Covers Android Z

INACTION

SECOND EDITION

W. Frank Ableson
Robi Sen
Chris King

P—_’M
2eeetS MANNING

Androivd in Action

W. FRANK ABLESON
ROBI SEN
CHRIS KING

Revised Edition of Unlocking Android

MANNING

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad St.

Suite 1323

Stamford, CT 06901

Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine

/l/l Manning Publications Co. Development editor: Troy Mott

180 Broad St. Copyeditors: Joan Celmer, Liz Welch
Suite 1323 Typesetter: Dottie Marsico
Stamford, CT 06901 Cover designer: Marija Tudor

ISBN 978-1-935182-72-6
Printed in the United States of America
12345678910 - MAL - 16 15 14 13 12 11

brief contents

PART 1 WHAT IS ANDROID?—THE BIG PICTUREccccveeteeeeennensees 1

1 = Introducing Android 3

2 = Android’s development environment 31

PART 2 EXERCISING THE ANDROID SDKccttieieeerereececenerenenes 61

3 = Userinterfaces 63
= Intents and Services 101

= Storing and retrieving data 129

= Telephony 187

4
5
6 = Networking and web services 159
7
8 = Notifications and alarms 205

9

= Graphics and animation 222
10 = Multimedia 246

11 = Location, location, location 267

PART 3 ANDROID APPLICATIONS . ..‘..‘.‘.“.......‘....‘..‘....‘..’.‘.“...291

12 = Putting Android to work in a field service application 293
13 = Building Android applications in C 338

BRIEF CONTENTS

PART 4 THE MATURING PLATFORM ..cceecteereecescescscessescscescescsces 30D

14
15
16
17
18
19

Bluetooth and sensors 367
Integration 387

Android web development 421
AppWidgets 454

Localization 491

Android Native Development Kit 506

contents

preface xvii

preface lo the first edition xix
acknowledgments — xxi

about this book xxiv

about the cover illustration xxix

PART 1 WHAT IS ANDROID?—THE BIG PICTURE ...c.cecveeeee. 1

Introducing Android 3
1.1 The Android platform 4
1.2 Understanding the Android market 5

Mobile operators 5 = Android vs. the feature phones 6
Android vs. the smartphones 7 = Android vs. itself 8
Licensing Android 9

1.3 The layers of Android 10

Building on the Linux kernel 11 = Running in the
Dalvik VM 12

1.4 The Intent of Android development 12
Empowering intuitive Uls 13 = Intents and how they work 13

viii CONTENTS

1.5 Four kinds of Android components 17

Activity 17 = Service 18 = BroadcastReceiver 19
ContentProvider 22

1.6 Understanding the AndroidManifest.xml file 24
1.7 Mapping applications to processes 25

1.8 Creating an Android application 26

1.9 Summary 30

Android’s development environment 31
2.1 Introducing the Android SDK 32
Core Android packages 33 = Optional packages 34

2.2 Exploring the development environment 34

The Java perspective 35 = The DDMS perspective 37
Command-line tools 40

2.3 Building an Android application in Eclipse 43

The Android Project Wizard 43 = Android sample
application code 44 = Packaging the application 50

2.4 Using the Android emulator 51

Setting up the emulated environment 52
Testing your application in the emulator 56

2.5 Debugging your application 57
2.6 Summary 58

PART 2 EXERCISING THE ANDROID SDKcceceeeereeereenees..01

User interfaces 63
3.1 Creating the Activity 65

Creating an Activity class 66 = Exploring the Activity
lifecycle 71

3.2 Working with views 74

Exploring common views 75 = Using a ListView 77
Multitasking with Handler and Message 81

Crealing custom views 82 = Understanding layout 84
Handling focus 86 = Grasping events 87

3.3 Using resources 89

Supported resource types 89 = Referencing resources in Java 89
Defining views and layouts through XML resources 92
Externalizing values 94 = Providing animations 97

CONTENTS

3.4 Exploring the AndroidManifest file 98
3.5 Summary 99

Intents and Services 101

4.1 Serving up RestaurantFinder with Intent 102

Defining Intents 102 = Implicit and explicit invocation 103
Adding external links to RestaurantFinder 104 = Finding your
way with Intent 106 = Taking advantage of Android-provided
activities 108

4.2 Checking the weather with a custom URI 109
Offering a custom URI 109 = Inspecting a custom Uri 111

4.3 Checking the weather with broadcast receivers 113
Broadcasting Intent 113 = Creating a receiver 115

4.4 Building a background weather service 115

4.5 Communicating with the WeatherAlertService
from other apps 119

Android Interface Definition Language 119 = Binder and
Parcelable 121 = Exposing a remote interface 122
Binding to a Service 123 = Starting versus binding 126
Service lifecycle 127

4.6 Summary 128

Storing and retrieving data 129

5.1 Using preferences 130

Working with SharedPreferences 130 = Preference access
permissions 133

5.2 Using the filesystem 136

Creating files 136 = Accessing files 137 = Files as raw
resources 138 = XML file resources 139 = External storage
via an SD card 141

5.3 Persisting data to a database 144

Building and accessing a database 144 = Using the
sqlite3 tool 149

5.4 Working with ContentProvider classes 149

Using an existing ContentProvider 150 = Creating a
ContentProvider 151

5.5 Summary 158

CONTENTS

Networking and web services 159
6.1 An overview of networking 161
Networking basics 161 = Clients and servers 163
6.2 Checking the network status 164
6.3 Communicating with a server socket 165

6.4 Working with HTTP 168

Simple HT'TP and java.net 169 = Robust HT'TP with
HitpClient 170 = Creating an HT'TP and HTTPS helper 172

6.5 Web services 178

POX—Putting it together with HT'TP and XML 179
REST 181 = To SOAP or not to SOAP, that is the question 184

6.6 Summary 185

Telephony 187
7.1 Exploring telephony background and terms 188
Understanding GSM 189 = Understanding CDMA 189
7.2 Accessing telephony information 190

Retrieving telephony properties 191 = Obtaining phone state
information 193

7.3 Interacting with the phone 195

Using intents to make calls 195 = Using phone number-related
utilities 196 = Intercepting outbound calls 198

7.4 Working with messaging: SMS 199
Sending SMS messages 199 = Receiving SMS messages 202

7.5 Summary 203

Notifications and alarms 205

8.1 Introducing Toast 206

Creating an SMS example with a Toast 206 = Receiving an
SMS message 207

8.2 Introducing notifications 210
The Notification class 210 = Notifying a user of an SMS 211
8.3 Introducing Alarms 215

Creating a simple alarm example 215 = Using notifications
with Alarms 218

8.4 Summary 220

CONTENTS

Graphics and animation 222
9.1 Drawing graphics in Android 223

Drawing with XML 224 = Exploring XML drawable
shapes 225

9.2 Creating animations with Android’s Graphics API 227

Android’s frame-by-frame animation 227 = Programmatically
creating an animation 230

9.3 Introducing OpenGL for Embedded Systems 233

Creating an OpenGL context 234 = Drawing a rectangle with
OpenGL ES 238 = Three-dimensional shapes and surfaces with
OpenGL ES 241

9.4 Summary 245

Multimedia 246
10.1 Introduction to multimedia and OpenCORE 247
10.2 Playing audio 248
10.3 Playing video 250
10.4 Capturing media 251
Understanding the camera 252 = Capturing audio 257
10.5 Recording video 259
10.6 Summary 265

Location, location, location 267
11.1 Simulating your location within the emulator 269

Sending in your coordinates with the DDMS tool 269
The GPS Exchange Format 271 = The Google Earth
Keyhole Markup Language 272

11.2 Using LocationManager and LocationProvider 275

Accessing location data with LocationManager 275
Using a LocationProvider 277 = Receiving location
updates with LocationListener 279

11.3 Working with maps 281

Extending MapActivity 282 = Using a MapView 282
Placing data on a map with an Overlay 285

11.4 Converting places and addresses with Geocoder 288
11.5° Summary 290

xi

xii CONTENTS

PART 3 ANDROID APPLICATIONS . ceeeteecescesescescscescscescacese 291

Putting Android to work in a field service application 293
12.1 Designing a real-world Android application 294
Core requirements of the application 295 = Managing the
data 296 = Application architecture and integration 297
12.2 Mapping out the application flow 298
Mapping out the field service application 298 = List of source
files 300 = Field service application’s AndroidManifest.xml 302
12.3 Application source code 302

Splash Activity 302 = Preferences used by the FieldService
Activity 304 = Implementing the FieldService Activity 306
Settings 307 = Managing job data 309

12.4 Source code for managing jobs 316
Refreshjobs 317 = Managing jobs: The ManageJobs
Activity 320 = Working with a job with the Showjob Activity 323
Capturing a signature with the Closefob Activity 327

12.5 Server code 333

Dispatcher user interface 334 = Database 334 = PHP
dispatcher code 335 = PHP mobile integration code 336

12.6 Summary 337

Building Android applications in C 338
13.1 Building Android apps without the SDK 339

The C compiler and linker tools 339 = Building a Hello World
application 340 = Installing and running the application 342
C application build script 344

13.2 Solving the problem with dynamic linking 344
Android system libraries 345 = Building a dynamically linked
application 346 = exit() versus return() 349 = Startup
code 350

13.3 What time is it The DayTime Server 352

DayTime Server application 352 = daytime.c 353
The SQLite database 355 = Building and running the
DayTime Server 358

13.4 Daytime Client 360

Activity 360 = Socket Client 361 = Testing the Daytime
Client 362

13,5 Summary 362

CONTENTS xiii

PART 4 THE MATURING PLATFORM . ..ecceceesccescesccnscesceeseea 30D

Bluetooth and sensors 367

14.1 Exploring Android’s Bluetooth capabilities 368

Replacing cables 369 = Primary and secondary roles and

sockets 369 = Trusting a device 370 = Connecting to a remote
device 372 = Capturing Bluetooth events 374 = Bluetooth
permissions 375

14.2 Interacting with the SensorManager 375

Types of sensors 376 = Reading sensor values 377
Enabling and disabling sensors 378

14.3 Building the SenseBot application 379

User interface 380 = Interpreting sensor values 382
Driving the robot 383 = Communication with the robot 384

14.4 Summary 385

Integration 387
15.1 Understanding the Android contact model 388

Choosing open-ended records 388 = Dealing with multiple
accounts 390 = Unifying a local view from diverse remote
stores 392 = Sharing the playground 393

15.2 Getting started with LinkedIn 393
15.3 Managing contacts 395

Leveraging the built-in contacts app 395 = Requesting operations
Jfrom your app 398 = Directly reading and modifying the contacts
database 399 = Adding contacts 400

15.4 Keeping it together 403

The dream of sync 403 = Defining accounts 404
Telling secrets: The AccountManager service 405

15.5 Creating a LinkedIn account 406
Not friendly to mobile 406 = Authenticating to LinkedIn 407

15.6 Synchronizing to the backend with SyncAdapter 414

The synchronizing lifecycle 414 = Synchronizing LinkedIn
data 414

15.7 Wrapping up: LinkedIn in action 417

Finalizing the LinkedIn project 417 = Troubleshooting tips 418
Moving on 419

15.8 Summary 419

xiv CONTENTS

Android web development 421

16.1 What’s Android web development? 422

Introducing WebKit 422 = Examining the architectural
options 423
16.2 Optimizing web applications for Android 424

Designing with mobile in mind 424 = Adding the viewport
tag 426 = Selectively loading content 428 = Interrogating the
user agent 428 = The media query 429 = Considering a made-
Jor-mobile application 430

16.3 Storing data directly in the browser 431

Setting things up 432 = Examining the code 433 = The user
interface 433 = Opening the database 435 = Unpacking the
transaction function 436 = Inserting and deleting rows 438
Testing the application with WebKit tools 439

16.4 Building a hybrid application 440

Examining the browser control 440 = Wiring up the control 441
Implementing the JavaScript handler 443 = Accessing the code
Jrom JavaScript 445 = Digging into the JavaScript 445

Security matters 447 = Implementing a WebViewClient 448
Augmenting the browser 448 = Detecting navigation events 449
Implementing the WebChromeClient 452

16.5 Summary 453

AppWidgets 454
17.1 Introducing the AppWidget 455
What’s an AppWidget? 455 = AppWidget deployment
strategies 457
17.2 Introducing SiteMonitor 458
Benefits of SiteMonitor 458 = The user experience 459
17.3 SiteMonitor application architecture 462
Bird’s-eye view of the application 462 = File by file 464
17.4 AppWidget data handling 465
17.5 Implementing the AppWidgetProvider 469
AppWidgetProvider method inventory 469 = Implementing
SiteMonitorWidgetImpl 470 = Handling zombie widgets 472
17.6 Displaying an AppWidget with RemoteViews 473

Working with RemoteViews 473 = UpdateOneWidget
explained 474

CONTENTS XV

17.7 Configuring an instance of the AppWidget 476

AppWidget metadata 477 = Working with Intent data 478
Confirming widget creation 479

17.8 Updating the AppWidget 480

Comparing services to alarms 481 = Triggering the update 482
Updating the widgets, finally! 484

17.9 Tying it all together with AndroidManifest.xml 488
17.10 Summary 489

Localization 491
18.1 The need for localization 492
18.2 Exploring locales 493
18.3 Strategies for localizing an application 494

Identifying target locales and data 494 = Identifying and
managing strings 495 = Drawables and layouts 497
Dates, times, numbers, and currencies 498 = Working with
the translation team 499

18.4 Leveraging Android resource capabilities 500
More than locale 500 = Assigning strings in resources 500
18.5 Localizing in Java code 502
18.6 Formatting localized strings 503
18.7 Obstacles to localization 504
18.8 Summary 505

Android Native Development Kit 506
19.1 Introducing the NDK 507
Uses for the NDK 507 = Looking at the NDK 508
19.2 Building an application with the NDK 509

Demonstrating the completed application 510
Examining the project structure 511

19.3 Building the JNI library 512
Understanding [NI 512 = Implementing the library 513
Compiling the [NI library 518

19.4 Building the user interface 519

User interface layout 519 = Taking a photo 521
Finding the edges 523

xvi
19.5

19.6

appendix A
appendix B

CONTENTS

Integrating the NDK into Eclipse

Summary 526

Installing the Android SDK 527

Publishing applications
index 551

538

524

preface

When we set out to write the first version of this book, many friends and family won-
dered just what this Android thing was all about. Now, two years after the publication
of the first edition, Android is nearly a household term.

The first edition of the book, Unlocking Android, enjoyed enough success that we
were privileged to have the opportunity to write this second edition, renamed as
Android in Action. The first thirteen chapters of the book have been refreshed and/or
rewritten to bring the content up to date with Android 2.2+. Six chapters were added,
bringing in more topics of interest that stray from the simplistic but are still within the
realm of instructional and informational. The new content extends beyond the basics
of Android development, including some topics that I've envisioned for a long time
but lacked the proper platform to bring them to fruition. We could have written many
more chapters, but we had to draw the line somewhere!

The second edition of this book was written by Frank Ableson, Robi Sen, and Chris
King. Chris updated chapters 4, 5, 7, and 11. Some excellent content originally writ-
ten by Charlie Collins remains in this second edition. Early on in the project Chris
and I were discussing the need to bring social networking into the book. Chris exam-
ined the available social networks and came back with a clever mechanism to integrate
the Android contacts database with the popular business networking service
LinkedIn. His work is shown in chapter 15, “Integration.” The application from chap-
ter 15 is available as a free download in the Android Market.

Robi updated his chapters on notifications, graphics, and media, while I focused
on some new content areas of interest, including Bluetooth communications, sen-
sors, localization, AppWidgets, native development in C, and web development for
Android.

xvii

Xviii

PREFACE

In addition to the LinkedIn application from chapter 15, two more applications
from this book are available in the Market as free downloads. The first is SenseBot—
an application that allows you to drive a LEGO Mindstorms-powered robot by tilting
your phone. The application demonstrates both the sensor subsystem of Android, as
well as communicating with Bluetooth. The other application available in the Market
is called FindEdges. FindEdges demonstrates the Android Native Development Kit as
it exercises an image processing algorithm written in the C language.

All in all, writing a book for Android is both exciting and challenging. Android
continues to mature and promises to be a major player for years to come. Many thanks
are owed to readers of the first edition, for without you, there wouldn’t be a second
edition!

FRANK ABLESON

preface to the first edition

The first mobile applications I had the opportunity to work with were inventory con-
trol programs used in retail and manufacturing settings. The “terminals,” as we called
them at the time, were heavy and expensive. They had big antennas, lots of clunky
keys, grayscale LCD displays, and they looked like they came straight from the set of a
science fiction movie.

From that austere beginning, my mobile horizons expanded when the Palm Pilot
became the craze in the mid to late 1990s. My first significant PalmOS project was to
develop an IrDA communications library for an application that printed calendars,
contacts, and task-lists. Back then, the hip printers had an IrDA port and it was cool to
beam your business card to someone. Ironically, I always enjoyed designing and writ-
ing the software more than using the devices themselves.

Fast forward ten years, and I have had the privilege of working on some very chal-
lenging and engaging mobile software projects for numerous clients along the way.
Much of my career to date can be traced back to relationships stemming from my
early mobile development experiences—and what a blessing it has been for me. I just
love the question, “would it be possible to...?” And more often than not, the answer
has been “Yes!” What I particularly enjoy is helping change the way a business operates
or the way problems are solved through the application of mobile software. Mobile
technology can and will continue to change the way we live, work, and play...and this
brings me to Android and this book.

In the fall of 2007, I was speaking with my friend Troy Mott, who happens to be an
editor for Manning, the publisher of this book. Troy and I were discussing the mobile
marketplace, something we’ve been doing for years. We started kicking around the

p.0. ¢

PREFACE TO THE FIRST EDITION

idea of writing a book on Android. The challenge was that Android didn’t really exist.
Yet. We knew from some of the preliminary information that the platform promised to
be open, capable, and popular. We felt that those ingredients could make for an inter-
esting and valuable topic, so we began thinking about what that book might look like,
taking it on faith that the platform would actually come to fruition.

Before long, we convinced ourselves (and Manning) that this was a good idea and
the work began in early 2008. Beyond the usual challenges of putting a book together,
we had the additional obstacle that our subject matter has been in a steady, though
unpredictable, state of change over the past year. In essence, we’ve written this book
twice because the SDK has been changed multiple times and Android-equipped
phones have become available, accelerating the interest and demand for the plat-
form. Every time a significant change occurred, we went back and revisited portions of
the book, sometimes rewriting entire chapters to accommodate the latest develop-
ments in the Android platform.

I say “we” because in the process of writing this book, Troy and I decided to share
the fun and brought in two experienced authors to contribute their expertise and
enthusiasm for this platform. It has been a pleasure getting to know and working with
both Charlie Collins and Robi Sen. While I focused on the first and third parts of the
book in the first edition, Charlie and Robi wrote part 2, which covers the important
fundamentals of writing Android applications. Thanks to their contributions, I
enjoyed the freedom to express my vision of what Android means to the mobile space
in the first part of the book, and then to work on a couple of more advanced applica-
tions at the end of the book.

We hope that you enjoy reading this book and that it proves to be a valuable
resource for years to come as together we contribute to the future of the Android
platform.

FRANK ABLESON

acknowledgments

Perhaps the only thing more challenging than writing a technical book is writing the
second edition. There is a lot of excitement when writing the proposed table of con-
tents for the updated edition but at some point the work must commence. The size and
scope of this project meant working together as a team from the start. I had the privi-
lege of working again with Robi Sen from the first edition and also with experienced
developer and writer Chris King. Along with the help of the talented team at Manning,
we are pleased to present Android in Action, the update to Unlocking Android.

In particular, we’d like to acknowledge and thank those at Manning who helped
bring this book about. First, thanks to Troy Mott, our acquisition and development
editor, who has been involved in every aspect of both the first and second editions.
Troy was there from the beginning, from the “what if” stages, through helping push us
over the goal line—twice! Karen Tegtmeyer did all the big and little things to bring
the project together; Mary Piergies skillfully piloted the team through the harrowing
production process; and Marjan Bace, our publisher, showed an attention to detail at
once challenging, beneficial, and appreciated.

Once the writing was done, the next round of work began and special thanks need
to go to: Benjamin Berg who performed the pre-production editing pass, Joan Celmer
and Liz Welch, our copyeditors, who made our content readable in cases where it
went either “too geek” or where the geek in us tried to be “too literary;” Elizabeth
Martin, our proofreader, who added common sense to the project, as well as a terrific
sense of humor and encouraging attitude; Janet Vail who jumped in at the last minute
to help us bring the final pieces of the project together; and finally Dottie Marsico
who handles the actual layout of the pages. It is sometimes hard to envision the final

xxi

xxii

ACKNOWLEDGMENTS

product when looking at edits upon edits in MS Word, but Dottie’s magic makes the
product you hold in your hands. Thanks to each of you for your special contribution
to this project. Next, we would like to thank Candace Gillhooley for her efforts in get-
ting the word out about the book.

And special thanks to the other reviewers who read our revised manuscript at dif-
ferent times during its development: Michael Martin, Orhan Alkan, Eric Raymond,
Jason Jung, Frank Wang, Robert O’Connor, Paul Grebenc, Sean Owen, Loic Simon,
Greg Donald, Nikolaos Kaintantzis, Matthew Johnson, and Patrick Steger; and to
Michael Galpin and Jéréme Baton for their careful tech review of the final manuscript
during production.

Lastly, we want to thank the thoughtful and encouraging MEAP subscribers who
provided feedback along the way; the book is better thanks to your contributions.

Frank Ableson

I would like to thank Robi Sen, Chris King, and Troy Mott for their contributions, col-
laboration, and endurance on this project! And of course, my wife Nikki and my chil-
dren deserve special recognition for the seemingly endless hours of wondering when I
would emerge from the “lab” and what mood I would be in—either elation when the
robot worked, or near depression when the AppWidgets wouldn’t go away. Thank you
for getting neither too excited nor too concerned! My staff at navitend also deserve a
big thank you for carrying the water while I finished my work on this project. Finally, a
big thank you to Miriam Raffay from Madridiam.com, who provided the much-
needed Spanish translations for chapter 18. Gracias!

Chris King

I am deeply grateful to Troy Mott and Frank Ableson for bringing me into this project
and providing support and inspiration throughout. Troy has been welcoming and
enthusiastic, showing great flexibility as we discussed what projects to undertake.
Frank has a keen eye for quality, and provided great guidance from start to finish on
how to craft the best book possible. I also appreciate all the work done by the review-
ers and editors from Manning, whose contributions have improved the text’s accuracy
and style. Working on this book has been a joy, and I've greatly enjoyed the opportuni-
ties to contribute more and more to its progress.

Thanks also to the crew at Gravity Mobile, especially Noah Hurwitz, Chris Lyon,
Young Yoon, and Sam Trychin. You guys keep my life fun and challenging, and have
made mobile development an even better place to work. Finally, my love to my fam-
ily: Charles, Karen, Patrick, Kathryn, and Andrew. You’ve made everything possible
for me.

ACKNOWLEDGMENTS xxiii

Robi Sen

I would like to thank Troy Mott and the team—and everyone at Manning Publica-
tions— for their hard work making this book something worth reading. I would like to
thank my coauthors, Frank and Chris, who were great to work with and very under-
standing when I was the one holding things up. I would also like to thank Jesse Dailey
for his help with OpenGL as well as David Cartier with the Contacts API. Finally, I
would like to thank my family who, more often than I liked, had to do without me
while I worked on my chapters, worked multiple jobs, and finished grad school.

about this book

Android in Action, Second Edition is a revision and update of Unlocking Android, pub-
lished in April 2009. This book doesn’t fit nicely into the camp of “introductory text,”
nor is it a highly detailed reference manual. The text has something to offer both the
beginner and the experienced developer who is looking to sell his or her application
in the Android Market. This book covers important beginner topics such as “What is
Android” and installing and using the development environment. We then advance to
practical working examples of core programming topics any developer will be happy
to have at the ready on the reference shelf. The remaining chapters present very
detailed example applications covering advanced topics, including a complete field
service application, localization, and material on Android web applications, Blue-
tooth, sensors, AppWidgets, and integration adapters. We even include two chapters
on writing applications in C—one for the native side of Android and one using the
more generally accepted method of employing the Android Native Development Kit.

Although you can read the book from start to finish, you can also consider it a cou-
ple of books in one. If you're new to Android, focus first on chapter 1, appendix A,
and then chapter 2. With that foundation, you can then work your way through chap-
ters 3 through 12. Chapter 13 and on are more in-depth in nature and can be read
independently of the others.

The audience

We wrote this book for professional programmers and hobbyists alike. Many of the
concepts can be absorbed without specific Java language knowledge, though the
most value will be found by readers with Java programming skills because Android

xxiv

ABOUT THIS BOOK XXV

application programming requires them. A reader with C, G++, or C# programming
knowledge will be able to follow the examples.

Prior Eclipse experience is helpful, but not required. A number of good resources
are available on Java and Eclipse to augment the content of this book.

Roadmap

This book is divided into four parts. Part 1 contains introductory material about the
platform and development environment. Part 2 takes a close look at the fundamental
skills required for building Android applications. Part 3 presents a larger scope appli-
cation and a Native C Android application. Part 4 explores features added to the
Android platform, providing examples of leveraging the capable Android platform to
create innovative mobile applicatoins.

PART 1: THE ESSENTIALS
Part 1 introduces the Android platform, including its architecture and setting up the
development environment.

Chapter 1 delves into the background and positioning of the Android platform,
including comparisons to other popular platforms such as BlackBerry, iPhone, and
Windows Mobile. After an introduction to the platform, the balance of the first chap-
ter introduces the high-level architecture of Android applications and the operating
system environment.

Chapter 2 takes you on a step-by-step development exercise, teaching you the
ropes of using the Android development environment, including the key tools and
concepts for building an application. If you’ve never used Eclipse or have never writ-
ten an Android application, this chapter will prepare you for the next part of the
book.

PART 2: THE PROGRAMMING ENVIRONMENT
Part 2 includes an extensive survey of fundamental programming topics in the
Android environment.

Chapter 3 covers the fundamental Android UI components, including View and
Layout. We also review the Activity in more detail. These are the basic building
blocks of screens and applications on the Android platform. Along the way, we also
touch on other basic concepts such as handling external resources, dealing with
events, and the lifecycle of an Android application.

Chapter 4 expands on the concepts you learned in chapter 3. We delve into the
Android Intent to demonstrate interaction between screens, activities, and entire
applications. We also introduce and use the Service, which brings background pro-
cesses into the fold.

Chapter 5 incorporates methods and strategies for storing and retrieving data
locally. The chapter examines use of the filesystem, databases, the SD card, and
Android-specific entities such as the SharedPreferences and ContentProvider
classes. At this point, we begin combining fundamental concepts with more real-world

xxvi

ABOUT THIS BOOK

details, such as handling application state, using a database for persistent storage, and
working with SQLite.

Chapter 6 deals with storing and retrieving data over the network. Here we include
a networking primer before delving into using raw networking concepts such as sock-
ets on Android. From there, we progress to using HTTP, and even exploring web ser-
vices (such as REST and SOAP).

Chapter 7 covers telephony on the Android platform. We touch on basics such as
originating and receiving phone calls, as well as more involved topics such as working
with SMS. We also cover telephony properties and helper classes.

Chapter 8 looks at how to work with notifications and alarms. In this chapter, we
look at how to notify users of various events such as receiving a SMS message, as well as
how to manage and set alarms.

Chapter 9 deals with the basics of Android’s Graphics API and more advanced con-
cepts such as working with the OpenGL ES library for creating sophisticated 2D and 3D
graphics. We also touch on animation.

Chapter 10 looks at Android’s support for multimedia; we cover both playing mul-
timedia as well as using the camera and microphone to record your own multimedia
files.

Chapter 11 introduces location-based services as we look at an example that com-
bines many of the concepts from the earlier parts of the book in a mapping applica-
tion. You’ll learn about using the mapping APIs on Android, including different
location providers and properties that are available, how to build and manipulate
map-related screens, and how to work with location-related concepts within the emu-
lator.

PART 3: BRINGING IT ALL TOGETHER
Part 3 contains two chapters, both of which build on knowledge you gained earlier in
the text, with a focus on bringing a larger application to fruition.

Chapter 12 demonstrates an end-to-end field service application. The application
includes server communications, persistent storage, multiple Activity navigation
menus, and signature capture.

Chapter 13 explores the world of native C language applications. The Android SDK
is limited to the Java language, although native applications can be written for
Android. This chapter walks you through examples of building C language applica-
tions for Android, including the use of built-in libraries and TCP socket communica-
tions as a Java application connects to your C application. This chapter is useful for
developers targeting solutions beyond carrier-subsidized, locked down cell phones.

PART 4: THE MATURING PLATFORM
Part 4 contains six new chapters, each of which represents a more advanced develop-
ment topic.

Chapter 14 demonstrates the use of both Bluetooth communication and process-
ing sensor data. The sample application accompanying the chapter, SenseBot, permits
the user to drive a LEGO Mindstorms robot with their Android phone.

ABOUT THIS BOOK xxvil

Chapter 15 explores the Android contact database and demonstrates integrating
with an external data source. In particular, this application brings Android into the
social networking scene by integrating with the popular LinkedIn professional net-
working service.

Chapter 16 explores the world of web development. Android’s browser is based on
the open source WebKit engine and brings desktop-like capability to this mobile
browser. This chapter equips you to bring attractive and capable web applications to
Android.

Chapter 17 brings the “home screen” of your Android application to life by show-
ing you how to build an application that presents its user interface as an AppWidget.
In addition to AppWidgets, this chapter demonstrates BroadcastReceiver, Service,
and Alarms.

Chapter 18 takes a real-world look at localizing an existing application. Chapter
12’s Field Service application is modified to support multiple languages. Chapter 18’s
version of the Field Service application contains support for both English and Spanish.

Chapter 19 reaches into Android’s open source foundation by using a popular
edge detection image processing algorithm. The Sobel Edge Detection algorithm is
written in C and compiled into a native library. The sample application snaps a pic-
ture with the Android camera and then uses this C algorithm to find the edges in the
photo.

THE APPENDICES

The appendices contain additional information that didn’t fit with the flow of the
main text. Appendix A is a step-by-step guide to installing the development environ-
ment. This appendix, along with chapter 2, provides all the information you need to
build an Android application. Appendix B demonstrates how to prepare and submit
an application for the Android Market—an important topic for anyone looking to sell
an application commercially.

Code conventions and downloads

All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. For most listings, the code is annotated to point out the key con-
cepts, and numbered bullets are sometimes used in the text to provide additional
information about the code. We have tried to format the code so that it fits within the
available page space in the book by adding line breaks and using indentation carefully.
Sometimes, however, very long lines will include line-continuation markers.

Source code for all the working examples is available from www.manning.com/
AndroidinActionSecondEdition or http://www.manning.com/ableson2. A readme.txt
file is provided in the root folder and also in each chapter folder; the files provide
details on how to install and run the code. Code examples appear throughout this
book. Longer listings will appear under clear listing headers while shorter listings will
appear between lines of text.

xxviii

ABOUT THIS BOOK

Software requirements

Developing applications for Android may be done from the Windows XP/Vista/7
environment, a Mac OS X (Intel only) environment or a Linux environment. Appen-
dix A includes a detailed description of setting up the Eclipse environment along with
the Android Developer Tools plug-in for Eclipse.

A note about the graphics

Many of the original graphics from the first edition, Unlocking Android, have been
reused in this version of the book. While the title of the revised edition was changed
to Android in Action, Second Edition during development, we kept the original book title
in our graphics and sample applications.

Author Online

Purchase of Android in Action, Second Edition includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
AndroidinActionSecondEdition or www.manning.com/ableson2. This page provides
information on how to get on the forum once you’re registered, what kind of help is
available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

about the cover illustration

The illustration on the cover of Android in Action, Second Edition is taken from a French
book of dress customs, Encyclopédie des Voyages by J. G. St. Saveur, published in 1796.
Travel for pleasure was a relatively new phenomenon at the time and illustrated
guides such as this one were popular, introducing both the tourist as well as the arm-
chair traveler to the inhabitants of other regions of the world, as well as to the
regional costumes and uniforms of France.

The diversity of the drawings in the Encyclopédie des Voyages speaks vividly of the
uniqueness and individuality of the world’s countries and regions just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other, and when members of a
social class or a trade or a tribe could be easily distinguished by what they were wearing.

This was also a time when people were fascinated by foreign lands and faraway
places, even though they could not travel to these exotic destinations themselves.
Dress codes have changed since then and the diversity by region and tribe, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a world of cul-
tural and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on native and tribal costumes from two centu-
ries ago brought back to life by the pictures from this travel guide.

Xxix

Part 1

What 1s Android ?—
The Big Picture

Android promises to be a market-moving technology platform—not just
because of the functionality available in the platform but because of how the
platform has come to market. Part 1 of this book brings you into the picture as a
developer of the open source Android platform. We begin with a look at the
Android platform and the impact it has on each of the major “stakeholders” in
the mobile marketplace (chapter 1). We then bring you on board to developing
applications for Android with a hands-on tour of the Android development envi-
ronment (chapter 2).

Introducing Androwd

This chapter covers

= Exploring Android, the open source mobile platform
= Android Intents, the way things work
= Sample application

You’ve heard about Android. You've read about Android. Now it’s time to begin
unlocking Android.

Android is a software platform that’s revolutionizing the global cell phone mar-
ket. It’s the first open source mobile application platform that’s moved the needle
in major mobile markets around the globe. When you’re examining Android,
there are a number of technical and marketrelated dimensions to consider. This
first section introduces the platform and provides context to help you better under-
stand Android and where it fits in the global cell phone scene.

Android is primarily a Google effort, in collaboration with the Open Handset
Alliance. Open Handset Alliance is an alliance of nearly 50 organizations commit-
ted to bringing a “better” and more “open” mobile phone to market. Considered a
novelty at first by some, Android has grown to become a market-changing player in
a few short years, earning both respect and derision alike from peers in the industry.

This chapter introduces Android—what it is, and, equally important, what it’s
not. After reading this chapter, you’ll understand how Android is constructed, how

11

CuapTer 1 Introducing Android

it compares with other offerings in the market, and what its foundational technologies
are, plus you'll get a preview of Android application architecture. More specifically,
this chapter takes a look at the Android platform and its relationship to the popular
Linux operating system, the Java programming language, and the runtime environ-
ment known as the Dalvik virtual machine (VM).

Java programming skills are helpful throughout the book, but this chapter is more
about setting the stage than about coding specifics. One coding element introduced
in this chapter is the Intent class. Having a good understanding of and comfort level
with the Intent class is essential for working with the Android platform.

In addition to Intent, this chapter introduces the four main application compo-
nents: Activity, Service, ContentProvider, and BroadcastReceiver. The chapter
concludes with a simple Android application to get you started quickly.

The Android platform

Android is a software environment built for mobile devices. It’s not a hardware plat-
form. Android includes a Linux kernel-based OS, a rich Ul, end-user applications,
code libraries, application frameworks, multimedia support, and much more. And,
yes, even telephone functionality is included! Whereas components of the underlying
OS are written in C or C++, user applications are built for Android in Java. Even the
built-in applications are written in Java. With the exception of some Linux explor-
atory exercises in chapter 13 and the Native Devel-
oper Kit (NDK) in chapter 19, all the code examples
in this book are written in Java, using the Android Android Software
software development kit (SDK). Environment
One feature of the Android platform is that
there’s no difference between the built-in applica-
tions and applications that you create with the SDK. C"::;’;Hf;;’:::'i"
This means that you can write powerful applications written in Java
to tap into the resources available on the device. Fig-
ure 1.1 shows the relationship between Android and
the hardware it runs on. The most notable feature of
Android might be that it’s open source; missing ele-
ments can and will be provided by the global devel-
oper community. Android’s Linux kernel-based OS
doesn’t come with a sophisticated shell environment,
but because the platform is open, you can write and
install shells on a device. Likewise, multimedia codecs

Dalvik virtual
machine

Linux Kernel

Figure 1.1 Android is software

] . only. By leveraging its Linux kemel
can be supplied by third-party developers and don’t to interface with the hardware,
need to rely on Google or anyone else to provide new Android runs on many different

functionality. That’s the power of an open source plat- devices from multiple cell phone
manufacturers. Developers write

form brought to the mobile market. applications in Java.

1.2

1.2.1

Understanding the Android market 5

PLATFORM VS. DEVICE Throughout this book, wherever code must be tested
or exercised on a device, a software-based emulator is typically employed. An
exception is in chapter 14 where Bluetooth and Sensors are exercised. See
chapter 2 for information on how to set up and use the Android emulator.

