
or identity thieves.

Not only does upholding these standards garner good karma, but it also keeps your
users happy and more likely to use your app.

15.2 Getting started with LinkedIn
You’ll build a sample app throughout the rest of this chapter that illustrates the con-
cepts and techniques we’ve covered. To learn how contacts, accounts, and synchroniz-
ers all work together, you’ll build a plug-in for LinkedIn.2

 Like most social networking sites, LinkedIn offers a developer API for building cus-
tom applications on top of their platform. To protect against abuse, LinkedIn requires
the use of a developer API key with each request; this allows the company to shut off
an app if it’s found to be misbehaving. You can get started developing with LinkedIn
by following these steps:

1 Go to http://developer.linkedin.com.
2 Follow the links to request an API key for the LinkedIn APIs.
3 Fill in your information and join the Developer Network. You’ll need to create a

LinkedIn profile if you don’t already have one.
4 Add a new application. There’s no charge, and you should automatically

receive your API keys.

2 Check out the LinkedIn blog for developers: http://blog.linkedin.com/category/linkedin-developer-

network/.

394 CHAPTER 15 Integration

Once you receive your API key, take a look at the documentation available at http://
developer.linkedin.com. LinkedIn also maintains a fairly active developer community
in forums hosted at the same site if you need advice or want to see what the experts
are saying.

 Create a new Eclipse project called LinkedIn. The following listing shows a simple
class called LinkedIn that holds useful constants you’ll use later.

package com.manning.unlockingandroid.linkedin;
public class LinkedIn {
 public static final String MIME_TYPE =
 "vnd.android.cursor.item/vnd.linkedin.profile";
 public static final String TYPE =
 "com.manning.unlockingandroid.linkedin";
 public static final String API_KEY = "";
 public static final String SECRET_KEY = "";
 public static final String AUTH_TOKEN = "AuthToken";
 public static final String AUTH_TOKEN_SECRET = "AuthTokenSecret";
}

The MIME_TYPE refers to the new type of data you’ll be adding to contacts. With this
information, Android will be able to distinguish between a contact’s LinkedIn data
and data received from other sources. In the next section, you’ll use this type to insert
new LinkedIn records. The other constants will be useful in later sections as you begin
to connect with the LinkedIn server.

 The LinkedIn docs describe how to use their API. You can follow this to implement
your app, but you’ll be taking advantage of the linkedin-j project. Written by Nabeel
Siddiqui, it comes under a generous Apache 2 license and provides a simple, logical
wrapper around the raw API calls. Visit the project page at http://code.google.com/
p/linkedin-j. Once you’ve downloaded the JAR files, add them as external JARs to your
Java project.

 While you’re doing the initial setup, let’s define all the strings for this application
in strings.xml, based on the following listing. Most will be used by the login UI activity,
but some will be used for other user-visible data.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">LinkedInAdapter</string>
 <string name="login_activity_email_label">Email Address</string>
 <string name="login_activity_instructions">Please click the
 button below to log in to LinkedIn.</string>
 <string name="remoteLogin">Log In Online</string>
 <string name="login_activity_pin_label">PIN</string>
 <string name="login_activity_ok_button">Sign in</string>
 <string name="empty_fields_error">Please enter your email
 address and password.</string>

Listing 15.1 Constants for LinkedIn

Listing 15.2 Externalized strings for LinkedIn

Use your
LinkedIn API keys
 <string name="start_login_error">Unable to connect to LinkedIn.

395Managing contacts

 Please verify your network connection and try again later.</string>
 <string name="login_fail_error">Login failed.
 Please click Log In Online and get a new PIN.</string>
 <string name="working">Finishing authentication.
 Please wait...</string>
 <string name="login_label">LinkedIn Login</string>
 <string name="contact_summary">LinkedIn</string>
 <string name="auth_token_label">LinkedIn</string>
</resources>

15.3 Managing contacts
Now that you understand the purpose behind Android’s contact model, it’s time to
start interacting with it. Many applications can be improved by plugging into a user’s
contacts. The degree of integration that you need, though, will differ depending on
the type of app you’re writing. This section looks at three increasingly complex ways to
hook into the phone’s contacts.

15.3.1 Leveraging the built-in contacts app

Why reinvent the wheel? Android’s engineers have spent the time and effort to build
an attractive and familiar contacts app. In many cases, it’s quicker and better to just
use that app when you need a contact.

 As you’d expect, you communicate with the native contacts app by using an
Intent. The platform will respond to an ACTION_PICK request by bringing the list of
contacts to the foreground, allowing the user to select a single contact, and then
returning that selection to your application. You specify that you want to select a con-
tact by requesting the android.provider.ContactsContract.Contacts.CONTENT_URI
data type.

NOTE The ContactsContract class and all related classes were introduced
during the overhaul of the contacts model in Android 2.0. You may occasion-
ally see legacy code that uses the android.provider.Contacts class for inter-
acting with contacts. This usage is deprecated; though it works, it won’t
properly handle information from non-Google accounts.

After the user selects a contact, the response returns to your activity’s onActivity-
Result method. You can query this result to pull out information such as the contact’s
name and ID, as shown in the following listing from a class called ContactPicker.

public static final int CONTACT_SELECTED = 1;
private void selectContact() {
 Intent chooser = new Intent(Intent.ACTION_PICK,
 ContactsContract.Contacts.CONTENT_URI);
 startActivityForResult(chooser, CONTACT_SELECTED);
}
public void onActivityResult(
 int requestCode, int resultCode, Intent data) {

Listing 15.3 Selecting a contact from the native contacts app

Define unique
ID for result
 super.onActivityResult(requestCode, resultCode, data);

396 CHAPTER 15 Integration

 switch (requestCode) {
 case (CONTACT_SELECTED):
 if (resultCode == Activity.RESULT_OK) {
 Uri contactData = data.getData();
 Cursor c = managedQuery(contactData, null, null, null, null);
 if (c.moveToFirst()) {
 int nameIndex = c.getColumnIndexOrThrow
 (ContactsContract.Contacts.
 DISPLAY_NAME);
 String name = c.getString(nameIndex);
 Toast.makeText(this, name, 2000).show();
 }
 }
 }
}

If you inspect the data returned by this cursor,
you’ll notice that it doesn’t contain everything
that you might expect from a contact. For
example, though it includes fields for the name
and photo, it won’t include any email addresses
or phone numbers. As you saw in section 15.1.1,
the open-ended style of contact record storage
in Android requires contact data to be stored in
a separate table from the actual contacts. Table
15.2 illustrates one hypothetical contacts table.

 When you pick a contact, you’ve found the entry in the first table; you can then use
that contact ID as a foreign key to retrieve the extended data that you want. Table 15.3
shows the corresponding detailed information from the data table.

 To retrieve the email address for a selected contact, you look up the contact’s ID,
and then use that ID in a new query against the data table. For convenience, the most
useful data types have definitions in classes within the ContactsContract.

CommonDataKinds class. For email, you can use CommonDataKinds.Email, which pro-
vides the URI and column names. The following listing expands listing 15.3 by making
a new database query to determine whether the selected contact has an email address.

Detect
selection

Retrieve name
from result

Data ID Data type Contact ID Data value

1 4 1 415-555-1234

2 1 1 cking@example.com

3 4 2 973-555-9876

4 4 3 518-555-5555 Table 15.3 The data table holds
extended information for contacts.

Table 15.2 The contacts table holds
minimal information about each contact.

Contact ID Contact name

1 Chris King

2 Frank Ableson

3 Robi Sen

397Managing contacts

public void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 switch (requestCode) {
 case (CONTACT_SELECTED):
 if (resultCode == Activity.RESULT_OK) {
 Uri contactData = data.getData();
 Cursor c = managedQuery(contactData, null, null, null, null);
 if (c.moveToFirst()) {
 try {
 int contactID = c.getInt(c.getColumnIndexOrThrow
 (ContactsContract.Contacts._ID));
 Uri uri = ContactsContract.
 CommonDataKinds.Email.CONTENT_URI;
 String[] projection = new String[] {
 ContactsContract.CommonDataKinds.
 Email.DATA }; #B
 String selection = ContactsContract.
 CommonDataKinds.Email.CONTACT_ID +
 "=?";
 String[] selectionArgs = new String[]
 { "" + contactID };
 c.close();
 c = managedQuery(uri, projection, selection,
 selectionArgs, null);
 String message;
 if (c.moveToFirst()) {
 message = "Selected email address " + c.getString(0);
 } else {
 message = "No email address found.";
 }
 Toast.makeText(this, message, 2000).show();
 } finally {
 c.close();
 }
 }
 }
 break;
 }
}

If you run this code, you’ll see a Toast with either a selected email address or a grace-
ful error message. Please review chapter 8 if you’d like a reminder of how Toast
objects work. The data table is open-ended, so a user may have multiple email
addresses. Depending on the needs of your application, you could choose to iterate
through all of them or only pick one, as shown in this example.

 You can adopt this technique to retrieve any other data about a contact selected by
the user. Browse the classes within ContactsContract.CommonDataKinds for natively
supported fields, or use custom fields added by your own application.

Listing 15.4 Retrieving email information for a selected contact

Limit results
to this contact

398 CHAPTER 15 Integration

15.3.2 Requesting operations from your app

Now that we’ve retrieved contact data from the native
app, let’s see how to edit that data. You’ll often want to
use the native contact app to perform edits, because
users are comfortable and familiar with this interface.

 To create a new contact, use Intent.ACTION_INSERT.
By itself this will pop open an empty contact for the
user to fill out, which isn’t terribly useful. Most often,
you’ll have some pieces of information about a new
contact and ask the user to supply the rest. For exam-
ple, your app might retrieve screen names and email
addresses from a social networking service. You could
fill out these portions of the contact ahead of time and
let the user finish adding the person’s name in the
native contacts app. Figure 15.7 shows a prepopulated
contacts screen that was generated by an application.

 Listing 15.5 shows how to generate this sort of
screen. The fields that you can optionally prepopulate
are available as static fields in the ContactsContract.
Intents.Insert convenience class.

private void createContact() {
 Intent creator = new Intent(Intent.ACTION_INSERT,
 ContactsContract.Contacts.CONTENT_URI);
 creator.putExtra(ContactsContract.Intents.Insert.
 NAME, "Oedipa Maas");
 creator.putExtra(ContactsContract.Intents.Insert.
 EMAIL, "oedipa@waste.example.com");
 startActivity(creator);

Listing 15.5 Adding a contact using the native contacts app

Storing contact identifiers
An Android contact is a transient thing. Users may join different contacts together,
split them apart, or delete them altogether. As such, you should avoid holding onto
a contact ID for a long time and using it in future queries. If you need to retain a long-
lived reference to a contact, such as a list of the user’s gaming buddies, then instead
of the contact ID you should use the lookup key, which is a column defined by
ContactsContract.Contacts.LOOKUP_KEY. The lookup key will continue to work
even if the user joins or separates the contact.

But using the lookup key is slower than the contact ID, so if speed is critical in your
application, you may want to keep both the contact ID and the lookup key, and only
use the lookup key if retrieving by ID fails.

Insert contact

Define
initial
values

Figure 15.7 Partially complete
contact requested by application
}

399Managing contacts

To edit a contact, request Intent.ACTION_EDIT. But unlike creating or picking a con-
tact, when editing a contact you need a reference to a specific person. You could
retrieve one by launching the picker, but that’s needlessly cumbersome. Instead,
query for a particular contact, and then use its returned ID to launch the edit activity,
as shown in the next listing.

private void editContact() {
 Cursor c = null;
 try {
 Uri uri = ContactsContract.Contacts.CONTENT_URI;
 String[] projection = new String[] { ContactsContract.Contacts._ID };
 String selection = ContactsContract.Contacts.DISPLAY_NAME + "=?";
 String[] selectionArgs = new String[] { "Oedipa Maas" };
 c = managedQuery(uri, projection, selection, selectionArgs, null);
 if (c.moveToFirst()) {
 int id = c.getInt(0);
 Uri contact = ContentUris.appendId(
 ContactsContract.Contacts.CONTENT_URI.
 buildUpon(), id).build();
 Intent editor = new Intent(Intent.ACTION_EDIT, contact);
 startActivity(editor);
 }
 } finally {
 if (c != null)
 c.close();
 }
}

NOTE You can’t insert new values into an existing contact in the same way
that you can for a new contact. Any Intent extra fields will be ignored.
Instead, use the techniques in the next section to edit the contact manually,
and then display the updated contact for the user to further edit and approve.

15.3.3 Directly reading and modifying the contacts database

In many situations you want to take advantage of the built-in contacts app. But other
times you should bypass it entirely and operate on the data itself. For example, your
app might perform batch operations on a large number of contacts; it’d be tedious
for the user to manually approve each individual change. Contact information is ulti-
mately just another type of content stored on the phone, and you can use existing
tools to look up and manipulate content.

 You may have noticed that no special permissions were required to insert or edit
contacts through the native application. This is because your application isn’t directly
modifying the data itself; it’s merely issuing a request. But if you want to directly mod-
ify contact data, you’ll need to secure the android.permission.WRITE_CONTACTS per-
mission in your app’s manifest.

 You can retrieve the relevant URIs through queries such as those shown in listing

Listing 15.6 Looking up a contact by name and then editing it

Build URI
to retrieved
contact
15.6, or by using the convenience definitions included under the ContactsContract

400 CHAPTER 15 Integration

class. Instead of retrieving a Cursor to enumerate results, use the ContentResolver
class to manipulate data. Listing 15.7 demonstrates how to perform a conditional
global replacement across all email addresses in the user’s contacts list. Specifically,
it’ll find all addresses that contain the phrase waste and replace them with a concealed
address.

private void silentEditContact() {
 ContentResolver resolver = getContentResolver();
 Uri contactUri = ContactsContract.Data.CONTENT_URI;
 ContentValues values = new ContentValues();
 values.put(ContactsContract.CommonDataKinds.
 Email.DATA, "concealed@example.com");
 String where = ContactsContract.CommonDataKinds.
 Email.DATA + " like '%waste%'";
 resolver.update(contactUri, values, where, null);
}

In this example, the Uri B operates across all information for all contacts on the
device. This is essential because we’re updating the data associated with a contact; the
ContactsContract.Contacts.CONTENT_URI only refers to basic contact information
without extended data. The ContentValues C describes the new information to place
within the contacts. By itself, this would replace the email for every contact on the
device, which would be very destructive. The selection clause limits the update so it
only applies to addresses containing this string.

CAUTION Few things will anger users quicker than wrecking their contact
data. If your app directly creates, edits, or deletes contact data, you should
clearly explain to users what it does, and test thoroughly to ensure your app
behaves itself.

This is only one example of how to directly modify contact data, but combined with
the earlier discussions in this chapter, you should now be able to change any contact
data. You only need to find where the information is stored in the data table, find or
describe the rows that need to be modified, then use ContentResolver to insert or
update your data.

15.3.4 Adding contacts

Our LinkedIn app begins with people. In addition to standard information such as
contacts’ names, LinkedIn includes expanded details such as their educational back-
ground and work history. You’ll take advantage of Android’s open-ended contact
model to store a unique type of data, the LinkedIn headline. The headline is a brief
and punchy summary of someone’s role, such as “Code Ninja” or “Senior Director at
Stationary Networks.”

 To create a LinkedIn contact, you’ll make a new entry in the raw_contacts table,

Listing 15.7 Updating contact information using a ContentResolver

All contact
data

B

New email
address

C

and also create any new data fields for that contact. The following listing shows a

401Managing contacts

utility class that accepts LinkedIn-style data and either creates a new record or updates
an existing record.

package com.manning.unlockingandroid.linkedin;
// imports omitted for brevity
public class ContactHelper {
 public static boolean addContact(ContentResolver resolver,
 Account account, String name, String username, String headline) {
 ArrayList<ContentProviderOperation> batch =
 new ArrayList<ContentProviderOperation>();

 ContentProviderOperation.Builder builder = ContentProviderOperation
 .newInsert(RawContacts.CONTENT_URI);
 builder.withValue(RawContacts.ACCOUNT_NAME, account.name);
 builder.withValue(RawContacts.ACCOUNT_TYPE, account.type);
 builder.withValue(RawContacts.SYNC1, username);
 batch.add(builder.build());

 builder = ContentProviderOperation
 .newInsert(ContactsContract.Data.CONTENT_URI);
 builder.withValueBackReference(ContactsContract.CommonDataKinds.
 StructuredName.RAW_CONTACT_ID, 0);
 builder.withValue(ContactsContract.Data.MIMETYPE, ContactsContract.
 CommonDataKinds.StructuredName.CONTENT_ITEM_TYPE);
 builder.withValue(ContactsContract.CommonDataKinds.StructuredName.
 DISPLAY_NAME, name);
 batch.add(builder.build());

 builder = ContentProviderOperation.newInsert(
 ContactsContract.Data.CONTENT_URI);
 builder.withValueBackReference(ContactsContract.Data.RAW_CONTACT_ID,
 0);
 builder.withValue(ContactsContract.Data.MIMETYPE,
 LinkedIn.MIME_TYPE);
 builder.withValue(ContactsContract.Data.DATA1,
 headline);
 builder.withValue(ContactsContract.Data.DATA2, "LinkedIn");

 batch.add(builder.build());
 try {
 resolver.applyBatch(ContactsContract.AUTHORITY, batch);
 return true;
 } catch (Exception e) {
 return false;
 }
 }

 public static boolean updateContact(ContentResolver resolver,
 Account account, String username, String headline) {
 ArrayList<ContentProviderOperation> batch =
 new ArrayList<ContentProviderOperation>();
 ContentProviderOperation.Builder builder = ContentProviderOperation
 .newInsert(ContactsContract.Data.CONTENT_URI);
 builder.withValue(ContactsContract.Data.RAW_CONTACT_ID, 0);

Listing 15.8 Helper class for storing LinkedIn connections

Batch
operations

B

Unique ID for
future sync

Unique data
for contact

C

Batch
operations

B

402 CHAPTER 15 Integration

 builder.withValue(ContactsContract.Data.MIMETYPE,
 LinkedIn.MIME_TYPE);
 builder.withValue(ContactsContract.Data.DATA1,
 headline);
 builder.withValue(ContactsContract.Data.DATA2, "LinkedIn");
 batch.add(builder.build());
 try {
 resolver.applyBatch(ContactsContract.AUTHORITY, batch);
 return true;
 } catch (Exception e) {
 return false;
 }
 }
}

Because you’re performing multiple insertions at a time, we use a batch operation B
to wrap all the tasks involved. This operation performs more quickly and has the
added benefit of protecting against partially updated records if an error occurs mid-
way through processing.

 The DATA1 field C refers to custom data. Android defines many similar columns,
such as DATA1, DATA2, DATA3, and so on. Each new type of contact data can decide for
itself how it wants to define and interpret its data. In our example, you’re placing the
headline in the first available data slot. For more complex fields such as structured
names, you can use the various data fields to store multiple components such as first
and last names.

 Now that you can create contacts, you need to tell the native Contacts app how to
display LinkedIn data. This is done through a custom XML file, shown in the following
listing.

<?xml version="1.0" encoding="utf-8"?>
<ContactsSource xmlns:android="http://schemas.android.com/apk/res/android">
 <ContactsDataKind
 android:mimeType=
 "vnd.android.cursor.item/vnd.linkedin.profile"
 android:icon="@drawable/icon"
 android:summaryColumn="data2"
 android:detailColumn="data1"
 />
</ContactsSource>

Google hasn’t documented this file well, but fortunately there isn’t too much to know.
The code in B helps the Contacts app find the rows in the data table that correspond
to LinkedIn. The icon to display in Contacts and the summary column help users
identify this type of data. Finally, the detail column describes the information unique
to this contact. In our case, this is the headline.

Listing 15.9 contacts.xml

Unique data
for contact

C

Custom
content type

B

405Keeping it together

IBINDER

The binder will service requests for this type of account, such as adding a new
account, authenticating the user, or storing credentials. You can create an appropriate
binder by extending AbstractAccountAuthenticator.

ACTIVITY

Users will need to enter their information to authenticate with their accounts. Differ-
ent accounts may have differing requirements; for example, some may require the use
of a key phrase, selecting a picture, or entering a soft crypto token. Because Android
can’t provide a generic UI to cover all possible types of authentication, each account
must implement an activity that extends AccountAuthenticatorActivity to present
the user with a login screen and handle the results. You’ll see examples of all three
components in section 15.5.

15.4.3 Telling secrets: The AccountManager service

Earlier versions of Android only had native support for a single Google account. Devel-
opers did write apps for other account types, such as Exchange, but these solutions
were isolated and inconsistent. Each developer needed to rewrite from scratch the sys-
tem for logging in to an account and managing the user’s data. Even worse, there were
no enforceable standards for managing users’ secret data, such as passwords.

 Android 2.0 fixed this problem by adding a new service called AccountManager.
AccountManager provides a consistent and uniform means for interacting with all the
accounts registered on a device, including adding and removing accounts or modify-
ing their security. AccountManager also provides a single and secure storage facility for
private user credentials; by using this service, your app is released from the burden of
protecting the user’s secrets.

 Each account can define whatever types of information are necessary to authenti-
cate the user. Typically, this will include the following:

 Login name—The unique identifier for the user, such as name@example.com.
 Password—A secret string, known to the user, which verifies that he is the owner

of this account.
 Authentication token—A transient string, known to the account but generally not

to the user, which demonstrates that the user has successfully logged in to the
account. Often referred to as an auth token, this string frees the user from the
need to manually type the password every time she wishes to connect with the
account, and saves the server from performing additional, time-consuming
authentications. An auth token is usually valid for a limited amount of time,
and must occasionally be refreshed by performing a full login.

All of this data is stored and managed by AccountManager, as shown in figure 15.11. In
this example, the user already has two active accounts on his device, which are cur-
rently authenticated. A third account can be added by providing the relevant account
details, in this case a name and password. Once verified by AccountManager, this

account will be accessible like the others.

407Creating a LinkedIn account

15.5.2 Authenticating to LinkedIn

Fortunately, Android’s AccountManager system pro-
vides a perfect solution to circumvent this problem.
You can use the custom login Activity to guide the
user through the process of authenticating with
LinkedIn, and then securely store the tokens for all
future requests. LinkedIn is unusual in that it actually
returns two auth tokens, both a public one and a secret
version. Android’s AccountManager is robust and
extensible enough to accept arbitrary data beyond the
traditional username/password/authtoken combo, and
so the complexity of authenticating with LinkedIn can
be hidden.

 The UI will contain a few important sections. An
email address will uniquely identify the account. The
activity will contain a link to the LinkedIn login page
where the user can remotely authenticate. After she gets
her secure token, it can be entered back into the login
page to finish the authentication process.

 You start by defining the UI, which will look like figure 15.12. The layout XML for
this listing is available online on the website for this book.

 Next, you write the main Activity for our application, shown in the following list-
ing. In addition to configuring the UI, it manages the two-stage process of authenticat-
ing against LinkedIn. This activity is responsible for many details; only the most
important are printed here, but you can view the entire class in the download from
this book’s website.

package com.manning.unlockingandroid.linkedin.auth;
// imports omitted for brevity
public class LinkedInLoginActivity extends AccountAuthenticatorActivity {

 // Constants and most instance variables omitted for brevity
 private Boolean confirmCredentials = false;
 protected boolean createAccount = false;

 LinkedInOAuthService oauthService;
 private String authToken;
 private String authTokenSecret;

 @Override
 public void onCreate(Bundle icicle) {
 oauthService = LinkedInOAuthServiceFactory.getInstance()
 .createLinkedInOAuthService(LinkedIn.API_KEY,
 LinkedIn.SECRET_KEY);
 // UI code omitted for brevity

Listing 15.10 Login activity initialization and authentication

Purpose
for launch

B

Temporarily store
challenge tokens

C

Figure 15.12 Login screen for
LinkedIn account
 confirmCredentials = intent.getBooleanExtra(PARAM_CREDENTIALS,

408 CHAPTER 15 Integration

 false);
 }

 private Thread authenticate(final String userToken,
 final String userTokenSecret, final String pin) {
 Thread authenticator = new Thread() {
 public void run() {
 boolean success;
 try {
 LinkedInRequestToken requestToken = new
 LinkedInRequestToken(userToken, userTokenSecret);
 LinkedInAccessToken access = oauthService
 .getOAuthAccessToken(requestToken, pin);
 authToken = access.getToken();
 authTokenSecret = access.getTokenSecret();
 success = true;
 } catch (Exception e) {
 success = false;
 }
 final boolean result = success;
 handler.post(new Runnable() {
 public void run() {
 onAuthenticationResult(result);
 }
 });
 }
 };
 authenticator.start();
 return authenticator;
 }
 // Other methods shown in following listings.
}

Android always shows this screen when adding a new account; additionally, it’ll display
if the account later fails to sync due to an expired auth token or other security error.
As such, instance variables B keep track of the reason for displaying the activity. Here
you use OAuth variables C to store the initially provided challenge tokens so you can
send them to LinkedIn during the final stages of login. The linkedin-j APIs allow
you to write terser and clearer code than would be possible with the raw LinkedIn
APIs, which are more web services oriented.

 Logging into LinkedIn requires a two-stage process: first, you acquire a PIN num-
ber when the user visits the LinkedIn website, and then you use that PIN to complete
the authentication. The following listing shows the methods in our Activity that con-
trol the handling of this authentication data.

 @Override
 protected Dialog onCreateDialog(int id) {
 final ProgressDialog dialog = new ProgressDialog(this);
 // UI code omitted for brevity.

Listing 15.11 Login activity’s multiple stages of logging in

Temporarily store
challenge tokens

C

 dialog.setOnCancelListener(new DialogInterface.OnCancelListener() {

409Creating a LinkedIn account

 public void onCancel(DialogInterface dialog) {
 if (authentication != null) {
 authentication.interrupt();
 finish();
 }
 }
 });
 return dialog;
 }

 public void startLogin(View view) {
 try {
 LinkedInRequestToken requestToken = oauthService
 .getOAuthRequestToken();
 userToken = requestToken.getToken();
 userTokenSecret = requestToken.getTokenSecret();
 String authURL = requestToken.getAuthorizationUrl();
 Intent authIntent = new Intent(Intent.ACTION_VIEW, Uri
 .parse(authURL));
 startActivity(authIntent);
 } catch (Exception ioe) {
 status.setText(R.string.start_login_error);
 }
 }

 public void finishLogin(View view) {
 if (createAccount) {
 accountName = accountNameField.getText().toString();
 }
 enteredPIN = pinField.getText().toString();
 if (TextUtils.isEmpty(accountName) ||
 TextUtils.isEmpty(enteredPIN)) {
 status.setText(R.string.empty_fields_error);
 } else {
 showProgress();
 authentication = authenticate(userToken,
 userTokenSecret, enteredPIN);
 }
 }

After authentication has finished, you’ll inspect and handle the outcome of the
attempt, as shown in this listing. If it succeeds, the token will be stored for future
reuse.

 public void onAuthenticationResult(boolean result) {
 hideProgress();
 if (result) {
 if (!confirmCredentials) {
 finishLogin();
 } else {
 finishConfirmCredentials(true);
 }

Listing 15.12 Login activity responding to completed login attempt

Cancel pending
auth attempt

Initiate first
login phase

Initiate second
login phase

Kick off auth
completion
 } else {

410 CHAPTER 15 Integration

 if (createAccount) {
 status.setText(getText(R.string.login_fail_error));
 }
 }
 }

 protected void finishLogin() {
 final Account account = new Account(accountName, LinkedIn.TYPE);
 if (createAccount) {
 Bundle data = new Bundle();
 data.putString(LinkedIn.AUTH_TOKEN,
 authToken);
 data.putString(LinkedIn.AUTH_TOKEN_SECRET,
 authTokenSecret);
 accountManager.addAccountExplicitly(account,
 enteredPIN, data);
 ContentResolver.setSyncAutomatically(account,
 ContactsContract.AUTHORITY, true);
 } else {
 accountManager.setPassword(account, enteredPIN);
 accountManager.setUserData(account,
 LinkedIn.AUTH_TOKEN, authToken);
 accountManager.setUserData(account, LinkedIn.
 AUTH_TOKEN_SECRET, authTokenSecret);
 }
 final Intent intent = new Intent();
 intent.putExtra(AccountManager.KEY_ACCOUNT_NAME, accountName);
 intent.putExtra(AccountManager.KEY_ACCOUNT_TYPE, LinkedIn.TYPE);
 setAccountAuthenticatorResult(intent.getExtras());
 setResult(RESULT_OK, intent);
 finish();
 }

 protected void finishConfirmCredentials(boolean result) {
 final Account account = new Account(accountName, LinkedIn.TYPE);
 accountManager.setPassword(account, enteredPIN);
 final Intent intent = new Intent();
 intent.putExtra(AccountManager.KEY_BOOLEAN_RESULT, result);
 setAccountAuthenticatorResult(intent.getExtras());
 setResult(RESULT_OK, intent);
 finish();
 }

The most important parts of the Activity revolve around the AccountManager, where
you store the final auth tokens B. Note that, although you store the PIN as the pass-
word field, for LinkedIn you never touch the user’s actual password; the auth tokens
are the important pieces.

 Next comes an AccountAuthenticator, shown in listing 15.13, which handles the
final stages of authenticating against LinkedIn and actually creates the Android
account. Most of the actions of an authenticator are boilerplate, so only the most rele-
vant portions are shown here. You can view the entire class online. First come two
main entry points that’ll be invoked by the system when adding a new account or con-

Server said
auth was OK

Permanently
store final
auth tokens

B

Permanently
store final
auth tokens

B

firming that an existing account still has valid credentials.

411Creating a LinkedIn account

package com.manning.unlockingandroid.linkedin.auth;
// imports omitted for brevity
class LinkedInAccountAuthenticator extends AbstractAccountAuthenticator {
 private final Context context;

 private LinkedInApiClientFactory factory;

 public Bundle addAccount(
 AccountAuthenticatorResponse response,
 String accountType, String authTokenType,
 String[] requiredFeatures, Bundle options) {
 Intent intent = new Intent(
 context, LinkedInLoginActivity.class);
 intent.putExtra(LinkedInLoginActivity.PARAM_AUTHTOKEN_TYPE,
 authTokenType);
 intent.putExtra(AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE,
 response);
 Bundle bundle = new Bundle();
 bundle.putParcelable(AccountManager.KEY_INTENT, intent);
 return bundle;
 }

 public Bundle confirmCredentials(AccountAuthenticatorResponse response,
 Account account, Bundle options) {
 if (options != null
 && options.containsKey(AccountManager.KEY_PASSWORD)) {
 String authToken = options.getString(LinkedIn.AUTH_TOKEN);
 String authSecret = options
 .getString(LinkedIn.AUTH_TOKEN_SECRET);
 boolean verified = validateAuthToken(authToken, authSecret);
 Bundle result = new Bundle();
 result.putBoolean(AccountManager.KEY_BOOLEAN_RESULT, verified);
 return result;
 }
 Intent intent = new Intent(
 context, LinkedInLoginActivity.class);
 intent.putExtra(LinkedInLoginActivity.PARAM_USERNAME, account.name);
 intent.putExtra(LinkedInLoginActivity.PARAM_CREDENTIALS, true);
 intent.putExtra(AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE,
 response);
 Bundle bundle = new Bundle();
 bundle.putParcelable(
 AccountManager.KEY_INTENT, intent);
 return bundle;
 }
 public Bundle updateCredentials(AccountAuthenticatorResponse response,
 Account account, String authTokenType, Bundle loginOptions) {
 Intent intent = new Intent(context, LinkedInLoginActivity.class);
 intent.putExtra(LinkedInLoginActivity.PARAM_USERNAME, account.name);
 intent.putExtra(LinkedInLoginActivity.PARAM_AUTHTOKEN_TYPE,
 authTokenType);
 intent.putExtra(LinkedInLoginActivity.PARAM_CREDENTIALS, false);
 Bundle bundle = new Bundle();

Listing 15.13 Authenticating against the LinkedIn account

Explicitly specify
login activity

Explicitly specify
login activity

Verify credentials
through UI

B

 bundle.putParcelable(AccountManager.KEY_INTENT, intent);

412 CHAPTER 15 Integration

 return bundle;
 }
}

Once again, the linkedin-j classes help clarify the code and take care of some rote
bookkeeping tasks. The authenticator will be called in various situations, including
creating a new account and verifying the auth token for an existing account, and so it
implements the AbstractAccountAuthenticator methods to support the different
entry points. Note, for example, that addAccount B is responsible for launching into
the UI activity for creating a new account. Additionally, the authenticator will provide
previously created tokens, as shown in the following listing.

 public Bundle getAuthToken(AccountAuthenticatorResponse response,
 Account account, String authTokenType, Bundle loginOptions) {
 // Sanity checking omitted for brevity.
 AccountManager am = AccountManager.get(context);
 String authToken = am.getUserData(account, LinkedIn.AUTH_TOKEN);
 String authTokenSecret = am.getUserData(account,
 LinkedIn.AUTH_TOKEN_SECRET);
 if (authToken != null && authTokenSecret != null) {
 boolean verified = validateAuthToken(authToken,
 authTokenSecret);
 if (verified) {
 // Return bundle omitted for brevity.
 }
 }
 Intent intent = new Intent(
 context, LinkedInLoginActivity.class);
 intent.putExtra(AccountManager.
 KEY_ACCOUNT_AUTHENTICATOR_RESPONSE,
 response);
 intent.putExtra(LinkedInLoginActivity.PARAM_USERNAME, account.name);
 intent.putExtra(LinkedInLoginActivity.PARAM_AUTHTOKEN_TYPE,
 authTokenType);
 Bundle bundle = new Bundle();
 bundle.putParcelable(AccountManager.KEY_INTENT, intent);
 return bundle;
 }

 private boolean validateAuthToken(String authToken,
 String authTokenSecret) {
 try {
 LinkedInApiClient client = factory.createLinkedInApiClient(
 authToken, authTokenSecret);
 client.getConnectionsForCurrentUser(0, 1);
 return true;
 } catch (Exception e) {
 return false;
 }
 }

Listing 15.14 Adding support for handling auth token

Ask user to
re-login

Issue test
network requestB

413Creating a LinkedIn account

Once the final tokens come back from the server, a dummy API request B ensures
that the connection is good. If any problems occur, notify the caller and it can take an
appropriate action, such as showing a notification to the user.

 Because authentication will run in the background, it must be a Service. The next
listing shows the lightweight authentication service wrapper, which defers everything
to our authenticator.

package com.manning.unlockingandroid.linkedin.auth;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class LinkedInAuthService extends Service {
 private LinkedInAccountAuthenticator authenticator;

 @Override
 public void onCreate() {
 authenticator = new LinkedInAccountAuthenticator(this);
 }

 @Override
 public void onDestroy() {
 }

 @Override
 public IBinder onBind(Intent intent) {
 return authenticator.getIBinder();
 }
}

Finally, the little piece of XML in the next listing will tell Android how to display this
type of account in the Manage Accounts screen.

<?xml version="1.0" encoding="utf-8"?>
<account-authenticator xmlns:android="http://schemas.android.com/apk/res/

android"
 android:accountType=
 "com.manning.unlockingandroid.linkedin"
 android:icon="@drawable/icon"
 android:smallIcon="@drawable/icon"
 android:label="@string/app_name"
/>

CAUTION Android went to great lengths to separate account authentication
and account synchronization; there’s no explicit linkage between the two
pieces. But early versions of the OS will react badly if you attempt to create an
account that doesn’t have a synchronizer. For example, the Android 2.1 emu-
lator will crash and reboot if you successfully add an account that doesn’t
have a matching synchronizer. Future versions of the OS should fix this bug.
In the meantime, you may want to wait a bit longer before testing your

Listing 15.15 Defining the authentication service

Listing 15.16 authenticator.xml

Type advertised for
synchronization
authentication code.

414 CHAPTER 15 Integration

15.6 Synchronizing to the backend with SyncAdapter
Authenticating an account connects you to the remote server, but by itself does noth-
ing. The real power comes from an account’s ability to synchronize data onto and off
of the phone. Android 2.0 added the ability to synchronize custom data from arbitrary
accounts.

15.6.1 The synchronizing lifecycle

Synchronizing will generally happen in the background, similarly to authentication.
The authenticator and the synchronizer are loosely coupled; the synchronizer will
retrieve necessary information from the AccountManager instead of directly from the
authenticator. Again, this is done to keep the user’s private information secure.

 To perform synchronization, your service should return an IBinder obtained from
a class you define that extends AbstractThreadedSyncAdapter. This defines a single
method, onPerformSync, which allows you to perform all synching activities.

TIP Synchronizing operations can differ drastically, depending on what type
of data you’re synching. Though most accounts are oriented around personal
information, an account could also be used to deliver daily recipes to an
application, or to upload usage reports. The authenticator/synchronizer
combo is best for situations where a password is required and you want to
transfer data silently in the background. In other cases, a standard service
would work better.

15.6.2 Synchronizing LinkedIn data

Now that you’ve written an account and utilities for our LinkedIn connections, all that
remains is to tie the two together. You can accomplish this with a few final classes for
synchronization. The most important is SyncAdapter, shown in this listing.

package com.manning.unlockingandroid.linkedin.sync;
// Imports omitted for brevity
public class SyncAdapter extends AbstractThreadedSyncAdapter {
 private final AccountManager manager;
 private final LinkedInApiClientFactory factory;
 private final ContentResolver resolver;

 String[] idSelection = new String[] {
 ContactsContract.RawContacts.SYNC1 };
 String[] idValue = new String[1];

 public SyncAdapter(Context context, boolean autoInitialize) {
 super(context, autoInitialize);
 resolver = context.getContentResolver();
 manager = AccountManager.get(context);
 factory = LinkedInApiClientFactory.newInstance(LinkedIn.API_KEY,
 LinkedIn.SECRET_KEY);

Listing 15.17 Synchronizing LinkedIn connections to contacts

SQL selection
to find contacts
 }

415Synchronizing to the backend with SyncAdapter

 @Override
 public void onPerformSync(Account account, Bundle extras,
 String authority, ContentProviderClient provider,
 SyncResult syncResult) {
 String authToken = null;
 try {
 authToken = manager.blockingGetAuthToken(
 account, LinkedIn.TYPE, true);
 if (authToken == null) {
 syncResult.stats.numAuthExceptions++;
 return;
 }
 authToken = manager.getUserData(account,
 LinkedIn.AUTH_TOKEN);
 String authTokenSecret = manager.getUserData(
 account, LinkedIn.AUTH_TOKEN_SECRET);
 LinkedInApiClient client = factory.createLinkedInApiClient(
 authToken, authTokenSecret);
 Connections people = client.getConnectionsForCurrentUser();
 for (Person person:people.getPersonList()) {
 String id = person.getId();
 String firstName = person.getFirstName();
 String lastName = person.getLastName();
 String headline = person.getHeadline();
 idValue[0] = id;
 Cursor matches = resolver.query(
ContactsContract.RawContacts.CONTENT_URI, idSelection,
ContactsContract.RawContacts.SYNC1 + "=?", idValue,
null);
 if (matches.moveToFirst()) {
 ContactHelper.updateContact(
 resolver, account, id, headline);
 } else {
 ContactHelper.addContact(resolver,
 account, firstName + " "
 + lastName, id, headline);
 }
 }
 } catch (AuthenticatorException e) {
 manager.invalidateAuthToken(LinkedIn.TYPE, authToken);
 syncResult.stats.numAuthExceptions++;
 } catch (IOException ioe) {
 syncResult.stats.numIoExceptions++;
 } catch (OperationCanceledException ioe) {
 syncResult.stats.numIoExceptions++;
 } catch (LinkedInApiClientException liace) {
 manager.invalidateAuthToken(LinkedIn.TYPE, authToken);
 syncResult.stats.numAuthExceptions++;
 }
 }
}

When performing a sync, you first verify a working auth token B, then retrieve the
two auth tokens C that are needed to interact with LinkedIn. The linkedin-j APIs

Ensure established
connection

B

Retrieve
credentials

C

Examine all
connections

D

Already
exists?