The term platform refers to Android itself—the software—including all the
binaries, code libraries, and tool chains. This book focuses on the Android
platform; the Android emulators available in the SDK are simply components
of the Android platform.

With all of that as a backdrop, creating a successful mobile platform is clearly a non-
trivial task involving numerous players. Android is an ambitious undertaking, even for
Google, a company of seemingly boundless resources and moxie—and they’re getting
the job done. Within a span of two years, Android has seen four major software
releases and the release of multiple handsets across most major mobile carriers in the
global market.

Now that you’ve got an introduction to what Android is, let’s look at the why and
where of Android to provide some context and set the perspective for Android’s intro-
duction to the marketplace. After that, it’s on to exploring the platform itself!

Understanding the Android market

Android promises to have something for everyone. It aims to support a variety of hard-
ware devices, not just high-end ones typically associated with expensive smartphones.
Of course, Android users will enjoy improved performance on a more powerful
device, considering that it sports a comprehensive set of computing features. But how
well can Android scale up and down to a variety of markets and gain market and mind
share? How quickly can the smartphone market become the standard? Some folks are
still clinging to phone-only devices, even though smartphones are growing rapidly in
virtually every demographic. Let’s look at Android from the perspective of a few exist-
ing players in the marketplace. When you’re talking about the cellular market, the
place to start is at the top, with the carriers, or as they’re sometimes referred to, the
mobile operators.

Mobile operators

Mobile operators (the cell phone companies such as AT&T and Verizon) are in the
business, first and foremost, of selling subscriptions to their services. Shareholders
want a return on their investment, and it’s hard to imagine an industry where there’s a
larger investment than in a network that spans such broad geographic territory. To
the mobile operator, cell phones are simultaneously a conduit for services, a drug to
entice subscribers, and an annoyance to support and lock down.

Some mobile operators are embracing Android as a platform to drive new data ser-
vices across the excess capacity operators have built into their networks. Data services
represent high-premium services and high-margin revenues for the operator. If
Android can help drive those revenues for the mobile operator, all the better.

1.2.2

CHAPTER 1 Introducing Android

Other mobile operators feel threatened by Google and the potential of “free wire-
less,” driven by advertising revenues and an upheaval of the market. Another challenge
for mobile operators is that they want the final say on what services are enabled across
their networks. Historically, handset manufacturers complain that their devices are
handicapped and don’t exercise all the features designed into them because mobile
operators lack the capability or willingness to support those features. An encouraging
sign is that there are mobile operators involved in the Open Handset Alliance.

Let’s move on to a comparison of Android and existing cell phones on the market
today.

Android vs. the feature phones

The majority of cell phones on the market continue to be consumer flip phones and
feature phones—phones that aren’t smartphones.! These phones are the ones consum-
ers get when they walk into the retailer and ask what can be had for free. These con-
sumers are the “I just want a phone” customers. Their primary interest is a phone for
voice communications, an address book, and increasingly, texting. They might even
want a camera. Many of these phones have additional capabilities such as mobile web
browsing, but because of relatively poor user
experience, these features aren’t employed heav-

ily. The one exception is text messaging, which is
@ il O3 12394M

a dominant application no matter the classifica- '
android - Google Search

tion of device. Another increasingly in-demand

Web Images Maps News Shopping Gmail m

category is location-based services, which typi-

cally use the Global Positioning System (GPS). GOUSIG androld
Android’s challenge is to scale down to this s

market. Some of the bells and whistles in AR

Android can be left out to fit into lower-end et oy 1ok ot te Andeola SOK P

Video [mages Results 1 - 10 of about 10,800.9

hardware. One of the big functionality gaps on
these lower-end phones is the web experience
the user gets. Part of the problem is screen size,

k for mobile devices that ind

but equally challenging is the browser technol- ware and key appllcations
early look at the Androld
L4 ‘ d old s-androld.html - 17k

ogy itself, which often struggles to match the rich
web experience of desktop computers. Android
features the marketleading WebKit browser
engine, which brings desktop-compatible brows-
ing to the mobile arena. Figure 1.2 shows WebKit
in action on Android. If a rich web experience

Figure 1.2 Android’s built-in browser
technology is based on WebKit’s browser
class hardware, it would go a long way toward engine.

can be effectively scaled down to feature phone

1 Only 12% of phones sold in the fourth quarter of 2008 were smartphones: http://www.gartner.com/it/
page.jsprid=910112.

1.2.3

Understanding the Android market 7

penetrating this end of the market. Chapter 16 takes a close look at using web devel-
opment skills for creating Android applications.

WEBKIT The WebKit (http://www.webkit.org) browser engine is an open
source project that powers the browser found in Macs (Safari) and is the
engine behind Mobile Safari, which is the browser on the iPhone. It’s not a
stretch to say that the browser experience is what makes the iPhone popular,
so its inclusion in Android is a strong plus for Android’s architecture.

Software at the lower end of the market generally falls into one of two camps:

= Qualcomm’s BREW environment—BREW stands for Binary Runtime Environment
for Wireless. For a high-volume example of BREW technology, consider Veri-
zon’s Get It Now-capable devices, which run on this platform. The challenge for
software developers who want to gain access to this market is that the bar to get
an application on this platform is high, because everything is managed by the
mobile operator, with expensive testing and revenue-sharing fee structures. The
upside to this platform is that the mobile operator collects the money and dis-
burses it to the developer after the sale, and often these sales recur monthly.
Just about everything else is a challenge to the software developer. Android’s
open application environment is more accessible than BREW.

= Java ME, or Java Platform, Micro Edition—A popular platform for this class of
device. The barrier to entry is much lower for software developers. Java ME
developers will find a same-but-different environment in Android. Android isn’t
strictly a Java ME-compatible platform, but the Java programming environment
found in Android is a plus for Java ME developers. There are some projects
underway to create a bridge environment, with the aim of enabling Java ME
applications to be compiled and run for Android. Gaming, a better browser,
and anything to do with texting or social applications present fertile territory
for Android at this end of the market.

Although the majority of cell phones sold worldwide are not considered smartphones,
the popularity of Android (and other capable platforms) has increased demand for
higher-function devices. That’s what we’re going to discuss next.

Android vs. the smartphones

Let’s start by naming the major smartphone players: Symbian (big outside North
America), BlackBerry from Research in Motion, iPhone from Apple, Windows
(Mobile, SmartPhone, and now Phone 7), and of course, the increasingly popular
Android platform.

One of the major concerns of the smartphone market is whether a platform can
synchronize data and access Enterprise Information Systems for corporate users.
Device-management tools are also an important factor in the enterprise market. The
browser experience is better than with the lower-end phones, mainly because of larger

1.24

CHAPTER 1 Introducing Android

displays and more intuitive input methods, such as a touch screen, touch pad, slide-
out keyboard, or a jog dial.

Android’s opportunity in this market is to provide a device and software that peo-
ple want. For all the applications available for the iPhone, working with Apple can be
a challenge; if the core device doesn’t suit your needs, there’s little room to maneuver
because of the limited models available and historical carrier exclusivity. Now that
email, calendaring, and contacts can sync with Microsoft Exchange, the corporate
environment is more accessible, but Android will continue to fight the battle of scal-
ing the Enterprise walls. Later Android releases have added improved support for the
Microsoft Exchange platform, though third-party solutions still out-perform the built-
in offerings. BlackBerry is dominant because of its intuitive email capabilities, and the
Microsoft platforms are compelling because of tight integration to the desktop experi-
ence and overall familiarity for Windows users. iPhone has surprisingly good integra-
tion with Microsoft Exchange—for Android to compete in this arena, it must
maintain parity with iPhone on Enterprise support.

You’ve seen how Android stacks up next to feature phones and smartphones. Next,
we’ll see whether Android, the open source mobile platform, can succeed as an open
source project.

Android vs. itself

Android will likely always be an open source project, but to succeed in the mobile mar-
ket, it must sell millions of units and stay fresh. Even though Google briefly entered the
device fray with its Nexus One phone, it’s not a hardware company. From necessity,
Android is sold by others such as HTC and Motorola, to name the big players. These
manufacturers start with the Android Open Source Platform (AOSP), but extend it to
meet their need to differentiate their offerings. Android isn’t the first open source
phone, butit’s the first from a player with the market-moving weight of Google leading
the charge. This market leadership position has already translated to impressive unit
sales across multiple manufacturers. So, now that there are a respectable number of
devices on the market, can Android keep it together and avoid fragmentation?

Open source is a double-edged sword. On one hand, the power of many talented
people and companies working around the globe and around the clock to deliver
desirable features is a force to be reckoned with, particularly in comparison with a tra-
ditional, commercial approach to software development. This topic has become trite
because the benefits of open source development are well documented. On the other
hand, how far will the competing manufacturers extend and potentially split Android?
Depending on your perspective, the variety of Android offerings is a welcome alterna-
tive to a more monolithic iPhone device platform where consumers have few choices
available.

Another challenge for Android is that the licensing model of open source code
used in commercial offerings can be sticky. Some software licenses are more restrictive
than others, and some of those restrictions pose a challenge to the open source label.
At the same time, Android licensees need to protect their investment, so licensing is
an important topic for the commercialization of Android.

1.2.5

Understanding the Android market 9

Licensing Android

Android is released under two different open source licenses. The Linux kernel is
released under the GNU General Public License (GPL) as is required for anyone licensing
the open source OS kernel. The Android platform, excluding the kernel, is licensed
under the Apache Software License (ASL). Although both licensing models are open
source-oriented, the major difference is that the Apache license is considered friend-
lier toward commercial use. Some open source purists might find fault with anything
but complete openness, source-code sharing, and noncommercialization; the ASL
attempts to balance the goals of open source with commercial market forces. So far
there has been only one notable licensing hiccup impacting the Android mod com-
munity, and that had more to do with the gray area of full system images than with a
manufacturer’s use of Android on a mainstream product release. Currently, Android
is facing intellectual property challenges; both Microsoft and Apple are bringing liti-
gation against Motorola and HTC for the manufacturer’s Android-based handsets.
The high-level, market-oriented portion of the book has now concluded! The
remainder of this book is focused on Android application development. Any technical
discussion of a software environment must include a review of the layers that compose
the environment, sometimes referred to as a stack because of the layer-upon-layer con-
struction. Next up is a high-level breakdown of the components of the Android stack.

Selling applications

A mobile platform is ultimately valuable only if there are applications to use and enjoy
on that platform. To that end, the topic of buying and selling applications for Android
is important and gives us an opportunity to highlight a key difference between Android
and the iPhone. The Apple AppStore contains software titles for the iPhone—Ilots of
them. But Apple’s somewhat draconian grip on the iPhone software market requires
that all applications be sold through its venue. Although Apple’s digital rights man-
agement (DRM) is the envy of the market, this approach can pose a challenging envi-
ronment for software developers who might prefer to make their application available
through multiple distribution channels.

Contrast Apple’s approach to application distribution with the freedom an Android
developer enjoys to ship applications via traditional venues such as freeware and
shareware, and commercially through various marketplaces, including his own web-
site! For software publishers who want the focus of an on-device shopping experi-
ence, Google has launched and continues to mature the Android Market. For software
developers who already have titles for other platforms such as Windows Mobile,
Palm, or BlackBerry, traditional software markets such as Handango (http://
www.Handango.com) also support selling Android applications. Handango and its ilk
are important outlets; consumers new to Android will likely visit sites such as Han-
dango because that might be where they first purchased one of their favorite applica-
tions for their prior device.

10

13

CuapTer 1 Introducing Android

The layers of Android

The Android stack includes an impressive array of features for mobile applications. In
fact, looking at the architecture alone, without the context of Android being a plat-
form designed for mobile environments, it would be easy to confuse Android with a
general computing environment. All the major components of a computing platform
are there. Here’s a quick rundown of prominent components of the Android stack:

= A Linux kernel provides a foundational hardware abstraction layer, as well as
core services such as process, memory, and filesystem management. The kernel

is where hardware-specific drivers are implemented—capabilities such as Wi-Fi
and Bluetooth are here. The Android stack is designed to be flexible, with
many optional components that largely rely on the availability of specific hard-
ware on a given device. These components include features such as touch
screens, cameras, GPS receivers, and accelerometers.

= Prominent code libraries, including:

Browser technology from WebKit, the same open source engine powering
Mac’s Safari and the iPhone’s Mobile Safari browser. WebKit has become the
de facto standard for most mobile platforms.

Database support via SQLite, an easy-to-use SQL database.

Advanced graphics support, including 2D, 3D, animation from Scalable
Games Language (SGL), and OpenGL ES.

Audio and video media support from PacketVideo’s OpenCORE, and
Google’s own Stagefright media framework.

Secure Sockets Layer (SSL) capabilities from the Apache project.

= An array of managers that provide services for:

= The Android runtime, which provides: telephony, location, notifications, etc.

Activities and views - Telephony

Windows — Resources User applications: Contacts, phone, browser, etc.

Location-based services
Application managers: windows, content, activities,

Core Java packages for a nearly full-
featured Java programming environ- | | Android runtime: Java via Dalvik VM
ment. Note that this isn’t a Java ME

. Libraries: graphics, media, database,
environment. communications, browser engine, etc.

The Dalvik VM employs services of the
Linux-based kernel to provide an envi- | Linux kemel, including device drivers
ronment to host Android applications.

Hardware device with specific capabilities such l

Both core applications and third-party applica- | asGPS,camera,Bluetooth,etc.

tions (such as the ones you’ll build in this
book) run in the Dalvik VM, atop the compo-

Figure 1.3 The Android stack offers an

nents we just listed. You can see the relation- j,,ressive array of technologies and
ship among these layers in figure 1.3. capabilities.

13.1

The layers of Android 11

TIP Without question, Android development requires Java programming
skills. To get the most out of this book, be sure to brush up on your Java pro-
gramming knowledge. There are many Java references on the internet, and no
shortage of Java books on the market. An excellent source of Java titles can be
found at http://www.manning.com/catalog/java.

Now that we’ve shown you the obligatory stack diagram and introduced all the layers,
let’s look more in depth at the runtime technology that underpins Android.

Building on the Linux kernel

Android is built on a Linux kernel and on an advanced, optimized VM for its Java
applications. Both technologies are crucial to Android. The Linux kernel component
of the Android stack promises agility and portability to take advantage of numerous
hardware options for future Android-equipped phones. Android’s Java environment
is key: It makes Android accessible to programmers because of both the number of
Java software developers and the rich environment that Java programming has to
offer.

Why use Linux for a phone? Using a full-featured platform such as the Linux ker-
nel provides tremendous power and capabilities for Android. Using an open source
foundation unleashes the capabilities of talented individuals and companies to move
the platform forward. Such an arrangement is particularly important in the world of
mobile devices, where products change so rapidly. The rate of change in the mobile
market makes the general computer market look slow and plodding. And, of course,
the Linux kernel is a proven core platform. Reliability is more important than perfor-
mance when it comes to a mobile phone, because voice communication is the primary
use of a phone. All mobile phone users, whether buying for personal use or for a busi-
ness, demand voice reliability, but they still want cool data features and will purchase a
device based on those features. Linux can help meet this requirement.

Speaking to the rapid rate of phone turnover and accessories hitting the market,
another advantage of using Linux as the foundation of the Android platform stack is
that it provides a hardware abstraction layer; the upper levels remain unchanged
despite changes in the underlying hardware. Of course, good coding practices
demand that user applications fail gracefully in the event a resource isn’t available,
such as a camera not being present in a particular handset model. As new accessories
appear on the market, drivers can be written at the Linux level to provide support, just
as on other Linux platforms. This architecture is already demonstrating its value;
Android devices are already available on distinct hardware platforms. HTC, Motorola,
and others have released Android-based devices built on their respective hardware
platforms. User applications, as well as core Android applications, are written in Java
and are compiled into byte codes. Byte codes are interpreted at runtime by an inter-
preter known as a virtual machine (VM).

12

1.3.2

14

CHAPTER 1 Introducing Android

Running in the Dalvik VM

The Dalvik VM is an example of the need for efficiency, the desire for a rich program-
ming environment, and even some intellectual property constraints, colliding, with
innovation as the result. Android’s Java environment provides a rich application plat-
form and is accessible because of the popularity of Java itself. Also, application perfor-
mance, particularly in a low-memory setting such as you find in a mobile phone, is
paramount for the mobile market. But this isn’t the only issue at hand.

Android isn’t a Java ME platform. Without commenting on whether this is ulti-
mately good or bad for Android, there are other forces at play here. There’s the mat-
ter of Java VM licensing from Oracle. From a high level, Android’s code environment
is Java. Applications are written in Java, which is compiled to Java byte codes and sub-
sequently translated to a similar but different representation called dex files. These
files are logically equivalent to Java byte codes, but they permit Android to run its
applications in its own VM that’s both (arguably) free from Oracle’s licensing clutches
and an open platform upon which Google, and potentially the open source commu-
nity, can improve as necessary. Android is facing litigation challenges from Oracle
about the use of Java.

NOTE From the mobile application developer’s perspective, Android is a Java
environment, but the runtime isn’t strictly a Java VM. This accounts for the
incompatibilities between Android and proper Java environments and librar-
ies. If you have a code library that you want to reuse, your best bet is to assume
that your code is nearly source compatible, attempt to compile it into an
Android project, then determine how close you are to having usable code.

The important things to know about the Dalvik VM are that Android applications run
inside it and that it relies on the Linux kernel for services such as process, memory,
and filesystem management.

Now that we’ve discussed the foundational technologies in Android, it’s time to
focus on Android application development. The remainder of this chapter discusses
high-level Android application architecture and introduces a simple Android applica-
tion. If you’re not comfortable or ready to begin coding, you might want to jump to
chapter 2, where we introduce the development environment step-by-step.

The Intent of Android development

Let’s jump into the fray of Android development, focus on an important component
of the Android platform, and expand to take a broader view of how Android applica-
tions are constructed.

An important and recurring theme of Android development is the Intent. An
Intent in Android describes what you want to do. An Intent might look like “I want
to look up a contact record” or “Please launch this website” or “Show the order confir-
mation screen.” Intents are important because they not only facilitate navigation in
an innovative way, as we’ll discuss next, they also represent the most important aspect
of Android coding. Understand the Intent and you’ll understand Android.

14.1

14.2

The Intent of Android development 13

NOTE Instructions for setting up the Eclipse development environment are
in appendix A. This environment is used for all Java examples in this book.
Chapter 2 goes into more detail on setting up and using the development
tools.

The code examples in this chapter are primarily for illustrative purposes.
We reference and introduce classes without necessarily naming specific Java
packages. Subsequent chapters take a more rigorous approach to introducing
Android-specific packages and classes.

Next, we’ll look at the foundational information about why Intents are important,
then we’ll describe how Intents work. Beyond the introduction of the Intent, the
remainder of this chapter describes the major elements of Android application devel-
opment, leading up to and including the first complete Android application that
you’ll develop.

Empowering intuitive Uls

The power of Android’s application framework lies in the way it brings a web mindset
to mobile applications. This doesn’t mean the platform has only a powerful browser
and is limited to clever JavaScript and server-side resources, but rather it goes to the
core of how the Android platform works and how users interact with the mobile
device. The power of the internet is that everything is just a click away. Those clicks are
known as Uniform Resource Locators (URLs), or alternatively, Uniform Resource Identifiers
(URIs). Using effective URIs permits easy and quick access to the information users
need and want every day. “Send me the link” says it all.

Beyond being an effective way to get access to data, why is this URI topic important,
and what does it have to do with Intents? The answer is nontechnical but crucial: The
way a mobile user navigates on the platform is crucial to its commercial success. Plat-
forms that replicate the desktop experience on a mobile device are acceptable to only
a small percentage of hardcore power users. Deep menus and multiple taps and clicks
are generally not well received in the mobile market. The mobile application, more
than in any other market, demands intuitive ease of use. A consumer might buy a
device based on cool features that were enumerated in the marketing materials, but
that same consumer is unlikely to even touch the instruction manual. A UT’s usability
is highly correlated with its market penetration. Uls are also a reflection of the plat-
form’s data access model, so if the navigation and data models are clean and intuitive,
the UI will follow suit.

Now we’re going to introduce Intents and IntentFilters, Android’s innovative
navigation and triggering mechanisms.

Intents and how they work

Intents and IntentFilters bring the “click on it” paradigm to the core of mobile
application use (and development) for the Android platform:

14

CHAPTER 1 Introducing Android

= An Intent is a declaration of need. It’s made up of a number of pieces of infor-
mation that describe the desired action or service. We’re going to examine the
requested action and, generically, the data that accompanies the requested
action.

= An IntentFilter is a declaration of capability and interest in offering assis-
tance to those in need. It can be generic or specific with respect to which
Intents it offers to service.

The action attribute of an Intent is typically a verb; for example VIEW, PICK, or EDIT. A
number of built-in Intent actions are defined as members of the Intent class, but
application developers can create new actions as well. To view a piece of information,
an application employs the following Intent action:

android.content.Intent.ACTION_VIEW

The data component of an Intent is expressed in the form of a URI and can be virtu-
ally any piece of information, such as a contact record, a website location, or a refer
ence to a media clip. Table 1.1 lists some Android URI examples.

Table 1.1 Commonly employed URIs in Android

Type of information URI data
Contact lookup content://contacts/people
Map lookup/search Geo0:0,0?g=23+Route+206+Stanhope+NJ

Browser launch to a specific website | http://www.google.com/

The IntentFilter defines the relationship between the Intent and the application.
IntentFilters can be specific to the data portion of the Intent, the action portion,
or both. IntentFilters also contain a field known as a category. The category helps
classify the action. For example, the category named CATEGORY_LAUNCHER instructs
Android that the Activity containing this IntentFilter should be visible in the
main application launcher or home screen.

When an Intent is dispatched, the system evaluates the available Activitys,
Services, and registered BroadcastReceivers (more on these in section 1.5) and dis-
patches the Intent to the most appropriate recipient. Figure 1.4 depicts this relation-
ship among Intents, IntentFilters, and BroadcastReceivers.

IntentFilters are often defined in an application’s AndroidManifest.xml file with
the <intent-filter> tag. The AndroidManifest.xml file is essentially an application
descriptor file, which we’ll discuss later in this chapter.

A common task on a mobile device is looking up a specific contact record for the
purpose of initiating a call, sending a text message, or looking up a snail-mail address
when you’re standing in line at the neighborhood pack-and-ship store. Or a user
might want to view a specific piece of information, say a contact record for user 1234.
In these cases, the action is ACTION_VIEW and the data is a specific contact record

The Intent of Android development 15

For hire:Take a ride on For hire: Find anything on
the Internet (IntentFilter) the map (IntentFilter)

Android application #2 (BroadcastReceiver)

startActivity(Intent);

For hire: View, Edit, Browse any Contacts (IntentFilter)

or
D E—— Android application #3 (BroadcastReceiver)

startActivity(Intent,identifier);

or

startService(Intent);

For hire: Custom action on custom data (IntentFilter)

—
I Android application #4 (BroadcastReceiver)
He]p me: Find a Person Help me: Find an address Figure 1.4 Intents are distributed to Android
(Intent) on the map (Intent) applications, which register themselves by way of
Android application #1 the IntentFilter, typically in the
AndroidManifest.xml file.

identifier. To carry out these kinds of tasks, you create an Intent with the action set to
ACTION_VIEW and a URI that represents the specific person of interest.
Here are some examples:

= The URI that you would use to contact the record for user 1234: content://
contacts/people/1234
= The URI for obtaining a list of all contacts: content://contacts/people

The following code snippet shows how to PICK a contact record:

Intent pickIntent = new Intent (Intent.ACTION_PICK,Uri.parse("content://
contacts/people"));
startActivity (pickIntent);
An Intent is evaluated and passed to the most appropriate handler. In the case of pick-
ing a contact record, the recipient would likely be a built-in Activity named
com.google.android.phone.Dialer. But the best recipient of this Intent might be an
Activity contained in the same custom Android application (the one you build), a
built-in application (as in this case), or a third-party application on the device. Appli-
cations can leverage existing functionality in other applications by creating and dis-
patching an Intent that requests existing code to handle the Intent rather than
writing code from scratch. One of the great benefits of employing Intents in this man-
ner is that the same Uls get used frequently, creating familiarity for the user. This is par-
ticularly important for mobile plaiforms where the user is often neither tech-savvy nor interested in
learning multiple ways to accomplish the same task, such as looking up a contact on the phone.
The Intents we've discussed thus far are known as implicit Intents, which rely on
the IntentFilter and the Android environment to dispatch the Intent to the
appropriate recipient. Another kind of Intent is the explicit Intent, where you can
specify the exact class that you want to handle the Intent. Specifying the exact class is

16

CHAPTER 1 Introducing Android

helpful when you know exactly which Activity you want to handle the Intent and
you don’t want to leave anything to chance in terms of what code is executed. To cre-
ate an explicit Intent, use the overloaded Intent constructor, which takes a class as
an argument:

public void onClick(View v) {

try {
startActivityForResult (new Intent (v.getContext (),RefreshJobs.class),0);
} catch (Exception e) {

}

}

These examples show how an Android developer creates an Intent and asks for it to be
handled. Similarly, an Android application can be deployed with an IntentFilter,
indicating that it responds to Intents that were already defined on the system, thereby
publishing new functionality for the platform. This facet alone should bring joy to
independent software vendors (ISVs) who’ve made a living by offering better contact
managers and to-do list management software titles for other mobile platforms.

Intent resolution, or dispatching, takes place at runtime, as opposed to when the
application is compiled. You can add specific Intent-handling features to a device,
which might provide an upgraded or more desirable set of functionality than the orig-
inal shipping software. This runtime dispatching is also referred to as late binding.

Thus far, this discussion of Intents has focused on the variety of Intents that cause
Ul elements to be displayed. Other Intents are more event-driven than task-oriented,
as our earlier contact record example described. For example, you also use the Intent
class to notify applications that a text message has arrived. Intents are a central ele-
ment to Android; we’ll revisit them on more than one occasion.

Now that we’ve explained Intents as the catalyst for navigation and event flow on
Android, let’s jump to a broader view and discuss the Android application lifecycle
and the key components that make Android tick. The Intent will come into better
focus as we further explore Android throughout this book.

The power and the complexity of Intents

It’s not hard to imagine that an absolutely unique user experience is possible with
Android because of the variety of Activitys with specific IntentFilters that are
installed on any given device. It’s architecturally feasible to upgrade various aspects
of an Android installation to provide sophisticated functionality and customization.
Though this might be a desirable characteristic for the user, it can be troublesome
for someone providing tech support who has to navigate a number of components
and applications to troubleshoot a problem.

Because of the potential for added complexity, this approach of ad hoc system patch-
ing to upgrade specific functionality should be entertained cautiously and with your
eyes wide open to the potential pitfalls associated with this approach.

1.5

1.5.1

Four kinds of Android components 17

Four kinds of Android components

Let’s build on your knowledge of the Intent and IntentFilter classes and explore
the four primary components of Android applications, as well as their relation to the
Android process model. We’ll include code snippets to provide a taste of Android
application development. We’re going to leave more in-depth examples and discus-
sion for later chapters.

NOTE A particular Android application might not contain all of these ele-
ments, but will have at least one of these elements, and could have all of
them.

Activity

An application might have a UI, but it doesn’t have to have one. If it has a UI, it'll have
at least one Activity.

The easiest way to think of an Android Activity is to relate it to a visible screen,
because more often than not there’s a one-to-one relationship between an Activity
and a Ul screen. This relationship is similar to that of a controller in the MVC paradigm.

Android applications often contain more than one Activity. Each Activity dis-
plays a UI and responds to system- and user-initiated events. The Activity employs
one or more Views to present the actual UI elements to the user. The Activity class is
extended by user classes, as shown in the following listing.

Listing 1.1 A basic Activity in an Android application

package com.msi.manning.chapterl;
import android.app.Activity;
import android.os.Bundle;
public class Activityl extends Activity {
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

}

The Activity class is part of the android.app Java package, found in the Android
runtime. The Android runtime is deployed in the androidjar file. The class
Activityl extends the class Activity, which we’ll examine in detail in chapter 3.
One of the primary tasks an Activity performs is displaying UI elements, which are
implemented as Views and are typically defined in XML layout files. Chapter 3 goes
into more detail on Views and Resources.

Moving from one Activity to another is accomplished with the startActivity()
method or the startActivityForResult () method when you want a synchronous
call/result paradigm. The argument to these methods is an instance of an Intent.

The Activity represents a visible application component within Android. With
assistance from the View class, which we’ll cover in chapter 3, the Activity is the most

18

1.5.2

CHAPTER 1 Introducing Android

You say Intent; | say Intent
The Intent class is used in similar sounding but very different scenarios.

Some Intents are used to assist in navigating from one Activity to the next, such
as the example given earlier of viewing a contact record. Activities are the targets of
these kinds of Intents, which are used with the startActivity or startActivi-
tyForResult methods.

Also, a Sservice can be started by passing an Intent to the startService method.

BroadcastReceivers receive Intents when responding to system-wide events,
such as a ringing phone or an incoming text message.

commonly employed Android application component. The next topic of interest is
the Service, which runs in the background and doesn’t generally present a direct UL

Service

If an application is to have a long lifecycle, it’s often best to put it into a Service. For
example, a background data synchronization utility should be implemented as a
Service. A best practice is to launch Services on a periodic or as-needed basis, trig-
gered by a system alarm, and then have the Service terminate when its task is complete.

Like the Activity, a Service is a class in the Android runtime that you should
extend, as shown in the following listing. This example extends a Service, and peri-
odically publishes an informative message to the Android log.

Listing 1.2 A simple example of an Android Service

package com.msi.manning.chapterl;
import android.app.Service;
import android.content.Intent;
import android.os.IBinder; o Extend
import android.util.Log; Service
public class Servicel extends Service implements Runnable { < class
public static final String tag = "servicel";
private int counter = 0;
@Override
protected void onCreate() { <@ Initialization
super.onCreate() ;
Thread aThread = new Thread (this);
aThread.start () ;
}

public void run() {
while (true) {
try {
Log.i(tag, "servicel firing : # " + counter++);

Thread.sleep(10000) ;

} catch(Exception ee) {
Log.e(tag,ee.getMessage()) ;
}

1.5.3

Four kinds of Android components 19

@Override Handle
public IBinder onBind(Intent intent) { Binding request
return null;

}
}

This example requires that the package android.app.Service be imported. This
package contains the Service class. This example also demonstrates Android’s log-
ging mechanism android.util.Log, which is useful for debugging purposes. (Many
examples in this book include using the logging facility. We’ll discuss logging in more
depth in chapter 2.) The Servicel class @ extends the Service class. This class
implements the Runnable interface to perform its main task on a separate thread. The
onCreate method @ of the Service class permits the application to perform initial-
ization-type tasks. We’re going to talk about the onBind () method © in further detail
in chapter 4, when we’ll explore the topic of interprocess communication in general.

Services are started with the startService(Intent) method of the abstract
Context class. Note that, again, the Intent is used to initiate a desired result on the
platform.

Now that the application has a UI in an Activity and a means to have a back-
ground task via an instance of a Service, it’s time to explore the BroadcastReceiver,
another form of Android application that’s dedicated to processing Intents.

BroadcastReceiver

If an application wants to receive and respond to a global event, such as a ringing
phone or an incoming text message, it must register as a BroadcastReceiver. An
application registers to receive Intents in one of the following ways:

= The application can implement a <receiver> element in the Android-
Manfest.xml file, which describes the BroadcastReceiver’s class name and enu-
merates its IntentFilters. Remember, the IntentFilter is a descriptor of the
Intent an application wants to process. If the receiver is registered in the
AndroidManifest.xml file, the application doesn’t need to be running in order
to be triggered. When the event occurs, the application is started automatically
upon notification of the triggering event. Thankfully, all this housekeeping is
managed by the Android OS itself.
= An application can register at runtime via the Context class’s register-
Receiver method.
Like Services, BroadcastReceivers don’t have a UL Even more importantly, the code
running in the onReceive method of a BroadcastReceiver should make no assump-
tions about persistence or long-running operations. If the BroadcastReceiver
requires more than a trivial amount of code execution, it’s recommended that the
code initiate a request to a Service to complete the requested functionality because
the Service application component is designed for longerrunning operations
whereas the BroadcastReceiver is meant for responding to various triggers.

20

CHAPTER 1 Introducing Android

NOTE The familiar Intent class is used in triggering BroadcastReceivers.
The parameters will differ, depending on whether you’re starting an Activ-
ity, a Service, or a BroadcastReceiver, but it’s the same Intent class
that’s used throughout the Android platform.

A BroadcastReceiver implements the abstract method onReceive to process incom-
ing Intents. The arguments to the method are a Context and an Intent. The method
returns void, but a handful of methods are useful for passing back results, including
setResult, which passes back to the invoker an integer return code, a String return
value, and a Bundle value, which can contain any number of objects.

The following listing is an example of a BroadcastReceiver triggering upon
receipt of an incoming text message.

Listing 1.3 A sample BroadcastReceiver

package com.msi.manning.unlockingandroid;
import android.content.Context;

import android.content.Intent;

import android.util.Log;
import.android.content.BroadcastReceiver

public class MySMSMailBox extends BroadcastReceiver { " Tag used
public static final String tag = "MySMSMailBox"; 4| in logging
@Override

public void onReceive (Context context, Intent intent) {
Log.1i(tag, "onReceive") ;
if (intent.getAction() .equals @ Check
("android.provider.Telephony.SMS_RECEIVED")) { < Intent’s action
Log.1i(tag, "Found our Event!");

}

We need to discuss a few items in this listing. The class MySMSMailBox extends the
BroadcastReceiver class. This subclass approach is the most straightforward way to
employ a BroadcastReceiver. (Note the class name MySMSMailBox; it’ll be used in the
AndroidManifest.xml file, shown in listing 1.4.) The tag variable © is used in con-
junction with the logging mechanism to assist in labeling messages sent to the console
log on the emulator. Using a tag in the log enables us to filter and organize log mes-
sages in the console. (We discuss the log mechanism in more detail in chapter 2.) The
onReceive method is where all the work takes place in a BroadcastReceiver; you
must implement this method. A given BroadcastReceiver can register multiple
IntentFilters. A BroadcastReceiver can be instantiated for an arbitrary number of
Intents.

It’s important to make sure that the application handles the appropriate Intent by
checking the action of the incoming Intent @. When the application receives the
desired Intent, it should carry out the specific functionality that’s required. A com-
mon task in an SMS-receiving application is to parse the message and display it to the
user via the capabilities found in the NotificationManager. (We’ll discuss notifica-
tions in chapter 8.) In listing 1.3, we simply record the action to the log.

Four kinds of Android components 21

In order for this BroadcastReceiver to fire and receive this Intent, the Broadcast-
Receiver is listed in the AndroidManifest.xml file, along with an appropriate intent-
filter tag, as shown in the following listing. This listing contains the elements
required for the application to respond to an incoming text message.

Listing 1.4 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?> Required permission
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.unlockingandroid">
<uses-permission android:name="android.permission.RECEIVE_SMS" />
<application android:icon="@drawable/icon">
<activity android:name=".Activityl" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity> @ Receiver tag;
<receiver android:name=".MySMSMailBox" > < note dot prefix
<intent-filter>
<action android:name="android.provider.Telephony.SMS_RECEIVED" />
</intent-filter>
</receiver>
</application>
</manifest>

Certain tasks within the Android platform require the application to have a designated
privilege. To give an application the required permissions, use the <uses-
permission> tag @. (We’ll discuss this tag in detail in section 1.6.) The <receiver>
tag contains the class name of the class implementing the BroadcastReceiver. In this
example, the class name is MySMSMailBox, from the package com.msi.manning.
unlockingandroid. Be sure to note the dot that precedes the name ®. This dot is
required. If your application isn’t behaving as expected, one of the first places to
check is your Android.xml file, and look for the dot before the class name! The
IntentFilter is defined in the <intent-filter> tag. The desired action in this

Testing SMS

The emulator has a built-in set of tools for manipulating certain telephony behavior
to simulate a variety of conditions, such as in-network and out-of-network coverage
and placing phone calls.

To send an SMS message to the emulator, telnet to port 5554 (the port number
might vary on your system), which will connect to the emulator, and issue the follow-
ing command at the prompt:

sms send <sender's phone number> <body of text message>

To learn more about available commands, type help at the prompt.

We’ll discuss these tools in more detail in chapter 2.

22

1.54

CHAPTER 1 Introducing Android

example is android.provider.Telephony.SMS_RECEIVED. The Android SDK contains
the available actions for the standard Intents. Also, remember that user applications
can define their own Intents, as well as listen for them.

Now that we’ve introduced Intents and the Android classes that process or handle
Intents, it’s time to explore the next major Android application topic: the Content-
Provider, Android’s preferred data-publishing mechanism.

ContentProvider

If an application manages data and needs to expose that data to other applications
running in the Android environment, you should consider a ContentProvider. If an
application component (Activity, Service, or BroadcastReceiver) needs to access
data from another application, the component accesses the other application’s
ContentProvider. The ContentProvider implements a standard set of methods to
permit an application to access a data store. The access might be for read or write
operations, or for both. A ContentProvider can provide data to an Activity or
Service in the same containing application, as well as to an Activity or Service con-
tained in other applications.

A ContentProvider can use any form of data storage mechanism available on the
Android platform, including files, SQLite databases, or even a memory-based hash
map if data persistence isn’t required. The ContentProvider is a data layer that pro-
vides data abstraction for its clients and centralizing storage and retrieval routines in a
single place.

Sharing files or databases directly is discouraged on the Android platform, and is
enforced by the underlying Linux security system, which prevents ad hoc file access
from one application space to another without explicitly granted permissions.

Data stored in a ContentProvider can be traditional data types, such as integers
and strings. Content providers can also manage binary data, such as image data. When
binary data is retrieved, the suggested best practice is to return a string representing
the filename that contains the binary data. If a filename is returned as part of a
ContentProvider query, the application shouldn’t access the file directly; you should
use the helper class, ContentResolver’s openInputStream method, to access the
binary data. This approach navigates the Linux process and security hurdles, as well as
keeps all data access normalized through the ContentProvider. Figure 1.5 outlines
the relationship among ContentProviders, data stores, and their clients.

A ContentProvider’s data is accessed by an Android application through a Con-
tent URIL A ContentProvider defines this URI as a public static final String. For
example, an application might have a data store managing material safety data sheets.
The Content URI for this ContentProvider might look like this:

public static final Uri CONTENT_URI =
Uri.parse("content://com.msi.manning.provider.unlockingandroid/datasheets") ;
From this point, accessing a ContentProvider is similar to using Structured Query
Language (SQL) in other platforms, though a complete SQL statement isn’t
employed. A query is submitted to the ContentProvider, including the columns

Four kinds of Android components 23

Android Application #3

/
/

Android Application #1

Activity 1.1 Android Application #2
ctivity 1.
~

ContentProvider A | <——__ Activity 2.1

/ ; \\

— Figure 1.5 The content
provider is the data tier for
Android applications and is
Data file Virtual tion the p ribed manner in
to remote store which data is accessed and
shared on the device.

desired and optional Where and Order By clauses. Similar to parameterized queries in
traditional SQL, parameter substitution is also supported when working with the
contentProvider class. Where do the results from the query go? In a Cursor class,
naturally. We’ll provide a detailed ContentProvider example in chapter 5.

NOTE In many ways, a ContentProvider acts like a database server.
Although an application could contain only a ContentProvider and in
essence be a database server, a ContentProvider is typically a component of
a larger Android application that hosts at least one Activity, Service, or
BroadcastReceiver.

This concludes our brief introduction to the major Android application classes. Gain-
ing an understanding of these classes and how they work together is an important
aspect of Android development. Getting application components to work together
can be a daunting task. For example, have you ever had a piece of software that just
didn’t work properly on your computer? Perhaps you copied it from another devel-
oper or downloaded it from the internet and didn’t install it properly. Every software
project can encounter environment-related concerns, though they vary by platform.
For example, when you’re connecting to a remote resource such as a database server
or FTP server, which username and password should you use? What about the libraries
you need to run your application? All these topics are related to software deployment.

Before we discuss anything else related to deployment or getting an Android
application to run, we need to discuss the Android file named AndroidManifest.xml,
which ties together the necessary pieces to run an Android application on a device. A
one-to-one relationship exists between an Android application and its Android-
Manifest.xml file.

24

1.6

CHAPTER 1 Introducing Android

Understanding the AndroidManifest.xml file

In the preceding sections, we introduced the common elements of an Android appli-
cation. A fundamental fact of Android development is that an Android application
contains at least one Activity, Service, BroadcastReceiver, or ContentProvider.
Some of these elements advertise the Intents they’re interested in processing via the
IntentFilter mechanism. All these pieces of information need to be tied together
for an Android application to execute. The glue mechanism for this task of defining
relationships is the AndroidManifest.xml file.

The AndroidManifest.xml file exists in the root of an application directory and
contains all the design-time relationships of a specific application and Intents.
AndroidManfest.xml files act as deployment descriptors for Android applications. The
following listing is an example of a simple AndroidManifest.xml file.

Listing 1.5 AndroidManifest.xml file for a basic Android application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.msi.manning.unlockingandroid">

<application android:icon="@drawable/icon">

<activity android:name=".Activityl" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

</application>
</manifest>
Looking at this simple AndroidManifest.xml file, you see that the manifest element
contains the obligatory namespace, as well as the Java package name containing this
application. This application contains a single Activity, with the class name
Activityl. Note also the @string syntax. Any time an @ symbol is used in an
AndroidManifest.xml file, it references information stored in one of the resource
files. In this case, the label attribute is obtained from the string resource identified as
app_name. (We discuss resources in further detail later in chapter 3.) This applica-
tion’s lone Activity contains a single IntentFilter definition. The IntentFilter
used here is the most common IntentFilter seen in Android applications. The
action android.intent.action.MAIN indicates that this is an entry point to the appli-
cation. The category android.intent.category.LAUNCHER places this Activity in
the launcher window, as shown in figure 1.6. It’s possible to have multiple Activity
elements in a manifest file (and thereby an application), with zero or more of them
visible in the launcher window.

In addition to the elements used in the sample manifest file shown in listing 1.5,
other common tags are:

= The <service> tag represents a Service. The attributes of the <service> tag
include its class and label. A Service might also include the <intent-filter>
tag.

1.7

Mapping applications to processes 25

= The <receiver> tag represents a
BroadcastReceiver, which might have
an explicit <intent-filter> tag.

= The <uses-permission> tag tells
Android that this application requires
certain security privileges. For exam-
ple, if an application requires access to
the contacts on a device, it requires the
following tag in its AndroidMani-
fest.xml file:
<uses-permission android:name=
"android.permission.READ_CONTACTS" />

We’ll revisit the AndroidManifest.xml file a
number of times throughout the book because
we need to add more details about certain ele-
ments and specific coding scenarios.

Now that you have a basic understanding of
the Android application and the AndroidMani-
fest.xml file, which describes its components,
it’s time to discuss how and where an Android
application executes. To do that, we need to
talk about the relationship between an
Android application and its Linux and Dalvik
VM runtime.

Mapping applications to
processes

Android applications each run in a single
Linux process. Android relies on Linux for pro-

@ il 3 %20am

Applications

o B m

Browser Contacts Dex

MENU

Figure 1.6 Applications are listed in the

launcher based on their IntentFilter.In
this example, the application Where Do You
Live is available in the LAUNCHER category.

cess management, and the application itself runs in an instance of the Dalvik VM. The
OS might need to unload, or even kill, an application from time to time to accommo-

date resource allocation demands. The system uses a hierarchy or sequence to select
the victim during a resource shortage. In general, the system follows these rules:

= Visible, running activities have top priority.

= Visible, nonrunning activities are important, because they’re recently paused

and are likely to be resumed shortly.

= Running services are next in priority.

= The most likely candidates for termination are processes that are empty

(loaded perhaps for performance-caching purposes) or processes that have

dormant Activitys.

Let’s apply some of what you’ve learned by building your first Android application.

26

18

CHAPTER 1 Introducing Android

ps -a

The Linux environment is complete, including process management. You can launch
and kill applications directly from the shell on the Android platform, but this is a
developer’s debugging task, not something the average Android handset user is
likely to carry out. It’s nice to have this option for troubleshooting application issues.
It’s a relatively recent phenomenon to be able to touch the metal of a mobile phone
in this way. For more in-depth exploration of the Linux foundations of Android, see
chapter 13.

Creating an Android application

Let’s look at a simple Android application consisting of a single Activity, with one
View. The Activity collects data (a street address) and creates an Intent to find this
address. The Intent is ultimately dispatched to Google Maps. Figure 1.7 is a screen
shot of the application running on the emulator. The name of the application is
Where Do You Live.

@ .l {3 528am
Where Do You Live White House, Washington, DC
Please enter your home address.

Seeonthemap @ |
{Wh“e Houce | Dpirections to here :
_Show Map |
Unlocking Android, Chapter 1. Save to Address Book -
To view on map, press @ lz

=t

Figure 1.7 This Android application demonstrates a simple Activity and Intent.

Creating an Android application 27

As we previously stated, the AndroidManifest.xml file contains the descriptors for
the application components of the application. This application contains a single
Activity named AWhereDoYouLive. The application’s AndroidManifest.xml file is
shown in the following listing.

Listing 1.6 AndroidManifest.xml for the Where Do You Live application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.unlockingandroid">
<application android:icon="@drawable/icon">
<activity android:name=".AWhereDoYouLive"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-permission android:name="android.permission.INTERNET" />
</manifest>

The sole Activity is implemented in the file AWhereDoYoulLive.java, shown in the
following listing.

Listing 1.7 Implementing the Android Activity in AWhereDoYoulive.java

package com.msi.manning.unlockingandroid;
// imports omitted for brevity
public class AWhereDoYouLive extends Activity {
@Override
public void onCreate (Bundle icicle) {
super.onCreate(icicle) ;
setContentView (R.layout.main) ;
final EditText addressfield =
(EditText) findvViewById(R.id.address);

final Button button = (Button)
findviewById(R.id.launchmap) ;
button.setOnClickListener (new Button.OnClickListener () {
public void onClick(View view) {
try { Get
String address = addressfield.getText ().toString(); address
address = address.replace(' ', '+');
Intent geoIntent = new Intent
(android.content.Intent.ACTION_VIEW, Prepare

Uri.parse("geo:0,0?g=" + address)); Intent

startActivity (geoIntent) ;
} catch (Exception e) {

28

CHAPTER 1 Introducing Android

In this example application, the setContentView method creates the primary Ul,
which is a layout defined in main.xml in the /res/layout directory. The EditText view
collects information, which in this case is an address. The EditText view is a text box
or edit box in generic programming parlance. The findviewById method connects
the resource identified by R.1d.address to an instance of the EditText class.

A Button object is connected to the launchmap Ul element, again using the find-
ViewById method. When this button is clicked, the application obtains the entered
address by invoking the getText method of the associated EditText @.

When the address has been retrieved from the Ul, we need to create an Intent to
find the entered address. The Intent has a VIEW action, and the data portion repre-
sents a geographic search query @.

Finally, the application asks Android to perform the Intent, which ultimately
results in the mapping application displaying the chosen address. The startActivity
method is invoked, passing in the prepared Intent.

Resources are precompiled into a special class known as the R class, as shown in
listing 1.8. The final members of this class represent UI elements. You should never
modify the Rjava file manually; it’s automatically built every time the underlying
resources change. (We’ll cover Android resources in greater depth in chapter 3.)

Listing 1.8 R.java contains the R class, which has Ul element identifiers

/* AUTO-GENERATED FILE. DO NOT MODIFY.

* This class was automatically generated by the
* aapt tool from the resource data it found. It
* should not be modified by hand.
*/
package com.msi.manning.unlockingandroid;
public final class R {
public static final class attr {
}
public static final class drawable {
public static final int i1icon=0x7£f020000;
}
public static final class id {
public static final int address=0x7£f050000;
public static final int launchmap=0x7£050001;
}
public static final class layout {
public static final int main=0x7£030000;
}
public static final class string {
public static final int app_name=0x7£040000;

}

Figure 1.7 shows the sample application in action. Someone looked up the address of
the White House; the result shows the White House pinpointed on the map.

Creating an Android application 29

The primary screen of this application is defined as a LinearLayout view, as shown
in the following listing. It’s a single layout containing one label, one text entry ele-
ment, and one button control.

Listing 1.9 Main.xml defines the Ul elements for our sample application

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Please enter your home address."

/>
<EditText ID assignment
android:id="@+id/address" for EditText

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:autoText="true"

/>

<Button ID assignment
android:id="@+id/launchmap" for Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Show Map"
/>

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Unlocking Android, Chapter 1."
/>

</LinearLayout>

Note the use of the @ symbol in this resource’s id attribute © and . This symbol
causes the appropriate entries to be made in the R class via the automatically gener-
ated R.java file. These R class members are used in the calls to findviewById(), as
shown in listing 1.7, to tie the UI elements to an instance of the appropriate class.

A strings file and icon round out the resources in this simple application. The
strings.xml file for this application is shown in the following listing. This file is used to
localize string content.

Listing 1.10 strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">Where Do You Live</string>
</resources>

30

1.9

CHAPTER 1 Introducing Android

As you’ve seen, an Android application has a few moving pieces—though the compo-
nents themselves are rather straightforward and easy to stitch together. As we progress
through the book, we’ll introduce additional sample applications step-by-step as we
cover each of the major elements of Android development activities.

Summary

This chapter introduced the Android platform and briefly touched on market posi-
tioning, including what Android is up against in the rapidly changing mobile market-
place. Inside two short years, the Android SDK has been announced, released, and
updated no fewer than four times. And that’s just the software. Major device manufac-
turers have now signed on to the Android platform and have brought capable devices
to market, including a privately labeled device from Google itself. Android’s future
continues to brighten.

In this chapter, we examined the Android stack and discussed its relationship with
Linux and Java. With Linux at its core, Android is a formidable platform, especially
for the mobile space where it’s initially targeted. Although Android development is
done in the Java programming language, the runtime is executed in the Dalvik VM, as
an alternative to the Java VM from Oracle. Regardless of the VM, Java coding skills are
an important aspect of Android development.

We also examined the Android SDK’s Intent class. The Intent is what makes
Android tick. It’s responsible for how events flow and which code handles them. It
provides a mechanism for delivering specific functionality to the platform, enabling
third-party developers to deliver innovative solutions and products for Android. We
introduced all the main application classes of Activity, Service, ContentProvider,
and BroadcastReceiver, with a simple code snippet example for each. Each of these
application classes use Intents in a slightly different manner, but the core facility of
using Intents to control application behavior enables the innovative and flexible
Android environment. Intents and their relationship with these application classes
will be unpacked and unlocked as we progress through this book.

The AndroidManifest.xml descriptor file ties all the details together for an
Android application. It includes all the information necessary for the application to
run, what Intents it can handle, and what permissions the application requires.
Throughout this book, the AndroidManifest.xml file will be a familiar companion as
we add and explain new elements.

Finally, this chapter provided a taste of Android application development with a
simple example tying a simple UL, an Intent, and Google Maps into one seamless and
useful experience. This example is, of course, just scratching the surface of what
Android can do. The next chapter takes a deeper look into the Android SDK so that
you can learn more about the toolbox we’ll use to unlock Android.

Android’s development
environment

This chapter covers

= Introducing the Android SDK

= Exploring the development environment

= Building an Android application in Eclipse

= Debugging applications in the Android emulator

Building upon the foundational information presented in the first chapter, we pick
up the pace by introducing the Android development environment used to con-
struct the applications in the balance of the book. If you haven’t installed the devel-
opment tools, refer to appendix A for a step-by-step guide to downloading and
installing the tools.

This chapter introduces the Android development tool chain, the software tools
required to build Android applications, and serves as your hands-on guide to creat-
ing, testing, and even debugging applications. When you’ve completed this chap-
ter, you’ll be familiar with using Eclipse and the Android Development Tools (ADT)
plug-in for Eclipse, navigating the Android SDK, running Android applications in

31

32

2.1

CHAPTER 2 Android’s development environment

the emulator, and stepping line-by-line through a sample application that you’ll con-
struct in this chapter: a simple tip calculator.

Android developers spend a significant amount of time working with the Android
emulator to debug their applications. This chapter goes into detail about creating and
building projects, defining Android virtual devices (emulators), setting up run config-
urations, and running and debugging applications on an instance of the Android
emulator. If you’ve never constructed an Android application, please don’t skip this
chapter; mastering the basics demonstrated here will aide your learning throughout
the rest of the book.

When embracing a new platform, the first task for a developer is gaining an under-
standing of the SDK and its components. Let’s start by examining the core compo-
nents of the Android SDK, then transition into using the SDK’s tools to build and
debug an application.

Introducing the Android SDK

The Android SDK is a freely available download from the Android website. The first
thing you should do before going any further in this chapter is make sure you have the
Android SDK installed, along with Eclipse and the Android plug-in for Eclipse, also
known as the Android Development Tools, or simply as the ADT. The Android SDK is
required to build Android applications, and Eclipse is the preferred development envi-
ronment for this book. You can download the Android SDK from http://developer.
android.com/sdk/index.html.

TIP The Android download page has instructions for installing the SDK, or
you can refer to appendix A of this book for detailed information on install-
ing the required development tools.

As in any development environment, becoming familiar with the class structures is
helpful, so having the documentation at hand as a reference is a good idea. The
Android SDK includes HTML-based documentation, which primarily consists of
Javadoc-formatted pages that describe the available packages and classes. The
Android SDK documentation is in the /doc directory under your SDK installation.
Because of the rapidly changing nature of this new platform, you might want to keep
an eye out for any changes to the SDK. The most up-to-date Android SDK documenta-
tion is available at http://developer.android.com/reference/packages.html
Android’s Java environment can be broken down into a handful of key sections.
When you understand the contents in each of these sections, the Javadoc reference
material that ships with the SDK becomes a real tool and not just a pile of seemingly
unrelated material. You might recall that Android isn’t a strictly Java ME software envi-
ronment, but there’s some commonality between the Android platforms and other
Java development platforms. The next few sections review some of the Java packages
(core and optional) in the Android SDK and where you can use them. The remaining
chapters provide a deeper look into using many of these programming topics.

211

Introducing the Android SDK 33

Core Android packages

If you’ve ever developed in Java, you’ll recognize many familiar Java packages for core
functionality. These packages provide basic computational support for things such as
string management, input/output controls, math, and more. The following list con-
tains some of the Java packages included in the Android SDK:

= java.lang—Core Java language classes

= java.io—Input/output capabilities

= java.net—Network connections

= java.text—Text-handling utilities

= java.math—Math and number-manipulation classes
= javax.net—Network classes

= javax.security—Security-related classes

= javax.xml—DOM-based XML classes

" org.apache.*—HTTP-related classes

= org.xml—SAX-based XML classes

Additional Java classes are also included. Generally speaking, this book won’t focus
much on the core Java packages listed here, because our primary concern is Android
development. With that in mind, let’s look at the Android-specific functionality found
in the Android SDK.

Android-specific packages are easy to identify because they start with android in
the package name. Some of the more important packages are:

= android.app—Android application model access

= android.bluetooth—-Android’s Bluetooth functionality

= android.content—Accessing and publishing data in Android

= android.net—Contains the Uri class, used for accessing content

= android.gesture—Create, recognize, load, and save gestures

= android.graphics—Graphics primitives

= android.location—Location-based services (such as GPS)

= android.opengl—OpenGL classes

= android.os—System-level access to the Android environment

= android.provider—ContentProvider-related classes

= android.telephony—Telephony capability access, including support for both
Code Division Multiple Access (CDMA) and Global System for Mobile commu-
nication (GSM) devices

= android.text—Text layout

= android.util—Collection of utilities for logging and text manipulation,
including XML

= android.view—UI elements

= android.webkit—Browser functionality

" android.widget—More Ul elements

34

212

2.2

CHAPTER 2 Android’s development environment

Some of these packages are core to Android application development, including
android.app, android.view, and android.content. Other packages are used to vary-
ing degrees, depending on the type of applications that you’re constructing.

Optional packages

Not every Android device has the same hardware and mobile connectivity capabilities,
so you can consider some elements of the Android SDK as optional. Some devices sup-
port these features, and others don’t. It’s important that an application degrade grace-
fully if a feature isn’t available on a specific handset. Java packages that you should pay
special attention to include those that rely on specific, underlying hardware and net-
work characteristics, such as location-based services (including GPS) and wireless tech-
nologies such as Bluetooth and Wi-Fi (802.11).

This quick introduction to the Android SDK’s programming interfaces is just
that—quick and at-a-glance. Upcoming chapters go into the class libraries in further
detail, exercising specific classes as you learn about various topics such as Uls, graph-
ics, location-based services, telephony, and more. For now, the focus is on the tools
required to compile and run (or build) Android applications.

Before you build an Android application, let’s examine how the Android SDK and
its components fit into the Eclipse environment.

Exploring the development environment
After you install the Android SDK and the ADT plug-in for Eclipse, you're ready to
explore the development environment. Figure 2.1 depicts the typical Android devel-
opment environment, including both real hardware and the useful Android emulator.
Although Eclipse isn’t the exclusive tool required for Android development, it can
play a big role in Android development, not only because it provides a rich Java com-
pilation and debugging environment, but also because with the ADT plug-in, you can
manage and control virtually all aspects of testing your Android applications directly
from the Eclipse IDE.

The following list describes key features of the Eclipse environment as it pertains
to Android application development:

= A rich Java development environment, including Java source compilation, class
auto-completion, and integrated Javadoc

= Source-level debugging

= AVD management and launch

= The Dalvik Debug Monitor Server (DDMS)

= Thread and heap views

= Emulator filesystem management

= Data and voice network control

= Emulator control

= System and application logging

Eclipse supports the concept of perspectives, where the layout of the screen has a set of
related windows and tools. The windows and tools included in an Eclipse perspective

221

Exploring the development environment 35

t (laptop)

Eclipse open source IDE

* Coding
* Debugging

Command-line tools

* File transfer tools
* GSM simulation tester

Android Development Tools (plug-in)
* SDK

* Emulator profile configuration

* Emulator launch

* Process & file system viewing

* Log Viewing plug-in

Android Emulator
* Multiple skins
* Network connectivity options

 Integrated with Eclipse via
Android Development Tools

SDK documentation

Android Device
* Physical phone hardware

Figure 2.1

The development
environment for building
Android applications,

are known as views. When developing Android
applications, there are two Eclipse perspectives
of primary interest to us: the Java perspective
and the DDMS perspective. Beyond those two,
the Debug perspective is also available and use-
ful when you’re debugging an Android appli-
cation; we’ll talk about the Debug perspective
in section 2.5. To switch between the available
perspectives in Eclipse, use the Open Perspec-
tive menu, under the Window menu in the
Eclipse IDE.

Let’s examine the features of the Java and
DDMS perspectives and how you can leverage
them for Android development.

The Java perspective

The Java perspective is where you’ll spend
most of your time while developing Android
applications. The Java perspective boasts a
number of convenient views for assisting in the
development process. The Package Explorer
view allows you to see the Java projects in your
Eclipse workspace. Figure 2.2 shows the Pack-
age Explorer listing some of the sample proj-
ects for this book.

including the popular
open source Eclipse IDE

@ &> AndroidChapter1
2 AndroidChapter 1Example
B 3B src
= @ com.msi.manning.unlockingandroid
£ [J) AwhereDoYoulive.java
= © awhereDoYoulive

= @ onCreate(Bundle)
[+ Q new OnClickListener() {...}
® [3) rR.java

B Andrcid Library

&> assets
(= res

QU AndraidManifest, xml
= And idChapter15ample

B src
= 8 com.manning.urlockingandroid
& [J) ChapterTwo.java
2O ChapterTwo
@ onCreate(Bundle)
[{1} R.java
B, Android Library
= assets
& res
Q' AndrcidManifest, xml
& testproject

*

Figure 2.2 The Package Explorer allows
you to browse the elements of your Android
projects.

CHAPTER 2 Android’s development environment

|12) ChapterTwo.jeva 23

1. package com.manning.unlockingandroid;

#Fimport android.app.ictivity:[]

public class ChapterTwo extends Activity {

shen the activity 1= first created.

-~ public void onCreate (Bundle icicle)
super.onCreate (icicle) ;
|a secContentView(R.1 hyout.main):
H
}
K|

(2 Problems 52\ @ Javadac |
2 errors, O warnings, 0 infos

Description_+ |Resource | Path | Location |
= 1 Errors (2 items)
@ Rl cannot be resolved ChapterTw.., Chapter2/srcfcom/manning... Bine 11

| @ Syntax error on token "ayout”, delete tl ChapterTw... Chapter2fsrc/com/manning... line 11
|

Figure 2.3 The Problems view shows any errors in your source code.

The Java perspective is where you’ll edit your Java source code. Every time you save
your source file, it’s automatically compiled by Eclipse’s Java development tools (JDT)
in the background. You don’t need to worry about the specifics of the JDT; the impor-
tant thing to know is that it’s functioning in the background to make your Java experi-
ence as seamless and painless as possible. If there’s an error in your source code, the
details will show up in the Problems view of the Java perspective. Figure 2.3 has an
intentional error in the source code to demonstrate the Problems view. You can also
put your mouse over the red x to the left of the line containing the error for a tool-tip
explanation of the problem.

One powerful feature of the Java perspective in Eclipse is the integration between
the source code and the Javadoc view. The Javadoc view updates automatically to pro-
vide any available documentation about a currently selected Java class or method, as
shown in figure 2.4. In this figure, the Javadoc view displays information about the
Activity class.

TIPS This chapter scratches the surface in introducing the powerful Eclipse
environment. To learn more about Eclipse, you might consider reading
Eclipse in Action: A Guide for Java Developers, by David Gallardo, Ed Burnette,
and Robert McGovern, published by Manning and available online at http://
www.manning.com/.

It’s easy to get the views in the current perspective into a layout that isn’t
what you really want. If this occurs, you have a couple of choices to restore

222

Exploring the development environment 37

package com.manning.unlockingandroid:

*import android.app.hctivicy:[]

public class ChapterTwo extends Activicy (
/** Called when the activity is first created. */
@override
public void onCreate (Bundle icicle) |
super.onCreate (icicle) ;
setContentView (R. layout.main) ;

1]
@ Javadoc £3
android. app. Activity
An activity is a single, focused thing that the user can do. Mdummna«tmh&eum ;otheMtwivmtm:aadamam[umnmhm:mmnwm
windows, they can also be used in other ways: as floating windows (via a theme with sFipating set) d inside of ancther activity (using ActivityGroup). There are two methad)

o onCreate(Bundle) is where you iniislize your activity. Most importantly, here you will usually call setContentiiea(int) with a layout resource defining your UL and using findviewtyid(int}
- MSM',lcu.ldedMhhuser!ewhqywathﬂv.“usthwwﬂy,wwmhfhm should at this point be committed {usually to the ContentProvider hold)

Ta be of use with Conkexd. tivitw(), all activity cl £ have a o dng <activity > declaration in their package's AndroidHani fest . xal.
The Activity class is an important part of an appbcation's overall Wecyde,
Topics covered here:

. fativity Lifecycle

. Coofiguration Changes

:1nmm:
. Brocess Wecvde

oA s LR
E ‘

Activity Lifecycle
Activities in the system are managed as an actily stack. When a new activity is started, it i placed on the top of the stack and becomes the running activity - the previous activty ahways ren

An asthidih, B foum skl

Figure 2.4 The Javadoc view provides context-sensitive documentation, in this case for the
Activity class.

the perspective to a more useful state. You can use the Show View menu
under the Window menu to display a specific view or you can select the Reset
Perspective menu to restore the perspective to its default settings.

In addition to the JDT, which compiles Java source files, the ADT automatically com-
piles Android-specific files such as layout and resource files. You’ll learn more about
the underlying tools later in this chapter and again in chapter 3, but now it’s time to
have a look at the Android-specific perspective in the DDMS.

The DDMS perspective

The DDMS perspective provides a dashboard-like view into the heart of a running
Android device, or in this example, a running Android emulator. Figure 2.5 shows the
emulator running the chapter 2 sample application.

We’ll walk through the details of the application, including how to build the appli-
cation and how to start it running in the Android emulator, but first let’s see what
there is to learn from the DDMS with regard to our discussion about the tools available
for Android development.

38 CHAPTER 2 Android’s development environment

® Grab File Edit [[ETIN window Help O B - = oAf) (=0 (Charged) Thu 1:07 AM Q
™)) DDMS - Chapter2 {srcfcom/manning /unlockingandroid/ChapterTwo.java - Eclipse Patform - (Users{fableson /Documents/VirtualBox/cfg/msi/..
|- | . - G
et | S| B-0-% & 4|5 C 8 v o BEEEEL R KRl = o ooMs &' java
— e i e . &
@ Devices 2 O35, Theeads | @ Heap | & File Explorer 5 wE - ojl
- || L : |
Sl e@anls2(olm” Narme Size |Dae Time |Permissions | info b % M Find =
s | ¥ &cm 2010-01-03 Z3:53 drwxrax—x £ AaBbC : # Replace
= -01- Pk 7 Heading 2 hange
D emulator-5554 Gnline 20100k | = anr 2010-01-03 23:54 drwnrwx B Hending 2 e || L3 select~
system_process |58 8600 = 10 20L0-0L03- 2453 crmcram—x | = 1 Ep
Ip£0.omronsofuogs 36 2601 O commanning.unlockingandraid apk 12732 2010-01-07 OL04 -rw-r— commanning E =
android.process.ac 103 8602 = app-private 2010-01-03 2353 drwwrwx--x | " . ra
com.android phane 101 8603 (= backun 2010-01-03 23:55 drwx---eee =
com.andeoid setting 118 8604 (= dalvik-cache

44480 gl 00 gl g g0t gl gt i gt gt

com.android.mms | 136 8605 = data
com.android alarme 153 8606 (= dontpanic
andraid process.me 169 8607 = local
com.android.emadl | 187 8608 = losts found
com.goagle androic 200 8609 & misc
comsvoxpico | 240 8610 12 property
com.mannaing.unioc 1707 8611 (& system

(& sdcard

(& system

=3

(@ emutasor Conwral

Incoming number: 57

[o Logcar 22, B Console]

Time pid (tag Message

Figure 2.5 DDMS perspective with an application running in the Android emulator

The Devices view in figure 2.5 shows a single emulator session, titled emulator-tcp-
5554. The title indicates that there’s a connection to the Android emulator at TCP/IP
port 55564. Within this emulator session, five processes are running. The one of inter-
est to us is com.manning.unlockingandroid, which has the process ID 1707.

TIP Unless you're testing a peer-to-peer application, you’ll typically have
only a single Android emulator session running at a time although it is pos-
sible to have multiple instances of the Android emulator running concur-
rently on a single development machine. You might also have a physical
Android device connected to your development machine—the DDMS inter-
face is the same.

Logging is an essential tool in software development, which brings us to the LogCat
view of the DDMS perspective. This view provides a glimpse at system and application
logging taking place in the Android emulator. In figure 2.5, a filter has been set up for
looking at entries with a tag value of Chapter2. Using a filter on the LogCat is a help-
ful practice, because it can reduce the noise of all the logging entries and let you focus
on your own application’s entries. In this case, four entries in the list match our filter
criteria. We’ll look at the source code soon to see how you get your messages into the
log. Note that these log entries have a column showing the process ID, or PID, of the

Exploring the development environment 39

2 Threads f@ Heap | € File Explorer 23\\\ [P | =¥ =0
Name Size Date Time | Permissions InfoIDeme the selection |
¥ (= data 2010-01-03 23:53 drwxrwx--x !
> (= anr 2010-01-03 23:54 drwxrwx--x
¥ (= app 2010-01-03 23:53 drwxrwx--x
€ com.manning.unlockingandroid.apk 12732 2010-01-07 01:04 -rw-r--r-- com.manning.unlocking:
» (= app-private 2010-01-03 23:53 drwxrwx--x
> (= backup 2010-01-03 23:55 drwx------
P (= dalvik-cache 2010-01-03 23:53 drwxrwx--x
P = data 2010-01-03 23:53 drwxrwx--x
» (= dontpanic 2010-01-03 23:53 drwxr-x---
P (= local 2010-01-03 23:53 drwxrwx-—-x
» (= lost+found 2010-01-03 23:53 drwxrwx---
P = misc 2010-01-03 23:53 drwxrwx--t
» (= property 2010-01-03 23:53 drwx------
P = system 2010-01-03 23:54 drwxrwxr-x
P (= sdcard 1969-12-31 19:00 d---rwxr-x
P = system 2009-11-23 15:24 drwxr-xr-x

Figure 2.6 Delete applications from the emulator by highlighting the application file and clicking the
Delete button.

application contributing the log entry. As expected, the PID for our log entries is 616,
matching our running application instance in the emulator.

The File Explorer view is shown in the upper right of figure 2.5. User applica-
tions—the ones you and I write—are deployed with a file extension of .apk and stored
in the /data/app directory of the Android device. The File Explorer view also permits
filesystem operations such as copying files to and from the Android emulator, as well
as removing files from the emulator’s filesystem. Figure 2.6 shows the process of delet-
ing a user application from the /data/app directory.

Obviously, being able to casually browse the filesystem of your mobile phone is a
great convenience. This feature is nice to have for mobile development, where you’re
often relying on cryptic pop-up messages to help you along in the application develop-
ment and debugging process. With easy access to the filesystem, you can work with files
and readily copy them to and from your development computer platform as necessary.

In addition to exploring a running application, the DDMS perspective provides
tools for controlling the emulated environment. For example, the Emulator Control
view lets you test connectivity characteristics for both voice and data networks, such as
simulating a phone call or receiving an incoming Short Message Service (SMS). Figure
2.7 demonstrates sending an SMS message to the Android emulator.

The DDMS provides a lot of visibility into, and control over, the Android emulator,
and is a handy tool for evaluating your Android applications. Before we move on to
building and testing Android applications, it’s helpful to understand what’s happen-
ing behind the scenes and what’s enabling the functionality of the DDMS.

40

223

CHAPTER 2 Android’s development environment

| B Emulator Contral 53 . =
[Telephony Status —

Yoice: |home ¥ | Speed: |Fu|| 'l

Data: Ihome ‘I Latency: | TR ~
[~ Telephony Actions

Incorming number: | 9734480070

" Yoice
& 5Ms

Message: Hey, Android! Where are we going for lunch?

Figure 2.7 Sending a test SMS to the Android emulator

Command-line tools

The Android SDK ships with a collection of command-line tools, which are located in
the tools subdirectory of your Android SDK installation. Eclipse and the ADT provide a
great deal of control over the Android development environment, but sometimes it’s
nice to exercise greater control, particularly when considering the power and conve-
nience that scripting can bring to a development platform. Next, we’re going to
explore two of the command-line tools found in the Android SDK.

TIP It’s a good idea to add the tools directory to your search path. For exam-
ple, if your Android SDK is installed to c\software\google\ androidsdk, you can
add the Android SDK to your path by performing the following operation in a
command window on your Windows computer:

set path=%path%;c:\software\google\androidsdk\tools;

Or use the following command for Mac OS X and Linux:

export PATH=$PATH: /path_to_Android_SDK_directory/tools

ANDROID ASSET PACKAGING TOOL
You might be wondering just how files such as the layout file main.xml get processed
and exactly where the R java file comes from. Who zips up the application file for you
into the apk file? Well, you might have already guessed the answer from the heading
of this section—it’s the Android Asset Packaging Tool, or as it’s called from the command
line, aapt. This versatile tool combines the functionality of pkzip or jar along with an
Android-specific resource compiler. Depending on the command-line options you
provide to it, aapt wears a number of hats and assists with your design-time Android
development tasks. To learn the functionality available in aapt, run it from the com-
mand line with no arguments. A detailed usage message is written to the screen.
Whereas aapt helps with design-time tasks, another tool, the Android Debug
Bridge, assists you at runtime to interact with the Android emulator.

Exploring the development environment 41

ANDROID DEBUG BRIDGE

The Android Debug Bridge (adb) utility permits you to interact with the Android emula-
tor directly from the command line or script. Have you ever wished you could navigate
the filesystem on your smartphone? Now you can with the adb! The adb works as a
client/server TCP-based application. Although a couple of background processes run
on the development machine and the emulator to enable your functionality, the
important thing to understand is that when you run adb, you get access to a running
instance of the Android emulator. Here are a couple of examples of using adb. First,
let’s look to see if we have any available Android emulator sessions running:

adb devices<return>

This command returns a list of available Android emulators; figure 2.8 demonstrates
adb locating two running emulator sessions.