E

Update
headline

F

Insert data
and create
contact

G

simplify retrieving and manipulating data model objects for the user’s connections.

416 CHAPTER 15 Integration

You iterate through these models D, check to see whether they’re already in your spe-
cial LinkedIn contacts list E, and then add F or update G the contacts as appropri-
ate, using the ContactHelper class from listing 15.8. Android will read the
syncResult variable to determine if and why the sync failed; this can cause the OS to
prompt the user to reauthenticate if necessary.

 As with authentication, a lightweight wrapper service, shown in the next listing,
manages the sync adapter.

package com.manning.unlockingandroid.linkedin.sync;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class SyncService extends Service {
 private static final Object syncAdapterLock
 = new Object();
 private static SyncAdapter syncAdapter = null;

 @Override
 public void onCreate() {
 synchronized (syncAdapterLock) {
 if (syncAdapter == null) {
 syncAdapter = new SyncAdapter(getApplicationContext(), true);
 }
 }
 }

 @Override
 public IBinder onBind(Intent intent) {
 return syncAdapter.getSyncAdapterBinder();
 }
}

And, last but not least, a final piece of XML is shown in the following listing to describe
the synchronization service’s capabilities.

<?xml version="1.0" encoding="utf-8"?>
<sync-adapter xmlns:android="http://schemas.android.com/apk/res/android"
 android:contentAuthority="com.android.contacts"
 android:accountType=
 "com.manning.unlockingandroid.linkedin"
 android:supportsUploading="false"
/>

The content authority tells Android what type of data can be updated by this service;
contacts are by far the most common. The account type B links the synchronizer to its
corresponding authenticator. Finally, the XML describes whether the synchronizer sup-
ports one-way downloading only, or whether it also supports uploading changes to data.

Listing 15.18 Defining the synchronization service

Listing 15.19 syncadapter.xml

Singleton

Uses the
linkedin accountB

417Wrapping up: LinkedIn in action

15.7 Wrapping up: LinkedIn in action
A few final pieces of code will conclude the sample project. A well-designed account
seems invisible; once configured, it’ll silently and seamlessly work in the background,
pulling in relevant data whenever available. We’ll also discuss a few advanced topics
that push the limits of integration.

15.7.1 Finalizing the LinkedIn project

You’ve already written all the code, so all that remains is updating your Android mani-
fest to describe the application’s capabilities. The following listing shows the final
pieces.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.manning.unlockingandroid.linkedin" android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <service android:name=".auth.LinkedInAuthService"
 android:exported="true">
 <intent-filter>
 <action android:name=
 "android.accounts.AccountAuthenticator" />
 </intent-filter>
 <meta-data android:name="android.accounts.AccountAuthenticator"
 android:resource="@xml/authenticator" />
 </service>
 <service android:name=".sync.SyncService" android:exported="true">
 <intent-filter>
 <action android:name=
 "android.content.SyncAdapter" />
 </intent-filter>
 <meta-data android:name="android.content.SyncAdapter"
 android:resource="@xml/syncadapter" />
 <meta-data android:name="android.provider.CONTACTS_STRUCTURE"
 android:resource="@xml/contacts" />
 </service>
 <activity android:name=
 ".auth.LinkedInLoginActivity" android:label=
 "@string/login_label" android:theme=
 "@android:style/Theme.Dialog"
 android:excludeFromRecents="true">
 </activity>
 </application>
 <uses-permission android:name="android.permission.GET_ACCOUNTS" />
 <uses-permission android:name="android.permission.USE_CREDENTIALS" />
 <uses-permission android:name="android.permission.MANAGE_ACCOUNTS" />
 <uses-permission
 android:name="android.permission.AUTHENTICATE_ACCOUNTS" />
 <uses-permission android:name="android.permission.INTERNET" />

Listing 15.20 AndroidManifest.xml for LinkedIn

Handles
adding
accounts

B

Handles
synching data

C

Private activity
for logging in

D

 <uses-permission android:name="android.permission.WRITE_SETTINGS" />

418 CHAPTER 15 Integration

 <uses-permission android:name="android.permission.READ_CONTACTS" />
 <uses-permission android:name="android.permission.WRITE_CONTACTS" />
 <uses-permission android:name="android.permission.READ_SYNC_STATS" />
 <uses-permission android:name="android.permission.READ_SYNC_SETTINGS" />
 <uses-permission android:name="android.permission.WRITE_SYNC_SETTINGS" />
 <uses-sdk android:minSdkVersion="5" />
</manifest>

You’ll notice a few new intent-filter definitions for
accounts B and synchronizing C. These prompt
Android to display your application as an available
account type. You’ll also notice that the manifest pulls
in all of the XML that you previously wrote. Again, these
instruct Android how to display custom content within
other applications. Finally, note that the Activity defini-
tion D doesn’t include an intent-filter. Users
shouldn’t launch this activity themselves; as configured,
it can only be started by our own classes that know its
full class name.

 With the manifest in place, you can now run and syn-
chronize against LinkedIn. After you fill in the account
details, your existing contacts will begin receiving their
headlines, as shown in figure 15.13.

 Most people have many more social network connec-
tions than they do phone numbers, so you’d expect the
size of your contacts list to balloon after synchronizing
with LinkedIn. By default, though, Android will only dis-
play your primary contacts; in other words, if someone is
in both your phonebook and in LinkedIn, they’ll be dis-
played, but if they only appear in LinkedIn they won’t.
You can change this behavior by modifying your contacts
display options, as shown in figure 15.14. After making
this selection, you’ll see all your LinkedIn contacts.

15.7.2 Troubleshooting tips

Several issues may come up as you develop the LinkedIn
app or other integration services. Common items
include:

 If you have trouble authenticating, verify that the
time on your emulator is correct. Many modern
authentication schemes rely on synchronized
time settings on the client and server, so if your
clock is off by more than a few minutes, the login

Figure 15.13 A contact with
standard and LinkedIn data

Figure 15.14 Choosing whether

may fail. to display all LinkedIn contacts

419Summary

 Because there’s no main activity for this application, selecting Debug from
within Eclipse won’t automatically start debugging the application; it’ll only
push it to the emulator. To debug, switch to the DDMS tab in Eclipse, select
the com.manning.unlockingandroid.linkedin process, and click the Debug
button.

 If your process isn’t already running, or you want to try some other debug-
ging tactics, check out the AccountsTester and SyncTester activities included
in the Dev Tools application. These can provide useful entry points into your
application.

To solve problems with LinkedIn transactions, visit the developer forums or search for
information online. Most likely you’re not the only one who’s encountered your prob-
lem, and someone else has found a solution. Similar resources exist for other popular
types of accounts.

15.7.3 Moving on

Simple can be beautiful. For most users, getting a little of the most relevant LinkedIn
information gives them want they want without cluttering up their contact screen. If
you’re looking for more, though, consider the following ideas:

 Pull in more advanced LinkedIn fields, such as educational background and
previous job positions.

 Tie in contacts data with the Field Service application. For example, you could
create a contact when you receive a new job from a customer, and remove that
contact once the job is marked complete.

 In addition to the previous, create a new raw_contacts type for a field service
contact; this will allow users to toggle such contacts on and off as they wish.

 Create a new account type and synchronizer for connecting with your own
favorite online service.

15.8 Summary
Congratulations! You’ve written a fully functional, and fully useful, application that
seamlessly brings your LinkedIn connections to Android. Even better, you’ve experi-
enced every piece of the integration puzzle. Android makes no assumptions about
what contacts will look like, and offers a pluggable, extensible contacts model that lets
developers add their own custom data into the native contacts experience. Users can
synchronize their contacts remotely, and Android now supports an arbitrary number
of different types of accounts, each of which can follow its own custom authentication
scheme and still take advantage of secure storage for its credentials. Synchronization
will run in the background, silently delivering useful information to the user.

 Integration shows Android’s design principles at their finest. Most modern
Android phones have built-in support for accounts such as Microsoft Exchange, but as
useful as these are, it’d be limiting to restrict users to approved account types. Instead,

420 CHAPTER 15 Integration

Android’s open architecture has created an ecosystem where any type of account,
even from a small startup, can enjoy equal standing on the phone. The best compli-
ment you can pay to this kind of software is to say that it’s unnoticeable; great integra-
tion apps fade into the background, becoming an essential part of the user’s daily
experience.

 Now that you’ve integrated with the device’s internal store of contacts, it’s time to
turn your focus outward, toward the web browser. Android has an extremely robust
browser that supports unusually rich user experiences. The next chapter will help you
evaluate your strategies for developing content that’ll look great in the Android
browser.

Android web development
Mobile software development has usually required working with a proprietary tool-
set to build applications. The term SDK is a familiar one—the majority of this book
covers Android software development using the Android SDK. But the Android SDK
isn’t the only way to build and deliver applications for the Android platform. With
the emergence of accessible and powerful mobile browser capabilities, it’s now pos-
sible to develop applications for the Android platform with web technologies such
as HTML, CSS, and JavaScript.1

 Opening up the world of mobile development to web technologies introduces a
wide array of possibilities for developers and Android users alike. Mobile devices

This chapter covers
 Understanding Android web development

 Introducing WebKit

 Optimizing web applications for Android

 Storing data in the browser

 Building a custom JavaScript handler

1 See Hello! HTML5 and CSS3 at http://manning.com/crowther. The book is to be published in spring
421

2011.

422 CHAPTER 16 Android web development

rich in user experience (including Android) are in essence shrinking our world as
internet connectivity is becoming the norm rather than the exception. Being con-
nected to the internet allows Android users to share and access information from vir-
tually anywhere, at any time. In some ways, the web itself is being redefined as an
increasing percentage of content consumption and creation is taking place on mobile
devices, with Android powering that growth as it reaches new heights of adoption and
market share.

 This chapter aims to equip you with an understanding of various approaches to
deploying web technologies so that you can deliver an enhanced Android user experi-
ence. We start by surveying the major options for Android web technology develop-
ment, all of which rely on the WebKit open source browser engine. After a brief
introduction to WebKit, we look at creating universal web applications—apps that run
well on the desktop as well as the Android browser. From there we move on to demon-
strating the use of the SQL capabilities available in the browser, commonly referred to
as HTML 5 databases. Note that although the browser SQL functionality was originally
part of HTML 5, it has since been extracted from the core HTML 5 specification.

 The chapter concludes with an example of building a “hybrid” application—one
that uses Android SDK Java code along with browser-based HTML and JavaScript code.

16.1 What’s Android web development?
Aside from a brief sojourn down the native C path in chapter 13, all of the coding to this
point has employed the Java-based Android SDK. This chapter breaks from that mold
and demonstrates various web programming capabilities of the Android platform.

 In short, web development is all about building applications with the traditional
tools that web developers use: HTML for content, CSS for presentation, and JavaScript
for programmatic control. In order for this capable and complementary trio to work
their magic, the Android platform relies on the WebKit browser engine.

16.1.1 Introducing WebKit

The WebKit browser engine stems from an open source project that can be traced
back to the K Desktop Environment (KDE). WebKit made its significant mobile debut
when the iPhone was released, and since then WebKit has been adopted by Android
and other mobile platforms.

 Prior to the adoption of WebKit, early mobile web solutions ranged from laugh-
able, to mediocre, to tolerable, though always limited. These early mobile web offer-
ings were often so constrained that they required content providers to generate a
mobile-specific stream in addition to the normal desktop version of their material. In
some cases, a server-side component would perform on-the-fly distillation of the
HTML into a format more readily digested by the mobile browser. Regardless of the
implementation, any requirement for content providers to generate multiple copies
of their material severely constrained the volume of content the early mobile devices
could readily consume. The early mobile web was virtually nonexistent because brows-

ers were not capable of rendering full pages and sites made for mobile were rare.

423What’s Android web development?

 Fortunately, WebKit has changed the game thanks to its impressive rendering capa-
bilities and its envelope-pushing feature set. You can expect the WebKit engine to ren-
der any web page on a par with your desktop browser. This means that virtually the
entire web is open and accessible to an Android user! The pages of your favorite web-
site will render on your Android device’s browser, though you’ll likely need to scroll
the page due to the small screen dimensions, and certain navigation systems that rely
on hovering aren’t accessible. Despite these drawbacks, the capabilities of WebKit
open the broad range of the web to mobile users. In this chapter we demonstrate how
to scale your web applications to accommodate for smaller browser windows in a man-
ner that retains desktop browsing compatibility, all without the necessity of creating
and managing multiple sites.

 WebKit powers the browser on the Android device, but it’s also available as an
embedded control or widget, permitting SDK-based applications to render HTML
directly within a compiled application. This embeddable browser control is highly cus-
tomizable and thereby empowers the Android developer to exercise a tremendous
amount of control over the user experience.

 Web programming for Android is a broad and versatile topic. In the next section
we examine the approaches to using web technologies for Android application
development.

16.1.2 Examining the architectural options

When it comes to employing web technologies in an Android application, you have to
examine a few distinct categories of application architecture. Let’s look at the pillars
of Android web technologies.

 The first and most basic intersection of web technologies and Android application
development involves the standalone browser. The Android browser is a capable
HTML and CSS rendering engine, and it also implements a JavaScript engine. The
JavaScript engine is capable of running sophisticated JavaScript, including Ajax, and
supports popular scripting libraries such as JQuery and Prototype. As such, the
browser itself is capable of running rich internet applications.

 The browser can be a good augmentation to an SDK-based application. Let’s say
you’ve released a software application for distribution. As part of your application
you’d like to register users or perhaps provide access to a list of FAQs. It doesn’t make
sense to ship all that content with your application because it’ll both take up space
unnecessarily and will likely be out of date by the time the application is installed on a
client device. Likewise, why should you implement data-collection functionality
directly in your application if it can be more readily accomplished on your website? In
this case, it’d be more appropriate to have the application launch the browser, taking
the user to the website, where you can readily maintain your list of FAQs and your reg-
istration form. As you’ve learned, an Android application launches the browser
through the use of an Intent and the startActivity() method of the Context class.

 A variant of this model is embedding the browser control directly into an

Activity’s UI. In this scenario, the browser control is defined in a layout file and

424 CHAPTER 16 Android web development

inflated at runtime. The control is manipulated directly by Java code and directed to
render either locally provided content or to navigate to a location on the web. An
advantage of this approach is that although users may visit a remote site, they
haven’t actually left the application. This approach helps in creating a highly
scripted experience for the user. If users are taken out of an application, there’s a
chance they won’t return.

 A further refinement of the embedded browser experience is the practice of
extending the JavaScript environment, thereby permitting the boundary between in-
the-browser JavaScript and SDK Java code to be breached, to the benefit of the user
experience. Further, the hybrid application can exercise control over which pages are
shown and how the browser reacts to events such as bad digital certificates or window
opening requests.

 Whether your objective is to leverage your web development skills to bring
Android applications to market or to enhance your SDK application with browser-
based capabilities, the options are plentiful.

 It’s time to expand on this introduction of WebKit and demonstrate web technolo-
gies in action on the Android platform. The next section explores ways in which you
can design a traditional web application running in the standalone browser to accom-
modate Android clients.

16.2 Optimizing web applications for Android
We start this discussion by considering how to code web applications so they’re view-
able both by desktop clients and by mobile platforms such as Android. Developing
web applications for Android can be viewed as a continuum of options. On one end is
a site created for universal access, meaning that it’ll be visited by both desktop and
mobile users. On the other end of the spectrum is a website designed specifically for
mobile users. Between these two extremes are a couple of techniques for improving
the user experience. We’ll use the term mobile in mind—this refers to a website that’s
not exclusively written for mobile users but expects them as part of the regular visitor
list. Let’s begin with a discussion of designing your site with mobile in mind.

16.2.1 Designing with mobile in mind

There are millions of websites, but only a small percentage were created with mobile
devices in mind—in fact, many sites were launched prior to the availability of a
“mobile browser.” Fortunately, the browser in Android is capable of rendering com-
plex web content—even more powerful than any of the early desktop browsers for
which those early sites were designed.

 When designing a universal website—a site that’s to be consumed by desktop and
mobile users alike—the key concept is to frequently check your boundary conditions.
For example, are you considering fly-out menus that rely on hovering with a mouse?
That approach is a nonstarter for an Android user; there’s no mouse with which to
hover. And unless you’re a giant search engine provider, you want to avoid coding

425Optimizing web applications for Android

your site to the least common denominator approach of a single field per page. That
might get you by for a while on a mobile browser, but your desktop users will be both
confused and annoyed. You need to meet the needs of both sets of users concurrently.
You may be starting from a position that creating two sites—one for desktop and one
for mobile—is out of your reach from a budgetary perspective. We’ll come back to the
multiple-site approach later, but for now let’s design with mobile in mind.

 To meet that objective, we examine two approaches to improve the visual appear-
ance and usability of a mobile-in-mind website. Start with a simple HTML page, shown
in the following listing.

<html>
<head>
</head>
<body>
<h1>Unlocking Android Second Edition</h1>
<h2>Chapter 16 -- Android Web Development</h2>

<hr />
<div style="width:200px;border:solid 5px red;">
<p>For questions or support you may visit the book's companion website or contact the author via
email.</p>

</div>
</body>
</html>

When this HTML page is rendered in the browser, the
content is “zoomed out” such that it all fits onto the
page. Go ahead; try it yourself by pointing your
Android browser to http://android16.msi-wire-
less.com/index.php. Figure 16.1 shows the content
rendered in the standalone browser on an Android
device.

 The text is too small to easily be read on the phone.
The user can of course pinch, zoom, and scroll the
content to make it more easily consumed. But if you
know that the site visitor is viewing your site on a
mobile device, wouldn’t it be a good idea to put out
the welcome mat for them, keeping their pinching and
zooming to a minimum? Fortunately, there’s a simple
means of modifying the visual appearance of your site
so that when visitors arrive at your site via their
Android device, you can make them feel like you were
expecting them. To accomplish this simple but impor-

Listing 16.1 Sample HTML page
tant task, you use the viewport meta tag. Figure 16.1 Simple web page

426 CHAPTER 16 Android web development

16.2.2 Adding the viewport tag

The lowest-cost and least-obtrusive solution to the default view being too small to see
is the use of a special meta tag. Meta tags have long been the domain of the search
engine optimization (SEO) gurus.2 A meta tag is placed within the <head></head> tags
of a web page to specify such things as the page keywords and description—which are
used by search engines to help index the site.

 In this case, the meta tag of interest is the viewport. A viewport tag tells the client
browser how to craft a virtual window, or viewport, through which to view the website.
The viewport tag supports a handful of directives that govern the way in which the
browser renders the page and interacts with the user.

 To provide a more appealing rendering of our sample HTML page, you’ll add a
viewport tag between the head tags. Listing 16.2 shows the same web page, but it now
includes the viewport meta tag. If you want to view the page on your own Android
device, you can do so at http://android16.msi-wireless.com/index_view.php.

<html>
<head>
<meta name="viewport" content="width=device-width" />
</head>
<body>
// omitted html text
</body>
</html>

This web page has been made more mobile friendly by
the addition of the viewport meta tag B. The content
attribute of the tag conveys directives to govern how
the viewport should behave. In this case, the browser is
instructed to create a viewport with a logical width
equal to the screen width of the device.

 Figure 16.2 demonstrates the impact this one line
of code has on the visual appearance of the web page.
Note how the text of the page is larger and more acces-
sible. To be fair, this is an ultrasimple example, but the
point is that you can provide a readable page right
from the start and the user can easily scroll down verti-
cally to view the remainder of the site without needing
to zoom in or out just to make out what the page says.

 You can specify the width in pixels rather than
requesting the width to be equal to the device-width.
This approach can be useful if you want to display a
graphic in a certain manner or if your site can

Listing 16.2 Adding the viewport meta tag

Viewport
meta tagB

Figure 16.2 The viewport tag
modifies the appearance of the
web page.
2 See http://searchenginewatch.com for everything SEO related.

427Optimizing web applications for Android

remember a user’s preferences and by default set up the logical dimensions accord-
ing to the user’s liking. Table 16.1 describes the ways in which you can customize the
viewport.

Adding a viewport meta tag to a web page is safe, because any meta tags that aren’t
supported by a client browser are ignored, with no impact on the page. This one tag
provides a simple yet useful enhancement to an existing website. Although this isn’t a
magic bullet to solve every challenge associated with viewing a website on an Android
phone, it does aid in the first impression, which is important.

 Before moving on, we have one additional feature
of the viewport tag to demonstrate: scaling. Figure 16.3
shows the same web page scaled to 1.3 times the origi-
nal size. This approach can be used to scale a page up
or down, within the constraints defined by the mini-
mum-scale and maximum-scale directives as described
in table 16.1.

 This scaled-up web page may or may not provide
your desired effect. The good news is that you can
adjust the initial-scale value to your liking. In prac-
tice you’ll likely set the value to somewhere between
0.7 and 1.3.

 The viewport tag is almost a freebie: add the tag
and if the browser recognizes it, the page’s rendering
will be modified and likely improved. You can take a
bit more control than this by selectively loading con-
tent or style sheets based on the type of browser visit-

Table 16.1 Viewport meta tag options

Directive or attribute Comment

width Used to specify the width of the logical viewport. Recommended value:
device-width.

height Used to specify the height of the logical viewport. Recommended value:
device-height.

initial-scale Multiplier used to scale the content up (or down) when the page is initially
rendered.

user-scalable Specifies whether the user is permitted to scale the screen via the pinch zoom
gesture. Value: yes or no.

maximum-scale Upper limit on how far a page may be scaled manually by the user. Maximum
value is 10.0.

minimum-scale Lower limit of how far a page may be scaled manually by the user. Minimum
value is 0.5.
ing your site. That’s what we explore next. Figure 16.3 Scaled-up web page

428 CHAPTER 16 Android web development

16.2.3 Selectively loading content

Assuming your budget doesn’t provide for creating and managing entirely parallel
websites to meet the needs of your desktop and mobile visitors, you need a strategy for
adequately delivering quality content to both types of users. To go beyond the func-
tionality of the viewport tag, you want to have a more predictable experience for your
mobile visitors. To accomplish this, you’re going to selectively load CSS based on the
type of visitor to your site.

 Browser detection approaches have matured over time. Next we explore two basic
methods to accomplish this task, keeping in mind that your site is meant to be univer-
sal and expecting browsers of different shapes, sizes, and capabilities.

16.2.4 Interrogating the user agent

The first approach involves the examination of the user agent string. Every time a
browser connects to a web server, one of the pieces of information it provides in the
HTTP request is the browser’s user agent. The user agent is a string value representing
the name of the browser, the platform, the version number, and other characteristics
of the browser. For example, the user agent of a Nexus One running Android 2.2
looks like this:

Mozilla/5.0 (Linux; U; Android 2.2; en-us;Nexus One Build/FRF91) AppleWebKit/
533.1 KHTML, like Gecko) Version/4.0 Mobile Safari/533.1

The contents of this string may be examined and subsequently used to decide which
content and or CSS files to load into the browser. The following listing demonstrates
the use of the user agent string to selectively choose a CSS file.

<html>
<head>
<meta name="viewport" content="width=device-width" />
<link rel="stylesheet" href="corestuff.css" type="text/css" />
<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">
 if (navigator.userAgent.indexOf('Android') != -1) {
 document.write('<link rel="stylesheet" href="android.css"
type="text/css" />');
 } else {
 document.write('<link rel="stylesheet" href="desktop.css"
type="text/css" />');
 }
</script>
</head>
<body>
...
</body>
</html>

Listing 16.3 Interrogating the user agent

BLoad
core CSS

Look for Android
userAgent

C

429Optimizing web applications for Android

This HTML snippet includes a viewport meta tag, specifying that the viewport’s width
should match the width of the device. A CSS file is included named corestuff.css B.
Regardless of the platform, this file contains required classes and styles related to the
application. Using this approach, the web application includes a style sheet aimed at
more than one target platform. This enables you to have a more deterministic impact
on the behavior on a particular device, leaving less to chance. Your primary content
hasn’t changed—remember, you’re still targeting a universal website but keeping
mobile users in mind. Clearly, more work is being done here, as various stylistic ele-
ments have been extracted into platform-specific files. As such you’re taking taken a
measured step down the continuum toward a made-for-mobile site. If the user agent
string contains the word “Android” C, the code loads the user-supplied android.css
style sheet. If the user agent isn’t from an Android device, the code loads a style sheet
named desktop.css. Additional conditional statements may be included here for other
mobile platforms, such as the iPhone or BlackBerry.

 User agent strings contain a considerable amount of information, though just how
much of it is useful and trustworthy is a topic of debate. For example, it’s not uncom-
mon for a hacker to write code to programmatically bombard a target website and in
the process craft a user agent that masquerades as a particular kind of browser. Some
versions of websites are more secure than others. A user agent value is easy to forge,
and although the security implications aren’t expressly of concern to us in this discus-
sion, it’s something to keep in mind.

 The user string has so much data that you have to do a bit of homework to inter-
pret it properly. Some JavaScript libraries can aid in this process, but ultimately it may
not be the best approach. There’s another way: the media query.

16.2.5 The media query

Early web styling included inline markup such as font and bold tags. The best practice
in web design today is to separate styling information from the content itself. This
involves adding class attributes to elements of content and relying on a style sheet to
dictate the specific colors, sizes, font face, and so on. Providing multiple CSS files for a
given page enables flexible management of the numerous styles needed to deliver a
crisp, clean web page. This approach also permits flexibility in terms of which styles
are used for a particular device.

 Professional content sites have leveraged this approach through the use of multi-
ple, targeted style sheets along with extensive use of the link statement’s media attri-
bute. The media attribute acts as a filter for determining which style sheets should be
loaded. For example, consider the familiar scenario where you purchase something
online and you’re shown your receipt. The page may have fancy graphics and multiple
elements organized in a creative manner. But when the page is printed, the output is
relatively benign and thankfully easy to read. This is accomplished through the use of
the media attribute applying a print-oriented style sheet. You can leverage this same
approach to build mobile-in-mind web pages.

430 CHAPTER 16 Android web development

 The following listing presents a snippet from a web page with support for many
style sheets, including two for mobile-specific use.

<link href="//sitename/css/all.css" media="all"
rel="stylesheet" type="text/css" />

<link href="//sitename/css/screen.css"
media="screen,projection"
rel="stylesheet" type="text/css" />

<link href="//sitename/css/screenfonts.css"
media="screen,projection" rel="stylesheet"
type="text/css" />

<link href="//sitename/css/print.css"
media="print" rel="stylesheet" type="text/css" />

<link href="//sitename/css/handheld.css"
media="handheld" rel="stylesheet" type="text/css" />

<link href="//sitename/css/handheld-small.css"
media="only screen and (max-device-width:320px)"
rel="stylesheet" type="text/css" />

The media query of all B indicates that the associated style sheet (all.css) is appro-
priate for all devices. The screen.css file C is filtered for screen or projectors only. An
additional screen- or projector-targeted style sheet named screenfonts.css D is
included to organize all font-related styles. For hard-copy output, the media value of
print is used E. The media value of handheld F is intended for handheld devices,
though when the media query specifications were first drafted, the capabilities of
mobile browsers were quite limited—certainly much less feature rich than the
Android browser is today. Therefore, a better approach is to use a media query related
to specific attributes such as screen dimensions. For example, if you’re targeting a par-
ticularly small device, you can use a specific attribute-oriented media query. The hand-
held-small.css file G will be used when you have a screen width of no more than 320
pixels.

 As with all things browser related, your mileage may vary over time with different
releases. There’s no substitute for regression testing.

 The actual technique of employing CSS within your code is beyond our scope and
interest here; you can find many good references on the topic. The takeaway from this
discussion is to be prepared to employ the appropriate CSS for each visitor to the site
based on their respective web browser capabilities. The media query is a powerful tool
in your arsenal.

 Of course, no matter the amount of effort you put into making your universal web-
site mobile friendly, there are times when a site should simply be designed from the
ground up for mobile users.

16.2.6 Considering a made-for-mobile application

Here we are, finally at the other end of the spectrum where we look at web applica-

Listing 16.4 Sample link statements

all.cssB

Screen
filter

C

Fonts
only

D
Print
only

E

Handheld
device CSS

F

Media query based
on screen size

G

tions that are designed explicitly for mobile devices. After all, the best mobile web

431Storing data directly in the browser

applications are designed to be mobile applications
from the start and aren’t simply the full application
versions crammed onto a smaller screen, relying on
the browser to render them. The Android browser will
display the pages, but the full-blown websites are often
too heavy and busy for the typical mobile user. The
reason is simple: using a mobile device is a different
experience than sitting at your desk with a mouse and
full keyboard.

 More often than not the Android user is on the
move and has little time or patience for dealing with
data entry-intensive UIs or sifting through large result
sets. Mobile transactions need to be thought out and
targeted to the mobile user profile. Pretend you’re
standing on a train looking at a piece of content or
making a status update to a service ticket. If you have to
select multiple menus or enter too many fields to per-
form your work, it likely won’t get done.

 Consider two axioms for made-for-mobile applications.
 The first is to simplify, reduce, and eliminate. Simplify the UI. Reduce the data

entry required. Eliminate anything that’s not needed. Seriously; pull out the scalpel
and cut out things that don’t matter to someone in the field. Consider figure 16.4,
which shows the mobile version of the Facebook application. There’s no nonsense
here, just two fields: Email or Phone and Password, and a button to log in. Three links
round out the page.

 The second axiom is to provide a link to the full site and make sure that you don’t
reroute the user to the mobile version if they’ve explicitly requested to go to the main
page. Note the Full Site link in the lower-right corner of figure 16.4. Sometimes peo-
ple have the time and need to dig deeper than the mobile version permits. When this
occurs, let the user go to the main page and do whatever you can through the view-
port tag and the media queries to make the site as palatable as possible, but with the
full features.

 It’s time to move beyond the browser-only visual aspects of web application devel-
opment to consider more advanced techniques that Android developers have at their
disposal. We look next at browser database management technology, which has the
promise to take web applications, mobile and desktop, to unprecedented levels of
functionality and utility.

16.3 Storing data directly in the browser
One of the historical challenges to web applications is the lack of locally stored data.
When performing a frequent lookup, it’s often too time- and bandwidth-intensive to
constantly fetch reference rows from a server-side database. The availability of a local-

Figure 16.4 Facebook mobile
to-the-browser SQL database brings new possibilities to web applications, mobile or oth-

432 CHAPTER 16 Android web development

erwise. Support for SQL databases varies across browsers and versions, but fortunately
for us, the Android browser supports this functionality. Once again the WebKit engine
relationship pays dividends as we demonstrate using the desktop version of the browser
to debug our application. It’s mobile development, but that doesn’t mean you’re con-
strained to working exclusively on the device! The sample application used in this por-
tion of the chapter illustrates the basics of working with a locally stored SQL database.

16.3.1 Setting things up

The local SQL database accessible through the Android browser is essentially a wrap-
per around SQLite. As such, any syntactical or data type questions can be satisfied by
referring to the documentation for SQLite. To learn more about the underlying data-
base technology, refer to the discussion in chapter 6 and or visit the SQLite website at
http://sqlite.org.

 For this application we’re managing a single table of information with two col-
umns. Each row represents a version of the Android operating system releases. A sim-
ple web application is used to exercise the database functionality. Figure 16.5 shows
the application screen when first loaded.

 The sample application, which we present in the next section, is accessible on the
web at http://android16.msi-wireless.com/db.php. Before diving into the code, let’s
walk through the operation of the application.

 Running the application is straightforward. The first thing to do is click the Setup
button. This attempts to open the database. If the database doesn’t exist, it’s created.
Once the database is opened, you can add records one at a time by populating the
two text fields and clicking the Save button. Figure 16.6 shows the process of adding a
record.
Figure 16.5 The sample SQL application Figure 16.6 Saving a new record

433Storing data directly in the browser

 The List Records button queries the database and
displays the rows in a crudely formatted table. Figure
16.7 shows the result of our query after a single entry.

 The final piece of demonstrable functionality is the
option to remove all records. Clicking the Delete All
Rows button opens the prompt shown in figure 16.8. If
you confirm, the application proceeds to remove all
the records from the database.

 Remember, all of this is happening inside the
browser without any interaction with the server side
beyond the initial download of the page. In fact,
there’s no database on the server! If 10 people all hit
the site, download this page, and add records, they’ll
be working independently with independently stored
databases on their respective devices.

 Let’s look at the code for this application.

16.3.2 Examining the code

Working with a SQL database within the browser envi-
ronment involves the use of some nontrivial JavaScript.
If you’re not comfortable working in the flexible
JavaScript3 language, the code may be difficult to fol-
low at first. Stick with it—the language becomes easier
as you let the code sink in over time. One helpful hint
is to work with a text editor that highlights opening
and closing braces and brackets. Unlike a compiled
Android SDK application where the compiler points
out coding problems during the development process,
JavaScript errors are found at runtime. Anomalies
occur and you have to track down the offending areas
of your code through an iterative process of cat and
mouse.

 Let’s begin by examining the UI elements of this
application.

16.3.3 The user interface

We break down the code into two sections. The follow-
ing listing contains the code for the UI of the applica-
tion, stored in db.html.

3 For more on JavaScript, take a look at Secrets of the JavaScript Ninja at http://www.manning.com/resig. The

Figure 16.7 Listing the records
from the table

Figure 16.8 Confirming deletion
of records
book, by John Resig, is to be published by Manning in June 2011.

434 CHAPTER 16 Android web development

<html>
<head>
<meta name="viewport" content="width=device-width" />
<script src="db.js" type="text/javascript" ></script>
</head>
<body>
<h1>Unlocking Android Second Edition</h1>
<h3>SQL database sample</h3>
<div id="outputarea"></div>

1. <button onclick="setup();">Setup</button>

2. Add a record:

Version Number: <input id="id-field"

maxlength="50" style="width:50px" />

Version Name: <input id="name-field"

maxlength="50" style="width:150px" />

<button onClick="saveRecord(document.getElementById(

'id-field').value,document.getElementById(
'name-field').value);">Save</button>

3. <button onclick="document.getElementById(

'outputarea').innerHTML = listRecords();">
List Records</button>

4. <button onclick="if (confirm('Delete all rows. Are you sure?'))

{deleteAllRecords();}">Delete all rows</button>

</body>
</html>

The db.html file presents a simple GUI. This page runs equally well in either the
Android browser or the desktop WebKit browser. It’s coded with mobile in mind, and
as such includes the viewport meta tag B. All of the database interaction JavaScript is
stored externally in a file named db.js. A script tag C includes that code in the page.
A div element with an ID of outputarea D is used for displaying information to the
user. In a production-ready application, this area would be more granularly defined
and styled. Clicking the Setup button E calls the JavaScript function named setup
found in db.js. Ordinarily this kind of setup or initialization function would be called
from an HTML page’s onload handler. This step was left as an explicit operation to aid
in bringing attention to all the moving pieces related to this code sample. We look
more deeply at these JavaScript functions in the next section, so sit tight while we fin-
ish up the GUI aspects.

 Two text fields are used to gather information when adding a new record F. When
the Save button is clicked G, the saveRecord function is invoked. Listing the records
is accomplished by clicking the List Records button H. Deleting all the records in the
database is initiated by clicking the Delete All Records button I, which in turn
invokes the deleteAllRecords function found in db.js.

Listing 16.5 User interface elements of the SQL sample page in db.html

BViewport meta tag

Reference
JavaScript fileC

Output divD

Call setup()E

Gather
required
data

F

Save
record

G

List all
records

H

I
Delete

all rows

435Storing data directly in the browser

 With the basic GUI explanation behind us, let’s examine the functions found in
db.js, which provide all of the heavy lifting for the application.

16.3.4 Opening the database

Now it’s time to jump into the db.js file to see how the interactions take place with the
browser-based SQL database. The code for opening the database and creating the
table is found in the following listing.

var db;
var entryCount;
var ret;
entryCount = 0;

function setup() {
try {
 db = window.openDatabase('ua2',1.0,'unlocking android 2E',1024);
 db.transaction(function (tx) {
 tx.executeSql("select count(*) as howmany from versions",
 [],
 function(tx,result) {
 entryCount = result.rows.item(0)['howmany'];
 document.getElementById('outputarea').innerHTML = "# of rows : " +

entryCount;
 },
 function(tx,error) {
 alert("No database exists? Let's create it.");
 createTable();
 });});
 } catch (e) {alert (e);}
}

function createTable() {
 try {
 db.transaction(function (tx) {
 tx.executeSql("create table versions(id TEXT,codename TEXT)",
 [],
 function(tx,result) {
 },
 function(tx,error) {
 alert("Error attempting to create the database" + error.message);
 });});

 } catch (e) { alert (e); }
}

All interactions with the database require a handle, or variable, representing an open
database. In this code, the variable named db B is defined and used for this purpose.
A variable named entryCount C is used to keep track of and display the number of
records currently in the database. This variable isn’t essential to the operation of the
code, but it’s a helpful tool during development. In the setup function, the variable

Listing 16.6 Code that opens the database and creates the table

db handleB
entryCount
variableC

DOpen database

Execute SQL
transactionE

Result handlerF

Error handlerG

Handle error by
creating tableH

IExecute
create table
db is initialized with a call to the openDatabase function D. The arguments to the

436 CHAPTER 16 Android web development

openDatabase function include a name, version, description, and initial size alloca-
tion of the database. If the database exists, a valid handle is returned. If the database
isn’t yet in existence, it’s created and a handle returned to the newly created database.
Calling the transaction E method of the database object invokes a piece of SQL code.

 The mechanics of the transaction method are nontrivial and are described in
detail in section 16.3.5. For now understand that the argument to the transaction
method is a function that has four arguments: a SQL statement, parameters, a callback
function for handling a successful invocation of the SQL statement, and an error-
handling function invoked when an error occurs processing the SQL. The SQL state-
ment invoked here attempts to get a count of the rows in the table named versions.
This value is stored in the entryCount variable F. If the table doesn’t exist, an error is
thrown G. This is your cue to go ahead and create the table with a call to a user-
supplied function named createTable H. The createTable function executes a sin-
gle piece of SQL to create a table I. This method could be used to do any number of
database initialization activities, such as creating multiple tables and populating each
with default values.

 Before we go through the balance of the transactions, it’s important to grasp how
the transaction method of the database object is wired.

16.3.5 Unpacking the transaction function

All interactions with the database involve using the transaction method of the data-
base object, so it’s important to understand how to interact with each of the four argu-
ments introduced previously.

 The first argument is a parameterized SQL statement. This is simply a string with
any parameterized values replaced with a question mark (?). For example, consider a
SQL statement that selectively deletes the iPhone from a table named smartphones:

delete from smartphones where devicename = ?

The second argument is an array of JavaScript objects, each element representing the
corresponding parameter in the SQL statement. Keeping with our example, you need
to provide the value needed for the where clause of the delete statement within the
array:

['iPhone']

The net effect of these two lines together results in this SQL statement:

delete form smartphones where devicename = 'iPhone'

This approach keeps you from worrying about delimiters and reduces your exposure
to SQL injection attacks, which are a concern when working with dynamically con-
structed SQL statements.

 The third argument is a function that’s invoked when the SQL statement is success-
fully executed. The arguments to this callback function are a handle to the database

transaction identifier along with an object representing the result of the statement.

437Storing data directly in the browser

For example, when you perform a select query against a database table, the rows are
returned as part of the result, as you can see in listing 16.7, which shows the list-
Records function from our sample application. In this listing, you use the returned
rows to construct a rudimentary HTML table to dynamically populate the screen.
There are other ways of accomplishing this task, but we kept it simple because our pri-
mary focus is on the interaction with the returned results set.

function listRecords() {
 ret = "<table border='1'><tr><td>Id</td><td>Name</td></tr>";

 try {
 db.transaction(function(tx) {
 tx.executeSql("select id,codename from versions",
 [],
 function (tx,result) {
 try {
 for (var i=0;i<result.rows.length;i++) {
 var row = result.rows.item(i);
 ret += "<tr><td>" + row['id'] +

 "</td><td>" + row['codename'] +
 "</td></tr>";

 }
 ret += "</table>";
 document.getElementById('outputarea').innerHTML = ret;
 } catch (e) {alert(e);}
 },
 function (tx,error) {
 alert("error fetching rows: " + error.message);
 });});
 }
 catch (e) { alert("Error fetching rows: " + e);}
}

The SQL statement is passed as the first argument B. In this case we’re pulling two
columns from the table called versions. The second parameter C is the Java array
holding any available parameterized values. In this sample, there are no parameter-
ized values to pass along to the transaction, but you’ll see one in the next section.
Upon a successful execution of the select query, the results function is invoked D.
The second parameter to the results function, which is named result in this code,
provides access to the returned record set. The result object contains a collection of
rows. Looping over the result set is as easy as walking through an array E. Each row is
pulled out of the result set F and individual columns are extracted by name G.

 The fourth and final argument to the transaction method is the error handler.
Like the success handler, this is also a callback function that takes two parameters.
The first parameter is again the transaction identifier and the second is an object rep-
resenting the trapped error.

 With this basic understanding of the database object’s transaction method, let’s

Listing 16.7 Processing returned rows from a query

SQL statementB

Optional parametersC
Result functionD

Process result rowsE
Work with
one rowFAppend

formatted string
G

review the remaining functions contained in the db.js file.

438 CHAPTER 16 Android web development

16.3.6 Inserting and deleting rows

Thus far you’ve seen how to open a database, create a table, and select rows from the
table. Let’s round this example out with an examination of the code required to insert
a row and to remove all the rows from the table. The following listing shows the save-
Record and deleteAllRecords functions.

function saveRecord(id,name) {
 try {
 db.transaction(function (tx) {
 tx.executeSql("insert into versions (id,codename) values (?,?)",
 [id,name],
 function(tx,result) {
 entryCount++;
 document.getElementById('outputarea').innerHTML = "# of rows : "

+ entryCount;
 },
 function(tx,error) {
 alert("Error attempting to insert row" + error.message);
 });});

 } catch (e) { alert (e); }
}

function deleteAllRecords() {
 try {
 db.transaction(function (tx) {
 tx.executeSql("delete from versions",
 [],
 function(tx,result) {
 entryCount = 0;
 document.getElementById('outputarea').innerHTML = "# of rows : "

+ entryCount;
 },
 function(tx,error) {
 alert("Error attempting to delete all rows" + error.message);
 });});
 } catch (e) { alert (e); }
}

Inserting a row into our sample database takes place in the saveRecord method B.
This method takes two arguments: id and name. A parameterized SQL insert statement
C is crafted providing a placeholder for each of the values required for the versions
table. The parameters themselves are provided in an array D. The success handler E
is invoked after a successful insertion. When an error occurs during the SQL state-
ment’s execution, the user is notified via a simple JavaScript alert F. Of course, more
sophisticated error responses can be crafted as desired. In the deleteAllRecords
function you see a delete statement executed G.

Listing 16.8 Data handling functions

Save recordB
CInsert SQL

statement

Define parametersD Update countE

F

Define
error

handler

Delete SQL
statementG

439Storing data directly in the browser

 If you’re starting to get the feeling that this is just plain old SQL like you hoped,
you’re correct. And remember, this is running in the client side of your browser on
your Android device!

 Though the code runs happily in the Android browser, your phone isn’t necessar-
ily the most expedient way of testing the core functionality outside of the visual
appearance. Testing on either a real Android device or the emulator both provide an
acceptable experience, but for web applications such as this one, there’s a better way
to test: WebKit on the desktop.

16.3.7 Testing the application with WebKit tools

The good news about SQL development is that you can do it; the bad news is that the
tools are limited compared to other SQL environments you’re accustomed to in the
desktop world. Fortunately, you can leverage the WebKit desktop browser, and its
built-in development tools aid in your database work.

 The Web Inspector4 and Error Console found beneath the Develop menu in Web-
Kit on the desktop provide helpful tools. When you’re working with JavaScript, one of
the challenges is that code tends to die silently. This can happen because something is
misspelled or a function doesn’t get properly defined thanks to a parsing error. When
working in Eclipse with an Android SDK application, this kind of problem doesn’t
occur at runtime because the compiler tells you long before the application ever runs.
With WebKit you can leverage the Error Console, which provides helpful pointers to
parsing problems in JavaScript code. This is one of those “don’t leave home without
it” kind of tools.

 When you’re working explicitly with a SQL database, the Web Inspector provides a
helpful database tool that permits you to peer into the database and browse each of
the defined tables. Although this tool isn’t nearly as powerful as tools for commercial
databases, there’s something particularly reassuring about seeing your data in the
table. Figure 16.9 shows a row in our versions table along with the web application
running within the WebKit desktop browser.

 The ability to move between the powerful WebKit desktop environment and the
Android-based browser is a tremendous advantage to the Android developer looking
to create a mobile web application.

 As you’ve seen, the ability to store and manage relational data in a persistent fash-
ion directly in the browser opens up new possibilities for application creation, deploy-
ment, and life-cycle management.

 Storing data locally is a tremendous capability, but there may be times when you
simply need more raw power and flexibility—and that calls for an SDK-based applica-
tion. How do you get the best that HTML, CSS, and JavaScript have to offer but still go
deeper? The answer is to build a hybrid application, which we cover next.
4 For more details on the Web Inspector, try: http://trac.webkit.org/wiki/WebInspector.

440 CHAPTER 16 Android web development

16.4 Building a hybrid application
So far we’ve explored some of the capabilities of the Android browser and the flexibil-
ity it can provide to Android web developers. Fortunately those capabilities aren’t con-
strained to pure web application developers only—you can bring the power of WebKit
directly into your Android SDK applications. Including the browser control into an
application is much more than a web page on a form, though of course if that’s what
you need, it’s simple to implement. This section walks through the basics of building a
hybrid application and demonstrates some features of the hybrid application model.
It all starts with putting a browser on the screen, so let’s begin there.

16.4.1 Examining the browser control

The browser control, found in the android.webkit package, may be added to any UI
layout in the same way that you add a TextView or a Button to an Activity in your
application. From there you can programmatically direct the browser to load content
from a remote web page, from a file shipped with your application, or even content
generated on the fly. This control’s behavior may be overridden at any number of

Figure 16.9 Testing in the WebKit browser
points and is a topic worthy of an entire book itself!

441Building a hybrid application

 In its default condition, the control behaves just like the Android browser—minus
the menus for navigating forward and back through your history and other typical
browser actions. A common use for the control is for displaying a help screen for an
application. Help written in HTML and downloaded from the vendor’s website is the
most convenient means of keeping information up-to-date, particularly if there’s a
user-community aspect to an application.

 Things become more interesting as you consider the desired behavior of the web
control. For example, have you ever wished you could provide a different message box
for your application? Or how about implementing a feature in Java rather than
JavaScript? All these things and more can be accomplished with the browser control—
or you can just use it to browse your application’s help docs. You decide when you con-
figure the control in your Activity. Let’s start there.

16.4.2 Wiring up the control

An application may override significant portions of functionality of the WebView
browser control, including the WebChromeClient, the WebViewClient, and one or more
JavaScript handlers, as described in table 16.2.

The following listing demonstrates setting up the browser control when the Activity
starts.

package com.msi.manning.webtutorial;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
import android.webkit.WebView;
import android.webkit.WebSettings;

Table 16.2 Overriding browser behavior

Handler Description

WebChromeClient WebChromeClient controls visual aspects of the browser, including
everyday tools such as the alert, confirm, and prompt functions. You can
override WebChromeClient if you want to make a unique browsing user
interface experience.

WebViewClient WebViewClient modifies how the browser controls content navigation
and lets you change the pages accessible to the user. Override
WebViewClient if you want to filter the content in some fashion.

JavaScriptInterface Custom JavaScript “libraries” are mapped into the namespace of the
browser’s JavaScript environment. JavaScriptInterface is the
mechanism by which you can bridge the JavaScript/Java programming
environments.

Listing 16.9 Setting up a browser control

WebView B

import android.webkit.WebChromeClient;

imports

442 CHAPTER 16 Android web development

public class WebTutorial extends Activity {

 private WebView browser = null;

 public static final String STARTING_PAGE =
"file:///android_asset/index.html";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 setupBrowser();
 }
 private void setupBrowser() {
 browser = (WebView) findViewById(R.id.browser);
 WebSettings browserSettings = browser.getSettings();
 browserSettings.setJavaScriptEnabled(true);
 browser.clearCache(true);
 browser.setWebChromeClient(new UAChrome(this));
 browser.addJavascriptInterface(new UAJscriptHandler(this),

"unlockingandroid");
 browser.setWebViewClient(new

UAWebViewClient(this.getApplicationContext()));
 browser.loadUrl(STARTING_PAGE);
 }
}

As with any aspect of Java programming, you have to create the required import state-
ments. In this case, the android.webkit package B provides functionality for the
browser control. An Activity-scoped variable C is defined for accessing the WebView
browser control. A constant D is defined as the starting page for the Activity. The
layout is inflated in the same way virtually every Android Activity operates E; the
interesting point here is that when this layout inflates, it instantiates a browser control
that’s subsequently set up with a call to the method setupBrowser F. findViewById is
used to obtain a reference to the browser control G. With this reference, a number of
characteristics of the browser may now be defined. Some of those characteristics are
managed by the WebSettings object associated with the browser, so it’s important to
get a reference to the settings H. With the settings object available, you enable
JavaScript I. Next you customize the behavior for this browser instance by installing
your own handlers for UI events with the UAChrome class J, a JavaScript extension 1),
and a WebViewClient to handle navigation events 1!. Finally, you get things started
with the browser by loading a page of content into the control 1@.

 As we mentioned earlier, the browser control may load content from a remote web
page, a locally stored page, or even from content generated dynamically. For the sam-
ple application built for this chapter, the initial page is stored under a folder named
assets. The assets folder isn’t created automatically and must be created by the devel-
oper. Figure 16.10 shows the index.html file in relation to the project.

 Android maps this folder at runtime to the logical path name of android_asset, as
in file:///android_asset/index.html. Figure 16.11 shows the index.html page run-

WebView
instance variable

C

Starting
web page

D

Inflate layoutE

Set up
browser controlF

Get
reference
to control

G
Get
browser
settings
object

H

enable JavascriptI

Set up Chrome clientJ

Set up
JavaScript
handler1)

Set up
WebView
client1!

Load
content
into control1@
ning in the application.

443Building a hybrid application

The sample application is broken up into three demos, each highlighting a slightly
different aspect of working with a browser control in an SDK application (a hybrid
application). This approach is typical of hybrid applications where the browser con-
trol provides the UI and the Java code of the application provides much of the func-
tionality and program logic. The next few sections break down each of these pieces of
functionality along with the respective demonstration. Let’s begin by looking at the
technique of adding a JavaScript handler to our code.

16.4.3 Implementing the JavaScript handler

There are three pillars to the hybrid application, each supporting one of the major
areas of functionality that the WebView browser provides. The most straightforward of
these is the JavaScript handler. The browser control permits an application to “install”
one or more JavaScript handlers into the JavaScript namespace of the browser. You’ve
already seen in listing 16.9 how the browser is set up. To emphasize the JavaScript han-
dler initiation, it’s repeated here:

browser.addJavascriptInterface(new UAJscriptHandler(this),
 "unlockingandroid");

The arguments to the addJavascriptInterface mechanism are simple. The first is an
application-provided handler and the second is a textual string. Listing 16.10 presents
the class for the handler. Note that this kind of class may also be implemented as an
inner class to the Activity, but we broke it out for clarity in this example. One conse-
quence of breaking the class out on its own is the need to provide a Context for the
code in order to access various elements of the SDK. You accomplish this by passing

Figure 16.10 index.html used in
our sample application

Figure 16.11 index.html in our
browser control
the context into the constructor, as in this listing.

444 CHAPTER 16 Android web development

package com.msi.manning.webtutorial;

import android.content.Intent;
import android.content.Context;
import android.net.Uri;
import android.util.Log;
import android.widget.Toast;

public class UAJscriptHandler {
 private String tag = "UAJscriptHandler";
 private Context context = null;

 public UAJscriptHandler(Context context) {
 Log.i(tag,"script handler created");
 this.context = context;
 }

 public void Log(String s) {
 Log.i(tag,s);
 }

 public void Info(String s) {
 Toast.makeText(context,s,Toast.LENGTH_LONG).show();
 }

 public void PlaceCall(String number) {
 Log.i(tag,"Placing a phone call to [" + number + "]");
 String url = "tel:" + number;
 Intent callIntent = new Intent(Intent.ACTION_DIAL,Uri.parse(url));
 context.startActivity(callIntent);
 }

 public void SetSearchTerm(String searchTerm) {

 WTApplication app = (WTApplication) context.getApplicationContext();
 app.setSearchTerm(searchTerm);
 }

}

The UAJscriptHandler class B implements various functions that are mapped to the
browser control’s JavaScript environment. Because this class is implemented outside
of the browser control’s containing Activity, you store a reference to the Context C,
which is passed in with the constructor D. A custom function named Log E takes a
String parameter and adds an entry to the LogCat file when invoked. Troubleshoot-
ing JavaScript code is a nontrivial exercise; the ability to add entries to the LogCat is a
big help during development. A custom function named Info F takes a provided
String and presents it as a Toast notification. This is helpful for providing informa-
tion to the user while browsing without the annoyance of an alert pop-up box.

 An excellent example of bridging the gap between web page and SDK program-
ming is found in the PlaceCall function G. When this function is invoked, the code
initiates a Dial to call a phone number that was provided by the user on the HTML

Listing 16.10 JavaScript interface code implementation

JavaScript
interface

B

Context
reference

C

ConstructorD

Log
function

E

Custom
notification
method

F

PlaceCall functionG

HIntent to initiate call

I

String assigned
as search termJ
page. When the number is received and passed to this function, an Intent is crafted

445Building a hybrid application

to initiate a dial action H. The final portion of the JavaScript interface is a function
named SetSearchTerm. We’ll discuss this further when we examine the WebView-
Client. For now, note that this function obtains a reference to the application’s global
class named WTApplication I. With this reference the passed-in string is assigned as
a search term J.

 Remember that some functionality implemented in the JavaScript handler may
require you to add entries to the application’s manifest file. For example, the Place-
Call method relies on the application having the android.permission.CALL_PHONE
entry in the AndroidManifest.xml file.

 Now that you’ve defined the JavaScript implementation class, let’s look at how this
code is invoked. To do that, we need to jump over to the index.html file.

16.4.4 Accessing the code from JavaScript

When the JavaScript interface code was installed, two arguments were passed to the
addJavaScriptInterface method. The first was the implementation class, which we
just introduced. The second argument is a string representing the namespace of the
code as known to the calling JavaScript code. In our example, you passed in a string
named unlockingandroid as the second value. This means that in order to access the
functions within that JavaScript interface, you need to prefix the functions in the
JavaScript code with the string unlockingandroid. So, to call the Info function you
use code such as window.unlockingandroid.Info('Hi Android');.

 Let’s delve further into the code and examine how the JavaScript interface is
utilized.

16.4.5 Digging into the JavaScript

The following listing presents the index.html file, which contains the UI for this appli-
cation. For each of the buttons on the HTML page, there exists a simple onclick han-
dler that invokes the respective JavaScript functionality.

<html>
<head>
<meta name="viewport" content="width=device-width" />
</head>
<body>
<h2>Unlocking Android 2E</h2>
<h3>Hybrid Application</h3>
Call a number: <input type="text" id="phone"/>
<button onclick=

"window.unlockingandroid.PlaceCall(
document.getElementById('phone').value);">
Place a call</button>

<hr/>
<button onclick=

"window.unlockingandroid.Info('Hi Android');">

Listing 16.11 index.html

Set up
viewport

B

Request
phone
number

C

Invoke
PlaceCall

D

Invoke
Info

E

Info</button>

446 CHAPTER 16 Android web development

<button onclick="alert('Hey chrome!');">Chrome</button>
<hr/>
Custom Search Term: <input type="text" id="term"/>

<button onclick=

"window.unlockingandroid.SetSearchTerm(
document.getElementById('term').value);">
Set Search Term</button>

Jump to Google
</body>
</html>

You include a viewport meta tag reference B to this page, making it scale nicely to
the Android device window. The first input text box C accepts a phone number to
be passed to the PlaceCall function D. Note the fully
qualified name of the function: window.unlockingan-
droid.PlaceCall. Likewise, the Info function e is
called, passing in a static string. The alert function F
is invoked; this is the same alert function web develop-
ers have been using for over a decade. You’ll see how
this function is handled later when we review the Web-
ChromeClient implementation. Also, for a later dem-
onstration of the WebViewClient, the SetSearchTerm
function G passes a user-supplied textual string to the
code, which is subsequently managed by the JavaScript
interface in the Java code. A link to Google’s home
search page H is provided to demonstrate traditional
links and to provide a launching point for the
WebViewClient demo.

 As you can see, the JavaScript side of things is sim-
ple. All you have to do is prefix the function name with
the namespace used when the code was registered in
the SDK code side of our hybrid application. Note that
the structure of the JavaScript interface technique per-
mits adding multiple JavaScript handlers, each regis-
tered independently and uniquely identified with their
own namespace.

 Figure 16.12 shows the collection of a phone num-
ber in the browser window.

 Once the user clicks the button, the window.
unlockingandroid.PlaceCall function is invoked,
passing in the value of the input text field. From here,
the Java code behind the PlaceCall function creates
the Intent to start the dial action. Figure 16.13 shows
the number ready to be dialed.

Invoke alert
functionF

Invoke
SetSearchTerm

G

Define simple
anchor tagH

Figure 16.12 Entering a phone
number in the web page

Figure 16.13 Ready to dial!

447Building a hybrid application

 When the user clicks the Info button on the web
page, the button’s onclick handler invokes window.
unlockingandroi.Info, passing in a string of “Hi
Android”. Figure 16.14 demonstrates the result of that
action.

 Clearly, the JavaScript implementation is power-
ful—so powerful that many commercial applications
are written with an open source project named Phone-
Gap that leverages this WebKit browser control tech-
nique. PhoneGap provides a framework for developers
to create their applications in HTML, CSS, and
JavaScript, where the device-specific features are pro-
vided in Android SDK Java code. For more information
about PhoneGap, visit http://phonegap.com.

 With power comes responsibility. There are some
security concerns with this interfacing technique.

16.4.6 Security matters

Using the JavaScript interfacing capabilities opens your
application to potential security risks because anyone
who knows your custom “API” implemented in your
JavaScript handler can exploit those features. It may be
wise to permit this functionality only for HTML that
you’ve written yourself. To demonstrate just how wired-
in this JavaScript interface actually is to your applica-
tion, consider this JavaScript code, which may be imple-
mented by a malicious piece of JavaScript:

<button onclick=
"alert(window.unlockingandroid.toString());">
toString</button>

The result? Look at figure 16.15.
 A simple method call identifies the name of the class

behind the interface!
 If you determine that a page isn’t of your own cre-

ation and want to disable the connection between your
JavaScript code and Java code, you can re-register the
JavaScript interface with a class that contains limited
functionality, a class with zero methods (like that in the
following listing), or even a null object.

private class UANOOP {

Listing 16.12 A no-op class

Figure 16.14 The Info button
shows a Toast notification.

Figure 16.15 The toString
method called from JavaScript
}

448 CHAPTER 16 Android web development

Even a class with no methods isn’t immune from trou-
ble. Consider this JavaScript code run against our no-
op class: window.unlockingandroid.wait(). Guess
what this does to our application? Figure 16.16 demon-
strates the destructive power of a malicious code calling
methods of the root Java Object class.

 If you plan on taking this approach of putting in a
“safe” class implementation, a better move is to install
null as the class to handle the Javascript interface:
browser.addJavascriptInterface(null,"unlockin-

gandroid");. Or better yet, don’t allow navigation
away at all.

 Okay, enough of the drama. For now, let’s assume
that the web is a safe place to navigate and you can lock
things down as you see fit. If you want to exercise more
control over navigating the web with your in-the-app
browser, you can implement your own WebViewClient.
We’ll show you how.

16.4.7 Implementing a WebViewClient

The basic approach to controlling a browser control’s navigation is to subclass the
WebViewClient, which is also part of the android.webkit package. This class provides
methods such as onPageStarted(), onPageFinished(), and numerous other methods
related to browser navigation. For example, the class also has a method named
onReceivedSslError(), which is invoked when a visited site has a digital certificate
that either has expired or is invalid for some other reason. The range of functionality
here is significant and beyond the scope of this section, so we’ll focus on a narrower
and more practical example to demonstrate the use of this class.

16.4.8 Augmenting the browser

As mentioned earlier, the application associated with this chapter, WebTutorial, con-
tains a few demos. In this portion of the code, we demonstrate the WebViewClient
functionality by monitoring the loading of pages in the browser control, searching for
a predefined term. It’s designed to be a simple browsing augmentation tool: you
could take this basic framework and build a browser with customized functionality.

 Here’s how the application works. Starting in our application’s home page, enter a
search term, as shown in figure 16.17. In our case we’re interested in the term HTC,
which is a company that manufactures a number of Android phones. We’re interested
in how many times the term HTC shows up on any page that we load in the browser.

 When we click the Set Search Term button, our Java code is invoked, which stores
this search term in the application globals. Listing 16.13 shows portions of both the
JavaScript handler code and the WTApplication class. The WTApplication code man-

Figure 16.16 A crashed
application thanks to the wait
function
ages the application’s global variables.

449Building a hybrid application

import android.app.Application;

public class WTApplication extends Application {

 private String searchTerm = "";

 public void setSearchTerm(String searchTerm) {

 this.searchTerm = searchTerm;
 }

 public String getSearchTerm() {
 return this.searchTerm;
 }
}

public class UAJscriptHandler {

 public void SetSearchTerm(String searchTerm) {

 WTApplication app = (WTApplication) context.getApplicationContext();
 app.setSearchTerm(searchTerm);
 }
}

A strategy to manage application globals in an Android application is to provide an
implementation of the android.app.Application class B. This class is accessible to
every Activity, Service, BroadcastReceiver, and ContentProvider within a given
application, and as such is a convenient means of shar-
ing information. In this case you implement a simple
pair of setter/getter methods for managing the search
term C. When a user clicks the Set Search Term but-
ton in the browser control, the code gets a reference to
the android.app.Application implementation D and
then updates the search term E.

 With the search term safely stored, it’s time to navi-
gate the web.

16.4.9 Detecting navigation events

Now you need to begin browsing the internet. For lack
of a better place to start, jump to the Google home
page and enter the search term android, as shown in fig-
ure 16.18.

 As soon as the page is launched, we want to remind
our users that we’re searching for the term HTC, and
when the page is fully loaded we want users to know
whether the term was found, as shown in figure 16.19.

Listing 16.13 Managing the search term

Implement
android.app.Application

B

C Manage global
search term

DGet reference to
Application

Set
search termE

Figure 16.17 Setting up a
search term

450 CHAPTER 16 Android web development

As you can see, searching the web for android + HTC is a different operation compared
to searching for android and then HTC. Yes, this functionality can be accomplished
with some search engine magic. The point is that you want to be able to have this
browsing assistant follow you wherever you go on the internet—even beyond the
search engine launching point. Any time you browse to a new page, you receive a
Toast notification letting you know how many times your search term appears on the
page. To show you how this is implemented, let’s examine the following listing, which
shows the implementation of the UAWebViewClient class.

package com.msi.manning.webtutorial;

import android.content.Context;
import android.util.Log;
import android.graphics.Bitmap;
import android.webkit.*;
import android.widget.Toast;

public class UAWebViewClient extends WebViewClient{
 private String tag = "UAWebViewClient";
 private Context context;
 public UAWebViewClient(Context context) {
 super();
 this.context = context;
 }
 public void onPageStarted(WebView wv,String url,Bitmap favicon) {
 super.onPageStarted(wv,url,favicon);

Listing 16.14 UAWebViewClient.java

Figure 16.18 Searching the
web via Google

Figure 16.19 Hit indicator

Extend
WebViewClient

B

Call super
methods

C

C
 if (!url.equals(WebTutorial.STARTING_PAGE)) { Selective operationD

451Building a hybrid application

 WTApplication app = (WTApplication) context;
 String toSearch = app.getSearchTerm();
 if (toSearch != null && toSearch.trim().length() > 0) {
 Toast.makeText(context,"Searching for " +

toSearch,Toast.LENGTH_SHORT).show();
 }
 }
 }
 public void onPageFinished(WebView wv,String url) {
 super.onPageFinished(wv,url);
 Log.i(tag,"onPageFinished");
 if (!url.equals(WebTutorial.STARTING_PAGE)) {
 WTApplication app = (WTApplication) context;
 String toSearch = app.getSearchTerm();
 if (toSearch != null && toSearch.trim().length() > 0) {
 int count = wv.findAll(app.getSearchTerm());
 Toast.makeText(app, count + " occurrences of " + toSearch +

".",Toast.LENGTH_SHORT).show();

 }
 }
 }
}

Extending the WebViewClient B for our purposes involves a custom constructor plus
two subclassed methods. For each of the three methods, you call the respective super
methods C to make sure the parent class has an opportunity to perform necessary
housekeeping. When filtering the page loads, you don’t want your augmented behav-
ior to fire if you’re on the starting index.html page shipped with the application, so
you do a basic string comparison D to selectively ignore the additional functionality if
you’re back on the starting page within your own content. Assuming you’re on a sub-
sequently loaded web page, you need to access the android.app.Application
instance E to gain access to the globally stored searchTerm F. In the onPageStarted
method, you remind the user of the term you’re searching for through the use of a
Toast notification. In onPageFinished, you call the findAll method to search the
newly downloaded page for the search term G. When the search is completed, you
again let the user know via a Toast notification.

 This WebViewClient extension is installed with a call to

browser.setWebViewClient(new
 UAWebViewClient(this.getApplicationContext()));

This simple application is begging for enhancements, so feel free to download the
sample code and extend the WebViewClient yourself and enjoy the feeling of adding
functionality to the world’s most popular application—the browser!

 If you have a taste for improving additional behavior modification of the browser,
you’ll want to try your hand at updating the chrome by subclassing WebChromeClient.

Get
searchF

Get
globalsE

Find all
occurrences of term G

Call super
methods

C

Get
globals

E

Get searchF

Find all
occurrences of term G

452 CHAPTER 16 Android web development

16.4.10 Implementing the WebChromeClient

The WebChromeClient class is responsible for handling client-side events such as
JavaScript alerts, prompts, and the like. Additionally, the WebChromeClient is notified
when a window is being closed or a new window is attempting to load. Like the Web-
ViewClient, this class is a topic unto itself. For our purposes here, we demonstrate its
use by overriding the alert() JavaScript function.

 Referring to the index.html file from listing 16.11, you see the code for handling
the Chrome button: <button onclick="alert('Hey chrome!');">Chrome</button>.
There’s no special namespace qualifier on this function—it’s the same JavaScript alert
function used since client-side programming first littered our world with pop-up mes-
sages. This function’s sole purpose is to inform the user of information that’s hope-
fully relevant to their browsing activity. Listing 16.15 demonstrates subclassing the
WebChromeClient and implementing the onJsAlert method. Again, this method is
invoked when the JavaScript alert function is encountered in a running web page.

package com.msi.manning.webtutorial;

import android.content.Context;
import android.widget.Toast;
import android.webkit.JsResult;
import android.webkit.WebChromeClient;
import android.webkit.WebView;
import android.widget.Toast;

public class UAChrome extends WebChromeClient {

 private Context context;
 public UAChrome(Context context) {
 super();
 this.context = context;

 }
 public boolean onJsAlert(WebView wv,String url,

String message,JsResult result) {
 Toast.makeText(wv.getContext(),message,Toast.LENGTH_SHORT).show();
 result.confirm();
 return true;
 }
}

The UAChrome class extends the WebChromeClient B. In the constructor, you call the
constructor of the super class with a call to super C. In order to process alert state-
ments, you need to implement the onJsAlert method D. This method takes four
arguments: the WebView instance hosting the JavaScript code, the URL of the page, the
message to be displayed, and a JsResult argument. The JsResult object has methods
for indicating to the caller whether the user confirmed or canceled the prompt. In
this sample implementation, you replace the pop-up box with a tidy Toast notification

Listing 16.15 UAChrome.java

Extending
WebChromeClient

B

Call super
method

C

Override
onJsAlert

D

Confirm
resultF E

Toast
notificationReturn trueG
E and because the Toast notification clears on its own, you need to inform the caller

453Summary

that the notification was “confirmed.” This is accomplished with a call to the confirm
method of the JsResult parameter named result F. Finally you return a Boolean
true G to indicate that this overridden method has processed the event.

16.5 Summary
This chapter covered a fair amount of material related to web development for
Android. As with most topics related to programming, we’ve only scratched the sur-
face—and hopefully provided you with inspiration and guidance on where to dig
deeper on your own.

 Starting with the idea of making pure web applications as friendly as possible on
the Android standalone browser, we explored the viewport meta tag along with the
technique of loading platform-specific CSS files. Style sheet management is an impor-
tant and recommended skill for any kind of web development today.

 Moving beyond the look and feel aspects of the in-the-browser application model,
we explored the technique of SQL database access directly from the client-side
JavaScript. After a basic demonstration of the data access methods, we looked at a con-
venient testing platform in the desktop version of WebKit.

 We then moved on to cover perhaps the most exciting aspect of web programming
in the mobile world today: creating hybrid applications. Hybrid applications can
enhance an Android SDK application with highly capable formatting of selective areas
such as help screens or tutorials. Or, as demonstrated in this chapter’s sample code, a
hybrid application can enable a purely HTML and CSS user interface while permitting
the underlying Java code to perform the heavy lifting. Regardless of your approach,
having an understanding of the basics of Hybrid application development is a benefit
to the Android programmer.

 In the next chapter, we’ll look at one of the “game changing” features of the
Android platform: the AppWidget.

AppWidgets
Continuing with the theme of exploring the maturing Android platform, this chap-
ter examines the AppWidget, which brings functionality to the phone-top, or home
screen, of an Android device. In this chapter, you construct an application named
SiteMonitor that ties together much of the fundamental application development
skills from prior chapters and adds an interactive presence on the home screen.

 By placing content directly on the Android device’s home screen, you empower
the user to fully leverage the platform by making powerful tools available for use
quickly and conveniently. Think about it—the deeper a user has to tap into an appli-
cation to find information of value, the less likely the application will become an
everyday staple. The goal is to create a mobile experience that brings value without
becoming a black hole of time, attention, or worse, annoyance. A key ingredient to

This chapter covers
 Introducing the AppWidget

 Introducing the sample application: SiteMonitor

 Implementing the AppWidgetProvider

 Configuring an AppWidget instance

 Updating the AppWidgets
454

meeting this objective is the effective use of the AppWidget. This chapter equips you

455Introducing the AppWidget

with an understanding of the uses and architecture of AppWidgets. It walks step by step
through the creation of a nontrivial AppWidget example application, including impor-
tant tasks such as configuration, data, and GUI updates, and wraps up with a discussion
of the elements required within the application’s AndroidManifest.xml file.

17.1 Introducing the AppWidget
When a user picks up an Android device (or any smartphone for that matter), their
first impression is often defined by their experience interacting with the phone’s
home screen. On the home screen, a user interacts with applications, initiates a
phone call, searches the device, launches a browser, and more. By the time the user
begins to browse for an application among the sea of icons in the launcher window, a
certain percentage of users will be “lost” and will conclude that the device just isn’t
“user friendly.” This can be likened to burying important web content deep within a
website—you need to be wary of hiding the value of your applications. One solution to
this challenge for Android is to employ an AppWidget.

17.1.1 What’s an AppWidget?

An AppWidget is code that runs on the home screen of an Android device. The visual
size of an AppWidget instance can vary and is designated by the programmer at design
time. The home screen is broken up into 16 usable spaces, each of which is approxi-
mately 74 pixels square. An AppWidget can span a rectangular area ranging from 1x1
spaces to 4 x 4 spaces, provided there’s room on the current home screen “page.” (A
typical phone has around five to nine home screen pages.)

 An AppWidget is typically deployed as a read-only
interface providing a view into application data. The UI
is implemented in a manner similar to a layout for a
traditional Android Activity. Unlike the Activity, the
AppWidget is much more constrained in that the only
user action permitted is a click. An AppWidget can’t
present a scrollable list, an EditText, or any other user
input mechanism beyond something that can react to a
click. When anything beyond a click is required as user
interaction, it’s prudent to load an Activity for the
heavy lifting—an AppWidget just isn’t designed for sig-
nificant user interactions. In this case, the AppWidget
acts as a storefront for the underlying Activity. It
accepts a click and then hands control off to the back
office, implemented typically by an Activity.

 Despite this apparent shortcoming, not all App-
Widgets require anything beyond a basic user interface.
For example, consider the Power Control Widget
shown in figure 17.1. The Power Control Widget is an

Figure 17.1 Power Control
Widget on the home screen

456 CHAPTER 17 AppWidgets

excellent demonstration of simplicity and value. This
widget is used to enable and disable various system ser-
vices such as Bluetooth, Wi-Fi, GPS, and other battery-
impacting functions. GPS services are a significant drain
on the battery—the fact that the Power Control Widget
exposes this on/off feature so easily makes the use of
location-based services a more realistic option for
Android users. On other phone platforms, this kind of
functionality is generally “hidden” under system or
option menus.

 You add AppWidgets to the home screen by pressing
and holding an empty area until a menu launches, as
shown in figure 17.2.

 From this menu, select Widgets and available App-
Widgets are displayed in a scrollable list, as shown in
figure 17.3. Tap on the desired widget to add an
instance to your home screen.

 An AppWidget runs under another application,
namely an AppWidgetHost, which is typically the
device’s home screen. The AppWidget code is imple-
mented in an instance of an AppWidgetProvider, which
is an extension of the BroadcastReceiver class. Recall
from prior chapters that a BroadcastReceiver is
defined as a “receiver” in the AndroidManifest.xml file.
The AppWidgetProvider is a BroadcastReceiver with a
special IntentFilter and a metadata tag that further
defines the AppWidgetProvider’s characteristics. An
AppWidget may be implemented in code as a
BroadcastReceiver alone, yet the AppWidgetProvider
provides some convenience wrapper functionality and
is the recommended means of coding an AppWidget.

AppWidgets are designed to be updated periodically.
The stock implementation of an AppWidget automati-
cally updates at an interval defined by the developer at
design time. In general, this update is kept to a low fre-
quency to conserve battery power. There are other
mechanisms for updating an AppWidget on an as-
needed basis through the use of Intents. The App-
WidgetProvider extends BroadcastReceiver and therefore can receive different
Intent Actions based on the defined IntentFilters. The common practice is to
define an application-specific IntentFilter action and use the sendBroadcast
method to trigger an AppWidget update on an as-needed basis.

Figure 17.2 Add to home screen

Figure 17.3 Choose a widget,
any widget.

457Introducing the AppWidget

 The details of the AppWidgetProvider, the special metadata in the Android-
Manifest, IntentFilters, RemoteViews, and much more are all discussed in this chap-
ter. Before we delve into the details of constructing an AppWidget, let’s consider the
various design patterns an AppWidget can satisfy.

17.1.2 AppWidget deployment strategies

In its most basic implementation, an AppWidget can be considered a dashboard of
sorts. The Power Control Widget shown in figure 17.1 is a good example of this flavor
of AppWidget. This AppWidget has no other user interface to which it’s tied and any
actions taken directly invoke an underlying request to enable or disable a system fea-
ture. In any normal scenario, there’d be at most one Power Control Widget deployed
to the home screen. A user is free to add multiple copies of the Power Control Widget
to their home screen, but there’s no additional utility or benefit from doing so.

 Now consider an AppWidget for Facebook or Twitter, as shown in figure 17.4.
 Some people have multiple social media accounts and may desire multiple App-

Widgets instantiated for making updates to specific accounts. In this scenario, each
AppWidget instance is tied to its own set of data. For the purposes of this chapter, we’ll
call this data the AppWidget instance model. Each instance of the AppWidget has its
own set of data—which in the case of a Twitter account widget would look like user-
name/password information plus any cached data related to the specific account. We
go into significant detail later in this chapter on how to manage this per-widget data.

 One role an AppWidget can play is as a “smart shortcut.” Rather than simply dis-
playing a static shortcut to an application, the AppWidget provides a means of display-
ing pertinent and timely information to the user.
When clicked, the AppWidget loads the relevant
Activity or launches a relevant web page. Consider,
for example, a calendar widget that displays upcoming
events on the home screen. Tapping on the widget
causes the calendar application to load, jumping to the
specific event of interest.

 Due to the variable nature of an AppWidget’s
deployment strategy, it’s important to give some consid-
eration to how an AppWidget interacts with the other
Android-based application components. What may
seem like a simple AppWidget application may in fact
require the collaboration of multiple components.
Table 17.1 presents a nonexhaustive list of options for
how an AppWidget may interact with other components
within a suite of applications.

 What makes AppWidgets specifically (and Android
generally) so appealing to a developer is the ability to
distribute code that provides a small, focused piece of

Figure 17.4 Tweeting about
this chapter!

458 CHAPTER 17 AppWidgets

functionality. For example, let’s say you have a great idea to make interacting with the
calendar much easier: the “Killer Calendar App.” In traditional mobile development,
implementing your idea would require replacing the entire calendar application.
With Android’s architecture, a developer can distribute their application as simply an
AppWidget that provides a better interface, yet not have to replace the mountains of
work already shipped in the form of built-in applications! What’s more, portions of
your code could be called by third-party applications, provided they have the appro-
priate permissions.

 Creating an AppWidget isn’t something to be taken lightly. There are decisions to
be made and pitfalls to avoid—all of which we cover in this chapter. Before we dive
into the weeds of constructing an AppWidget of our own, let’s take a step back and
review the design objectives of SiteMonitor, our sample application for this chapter
that provides the context for learning about AppWidgets.

17.2 Introducing SiteMonitor
To demonstrate the AppWidget, this chapter presents an application named Site-
Monitor. SiteMonitor is a simple utility used to help monitor hosted applications such
as blogs, commerce sites, and the like—web-based applications.

17.2.1 Benefits of SiteMonitor

The premise of SiteMonitor is that an Android device is highly connected and highly
capable, and therefore should be leveraged to provide more value to the user than

Table 17.1 Various AppWidget deployment patterns

Description Additional application components Example

AppWidget standalone Singleton. No configuration options.
No Activity required. May use a
Service to process a longer-
running request in some
implementations.

Power Control.

AppWidget as smart
shortcut

Used to present information and
upon a click loads an Activity.

Email widget showing the number of
messages in an inbox or upcoming
events in a calendar.