Let’s connect to the first Android emulator session and see if your application is
installed. You connect to a device or emulator with the syntax adb shell. You would
connect this way if you had a single Android emulator session active, but because two
emulators are running, you need to specify the serial number, or identifier, to connect
to the appropriate session:

adb -s "serialnumber" shell

Figure 2.9 shows off the Android filesystem and demonstrates looking for a specific
installed application, namely our chapter2 sample application, which you’ll build in
section 2.3.

Using the shell can be handy when you want to remove a specific file from the
emulator’s filesystem, kill a process, or generally interact with the operating environ-
ment of the Android emulator. If you download an application from the internet, for
example, you can use the adb command to install the application:

adb [-s serialnumber] shell install someapplication.apk

This command installs the application named someapplication to the Android emu-
lator. The file is copied to the /data/app directory and is accessible from the Android
application launcher. Similarly, if you want to remove an application, you can run adb
to remove an application from the Android emulator. If you want to remove the

000 X xterm

Figure 2.8 The adb tool
provides interaction at runtime
~ with the Android emulator.

42

CHAPTER 2 Android’s development environment

Figure 2.9 Using the shell command of the adb, you can browse Android’s filesystem.

com.manning.unlockingandroid.apk sample application from a running emulator’s
filesystem, for example, you can execute the following command from a terminal or
Windows command window:

adb shell rm /data/app/com.manning.unlockingandroid.apk

You certainly don’t need to master the command-line tools in the Android SDK to
develop applications in Android, but understanding what’s available and where to
look for capabilities is a good skill to have in your toolbox. If you need assistance with
either the aapt or adb command, enter the command at the terminal, and a fairly ver-
bose usage/help page is displayed. You can find additional information about the
tools in the Android SDK documentation.

TIP The Android filesystem is a Linux filesystem. Though the adb shell
command doesn’t provide a rich shell programming environment, as you
find on a Linux or Mac OS X system, basic commands such as 1s, ps, kill,
and rm are available. If you’re new to Linux, you might benefit from learning
some basic shell commands.

TELNET

One other tool you’ll want to make sure you're familiar with is telnet. Telnet allows you
to connect to a remote system with a character-based Ul In this case, the remote sys-
tem you connect to is the Android emulator’s console. You can connect to it with the
following command:

telnet localhost 5554

In this case, localhost represents your local development computer where the
Android emulator has been started, because the Android emulator relies on your
computer’s loopback IP address of 127.0.0.1. Why port 55547 Recall that when we
employed adb to find running emulator instances, the output of that command
included a name with a number at the end. The first Android emulator can generally
be found at IP port 5554.

2.3

23.1

Building an Android application in Eclipse 43

NOTE In early versions of the Android SDK, the emulator ran at port 5555
and the Android console—where we could connect via Telnet—ran at 5554,
or one number less than the number shown in DDMS. If you’re having diffi-
culty identifying which port number to connect on, be sure run netstat on
your development machine to assist in finding the port number. Note that a
physical device listens at port 5037.

Using a telnet connection to the emulator provides a command-line means for config-
uring the emulator while it’s running and for testing telephony features such as calls
and text messages.

So far you’ve learned about the Eclipse environment and some of the command-
line elements of the Android tool chain. At this point, it’s time to create your own
Android application to exercise this development environment.

Building an Android application in Eclipse

Eclipse provides a comprehensive environment for Android developers to create appli-
cations. In this section, we’ll demonstrate how to build a basic Android application,
step-by-step. You’ll learn how to define a simple UI, provide code logic to support it,
and create the deployment file used by all Android applications: AndroidManifest.xml.
Our goal in this section is to get a simple application under your belt. We’ll leave more
complex applications for later chapters; our focus is on exercising the development
tools and providing a concise, yet complete reference.

Building an Android application isn’t much different from creating other types of
Java applications in the Eclipse IDE. It all starts with choosing File > New and selecting
an Android application as the build target.

Like many development environments, Eclipse provides a wizard interface to ease
the task of creating a new application. We’ll use the Android Project Wizard to get off
to a quick start in building an Android application.

The Android Project Wizard

The most straightforward manner to create an Android application is to use the
Android Project Wizard, which is part of the ADT plug-in. The wizard provides a sim-
ple means to define the Eclipse project name and location, the Activity name corre-
sponding to the main UI class, and a name for the application. Also of importance is
the Java package name under which the application is created. After you create an
application, it’s easy to add new classes to the project.

NOTE In this example, you’ll create a brand-new project in the Eclipse work-
space. You can use this same wizard to import source code from another
developer, such as the sample code for this book. Note also that the specific
screens have changed over time as the Android tools mature. If you're follow-
ing along and have a question about this chapter, be sure to post a question
on the Manning Author forum for this book, available online at http://
manning.com/ableson.

44

23.2

CHAPTER 2 Android’s development environment

<f5i 1]
New Android Project
Creates a new Android Project resource., q

Project name: | Chapter2
[~ Contents
(% Create new project in workspace
" Create project from existing source
¥ Usa defaulk location

- Properties
Package name: | «com.manning. unbockingandroid

Activity name: | ChapterTwo

Application name: | Chapter Twol

Figure 2.10 Using the Android
Project Wizard, it’s easy to create an

e empty Android application, ready for

customization.

=)

Figure 2.10 demonstrates the creation of a new project named Chapter2 using the
wizard.

TIP You’ll want the package name of your applications to be unique from
one application to the next.

Click Finish to create your sample application. At this point, the application compiles
and is capable of running on the emulator—no further development steps are
required. Of course, what fun would an empty project be? Let’s flesh out this sample
application and create an Android tip calculator.

Android sample application code

The Android Application Wizard takes care of a number of important elements in the
Android application structure, including the Java source files, the default resource
files, and the AndroidManifest.xml file. Looking at the Package Explorer view in
Eclipse, you can see all the elements of this application. Here’s a quick description of
the elements included in the sample application:

= The src folder contains two Java source files automatically created by the wizard.

= ChapterTwo.java contains the main Activity for the application. You’ll modify
this file to add the sample application’s tip calculator functionality.

= Rjava contains identifiers for each of the UI resource elements in the applica-
tion. Never modify this file directly. It automatically regenerates every time a
resource is modified; any manual changes you make will be lost the next time
the application is built.

Building an Android application in Eclipse 45

= Android.jar contains the Android runtime Java classes. This reference to the
android jar file found in the Android SDK ensures that the Android runtime
classes are accessible to your application.

= The res folder contains all the Android resource folders, including:

— Drawables contains image files such as bitmaps and icons. The wizard pro-
vides a default Android icon named icon.png.

— Layout contains an XML file called main.xml. This file contains the UI ele-
ments for the primary view of your Activity. In this example, you’ll modify
this file but you won’t make any significant or special changes—just enough to
accomplish the meager Ul goals for your tip calculator. We cover UI elements,
including Views, in detail in chapter 3. It’s not uncommon for an Android
application to have multiple XML files in the Layout section of the resources.

— Values contains the strings.xml file. This file is used for localizing string val-
ues, such as the application name and other strings used by your application.

AndroidManifest.xml contains the deployment information for this project.
Although AndroidManifest.xml files can become somewhat complex, this chapter’s
manifest file can run without modification because no special permissions are
required. We’ll visit AndroidManifest.xml a number of times throughout the book as
we discuss new features.

Now that you know what’s in the project, let’s review how you’re going to modify
the application. Your goal with the Android tip calculator is to permit your user to
enter the price of a meal, then tap a button to calculate the total cost of the meal, tip
included. To accomplish this, you need to modify two files: ChapterTwo java and the
UI layout file, main.xml. Let’s start with the UI changes by adding a few new elements
to the primary View, as shown in the next listing.

Listing 2.1 main.xml contains Ul elements

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Chapter 2 Android Tip Calculator"
/>

<EditText
android:id="@+id/mealprice"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:autoText="true"

/>

<Button

android:id="@+id/calculate"

46

CHAPTER 2 Android’s development environment

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Calculate Tip"
/>

<TextView
android:id="@+id/answer"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text=""
/>

</LinearLayout>

The layout for this application is straightforward. The overall layout is a vertical, linear
layout with only four elements; all the UI controls, or widgets, are going to be in a verti-
cal arrangement. A number of layouts are available for Android UI design, which we’ll
discuss in greater detail in chapter 3.

A static TextView displays the title of the application. An EditText collects the
price of the meal for this tip calculator application. The EditText element has an
attribute of type android:id, with a value of mealprice. When a UI element contains
the android:id attribute, it permits you to manipulate this element from your code.
When the project is built, each element defined in the layout file containing the
android:id attribute receives a corresponding identifier in the automatically gener-
ated R.java class file. This identifying value is used in the findviewById method,
shown in listing 2.2. If a UI element is static, such as the TextView, and doesn’t need to
be set or read from our application code, the android: id attribute isn’t required.

A button named calculate is added to the view. Note that this element also has
an android:id attribute because we need to capture click events from this UI element.
A TextView named answer is provided for displaying the total cost, including tip.
Again, this element has an id because you’ll need to update it during runtime.

When you save the file main.xml, it’s processed by the ADT plug-in, compiling the
resources and generating an updated R.java file. Try it for yourself. Modify one of the
id values in the main.xml file, save the file, and open R.java to have a look at the con-
stants generated there. Remember not to modify the R java file directly, because if you
do, all your changes will be lost! If you conduct this experiment, be sure to change the
values back as they’re shown in listing 2.1 to make sure the rest of the project will com-
pile as it should. Provided you haven’t introduced any syntactical errors into your
main.xml file, your UI file is complete.

NOTE This example is simple, so we jumped right into the XML file to define
the UI elements. The ADT also contains an increasingly sophisticated GUI lay-
out tool. With each release of the ADT, these tools have become more and
more usable; early versions were, well, early.

Double-click the main.xml file to launch the layout in a graphical form. At the bottom
of the file you can switch between the Layout view and the XML view. Figure 2.11
shows the Layout tool.

Building an Android application in Eclipse 47

=% Uncategorized

|' & Layouts Chapter 2 Android Tip Calculator —~
[A) AbsoluteLayout
@ DialerFilter
@ ExpandableList...
@ FramelLayout
CridView

[H] HorizontalSero...

(1) imageswitcher 5% Outline 3 =1
(1 neviavout -1t
= Views -
LinearLayout
(©) GestureOverla... (@) Textview
) SurfaceView (® mealprice (EditTexu)
@ View calculate (Button)
@ viensu (D) answer (TextView)

() AnalogClock
@ AutoComplete...

Figure 2.11 Using the GUI Layout tool provided in the ADT to define the user interface
elements of your application

It’s time to turn our attention to the file ChapterTwo.java to implement the tip calcu-
lator functionality. ChapterTwo.java is shown in the following listing. We’ve omitted
some imports for brevity. You can download the complete source code from the Man-
ning website at http://manning.com/ableson?2.

Listing 2.2 ChapterTwo.java implements the tip calculator logic

package com.manning.unlockingandroid;
import com.manning.unlockingandroid.R;
import android.app.Activity;
import java.text.NumberFormat;
import android.util.Log;
// some imports omitted
public class ChapterTwo extends Activity {
public static final String tag = "Chapter2";
@Override
public void onCreate (Bundle icicle) {
super.onCreate(icicle) ;

setContentView (R.layout.main) ; Reference
final EditText mealpricefield = EdltTeX_tfor
(EditText) findviewById(R.id.mealprice); < mealprice

final TextView answerfield =
(TextView) findviewById(R.id.answer) ;
final Button button = (Button) findviewById(R.id.calculate);
button.setOnClickListener (new Button.OnClickListener () {
public void onClick(View v) {
try {
Log.1i(tag, "onClick invoked."); <44€) Log entry
// grab the meal price from the UI
String mealprice =
mealpricefield.getText () .toString() ; QAAG, Get meal price
Log.i(tag, "mealprice is [" + mealprice + "]");
String answer = "";
// check to see if the meal price includes a "S$"

CHAPTER 2 Android’s development environment

if (mealprice.indexOf("$") == -1) {
mealprice = "$" + mealprice;

}

float fmp = 0.0F;

// get currency formatter

NumberFormat nf =

java.text .NumberFormat.getCurrencyInstance () ;

// grab the input meal price

fmp = nf.parse(mealprice).floatValue() ;

// let's give a nice tip -> 20%

fmp *= 1.2;

Log.1i(tag, "Total Meal Price (unformatted) is ["

+ fmp + "]
// format our result
answer = "Full Price, Including 20% Tip: "
+ nf.format (fmp) ; Display full price,
answerfield.setText (answer) ; < including tip
Log.1i(tag, "onClick complete.");
} catch (java.text.ParseException pe) { Catch

Log.1(tag, "Parse exception caught");

answerfield.setText ("Failed to parse amount?") ;
} catch (Exception e) {

Log.e(tag, "Failed to Calculate Tip:" + e.getMessage());

e.printStackTrace () ;

answerfield.setText (e.getMessage()) ;

parse
error

Let’s examine this sample application. Like all but the most trivial Java applications,
this class contains a statement identifying which package it belongs to: com.manning.
unlockingandroid. This line containing the package name was generated by the
Application Wizard.

We import the com.manning.unlockingandroid.R class to gain access to the defi-
nitions used by the UL This step isn’t required, because the R class is part of the same
application package, but it’s helpful to include this import because it makes our code
easier to follow. Newcomers to Android always ask how the identifiers in the R class are
generated. The short answer is that they’re generated automatically by the ADT! Also
note that you’ll learn about some built-in UI elements in the R class later in the book
as part of sample applications.

Though a number of imports are necessary to resolve class names in use, most of
the import statements have been omitted from listing 2.2 for the sake of brevity. One
import that’s shown contains the definition for the java.text.NumberFormat class,
which is used to format and parse currency values.

Another import shown is for the android.util.Log class, which is employed to
make entries to the log. Calling static methods of the Log class adds entries to the log.
You can view entries in the log via the LogCat view of the DDMS perspective. When
making entries to the log, it’s helpful to put a consistent identifier on a group of

Building an Android application in Eclipse 49

related entries using a common string, commonly referred to as the fag. You can filter
on this string value so you don’t have to sift through a mountain of LogCat entries to
find your few debugging or informational messages.

Now let’s go through the code in listing 2.2. We connect the Ul element containing
mealprice to a class-level variable of type EditText @ by calling the findviewById
method and passing in the identifier for the mealprice, as defined by the automati-
cally generated R class, found in R.java. With this reference, we can access the user’s
input and manipulate the meal price data as entered by the user. Similarly, we connect
the UI element for displaying the calculated answer back to the user, again by calling
the findviewById method.

To know when to calculate the tip amount, we need to obtain a reference to the
Button so we can add an event listener. We want to know when the button has been
clicked. We accomplish this by adding a new OnClickListener method named
onClick.

When the onClick method is invoked, we add the first of a few log entries using
the static i () method of the Log class @. This method adds an entry to the log with an
Information classification. The Log class contains methods for adding entries to the
log for different levels, including Verbose, Debug, Information, Warning, and Error.
You can also filter the LogCat based on these levels, in addition to filtering on the pro-
cess ID and tag value.

Now that we have a reference to the mealprice Ul element, we can obtain the text
entered by our user with the getText () method of the EditText class ©.In prepara-
tion for formatting the full meal price, we obtain a reference to the static currency
formatter.

Let’s be somewhat generous and offer a 20 percent tip. Then, using the formatter,
let’s format the full meal cost, including tip. Next, using the setText () method of the
TextView UI element named answerfield, we update the UI to tell the user the total
meal cost @.

Because this code might have a problem with improperly formatted data, it’s a
good practice to put code logic into try/catch blocks so that our application behaves
when the unexpected occurs (5}

Additional boilerplate files are in this sample project, but in this chapter we’re
concerned only with modifying the application enough to get basic, custom function-
ality working. You’ll notice that as soon as you save your source files, the Eclipse IDE
compiles the project in the background. If there are any errors, they’re listed in the
Problems view of the Java perspective; they’re also marked in the left margin with a
small red x to draw your attention to them.

TIP Using the command-line tools found in the Android SDK, you can cre-
ate batch builds of your applications without using the IDE. This approach is
useful for software shops with a specific configuration-management function
and a desire to conduct automated builds. In addition to the Android-
specific build tools found under the tools subdirectory of your Android SDK

50

2.3.3

CHAPTER 2 Android’s development environment

installation, you’ll also need JDK version 5.0 or later to complete command-
line application builds. Creating sophisticated automated builds of Android
applications is beyond the scope of this book, but you can learn more about
the topic of build scripts by reading Ant in Action: Second Edition of Java Devel-
opment with Ant, by Steve Loughran and Erik Hatcher, found at http://
www.manning.com/loughran/.

Assuming there are no errors in the source files, your classes and Ul files will compile
correctly. But what needs to happen before your project can be run and tested in the
Android emulator?

Packaging the application

At this point, your application has compiled and is ready to be run on the device. Let’s
look more deeply at what happens after the compilation step. You don’t need to per
form these steps because the ADTs handle these steps for you, but it’s helpful to under-
stand what’s happening behind the scenes.

Recall that despite the compile-time reliance on Java, Android applications don’t
run in a Java VM. Instead, the Android SDK employs the Dalvik VM. For this reason,
Java bytecodes created by the Eclipse compiler must be converted to the .dex file for-
mat for use in the Android runtime. The Android SDK has tools to perform these
steps, but thankfully the ADT takes care of all of this for you transparently.

The Android SDK contains tools that convert the project files into a file ready to
run on the Android emulator. Figure 2.12 depicts the generalized flow of source files
in the Android build process. If you recall from our earlier discussion of Android SDK
tools, the tool used at design time is aapt. Application resource XML files are pro-
cessed by aapt, with the R.java file created as a result—remember that you need to
refer to the R class for Ul identifiers when you connect your code to the Ul Java source

layout.xml q Rjava

- *class # * dex

*java

android-
manifest.xml

application.apk file

Figure 2.12 The ADT employs tools from the Android SDK to convert source
files to a package that’s ready to run on an Android device or emulator.

24

Using the Android emulator 51

=
| File Commands Tocls Favorites Options Help

g@lm&m@m@ S

Extract To View Delete | ¥WirusScan Comment SFX

L= 3

I m | |[18) Chapterz.apk - 2 archive, unpacked size 15,220 bytes

[dome & | size | Packed [Type | Modfied | crCaz |

[= Folder

| Edres Folder 2/25/2008 12:45 AM

| [#) androidmanifest xmi 1,564 1,564 ¥ML Document 2/25{2008 12:45 AM §30104CD

| % dlasses.dex 4,835 2,011 File dex 2/25/2008 12:59 AM 55438689
FesOUrces.arsc 1,036 1,036 File arsc 2[25/2008 12:45 AM E1AFSSSE

Figure 2.13 The Android application file format is pzip compatible.

files are first compiled to class files by your Java environment, typically Eclipse and the
JDT. After they’re compiled, they’re then converted to dex files to be ready for use
with Android’s Dalvik VM. Surprisingly, the project’s XML files are converted to a
binary representation, not to text as you might expect. But the files retain their .xml
extension on the device.

The converted XML files, a compiled form of the nonlayout resources including
the Drawables and Values, and the dex file (classes.dex) are packaged by the aapt
tool into a file with a naming structure of projeciname.apk. The resulting file can be
read with a pkzip-compatible reader, such as WinRAR or WinZip, or the Java archiver,
jar. Figure 2.13 show this chapter’s sample application in WinRAR.

Now you’re finally ready to run your application on the Android emulator! It’s
important to become comfortable with working in an emulated environment when
you’re doing any serious mobile software development. There are many good reasons
for you to have a quality emulator available for development and testing. One simple
reason is that having multiple real devices with requisite data plans is an expensive
proposition. A single device alone might cost hundreds of dollars. Android continues
to gain momentum and is finding its way to multiple carriers with numerous devices
and increasingly sophisticated capabilities. Having one of every device is impractical
for all but development shops with the largest of budgets. For the rest of us, a device
or two and the Android emulator will have to suffice. Let’s focus on the strengths of
emulator-based mobile development.

Speaking of testing applications, it’s time to get our tip calculator application
running!

Using the Android emulator

At this point, our sample application, the Android tip calculator, has compiled suc-
cessfully. Now you want to run your application in the Android emulator. Before you
can run an application in the emulator, you have to configure the emulated environ-
ment. To do this, you’ll learn how to create an instance of the AVD using the AVD Man-
ager. After you’ve got that sorted out, you’ll define a run configuration in Eclipse,
which allows you to run an application in a specific AVD instance.

52

24.1

CHAPTER 2 Android’s development environment

TIP If you've had any trouble building the sample application, now would be
a good time to go back and clear up any syntax errors that are preventing the
application from building. In Eclipse, you can easily see errors because
they’re marked with a red x next to the project source file and on the offend-
ing lines. If you continue to have errors, make sure that your build environ-
ment is set up correctly. Refer to appendix A of this book for details on
configuring the build environment.

Setting up the emulated environment

Setting up your emulator environment can be broken down into two logical steps.
The first is to create an instance of the AVD via the AVD Manager. The second is to
define a run configuration in Eclipse, which permits you to run your application in a
specific AVD instance. Let’s start with the AVD Manager.

Emulator vs. simulator

You might hear the words emulator and simulator thrown about interchangeably.
Although they have a similar purpose—testing applications without the requirement
of real hardware—those words should be used with care.

A simulator tool works by creating a testing environment that behaves as close to
100 percent in the same manner as the real environment, but it’s just an approxima-
tion of the real platform. This doesn’'t mean that the code targeted for a simulator will
run on a real device, because it’s compatible only at the source-code level. Simulator
code is often written to be run as a software program running on a desktop computer
with Windows DLLs or Linux libraries that mimic the application programming inter-
faces (APIs) available on the real device. In the build environment, you typically select
the CPU type for a target, and that’s often x86/Simulator.

In an emulated environment, the target of your projects is compatible at the binary
level. The code you write works on an emulator as well as the real device. Of course,
some aspects of the environment differ in terms of how certain functions are imple-
mented on an emulator. For example, a network connection on an emulator runs
through your development machine’s network interface card, whereas the network
connection on a real phone runs over the wireless connection such as a GPRS, EDGE,
or EVDO network. Emulators are preferred because they more reliably prepare you to
run your code on real devices. Fortunately, the environment available to Android
developers is an emulator, not a simulator.

MANAGING AVDS

Starting with version 1.6 of the Android SDK, developers have a greater degree of con-
trol over the emulated Android environment than in previous releases. The SDK and
AVD Manager permit developers to download the specific platforms of interest. For
example, you might be targeting devices running version 1.5 and 2.2 of the Android
platform, but you might want to add to that list as new versions become available. Fig-
ure 2.14 shows the SDK and AVD Manager with a few packages installed.

Using the Android emulator 53

Android SDK and AVD Manag_er

Virtual Devices
Installed Packages
Available Packages

SDK Location: /Users/fableson/Software fandroid /android-sdk-mac_86/

"Ir\st‘!lled Packages
x Android SDK Tools, revision &
Documentation for Android SDK, API 8, revision 1
7' SDK Platform Android 2.2, AP 8, revision 2
& samples for SDK API 8, revision 1
' Google APIs by Google Inc., Android API 8, revision 2
W' SDK Platform Android 2.1-updatel, APl 7, revision 2
(_5 Samples for SDK APl 7, revision 1
'i]. GCoogle APls by Google Inc., Android API 7, revision 1
‘"' SDK Platform Android 2.0.1, API 6, revision 1
EL Gooagle APls by Google Inc., Android API 6, revision 1 .
#' SDK Platform Android 1.6, API 4, revision 2

Description

ate Al Delete. Refresh

Figure 2.14 The installed Android packages listed in the AVD and SDK Manager

After you’ve installed the Android platforms that you want, you can define instances
of the AVD. To define instances, select which platform you want to run on, select the
device characteristics, and then create the AVD, as shown in figure 2.15.

M T 7 Create new Android Virtual Device (AVD)

Name: New AVD
Target: (Google AP Google nc) - AMLevel s 18)
@Size: Eﬁ MiB ,;]
() File: Browse...
Skin:
() Built-in:
WVCABS4
() Resolution ~ WQVGA400
HVGA
Hardware: | WQVCA432z | =
Property WVCABDD 1

Abstracted LC QVGA il
I —

xisting AVD with the

=
2 AVD name New AV conaatns invalld Shpmeien: Figure 2.15 Creating a new AVD
includes defining characteristics
such as SD card storage capacity and
screen resolution.

\ Cancel) Create AVD

54

CHAPTER 2 Android’s development environment

Android SDK and AVD Manager

Virtual Devices List of existing Android Virtual Devices located at /Users/fableson/.android /avd

Installed Packages AVD Name Target Name Platform | API Level
Available Packages ~ A22_NOMAPS Android 2.2 2.2 8

~ AZ2 Google APis (Google Inc.) 2.2 8

~ fitc Google APIs (Google Inc.) 2.2 8

~ A valid Android Virtual Device. A repairable Android Virtual Device.
X An Android Virtual Device that failed to load. Click 'Details’ to see the error.

Figure 2.16 Available AVDs defined. You can set up as many different AVD instances as your
requirements demand.

At this point, your AVD is created and available to be started independently. You can
also use it as the target of a run configuration. Figure 2.16 shows a representative list
of available AVDs on a single development machine.

NOTE Each release of the Android platform has two versions: one with
Google APIs and one without. In Figure 2.16, notice that the first entry, named
A22_NOMAPS, has a target of Android 2.2. The second entry, A22, has a target
of Google APIs (Google Inc.). The Google version is used when you want to
include application functionality such as Google Maps. Using the wrong target
version is a common problem encountered by developers new to the Android
platform hoping to add mapping functionality to their applications.

Now that you have the platforms downloaded and the AVDs defined, it’s time to wire
these things together so you can test and debug your application!

SETTING UP EMULATOR RUN CONFIGURATIONS
Our approach is to create a new
Android emulator profile so you can

™ () Java - Chapter2/res/layout/main.xml - Eclipse Platform - [Users/fal

1) @B &t 0 lEE6G|®s 10
easily reuse your test environment set- Gl CraS il S a 1 Chapter? T
tings. The starting place is the Open a2 & o 2 AndroidChapter1Example

I AndroidChapter 1Example

i=r Chapter2 Run As >

2 sre Run Configurations...
2 gen [Cenerated Java Files Organize Favorites...
=i Cannls 4B landeaid 2 011 EEIETTRTEReAlral sinie

Run Dialog menu in the Eclipse IDE, as

shown in figure 2.17. As new releases of

Eclipse become available, these screen

shots mlght vary Shghd}f from your per- Figure 2.17 Creating a new launch configuration for
sonal development environment. testing your Android application

Using the Android emulator 55

,' e Run Configurations.

Create, and run configurations

Android Application

Configure launch settings from this dialog:

New lil-lﬂ;i_"‘ g! Ixt 7 = Press the "New' button to create a configuration of the selected type.
v [T Android Application | = Press the 'Duplicate’ button to copy the selected configuration.
=
Il Sensors 3 - Press the 'Delete’ button to remove the selected configuration.

ndroid JUnit Test

Ji

5 Java Applet 5 - Press the 'Filter’ button to configure filtering options.
L] Java Application - Edit or view an existing configuration by selecting it.
Ju Junit

G Majo Application

Juy Task Context Test Configure launch perspective settings from the Perspectives preference page.

Figure 2.18 Create a new run configuration based on the Android template.

You want to create a new launch configuration, as shown in figure 2.18. To begin this
process, highlight the Android Application entry in the list to the left, and click the
New Launch Configuration button, circled in red in figure 2.18.

Now, give your launch configuration a name that you can readily recognize. You’re
going to have quite a few of these launch configurations on the menu, so make the
name something unique and easy to identify. The sample is titled Android Tip Calcu-
lator, as shown in figure 2.19. The three tabs have options that you can configure. The
Android tab lets you select the project and the first Activity in the project to launch.

06 Run Configurations

Create, and run c]

Android Application @
R =

Name: Android Tip Caleulator

type filter text

E] Android Target|] Common
€l Android Application Proj \\@ ‘] }
roject:

€ AndroidChapterl 2

€ Chapter2 Chapter2 [Browse... |

€1 New_configuratio :
Ju Android JUnit Test _ Launch Action:
% Java Applet) Launch Default Activity
2] Java Application =
Ju Junit (*) Launch: | com. ing.unlocki; droid.ChapterTwo s
0 Mojo Application 0) Do Nothing
Juy Task Context Test ==

[4) Y al» ([Apply Revert

Filter matched 10 of 10 items

() ' Close (Run

Figure 2.19 Setting up the Android emulator launch configuration

56

¥

Name: Andro

| :J Android

CHAPTER 2 Android’s development environment

d Tip Calculator

E Targe?__ﬂ__' éommo;]

Deployment Target Selection Mode

Select a preferred Android Virtual Device for deployment:

AVD Name Target Name Platform APl Level
M A22 Coogle APIs (Google Inc.) 2.2 8
L] fitc Coogle APIs (Coogle Inc.) 2.2 8

Emulator launch parameters:
Network Speed: Full

Network Latency: None

Additional Emulator Command Line Options

Figure 2.20 Selecting the AVD to host the application and specify launch parameters.

24.2

Use the next tab to select the AVD and network characteristics that you want, as shown
in figure 2.20. Additionally, command-line parameters might be passed to the emula-
tor to customize its behavior. For example, you might want to add the parameter
wipe-data to erase the device’s persistent storage prior to running your application
each time the emulator is launched. To see the available command-line options avail-
able, run the Android emulator from a command or terminal window with the option
emulator -help.

Use the third tab to put this configuration on the Favorites menu in the Eclipse
IDE for easy access, as shown in figure 2.21. You can select Run, Debug, or both. Let’s
choose both for this example, because it makes for easier launching when you want to
test or debug the application.

Now that you’ve defined your AVD and created a run configuration in Eclipse, you
can test your application in the Android emulator environment.

Testing your application in the emulator

Now you’re finally ready to start the Android emulator to test your tip calculator appli-
cation. Select the new launch configuration from the Favorites menu, as shown in fig-
ure 2.22.

If the AVD that you choose is already running, the ADT attempts to install the appli-
cation directly; otherwise, the ADT must first start the AVD, and then install the appli-
cation. If the application was already running, it’s terminated and the new version
replaces the existing copy within the Android storage system.

2.5

Debugging your application 57

MO Run Configurations

Create, ge, and run c g
Android Application

SR | =%
Name: Android Tip Calculator
type filter text
=] Android |i Target |] Comman
€1 Android Application
Save as
€l Android Tip Cz -
€ AndroidChapte *) Local file
€' Chapter2 ¥ Shared 8t o — %’m\-se =
Q d f flhapters s
Ju Android JUnit Test A -
5 Java Applet Tt e e
I3 Java Application Sy T S IVOTHIEE Enenl iOTe EnCouing
Ju JUnit @ © Run) Default - inherited (MacRoman)
D Mojo Application El '?} Debug ™\ Other | 150-8859-1 .
Juy Task Context Test g
Standard Input and Output
V! Allocate Console (necessary for input)
| File
Workspace... File System... " Variables
Append
V' Launch in background
(4 y T4 » Apply i Revert
Filter matched 10 of 10 items
(7 Close Run

Figure 2.21 Adding the run configuration to the toolbar menu

At this point, the Android tip calculator should now be running in the Android emu-
lator! Go ahead; test it! But wait, what if there’s a problem with the code but you're
not sure where? It’s time to briefly look at debugging an Android application.

Debugging your application

Debugging an application is a skill no pro-
grammer can survive without. Fortunately,
debugging an Android application is straight-
forward under Eclipse. The first step to take
is to switch to the Debug perspective in the
Eclipse IDE. Remember, you switch from one
perspective to another by using the Open
Perspective submenu found under the Win-
dow menu.

&0l G-l

R ACAN Ni=
e ® 1 Android Tip Calculator
8% @ 2 AndroidChapter1Example
I
o Run As >
Run Configurations...
d Java Files) Organize Favorites...
imdeatd WA =

Figure 2.22 Starting this chapter’s sample
application, an Android tip calculator.

58 CHAPTER 2 Android’s development environment

e e s O i, o esivorts
O Arviod Tip Calouiatan hredosd dgpication] 2] | tama Tvos
S b T Caledate [srekd Aeleshen] % o rumasncetd EdeTass fa-aoonci e}
= B8 DabavnQocabort 4419] = e A
B Thovad{ <3 Mar) Chsparded) o coure .

0

o ate [

o e charfi] (ded2000748820)
a (]

>

[
a [
"

i 441 am .

s 0 te hapter | (e300 TITM)
50y Bt (el 000915400
¥ malgreace Livoutfiigrmant (K=8X00008 75500

v o
Pectorm mets Lick -
Bogd (tag, "onCLiak amveked, "1 AR
B — . s Aha L Total Mol unforaattsd) ia [22:976]
Strisg mealprice = mealpricesield geeTest() . taste
kog.aitay, "men waslpr 171
strisg answ
C
f1oat fmp = 0,07
@ @l D 826 PM
Chapter Two Sample
$19.98
answersiaia i 220 S T i 66 s rAS) DO)
69, 41 tag, "o A0 VA B R ot] RIS) () o
catch (Exeeption o) W 5 ol ERL sl e e) F 18

Figure 2.23 The Debug perspective permits you to step line-by-line through an Android application.

Starting an Android application for debugging is as simple as running the application.
Instead of selecting the application from the Favorites Run menu, use the Favorites
Debug menu instead. This menu item has a picture of an insect (that is, a bug).
Remember, when you set up the launch configuration, you added this configuration
to both the Run and the Favorites Debug menus.

The Debug perspective gives you debugging capabilities similar to other develop-
ment environments, including the ability to single-step into, or over, method calls,
and to peer into variables to examine their value. You can set breakpoints by double-
clicking in the left margin on the line of interest. Figure 2.23 shows how to step
through the Android tip calculator project. The figure also shows the resulting values
displayed in the LogCat view. Note that the full meal price, including tip, isn’t dis-
played on the Android emulator yet, because that line hasn’t yet been reached.

Now that we’ve gone through the complete cycle of building an Android applica-
tion and you have a good foundational understanding of using the Android ADT,
you’re ready to move on to digging in and unlocking android application development
by learning about each of the fundamental aspects of building Android applications.

2.6 Summary

This chapter introduced the Android SDK and offered a glance at the Android SDK’s
Java packages to get you familiar with the contents of the SDK from a class library per-

Summary 59

spective. We introduced the key development tools for Android application develop-
ment, including the Eclipse IDE and the ADT plug-in, as well as some of the behind-
the-scenes tools available in the SDK.

While you were building the Android tip calculator, this chapter’s sample applica-
tion, you had the opportunity to navigate between the relevant perspectives in the
Eclipse IDE. You used the Java perspective to develop your application, and both the
DDMS perspective and the Debug perspective to interact with the Android emulator
while your application was running. A working knowledge of the Eclipse IDE’s per-
spectives will be helpful as you progress to build the sample applications and study the
development topics in the remainder of this book.

We discussed the Android emulator and some of its fundamental permutations
and characteristics. Employing the Android emulator is a good practice because of
the benefits of using emulation for testing and validating mobile software applications
in a consistent and cost-effective manner.

From here, the book moves on to dive deeper into the core elements of the
Android SDK and Android application development. The next chapter continues this
journey with a discussion of the fundamentals of the Android UL

Part 2

Exercising
the Android SDK

qu Android SDK provides a rich set of functionality enabling developers to
create a wide range of applications. In part 2 we systematically examine the
major portions of the Android SDK, including practical examples in each chap-
ter. We start off with a look at the application lifecycle and user interfaces (chap-
ter 3), graduating to Intents and Services (chapter 4). No platform discussion
is complete without a thorough examination of the available persistence and
stor-age methods (chapter 5) and in today’s connected world, we cannot over-
look core networking and web services skills (chapter 6). Because the Android
platform is a telephone, among other things, we take a look at the telephony
capabilities of the platform (chapter 7). Next we move on to notifications and
alarms (chapter 8). Android graphics and animation are covered (chapter 9) as
well as multimedia (chapter 10). Part 2 concludes with a look at the location-
based services available to the Android developer (chapter 11).

User interfaces

This chapter covers

Understanding activities and views
Exploring the Activity lifecycle

= Working with resources

Exploring the AndroidManifest.xml file

With our introductory tour of the main components of the Android platform and
development environment complete, it’s time to look more closely at the funda-
mental Android concepts surrounding activities, views, and resources. Activities are
essential because, as you learned in chapter 1, they make up the screens of your
application and play a key role in the Android application lifecycle. Rather than
allowing any one application to wrest control of the device away from the user and
from other applications, Android introduces a well-defined lifecycle to manage
processes as needed. It’s essential to understand not only how to start and stop an
Android Activity, but also how to suspend and resume one. Activities themselves
are made up of subcomponents called views.