AppWidget with specific
static data

Configuration required. Variable
amounts of data associated with
each widget instance.

PictureFrame widget showing
a user-selected image from the
gallery.

AppWidget with dynamic
data

Configuration required. Variable
amounts of data associated with
each widget. Service used to update
data. BroadcastReceiver used
to respond to alarm invocations or
other triggers that prompt updates
at various times.

News application widgets. The sam-
ple application from this chapter,
SiteMonitor, demonstrates this
pattern.

459Introducing SiteMonitor

simply functioning as a fancy email device. Although this application may not be
appealing to the mass consumer market, there’s a nontrivial population of individuals
(entrepreneurs, system admins, service providers, and so on) who have an interest in
keeping one or more websites running.

 The implications of a website/hosted application not running properly range from
annoyance, to embarrassment, to loss of revenue when a commerce site isn’t accept-
ing transactions. Being able to keep an eye on a collection of online assets from any-
where is empowering and can even make things like a day out of the office seem more
realistic. Mobile devices today often feel like long leashes—perhaps this application
can lend a few more feet to the leash?

 Of course it’s possible to receive SMS alerts or emails when a site is no longer avail-
able with server-side tools and third-party services—which is fine and applicable in
many instances. But keep in mind that SiteMonitor works entirely without server-side
integration, another desirable feature that’s in line with the trend of today’s mobile
applications.

 SiteMonitor is an AppWidget designed to meet the objective of monitoring website
health. Let’s start with the high-level user experience.

17.2.2 The user experience

Checking on websites is possible today with an Android device—just bookmark a
bunch of application URLs in the WebKit browser and check on them. And then check
on them again. And again. You get the picture; it’d be desirable to get some automated
assistance for this basic and repetitive task. The logical
answer is to code an application to do this for you. In
this case, SiteMonitor employs an AppWidget to bring
useful information directly to the phone’s home screen.
Let’s look at the user interface.

 Figure 17.5 shows the home screen of an Android
device with four instances of the SiteMonitor widget
configured to monitor four different applications.

 The UI is admittedly lackluster, but the information
is precisely what’s needed in this situation. At a glance
you can see that of the four sites being monitored,
three are up (green) and one is in an error condition
(red). You can see the name of each site and the date/
time of the most recent update. Tapping on one of the
SiteMonitor widget instances brings up an Activity
where you can see detailed information about the site.

 The widget-specific data includes not only the con-
figuration values for the hosted application but also the
most recent data retrieved from the hosted application.
For example, you see in figure 17.6 that this particular

Figure 17.5 Four instances of
the SiteMonitor AppWidget on

the home screen

460 CHAPTER 17 AppWidgets

site, named “chap 17,” has a low disk space warning.
The application can easily support multiple conditions;
for now let’s keep things simple with a good condition
and a bad condition. Good sites are shown in green and
bad are shown in red on the home screen.

 Still referring to figure 17.6, note that the screen
has support for maintaining three different fields, each
implemented as an EditText control. The first Edit-
Text instance manages the name of the site. Space is
limited on the widget, so it’s best to keep the length of
this name limited. Note that the widget can be
expanded to take more space and therefore permit
more descriptive names, and most users will be able to
use a short descriptor such as a server name or a client’s
nickname. More importantly, you want to fit multiple
instances of the SiteMonitor widget on the home
screen, so they shouldn’t take up any more space than
absolutely necessary.

 The next EditText field holds the URL that the
application periodically pings to check the status of the site. When it’s time to update
the status of a particular hosted application, SiteMonitor performs an HTTP GET
against this URL and expects a pipe-delimited return string. For example, a response
from a commerce site might look like the following:

GOOD|There are 10 orders today, totaling $1,000.00

Or perhaps a site that’s down might have a response that looks like this:

BAD|Cannot reach payment processor. Contact fakepaymentprocessor.com
at 555-123-4567

The third EditText field stores the site’s home page. When the Visit Site button is
clicked, the application opens a browser and navigates to this URL. Why is this feature
included? The answer is simple: the most common reaction to receiving a “the site is
down” notification is to check out the site firsthand to see what kind of errors may be
presenting themselves to site visitors. This approach is much easier than firing up the
browser and tapping in a complete URL—particularly under duress!

 Referring again to figure 17.6, note the highlighted phone number contained in
the TextView field. Selecting that link causes the phone to launch the dialer as shown
in figure 17.7. This TextView has the autoLink attribute enabled. When this attribute
is enabled, the application is requesting that Android scan the textual information
and attempt to turn any data that looks like a link into a clickable hotspot. Android can
optionally look for websites, email addresses, phone numbers, and so forth. This fea-
ture is one more step in making things as streamlined as possible for a mobile user to

Figure 17.6 Site details,
including hot-linked text
support a hosted application.

461Introducing SiteMonitor

 Let’s say the user is out to dinner and equipped
only with an Android device when a site goes down or
experiences an urgent condition. It may not be conve-
nient or feasible to look up detailed support informa-
tion about a particular hosted application, particularly
if this site is one of many. When an error condition is
observed, it’s useful to have key actionable data right
at your fingertips. This is akin to a “break glass in case
of emergency” situation. An emergency has occurred,
so let’s be as prepared as possible.

 The application isn’t limited to returning only bad
news—it’s feasible to have the application monitor
good news as well. For example, figure 17.8 shows that
the Acme site has received over $1,000 worth of busi-
ness today! Note the highlighted numbers: one of the
side effects of the auto-linking is that it sometimes
returns false positives.

 The SiteMonitor application is AppWidget-centric.
Although you can configure and examine various
aspects of a specific site through the configuration
Activity, there’s no other means of interacting with
the application. This application doesn’t appear in the
main launcher screen. As a natural consequence
of relying solely on instances of an AppWidget for the
UI, the number of sites monitored by SiteMonitor is
limited by the amount of home-screen real estate avail-
able upon which SiteMonitor widget instances can be
placed. Remember the motivation to keep an App-
Widget design as conservative as possible with respect
to screen real estate. It’s impossible to have an AppWid-
get that takes up less than one of the 16 available
spaces on a home screen page, but easy to have one
that’s larger than a 1 x 1 space.

 Please keep in mind that this choice of making Site-
Monitor available exclusively as an AppWidget is an arbi-
trary design decision to demonstrate working with an
AppWidget. A simple extension of this application could
remove this intentional limitation. To add this applica-
tion to the home screen, you could add an Activity that presents each of the moni-
tored sites and then add the Activity to the home screen launcher.

 Now that you have a basic understanding of what SiteMonitor is attempting to do,
it’s time to look at how the application is constructed.

Figure 17.7 Easy dialing to an
affected user

Figure 17.8 Monitor the good
news also—revenue!

463SiteMonitor application architecture

between a specific widget instance and its data is stored in the application’s Shared-
Preferences E persistent store. The class SiteMonitorModel provides methods for
managing and manipulating these data model instances. An Activity F is employed
to permit a user to configure the widget instance data. This Activity is implemented
as class SiteMonitorConfigure.

 Each time a new SiteMonitor widget is added to the home screen, the Site-
MonitorConfigure Activity is invoked to query the user for site-specific data: name,
URL, home page. This auto-launching of an Activity happens thanks to a special
relationship between an AppWidget class and its configuration activity. This relationship
is defined in the metadata file 1!. This metadata is referenced by the <receiver>
entry of the SiteMonitorWidgetImpl class in the manifest file 1). Note that the prac-
tice of having a configuration Activity for an AppWidget is optional.

 When a SiteMonitor widget instance is added or removed, a corresponding
method in the SiteMonitorWidgetImpl class is invoked. The specific methods of this
class are described in section 17.3.2. The Android provided AppWidgetManager class
G acts as a helper to provide a list of AppWidget identifiers related to the Site-
MonitorWidgetImpl class. At this point, there are multiple widget instances on the
home screen, updating their visual display according to an update-refresh interval set-
ting defined in the metadata file 1!.

 As mentioned earlier, it’s common practice to perform an AppWidget update out-
side of its normally defined update interval. This update is generally accomplished
through the use of a Service, often triggered by an Alarm. It’s not a recommended
practice to have long-running Services in the background, so you use the preferred
method of employing an Alarm J that propagates a PendingIntent.

 The PendingIntent contains an Intent that’s received by the SiteMonitor-
Bootstrap class I. This class also contains static methods for managing the alarm,
called at various points in the application, each of which is discussed further in this
chapter. Consider the condition where there are no SiteMonitor widgets instantiated
on the home screen. If there are no hosted applications to monitor, there’s no need to
have a periodic alarm activated. Likewise, when a new SiteMonitor widget is added to
the home screen, it’s desirable for an alarm to be set to ensure that the widget is
updated periodically. The relationship between the Intent Action triggered by the
alarm and consumed by the SiteMonitorBootstrap class is defined in the manifest
1). The Action field of the Intent set in the Alarm’s PendingIntent matches the
IntentFilter Action for the SiteMonitorBootstrap.

 When the SiteMonitorBootstrap I receives the Intent in its onReceive method,
the resulting step is the starting of SiteMonitorService H. The SiteMonitorService
is responsible for carrying out the updates and checking on the hosted applications.

 When it’s started, the SiteMonitorService iterates through the available widgets
thanks again to assistance from the AppWidgetManager G, which provides a list of wid-
gets. For each active widget instance, the Service extracts the hosted application’s URL
and performs an HTTP GET to retrieve the most up-to-date status information. The data

model for each active AppWidget is updated with the information retrieved from the

464 CHAPTER 17 AppWidgets

hosted application. When all the site data
has been updated, the Service sends an
Intent broadcast, in effect asking the
SiteMonitorWidgetImpl class to update
the visual status of the widgets themselves.

 As you can see, there are quite a few
moving pieces here in this prototypical
AppWidget application. It may be helpful
to refer back to this section as you con-
sider each of the ensuing code descrip-
tions. Let’s now take a tour of the files in
the project.

17.3.2 File by file

We’ll be looking at code snippets soon,
but first let’s tour the project from a high
level, discussing the purpose of each sig-
nificant file in the project. Figure 17.10
shows the project in the Eclipse IDE, and
table 17.2 provides a brief comment for
each file.

Table 17.2 File listing for this project

Filename Comment

AndroidManifest.xml Contains definitions of each Application component in the applica-
tion along with IntentFilters and required permissions.

sitemonitorwidget.xml Defines AppWidgetProvider-specific attributes, including dimen-
sions, configuration activity, icon, and initial UI layout.

SiteMonitorWidgetImpl.java Contains the AppWidgetProvider implementation.

SiteMonitorConfigure.java Contains the Activity used to manipulate a specific entry’s data and
to view data received from a remote hosted application.

SiteMonitorModel.java Contains the methods for managing the SharedPreferences that
store widget-specific data elements.

SiteMonitorService.java Service responsible for performing the actual monitoring of remote
sites. Network communications take place on a background thread.

SiteMonitorBootstrap.java Contains code related to alarm management and is responsible for trig-
gering the SiteMonitorService under various conditions, including
alarm firing.

monitor.xml Defines the user interface elements used by the AppWidget on the
home screen.

Figure 17.10 SiteMonitorWidget in Eclipse

465AppWidget data handling

With this foundational understanding of how the various pieces relate to one another,
it’s time to start looking at the code behind this application. Although it may be
tempting to jump into the AppWidgetProvider implementation, we first need to look
at the code for handling the AppWidget-specific data.

17.4 AppWidget data handling
As mentioned earlier, each instantiated AppWidget has a unique numeric identifier
represented as an integer primitive (int). Any time the application is asked to work
on a particular AppWidget, this identifier value is available to the code. Sometimes it’s
provided, as in an Intent’s extras bundle; in other circumstances a collection of wid-
get identifiers is retrieved from the AppWidgetManager as an array of integers
(int []). Regardless of its source, managing the relationship between this identifier
and the AppWidget instance-specific data defined by your own applications is crucial
for success.

 For the SiteMonitor application, all data management is performed by the Site-
MonitorModel class, contained in the SiteMonitorModel.java source file. The Site-
MonitorModel class can be broken down into two logical sections: the instance data
and methods, and the static method. The instance portion of the class includes a
number of String member variables, their respective getter and setter methods, and
helpful bundling and unbundling methods.

 The underlying data storage persistence method is the application’s Shared-
Preferences, which we introduced in chapter 5. To keep things simple, every data ele-
ment is stored as a java.lang.String. When the entire “record” needs to be stored,
the data elements are combined into a composite delimited String. When the data is
read out of the SharedPreferences, the retrieved String is parsed and stored into
respective members based on ordinal position in the string. Although this approach is
perhaps pedestrian, it’s perfectly adequate for our purposes. Alternatively, we could’ve
employed an SQLite database or constructed our own ContentProvider, but both of
those mechanisms are overkill for this purpose at present. A ContentProvider is often
only justified if the data needs to be shared with components outside of a single appli-
cation suite.

 The data elements managed for each AppWidget include:

 Site name

main.xml Defines the user interface elements used in the
SiteMonitorConfigure Activity.

strings.xml Contains externalized strings; useful for easy management of textual
data and for potential localization.

Table 17.2 File listing for this project (continued)

Filename Comment
 Site update URL

466 CHAPTER 17 AppWidgets

 Site home page URL

 Status
 Last status date
 Message/comments

The class also includes four static methods used as helpers to manipulate instances of
widget data throughout the application. Three of these methods are related to persis-
tence of SiteMonitorModel data, and a fourth provides date formatting. This date for-
matting method was included to help standardize and centralize Date string
representation.

 The following listing presents the implementation of the SiteMonitorModel class,
minus a few setter/getters, which are omitted here but are included in the full source
listing available for download.

package com.msi.unlockingandroid.sitemonitor;

import java.text.SimpleDateFormat;
import android.content.Context;
import android.content.SharedPreferences;
import android.util.Log;

public class SiteMonitorModel {

 private static final String tag = "SiteMonitorModel";

 private static final String PREFS_NAME
"com.msi.unlockingandroid.SiteMonitor";
 private static final String PREFS_PREFIX = "sitemonitor_";

 private String name;
 private String url;
 private String homepageUrl;
 private String status;
 private String statusDate;
 private String message;

 public SiteMonitorModel(String name,String url,String homepageUrl,
String status,String statusDate,String message) {
 this.name = name;
 this.url = url;
 this.homepageUrl = homepageUrl;
 this.status = status;
 this.statusDate = statusDate;
 this.message = message;
 }

 public SiteMonitorModel(String instring) {
 Log.i(SiteMonitorModel.tag,"SiteMonitorModel(" + instring + ")");
 String[] data = instring.split("[|]");
 if (data.length == 6) {
 this.name = data[0];

Listing 17.1 SiteMonitorModel class

BContain constants for
SharedPreferences

persistence

Contain per-widget
data elements

C

Define
constructor

D

 this.url = data[1];

467AppWidget data handling

 this.homepageUrl = data[2];
 this.status = data[3];
 this.statusDate = data[4];
 this.message = data[5];
 } else {
 this.name = "?";
 this.url = "?";
 this.homepageUrl = "?";
 this.status = "WARNING";
 this.statusDate =
java.util.Calendar.getInstance().getTime().toString();
 this.message = "";
 }
 }

 public String getName() {
 return this.name;
 }
 public void setName(String name) {
 this.name = name;
 }

 // see full source code for remaining getter/setter methods

 public String storageString() {
 return this.name + "|" + this.url + "|" + this.homepageUrl + "|" +
this.status + "|" + this.statusDate + "|" + message;
 }

 public String toString() {
 return this.storageString(); }

 public static void saveWidgetData(Context context,int
widgetId,SiteMonitorModel model) {
 Log.i(SiteMonitorModel.tag,"saveWidgetData(" + widgetId + "," +
model.storageString() + ")");
 SharedPreferences.Editor prefsEditor =
context.getSharedPreferences(PREFS_NAME, 0).edit();
 prefsEditor.putString(PREFS_PREFIX +
widgetId,model.storageString());
 prefsEditor.commit();
 }

 public static SiteMonitorModel
getWidgetData(Context context,int widget) {
 Log.i(SiteMonitorModel.tag,"getWidgetData(" + widget + ")");

 SharedPreferences prefs =
 context.getSharedPreferences (PREFS_NAME, 0);
 String ret = prefs.getString(PREFS_PREFIX + widget,"BAD");
 if (ret.equals("BAD")) return null;
 return new SiteMonitorModel(ret);
 }

 public static void deleteWidgetData(Context context,int widgetId) {

Define
constructor/parser

E

Define
getter/setterF

Prepare data
for storageG

Override
toString()H

Save
widget data

I

Retrieve
widget
data

J

Return SiteMonitorModel
instance1)
 Log.i(SiteMonitorModel.tag,"deleteWidgetData(" + widgetId + ")");

468 CHAPTER 17 AppWidgets

 SharedPreferences.Editor prefsEditor =
context.getSharedPreferences(PREFS_NAME, 0).edit();
 prefsEditor.remove(PREFS_PREFIX + widgetId);
 prefsEditor.commit();
 }

 public static String getFormattedDate() {
 SimpleDateFormat sdf = new

SimpleDateFormat
("MMM dd HH:mm");
 return sdf.format(java.util.Calendar.getInstance().getTime());
 }
}

The SiteMonitorModel class meets the data management needs of the SiteMonitor
AppWidget. The underlying data persistence method is the application Shared-
Preferences and as such a couple of constant String values are employed B to iden-
tify the SharedPreferences data. Each data element is defined as a String member
variable C. Two distinct constructors are employed. The first constructor d is for cre-
ating a new instance from distinct String values, and the second constructor E is
used to parse out data for an existing widget that has been retrieved from a Shared-
Preference.

 Only one set of getter/setter methods F is shown in this listing, but they all
employ the same basic bean pattern.

 When preparing data to be stored in the SharedPreferences, the widget instance
data is reduced to a single delimited String with the assistance of the storageString
method G. The toString() method H is overridden and invokes the storageString
method.

 Data storage, retrieval, and deletion are handled in statically defined methods.
The saveWidgetData I method stores the widget data with a key of PREFIX_NAME +
widgetIdentifier. This means that the data for a widget with an ID of 200 would look
like this:

sitemonitor_200 = "sitename|url|homepageurl|status|statusDate|message"

For more specifics on using SharedPreferences, refer to chapter 5.
 Widget data is retrieved from SharedPreferences in the getWidgetData method

J. This method returns a SiteMonitorModel 1) by employing the parsing version of
the constructor E.

 When a widget is removed from the device, you delete the associated data with a
call to deleteWidgetData 1!.

 Finally, the getFormattedDate method 1@ is responsible for formatting a
java.util.Date string into a String representation with the help of a SimpleData-
Format class.

 At this point you should have a good feel for what data is managed and where it
lives. Let’s get to the code to actually implement an AppWidget!

Remove
widget
data

1!

1@
Format

status date

469Implementing the AppWidgetProvider

17.5 Implementing the AppWidgetProvider
The AppWidgetProvider for the SiteMonitor application is implemented in the file
SiteMonitorWidgetImpl.java. The AppWidgetProvider is responsible for handling
updates to the UI as well as responding to housekeeping events related to the App-
Widget lifecycle, and is arguably the most important aspect of AppWidget program-
ming to understand. Because of its centrality and importance to working with
AppWidgets, we’re going to look at the code from two perspectives.

17.5.1 AppWidgetProvider method inventory

The methods presented in table 17.3 represent the core AppWidgetProvider func-
tionality. Although these methods are common to AppWidgetProviders, the com-
ments are made in the context of the SiteMonitor application. Also, the final two
methods (denoted with *) are custom to the SiteMonitor application.

Table 17.3 Inventory of AppWidgetProvider methods

Method name Comment

onReceive This is the same method found in all BroadcastReceiver classes. It’s
used to detect ad hoc update requests, which it then hands off to the
onUpdate method.

onUpdate This method is responsible for updating one or more widget instances. The
method receives an array of widget identifiers to be updated.

onDeleted This method is invoked when one or more widgets are deleted. Like the
onUpdate method, this method receives an array of widget identifiers—in
this case each of these widgets has just been deleted. This method is
responsible for cleaning up any data stored on a per-widget basis.

onEnabled This method is invoked when the first AppWidget instance is placed on the
home screen. In SiteMonitor this method initiates an Alarm sequence, which
forces an update on a specific interval as defined within the
SiteMonitorBootstrap class.

onDisabled This method is invoked when the final AppWidget instance is removed from
the home screen. When there are no instances of the SiteMonitor widget,
there’s no need for updating them. Therefore the alarm is cleared. This
method doesn’t reliably get called when you think it ought to be invoked.

*UpdateOneWidget This static method is responsible for performing the update on a specific wid-
get. Because there are multiple scenarios for interacting with the
AppWidgets in our class, it was desirable to consolidate all widget UI
impacting code into a single method.

*checkForZombies The AppWidget subsystem has a nasty habit of leaving widgets behind with-
out an effective means of cleaning them up short of a reboot. Consequently
our AppWidgetProvider instance is consistently being asked to perform
operations on widgets that don’t exist any longer. This method is used as a
helper to the onDisabled method. Every time the onDelete method is
invoked, call this method to perform an additional cleanup step. When no
legitimate widgets are detected, clear the update alarm, performing the job

that the onDisabled method can’t reliably perform.

470 CHAPTER 17 AppWidgets

You now know what the method names are and the responsibility of each. It’s time to
examine the code. Let’s begin with the implementation of an AppWidgetProvider as
we look at SiteMonitorWidgetImpl.

17.5.2 Implementing SiteMonitorWidgetImpl

There’s a lot of code to examine in this class, so we’re going to break it into a couple
of sections. In listing 17.2 you can see the basic callbacks or hooks that respond to the
AppWidget events. As you know, every widget in the system has an integer identifier.
When you’re working with AppWidgets, it’s common to manipulate an array of these
identifiers, as shown in the upcoming listings, so keep an eye out for those identifiers
as you review the code.

package com.msi.unlockingandroid.sitemonitor;

import android.content.Context;
import android.content.ComponentName;
import android.content.Intent;
import android.app.PendingIntent;
import android.appwidget.AppWidgetProvider;
import android.appwidget.AppWidgetManager;
import android.widget.RemoteViews;
import android.net.Uri;
import android.util.Log;
import android.graphics.Color;

public class SiteMonitorWidgetImpl extends AppWidgetProvider {
 private static final String tag = "SiteMonitor";
 public static final String UPDATE_WIDGETS =
"com.msi.unlockingandroid.sitemonitor.UPDATE_WIDGETS";

 @Override
 public void onUpdate(Context context,AppWidgetManager
appWidgetManager,int[] appWidgetIds) {

 super.onUpdate(context, appWidgetManager, appWidgetIds);
 int count = appWidgetIds.length;
 Log.i(SiteMonitorWidgetImpl.tag,"onUpdate::" + count);
 // we may have multiple instances of this widget ... make
sure we hit each one ...
 for (int i=0;i<count;i++) {
 SiteMonitorWidgetImpl.UpdateOneWidget
(context, appWidgetIds[i]);
 }
 }

 public void onDeleted(Context context,int[] appWidgetIds) {
 super.onDeleted(context, appWidgetIds);
 Log.i(SiteMonitorWidgetImpl.tag,"onDeleted()" + appWidgetIds.length);
 for (int i = 0;i<appWidgetIds.length;i++) {

Listing 17.2 SiteMonitorWidgetImpl, which implements AppWidget functionality

AppWidget
imports

B

String used
for updates

C

onUpdate
methodD

Update of
single widgetE

F

 SiteMonitorModel.deleteWidgetData(context, appWidgetIds[i]);

onDeleted
method

471Implementing the AppWidgetProvider

 }
 checkForZombies(context);
 }

 public void onEnabled(Context context) {
 Log.i(SiteMonitorWidgetImpl.tag,"onEnabled");
 super.onEnabled(context);

 // set up the recurring alarm that drives our refresh process
 SiteMonitorBootstrap.SetAlarm(context);
 }
 public void onDisabled(Context context) {
 Log.i(SiteMonitorWidgetImpl.tag,"onDisabled()");
 super.onDisabled(context);
 // kill the recurring alarm that drives our refresh process
 SiteMonitorBootstrap.ClearAlarm(context);
 }

 public void onReceive(Context context,Intent intent) {
 super.onReceive(context, intent);
 Log.i(SiteMonitorWidgetImpl.tag,"onReceive()::" +
 intent.getAction());

 if (intent.getAction().equals
(SiteMonitorWidgetImpl.UPDATE_WIDGETS)) {

 Log.i(SiteMonitorWidgetImpl.tag,
"Updating widget basedon intent”);AppWidgetManager appWidgetManager =
AppWidgetManager.getInstance(context);
 int [] ids = appWidgetManager.getAppWidgetIds
(new ComponentName(context,SiteMonitorWidgetImpl.class));
 onUpdate(context,appWidgetManager,ids);
 } // trace me

 }
public static void UpdateOneWidget(Context context,int widgetNumber) {
 // shown in Listing 17.5
}

private void checkForZombies(Context context) {
 // shown in Listing 17.3
}

The first thing to observe in listing 17.2 is the presence of some imports B that pro-
vide resolution for the AppWidget-related classes. A String constant C is defined for
comparing against Intents received by this class in the onReceive method J. Note
that the protection level of this constant is public. It’s declared as a public member
because this String is used by other classes in the application to trigger an update
request.

 The onUpdate method D is invoked both periodically based on the widget’s
update frequency as well as on an ad hoc basis. Note that when this update occurs, it’s
simply performing a refresh of the AppWidget UI. The actual refreshing of the under-
lying data model is a separate and distinct operation, which is discussed in detail in

checkForZombiesG

Provider
enabled

H

Provider
disabledI

onReceive overrideJ

Check for
update request1)

1!List of
widgets
section 17.8.

472 CHAPTER 17 AppWidgets

 Once you have a list of widgets that require updating, each is updated in turn with
a call to SiteMonitorWidgetImpl.UpdateOneWidget E. This method is defined as a
static method, as it’s also called from the SiteMonitorConfigure Activity.

 The onDeleted method F handles the scenario where a widget is removed from
the home screen. When this method is invoked, it in turn calls the super class’s
onDeleted method. Next it removes the data related to each deleted widget with a call
to SiteMonitorModel.deleteWidgetData. Finally, this method wraps up with a call to
check for zombie widgets (which we describe in a moment) by calling checkFor-
Zombies G. It’s not uncommon to have a widget identifier allocated but the widget
itself not actually created. An example of this is when a configuration activity is
launched but then canceled by the user—no widget data gets created so you wind up
with widget identifiers not attached to meaningful widget data. The reason you want
to track this situation is to disable the update alarm when no legitimate widgets
remain. Also, note that the arguments to this method include an array of integers rep-
resenting the list of deleted widget instances. This array will usually consist of only a
single widget.

 When the AppWidgetProvider is enabled H, the update alarm is “set.” Note that
the onEnabled method can be used for other housekeeping setup tasks as well. This
method is triggered when the first AppWidget is created.

 The mirror image of the onEnabled method is the onDisabled method I. This
method cancels the alarm set previously in the onEnabled method. This method isn’t
called when you think it ought to be! Why? Because of the “zombie” widgets that lurk
about in the ether. It’s for this reason that the checkForZombies method was added to
this class, accommodating for the scenario where there are no active widgets but the
operating system believes they still exist. These widgets will persist until the device is
rebooted. The moral of the story here is that although these callback methods are
nice to have, it’s ultimately up to the developer to manage around the system. This will
in all likelihood be rectified in future releases but as of Android version 2.2, this “fea-
ture” remains.

 Rounding out this code listing, you see the onReceive method J. This is the same
method required of all BroadcastReceiver implementations—recall that App-
WidgetProvider extends the BroadcastReceiver. The super class’s onReceive

method is invoked and then the Intent is examined 1). If the Intent matches the
special update constant defined in this class, SiteMonitorWidgetImpl.UPDATE_
WIDGETS, the code gathers a list of relevant widget identifiers 1! and passes them to
the onUpdate method to be refreshed visually.

17.5.3 Handling zombie widgets

We’ve discussed at length the nature of the relationship between the widget identifier
and the widget data as defined and managed in the SiteMonitorModel class. There
are a number of places in the application where a widget identifier is available and the
code needs to check for the presence of legitimate data. One example of this is the

473Displaying an AppWidget with RemoteViews

processing that occurs after a widget instance is deleted. Listing 17.3 demonstrates a
technique for keeping track of legitimate versus zombie widget identifiers. If no legiti-
mate identifiers are found, the code disables the alarm—there’s no need to take up
more system resources than necessary.

private void checkForZombies(Context context) {
 Log.i(SiteMonitorWidgetImpl.tag,"checkForZombies");
 AppWidgetManager appWidgetManager =
AppWidgetManager.getInstance(context);
 int [] ids = appWidgetManager.getAppWidgetIds
(new ComponentName(context,SiteMonitorWidgetImpl.class));
 int goodCount = 0;
 for (int i=0;i<ids.length;i++) {
 SiteMonitorModel smm =
SiteMonitorModel.getWidgetData(context,ids[i]);
 if (smm != null) goodCount++;
 }
 if (goodCount == 0) {
 Log.i(SiteMonitorWidgetImpl.tag,
"There are no good widgets left! Kill alarm!”);

SiteMonitorBootstrap.clearAlarm(context);
 }
 }

All interactions with widgets rely on the availability of a valid widget identifier. To
obtain this information, the code must have access to the AppWidgetManager, which is
obtained with a call to that class’s static getInstance method B. The AppWidget-
Manager has a method named getAppWidgetIds C that takes a ComponentName argu-
ment. For each widget identifier, you attempt to load widget-specific data D. If no
valid widget identifier-to-data relationships are found, you can clear the alarm with a
call to SiteMonitorBootstrap.clearAlarm E.

 We have one method remaining to review: UpdateOneWidget. This method covers
such a broad range of topics that it’s discussed in its own section, coming up next.

17.6 Displaying an AppWidget with RemoteViews
An AppWidget runs in the process space of another application, typically the home
screen. Running in the space of another application has an impact on what can and
can’t be accomplished when interacting with UI elements. This section demonstrates
how an AppWidget’s user interface is managed through the use of the RemoteViews
class.

17.6.1 Working with RemoteViews

The RemoteViews class is used to permit a View to be displayed and managed from a
separate process. Unlike a traditional ViewGroup layout, which may be readily man-
aged via direct methods, the access to the view hierarchy inflated under the Remote-

Listing 17.3 Dealing with AppWidgets that won’t die off

Reference
AppWidgetManager

B

Get list
of widgetsC

Attempt to
load dataD

Clear
alarm

E

Views class is limited and rigid. For example, in a typical Activity the code can

474 CHAPTER 17 AppWidgets

inflate a layout by simply referencing it as R.layout.main and passing it to the
method setContentView. AppWidgets require more effort than this.

 The RemoteViews class offers two constructors. The one of most interest to us is
defined as

RemoteViews(String packageName, int layoutId)

The packageName can be obtained with a call to context.getPackageName() and the
layoutId is a layout defined in the normal manner using a subset of the familiar wid-
gets such as TextView and Button.

RemoteViews rv = new RemoteViews(context.getPackageName(),R.id.monitor);

Once a reference to a “remote view” is available, a proxy-like mechanism is available
for setting and getting basic properties of views contained within the view hierarchy
loaded by the RemoteViews instance. Here’s an example of changing the text in a
TextView identified by R.id.someTextView:

rv.setTextViewText(R.id.someTextView,"Fat cats buy ice");

Another available method is setInt, which passes an integer value to a named
method on a specified view. For example, to change the height of the view to 200 pix-
els, you can use the following code:

rv.setInt(R.id.someTextView,"setHeight",200);

When you’re working with RemoteViews, the only user interaction you can trap is a
click. You do so by passing a PendingIntent to the setOnClickListener method. The
following listing demonstrates this procedure.

Intent onClickedIntent = new Intent(context,SomeClass.class);
PendingIntent pi = PendingIntent.getActivity(context, 0, onClickedIntent, 0);
rv.setOnClickPendingIntent(R.id.someButton, pi);

To make a RemoteViews-based click handler, the first step is to create a new Intent.
Initialize the Intent in any manner appropriate for your task. In this example, you
define an Intent to launch a specific Activity. Next, create a PendingIntent using
the getActivity static method. One of the arguments to this method is the previously
created Intent. Then a call to the setOnClickPendingIntent method passing the
PendingIntent will wire up the desired behavior.

 Now that you have a feel for how RemoteViews operate, let’s finish up the discus-
sion of the SiteMonitorWidgetImpl class’s code.

17.6.2 UpdateOneWidget explained

All of the code presented thus far for the SiteMonitorWidgetImpl class has taken care
of the plumbing and scaffolding of the operation of our AppWidget. It’d be nice to get
something onto the screen of the phone! That’s where the UpdateOneWidget method

Listing 17.4 Setting up a PendingIntent to handle user interactions

475Displaying an AppWidget with RemoteViews

comes into play. Recall that the onUpdate method delegated the responsibility of
updating the screen to this method. The following listing demonstrates updating the
widget with the help of RemoteViews.

 public static void UpdateOneWidget(Context context,int widgetNumber) {
 Log.i(SiteMonitorWidgetImpl.tag,"Update one widget!");
 AppWidgetManager appWidgetManager =
 AppWidgetManager.getInstance(context);
 SiteMonitorModel smm = SiteMonitorModel.getWidgetData
(context, widgetNumber);

 if (smm != null) {
 Log.i(SiteMonitorWidgetImpl.tag,"Processing widget " +
smm.toString());

 RemoteViews views = new
RemoteViews(context.getPackageName(),R.layout.monitor);
 if (smm.getStatus().equals("GOOD")) {
 views.setTextColor(R.id.siteName, Color.rgb(0,255,0));
 views.setTextColor(R.id.updateTime, Color.rgb(0,255,0));
 views.setTextColor(R.id.siteMessage, Color.rgb(0,255,0));
 } else if (smm.getStatus().equals("UNKNOWN")){
 views.setTextColor(R.id.siteName, Color.rgb(255,255,0));
 views.setTextColor(R.id.updateTime, Color.rgb(255,255,0));
 views.setTextColor(R.id.siteMessage, Color.rgb(255,255,0));
 } else {
 views.setTextColor(R.id.siteName, Color.rgb(255,0,0));
 views.setTextColor(R.id.updateTime, Color.rgb(255,0,0));
 views.setTextColor(R.id.siteMessage, Color.rgb(255,0,0));
 }
 views.setTextViewText(R.id.siteName, smm.getName());
 views.setTextViewText(R.id.updateTime, smm.getStatusDate());

 // make this thing clickable!
 Intent intWidgetClicked = new
Intent(context,SiteMonitorConfigure.class);
 intWidgetClicked.setData(Uri.parse("file:///bogus" +
widgetNumber));
 intWidgetClicked.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
 widgetNumber);
 PendingIntent pi = PendingIntent.getActivity(context, 0,
intWidgetClicked, 0);
 views.setOnClickPendingIntent(R.id.widgetLayout, pi);
 appWidgetManager.updateAppWidget(widgetNumber,views);
 }
 else {
 Log.i(SiteMonitorWidgetImpl.tag,"Ignore this widget # " +
widgetNumber + ". Must be a zombie widget.");
 }
 }

Like virtually everything related to AppWidget programming, the first thing to do is

Listing 17.5 Updating the widget with RemoteViews in SiteMonitorWidgetImpl

Acquire
AppWidgetManager referenceB

C
Load

widget data

Create
RemoteViews
instanceD

Format
TextViews

E

Assign
text
values

F

GAssign unique data

HCreate PendingIntent
acquire a reference to the AppWidgetManager B. Next, you load the widget-specific

476 CHAPTER 17 AppWidgets

data associated with this widget identifier with SiteMonitorModel.getWidgetData C
and confirm that the data is valid. Assuming you have a good widget to work with, you
next create an instance of the RemoteViews class D, passing in an identifier for your
preferred layout R.id.monitor. Based on the status, you assign different TextColor
values E to each of the visible TextViews within the layout, as well as populate the
controls with the actual textual values for display with calls to setTextViewText F.

 At this point, your widget is now ready for display. You’d also like the user to be
able to tap on the widget and bring up related information. To do this, you must
assign a PendingIntent to a view within the view hierarchy represented by the
RemoteViews instance you previously instantiated.

 To begin, you create an Intent referencing your configuration activity Site-
MonitorConfigure. You next assign data related to this Intent with a call to the set-
Data method G. Note that the data here isn’t particularly important, as long as it’s
unique. The reason for this is related to the manner in which PendingIntents are
resolved. Without this uniqueness, each subsequent PendingIntent assignment would
replace the previously assigned Intent. By adding this custom and unique data to the
Intent, your PendingIntent becomes unique per widget. If you doubt this, just com-
ment out this line and find out what happens!

 Next you assign the widgetNumber to the key AppWidget.EXTRA_APPWIDGET_ID.
This is used to make things a bit easier in the SiteMonitorConfigure Activity, which
is discussed in the next section. A PendingIntent is created, requesting an Activity
H, and finally this PendingIntent is assigned to your widget via the setOnClick-
PendingIntent method. One piece of trivia to note here is that you’ve passed in an ID
for the LinearLayout of the user interface. Layouts often don’t have ID attributes
associated with them. Layouts are instances of ViewGroups, which are extensions of the
View class, so there’s no reason why you can’t assign an ID to the layout itself. The net
effect is that your entire widget is clickable. Considering the fact that it’s a mere 74
pixels square, this is a reasonable approach.

 At this point, much of the heavy lifting for our AppWidget is behind you. Let’s look
at some of the details associated with configuring a specific instance of an AppWidget
next, as we examine the SiteMonitorConfigure Activity.

17.7 Configuring an instance of the AppWidget
There are two scenarios where our AppWidget may be configured. The first is right
after the user requests its creation, and the second is when the user taps on an existing
widget instance on the home screen.

 Generally speaking, this Activity operates just as any other Activity you’ve expe-
rienced throughout the book. It inflates a layout, gets references to the various Views,
and responds to user input. Only a couple of items are worthy of highlighting here,
but they’re important details that you must implement.

 Let’s start with how Android knows which Activity to launch after a new instance
is created. To do that, we’ll take a brief side trip to look at the metadata related to this

AppWidget.

477Configuring an instance of the AppWidget

17.7.1 AppWidget metadata

Earlier we alluded to a special metadata file that defines attributes for an AppWidget.
This file is associated with a specific receiver entry in the AndroidManifest.xml file.
Within the metadata file, you can associate a specific Activity as the preferred con-
figuration tool. The following listing presents the sitemonitorwidget.xml file. Even
though our focus in this section is on the Activity, this is a good opportunity to tie
together a couple of ideas you’ve learned to this point.

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:minHeight="72dp"
 android:minWidth="72dp"
 android:initialLayout="@layout/monitor"
 android:updatePeriodMillis="0"
 android:configure=
"com.msi.unlockingandroid.sitemonitor.SiteMonitorConfigure"
 android:icon="@drawable/icon"
 >
</appwidget-provider>

Earlier in this chapter we described the screen real estate consumed by an AppWidget.
The height and width are specified as minimum values. Each of the available “spaces”
or cells in the screen is 74 pixels square. The formula for deriving the values here is the
number of cells requested times 74 minus 2.

 The initial layout used by the widget is defined in the initialLayout attribute. At
runtime the application is free to change the layout, but you should consider the fact
that by the time your widget is ready for updating, it’s already been placed on the
screen, so your expectations might be shattered if you were hoping to bump some
other widget out of the way!

 The updatePeriodMillis specifies the update interval. Based on the architecture
of the SiteMonitor, this has little importance, so set it to 0 to tell the widget not to
bother waking itself up to update. Setting this attribute to a nonzero value causes the
device to wake up periodically and call the onUpdate method in the AppWidget-
Provider implementation.