Views are what your users see and interact with. Views handle layout, provide
text elements for labels and feedback, provide buttons and forms for user input,
and draw graphics to the device screen. Views are also used to register interface
event listeners, such as those for touch-screen controls. A hierarchical collection of

63

64

CuapTER 3 User interfaces

views is used to compose an Activity. You're the conductor, an Activity is your sym-
phony, and View objects are your musicians.

Musicians need instruments, so we’ll stretch this analogy further to bring Android
resources into the mix. Views and other Android components use strings, colors,
styles, and graphics, which are compiled into a binary form and made available to
applications as resources. The automatically generated R.java class, which we intro-
duced in chapter 1, provides a reference to individual resources and is the bridge
between binary references and the source code of an Android application. You use
the R class, for example, to grab a string or a color and add it to a View. The relation-
ship between activities, views, and resources is depicted in figure 3.1.

Along with the components you use to build an application—views, resources, and
activities—Android includes the manifest file we introduced you to in chapter 1,
AndroidManifest.xml. This XML file describes where your application begins, what its
permissions are, and what activities (and services and receivers, which you’ll see in the
next two chapters) it includes. Because this file is central to every Android applica-
tion, we’re going to address it in more detail in this chapter, and we’ll come back to it
frequently in later parts of the book. The manifest file is the one-stop shop for the
platform to start and manage your application.

If you've done any development involving Uls of any kind on any platform, the
concepts of activities, views, and resources might be somewhat familiar or intuitive, at
least on a fundamental level. The way these concepts are implemented in Android is,
nevertheless, somewhat unique—and this is where we hope to shed some light.

Next, we’re going to introduce the sample application that we use to walk through
these concepts, moving beyond theory and into the code to construct an Activity.

Activity

View (text input)

View (text label) ’

‘ View (selection input)

View (map) View (image)
—~ —

C Resources)
Figure 3.1 High-level diagram of activity,

- ~ Manifest - view, resources, and manifest relationship,
(application definition, activities, permissions, intents) showing that activities are made up of
views, and views use resources.

3.1

Creating the Activity 65

Creating the Activity

Over the course of this chapter, you’ll build a sample application that allows the user to
search for restaurant reviews based on location and cuisine. This application,
RestaurantFinder, will also allow the user to call, visit the website of, or map directions
to a selected restaurant. We chose this application as a starting point because it has a
clear and simple use case, and because it involves many different parts of the Android
platform. Making a sample application will allow us to cover a lot of ground quickly—
hopefully with the additional benefit of being a useful app on your Android phone!
To create this application, you’ll need three basic screens to begin with:

= A criteria screen where a user enters parameters to search for restaurant reviews
= Alist-of-reviews screen that shows pages of results that match the specified criteria

= A review-detail page that shows the details for a selected review item

Recall from chapter 1 that a screen is roughly analogous to an Activity, which means
you’ll need three Activity classes, one for each screen. When complete, the three
screens for the RestaurantFinder application will look like what’s shown in figure 3.2.

criteria

Location (City, ST):

Cuisine:

s B @@ 12:28 am
oodaine
ANY = = © RestaurantFinder - Review

Hot Doug's
Pizzeria Uno Chicago Bar and Grill

Noon O Kebab
Get reviews
Phoenix

MINU

The Wien

MENU

Charlie Trotter's

S
M Map location Call restaurant

MENU

Figure 3.2 RestaurantFinder application screenshots,
showing three Activitys: ReviewCriteria,
ReviewList, and ReviewDetail

66

3.1.1

CHAPTER 3 User interfaces

Our first step in exploring activities and views will be to build the RestaurantFinder
ReviewCritiera screen. From there, we’ll move on to the others. Along the way, we’ll
highlight many aspects of designing and implementing your Android UL

Creating an Activity class

To create a screen, extend the android.app.Activity base class (as you did in chap-
ter 1) and override the key methods it defines. Listing 3.1 shows the first portion of
the RestaurantFinder’s ReviewCriteria class.

Listing 3.1 The first half of the ReviewCriteria Activity class

public class ReviewCriteria extends Activity {
private static final int MENU_GET_REVIEWS = Menu.FIRST;
private Spinner cuisine;
private Button grabReviews;

private EditText location; (’ Override
@Override onCreate()
public void onCreate(Bundle savedInstanceState) { <
super.onCreate (savedInstanceState) ;
this. setContentView(R.layout.review_criteria) ; Deﬁnelayoutwkh
this.location = (EditText) setContentView
findviewById(R.id.location) ;
this.cuisine = (Spinner) .
findviewById(R.id.cuisine) ; ::2:;niws
this.grabReviews = (Button)
findViewById(R.id.get_reviews_button) ; <

ArrayAdapter<String> cuisines =
new ArrayAdapter<String>(this, R.layout.spinner_view,

getResources() .

o getStringArray(R.array.cuisines)); Define ArrayAdapter
cuisines.setDropDownViewResource (q}, instance

R.layout.spinner_view_dropdown) ; <
this.cuisine.setAdapter (cuisines) ;
this.grabReviews.setOnClickListener (Set view for

new OnClickListener () { dropdown

public void onClick (View v) {
handleGetReviews () ;

)
}
The ReviewCriteria class extends android.app.Activity, which does a number of
important things: it gives your application a context, because Activity itself extends
the android.app.ApplicationContext class; it brings the Android lifecycle methods
into play; it gives the framework a hook to start and run your application; and it pro-
vides a container into which View elements can be placed.

Because an Activity represents an interaction with the user, it needs to provide
components on the screen—this is where views come into play. In our Review-
Criteria class, we reference three views in the code: cuisine, grabReviews, and
location @. cuisine is a fancy select list component, known in Android terms as a

Creating the Activity 67

Location as an EditText View

Why are we using an EditText View for the location field in the ReviewCriteria
Activity when Android includes technology that could be used to derive this value
from the current physical location of the device? After all, we could ask the user to
select the current location using a Map, rather than requiring the user to type in an
address. Good eye, but we’re doing this intentionally—we want this early example to
be complete and nontrivial, but not too complicated. You'll learn more about using
the location support Android provides and MapViews in later chapters.

Spinner. grabReviews is a Button. location is a type of View known as an EditText, a
basic text-entry component.

You place vView elements like these within an Activity using a particular layout to
define the elements of a screen. You can define layout and views directly in code or in
a layout XML resource file.

You’ll learn more about views as we progress through this section, and we focus
specifically on the topic of layouts in section 3.2.5.

After an Activity is started, the Android application lifecycle rules take over and
the onCreate () method is invoked @. This method is one of a series of important life-
cycle methods the Activity class provides. Every Activity overrides onCreate(),
where component initialization steps are invoked. Not every Activity will need to
override the other available lifecycle methods. The Activity lifecycle is worthy of an
in-depth discussion of its own; for that reason we’ll explore these methods further in
section 3.1.2.

Inside the onCreate () method, the setContentView () method is where you’ll typ-
ically associate an XML layout file ®. We say typically because you don’t have to use an
XML file at all; instead, you can define all your layout and View configuration directly
in code, as Java objects. This technique is used in applications where a dynamic GUI is
required. Generally speaking, it’s often easier (and better practice) to use an XML lay-
out resource for each Activity. An XML layout file defines View objects, organized
into a hierarchical tree structure. After they're defined in relation to the parent lay-
out, each view can then be inflated at runtime.

Layout and view details, defined in XML or in code, are also topics we’ll address in
later sections of this chapter. Here we simply need to stress that views are typically
defined in XML and then are set into the Activity and inflated. Views that need some
runtime manipulation, such as binding to data, can then be referenced in code and
cast to their respective subtypes €. Views that are static—those you don’t need to
interact with or update at runtime, such as labels—don’t need to be referenced in
code at all. These views automatically show up on the screen because they’re part of
the layout as defined in the XML. They don’t need any explicit setup steps in code.

Going back to the screenshots in figure 3.1, note that the ReviewCriteria screen
has two labels as well as the three inputs we’ve already discussed. These labels aren’t
present in the code; they're simply defined in the review_criteria.xml file that’s

68

CHAPTER 3 User interfaces

associated with this Activity. You’ll see this layout file when we discuss XML-defined
resources.

The next area of interest in our ReviewCriteria Activity is binding data to our
select list views, the Spinner objects. Android employs a handy adapter concept used
to link views that contain collections with an underlying data source. An Adapter is a
collection handler that returns each item in the collection as a View. Android provides
many basic adapters: ListAdapter, ArrayAdapter, GalleryAdapter, CursorAdapter,
and more. You can also easily create your own Adapter, a technique you’ll use when
we discuss creating custom views in section 3.2. Here, we’re using an ArrayAdapter
that’s populated with Context (this), a View element defined in an XML resource
file, and an array representing the data. Note that the underlying data source for the
array is also defined as a resource in XML @—which you’ll learn more about in sec-
tion 3.3. When we create the ArrayAdapter, we define the View to be used for the ele-
ment shown in the Spinner before it’s selected by the user. After it’s selected, it must
provide a different visual interface—this is the View defined in the drop-down 6.
After we define the Adapter and its View elements, we set it into the Spinner object.

The last thing this initial Activity demonstrates is our first explicit use of event
handling. UI elements support many types of events, many of which you’ll learn more
about in section 3.2.7. In this specific instance, we’re using an OnClickListener with
our Button in order to respond to button clicks.

After the onCreate () method is complete and data binds to our Spinner views, we
have menu items and their associated action handlers. The next listing shows how
these are implemented in the last part of ReviewCriteria.

Listing 3.2 The second half of the ReviewCriteria Activity class

@Override
public boolean onCreateOptionsMenu (Menu menu) {
super .onCreateOptionsMenu (menu) ;
menu.add (0, ReviewCriteria.MENU_GET_REVIEWS, O,
R.string.menu_get_reviews) .setIcon (
android.R.drawable.ic_menu_more) ;
return true;

}

@Override
public boolean onMenultemSelected(int featureId, Menultem item) {
switch (item.getItemId()) {
CasehMElgilfGEzERE\lfIEWS : Respond when
andleGetReviews () ; menu item selected

return true;

}

return super.onMenultemSelected(featureId, item);
}

private void handleGetReviews () { qa Define method to

if (lvalidate()) { process reviews
return;

Creating the Activity 69

RestaurantFinderApplication application =

(RestaurantFinderApplication)
getApplication() ;

application.setReviewCriteriaCuisine (
this.cuisine.getSelectedItem() .toString());

application.setReviewCriteriaLocation(
this.location.getText () .toString()) ;

Intent intent =

Use Application
object for state

new
Intent (Constants.INTENT_ ACTION_VIEW_LIST) ; <@ Create Intent
startActivity(intent) ;
}
private boolean validate() {
boolean valid = true;
StringBuilder validationText = new StringBuilder();
if ((this.location.getText() == null) ||
this.location.getText () .toString () .equals("")) {
validationText .append (getResources () .getString (
R.string.location_not_supplied_message)) ;
valid = false;

if (!valid) ¢
new AlertDialog.Builder (this).
setTitle (getResources () .getString (R.string.alert_label)). <
setMes§ag.1e (validationTeﬁct .toString()) . Use AIertDiang
SetPositiveButton ("Continue",
new android.content.DialogInterface.
OnClickListener () {
public void onClick(
DialogInterface dialog, int argl) {
}
}) .show () ;
validationText = null;

}

return valid;
}

}

The menu items at the bottom of the Activity screens in figure 3.2 were all created
using the onCreateOptionsMenu () method. Here, we use the Menu class add () method
to create a single MenuItem element. We’re passing a group ID, an ID, a sequence/
order, and a text resource reference as parameters to create the menu item. We’re
also assigning to the menu item an icon with the setIcon method. The text and the
image are externalized from the code, using Android’s programmer-defined
resources. The MenuItem we’ve added duplicates the functionality of the on-screen
Button, so we use the same text value for the label: Get reviews.

In addition to creating the menu item, we need to perform an action when the
MenuIten is selected. We do this in the onMenuItemSelected() event method @,
where we parse the ID of the multiple possible menu items with a switch statement.
When the MENU_GET REVIEWS item is selected, we invoke the handleGetReviews
method @. This method stores the user’s selection state in the Application object (3]
and prepares to call the next screen. We’ve moved this logic into its own method

70

CHAPTER 3 User interfaces

Using the Menu vs. onscreen buttons

We’ve chosen to use the Menu here, in addition to the onscreen buttons. Though
either (or both) can work in many scenarios, you need to consider whether the menu,
which is invoked by pressing the Menu button on the device and tapping a selection
(button and a tap) is appropriate for what you're doing, or whether an onscreen button
(single tap) is more appropriate. Generally, onscreen buttons should be tied to Ul ele-
ments, such as a search button for a search form input, and menu items should be
used for more broad actions such as submitting a form, or performing an action such
as creating, saving, editing, or deleting. Because all rules need an exception, if you
have the screen real estate, it might be more convenient for users to have onscreen
buttons for actions as well, as we’ve done in the ReviewCriteria Activity. The
most important thing to keep in mind with these types of Ul decisions is to be con-
sistent. If you do it one way on one screen, use that same approach on other screens.

because we’re using it from multiple places—both from our onscreen Button and our
Menultem.

The Application object is used internally by Android for many purposes, and it
can be extended, as we’ve done with RestaurantFinderApplication. To store global
state information, the RestaurantFinderApplication defines a few member variables
in JavaBean style. We reference this object from other activities to retrieve the infor-
mation we’re storing here. Objects can be passed back and forth between activities in
several ways; using Application is just one of them. You can also use public static
members and Intent extras with Bundle objects. Additionally, you can use the pro-
vided SQLite database, or you can implement your own ContentProvider to store
data. We’ll talk more about state and data persistence in general, including all these
concepts, in chapter 5. The important thing to take away here is that at this point
we’re using the Application object to manage state between activities.

After we store the criteria state, we fire off an action in the form of an Android
Intent @. We touched on Intents in chapter 1, and we’ll delve into them further in
the next chapter, but basically we’re asking another Activity to respond to the user’s
selection of a menu item by calling startActivity(intent). An alternative way to
start an Activity is with the startActivityForResult method, which we’ll introduce
later in this book.

Also notable in the ReviewCriteria example is that we’re using an AlertDialog
©. Before we allow the next Activity to be invoked, we call a simple validate()
method that we’ve created, where we display a pop-up alert dialog to the user if the
location hasn’t been properly specified. Along with generally demonstrating the use
of AlertDialog, this demonstrates how a button can be made to respond to a click
event with an OnClickListener ().

With that, we’ve covered a good deal of material and you’ve completed Review-
Criteria, your first Activity. Now that this class is fully implemented, we’ll take a
closer look at the Android Activity lifecycle and how it relates to processes on the
platform.

3.1.2

Creating the Activity 71

The Builder pattern

You might have noticed the use of the Builder pattern, where we add parameters to
the AlertDialog we created in the ReviewCriteria class. If you aren’t familiar with
this approach, each of the methods invoked, such as AlertDialog.setMessage ()
and AlertDialog.setTitle (), returns a reference to itself (this), which means we
can continue chaining method calls. This approach avoids either an extra-long con-
structor with many parameters or repeating the class reference throughout the code.
Intents also use this handy pattern; it's something you’ll see time and time again
in Android.

Exploring the Activity lifecycle

Every process running on the Android platform is placed on a stack. When you use an
Activity in the foreground, the system process that hosts that Activity is placed at
the top of the stack, and the previous process (the one hosting whatever Activity was
previously in the foreground) is moved down one notch. This concept is a key point to
understand. Android tries to keep processes running as long as it can, but it can’t
keep every process running forever because, after all, system resources are finite. So
what happens when memory starts to run low or the CPU gets too busy?

HOW PROCESSES AND ACTIVITIES RELATE

When the Android platform decides it needs to reclaim resources, it goes through a
series of steps to prune processes (and the activities they host). It decides which ones
to get rid of based on a simple set of priorities:

1 The process hosting the foreground Activity is the most important.

2 Any process hosting a visible but not foreground Activity is next in line.

3 Any process hosting a background Activity is next in line.

4 Any process not hosting any Activity (or Service or BroadcastReceiver) is
known as an empty process and is last in line.

A useful tool for development and debugging, especially in the context of process pri-
ority, is the adb, which you first met in chapter 2. You can see the state of all the run-
ning processes in an Android device or emulator by issuing the following command:

adb shell dumpsys activity
This command will output a lot of information about all the running processes,

including the package name, PID, foreground or background status, the current pri-
ority, and more.

All Activity classes have to be able to handle being stopped and shut down at any
time. Remember, a user can and will change directions at will. It might be a phone call
or an incoming SMS message, but the user will bounce around from one application
to the next. If the process your Activity is in falls out of the foreground, it’s eligible
to be killed and it’s not up to you; it’s up to the platform’s algorithm, based on avail-
able resources and relative priorities.

72

CuapTER 3 User interfaces

To manage this environment, Android applications, and the Activity classes they
host, must be designed differently from what you might be used to in other environ-
ments. Using a series of event-related callback type methods defined in the Activity
class, you can set up and tear down the Activity state gracefully. The Activity sub-
classes that you implement override a set of lifecycle methods to make this happen. As
we discussed in section 3.1.1, every Activity must implement the onCreate()
method. This method is the starting point of the lifecycle. In addition to onCreate(),
most activities will want to implement the onPause () method, where data and state
can be persisted before the hosting process potentially falls out of scope.

The lifecycle methods that the Activity class provides are called in a specific order
by the platform as it decides to create and kill processes. Because you, as an application
developer, can’t control the processes, you have to rely on the callback lifecycle meth-
ods to control state in your Activity classes as they come into the foreground, move
into the background, and fall away altogether. This part of the overall Android plat-
form is both significant and clever. As the user makes choices, activities are created and
paused in a defined order by the system as it starts and stops processes.

ACTIVITY LIFECYCLE
Beyond onCreate() and onPause(), Android provides other distinct stages, each of
which is a part of a particular phase of the life of an Activity class. The methods
that you’ll encounter most and the phases for each part of the lifecycle are shown in
figure 3.3.

Each of the lifecycle methods Android provides has a distinct purpose, and each
happens during part of the foreground, visible, or entire lifecycle phase:

= In the foreground phase, the Activity is viewable on the screen and is on top of
everything else (when the user is interacting with the Activity to perform a
task).

= In the visible phase, the Activity is on the screen, but it might not be on top and
interacting with the user (when a dialog or floating window is on top of the
Activity, for example).

onCreate() Entire lifecycle

onRestart() Visible phase

onstart()\ Foreground phase

onﬂollumoo
/ onPause()
onStop() Figure 3.3 Android Activity
- J lifecycle diagram, showing the

onDestroy() methods involved in the foreground

and visible phases

Creating the Activity 73

= The entire lifecycle phase refers to the methods that might be called when the
application isn’t on the screen, before it’s created, and after it’s gone (prior to
being shut down).

Table 3.1 provides more information about the lifecycle phases and outlines the main
high-level methods on the Activity class.

Table 3.1 Android Activity main lifecycle methods and their purpose

Method Purpose

onCreate () Called when the Activity is created. Setup is done here. Also provided is access
to any previously stored state in the form of a Bundle.

onRestart () Called if the Activity is being restarted, if it's still in the stack, rather than start-
ing new.

onStart () Called when the Activity is becoming visible on the screen to the user.

onResume () Called when the Activity starts interacting with the user. (This method is always

called, whether starting or restarting.)

onPause () Called when the Activity is pausing or reclaiming CPU and other resources. This
method is where you should save state information so that when an Activity is
restarted, it can start from the same state it was in when it quit.

onStop () Called to stop the Activity and transition it to a nonvisible phase and subsequent
lifecycle events.

onDestroy () Called when an Activity is being completely removed from system memory. This
method is called either because onFinish () is directly invoked or the system
decides to stop the Activity to free up resources.

Beyond the main high-level lifecycle methods outlined in table 3.1, additional, finer-
grained methods are available. You don’t typically need methods such as onPost-
Create and onPostResume, so we won’t go into detail about them, but be aware that
they exist if you need that level of control. See the Activity documentation for full
method details.

As for the main lifecycle methods that you’ll use the majority of the time, it’s
important to know that onPause () is the last opportunity you have to clean up and
save state information. The processes that host your Activity classes won’t be killed
by the platform until after the onPause () method has completed, but they might be
killed thereafter. The system will attempt to run through all of the lifecycle methods
every time, but if resources are spiraling out of control, as determined by the plat-
form, a fire alarm might be sounded and the processes that are hosting activities that
are beyond the onPause() method might be killed at any poini. Any time your
Activity is moved to the background, onPause () is called. Before your Activity is
completely removed, onDestroy () is called, though it might not be invoked in all
circumstances.

The onPause() method is definitely where you need to save persistent state.
Whether that persistent state is specific to your application, such as user preferences,

74

3.2

CHAPTER 3 User interfaces

or globally shared information, such as the contacts database, onPause () is where you
need to make sure all the loose ends are tied up—every time. We’ll discuss how to save
data in chapter 5, but here the important thing is to know when and where that needs
to happen.

NOTE In addition to persistent state, you should be familiar with one more
scenario: instance state. Instance state refers to the state of the UI itself. The
onSavelInstanceState ()method is called when an Activity might be
destroyed, so that at a future time the interface state can be restored. This
method is transparently used by the platform to handle the view state process-
ing in the vast majority of cases; you don’t need to concern yourself with it
under most circumstances. Nevertheless, it’s important to know that it’s there
and that the Bundle it saves is handed back to the onCreate () method when
an Activity is restored—as savedInstanceState in most code examples. If
you need to customize the view state, you can do so by overriding this
method, but don’t confuse this with the more common general lifecycle
methods.

Managing activities with lifecycle events allows Android to do the heavy lifting, decid-
ing when things come into and out of scope, relieving applications of the decision-
making burden, and ensuring a level playing field for applications. This is a key aspect
of the platform that varies somewhat from many other application development envi-
ronments. To build robust and responsive Android applications, you have to pay care-
ful attention to the lifecycle.

Now that you have some background about the Activity lifecycle and you’ve cre-
ated your first screen, let’s investigate views and fill in some more detail.

Working with views

Views are the building blocks of the UI of an Android application. Activities contain
views, and View classes represent elements on the screen and are responsible for inter-
acting with users through events.

Every Android screen contains a hierarchical tree of View elements. These views
come in a variety of shapes and sizes. Many of the views you’ll need on a day-to-day
basis are provided as part of the platform—basic text elements, input elements,
images, buttons, and the like. In addition, you can create your own composite views
and custom views when the need arises. You can place views into an Activity (and
thus on the screen) either directly in code or by using an XML resource that’s later
inflated at runtime.

In this section, we’ll discuss the fundamental aspects of views: the common views
that Android provides, custom views that you can create as you need them, layout in
relation to views, and event handling. We won’t address views defined in XML here,
because that’s covered in section 3.3 as part of a larger resources discussion. We’ll begin
with the common View elements Android provides by taking a short tour of the API.

3.2.1

Working with views 75

Exploring common views

Android provides a generous set of View classes in the android.view package. These
classes range from familiar constructs such as the EditText, Spinner, and TextView
that you’ve already seen in action, to more specialized widgets such as AnalogClock,
Gallery, DatePicker, TimePicker, and VideoView. For a glance at some of the more
eye-catching views, check out the sample page in the Android documentation: http://
code.google.com/android/reference/view-gallery.html.

The class diagram in figure 3.4 provides a high-level snapshot of what the overall
View API looks like. This diagram shows how the specializations fan out and includes
many, but not all, of the View-derived classes.

lew

\V/4

"““
SurfaceView
gy | st | o]\
EditText
N /\ e
Ima utton VideoView
geB CompoundButton DigitalClock
> ViewGroup
J

S D

Figure 3.4 A class diagram of the Android View API, showing the root View class and
specializations from there; note that ViewGroup classes, such as layouts, are also a type of View.

76

CHAPTER 3 User interfaces

As is evident from the diagram in figure 3.4, which isn’t an exhaustive representa-
tion, the View is the base class for many classes. ViewGroup is a special subclass of View
related to layout, as are other elements such as the commonly used TextView. All UI
classes are derived from the View class, including the layout classes (which extend
ViewGroup).

Of course, everything that extends View has access to the base class methods. These
methods allow you to perform important Ul-related operations, such as setting the
background, the minimum height and width, padding, layout parameters, and event-
related attributes. Table 3.2 lists some of the methods available in the root View class.
Beyond the base class, each View subclass typically adds a host of refined methods to
further manipulate its respective state, such as what’s shown for TextView in table 3.3.

The view base class and the methods specific to the TextView combine to give you
extensive control over how an application can manipulate an instance of the Text-
View. For example, you can set layout, padding, focus, events, gravity, height, width,
colors, and so on. These methods can be invoked in code, or set at design time when
defining a UI layout in XML, as we’ll introduce in section 3.3.

Each view element you use has its own path through the API, which means that a
particular set of methods is available; for details on all the methods, see the Android
Javadocs at http://code.google.com/android/reference/android/view/View.html.

Table 3.2 A subset of methods in the base Android View API

Method Purpose

setBackgroundColor (int color) Set the background color.

setBackgroundDrawable (Drawable d) Set the background
Drawable (image).

setClickable (boolean c) Set whether element is
clickable.

setFocusable (boolean f) Set whether element is
focusable.

setLayoutParams (ViewGroup.LayoutParams 1) Set the LayoutParams

(position, size, and more).

setMinimumHeight (int minHeight) Set the minimum height (par-
ent can override).

setMinimumwWidth (int minwidth) Set the minimum width (par-
ent can override).

setOnClickListener (OnClickListener 1) Set listener to fire when click
event occurs.

setOnFocusChangeListener (OnFocusChangeListener 1) Set listener to fire when
focus event occurs.

setPadding (int left, int right, int top, int bottom) Set the padding.

3.2.2

Working with views 77

Table 3.3 More View methods for the TextView subclass

Method Purpose

setGravity (int gravity) Set alignment gravity: top, bottom, left, right, and more.
setHeight (int height) Set height dimension.

setText (CharSequence text) Set text.

setTypeFace (TypeFace face) Set typeface.

setWidth (int width) Set width dimension.

When you couple the wide array of classes with the rich set of methods available from
the base View class on down, the Android View API can quickly seem intimidating.
Thankfully, despite this initial impression, many of the concepts involved quickly
become evident, and their use becomes more intuitive as you move from View to View,
because they’re ultimately just specializations on the same base class. When you get
familiar with working with View classes, learning to use a new View becomes intuitive
and natural.

Though our RestaurantFinder application won’t use many of the views listed in
our whirlwind tour here, they’re still useful to know about. We’ll use many of them in
later examples throughout the book.

The next thing we’ll focus on is a bit more detail concerning one of the most com-
mon nontrivial View elements—the ListView component.

Using a ListView

On the ReviewList Activity of the RestaurantFinder application, shown in figure
3.2, you can see a View that’s different from the simple user inputs and labels we’ve
used up to this point—this screen presents a scrollable list of choices for the user to
pick from.

This Activity uses a ListView component to display a list of review data that’s
obtained from calling the Google Base Atom API using HTTP. We refer to this API
generically as a web service, even though it’s not technically SOAP or any other stan-
dard associated with the web service moniker. We make the HTTP call by appending
the user’s criteria to the required Google Base URL. We then parse the results with the
Simple API for XML (SAX) and create a List of reviews. Neither the details of XML parsing
nor the use of the network itself are of much concern to us here—rather we’ll focus
on the Views employed to represent the data returned from the web service call. The
resulting List will be used to populate our screen’s list of items to choose from.

The code in the following listing shows how to create and use a ListView to pres-
ent to the user the List of reviews within an Activity.

CHAPTER 3 User interfaces

Listing 3.3 First half of the ReviewList Activity class, showing a ListView

public class ReviewList extends ListActivity {
private static final int MENU_CHANGE_CRITERIA = Menu.FIRST + 1;
private static final int MENU_GET NEXT_PAGE = Menu.FIRST;
private static final int NUM_RESULTS_PER_PAGE = 8;
private TextView empty;
private ProgressDialog progressDialog; ‘) Use
private ReviewAdapter reviewAdapter; < ReviewAdapter
private List<Review> reviews;
private final Handler handler = new Handler () {
public void handleMessage (final Message msg) {
progressDialog.dismiss () ;

if ((reviews == null) || (reviews.size() == 0)) {
empty.setText ("No Data") ;
} else {

reviewAdapter = new ReviewAdapter (
ReviewList.this, reviews) ;
setListAdapter (reviewAdapter) ;

Y

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ; Use resourced-
this.setContentView(R.layout.review_list); defined layout
this.empty = (TextView)

findViewById(R.id.empty) ; <

ListView listView = getListView() ;
listView.setItemsCanFocus (false) ;
listView.setChoiceMode (ListView.CHOICE_MODE_SINGLE) ;
listView.setEmptyView(this.empty) ;

Define TextView
for empty

}
@Override
protected void onResume () {
super.onResume () ; UseAppﬁcaﬁon
RestaurantFinderApplication application = j for global state
(RestaurantFinderApplication) getApplication() ;
String criteriaCuisine = application.getReviewCriteriaCuisine() ;
String criterialocation = application.getReviewCriteriaLocation() ;
int startFrom = getIntent().getIntExtra (
Constants.STARTFROM_EXTRA, 1); <@ Use Intent extra
loadReviews (criterialLocation,
criteriaCuisine, startFrom);
}

// onCreateOptionsMenu omitted for brevity

The ReviewList Activity extends ListActivity, which is used to host a ListView.
The default layout of a ListActivity is a full-screen, centered list of choices for the
user to select from. A ListView is similar in concept to a Spinner; in fact, they’re both
subclasses of AdapterView, as you saw in the class diagram in figure 3.4. ListView, like
Spinner, also uses an Adapter to bind to data. In this case, we’re using a custom

Working with views 79

ReviewAdapter class @. You’ll learn more about Reviewadapter in the next section,
when we discuss custom views. The important part here is that we’re using a custom
Adapter for our ListView, and we use a List of Review objects to populate the
Adapter.

Because we don’t yet have the data to populate the list, which we’ll get from a web
service call in another Thread, we need to include a Handler to allow for fetching data
and updating the UI to occur in separate steps. Don’t worry too much about these
concepts here; they’ll make more sense shortly when we discuss them while looking at
the second half of ReviewList in listing 3.4.

After we declare our ListView and its data, we move on to the typical onCreate ()
tasks you've already seen, including using a layout defined in an XML file @. This is
significant with respect to ListActivity because a ListView with the ID name list is
required if you want to customize the layout, as we’ve done. Note that the ID is
defined in the layout XML file; we’ll cover that in section 3.3.3. If you don’t provide a
layout, you can still use ListActivity and ListView, but you just get the system
default configuration. We’'re also defining a UI element that’s used to display the mes-
sage No Data in the event that our List of reviews is empty €. We're setting several
specific properties on the ListView, using its customization methods: whether the list
items themselves are focusable, how many elements can be selected at a time, and the
View to use when the list is empty.

After we set up the View elements that are needed on the Activity, we get the cri-
teria to make our web service call from the Review object we previously placed in the
Application from the ReviewCriteria Activity @. Here we also use an Intent
extra to store a primitive int for page number @. We pass all the criteria data
(criterialocation, criteria-Cuisine, and startFrom) into the loadReviews ()
method, which makes our web service call to populate the data list. This method, and
several others that show how we deal with items in the list being clicked on, are shown
in the second half of the ReviewList class in the following listing.

Listing 3.4 The second half of the ReviewList Activity class

@Override
public boolean onMenultemSelected
(int featureId, Menultem item) {
Intent intent = null;

switch (item.getTItemId()) { Increment startFrom
case MENU_GET_NEXT_PAGE: < Intent extra
intent = new Intent (Constants.INTENT_ ACTION_VIEW_LIST) ;
intent.putExtra (Constants.STARTFROM_EXTRA,
getIntent () .getIntExtra (Constants.STARTFROM_EXTRA, 1)
+ ReviewList.NUM_RESULTS_PER_PAGE) ;
startActivity (intent) ;
return true;
case MENU_CHANGE_CRITERIA:
intent = new Intent(this, ReviewCriteria.class);

80

CHAPTER 3 User interfaces

startActivity(intent) ;
return true;
}
return super.onMenultemSelected(featureId, item);

}

@Override
protected void onListItemClick(ListView 1, View v, Get Application
int position, long id) { object and

RestaurantFinderApplication application = set state

(RestaurantFinderApplication) getApplication() ;
application.setCurrentReview(this.reviews.get (position)) ;
Intent intent = new Intent (Constants.INTENT ACTION_VIEW_DETAIL) ;
intent.putExtra (Constants.STARTFROM_EXTRA, getIntent().getIntExtra (

Constants.STARTFROM_EXTRA, 1));
startActivity (intent) ;

}
private void loadReviews (String location, String cuisine,
int startFrom) ({

fi?a% ReviewFetcher rf = new ReviewFetcher (location, ﬁg:ﬁiﬁews
culsine, "ALL", startFrom, method
ReviewList.NUM_RESULTS_PER_PAGE) ;
this.progressDialog =
ProgressDialog.show(this, " Working...", ¢) Show
" Retrieving reviews", true, false); < ProgressDialog
new Threéd() ? < Make web
public void run() { , service call
reviews = rf.getReviews();

handler.sendEmptyMessage (0) ;
}
}.start();

}

This Activity has a menu item that allows the user to get the next page of results or
change the list criteria. To support this, we have to implement the onMenuItem-
Selected method. When the MENU_GET_NEXT_PAGE menu item is selected, we define a
new Intent to reload the screen with an incremented startFrom value, with some
assistance from the Intent class’s getExtras () and putExtras () methods @.

After the menu-related methods, you see a method named onListItemClick().
This method is invoked when one of the list items in a ListView is clicked. We use the
ordinal position of the clicked item to reference the particular Review item the user
selected, and we set this into the Application for later use in the Review-Detail
Activity (which you’ll begin to implement in section 3.3) @. After we have the data
set, we then call the next Activity, including the startFrom extra.

In the ReviewList class, we have the loadReviews () method €. This method is
significant for several reasons. First, it sets up the ReviewFetcher class instance, which
is used to call out to the Google Base API over the network and return a List of
Review objects. Then it invokes the ProgressDialog. show () method to show the user
we’re retrieving data 0. Finally, it sets up a new Thread ©. within which the Review-
Fetcher is used, and the earlier Handler you saw in the first half of ReviewList is sent

3.23

Working with views 81

an empty message. If you refer to listing 3.3, which is when the Handler was estab-
lished, you can see where, when the message is received, we dismiss the Progress-
Dialog, populate the Adapter our ListView is using, and call setListAdapter () to
update the Ul The setListAdapter ()method iterates the Adapter and displays a
returned View for every item.

With the Activity created and set up and the Handler being used to update the
Adapter with data, we now have a second screen in our application. The next thing we
need to do is fill in some of the gaps surrounding working with handlers and different
threads. These concepts aren’t view-specific but are worth a small detour at this point,
because you’ll want to use these classes when you’re trying to perform tasks related to
retrieving and manipulating data that the UI needs—a common design pattern when
you’re building Android applications.

Multitasking with Handler and Message

The Handler is the Swiss Army knife of messaging and scheduling operations for
Android. This class allows you to queue tasks to be run on different threads and to
schedule tasks using Message and Runnable objects.

The Android platform monitors the responsiveness of applications and kills those
that are considered nonresponsive. An Application Not Responding (ANR) event occurs
when no response is received to a user input for 5 seconds. When a user interacts with
your application by touching the screen, pressing a key, or the like, your application
must respond. So does this mean that every operation in your code must complete
within 5 seconds? No, of course not, but the main UI thread does have to respond
within that time frame. To keep the main UI thread snappy, any long-running tasks,
such as retrieving data over the network, getting a large amount of data from a data-
base, or performing complicated or time-consuming calculations, should be per-
formed in a separate Thread, apart from the main UI Thread.

Getting tasks into a separate thread and getting results back to the main UI thread
is where the Handler and related classes come into play. When a Handler is created,
it’s associated with a Looper. A Looper is a class that contains a MessageQueue and that
processes Message or Runnable objects that are sent via the Handler.

When we used a Handler in listings 3.3 and 3.4, we created a Handler with a no-
argument constructor. With this approach, the Handler is automatically associated
with the Looper of the currently running thread, typically the main UI thread. The
main UI thread, which is created by the process of the running application, is an
instance of a HandlerThread. A HandlerThread is an Android Thread specialization
that provides a Looper. The key parts involved in this arrangement are depicted in fig-
ure 3.5.

When you’re implementing a Handler, you’ll have to provide a handle-
Message (Message m) method. This method is the hook that lets you pass messages.
When you create a new Thread, you can then call one of several sendMessage methods
on Handler from within that thread’s run method, as our examples and figure 3.5

82

3.24

CuapTER 3 User interfaces

demonstrate. Calling sendMessage puts your
message on the MessageQueue, which the
Looper services.

Along with sending messages into han-
dlers, you can also send Runnable objects
directly, and you can schedule things to be
run at different times in the future. You send
messages and you post runnables. Each of
these concepts supports methods such as
sendEmptyMessage (int what), which we’ve
already used, and the counterparts send-
EmptyMessageAtTime (int what, long time)
and sendEmptyMessageDelayed(int what,
long delay). After your Message is in the
queue, it’s processed either as soon as possi-
ble or according to the requested schedule
or delay indicated when it was sent or posted.

You'’ll see more of Handler and Message
in other examples throughout the book, and
we’ll cover more detail in some instances, but
the main point to remember when you see
these classes is that they’re used to communi-
cate between threads and for scheduling.

Getting back to our RestaurantFinder application and more view-oriented topics,
we next need to elaborate on the ReviewAdapter used by our RestaurantFinder
ReviewList screen after it’s populated with data from a Message. This adapter returns

MainUIThread
(HandlerThread)

Handler myHandler = new Handler() {
public void handleMessage (Message m) {
updateUlHere();
}
k

new Thread() {
public void run() {

doStuff();
Message m = myHandler.obtainMessage();
Bundle b = new Bundle();
b.putString(“key", "value");
m.setData(b);
myHandler.sendMessage(m);

}
}.start();

Looper

[MessageQueue]

Figure 3.5 Using the Handler class with
separate threads, and the relationship
between HandlerThread, Looper, and
MessageQueue

a custom View object for each data element it processes.

Creating custom views

Though you can often get away with using the views that are provided with Android,
there might be situations, like the one we’re now facing, where you prefer a custom

view to display your own object in a unique way.

In the ReviewList screen, we used an Adapter of type ReviewAdapter to back our
Listview. This custom Adapter contains a custom View object, ReviewListView. A
ReviewListView is what our ReviewList Activity displays for every row of data it

contains. The Adapter and View are shown in the following listing.

Listing 3.5 The ReviewAdapter and inner ReviewListView classes

public class ReviewAdapter extends BaseAdapter {

private final Context context;
private final List<Review> reviews;

public ReviewAdapter (Context context,

this.context = context;

List<Review> reviews) {

Working with views 83

this.reviews = reviews;
}
@Override
public int getCount () { <+
return this.reviews.size();
}
@QOverride .
public Object getItem(int position) { <k4" OVQTMe
return this.reviews.get (position); bachdapter
) methods
@Override
public long getItemId(int position) { <+
return position;
} Override Adapter
@override getView

public View getView(int position, View convertView, ViewGroup parent) {
Review review = this.reviews.get (position) ;
return new ReviewListView (
this.context, review.name, review.rating);
}
private final class ReviewListView extends LinearLayout ({

rivate TextView name;
P Define custom

rivate TextView rating; . .
p g inner View class

public ReviewListView (
Context context, String name, String rating) {
super (context) ;
setOrientation (LinearLayout.VERTICAL) ;
LinearLayout.LayoutParams params =
new LinearLayout.LayoutParams (
ViewGroup.LayoutParams .WRAP_CONTENT,
ViewGroup.LayoutParams.WRAP_CONTENT) ;
params.setMargins (5, 3, 5, 0); QE’
this.name = new TextView(context) ;
this.name.setText (name) ;
this.name.setTextSize (16f);
this.name.setTextColor (Color .WHITE) ;
this.addview(this.name, params) ;
this.rating = new TextView (context) ;
this.rating.setText (rating) ;
this.rating.setTextSize (16f) ;
this.rating.setTextColor (Color.GRAY) ; Add TextView
this.addView(this.rating, params); to tree

Set Layout
in code

}

The first thing to note in ReviewAdapter is that it extends BaseAdapter. BaseAdapter
is an Adapter implementation that provides basic event-handling support. Adapter
itself is an interface in the android.Widget package that provides a way to bind data to
a View with some common methods. This is often used with collections of data, as we
saw with Spinner and ArrayAdapter in listing 3.1. Another common use is with a Cur-
sorAdapter, which returns results from a database (something you’ll see in chapter 5).
Here we’re creating our own Adapter because we want it to return a custom View.

84

3.2.5

CHAPTER 3 User interfaces

Our ReviewAdapter class accepts two parameters in the constructor and assigns
those values to two simple member objects: Context and List<Review>. This class
goes on to implement the straightforward required Adapter interface methods that
return a count, an item, and an ID—we use the ordinal position in the collection as
the ID @. The next Adapter method we have to implement is the most important—
getView (). The Adapter returns any View we create for a particular item in the collec-
tion of data that it’s supporting. Within this method, we get a particular Review object
based on the position/ID, then we create an instance of a custom ReviewListView
object to return as the View @.

ReviewListView itself, which extends LinearLayout (something you’ll learn more
about in section 3.2.4), is an inner class inside ReviewAdapter; we never use it except
to return a view from Reviewadapter €. Within it, you see an example of setting layout
and View details in code, rather than relying on their definition in XML. In this listing,
we set the orientation, parameters, and margin for our layout @. Next, we populate
the simple TextView objects that will be children of our new View and represent data.
When these are set up via code, we add them to the parent container, which is in this
case our custom class ReviewListView @. This is where the data binding happens—
the bridge to the View from data. Another important thing to note about this is that
we’ve created not only a custom View but also a composite one. We’re using simple
existing View objects in a particular layout to construct a new type of reusable View,
which shows the detail of a selected Review object on screen, as depicted in figure 3.2.

Our custom ReviewListView object is intentionally fairly simple. In many cases,
you’ll be able to create custom views by combining existing views in this manner,
though keep in mind that an alternative approach is to extend the View class itself.
With this approach, you can implement core methods as desired and you have access
to the lifecycle methods of a View. These View-specific methods include onMeasure (),
onLayout (), onDraw (), onVisibilityChanged(), and others. Though we don’t need
that level of control here, you should be aware that extending View gives you a great
deal of power to create custom components.

Now that you’ve seen how you get the data for your reviews and what the Adapter
and custom View we’re using look like, the next thing we need to do is take a closer
look at a few more aspects of views, including layout.

Understanding layout

One of the most significant aspects of creating your UI and designing your screens is
understanding layout. In Android, screen layout is defined in terms of ViewGroup and
LayoutParams objects. ViewGroup is a View that contains other views (has children)
and also defines and provides access to the layout.

On every screen, all the views are placed in a hierarchical tree; every element can
have one or more children, and somewhere at the root is a ViewGroup. All the views
on the screen support a host of attributes that pertain to background color, color, and
so on. We touched on many of these attributes in section 3.2.2 when we discussed the

Working with views 85

methods of the View class. Dimensions—width and height—and other properties
such as relative or absolute placement and margins are based on the LayoutParams a
view requests and what the parent can accommodate. The final layout reflects the
cumulative dimensions of the parent and its child Views.

The main ViewGroup classes are shown in the class diagram in figure 3.4. The dia-
gram in figure 3.6 expands on this class structure to show the specific LayoutParams
inner classes of the view groups and layout properties each type provides.

As figure 3.6 shows, the base ViewGroup.LayoutParams class supports height and
width. From there, an AbsoluteLayout type with AbsoluteLayout.LayoutParams
allows you to specify the exact x and y coordinates of the child view objects placed
within.

As an alternative to absolute layout, you can use the FrameLayout, LinearLayout,
and RelativeLayout subtypes, all of which support variations of LayoutParams that
are derived from ViewGroup.MarginLayoutParams. A FrameLayout is intended to
frame one child element, such as an image. A FrameLayout does support multiple
children, but all the items are pinned to the top left—they’ll overlap each other in a
stack. A LinearLayout aligns child elements in either a horizontal or a vertical line.

ViewGroup

ViewGroup.LayoutParams

height
width \

ViewGroup.MarginLayoutParams
marginBottom
marginLeft
marginRight
marginTop
FrameLayout AbsoluteLayout
FrameLayout.LayoutParams AbsoluteLayout.LayoutParams
gravity x (position)
¥ (position)
LinearLayout
LinearLayout.LayoutParams
gravity
weight
RelativeLayout
RelativeLayout.LayoutParams
above
below
alignLeft
alignRight)

S Figure 3.6 Common
toRightOf ViewGroup classes with
centerHorizontal
Tl LayoutParams and

properties provided

86

3.2.6

CHAPTER 3 User interfaces

Recall that we used a LinearLayout in code in our ReviewListView in listing 3.5.
There we created our View and its LayoutParams directly in code. And, in our previ-
ous Activity examples, we used a RelativeLayout in our XML layout files that was
inflated into our code (again, we’ll cover XML resources in detail in section 3.3). A
RelativeLayout specifies child elements relative to each other: above, below,
toLeftOf, and so on.

To summarize, the container is a ViewGroup, and a ViewGroup supports a particular
type of LayoutParams. Child View elements are then added to the container and must
fit into the layout specified by their parents. A key concept to grasp is that even
though a child View has to lay itself out based on its parents’ LayoutParams, it can also
specify a different layout for its own children. This design creates a flexible palette
upon which you can construct just about any type of screen you want.

The dimensions for a given view are dictated by the LayoutParms of its parent—so
for each dimension of the layout of a view, you must define one of the following three
values:

®* An exact number
= FILL_PARENT
= WRAP_CONTENT

The FILL_PARENT constant means “take up as much space in that dimension as the
parent does (subtracting padding).” WRAP_CONTENT means “take up only as much
space as is needed for the provided content (adding padding).” A child View requests
a size, and the parent makes a decision on how to position the child view on the
screen. The child makes a request and the parent makes the decision.

Child elements do keep track of what size they’re initially asked to be, in case lay-
out is recalculated when things are added or removed, but they can’t force a particu-
lar size. Because of this, View elements have two sets of dimensions: the size and width
they want to take up [getMeasuredWidth() and getMeasuredHeight()] and the
actual size they end up after a parent’s decision [getWidth() and getHeight ()].

Layout is a two-step process: first, measurements are taken during the measure pass,
and subsequently, the items are placed to the screen during the layout pass, using the
associated LayoutParams. Components are drawn to the screen in the order they’re
found in the layout tree: parents first, then children. Note that parent views end up
behind children, if they overlap in positioning.

Layout is a big part of understanding screen design with Android. Along with plac-
ing your View elements on the screen, you need to have a good grasp of focus and
event handling in order to build effective applications.

Handling focus

Focus is like a game of tag; one and only one component on the screen is always “it.”
All devices with Uls support this concept. When you’re turning the pages of a book,
your focus is on one particular page at a time. Computer interfaces are no different.

3.2.7

Working with views 87

Though there can be many different windows and widgets on a particular screen, only
one has the current focus and can respond to user input. An event, such as movement
of a stylus or finger, a tap, or a keyboard press, might trigger the focus to shift to
another component.

In Android, focus is handled for you by the platform a majority of the time. When
a user selects an Activity, it’s invoked and the focus is set to the foreground view.
Internal Android algorithms then determine where the focus should go next based on
events taking place in the applications. Events might include buttons being clicked,
menus being selected, or services returning callbacks. You can override the default
behavior and provide hints about where specifically you want the focus to go using the
following View class methods or their counterparts in XML:

= nextFocusDown
= nextFocusLeft
® nextFocusRight

= nextFocusUp

Views can also indicate a particular focus type, DEFAULT_FOCUS or WEAK_FOCUS, to set
the priority of focus to either themselves (default) or their descendants (weak). In
addition to hints, such as UP, DOWN, and WEAK, you can use the View.requestFocus ()
method directly, if you need to, to indicate that focus should be set to a particular
View at a given time. Manipulating the focus manually should be the exception rather
than the rule—the platform logic generally does what you would expect, and more
importantly, what the user expects. Your application’s behavior should be mindful of
how other Android applications behave and it should act accordingly.

Focus changes based on event-handling logic using the OnFocusChangeListener
object and related setOnFocusChangedListener () method. This takes us into the
world of event handling in general.

Grasping events

Events are used to change the focus and for many other actions. We’ve already imple-
mented several onClickListener() methods for buttons in listing 3.2. Those
OnClickListener instances were connected to button presses. They were indicating
events that said, “Hey, somebody pressed me.” This process is the same one that focus
events go through when announcing or responding to OnFocusChange events.

Events have two halves: the component raising the event and the component (or
components) that respond to the event. These two halves are variously known as
Observable and Observer in design-pattern terms, or sometimes subject and observer.
Figure 3.7 is a class diagram of the relationships in this pattern.

An Observable component provides a way for Observer instances to register.
When an event occurs, the Observable notifies all the observers that something has
taken place. The observers can then respond to that notification however they see fit.
Interfaces are typically used for the various types of events in a particular API.

88

CuapTER 3 User interfaces

Observable (Source)
observerCollection : Collection<Observer> (Listeners)
registerObserver() : void
unregisterObserver(): void
notifyObserver(): void

Observeablelmpl
I

Figure 3.7 A class diagram depicting the
Observer design pattern. Each Observable
component has zero to many Observers, which
can be notified of changes when necessary.

For observer in
observerCollection:
notifyObserver()

With regard to an Android Button, the two halves are represented as follows:

= Observable—Button.setOnClickListener (OnClickListener listener)
® QObserver—Ilistener.onClick(View v)

This pattern comes into play in terms of Android View items, in that many things are
Observable and allow other components to attach and listen for events. For example,
most of the View class methods that begin with on are related to events: onFocus-
Changed (), onSizeChanged(), onLayout (), onTouchEvent (), and the like. Similarly,
the Activity lifecycle methods we’ve already discussed—onCreate(), onFreeze(),
and such—are also event-related, though on a different level.

Events occur both within the UI and all over the platform. For example, when an
incoming phone call occurs or a GPS-based location changes based on physical move-
ment, many different reactions can occur down the line. More than one component
might want to be notified when the phone rings or when the location changes—not
just the one you’re working on—and this list of Observers isn’t necessarily limited to
Ul-oriented objects.

Views support events on many levels. When an interface event occurs, such as a
user pressing a button, scrolling, or selecting a portion of a window, the event is dis-
patched to the appropriate view. Click events, keyboard events, touch events, and
focus events represent the kinds of events you’ll primarily deal with in the UL

One important aspect of the View in Android is that the interface is single-
threaded. If you're calling a method on a View, you have to be on the UI thread.
Recall that this is why we used a Handler in listing 3.3—to get data outside the Ul
thread and to notify the UI thread to update the View after the data was retrieved. The
data was sent back to the Handler as a Message via the setMessage () event.

We’re discussing events here on a fairly broad level, to make sure that the over-
arching concepts are clear. We’re doing this because we can’t cover all the event meth-
ods in the Android APIs in one chapter, yet you'll see events in examples throughout
the book and in your day-to-day experiences with the platform. We’ll call out event
examples when necessary, and we’ll cover them in more detail as we discuss specific
examples.

3.3

331

3.3.2

Using resources 89

Our coverage of events in general, and how they relate to layout, rounds out the
majority of our discussion of views, but we still have one notable, related concept to
discuss—resources. Views are closely related to resources, but they also go beyond the
UL In the next section, we’ll address all the aspects of resources, including XML-
defined views.

Using resources

We’ve mentioned Android resources in several contexts up to now (we initially intro-
duced them in chapter 1). Now we’re going to revisit resources in more depth to
expand on this important topic and to begin completing the third and final Activity
in RestaurantFinder—the ReviewDetail screen.

When you begin working with Android, you’ll quickly notice many references to a
class named R. This class was introduced in chapter 1, and we’ve used it in our previ-
ous Activity examples in this chapter. This class is the Android resources reference
class. Resources are noncode items that are included with your project automatically
by the platform.

To begin looking at resources, we’ll first discuss how they’re classified into types in
Android, and then we’ll demonstrate examples of each type of resource.

Supported resource types

Looking at the project structure of an Android project, the project’s resources are
located in the res directory and can be one of several types:

= res/anim—XML representations of frame-by-frame animations
= res/drawable—.png, .9.png, and .jpg images
= res/layout—XML representations of View objects
= res/values—XML representations of strings, colors, styles, dimensions, and
arrays
= res/xml—User-defined XML files that are compiled into a binary
representation
= res/raw—Arbitrary and uncompiled files that can be added
Resources are treated specially in Android because they’re typically compiled into an
efficient binary type, with the noted exception of items that are already binary and the
raw type, which isn’t compiled. Animations, layouts and views, string and color values,
and arrays can all be defined in an XML format on the platform. These XML resources
are then processed by the aapt tool, which you met in chapter 2, and compiled. After
resources are in compiled form, they’re accessible in Java through the automatically
generated R class.

Referencing resources in Java

The first portion of the ReviewDetail Activity, shown in the following listing, reuses
many of the Activity tenets you've already learned and uses several subcomponents
that come from R. java, the Android resources class.

90

CHAPTER 3 User interfaces

Listing 3.6 First portion of ReviewDetail showing multiple uses of the R class

public class ReviewDetail extends Activity {

private
private
private
private
private
private
private
private
private
private
private
private

static £
static £
static £

inal int MENU_CALL_REVIEW = Menu.FIRST + 2;
inal int MENU_MAP_REVIEW = Menu.FIRST + 1;
inal int MENU_WEB_REVIEW = Menu.FIRST;

String imageLink;

String 1
TextView
TextView
TextView
TextView
TextView

ink;

location; Define inflatable

name; View items
phone;

rating;

review;

ImageView reviewlmage;
Handler handler = new Handler () {
public void handleMessage (Message msg) {

if ((ima
try

geLink != null) && !imageLink.equals("")) {
{

URL url = new URL (imageLink) ;

URLConnection conn = url.openConnection() ;
conn.connect () ;

BufferedInputStream bis = new

BufferedInputStream(conn.getInputStream()) ;

Y

} ca

}
} else {

Bitmap bm = BitmapFactory.decodeStream(bis) ;
bis.close();

reviewImage.setImageBitmap (bm) ;

tch (IOException e) {

// log and or handle here

reviewImage.setImageResource (R.drawable.no_review_image) ;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
this.setContentView(R.layout.review detail) ; <
this.name =

(TextVie

this.rating

(TextVie

w) findViewById(R.id.name_detail) ;

w) findViewById(R.id.rating_detail);

this.location =

(TextVie

this.phone =

(TextVie

this.review

(TextVie

w) findViewById(R.id.location_detail) ;

w) findViewById(R.id.phone_detail) ;

w) findViewById(R.id.review_detail) ;

this.reviewImage =

(ImageVi

ew) findViewById(R.id.review_image) ;

RestaurantFinderApplication application =
(RestaurantFinderApplication) getApplication() ;
Review currentReview = application.getCurrentReview() ;
this.link =
this.imageLink = currentReview.imageLink;

currentReview.link;

Set layout using
setContentView()

Using resources 91

this.name.setText (currentReview.name) ;
this.rating.setText (currentReview.rating) ;
this.location.setText (currentReview.location) ;
this.review.setText (currentReview.content) ;

if ((currentReview.phone != null) && !currentReview.phone.equals("")) {
this.phone.setText (currentReview.phone) ;
} else {

this.phone.setText ("NA") ;

}
@Override
public boolean onCreateOptionsMenu (Menu menu) {
super.onCreateOptionsMenu (menu) ;
menu.add (0, ReviewDetail.MENU_WEB_REVIEW, O,
R.string.menu_web_review) .setIcon (
android.R.drawable.ic_menu_info_details) ;
menu.add (0, ReviewDetail.MENU_MAP_REVIEW, 1,
R.string.menu_map_review) .setIcon (
android.R.drawable.ic_menu_mapmode) ;

menu.add (0, ReviewDetail.MENU_CALL_REVIEW, 2, Use String
R.string.menu_call_review) .setIcon (and Drawable
resources

android.R.drawable.ic_menu_call) ;
return true;

In the ReviewDetail class, we first define View components that we’ll later reference
from resources @. Next, you see a Handler that’s used to perform a network call to
populate an ImageView based on a URL. (This doesn’t relate specifically to our cur-
rent discussion of resources, but is included here for completeness. Don’t worry too
much about the details of this idea here; we’ll talk about it more when we specifically
discuss networking in chapter 5.) After the Handler, we set the layout and View tree
using setContentView(R.layout.review_detail) ®. This maps to an XML layout
file at src/res/layout/review_detail.xml. Next, we reference some of the View objects
in the layout file directly through resources and corresponding IDs.

Views defined in XML are inflated by parsing the layout XML and injecting the cor-
responding code to create the objects for you. This process is handled automatically
by the platform. All the View and LayoutParams methods we’ve discussed have coun-
terpart attributes in the XML format. This inflation approach is one of the most
important aspects of View-related resources, and it makes them convenient to use and
reuse. We’ll examine the layout file we’re referring to here and the specific views it
contains more closely in the next section.

You reference resources in code, as we’ve been doing here, through the automati-
cally generated R class. The R class is made up of static inner classes (one for each
resource type) that hold references to all of your resources in the form of an int
value. This value is a constant pointer to an object file through a resource table that’s
contained in a special file the aapt tool creates and the R java file uses.

The last reference to resources in listing 3.6 is for the creation of our menu items €.
For each of these, we’re referencing a String for text from our own local resources, and

92

3.3.3

CHAPTER 3 User interfaces

we’re also assigning an icon from the android.R.drawable resources namespace. You
can qualify resources in this way and reuse the platform drawables: icons, images, bor-
ders, backgrounds, and so on. You'll likely want to customize much of your own appli-
cations and provide your own drawable resources, which you can do. Note that the
platform provides resources if you need them, and they’re arguably the better choice in
terms of consistency for the user, particularly if you're calling out to well-defined
actions as we are here: map, phone call, and web page.

We’ll cover how all the different resource types are handled and where they’re
placed in source in the next several sections. The first types of resources we’ll look at
more closely are layouts and views.

Defining views and layouts through XML resources

As we've noted in several earlier sections, views and layouts are often defined in XML!
rather than in Java code. Defining views and layout as resources in this way makes
them easier to work with, decoupled from the code, and in some cases reusable in dif-
ferent contexts.

View resource files are placed in the res/layout source directory. The root of these
XML files is usually one of the ViewGroup layout subclasses we’ve already discussed:
RelativeLayout, LinearLayout, FrameLayout, and so on. Within these root elements
are child XML elements that comprise the view/layout tree.

A subtle but important thing to understand here is that resources in the res/layout
directory don’t have to be complete layouts. For example, you can define a single
TextView in a layout file the same way you might define an entire tree starting from an
AbsoluteLayout. Yes, this might make the layout name and path potentially confus-
ing, but that’s how it’s set up. It might make more sense to have separate res/layout
and res/view directories, but that might be confusing too, so keep in mind that res/
layout is useful for more than layout. You might use this approach when a particularly
configured View is used in multiple areas of your application. By defining it as a stand-
alone resource, it can be maintained more readily over the lifetime of your project.

You can have as many XML layout/view files as you need, all defined in the res/lay-
out directory. Each View is then referenced in code, based on the type and ID. Our lay-
out file for the ReviewDetail screen, review_detail.xml shown in the following listing,
is referenced in the Activity code as R.layout.review_detail—which is a pointer
to the RelativeLayout parent View object in the file.

Listing 3.7 XML layout resource file for review_detail.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"

1

See http://www.xml.com for more information about XML.

Using resources 93

android:gravity="center_horizontal"
android:padding="10px"
android.setVerticalScrollBarEnabled="true"
> Include child

<ImageView android:id="@+id/review_image" element with ID
android:layout_width="100px"
android:layout_height="100px"
android:layout_marginLeft="10px"
android:layout_marginBottom="5px" />
<TextView android:id="@+id/name_detail"
android:layout_width="fill_parent"
android:layout_height="wrap_content" i’ Reference another
android:layout_below="@id/review_image" < resource
android:layout_marginLeft="10px"
android:layout_marginBottom="5px"
style="@style/intro_blurb" />
<TextView android:id="@+id/rating_label_detail"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/name_detail"
android:layout_marginLeft="10px"
android:layout_marginBottom="5px"
style="@style/label"
android:text="@string/rating_label" />

</RelativeLayout>

In this file, we’re using a RelativeLayout. This is the ViewGroup at the root of the
View tree. LayoutParams are then also defined in XML using the android:
layout_[attribute] convention, where [attribute] refers to a layout attribute such
as width or height. Along with layout, you can also define other vView-related attributes
in XML with counterpart XML attributes to the methods available in code, such as
android:padding, which is analogous to the setPadding () method.

After we’ve defined the RelativeLayout parent itself, we add the child View ele-
ments. Here we’re using an ImageView and multiple TextView components. Each of
the components is given an ID using the form android:id="@+id/ [name]" @. When
an ID is established in this manner, an int reference is defined in the resource table
and named with the specified name. Other components can reference the ID by the
friendly textual name. Never use the integer value directly, as it’ll change over time as
your view changes. Always use the constant value defined in the R class!

After views are defined as resources, you can use the Activity method findview-
ById()to obtain a reference to a particular View, using the name. Then you can
manipulate that View in code. For example, in listing 3.6 we grabbed the rating
TextView as follows:

rating = (TextView) findViewById(R.id.rating detail)

This inflates and hands off the rating_detail element. Note that child views of lay-
out files end up as id type in R.java (they’re not R.layout.name; rather they’re
R.id.name, even though they’re required to be placed in the res/layout directory).

94

3.3.4

CHAPTER 3 User interfaces

The properties for the View object are all defined in XML, and this includes the
layout. Because we’re using a RelativeLayout, we use attributes that place one View
relative to another, such as below or toRightOf. To accomplish relative placement, we
use the android:layout_below="@1id/ [name] syntax ®. The eid syntax is a way to ref-
erence other resource items from within a current resource file. Using this approach,
you can reference other elements defined in the file you’re currently working on or
other elements defined in other resource files.

Some of our views represent labels, which are shown on the screen as is and aren’t
manipulated in code, such as rating_label_detail. Others we’ll populate at run-
time; these views don’t have a text value set, such as name_detail. Labels, which are
the elements that we do know the values of, are defined with references to external-
ized strings.

The same approach is applied with regard to styles, using the syntax
style="@style/[stylename]". Strings, styles, and colors are themselves defined as
resources in another type of resource file.

Externalizing values

It’s common practice in the programming world to externalize string literals from
code. In Java, you usually use a ResourceBundle or a properties file to externalize val-
ues. Externalizing references to strings in this way allows the value of a component to
be stored and updated separately from the component itself, away from code.

Android includes support for values resources that are subdivided into several
groups: animations, arrays, styles, strings, dimensions, and colors. Each of these items
is defined in a specific XML format and made available in code as references from the
R class, just like layouts, views, and drawables. For the RestaurantFinder application,
we’re using externalized strings, as shown in the following listing, strings.xml.

Listing 3.8 Externalized strings for the RestaurantFinder application, strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>
<string name="app_name_criteria">RestaurantFinder - Criteria</string>
<string name="app_name_reviews">RestaurantFinder - Reviews</string>
<string name="app_name_review">RestaurantFinder - Review</string>
<string name="app_short_name">Restaurants</string>
<string name="menu_get_reviews">Get reviews</string>
<string name="menu_web_review">Get full review</string>
<string name="menu_map_review">Map location</string>
<string name="menu_call_review">Call restaurant</string>
<string name="menu_change_criteria">Change review criteria</string>
<string name="menu_get_next_page">Get next page of results</string>
<string name="intro_blurb_criteria">Enter review criteria</string>
<string name="intro_blurb_detail">Review details</string>

</resources>

As is evident from the strings.xml example, this is straightforward. This file uses a
<string> element with a name attribute for each string value you define. We’ve used

Using resources 95

this file for the application name, menu buttons, labels, and alert validation messages.
This format is known as simple value in Android terminology. This file is placed in
source at the res/values/strings.xml location. In addition to strings, you can define
colors and dimensions in the same way.

Dimensions are placed in dimens.xml and defined with the <dimen> element:
<dimen name=dimen_name>dimen_value</dimen>. Dimensions can be expressed in
any of the following units:

= pixels (px)

= inches (in)

= millimeters (mm)

= density-independent pixels (dp)
= scaled pixels (sp)

Colors are defined in colors.xml and are declared with the <color> element: <color
name=color_name>#color_value</color>. Color values are expressed using Red
Green Blue triplet values in hexadecimal format, like in HTML. Color and dimension
files are also placed in the res/values source location.

Although we haven’t defined separate colors and dimensions for the Restaurant-
Finder application, we’re using several styles, which we referenced in listing 3.7. The
style definitions are shown in the following listing. Unlike the string, dimension, and
color resource files, which use a simplistic value structure, the style resource file has a
more complex structure, including specific attributes from the android namespace.

Listing 3.9 Values resource defining reusable styles, styles.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="intro_blurb">
<item name="android:textSize">22sp</item>
<item name="android:textColor">#ee7620</item>
<item name="android:textStyle">bold</item>
</style>
<style name="label">
<item name="android:textSize">18sp</item>
<item name="android:textColor">#ffffff</item>
</style>
<style name="edit_text">
<item name="android:textSize">16sp</item>
<item name="android:textColor">#000000</item>
</style>

</resources>

The Android styles approach is similar in concept to using Cascading Style Sheets (CSS)
with HTML. Styles are defined in styles.xml and then referenced from other resources
or code. Each <style> element has one or more <item> children that define a single
setting. Styles are made up of the various View settings: sizes, colors, margins, and
such. Styles are helpful because they facilitate easy reuse and the ability to make

96

CHAPTER 3 User interfaces

changes in one place. Styles are applied in layout XML files by associating a style name
with a particular View component, such as style="@style/intro_blurb". Note that
in this case, style isn’t prefixed with the android: namespace; it’s a custom local
style, not one provided by the platform.

Styles can be taken one step further and used as themes. Whereas a style refers to a
set of attributes applied to a single View element, themes refer to a set of attributes
being applied to an entire screen. Themes can be defined in the same <style> and
<item> structure as styles are. To apply a theme, you associate a style with an entire
Activity, such as android: theme="@android:style/ [stylename] ".

Along with styles and themes, Android supports a specific XML structure for defin-
ing arrays as a resource. Arrays are placed in source in res/values/arrays.xml and are
helpful for defining collections of constant values, such as the cuisines we used to
pass to our ArrayAdapter back in listing 3.1. The following listing shows how these
arrays are defined in XML.

Listing 3.10 Arrays.xml used for defining cuisines and ratings

<?xml version="1.0" encoding="utf-8"?>
<resources>
<array name="cuisines">
<item>ANY</item>
<item>American</item>
<item>Barbeque</item>
<item>Chinese</item>
<item>French</item>
<item>German</item>
<item>Indian</item>
<item>Italian</item>
<item>Mexican</item>
<item>Thai</item>
<item>Vegetarian</item>
<item>Kosher</item>
</array>
</resources>

Arrays are defined as resources using an <array> element with a name attribute and
include any number of <item> child elements to define each array member. You can
access arrays in code using the syntax shown in listing 3.1: String[] ratings = get-
Resources () .getStringArray (R.array.ratings).

Raw files and XML are also supported through resources. Using the res/raw and
res/xml directories respectively, you can package these file types with your application
and access them through either Resources.openRawResource (int id) or Resources.
getXml (int id).

Going past simple values for strings, colors, and dimensions and more involved but
still straightforward structures for styles, arrays, raw files, and raw XML, the next type
of resources we’ll examine is the animation resource.

3.3.5

Using resources 97

Providing animations

Animations? are more complicated than other Android resources, but they’re also the

most visually impressive. Android allows you to define animations that can rotate,
fade, move, or stretch graphics or text. Though you don’t want to go overboard with a
constantly blinking animated shovel, an initial splash or occasional subtle animated
effect can enhance your UL

Animation XML files are placed in the res/anim source directory. There can be
more than one anim file, and, as with layouts, you reference the respective animation
you want by name/id. Android supports four types of animations:

= <alpha>—Defines fading, from 0.0 to 1.0 (0.0 being transparent)
= <scale>—Defines sizing, x and y (1.0 being no change)
= <translate>—Defines motion, x and y (percentage or absolute)

= <rotate>—Defines rotation, pivot from x and y (degrees)
In addition, Android provides several attributes that can be used with any animation
type:

= duration—Duration, in milliseconds

= startOffset—Offset start time, in milliseconds

= interpolator—Used to define a velocity curve for speed of animation

The following listing shows a simple animation that you can use to scale a View.

Listing 3.11 Example of an animation defined in an XML resource, scaler.xml

<?xml version="1.0" encoding="utf-8"?>

<scale xmlns:android="http://schemas.android.com/apk/res/android"
android: fromXScale="0.5"
android:toXScale="2.0"
android: fromyYScale="0.5"
android:toYScale="2.0"
android:pivotX="50%"
android:pivotY="50%"
android:startOffset="700"
android:duration="400"
android:fillBefore="false" />

In code, you can reference and use this animation with any View object (TextView, for
example) as follows:

view.startAnimation (AnimationUtils.loadAnimation(this, R.anim.scaler));

This will scale the view element up in size on both the X and Y axes. Though we don’t
have any animations in the RestaurantFinder sample application by default, to see this
animation work, you can add the startAnimation method to any view element in the

? For a good start in understanding the animation frameworks that are part of the SDK: http://developer-
life.com/tutorials/?p=343.

98

3.4

CHAPTER 3 User interfaces

code and reload the application. Animations can come in handy, so you should be
aware of them. We’ll cover animations and other graphics topics in detail in chapter 9.
With our journey through Android resources now complete, we’re going to
address the final aspect of RestaurantFinder that we need to cover: the Android-
Manifest.xml manifest file, which is required for every Android application.

Exploring the AndroidManifest file

As you learned in chapter 1, Android requires a manifest file for every application—
AndroidManifest.xml. This file, which is placed in the root directory of the project
source, describes the application context and any supported activities, services, broad-
cast receivers, or content providers, as well as the requested permissions for the appli-
cation. You’ll learn more about services, Intents, and BroadcastReceivers in chapter
4 and about content providers in chapter 5. For now, the manifest file for our
RestaurantFinder sample application, as shown in the following listing, contains only
the <application> itself, an <activity> element for each screen, and several <uses-
permission> elements.

Listing 3.12 The RestaurantFinder AndroidManifest.xml file

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android">
<application android:icon="@drawable/restaurant_icon_trans"
android:label="@string/app_short_name"
android:name="RestaurantFinderApplication"
android:allowClearUserData="true"

android:theme="@android:style/Theme.Black"> " Define
<activity android:name="ReviewCriteria" ReviewCriteria
android:label="@string/app_short_name"> < Activity

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity> Define MAIN LAUNCHER
<activity android:name="ReviewList" Intent filter
android:label="@string/app_name_reviews">
<intent-filter>
<category
android:name="android.intent.category.DEFAULT" />
<action
android:name="com.msi.manning.restaurant .VIEW_LIST" />
</intent-filter>
</activity>
<activity android:name="ReviewDetail"
android:label="@string/app_name_review">
<intent-filter>
<category
android:name="android.intent.category.DEFAULT" />
<action
android:name="com.msi.manning.restaurant.VIEW_DETAIL" />

3.5

Summary 99

</intent-filter>
</activity>

</application>

<uses-permission android:name="android.permission.CALL_PHONE" />

<uses-permission android:name="android.permission.INTERNET" />
</manifest>
In the RestaurantFinder descriptor file, you first see the root <manifest> element dec-
laration, which includes the application’s package declaration and the Android
namespace. Then you see the <application> element with both the name and icon
attributes defined. You don’t have to include the name attribute here unless you want
to extend the default Android Application object to provide some global state to your
application. We took this approach so we could access the Application instance to
store the current Review object. The icon is also optional; if you don’t specify one, a sys-
tem default is used to represent your application on the main menu. It’s highly recom-
mended that you provide an attractive icon for your application to make it stand out.

After the application itself is defined, you see the child <activity> elements
within. These elements define each Activity the application supports @ (note that
the manifest file can use Android resources as well, such as with @string/app_name).
As we noted when we discussed activities in general, one Activity in every application
is defined as the entry point for the application; this Activity has the <intent-
filter> action MAIN and category LAUNCHER designation @. This tells the Android
platform how to start an application from the Launcher, meaning this Activity will
be placed in the main menu on the device.