 Finally, you see the configure attribute, which permits you to specify the fully qual-
ified class name for the Activity to be launched when the user selects this widget
from the list of available widgets on the home screen. When the user is selecting from
the list of widgets, the icon displayed in the list is defined by the icon attribute.

 Now that the Activity is associated with our AppWidget, it’s time to examine the
key elements of the Activity. The full code is available for download. The snippets
shown here are only the portions particularly relevant to AppWidget interactions.

Listing 17.6 AppWidget metadata file defining widget characteristics

478 CHAPTER 17 AppWidgets

17.7.2 Working with Intent data

When the AppWidget’s configuration Activity is launched, the most important piece
of information is the associated widget identifier. This value is stored as an extra in the
Intent and should be extracted during the onCreate method. The following listing
demonstrates this technique.

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 etSiteName = (EditText) findViewById(R.id.etSiteName);
 etSiteURL = (EditText) findViewById(R.id.etSiteURL);
 etSiteHomePageURL = (EditText)
 findViewById(R.id.etSiteHomePageURL);
 tvSiteMessage = (TextView) findViewById(R.id.tvSiteMessage);

 final Button btnSaveSite =
(Button) findViewById(R.id.btnSaveSite);
 btnSaveSite.setOnClickListener(this);
 final Button btnVisitSite =
(Button) findViewById(R.id.btnVisitSite);
 btnVisitSite.setOnClickListener(this);

 widgetId =
getIntent().getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,widgetId);

 // lookup to see if we have any info on this widget
 smm = SiteMonitorModel.getWidgetData(this, widgetId);
 if (smm != null) {
 etSiteName.setText(smm.getName());
 etSiteURL.setText(smm.getUrl());
 etSiteHomePageURL.setText(smm.getHomepageUrl());
 tvSiteMessage.setText(smm.getMessage());
 }
 }

The Activity looks like boilerplate code, as it begins with wiring up the various view
elements in the layout to class-level variables B. The widgetId is extracted from the
startingIntent C. Again you see the relationship between widgetId and widget-
specific data managed by the SiteMonitorModel class D. If data is available, the GUI
elements are prepopulated with the values E. This scenario would only come into
play after the widget has been successfully created and subsequently clicked for man-
aging it.

 At this point, the Activity operates as expected, permitting the user to update the
details of the widget data as well as visit the associated website.

Listing 17.7 Setting up the configuration Activity to manage a widget instance

BWire
up GUI

CExtract widget identifier

Look up
widget data

D

Populate GUIE

479Configuring an instance of the AppWidget

17.7.3 Confirming widget creation

When the user has populated the required fields and hits the Save button, you need to
not only save the data via the SiteMonitorModel class but also let the AppWidget infra-
structure know that you’ve affirmed the creation of this widget instance. This takes
place by using the Activity’s setResult method along with an Intent containing an
extra indicating the widget number. In addition you want to ensure that the alarm is
enabled for future updates. Finally, you really don’t want to wait until the next alarm
interval elapses; you want to get an update now. The following listing demonstrates
how to accomplish each of these tasks.

public void onClick(View v) {
 switch (v.getId()) {
 case R.id.btnSaveSite: {
 saveInfo();
 // update the widget's display
 SiteMonitorWidgetImpl.UpdateOneWidget(v.getContext(), widgetId);

 // let the widget provider know we're done and happy
 Intent ret = new Intent();
 ret.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,widgetId);
 setResult(Activity.RESULT_OK,ret);

 // let's ask for an update and also enable the alarm
 Intent askForUpdate =
new Intent(SiteMonitorBootstrap.ALARM_ACTION);
 this.sendBroadcast(askForUpdate);
 SiteMonitorBootstrap.setAlarm(this);
 finish();
 }
 break;
 case R.id.btnVisitSite: {
 saveInfo();
 Intent visitSite = new Intent(Intent.ACTION_VIEW);
 visitSite.setData(Uri.parse(smm.getHomepageUrl()));
 startActivity(visitSite);
 }
 break;
 }
 }

When the user clicks the Save button (or the Visit Site button), the widget-specific
data is saved B. There’s nothing fancy there—just a call to SiteMonitor-

Model.saveWidgetData(). The AppWidget subsystem is supposed to update the UI of
the widget after the Configuration dialog box completes successfully, but experience
shows that this isn’t always the case. Therefore a call is made to SiteMonitorWidget-
Impl.UpdateOneWidget with the newly created widgetId C.

Listing 17.8 Handling button clicks in the configuration Activity

Save dataB
CUpdate

widget’s UI

D

Set alarmF

Save dataB

Visit site
home page

G

480 CHAPTER 17 AppWidgets

 An important step in the life of a new AppWidget is to be sure to set the Activity
result to RESULT_OK D, passing along an Intent extra that identifies the new widget
by number.

 At this point our new widget is populated with a name and no meaningful status
information. To force an update, you broadcast an Intent that simulates the condi-
tion where the alarm has just triggered E. You also want to ensure that the alarm is
armed for a subsequent operation, so you call SiteMonitorBootstrap.setAlarm F.

 In the event that the Visit Site button is clicked, you want to take the user to the
defined home page of the currently active site being monitored by the widget G.

 The last condition to handle is the case where the widget has been selected from
the Add New Widget list on the home screen when the user cancels out of the config-
uration activity. In this case the widget shouldn’t be created. To achieve this result, you
set the result of the Activity to RESULT_CANCELED as shown in this listing.

 public void onDestroy() {
 super.onDestroy();
 if (!isFinishing()) {
 Intent ret = new Intent();
 ret.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,widgetId);
 setResult(Activity.RESULT_CANCELED,ret);
 }

This code overrides the onDestroy method. If this method is invoked for any reason
other than finish() was called by the Activity itself, you want to “cancel” the
Activity. This is accomplished with a call to setResult with the inclusion of the
Intent extra to pass along the widget identifier. Note that this cancel step is only
required when the widget instance is first created. There’s no harm in setting the
result for future invocations of the Activity.

 At this point our AppWidget is created, you know how to store data, and you know
how to configure a particular instance of the SiteMonitor widget. What’s needed next
is to update the data. For that, we’ll look at the SiteMonitorService.

17.8 Updating the AppWidget
Our AppWidget instances on the home screen are only useful if they’re actually keep-
ing data up-to-date. One means for performing this update is to solely rely on the
AppWidgetProvider’s onUpdate method. The onUpdate method is invoked periodi-
cally according to the schedule specified in the metadata file.

 One reason for updating the widget outside of the AppWidgetProvider is to pro-
vide more granularity than afforded by the built-in scheduling mechanism. For exam-
ple, you may wish to update the data more frequently than once per hour depending
on the conditions. Imagine an AppWidget that tracks stock prices. It makes little sense
to have the widget update when the market is closed, and it wouldn’t be unreasonable

Listing 17.9 Checking for a cancel
to update once every 15 minutes during market hours.

481Updating the AppWidget

 Fortunately, the SiteMonitorWidgetImpl can process ad hoc updates. You’re
already set up for this because you’re overriding the onReceive method. When the
onReceive method receives an Intent with an Action equaling SiteMonitorWidget-
Impl.UPDATE_WIDGETS, the widgets are updated on the home screen. So, now all you
need to do is sort out how (and when) to update the underlying data.

 Beyond the AppWidget built-in scheduler, there are basically two mechanisms for
periodic updates. The first approach is to create a Service that periodically performs
an update. The other approach is to set an Alarm that triggers the update on a recur-
ring basis. Let’s take a brief look at both strategies.

17.8.1 Comparing services to alarms

A constantly running Service is capable of performing this periodic update; it’s the
ideal place to perform operations that are to be carried out in the background. An
Android Service is the appropriate vehicle for performing the update work—talking
to a remote hosted application—but what about all the idle time between updates?
Does the application need to be running, consuming resources but adding no addi-
tional value? Also, what happens if the Service stops running? Do you configure it to
be restarted automatically? Perhaps it should be kept running at all times, but at what
impact on the device’s overall performance? You need to conserve battery resources as
well as keep the load on the CPU as low as feasible to improve overall device responsive-
ness. This approach isn’t ideal because a long-running Service that’s idle the majority
of the time consumes resources unnecessarily and brings little overall benefit.

 What about an alarm? An alarm can be set to trigger once or periodically. Addi-
tionally, an alarm may be configured to trigger only when the device is awake—if the
widget doesn’t need to be updated while you and your device are sleeping, there’s no
need to unnecessarily expend battery resources to perform an update you may never
see! Also, the Alarm Manager can group a number of periodic alarms so that the
device wakes up for short windows of activity rather than every time an alarm may
request it. By giving Android some latitude on when an alarm can be fired, you can
further manage battery resources for longer life.

 As much as we like the alarm approach, there’s one thing you need to keep in
mind: an alarm has no ability in and of itself to perform any real activity beyond sig-
naling. The alarm can signal and the Service can perform the actual update, so the
correct answer here is to use both an alarm and a Service. And for good measure
we’re going to use a BroadcastReceiver to add more flexibility into the mix. Looking
back at figure 17.9, you see that the preferred architecture is to have an alarm send an
Intent via broadcast to a BroadcastReceiver, which in turn initiates a Service to per-
form the update process—fetching data over the internet from the various data
sources. Once the data is fetched and the SiteMonitorModel updated, you can
request that the widgets themselves be refreshed visually and the Service can shut
down. It’ll be started again for the next periodic update.

 Let’s see how the alarm is managed.

482 CHAPTER 17 AppWidgets

17.8.2 Triggering the update

Services have been covered in various portions of this book already, so they’ll receive
relatively little coverage here. Of more interest in this section is the relationship
between the alarm, the BroadcastReceiver, and the Service. Let’s look first at the
code in SiteMonitorBootstrap.java.

package com.msi.unlockingandroid.sitemonitor;

import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.SystemClock;
import android.util.Log;

public class SiteMonitorBootstrap extends BroadcastReceiver {
 private static final String tag = "SiteMonitorBootstrap";
 public static final String ALARM_ACTION =
"com.msi.unlockingandroid.sitemonitor.ALARM_ACTION";

 private static final long UPDATE_FREQUENCY =
(1000 * 60 * 60);
// default to one hour

 @Override
 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();

 Log.i(SiteMonitorBootstrap.tag,"onReceive");

 if (action.equals(SiteMonitorBootstrap.ALARM_ACTION)) {
 Log.i(SiteMonitorBootstrap.tag,
"Alarm fired -- start the service to perform the updates");
 Intent startSvcIntent = new
Intent(context,SiteMonitorService.class);
 startSvcIntent.putExtra("ALARMTRIGGERED", "YES");
 context.startService(startSvcIntent);
 }
 }

 public static void setAlarm(Context context) {
 Log.i(SiteMonitorBootstrap.tag,"setAlarm");
 AlarmManager alarmManager =
(AlarmManager)context.getSystemService(Context.ALARM_SERVICE);

 // setup pending intent
 Intent alarmIntent = new Intent(SiteMonitorBootstrap.ALARM_ACTION);
 PendingIntent pIntent = PendingIntent.getBroadcast(context, 0,
 alarmIntent, PendingIntent.FLAG_UPDATE_CURRENT);

 // now go ahead and set the alarm

Listing 17.10 SiteMonitorBootstrap.java

Set up
Intent action

B

Update
frequency

C

Check for
update
trigger

D

Start
service

E

FGet AlarmManager
reference

GCreate PendingIntent

483Updating the AppWidget

 alarmManager.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 SystemClock.elapsedRealtime() + SiteMonitorBootstrap.UPDATE_FREQUENCY,
SiteMonitorBootstrap.UPDATE_FREQUENCY, pIntent);
 }

 public static void clearAlarm(Context context) {
 Log.i(SiteMonitorBootstrap.tag,"clearAlarm");
 AlarmManager alarmManager =
(AlarmManager)context.getSystemService(Context.ALARM_SERVICE);

 // cancel the pending intent!
 Intent alarmIntent = new Intent(SiteMonitorBootstrap.ALARM_ACTION);
 PendingIntent pIntent = PendingIntent.getBroadcast(context, 0,
alarmIntent, PendingIntent.FLAG_UPDATE_CURRENT);

 alarmManager.cancel(pIntent);

 }

}

The SiteMonitorBootstrap class is responsible for managing alarms within the appli-
cation as well as the starting the SiteMonitorService as needed. This class is a
BroadcastReceiver and as such overrides the onReceive method, looking for
Intents D that it can process. The only IntentFilter set up for this class is for the
SiteMonitorBootstrap.ALARM_ACTION B. This constant is declared as a public static
member so it can be accessed from other components as well as the local alarm. The
update frequency is fixed and set in the UDPATE_FREQUENCY constant C. An enhance-
ment for this type of application would be to make this setting user configurable in
some fashion. When an ALARM_ACTION Intent is encountered, an Intent is created to
start the SiteMonitorService E It’s the responsibility of the SiteMonitorService to
perform the update of the configured SiteMonitor widgets.

 This class can readily be extended to detect other events such as the device boot-
ing or power events. For example, if it’s detected that the device is being charged—a
nonbattery power source is detected—the frequency of updates could be increased.
Similarly, if it’s detected that the device is now roaming, this could suspend the update
process to minimize any data roaming charges.

 Beyond acting as a BroadcastReceiver to react to events of interest, this code also
contains two static methods for setting and clearing the application-defined alarm.
Let’s walk through the two routines, starting with the setAlarm method. The first step
in working with an alarm is to obtain a reference to the AlarmManager F. When set-
ting an alarm, you must create a PendingIntent that contains the Intent to be dis-
patched when the alarm triggers. In this case you create a PendingIntent G that
represents a subsequent Broadcast of the SiteMonitorBootstrap.ALARM_ACTION
Intent. In essence, you’re setting an alarm to send an Intent to this Broadcast-
Receiver, which in turn initiates the update process. Once the PendingIntent is set
up, it’s passed as an argument to the setRepeating method H. When canceling the
alarm, the steps are the same, except you call cancel I.

HArm alarm

Cancel alarmI

484 CHAPTER 17 AppWidgets

 You’ve done a lot of setup, and now it’s time to look at the code that performs the
update of the underlying widget-specific hosted application status data.

17.8.3 Updating the widgets, finally!

Once the SiteMonitorService code is in control, updating the widgets is rather easy.
Updating the SiteMonitorModel data is the sole responsibility of the Site-

MonitorService. To accomplish this task, the SiteMonitorService performs these
basic operations:

1 Starts a thread to perform the update
2 Updates each of the sites in turn
3 Shuts itself down to conserve resources

The Service creates a separate Thread for performing the update, because by default
the Service attempts to run on the main GUI thread of the device. Running in a sepa-
rate Thread of execution inside a Service is arguably the best place to perform a poten-
tially blocking operation such as the operation required of the SiteMonitorService.

 Let’s look at the code structure of the SiteMonitorService class.

package com.msi.unlockingandroid.sitemonitor;

import android.app.Service;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;
import android.appwidget.AppWidgetManager;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;

public class SiteMonitorService extends Service {

 private static final String tag = "SiteMonitorService";

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 Log.i(SiteMonitorService.tag,"onStartCommand");

 Thread smu = new Thread(new
SiteMonitorUpdater(this.getBaseContext()));

Listing 17.11 SiteMonitorService class

Create, start
new Thread

B

 smu.start();

485Updating the AppWidget

 return Service.START_NOT_STICKY;

 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 Log.i(SiteMonitorService.tag,"onDestroy");
 }

 class SiteMonitorUpdater implements Runnable {
 private static final String tag = "SiteMonitorUpdater";

 private Context context;

 public SiteMonitorUpdater(Context context) {
 this.context = context;
 }

 public void run() {
 Log.i(SiteMonitorUpdater.tag,"Running update code");
 updateAllSites();
 stopSelf();
 }

 private void updateAllSites() {
 // discussed in Listing 17.12
 }

 private void updateOneSite(SiteMonitorModel smm,int widgetId) {
 // discussed in Listing 17.12
 }

 private String getDataFromSite(String siteUrl) {
 // discussed in Listing 17.12
 }

 }

}

The first step this service takes is the creation of a new Thread B based on the Site-
MonitorUpdater class D. Once created, the thread is started. The Service then
returns Service.START_NON_STICKY C. This tells Android not to restart the Service
if it either crashes or is killed by the operating system. Because our Service will be
started periodically, there’s no need to have the operating system restart it.

 All the update code resides in the SiteMonitorUpdater class D. In the run
method of this class, you perform two steps. First you call a method called updateAll-
Sites E, which, as the name implies, performs the various steps to update the widget
data. Once that operation is complete, the service calls stopSelf, which cleanly termi-
nates the service F.

 At this point our Service is starting and has created an instance of the private
SiteMonitorUpdater class. Let’s look at the update operations.

Don’t
restart serviceC

Define
SiteMonitorUpdater

D

Update all sitesE
Stop serviceF

486 CHAPTER 17 AppWidgets

 private void updateAllSites() {
 Log.i(SiteMonitorUpdater.tag,"updateAllSites");

 try {
 AppWidgetManager appWidgetManager =
AppWidgetManager.getInstance(context);
 ComponentName widgetComponentName = new
ComponentName(context,SiteMonitorWidgetImpl.class);
 int [] widgetIds =
appWidgetManager.getAppWidgetIds(widgetComponentName);
 for (int i=0 ; i< widgetIds.length; i++) {
 SiteMonitorModel smm =
SiteMonitorModel.getWidgetData(context, widgetIds[i]);
 if (smm != null) {
 updateOneSite(smm,widgetIds[i]);
 } else {
 Log.i(SiteMonitorUpdater.tag,"Ignore this zombie widget!");
 }
 }

 Intent updateWidgetsIntent = new
Intent(SiteMonitorWidgetImpl.UPDATE_WIDGETS);
 context.sendBroadcast(updateWidgetsIntent);

 Log.i(SiteMonitorUpdater.tag,"Complete!");
 } catch (Exception e) {
 Log.e(SiteMonitorUpdater.tag,"updateAlLSites::caught exception:" +
 e.getMessage());
 e.printStackTrace();
 }
 }

 private void updateOneSite(SiteMonitorModel smm,int widgetId) {
 try {
 Log.i(SiteMonitorUpdater.tag,"updateOneSite: [" + smm.getName() +
"][" + widgetId + "]");

 // get update report from this site's url
 Log.i(SiteMonitorUpdater.tag,"url is [" + smm.getUrl() + "]");
 String dataFromSite = getDataFromSite(smm.getUrl());
 String[] data = dataFromSite.split("[|]");
 if (data.length == 2) {
 smm.setStatus(data[0]);
 smm.setMessage(data[1]);
 }
 smm.setStatusDate(SiteMonitorModel.getFormattedDate());
 SiteMonitorModel.saveWidgetData(context, widgetId, smm);

 } catch (Exception e) {
 Log.e(SiteMonitorUpdater.tag,"updateOneSite::caught exception:" +
e.getMessage());
 e.printStackTrace();

 }

Listing 17.12 Iterating through each of the sites and request updates

Get
widget
list

B

Load
widget data

C

Update widgetD

Refresh
widget UI

E

Download,
parse data

F

Update
widget
dataG

HSave widget data
 }

487Updating the AppWidget

 private String getDataFromSite(String siteUrl) {
 String ret = "BAD|unable to reach site";
 URL url;

 try {
 url = new URL(siteUrl);
 HttpURLConnection urlConn = (HttpURLConnection)
 url.openConnection();
 BufferedReader inBuf = new BufferedReader(new
InputStreamReader(urlConn.getInputStream()));
 String inputLine;
 String result = "";
 int lineCount = 0; // limit the lines for the example
 while ((lineCount < 10) && ((inputLine = inBuf.readLine()) !=
null)) {
 lineCount++;
 Log.v(SiteMonitorUpdater.tag,inputLine);
 result += inputLine;
 }

 inBuf.close();
 urlConn.disconnect();

 return result;

 } catch (Exception e) {
 Log.d(SiteMonitorUpdater.tag,"Error caught: " + e.getMessage());
 e.printStackTrace();
 return ret;
 }
 }

The updateAllSites method starts like so many other methods in this chapter: by
obtaining a reference to the AppWidgetManager and creating a list of widgets B. For
each widget identifier, the code attempts to load the associated widget data C and
perform an update by calling the updateOneSite method D.

 The updateOneSite method invokes the getDataFromSite method F. The get-
DataFromSite method performs some basic HTTP GET code to retrieve a string from
the remote site I. Once the data is retrieved from the remote site, it’s returned J to
the updateOneSite method.

 The returned data is parsed and stored in the SiteMonitorModel instance G. The
date is updated and the widget data is saved with a call to SiteMonitor-

Model.saveWidgetData H.
 After all the sites have been updated, an Intent is broadcast with the action Site-

MonitorWidgetImpl.UPDATE_WIDGETS E. This causes the user widget UI to update,
reflecting the most recent updated information.

 That concludes the review of the code for this chapter. Let’s now look at
AndroidManifest.xml, which has a lot of important information tucked away.

Talk to
web

server
I

Return web dataJ

488 CHAPTER 17 AppWidgets

17.9 Tying it all together with AndroidManifest.xml
If you’re ever experiencing problems with an Android application, particularly during
development, remember to check the manifest file. Chances are that you’ve forgotten
to define an Activity or omitted a request for a required permission. The following
listing presents the AndroidManifest.xml used for the SiteMonitor application. Look-
ing at this should tie together any loose ends on how an AppWidget application can
be constructed.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.unlockingandroid.sitemonitor"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
android:label="@string/app_name">
 <activity android:name=".SiteMonitorConfigure"
 android:label="@string/app_name">
 <intent-filter>
 <action
android:name="android.appwidget.action.APPWIDGET_CONFIGURE" />
 </intent-filter>
 </activity>
 <receiver android:name=".SiteMonitorWidgetImpl">
 <intent-filter>
 <action android:name=
"android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 <intent-filter>
 <action android:name=
"com.msi.unlockingandroid.sitemonitor.UPDATE_WIDGETS" />
 </intent-filter>
 <meta-data android:name="android.appwidget.provider"
android:resource="@xml/sitemonitorwidget" />
 </receiver>
 <receiver android:name=".SiteMonitorBootstrap">
 <intent-filter>
 <action

android:name="com.msi.unlockingandroid.sitemonitor.ALARM_ACTION" />
 </intent-filter>
 </receiver>
 <service
 android:name=".SiteMonitorService"
 android:enabled="true">
 </service>

 </application>
<uses-permission android:name="android.permission.INTERNET">
</uses-permission></manifest>

AndroidManifest.xml contains all the ingredients required to ensure that the applica-

Listing 17.13 AndroidManifest.xml

Package declarationB

Application tagC

SiteConfigure
ActivityD

EConfiguration IntentFilter

FSiteMonitorWidgetImpl receiver
Auto Update
IntentFilter

G

AdHoc Update
IntentFilter

H

AppWidget
metadata

I

JSiteMonitorBootstrap receiver

SiteMonitorService1)
tion components know how to link to one another at runtime. All the components

489Summary

within the application share the same package name B. The Application tag defines
the name of the application C label, which in this case is taken from a string
resource named app_name.

 The SiteMonitorConfigure Activity is declared D. Note the presence of the
IntentFilter named android.appwidget.action.APPWIDGET_CONFIGURE E. The
presence of this IntentFilter, along with the contents of the AppWidget’s metadata
file I, serve to provide the necessary elements to support the use of an AppWidget-
Provider. Note that this metadata file is stored in the xml folder beneath the res
folder. This xml folder must be created manually, as it’s not part of the stock project
folders when a new Android project is created in Eclipse.

 The class SiteMonitorWidgetImpl F is defined with a receiver tag and additional
pieces of information that are essential for this application’s proper operation. This
receiver contains the android.appwidget.action.APPWIDGET_UPDATE IntentFilter
G along with the custom IntentFilter with an action of com.msi.unlocking-
android.sitemonitor.UPDATE_WIDGETS H. This is the Intent Action used when the
application wants to update the visual representation of the AppWidgets. This
receiver tag also refers to the metadata entry that defines the attributes for an
android.appwidget.provider.

 The SiteMonitorBootstrap is defined J along with an action of com.msi.
unlockingandroid.sitemonitor.ALARM_ACTION. This action triggers the launching of
the SiteMonitorService 1). Finally, the SiteMonitorService can’t retrieve data over
the Internet without the uses-permission of android.permission.INTERNET.

17.10 Summary
In this chapter we covered AppWidgets; you learned not only what they are but how
they can be used and what it takes to make them operate at runtime. You learned that
there can be more to the AppWidget than meets the eye. A smart phone’s home screen
is where users spend most of their time, so learning how to add value to the home
screen is an essential skill for Android developers.

 We presented some usage scenarios for AppWidgets and introduced a sample appli-
cation named SiteMonitor that served as the context for discussing AppWidgets. This
application demonstrated the techniques required to manage widget instances and
refresh remote data in a nontrivial application. We explained the architecture
required to support SiteMonitor and then presented it in a step-by-step fashion.

 The major building blocks of the sample application presented important topics
such as managing widget data through the versatile SiteMonitorModel class. Han-
dling widget-specific data is critical to a successful AppWidget application. This chap-
ter also covered some of the “undocumented features” of Android’s AppWidgets and
you learned how to code around those features.

 This chapter explored the use of many of the other skills you’ve learned through-
out this book. The chapter covered AppWidgets but also integrating with Shared-
Preferences, managing alarms, Services, RemoteViews, Threads, and more. After

490 CHAPTER 17 AppWidgets

building an AppWidget with moving pieces behind the scenes, you now have an appre-
ciation of how and where AppWidgets can be deployed and how Android may be lever-
aged to deliver intuitive and high-value applications to your customers.

 In the next chapter we look at another important feature set of Android devices:
the numerous sensors that make these devices much more than a mere telephony tool.

Localization
Android is a worldwide open platform gaining market share at a rapid pace. As
Android reaches into new markets globally, the opportunity for mobile developers
to distribute applications is reaching a level previously enjoyed by only the most
successful of software products and projects. You can deploy an application across
the globe, have the Google Marketplace handle the commercial transaction, and
receive a royalty check. And you can accomplish all this without ever leaving your
home office or dorm room!

 To sell an application worldwide successfully, you must target it to a broad and
diverse audience. English enjoys a broad acceptance and practice, and therefore you
can expect that an English language application will sell well globally, but why give
up on sales opportunities to the broader non-English-speaking Android market? In
its simplest approach, this means translation into multiple languages. But there’s

This chapter covers
 The need for localization

 Strategies for localizing an application

 Dynamic localization in Java

 Obstacles to late localization
491

more! Beyond language translation, an application needs to properly handle dates

492 CHAPTER 18 Localization

and times, number and currency formats, and for some applications unit of measure.
This chapter is an introduction to the localization capabilities of the Android platform.

 In this chapter we cover the topics required for localizing an application. You’ll
learn high-level strategies for localizing an application, and you’ll take a hands-on
approach to converting an existing application to another language. Looking back to
chapter 12’s Field Service application, you’ll refactor that code to be localization
ready and then translate it to Spanish. We demonstrate the localized version of the
application through screenshots throughout the chapter.

 We conclude the chapter with a discussion of challenges of localizing an applica-
tion as an afterthought rather than designing for localization from the start.

 We think it’s only fair to note that the author of this chapter is a native English
speaker and his knowledge of any languages beyond English involves computer pro-
gramming: Java, C, C#, Objective-C, and so on. If you’re one of the talented and fortu-
nate among us who can speak numerous languages, please bear with the rest of us as
we broaden our horizons to the global scene.

18.1 The need for localization
For many programmers there’s only one language: Java. Of course the world is larger
than one programming language, and it’s much larger than a single spoken and writ-
ten language. The majority of computer users choose a language when they set up
their computer and never think twice about the decision. In fact, after the initial setup
many of the resources related to other languages may even be deleted from the com-
puter or phone, to save storage space. If this describes your experience, you’re not
alone! The aim of this chapter is to equip you to navigate the task of localizing an
Android application and in the process reach a broader audience. As a side benefit,
you’ll likely find that you look at application development differently, even if you
never pursue localization of your own applications.

 The reasons for localizing an application are manifold. For a commercial applica-
tion, there are numerous markets to reach; there’s no need to limit your sales to a sin-
gle marketplace. Your application may be bound for some cultural reasons to a
specific region, but many applications such as games, utilities, and productivity tools
are of universal interest and appeal. Games in particular are often relatively light in
textual components, with the majority of the text constrained to settings screens and
help files. It’s to the developer’s advantage to access additional markets to increase
sales volume. Volume is important, considering the low price point of most mobile
applications.

 Even if your application isn’t designed to generate sales revenue directly, its pur-
pose may be to help build your brand and expand your influence. If you’re part of an
organization with a presence beyond your home country, localization is important to
you as well.

 Incredibly, the market reach of the mobile phone is greater worldwide than that of
the personal computer. People even have cell phones ahead of running water in some

493Exploring locales

parts of the globe. Many of these cell phones run a version of the Android OS, so as an
Android developer, you can reach a large and diverse market. A small amount of reve-
nue across numerous transactions can really add up!

 Whether your purpose in localizing an application is to increase sales or to reach a
new market for noncommercial reasons, you need a strategy and some practical skills,
both of which you’ll learn in this chapter. Before jumping into the details of localizing
an application, let’s examine the concept of a locale.

18.2 Exploring locales
A locale is generally referenced as a short character code including both the language
and the geographic region. The origin and meaning of these values stem from politi-
cal actions and boundaries, both of which change over
time. Our discussion should be considered practical and
hopefully useful rather than being a treatise on the history,
meaning, and minutia of the “official” definition of locale,
which is elusive.

 As language and regional barriers are blurred thanks to
technology, the concept of a locale has been employed
imperfectly to aid electronic communication. The ISO for-
mat for a locale identifier is a short character code of the
following syntax:

language_REGION

where the language is represented first as two lowercase
characters and followed by the region, which is repre-
sented as two uppercase characters. For example, the
locale setting most Android phones employ in the United
Kingdom is en_GB for “English, Great Britain.” In Australia,
the value is en_AU. en_US is the locale for English in the
United States. Figure 18.1 shows an Android emulator
instance indicating the various flavors of English locales in
the Customize Locale application.

 To access the available locales on an Android device,
select Language & Keyboard from the Settings app, then
tap on Select Language. This presents the installed locale
options, as shown in figure 18.2.

 When you speak of a locale, you often think of lan-
guage: English, Spanish, Chinese, Polish, and so forth.
Locale is more about orthography, or the rules for the writ-
ten language. But the topic of localization encompasses
more than just words. For example, Great Britain and the
United States share a common language: English. The dif-

Figure 18.1 English locales
on Android emulator
ferences extend beyond how the language is used and how
Figure 18.2 On-device
locale options

494 CHAPTER 18 Localization

certain words are spelled. Consider the formatting of
dates, which differs on either side of the Atlantic
Ocean. In the United States, it’s common to format a
date with the month preceding the day: MM/DD/YYYY.
In the UK, it’s more common to see the day of the
month listed first: DD/MM/YYYY.

 As an Android developer, you must keep not only
written language in mind, but also the formatting of
dates, times, and numbers that users can customize.
These differences are more than trivia; they have a
direct impact on how an application is coded, how it
behaves, and importantly, how it’s tested prior to
release. The Date & Time settings are shown in a sepa-
rate preferences screen, as you can see in figure 18.3.

 As the use of speech technology improves and
becomes more heavily adopted, the spoken word will
also be germane to the topic of localization.

 Localization in practice entails more than just pick-
ing a language, so let’s talk strategy on localizing an
Android application.

18.3 Strategies for localizing an application
Ideally an application is built from the “top down” with localization1 in mind from day
one. If you always take this approach from the start, congratulations, this topic will be
a breeze for you. But if you’ve ever written an application that has some hard-coded
strings or perhaps some code that makes specific assumptions about status codes or
date formatting, you have some work to do to make your applications play nicely
across multiple locales.

 There are a number of perspectives on localization. We won’t cover all of them,
but the discussion that follows should give you a good foundation for localizing your
application. Throughout this chapter, most of the code examples we use are from a
localized variant of the Field Service application you met in chapter 12. The code in
chapter 12 is not localized. The chapter 20 code is both localized and is additionally
translated into Spanish. Let’s get started!

18.3.1 Identifying target locales and data

In all likelihood, you’ll develop your Android application in your native language and
your initial target deployment may be in that same language. Your application may be
aimed at a specific people group and a specific language. Whether you’re targeting a

1 Localization is the how to, and the why. Frank Ableson’s post on Linux Magazine scratches the surface:

Figure 18.3
Date and time settings
http://www.linux-mag.com/id/7794.

495Strategies for localizing an application

broader audience or a specific single market, it’s a good idea to always keep your tar-
get market in mind.

 For example, in the Field Service application, you may have users, customers, and
dispatchers distributed anywhere in the world. This means that you need to keep the
entire infrastructure in mind, not just the mobile application. You might congratulate
yourself for making your application play nicely in the fr_FR locale settings, but if all
the application data is still shown in English, you’re missing a vital element of the big-
ger objective. So not only does your mobile code need to be localized, but the entire
infrastructure needs to keep locale in focus.

 Data generated on the server may require on-the-fly translation. Perhaps a simpler
approach is to filter query results based on the specified language. The device’s locale
can be programmatically obtained at runtime using the toString() method of the
Locale class. This is shown in the following listing and demonstrated in figure 18.4
and figure 18.5.

private void RefreshUserInfo() {
 final TextView emaillabel = (TextView) findViewById(R.id.emailaddresslabel);
 emaillabel.setText(this.getString(R.string.user) +": " +
this.myprefs.getEmail() + "\n" + this.getString(R.string.server)+ ": " +
 this.myprefs.getServer() + "\n" +
 this.getString(R.string.locale) + ":" + Locale.getDefault().toString()

);
 }

You obtain a reference to a TextView widget for dis-
playing textual information at runtime. The get-
Default() static method returns the currently
selected locale. The toString() method displays the
ISO format of the locale.

 When submitting a request to a server-side applica-
tion, this locale value can be passed along as a query
parameter:

http://<servername>/somepage.php?a=b&c=d&locale=en_US

How the server side handles the query is application-specific and beyond our discus-
sion here. Keep in mind that localization is more than the translation of strings within
your application itself. Speaking of strings, they’re up next in our discussion.

18.3.2 Identifying and managing strings

There’s perhaps no more emblematic localization topic than the concept of translat-
ing and managing an application’s “strings” into target languages. Textual strings are
the most visible and obvious means to target an application for a particular locale.

Listing 18.1 Getting current locale at runtime

Figure 18.4 en_US locale

Figure 18.5 es_ES locale

496 CHAPTER 18 Localization

 The centerpiece of string management within an
Android application is the strings.xml file stored in the
/res/values folder. The values folder contains the
default resources for the application. Values for addi-
tional locales are stored in folders with names identify-
ing the attributes for a specific language or locale. For
example, figure 18.6 shows string files for both the
default locale and for Spanish translation of those
strings.

 A strings.xml file contains a list of strings, as shown in the following listing, which
shows some of the strings used in the Field Service application.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Unlocking Android</string>
 <string name="sign_and_close">Sign and Close</string>
 <string name="cancel">Cancel</string>
 <string name="refresh_job_list">Refresh Job List</string>
 <string name="manage_jobs">Manage Jobs</string>
 <string name="settings">Settings</string>
 <string name="user">User</string>
 <string name="server">Server</string>
 <string name="refreshing_job_list">Refreshing Job List</string>
 <string name="connecting">Connecting</string>
 <string name="there_are_count_jobs">There are %d jobs</string>
 <string name="jobid">Job ID</string>
 <string name="comments">Comments</string>
 <string name="product">Product</string>
 <string name="map_job_location">Map Job Location</string>
 <string name="get_product_info">Get Product Info</string>
 <string name="job_is_closed">Job is closed</string>
 <string name="view_signature">View Signature</string>
 <string name="email_address">Email Address</string>
 <string name="server_url">Server URL</string>
 <string name="save_settings">Save Settings</string>
 <string name="close_job">Close Job</string>
 <string name="locale">Locale</string>
</resources>

The strings.xml files are standard XML files B. To create one of these files, you can
either create it “by hand” or you can select File > New: Android Xml File in Eclipse.
Each string value C has an attribute that uniquely identifies the string along with a
value stored between the <string> and </string> tags.

 When creating a strings.xml file for any target language beyond the default locale,
you have the option of translating every string or just a subset of the strings. At run-
time, your application will automatically load the correct string, looking first in the
locale-specific file and working back to the default to find the required value. This cas-

Listing 18.2 Default strings.xml file

XML file declarationB

String entryC

Figure 18.6
Multiple strings.xml files
cading works in a manner similar to CSS. The most “precise” interpretation of the

497Strategies for localizing an application

device locale is the first file to be searched. If the resource isn’t found in this location,
the platform works its way up the tree toward the default. Let’s look at an example.

 Let’s say your application is written in a default language of English with 20 unique
strings stored in /res/values/strings.xml. You anticipate that your application will be
deployed around the globe, but you’re specifically targeting English- and French-
speaking users in the United States, France, and Canada.

 To implement this strategy, your application contains four different strings.xml
files, one in each of the directories listed in table 18.1.

When a string is looked up at runtime, Android uses the current locale as a filter to
choose resources. Let’s say our device is set for the French Canadian locale: fr_CA. If
the string we require is found in the /res/values-fr-rCA/strings.xml file, it’s used. If
the string isn’t found there, the file /res/values-fr/strings.xml is searched next
because it’s the general French strings file. If it’s still not found, the string will be
taken from the default strings file /res/values/strings.xml.

 Not every string needs to be provided in each file. If only a handful of strings differ
in Canada versus the general French strings, just provide the Canada-specific values in
the fr_rCA file. Following this practice of managing a minimum number of strings can
be helpful, because it can be labor- and testing-intensive to manage multiple string
tables.

 So far, our discussion has included only strings, language, and region-specific files.
Strings aren’t the only resources that may be localized. In the next section we take a
brief look at other localized resources.

18.3.3 Drawables and layouts

Beyond strings, your application may need to provide locale-specific resources for
drawables (images) and for user interface layouts. The process of managing drawables
and layouts is identical to managing strings. If you require locale-specific versions of
your images and layouts, they should be put in locale-specific folders in the /res folder.

 Providing locale-specific images seems reasonable, because your application’s
images may have textual contents, or perhaps your application has images of region-
specific currency. It’d make sense to show an appropriate image of a greenback dollar
in the US or a Euro in most of Europe. But what about layouts: why would you want to

Table 18.1 List of strings.xml files

Directory Comment

/res/values/strings.xml Default strings.xml stores values in English for this example

/res/values-fr/strings.xml Complete translation of strings in French

/res/values-fr-rFR/strings.xml A subset of strings with France-specific translations, spellings, etc.

/res/values-fr-rCA/strings.xml A subset of strings with Canada-specific translations, spellings, etc.
localize a layout?

498 CHAPTER 18 Localization

 Most UI elements such as TextView widgets and Buttons display textual values. If
those textual values vary in length from one language to the next—which they can
and often do—it may be prudent to provide a locale-specific layout file in some
instances. The idea here is to be intentional about your application’s visual appear-
ance rather than letting the user have a nondeterministic experience. Recall that
many UI elements specify a width value wrap_content. This may not result in a visually
appealing layout at runtime. If a particular string is going to distort the UI of your
application, find out ahead of time and rearrange your widgets within a locale-specific
layout as required.

 In addition to your resources, you need to consider the data values your applica-
tion uses, such as date and time, numbers, and currency. This is the topic of the next
section.