After the ReviewCriteria Activity, you see another <activity> designation for
ReviewList. This Activity also includes an <intent-filter>, but for our own action,
com.msi.manning.restaurant.VIEW_LIST. This tells the platform that this Activity
should be invoked for this Intent. Last in our manifest file, we have a <uses-
permission> element. This element also relates to Intents and tells the platform that
this application needs the CALL_PHONE permission. We touched on permissions briefly
in chapter 2 and in other places in this book—mainly when we’re adding a new feature
and require a <uses-permission> element to allow the desired behavior.

The RestaurantFinder sample application uses a fairly basic manifest file with three
activities and a series of Intents. Wrapping up the description of the manifest file
completes our discussion of views, activities, resources, and working with Uls in
Android.

Summary

A big part of the Android platform revolves around the UI and the concepts of activi-
ties and views. In this chapter, we explored these concepts in detail and worked on a
sample application to demonstrate them. In relation to activities, we addressed the
concepts and methods involved, and we covered the all-important lifecycle events the
platform uses to manage them. With regard to views, we looked at common and cus-
tom types, attributes that define layout and appearance, and focus and events.

100

CHAPTER 3 User interfaces

In addition, we looked at how Android handles various types of resources, from
simple types to more involved layouts, arrays, and animations, and how these relate to,
and are used in, views and activities. We also explored the AndroidManifest.xml appli-
cation descriptor and how it brings all these pieces together to define an Android
application.

This chapter has given you a good foundation for general Android UI develop-
ment. Now we need to go deeper into the Intent and BroadcastReceiver classes,
which comprise the communication layer that Android activities and other compo-
nents rely on. We’ll cover these items, along with longer-running Service processes
and the Android interprocess communication (IPC) system involving the Binder, in
chapter 4, where you’ll also complete the RestaurantFinder application.

Intents and Services

This chapter covers

Asking other programs to do work for you with intents
Advertising your capabilities with intent filters
Eavesdropping on other apps with broadcast receivers

Building Services to provide long-lived background
processing

Offering APIs to external applications through AIDL

You’ve already created some interesting applications that didn’t require a lot of
effort to build. In this chapter, we’ll dig deeper into the use of Intent objects and
related classes to accomplish tasks. We’ll expand the RestaurantFinder application
from chapter 3, and show you how an Intent can carry you from one Activity to
another and easily link into outside applications. Next, you’ll create a new weather-
reporting application to demonstrate how Android handles background processes
through a Service. We’ll wrap up the chapter with an example of using the
Android Interface Definition Language (AIDL) to make different applications com-
municate with one another.

We introduced the Intent in chapter 1. An Intent describes something you
want to do, which might be as vague as “Do whatever is appropriate for this URL” or
as specific as “Purchase a flight from San Jose to Chicago for $400.” You saw several

101

102

4.1

4.1.1

CHAPTER 4 Intents and Services

examples of working with Intent objects in chapter 3. In this chapter, we’ll look more
closely at the contents of an Intent and how it matches with an IntentFilter. The
RestaurantFinder app will use these concepts to display a variety of screens.

After you complete the RestaurantFinder application, we’ll move on to Weather-
Reporter. WeatherReporter will use the Yahoo! Weather API to retrieve weather data
and alerts and show them to the user. Along the way, you’ll see how an Intent can
request work outside your Ul by using a BroadcastReceiver and a Service. A
BroadcastReceiver catches broadcasts sent to any number of interested receivers.
Services also begin with an Intent, but work in background processes rather than
UI screens.

Finally, we’ll examine the mechanism for making interprocess communication
(IPC) possible using Binder objects and AIDL. Android provides a high-performance
way for different processes to pass messages among themselves.

All these mechanisms require the use of Intent objects, so we’ll begin by looking
at the details of this class.

Serving up RestaurantFinder with Intent

The mobile Android architecture looks a lot like the service-oriented architecture
(SOA) that’s common in server development. Each Activity can make an Intent call
to get something done without knowing exactly who’ll receive that Intent. Develop-
ers usually don’t care how a particular task gets performed, only that it’s completed to
their requirements. As you complete your RestaurantFinder application, you’ll see
that you can request some sophisticated tasks while remaining vague about how those
tasks should get done.

Intent requests are late binding; they’re mapped and routed to a component that
can handle a specified task at runtime rather than at build or compile time. One
Activity tells the platform, “I need a map to Langtry, TX, US,” and another compo-
nent returns the result. With this approach, individual components are decoupled
and can be modified, enhanced, and maintained without requiring changes to a
larger application or system.

Let’s look at how to define an Intent in code, how to invoke an Intent within an
Activity, and how Android resolves Intent routing with IntentFilter classes. Then
we’ll talk about Intents that are built into the platform and that anyone can use.

Defining Intents

Suppose that you want to call a restaurant to make a reservation. When you’re craft-
ing an Intent for this, you need to include two critical pieces of information. An
action is a verb describing what you want to do—in this case, to make a phone call.
Data is a noun describing the particular thing to request—in this case, the phone
number. You describe the data with a Uri object, which we’ll describe more thor-
oughly in the next section. You can also optionally populate the Intent with other
elements that further describe how to handle the request. Table 4.1 lists all the com-
ponents of an Intent object.

4.1.2

Serving up RestaurantFinder with Intent 103

Table 4.1 Intent elements and descriptions

Intent element Description

Action Fully qualified String indicating the action (for example,
android.intent.action.DIAL)

Category Describes where and how the Intent can be used, such as from the main
Android menu or from the browser

Component Specifies an explicit package and class to use for the Intent, instead of infer-
ring from action, type, and categories

Data Data to work with, expressed as a URI (for example, content://contacts/1)
Extras Extra data to pass to the Intent in the form of a Bundle
Type Specifies an explicit MIME type, such as text/plain or

vnd.android.cursor.item/email_v2

Intent definitions typically express a combination of action, data, and other attri-
butes, such as category. You combine enough information to describe the task you
want done. Android uses the information you provide to resolve exactly which class
should fulfill the request.

Implicit and explicit invocation

Android’s loose coupling allows you to write applications that make vague requests.
An implicit Intent invocation happens when the platform determines which compo-
nent should run the Intent. In our example of making a phone call, we don’t particu-
larly care whether the user has the native Android dialer or if they’ve installed a third-
party dialing app; we only care that the call gets made. We’ll let Android resolve the
Intent using the action, data, and category we defined. We’ll explore this resolution
process in detail in the next section.

Other times, you want to use an Intent to accomplish some work, but you want to
make sure that you handle it yourself. When you open a review in RestaurantFinder,
you don’t want a third party to intercept that request and show its own review instead.
In an explicit Intent invocation, your code directly specifies which component
should handle the Intent. You perform an explicit invocation by specifying either the
Class or ComponentName of the receiver. The ComponentName provides the fully quali-
fied class name, consisting of a String for the package and a String for the class.

To explicitly invoke an Intent, you can use the following form: Intent (Context
ctx, Class cls). With this approach, you can short-circuit all the Android Intent-
resolution wiring and directly pass in an Activity class reference to handle the
Intent. Though this approach is convenient and fast, it also introduces tight coupling
that might be a disadvantage later if you want to start using a different Activity.

104 CHAPTER 4 Intents and Services

4.1.3 Adding external links to RestaurantFinder

When we started the RestaurantFinder in listing 3.6, we used Intent objects to move
between screens in our application. In the following listing, we finish the Review-

Detail Activity by using a new set of implicit Intent objects to link the user to other
applications on the phone.

Listing 4.1 Second section of ReviewDetail, demonstrating Intent invocation

@Override

public boolean onMenultemSelected(int featureId, Menultem item) {
Intent intent = 11;
ntent inten nu < Declare

switch (item.getItemId()) { (' Intent
case MENU_WEB_REVIEW:
if ((link != null) && !link.equals("")) {

intent = new Intent (Intent.ACTION_VIEW,
Uri.parse(link));

startActivity(intent) ; 41) kahy

} else { web page

new AlertDialog.Builder (this)
setTitle (getResources ()
.getString(R.string.alert_label))
.setMessage (R.string.no_link_message)
.setPositiveButton ("Continue",
new OnClickListener() {
public void onClick(DialogInterface dialog,
int argl) {
}
}) .show () ;
}
return true;
case MENU_MAP_REVIEW:
if ((location.getText () != null)
&& !location.getText().equals("")) {
intent = new Intent (Intent.ACTION_VIEW,
Uri.parse("geo:0,0?g=" + Set Intent for
location.getText () .toString())); < map menu item
startActivity (intent) ;
} else {
new AlertDialog.Builder (this)
.setTitle(getResources ()
.getString(R.string.alert_label))
.setMessage (R.string.no_location_message)
.setPositiveButton ("Continue", new OnClickListener () {
public void onClick(DialogInterface dialog,
int argl) {
}
}) .show () ;
}
return true;
case MENU_CALL_REVIEW:
if ((phone.getText () != null)
&& !phone.getText () .equals("")
&& !phone.getText () .equals("NA")) {

Serving up RestaurantFinder with Intent 105

String phoneString =
parsePhone (phone.getText () .toString()) ;
intent = new Intent (Intent.ACTION_CALL,
Uri.parse("tel:" + phoneString));
startActivity (intent) ;
} else {
new AlertDialog.Builder (this)
.setTitle(getResources ()
.getString(R.string.alert_label))
.setMessage (R.string.no_phone_message)
.setPositiveButton ("Continue", new OnClickListener () {
public void onClick(DialogInterface dialog,
int argl) {

Set Intent for
call menu item

}
}) .show () ;
}

return true;

}

return super.onMenultemSelected(featureId, item);
}
private String parsePhone(final String phone) {

String parsed = phone;

parsed = parsed.replaceAll ("\\D", "");

parsed = parsed.replaceAll("\\s", "");

return parsed.trim() ;

}
The Review model object contains the address and phone number for a restaurant and
a link to the full online review. Using ReviewDetail Activity, the user can open the
menu and choose to display a map with directions to the restaurant, call the restaurant,
or view the full review in a web browser. To allow all of these actions to take place,
ReviewDetail launches built-in Android applications through implicit Intent calls.

In our new code, we initialize an Intent class instance @ so it can be used later by
the menu cases. If the user selects the MENU_WEB_REVIEW menu button, we create a
new instance of the Intent variable by passing in an action and data. For the action,
we use the String constant Intent.ACTION_VIEW, which has the value android.app.
action.VIEW. You can use either the constant or the value, but sticking to constants
helps ensure that you don’t mistype the name. Other common actions are Intent.
ACTION_EDIT, Intent.ACTION_INSERT, and Intent.ACTION_DELETE.

For the data component of the Intent, we use Uri.parse(link) to create a Uri.
We’ll look at Uri in more detail in the next section; for now, just know that this allows
the correct component to answer the startActivity (Intent i) request ® and render
the resource identified by the Uri. We don’t directly declare any particular Activity or
Service for the Intent; we simply say we want to VIEW http://somehost/somepath.
Android’s late-binding mechanism will interpret this request at runtime, most likely by
launching the device's built-in browser.

ReviewDetail also handles the MENU_MAP_REVIEW menu item. We initialize the
Intent to use Intent.ACTION_VIEW again, but this time with a different type of Uri:
"geo:0,0?g=" + street_address €. This combination of VIEW and geo scheme

106

4.14

CHAPTER 4 Intents and Services

invokes a different Intent, probably the built-in maps
application. Finally, when handling MENU_MAP_CALL, we
request a phone call using the Intent.ACTION_CALL
action and the tel: Uri scheme @.

Through these simple requests, our Restaurant-
Finder application uses implicit Intent invocation to
allow the user to phone or map the selected restaurant
or to view the full review web page. These menu buttons
are shown in figure 4.1.

Your RestaurantFinder application is now complete.
Users can now search for reviews, select a particular
review from a list, display a detailed review, and use
additional built-in applications to find out more about a
selected restaurant.

Chapeau

Rating:
5
Review:

It's the gem of the Richmond district in
SF IT's been open for nearly four years,
owned and run by Philippe and Ellen
Gardelle who are on-site every night
closely supervising everything, chatting
at tables, racing out the door after you

$o oo

O HEH \

Get full review Map location Call restaurant

You’ll learn more about all the builtin apps and

Figure4.1 Menu buttons on the
RestaurantFinder sample
application that invoke external
applications

action-data pairs in section 4.1.5. Right now, we’re
going to focus on the Intent-resolution process and
how it routes requests.

Finding your way with Intent

Our RestaurantFinder makes requests to other applications by using Intent invoca-
tions, and guides its internal movement by listening for Intent requests. Three types
of Android components can register to handle Intent requests: Activity, Broadcast-
Receiver, and Service. They advertise their capabilities through the <intent-
filter> element in the AndroidManifest.xml file.

Android parses each <intent-filter> element into an IntentFilter object.
After Android installs an .apk file, it registers the application’s components, including
the Intent filters. When the platform has a registry of Intent filters, it can map any
Intent requests to the correct, installed Activity, BroadcastReceiver, or Service.

To find the appropriate handler for an Intent, Android inspects the action, data,
and categories of the Intent. An <intent-filter> must fulfill the following condi-
tions to be considered:

= The action and category must match.
= If specified, the data ¢ype must match, or the combination of data scheme and
authority and path must match.

Let’s look at these components in more detail.

ACTIONS AND CATEGORIES
Each individual IntentFilter can specify zero or more actions and zero or more cat-
egories. If the action isn’t specified in the IntentFilter, it'll match any Intent; other-
wise, it’ll match only if the Intent has the same action.

An IntentFilter with no categories will match only an Intent with no categories;
otherwise, an IntentFilter must have at least what the Intent specifies. For example,

Serving up RestaurantFinder with Intent 107

if an IntentFilter supports both the HOME and the ALTERNATIVE categories, it’ll
match an Intent for either HOME or CATEGORY. But if the IntentFilter doesn’t pro-
vide any categories, it won’t match HOME or CATEGORY.

You can work with action and category without specifying any data. We used this
technique in the ReviewList Activity you built in chapter 3. In that example, we
defined the IntentFilter in the manifest XML, as shown in the following listing.

Listing 4.2 Manifest declaration of ReviewList Activity with <intent-filter>

<activity android:name="ReviewList" android:label="@string/app_name">
<intent-filter>
<category android:name="android.intent.category.DEFAULT" />
<action android:name="com.msi.manning.restaurant.VIEW_LIST" />
</intent-filter>
</activity>
To match the filter declared in this listing, we used the following Intent in code, where
Constants.INTENT ACTION_VIEW_LISTisthe String "com.msi.manning.restaurant.

VIEW_LIST":

Intent intent = new Intent (Constants.INTENT_ACTION_VIEW_LIST) ;

startActivity (intent) ;

DATA

After Android has determined that the action and category match, it inspects the
Intent data. The data can be either an explicit MIME type or a combination of
scheme, authority, and path. The Uri shown in figure 4.2 is an example of using
scheme, authority, and path.

The following example shows what using an explicit MIME type within a Uri looks
like:

audio/mpeg

IntentFilter classes describe what combination of type, scheme, authority, and path
they accept. Android follows a detailed process to determine whether an Intent
matches:

1 If a scheme is present and type is not present, Intents with any type will match.

2 If a type is present and scheme is not present, Intents with any scheme will
match.

3 If neither a scheme nor a type is present, only Intents with neither scheme nor
type will match.
If an authority is specified, a scheme must also be specified.

5 If a path is specified, a scheme and an authority must also be specified.

weather:// com.msi.manning/loc?zip=12345

Figure 4.2 The portions of a URI
that are used in Android, showing
scheme authority path scheme, authority, and path

108

4.1.5

CHAPTER 4 Intents and Services

IntentFilter

<Intent-filter>

<action android:name="android.intent.action.VIEW" />

<data android:scheme="weather” android:host="com.msi.manning" />
</Intent-filter>

\

~

Intent

Intent = newlintent(Intent. ACTION_VIEW
Uri.parse("weather://com.msi.manning /loc?zip=12345");

Figure 4.3 Example Intent and IntentFilter matching using a filter defined in XML

Most matches are straightforward, but as you can see, it can get complicated. Think of
Intent and IntentFilter as separate pieces of the same puzzle. When you call an
Intent in an Android application, the system resolves the Activity, Service, or
BroadcastReceiver to handle your request through this resolution process using the
actions, categories, and data provided. The system searches all the pieces of the puzzle
it has until it finds one that meshes with the Intent you've provided, and then it snaps
those pieces together to make the late-binding connection.

Figure 4.3 shows an example of how a match occurs. This example defines an
IntentFilter with an action and a combination of a scheme and an authority. It
doesn’t specify a path, so any path will match. The figure also shows an example of an
Intent with a Uri that matches this filter.

If multiple IntentFilter classes match the provided Intent, the platform chooses
which one will handle the Intent. For a user-visible action like an Activity, Android
usually presents the user with a pop-up menu that lets him select which Intent should
handle it. For nonvisible actions like a broadcast, Android considers the declared pri-
ority of each IntentFilter and gives him an ordered chance to handle the Intent.

Taking advantage of Android-provided activities

In addition to the examples in our RestaurantFinder application, Android ships with a
useful set of core applications that allow access via the formats shown in table 4.2.
Using the actions and URIs shown in table 4.2, you can hook into the builtin maps

Table 4.2 Common Android application Intent action and Uri combinations

Action Description

Intent.ACTION_CALL tel:phone_number Opens the phone application and
calls the specified number

Intent.ACTION_DIAL tel:phone_number Opens the phone application and
dials (but doesn’t call) the speci-
fied number

4.2

4.2.1

Checking the weather with a custom URI

109

Table 4.2 Common Android application Intent action and Uri combinations (continued)

Action Description

Intent.ACTION_DIAL voicemail:

Intent.ACTION_VIEW geo:latitude,longitude

Intent.ACTION_VIEW geo:0,0?qg=street+address
Intent .ACTION_VIEW http://web_address
Intent .ACTION_VIEW https://web_address

Intent .ACTION_WEB_SEARCH plain_text

Opens the phone application and
dials (but doesn’t call) the voice-
mail number

Opens the maps application to the
specified latitude and longitude

Opens the maps application to the
specified address

Opens the browser application to
the specified URL

Opens the browser application to
the specified secure URL

Opens the browser application and
uses Google Search

application, phone application, or browser application. By experimenting with these,
you can get a feel for how Intent resolution works in Android.

With a handle on the basics of Intent resolution and a quick look at built-in

Intents out of the way, we can move on to a new sample application: WeatherReporter.

Checking the weather with a custom URI

WeatherReporter, the next sample application you’ll
build, uses the Yahoo! Weather API to retrieve weather
data, and displays it to the user. This application can
also optionally alert users of severe weather for cer-
tain locations, based on either the current location of
the device or on a specified postal code.

Within this project, you’ll see how you can define
a custom URI and register it with a matching Intent
filter to allow any other application to invoke a
weather report through an Intent. Defining and
publishing an Intent in this way allows other applica-
tions to easily use your application. When your
WeatherReporter application is complete, the main
screen will look like figure 4.4.

Offering a custom URI

Let’s look more deeply into how to define Intent fil-
ters in XML. The manifest for WeatherReporter is
shown in the following listing.

Partly Cloudy (day) High:59 F - Lt

Fri:
Partly Cloudy (day) High:59 F - L

® i

Spedfy location Saved locations

Figure 4.4 The WeatherReporter
application, showing the weather
forecast for the current location

110 CHAPTER 4 Intents and Services

Listing 4.3 The Android manifest file for the WeatherReporter application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.weather">
<application android:icon="@drawable/weather_sun_clouds_120"
android:label="@string/app_name"
android:theme="@android:style/Theme.Black"
android:allowClearUserData="true">
<activity android:name="ReportViewSavedLocations"
android:label="@string/app_name_view_saved_locations" />
<activity android:name="ReportSpecifyLocation"
android:label= Define
"@string/app_name_specify location" /> activities
<activity android:name="ReportViewDetail"
android:label="@string/app_name_view_detail">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<data android:scheme="weather"
android:host="com.msi.manning" />
</intent-filter>
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<data android:scheme="weather"
android:host="com.msi.manning" />
</intent-filter>
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name=
"android. intent.category.LAUNCHER" />
</intent-filter>
</activity>
<receiver android:name=
".service.WeatherAlertServiceReceiver"> <@ Define receiver
<intent-filter>
<action android:name=
"android.intent.action.BOOT_COMPLETED" />
</intent-filter>
</receiver>
<service android:name=".service.WeatherAlertService" />
</application>
<uses-permission
android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
<uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name=
"android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name=
"android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
<uses-permission android:name="android.permission.INTERNET" />
</manifest>

9 Define
- service

Include necessary
permissions

In the WeatherReporter manifest, we define three activities @. The first two don’t
include an <intent-filter>, so they can only be explicitly invoked from within this

4.2.2

Checking the weather with a custom URI 111

application. The ReportViewDetail Activity has multiple <intent-filter> tags
defined for it, including one denoting it as the MAIN LAUNCHER, and one with the
weather://com.msi.manning scheme and authority. Our application supports this
custom URI to provide weather access.

You can use any combination of scheme, authority, and path, as shown in listing
4.3, or you can use an explicit MIME type. You’ll find out more about MIME types and
how they’re processed in chapter 5, where we’ll look at how to work with data sources
and use an Android concept known as a ContentProvider.

After we define these activities, we use the <receiver> element in the manifest file
to refer to a BroadcastReceiver class @. We’ll examine BroadcastReceiver more
closely in section 4.3, but for now know that an <intent-filter> associates this
receiver with an Intent—in this case, for the BOOT_COMPLETED action. This filter tells
the platform to invoke the WeatherAlertServiceReceiver class after it completes the
boot up sequence.

We also define a Service €. You’'ll see how this Service is built, and how it polls
for severe weather alerts in the background, in section 4.3. Finally, our manifest
includes a set of required permissions @.

Inspecting a custom Uri

With the foundation for our sample application in place via the manifest, Android will
launch WeatherReporter when it encounters a request that uses our custom Uri. As
usual, it'll invoke the onStart method of the main Activity WeatherReporter will
use. The following listing shows our implementation, where we parse data from the
Uri and use it to display a weather report.

Listing 4.4 onsStart method of the ReportvViewDetail Activity

@Override
public void onStart () { 0 Create
super.onStart () ; database Get device
dbHelper = new DBHelper (this); - helper location
devicezip = WeatherAlertService.deviceLocationZIP; P0ﬁ3|C0de
if ((getIntent().getData() != null)
&& (getIntent () .getData () .getEncodedQuery () != null)

&& (getIntent () .getData () .getEncodedQuery () .length() > 8)) {
String queryString =
getIntent () .getData () .getEncodedQuery () ;
reportZip = queryString.substring(4, 9);
useDeviceLocation = false;
} else {
reportZip = deviceZip;
useDeviceLocation = true;
}
savedLocation = dbHelper.get (reportZip) ;
deviceAlertEnabledLocation =
dbHelper.get (DBHelper .DEVICE_ALERT_ENABLED_ZIP) ;
if (useDeviceLocation) {
currentCheck.setText (R.string.view_checkbox_current) ;

112

CHAPTER 4 Intents and Services

if (deviceAlertEnabledLocation != null) {
currentCheck.setChecked (true) ; <+
} else {
currentCheck.setChecked(false) ; <
}

} else { € Setstatus
currentCheck.setText (R.string.view_checkbox_specific); of alert-
if (savedLocation != null) { enabled

if (savedLocation.alertenabled == 1) { check box
currentCheck.setChecked (true) ; <+—

} else {
currentCheck.setChecked (false) ; <+

}
}
loadReport (reportzip) ;

}

You can get the complete ReportViewDetail Activity from the source code down-
load for this chapter. In the onStart method shown in this listing, we focus on parsing
data from the Uri passed in as part of the Intent that invokes the Activity.

First, we establish a database helper object @. This object will be used to query a
local SQLite database that stores user-specified location data. We’ll show more about
how data is handled, and the details of this helper class, in chapter 5.

In this method, we also obtain the postal code of the current device location from
a LocationManager in the WeatherAlertService class @. We want to use the location
of the device as the default weather report location. As the user travels with the
phone, this location will automatically update. We’ll cover location and Location-
Manager in chapter 11.

After obtaining the device location, we move on to the key aspect of obtaining Uri
data from an Intent. We check to see whether our Intent provided specific data; if
so, we parse the Uri passed in to obtain the queryString and embedded postal code
to use for the user’s specified location. If this location is present, we use it; if not, we
default to the device location postal code.

After determining the postal code to use, we set the status of the check box that
indicates whether to enable alerts €. We have two kinds of alerts: one for the device
location and another for the user’s specified saved locations.

Finally, we call the loadReport method, which makes the call out to the Yahoo!
Weather API! to obtain data; then we use a Handler to send a Message to update the
needed Ul View elements.

Remember that this Activity registered in the manifest to receive weather://
com.msi.manning intents. Any application can invoke this Activity without knowing
any details other than the URI. This separation of responsibilities enables late binding.
After invocation, we check the URI to see what our caller wanted.

1

For more on the Yahoo! Weather API, go here: http://developer.yahoo.com/weather/.

4.3

4.3.1

Checking the weather with broadcast receivers 113

You’ve now seen the manifest and pertinent details of the main Activity class for
the WeatherReporter application we’ll build in the next few sections. We’ve also dis-
cussed how Intent and IntentFilter classes work together to wire up calls between
components. Next, we’ll take a look at some of the built-in Android applications that
accept external Intent requests. These requests enable you to launch activities by sim-
ply passing in the correct URL

Checking the weather with broadcast receivers

So far you’ve seen how to use an Intent to communicate within your app and to issue
a request that another component will handle. You can also send an Intent to any
interested receiver. When you do, you aren’t requesting the execution of a specific
task, but instead you’re letting everyone know about something interesting that has
happened. Android already sends these broadcasts for several reasons, such as when
an incoming phone call or text message is received. In this section, we’ll look at how
events are broadcast and how they’re captured using a BroadcastReceiver.

We’ll continue to work through the WeatherReporter sample application we began
in section 4.2. The WeatherReporter application will display alerts to the user when
severe weather is forecast for the user’s indicated location. We’ll need a background
process that checks the weather and sends any needed alerts. This is where the
Android Service concept will come into play. We need to start the Service when the
device boots, so we’ll listen for the boot through an Intent broadcast.

Broadcasting Intent

As you’ve seen, Intent objects let you move from Activity to Activity in an
Android application, or from one application to another. Intents can also broadcast
events to any configured receiver using one of several methods available from the
Context class, as shown in table 4.3.

Table 4.3 Methods for broadcasting intents

Method Description

sendBroadcast (Intent intent) Simple form for broadcasting an Intent.

sendBroadcast (Intent intent, Broadcasts an Intent with a permission String

String receiverPermission) that receivers must declare in order to receive the
broadcast.

sendOrderedBroadcast (Intent intent, | Broadcasts an Intent call to the receivers one-by-
String receiverPermission) one serially, stopping after a receiver consumes the
message.

114

CHAPTER 4 Intents and Services

Table 4.3 Methods for broadcasting intents (continued)

Method Description

sendOrderedBroadcast (Intent intent, | Broadcasts an Intent and gets a response back

String receiverPermission, through the provided BroadcastReceiver. All
BroadcastReceiver resultReceiver, receivers can append data that will be returned in the
Handler scheduler, int initialCode, BroadcastReceiver. When you use this method,
String initialData, the receivers are called serially.

Bundle initialExtras)

sendStickyBroadcast (Intent intent) Broadcasts an Intent that remains a short time
after broadcast so that receivers can retrieve data.
Applications using this method must declare the
BROADCAST_STICKY permission.

When you broadcast Intents, you send an event into the background. A broadcast
Intent doesn’t invoke an Activity, so your current screen usually remains in the
foreground.

You can also optionally specify a permission when you broadcast an Intent. Only
receivers who’ve declared that permission will receive the broadcast; all others will
remain unaware of it. You can use this mechanism to ensure that only certain trusted
applications can listen in on what your app does. You can review permission declara-
tions in chapter 1.

Broadcasting an Intent is fairly straightforward; you use the Context object to
send it, and interested receivers catch it. Android provides a set of platform-related
Intent broadcasts that use this approach. In certain situations, such as when the time
zone on the platform changes, when the device completes booting, or when a package
is added or removed, the system broadcasts an event using an Intent. Table 4.4 shows
some of the specific Intent broadcasts the platform provides.

To register to receive an Intent broadcast, you implement a BroadcastReceiver.
You’ll make your own implementation to catch the platform-provided BOOT_
COMPLETED Intent to start the weather alert service.

Table 4.4 Broadcast actions provided by the Android platform

Action Description

ACTION_BATTERY_CHANGED Sent when the battery charge level or charging state changes
ACTION_BOOT_COMPLETED Sent when the platform completes booting
ACTION_PACKAGE_ADDED Sent when a package is added to the platform
ACTION_PACKAGE_REMOVED Sent when a package is removed from the platform
ACTION_TIME_CHANGED Sent when the user changes the time on the device
ACTION_TIME_TICK Sent every minute to indicate that time is ticking
ACTION_TIMEZONE_CHANGED Sent when the user changes the time zone on the device

4.3.2

4.4

Building a background weather service 115

Creating a receiver

Because the weather alert Service you're going to create should always run in the
background, you need a way to start it when the platform boots. To do this, you’ll cre-
ate a BroadcastReceiver that listens for the BOOT_COMPLETED Intent broadcast.

The BroadcastReceiver base class provides a series of methods that lets you get
and set a result code, result data (in the form of a String), and an extra Bundle. It
also defines a lifecycle-related method to run when the appropriate Intent is
received.

You can associate a BroadcastReceiver with an IntentFilter in code or in the
manifest XML file. We declared this for the WeatherReporter manifest in listing 4.3,
where we associated the BOOT_COMPLETED broadcast with the WeatherAlert-
ServiceReceiver class. This class is shown in the following listing.

Listing 4.5 The WeatherAlertServiceReceiver BroadcastReceiver class

public class WeatherAlertServiceReceiver extends BroadcastReceiver {
@QOverride
public void onReceive (Context context, Intent intent) {
if (intent.getAction().equals (Intent.ACTION_BOOT_ COMPLETED)) {
context.startService(new Intent (context,
WeatherAlertService.class)) ;

}

When you create your own Intent broadcast receiver, you extend the Broadcast-
Receiver class and implement the abstract onReceive (Context ¢, Intent i) method.
In our implementation, we start the WeatherAlertService. This Service class, which
we’ll create next, is started using the Context.startService(Intent i, Bundle b)
method.

Keep in mind that receiver class instances have a short and focused lifecycle. After
completing the onReceive (Context ¢, Intent i) method, the instance and process
that invoked the receiver are no longer needed and might be killed by the system. For
this reason, you can’t perform any asynchronous operations in a BroadcastReceiver,
such as starting a thread or showing a dialog. Instead, you can start a Service, as we’ve
done in listing 4.5, and use it to do work.

Our receiver has started the WeatherAlertService, which will run in the back-
ground and warn users of severe weather in the forecast with a Notification-based
alert. Let’s look more deeply into the concept of an Android Service.

Building a background weather service

In a basic Android application, you create Activity classes and move from screen to
screen using Intent calls, as we’ve done in previous chapters. This approach works for
the canonical Android screen-to-screen foreground application, but it doesn’t work
for cases like ours where we want to always listen for changes in the weather, even if

116

CHAPTER 4 Intents and Services

the user doesn’t currently have our app open. For this,
we need a Service.

In this section, we’ll implement the Weather-
AlertService we launched in listing 4.4. This Service
sends an alert to the user when itlearns of severe weather
in a specified location. This alert will display over any
application, in the form of a Notification, if severe
weather is detected. Figure 4.5 shows the notification
we’ll send.

A background task is typically a process that doesn’t
involve direct user interaction or any type of UL This
process perfectly describes checking for severe weather.
After a Service is started, it runs until it’s explicitly
stopped or the system kills it. The WeatherAlertService
background task, which starts when the device boots via
the BroadcastReceiver from listing 4.5, is shown in the
following listing.

7~ DA ® 7:38m
| june 24, 2010 QM@ 7:39
Android Clear

‘9 severe Weather Alert!

Beardstown, IL 7:38 AM

Figure 4.5 Warning from a
background application about
severe weather

Listing 4.6 WeatherAlertService class, used to register locations and send alerts

public class WeatherAlertService extends Service {
private static final String LOC = "LOC";
private static final String ZIP = "ZIP";
private static final long ALERT_QUIET_PERIOD =

private static final long ALERT_POLL_INTERVAL =

10000;
15000;

public static String deviceLocationzIP = "94102";

private Timer timer;

private DBHelper dbHelper;

private NotificationManager nm;

private TimerTask task = new TimerTask() {

public void run() {
List<Location> locations =
dbHelper.getAllAlertEnabled() ;

for (Location loc locations) {

yo Get locations with
alerts enabled

WeatherRecord record = loadRecord(loc.zip);

if (record.isSevere()) {
if ((loc.lastalert +
WeatherAlertService.ALERT_QUIET_PERIOD)
< System.currentTimeMillis()) {
loc.lastalert = System.currentTimeMillis();

dbHelper .update(loc) ;

sendNotification(loc.zip, record); <

Fire alert
@ if severe

device location alert omitted for brevity

}s
private Handler handler = new Handler() {
public void handleMessage (Message msg) {

Building a background weather service 117

notifyFromHandler ((String) msg.getData ()

.get (WeatherAlertService.LOC), (String) msg.getData()
.get (WeatherAlertService.ZIP)); Noﬁﬁlﬂ

} } q& from handler
@Override
public void onCreate() {

dbHelper = new DBHelper (this) ;

timer = new Timer(); <@ Initialize timer

timer.schedule(task, 5000,

WeatherAlertService.ALERT POLL_INTERVAL) ;
nm = (NotificationManager)
getSystemService (Context .NOTIFICATION_SERVICE) ;
}
onStart with LocationManager and LocationListener \
omitted for brevity

@Override
public void onDestroy () {

super.onDestroy () ; CIeanuP

dbHelper.cleanup () ; database connection
}
@QOverride

public IBinder onBind(Intent intent) {
return null;
}
protected WeatherRecord loadRecord(String zip) {
final YWeatherFetcher ywh = #10
new YWeatherFetcher (zip, true);
return ywh.getWeather () ;
}
private void sendNotification(String zip,
WeatherRecord record) { #11
Message message = Message.obtain() ;
Bundle bundle = new Bundle() ;
bundle.putString (WeatherAlertService.ZIP, zip);
bundle.putString (WeatherAlertService.LOC, record.getCity ()
+ ", " + record.getRegion());
message.setData (bundle) ;

handler.sendMessage (message) ; prhyacﬂonabh

) notification

private void notifyFromHandler (String location, String zip) { <
Uri uri = Uri.parse("weather://com.msi.manning/loc?zip=" + zip);
Intent intent = new Intent (Intent.ACTION_VIEW, uri);
PendingIntent pendingIntent =
PendingIntent.getActivity(this, Intent.FLAG_ACTIVITY_NEW_ TASK,
intent, PendingIntent .FLAG_ONE_SHOT) ;
final Notification n =
new Notification(R.drawable.severe_weather_ 24,
"Severe Weather Alert!",
System.currentTimeMillis());
n.setLatestEventInfo(this, "Severe Weather Alert!",
location, pendingIntent);
nm.notify (Integer.parselnt(zip), n);

118

CHAPTER 4 Intents and Services

WeatherAlertService extends Service. We create a service in a way that’s similar to
how we’ve created activities and broadcast receivers: extend the base class, implement
the abstract methods, and override the lifecycle methods as needed.

After the initial class declaration, we define several member variables. First come
constants that describe our intervals for polling for severe weather and a quiet period.
We’ve set a low threshold for polling during development—severe weather alerts will
spam the emulator often because of this setting. In production, we’d limit this to
check every few hours.

Next, our TimerTask variable will let us periodically poll the weather. Each time
the task runs, it gets all the user’s saved locations through a database call @. We’ll
examine the specifics of using an Android database in chapter 5.

When we have the saved locations, we parse each one and load the weather report.
If the report shows severe weather in the forecast, we update the time of the last alert
field and call a helper method to initiate sending a Notification @. After we process
the user’s saved locations, we get the device’s alert location from the database using a
postal code designation. If the user has requested alerts for his current location, we
repeat the process of polling and sending an alert for the device’s current location as
well. You can see more details on Android location-related facilities in chapter 11.

After defining our TimerTask, we create a Handler member variable. This variable
will receive a Message object that’s fired from a non-UI thread. In this case, after
receiving the Message, our Handler calls a helper method that instantiates and dis-
plays a Notification @.

Next, we override the Service lifecycle methods, starting with onCreate. Here
comes the meat of our Service: a Timer @ that we configure to repeatedly fire. For as
long as the Service continues to run, the timer will allow us to update weather infor-
mation. After onCreate, we see onDestroy, where we clean up our database connec-
tion @. Service classes provide these lifecycle methods so you can control how
resources are allocated and deallocated, similar to Activity classes.

After the lifecycle-related methods, we implement the required onBind method.
This method returns an IBinder, which other components that call into Service
methods will use for communication. The WeatherAlertService performs only a
background task; it doesn’t support binding, and so it returns a null for onBind. We’ll
add binding and interprocess communication (IPC) in section 4.5.

Next, we implement our helper methods. First, 1loadRecord calls out to the Yahoo!
Weather API via YWeatherFetcher. (We’ll cover networking tasks, similar to those this
class performs, in chapter 6.) Then sendNotification configures a Message with
location details to activate the Handler we declared earlier. Last of all, you see the
notifyFromHandler method. This method fires off a Notification with Intent
objects that will call back into the WeatherReporter Activity if the user clicks on the
Notification o

Now that we’ve discussed the purpose of services and you’ve created a Service
class and started one via a BroadcastReceiver, we can start looking at how other
developers can interact with your Service.

4.5

4.5.1

Communicating with the WeatherAlertService from other apps 119

A warning about long-running services

Our sample application starts a Service and leaves it running in the background. Our
service is designed to have a minimal footprint, but Android best practices discour-
age long-running services. Services that run continually and constantly use the net-
work or perform CPU-intensive tasks will eat up the device’s battery life and might
slow down other operations. Even worse, because they run in the background, the
user won’t know what applications are to blame for her device’s poor performance.
The OS will eventually kill running services if it needs to acquire additional memory,
but otherwise won't interfere with poorly designed services. If your use case no longer
requires the service, you should stop it. If you do require a long-running service, you
might want to give the user the option of whether to use it.

Communicating with the WeatherAlertService
from other apps

In Android, each application runs within its own process. Other applications can’t
directly call methods on your weather alert service, because the applications are in dif-
ferent sandboxes. You've already seen how applications can invoke one another by
using an Intent. Suppose, though, that you wanted to learn something specific from a
particular application, like check the weather in a particular region. This type of gran-
ular information isn’t readily available through simple Intent communication, but
fortunately Android provides a new solution: IPC through a bound service.

We’ll illustrate bound services by expanding our weather alert with a remotable
interface using AIDL, and then we’ll connect to that interface through a proxy that
we’ll expose using a new Service. Along the way, we’ll explore the IBinder and
Binder classes Android uses to pass messages and types during IPC.

Android Interface Definition Language

If you want to allow other developers to use your weather features, you need to give
them information about the methods you provide, but you might not want to share
your application’s source code. Android lets you specify your IPC features by using an
interface definition language (IDL) to create AIDL files. These files generate a Java
interface and an inner Stub class that you can use to create a remotely accessible
object, and that your consumers can use to invoke your methods.

AIDL files allow you to define your package, imports, and methods with return
types and parameters. Our weather AIDL, which we place in the same package as the
Jjava files, is shown in the following listing.

Listing 4.7 [|WeatherReporter.aidl remote IDL file

package com.msi.manning.weather;

interface IWeatherReporter

{

120

CHAPTER 4 Intents and Services

String getWeatherFor (in String zip);

void addLocation(in String zip, in String city, in String region);
}
You define the package and interface in AIDL as you would in a regular Java file. Simi-
larly, if you require any imports, you’d list them above the interface declaration. When
you define methods, you must specify a directional tag for all nonprimitive types. The
possible directions are in, out, and inout. The platform uses this directional tag to
generate the necessary code for marshaling and unmarshaling instances of your inter-
face across IPC boundaries.

Our interface IWeatherReporter includes methods to look up the current weather
from the service, or to add a new location to the service. Other developers could use
these features to provide other front-end applications that use our back-end service.

Only certain types of data are allowed in AIDL, as shown in table 4.5. Types that
require an import must always list that import, even if they’re in the same package as
your .aidl file.

After you’ve defined your interface methods with return types and parameters, you
then invoke the aidl tool included in your Android SDK installation to generate a Java
interface that represents your AIDL specification. If you use the Eclipse plug-in, it'll
automatically invoke the aidl tool for you, placing the generated files in the appropri-
ate package in your project’s gen folder.

The interface generated through AIDL includes an inner static abstract class
named Stub that extends Binder and implements the outer class interface. This Stub
class represents the local side of your remotable interface. Stub also includes an
asInterface (IBinder binder) method that returns a remote version of your interface
type. Callers can use this method to get a handle to the remote object and use it to
invoke remote methods. The AIDL process generates a Proxy class (another inner
class, this time inside Stub) that connects all these components and returns to callers
from the asInterface method. Figure 4.6 depicts this IPC local/remote relationship.

Table 4.5 Android IDL allowed types

Description an;E;::d
Java primitives boolean, byte, short, int, float, double, long, char. No
String java.lang.String. No
CharSequence java.lang.CharSequence. No
List Can be generic; all types used in collection must be allowed by No

IDL. Ultimately provided as an ArrayList.

Map Can be generic, all types used in collection must be one No
allowed by IDL. Ultimately provided as a HashMap.

Other AIDL interfaces Any other AIDL-generated interface type. Yes

Parcelable objects Objects that implement the Android Parcelable interface, Yes
described in section 4.5.2.

452

Communicating with the WeatherAlertService from other apps 121

AIDL file

IWeatherAlertService.aidl

Generated Java interface
IWeatherAlertService.java

Generated inner static abstract Stub
IWeatherAlertService.Stub

| Generated inner static Proxy
IWeatherAlertService.Stub.Proxy

REMOTE object

LOCAL object Proxy

Stub

Caller uses "aslInterface" to

Stub.asintertaco() retums get reference to a remote

REMOTE objoct (Proxy) object - Proxy is returned
onTransact() transact()
| eatherAlertService.Stub eatherAlertService.Stub.Proxy
WeatherAlertService asInterface(IBinder b eatherAlertService aslnterface(IBinder b)
IBinder asBinder() IBinder asBinder()

boolean onTransact(int code, Parcel data,

Parcel reg!, int ﬂaﬁ!

Figure 4.6 Diagram of the Android AIDL process

boolean onTransact(int code, Parcel data,
Parcel reply, int flags)

After all the required files are generated, create a concrete class that extends from
Stub and implements your interface. Then, expose this interface to callers through a
Service. We’ll be doing that soon, but first, let’s take a quick look under the hood
and see how these generated files work.

Binder and Parcelable

The IBinder interface is the base of the remoting protocol in Android. As we discussed
in the previous section, you don’t implement this interface directly; rather, you typi-
cally use AIDL to generate an interface that contains a Stub Binder implementation.
The IBinder.transact() method and corresponding Binder.onTransact()
method form the backbone of the remoting process. Each method you define using

122

4.5.3

CHAPTER 4 Intents and Services

AIDL is handled synchronously through the transaction process, enabling the same
semantics as if the method were local.

All the objects you pass in and out through the interface methods that you define
using AIDL use the transact process. These objects must be Parcelable in order to be
able to be placed inside a Parcel and moved across the local/remote process barrier
in the Binder transaction methods.

The only time you need to worry about something being Parcelable is when you
want to send a custom object through Android IPC. If you use only the default allow-
able types in your interface definition files—primitives, String, CharSequence, List,
and Map—AIDL automatically handles everything.

The Android documentation describes what methods you need to implement to
create a Parcelable class. Remember to create a .aidl file for each Parcelable inter-
face. These .aidl files are different from those you use to define Binder classes them-
selves; these shouldn’t be generated from the aidl tool.

CAUTION When you’re considering creating your own Parcelable types,
make sure you actually need them. Passing complex objects across the IPC
boundary in an embedded environment is an expensive and tedious opera-
tion; you should avoid doing it, if possible.

Exposing a remote interface

Now that you’ve defined the features you want to expose from your weather app, you
need to actually implement that functionality and make it available to external callers.
Android calls this publishing the interface.

To publish a remote interface, you create a class that extends Service and returns
an IBinder through the onBind(Intent intent) method. Clients will use that
IBinder to access a particular remote object. As we discussed in section 4.5.2, you can
use the AIDL-generated Stub class, which itself extends Binder, to extend from and
return an implementation of a remotable interface. This process is shown in the fol-
lowing listing, where we implement and publish the IWeatherReporter service we cre-
ated in the previous section.

Listing 4.8 Implementing a weather service that publishes a remotable object

public class WeatherReporterService extends WeatherAlertService {
private final class WeatherReporter
extends IWeatherReporter.Stub {
public String getWeatherFor (String zip) throws RemoteException {
WeatherRecord record = loadRecord(zip) ;

o ; Implement
return record.getCondition() .getDisplay() ;

) remote interface

public void addLocation(String zip, String city, String region)
throws RemoteException {
DBHelper db = new DBHelper (WeatherReporterService.this) ;
Location location = new Location() ;
location.alertenabled = 0;
location.lastalert = 0;

4.5.4

Communicating with the WeatherAlertService from other apps 123

location.zip = zip;
location.city = city;
location.region = region;
db.insert (location) ;

} ? Return IBinder

}; representing

public IBinder onBind(Intent intent) { < remotable ObieCt

return new WeatherReporter () ;

}

}

Our concrete instance of the generated AIDL Java interface must return an IBinder to
any caller that binds to this Service. We create an implementation by extending the
Stub class that the aidl tool generated @. Recall that this Stub class implements the
AIDL interface and extends Binder. After we’ve defined our IBinder, we can create
and return it from the onBind method @.

Within the stub itself, we write whatever code is necessary to provide the features
advertised by our interface. You can access any other classes within your application.
In this example, our service has extended WeatherAlertService so we can more eas-
ily access the weather functions we’ve already written, like the loadRecord method.

You’ll need to define this new WeatherReporterService in your application’s mani-
fest, in the same way you define any other service. If you want to bind to the service
only from within your own application, no other steps are necessary. But if you want to
allow binding from another application, you must provide some extra information
within AndroidManifest.xml, as shown in the following listing.

Listing 4.9 Exporting a service for other applications to access

<service android:name=".service.WeatherReporterService"
android:exported="true">
<intent-filter>
<action android:name=
"com.msi.manning.weather.IWeatherReporter" />
</intent-filter>
</service>

To allow external applications to find our Service, we instruct Android to export this
service declaration. Exporting the declaration allows other applications to launch the
Service, a prerequisite for binding with it. The actual launch will happen through an
intent-filter that we define. In this example, the caller must know the full name of
the action, but any <intent-filter> we discussed earlier in the chapter can be substi-
tuted, such as filtering by scheme or by type.

Now that you’ve seen how a caller can get a reference to a remotable object, we’ll
finish that connection by binding to a Service from an Activity.

Binding to a Service

Let’s switch hats and pretend that, instead of writing a weather service, we’re another
company that wants to integrate weather functions into our own app. Our app will let

124

CHAPTER 4 Intents and Services

the user enter a ZIP code and either look up the current weather for that location or
save it to the WeatherReporter application’s list of saved locations. We’ve received the
.aidl file and learned the name of the Service. We generate our own interface from
that .aidl file, but before we can call the remote methods, we’ll need to first bind with
the service.

When an Activity class binds to a Service using the Context.bindService
(Intent i, ServiceConnection connection, int flags) method, the Service-
Connection object that we pass in will send several callbacks from the Service back to
the Activity. The -callback onServiceConnected (ComponentName className,
IBinder binder) lets you know when the binding process completes. The platform
automatically injects the IBinder returned from the service’s onBind method into this
callback, where you can save it for future calls. The following listing shows an Activity
that binds to our weather reporting service and invokes remote methods on it. You can
see the complete source code for this project in the chapter downloads.

Listing 4.10 Binding to a Service within an Activity

package com.msi.manning.weatherchecker;
Imports omitted for brevity
public class WeatherChecker extends Activity {

@ Use generated
private IWeatherReporter reporter; 4| interface
private boolean bound;

private EditText zipEntry;

private Handler uiHandler; De“?e .
ServiceConnection
private ServiceConnection connection = behavior

new ServiceConnection() {
public void onServiceConnected
(ComponentName name, IBinder service) {
reporter = IWeatherReporter.Stub. ye Retrieve remotely
asInterface(service); callable interface
Toast .makeText (WeatherChecker.this, "Connected to Service",
Toast.LENGTH_SHORT) .show () ;
bound = true;
}
public void onServiceDisconnected
(ComponentName name) {
reporter = null;
Toast .makeText (WeatherChecker.this, "Disconnected from Service",
Toast .LENGTH_SHORT) .show () ;
bound = false;

onCreate method omitted for brevity

public void checkWeather (View caller) ({
final String zipCode = zipEntry.getText().toString() ;

if (zipCode != null && zipCode.length() == 5) { Don’t block
new Thread() { < Ul thread
public void run() {

try {

Communicating with the WeatherAlertService from other apps 125

final String currentWeather = <@ Invoke remote method
reporter.getWeatherFor (zipCode) ;
uiHandler.post (new Runnable () { <+
public void run() {
Toast .makeText (WeatherChecker.this, currentWeather,
Toast. LENGTH?LONG) . ShOW() H Show feedback
} on Ul thread

1)

} catch (DeadObjectException e) {
e.printStackTrace() ;

} catch (RemoteException e) {
e.printStackTrace() ;

} catch (Exception e) {
e.printStackTrace() ;

}
}.start () ;

}

public void saveLocation(View caller) {
final String zipCode = zipEntry.getText () .toString() ;
if (zipCode != null && zipCode.length() == 5) {
new Thread() { P
public void run() {

try {
reporter.addLocation (zipCode, "", ""); Show feedback
uiHandler.post (new Runnable() { <! on Ul thread

public void run() {
Toast .makeText (
WeatherChecker.this, R.string.saved,
Toast .LENGTH_LONG) .show() ;
}

)i

} catch (DeadObjectException e) {
e.printStackTrace() ;

} catch (RemoteException e) {
e.printStackTrace() ;

} catch (Exception e) {
e.printStackTrace() ;

}
}.start () ;

}
public void onStart() {
super.onStart () ;
if (!this.bound) { @ Startbinding
bindService (new Intent 4| to service
(IWeatherReporter.class.getName ()),
this.connection,
Context .BIND_AUTO_CREATE) ;

}

public void onPause() {
super .onPause () ;

126

4.5.5

CHAPTER 4 Intents and Services

if (this.bound) {
bound = false;
unbindService (connection) ;

}

In order to use the remotable IWeatherReporter we defined in AIDL, we declare a
variable with this type @. We also define a boolean to keep track of the current state
of the binding. Keeping track of the current state will prevent us from rebinding to
the service if our application is suspended and resumed.

We use the ServiceConnection object ® to bind and unbind using Context meth-
ods. After a Service is bound, the platform notifies us through the onService-
Connected callback. This callback returns the remote IBinder reference, which we
assign to the remotable type @ so we can invoke it later. Next, a similar onService-
Disconnected callback will fire when a Service is unbound.

After we’ve established a connection, we can use the AIDL-generated interface to
perform the operations it defines @. When we call getWeatherFor (or later, add-
Location), Android will dispatch our invocation across the process boundary, where
the service we created in listing 4.8 will execute the methods. The return values will be
sent back across the process boundary and arrive as shown at 0. This sequence can
take a long time, so you should avoid calling remote methods from the UI thread.

In onStart, we establish the binding using bindService ©:; later, in onPause, we
use unbindService. The system can choose to clean up a Service that’s been bound
but not started. You should always unbind an unused Service so the device can
reclaim its resources and perform better. Let’s look more closely at the difference
between starting and binding a service.

Starting versus binding
Services serve two purposes in Android, and you can use them in two different ways:

= Starting—Context.startService (Intent service, Bundle b)
= Binding—Context.bindService (Intent service, ServiceConnection ¢, int
flag)

Starting a Service tells the platform to launch it in the background and keep it run-
ning, without any particular connection to any other Activity or application. You
used the WeatherAlertService in this manner to run in the background and issue
severe weather alerts.

Binding to a Service, as you did with WeatherReporterService, gave you a handle
to a remote object, which let you call the service’s exported methods from an Activity.
Because every Android application runs in its own process, using a bound Service lets
you pass data between processes.

The actual process of marshaling and unmarshaling remotable objects across pro-
cess boundaries is complicated. Fortunately, you don’t have to deal with all the inter-
nals, because Android handles all the complexity through AIDL. Instead, you can stick
to a simple recipe that will enable you to create and use remotable objects:

4.5.6

Communicating with the WeatherAlertService from other apps 127

1 Define your interface using AIDL, in the form of a .aidl file; see listing 4.7.

2 Generate a Java interface for your .aidl file. This happens automatically in
Eclipse.

3 Extend from the generated . Stub class and implement your interface methods;
see listing 4.8.

a4 Expose your interface to clients through a Service and the Service
onBind (Intent i) method; see listing 4.8.

5 If you want to make your service available to other applications, export the
Service in your manifest; see listing 4.9.

6 Client applications will bind to your Service with a ServiceConnection to geta
handle to the remotable object; see listing 4.10.

As we discussed earlier in the chapter, services running in the background can have a
detrimental impact on overall device performance. To mitigate these problems,
Android enforces a special lifecycle for services, which we’re going to discuss now.

Service lifecycle

We want our weather alerting service to constantly lurk in the background, letting us
know of potential dangers. On the other hand, we want our weather reporting service
to run only while another application actually needs it. Services follow their own well-
defined process phases, similar to those followed by an Activity or an Application.
A service will follow a different lifecycle, depending on whether you start it, bind it,
or both.

SERVICE-STARTED LIFECYCLE

If you start a Service by calling Context.startService (Intent service, Bundle b),
as shown in listing 4.5, it runs in the background whether or not anything binds to it.
If the service hasn’t been created, the Service onCreate() method is called. The
onStart (int id, Bundle args) method is called each time someone tries to start the
service, whether or not it’s already running. Additional instances of the Service won’t
be created.

The Service will continue to run in the background until someone explicitly stops
it with the Context.stopService() method or when the Service calls its own
stopSelf () method. You should also keep in mind that the platform might kill ser-
vices if resources are running low, so your application needs to be able to react accord-
ingly. You can choose to restart the service automatically, fall back to a more limited
feature set without it, or take some other appropriate action.

SERVICE-BOUND LIFECYCLE

If an Activity binds a Service by calling Context.bindService(Intent service,
ServiceConnection connection, int flags), as shown in listing 4.10, it’ll run as long
as the connection is open. An Activity establishes the connection using the Context
and is also responsible for closing it.

128

4.6

CHAPTER 4 Intents and Services

When a Service is only bound in this manner and not also started, its onCreate ()
method is invoked, but onStart (int id, Bundle args) is not used. In these cases, the
platform can stop and clean up the Service after it’s unbound.

SERVICE-STARTED AND SERVICE-BOUND LIFECYCLE

If a Service is both started and bound, it'll keep running in the background, much
like in the started lifecycle. In this case, both onStart (int id, Bundle args) and
onCreate () are called.

CLEANING UP WHEN A SERVICE STOPS

When a Service stops, its onDestroy () method is invoked. Inside onDestroy (), every
Service should perform final cleanup, stopping any spawned threads, terminating
network connections, stopping services it had started, and so on.

And that’s it! From birth to death, from invocation to dismissal, you’ve learned
how to wrangle an Android Service. They might seem complex, but they offer
extremely powerful capabilities that can go far beyond what a single foregrounded
application can offer.

Summary

In this chapter, we covered a broad swath of Android territory. We first focused on the
Intent component, seeing how it works, how it resolves using Intent-Filter objects,
and how to take advantage of builtin platform-provided Intent handlers. We also
looked at the differences between explicit Intent invocation and implicit Intent
invocation, and the reasons you might choose one type over another. Along the way,
you completed the RestaurantFinder sample application, and with just a bit more
code, you drastically expanded the usefulness of that app by tapping into preloaded
Android applications.

After we covered the Intent class, we moved on to a new sample application,
WeatherReporter. You saw how a BroadcastReceiver could respond to notifications
sent by the platform or other applications. You used the receiver to listen for a boot
event and start the Service. The Service sends notification alerts from the back-
ground when it learns of severe weather events. You also saw another flavor of
Service, one that provides communication between different processes. Our other
weather service offered an API that third-party developers could use to leverage the
low-level network and storage capabilities of our weather application. We covered the
difference between starting and binding services, and you saw the moving parts
behind the Android IPC system, which uses the AIDL to standardize communication
between applications.

By seeing all these components interact in several complete examples, you now
understand the fundamentals behind Android Intents and Services. In the next
chapter, you’ll see how to make services and other applications more useful by using
persistent storage. We’ll look at the various options Android provides for retrieving
and storing data, including preferences, the file system, databases, and how to create a
custom ContentProvider.

Stoning and
retrieving data

This chapter covers

Storing and retrieving data with SharedPreferences
Using the filesystem

Working with a SQLite database

Accessing and building a ContentProvider

Android provides several ways to store and share data, including access to the file-
system, a local relational database through SQLite, and a preferences system that
allows you to store simple key/value pairs within applications. In this chapter, we’ll
start with preferences and you’ll create a small sample application to exercise those
concepts. From there, you’ll create another sample application to examine using
the filesystem to store data, both internal to our application and external using the
platform’s Secure Digital (SD) card support. You’ll also see how to create and
access a database.

Beyond the basics, Android also allows applications to share data through a
clever URI-based approach called a ContentProvider. This technique combines
several other Android concepts, such as the URI-based style of intents and the

129

130

5.1

511

CHAPTER 5 Storing and retrieving data

Cursor result set seen in SQLite, to make data accessible across different applications.
To demonstrate how this works, you’ll create another small sample application that
uses built-in providers, then we’ll walk through the steps required to create your own
ContentProvider.

We’ll begin with preferences, the simplest form of data storage and retrieval
Android provides.

Using preferences

If you want to share simple application data from one Activity to another, use a
SharedPreferences object. You can save and retrieve data, and also choose whether
to make preferences private to your application or accessible to other applications on
the same device.

Working with SharedPreferences

You access a SharedPreferences object through your current Context, such as the
Activity or Service. Context defines the method getSharedPreferences (String
name, int accessMode) that allows you to get a preferences handle. The name you
specify will be the name for the file that backs these preferences. If no such file exists
when you try to get preferences, one is automatically created. The access mode refers
to what permissions you want to allow.

The following listing demonstrates allowing the user to input and store data
through SharedPreferences objects with different access modes.

Listing 5.1 Storing SharedPreferences using different modes

package com.msi.manning.chapter5.prefs;
// imports omitted for brevity
public class SharedPrefTestInput extends Activity {

public static final String PREFS_PRIVATE = "PREFS_PRIVATE";
public static final String PREFS_WORLD_READ = "PREFS_WORLD_READABLE";
public static final String PREFS_WORLD_WRITE = "PREFS_WORLD_WRITABLE";

public static final String PREFS_WORLD_READ_WRITE =
"PREFS_WORLD_READABLE_WRITABLE";

public static final String KEY_PRIVATE = "KEY_PRIVATE";
public static final String KEY_WORLD_READ = "KEY_WORLD_READ";
public static final String KEY_WORLD_WRITE = "KEY_WORLD_WRITE";

public static final String KEY_WORLD_READ WRITE =
"KEY_WORLD_READ_WRITE";
view element variable declarations omitted for brevity

private SharedPreferences prefsPrivate; Declare

private SharedPreferences prefsWorldRead; SharedPreferences
private SharedPreferences prefsWorldWrite; variables
private SharedPreferences prefsWorldReadWrite;

@Override

public void onCreate (Bundle icicle) {
view inflation omitted for brevity
button.setOnClickListener (new OnClickListener () {
public void onClick(final View v) {
boolean valid = validate();

Using preferences 131

if (valid) { Use
prefsPrivate = Context.getShared
getSharedPreferences (Preferences for
SharedPrefTestInput.PREFS_PRIVATE, references
Context .MODE_PRIVATE) ; Use
prefsWorldRead =

different modes
getSharedPreferences (

SharedPrefTestInput.PREFS_WORLD_READ,
Context .MODE_WORLD_READABLE) ;
prefsWorldWrite =
getSharedPreferences (
SharedPrefTestInput.PREFS_WORLD_WRITE,
Context .MODE_WORLD_WRITEABLE) ;
prefsWorldReadWrite =
getSharedPreferences (
SharedPrefTestInput.PREFS_WORLD_READ_WRITE,
Context .MODE_WORLD_READABLE

+ Context.MODE_WORLD_WRITEABLE) ; Get
Editor prefsPrivateEditor = SharedPreferences
prefsPrivate.edit () ; editor

Editor prefsWorldReadEditor =
prefsWorldRead.edit () ;
Editor prefsWorldWwriteEditor =
prefsWorldWrite.edit () ;
Editor prefsWorldReadWriteEditor =
prefsWorldReadWrite.edit ()
prefsPrivateEditor.putString (
SharedPrefTestInput.KEY_PRIVATE, Store values
inputPrivate.getText.toString()); with editor
prefsWorldReadEditor.putString (
SharedPrefTestInput.KEY_WORLD_READ,
inputWorldRead.getText () .toString()) ;
prefsWorldWriteEditor.putString (
SharedPrefTestInput.KEY_WORLD_WRITE,
inputWorldWrite.getText () .toString()) ;
prefsWorldReadWriteEditor.putString (
SharedPrefTestInput.KEY_WORLD_READ_WRITE,
inputWorldReadWrite.getText () .toString()) ;
prefsPrivateEditor.commit () ; <
prefsWorldReadEditor.commit () ;
prefsWorldWriteEditor.commit () ;
prefsWorldReadWriteEditor.commit () ;
Intent intent =
new Intent (SharedPrefTestInput.this,
SharedPrefTestOutput.class) ;
startActivity (intent) ;

Persist
changes

)i

validate omitted for brevity
}

After you have a SharedPreferences variable (1} you can acquire a reference
through the Context @. Note that for each SharedPreferences object we get, we use

132

CHAPTER 5 Storing and retrieving data

a different constant value for the access mode, and in some cases we also add modes
©. We repeat this coding for each mode we retrieve. Modes specify whether the pref-
erences should be private, world-readable, or world-writable.

To modify preferences, you must get an Editor handle 0. With the Editor, you
can set String, boolean, float, int, and long types as key/value pairs ©. This limited
set of types can be restrictive, but often preferences are adequate, and they’re simple
to use.

After storing with an Editor, which creates an in-memory Map, you have to call
commit () to persist it to the preferences backing file @. After data is committed, you
can easily get it from a SharedPreferences object. The following listing gets and dis-
plays the data that was stored in listing 5.1.

Listing 5.2 Getting SharedPreferences data stored in the same application

package com.msi.manning.chapter5.prefs;
// imports omitted for brevity
public class SharedPrefTestOutput extends Activity {
view element variable declarations omitted for brevity
private SharedPreferences prefsPrivate;
private SharedPreferences prefsWorldRead;
private SharedPreferences prefsWorldWrite;
private SharedPreferences prefsWorldReadWrite;
onCreate omitted for brevity
@Override
public void onStart() {
super.onStart () ;
prefsPrivate =
getSharedPreferences (SharedPrefTestInput.PREFS_PRIVATE,
Context .MODE_PRIVATE) ;
prefsWorldRead =
getSharedPreferences (SharedPrefTestInput.PREFS_WORLD_READ,
Context .MODE_WORLD_READABLE) ;
prefsWorldWrite =
getSharedPreferences (SharedPrefTestInput.PREFS_WORLD_WRITE,
Context .MODE_WORLD_WRITEABLE) ;
prefsWorldReadWrite =
getSharedPreferences (
SharedPrefTestInput.PREFS_WORLD_READ_WRITE,
Context .MODE_WORLD_READABLE
+ Context.MODE_WORLD_WRITEABLE) ;
outputPrivate.setText (prefsPrivate.getString(
SharedPrefTestInput.KEY_PRIVATE, "NA")); <
outputWorldRead.setText (prefsWorldRead.getString(Get values
SharedPrefTestInput.KEY_WORLD_READ, "NA"));
outputWorldWrite.setText (prefsWorldWrite.getString(
SharedPrefTestInput.KEY_WORLD_WRITE, "NA"));
outputWorldReadWrite.setText (prefsWorldReadWrite.getString (
SharedPrefTestInput.KEY_WORLD_READ_WRITE, <
"NA")) ;

512

Using preferences 133

To retrieve previously stored values, we again declare variables and assign references.
When these are in place, we can get values using methods such as getString (String
key, String default) @. The default value is returned if no data was previously
stored with that key.

Setting and getting preferences is straightforward. Access modes, which we’ll focus
on next, add a little more complexity.

Preference access permissions

You can open and create SharedPreferences with any combination of several Context
mode constants. Because these values are int types, you can add them, as in listings 5.1
and 5.2, to combine permissions. The following mode constants are supported:

= Context.MODE_PRIVATE (value 0)
= Context.MODE_WORLD_READABLE (value I)
= Context.MODE_WORLD_WRITEABLE (value 2)

These modes allow you to tune who can access this preference. If you take a look at
the filesystem on the emulator after you've created SharedPreferences objects
(which themselves create XML files to persist the data), you can see how setting per-
missions works using a Linux-based filesystem.

Figure 5.1 shows the Android Eclipse plug-in File Explorer view. Within the
explorer, you can see the Linux-level permissions for the SharedPreferences XML
files that we created from the SharedPreferences in listing 5.1.

Each Linux file or directory has a type and three sets of permissions, represented
by a drwxrwxrwx notation. The first character indicates the type (d means directory, -
means regular file type, and other types such as symbolic links have unique types as
well). After the type, the three sets of rwx represent the combination of read, write,
and execute permissions for user, group, and world, in that order. Looking at this nota-
tion, we can tell which files are accessible by the user they’re owned by, by the group
they belong to, or by everyone else on the device. Note that the user and group always
have full permission to read and write, whereas the final set of permissions fluctuates
based on the preference’s mode.

Android puts SharedPreferences XML files in the /data/data/PACKAGE_NAME/
shared_prefs path on the filesystem. An application or package usually has its own

¥ = com.msi.manning.chapter5.prefs 2008-03-12 13:40 drwxrwx--x
= shared_prefs 2008-03-12 13:41 drwxrwx--x
PREFS_PRIVATE.xml 114 2008-03-12 13:41 -rw-rw----
PREFS_WORLD_READABLE.xml| 117 2008-03-12 13:41 -rw-rw-r--
PREFS_WORLD_READABLE_WRITABLE.xml| 126 2008-03-12 13:41 -rw-rw-rw-

=) PREFS_WORLD_WRITABLE.xml 119 2008-03-12 13:41 -rw-rw--w-

= com.other.manning.chapter5.prefs 2008-03-12 13:42 drwxrwx--x

= download 2008-03-12 13:37 drwxrwxrwx

Figure 5.1 The Android File Explorer view showing preferences file permissions

134 CHAPTER 5 Storing and retrieving data

Directories with the world x permission

In Android, each package directory is created with the world x permission. This per-
mission means anyone can search and list the files in the directory, which means
that Android packages have directory-level access to one another’s files. From there,
file-level access determines file permissions.

user ID. When an application creates files, including SharedPreferences, they’re
owned by that application’s user ID. To allow other applications to access these files,
you have to set the world permissions, as shown in figure 5.1.

If you want to access another application’s files, you must know the starting path.
The path comes from the Context. To get files from another application, you have to
know and use that application’s Context. Android doesn’t officially condone sharing
preferences across multiple applications; in practice, apps should use a content pro-
vider to share this kind of data. Even so, looking at SharedPreferences does show the
underlying data storage models in Android. The following listing shows how to get the
SharedPreferences we set in listing 5.1 again, this time from a different application
(different .apk and different package).

Listing 5.3 Getting SharedPreferences data stored in a different application

package com.other.manning.chapter5.prefs; < Use
imports omitted for brevity different
public class SharedPrefTestOtherOutput extends Activity { package

constants and variable declarations omitted for brevity
onCreate omitted for brevity
@Override
public void onStart () {
super.onStart () ;
Context otherAppsContext = null;
try {
otherAppsContext =
createPackageContext ("com.msi.manning.chapter5.prefs",
Context .MODE_WORLD_WRITEABLE) ; <
} catch (NameNotFoundException e) {

Get another

application’s
} // log and/or handle context
prefsPrivate =
otherAppsContext.getSharedPreferences (
SharedPrefTestOtherOutput.PREFS_PRIVATE, 0); Use
prefsiorldRead = 43 otherAppsContext

otherAppsContext.getSharedPreferences (
SharedPrefTestOtherOutput.PREFS_WORLD_READ, O0);
prefsWorldWrite =
otherAppsContext.getSharedPreferences (
SharedPrefTestOtherOutput.PREFS_WORLD_WRITE, 0);
prefsWorldReadWrite =
otherAppsContext.getSharedPreferences (
SharedPrefTestOtherOutput.PREFS_WORLD_READ_WRITE, O0);
outputPrivate.setText (

Using preferences 135

prefsPrivate.getString (
SharedPrefTestOtherOutput.KEY_PRIVATE, "NA"));
outputWorldRead. setText (
prefsWorldRead.getString (
SharedPrefTestOtherOutput.KEY_WORLD_READ, "NA"));
outputWorldWrite.setText (
prefsWorldiWrite.getString (
SharedPrefTestOtherOutput .KEY _WORLD_WRITE, "NA"));
outputWorldReadWrite.setText (
prefsWorldReadWrite.getString (
SharedPrefTestOtherOutput.KEY_WORLD_READ_WRITE, "NA")) ;

}

To get one application’s SharedPreferences from another application’s package @,
we use the createPackageContext (String contextName, int mode) method @. When
we have the other application’s Context, we can use the same names for the Shared-
Preferences objects that the other application created to access those preferences €.

With these examples, we now have one application that sets and gets Shared-
Preferences, and a second application with a different .apk file that gets the prefer-
ences set by the first. The composite screen shot shown in figure 5.2 shows what the
apps look like. NA indicates a preference we couldn’t access from the second applica-
tion, either as the result of permissions that were set or because no permissions had
been created.

Though SharedPreferences are ultimately backed by XML files on the Android
filesystem, you can also directly create, read, and manipulate files, as we’ll discuss in

the next section.

B @ 2:06em

Bl @ 2:08em

B @ 2:120m

Figure 5.2

Two separate applications
getting and setting
SharedPreferences

136 CHAPTER 5 Storing and retrieving data

5.2 Using the filesystem

Android’s filesystem is based on Linux and supports mode-based permissions. You can
access this filesystem in several ways. You can create and read files from within applica-
tions, you can access raw resource files, and you can work with specially compiled cus-
tom XML files. In this section, we’ll explore each approach.

5.2.1 Creating files

Android’s stream-based system of manipulating files will feel familiar to anyone who’s
written I/0 code in Java SE or Java ME. You can easily create files in Android and store
them in your application’s data path. The following listing demonstrates how to open
a FileOutputStream and use it to create a file.

Listing 5.4 Creating a file in Android from an Activity

public class CreateFile extends Activity {
private EditText createlInput;
private Button createButton;
@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView(R.layout.create_file);
createInput =
(EditText) findviewById(R.id.create_input) ;
createButton =
(Button) findViewById(R.id.create_button);
createButton.setOnClickListener (new OnClickListener () {
public void onClick(final View v) {
FileOutputStream fos = null;

try {
fos = openFileOutput ("filename.txt", ‘) Use
Context .MODE_PRIVATE) ; - openFileOutput
fos.write(createInput.getText (). Write data
toString() .getBytes()) ; to stream

} catch (FileNotFoundException e) {
Log.e("CreateFile", e.getLocalizedMessage());
} catch (IOException e) {

Log.e("CreateFile", e.getLocalizedMessage());
} finally {
if (fos != null) {
try {
fos.flush(); Flush and
fos.close(); close stream

} catch (IOException e) {
// swallow

}
startActivity(
new Intent (CreateFile.this, ReadFile.class));

5.2.2

Using the filesystem 137

Android provides a convenience method on Context to get a FileOutputStream—
namely openFileOutput (String name, int mode) 0. Using this method, you can cre-
ate a stream to a file. That file will ultimately be stored at the data/data/
[PACKAGE_NAME] /files/file.name path on the platform. After you have the stream,
you can write to it as you would with typical Java @. After you're finished with a
stream, you should flush and close it to clean up @.

Reading from a file within an application context (within the package path of the
application) is also simple; in the next section we’ll show you how.

Accessing files

Similarly to openFileOutput, the Context also has a convenience openFileInput
method. You can use this method to access a file on the filesystem and read it in, as
shown in the following listing.

L