18.3.4 Dates, times, numbers, and currencies

When working with data, keep in mind that users in various parts of the world manip-
ulate dates and numbers differently. If you doubt that, just try to enter the thirteenth
day of December 2010 into an application expecting input in the form of DD/MM/
YYYY. If you enter 12/13/2010, the application will choke because there’s no thir-
teenth month!

 Manipulating these values isn’t so much of an Android topic as it is a Java topic. As
such, our discussion here is limited to a quick survey of commonly used Java classes
for the purpose of handling data in a locale-specific fashion. Demonstrating each of
these classes is beyond the scope of this chapter, and we encourage you to view the
exhaustive Javadocs available for these classes. Table 18.2 enumerates some of the
classes you’re likely to employ when working with a localized application.

Table 18.2 Helpful classes for localized applications

Class name Comment

java.util.GregorianCalendar Subclass of the Calendar class, allowing for date and
time manipulation specific to a locale.

java.text.SimpleDateFormat Useful for formatting date and time according to custom
developer-supplied formats.

java.text.DecimalFormat Formats a decimal value according to a specific locale
and string format.

java.text.DecimalFormatSymbols Helper class to DecimalFormat. Use this class to
retrieve currency symbols, grouping, and decimal sym-
bols. Some locales use commas for grouping and period
for decimal separation; others do the opposite. This
class helps navigate those formatting distinctions.

java.util.Locale Most of the previous classes rely on this class in one way
or another.

499Strategies for localizing an application

Before examining the localized version of our Field Service application in more
detail, there’s one more topic to discuss that has less to do with code than it does with
coding.

 Most developers we know won’t translate their applications to multiple languages
and locales on their own—they’ll employ a teammate or an outside service. Regardless
of whom you work with, it’s helpful to keep them in mind from the start of your proj-
ect. The next section discusses things you can do to work successfully with your trans-
lation team.

18.3.5 Working with the translation team

Managing the strings within an application is straightforward on the surface, but it’s
not without some challenges, in part because you’re working with others. The transla-
tion professionals may be part of your organization or they may be an outside service.
If you have the good fortune of working closely with a teammate for translation,
things may go easier for you, as you can rely on them for not only term translation but
also context. An outside party can provide those services as well, but the cost in terms
of dollars and time may be much greater.

 Some of the challenges relate to the translation task itself, but there’s another chal-
lenge with building a localized application: discipline. Unless you’re working in a
structured environment, some aspects of software creation are fluid. You may have an
idea for an enhancement to a section of your code. You’re excited about this feature,
so you code the enhancement and add a menu item to enable this new aspect of your
application. Terrific, your application is now more functional and your users love you!
Hold on a moment. Did you use any string literals when you coded the new feature,
including the menu? If so, did you get translations yet? A localized application may
suffer from some latency and added expense when you factor in the translation and
testing steps. When you send data out to your translation team, it’s important not only
to provide an exhaustive list of strings or terms that need to be translated, but also to
provide as much context as possible. For example, when we had the Field Service
application’s terms translated to Spanish, we sent the list to our outside translation
vendor. Included in that list was a brief description of each term and its use in the
application. A further helpful step would be to storyboard the application with screen-
shots (or screencasts), thereby equipping the translation team with as much context
as possible.

 It’s also a good idea to keep cultural references in mind. Remember: your objec-
tive is to translate user experience, not just textual terms!

 At this point, you have enough information on why localization is important and
some feel for what needs to be done to make it happen. The next section digs deeper
into the capabilities built within the Android resource subsystem to aid in localization.

500 CHAPTER 18 Localization

18.4 Leveraging Android resource capabilities
With the rapid pace of innovation bringing new and varied capabilities to the mobile
market in general, and Android-powered devices in particular, the topic of localization
for the Android platform extends beyond mere language- and number-formatting
requirements. Because Android devices can vary in terms of their graphical capabili-
ties and physical attributes, some applications will require multiple layout files and
drawables targeted for a particular orientation and collection of display characteris-
tics. In short, the mechanics of multiple resource files for supporting multiple locales
can also provide Android applications with a flexibility previously unavailable in the
mobile landscape.

18.4.1 More than locale

Locale is but one of a handful of attributes that can be specified within your resources.
In addition to language and region (locale), the following attributes may be used as
qualifiers for organizing and specifying resources to be employed at runtime:

 Mobile carrier country (mmc)
 Mobile network code (mnc)
 Orientation: portrait, landscape
 Screen size: small, normal, large
 Screen aspect: long (WQVGA, WVGA, FWVGA), notlong (QVGA, HVGA, VGA)
 Dock Mode: car, desk
 Screen pixel density: ldpi, mdpi, hdpi, nodpi (non scalable bitmaps)
 Screen type: no touch, stylus, finger
 Input method: qwerty keyboard, no keyboard
 Navigation: wheel, trackball, dpad, none (touchscreen only)
 API revision

Android is a moving target as it matures with new capabilities, so this list is regularly
expanding and improving along with each Android release. For the most up-to-date ver-
sion of this list, including the specific qualifiers for the resource folder definition, visit
http://developer.android.com/guide/topics/resources/providing-resources.html.

 At this point, you know how to make your applications provide locale- and device-
specific resource files. The next section demonstrates how those resources relate to
one another.

18.4.2 Assigning strings in resources

To effectively manage a localized application throughout its lifespan, you must lever-
age the strings.xml file to manage every string. The place where most (but not all)
those strings are employed is within layout files. For example, this listing demonstrates
a simple layout resource file that references string values.

501Leveraging Android resource capabilities

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/email_address"
 />
 <EditText
 android:id="@+id/emailaddress"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:autoText="true"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/server_url"
 />
 <EditText
 android:id="@+id/serverurl"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:autoText="true"
 />
 <Button android:id="@+id/settingssave"
 android:text="@string/save_settings"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:enabled="true"
 />
</LinearLayout>

When defining a typical UI for an Android application,
you define a layout B containing multiple widgets.
Regardless of the kind of layout you use, there will be
widgets. Some of these widgets (namely TextView

instances) will contain textual elements. In this case the
android:text attribute is assigned a string value. For a
properly localized application, this attribute will always
refer to a string resource C of the format @string/
<identifier>. Likewise, the Button widget D often dis-
plays textual strings and should also refer to a string
constant.

 Figure 18.7 shows a localized version of the configu-
ration screen.

Listing 18.3 Showsettings.xml, which references string constants

Linear layoutB

Reference stringsC

Reference stringsC

Button with
string reference

D

Figure 18.7 Localized screen
referencing strings directly in
layout

502 CHAPTER 18 Localization

 Of course, not every string in an application is defined as an attribute of a layout
resource. Some strings are provided at runtime within Java code. Fortunately, this
approach too is straightforward and is presented in the next section.

18.5 Localizing in Java code
Many of the strings your application uses can be referenced in the application’s layout
files, but there’s often a need for building a string dynamically at runtime to display to
the user. These strings embedded into your code must be localized as well! In fact, our
experience shows that it’s these strings that flesh out the application and test your dis-
cipline as a developer committed to localization. These are also the strings that send
you back to the translation team with further requests for translation services!

 The first and fundamental use of localized strings in code is the simple string
retrieved from the string table and directly displayed without further formatting. We’ll
start by looking at a snippet of the Field Service application’s code prior to localiza-
tion. The following listing shows the onCreateOptionsMenu method, which handles
the creation of the presented menu options.

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 menu.add(0, 0, 0, "Sign & Close");
 menu.add(0, 1, 1, "Cancel");
 return true;
 }

A literal string B is used to add a menu option to the application in this pre-
localization version of the code taken from chapter 12.

 Let’s now see how this code is converted to a localized form. The first step (see the
following listing) is to ensure that we have these strings present in the string table, as
shown in listing 18.2.

 <string name="sign_and_close">Sign and Close</string>
 <string name="cancel">Cancel</string>

With the strings defined in the string table, you can reference them from code. When
using localized strings in Java code, your best friend is the Context class’s getString
method. This method takes a single integer argument representing the desired string,
as defined by the R class. Recall that the R class is automatically generated by the
Android Developer Tools whenever a resource is modified and saved within Eclipse.
Consider the following code, which demonstrates using the getString method to
retrieve localized strings.

Listing 18.4 Menu creation code prior to localization

Listing 18.5 Subset of the string table

Menu with
literal string

B

503Formatting localized strings

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 menu.add(0, 0, 0, this.getString(R.string.sign_and_close));
 menu.add(0, 1, 1, this.getString(R.string.cancel));
 return true;
 }

Retrieving a string is accomplished with a call to the
getString method, passing in a reference to the
string. The R.string.<identifier> value comes
directly from the name attribute in the string table.
Recall that the application-level R class is generated
in the project as R.java. Never modify that file on
your own, because it’s regularly updated by the ADT
and all your manual changes are lost!

 This localized menu is shown in figure 18.8.
 Static strings are fine, but what about strings that

have some formatting involved? What about when an
application requires dynamic content to be localized?
Let’s look at using the Formatter class next.

18.6 Formatting localized strings
One of the screens used in the Field Service applica-
tion lists all the jobs assigned to this user. Figure 18.9
shows this in the en_US locale.

 Note that the number of jobs phrase at the top of
the screen is defined in the default string table as

<string name="there_are_count_jobs">Number of jobs: %d</string>

In the Spanish version of the string table, this is defined as

<string name="there_are_count_jobs">Hay %d trabajo(s)</string>

The %d placeholder is used to specify where the integer should be placed within the
string. At runtime, this string is extracted and subsequently formatted with the help of
the java.util.Formatter class, as shown here.

if (this._joblist.getJobCount() == 0) {
 tv.setText(this.getString(R.string.there_are_no_jobs_available));
} else {
 Formatter f = new Formatter();
 tv.setText(f.format(this.getString(R.string.there_are_count_jobs),
 this._joblist.getJobCount()).toString());

Listing 18.6 Retrieving localized strings from the string table

Listing 18.7 Formatting localized strings

Figure 18.8 Localized menu

Figure 18.9 A job list in English
}

504 CHAPTER 18 Localization

In this dynamic formatting code, the first step is to
determine whether there are any jobs to display to the
user. If not, a static string is retrieved and assigned to
the TextView. In the case where there are jobs available
for display, an instance of the Formatter class is cre-
ated. The format method of the Formatter object is
invoked, passing in the localized string pulled from the
string table associated with the identifier of R.string.
there_are_count_jobs, along with the integer value
representing the number of jobs.

 The benefit of using the Formatter class is that you
have the option of presenting strings in different man-
ners in different languages. Figure 18.10 shows the job
listings screen in English.

 Figure 18.11 shows the same screen but in Spanish.
Note the different placement of the numeric value.

 You’ve now seen examples of both statically and
dynamically localized strings. There’s no end to the
combinations you might employ in your applications.

 We conclude this chapter with a brief discussion of
obstacles you should avoid when building a localized
application.

18.7 Obstacles to localization
Localizing an application shouldn’t be an afterthought. Too much effort is required
to properly rework your application when you consider all the supporting cast around
your application. The Field Service application has a server-side component, and with
it a whole set of other users and use cases to consider. In this final section, we examine
a couple of these considerations.

 Anything that’s shown to the user should ideally be put into a form that’s readily
consumed and is relevant to them. This means that certain elements of your coding
approach might need to change—and this is often not easy to accomplish.

 For example, one aspect of the Field Service application that should be treated dif-
ferently is the use of the status code. The application uses the values OPEN and
CLOSED transparently but without translation, as shown in figure 18.12.

 This is a case where the same piece of text (OPEN, CLOSED) is used for not only
display but also control of the application. In hindsight, this approach is something to
avoid. The status code should be internal to the application and hidden from the user
in its “raw” form. Instead, a locale-specific version should be rendered based on the
underlying value. The status code ripples throughout the application, both on the
device and on the server side, so modifying it involves a more comprehensive and

Figure 18.10 Job listings
screen in en_US locale

Figure 18.11 Job listings
screen in es_ES locale

505Summary

costly effort than just translating some strings in the
application.

 Additionally, we discussed earlier in the chapter the
idea of filtering out results that are potentially not
usable for a particular user. Refer again to figure 18.12.
Note that this screen is shown in Spanish but contains
a “job” with English comments. Some elements of a job
may be unable to be translated—for example, proper
names of products or a physical address—but the com-
ments themselves should be carefully distributed to
only users who can be productive with the information.

 The point in demonstrating some of the shortcom-
ings of this (partially) localized application is to empha-
size that localizing an application after it has been
released is much more work than starting with localiza-
tion in mind. Consequently, localizing an application
down the road adds more cost than if you’d designed
the application for localization from the start. In addition, the user experience may be
compromised based on some of the steps required to make a localized application “fit”
into an infrastructure that didn’t contemplate the possibility beforehand.

18.8 Summary
In this chapter we explored the topic of localizing an Android application. We
reviewed high-level concepts, including motivation, strategy, and technique. The code
used a variant of chapter 12’s Field Service application as an example to illustrate both
the techniques and challenges of localizing an application.

 We looked at the resource structure and the services performed for you automati-
cally by the Android platform. Beyond the definition and organization of the
resources, we examined the various means of working with localized strings.

 Although you may not have learned much Spanish in this chapter, we trust that
you’re now ready to add localization to your list of capabilities and in the process
make your applications available to a much broader audience.

 In addition to the basic mechanics of localizing an application, a key idea to take
from this chapter is that localization isn’t a casual exercise to be undertaken at some
point in the future, but rather it should be designed into the DNA of your application
from the start.

 In the next and final chapter, you get to go under the hood of Android as we look
at the Android Native Development Kit (NDK) and write C code for Android.

Figure 18.12 Speedbumps in
localization: OPEN status

Android Native
Development Kit
The majority of the code in this book is written to employ the Android SDK using
the Java programming language. Looking back to chapter 13, we explored creating
native executable applications for Android by writing Linux-compatible applica-
tions. The code in that chapter was written in the C language, but it didn’t produce
applications that are easily executed on consumer hardware. The design approach
in chapter 13 requires an unlocked developer, or rooted, device and is arguably only
applicable for developers who are building custom Android builds—it’s not for the
typical developer looking to deploy applications to consumer-based handsets. This
chapter presents the “approved” manner of writing C code for the Android plat-
form with assistance from the Android Native Developer Kit, or simply the NDK.

 This chapter presents the NDK as an aid to Android developers. The architecture

This chapter covers
 Introducing the Android Native Development Kit

 Exploring the Java Native Interface

 Building an application with the NDK

 Integrating NDK into Eclipse
506

of the NDK is presented and discussed in the context of a nontrivial, hands-on

507Introducing the NDK

image-processing application. Image processing is a broad field encompassing many
applications across almost every industry. Perhaps the most familiar example of an
image-processing application is optical character recognition (OCR). OCR can be imple-
mented via a number of different algorithms. Many image-processing algorithms begin
by attempting to identify the target object within a still image or frame of a video. One
classic technique for separating an object from the background is known as edge detec-
tion. An edge detection algorithm analyzes the image looking for the outlines of any
objects within the image, be they characters or any other object. The application that
accompanies this chapter, named UA2E_FindEdges, implements a classic image-
processing algorithm known as Sobel Edge Detection.1 Using UA2E_FindEdges, you’ll use
the Android camera to acquire a photo and then find all of the edges within the image.
The algorithm to be used has been ported from another platform in the C program-
ming language, compiled into a native code library, and employed by an Android SDK
Java application.

 The chapter wraps up with a demonstration of integrating the NDK into the
Eclipse build environment, permitting a nearly seamless experience for the developer.

19.1 Introducing the NDK
NDK is a bolt-on, complementary tool chain to the core Android SDK that permits
developers to create application functionality in the C programming language. The
NDK isn’t meant to replace the SDK applications, but rather is designed to augment
them. In fact, you can’t create a standalone application with the NDK. The NDK com-
piles code written in C into libraries that are callable by SDK-based Java code. The role
of these native libraries is to provide additional functionality to the Java application.
The NDK also handles all of the application packaging steps to make sure that the
resulting APK file contains not only the Java code but the native code libraries as well.

 Considering the power and breadth of the Android SDK, why would you bother
with the NDK?

19.1.1 Uses for the NDK

For most developers, there’s no reason to use the NDK, as the combination of the Java
programming language and the Android SDK are more than capable to meet the
needs of their applications, and they’ll never need to drop down to the “native” level
to accomplish their tasks. But there are scenarios where C is better suited to the task
than Java. Consider the case where an application needs to perform a large number of
bitwise operations on 8-bit data elements for applications such as raw signal condition-
ing, image processing, or encryption. Operations such as these are ideally suited for
the C language with its efficient use of memory and its agility when working with raw
data. Likewise, accessing the OpenGL libraries from C may provide better perfor-
mance for some applications where the developer is skilled in C.

1 Here is an introductory tutorial covering the topic of Sobel Edge Detection: http://www.generation5.org/

content/2002/im01.asp.

508 CHAPTER 19 Android Native Development Kit

 In addition to graphics programming and raw data processing needs where tight
native code has an advantage, there’s another scenario where the NDK may be worth
considering. Taking into account the large body of code written for Linux in the C pro-
gramming language, there may be functionality that a developer can “drop in” without
the need to port the functionality to Java. The NDK enables the reuse of legacy C code.2

 Interestingly, code written with the NDK isn’t guaranteed to execute faster than
Java code that implements the same algorithm, so the NDK shouldn’t be viewed as an
automatic choice when reviewing options to improve application performance. All
things being equal, the NDK actually complicates matters, so it should be deployed
with thoughtful consideration. The NDK is a good fit for self-contained and CPU-inten-
sive operations where memory allocation is kept to a minimum.

 To build an NDK project, you need to understand the components of the NDK and
how it relates to an Android application.

19.1.2 Looking at the NDK

The NDK is a freely available download from the Android developer website at http://
developer.android.com/sdk/ndk. Like the Android SDK, there are versions available
for each of the supported platforms: Windows, Mac, and Linux. Installing the NDK is as
simple as downloading the archive file and unzipping it into an accessible place on your
development machine. Placing the NDK in a folder parallel to the SDK is a good idea.

 Creating a symbolic (or soft) link to the directory is also helpful. For example, you
might put a link on your laptop, making the NDK easy to access:

ln -s /users/fableson/Software/android/android-ndk-r4b/ ndk

The NDK is updated periodically just like the SDK, so
using a soft link such as this can aid in managing build
scripts, as you’ll see at the end of this chapter.

 At first glance, the NDK footprint seems pretty
straightforward, but under the build folder lies a maze of
make files. Figure 19.1 shows the NDK as it resides on the
hard drive.

 Fortunately for us, building a native library from C
source code is surprisingly simple. Table 19.1 lists the
high-level steps in building a native library. The balance
of the chapter walks through the process of building a
native library and a sample application that leverages the
functionality of that library.

 The code generated by the NDK is known as a Java
Native Interface (JNI) library. A JNI library3 exposes one or

2 Start here to explore more about legacy C code: http://www.imagix.com/links/c_cplusplus_language.html.
3 To access the JNI documentation: http://download.oracle.com/javase/6/docs/technotes/guides/jni/

Figure 19.1 NDK on the disk
index.html.

509Building an application with the NDK

more functions to a Java application through “exported” functions. The names of the
exported functions follow a strict naming convention. Failure to comply with this
naming convention results in runtime errors.

 The resulting name of the JNI library is lib<name of library>.so, which is the naming
convention for a shared library in the Linux environment. The JNI specification
defines the interface between the Java and C environments. To illustrate the JNI inter-
face with the NDK, let’s build an image-processing application from start to finish.

19.2 Building an application with the NDK
This section presents a step-by-step guide to building an application that leverages the
Android NDK. Before jumping into the code, let’s walk through the high-level func-
tionality of the application, which is named UA2EFindingEdges, including screen-
shots showing the application in action. After the demo of the application, we
examine each of the pieces of code to construct the application from the ground up.

Table 19.1 Build steps for an NDK library

Step Comment

Create Android project The starting point is to have an Android project to work
with.

Create library source folder Use the name jni (short for Java Native Interface). This
folder contains C source plus project-specific make files.
It should be at the same level as the src folder within a
standard Android project folder structure.

Create C source file This file contains the implementation of the native library.
This code may be split among multiple C source files.

Create Android.mk This is the configuration (or make) file for the native
library. An example is provided later in this chapter.

Change directory to library source folder The NDK must be run from within your jni folder.

Execute NDK Type ndk-build from the command line to execute the
build script. This processes a series of make files that
perform all of the compilation and linking of the library.
The result is a file ready for inclusion in the APK file.

Optional step:
integrate NDK into project’s build

Ideally modifying and saving the C source file will result in
the complete build of the application, including both SDK
and NDK aspects. Taking the time to do this makes the
development process much more appealing.

Look for any compilation or linking errors Any coding or configuration errors will become apparent
as lines written to the standard output and standard error
of the console where the script was executed. If run from
within Eclipse, the output is shown in the console window.

510 CHAPTER 19 Android Native Development Kit

19.2.1 Demonstrating the completed application

The sole function of this application is to convert a photograph into a grayscale
image, showing the edges of the object within the photograph. The application is writ-
ten in Java using the Android SDK with a minimalist interface, as shown in figure 19.2.

Selecting the Acquire Image button launches the built-in Camera application with
default image settings. Take a photo. Figure 19.3 shows an image taken of a model
race car body.

Hitting the OK button in the Camera application brings the photo back to our sample
application and displays the image. The Find Edges button is now available, as shown
in figure 19.4.

Figure 19.2 Application waiting
to take photo

Figure 19.3 Take a photograph.

Figure 19.4 Captured image

before image processing

511Building an application with the NDK

It’s now time to exercise the primary function of this application: the edge-detection
routine. See figure 19.5.

 After the Find Edges button is selected, the application performs two consecutive
image-processing routines, each of which is implemented in the C language JNI
library. The first function converts the color image to grayscale, which is a common
technique in image-processing algorithms. After the image has been converted, a
transformation known as the Sobel Edge Detection algorithm is performed to highlight
the edges in the photograph. Once the image processing is complete and the image
updated, the application is ready to acquire a new image.

 The image-processing prowess of this application is hardly groundbreaking, but
the application is fun to play with and presents a sufficiently complex problem to solve
with the NDK. You’re encouraged to follow along in the next section and build this
application for yourself. If you’d like to just use the application, it’s available for down-
load in the Android Market.

19.2.2 Examining the project structure

The application consists of two primary parts.
The first is the Android SDK-based Java code,
which contains the application structure, the UI,
the click handlers, code to display the images,
and all of the usual AndroidManifest.xml goodies
required to make the application run on an
Android device. The second portion of the appli-
cation is the image-processing library built with
the NDK. The library contains the two image-pro-
cessing functions, written in C and exported for
use by the user interface code. Figure 19.6 shows
the project as it looks in Eclipse.

 This project looks like every other Android
project you’ve worked with to date, with the addi-

Figure 19.5 Showing the
edges of the car

Figure 19.6
tion of the jni and libs folders.
A project in the Eclipse GUI

512 CHAPTER 19 Android Native Development Kit

 The jni folder contains three files of interest: the C language file and two make
files. The output.txt file is created by the NDK build subsystem.

 The libs folder contains output files from the NDK build process targeted for dif-
ferent CPU architectures. The topic of which CPU target to use is beyond our objec-
tives in this chapter—you can learn more about processor-specific settings in the
readme files in the NDK’s docs folder.

 Let’s start with a look at the JNI code.

19.3 Building the JNI library
Building a JNI library requires a basic understanding of JNI, a C source file, and the
appropriate entries in the Android.mk file. The next few sections break down these
requirements, step by step. We begin with a brief discussion of how code is mapped
between the Java and C language environments.

19.3.1 Understanding JNI

As mentioned earlier, a JNI library exposes one or more functions to a Java-based
application through a specific naming convention. A C language function is named
according to the following guideline:

Java_fully_qualified_class_name_method_name

For example, a method named SomeMethod in the class named DoSomething, which
takes an integer and a string argument, would be defined as shown in the following
listing.

JNIEXPORT jint JNICALL Java_com_somecompany_DoSomething_SomeMethod(
JNIEnv * env,
jobject obj,
jint i,
jstring s);

The function is named according to the JNI standard, including the prefix of Java, fol-
lowed by the fully qualified class name and the method name. Every exported JNI
function has at minimum the same first two arguments. The first argument is a
pointer to the Java Environment. See the jni.h header file shipped with the NDK for
available functionality in the JNIEnv object. The next argument is a pointer to the
this object. Any additional arguments follow these two standard arguments. In this
case, there’s an integer argument, which is a data type of jint, and a String argu-
ment of type jstring. Again, see the jni.h header file for a more complete view of the
available data types.

 Calling a JNI function from Java first requires that the library be loaded. This is
accomplished with a call to System.loadLibrary, passing in the module name. The
module name is the name of the shared library minus the lib prefix and the .so exten-

Listing 19.1 Sample JNI function signature
sion. The next listing shows how to load this module and declare the sample method.

513Building the JNI library

package com.somecompany;

public class SomeObject {

 public SomeObject {

 native int SomeMethod(jint i,jstring s);
 static {
 System.loadLibrary("SomeModule");
 }
 }
}

In this simple example, note the package name and class name. These names com-
bine to form a portion of the JNI function name. The JNI function named SomeMethod
is defined with a native qualifier. To gain access to this function, it must be loaded via
a call to loadLibrary, passing in the module name of the library.

 Much more is involved in the JNI specification, but you have enough here to get
started on the sample application code.

19.3.2 Implementing the library

Finally, you get to look at the C code that implements the image-processing functions!
The code listings are broken into three logical sections: the header of the C file with
macros and data type definitions, and then each of the two image-processing func-
tions. First you see the header of the file ua2efindedges.c.

#include <jni.h>
#include <android/log.h>
#include <android/bitmap.h>

#define LOG_TAG "libua2efindedges"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO,
 LOG_TAG,__VA_ARGS__)
#define LOGE(...) __android_log_print(ANDROID_LOG_ERROR,
 LOG_TAG,__VA_ARGS__)

typedef struct
{
 uint8_t alpha;
 uint8_t red;
 uint8_t green;
 uint8_t blue;
} argb;

The first header file included in the C source file is jni.h B. This file contains the
required data types and macros for the JNI. Without this header file, data types would
be unrecognized and the code would never compile. The Android NDK provides sup-
port for a handful of Android subsystems, including the logging and bitmap handling,

Listing 19.2 Calling a JNI function

Listing 19.3 ua2efindedges.c

jni header fileB
Log, bitmap headersC

Logging
macros

D

Structure for
image handlingE
among others. Those headers are included as well C because they’re required for this

514 CHAPTER 19 Android Native Development Kit

application. A few macros D aid in accessing the LogCat functionality. Because this
application is dealing with image data where each pixel is defined as a 32-bit structure
representing a Color object, a structure is defined to easily manage the pixel data E.

NOTE The bitmap functionality shown in this example requires Android 2.2
or later.

Let’s now discuss the image-processing routines. Don’t concern yourself with the
details of these functions unless they’re of interest to you. The basic approach of this
application is to pass Bitmap objects from the Java code to the JNI code. The pixel buf-
fers are locked such that the memory is accessible to the C code for raw manipulation.
When the image processing is complete, the pixels are unlocked.

 The first function is named converttogray and takes two arguments. The first
argument is an Android Bitmap of the style RGBA_8888, which means each pixel con-
tains a byte representing the Alpha channel and then one byte each for Red, Green,
and Blue values. Each value is represented by an integer ranging in value from 0 to
255. The second Bitmap is created as a grayscale, 8 bits per pixel image. The first
parameter is the input image and the second is the output image. The following list-
ing contains the converttogray method. Note the long function name!

JNIEXPORT void JNICALL
Java_com_msi_manning_ua2efindedges_UA2EFindEdges_

➥converttogray(

JNIEnv * env, jobject obj,
jobject bitmapcolor,
jobject bitmapgray)
{
 AndroidBitmapInfo infocolor;
 void* pixelscolor;
 AndroidBitmapInfo infogray;
 void* pixelsgray;
 int ret;
 int y;
 int x;

 if ((ret = AndroidBitmap_getInfo(env,
 bitmapcolor, &infocolor)) < 0) {
 LOGE("AndroidBitmap_getInfo() failed ! error=%d", ret);
 return;
 }

 if ((ret = AndroidBitmap_getInfo(env,
 bitmapgray, &infogray)) < 0) {
 LOGE("AndroidBitmap_getInfo() failed ! error=%d", ret);
 return;
 }

 LOGI("color image :: width is %d; height is %d; stride is %d; format is

Listing 19.4 converttogray function implementation

Specify
function name

B

Define
AndroidBitmapInfo
structure

C
Contain pointer
to pixelsD

Get Bitmap infoE

Get Bitmap infoE
%d;flags is %d",infocolor.width,infocolor.height,infocolor.stride,

515Building the JNI library

 infocolor.format,infocolor.flags);
 if (infocolor.format != ANDROID_BITMAP_FORMAT_RGBA_8888) {
 LOGE("Bitmap format is not RGBA_8888 !");
 return;
 }

 LOGI("gray image :: width is %d; height is %d; stride is %d; format is
%d;flags is %d",infogray.width,infogray.height,infogray.stride,
 infogray.format,infogray.flags);
 if (infogray.format != ANDROID_BITMAP_FORMAT_A_8) {
 LOGE("Bitmap format is not A_8 !");
 return;
 }

 if ((ret = AndroidBitmap_lockPixels(env,
 bitmapcolor, &pixelscolor)) < 0) {
 LOGE("AndroidBitmap_lockPixels() failed ! error=%d", ret);
 }

 if ((ret = AndroidBitmap_lockPixels(env, bitmapgray,
 &pixelsgray)) < 0) {
 LOGE("AndroidBitmap_lockPixels() failed ! error=%d", ret);
 }

 // modify pixels with image processing algorithm
 for (y=0;y<infocolor.height;y++) {
 argb * line = (argb *) pixelscolor;
 uint8_t * grayline = (uint8_t *) pixelsgray;
 for (x=0;x<infocolor.width;x++) {
 grayline[x] = 0.3 * line[x].red + 0.59 *
 line[x].green + 0.11*line[x].blue;
 }

 pixelscolor = (char *)pixelscolor + infocolor.stride;
 pixelsgray = (char *) pixelsgray + infogray.stride;
 }

 AndroidBitmap_unlockPixels(env, bitmapcolor);
 AndroidBitmap_unlockPixels(env, bitmapgray);
}

The simple name of converttogray is expanded to a much longer JNI name B. Argu-
ments to the function include a color Bitmap, which is used as the input image, and a
gray Bitmap, which is the resulting (or output) Bitmap for this function. The
AndroidBitmapInfo structure C holds information about a Bitmap, which is obtained
with a call to AndroidBitmap_getInfo E. Details of the Bitmap are logged to LogCat
with the previously introduced macros. Local variables are used to gain access to the
pixel data D and loop through the rows and columns of pixels with a couple of aptly
named variables, x and y. If the bitmaps are in the expected format F, the function
proceeds to lock down the pixel buffers G.

 At this point, the function can confidently navigate through a contiguous memory
block to access the pixels of the image H. This is important because most image-pro-
cessing routines rely on this sort of direct memory access through pointers. This

FCheck Bitmap format

GLock Bitmap pixels

Access image dataH

Advance through
pixel buffer

I

Unlock pixelsJ
means easier inclusion of image-processing code from sources such as existing Linux

516 CHAPTER 19 Android Native Development Kit

code bases. The color bitmap is accessed row by row. Each color pixel is converted to a
gray pixel. Pointer arithmetic I aids in the navigation through the pixel memory buf-
fer. When the images have been completely processed, the pixels are unlocked J.

 When the converttogray function is complete, the calling Java code now has a
grayscale version of the color image. The Java code to call this C code is shown later in
this chapter; first let’s look at the routine that detects the edges, shown in the follow-
ing listing. Only the new features are discussed, as there’s a great deal of similarity
between the converttogray and detectedges routines.

JNIEXPORT void JNICALL
Java_com_msi_manning_ua2efindedges_UA2EFindEdges_detectedges(
JNIEnv * env, jobject obj,
jobject bitmapgray,
jobject bitmapedges)
{
 AndroidBitmapInfo infogray;
 void* pixelsgray;
 AndroidBitmapInfo infoedges;
 void* pixelsedge;
 int ret;
 int y;
 int x;
 int sumX,sumY,sum;
 int i,j;
 int Gx[3][3];
 int Gy[3][3];
 uint8_t *graydata;
 uint8_t *edgedata;

 Gx[0][0] = -1;Gx[0][1] = 0;Gx[0][2] = 1;
 Gx[1][0] = -2;Gx[1][1] = 0;Gx[1][2] = 2;
 Gx[2][0] = -1;Gx[2][1] = 0;Gx[2][2] = 1;

 Gy[0][0] = 1;Gy[0][1] = 2;Gy[0][2] = 1;
 Gy[1][0] = 0;Gy[1][1] = 0;Gy[1][2] = 0;
 Gy[2][0] = -1;Gy[2][1] = -2;Gy[2][2] = -1;

 LOGI("detectedges in JNI code");

 if ((ret = AndroidBitmap_getInfo(env, bitmapgray, &infogray)) < 0) {
 LOGE("AndroidBitmap_getInfo() failed ! error=%d", ret);
 return;
 }

 if ((ret = AndroidBitmap_getInfo(env, bitmapedges, &infoedges)) < 0) {
 LOGE("AndroidBitmap_getInfo() failed ! error=%d", ret);
 return;
 }

 LOGI("gray image :: width is %d; height is %d; stride is %d; format is
%d;flags is %d",infogray.width,infogray.height,infogray.stride,
 infogray.format,infogray.flags);

Listing 19.5 detectedges routine

Input grayscale
BitmapBOutput edges

BitmapC

Setup masksD

Point to
pixel data

E

Set up
transformations

F

 if (infogray.format != ANDROID_BITMAP_FORMAT_A_8) {

517Building the JNI library

 LOGE("Bitmap format is not A_8 !");
 return;
 }

 LOGI("color image :: width is %d; height is %d; stride is %d; format is
%d;flags is %d",infoedges.width,infoedges.height,infoedges.stride,
 infoedges.format,infoedges.flags);
 if (infoedges.format != ANDROID_BITMAP_FORMAT_A_8) {
 LOGE("Bitmap format is not A_8 !");
 return;
 }

 if ((ret = AndroidBitmap_lockPixels(env,
 bitmapgray, &pixelsgray)) < 0) {
 LOGE("AndroidBitmap_lockPixels() failed ! error=%d", ret);
 }

 if ((ret = AndroidBitmap_lockPixels(env,
 bitmapedges, &pixelsedge)) < 0) {
 LOGE("AndroidBitmap_lockPixels() failed ! error=%d", ret);
 }

 // modify pixels with image processing algorithm
 graydata = (uint8_t *) pixelsgray;
 edgedata = (uint8_t *) pixelsedge;

 for (y=0;y<=infogray.height - 1;y++) {
 for (x=0;x<infogray.width -1;x++) {
 sumX = 0;
 sumY = 0;
 // check boundaries
 if (y==0 || y == infogray.height-1) {
 sum = 0;
 } else if (x == 0 || x == infogray.width -1) {
 sum = 0;
 } else {
 // calc X gradient
 for (i=-1;i<=1;i++) {
 for (j=-1;j<=1;j++) {
 sumX += (int) ((*(graydata + x + i +
 (y + j) * infogray.stride)) * Gx[i+1][j+1]);
 }
 }
 // calc Y gradient
 for (i=-1;i<=1;i++) {
 for (j=-1;j<=1;j++) {
 sumY += (int) ((*(graydata + x + i +
 (y + j) * infogray.stride)) * Gy[i+1][j+1]);
 }
 }
 sum = abs(sumX) + abs(sumY);
 }
 if (sum>255) sum = 255;
 if (sum<0) sum = 0;

 *(edgedata + x + y*infogray.width) = 255 - (uint8_t) sum;

Access pixelsG

Ignore
border pixelsH

Calculate X
dimension

I

Calculate Y
dimension

J

Constrain
pixel values

1)
 }

1!
Calculate

edge value

518 CHAPTER 19 Android Native Development Kit

 }
 AndroidBitmap_unlockPixels(env, bitmapgray);
 AndroidBitmap_unlockPixels(env, bitmapedges);
}

Like the prior function, this one takes two Bitmap arguments, both of which are gray-
scale images. The first contains the grayscale image B created in the converttogray
method. The second bitmap argument C becomes the “edges only” version of the
image. A number of variables D are defined to aid in the edge-detection process. Like
the prior function, we have local pointers E to the image data. The Sobel Edge Detec-
tion algorithm involves a mathematical operation known as a convolution, which
requires initializing a pair of convolution masks F. The convolution must be per-
formed across the entire image G with the exception of the border pixels, which are
skipped H. First the calculations are made in the x dimension I and then in the y
dimension J. Once the calculations have been performed for a particular pixel, a
new value is calculated based on the surrounding pixels and stored in the output
image 1). Prior to storing a value, the new pixel value is constrained to be between 0
and 255 1!.

 You’re now ready to compile this code, but before you can do that you need to
define the make file for the library.

19.3.3 Compiling the JNI library

In addition to the C source file, you require a make file to instruct the NDK on how the
library is compiled. The following listing contains the make file used with this library.

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := ua2efindedges
LOCAL_SRC_FILES := ua2efindedges.c
LOCAL_LDLIBS := -llog –ljnigraphics

include $(BUILD_SHARED_LIBRARY)

The Android.mk file is a make file containing build information about the JNI library
for this project. The name of the library module is ua2efindedges. The actual result-
ing filename is libua2efindedges.so, which follows the normal file-naming structure
for a dynamically loadable library for Linux. The only source file for this library is
ua2efindedges.c. The input libraries are also listed. These libraries are searched for
code symbols when the library is linked. The standard C and math libraries are auto-
matically searched, so they don’t need to be included in the LOCAL_LDLIBS variable.

 Building the application is as simple as opening a terminal window to the jni folder
and running the file ndk-build, which can be found in the NDK installation directory.
Figure 19.7 shows the build process from the command line.

Listing 19.6 Android.mk

519Building the user interface

Now that the JNI library is complete, let’s swing back to the Android SDK and build the
user interface for this application.

19.4 Building the user interface
The UI for the application is modest. The things the UI must do include responding
to two different buttons, one for taking a picture and one for calling the JNI functions.
Beyond that, the code performs simple operations to display the various bitmap
images. Let’s start by looking at the layout for this application.

19.4.1 User interface layout

The layout for this application is contained in the resource file main.xml, shown next.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#ffffffff">
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:background="#ffffffff"
 android:gravity="center">
<Button android:id="@+id/AcquireImage"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Acquire Image"
 />
<Button android:id="@+id/FindEdges"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Find Edges"

Listing 19.7 Layout file

Figure 19.7 Building the JNI library

Outer layoutb

Layout
containing
Buttons

c

Acquire, Find
Edges Buttons

d

 />

520 CHAPTER 19 Android Native Development Kit

</LinearLayout>
<ImageView android:id="@+id/PictureFrame"
 android:layout_width="320px"
 android:layout_height="240px"
 android:scaleType="centerCrop"
 android:layout_gravity="center_vertical|center_horizontal"/>

</LinearLayout>

This layout is straightforward. It contains a vertically oriented LinearLayout B, which
contains all the UI elements of this application. Next is a horizontally oriented Layout,
which is also centered c. This layout contains two Buttons d, one for the acquisition
of a photo and one for calling the image-processing routines. When an image is avail-
able, it’s shown in an ImageView instance e. The visibility of the FindEdges Button is
toggled on only after a photo is available.

 This application relies on an Application object to hold a global variable—in this
case, a Bitmap. This is necessary because a photo application often results in the user
changing the orientation of the device: portrait to landscape or landscape to portrait,
and so on. Whenever this occurs, Android’s default behavior is to restart the Activ-
ity. If you store a captured photo in an Activity-level variable, you’ll lose it each
time the device is rotated. To solve this problem, store the Bitmap in an Application
object. The following listing shows the code for this simple class.

package com.msi.manning.ua2efindedges;

import android.app.Application;
import android.graphics.Bitmap;

public class UA2EFindEdgesApp extends Application {
 private Bitmap b;

 public Bitmap getBitmap() {
 return b;
 }
 public void setBitmap(Bitmap b) {
 this.b = b;

 }
}

The Application and Bitmap classes must be imported B for this code to compile.
The UA2EFindEdgesApp class extends the Application class. The Bitmap is stored as a
private member, and of course you have a getter and setter c to manipulate this
Bitmap.

NOTE Whenever you use an Application class, it must be defined in the
AndroidManifest.xml file as the android:name attribute of the application tag.

Let’s now look at the primary user interface code to see how you take a photo and

Listing 19.8 UA2EFindEdgesApp.java

Image
View

e

Required
imports

b

Getter
and setter
routinesc
store it into the Application object.

521Building the user interface

19.4.2 Taking a photo

There are a number of ways to take a photograph on the Android platform. For this
application you’ll just ask the Camera to do the work for you through the use of an
Intent. The next listing demonstrates this approach. Note that the JNI-related code
introduced next is employed in listing 19.10.

package com.msi.manning.ua2efindedges;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.widget.ImageView;
import android.widget.Button;
import android.view.View;
import android.content.Intent;
import android.graphics.Bitmap;
import android.graphics.Bitmap.Config;

public class UA2EFindEdges extends Activity {

 protected ImageView imageView = null;
 private final String tag = "UA2EFindEdges";
 private Button btnAcquire;
 private Button btnFindEdges;
 // declare native methods
 public native int converttogray(Bitmap bitmapcolor,
 Bitmap gray);
 public native int detectedges(Bitmap bitmapgray,
 Bitmap bitmapedges);

 static {
 System.loadLibrary("ua2efindedges");
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 btnAcquire = (Button) this.findViewById(R.id.AcquireImage);
 btnAcquire.setOnClickListener(new View.OnClickListener(){
 public void onClick(View v){
 try {
 Intent action = new
 Intent("android.media.action.IMAGE_CAPTURE");
 startActivityForResult(action,1);
 } catch (Exception e) {
 Log.e(tag,"Error occurred [" + e.getMessage() + "]");
 }
 }
 });

 btnFindEdges = (Button) this.findViewById(R.id.FindEdges);

Listing 19.9 UA2EFindEdges.java

Declare
native
methods

b

Load JNI
libraryc

Request
photo

d

 btnFindEdges.setOnClickListener(new View.OnClickListener(){

522 CHAPTER 19 Android Native Development Kit

 // code shown in next listing
 });

 imageView = (ImageView) this.findViewById(R.id.PictureFrame);
 UA2EFindEdgesApp app = (UA2EFindEdgesApp) getApplication();
 Bitmap b = app.getBitmap();
 if (b != null) {
 imageView.setImageBitmap(b);
 }
 else {
 btnFindEdges.setVisibility(View.GONE);
 }

 }

 protected void onActivityResult(int requestCode,
 int resultCode,Intent data)
 {
 try {
 if (requestCode == 1) {
 if (resultCode == RESULT_OK) {
 UA2EFindEdgesApp app = (UA2EFindEdgesApp) getApplication();
 Bitmap b = app.getBitmap();
 if (b != null) {
 b.recycle();
 }

 b = (Bitmap) data.getExtras().get("data");
 app.setBitmap(b);
 if (b != null) {
 imageView.setImageBitmap(b);
 btnFindEdges.setVisibility(View.VISIBLE);
 }
 }
 }
 } catch (Exception e) {
 Log.e(tag,"onActivityResult Error [" + e.getMessage() + "]");
 }

 }
}

This code is the primary Activity for the application and is also the code that calls
the previously written native code. To call the native methods, they must be declared
B and the JNI library must be loaded c at runtime. When the Acquire button is
selected, you request a photo by creating an Intent and dispatching it with a call to
startActivityForResult d. Whenever the Activity is created, you need to check
whether a Bitmap is available; to do that you first get a reference to the Application
object e, casting it to the UA2EFindEdgesApp class. If you have a valid Bitmap, you dis-
play it f in the ImageView. This approach handles the scenario where the Android
device has changed orientations and the Activity has been restarted. When the Cam-
era has captured a photo, it’s packaged up into an Intent and sent back to your appli-
cation via the onActivityResult method g. If an existing Bitmap is found in the

e

Display
Bitmapf

Activity
result

g

Recycle
Bitmap

h

Extract, store,
display Bitmap

i

Toggle Button
visibility

j

Application object, it’s recycled h and the new one is extracted from the Intent i.

523Building the user interface

The Bitmap is stored in the Application object and displayed to the screen. Once the
photo has been acquired, the Find Edges button is shown J.

 Now that you have the photo, you want to run your image-processing routines
against it to find the edges. That’s up next as we examine the click handler for the
Find Edges button.

19.4.3 Finding the edges

The Java side of the image-processing code relies on some knowledge of how Android
Bitmaps are constructed. There are three Bitmaps in play by the time the edge detec-
tion is complete:

1 The original photo is stored in the Application object as a full-color Bitmap
with a format of AARRGGBB, meaning Alpha channel, Red, Green, and Blue
pixel data.

2 A grayscale image is created from the color image.
3 A second grayscale image is created, which receives the edges found in the

prior grayscale image.

The following listing shows the click handler and steps through the process of con-
verting a color image to an edges-only image.

btnFindEdges = (Button) this.findViewById(R.id.ModifyImage);
btnFindEdges.setOnClickListener(new View.OnClickListener(){
 public void onClick(View v){
 try {
 UA2EFindEdgesApp app = (UA2EFindEdgesApp) getApplication();
 Bitmap b = app.getBitmap();
 int width = b.getWidth();
 int height = b.getHeight();
 Bitmap bg = Bitmap.createBitmap(width, height, Config.ALPHA_8);
 Bitmap be = Bitmap.createBitmap(width, height, Config.ALPHA_8);
 converttogray(b,bg);
 detectedges(bg,be);
 app.setBitmap(be);
 imageView.setImageBitmap(be);
 btnFindEdges.setVisibility(View.GONE);
 } catch (Exception e) {
 Log.e(tag,"Error occured [" + e.getMessage() + "]");
 }
 }
});

This code first obtains a reference to the Application object to retrieve the color Bit-
map B. To create the two grayscale Bitmaps c required for the image processing, you
first need to get the dimensions of the original photo. With all of the Bitmaps ready for
use, convert the color photo to a grayscale version with a call to converttogray. Next,
find the edges in the image with a call to detectedges d. Store the new image in the
application and display it on the screen. You don’t want to run the edge-detection rou-

Listing 19.10 Finding the edges

bGet Bitmap
from Application

c

Create two
grayscale
Bitmaps

Find edgesd
tine without first obtaining a new color image, so hide the Find Edges button.

524 CHAPTER 19 Android Native Development Kit

 Congratulations—you now know how to use the NDK! All in all, it wasn’t painful,
but there’s one annoying task. Building the JNI library from a command line is simple
but not fun, particularly when you’re accustomed to saving a Java source file and hav-
ing the application auto-build. Fortunately there’s a way to incorporate the NDK into
the Eclipse environment.

19.5 Integrating the NDK into Eclipse
The goal is simple: build the entire project from within Eclipse and never resort to the
command line to perform any build operations. You can accomplish this goal by mod-
ifying the project’s build properties. Highlight the project in Eclipse and select Prop-
erties to open the properties dialog. Select the Builders group, as shown in figure 19.8.

 Note the ndk builder entry to the right. To create this in a new project, click the
New button on the far right side of the dialog. This opens a dialog with four tabbed
sections. You’re interested in the first, second, and fourth tabs, as shown in the next
few figures. Before looking at those screens, note that you want the NDK to build your
code before the other project build steps; that way, you can get the latest version of the
JNI library packaged into the final APK file. To do this, highlight the ndk builder tool
you just created and select the Up button to position it at the top of the list. Don’t
neglect this step!

 Figure 19.9 shows the options for the external tool to launch, which in this case is
the fully qualified path to the ndk-build script in the NDK directory. Note the use of
the symbolic link ndk, which eases the transition to new versions of the NDK over time.

 Figure 19.10 shows the next tab of the tool configuration window, which requests
that the project resources be refreshed after the build this step.

Figure 19.8 Project properties

525Integrating the NDK into Eclipse

Figure 19.9 External tool properties
Figure 19.10 Request refresh after build

526 CHAPTER 19 Android Native Development Kit

The fourth tab of the configuration, shown in figure 19.11, requests that the external
tool be configured for auto-build. This means that when you save a dependent file of
the tool (in this case, the Android.mk file or the ua2efindedges.c file), the NDK tool
runs, and if there are no errors, the rest of the build process continues on to package
the application for you. Goal accomplished: you stay within Eclipse! If you’re a com-
mand-line kind of programmer, just disregard this step.

19.6 Summary
In this chapter we explored incorporating C language code via the NDK in the context
of an image-processing application. The NDK is the means by which the JNI is accessi-
ble for Android developers. The JNI permits the Android developer to leverage the C
environment for two primary purposes: to take advantage of C’s speed capabilities for
conducting time-critical operations to leverage existing code libraries written in C.

 The chapter’s sample application demonstrated a classic image-processing algo-
rithm called edge detection with a fully functional application that demonstrated not
only the C language elements required by the NDK toolset, but also the necessary Java
code changes required to employ the custom JNI library.

 The chapter wrapped up by adding the NDK build process into the overall
Android project build process. This makes building an NDK application as stream-
lined as possible by setting up the NDK as an external tool to take advantage of

Figure 19.11 Configuring build options
Eclipse’s auto-build feature.

appendix A
Installing

 the Android SDK

This appendix walks through the installation of Eclipse, the Android SDK, and the
ADT plug-in for Eclipse. This appendix is meant to be a reference resource to assist
in setting up the environment for Android application development. The topic of
using the development tools is covered in chapter 2.

A.1 Development environment requirements
To develop Android applications, your computing environment must satisfy the
minimum requirements. Android development is a quick-paced topic, with
changes coming about very rapidly, so it’s a good idea to stay in tune with the latest
developments from the Android development team at Google. You’ll find the latest
information regarding supported platforms and requirements for Android Devel-
opment Tools (ADT) at http://developer.android.com/sdk/requirements.html.

This chapter covers
 Meeting development environment requirements

 Obtaining and installing Eclipse

 Obtaining the Android SDK

 Using the SDK and AVD Manager

 Configuring the Android Development Tools for Eclipse
527

528 APPENDIX A Installing the Android SDK

 Compatible development environments for the sample applications in this book
include:

 Windows XP/Vista/Windows 7, Mac OS X 10.4.8 or later (Intel x86 only), Linux
 Eclipse 3.4 (or later), including the JDT and Web Tools Platform, which are

included in the Eclipse installation package
 JDK and Java Runtime Environment (JRE) version 5 or 6
 ADT plug-in for Eclipse

Once you’ve identified a compatible computing environment, it’s time to obtain and
install the development tools. We’ll start with the Eclipse IDE.

A.2 Obtaining and installing Eclipse
A requirement for running the Eclipse IDE is the JRE version 5 or later. For assistance
in determining the best JRE for your development computer, go to http://
www.eclipse.org/downloads/moreinfo/jre.php. It’s likely that you already have an
acceptable JRE installed on your computer. An easy way to determine what version (if
any) you have is to run the following command from a command window or terminal
session on your development computer:

java -version

This command checks to see if the JRE is installed and present in your computer’s
search path. If the command comes back with an error stating an invalid or unrecog-
nized command, that probably means the JRE isn’t installed and/or it’s not properly
configured. Figure A.1 demonstrates using this command to check the version of the
installed JRE on a computer running the Windows OS.

 Once your JRE is installed, the next step is to install the Eclipse IDE. Download
the latest stable release from http://www.eclipse.org/downloads. You’ll want to down-
load the version for Java developers. This distribution is described at the Eclipse web-
site: http://www.eclipse.org/downloads/moreinfo/java.php. The Eclipse download is
a compressed file. Once you’ve downloaded it, extract the contents of the file to a con-
venient place on your computer. Because this download is simply a compressed file
and not an installer, it doesn’t create any icons or shortcuts on your computer.

Figure A.1 The java –version command displays the version of Java
installed on your computer

529Obtaining and installing Eclipse

To start Eclipse, execute the file named eclipse (run eclipse.exe for Windows users)
found in the directory to which you downloaded Eclipse. You may want to make your
own menu or desktop shortcut to eclipse(.exe) for convenience. Executing this file
loads the Eclipse IDE. Eclipse prompts for a workspace and suggests a default location,
such as C:\documents and settings\username\workspace. You can change the work-
space location to something Android specific to separate your Android work from
other projects, as shown in figure A.2.

 Accept the suggested workspace location or specify an alternative workspace loca-
tion, as desired. Once Eclipse is loaded, click the Workbench: Go to the Workbench
icon on the main screen, as shown in figure A.3.

 Eclipse consists of many “perspectives,” and the default is the Java Perspective,
from which Android application development takes place. The Java Perspective is

Figure A.2 Eclipse projects are
stored in a workspace, which is a
directory on your computer’s
hard drive.
Figure A.3 Eclipse defaults to the home screen. Go to the workbench.

530 APPENDIX A Installing the Android SDK

shown in figure A.4. Chapter 2 discusses in greater detail the use of the Eclipse IDE for
Android application development.

 For more information on becoming familiar with the Eclipse environment, visit
http://www.eclipse.org, where you can find online tutorials for building Java applica-
tions with Eclipse.

 Now that Eclipse is installed, it’s time to focus on the Android SDK.

A.3 Obtaining and installing the Android SDK
The Android SDK is available as a free download from a link on the Android home
page, at http://developer.android.com/sdk/index.html. SDK installation versions are
available for multiple platforms, including Windows, Mac OS X (Intel x86 only), and
Linux (i386). Select the latest version of the SDK for the desired platform.

 The Android SDK is a compressed folder download. Download and extract the
contents of the compressed folder file to a convenient place on your computer. For
example, you might install the SDK to C:\software\google\android-sdk-windows on a
Windows machine, or /somefolder/android-sdk-mac_86, as shown in Figure A.5.

 As you can see in figure A.5, the installation footprint is rather simple. Earlier ver-
sions of the Android SDK were a complete archive of tools, documentation, and
classes. Starting with version 1.6 of the SDK, the archive only contains the tools—

Figure A.4 Android development takes place in the Java Perspective.
essentially a set of SDK Management tools. As specific packages are installed over time

531Using the SDK and AVD Manager

they are added under the platforms folder. For Windows users, run the file named
SDK Setup.exe. For other development environments, run the shell script named
android. This will load the Android SDK and AVD Manager, which permits you to man-
age the SDKs on your development machine as well as define instances of the Android
emulator.

A.4 Using the SDK and AVD Manager
To begin developing Android applications, you must first download at least one of the
available Android “platforms.” The benefit of this approach is that it allows you to
manage and use multiple SDK versions in parallel on your development machine.
Given the pace at which the Android team is releasing code, this is a welcome
improvement over earlier versions of the SDK.

 In figure A.6 you can see the SDK and AVD Manager displaying the available
Android packages for download. Only the packages which are not presently on your
computer are listed here. As new packages become available are released they appear
in this list.

 Although the Android platform is generally described as versions, such as 1.1, 1.5,
1.6, and 2.0 and so on, the underlying technologies have been described as levels. For
example, Android API Level 5 was introduced at the 2.0 release and Android 2.3 is API
level 9. When looking at certain API documentation or working with Android plat-
forms, you’ll see these level indicators.

 Unless you have a specific older Android device in mind for an application, you’ll
want to focus on the most recent SDK release level. Much of this book uses SDK version
2.2, but you can install multiple versions of the SDK. Figure A.7 shows an installation
with support for numerous Android releases.

Figure A.5 Unzip the Android SDK archive to your hard drive.

532 APPENDIX A Installing the Android SDK

Testing is often done via the Android emulator; each instance of the emulator is
known as an Android virtual device (AVD). Here’s where the AVD Manager comes into
play. Under the virtual devices section of the SDK and AVD Manager, you can define
instances of the emulator, each with specific characteristics, such as SDK version/API

Figure A.6 The packages available for download

Figure A.7 The currently installed packages

533Using the SDK and AVD Manager

Level, SDCard storage size, and screen size. Figure A.8 shows the definition of a single
Android virtual device/emulator named 201 that uses the SDK version 2.0.1. You can
name your virtual device anything you like.

 You can view API documentation based on your local SDK installation if installed,
or online at http://developer.android.com/reference/classes.html. To view docu-
mentation locally, select the index.html file under the docs folder in the folder where
the Android SDK was unzipped. The SDK’s documentation is largely a collection of
Javadocs enumerating the packages and classes of the SDK. The file android.jar is the
Android runtime Java archive. The samples folder contains a number of sample appli-
cations, each of which is mentioned in the documentation. The tools folder contains
Android-specific resource compilers and the very helpful adb tool. These tools are
explained and demonstrated in chapter 2 of this book. Each version of the Android
platform contains its own set of samples, tools, and runtime libraries.

TIP The SDK changes from time to time as the Android team releases new
versions. If you need to upgrade from one version to another, there will be an
upgrade document on the Android website—be sure to examine the relevant
upgrade documentation file to learn of important changes to the API. Check
for items that may impact your previously written applications.

Both Eclipse and the Android SDK are now installed. It’s time to install the ADT plug-
in for Eclipse to take advantage of the ADT’s powerful features, which help you bring
your Android applications to life.

Figure A.8 Defining an Android virtual device, also known as an emulator

534 APPENDIX A Installing the Android SDK

A.5 Obtaining and installing the Eclipse plug-in
The following steps show you how to install the Android plug-in for Eclipse, known as
the ADT. The most up-to-date installation directions are available from the Android
website at http://developer.android.com/sdk/eclipse-adt.html. The first steps are
generic for any Eclipse plug-in installation, not just the ADT.

 Here are the basic steps to install the ADT:

1 Run the Find and Install feature in Eclipse, found under the Help > Software
Updates menu, as shown in figure A.9.

2 Select the “Search for new features to install” option, as shown in figure A.10.
Click Next.

Figure A.9 The Eclipse environment supports an extensible plug-in architecture.

Figure A.10 Choose the new features option.

535Obtaining and installing the Eclipse plug-in

3 Select New Update Site. Give this site a name, such as Android Tools, as shown
in figure A.11. Use the following URL in the dialog: https://dl-ssl.google.com/
android/eclipse. Please note the https in the URL. Click OK.

4 A new entry is added to the list and is checked by default. Click Finish. The
search results display the ADTs.

5 Select Android Tools and click Next, as shown in figure A.12.

6 After reviewing and accepting the license agreement, click Next.
7 Review and accept the installation location. Click Finish.
8 The plug-in is now downloaded and installed. Restart Eclipse to complete the

installation.

Congratulations! The ADT Eclipse plug-in is installed.

Figure A.11 Create a new update site
to search for Android-related tools.

Figure A.12 You must select Android Tools for Eclipse to download and install.

536 APPENDIX A Installing the Android SDK

 Note that from time to time you may need to upgrade your ADT plug-in to support
a new Android API level/SDK. As of the writing of this book, the latest version of the
ADT plug-in is version 8.01v201012062107-82219. To check for available ADT
upgrades, select Software Updates under the Help menu in Eclipse. Highlight the
Android Developer Tools in the Installed Software list and click the Upgrade button
on the right side of the dialog. This will upgrade your ADT plug-in if an upgrade is
available. As with the original installation of the ADT, we recommend that you restart
the Eclipse IDE for the software to properly install and be available to you.

 Next step: configuration.

A.6 Configuring the Eclipse plug-in
Once Eclipse is restarted, you connect the plug-in to the Android SDK installation.
Select Preferences from the Window menu in Eclipse for Windows or from the Eclipse
menu for Mac OS X. Click the Android item in the tree view to the left to expand the
Android settings. In the right pane, specify the SDK installation location. For example,
the value used for this appendix is /Users/fableson/Software/android/android-sdk-
mac_86, as shown in figure A.13.

 Once the SDK location is specified, there are five other sections you may configure:

 Build—This section has options for automatically rebuilding resources. Leave
this checked. The Build option can change the level of verbosity. Normal is the
default setting.

Figure A.13 ADT plug-in for Eclipse preferences

537Configuring the Eclipse plug-in

 DDMS—This service is used for peering into a running virtual machine. These
settings specify TCP/IP port numbers used for connecting to a running VM with
the debugger and various logging levels and options. The default settings
should be just fine. Chapter 2 describes how to use the DDMS.

 Launch—This section permits optional emulator switches to be sent to the emu-
lator upon startup. An example of this might be the wipe-data option, which
cleans the persistent file system upon launch of the emulator.

 LogCat?—The LogCat feature is used to view logging messages on the device.
This feature permits you to view both application-level log messages as well as
kernel-level messages. Only the font is selectable in this dialog, so adjust this as
desired. Don’t be fooled by this simple configuration setting—the LogCat is
your friend and is demonstrated throughout the book.

 Usage Stats?—This optional feature sends your usage stats to Google to help the
Android tools team better understand which features of the plug-in are used in
an effort to enhance the toolset.

 Your Android development environment is complete!

appendix B
Publishing applications

Writing and debugging applications can be both exhausting and satisfying, but the
day will come when it’s time to move past development and graduate to publishing
your Android application for others to use. This appendix presents best practices for
preparing an application for publication and then walks step by step through the
process of digitally signing an application and uploading it to the Android Market.

 In the most basic sense, publishing an application involves digitally signing it and
uploading it to the Android Market or other venues for distribution. But for you to
properly prepare an Android application, a few steps precede the distribution stage.
If you observe these guidelines carefully, the odds of your customers having a posi-
tive experience with your application increase significantly. Ignore these best prac-
tices and you run the risk of tarnishing your reputation as a mobile developer.

B.1 Preparing an application for distribution
Preparing an Android application for distribution is a somewhat straightforward
and methodical task, though one that requires considerable attention to detail.
This section presents a list of things to consider prior to releasing your application.
It’s not meant to be an exhaustive list but rather a framework for cleaning up your

This chapter covers
 Preparing an application for distribution

 Digitally signing an application

 Publishing applications to the Android Market and beyond
538

application.

539Preparing an application for distribution

B.1.1 Logging

During development it’s common to accumulate superfluous LogCat statements
throughout your code. For example, you may make verbose entries to the LogCat by
dumping the contents of objects to the log or recording every response from a remote
server. You may even write sensitive information such as “before and after” strings
related to an encryption routine. Although these entries are helpful during the
debugging of your application, they can be fatal flaws if shipped to users. Imagine
leaving breadcrumbs to your company’s intellectual property behind in the LogCat—
bad idea!

B.1.2 Debugging notifications

Your code may include the use of a Toast notification to inform you of some condi-
tion or scenario, such as an unhandled branch in a switch statement or perhaps a
notification of a caught exception. This notification is helpful during the debug cycle
but certainly not desirable for a released application.

B.1.3 Sample data

Your application may ship with sample data; if so, be sure that it’s properly set up for
your users in an intuitive manner. Also, be sure to avoid leaving behind your own data.
For example, if you have an FTP application, don’t leave behind your own credentials
in the database shipped with your application. And don’t prepopulate a form with
your credit card number!

B.1.4 AndroidManifest.xml

The AndroidManifest.xml file requires careful attention before publication of your
application. Let’s look at a few items you need to keep in mind.

 Remove the android:debuggable tag, or at minimum, set its value to false.
 Specify appropriate values for the label and icon attributes of the application

tag. Keep the text as short as possible in the label. Unless you’re an artist, get
someone to assist you in the creation of attractive logo artwork.

 Specify the android:versionCode and android:versionName attributes in the
<application> element of the manifest as well. The versionCode is an integer
value that can be checked programmatically and is typically incremented at
each release. The versionName is displayed to users. The online documentation
at http://developer.android.com covers these attributes in detail.

 Specify the minimum SDK level required for your application. For example, in the
FindEdges application from chapter 19 X requires bitmap features introduced in
the 2.2 version of the SDK. The SDK levels are integers that don’t correspond
exactly to the commonly referenced SDK versions. For example, the FindEdges
application has the following line to specify the target and minimum SDK level:
<uses-sdk android:targetSdkVersion="8" android:minSdkVersion="8">

</uses-sdk>

540 APPENDIX B Publishing applications

The FindEdges application won’t run on a device with an older OS version due
to the bitmap requirements, but your application may not be so constrained. If
your application isn’t constrained, consider setting the minSdkVersion as low as
possible to make the application accessible to a wide variety of devices. If your
application contains a hard constraint, don’t neglect this step because properly
specifying a minimum SDK level prevents users with older devices from install-
ing an application that can’t run on their devices. This is better than allowing
users to install your application and experience problems running the app.

B.1.5 End-user license agreement

We recommend providing your own end-user license agreement (EULA) even though
most users will ignore it. You’ve written this software and likely invested heavily in its
creation. You owe it to yourself and your investors to do what you can to protect your
interest in it, particularly with respect to hedging against potential liabilities your
application may introduce. Obtaining experienced legal counsel is a good idea unless
you plan to employ one of the commonly used open source agreements—even then,
consider obtaining guidance from an experienced legal expert familiar with software
licensing agreements.

 It’s common to display the EULA when the application is first launched, requiring
the user to positively acknowledge and agree to the terms. After the user has consented
to the terms of the EULA, don’t show it again unless the user explicitly requests to view
it via a menu selection. Storing a Boolean value in the SharedPreferences is an easy
approach to keeping track of the user’s consent to EULA agreement. You may also con-
sider showing the EULA on every upgrade in the event that your EULA is modified.

B.1.6 Testing

After you go through these steps, be sure to perform regression testing on your appli-
cation on a real device prior to distribution. It’s easy to break a functioning applica-
tion during this cleanup phase. The purpose of this testing is to check that all of your
potentially damaging debug information has been removed. You can then move on to
acceptance-style testing. Having a documented test plan is a good idea, and if possible,
let someone other than the primary developer be responsible for signing off on the
test plan.

 Be sure to run your application under as many conditions as you can with features
such as Wi-Fi, 3G, and GPS both enabled and disabled. Verify that the application
degrades gracefully in the event that a required service is unavailable, such as when
data service is unavailable or when roaming. It’s fine for your application to not per-
form if a missing communications link is unavailable, but the application should pres-
ent an easy-to-understand message to users, advising them of the situation and
perhaps suggesting steps to restore connectivity.

 Pay particular attention to how your application responds to being stopped and
restarted. Change the screen orientation when running each Activity. Does the

application behave as expected? Remember that the default behavior is for an

541Digitally signing an application

Activity to be stopped and restarted when the screen orientation changes. You may
need to return to your code and implement the Activity lifecycle methods.

B.1.7 Finishing touches

As an extra step, if your application persists data locally via a file, SharedPreferences,
or a SQL database, consider providing an import/export feature. This feature can be
implemented as an Activity, allowing the user to save the data out to the SD card in a
readily parsable format such as CSV or XML. The import/export feature should also
allow the user to restore the data to your application’s local storage. This extra feature
may make application upgrades easier and more resistant to errors. Having an easy
export/image mechanism via SD card also makes moving to a new device a nonevent
because your users can easily bring their data with them to the new device. Your users
will love you for this!

 Once you’re convinced that your application is ready for release, it’s time to digi-
tally sign the application in preparation for taking it to the Android Market.

B.2 Digitally signing an application
The Android platform requires every application file—that is, yourappname.apk—to
be digitally signed in order to run on a device or emulator; without a signature, an
application simply won’t run. When you use Eclipse to develop your application,
Eclipse silently signs the application with an automatically provided debug key. The
signing requirement is entirely transparent to most developers until it’s time to pub-
lish an application for others to use.

 When you’re publishing an application for distribution, the application needs to be
signed with a nondebug signature. Fortunately, the applications can be self-signed,
meaning a certificate authority isn’t required. This keeps the complexity and cost down
considerably compared to the signing process required for other mobile platforms.

B.2.1 Keystores

By default, the keystores are located under the user’s home directory in a folder
named .android. The following listing shows the contents of this folder on the
author’s development machine.

hostname:.android fableson$ ls -l
total 64
-rw-r--r-- 1 fableson staff 123 Jul 9 20:32 adb_usb.ini
-rw-r--r-- 1 fableson staff 198 May 22 10:28 androidtool.cfg
drwxr-xr-x 5 fableson staff 170 Jul 9 20:45 avd
-rw-r--r-- 1 fableson staff 58 Apr 19 22:58 ddms.cfg
-rw-r--r-- 1 fableson staff 1269 Jun 2 21:23 debug.keystore
-rw-r--r-- 1 fableson staff 759 Jun 10 03:21 default.keyset
-rw-r--r-- 1 fableson staff 51 Oct 24 2009 emulator-user.ini
-rw-r--r-- 1 fableson staff 2265 Aug 15 22:02 releasekey.keystore

Listing B.1 .android folder showing keystores

Debug
keystore

B

C

Release
keystore
-rw-r--r-- 1 fableson staff 72 Jul 20 00:53 repositories.cfg

542 APPENDIX B Publishing applications

The .android folder contains files and directories required by the Android Develop-
ment Tools. Of particular interest here is the debug.keystore B, which contains the
debug key used by Eclipse during normal edit, compile, install, and testing iterations.
Eclipse silently signs every application with the key stored within debug.keystore.
When the time comes to distribute applications to the Android Market, or other ven-
ues, a nondebug key must be created and stored in a separate keystore. In this case
we’ve created a nondebug key and stored it in releasekey.keystore C. This keystore
may be named arbitrarily by the developer.

 The next section walks through the process of creating a nondebug key and keystore.

B.2.2 keytool

This section demonstrates the creation of a key and its containing keystore via the pro-
gram named keytool. keytool is provided with the Java SDK and should be in the exe-
cutable path of your terminal or command window. When this step is complete, you’ll
have a valid key with which an Android application may be signed for distribution.

 The following command is an example of using keytool to create a self-signed pri-
vate key in the .android directory:

keytool -genkey -v -keystore ~/.android/releasekey.keystore -alias
releasekey -keyalg
RSA -validity 10000

This command generates a key (-genkey) in verbose mode (-v) stored in a keystore
file named releasekey.keystore with an alias of releasekey. The cryptographic algo-
rithm is RSA and the key has a validity of 10,000 days prior to expiration. Every key in a
keystore requires an alias. The alias is used when referring to the key within the key-
store during the signing of the APK file. The Android documentation recommends at
least a 25-year key life.

 The keytool command prompts for a key password and organizational informa-
tion when creating a key. You should use accurate information as it’s possible for your
users to view this later, and you should use a strong password. Once you create your
key, you also need to be careful to store it securely and keep the password private. If
your key is lost or compromised, your identity can be misused, and the trust relation-
ships to your key via your applications can be abused.

 Now that you have a valid key, it’s time to sign the application. For this task, you’ll
utilize the jarsigner application.

B.2.3 jarsigner

Signing applications is accomplished with the jarsigner tool. Like keytool, jarsigner is
part of the Java SDK so be sure that it is in your executable path.

 To sign an application, you must export it as an unsigned APK file. In Eclipse, right-
click and select the Android Tools > Export Unsigned Application Package option, as
shown in figure B.1.

543Digitally signing an application

Save the file as projectname-unaligned.apk. In this example you’ll export the
unsigned application file for the UA2E_FindEdges application to a file named
UA2E_FindEdges_unaligned.apk.

 Let’s now use jarsigner to sign the archive with our key, as shown here:

jarsigner -verbose -keystore ~/.android/releasekey.keystore
 UA2E_FindEdges-unaligned.apk releasekey

This command tells jarsigner to sign the APK file with a key named releasekey stored
in the previously created keystore file—that is, releasekey.keystore in the ~/.android
folder.

 The jarsigner tool prompts for the password used when the key was created.
Assuming the correct password is entered, jarsigner proceeds to sign the contents of
the archive file as well as creating or updating manifest files, as shown here:

jarsigner -verbose -keystore ~/.android/releasekey.keystore
UA2E_FindEdges-unaligned.apk releasekey
Enter Passphrase for keystore: ****************
 updating: META-INF/RELEASEK.SF

Figure B.1 Using Android Tools from the Eclipse/ADT environment to
export an unsigned application archive package
 updating: META-INF/RELEASEK.RSA

544 APPENDIX B Publishing applications

 signing: res/layout/about.xml
 signing: res/layout/main.xml
 signing: AndroidManifest.xml
 signing: resources.arsc
 signing: res/drawable-hdpi/icon.png
 signing: res/drawable-ldpi/icon.png
 signing: res/drawable-mdpi/icon.png
 signing: classes.dex
 signing: lib/armeabi/libua2efindedges.so
 signing: lib/armeabi-v7a/libua2efindedges.so

Note that every file in the archive is signed, including the native JNI library files in
addition to the Android SDK classes and resources.

 At this point the application is ready to be installed, but there’s a recommended
optimization step. If all the resources within the archive are properly aligned, the
Android OS can access a memory map of the file, thereby preserving the runtime RAM
required because the application need not be “copied” into memory. To accomplish
this alignment step, you can use the zipalign tool, which you’ll find in the Android
SDK/tools folder:

zipalign –v 4 UA2E_FindEdges_unaligned.apk UA2E_FindEdges.apk

The APK file is now ready for deployment to either a local device via the adb tool or
for publishing to the Android Market.

 To install the file to a locally attached device, use the adb command as follows:

adb install UA2E_FindEdges.apk

Replace the APK file with your filename, of course. To remove a currently installed
application, either uninstall it from the settings application on the device or again
use adb:

adb uninstall com.msi.manning.ua2efindedges

Be sure to substitute your application’s package name.
 Let’s take a look at publishing an application to the Android Market.

B.3 Publishing to the Android Market
Every Android phone has a built-in application known as the Android Market; the
label of the application says simply “Market.” This application permits users to browse
the extensive catalog of applications by category and price. The best way to get your
application onto thousands of Android devices is to publish your application to the
Market. This is done through web-based tools found at android.com.

 Checking the validity of an application’s license is accomplished by interacting
with the License Verification Library (LVL). Interacting with this library requires the
inclusion of the com.android.vending.licensing package and is beyond the scope
of this chapter. Please examine the online documentation found at http://developer.
android.com/guide/publishing/licensing.html for more details on the LVL.

545Publishing to the Android Market

B.3.1 The Market rules

Before you put your application on the Market, you should carefully read the devel-
oper terms (http://www.android.com/us/developer-distribution-agreement.html)
and the content guidelines (http://www.android.com/market/terms/developer-
content-policy.html).

 The Market terms cover pricing, payments, returns, license grants, revocations,
and other relevant topics to anyone looking to publish applications to the Android
Market. The content guidelines further define what’s acceptable in terms of subject
matter and media, though in practice an application must be very egregious to be
pulled out of the Market. The bar for entry is very low.

 If the Market terms are amenable to you and you plan to post applications, you need
to register as an Android developer as well as have a Google account. There’s a nominal
fee to register as an Android developer. Once you’re set up, you can begin placing your
applications in the Market for users to download and install directly. Optionally, you
can publish applications for a price other than “free”—that is, you can sell your soft-
ware. To do so, you must also provide banking and tax identifier information.

B.3.2 Getting your application in the Market

Registered Market developers simply use an online form to upload applications.
When uploading applications, you can define the different Market locations that are
supported, pricing and terms, as well as a category and description and other options.
To demonstrate the application publication process, we’ll review this author’s account
with a single published application. The application used for this exercise is the Find
Edges application created chapter 19.

 Figure B.2 shows the single application listed in the Android Market, ready for
maintenance. Note that this screen is also the place where new applications can added
to the market by clicking the Upload Application button in the lower-right corner.
Figure B.2 Managing Android Market applications

546 APPENDIX B Publishing applications

Clicking through the application allows you to edit this application’s properties on the
Market. The editing screen is too large to fit into one screenshot, so it’s split between
two figures. Figure B.3 shows the top portion of the management interface where
updates to the APK file can be loaded along with screenshots to display the application
to prospective users browsing in the Market.

 Figure B.4 shows the textual aspects of the application description.
 Once the application is published to the market, it’s visible to the Market applica-

tion on the Android devices worldwide within moments. Figure B.5 shows a screen-
shot of the Market application running on a physical Android device. The Market
application is displaying the catalog entry for the Find Edges application.

 After that simple process your application is available for download to users across
the globe.

 The Android Market is easy to use—but is it effective?

Figure B.3 Managing the APK file and screenshots

547Publishing to the Android Market

Figure B.4 Textual descriptions of application along with publication options

Figure B.5 The newly published
application becomes available on

the device in mere moments.

548 APPENDIX B Publishing applications

B.3.3 Android Market—the right solution

The Android Market is an effective distribution mechanism because it’s built in and
accessible to users and developers alike. Generally speaking, it’s the first place users
go to find applications.

 As mentioned in chapter 1, the open nature of the Android platform—and of the
Android Market—offers distinct advantages to both developers and users. There’s no
arbitrary inclusion or exclusion process that an individual or company holds over the
Market. Anyone who joins and agrees to the terms can publish applications on the
Market without fear of the thought police barring an application.

 Virtually all applications are welcome, but some will do better than others. Users
rate the applications on a scale of 1 to 5, and they may leave comments as well. These
comments often influence the prospective purchasers with their positive or negative
remarks. The Android Market is a merit-based system; impress your users and they’ll
rate your application well and compliment you; shortchange your users and your
download count and sales will suffer.

 In keeping with the theme of being an open platform, Android applications may
be distributed beyond just the Android Market.

B.4 Other distribution means
The last thing to consider with regard to distributing applications is that there are
other venues beyond the Android Market.

 Various third-party sites also offer distribution channels. These sites have different
agreement types and different payment models, so you should research them carefully
before using them.

 You may want to distribute your application in the Android Market or on third-
party services, or you may decide to use multiple distribution channels. If you do use
third-party services, keep in mind that although these alternatives are growing in pop-
ularity they aren’t nearly as accessible to users compared to the built-in Market. Users
have to find the third-party service and generally then have to install applications on
their own or at least bootstrap the service with an application specifically designed for
the market.

 Last and certainly not least, Android applications can be distributed directly from
a company’s website or any other means of shipping an APK file. For commercial
developers targeting enterprise applications, this is a distinct advantage over the dra-
conian measures taken by Apple for iPhone and iPad application deployment.

 The more means you have at your disposal to get your applications into the hands
of users, the greater your influence. Good luck!

 Some applications can be developed working exclusively with the emulator
whereas others require a real device from day one of development because the emula-
tor can’t adequately deliver the complete functionality required for things such as Blu-
etooth connectivity or taking a photo with a built-in camera. Whether or not your
application needs the real device during development, it’s a good practice to test all

applications on physical hardware before publishing an Android application.

549Recapping the Android Debug Bridge

B.5 Recapping the Android Debug Bridge
Although we covered the Android Debug Bridge (adb) in chapter 2, a recap is in
order as background for signing and installing applications and working with Android
devices.

 The adb is a client/server program that lets you interact with the Android SDK in
various ways, including pushing and pulling files, installing and removing applica-
tions, issuing shell commands, and more. The adb tool consist of three components: a
development machine–based server, a development machine client for issuing com-
mands, and a client for each emulator or device in use. Other Android tools, such as
the DDMS tool, also create clients to interact with the adb.

 You can make sure your local adb server is running by issuing the adb start-
server command. Similarly, you can stop your server with adb kill-server and then
restart it, if necessary (or just to get familiar with the process). When you start the
Eclipse/ADT environment, it automatically starts an adb server instance.

 Once you’re sure your adb server is running, you can tell if any devices or emula-
tors are connected by issuing the adb devices command. The output of this com-
mand with an emulator running and a physical device attached via a USB cable is
shown here:

#$ adb devices
List of devices attached
emulator-5554 device
HT845GZ49611 device

The adb tool acts as the backplane for the Android development process. Communi-
cations between the development environment and a device/emulator rely on adb.
The first step in getting your applications onto an actual device is to connect your
device to the development machine and confirm that it’s recognized by adb. If you
have any running emulator instances, it’d be a good idea to shut them down prior to
beginning this process. Confirm that your physical device is the only attached Android
client. To do this, run adb devices from the command line and confirm that there’s a
single entry in the list of attached devices, as shown in figure B.1.

index
Symbols

.apk file 524

.dex files 51
@ symbol 24

Numerics

2D shapes 223
3D

cube, rotating 244
shapes 241

3GPP 247
324-M 247

7mA 379

A

AAC 247
AAC+ 247
aapt 40, 89
abortBroadcast 198
AbsoluteLayout 85
access permissions 133
AccountAuthenticator 410
AccountManager service 405
accounts, add and manage 404
ACTION_DOWN 331
ACTION_MOVE 331
ACTION_PICK 15
actions, using built-ins 108
ACTION_UP 331
Activity 24, 36, 55, 298, 327,

405
creating 65–74

extended by user classes 17
host processes killed 73
initiates DayTime Server

query 360
key 112
lifecycle

diagram 72
exploring 71

navigation between 130, 301
onCreate 72
RefreshJobs 319
separation of

responsibilities 112
ShowJob 323

Adapter
BaseAdapter 83
custom 82
defined 68
ReviewAdapter 82

AdapterView 78
adb 41, 71, 138, 549

arguments 343
interacting with Android

SDK 549
kill-server 549
shell 343, 355
start-server 549
See also DDMS

addProximityAlert 277
Address 289
addresses, converting with

Geocoder 288
addToDB 259
ADT 32, 528

configuring 536
installing 534

AIDL 101–102, 119
allowed types 120

aidl tool 119, 122
automatically invoked 120

Ajax 423
Alarm Manager 481
AlarmManager 220

public methods 215
supports four Alarm

types 218
Alarms 215–220, 463
alarms, compared to

services 481
AlertDialog 70, 287
AMR-NB 247
AMR-WB 247
Android

application
building in Eclipse 43–51
mapping flow 298–302
requires manifest file 302

Bluetooth capabilities
368–375

building application in
Eclipse 43–51

building apps without the
SDK 339–344

calling an Intent 108
common sensors 376
components 17–23

Activity 17
BroadcastReceiver 19
ContentProvider 22
Service 18

contact model 388–393
core packages 33
551

displaying UI elements 17
plug-in for Eclipse 34 Cursor object 145

552 INDEX

Android (continued)
designing application

294–298
See also field service

application
development requires Java

skills 11
discourages direct file

sharing 22
displaying progress 319
drawing graphics 223–227
emulator 39, 51–56

setting up environment 52
splash screen 303
working with an SD

card 141
environment, should vs.

can 184
and Exchange account 390
and Google account 390
Javadocs 76
licensing 9
Linux

applications 338
kernel-based OS 4

logging mechanism 19
MediaPlayer 247
moving from Activity to

Activity 130
Music Player 259
only encrypted

connections 369
optimizing web

applications 424–431
packages, world x

permission 134
philosophy 391
platform 4–9
runtime 345
same-but-different 7
screen layout 84
SenseBot. See SenseBot
shell 26
stack 10–12
stock icon 301
taking a photo 521
two versions of platform 54
user applications written in

Java 4
using resources 89, 98
version 2.0 or later 367
vs. iPhone 9
vs. itself 8
web development 422–424

Android Activity 455
Android ARM. See ARM
Android Asset Packaging Tool.

See aapt
Android Debug Bridge. See adb
Android Development Tools.

See ADT
Android development, Intent

12
Android device

security 295
touch screen-capable 300

android id 93
Android Interface Definition

Language. See AIDL
Android Market 9

merit-based system 548
publishing to 544, 548
rules 545

Android Native Developer Kit.
See NDK

Android NDK. See NDK
Android Open Source Plat-

form. See AOSP
Android Project Wizard 43
Android SDK 32

installing 530
Android Service 481
Android Virtual Device. See AVD
android:id attribute 46
android.bluetooth package 369
android.graphics package 223
android.intent.action.MAIN

application entry point 24
android.intent.category.

LAUNCHER 24
Android.jar 45
android.net 160
android.provider.Telephony.

SMS_RECEIVED 22
android.telephony 191, 199
android.view 75
Android/Java, refers to Java 339
Android/Linux

environments and tools 342
nontrivial activities 353
refers to Linux 339
startup code appearance 350
system libraries 345

AndroidManifest, understand-
ing the file 98–99

AndroidManifest.xml 21, 23,
43, 64, 98, 206, 488

@symbol 24

AppWidget 477
deployment descriptors 24

animations
Android supports four

types 97
ball as a sprite 230
creating

programmatically 230
creating with Graphical

API 227–233
frame-by-frame 227

ANR 81
AOSP 8
Apache 10

commons.io package 144
HttpClient 169
ResponseHandler 171

Apache Software License.
See ASL

API
dummy request 413
linkedin-j 408

API key, LinkedIn APIs 393
Apple 7

AppStore 9
application distribution,

Android vs. iPhone 9
Application Layer 162
Application Not Responding.

See ANR
Application, pass state between

activities 70
applications

distribution beyond
Market 548

getting to Market 545
hybrid, building 440
made for mobile 430

link to full site 431
simplify, reduce, and

eliminate 431
manifest 157
mapping to processes 25
preparing for

distribution 538–541
AppWidget

configuring 476
data elements 465
data handling 465–468
deployment patterns 458
metadata file 477
updating 480–487

AppWidgetHost 456
AppWidgetProvider 469–473
Android 2.2 371 application descriptor file 14 argc 349

553INDEX

argv 349
ARM 339

Android/Linux application
on 350

processor family 350
arm-none-linux-gnueabi-

gcc 340–341, 344
arm-none-linux-gnueabi-ld 340
arm-none-linux-gnueabi-

objdump 340
arrays

defined 96
helpfulness 96

asInterface 120
ASL, friendlier toward commer-

cial use 9
assembly language 340
Atom Publishing Protocol.

See AtomPub
AtomPub 179, 181
audio

capturing 257
playback choppy 250
playing 248, 250

auth token 405
authenticating to

LinkedIn 407
authentication 405

key. See Ki
lightweight service

wrapper 413
authority 107
AuthScope 175
AVC H.264 247
AVD 270

management Eclipse 34
AVD Manager 52, 531

B

background task 116
BaseColumns 152
BasicNameValuePair 177
batch builds without using

IDE 49
batch operations on

contacts 399
Binary Runtime Environment

for Wireless. See BREW
bind to data 78
Binder 102

onTransact method 121
binding from another

application 123

Bitmap 331, 515, 518
bitmaps 223
BlackBerry 7, 9

email capabilities 8
Bluetooth 10

capturing events 374
classes, Android 370
close-range wireless

networking 160
peer 374
permissions 375
and SenseBot 368

Bluetooth Serial Port
Profile 369

BluetoothAdapter 373
bonded 370
BOOT_COMPLETED 111
BounceActivity.java file 230
boundary conditions 424
BREW 7
broadcast

actions 114
events 113
permissions 114

BroadcastReceiver 113, 202,
374, 456, 482

associating with
IntentFilter 115

in every Android
application 24

no asynchronous
operations 115

no UI 19
tags 25

browser control, add to UI
layout 440

browser detection
examination of user agent

string 428
media query 429

browsers
overriding behavior 441
storing data directly 431
WebView 443

buffer, depth, comparing
values 241

BufferedOutputStream 333
BufferedReader 166
BufferedWriter 167
build script, need for 344
Builder pattern, add parame-

ters to AlertDialog 71
building a native library 508
Bundle 20, 70, 178, 208, 311
Button 67–68

C

C 338
application 338
application build script 344
times where better than

Java 507
Camera application 510
camera on cell phone 252
Canvas 331
canvas 223
CAPTCHA and GData

ClientLogin 184
carrier. See mobile operators
Cascading Style Sheets.

See CSS
category 99
CATEGORY_LAUNCHER 14
CDMA 33, 188

primary rival to GSM 189
characters method 316
checkForZombies 472
client/server 163
ClientLogin 181, 184
clipping planes, OpenGL 240
CodeSourcery 339, 342
colors, values expressed 95
com.google.android.maps 282
com.google.android.phone.

Dialer 15
ComponentName 103
conditional global

replacement 400
configuration activity 463
connecting to a remote

device 372
connection, wireless

internet 295
ConnectivityManager 164

mobile or WiFi 160
contacts

adding 400
conditional global

replacement 400
identifiers 398
managing 395–402
modifying database 399
multiple insertions 402
single logical 392
table 396

content
provider 23
selectively loading 428
staying up to date 151
bindService 124, 126 buttons, tied to UI elements 70 ContentObserver 151

554 INDEX

ContentProvider 22, 70, 129,
199, 297, 465

accessible by any application
151

additional properties 158
classes 149–157
creating 151, 157
extending 152
in every Android application

24
URI variations 150

ContentResolver 22, 150, 257
CONTENT_URI 150–151
ContentValues 257
Context 19, 68, 113, 134, 192,

306, 322
converttogray function 516
convolution 518
createPackageContext 134
creation, widget instance 479
CSS 95

multiple files per page 429
selectively choose file 428

ctime 355
Cursor 23, 130

data items changed 156

D

DAL 145
Dalvik Debug Monitor Server.

See DDMS
Dalvik VM 10

relies on Linux kernal 12
result is innovation 12

dashboard 457
data

bind to 78
contacts, good citizen

principles 393
persistence 70
raw contact, storing 392
sample, properly set up 539
storage requirements 297
structures 309
values 498

Data Access Layer. See DAL
Data Definition Language.

See DDL
data handling,

AppWidget 465–468
data table 396
database

modifying contacts 399

open a connection 148
opening 435
persisting data to 144
server 23

datagram 162
Date & Time settings 494
Daytime Client 359–362

single Activity 360
special permission 362
testing 362

DayTime Server 355
application has two parts 353
listens on TCP port 352, 361

DBHelper
inner classes 145
outer class 146

DBOpenHelper 145, 148
DDL 357
DDMS 34, 214, 537

option in Eclipse 209
perspective

dashboard-like view 37
LogCat view 38

DDMS tool
requires decimal format 270
supports KML 272
two contexts 269
working with a GPX file 272

Debug
Certificate 284
perspective 35, 57–58

debugging 57
DEFAULT_FOCUS 87
Delicious 179
depth buffer, comparing

values 241
developer API, LinkedIn 393
device ID 192
dex files 12
digital signature 541–544

jarsigner 542
keystores 541
keytool 542

dimensions, units of
expression 95

directory change 343
disassembling 340
Drawable 233
drawables 45, 303, 382

managing 497
shapes in XML 225

drawBitmap 331
drawColor 331
drawing with XML 224
dummy API request 413

E

Eclipse
build SMSNotifyExample

206
DDMS

perspective 35
view 342

debugging Android
application 57

default perspective 529
Emulator Control 269
installing 528
Java perspective 35
launch recording

application 259
and NDK 524
Package Explorer 35
plug-in, File Explorer view

133
setting up development

environment 13
workspace prompt 529

Eclipse IDE 528, 530
See also ADT

edge detection 507
routine 511

edges, finding 523
Editor 306
EditText 28, 67
EditView 308
Electronic Serial Number.

See ESN
ELF 350
email addresses, conditional

global replacement 400
emulator

switches 537
vs. simulator 52

Emulator Control, testing
connectivity 39

endElement method 316
end-user license agreement.

See EULA
Enterprise Information

Systems 7
equator, base for latitude 270
Error Console, WebKit 439
ESN swap 190
EULA 540
event handling 68, 87
executable and linkable format.

See ELF
exit 349
external links, adding 104
not WORLD_READABLE 149 dynamic linking 344–352 externalize string 94

555INDEX

F

FAT 141
field service application

assumptions 295
manifest file 302
resource files 301
source code 302–316
source files 300
steps 298

FieldService Activity
goal 304
implementing 306

File Allocation Table. See FAT
File Explorer view, Eclipse 39
file_get_contents 336
FileInputStream 143, 313, 333
FileOutputStream 137, 143,

333
files

accessing 137
read and write 137

filesystem, based on Linux 136
FILL_PARENT 86
findViewById 29, 93

method 28
finish 319
fixed-length record 388
focus 86

override default behavior 87
for additional locales 496
format, simple value 95
formatNumber 197
FrameLayout 85
fromBundle 311, 323

G

gcc 340, 346
GData API

implementation of
AtomPub 181

not true REST 181
GData ClientLogin and

CAPTCHA 184
geo

fix 271
query 299

Geocoder 288–289
creating 289
map between point and

place 269
geocoding 288
GeoPoint 269, 281

getExtras 80, 323
getJob 323
getProvider 277
getSharedPreferences 130
getSystemService 165, 192, 277
getTelephonyOverview, reset

screen details 194
getView 84
Gibara, Tom 252
global

start directive 351
state 70

global number 197
Global Positioning System.

See GPS
global replacement,

conditional 400
Global System for Mobile.

See GSM
GNU General Public License.

See GPL
Google

Android Market 9
Base Atom API 77
Contacts 181
GData 179, 181
Maps 26
and Open Handset

Alliance 3
Google APIs 54
Google Maps API

key, requesting 283
support through MapView

283
GPL 9
GPS 6

data stamped on job 331
most common location

provider 268
obtaining provider directly

278
services 456

GPS Exchange Format. See GPX
GPX

DDMS tool 272
storing points 271

graphics
2D and 3D 234
drawing in Android 223–227

Graphics API
called with Java 223
creating animations 227–233

GSM 33, 188
Android standard 189

H

H.263 247
Handango 9
handle 435
Handler 79, 91, 231, 304,

314, 319
relationship diagram 172
send a Message 112
updating Adapter 81

HandlerThread 81
height

class 85
setting minimum 76

hotspot 460
HTML5 422
HTTP 160

authentication 176
creating helper 172
defines internet rules 163
GET 169, 175
headers 175
and java.net 169
parameters 175
POST 169, 175, 331
protocol stateless 168
working with 168–178

HttpClient 172
HttpEntity 172
HttpPost 177
HttpRequestHelper 169, 174,

180
HttpRequestInterceptor 176
HTTPS 179

creating helper 172
HttpUrlConnection 169

I

IBinder 118, 405
base of remoting protocol

121
onBind 122
transact method 121

ICANN 164
ICCID 189

identifies SIM card 189
identity matrix, OpenGL 240
IDL 119
ifconfig 167
ImageView 93, 303
IMEI, identifies device 189
IMSI 192

subscriber and network

getEmail 306 gsm command 194 identifier 189

556 INDEX

independent software vendor.
See ISV

index.html file 442
InputStream 313
integer primitive, int 465
Intent 12, 70, 179, 195, 299

actions 105
broadcasting 113
data 107
defined 14
defined and invoked 102
definitions express 103
explicit 15
handlers 106
implicit 15
and IntentFilter 113
object components 102
receiving 19
requests, late binding 102
resolution 16
specify a permission 114
working with 109, 113

Intent classes
receiving 208
registered with Alarm 215

IntentFilter 19, 102
classes defined 107
defined 14
defines relationship 14
object 106
works with Intent 113

intent-filter 24, 106
IntentFilter action 456
intents, making calls 195
interface definition language.

See IDL
International Mobile

Equipment Identity.
See IMEI

International Mobile Sub-
scriber Identity. See IMSI

Internet Layer 162
Internet Protocol. See IP
interprocess communication.

See IPC
IP 160

address 162
finding 167

network data 160
IPC 102
ipconfig 167
iPhone 7

vs. Android 9
ISO format 493

ItemizedOverlay 285
handles details 287

iTunes, as an example 163

J

jar 51
jarsigner 542
Java 4, 339

array 437
connecting UI to a DayTime

Server 360
locale-specific data

classes 498
Runnable interface 320

Java bytecodes, convert to dex
file 50

Java development tools. See JDT
Java ME 7
Java Native Interface. See JNI
Java packages, included in

Android SDK 33
Java Perspective 35

Eclipse default 529
Java Platform, Micro Edition.

See Java ME
Java Runtime Environment.

See JRE
java.net 160, 169
Javadocs

android.provider
package 151

view 36
JavaScript

errors found at runtime 433
implementing handler 443
interface code 445
multiple handlers 446
overriding alert() 452
security matters 447

JDK 528
JDT 528

Eclipse 36
JNI

building a library 512–519
functions 519
library 508

compiling 518
load at runtime 522

JobEntry 310
JobListHandler 314, 317
jobs

data managing 309–316
ManageJobs Activity 320

with GPS data stamp 331
working with the ShowJob

Activity 323
JPEG 247

captured signature 333
converting to 331

JQuery 423
JRE 528

K

KDE 422
Keyhole Markup Language.

See KML
keystore, keys require an

alias 542
keytool 542
Ki, authenticates SIM card 189
KML 272

checks files for
Placemark 274

drawbacks 274
international standard 275

kSOAP, documentation 185

L

LAI, region device is in 189
Language & Keyboard 493
languages, target 495
latitude, how expressed 270
launch screen 301
Layout 45
layout 76, 455

alternative to absolute 85
create a screen 67
dimentions of a view 86
managing 497
screen 84
two-step process 86
XML 407

LayoutParams 85, 93
ld 346
LD_LIBRARY_PATH. 348
LED 210
LEGO Mindstorms NXT.

See robot
LEGO robot. See robot
libsqlite.so 355
License Verification Library.

See LVL
lifecycle

callback methods control
state 72
ISV 16 managing 316–333 high-level methods 73

557INDEX

lifecycle (continued)
methods 72
phases 72
See also Activity, lifecycle

lightweight authentication
service wrapper 413

LinearLayout 29, 85
Link Layer 162
LinkedIn 388

contacts, expanded
details 400

creating account 406–413
developer API key 393
logging in a two-stage

process 408
synchronizing 414
transactions 419

linkedin-j
API 408
project 394

linker 345
arm-none-linux-gnueabi-ld

346
options 348

Linux 4
building applications 338
DayTime Server 352
finding IP address 167
kernel 10

Linux kernel
and Dalvik VM 12
why use 11

Linux security system
prevents ad hoc file access 22

ListActivity 78
ListView 77, 81, 321
locale 493
localization

multiple locales 494
need for 492–499
obstacles 504
translation team 499
See also localizing

localizing
applications 498
entire infrastructure 495
in Java code 502
strategies 494

Location 275, 281
location

simulating 269–275
specify coordinates 269
updates 279

Location Area Identity. See LAI

LocationListener 275, 279
onProviderDisabled 281
onProviderEnabled 281
receive updates 269

LocationManager 112, 275
Criteria 278
find available providers 268
getProvider 278
GPS_PROVIDER 277
NETWORK_PROVIDER 277

LocationProvider 267, 275, 277
COARSE 278
FINE 278
permissions 278

LogCat 38, 49, 537
functionality 514
superfluous statements 539
values displayed 58

longitude, how expressed 270
lookup key 398
loopback 162

don’t connect to 167
Looper 81, 320
LVL 544

M

Mac 7
finding IP address 167

MAIN LAUNCHER, intent-
filter 111

main.xml 45–46
makeText 208
managedQuery method 150
manifest 98–99
MapActivity 268, 277

extending 282
writing with MapView 284

MapController 277
get from MapView 285

mapping, applications to
processes 25

Maps application 270, 299
maps, working with 281
MapView 268, 277

Google Maps API key 283
limited version of Google

Maps API 282
and Overlay classes 282
set zoom level 285
updating 269
writing MapActivity 284

MapViewActivity 275
screen 282

MD5 fingerprint 284
media, capturing 251, 259
MediaPlayer.create() 248
MediaRecorder 257, 259, 261
MEID 190
Menu 69

vs. onscreen buttons 70
MenuItem 69, 104
Message 112, 118, 172, 178,

362
class 319
handleMessage method 81
instances 319
object, do not reuse 320
sendEmptyMessage method

82
MessageQueue 81
metadata file, AppWidget 477
metrics, location-related 267
Microsoft Exchange 390
Microsoft, platforms

compelling 8
MIME type 107
MIME_TYPE 151, 257
mkdir, command on adb

shell 343
mksdcard 251

tool 141
Mobile Equipment Identifier.

See MEID
mobile in mind, designing 424
mobile operators

challenges 6
response to Android 5

mobile phone, basic states 193
Mobile Safari 7

iPhone 7
MotionEvent 331
MP3 247

file play back 248
MPEG-4 247
multiple accounts 390

convenience and
complications 390

My Location 270
MyLocationOverlay 285
MySQL 297, 334

N

NANP 198
National Data Buoy Center.

See NDBC
Native Developer Kit. See NDK
location-based service. See GPS margins 85 native library, building 508

558 INDEX

navigation, detecting events 449
NBDC 268

feeds 285
NDK 4, 339, 506

build subsystem 512
building an application 509
directory 524
installing 508
integrating into Eclipse 524
uses for 507

netstat 355
network protocols 161
NetworkInfo 165
networking, overview 161–164
NexusOne device 371
Nintendo Wii 368
NOAA 268
node 161
nop 350
North American Numbering

Plan. See NANP
nostdlib 348
Notification 116, 118

fields 210
NotificationManager 213
notifications 210–214

debugging 539
from Toast to status bar 211
with Alarms 218

NT Lan Manager. See NTLM
NTLM 176
number, global 197

O

-o switch 341
objdump 340, 350
Observable pattern 87
Observer pattern 87
OCR 507
OGC 273
onActivityResult 306–307, 323,

327
onBind method 19
onCallStateChanged 194
onClick 309
onClickListener 68, 87
onCreate 19, 79
onCreateOptionsMenu 329
onDraw 84, 331
OnFocusChangeListener 87,

198
onLayout method 84

onLocationChanged 281
onMeasure method 84
onMenuItemSelected 80, 104
onOptionsItemSelected 329
onPause 72
onReceive 115, 198
onSaveInstanceState

method 74
onscreen buttons vs. Menu 70
onServiceConnected 126
onServiceDisconnected 126
onTouchEvent 331
onVisibilityChanged

method 84
Open Geospatial Consortium.

See OGC
Open GL

clipping planes 240
identity matrix 240
and link command 347

Open Handset Alliance and
Google 3

open source, double-edged
sword 8

OPEN, CLOSED 504
OpenCORE 246–247

multimedia platform 247
open-ended records 389
openFileInput 137
openFileOutput 136, 313
OpenGL 345

primitives 238
descriptions 239

OpenGL ES 10, 233
3D shapes 241
Android support for 227
API 234
drawing a rectangle 238
graphically intensive

applications 234
visualization 237

OpenGL libraries 507
OpenGL-Context 234
openInputStream method 22
openRawResource 138
Oracle, Java VM licensing 12
org.apache.httpclient 160
outbound calls, intercepting

198
output switch. See -o switch
OutputStream 331
Overlay

classes display on
MapView 282

onTap 287
placing data on map

with 285
OverlayItem 285

P

Package Explorer, Eclipse 35
packet 162
PacketVideo, OpenCORE 10
padding 76
paint 223
paired 370
Palm 9
Parcelable 122
parse Uri 105
path 107
patterns

AppWidget deployment 458
Builder 71
Observable 87
Observer 87

PDU
mode is superior 208
SMS data packet 203

PendingIntent 200, 277
permissions 99

access 133
phone-related 196
world x 134

perspectives 241
DDMS 37
Debug 35, 57
Eclipse 34
Java 35–36

pESN 190
phone

home screen 455
number 192

Phone 7 7
PhoneGap 447
PhoneNumberUtils

formatNumber helper
method 197

parse and validate 196
PhoneStateListener 187, 191,

194
phone-top 454
PHP 297

for exchanging data 297
mobile integration code 336
server-side dispatcher

system 335
PictureCallback 253
onListItemClick method 80 draw on top of map 269 PID 38, 71

559INDEX

PIN value 372
pipe-delimited return

string 460
pixels, OpenGL primitives 238
placement 85
places, converting with

Geocoder 288
plain old XML over HTTP.

See POX
Point 233
polygons, OpenGL primitives

238
POP3 email program 403
port 352

identifying number 43
three ranges 164

Portable Operating System
Interface for UNIX.
See POSIX

POSIX 165
POST data 333
postDelayed 304
Power Control AppWidget 455
Power Control widget 455, 457
POX 160

exposes chunks of XML 178
using a service 180

preferences 130
preinit_array 351
prime meridian base for

longitude 270
primitives 223
printf 341
process

placed on a stack 71
pruning 71

process ID. See PID
produce information URL 299
progress, displaying 319
ProgressDialog 299, 314, 319,

328–329
ProgressDialog.show method 80
projection matrix 244
projectname.apk 51
protocol data unit 203

See also PDU
protocol layers 162
Prototype 423
Proxy 120
ps -a 26
Pseudo Electronic Serial

Number. See pESN
publishing 122

Android Market 544, 548

Q

Qualcomm 7
queryString 112
queuing, local 328

R

R class 29, 89
R.java 29, 44

file 300
serves as a bridge 64
updating 46

raw contact data, storing 392
raw resources 96
read-only interface,

AppWidget 455
Receiver 216
receiver 111, 456

tag 25
RecordHit, inserts record into

SQLite DB 355
records 389

fixed-length 388
open-ended 389

choosing 388
RefreshJobs 317
regression testing 540
relational database, built-in 144
RelativeLayout 85, 94
remote device, connecting 372
RemoteViews, working with 473
remoting 121
removeProximityAlert 277
Representational State Trans-

fer. See REST
requestLocationUpdates 281

use time parameter
carefully 281

Research in Motion 7
Resources 139

raw resources 138
XML resources 139

resources 89–98
referencing in Java 89
types 89

ResponseHandler 172, 175
REST 160, 184

methods 181
uses URL-style approach 178

return, replace with exit call 349
ReviewAdapter, extends

ReviewAdapter 83
RFCOMM 369

RISC 340
robot

communicating with 384
controlling with phone

orientation 382
driving 383

rotating 3D cube 244
router 163
rows, inserting and

deleting 438
rpath 348
Runnable, Java interface 81,

320

S

Safari 7
Samsung 371
save 306
SAX 77

parser 313, 316
style of tree traversal 141
XML parser 314

scaling 427
scheme 107
SD card 129, 141–144, 251

and the emulator 141
handles large files 141

sdcard path 141
SDK 4

upgrades 533
searching, Set Search Term

button 448
Secure Digital. See SD card
secure shell 343
Secure Sockets Layer. See SSL
security risks 447–448
select 357
sendBroadcast 113
sendDataMessage 199
sendMultipartTextMessage 199
sendTextMessage 199
SenseBot 368

building the application 379
uses Bluetooth to drive

robot 368
SensorEvent fields 377
SensorManager 375–379

classes 376
sensors

enabling and disabling 378
events 375

SEO 426

putExtras 80 cable replacement profile 369 Serial Port Profile. See SPP

560 INDEX

server 333–337
communicating with 165
relies on MySQL and

PHP 334
role 167

ServerSocket 166
Service 18, 24, 404

background task 116
binding vs. starting 126
building 115, 118
cleaning up after stopped 128
explicitly stopping 127
lifecycle 118, 127
onBind 118
onCreate 118
onDestroy 118
starting vs. binding 126
tags 24

Service-bound lifecycle 127
ServiceConnection 124
service-oriented architecture.

See SOA
services

compared to alarms 481
long-running 119
tag 24
two purposes in Android 126

Service-started lifecycle 127
setAudioEncoder 257, 261
setAudioSource 257, 261
setContentView 91
setContentView method 28
setEmail 306
setIcon 69
setMediaController 251
setNotificationUri 156
setOutputFormat 257, 261
setResult method 333
Settings button 299
setVideoPath 251
SGL 10
ShapeDrawable 224
SharedPreferences 305–306

access mode 132
Context 130
Editor 132
objects 133
storing with different

modes 130
XML files permissions 133

sharedUserId 138
Short Message Service. See SMS
ShutterCallback 253
signature

capturing with CloseJob

electronic 295
JPEG image 300

SIM cards
stored identifiers 189
used by GSM devices 189

Simple API for XML. See SAX
Simple Object Access Protocol.

See SOAP
SimpleAlarm class 216
simulator vs. emulator 52
single logical contact 392
SiteMonitor

application architecture
462–465

basics 458–461
monitors website health 459
supports multiple

conditions 460
SiteMonitorModel class, two

logical sections 465
SiteMonitorService 480
smart shortcut 457
smartphone, major players 7
SMS 39–203

pdus 203
permissions 201
receiving messages 202, 207
send message to emulator 21
sending messages 199, 201

SMS messages
permissions 207
sending 199, 201

SmsManager 199
SmsMessage 199, 203, 206
SMTP rigorous procedures 163
SOA 102
SOAP 160, 184, 297

imposes strict rules 178
kSOAP 185
proxy 185

Sobel Edge Detection 507
convolution 518
highlighting image edges 511

Socket 166, 362
socket interface 369
software development kit.

See SDK
software version 192
source-level debugging, Eclipse

34
Spinner 67–68
Splash Activity 301
splash page, functionality 303
splash screen 298, 302

SPP 369
SQL 22

functionality 422
local database 432

SQLite 10, 70, 112, 297, 345
built-in database system 144
database 355
insert, update, and delete

data 148
insertion of data 353
and link command 347
query 148
supports WeatherReporter

129
sqlite database 389
SQLite3 355
sqlite3 144

tool 149
SQLiteDatabase 148, 154
SQLiteOpenHelper 145
SQLQueryBuilder 156
src folder 44
SSL 296
stack 368
Stagefright, replacing

OpenCORE 247
start routine 349
startActivity 17, 70, 105
startActivityForResult 17, 306–

307, 323
startDocument method 316
startElement 316
starting path 134
startRecording 259
startService 18, 115
state

instance 74
manage between activities 70
persistent 73

–static command-line
switch 341

–static flag, applications self-
contained 345

static method 465
status code, should be internal

504
storing raw contact data 392
String 316, 465
StringBuilder 316
strings

comparison 451
identifying and managing

495
in resources 500
Activity 327 splashhandler 304 pipe-delimited return 460

561INDEX

strings.xml file 45, 497
Structured Query Language.

See SQL
Stub 119
style sheet 429
styles

helpfulness 95
vs. themes 96

stylus 300, 327
SurfaceHolder 237
SurfaceView 237
sync 403

across multiple terminals 403
retrying 404

synchronization. See sync
synchronizing lifecycle 414

T

takePicture 252
TCP 353

reliable 163
sockets 355

TCP/IP 161
TDMA 189
telephony 188

alphabetic keypad 197
format number 197
outgoing call 198
permission 193

TelephonyManager 187, 190
telnet 42
testing, run under varied

conditions 540
.text 350
text mode 208
TextView 93, 360

presents job details 323
themes vs. styles 96
Thread 79
TimerTask 118, 229
timestamp, appending 143
titled 383
Toast 206–210, 397
toBundle 323
tool chain, cross compiling 339
tools

aidl 119
linker 339

toString method, displaying
jobs 311

toXMLString 311, 313
transaction function,

unpacking 436

Transport Layer 162
triangles, OpenGL

primitives 238
troubleshooting 418
try/catch blocks 49

U

U.S. National Oceanic and
Atmospheric Administra-
tion. See NOAA

UDP, fire and forget 163
UI

changes 45
distortion 498

unbindService 126
Unix, DayTime Server 352
update, triggering 482
Uri object 102
UriMatcher 154
URIs 13

Content 22
examples 14
syntax 150
using those built-in 108

URL 13
product information 299

Usage Stats 537
user

ID 138
input 77

user agent 428
user friendly 455
UsernamePasswordCredentials

175
uses-library 282
uses-permission 25, 362

tag 25

V

Values 45
values, externalizing 94
Vector 313
Verizon, Get It Now 7
versionCode 539
versionName 539
vertex, coordinates per 240
video

playback choppy 250
playing 250–251

video recording, specific to
phone vendor 248

View 233, 331
classes 75
lifecycle methods 84
single-threaded interface 88
widgets 382

ViewGroup 84
subclass related to layout 76

viewport
meta tag options 427
tag, adding 426

views
common 75
creating custom 82
defined in XML 91
Devices 38
Eclipse 35
Emulator Control 39
File Explorer 39, 133
Javadoc 36
Layout 46
LogCat 38, 48, 58
Package Explorer 35, 44
Problems 36, 49
working with 74–89
XML 46
XML defined 92

vnd.android.cursor.dir 152
vnd.android.cursor.item 152

W

WEAK_FOCUS 87
weather, checking with custom

URI 109
WeatherAlertService 116–128
WeatherReporter 109–118, 149

displaying alerts 113
web control, desired

behavior 441
Web Inspector, WebKit 439
web services 178–185
Web Tools Platform 528
WebChromeClient class 452
WebKit 6, 10

and KDE 422
tools

Error Console 439
for testing 439
Web Inspector 439

WebView browser 443
WebViewClient 448
widget instance, create 479
widgets 46
translation team 499 VideoView 250 zombie 472

562 INDEX

width
class 85
setting minimum 76

Wi-Fi 160
Bluetooth similar to 368
no emulation layer 160

WiMAX 160
Windows 7

finding IP address 167
NTLM 176

Windows Mobile 9
WinRAR 51
WinZip 51
Workbench 529

Worldwide Interoperability
for Microwave Access.
See WiMAX

WRAP_CONTENT 86
WS-* 185

X

XML
drawable shapes 225
file not needed 67
parsing 181
resources 139
Schema 184

stream 336
using to create a

drawing 224
XML <animation-list> tag 228
XmlPullParser 141

Y

Yahoo! Weather API 102, 109,
118

Z

zombie widgets 472

	Cover
	Brief Contents
	Contents
	Part 1 What is Android
	1 Introducing Android
	1.1 The Android platform
	1.2 Android's development environment
	1.3 The layers of Android
	1.4 The intent of Android development
	1.5 Four kinds of Android components
	1.6 Understanding the AndroidManifest.xml file
	1.7 Mapping applications to processes
	1.8 Creating an Android application

	2 Android's development environment
	2.1 Introducing the Android SDK
	2.2 Exploring the development environment
	2.3 Building an Android application in Eclipse
	2.4 Using the Android emulator
	2.5 Debugging your application
	2.6 Summary

	Part 2 Exercising the Android SDK
	3 User interfaces
	3.1 Creating the Activity
	3.2 Working with views
	3.3 Using resources
	3.4 Exploring the AndroidManifest file
	3.5 Summary

	4 Intents and Services
	4.1 Serving up RestaurantFinder with Intent
	4.2 Checking the weather with a custom URI
	4.3 Checkign the weather with broadcast receivers
	4.4 Building a background weather service
	4.5 Communicating with the WeatherAlertService from other apps
	4.6 Summary

	5 Storing and retrieving data
	5.1 Using preferences
	5.2 using the filesystem
	5.3 Persisting data to a database
	5.4 Working with ContentProvider classes
	5.5 Summary

	6 Networking and web services
	6.1 An overview networking
	6.2 Checking the network status
	6.3 Communicating with a server socket
	6.4 Working with HTTP
	6.5 Web services
	6.6 Summary

	7 Telephony
	7.1 Exploring telephony background and terms
	7.2 Accessing telephony information
	7.3 Interacting with the phone
	7.4 Working with messaging: SMS
	7.5 Summary

	8 Notifications and alarms
	8.1 Introducing Toast
	8.2 Introducing notifications
	8.3 Introducing Alarms
	8.4 Summary

	9 Graphics and animation
	9.1 Drawing graphics in Android
	9.2 Creating animations with Android's Graphics API
	9.3 Introducting OpenGL for Embedded Systems
	9.4 Summary

	10 Multimedia
	10.1 Introduction to multimedia and OpenCORE
	10.2 Playing audio
	10.3 Playing video
	10.4 Capturing media
	10.5 Recording video
	10.6 Summary

	11 Location, location, location
	11.1 Simulating your location with the emulator
	11.2 Using LocationManager and LocationProvider
	11.3 Working with maps
	11.4 Converting places and addresses with Geocoder
	11.5 Summary

	Part 3 Android applications
	12 Putting Android to work in a field service application
	12.1 Designing a real-world Android application
	12.2 Mapping out the application flow
	12.3 Application source code
	12.4 Source code for managing jobs
	12.5 Server code
	12.6 Summary

	13 Building Android applications in C
	13.1 Building Android apps without the SDK
	13.2 Solving the problem with dynamic linking
	13.3 What time is it? The DayTime Server
	13.4 Daytime Client
	13.5 Summary

	Part 4 The maturing platform
	14 Bluetooth and sensors
	14.1 Exploring Android's Bluetooth capabilities
	14.2 Interacting with the SensorManager
	14.3 Building the SenseBot application
	14.4 Summary

	15 Integration
	15.1 Understanding the Android contact model
	15.2 Getting started with LinkedIn
	15.3 Managing contacts
	15.4 Keeping it together
	15.5 Creating a LinkedIn account
	15.6 Synchronizing to the backend with SyncAdapter
	15.7 Wrapping up: LinkedIn in action
	15.8 Summary

	16 Android web development
	16.1 What's Android web development
	16.2 Optimizing web applications for Android
	16.3 Storing data directly in the browser
	16.4 Building a hybrid application
	16.5 Summary

	17 AppWidgets
	17.1 Introducing the AppWidget
	17.2 Introducing SiteMonitor
	17.3 SiteMonitor application architecture
	17.4 AppWidget data handling
	17.5 Implementing the AppWidgetProvider
	17.6 Displaying an AppWidget with RemoteViews
	17.7 Configuring an instance of the AppWidget
	17.8 Updating the AppWidget
	17.9 Tying it all together with AndroidManifest.xml
	17.10 Summary

	18 Localization
	18.1 The need for localization
	18.2 Exploring locales
	18.3 Strategies for localizing an application
	18.4 Leveraging Android resource capabilities
	18.5 Localizing in Java code
	18.6 Formatting localized strings
	18.7 Obstacles to localization
	18.8 Summary

	19 Android Native Development Kit
	19.1 Introducing the NDK
	19.2 Building an application with the NDK
	19.3 Building the JNI library
	19.4 Building the user interface
	19.5 Integrating the NDK into Eclipse
	19.6 Summary

	appendix A - Installing the Android SDK
	A.1 Development environment requirements
	A.2 Obtaining the installing Eclipse
	A.3 Obtaining and installing the Android SDK
	A.4 Using the SDK and AVD Manager
	A.5 Obtaining and installing the Eclipse plug-in
	A.6 Configuring the Eclipse plug-in

	appendix B - Publishing applications
	B.1 Preparing an application for distribution
	B.2 Digitally signing an application
	B.3 Publishing to the Android Market
	B.4 Other distribution means
	B.5 Recapping the Android Debug Bridge

	index
	Symbols, Numerics, A
	B, C
	D, E
	F, G, H, I
	J, K, L
	M, N
	O, P
	Q, R, S
	T, U, V, W
	X, Y, Z

